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Abstract

Transformation between five different intermediate forms used in VLSI

design are discussed. The intermediate forms are: the D language, Akers!

Diagrams, transistor listings, the sticks standard, and CIF lanquage. They

reprosent architecture, logic, transistor, topology and geometric levels,

respectively. To understand more about
levels,

the relationships between these
a - -series of transformations from the CIF to the sticks standard,

from the sticks standard to the transistor Tisting, and from the transistor

listing to the Akers' Diagram are presented. By doing this, the

description gap between the logical world

bridged.

and the physical world is

CAD developers often complain about the lack of a model that can be applioed

uniformly throughout the entire design process. Akors' Diagrams seom Lo

meet this demand. This work highlights this point.

As an example, a shift register implementcd

many times in this thesis.

in NMOS technoloagy will appear

index terms: Akers' Diagrams, CIF, Compaosition cell, D language, D Simulator,

DBJ, Leaf cell, MOS Simulator, Sticks Standard, Transistor Listing.
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1. Introduction

People are talking about design automation, The physical Tlayout is the
final goal, but they do not want to design at that level. This situation
is quite similar to programming languages. The binary code 1is the only
executable form, but people prefer to write programs at higher levels. As
time goes on, all kinds of chip assemblers [1,2] and chip compilers [3,4]
have been deve]opeﬂ to help design in various ways. It is anticipated that
integrated circuit design can be fully aulomalbed in Lhe near Tubure. The

designer needs only to give a logic specification and the computer will
take care of everything.

This goal is not very easy to achieve. The semantic gap between logic
specification and physical layout is s0 great that the direct
transformation 1is almost impossible. Stepwise approaches are taken and
various intermediate forms have beeh developed. To the designer, CIF [5.6]
can be considered at the Jlowest level since it maps directliy into tihe
geometry. Right above this level is the sticks standard [77 that describes
the topology of the circuits. At the present time, citrcuits are wmostly
designed in one of the following two ways: 1) write proarams, probably
using embedded languages [8-117], and compile them into CIF files : 2) use a
sticks editor [12] to create sticks files and apply & compactor program
f12] and sticks-to-CIF translator [13] to obtain the final CIF files. Once

described in CIF formats, the circuits are ready for fabrication.

Simulation and testing are as. important as the physical design itself.

Functional simulation at the register transfer level is purely logical and

has only» a slight relationship to the physical Tlayout. The MOS model

[ 14,15 for simulating the bidirectional behavior of MOS elements is more

accurate and has been used frequently. The input format to the MOS
simulator 1is the transistor connection information, that 1s at a slightly

higher level than the sticks representation. It is desirable to transform
the CIF and the sticks standard to this Tormat (refered to as$ transistor
1isting) so that simulation can be done [16].



At this point, the geometiric level (CIF), the topological level (sticks
standard), and the transistor level (transistor 1listing) are discussed.
Although these are at three different levels, the gaps between them are
relatively small. The pass transistors in the CIF files are bidirectionatl,
the source and drain are symmetric, and the direction of signal flow cannot
be determined beforehand. This property, that also holds at the
topolegical and the transistor levels, is the reason for the very large gap
between the logical and the physical descriptions of digital systems.
Logic designers are more familiar with the logical operations that are
strictiy unidirectional (where a node can unambiguously be determined to be
input or output) To bridge this 003cr1ption gap, the next transformation is
from the transistor level to the logic level. The logic level descriptions
may be in terms of boolean operators or the Jike. Here, the Akers!
Diagrams [17] are selected because of their expressive power and close

relationship to the physical behaviors of MOS elements [18,19,20] (detailed
in section 4).

One may wonder why thése geometry-to-logic transformations are discussod.
It is well known that one neceds to transform digital circuits from logic to

geometry. What are the reverse transformations for? There are several
reasons for this:

1) The complete transformation from logic to efficient geometry is too
difficult to be realized in the near future. Most people still desian
cells at the geometric or stick level. 1In order to simulate these cells,
geometry-to-logic transformations are necessary. The system described
[21] was designed for this same reason.

in

2) Even 1T the logic~to-geometry transformation is feasible in the tuture,
it will be necessary to verify that the cells generated by the machine

actually operate as desired. This reverse transformation provides a weans
for double-checking.

3) As stated above, the transformation from the Jlogic level to the
physical level is very difficuilt. It is anticipated that, by doing the

reverse transformation, the relationships between these Jlevels can be

better understood. The experiences gained here may become very helpful 1in

dealing with fhe logic-to-geometry transformation.



D Yanguage is a register-transfer-level hardware design language [22]. it
has the same syntax as the programming Tanguage C [23], but with different
interpretations. Digital systems can be effectively described in D  which,
in turn, may be compiled into the Akers' Diagrams. The Akers' Diagram is
the meeting point between the Tlogical world and the physical world.
Hopefully 1in the future, the design task will be nothing more than writing.

D-1ike programs. The computer will transform them all the way to the
geometric layouts.

description Tevel intermediate forms se1ec£ed'
architecture D Language
logic Akers' Diagram
transistor Transistor Listing
topology Sticks Standard
geometry Caitech Intermediate Form

Fig.1.1.1 The Five Intermediate Forms Involved in This Thesis

The five intermediate forms involved in this thesis are shown in Fig.1.1.1.
In the next two sections, the algorithms and examples of CIF-to-sticks and
sticks-to-transistor transformations are presented. Section 4 is the
central part of this thesis. It starts with a brief introduction to the D
language and the Akers' Diagrams. The transformation from the transistor
Tisting to the Akers' Diagram are then discussed in some detail. Described
in section 5 is a simulator with an operating mechanism based upon the
Akers' Diagrams. Conclusions and future work are briefly discussed in
section 6. A SIMULA [24] program, called DAN (D analyzer) , is now in

operation. Examples and Users' guides Tor the program are contained in the

Appendix.



2. CIF to Sticks Standard Transformation

2.1 Assumptions

This scction deals with the CIF tu sticks transfurmalion. A CIF (ile is u

raw listing of all the geometric objects that appear 1in the physical

layout. Boxes, wires and polydons interact with one another and produce

different kinds of physical components. These components are abstracted 1in

the sticks standard as transistors, contacts, and so on.

The components produced by these geometric objects can be idinvestigated

through a checkpiot of the CIF Tiles [2b]. Vihen a poly wire crosses a

diffusion wire, one realizes that there 1is a transistor. When a cut is
-covered by a metal box, one knows that there 1is a contact. This

transformation is simply to automate the component recognition process.

At this point, some decisions must be made regarding how well the
performance of the transformation is intended to be. Should it be designed
to deal with general geometry or only regular cells? Should it include the
capability to check the design rules at the same time or only accaept

correct cells? It is well known that CIF 1itself does not
restriction upon the designer.

impose any
One can design in whatever way one likes,
For example, one can put a poly wire at one cell and another diffusion wire
alt another cell. These two cells overlap in such a way that these two
wires 'intersect‘ From each individual cell, nothing can be detected;
however, when this chip is fabricated, a transistor is created. This kind

of désign .15 acceptable to CIF, but 1is a had design style. For such

complicated systems as VLSI circuits, the most important thing is the
management of complexity [6]. Structural design based upon the cohcept of
separated hierarchy [26] is one of the better alternatives. For this

reason, the first assumption 1is made that all the geometric objects
contained in one circuit but defined in different cells overliap only at the
edges. This assumption makes it possible to deal with everything on a

local basis. The hierarchical structure of the original design remains
unchanged after various transformations.

The next assumption is that the cells contain no design rule errors. Cells
submitted to the system must pass through the design rule checker first.
However, several of the design rule checking and the component recognition

procedures are quite similar so that they could possibly be integrated into



one system at a later date.

To further simplify the task, some additional assumptions are made. Al1

wires must be described by Wire commands. Box, Polygon and Round-flash
(circte) commands [7] are only allowed for creating components, not for
wires. For instance, if two transistors are connected by using a box
instead of a wire, there is no guarantee that this connection will be
detected properly. On the other hand, wire commands are supposed to be
used for wires and not for componentsl It is acceptable

if one applies

poly wires and diffusion wires to make ftransistors or use metal wires to

cover a contact cut, However, if the cut box is replaced
then the system may fail to detect this contact.

by a cut wire,
The above assumptions do
restrict the applicability of the system; however; it really saves a lot of
programming effort. and processing time.
for most of the cells.

This heuristic approach does work

2.2 The Algorithms

At the bottom level, there are several routines +that deal with Lhe

interaction of different geometric objects. These geometri; objects

include points, wires, boxes and polygons. Boxes only include objects with

edges parallel to the x or y axes; otherwise they are considered to be
polygons. Circles are approximated by boxes. Polygons are relatively hard
to Qdea1 with s0 they are approximated by a series of boxes. This

approximation is very rough, but it is not sigﬁificant to . the problem. Ve

are only concerned about the existence and position of components, not
their detailed physics.
The interaction between wires and Dboxes can be easily detected by

comparison of the coordinates of the edge points [27]. This 1is done 1in

- several procedures with different parameters (wire-wire, wire-box or

bbx—hox). Whether a point is contained in a wire or a box can also be
detected easily. A1l bﬁese geometric routines are tlechnology-independent.
The whole system can be easily adapted to different sets of design rules
and technologies. At present, only NMOS and CMOS circuits based upon the
Mead & Conway design rules [6] are considered. In such circuits,

five
kinds of components are intended to be detected: ‘
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1. Transistors: these include the enhancement and the depletion mode

transistors 1in the NMOS circuits, and P-type and N-type transistors in the
CMOS circuits. '

2. Contacts: these include the metal-to-poly (RB), the poly-to-diffusion (
BUTT) and the metal-to-diffusion (GB) contacts.

3. Connectors: these interface cells with the outside wor]d.‘ Each
connector 1is associated with the edge information (LEFT, RIGHT, TOP or
BOTTOM) and the tayer information (METAL, DIFFUSION or POLY}.

4. Subcells and their connection points.

H. Joints: these are the Jjoint points between different wires in the same

layer.

The front end of the system is the CIF parser which reads in the CIF files
and creates the data structure shown in Fig.2.2.1.

I

]

cell

whey

subcell

- .

I M

wire ‘ ‘box . polygon

Fig.2.2,1 " The Data Structure Created by the CIF Parser

Contained in the top level are a series of cell definitions. Each cell, in

turn, is composed of layers of wires and boxes and instances of othoer



cells. With this structure, all the components can be detected. This
process is summarized in the following pidgin SIMULA code:

BEGIN

PROCEDURE solve(c); REF(cell)c;
INSPECT ¢ DO IF NOT solved THEN BEGIN

I solve the subcells first ;
- INSPECT subcell-1ist DO FOR i:=1 STEP 1 UNTIL length DO
INSPECT a.a[ 1] QUA subcell DO BEGIN
solve(c);
pass-connection=-points; {(P1)

END of inspect;

detect~contacts; (P2)
detect-transistors; . (P3)
solve-wires; : “(P4)
detect~connectors; (P5)

solved:=TRUE;

END of PROCEDURE so1ve—ée1];

INSPECT cell-1ist DO FOR 1i:=1 STEP 1 UNTIL length DO -
solve(a.a[i] QUA cell);

END of CIF-to-sticks-transform;

(P1) : A1l the subcells must be solved first. A1l the connectors of thusa
subcells are then passed to the calling cell. Such points will becone
¢ither the connectors of the calling cell, if they are outside its shrinked
bounding box {see (P5)), or the internal connection points, 1if 1inside.
Internal connection points from different sdbcells will merge together if
they overlap and belong to the same layer.

(PZ) and (P3): In [28], a set of rules for detecting transistors and

contacts in the NMOS circuits are described. They are repeated as follows:
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Combination of Layers Resultant Device

Poly & Diffusion -~---> Transistor (N-type)
Transistor & Implant ----- > Pull-up (NMOS)
(Transistor & P-type diffusion ----- > P-type Transistor in CMOS)

Cut & Metal ----- > To-Metal-Contact
To-Metal-Contact & Poly ~---- > RB-Contact
To-Metal-Contact & Diffusion ----> GB-Contact
RB-Contact & GB-Contact ----- > Butt-Contact

Checking contacts starts with the cut boxes and checks 1f they are covered
by metal {(only metal boxes and metal wires with width no less than 4 lambda
are checked). The - investigation of these cuts with poly or diffusion
determines the type of the contact. A check is then made for butting
contacts, if the original CIF file contains two cut boxes, they are merged
into one. This merging operation js treated uniformly throughdut the whole
component recognition process since, with the assumption that no desigﬁ
rule error may occur, distinct components must be separated by at least 4
Yambda . Different components with a distance less than 4 lambda will be

merged into one. In procedure (P3), wire-wire and box-wire transistors are
delected.

{P4): Components, detected in procedures (P2) and (P3) or passed from
stubcells in procedure {(P1), are put to wires. The wire-wire transistors
and the Jjoint points between different W1res of one layer are also deteéted
at this“stage. As described earlier, all components must be separated by
at least 4 lambda; otherwise they will be merged into one. 1If a transistor
is very near a Jjoint point, then the Jjoint point will be merged into the

transistor (not the transistor merged into the joint point).

(P5) Connectors are detected by finding the minimum bounding box first.
Since most. CIF files already contain this information, it 1is obtained
without recomputing. The bounding box is then shrinked by 4 lambda. The
points that are outside this shrinked box are considered to be connectors.

Each component 1is associated with a name given by the system and a

coordinate pair indicating 1its position. Each name 1is composed of a



capital letter and an integer. The letter identifies the type of
components: ‘B' for connectors (bristles), 'N' for N-type (or enhancement
mode )} transistors, 'P!' for P-type (or depletion mode)_transistors, ‘¢! for
contacts, 'J' for Jjoint points and 'I' for dinternal connection points. The
integer is sequentially assigned to each type of component. For dinstance,

if there are three N-type transistors and two contacts, they are named NI,
N2, N3, Ci and €2, respectively.

The sticks diagrams may be displayed and plotted using any graphic device
defined in the super class DISPLA [29]. DISPLA is a SIMULA program that
contains various contraol and plotting routines for several devices such as
Chartes terminal [30], GIGI terminal [31] and HP 7221 plotter [32].
Contents of subcells may be drawn at any level desired. Shown in Fig.2.3.5
is an NMOS shift register plotted at 1level 1 (the bounding boxes of

subcells). The same cell plotted at level 99 ( all the details) is shown
in Fig.2.3.6.

2.3 Examples

Shown +in Fig.2.3.3 is a 2-bit shift register implemented in NMQOS
techrnology. It 1is constructed by repeating the 1leaf c¢ell, shown fn
Fig.2.3.1, four times along the horizontal direction. Its cell structure
(composition cell) is revealed in Fig.2.3.2. Note that the subcells onily
cverlap at the edges. The sticks diagrams obtained from the CIF-to-stiéks

transformation are shown in Fig.2.3.4-6. Fig.2.3.4 indicates the topoiogy

of the leaf cell. 8 connectors, 2 enhancement transiétors, 1 pull-up
resister, 2 Jjoints and 3 contacts are detected. Fig.2.3.5 and F{g.2.3.6
show the compgsition part of the whole circuit. The connectors of the cell
and the interconnection points between the subcells are shown and
distinguished. The original CIF and the sticks standard obtained from the
transformation are presented in Fig.2.3.7 and Fig.2.3.8.
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{symhbol1 SHIFT);

DS 1 250 10;

L NP;

W 20 130,0 130,230;

W 20 170,60 210,60;

W 20 0,60 90,60,

B 60 70 50,145;

B 40 50 180,75,

L ND;

W 20 50,220 50 10;

W 20 50,90 100,90 100,120 190,120;
40 40 50,20,

40 40 50,210;

40 40 180,110;

60 90 50,75;

NM;

40 10,20 200,20;

40 10,210 200,210

60 40 50,110 0,1;

60 40 180,100 0,1;

NI; ’

50 90 50,145;

NC;

20 20 50,20;

20 20 50,210;

40 20 50,110 0,1;

40 20 180,100 0,1;

DF; '
{mbb is =-1,-1 22,24 in lambda);

T @I WEECCPTIEATA

je= il o Bes IR v e B

{symbol CHIP);

DS 2 250 10;

C17T40,0;

C 17T 210,0;

C 1 T 420,0;

C 17 630,0;

DF;

- {mbb is ~-1,-1 85,24 in lambda);

Fig.2.3.7 The CIF Listing of the NMOS Shift Register.
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f MBB is -1,-1 22,24 1in Yambda ]

[ MBB is -1,-1 85,24

COMPONENTS
CONNECTOR
B6 340 0

B12 760 0

in lambda ]

B1 10 20 B2 10 210 B3
B7 340 230
B11 830 210

B8 550 0
B13 760

COMPONENTS
CONNECTOR : B1 10 20 B2 200 20 B3 10 210
B6 130 236 B7 210 60 B8 0 60;

NTRN N1 130 113 N2 50 60;

NMRES : P1 50 145;

NCON : C1 50 210 €2 50 20;

- NBUT : C3 50 110 C4 180 100;

TWIGS

- Metal : T1 = Bl C2 BZ;
Metal : T2 = B3 Cl B4,
Foly : T3 = BbH NI Bb;
Foly : T4 = €4 BY;
Poly : TS5 = B8 NZ;
Diffusion : T6 = C1 P1 C3 N2 C2;
Diffusion : T7 = €3 100,90 100,120 N1 C4;

CONSTRAINTS

END

CELL CHIP 250 10

B4 200 210

B5 130 0

130 0 B4 130 230 B5 0 60
B9 550 230 B10 830 20

230 B14 840 60;

POINT : I1 210 20 1I2 210 210 I3 210 60 TI4 420 20 1I5 420 210

I6 420 6

0

I7 6306 20

I8 630 210

I9 630 60;

SHIFT 0 © [ Connectors :B1 I1 B2 I2 B3 B4 I3 BS ]
SHIFT 210 0 [ Connectors :I1 I4 I2 I5 BG B7 I6 I3
SHIFT 420 0 [ Connectors :14 I7 I5 18 B8 B9 I9 I6

SHIFT 630 0 [ Connectors :I7 B10 I8 B11l B12 B13 Bi4 19

TWIGS
CONSTRAINTS
END

]
]

]

Fig.2.3.8 The Sticks Standard Created from the Clt Listing
Shown in Fig.2.3.7
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2.4 Remarks

As one may perceive, a heuristic approach has been taken for transforming
the CIF to the sticks standard. Instead of the geometric objects
themselves, only their centers (the paths of wires and the centers of
boxes) are considered. A1l transistors act as ideal switches, and all
wirés are of zero delay. The results are far from general but are
sufficient for logic analysis. However, if one also wants to analyze the
electrical behavior, one may. feel quite disappointed. One possible

solution for this is to apply the polygon package [33]. That package deals
with general geometry.



3. Sticks Standard to Transistor Listing Transformation

3.1 Another Intermediate Form

Atthough described in a more Jlogical manner than the CIF, the sticks

standard 1is still 1in the physical domain. This 1is of the following

reasons: 1) Many points in the sticks standard are of no logical meaning at

all. Bending points of wires are of this kind (refer to Fig.2.3.8). In

the sticks standard, such points, without names, are Jjust described by

their original coordinate pairs. They are also refered +to as
numbered-points, while real components are refered to as named-points.
Numbered-points cannot be omitted since they affect the path of wires. The

sticks standard serves as an intermediate form for creating CIF files. At

Lhiis lYevel of descriplion, GLhe palh ol wires is Tell unchanyed. 2) Hany

named-points effectively refer to only one logical point. Components that

are in the same poly or metal wire or in the same diffusion wire without

transistors ‘on it are of this kind. These points are electrically

equivalent and always have the same logical value. For the same reason,

they must all appear in the sticks standard. These two facts make the
sticks standard a physical description, not a 1ogiéa1 one. In fact, the
only information necessary to determine the logical behdavior of a circuit
are the following 1information of each transistor : 1)} the type of the

transistor, 2) the signal that connects to tho gate, and 3) the two sianals

that connect to the drain-source pair of the transistor. To do any kind of

logic analysis, one needs to fTilter out all the numbered-points, merge

named-points into a non-redundant set of logic points (such points will be
refered to as nodes later), and express the connection of transistors in
terms of these nodes.

Shown in Fig.3.1.1 1is the sticks diagram of a 2=-input NOR gate implemented
in CMOS technology. - The corresponding sticks standard is 1listed in
Fig.3.1.2. Originally, there are 13 named-points (the transistors are not
incliuded) 1ﬁ the sticks description. However, only 5 of them remain

filtering (refer to Fig.3.1.3).

after



Fig.3.1.1 The Sticks Diagram of a CMOS 2-input NOR Gate

CELL NOR 250 10
[ MBB is ~-1,-2 22,32 in lambda ]

COMPONENTS :
CONNECTOR : B1 0 0 B2 200 0 B3 0 300 B4 200 300 B5 200 15A0
BG 0 150 B7 200 100,
NMTRN : N1 70 50 N2 130 100;
PTRN :  P1 100 250 P2 100 200;
CONTACT : C1 100 150 €2 100 300 C3 70 0 C4 130 0;
POINT :  Ji 40 150 J2 160 100;
TWIGS
Metal : Tt = B1 C3 ¢4 B2;
Metal : T2 = B3 C2 Ba;
Metal T3 = €1 BS;
Poly : T4 = B6 Ji;
Paly : T§ = N1 40,50 J1 40,250 P1;
Poly : T6 = N2 J2 160,200 P2;
Poly : T7 = B7 J2;

Diffusion : T8 = €3 N1 70,150 C1 P2 P1 C2;
Diffusion : T9 = C1 130,150 N2 C4;

CONSTRAINTS
END

Fig.3.1.2 The Sticks Standard of the CMOS NOR Gate.
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node number rep. members
node 1 B1 B1, C3, C4, B2
node 2 B3 B3, C2, B4
node 3 BS B5, C1
node 4 B6 Be, Ji
node 5 B7 B7, 42

Fig.3.1.3 The Node Listing of the CMOS NOR Gate.

Every node is named by one of the components connected to a physical node.
When there are several possibilities, the most important is chosen. The
reason B5 is selected to represent node 3 (Fig. 3.1.1) is because that Bb
is more significant than the other point C1. Likewise, B6, not Ji, is
selected to represent node 2. On the other hand, both Bl and B2 may bo
selected for node 1. Here B1 is arbitrarily selected because it 1is
detected Tirst. In general, connectors. are considered to be more
significant than contacts and joints. .

There are four transistors in the <circuit and their connections are
expressed in the following listing:

name type gate source-drain
Pi p B6 P2 - B3
P2 p - B7 - B5 - Pt
N1 n B6 B1 - B5
N2 n B7 B5 - Bl

Fig.3.1.4 The Transistor Listing of the CMOS NOR Gate.
Oniy logic nodes and transistors may appear in the transistor listings.

The transistor listing shown. above represents a nonredundant set of Tlogic.
information of the physical layout. It is completely general since no
assumptions are made. Different analysis, simulation for instance, may be
carried out from this level. With further assumptions about the circuit,

one can transform this transistor listing into other forms that may be more
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convenient for certain kinds of analysis (In section 4, one such

transformation will be discussed). For this reason, this format s

considered to be a very good intermediate form for describing digital
systems.

3.2 Algorithms and Example -- The Leaf Cell

As stated in section 3.1, {two kinds of logical redundancies that exist in
the sticks standards need te be removed., Numbered-points are

easy to deal with.

relatively
One simply discards them when scanning through the

wires. At the same time, one must be able to find all the components

(named-points) that belong to the same logic node, choose the most

appropriate component to represent this node (this special component. is

calied node representative), and refer all the components

to this node

Y
representative. Finally, all the connections of the transistors must be

expressed in terms of the node representatives. A1l these are done in the

following three procedures :

BEGIN

find-representatives;
solve-transistors;

Tink;
END of sticks-to-transistor transform;

Each component is associated with a pointer, called iso ,.that points to

its node representative. Only connectors, contacts and Joints are
candidates for node representatives. Connectors are, of course, the most
desired. In the procedure find-representatives, all the poly and metal

wires are scanned. If any component in a wire, say wire A, already points

to a connector {(this component must also belong to another wire, say wire

B), then this connector, the node representative of wire B, also becomos

the node representative of wire A. A1l components in wire A now point to

this connector. IT none of the components in wire A points to a connector,

then node representative is selected according to the following prefercence

ordering: 1) if any component in the wire 1is a connector, then this

component is selected; else 2) if any component already points to some

contact or Jjoint, then the contact or the joint is selected; else 3) if
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there is-a contact or a joint in Lhe wire, then the contact or the joint is

selected. Note that atter the procedure find-representatives is completed, .
each transistor points to its gate node.

In the procedure solve-transistors, diffusion wires are processed.
Diffusion wires without transistors are treated in the same way as poly and

metal wires. Components on bhoth sides of & transistor become the
source-~drain pair of that transistor.

As one may notice, the node representatives selected for certain wires may
be changed 1tater if the node representatives are not connectors. This
change, however does not propagate through all the components in the wire.

The procedure 1ink 1is included to remove this inconsistancy.

The‘1isting in Fig.3.2.1 dindicates, wire by wire, how the sticks standard
in Fig.3.1.2 can be transformed into the transistor listing shown in Fig.
3.1.4.

3.3 Algorithms and Examples -- The Composition Cell

As oane may notice, some of the connectors in the leaf cells will be deleted
after sticks-to-transistor transformation. To transform the composition
cell, those parameters corresponding to the deleted connectors in the leaf
cells are removed. Some modifications are necessary to link logic nodes

through different subcells. This is illustrated in the following example:

The NMOS shift register described in section 2.3 will be applied again

here. The sticks diagram is shown in Fig.2.3.4-6. The transistor listing
for the leaf cell (Fig.2.3.4) is

name type gate source-drain
Pl d B3 - C3
N1 n B5 c3 - B7 {3.3.1)

M2 n B3 €3 - Bl



-20~-

Procedure find-rep. solve~tran. Tink

wires Ti T2 T3 T4 T 76 T7 - T8 T9

(layer) (metal) (poly) (diffusion)

_______________________________________ >
component (1ogic‘rcprcscntativo for cach component) result

11 B1 B1
B2 B1 B1
B3 B3 B3
B4 B3 B3
BS BS B5
B6 B6 BG
B7 ' ) 37 B7
N1 B6 (B1,B5) B6
N2 Jz2 (B5,B1) B7 B7x
P1 BG6 - (P2,B3) B6
Pe Je {B5,P1) B7 B7x*
c1 B5 BS
Cc2 B3 B3
C3 B1 B1
c4 B1 B1
Ji B6 B6
J2 J2 B7 B7*

pointer iso is changed during the search process.

Fig.3.2.1 The Steps for Transforming the Sticks Standard in
Fig.3.1.2 into the Transistor Listing in Fig.3.1.4
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There are 6 nodes in the circuit. Besides connectors, joint Jl1 is also a

node. In fact, it 1is a state variable inside the shift register.
Originally, there are 8 conncctlors. Only 5 remain after the
transformation. They are B1, B3, B5, B7 and B8, respcctively. B2, BA and
B6 have been deleted. There are four instances of this cell in the whole
circuit.

The first thing that.needs to be done is 1o delete, for ecach
subcell, the parameters corresponding to the connectors B2, B4 and BG in

the leaf cell. After this, the paramecter lists of these four subocells

becomev
subcell paramcter list
{(Vdd) (Gnd) (Shift Sig.)
shift-1 B1 B2 B3 I3 BS
shift-2 I1 12 B6 16 I3
shift-3 14 I5 B8 19 16
shift-4 17 18 B12 B14 19

There are three signals travelling through these four subcells: Vdd, Ground
and the shifted signal. In the above listing, the path of the shittled
signal 1is already linked together. However, the Vdd and ground
For subcells shift-1

are not.
and shift-2, the Vdd 1is connected through the

At _mnAannnes +Ainm nmadndt T4 "
inter-conncction point Il. Howoes

Q
o}
<
[}

andl
ong

ls to difforent

for shift-1 and shift-2. Thus the 1link message 1is 1lost
transformation. However, this

naramaotorg
paramoetors

after 1the

information may be recovered through iso
pointer. The resuiting listing becomes

subcell paramcter 1ist
(Vdd) (Gnd) (Shift Sig.)
shift-1 B1 B2 B3 I3 Bb
shift-2 » B 1% RG 16 13
shift-3 B1 B2 38 19 16 (3.3.2)

shift-4 B1 B2 B12 B14 19



3.4 Remarks

The transistor listings nbtained from the sticks standards ;'n*e compatible
with the input format of MOS simulator [14,15]. With the CIF-to-sticks and
sticks-to-transistor transformations, circuits designed at geomeiric or
topological levels may be simulated. The MOS simulator is a pure logic
simulator, however it may be modified so that certain physical behaviars
can also be anélyzed. Besides transistor connections, one also needs to
know the size of the transistors and the width and length of the wires.
A1l this information is optional in the sticks standard. At the present
time, no physical property can be dealt with but the system may easily beo

expanded to include this capability.
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4., Transistor Listing to Akers' Diagram Transformation
4.1 D language, DBJ notation and Akers' Diagrams

This section deals with the transistor to bBJ transformation. The DRI
notation is the text equivalents of an Akers' Diagram. The DBJ notation can
he compiled from a D program. Before discussing the transformation, il is

appropriate to say something about the D language, the DBJ notation and
Akers' diagrams first. '

D {22] is a hardware design language that describes the register transtoer
behavior of the digital systems. It has the same syntax as the proyramming
language C, bhut with different interpretations. A simple D program is
shown as follows:

/* 1-bit adder */
adderi(a,b,cin,y, caut)
Boolean a,b,cin,y,cout;

{ cout = (a&b)|] (a&cin) ]| (bé&cin)
y ='athbtcin;

/* 4-bit adder */
addera(a0,al,a2,a3,b0,b1,b2,b3,cin,y0,yl,y2,y3,cout)
Boolean aO,al,aZ,a3;b0,b1,b2,b3,cin,y0,yl,y2,y3,cout;
{ Boolean int0,1intl,int2;

adderi(al,b0,cin,y0,int0);
adderi{(al.bl.int0,y1,intl);
adderil(a2,be,intl,y2,int2); (4.1.1)
adder1{a3,b3,int2,y3,cout);



—-2d -

D, as well as '€, is full of logi;al operators : & for AND, | for OR , -~

for NOT, 7 for XOR .... The 4-bit adder shown above 1is constructed from

four 1-bit adders (cell adderti). Contained in the main cell are nothing

but four instances of the cell adderl with corresponding parameters. The

cell adderl is defined separately. Cout (carry out) is the majority of a, b

and cin (carry in), whereas y (sum bit) is their XOR result.

Besides these logical operators, there are branch operations. Here is a
Simp1e example:
/* two to one multiplexer x/
mux2toli(a,d0,dl,y)
Boolean a,d0,dl,y;
{ y=a0?d1:d0 ; v (4.1.2)
b

y=a0?d1:d0 is the standard statement of C for describing conditional

compitation. y=a?di:d0 is dinterpreted as " if a (is TRUE), then dl s

assigned to y else d0 1is assigned to y ", In D, it 1is dinterpreted
similarly as: 97 a equals 1, then dl is assigned to y else {(a equals 0) d0
is assigned to vy. This {s exactly the description of the Z-to-1

multiplexer. From the standpoint of programming language C, stch operators

as AND, OR, NOT, XOR are regular, while y=a?dl:d0-like statements are

included mainly for dealing with branch conditions. In D, however, this

conditional statement serves as the basic construct of the whole system.
Every other statement is intended to be transformed into this format. The
format is desirable since it models the behavior of MOS elements very
nicely. In MOS circuits, the direction of signal flow is governed by the

gate value of each transistor. If it is one, then the signal goes one way;
if it 1is zero, then the signal goes another way. Every signal in the MOS

circuits is something that either controls or be controiled.

D programs can be compiled into DBJ notation which is nothing but a series
of (y=a?7dl:d0)-1ike statements. As the simplest case , the D program for

the 2-to-1 muitiplexer shown above is compiled into the following code:

DEFI MUX2TO1
BOOA A
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BOOA DO

BOOA D1

BOOA Y

DEFB v

' ¥Y=A0?D1:D0 (the original D statement)
NODE Y=A0?D1:D0

DEFE MUX2TO01

DEFI and DEFE statements start and end a block. BOOA statements declaroe
variables. DEFB starts the definition of the block. Each NODE statement
creates one conditional branch . Since the original D statement y=a0?di:d0
is of the desired Tormat it is not changed. The next oxample is the 4-to-1
multiplexer. The D program is like

/* 4-to-1 multiplexer */
mux4tol({ald,al,d0,dl,d2,d3,y)
Boolean a0,al,d0,d1,d2,d3,y; (4.1.3)
{ y=a0?(al?d3:d2):(al?dl:d0);
}

After compilation, the DBJ notation (only NODE statements are shown) is:

! Y=AG?(AL?D3:D2):(A17D1:D0)
NODE Y=A0?x2:%]

NODE *1=A17D1:00

NODE *2=A17D3:D2

By usingyg pointers, the compound statement Y=A0?(A1703:D2):(AL?D1:D0O) is

compited into three basic statements. A1l branch structures can be dealtl

with similarly. In fact, this node structure 1is equivalent to a special
notation for describing logic systems: the Akers' Diagrams [17]. The
Akers' Diagram for example (4.1.3) is shown 1in Fig.4.1.1. Such ditagrams

have been widely used for analyzing large digital networks, especially for
generating test vectors [17]. Several algorithms and advantages of
applying Akers' Diagrams to analyze and synthesize VLSI circuits are
discussed in [18,19]. Both D Tanguage and DBJ notation are based upon this

idea. In later sections, the DBJ notation and the Akers' Diagrams will be
used interchangeably.



Fig.4.1.1 The Akers' Biagram of a 4-to-1 Multiplexer

g

CcouT

VAN
A AN

~CIN

Fig.4.1.2 The Akers' Diagrams of the Two Output Variables
of the 1-bit Adder Shown in ( 4.1.1 )
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The DBJ notation 1is also very cffcctive for describing ordinary logical

operators. For instance, adb is Gtransformed into a?b:0 and alb s
transformed into a?l:b. Other operators can be described similariy. Afer

compilation, the DBJ notation for the 1-bit adder in (4.1.1) is as follows:

DEFI ADDER1

ROOA A

BOOA B

BOOA CIN

BOOA Y

BOOA COUT

DEFB

| COUT=(A&B)| (AGCIN)|B&CIN
NODE COUT=A?%2:%1 |
NODE "].?H?(;_LNIU

NODE *2=B?1:CIN

U ¥Y=A1B1CIN (4.1.4)
NODE Y=A?~%1:%1

NODE *1=B?~CIN:CIN

DEFE ADDER1

The corresponding Akers' Diagrams are shown in Fig.4.1.2

'The DBJ notation also allows block structures. Far instance,
for the

the D proaram
4-bit adder, shown in (4.1.1), may be compiled into the following
code: ' '

DEFI ADDER4
BOOA AO
BOOA At
BOOA A2
BOOA A3
BOOA BO
BOOA B1
BOOA B2
BOOA B3
BOOA CIN
BOOA YO
BOOA Y1
BOOA VY2
BOOA Y3
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BOOA COUT
DEFB

BOOA INTO
BOOA INT1
BOOA INT2
BLDB ADDER1
PARM A0
PARM BO
PARM CIN
PARM YO
PARM INTO
BLDE ADDERI
BLDB ADDER1
PARM A1
PARM B1
PARM INTO
PARM Y1
PARM INT1
BLDE ADDER1
BLDB ADDER1
PARM A2
PARM B2
PARM INT1
PARM Y2
PARM INT2
BLDE ADDER1
pLDB ADDCR1
PARM A3
PARM B3
PARM INT2 (4.1.5)
PARM Y3
PARM COUT
BLDE ADDER1
DEFE ADDER4

The DEFB statement starts the definition of cell adderd4. After that, the

and
int2. There are four BLDB statements, each of which corresponds to one

three BOOA statements declare the three internal variables int0, intl

instance of the cell adderil. In each instance, the five PARM statements
map the parameters from cell adderd to cell adderl. The BLDE statement
ends each cell instance. Note that the description hierarchy used in the D
Tanguage and the DBJ notalion is compatible with that used in CIF,.sticks
standards and transistor listings.
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A.2 MOS vs Logic

The transistor listings oblained in section 3 represent logical

relationships between different transistors in the circuits. From thesgo
Tistings, logic simulation can be done under the MOS model. In the model,

every transistor is bidirectional, and the direction of signal flows is

determined at run time. This model 1is good in the sense that it models the

physical behavior of MOS elements. It does not, however .bridge the
descriplion yap between the physical world and the loyic world. The logic
itself 1is unidirectional. ~There may be differcnt methods, unidirectional

or bidirectional, to implement this function. However, at the logic level
of description, everything must be expressed unidirectionally. In fact,
even in the MOS circuits, most of the signals flow only in one direction,
a\though both directions are physically possible. In most cases, the

bidirectional specification represents some kind of redundancy.

For the above reason, it is intended to transform the transistor listings
into some logical representations. The Akers' Dfagram is selected as Lhe
target, since it 1is as fundamental and general as other logic model
[34-377, and also rescmbles the behavior of MOS elements. The AMAkers!
Diagram is strictly unidirectional.

Besides the bidirectionality, another redundancy is intended to be removed
under this transformation. A1l nodes in the transistor 1listings are
Lredted as variables. This is alsu true for those nodes that are suppoused
to connect to Vdd or ground. The transistor listings are so general that

they also allow such nodes to he changeable. Far all practical purpose.

however, such nodes will always remain at fixed values. For this reason,
they are replaced by constants 1in the Akers' Diagrams. The Akers' Diagram
is something that really belongs to the logical world.

4.3 Examples

- The transformation must start from some output or state variables since
only output and state variables are associated with Akers' Diagrams. MOS
elements are bidirectional, however. "It cannot be determined which nodes
are inputs and which are outputs. At first glance, it 1is hopeless.
However, some observations 6f usual MOS circuits suggest that restoring

logic may be a good point from which to start, since it always acts as an
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oulput or a state variable. In a CMOS circuit, such points are the‘joint

points between the N network and the P network. In the NMOS circuit, hhey

are the joint points between the N network and the pull-up resistors.

The CMOS NOR gate presented in section 3.1 will be applied again. The

sticks diagram is shown in Fig.4.3.1. and the transistor
repeated as follows:

listing 1is

name type gate source-drain
P1 P B6 P2 - B3
P2 p B7 B85 - Pl .
N1 n B6 Bi - B5 (4.3.1)
N2 n B7 B5 - Bl

Either from the diagram or from the listing, one immediatedly finds that BS
is a restoring point from which the Akers' Diagrams can be constructed.
Connected to BY are two networks, one NMOS and one PMOS. Both networks
contribute to the value of BS, and hence B5 is called a bus variable,

had rather be treated separately,

They
and Bb actually acts as a bus variable.

Later on, B5 will be associated with two Akers' Diagrams. When compiled

from D programs, the DBJ notation may also contain bus variables. The bus

concept is very common in the digital systems, so it is included here.

P network is dealt with first. After the two serial transistors pl and p2,
comes the connector B3. Beyond B3 is the outside world that is undefincd.

One has to stop here and makes some decisions. The sticks diagram suggests

that B3 is a Vdd node. However, it may not be. It must not be an output

or a ground node, but it may be an input variable. In any case,
insufficient information is available from the transistor listing and 1is

necéssary Lo ask the user Tor help, The question is "Is this connector an

input, an output, Vdd or gfound?" The user enters this information, and
the Akers' Diagrams are constructed accordingly. Suppose that the user

enters Vdd for B3, then the DBJ notation for the PMOS part becomes

NODE B5=B77X:*1
NODE *1=B67X:1
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If B7 1is 1logic one, then transistor Pl is open. The P network makes no
contribution to the value of B5 'and is therefore assigned the value X
(standing for undefined). If B7 is zero, then pointer *1 is investigated.
At this point, BS will be one if BO is zcro, or it will be undefined 17T BG
_is one. The DBJ notation describe this behavior beautifully. On the other

hand, there are two parallel transistors 1in the NMOS network. Likewise,

the. user has to supply the type information of connector Bl, probably
ground signal. Suppose this is exactly what the user enters, then the DBJ
notation for the NMOS network is as follows:

NODE B5=B670:*1
NODE *1=B770:X

If B6 is one then transistor N1 is closed and B5 will become zero. I 86
is zero, then pointer *1 is investigated. At this point, B5 will be zero
if B7 is one, or it will be undefined if B7 is zero. The overall DBJ
notation for the CMOS NOR gate is

DEFI NOR

BOOA BS

BOOA B6

BOOA B7

DEFB

L P-NET

NODE B5=B77?X:*1
NODE *1=B67X:1
! ON-NET -

NODE B5=B670:%1 ' (4.3.2)
NODE *1=B770:X
DEFE NOR

B5 is a bus variable and associated with two Akers' Diagrams as shown

in
Fig.4.3.2. In this particular example, one and only one of the two
diagrams will return a non-undefined value. Either one or zero will
overwrite the undefined value. If one and zero are written to the same

pltace, a conflict happens and this error is represented by a valve Z. In
this example, spch error will never occur. For others that will, the
system provides a means for detecting them.
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Fig.4.3.1 The Sticks Diagram of a CMOS 2-input NOR Gate
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Fig.4.3.2 The Akers' Diagrams of the Bus Variahle BS
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It 1is instructive to compare the transistor listing (4.3.1) and the DBJ
notation (4.3.2) for this particular example. In the transistor listing,
there are five variables. Only three remain in the DBJ notation. Bt and
B3 become constants. Ih the transistor Tisting, all data are unstructurced.
It is difficult to determine the logical behavior of the circuit. In the
pBJ notation, however B6 and BS are input variables (this information 1is
not provided by the user, there is no ambiguity as to whether they are
inputs or outputs) and B7 45 * some logic " function of B5 and BG. From
this simple example, the roles of of the DBJ notation and the transistor
Tisting aré clear. Roughly speaking, the transistor listing is general and
unstructural, while the DBJ notation is strict and structural. The DBJ
notation 1is in the logical domain, while the transistor listing is boctween
the 1logical and the physical domain. Both are very important in VLSI
designs, and this transformation bridges their gap. '

Suppnse; in the same example, the user enters a type "input®™ for both
connectors Bl and B3, then the DBJ notation becomes

DEFT NOR

BOOA Bl

BOOA B3

BOOA BS

BOOA B6

BOCA B7

DEFB

NODE Bb5=B77X:*1
NODE *1=B67X:B3
NODE B5=B67B1:*1
NODE *1=B77B1:X
DEFE NOR

B3 and B5 remain variables now.

Provided that the NOR gate in (4.3.2) is replaced by the NAND gate, i.e

the P-type transistors are in paraliel and the N-type transistors are in
serial, then the DBJ notation becomes
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\P-NET
NODE B5=B77%1:1
NODE *1=B6?X:1
CUN-NET
NODE B5=B67%1:X (4.3.3)
NODE *1=B770:X
DEFE NOR

Comparing (4.3.2) with (4.3.3), one may easily find what in the DBJ
notation is affected by P-type transistors, what is affected by the N-type
transistors, what 1is affected by +the serial connection, and what is
affected by the parallel connection. These, together with a new technique,
ca\léd backtrack, are general enough to deal with almost all kinds of
circuit structures. The detailed algorithms will be given 1in section 4.4.
Following 1is another exampie which the user assigns some connectors as
output variablies.

Shown in Fig.4.3.3 is a 6-transistor NMOS circuit. B3 is connected to Vdd.
For HNMOS circuits, Tt 1is always assumed that pull-up resistors are
connected to Vdd since they are of no value otherwise. Starting from J3,
there are three transistor paths. Both paths N3-N1 and N4-N5 lead to
'conncctor B1 that is probably connected to ground. Path N5-N6 leads to
connector Bll, that may either be an input or an output. Suppose it is an
input, then this situation 1is basically the same as the last exahplé. J3
is a function of BS, B7, B6, B8, B9, B10 and B1i. In this case, however,
the value of J3 is not available from the outside world so probably Bil is
an output, not an dnput. If it 1is indeed an output, then Bll will be a
function of J3, not the other way around. Paths N3-N1 and NA4A-N2 are left
unaffected, whereas the direction of path N5-N6 must be reversed. J3
serves as an state variable and the actual output variable is Bil. Both J3
and B11 érc associated w%th their own Akers' Diagrams as shown in
Fig.4.3.4., The process of reversing the direction of signal flows, as what

was done fTor path N5-NG, will be refered (o as backtrack Tater. When an

output connector is encountered, one needs to backtrack. When the gate of
a transistor is rcached, one needs to backtrack. When a restoring point is

encountered, one needs to backtrack. A1l these situations are dealt with
similarly.
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Fig.4.3.3 The Sticks Diagrams of an NMOS Circuit with
State Variables
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Fig.4.3.4 The Akers' Diagrams of J3 and B11
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The way the system deals with the bidirectionality of pass transistors is
best illustrated by the following examples. The sticks diagram of the
circuit 15 shown 1in Fig.4.3.5. B1 is connected to ground. and BH is
connected to Vdd. From B4, there are four paths that lead to ground. They
are Ni-N2, N1-N3-N5, NA-N5, and N4-N3-N2, respectively. Here, transistor
N3 does work as a bidirectional element, however it causes no problem. It
is still possible to transform this circuit into unidirectional
descriptions and construct Akers' Diagrams accordingly. This is by way of
backtrack. Immediatediy fTollowing B4, there are two transistor paths: path
N1 leads to J2 and path N4 leads to Ji. J2 is examined Tirst. Besides NI,
two other paths also connect to J2. Path N2 leads to ground and can beo
dealt with very easily. Path N3 leads to J1 which, in turn, is conncctoed
to N4 and N5. Path Nb Tleads to ground and causes no problem. Howevaor,
path N4 leads to the starting point BA. A loop is detected, indicating a
wrong turn somewhere ih the Ssearch. This error can be Tound by backtrack.
Through the transistor N4 return to Jd1 that is followed by paths N3 and Nb.
At this point, path N3 1dis in the inward direction and is of no immediate
hnlp. Path N5, however, is in the outward directidn and is exactly what s
attempted. Here is the very point that the wrong decision was made. Path
N5 should be selected instead of N4. It is never too late to mend, path N4
is simply idgnored and everything is set. The N3-N5 path 1is already
connected. So far, path N1 has been solved, and the corresponding Akers'
Diagram is shown in Fig.4.3.6. Path N4 can be dealt with almost equalily,
and the corresponding Akers' Diagram is shown in Fig.4.3.7. The final
Akers' Diagram is simply their combination, however the intermediate nodes
within each subdiagram may‘be shared (Fig.4.3.8).



Fig.4.3.56 The Sticks Diagram of an NMOS Circuit ITlustrating the

the bidirectionality of MO3 Transistors -

=P8

|

/s

Fig.4,3.6 The Akers' Diagram Corresponding to Path NI
B4

/S

Fig.4.3.7 The Akers' Diagram Corresponding to Path N4
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Fig.4.3.8 The Akers' Diagram for the Whole Circuit in Fig.4.3.5

4.4 The Algorithms

With the examples presented in section 4.3, the transformation will be

discussed in a more formal manner. The whole
tfoilowing pidgin SIMULA code:

process is summarized in the

BEGIN

create-data-structures; : (P1)

FOR each restoring node DO BEGIN

search»forward} (P2)
search-backward,; {P3)
.solve-backward; {(P4)
solve-forward; (P5)

END;

END of transistor-to-DBJ transform;
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There are two other procedures: 1) othernode : Given a transistor and a
component (either a transistor or a node) that belongs to the source-drain
pair of that transistor, this procedure will return the other node (or
transistor) of that pair. 2) iotype : This procedure accepts a connector,
and determines if its type is already known. If not, it will ask the user
for help. Once available, this information is returned to the calling

procedure.

(P1): In the transistor listing, each transistor is associated with three
nodes: the gate and the source-drain pair. To obtain the Akers' Diagrams,
the transistors connected to each node must be known (Fig.4.4.1). In fact,
both of these structures can be created during the sticks-to-transistor
transformation. A1l the restoring nodes can be detected from the
connection information. Each néde is associated with a boolean f‘lag

restoring, which will be set for restoring nodes.

cell
1
f . 3
I . d
é. —— r — wn - 4
e — -) transistor i i T - node
| - T A B r
1 i o i L. b | . transistorf
| source t ! connection
. gate I J :
[
Y —-__L -— Iy R wmN  SWE SRS SRes W e e L

Fig.4.4.1 The Relationship between Transistors and Nodes
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{P2) and (P3): Serial transistors can be treated as a whole since siygnal

"always flows through them in the same direction. A new data structure

path is introduced for this purpose.

series of transistors. 1In (P2),

Each path corresponds to one such
all such paths are searched from a certain
restoring node,. Every transistor that is immediatedly connected to this

restoring node will create a path. A11 such paths are in paralilel.

Procedure othernode 1is applied here to find the other component of each
transistor. Tf a transistor is returned, then these two transistors arc in

series and belong to the same path. This procedure is called repeatoedly

until it returns a non-transistor componenlt (a node). This node and the
original restoring node may be considered as the source-drain pair of the
transistor path. In the ordinary sense, the source and drain are symmetric

and ‘the dircction of the signal flow is unknown. In this case, however, it

is believed that the signal is more Tikely to flow out from the restoring

node ( It means that current flows out from the restoring node in the N

network and flows into the restoring node in the P network). Through thesc
paths, the restoring nodes are able to communicate with other nodes that,
in turn, may create their own family of paths. This process is repcated
recursively until each of the terminating paths reaches a terminating node.

~Terminating nodes are those nodes that contain no path of their own.

Terminating nodes are of two Kkinds: 1) If they are connectors, the

procedure iotype is called, and the returned type message is recorded. 2)

If they are internal terminating nodes such nodes are possibly connccted

Lo the gate of {ransistors. Paths are created in a hierarchical mannor.
Every palh is dircctive and associated with two nodes. The node Llhat near
the restoring logic is called the source of the path, whereas the other
node is called the drain. The normal direction of the signal flow is from
source to drain. BDuring backtrack condition, however, the direction of

signal flow will be reversed.

the

After (P2}, the data structure of the whole circuit is in terms of paths
(Fig.4.4.2). A1l paths that connected to the same source are linked
together with a two-way list. These paths are in parallel. The source
node, at the same time, holds a pointer, called chain, that refers to (the
head of) the 1list of paths. Besides a series of transistors, each patlh
al1so records the following information: 1) drain: this refers to ithe drain
of the path; 2) pre, suc: these refer to the preceding and the succeeding
paths in the same list.
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cell
|
hode node ‘node €‘ - ‘
v |
chain '
path (parallel) l
1 |
3 | 1
_ flags: drain ‘
(serial) | transistor state,back '
1
| |

|
I
I
{

Fig.4.4.2 The Cell Structure Described under the Concept of Path

3) back, state : these two boolean flags indicate the type of the path.
‘The setting of back flag implies that the direction of the signal flow
along this path is reversed. The drain of such paths will be refered to as
ba_ck nodes later., The setting of state flag implies that the drain of this
path is a state (or an ogutput) variable. For the terminating path, both
the state and back flags will be set if the corresponding terminating node
is an internal terminating node or an output connector. For the
"mvtermediate path, state flag will be set if some of the back flags of tﬁe
paths in the chain of its drain are set. .Back flag' will be set if all the
back flags of the paths in that chain are set. "It is obvious that alil
back nodes are also state nodes {variables). In procedure (P2), the
setting of both flags are decided for all the terminating paths. The -

intermediate nodes are dealt with in procedure (P3).
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(P4) and (P5H): The Akers' Diagrams for the back nodes are constructed in
(P4), and those for the non-back state nodes, including the restoring
nodes, are done in (P5). Both procedures are basically the same, except
that the direction of the construction is different. In (P4), all paths
are scarched from drain to source while in (Pb5), source to drain. ATl the
transistors in the same path are serial so the corresponding DBJ nobation
is of the following form :

A=G17%1:X C AsGIPX:X1
%1=G2 P21 X *¥1=G27X:%2

“ e 4. (N-net) C e e ‘ (P-net)
¥(n-1)=Gn?B:X %% ¥(n-1)=Gn?X:8B

(4.4.1)

*%  In the NMOS circuit, the last X will be replaced by '1'. When
all the puli-down transistors are turned off, the Vdd signal will

activate through the puli-up resistors.

In the backward case (P4), A is the drain of the path and B 1is the source
of the path. 1In the forward case (P5), A is the source and B is the drain.
G1, G2 ... Gn are the gate nodes of the transistors along this path. Gt is
the one nearest to node A, and Gn is the one nearest to node B. If node B
is a state qode, whethar a back node or not, it will associate with its own
Akers' Diagrams, and the procedure stops. However, if node B is not a
state node, it should not appear in any place of the Akers' Diagrams. Tn
this case, B is replaced by another pointer from which the construction of

the Akers' Diagram continues.

For parallel paths, the DBJ notation is of the following form:

A=G17B1:*1 A=G17?*1:B1

*1=G27B2:%2 *1=G2?%2:82

e e e A (N-net) e (P-net)
 %{n-1)=Gn7Bn:X *(n-1)=Gn?X:Bn

(4.4.2)

It is assumed, for simplicity, that cach path contains only one transistor.

There is a total of n paths in the chain. The gate nodes are Gl, G2
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Gn, and the corresponding drain nodes are 81, B2 ... Bn. This is for the
forward case. In the backward . case, the only modification 1is to
interchange the source and drain. A1l BBJ notation can be constrﬁcted
various combinations of (4.4.1) and (4.4.2).

by

Here 1is an example illustrating how this algorithm .works. The sticks
diagram for the circuit is shown in Fig.4.4.1. BS is connected to Vdd, and
Bl is connected to ground, There are three restoring points: J3, J¢ and
B4. From J3, there are two paths. Path N1-N2 leads to Bl (ground) and is
in the normal (forward) direction. Path N6 Tleads to node €8 which, in turn,
creates anothér two paths. If Bi8 1is of type input, then path N9 is in the
forward direction. Path N7 leads to node C9 that is followed by path N4
~and path‘NB. Path N4 Teads to gate node C6, and path N8 leads to restoking
point J2. Both paths need backtrack, so their back flags are set to onc.
Now procedure (P2) is finished. Among the four terminating paths, N1-NZ2
and N9 are in the forward direction, while N4 and N8 are in the backward
direction (refer to Fig.4.4.2). The status of dintermediate paths {(or
nodes) are determined in procedure (P3). Since the back flags are set for
both path N8 and path N4, C9 is a back node, and the back flag of path N7
is set Lo one. The next node is C8 whose status is determined by both
paths N7 and N9. The back Tlag is set for N7 but not for N9. Thus €8 1is a
state node but not a back node. Path N6 is still in the forward dircction.
The path-tree constructed during procedure (P2) and (P3) 1is shown in
Fig.4.4.2. In ptrocedure (P4}, the Akers' Diagrams for the back nodes CO
and C9 are constructed. J2.is a restoring node and will create its own
path-tree Tlater. In procedure (P5), the Akers' Diagrams for the non-back
state nodes C8 and J3 are constructed. Finally, the DBJ notation for this
family of nodes is

NODE C6=B137€9:C6
" NODE C9=B9?CB:CO
NODE C8=B157B19:C8
NODE J3=B18?7%1:%2
NODE *1=B1770:%2
NODE *2=B77C8:1

{only NODE statements are shown)
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Fig.4.4.3 An NMOS Circuit Illustrating the Algorithm of Transforming

Transistor Listings to Akers' Diagrams

s
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N9 7

b
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s: non-back state node
N4 N8
. | b

CB \

Fig.4.4.4 The Path-tree Created for a Restoring Node 33
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The restoring nodes J2 and BA can also be dealt with in the same
Later on, one will find that node C6 1is a bus variable.

way .

The NMOS shift register described in section 2.3 and 3.3 is .applied again.
The DBJ notation, after transformation, is

DEFI SHIFT
BOOA BS

BOOA B7

'BOOA B8

DEFB

BOOA €3 |
NODE B7=B5?C3:B7
NODE C3=B870:1
DEFE SHIFT
DEFT CHIP

BOOA B3

BOOA B5

BOOA B6

BOOA B8

BOOA B12

BOOA B14

DEFB

BOOA 13

BOOA 16

BOOA I9

BLDB SHIFT
PARM B3

PARM 13

PARM B5

BLDE SHIFT
BLOB SHIFT
PARM D6

PARM 16

PARM 13

BLDE SHIFT
BLDB SHIFT
PARM B8

PARM I9

PARM 16

BLDE SHIFT .
BLDB SHIFT (4.4.1)
PARM B12

PARM B14

PARM 19

BLDE SHIFT
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DEFE CHIP

The c¢ell structure is still preserved. Comparing (4.4.1) with (4.1.4-9),

it can be seen that the physical world and the logical world have already
met each other.

4.5 Remarks

There are quite a few approaches to VLSI design. Some of them are simply

based upon engineering discipline; others do have thooretical background.

However, none of them seems able to provide a conceptual model that can be
applied uniformly throughout the entire design process. As the system
grows 1argef and larger, the need for such a model will become more and
more urgent.

As shown in the previous sections, Akers' Diagrams may either be compiled
from the hardware design languages, or constructed from the physical
tayouts. These levels span almost the entire spectrum. Concepltually, the
Akers' Diagram is Jjust a binary decision scheme, as fundamental and dencral
as other computing models. However, when applied to all practical design
tasks, it always fits the specific problem very nicely. There is a decep

feeling that this approach will lead to a homogeneous set of design tools.



5. D Simulator

5.1 General Descriptions

With Akers! Diagrams; it is possible to simulate the logical behavior of
digital systems. A simulator, called DB simulator, has been constiructed.

It accepts DBJ notdtions, that are either compiled from D programs or

constructed from CIF, sticks standards or transistor listings. As

described earlier, the DBJ nbtation is a two-level description. Described

in the Teaf cell are a series of variable definitions and a collection of
Akers' Diagrams. Variables may be classified into three classes. Primary
vartab Diagram, function variables with
only one, and bus variables with more than one.

Variables may be further
distinguished into external connectors and internal states. Primary
variables must also be external connectors, and their values can only be
changed from the outside. Bus or function variables may either be external
or finternal. Their values are determined by the Akers' Diagrams. The
composition cell describes the subcells and the mapping of parameters. The

D simulator is based upon these two-level data structures.

The D simulator is a logic simulator, and no circuit information could be
investigated. There are four different logic vatues: I, 0, X, Z. 1 and 0
simply stand for logic one and logic zero, while X stands for undefined and

Z stands for a conflict condition. Originally, all variables are set to X.
When the simulation begins, the user is allowed to change the values of the
primary variables, and the values of the function and bus variables may be

determined accordingly. The simulation can be done either at the leaf cell

or at the composition cell level. Only those variables declared at tho
selected level are accessible to the user. All operations proceed
interactively. '

For DBJ notatien constructed from CIF or sticks standard, the sticks
diagrams are available. In this case, the simulation can also bc done

graphically. By moving the cursor to the position of a primary variable,
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onc can change its value by pressing appropriate buttons on the "mouse".
Different buttons represent different input values. Pressing one special
button starts the simulation, and the calculated values will be displayad
at the corresponding position 1in the sticks diagram. This kind of

simulation is very appealing.

5.2 The Algorithms

Simulation 1is done on the cell basis. Each cell contains 1its Jlocal
variables and subcells. the variables may be primaries, functions or
buses. The subcells, defined elsewhere, maintain the mapping of
parameters. Those variables whose values may be affected by certain

subcells will hold pointers pointing to the affecting subcells. It is

assumed, for the purpose of explanation, that cell A contains a subcell B,

that is an instance of cell €. VI, a variqb1e declared in cell A, is in
the parameter list of subcell B and corresponds to the variable v2 declared

and defined in cell C. Suppose that vi is a primary variable in cell A (it

contains no Akers' Diagram), then its value can only be changed from the
outside. This change may come from the user (off-chip) or from the
subcells. In this ekamp1e, the value of vl may be affected by subcell B 3T
vZ2 1s a function or bus variable in cell C. In fact, variable vl is a
function wvariable, only that its Akcrs' Diagram is implied

To maintain this relationship,

in subccell 8.
vl is associated with a pointer that points

to subcell B. In order to obtain the value of v1, subcell B must be

simulated first. Each pointer 1is associated with a logic value. AT tor
subcell B is simulated, the value of vl 1is passed back and recorded here.
This pointer is also necessary cven if variable vl is a function or bhus

variable in cell A. Variables may have some of their Akers' Diagrams

defined internally while others defined externally. The data structure of

the whole system is shown in Fig.5.2.1

The system is composed of a series of cells. FEach cell possesses a number

of variables and subcells. tach variable contains a value and various
number: of Akers' Diagrams and pointers. The Akers' Diagrams refer to the
variables of the cell, while pointers refer to the subcells. Those

variables with neither pointers nor Akers' Diagrams are the real primary

variables. Other variables are function variables. Functions and buses

are no longer distinguished since their simulation methods are basically

the same. The variables may either be external or internal. They are
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ordered in the same sequence as appeared in the DBJ notation. External
variables come first and then internal ones. Each subcell holds a pointer
and a 1ist of parameters. The pointer refers to the cell where the subcell
is defined. Thé iength of the parame’cer.list must be the same as the

number of variables 1in the pointed cell. They must be 1in the correct
order, also.

system

——— —— — m— - = e

} 4 .
-
celf < — - - N
definition
I
T € - -
— o variable { subcel}

! ! - . '
{ -~ .

l | t I [\
l | | Lparamete pointer -
l value : —_— ! list — I
I B

1 1 L !

) Ak '
| fla ers pointer flag i
g
i Diagram I
t 1
L ' '

Fig.6.2,1 The Data Structure for the D Simulator

Each function variable or subcell is associated with a flag. Before. geach

simulation step, all flags are reset to zero. The value of eéch variéb]et

is then calculated one by one. For primary variables, no action is taken.
For function variables, the values of their Akers' Diagrams and pointers

are calculated first. To calculate the value of an Akers' Diagram, one

starts with the variable in the top node. If its value has already been

calculated (it is a primary variable or its flag has been set to one), then
this value is read in. Otherwise, it has to be calculated first. Once

this value 1is available, proper action is taken accordingly: 1) If it is



logic 1, then the calculation is passed to the one-subdiagram (the right
hranch aof the Akers' Diagram). This process 1is repeated until the bottom
node is reached. The value is calculated and returned. 2) If it is logic
0, then the calculation 1is passed to the zero-subdiagram (the left branch).
This process is again repeated recursively. 3) If it is logic X, then both
subdiagrams need to be evaluated. If the returned values are the same,
then this value is returned; otherwise value X is returned instead. 4)
Finally, if it 1is 1leogic Z, then logic X 1is returned. To calculate tho
value of each.pointer, the first thing is to determine the pointed subcell
has already been simulated. If it has, then no action is taken, otherwise
that subcell 1is simulated first. The simulation of subcells is quite
similar to the procedure call in programming languages. Values and flags
are saved for the called cell, the values of the parameter list are passed
from the mwain cell, the simulation is done in the called cell, the
calculated values are passed back, and the original values and flags are

restored. Upon returning, the flag of the subcell is sct to one.

ATter all the values of the Akers' Diagrams and the pointers are availabilo,
the value of the function variable can bé decided accordingly. Finally,
the value is recorded, and the flag is set to one. Under this mechanism,
the calculation may be activated ecither by the system or by another
variable. Although the original sequence of the variables  -may nol be
cnrréct, their values are always calculated in the correct order. No
explicit sorting 1is necessary. .Loops may be detected sometimes i{ thore
are state variables contained in the circuit. In such cases, this variable
is not recalculated ( otherwise it will enter an infinite loop}, and the
original value is returned instead. The SIMULA code for the data structure
and the simulation steps of the system are listed in Appendix 2.

5.3 Examples

The 4-bit adder (4.1.3-4) and the 2-bit NMOS shift regiéter (4.4.1) are
illustrated again. Although the DBJ notations are from different sources
(one from the D program and the other from the CIF), the D simulator trecats
them in the same way. There are 17 variables in the 4-bit adder. From AOQ
to Cin are 9 primary variables. Suppose that their present values are : A
-~ [ AO, AL, A2, A3 ] -[ 0010 ], B=[0D0O, B1, B2, B3 } =[ 0110 1,
and Cin = 1. When the simulation starts, the value of the first function



variable Y0 is calculated., It contains no Akers' Diagram so no local
calculation 1is needed. However, it contains a pointer referring to subcell
1. In order to obtain the value of Y0, this subcell haS to be simulated
First. The Vaiues of A0, BO, Cin, -YO and Int0 are passed to cell adderl.
Upon returning, Y0 = A0tBOt Cin = 1 and Int0 = majority(AO0, BO, Cin) = 0.
The flag of subcell 1 is set to 1. VWhen variable Int0 which also points to
this subcell is encountered later, no simulation is needed any more. There

are 8 function variables in the c¢ell adderd4. Simulation follows the
sequence as shown below:

YO Y1 Y2 Y3 Cout Int0 Intl Int2 activated

step value returned subcell
1 1 0 i
2 1 1 2
3 ] 1 3
4 1 0 4
5-8 None

This example may be oversimplified since neither loop condition nof cell
nesting happens during simulation. To illustrate this capability, the
shift register 1is discussed.. For convenience, let vector IN be [ B3, BG,
B8, B12, BS 1. There are four function variables: Bl4, I3, 16 and 19.
Supposé the initial valuce of IN is [ 1 1 1 1 0 ], then the simulation will

follow the sequence as shown below:

B14 I3 16 1I9 activated

step value returned subcell

1 o ‘ 4 (value of I9 not available)

2 3 " 16 "

3 2 " I3 "

4 1 1 (The input value is shifted
in and inverted. Subcell 1
is completed)

5 0 (subcell 2 completed)

6 1 " 3 "

7 -0 " 4 "



A1l pass transistors are turned on, and the value of B14 can nol be
determined before all the subceils are simulated. In this case, the cell
SHIFT will be nested four steps deep as shown above. At the next step, IN

is changed to [ 1 0 1 0 1 ]. The simulation praoceeds as follows :

-

step B14 I3 16 19 activated
value returned subcell
1 1] 4 %
2 3 (I6 not available)
3 0 2 %
4 1 (subcell 3 completed)
5 0 1

* Loop detected

Two pass transistors are turned off, and the corresponding state variables
will remain their original values, This is revealed by Lhe stabement
B7=B37?C3:B7 1in the DBJ notution (4.4.1). Lloops are detected in Lhis case.

Also note that function €3 no longer needs to be evaluated at alil.

5.4 Remarks

In the transistor-to-DBJ transformation, the Akers' Diagrams constructed
from the N network are the same as those constructed from the P netwnrk.
Both P-type and N-type transistors are treated as ideal switches. Howevor,
they are not the same even under first order approximation. P-type
transistors are onTy effective in transmitting 1's, while N-type
transistors are only effective in transmitting 0's. The two branches in
the Akers' Diagrams are not totally symmetric. At the present time, ali
the Akers' Diagrams are technology-independent. However, if one desires,
they may be associated with technology flags, and the simulation schemo may

be modified to highlight the different behaviors Dbetween different
technoiogies.



6, Conclusions

In this thesis, the five intermediate forms shown in Fig.1.1. are briefly
discussed. Proyrams to transform from the CIF tu the sticks standard, Lhe
sticks standard to the transistor Tlisting, and the transistor listing Lo
the AKkers' Diagram are discussed. One dimportant feature of all those
transformations 1is that only the description of leaf cells are changed,
whereas the composition cell (cell structure) always remains unaffected.
Finally, the general operation of a D simulator 1is presented. The model
itself 1is conceptually simple, however its application spans the entire
destign spectrum.

As pointed out previously, the system only deals with functional behavior.
However, the capability for analyzing physical properties can be included
easily. Currently, the system is under development and still needs a lot
of testing. With all the experience gained so far, it is about time to

start the logic-to-geometry transformations.
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Appendix 1: Users' Guide for D Analyzer

A1l the ideas 1in this thes_‘is are implemented in a SIMULA program called
DAN, which stands for D analyzer. It 1‘;5 now running at DEC-20 under the
Tops-20 operating system. A1l operations proceed interactively. The
prompt for the user command is ">". At this point, the user can enter any

DAN command. Here is the summary of all the commands avaiable. Some of

them are valid only when one is using a graphic terminal.

1.File Commands:

CIF ! reads in a CIF file , detects all the components, and put the sticks
standard in the file with extension .STK. 4

STK : reads in sticks standard. The sticks standard may either be

constructed by this program or come from other sources.

LOAD : reads in a DBJ file, and create the data structure shown in

Fig.h.2.1. This DBJ file may either be compiled from D programs or be
constructed from CIF, sticks standard, or transistor Tisting.

TYPE : prints out the contents of a file.

2. Transformation Commands:

TRN: converts Lhe sticks standard to the transistor listing. The data

structure shown in’ Fig.3.1.3-4 is created and the listing is put to the
file with extension .TRN.

DBJ: converts the transistor Tisting to DBJ and saves the code in the file

with extension .DBJ. If the cell is still at the stick level, command TRN

is automatically taken before command DBJ is executed.



* CIF to sticks covertion is done by the CIF command.

3.S8imulation Commands:

SIMULATE: starts the D simulator. This command only works when running on

a graphic device. The default device is the GIGI terminail, however,

can use the command DEVICE to specify another. The sticks

you
diagram of Lhe

selected cell 1is displayed. A1l variables start with value 'X'. The

primary variables are -indicated by small yellow boxes and are the only

places one can set their values. Setting values 15 by way of mousec

buttons, button 1 enters '0', button 2 enters '1'. Button 3 starts the

simulation, and the final values are displayed at the corresponding
positions 1in the sticks diagram. To leave the simulator,

and 2 at the same time.

press buttons 1
This simulation mode is valid only for those DBJ

structures that are created from the CIF and sticks files. For those cells

without any topological information, SETV and RUN commands
instead.

are used

SETV: changes the values of the primary variables in the current cell.

Adjacent variables in the variable 1list may be changed at the same time.

FUN: starts simulation. The result s displayed in text form. Only ono

step simulation is allowed so far. One uses the SETV command to set the

values of primary variables, and uses RUN command to start calculation.

4. Inquiry Commands:
PLOT: plots the sticks diagram of the desired cell.

CELL: displays all the topological information of each celli. This includes

the number of each type of component and the number of subcells.

DISPLAY: disp\ays the DBJ information of the selected cell. This includes

the names of all the variables and subcells. For each variable, the number

of Akers' Diagrams and the names of the pointed subcells
indicated.

are also
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SHOW: shows the current value of each variable 1in the selected cell.

AKfﬂXS: piots the Akers' Diagrams of the desired variable. If the numbor

of Akers' Diagrams are more than one, they will be diaplayed one by one.

This commands is valid only when one works with a graphic device.

S5.Graphic Device Control Commands :

DEVICE: changes the device. Only GIGI terminal, Charies terminal and HP
plotter are allowed.

LEVEL: changes the plot level of sticks diagrams.
TEXT: turns on the text mode or turns it off.

WINDOW: zooms in.

CURSOR: returns the user coordinate of the selected point.

QUIT: leaves the system.

A1l the commands may either be upcased or be lowercased. Abbreviated input
is also allowed,.

Here 15 a simple example

Gdan
>cif shift

Read File SHIFT.CIF
Warn: NMOS Technology
2 Cells Entered

Make Sticks Standard
Saved in SHIFT.STK



>type shift.cif

( Fig.2.3.7 )

>type shift.stk

( Fig.2.3.8 )

>cell
CELL NAME
1 SHIFT

2 CHIP
>plot shift
( Fig.2.3.4 )

>toxt off
>plot 2

( Fig.2.3.6 )
>text on
>lovol 1
>plot chip

( Fig.2.3.5 )

>trn
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NTRN PRES CONT CONN
2 1 4 8
14

Make Transistor Listing

Saved in SHIFT.TRN

>type shift.trn

( Fig.3.1.3 )
( Fig.3.1.4 )

INTER

SUBCELL
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>dbj

Make DBJ File
Saved in SHIFT.DBJ

Cell SHIFT
BL? JHW/L/I/0Q/ or type 'Y' if nced graphic aidedy

( Fig.3.1.1 )

B1? /H/L/L/0>0
Warn:B2 is assumed to connect to Vdd.

B7? /H/L/I/O/ or type ‘Y' if need graphic aidedo
Cell CHIP
2 Cells Entered

1. SHIFT
x 2. CHIP {~=-- current cell

>type shift.dbj
( 4.4.3 )
>select 1

Current Cell : SHTFT

Variable Type Akers Pointer
1. BS PRIM
2. B7 FUNC 1
3. Bo PRIM
4. €3 FUNC 1

>akers b7
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( Akers' Diagram of b7 )

>akers 2
( the same diagram )

>simulate

( Fig.2.3.4 with X at B5,B7,B8 and €3, 1 at B2, and 0 at B1 )

>load adder

Read File ADDER.DBJ
2 Cells Entered

1. ADDER1
* 2. ADDER4

>display

Current cell : ADDER4

Variable Type Akers Pointer Subcell
1. AD PRIM 1. ADDER1
2. Al PRIM 2. ADDER1
3. A2 PRIM 3. ADDER1
4. A3 PRIM 4, ADDER1
5. BO PRIM
0. B1 PRIM
7. B2 PRIM
8. B3 PRIM
9. CIN ~ PRIM

10. Y0 FUNC 1

11. Yi FUNC 2
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12. Y2 FUNC 3
13. Y3 FUNC 4
14. couTt FUNC 4
15. INTO FUNC 1
16, INTL FUNC 2
17. INTZ FUNC 3

>simulate

Sorry, No Sticks Diagram. Try SETV and RUN.
>setv 1=001001101

>show
Variable Type Value
1. AU © PRIM 0
2. Al PRIM 0
3. A2 PRIM 1
4. A3 PRIM 0
5. BO PRIM 0.
G. B1 PRIM 1
7. B2 PRIM 1
8. B3 PRIM 0
9. CIN PRIM 1
10. YO0 FLINC X
11. Y1 FUNC X
12. Yo FUNC X
13. Y0 FUNC X
1. couT FUNC X
15. INTO FUNC X
16. INT1 FUNC X
17. INT2 FUNC - X
>run
Variable Type Value

1. AD PRIM 0
2. A PRIM

3. A2 PRIM

4,

[#2}

BO PRIM

0
1
A3 PRIM 0
0
B1 PRIM 1

[}



10.
i1.
12.
13.
14.
15.
16.
17.

Jquit

B2
B3
CIN
Y0
Yi
Y0
YO
cout
INTO
INT1
INT2

PRIHM
PRIM
PRIM
FUNC
FUNC
FUNC
FUNC

© FUNC

FUNC
FUNC
FUNC

—_ e 3

- OO = O O



Appendix 2: SIMULA Code for the D Simulator

! part of the program are expressed in pidgen codes ;

thing CLASS cell;
BEGIN

REF(vector)variables, subcells;

PROCEDURE calculate;

BEGIN
reset the flags of Tunction variables and subcells to 0;
INSPECT variables DO FOR i:=1 STEP 1 UNTIL length DO

a.af[1] QUA variable.calculate;
END;

END of CLASS cell;

thing CLASS variable;
VIRTUAL: CHARACTER PROCEDURE calculate;
BEGIN
CHARACTER logic-value;
END of class variable;

variable CLASS primary;
BEGIN

CHARACTER PROCEDURE calculate;
calculate:=logic-value;

LNU of CLASS primary variable;

variahle CLASS functinn;
BEGIN
REF(vector )dependents; INTCGER flag;
! intermediate variable

.
14

CHARACTER otd-value, temp;
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CHARACTER PROCEDURE calculate;

IF Tlag = 1 THEN calculate := Togic-value

ELSE IF flag = -1 THEN BEGIN
report.warn{"Loop Detected");
calculate := old-value;

END ELSE BEGIN

P initiatize ;

old-value =

IF NOT logic-value = 'Z' THEN 1ogic;value ELSE 'X‘';
logic-value := 'X';

flag:=~1;

! start calculation;
INSPECT dependents DO
FOR i := 1 STEP 1 UNTIL tength DO BLCGIN
IF logic-value \= 'Z' THEN BEGIN
INSPECT a.a[i]
WHEN Akers'-Diagram DO temp := calculate
WHEN pointer DO temp := calculate;
logic-value
ELSE IF temp
ELSE IF temp
ELSE 'Z*;
END;
END;
flag := 1;

i

IF logic-value = 'X' THEN temp

[ 'a )

]

THEN logic-value

logic-value THEN logic-value

i

{ 5.2.
ca]culate := logic-value;
END of calculate;

END of CLASS function variable;

thing CLASS Akers'-Diagram;

BEGIN
REF(node)condition,left,right;
INTEGER pointer; BOOLCAN negative;

CHARACTER PROCEDURE calculate;
BEGIN

1

)
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IF pointer = -1 THEN calculate := '1'

ELSE IF pointer = -2 THEN calculate := '0Q°
ELSE IF pointer = -3 THEN calculate := 'X°
ELSE BEGIN

CHARACTER chi;

IF pointer > 0 THEN v

chl :- current-cell.variables.a.a[pointer]

QUA variable.calculate;
ELSE BEGIN
CHARACTER ch2;
ch2 := condition.calculate;
IF ch2 = '"1' THEN chl := Jeft.calculate
ELSE IF ch2 = '0' THEN chl := right.calculate
ELSE IF ch2 = 'X' THEN BEGIN
CHARACTER ch3;
ch3 := left.calculate;

chl := IF ch3 = right.calculate THEN ch3 ELSE

END ELSE calculate := 'X';
END;
calculate := IF NOT negative THEN chil
ELSE IF chi = '1' THEN '0!'
ELSE IF chl = '0' THEN ‘1
ELSE chil;

END;
END of calculate;

END of CLASS Akers'-~Diagram;

thing CLASS pointer;

BEGIN
REF(subcell)pointed-subcell;
CHARACTER value;

CHARACTER PROCEDURE calculate;

BEGIN
pointed-subcell.calculate;
calculate := value;

END of calculate;
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END_OF CLASS pointer;

thing CLASS subcell;
BEGIN

REF{cell)pointed-cell; REF(vector)parameter-1ist;
BOOLEAN flag;

CHARACTER PROCEDURE calculate;

IF flag = 0 THEN BEGIN
Store the flag and value in the pointed-celtl;
pass parameter value to the pointed-celil;
pointed-cell.calculate;
pass parameter value bhack;
flag := 1;

END of calculate;

END of class subcell;



