TOWARD A THEOREM PROVING ARCHITECTURE

Sheue-Ling C. Lien

Computer Science
California Institute of Technology

4653: TR :81

CALIFORNIA INSTITUTE OF TECHNOLOGY

Computer Science Department

Technical Report #4653

Toward a Theorem Proving Architecture
by

Sheue-Ling C. Lien

In Partial Fulfilment of the Requirements for the Degree of Master of Science

July, 1981
The research described in this report was sponsored by the Defense Advanced Research
Project Agency, ARPA Order number 3771, and monitored by the Office of Naval Research

under cantract number NO0O0O14-79-C-0697.

Copyright, California Institute of Technology 1981,

TABLE OF CONTENTS

1. INTRODUCTION

2. LOGIC PROGRAMMING and THEOREM PROVING
2.1 Conventional Programming Languages’
2.2 Predicate Logic and Horn Clauses
2.3 Logic Programming
2.4 Prolog Programming Language

2.5 Algorithm = Logic + Control

3. UNIFICATION COMPUTATION
3.1 Unification Computation
3.2 Unification Algorithm

3.3 Modification and Simulation

4. HARDWARE IMPLEMENTATION
4.1 System Ovcrview
4.2 Equation-table Part
4.3 Stack-memories Part
4.4 Data-registers Part
4.5 The Controller Part
4.6 System Design

5. NONDETERMINISM
5.1 Non-determinism

6.2 Sequence of Procedure Invocations

6.3 Scheduling of Procedure Calls

6. CONCLUSIONS

ACKNOWLEDGEMENT

APPENDIX
A. A Special Purpose Unification Algorithm

B. The Transformed Assembly Program

REFERENCES

Section 1 INTRODUCTION

The unification computation is a pattern-matching process operating on a set of
expressions to search for the wvariable binding relations which turn this set of
expressions into a singleton. The unification computation occurs at the very heart of
most modern deduction algorithms. An enormous amount of unification computation has to
be done during a deduction calculation or theorem proving computation. Unfortunately,

this computation tends to be the most time consuming step during the calculation.

The subject of the research described in this thesis is the design of a chip, called UNIF
chip, with VLSI tools, which executes unification computation. The major purpose for
designing such an unification chip is to implement the unification computation on hardware
such that. whenever the computation is nceded. it can be executed in a high speecd way.
This unification chip can improve the execution efficiency of those systems where the

unification computation takes the major part during the execution time.

Section 2 of this paper includes a discussion of logic programming, since the unification
computation plays the center role in the logic programming. For those who are not
familiar with logic programming, this section can supply them a better idea of this field.
At the beginning of the scction, we compare conventional programming with logic
programming to distinguish differences and advantages of logic programming. Then,
predicate logic, Horn caluses and the Prolog language are discussed separately. Prolog
iIs a logic programming language whose main computation mechanism is based on the
unification computation, which makes it an ideal language for discussion. Finally some
examplies written In Prolog are presented 1o demonstrate the unification compuations

involved during the solving of these problems.

Since the major function of the UNIF chip is to execute unification computation, the UNIF
chip follows a unification algorithm during its execution. In section 3, we discuss an
algorithm which unifies a set of expressions [Robinson 1965]. This algorithm, called the
unification algorithm, is the basis of the microprogram stored in the controlier of the UNIF
chip. This algorithm constitutes the skeleton of the controller. The discussion in this
scclion gives more idea about the unification computation and the unification algorithm,

and clarifies how the UNIF chip executes its computation.

The system description of the UNIF is included in section 4 of this paper. In this section
we look at the overall system, including its fioor plan, block diagrams and function blocks.
The UNIF chip is divided functionally into four parts: the controller, the data-reqgisiors,
the stack-memories, and the equation-table. Each part is responsible for one major
function. The contraoller is the heart of the chip, which controlls the behavior of the
whole chip. The controller is implemented as a PLA. The data-registers are responsible
for storing data items temporarily during the computation. This part contains secven
data-registers. The stack-memories hold multiple arguments of the expressions,
replacing the software recursion with the hardware stack. The equation-table is a
random access memory \Mmre expressions to be unified are stored. All the information is
stored in this table and the Tinal output resuit is also recorded in this table. The equation
table is implemented as a standard part (RAM) external to the chip. The procedure for
desiagning the UNIF, the VLSI tools which have been used are also described in this

section.

In section 5 of this paper, we discuss the nondeterministic problems associated with the
overall deduction procedure. Therce are two cases of nondeterminism. One is the
nondeterminism on the sequence of procedure invocations. The other is the
nondeterminism on the scheduling of procedure calls. Different decisions on the

nondeterminism usually lead to different results,

In the final section, section 6, we give some conclusions on this research. A concurrent
system is also presented to implement mutiple UNIF chips on an array model. This model

shows the idea of a concurrent deductive system.

Section. 2 LOGIC PROGRAMMING and THEOREM PROVING

This section presents a brief introduction to logic programming, suggesting another view
of the programming field. We start with the definition of predicate logic and clausal form,
and discuss their syntax and semantics separately, since logic programming is based on
predicate logic, where sentences are represented in clausal form. After that we talk
about a practical logic programming tool, Prolog, to give more concrete idea about logic
programming. A short introduction to Prolog programming language, including its syntax
and semantics, is presented. Finally, some simple examples written in Prolog are carried
through to illustrate the unification computation and the procedure invocation associated

with each example during the execution time.

2.1 Conventional Programming Languages

Computer programming languasaes today are often refered to as being in the midst of a
software crisis, as they are growing ever more complex but not stronger. Con
programming languaoges be liberated from the conventional style which is based on the
von Ncumann model computer? This has been recently a lively topic for discussion

[Winnograd 1979], [Backus 1978].

We =say that conventional programming languages, while solving a problem, usually
combine the knowledge about the problem with the way this problem is solved in the
algorithm. To make this clecar, we first think of an algorithm as composed by a logic
component with a control component [Kowalski 1978]. The logic component specifies the
knowliedae to be used in solving the problem, and the control component determine:s the
problem-solving strategies by means of which that knowledge is used. For instance, in
sorting a list, there are scveral sorting algorithms like quick sort, bubble sort, binary sort,
smumﬁtinl sorl, etc. We can think of these aigorithms as composed of the same logic
component bhut different control components, since they use different ways to do the

same job [Van Fmden 19777,

However, it is more important to discuss separating the logic components with the control
components. Because, if these two components can be separated, the cefficency of an

algorithm can often be improved by improving solely its control component without

chanqging its logic component. Conversely, we can also improve its logic component
without affecting its control component at all. In conventionl languages, since both logic
and control components are not separate, one might change the algorithm's meaning while
trying to improve its execution efficiency. it means thatl unknown errors can be crcated
in an unexpected situation. In contrast to this, logic and control components are
secparate in logic programming. It gets rid of the mutual interference of the two
components as in conventional ianguages. It, therefore, reduces the fear of creating

unexpected errors while one is trying to improve an algorithm's efficiency.

Besides this, conventional languages use variables to imilate the computer's storage
colls: assignment statements to imitate its fetching and storing; and use control
statements to control the execution sequence of the algorithm. So that, what is left to
the execution mechanism is only the most rudimentary problem-solving capabilitins.
However, in logic programming, the solving strategies are decided by the exccutlor
instead of specified by the programmer. The execution mechanisms can provide mare
powerful problem-solving facilities of the kind provided by the intelligent theorem-proving
systems. The programmer is relieved from specifying detail source codes and controlling
exaccution sequence. It becomes much easier to write a program without having to
control the execution sequence step-by-step through the whole algorithm. It also saves
much time without having to specify the machine-level codes. And it lessens the
occurrence of ecrrors in programs. In this way, computer programs will be more often

correct. more easily improved, and more readily adapted to new problems.

2.2 Predicate Logic, Horn Clauses

Before talking about loaic programming, we discuss predicate logic and Horn clauses first,
since predicate logic supports the scmantics of logic programming and Horn clau-cs

frame ils syntax. This sectlion is presented as an introductory part to logic programming.

Logic studies the relationship of implication between assumptions and conclusions. 1t
is concornod not with the truth or falzity of the individual sentences, but with the

relations between them. For example, the assumptlion that

" Helen is Mary's mother ¥
implics the conclusion that
" Mary is the child of Helen ".

What is concerned about, in logic, is the implication relation that if the statement "Helen
is Mary's mother" is true, then it implies that the statement "Mary is the child of Helen”

is also true, but not the truth whether Helen is really Mary's mother.

The above stalement can also be expressed in clausal form as
CHILD {Mary ,Helen] <- MOTHER[Heien, Mary]

with the function name written in front of the atomic formula, followed by the sequence
of names of individual to which the relation applies. The meaning of the clause is the
same with before. MOTHER[Helen, Mary] means that Helen is the mother of Mary. The
arrow mark in the center means the implication between the assumption part

MOTHFR[Helen, Mary] and the conclusion part CHILD[Mary ,Helen].

In predicate logic, sentences arc always represented in clausal form. A sentence in
clausal form is a sentence represented in a set of clauses. A clause is an expression of

the form
B1,82,Bm <- A1 A2, ... AR

where B1,BRBm and A1, ... Ah are two sets of atomic formula with m >= 0 and n >= O.
The atomic furmula At,..,An arc the joint conditions (the assumption part) of the clause

and B1,...8n are the alternative conclusions (the conclusion part).
An atomic formula is an expression of the form p(t1,t2, .. ,tk), where p is a k-ary

predicate symbol and ti are terms. A term is either a variable, a symbol or an expres<ion

1(11.12...,tk) where { is ak-ary function symbol and the ti are terms.

B1,82, ... Bm <- AT.A2, ... An

with variables x1,x2, ... ,xk, is interpreted as "for all variables x1, ... ,xk, B1 or B2 or ...
or Bm,if A1 and ... and An ", or "for all variables x1, ... ,xk, B1 or ... or Bm is implied by

Al and ... and An™.

In the special case where m=0,

<- A1,A2,An,

we interpret it as "for no variables x1,x2, ... ,xk, A1 and A2 and and An are true”;

and the special case where n=0,
81.B2, ,.Bm (- .

we interpret it as "for all variables x1,x2, ... ,xk, B1 or B2 or or Bm are true".

If both n=0 and m=0, it is a null clause. We treat it as a halt statement. Following is an

examples expressed in clausal form.

Example : Appending List Program

(F1)APPEND [NIL,Y,Y] <-
(F 2IAPPEND [cons(x,Y).Z,cons(x,W)] <- APPEND [Y.Z,W]

According to the explanation above, the first clause (F1) asserts that appending the null
list NIL to any list Y always gets list Y. The second clause (F2) asserts that if appending

a list Y to a list Z gets list W, then appending the list cons(x,Y) to Z wil get cons(x,W).

Horn Clauses:

Horn clause is a subset of predicate logic, where each clause contains at most one
conclusion atomic formula. The example mentioned above is also expressed in Horn
clause form. There are tolally four kinds of Horn clause, cach one associated with an

nxnlanation 1t i vory usofy
oXpeanation, v s ver Hs ot

(1) B <~ A1 A2, ... An (where m=1, n=/=0)

-10-

We can interpret this clause as a procedure declaration. The conclusion B is
interpreted as the procedure name and the conditions A1 .. ,An are interpreted as the
procedure body. The procedure body consists of a set of procedure calls Ai's, and the

procedure name B is implied by this set of procedure calls.

(2) B «- (where m=1, n=0)

This clause is interpreted as an assertion of fact. It can also be thought of as a

procadure with empty body.

(3) <- A1,A2, ... AR (where m=0, n<>0)

The third clause is interpreted as a goal statement which asserts the goal of

successfully executing alt the procedure calls A1,.,An.

(4) <~ (where m=0, n=0)

Clause (4) is a null clause. It can be regarded as a satisfying goal statement,

2.3 Logic Progranuning

Predicate logic codities rational thought. Recently its potential as a language was
studied and devceloped into a practical logic programming language, based upon the
interpretation of scntlences in predicate logic as programs; the interpretation of
derivations as computations; and the interpretation of proof procedures as fcasible

exccittors of predicate logic pregrams.

According to the procedure interpretation, resolution can be treated as procedure

Invocation.

(C1) <- A1.A2, A1, AL AT, L AN,
(E1) B <- B1,8B2, .. .Bm

For a given qgoal statomont (C1) and a procedure (E1), the procedure name B matchoes
the sclected procedure call Ai under some goeneral substitution set G. We say that the

procedure B is invoked and the resolution derives a new goal statement (C2), by

-11-

substituting the procedure body B1,.Bm with the procedure cali Ai under the

corresponding substitution set G.
(C2) - (A1,A2,..,Ai-1, B1,B2,..,Bm, Ai+1,..,An)G.

We use the appending-list example mentioned before to illustrate the substitution
set.the activation of mathing clauses, the procedure invocation, and the derivation of

new goal statements.

Example 1: Appending List Program
(F1) APPEND [NIL,Y,Y] {-
(F2) APPEND [cons(x,Y),Z,cons(x,W)] <- APPEND [Y,Z,W]

(Cc1) <~ APPEND [cons(a,cons(b,NIL)),cons(d,NIL),V].

(C1) is the goal statement for computing appending a list cons(a,cons(b,nil}) to the
list cons(d,nil). Goal statement (C1) cannot match with the first statement (E1),
since its first argument is not NIL. Comparing (C1) with (E2), We can see that under

the following variable binding relations

X -=> a,

Y --> cons(h.nit),
Z --> cons(d,nil),
vV == cons(a,U),

the two expressions APPEND[cons(a.cons{b.nil)).cons(d.nil),V] and
APPEND[cons(x,Y),Z,cons(x,W)] are turned into the same expression. We call these
variable binding relations the substitution set G, where G = { a/x, cons{(b,nil)/Y,

cons(d,ni)/Z, cons(a,U)/V }-

In this case. wec say that (C1) matches the second statement (F2), under the
substitution set G, and the procedure (F2) is invoked. The resolution derives a new
goal statement (C2) by substituling the procedure body into the goal statement

under the above substitution set.

..12..
(c2) <- APPEND[cons(b,nil), cons{d,nil), U].

(C2) still matches the sccond statement (F2)under the substitution set { b/x, nil/Yy,

cons{d.ni!)/Z, cons(b,U')/U }, and derives the new goal statement
(C3) <- APPENDI nil, cons(d,nil), U'].

The goal statement (C3) matehes the first statement (F1) under the the substitution set
{cons(d.nil)/z, Z/U'<}.

Since (F1) is a procedure with empty body, the new goal statement derived is a

satisfying halt statement. The computation is thus finished.

Formally speaking, given a set S of Horn clauses and an initial goal statement C1 in S.
The computation is a sequence of goal statement C1, C2, ... ,Cn where Ci+1 is derived
from Ci through the procedure invocation. Each time, a new goal statement Ci+1 is
derived from the old one Ci by first looking for a procedure in S whose name. matches
with some sclected procedure call in Ci and then substituting the body of the procedure
into Ci. If a final halt statement can be derived the computation is "successful", since it
ends with a satisfying halt statement. Otherwise, it terminates without success If the

selected procedure call in the end goal statement Cn matches no procedure in S.

The generation and application of new goal statement, during procedure invocation, has.
to do with the transmit of input and output. The part of substitution which affects
variables in the original procedure calls A1, .. ,An transmits output. The part of
substitution which affects variables in the ncw procedure calls B1, ... ,.Bm troansmits

i_nput.

Instantiation of wvariables occiring in the procedure B by terms occuring in the
procedure call Ai corresponds to passing input from Ai to the procedure body B1, ...
Bm througn the proccdure name B. The instantiated procedure body (B1, B2,
Bm)G is the result of input transfer. Instantiation of variables occuring in the procodure
call Ai by terms occuring in the procedure name B corresponds to passing output back
to the procedure call Ai which distributes to the remairing procedure calls
A1l,.. Ai-1.Ai+1,.,An. The instantiated procedures (A1,A2, ..., Al-1, Ai+1, ... ,An)G is the

result of output transfer.

-13-

Next we go through the calculation of the factorial program to show the input/output
transmission. We will see that ocutputs are transmitted throughout calculation. Partial
_outputs accumulate and determine successively the approximation to the final result.

The approximations are generated whether or not the computation eventually succeeds.
Example 2: Faclorial Program

(E1) FACTORIAL[0, s(0)] <«<-
(E2) FACTORIAL [s(x),u] <- FACTORIAL [x, v],
TIMES {s(x), v, u]

We start with the goal statement (C1), which asserts the goal of computing the factorial
of 2.

(c1) <- FACTORIAL [s(s(0)), y]

The goal statement (C1) matches (E2) under the substitution set
G= { s(0)/x, ylu},

and derives a new goal statement (C2) by substituting variable x in (E2) with s(0) and u

with y.
(C2) <- FACTORIAL [s(0), v 1.TIMES [s(s(0)), v, y]

The goal statement (C2) still match the second statement (E2). With one more
procedure invocation with (E2), under the substitution set { 0/x, v/v' }, resolution

derives a new goal statement

(C3) <- FACTORIAL [0,v'],TIMES [s(0),v",v],
TIMES [s(s(0)),v,u]

Finally the procedure call FACTORIAL [O,v'] malehes with the first statement (E1)

under the substitution set { 0/x, v'/s(0) } and derives the halt statement.

We get the final result that "the factorial of 2 is s{s(0))", by accumulating the outputs

transmitted out during the above computation process:

-14-

v := s(0) times v'

:= s(0) times s(0)
= s(0);

u := s5(s(0)) times v
:= s(s(0)) times s(0)
= s(s(0));

y = u
= s(s(0));

In the logic interpretation, computations are resolution derivations. The end goal
statement of the computation is a logical consequence of the original set of
specifications, which either proves the original assumption or disproves it with a

demonstration of refutation. Let's look at the interpretation for the goal statement first.

(C1) <- A1,A2, ... AN

The interpretation for this statement, as explained in the clause (3) in the predicate

logic section, is

"for no variables x1,..,xk, A1 and.. and An are true "

As we know, the goa! statement is the one which asserts the problem to be solved.
According to the interpretation above, it is assumed that there exist no variables which
make the goal statement true. It is quite a strong assumption that entirely refutes the
possibility of the existence of A1,.An. However, the computation is a sequence of
resolfution according to the logic relations you submit, trying to derive an end goal

statement which either proves or disproves this assumption.

If the final goal statement arrives at a set of variables x1,..,xk which make A1,.,An true,
the computation is successful. We say that the result is a refutation and demonstration
of the unsatisfiability of the oriyinal assumption. Since originally, it is assumed that there
exists no variables x1,x2,xk which make A1 and..and An exist. At this moment the
answer 1o the problem is found, the set of variables x1,..,xk is the result which satisfy

the goal statement.

-15-

On the other hand, if the derivation is not successful, it means that the original
assumption is correct; there exist no variable set x1,..xk which can make A1,..,An exist.

Therefore, in this case no answer Is obtained.

In the factorial example, goal statement (C1) can be interpreted as " there exists no
any integer y which is the factorial of 2 *. However, the final result refutes this

assumption by showing the existenec of the factorial of 2, i.e. s(s(0)).

It is also worthy to notice that there is no definite distinction between the input/output
parameters in the predicate programs. The difference lies on the context in which
procedure is invoked. Any subset of the parameter list can be treated as input, and the

remaining parameters as outputs. In the APPEND example:

(F1) APPEND [nil,Y,Y] <-
(F2) APPEND [cons(x,Y),Z,cons(x,W)] <- APPEND [Y,Z,W]

(Cct) <- APPEND [cons(b,nif),cons(d,ni}),u],

With the goal statement (C1), the third parameter u is treated as an output parameter
for storing the result, and the second input list cons(d,nil), and the first and sccond

parameters are treated as input parameters.

However, If with the goal statement (C2)

(C2) <- APPEND [x, y, cons(a,cons(b,cons(c,nil})))],

the third parameter u is used as an input parameter instead of output. The first and
second parameters x and y are treated as output parameters for storing any two lists

which constitute the third list cons(a,cons(b,cons(c,nil))).

2.4 Prolog Programming Language

Proloy Is the first logic programming system, which was developed at the University of
Marseille as a practical tool of logic programming [Roussel 1975] . It is a simple but
powerful language. A Prolog compiler written in Prolog was implemented at the University

of Edinburgh by Warren, Pereira and Pereira [1977]. It showed that Prolog compiler

-16-

executed LISP-like programs as efficiently as compiled LISP.

As a programming language, Prolog is entirely user-oriented. W differs from existing
high-level languages in thal it possesses no features which are meaningful only in
machine-level terms. It differs from functional language like LISP in that it derives from
the normative study of human logic, rather than from investigation into the mathematical
logic of functions. Prolog has simple syntax, clear and declarative semantics. From a
user's point of view, its major attraction is ease of programming. Prolog is also an ideal
language for programming in the field of artificial intelligence. There have already been

several very complex programs written in Prolog in a very concise way [Shapiro 1980].

Syntax and semantics of Prolog Is based on the interpretation of predicate logic as a
programming language and Horn clause as a procedure declaration. (Discussion of
predicate logic and Horn clauses is included in section 2.3 and section 2.4). A Prolog
program Is composed of a set of Horn clauses which express the logic relations of the
algorithm, and activated by an initial goal statement which specifies the problem to sovie.

The basic computation mechanism in Prolog is the unification computation.

Next, two factorial examples written in Aigol and Prolog are presented for illustrating the

distinction between logic proaramming and conventional programming.

ALGOL EXAMPLE:
integer PROCEDURE factorial(n); integer n;
BEGIN integer j.fact; fact := 1;
for j:=2 step 1 until n do fact:=fact*j;
factorial:=fact;
END of factorial;

PROLOG EXAMPLE:
(E1) FACTORIAL [0 ,1] «<-
(E2) FACTORIAL [s(x),u] <- FACTORIAL [x,v],
TIME[v,s(x),u]

The meaning of the Algol example is quite obvious. No explanation is needed. The

interpretation for the Prolog example is as follows:

(E1): Factorial of zero is one.

(E2): If the factorial of x is v and v times successor of x is u,

-17-

then the factorial of the successor of x, s(x), is u.

The differences between them are striking. In order to compute the factorial, the Algol
example uses the assignment statements to imitate date storing and fetching and a
FOR-loop statement to control the computer cycling through loops and calculating the
value of the factorial of n. However, the Prolog example specifies only the definition of
* the factorial without dcscribing how this algorithm should be executed. From these two
examples, we can see that, unlike the conventional program, a logic program spegcifies
only the meaning of the algorithm and leaves the execution sequence to the run-time

system.

Both Lisp and Prolog are interactive languages founded on formal mathematical basis -
Lisp on Church's lambda caliculus, Prolog on Horn clauses. Comparing W'l\th Lisp, Proilag is
similar to this list-processing language in the way that data in Prolog can be represented
in terms or relations. However, Prolog uses the pattern-matching mechanism to operate

on data structures instead of the selectors and constructors in Lisp.

Another feature of Prolog is that, like Lisp, programs and data are identical in form.
Clauses can uscfully be cmployed for expressing data. Database systems thus become
another appreciable application of Prolog. It's able to implement a database directly in
Prolog and use unification for data-items searching, instead of simple pattern matching.
The following example illustrates the identity of program and data in Prolog, showing its

potential as a natural medium for database system.

student(John ,m,20). student{Jack ,m,18).
student(Mayr ,1,20). student(Linna,f,22).
student(Bruce.m,20). student(Helen,f,16).
student(Jen ,f,21). student(Ann ,f,19).

student(Dick ,m,23).

MALE-ADULT(name,sex,age) <- student(name,sex,age),
greater(age,20),
sextype(sex,m}

-18-

This database of unit clauses stores the information about students, including their
names, sex, and ages. The procedure MALE-ADULT looks for the student whose age is
greater than 20 and whose sex is male. This procedure returns data items of all those

students who are qualified.

2.5 Algorithm = Logic + Control

Conventional programs combine the logic of the algorithms with the control of the
execution of the algorithms. Logic programs are more abstract. They control neither the
order in which different procedures are invoked, nor the order in which procedure calls
are executed. We can represent the analysis of an algorithm into a "logic component",
which defines the logic of the algorithm, and a "control component”, which

specifies the manner in which definitions of algorithm are used [Kowalski 1979] .

ALGORITHM = LOGIC + CONTROL

Logic programs express only the logic component of the algorithm. The control
component is determined by the program executor, either following its own control
decision or following the control instructions provided by the programmer. Therefore,
logic programs can be thought about as an entirely machine independent and

user-oriented language.
The separation of logic from control has several advantages:

(1) Algorithms can be constructed and generated by defining its logic component
before control component , such that, the algorithm can be verified by applying

deductive rutes to their logic component alone.

(2) Efficiency of the algorithms can be improved by simply modifying their control
components without changing their logic components, or by transforming their logic

components inlo more efficient ones without changing their control components.

(3) The control component can be expressed separately, or it can be determined by the
program execttor. It allows the programmer ability of specifying about program
exccution. On the other hand, the determination of control by the program executor

relieves the programmer of the need to specify control together with logic.

-10-

Section 3 UNIFICATION COMPUTATION

Computational logic is a branch of artificial intelligence which deals with how to make
machines do deduction efficienlly. There are wmore and more applications of
computational logic: In robot control, question-answering, program-writing, program
verification, etc. These applications are very useful to today's world. However, the
current deductive power of those algorithms is still quite weak. In order to devcelop the
computational logic into a genuinely strong and useful science, it is important to focus on
the unification computation. Since the unification computation plays the central role of

most modern deduction algorithms.

in this section, we are going 1o discuss a unification algorithm [Robinson 1965]. This is a
general purpose unification algorithm which takes a finite collections of finite sets of
expressions as input and calculates the substitution set which unifies these sets of
expressions. This algorithm is based upon as the skeleton of the controller in the

Unif-chip.

Following this algorithm another special purpose and chip-simulation algorithm is derived,
through modifying the original one. The newly derived algorithm takes only two
expressions as input and computes the substitution set which unifies this pair of
expressions. This algorithm is transformed into a microprogram, which is stored in the

UNIF-chip.

3.1 Unification Computation
Following is a simple example showing how two expressions are unified.
A system P, where P ={ P11, P2 },

Pt ={ f(x,ag(y)z}
P2 = { h(a.b), h{p(q).r) }.

"

If in the system P, we subslitute variable z with f(x,g(y)),

variable a with p(q) ,

-20-

and variable r with b .
P1 and P2 are qf_‘ugnged into singleton sets after substitution.
P1={ f(xgly) },
P2 = { h(p(q),b) }.

In this case, we say that the system P is unifiable under the variable binding set
G, where G = { f(x,0(y))/z, p(q)/a, b/r }. Since G turns each expression in P1

(or P2) into the same expression.

However, for the system P'={P3}, where
P3 = { r(x,1(x)), r(f(x),x) },

there exists no wvariable binding set which change P! into a singleton. The system

P' is said to be non-unifiabie.

We call the process of changing a system into a singleton the unification process or the

unification computation; and the variable bindings set the unification set.

Formally speaking, a substitution {11/x1, t2/x2, ..., tn/xn} Is an operation which can be
performed on expressions by replacing each occurrence of variable xi in the
expression with the corresponding term ti. For a finite collection P = { P1, P2, ..., Pn
} of finite sets of expressions, cach finite set Pi is made up of either terms or atoms.
Each expression cither consists of a symbol and a list of terms as arguments, or is a
variable. We say that a subslitution G unifies P if for eachi, i=1,..,n, G turns each
expression in‘ Pi into the same expression. We express EG as the result of
performing the substitution G on the expression E. If S is a set of expressions,

then SG Is the resulting setof {(EG/E inS}.

There are three cases of variable binding during the unification:
(1) variable to variable, vl -=> v2

This is the most simple case where the substitution set can be either { vi/v2 } or {

v2/vi).

-21-
(2) variable to function, vt --> f

If the variable v1 is not contained in the function f, then v1 can be binded to function
f. with the substitution set { {/v1 }. However, if vi Is contalned inside f, then x can not

be unified with f{.
(3) function to function, 1 --> 2

If {1 and {2 are different functions, then they can not be unified, since functions can
not be substituted. However, if f1 and f2 are of same function name with different

arguments,

1
2

(11, t2,.., tk)
f(r1, r2,.., rk).

il

Whether they can be unified or not depending on the success of the unification of the
argument pairs ti with ri, (i=1...k), correspondingly. If any one pair can not be unified,

then the unification of {1 with {2 is failed.

3.2 Unification Algorithm

The central idea of the unification is to 'shrink' the given system P into & set of
singletons, through the successive substitutions. Each substitution equates two
cones;mmling'suhexpressions which need to be made identical if P is 1o be unified.
Thercfore, a unification olgorithm will allocate these two subexpressions and perform the
necccssary substitution through cach cycle. Following steps describe systematically the

scquence of the execution of the unification algorithm.

Stepi: Glven system P={P1,P2 ..,Pn} asinput, setJ=0, Go = identity set,

qoto step 2:

Step2: If PiGj is a sinyleton for each i, i= 1, ... , n, then STOP with output G = Gj ,

clse goto stiep 3;

Step3: let k = the carliest number such that PkGj is not a singleton. Let E, F be

any two expressions In PkGJ. Scan E and F in paraliel, from left to right,to locat the

-22-

leftmost position in which E and F do not have identical symbols. Let e and f be the
subexpressions of E and F, respectively, which begin in that position. If neither e
nor { is a variable then STOP, else goto step 4; Step4: M oneof e and f is &

variable which is properly contained in the other then STOP, else goto step 5;

Step5: Choose x and t so that {x,t}={e). Set Gj+1 = Gj {t/x)},
j=j+1, goto step 2;
End;

Through each cycle, 1 <= k <= n, PkGj+1 = (PkGj) {t/x}, We can update the sets
§1Gj, .« » PnGj by performing the substitution {t/x} on them, i.e. locating each
occurrence of x in each expression, and replacing it by an occurence of t, until the final
step is arrived at. However, if the algorithm stops in elther step 3 or step 4, the

unification fails and the given system P can not be unified.

Besides the efficiency of the unification algorithm, how to store expressions in the
computer memory is also very important. Since we want to minimize the amount of
scanning., copying and rearranging which have to be done during the computation. The
process must be capable of detecting differences hetween expressions as quickly as

possible.

Table 3-1 with eight fields " SYMBOL, VBLE, ARGS, ARITY, SUBST, TERM, EQUALS, and
PARTS ", shows how the expreséions are represenled. The first column stores the
symbois of the expressions. VBLE is a boolean array. VBLE indicates whether the
corresponding symbol is a variable, ARGS stores its arguments list, and ARITY counts the
number of elements contained in the arguments list. SUBST is also a hoolean array,
indicating whether the symbol is substituted or not. If it is, the substituting term is stored
in the field TERM. Column PARTS have the meaning that expression(i) is to be made
Identicat with the expression(PARTS(i)). During the computation, the column EQUALS is

modified such that it always has the meaning:
if EQUALS(i) = EQUALS(j) then EXPRESSION(i)=EXPRESSION(}).

Each field in this table has one column, with the exception of ARGS. ARGS has as many

" columns as the arity of that symbol. The way in which these expressions are

-23-

represented can be explained by the function EXPRESSION as follows.

EXPRESSION (i) = if SUBST(i) then EXPRESSION(TERM(i))
else SYMBOL() / ARGLIST(i, ARITY(i));
ARGLIST (i, j) =if =0 then NIL ,
else ARGLIST(i,j-1)/EXPRESSION(ARGS(,}));

For example, a system P = {P1, P2}, where
P1 = { 1{x), g{x¥), 2},

and P2 = { h(z,y), h(f(a.b).f(d.c)) }

can be represented in TABLE 3-1 as defined t;y the function EXPRESSION as follows:

axxasnnnrRarxrxxExxn TABLE 3-1 . RXRXRRARERRRRARARA
P =1{ P1, P2) where Pl = { f(x,9(x,y), z },
P2 = { h(z,y),h(f(a,b),f(d,c))}

symb01 args arity vble subst term equals parts
t ot 23 2 FooF 11
2 x o T F 2z
3 ¢ 24 2 P 3 3
a oy o T F a a
s 2 o TP 5 1
& n 5 a : P P o o
7 h 81 2 FoooF 7 6
8 r 9 10 2 FoooF 8 8
s a2 o T s 9
w b o T F 0 10
o 213 2 FoooF o1 o1u
iz a4 o ToF 12 a2

13 ¢ 0 T F 13 13

TABLE 3-1 is called

-24-

the "eguation table" of the system P. Each row of the table

represents one expression, row | represents EXPRESSION(i). The following tree

structure representation of the system P makes the EXPRESSION clearer.

P1 = { f(x), a(x,y), 2z}, P2 = { h(z,y), h(f(a,b),f(d,c)})

1 9
{ /\
X X

z h h
/\ 7\
Yy zy f f
I\ I\
a bd c

Following is the unification algorithm. The whole algorithm is carried out by executing the

function UNIFY. This function yields TRUE or FALSE as a result,according to whether the

system represented

in the table is unifiable or not. At the same time the table is

modified as a side-effect of the computation. If the item SUBST(i)=TRUE, it means that

EXPRESSION(term(i))

is to be substituted for this variable.

function UNIFY:boolean;
label 1;
var j:integer;
begin =1,
1: i j>n then UNIFY:=true
else if part(j}=j then begin
}:=j*+1, goto 1; end
else if FOUATF{j,part(j)) then beqgin
j:=]+1: goto 1; end
else UNIFY:=false;
ond; {function UNIFY}
function EQUATE(,j:integer):boolean;
label 1;
begin
1:

if equals(i)=equais(j) then EQUATE:=true
clee if subet(i) then hegin
i:=term(i); goto 1; end
else if subst(j) then begin
ji=term(j); goto 1; end
else if symbol(i)=symbol(j)

then EQUATE:=EQUATEARGS(i,})

-25-

else if vble(i) then begin
if OCCUR(l,j) then EQUATE:=false
else begin subst(i):=true;
term(i):=j;
IDENTIFY(i,j);
EQUATE:=true;
end;
end
else if vble(j) then begin
if OCCURC(j,i) then EQUATE:=false
else begin subst(j):=true;
term(j):=i;
IDENTIFY(j,i);
EQUATE:=true;
end;
end
else EQUATE:=faise;
end; {function EQUATE}

function EQUATEARGS(i,j:integer):boolean;
label 1;
var k:integer;
begin k:=arity(i);
1: if k=0 then begin IDENTIFY(i,j);
EQUATEARGS:=true;
end
else if EQUATE(args(i.k),args(j,k))
then begin k:=k-1;

. goto 1;
end
else EQUATEARGS:=false;
end; {function EQUATEARGS}

function OCCURC(i,j:integer):boolean;
jabel 1;
begin
1: if suhst(i) then begin j:=term(j);
goto 1;
end
if arity(j)=0 then
i1 i=) then OCCUR:=true
clse OCCUR:=false

else OCCUR:=0CCURARGS(i,});
end; {function OCCUR}

-26-

function OCCURARGS(|,j:integer):boolean;
label 1;
var k:integer;
begin k:=arity(i);
1: if k=0 then OCCURARGS:=true;
else if OCCUR(i,args(j,k))
then OCCURARGS:=true
else begin k:=k-1;
goto 1;
end;
end; {function OCCURARGS}

procedure IDENTIFY(i j:integer);
label 1,99;
var k,ef:integer;
begin
k:=1; e:=equals(j); f:=equals(i);
if e=f then goto 99;
1: if kdn then goto 99;
If equals(k)=e then begin
equals(k):=f;
k:=k+1; goto 1;
end;
89:end; {function IDENTIFY}

All the funclions and procedures above are written in PASCAL programming language.

Function UNIFY is quite simple. 1t consists of computing EQUATE(j,part(j)) for each row.

Function EQUATE is the heart of the program. It possesses the side-effect of modifying
the equation table. If the value of EQUATE(I,j) is true, then during its evaluation, the
equation-table will have been modified such that, after evaluation is compieted,
EXPRE SSION(i)=EXPRESSION(j). Besides, EQUALS will have also been modified. Function
EQUATEARGS is a recursive execution of function EQUATE on all the arguments of the
symbol currently being executed. Function OCCUR is for checking whether a variable is

properly contained in the expression which is to be substituted for this variable.

After the execution of unification algorithm, the equation-table in TABLE 3-1 is madified
as shown in TABLE 3-2. THe SUBST field of rows 4,5,9,10 in the TABLE 3-2 are filled.

From the TERM fieid of the corresponding rows, we can find the substitution relations.

-27-

TERM(4)=4, TERM(5)=1, TERM(S)=2, TERM(10)=3.
a < x; b < g(x,f(d,c));
y <= (d,c); z <= f(x,0(x,f(d,c)));
Therefore, the substitution set which unifies system P is

G = {x/a.1(d.c)/y.a(x.1(d,c))/b,f(x,g(x,1(d,c)))/2)

The EQUALS of rows 1,2,3,5,6 and 11 are aiso changed. We have

EQUALS(1) = 8, EQUALS(2) = g,
EQUALS(3) = 10, EQUALS(5) = 8,
EQUALS(6) = 7, EQUALS(11) = 4,
After the substitution of set G, we can see that
E1 G=EB G=EbBG, E9 G = E2,
E6 G =E7 G, E4G=E11.
AXXRARXRRRXXXRXRKXR 1ABLE 3-2 AXXXRXRRRRRRRRXRARR K

P={ P1, P2} where Pl ={ T(x,q9(x,y), 2},
P2 = {h{z,y).h{ T(a,b).f(d,c)))
symbol args arity vble subst term equals parts
1 r 23 2z F F 8 1
2« o 1 F o 2
3 ¢ 24 2z FF 0 3
.y 6 T (m 11 () 4
sz o 1 (m i""" 8
6 n 54 2 F F 7 e
7 » 8 1n 2 F F (7 6
8 r 9w 2 F F @) 8
s o o 1 (m 2 (9 e
w b o T 3 (1) 10
wor a2z 2z FF s n
2 o4 o 1 F (21 12

13 ¢ 0 T F . (13) 13

-28-

We summarize all the substituted expressions in TABLE 3-3 as follows:

CRRARRARRRRARAAKRRRRKR TABLE 3-3 RXXAXXXARXRRRXRRXRXN

P={Pl, P2} where PI ={ f(x,9(x.¥), 2 }.
P2 = {h(z,y),h(f(a,b),f(d,c))}

{ Ei) (EiD))
1 ety et
R
3ostew g (x.1(8.c))
« oy e
s oz flxootx, f@0)
6 nezw) M(f (x, 0(x,7(d,€))), T(d,e))
7 R (1a,0),114,0)) AT (x. a(xf(d.0)), T{d,e))
s rGam st @)
R S
oo ax, g
noor@o raa
TP «
oo c

3.3 Modification and Simulating

After having explained the unification algorithm next we disruss a spocial purpose
algorithm. The previous algorithm is a general-purpose one, which unifies sets of
expressions. We will simplify this algorithm to a special purpose one which unifies only a
pair of expressions. The new algorithm and the old one are very similar except that the
EQUALS and PARTS fields in the original algorithin are omitted. Since there are only one

set of expressions to be unified. these two fields are not necessary any more.

-29-

This simplified unification algorithm is also written in PASCAL. It is included in Appendix A.
It unifies two expressions following the same steps as before. However, instead of
comparing by field EQUALS, it compares two expressions according to their addresses
and TERM field. '

Following this simplified algorithm, we cderive another algorithm written in SIMULA, which is
closer to the hardware implementation. The distinction is that it replaces the recursive
features with CLASS STACK. Whenever we need to equate arguments by recursively
calling the function EQUATE, we can first push all the arguments into a stack-memory.
we then equate these arguments one by one, popping the arguments out of the stack

memory until there is no more arguments exist.

CLASS STACK;
begin REF(member) first;
integer procedure length;
begin REF{member)x; integer j;
x:-first;
while x=/=none do
begin j:=j+1; x:-x.next; end;
length:=j; .
end;
REF{menber) procedure pop;
begin REF(member)x;
if first=/=none then begin
x:-first; first:-x.next;
x.next:-none; end;
pop:-x.data;
end; end;

CLASS MLMBLH;
begin REF(member) next; integer data;
procedure push(stk); REM(stack)stk;
begin if stk=/=none then begin
next:-stk.first;
stk.first:-this member;
end;
end; end;

procedure loadstack(i,}); integer i,j;
begin REF(member)x; integer k;

-30-

for k:=1 step 1 until arity(i) do
begin
x:- new member; x.data:=zarg(k,l);
x.push(rstack);
X:- new member; Xx.data:=arg(k,});
x.push(istack);

end; end;

procedure loadoccstack(m); integer m;
begin REF(member)x; integer k;
for k:=1 step 1 until arity(m) do
begin
X:- new member; x.data:=arg(k,m);
x.push{occstack);
end; end;

boolean procedure OCCURC(i,j); integer i,j;
begin boolean stopped;
while stopped do
begin
while subst(j) do j:=term{j);
if arity(j)=0 then
begin if i=j then begin OCCUR:=true;
stopped:=true;
end
else if occsk=0 then begin
OCCUR:=false; stopped:=true;
end
else begin occsk:=occsk~1;
j:=occstack.pop;

end;
end
else begin LOADOCCSTACK(j);
occsk:=occsk+arity(]);
}J:moccstack.pop;
occsk:=occsk-1;
end;

cnd of whilc loop;
end of procedure OCCUR;

boolean procedure UNIFY(i,j); integer Lj;
begin boolean stopped;
while stopped do begin
while subst(i) do i:=term(i);
while subst(j) do j:=term{(j);

-31-

if i=j then begin if sk=0 then begin
unify:=true; stopped:=true;
end
else begin sk:=sk-1;
i:=rstack.pop; j:=Istack.pop;
end;
end
else if symbol(i)=symbol(j) then
begin {f arity(i)=0 then begin
if sk=0 then begin
unify:=true; stopped:=true;
end
else begin sk:=sk-1;
i:=rstack.pop; j:=lstack.pop;
end;
end
else begin LOADSTACK(i,1);
sk:=sk-1;
i:=rstack.pop;
j:=lstack.pop;
end
end
else if vble(i) then begin
if OCCURY(i,j) then begin
UNIFY:=false; stopped:=true;
end
else begin subst(i):=true;
term(i):=j;
if sk=0 then begin
unify:=true; stopped:=true;
end
else begin sk:=sk~1;
i:=rstack.pop;
J:=lstack.pop;
end,;
end;
end
cise if vbie()) then begin
if OCCUR(j.i) then begin UNIFY:=false;
stopped:=true;
end
else begin subst(j):=true;
term(}):=i;
if sk=0 then begin
unify:=true;stopped:=true;

-32-

end
else begin sk:=sk-1;
i:=rstack.pop;
j:=Istack.pop;
end;
end;
end
else begin UNIFY:=false; stopped:=true; end;
end of procedure UNIFY ;

Since the arity of any expression is variable. The ARGS field of the equation-table
needs to be either dynamic or large enough to take the maximum number of arguments.
In order to save the memory space for holding this table, we rearrange the

equation-table into a new one, called the eq-table, as shown in TABLE 3-4.

TABLE 3-4 Is the eq-table of system p. This new lable stores the arguments yvilh a
linked list using field LINK and separates two lists with a zero valued element. The ARGS
field, instead, stores the pointer pointing to the first element of the corresponding
argument list. For scarching the arguments of a symbol, we sequentially take arguments
starting from the position pointed by the ARGS until a zero pointer is found. This eq-table
Is the representation used in the UNIF-CHIP, storing the two expressions to be unified.
There is a random access memory located outside the UNIF-CHIP with four fields

corresdonding to the fields in TABLE 3-4, respectively:

fieldt -> SYMBOL, VBLE
field2 -> ARGS

field3 -> LINK

fieldd -> TERM, SUBST

Boolean field VBLE is combhined into ficld SYMBOL and ficld SUBST is combined into TERM.

The chip-simulating algorithm written in SIMULA is translated into an assembly program
(Appendix B), then to a microprogram (Appendix C) which is used to be stored in the
controlier of the UNIF-CHIP. Such that UNIF-machine can execute unification algorithm

following this microprogram.

-33-

EEXXKEXKXRRARARRRXKKX TABLE 3..4 EXXXKKXXRXRARKRKTARXKR

P={ h(f(a,b), z), h(y, f(d,c)) }

symbol(vbie) args link term (subst)
----------- R e B
(] | 0 | 0 | F
----------- R R R
1 h F | 1 | 3 | F
----------- R R R e Tt
2 h F o 4 | 9 | F
——————————— R et e e
3 f F 7] 0] F
----------- R et B B
4 a T 1]] 6 ! ¥
——————————— R ettt R R
5 b T 1 0 1 10 | F
----------- Jm==mmmmmm e e e e e
6 f F o 10 |] | F
----------- Rl R R
7 d T | 0 | 4 | F
mmmmmmeo-o- R el Jommmmem e Jommmmmm - -——
8 c T | 0 | 5 | F
----------- R Rt et B it s
9 z T | 0] o | 6 T
............ '-__.____--__.._'__---___-_-I------_-_--.._
10 y T 0 | 7 | 3 T
----------- R el e
11 | | 8 |
----------- R Rt R T
12 l] Y J
| J |

-34-

Section 4 HARDWARE IMPLEMENTATION

The "UNIF-machine" or "UNIF-chip® we are going to describe is a8 special purpose
micropraogramed’ machine. As mentioned before, the main purpose for designing this
machine is to implement the unification computation in hardware, such that this machine
can work as a coprocessor in a System to execute the unification computation more
efficiently. This machine is designed to take a pair of expressions as input and compute
1he substitution set G for this pair of expressions. During the computation, the variable
bindings of the substlitution set are produced and the equation table is modified as a
side-effect. After the execution of UNIF-machine, the binding information is completely
recorded in the off-chip RAM. However, if there exists no general substitution set for
these input expressions, the final output of the machine will indicate the failﬁre of the

computation.

4.1 System Dverview

Fig 4.1 shows the application of an UNIF-chip in a Prolog system, working as a
coprocessor. The user submits a program to the system, and the system slarts running
the program. During the cxccution of the Prolog program, whenever the system nceds to
do wunification computation it stores pairs of expressions to be unified in the external
RAM (called equation table). The system stores the data in the way as described in
seclion 3 and directs the UNIF-coprocessor to unify them. Once the UNIF-chip receives
the request, it starts computing the substitution set by reading in data from the equation
table and, during computation, recording the variable bindings back to the equation table.
After the computation is done, the UNIF-chip will notify the system the result of the
unification. If the expressions can be unified, then the system can search through the
equation table for the variable-binding informations and do the substitution to derive a

new goal statement according to the given information.

Fig 4.2 shows the pinout of the Unif-chip. There are ten output pins connecting to the
address pins of the external RAM, which holds the address of the input/output data.
Another nine tristale pins are for bidirectiona! dataflow betwecen the UNIF and the RAM
such that data can be either read or writlten. The other nine pins consist of the power

(vdd), ground (gnd), clock (phasel, phase2), control signal (read, write, resct),

wusEer

l

Pr—-olos ~rom time eyetem

im host machine

RAM

DATA—REGISTEILS F—>

|

ROM courntar

OATA-BUS

1 1

STACK-MEMORY

Fig % .1 UNIF coprocessor

OEOROROROIOROSONE

1127121117

doto-pins

oddress-pine

uvnified

resot

rrile

v v I LT

Fig 4.2 Pinoul of UNIF-ohip

terminating signal (stop) and the result signal (unified).

During the execution period, the stop-pin output is always low, until the computation is
finished it becomes high. After the computation is done. if the unified-pin output is high.
the two expressions can be unified, otherwise they are un-unifiable. The reset-line is
used to Initialize all those data registers in the chip which need to be reset to proper
initial values. The read and write lines are signals indicating reading or writing the

external RAM.

Once the machine starts execution, it reads in the first two symbols of the expressions
from the external eq-table, as directed by its internal microprogram. It computes the
' substitution set step by step and records the result back into RAM until the final answer
is reached. After the computation is finished with the machine indicating successful
unification result, system searches for the variable binding relations from the "subst" and
"term" ficlds of the eqg-table, and performs the necessary substitution and derive a new

goal statement.

From the pinout of the chip, we can see that the communication between Unif-Chip and
the external RAM is bounded by the nine data-lines and 10 address-lines, under the

control of the read/write signals.

Next we are going to look at the floor plan of the Unif-chip and discuss each function
block in the chip and the data {low between them. Fig 4.3 is the floor plan of the
"Lnif-Chip". The chip is composad of four major parts as follows. The equation taoble is
implemented as an external standard RAM. The stack-memories are also implemented as
a standard part. Except for the controlier which is made by PLA generator, all the h?nf
cells in the UNIF chip are made with REST, which is a leaf cell design system for NMOS
stick diagrams. The higher level composition cells are made with RIOT or LAP. The iast

step of wiring are done with LAP.

1. EQUATION-TARIE is a standard external random access memory. It stores the pairs of
expressions to be unified and also stores the final result of the unification computation.

1t contains four ficlds at all. Each field is 9-bits by 256-bits.

2. STACK-MIMORIES are usaed to store muiliple arguments of the two expressions. 1t

replaces the software rcecursion with the hardware stack. This block contains three

Slack-menmories

Control-signal-bus

Controller

Daia'r-eglstsrs

Da

Fig 4.3 Floor p]an of UNIF—chIP

{a-Bus

-36-

8-bit wide, 256-bit long stack memories with two 8-hit wide counters counting the
number of data clements stored in the stack memories. There are a total of 24 x 206 =

6144 stack celis in the stack-memories.

3. DATA-REGISTERS hold several information about the two expressions, including
symbols, addresses, arguments, etc, during the unification computation. It contains
scven O-bit wide data registers, and two 8-bit wide comparators for comparison belween

symbols or addresses.

4. CONTROLLER stores the unification algorithm and controis the behavior and the
execution ~equence of the chip. Once the UNIF chip starts working, the execution is
determined by the controller following its internal microprogram. Controller is composed
of a microcode memary with 7 inputs, 31 outputs, 113 minterms and zero feedbacks. and
is implemented as a PLA. There is a 7-bit-wide program counter storing the address of

the microprogram, which can count-up or directly load.

Fig 4.4 shows the tayout geometry of the chip. Fig 4.5 is the block-diagram of the
Unif-Chip. All the data reqgisters and the three stack memories share one data-bus.
Externally, the chip can communicate with the external RAM only through the two
registers MENADDR and DATAREG. Two comparators indicate the resuits of comparison
between registers ADDR1 with ADDR2, and SYMB1 with SYMB2. Eight flags indexed with
A, B, C, L H indicate the current state of cach register. Micorocode memory ROM,
addressed by the program counter PC, distributes the control signals‘to control each

action of the chip and the data-fiow on the data-bus.

Foliowing this we are going to discuss the details of each block, the operation and
function of each component in the chip. We divide the discussion into nine steps as

_follows:

-

Cgquation-table.

Stack-memories.

Data-reaisters.

Controlier.

Data-bus, Cight flaqs and check-cell.

Reset problem,

N O b N

Input/output signals.

Data-bus

OSK

stack-mem

LSK

RSH

ories

output-pods

DATA-registers

ROM

Fig 4.4 Layout Geometry of UNIF-CHIP

Fig 4.5 Block dlagr‘am of UNIF-CHIP

ROM oK LK RS¥ @
. 9
swe
! ! Is 1s Is
8
TEMP
@ coe1
e =
8 8 8 8
® ©
oddr2 mymb2 vb2 |vbl | eymbl oddr1
A I A T
8] g ‘1’8
18 | 9
oo ol
. N ___._./yr__-___ S
fiald
g g g 1 14 11
¢ RAM D

-37-

8. Timing problem.

9. External interface and external eqg-table.

4.2 Equation-table

We have described the format of the equation table in section 3. TABLE 3-4 is the
cq-table of the system p, where P = {h(f(a,b),2), h(y.f(d,c))}. This table stores the
argquments of the expressions with linked list, using the field LINK. Each list is terminated
wilh a rero valued element. The ARGS field stores the pointer pointing to the first
element of the corresponding list. For searching the arguments of a symbol, we

scquentially take arguments starting from the position pointed by the ARGS until a zero

pointer is found.

:’xtxxxtthxxxnxtt TABLE 3_4 EARRFRRERRAXX KRR AKRK

P=1{ h(f(a,b), z), h(y, f(d,c)}) }

symbol{vble) args link term (subst)
----------- R g IR TC LR EEPEEERRRIUE
0 | 0 | 0 | F
----------- R R] TR
1 h F | 1 | 3 i F
----------- R el e I iRl
2 h F 1 4 | 4 | F
----------- R et EE e
3 f F | 7 | 0 | F
----------- it Bl I
4 a T 0] 6 I F
----------- R B E
5 b T | 0 | 10 | F
----------- e e e I il
6 f Fo 10 | 0 | F
——————————— R e Rl EEETTEEPTET] EETREREPEEEE
7 d T | 0 | 4 | F
——————————— R B B e
8 c I | 0 I 5 i F
----------- R B B
9 z T 1 (] | 0 | 6 T
----------- R B B
10 y T | 0 I 7 1 3 T
----------- R R
11 I I 8 !

-38-

TABLE 3-4 is the representation we use in the UNIF-chip to store two expressinns. We
implement the equation-table as a standard RAM. A random access memory is located
outside the UNIF-chip, with each datea word divided into four fields corresponding to the

four fields in TABLE 3-4, respectively:

field1 -> SYMBOL, VBLE
field2 -> ARGS

field3 -> LINK

fieldd -> TERM, SUBST

Each part of the RAM is 9-bhits wide and 256-bits long. The SYMBOL field takes 3 bits
and the buoulean VBLE field takes one bit. The TERM fleid takes 8 bits and the boolean
SUBST field takes one bit. The nineth bit of fiels2 and field3 are not used.

4.3 Stack-memories

The stack-memorices block is composed of three last-in-first-out stack memories, called
OSK. LSK and RSK, and two stack-memory-counters named OCC and SKC. Each stack
memory is 8-bit wide and 256-bit long. The counter is 8-bit counter, counting either up or

down.

As mentioned in section 3, there are three cases of variable bindings during the

unification:

(1) wvariable to variable, vi > wv2
(2) wvariable to function, vl -=> f

(3) function to function, f1 --> f2.

OSK is used for storing the arguments of the two expressions during the exoeculion of
the OCCUR procedure. In the second case above, a variable v1 can be bound to a
function f , where { = {(11,t2,..,tk), only if the variable v1 is not contained in this
functlion. Therefore, in order to bind vl to f, we need to check first whether v1 is
contained in the function f, by pushing all the arguments of f onto the stack memory OSK

and then pop them out one by one to check whether any argument ti equals to v1 aor

-30-

contains v1.

RSK and LSK are used for storing the arguments during the execution of the UNIFY
procedure. In the third case of binding a function f1 to another function f2,if f1 and 2
are different functions, then they can not be bound together. However, if f1 and 12 are
of same function name with diffarent arguments, f1 = f(11.12_ . ,tk), 12 = f(r1,r2,...rk). The
unification computation recursively unifies each the arguments pairs t1 with r1, ..., and
tk with rk. If any one pair cannot he unified, the unification of f1 with f2 fails. Therefore,
we perform this pairwise computation by pushing all the arguments pairs sequentially onto
the two stack memories RSK and LSK. Now, pairs are popped out and unified until no

more argument pairs are left.

t1,t2,... 1k --> RSK
rt.r2....rk --> LSK

Fach stack memary has four control lines PUSH{SHI), TRL. POP(SHR), TRR. SHI is the
shift left control line corresponding to pushing down and SHR is the shift right control line
corresponding to popping up. TRR is the transfer right control line and TRL is the
transfer left control line. During clock phase2, SHR can be driven high followed by
driving the transfer right (TRR) high during phase1, which causes a pop-up operation to
‘be performed. The first data element stored in the stack memory is shifted onto the
data-bus and the remaining data in the stack memory are shifted one position closer to
the stack top. If instead SHL is driven high during phase2, followed by the TRL being
driven high during phasel, a push-down cperation is performed. The data on the
data-bus are pushed down into the stack memory and the data originally in the memory

are shifted one position deeper into the stack.

Fig 4.6 shows the timing sequence of these two operations. The pop-up and push-down
operations are exacuted only during phase2. During clock phasel, data in the stack
mcmories will be cither transferred right or transfened left or refreshod, depending, on
the precoeeding operation. I there is no pop or push operation being executaed during
prececding phase2, the data will only be refreshed by driving TRL high during phaset.
However, if in the prececding phase2 a pop-up operation is executed, instead of TRL,
TRR control line is driven high 1o transfer data right. If instead a push-down operation is

execcuted, TRL control line is driven high to transfer data left.

a1 LT 1 1 J1 g1 [

i~ J1

e 1

-~ i 1

™ J L T L 71 1 11
s~y

Fig 4 .8 Staok contrel timing eequence

[data-bus) l r data-bus ‘J

T pop—vp l write l push-dornn Tread
data data
isiack register stack register
: memory L memory
l_____l

Fig 4.7

-A0-

With two operation, data registers and stack memories can communicate with each
other through popping up the data in stack memory onto data-bus and writing them into
the dala register, or through reading the data in the data registers onto data-bus and

pushing them into the stack-memories.

Fig 4.8 is the stick diagram of a stack-memory-ccll. It is designed such that these cclls
can be packed vertically and horizontally. There are 256 cells packed in the vertical
direction and 8 cells in the horizontal direction, making an 8-bit-wide and 256-bit-long
stack memory. The four control lines of the stack-memory-cell are separated on both
edqges such that two neighboring stack-memory-cells can share the two control lines
between them. Since stack memories take much space, sharing control lines is one of

the ways to reduce down the area it takes.

There are two stack-memory counters, OCC and SKC. Both are reset to zero at the
beginning of the UNIF process. Whenever a push-down or a pop-up operation is
executed the corresponding stack-memory counter value is incremented or decremented,
controlied by the control lines SHL and SHR. There are two flags, FLAG-E and FLAG-H,
which indicate whether the corresponding values in the counters are zero. Whanever
couniers count to zero, the flag turns high to indicate that no more data elements are

stored in the stack memory.

4.4 Data-registers

The da;a-r(:gihlcrb block contains seven 9-bit wide registlers, named SYMB1, SYMB2Z,
ADDR1, ADDR2, TEMP, MENADDR, and DATAREG, and two comparators named COMP1 and
COMPP2. Each register has two control lines, 'control-read' and 'control-write’', to control
the input/output of data. With its control-read high, the register puts its data onto the

data-bus; with control-write high it writes data on the data-bus into itself.

These operations can be exnccuted only during phase2. During phasel, the data
vontained in cach register will be refreshed automatically. Therefore, no opearation can
take place during this cycle. Since all the data-rcgisters share the same data-bus, only

two registers can communicate with each other during a single clock cycle.

TRL

SHR

J S
1
SHL

—

T

TRR

—
L=

—

T[]
| S

= |
==

(=

O=

QL %]
T]
,.rl e
=11
=
_fH“..uu.ﬂtL,
| ke
. ﬁmj o
1
~ -
L
Bl 1]

Flg 4.8 S‘Lack'msmor‘y cell

-41-

SYMB1 and SYMB2 are used for storing the symbols of the two expressions fetched from
the cqg-table to be unified. The 9th bit of SYMB1 and SYMBZ2 indicates whether those
symbols are variables or not. ADDR1 and ADDR2 store the addresses of the symbols in
SYMB1 and SYMB2. (The 9th bit of ADDR1 and ADDR2 are not used). Comparator
COMP1 outputs high if the addresses in ADDR1 and ADDR2 are equal, otherwise it
oitputs low. COMP2 outputs high if symbols in SYMB1 and SYMB2 are the same,
otherwise low. These two comparators are latently capable of performing comparison
without being clocked. The TEMP register is uscd to store the address of either SYMB1

or SYMB2 tempeorarily during the excution of the OCCUR function.

DATAREG and MENADDR registers are the interface between Unif-Chip and the external
RAM. Data to be ouput to the RAM or input from the RAM are stored in DATAREG and the
corresponding address is stored in MENADDR. When the "read" signal is enabled, data in
the cq-table addressed by MENADDR are read out and stored in DATAREG. Whichever
register requests data from the external RAM can transfer the data from DATAREG. (f
the "write" signal is enabled, the data stored in DATAREG will be written into the
external RAM at the address indicated by MENADDR. The external RAM cantains 4 fields,
each field is 256-bits long. The address-register MENADDR is, therefore, divided into
two parts. The first two bits point to the field, and the other eight bits indicate the

position in the fiald.

4.5 Controller

;fhn controller is the heart of the UNIF chip. It is composed of a microcode memory, a
proqgram counter and a super buffer reqgister. A 31-bit wide microcode memory stores the
microinstruciions of the wunification program. The program counter, PC, stores the
microcode memory address. The super buffer register is 30-bit wide, through which

control signals are amplified.

The functions performed by the microcodes are listed in Table 4-1. Since there are only
31 kinds of microinstructions necdaed in the microprogram, Tive microcode bits are chnoigh
to encode these opcerations. However, with a 5-bit microinstruction, we wontd nend to
decode the microinstructions before sonding them to the super-buffer. All of these nteps
have to be done within one clock cycle. To prevente the timing delay incurred by the

decoding, we store the 31 control signals directly as microcodes in the ROM.

-42-

Among the 31 microcodes, the first one is a special signal, called "jump-signal”, which
defines the interpratation of the other 30 microcodes. If signal jump=0, the microcontrol
word is in the 'normal' state, and the 30 microcodes are treated as control signals. But if
jump=1, only the first 16 microcontrol are meaningful. The first seven codes become the
new addiess for the jump-instruction, and the next eight bits are the conditional codes
which are sent to the CHECK- comparator to be matched with the eight fiags,

represcenting the current state.

Microinstructions are always fetched during phasel. if jump=0, the 31 control siunals
are sent directly to the super-buffer, and during phase2, these control signals are
distributed across the chip. The PC counter simply increments. However, if jump=1, the
cight conditional codes are sent to the CHECK-comparator and the seven address bits
aro stored in an address-buffer in the PC counter. The CHFCK-comparatar takes cades
both from the eight flags and the eight conditional codes in the microcode, comparing
whether the current state matches the conditional codes. {f a match occurs, the
jump-instruction is appproved and the PC counter is loaded with the new address stored
in the address-buffer. The next fetching of microinstruction will then be read from the
new address. However, If no match occurs, the jump-instruction is not approved. PC
counter simply imcrements. Therefore, in this case, no control signals are sent out during

phase2, since the 31 microcodes are interpreted as new address and conditional codes.

~-43-
TABLE 4-1 MICROCODES-1o-MICROTHSIRUCTIONS

microcodes

T jmes umes1
N sto b0 (new address bits)
s unified/faited ot
TTa T read o2
s wite o3
e chang-field ba
R fieter - s
s rievaz o6
e write/menaddr A (conditional codes)
10 read/menaddr e
it inere/menadar ¢«
T2 weite/dotares o
43 rcad/datareg e
T wettersymor z £
TR read/symbol 2 ¢«
Tl weitessymbor1 W
TN reaarsymeer 1T
T weiterager 2
e readrader 2
T wetteraser r
Ta readrmder 1T
T ariterem T
T resdrtems T
T push-ccc-stack
a5 pepeoce-stack
26 pusmotertstack T
T peprertosteek
28 pusheright-stack
28 peperiantostack
T30 transter-pushostack

-44-

4.6 System Design

Data-bus:

There Is a nine-bit wide data path flowing around the chip through the data-registers and
the stack-memories. Every register can only get data from this data-bus or write data
onto it by driving one of its two control lines "control-read” or "control-write” high. The
three stack memories are also restricted to communicate only with the data-bus by
popping out the data onto data-bus or pushing down the data on data-bus into the stack
memory. All these sequences of operations are controlled by the microinstructions from

the controller, i.e. their control lines are driven by the controt signais from the controller.

Eight-flags:

There are eight flags in the chip to indicate the current state of each register, the
number of data elements stored in the stack memory, or the current state of computation.
»
Flag A: If the data stored in DATAREG[1-8] are zero,
then flag A = 1 eise flag A = 0.
Flag B: If DATAREG[9] = O
then flag B = 1 else flag B = O.
Flag C: If data in SYMB1 and SYMB2 are equal,
then flag C = 1 else flag C = O.
Flag D: If data in ADDR1 and ADDR2 are equal,
then flag D =1 else flag D = O.
Flag E: If data in stack-counter OCC equals zero
then flag E = 1 else flag E = O.
Flag F: If data in stack-counter SKC cqual zero
then filag F = | else flag F = O.
Flag G: If SYMB1[{8] =1, i.e. symbol 1 is variable,
then flag G = 1 else flag G = 0.
Flag H: If SYMB2[9] = 1 then flagH = 1
else flagH = O.

-45-

Check-comparator:

Whenever a jump instruction occurs, the CHECK-comparator compares the eight'ﬂz;qs
with the eight conditional codes in microcodé to decide whether this jump-instruction
should he executed. For the eight conditional codes, the state of the flag is neglected if
the correspanding conditional code is zero; however, if the canditional code is 1, the
state of the corresponding flag must be equal to 1. Therefore, only those current state
of flags whose conditional codes equal to one are checked. For an "unconditional jump®
instruction, the eight conditional codes are all zero, i.e. It is always executed, neglecting
the current state of all the eight flags. After the checking is done, the CHECK
comparator will either approve the jump instruction by loading the new address into PC
counter or disapprove the jump instruction by simply increasing the value of PC counter

by one.
Reset and 1/0:

When we look at the pinouts of the Unif-chip, there are three input signals: 'PHASE1,

PHASE2, RESET', and four output signals: 'READ, WRITE UNIFIED, STOP'.

The reset pin need to be driven high to reset the registers to their proper initial values
before Unif-machine can start working Among all the registers, ADDR1 and ADDR2 nred to
be reset with the initial values one and two, respectively, since the equation-table
always stores the two expressions to be unified starting with the the first two positions.
Counters PC,0CC,SKC need to he set to zero at the beginning. The reset line is driven
back to low once the machine starts working, and kept low for the entire period of

execution.

Within the four output signals, the first two, ‘read' and “write", control reading and
writing the external eg-table: the other "stop" and “unified", the 'stop' pin indicates the

finish of the computation and the "umified' pin indicates the result of the computation.

Cutput signal 'stop' is always low during the computation of Unif-Machine. Once the
computation is finished, 'stop' becomes high. If the 'unified’ signal is high at this moment,
it means that the unification computation has been successful, otherwise the computation

fails.

-46-

Timing:

The syncronization of the UNIF chip is controlled by a 1{wo-phase clock. During clock
. phase1, data In the data registers and stack-memories are refreshed, and the
microinstruction in ROM is fetcﬁed, with no operations executed during this phase. During
phase?2, program counter, PC. either increments or loads a new address, depend.ing on
' the current microinsiruction. ln'this phase, microinstruction is execﬂuted. It can either
read or write a data register, push or pop a stack memory, or read or write the external
eq-table. The microinstruction is executed only during phase2, and must be finished

before the ending of clock phase2.

“ | Y4 N

wicroinsiruvction—fetohing microinstruotion exsoution

dotorogisiaers refreshing

pr-osrx:m—ooun{ar- locding

sloci-memorios rafmhlng dcia-mslniem opeﬁaf.lon

alcck-ramories operallon

Fig 4,9 Timing seoquencs of UNIF-CHIP

-47-

Section 5 NONDETERMINISM

In this section we discuss two kinds of nondeterministic problem associated with the
resolution procedure. One is the nondeterminism on the sequence of procedure

invocations, and the other is the nondeterminism on the scheduling of procedure calls.

5.1 Non-deterministic probleins

While solving a Horn clauses program, non-deterministic problems usually appear,
because the computation process is based upon repeated procedure invocations.

Followings are two cases where non-determinism occurs:

(1) During the unification process, when several procedures match a given procedure

call, which one of the alternative procedures is executed is non-deterministic.

(..) When a ¢goal statement contains several procedure calls needed to be executed.

The order of the execution of these procedure calls is non-deterministic.

5.2 Sequence of Procedure Invocation

fn this section we discuss the first case where several procedures match a selccted
proccdure call. In this kind of situation, execution of the different procedure calls n;ay
result in alternative outputs, and in what order the outputs will be ygenerated is also
undefined. It depends on the order in which the procedure calls are executed. We use
the APPEND program, which ever appeared in section 2 before, to illustrate the resulting

of different oulputs by executing different procedure calls.

APPEND example:
(F1) APPEND [nil, Y, Y]
(F2) APPEND [cons(x.Y).Z,cons(x,U)] <- APPEND [Y,Z.U]

-48-

(C1) <- APPEND {W, R, cons(a,cons(b,cons{c,nil)))].

With the goal statement (C1) above, we search for two lists which combine into a list
c.:ons(a.cons(b.cons(c.nil)). The two parameters W and R are output parameters for
storing the final result. Statement (E1) means that "Searching for two lists W and R
which constitute the third list cons(a,cons(b,cons(c,nil})), by appending the jist R 1o the
list W". We use the graphic tree structure below, where each branch represents one

kind of final result, to explain the solution.

APPEND [W, R, cons{a,cons(b,cens{c,nil))) J.

W:=cons{a,Y);
R:=Z;

{Anst)
W:=nil;
R:=cons(a,cons{b,cons{c,nil)));

APPEND [Y, Z, cons(b,cons{c,nil)) J.

(Ans2) Y:=cons(b,Y"');
Y:=nil; : 2:=2';
R:=cons(b,cons{c,nil));

APPEND [Y*, Z', cons{c,nil) J.

{Ans3) Y':=cons{b,Y");
Y':=nil; , 2t:=2";
R':-cons(c,nil);

APPCND [Y", I™, nil].

y":=cons(b,Y"');
2%:=7"';

(fins4)
Y*:=nil;
R":=ni1l:

(HALT STATLMINT)

-4G-

In this example the goal statement (E1) matches both (F1) and (F2). If the first

statement (F1) is chosen for procedure invocation, we can get a set of result (Ans1):

W:=nil;
R:=cons(a,cons{b,cons(c,nil)));

However, if instead the second statement (F2) is chosen, we derive a new goal

statement
(C2) <- APPEND [Y, Z, cons(b,cons{c,nil))].

The statement (C2) also matches both (F1) and (F2). Bésed on the same reason, we

can either derive another set of result (Ans2):

W:=cons(a,nil);
R:=cons(b,cons(c,nil)),
or derive another goal statement

(C3) <- APPEND [Y',Z',cons(b,cons(c,nil))].

Keep qoing on like this, we can get four sets of different resuits. We can see that

differnent choice of the procedure invocations produces different resulits.

Back to the original topic, if several procedure calls appear in a goal statement body, we
are concerned with the scheduling of the execution of the procedure calls. In the next

part, we are guing lo discuss this case of non-determinism.

5.3 Scheduling of procedure calls

In conventional programming languages, the program controls the order of procedurc calls.
However, in logic programming the body of the procedure specifies only the collections of
procedure calls it contains. The order of the procedure calls being specifiod has nothing
to do with the meaning of the algorithm. Different strategies for scheduling procedure

calls affect only the efficiency of the program but not the meaning of the program.

-50-

Following is a sorting program which reveals the effect of scheduling of the procedure

calls on the efficiency of the execution.

(E1) SORT [x,y] <- PERMUT [x, y}, ORDER [y]
(E2) PERMUT [nil, nil] <-
(E3) PERMUT [cons(x.nil). cons(a.nil)] <-
(E4) PERMUT [cons(a,cons(b,nil)),cons(h,cons(a,nit))] <-
(ES) PERMUT [w, w'] <- PERMUT [u, u'},
PERMUT [v, v'],
PERMUT [w, w'],
APPEND [u, v, w],
APPEND [u', v', w']
(EB) ORDER [nil] <-
(E7) ORDER [cons(a, ni)] <-
(E8) ORDER [cons(a,cons(b,Z))] <- LESS[a, b],
ORDER[cons(b,Z)]

Statement (E1) asserts that y is a sorted version of x if y is a permutation of x and y
is ordered. Statement (E2) through (E5) specify the definition of permutation and (E6)
through (E8) specify the definition of order.

" For a top-down interpretation of statement (E1), we can say that

(1) In order to sort a list x, first generate a permutation y of x, then test that

whether y is ordered. If itis, then y is a sorted version of x.

On the other hand, if the procedure ORDER[y] is executed before the procedure

PERMUT[x,y], we can say that

(2) In order to sort a list x, first generate an ordered list y, then test that whether

y is a permutation of x. If itis, then y is a sorted version of x.

The third case., we can have the two procedure calls executed semi-dependently. The
partial output from the procedure call PERMUT is translated to the procedure call ORDER

and this partially specified input can initial the computation of procedure ORDER.

-51-

(3) !n order to sort a list x, first break x into two sublists u1 and u2. If both u1 and u2
are sorted, and the maximum component of u1l is less than the minimum component of u2.

Then appending sorted ul to sorted u2 results in a sorted version of x.

In principle, the procedure calls in the procedure body can be executed in any sequence.
However, It is quite obvious to see that the execution of procedure cail PERMUT before
ORDER ‘ would be much more efficient than the execution of procedure call ORDER hefore
PERMUT. It would be even more efficient to execute procedure calls as soon as
sufficient input is available. The test for order can be initiated once the first two
elements of the permutation have been generated, and the failure can be detected as

soun as possible.

-62-

Section 6 Conclusion

In the previous sections we have given a basic introduction to logic programming,
including predicate logic. Horn clauses and Prolog language. We also described the
unification chip which is a hardware implementation of the unification computation. In this

final section, some applications of the unification chip would be presented.

There are already a few Prolog systems on the market which are intended for use on
microcomputer systems. However they are very siow because, during the execution of a
Prolog program, the deductions‘ are done by the pattern matching processes (unification
computations) and these most computational intensive steps must be performed in
software. There is every indication that a unification coprocessor would bring moderate

performance even on very modest systems.

Aside from the more obvious applications of the unification chip, architectures which
directly execute Prolog like languages or which are special purpose theorem provers,
there are a number of other applications too. The first concerns a rather modest use of
a unification chip which acts much like a numerical coprocessor in a microcomputer
, system. Here, we envision a chip which connects to a micrapracessor bus and would
perform the unification computation either syncronously or asyncronously upon the
receipt of an activating code in the instruction stream. This would allow efficient

execution on such microcomputer systems.

The sccond non-obvious application of a unification processor is with parallel streams of
asscrtions, as in a logic-per-track disk drive. 1t would be a very powerful successor to
today's back-end relational database architectures. The important difference comes
through the use of unification rather than simple pattern matching. It is very exciting to
contemplate the construction of very intelligent database machines which are capable of

making the logical deductions necessary in inferential databases.

In these applications, the unification chip improves the efficiency of the system by
working as a coprocessor, helping execute the unification computation. However, if we
can implement many unification chips on a concurrent enviroment, a highly efficignt
concurrent deductive system would improve the efficiency even more. In the following

we present such a voncuirent model

-53-

Given a logic program specified by a8 set of Horn clauses S

S = B1<¢ 811,812, ... Bir
B2 <- 821, 822, ... B2s

- - -~

Bm <{- Bm1, BmZ2, ... ,Bmt

and activated by an initial goal statement (C1)

(c1) <- A1, A2, ... \An,

to execute the goal statement (C1), the system searches for a clause in S which
matches the goal statement. There are m statements in S and n proceudre calls in (C1).
Since any procedure call in (C1) has the chance to unify with the statements in S, there
are totally MxN kinds of procedure invocation can occur. Instead of executing MxN
times of unification computation scquentially, they are executed concurrently on a two

dimensional array.

The mesh-type model below imbeds one UNIF-chip between each cross-section of the
rows and the columns. The UNIF-chip locating at row i cross column | executes the
unification computation between the expressions Ai and Bj and indicates the final result

whether Ai can be unified with Bj or not.

(B1) [§: 72 T (Bm)

| | |
UNIF (U1 {3 UNIF ... (A1)
cHIp cHIP CHIP

! | !
UNIF UNIF ooeeaaen, UNIF ... (A2)
cHIp CHIP CHIP

| ! | .

I I I .

| I | .
UNIF ... UNIF ...l UNIF ... (An)

CHIP CHIP CHIP

Surrounding this concurrent system should be a communication system which handlas the
tranmission of input and output, manipulates the data structure, such that the results of
the first computation can be transiered to the next one through this surrounding system.
The important job for the communication system is to define a feasible strateqgy for
solving the communication problems and the nondeterministic problems involved during the
computation. This communication system is not discussed in this paper. It would be an

interesting and worthy topic for future work.

-55-

ACKNOWLEDGEMENTS

Sincere gratitude Is honored to my advisor, Jim Kajiya, for his enthusiastic and patient

guidance.

Thanks to my husband, Chuen-Der, for his encouragement and support.

Thanks is also extended to Johenson D. and Mosteller R.C. for their helpful discussion

during the designing of the unification chip.

-56-~

Appendix:

A. The Special Purpose Unification Algorithm

function UNIFY(i,j:integer):boolean;
begin while subst(i) do i:=term(i);
while subst{j} do j:=term(j);
if i=] then UNIFY:=true
else if symbol(i)=symbol(j)
then UNIFY:=EQUATEARGS(i,])
else if vbie(i) then begin
if OCCURC(i,j) then UNIFY:=false
else begin subst(i):=true;

term(i):=j;

UNIFY:=true;
end;

end

else if vble(j) then begin
If OCCUR(j,1) then UNIFY:=false
else begin subst(j):=true;
term(j):=i;
UNIFY:=true;
end; :
end
else UNIFY:=false;
end; {function UNIFY}

function EQUATEARGS(),j:integer):hboolean;
var k:integer;
equai:boolean;
begin k:=arity(i); equal:=true;
1: if k=0 then EQUATEARGS:=true
else while (k>0 and equal) do
begin equal:=UNIFY(args(i,k),args(j,k))
k:=k-1;
end;
EQUATEARGS:=equal;
end; {function EQUATEARGS)

function OCCURC(i,j:integer):boolean;
begin
1: while subst(j) do j:=term(j);

-57-

if arity(j)=0 then
if i=j then OCCUR:=true else OCCUR:=false
else OCCUR:=OCCURARGS(},j):
end; {function OCCUR}

function OCCURARGS(i,j:integer):boolean;
var k:integer;
occ:boolean;
begin k:=arity(i); occ:=false;
1: if k=0 then OCCURARGS:=false
eise while (k>0 and not occ) do
begin occ:=OCCUR(i.args(},k))
k:=k-1;
end;
OCCURARGS:=0occ;
end; {function OCCURARGS}

-58-

Assembly Program transfered from the unification algorithm

0

52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94

addrl -> menaddr

read

datareg -> menaddr

set field 00

datareg -> symbl

addr2 -> menaddr

read

datareg ~-> menaddr

set field 00

datareg -> symb2

if addri=addr2, sk=0 jump 111
if symbl=/=symb2 jump 48
set field 01

if arity(i)=0, sk=0 jump 111
datareg -> menaddr

read

datareg -> rstack

Jjump 30

set field 01

datareg -> menaddr

read

datareg -> Istack

Jump 40

Istack -> addr2

if vble(i)=/=T jump 80
addr2 -> menadd

read

datareg -> menaddr
set field 00

datareg -> symb2

set field 01

if arity(Jj)=0 jump 70
set field 10

if 1ink-0 jump 72
menaddr+1

if i=j jump 109
occstack -> addr2
temp -> datareg

set field 11

if sk=0 jump 111

if vble(Jj)=/=T jump 109
addrl -> mcnadd

read

datlareg -> menaddr
set field 00

datareg -> symbl

set field 01

if arity(j)=0 jump 102

1

w

27

set field 01

if subst = F jump 6
Jump 2

read

addrl <- menaddr

set field 11

if subst = F jump 16
Jump 12

read

addr2 <{- menaddr

if addri=addr2 jump 45
addrl -> menaddr

read

if arity(i)=0 Jjump 45
set field 10

if 1ink=0 jump 35

menaddr+1
addr2 -> menaddr
read

set field 10
if 1ink=-0 jump 45

menaddr+1
rstack -> addrl
Jump O

addr2 -> temp

set field 11

if subst=/=T jump 56
Jump 52

read

menaddr -> addr2
read

datareg -> menaddr
read

datareg -»> occstack
Jump 65

if occsk=0
Jjump 50
addr1 -> menaddr
write

Jump 45

addri -> temp

set field 11

if subst=/=T jump 88
Jjump 84

read

addrt <{- menaddr

Jjump 74

- read

datareg -> menaddr

96

98
100
102
104
106
108
110
112

set field 10

if Yink=0 Jjump 104
menaddr+1

if i=j jump 109
occstack -> addril
temp -> datareg
Jump 76

Jump. 112

Jump 112 «

-59-

97

99
101
103
105
107
109
111

read

datareg -> occstack
Jjump 97

if occsk=0 jump 106
Jump 82

addr2 -> menaddr
set failed=1, stopped=1
set unified=1,stopped=1

-00-

REFERENCE

Backus J. (1978) Can Programming Be Liberated From the van Neumann
Style? A Functional Style and Its Algebra of Programs.
CACM v.21,8 pp.613-641.

Davis, E. and Shapiro, U. (19380)
A Prolog tutorial based on User's Guide to DECsystem-10 Prolog.

Ingalls, D. (1978) The Smalltalk-76 Programming System: Design
and Implemention. Conf. Rec. of the Fifth Annual ACM Symp. on
Principle of Programming Language, Tucson, Arizona, pp. 9-16.

Iverson K.E. (1980) Notation as a Tool for Thought.
CACM v.23,8 pp.444-465.

Henderson, P. (1980) Functional Programming Appliication and
Impliemention. Englewood Cliff N.J. Prentice Hall.

Kowalski, R.A. (1974) Logic for Problem Solving.
Maomo No. 75, Dept. Comput. Logic, U. of Edinburgh.

Kowalski, R.A. (1974) Predicate Logic as Programming lLanguage.
Information processing 74, Norhth-Holland Pub. Co., Amsterdam,
1974, PP. 569-574.

Kowalski, R.A. (1979) Algorithm = togic + Control.
CACM v.22,7 pp.424-436.

Landin P.J. (1966) The Next 700 Programming Language.
CACM v.9,3 pp.157-166.

Landin P.J. (1963) The Mechanical Evaluation of Expressions.
Comput J. 6(4), pp. 308-320.

Lang D. (1979) LAP User's Manual.
SSP File #3356, Caltech.

Mead C. and Conway L. (1980) Introduction to VLSI Systems.
Addison-Wesley Pub. Company.

Mosteller R.C. (1980) Rest user's guide.
SSP file #4030, Caltech.

Robinson, J.A. (1965) A Machine-oriented Logic Based on the
Resolution Principle. JACM v.12, pp. 23-41.

-61-~

Robinson, J.A. (1965) Computational logic: The Unification
Computation. Machine Intelligence 6, Edinburgh Univ. pp. 63-72.

Rowson J.A. (1980) Understanding Hierarchical Design.
SSP file # 3710, Caltech.

Shapiro E.Y. (1981) Inductive Inference of Theories From Facts.
Research Report 192, Yale University, C.S. Department.

Warren 8.D. (1977) Pereira L.M. and Pereira F.
Prolog ~ The Language and Its Impliemention Compared with LISP.

Warren D.D. (1978) Pereira L.M. and Pereira F.
User's Guide to DECsystem-10 Prolog.

Winograd, T. (1979) Beyond Programming lLanguages.
CACM v.22, 7 pp. 391-401.

Van Emden M.H. (1977) Programming in Resolution Logic.
Machine Intelligence B, pp. 266-299.

