RT sim
A register transfer simulator

Jimmy Lam

Computer Science Department
California Institute of Technology

5081:TR:83

RTsim

A register transfer simnulator

Jimmy Lam
Computer Science Department
California Institute of Technology

Pasadena, California 91125

5081:TR:83

In Partial Fulfillment of the Requirements for the
Degree of Master of Science

April, 1983

Caltech Silicon Structure Project

ACKNOWLEDGEMENTS

I would liké to express my gratitude to my parents for their love, encouragement, and
support. Special thanks to Rossana for her patience and understanding. I am also indebted
to Caltech whose financial support allowed me to obtain such an excellent education in this
country.

I would also like to thank my advisor Randy Bryant for his suggestions and the
inspiration received reading his great thesis. His computer architecture course introduced
me to this project, and served as a test facility for my simulator. I owe special thanks to
my fellow students in the course for their helpful suggestions. T am grateful to my friends -
Charles Ng and John Ngai - for their discussions, and Mike Newton for proof reading this
thesis.

Special thanks also extend to George Lewicki. Without George and his silicon compiler
this project would not have been possible.

The growing complexity and size of VL3I processors are demanding extremely accurate,
yet efficient, simulation facilities for microcode debugging, logic verification, and system
integration. However, reliance on mask iterations to remedy problems on a chip not only
raises costs, but also extends the design cycle. Simulation justifies itself in both the turn
around time and the design cost. Gate level simulation is one method for reducing errors
in a chip design. However, gate level simulation of large designs are extremely expeunsive,
and sometimes impossible when the gate level representation is not known. This thesis
attempts to solve this problem by providing a functional level approach, consisting of a
- register transfer description language, an embedded functional modeling language, a
reconfigurable assembler, and a functional simulation program. Mixed-level simulation
capability is also provided by allowing the replacement of a functional unit by a transistor
network which is being simulated by a switch-level logic simulator.

Table of Contents

HIR s 1 e T LB T3 4T o S PP 1
2. Simulation MIOdel «..ceeiviiiiiiiiieir et 2
2.1. Steady state computationccocivivvivviiiiin 2
2.2. Propagation delaycccccovvnenniniiiiiiiiiiiii e 2
2.3. Signal propagation and error detectioncoccooviiiiniiii 3
2.4. MOS capacitanod ... e e s 4
2.5. Oscillation detectionccccovviviiiiiiin i s 4

3. Register transfer description (RTD) languageccccovrervviencrirniiisieinernnesenecinnes 4
B.1. The RTD IaNGUBEZE ..eovvtriviuirireeriiieiriirieesitieeraressisnsiesssriorassirsrasisssresesassiasinnse &
3.1.1. Instance declarationnc...oooviviiiiniiiniie e 5

3.1.2. Connection declarationccooeiririieiiiiiininiiie 3]

3.1.3. Description declarationccoiivieivvniiniieiin e s e e 4

3.2. RTSIm @SSeIIDLEL ..viiiiiiiii i et s see s st inres B

4, RTD element description languagec.cocceevvviniiiinniininiiic . 10
4.1. Element design guidec.cccooiiiiniiiiiiiii e e 11
4.1.1. Element declaralionc..cceovermerenniiiiiiinieinireerei e, 11

4.1.2. Order of procedure activationc..ovceiieiiiiiiininiei i, 13

4.1.3. Setup procedure eenserieenrenriesien s ean e en s aen e et e s e ra et s e eenreeres 13

4.1.4, Signal ProcedUIeccueciiissiisis et 14

4.,1.5. Display ProCedurecccoveimrvrirsieniesirieiersrrirrrererrniernnnn s e sieresnsersaens 14

4.,1.8. Sellntern Procedurecovveeririmi e s e 14

4.1.7. IBits Structure ... 14

S TYLO RIS T 1. s A=) o -V TN 15
B.1.NDL BLEIMENAL ..oovvvvnieieniiiiniiniiiciiien ettt st s s eiussstesasssetssaestsssessioeransernenes 15
5.2. Signal CONVEISIONoivviueiiiiinirniiiireiiiieisiiesierriisisisrraessiessertassssisssrosrissermmnas 18
5.3. Input /outPut MAPPING .vevvverrvrerrennmnrrierieeeiosieiisiieseeiireerrteesiessnesseesssonsnees . 17

B. FULUIE WOTK 1reeeiiiiiiriiiii et ittt et b s et ee e s s raeressen s srenas 17
7. Simulator commands and USAZEcccvvviriiiorieninniieini e 18
AT 453 0=0 a B o o 1R U o S PPN 18
7.2. System commands F O S 18
T.2.1, ASSEMBLEooiieieiriiiiieiiiiiciie e crieeeentetttcres s ssies s s seseeetaeeseernranrarenne s rreras 19

T.2.2. BREAK .ooviiviiiiiieriiiiieicciiiiii et ietttca s s s s st saaa s s sasn e s e 19

2.3 CATCH cerevviiiiiiioriiiitiiecrii ittt sttt et s s s e eesaseecnnnansronnesas srases 20

724 CHARGE ...ooooiorieieiiitiiiinieee i i sttt e e s s e e ebemn s er e rasretrant s eensanssseensaeens 20

T.2.5. CLEAR oottt s er et e b st s s e ettt e s anee s e e 20

7.2.8. CLOSELOGcooviiiiiitiiininicimectiiisie it ese e cssasartee e e snerann e e s 20

T.R. 7. COMMENT ...ttt se s e st s st s s e e s e e s o rnsveenes 20

7.2.8. CONTINUE or <e0l>covviiiivimimiimiiinini et SN 20

7.2.9. CYCLE
7.2.10. DISPLAY .

...

...

T.R.11. DOCUMENT .oiiiiiieiiiiineiiimii ettt et resenre s ri s s e e ass e b san s anbeanssssasonnens

7.2.12. DONE
7.2.13. DUMP
7.2.14. EXAMINE

7.2.15. FORCE
7.2.16. FREEZE ..
7.2.17. HELP
7.2.18. LIBRARY .
7.2.19. LIST
7.2.20. LOAD
7.2.21. MAINSAIL
7.2.22. MOSSIM ..
7.2.23. NDL
7.2.24. NETWORK
7.2.25. OPENLOG
7.2.26. PARSE
7.2.27. PROCEED
7.2.28. QUIT
7.2.29. RESTORE

7.2.30. RTD
7.2.31. SET

...

...

...

..

...

...

...

...

...

...

..

...

...

...

...

...

7.2.82. SUBCYCLESoievvmniiiiiiiiiisniiiis s irrer et s ae st e s e ee e s sensnnsees

7.2.33. SWITCH ...
7.2.34. TAKE ...

...

7.2.30, TRANSLATE ...otniiiiiiiiiiiieieiiiiisiirini i irennin et sresrenarie s e e essennar e

7.2.36. UNCATCH
7.2.37. UNFORCE

..

..

7.2.3B. UNTRANSLATEoeoviiiiiiiiin ittt en et e easrenes

7.2.39. UNWATCH
7.2.40. UPDATE ..
7.2.41, WATCH ...

7.3.1, DELETE
7.3.2. FILE

..

...

...

...

...

T4 L BASE ..iiiieriiiriiiiisicnrrisiicett st ettt et e e st es e s e s e e s s e e e as e e s ress sreneenes

...

21
21
21
21
21
(44
22
22
22
22
23
23
23
23
23

24
24
R4
24
24
25
25
25
25
25
25
28
26
26
26
<8
28
=]
26
27
_7
14
_7
_8
28
28
28
28

7.4 7. ITERATIONSocoitiiri e ccrte e e s e
7.4.8. MONITOR .ovvniiririiiriiiii ittt e e e eab e ernaai s
7.4.9. PAGEWIDTH ..oivvvviveiiieriiiiiniiriniriisisiiniisiiessiiinessneieriisnsesnsranisesssssnssinns
T.4.10. PAUSE ..ottt et e e e s
TALL PHASE .ottt e ss e s s ras e
= 1 - 5 0

8. Utilities

...

B8.1. 1Bits Utilities ...cccceeveiiiiiiiiiiiiii

SR B 01 4T3 o T OO OTPPIOR

8.3. Simulation variablesccovrirmiiiiii s
Appendix A - An RTD element example ~ dual port registerccooverivvrivvvrniiriiinnnn,
Appendix B - An RTD element example - static RAM ...
Appendix C - BNF description for RTD languageccceeervvviiemnninnneeeiinnnniiniereiennenn,
Appendix D - Network model of MIN processor in RTDccccvvvevinninninninnnniiiieicnns
Appendix E - Microcode for MIN Processorccccivieienvnnnininiviininiiiinsinnie e,
Appendix F - Sample program for MIN Processorccccccvvieiiivmiiiiiniiiiieinienreenne i,
Appendix G - Block diagrams for MIN ProCeSSOTcocvevvviiririiniinniiiarninimmiiieseninsmisenns
Appendix H - A Sample FUIooooiviiniiiiiii e e
Appendix I - An NDL eXampleoooevviviiimmmiininiiiinci i i _

Appendix J

J 41 o 1% 1.« 4 L= PP T PP T

Appendix K - Installationcoeiiiiiiiiinii e,

References

..

28
29
29
29
29
29
29
R9
32
33

37
39
40

49
52
54
55
56
59

1. Table of interactionc.evuvoe

2. Instance declaration statements

3. Symbol table definition

List of Figures

..
..

..

4, Internal representation of bit valiecccocervvrivreriiirrinrccrceereerr e

5. RTsim-MOSSIM signal conversion

..

oo

1. Introduction

RTsim is a register transfer simulator. It models a system as a network of functional
units connected by arbitrary integral delay paths. It is designed to simulate MOS circuitry
and thus provides the capability to model MOS capacitance. Like other functional
simulators, RTsim provides simulation capability for verifying the logical correctness of a
system as well as testing out different architectures in a more efficient and versatile way.
But unlike other functional simulators, RTsim is especially designed for silicon compilers.
Input specifications are separated into two levels.

The register transfer description (R1D) language provides the capability to specify the
network model of the system. In this language, a system is modeled as a network of black
boxes connected by arbitrary delay paths. Each black box in the system has two input

ports, an output port, and a set of attributes called options. The behavior of the black

boxes is described in the embedded RID element description language and
communications between the Lwo levels are restricted to the ports and options. The main
advantage of this hierarchical approach is to make a clean separation of the two levels, If
we only allow the two levels to interact in a restricted way, a given RTD element
description can be written based on its functional specification, independent of the
behavior of its neighbors and how they are connected.

RTsim also provides mixed-level simulation capability. In typical top down design
methodologies, the user is encouraged to try out a design at an abstract functional level.
Then the abstract functional blocks can be reduced step by step towards the actual
hardware description[5][7]. RTsim allows the user to replace RTD element descriptions by
transistor networks. The switch-level logic simulator MOSSIM II[1]! will be invoked to
simulate the transistor networks whenever necessary.

As design complexity grows, a structured design is always preferred, and has a
number of advantages. RTsim encourages microcoded architectures in a variety of ways.
A functional block is described as a black box with a set of attributes. In addition, a black
box can also carry a symbol table specified in the RTD language. With this symbol table
and a little help from various pseudo-ops, the RTsim assembler can assemble and load
symbolic instructions into binary form. In a typical simulation, two or more symbol tables
may exist at the same time, one for microcode, and the other for macro code. The
simulator-provides a translation mechanism which allows the binary output of a black box
to be translated to symbolic form according to a specific symbol table during simulation.
This is particularly useful, for example, in interpreting the output of a micro instruction
register.

This thesis is divided into sections describing different aspects of the program.
Section 2 describes the simulation model. Section 3 describes the register transfer
description (RTD) language. Section 4 describes the RTD element (functional unit)
description language. Section 5 describes the MOSSIM interface. Section 6 describes
possible improvements. Section 7 deocumcnts the simulator commands and usage.
Section 8 describes various utilities.

RTsim is written in MAINSAIL[8] (TM)! and hence can run on a variety of computer
systems.

2. Simulation model

2.1. Steady state computation

RTsim uses a unit delay model[3][6] to compute the steady state of the system. It
divides a subcycle® into as many iterations as necessary, where each iteration represents
a unit time. The states of the current iteration are computed as a function of the states of
the last iteration and the functional specifications of the system.

The simulator keeps an event list of all the excited functional blocks (events), where
each event indicates a perturbation in the network. The new network states are computed
from the events in the event list as a function of the old network states and the functional
behavior of the system. A perturbation may propagate if new events are generated due to
the previously excited functional blocks. The newly generated events are chained to form
the new event list. The simulated period between the old and the new event list is defined
to be a unit time. Steady state is reached if all perturbations cease, and the simulator is
said to proceed for a subcycle. Some sort of timing which triggers the initial network
state computation must be introduced to the system. Good candidates for the initial event
list are these elements called "clock” units.

2.2. Propagation delay

As suggested by the naming of the model, the propagation delay through a functional
unit is always one3. In normal conditions. a path has zero delay. Circumstances may
require a path to have an arbitrary delay as a remedy for the unit delay model. Instead of
introducing dummy functional units along the path, RTsim allows the user to specify a

1 Use of RTsim & MOSSIM [l requires a MAINSAIL run-time license from Xidak, Inc., Sunnyvale, CA.
2 A subcycle is the period from one steady state to the next.
3 It takes an unit time to propagate & signal from the input of a functional unit to its output.

positive integer as a path delay number associated with each path. This allows the user to
model "pure" delay functional units as well as arbitrary path delays.

2.3. Signal propagation and error detection

Each functional unit has an input data vector, an input control vector and an cutput
data vector with bit values chosen from the set 5={0,1,X,Z}, where 0,1,X and Z represent
low, high, invalid (between 0 and 1 inclusive) and high impedance (undriven) respectively.

Although RTsim, as viewed by the user, is a 4-state logic simulator, it actually has
© geven states. In addition to the four states mentioned above, a signal can either be driven
by some functional units or held at its previous state by capacitance. The two signal types
must be distinguished because interactions between and among the two classes are
different. But within a functional unit, whether a signal is charged or driven does not
matter. Only its logic will be important.

So, in order to distinguish the two types of signal, the bit values of all input vectors
are expanded to include the set C={0¢,1¢,Xcl]. An input bit value can have state in the set

of S union C, where S belongs to the force class and C belongs to the charge class*.

| 0 1 X Z 0 1le Xe
0 | 0 * X 0 0 o
1] = 1 X 1 1 1 1
X | X X XX X X X
Z | 0 1 X Z 0c 1lc Xc
Oc | 0 1 X 0c Oc Xe Xe
le | 0 1 X 1le Xe 1le Xec
Xe | 0 1 X X Xe Xec Xe

Where * reports an error.

Figure 1 - Table of interactions

4 Force class and charge cless are fancy notation for driven and stored charged signals. When forced signal
encounters charged signal, the forced signel will determine the outcome, except for the Z-state.

To implement the unit delay model, the simulator first evaluates all events in the
event list. Then, it goes through the event list once more and picks out those functional
units which generate new perturbations, i.e., whose output has changed. The input vectors
of ell functional units of unit delay away from the new perturbations are converted to
charge class. The new inputs indicating a perturbation will be collected from their
predecessors. Figure 1 tabulates the result when two functional units happen to drive the
same input bit. Note that the order of collecting the inputs will be important. For
example, (0 1) X connected to the same bit will produce an X and an error report while 0 (1
X) will only produce an X (see command CATCH for X bit detection). After all inputs are
collected, the simulator compares the new value against the old ocne. If they are not equal,
the functional unit will be added to the event list for the next iteration. '

2.4. MOS capacitance

Associated with the simulator is a variable called "charge-hold-period”. MOS
capacitance 1s modeled by this variable. In normal circumstances, the input node of a
functional unit is modeled as though it had infinite capacitance. Both the input data vector
and the input control vector will hold their previous values even though the input node is
not being driven. But if capacitance modeling is enabled and input is not being driven, the
input vectors will be set to Z state after N subcycles, where N is the value of "charge-hold-
peried". In either case, the input vectors will be in the charge class for the extended
period.

2.5. Oscillation detection

Thus far, we assume the number of iterations between subcycles is finite before the
system comes to steady state. This is not always the case. If we construct a system with
behavior resembling a 3-inverter ring, we create a problem. There is no steady state for
this system. So, a maximum number of iterations can be set by the user. If the iteration
count ever exceeds the maximum, an error will be reported.

3. Register transfer description (RTD) language

The register transfer description specifies the detailed architecture of the system.
The RTD language is provided to describe an architecture where functicnal units are
treated as black boxes at the register transfer level. This leads to a number of advantages
which make RTsim different from other functional simulators. The most obvious one is the
separation of register transfer description and functional unit description. The simulator

needs only to manage signal propagations and resclve drive conflicts. No explicit
knowledge about the functional units need be known. The reverse is also true about the
functional units. A functional unit, once written, can be put in a library for code sharing
since architectural changes have little or no effect on its behavior description. This makes
RTsim ideal for silicon compilers.

3.1. The RTD language

The RTD language has a rather simple syntax and has no case distinction. Refer to
appendix C for the BNF description. Only three keywords in a predefined order must be
present. The first keyword is "INST" which starts the instance® declaration section; the
second keyword is "CONN" which starts the connection section; the third keyword is
"DESP" which denotes the beginning of an internal description of instances. To get a

better understanding of the language, one should refer to appendix D when reading the
following sections. '

3.1.1. Instance declaration

The "INST" section consists of zero or more instance declaration statements with an
ISPS like syntax[2]. This type of statement starts with the instance name and follows with

Reg[0:7]\reg1<0:31>
{ # dual port static 32-bit register array

dualPort,

static

)
Clk\clock<|0:2> (ThreePhase); # 3-phase clock element
Stk\stack[4]<0:15>; # 16-bit stack of depth 4

Ram\sram<0:20 | 0:15>; # Static RAM, 5-bit address, 16-bit data

Figure 2 - Instance declaration statements

S we use instance to denote functional unit since functionel it is an image of a functional description. For
example: a chip may haeve many registers but only one description for a register is needed.

an optional array size. For example:
R[0:7]\dreg{3]<0:31 | 0:31> (dynamic,dualPort) ;

It reads as follows: an instance array named "R" with index from 0 to 7 is declared, where
every element in the array is an image of a RTD element® "dreg” which has a depth of 3,
input data vector of index from O to 31 and output data vector of index from 0 to 31. The
options "dynamic" and "dualPort” are turned on. The optional depth “[3]" is useful for
stack type instance, and is shown here for completeness only.

The above example has all the options of an instance declaration statement. An
instance need not be an array. Hence “[0:7]" is optional. An instance may not have data
input or output. So, either "0:31" is optional. Refer to figure 2 for examples.

An instance declaration statement does not contain any information about the input
control vector explicitly. Based on descriptions given for the input and cutput data vector,
the functional unit is expected to deduce all relevant data about the input control vector,
with an additional assumption that the input control vector is always indexed from 0. In
the "R[0:7]" example above, a "dreg" element has 5 control inputs which are "refresh”,
“ld_bus A", "ld_bus B", "rd_bus_A", and '"rd bus B" respectively. Also refer to appendix A.

A number can be represented in four ways in the RTD language. The usual decimal
notation is the default; a binary number must be preceded by '; an octal number must be
preceded by ~ and a hex number preceded by §.

3.1.2. Connection declaration

The "CONN" section consists of zero or more connection declaration statements.
There are basically two types of connection statements. The unidirectional connection
statement consists of a group of vectors separated by an = sign. When the ".in", ".out", and
".ctrl” attribute is appended to any instance, it denotes its corresponding input, output
and control vector. A unidirectional connection statement begins with an output vector
and follows with one or more input or control vectors. For example:

reg.out<0:4> =2 mdl.in<5:9> = ALU.ctrl;

All vectors in the statement will be connected together in a one to many fashion The
direction of data flow is always from the first vector to the rest of the vectors. Notice the
bits specification is omitted for "ALU.ctrl". The simulator will be intelligent enocugh to fill in
the first 5 bits. The number following the = sign denctes the path delay between vectors.

The defauit is 0 which denotes a zero path delay. For the above example, a perturbation in
the output of "ctrlStore" will take 2 iterations (time units) before it arrives to the data
input of "mdl”, while no time is needed belore il arrives to the control input of "ALU".

The bidirectional connection statements consist of a group of instances separated by
the = sign. For example:

bus<0:31> = regArr = PC = IR<(:31> = Addreg;

The first instance in the statement must be a "bilLink” type element (See section 4). The
rest of the instances can be either an instance array or just an instance. If an instance is
declared as an array, the whole array must be used in a bidirectional statement, ie.,
regArr[1] cannot be used, but regArr can. A bidirectional statement can be represented
as a set of unidirectional statements. For example:

Bidirectional statement.:
biLinkIinsName = insNamel = ingName2 = ... ;
can be represented by:
bilinkInsName.out = insNamel.in = insName2.in = ... ;
insNamel.out = biLinkInsName.in;
insName?2.out = biLinkinsName.in;

No delay number is allowed in a bidirectional statement.

3.1.3. Description declaration

The "DESP" section consists of zero or more description declaration staternents. Only
descriptions for memory type instances are allowed. A description declaration statement
starts with an instance name followed by a block of case statements. It is used to define
the symbol table for use by the RTsim assembler. Refer to figure 3 and appendix D for
examples.

The basic entry in the case statement is of the form
NUMBER = STRING;

Where "STRING" is the symbolic representation of "NUMBER", the strings "DEF",
"ABSOLUTE", "RELATIVE”, and "LITERAL" have special meanings and will be explained in the
following section

8 A MAINSAIL module contains the functional description.

The symbol table is divided into groups with group numbers starting from 1, where
each group represents a specific instruction format. A group consists of all the fields” for
a word of the symbolic code. In practice, an architecture may have a highly vertical micro
instruction format with the first field of the word denoting different groups of micro
instruction.

3.2. KI'sim assembler

An assembler is provided to free the user from manipulating the machine instructions
directly. This assembler has no symbol table with which to start. Its symbol table must be
loaded before the actual assembly process can proceed. Reler Lo appendix E and F for
examples. This assembler has a set of simple rules.

Memeory
begin
case out<23:25> in group 1 of
begin # A source
0 = DEF; # default,nop
1 =PC; # program counter
3=T2; # temporary register
4=T1; # temporary register
5 = Rx; #use Rx
8 = Ry; # use Ry
end;
case out<R0:22> in group 1 of
[0-7] = R[O-7]; # register array
end;

Figure 3 - Symbo! table definition

7 The bits <23:25> in figure 3 is a field for group 1 instructions.

9

Instead of the usual notation, all label definitions must be preceded by a colon(:) to
distinguish them from keywords. A period(.) is used to start a pseudo-op. Currently
only four pseudo-ops have been implemented. ".Load x" loads the symbol table of
instance x. It also tells the ‘assembler where to put the code after it is done. This
pseudo-op must be used before any code can be assembled. Refer to appendix D for how
to define the symbol table. ".Loc n" will instruct the assembler to start assembling the
code atlocationn inthe memory and default is 0. ".Word n" will put number n into the
current location of memory. Four types of numbers are supported. The default is
decimal. Binary number, octal number and hex number should be preceded by’, ~ and
83 respectively. " Align b" sets the current location to a number which contains the bit
pattern b and is greater than or equal to its previous value. When specified in binary form,
b can be a contiguous bit pattern with optional don't care bits (X) at both ends. The # is
. the comment character. The rest of the line following a # will be thrown away. For
example:

.Load ROM # load table of instance ROM
Loc ~23 - # start assemble code at octal 23
:Loop Jump Loop
Word $45 # put hex 45 in this location
The symbol table is divided into groups with each group corresponding to one instruction
format. Fields of different groups may be overlapped. For exampile:

Jump R1 # this belongs to Jump group
Add R1 RR # this belongs to ALU group
:Addr nop

where the binary repreéentation of "Jump" may be 5 bits wide starting at bit 23, and "Add"
is four bits wide starting at bit 24. The presence of "Jump”" or "Add" makes the
interpretation of its following fields different. While they may both be "R1”, the bit
patterns they represented may be different since they belong to different instruction
groups. So, instruction groups must be clearly defined. A group consists of all the fields
for a word of the symbolic code. The first keyword found on a line determines the current
group for this symbolic instruction. If a field is missing in the code, the assembler will
search for the default keyword in the symbol table. Hence, the default must be defined
when building up the symbol table. The default for all fields is denoted by the string
"DEF", If the default keyword is not found, the corresponding field in the code will be
filled with zeros. All fields must be defined in the RTD file even though neo keyword is
needed for a particular field. For the current implementation, a field can be at most 31
bits wide.

10

An address field may be defined using the string "ABSOLUTE", or "RELATIVE". For .
example:
case out<26:32> in group 1 of
begin # jump address field
0 = ABSOLUTE;
end;

case out<26:32> in group 1 of

begin # jump address field

2 = RELATIVE,;

end,
This will allocate a seven bits address field starting at bit 26 for group 1 instruction. The
difference between an "ABSOLUTE" address field and a "RELATIVE" address field lies in the
computation of the address of the label. An absolute address field computes the address of
a label as its actual address in memery; while a relative address field computes the
address as the difference between the address of label in memory and the location of the
current word in memory minus the number. That is: '

absolute address = label address
relative address = label address - pc - num

where "pc” is the current word the assembler is working on, “num" is the number before
the string "RELATIVE", i.e., two in this case. Note: for absolute address field, "num' must
be zero.

A literal field may be defined using the string "LITERAL". For example:
case out<R6:32> in group 8 of
begin # literal field
0 = LITERAL; :
end;

This will allocate a seven bits literal field for group 2 instruction. A literal field is used to
put a number into a field without going through symbeol table transiation.

4. RTD element description language

RTD elements are MAINSAIL mecdules which model the behavior of the corresponding
hardware components. The user is encouraged to verify the representations against logic
design by using the MOSSIM interface.

11

4.1. Element design guide

The following sections outline the method for designing an RTD element. The author
believes it is best to accompany explanalion by examples. Please refer to appendix A and B
when trying to understand the following sections. For those who do not know MAINSAIL,
please consult the MAINSAIL language manual.

4.1.1. Element declaration

The file "rtsim.h” which resides in the RTsim directory, contains definitions for the
element description language. It must be included as a "sourcefile” in MAINSAIL code. A
MAINSAIL meodule can be declared as an RTD element by wusing the macro
"element(modName)" instead of the usual module declaration. For example:

begin "dreg”
sourcefile "<RTsim directory>rtsim.h";
element(dreg);

end "dreg”;
This will declare module "dreg" as an RTD element. An RTD element will have the following
variables automatice_ﬂly defined:

integer nolnBase, noOutBase;

sVec excitPtr;

long bite attribute,phase,clockBits;
string IstFile;

pointer(textFile) fp;

IBits ic,ce,0c; '

IBits array(0 to *) bitArr;

IBits id,ix,cd,cx,0d,0x;

integer noOfIn,noOfCtrl,noOfOut,depth;
string array(l to *) optArr;
boolean array(1 to *) optVal;
procedure setup;

procedure signal;

procedure display;

procedure setintern;

The first six rows of variables will be used by the simulator for housekeeping purposes.
"bitArr" is a variable length bits (IBits) array. This array will be used by memory type
instance to model the physical memory. The size of the array must be indicated by using

12

the integer variable "depth”. The size of the array as computed and allocated by the
RTsim assembler will be 2**'depth”. Refer to appendix B for an example. The next row
consists of two input and one output vectors, where "id"”, "ix" together are the input data
vector; “cd"”, "cx" are the input control vector; and "od", "ox" constitute the output data
vector. Every bit of the vector can take on four values in the set S={0,1,X,Z}® and its
internal representation is shown in figure 4. "noOfln", "noOfCtrl", and "noOfCut" denote
the widths of the input data vector, input control vector, and output data vector
respectively. "noOfIn" and “noOfOut” will be set by the simulator from information in the
RTD file and should not be changed by the RTD element. "no0CfCtrl" should be set by the
RTD element since the number of control bits could alw'ays be deduced from various
information about the input vector and the functional behavior of the element.

Variable "depth" can be set either by the RID element or by the simulaf.or. depending
upon its usage. For example, in

Stk\stack[10]<0:15>;

"depth” will be set to 10 by the simulator based upon the RTD syntax, but the actual
interpretation of the variable will depend on the RTD element. However, in this case, we
will undoubtedly interpret it as the depth of stack. If a particular RTD element carries a
symbol table, i.e. a memeory type element, the RTsim assembler will use the variable
"depth” to compute its size.

| d-bit x-bit
o | o 1
1] 1 1
X | 1 0
Z | o 0

Figure 4 - Internal representation of hit value

8 Refer to section 2.3 for meanings of 0, 1, X, and Z.

13

"optArr" is a string array which contains all the options. In order to tell the simulator
what options are available, this array must be allocated and initialized in the "initial”
procedure. The simulator will allocate and set the corresponding boolean array “optVal”
according to options in the instance declaration statement before calling the "setup"
procedure. This will give the procedure a chance to do some useful things.

4.1.2. Order of procedure activation

The "initial” procedure is the first one to be invoked and is optional in an RTD
element. If an RTD element has one or more options, the "initial” procedure should be used
to initialize the option array. The “setup” procedurse will be called cnce after the simulator
finishes parsing the instance declaration statement. It sets up various static information
and allocates the 1Bits. The "signal” procedure contains the behavioral description of the

- elemnent, and is called many times during the simulation. No static information should be
changed in this procedure. The "display” procedure will be called to display the element's
internal data structure whenever appropriate. Procedure "setIntern” is called whenever
the SET command is invoked. This procedure should allow the user to set essential internal
data like the contents of a register, ete. The "setup” procedure, the "setIntern” procedure
and the "display” procedure are all optional. If these are irrelevant to the RTD element,
they need not be present. All procedures mentioned above have no parameters.

4.1.3. Setup procedure

The optional "setup” procedure is used to set up various static information. Its
responsibilities include:
- processes the options turned on by the simulator.
- sets noOfCtrl to reflect the number of control inputs.
- sets its type, i.e., biLink or clock element
- sets size of array for memory element.
- allocates all the local 1Bits.

There are two attributes for RTD elements. An element can be a "bilink" element or a
“clock” element. If an element is a "bilink" element, the macro "setBilinked" must be
called. A "biLink" element functions as a bridge in a bidirectional connection statement as
illustrated in section 3.1.2. This type of element should be as simple as possible. In order
to be a "clock”" element, the macro "setClocked” must be cailed. A "clock” element is
responsible for clock generation based on the simulation variables "systemClock" or "phi".
"systemClock"” is a long integer variable used by the simulator to keep track of time. It
will be incremented once every subcycle. All the "clock” elements in the system will be
linked to form the initial event list (Section 2). Refer to section 7 for all the global

14

variables, macros, and embedded procedures.

4.1.4. Signal procedure

The ."signal" procedure in the element module performs the actual simulation of a
physical element. Before this procedure is called, the input data and control vectors will
be set to their appropriate values. The simulator expects a valid output vector when this
procedure returns. Since the simulator will iterate until a steady state has been reached,
the signal procedure may be called many times in one subcycle. Hence, the output and the
internal state of an RTD element must be a function of the input vectors, simulation clock,
and the internal state of the element only. Any dependency on the number of iterations is
not allowed. _

4.1.5. Display procedure

The optional "display” procedure is used to display the internal data structure of the
RTD .element. It will be called whenever the simulator is requested to display information
about the element. All essential data structure should be displayed to aid debugging
during simulation.

4.1.6. Setintern procedure

The optional "setlntern” procedure is used to set the internal data structure of the
RTD element. It will be called whenever the simulator is requested to set internal
information of the element. This procedure should prompt the user interactively for

information. Consult appendix A for an example.

4.1.7. 1Bits structure

A 1Bits is a pointer to a variable length bits data structure. It is of class "bitsClass”. A
1Bits must be allocated before use.

class bitsClags

(

integer bitCount,bitsC;

long bits array(1 to *) longBits:

)i
"bitCount” is used to keep the number of bits and "bitsC" is used to keep the size of the
long bits array where bit 0 is the L.S.B. of "longBits[1]". When 1Bits is allocated, all bits will
be zeroed out. If the user chooses to operate on the IBits directly, he should make sure the
unused portion remains zero. A set of 1Bits manipulation routines is provided in the next

15

section. The definiticn of “bitsClass” is given only in the rare case in which the user wants
to directly manipulate the 1Bits. Refer to figure 4 for the internal representation of 1Bits.

5. MOSSIM interface

In a typical top down design, an architecture is first specified in an abstract
functional level. Then, the specifications are reduced step by step towards the actual
hardware implementation. During the logic design phase, it is useful to verify portions of a
design against the specifications as the design becomes mature. RTsim provides mixed-
level simulation capability by allowing the replacement of an RTD element by a transistor
network which is simulated by using the switch-level simulator MOSSIM II. Logic design
- errors can be caught early in the design phase while corrections are still relatively
inexpensive. The main problems associated with the RTsim - MOSSIM interface are signal
conversion, input /output naming and mapping.

5.1. NDL element

v An NDL element is a MAINSAIL module written in the embedded network description
language (NDL). NDL allows a network to be defined as a hierarchy of nets, where each net
can contain commands to create nodes, transistors, and functional blocks, as well as calls
to other nets. Please refer to the MOSSIM II User’s Manual for the language. The NDL used
here has been slightly modified to adapt to RTsim's conventions.

The file "ndl.mi" which resides in the RTsim directory, contains definitions for NDL. It
must be included as a "sourcefile” in tHe MAINSAIL code. A MAINSAIL module can be
declared as an NDL element by using the macro "element{modName)" instead of the usual
module declaration. For example:

begin "dreg"
sourcefile "<RTsim directory>ndl.mi";
element(dreg);

end "dreg';
This will declare module "dreg” as an NDL element. An NDL element will have a predefined
interface procedure "generate':

procedure generate(integer noOfCtrl,noOfIn,noOf0ut);

16

where "noOfCtrl”, "noOfln", and "noOfOut” are widths of the input data vector, input
control vector, and output data vector respectively. Within the "generate” procedure, the
vectors "ctriln”, "dataln”, and "dataOut” correspond to the input control vector, the input
data vector, and the output data vector in an RTD element. They must be declared and
allocated. The association between the vector names and the vector's nodes should also
be saved by using the macro "keeVecRev", Refer to appendix | for an example.

5.2. Signal conversion

A signal in MOSSIM can have states in the set T={0,1,X}, where 0,1, and X represent the
low, high, and invalid states respectively. In addition, a signal can be classified either as a
forced or a charged signal’. So, a MOSSIM signal can have states in the set of T union D
where T belongs to the force class and D={0c,1¢,Xc} belongs te the charge class. At the
input of an NDL element, an RTsim signal in the set S maps to a MOSSIM signal in the set T
with the Z state in S also mapping to the X state in T. The set C maps to the set D with
strength information based on the node capacitance specified in the NDL element. At the
output of an NDL element, a MOSSIM signal in the set T maps to the set S with the Z state
in S unmaped. The set D maps to the set C with all strength information lost. Figure &
tabulates the signal conversion.

RTsim -> MOSSIM MOSSIM -> RTsim

I

0 0 | 0 0

1 1] 1 1
X X | X X
Z X | - Z
Oc Oc | Oc Oc
le ic | ic le
Xe Xc | Xc Xe

Figure 5 - RTsim-MOSSIM signal conversion

® Refer to section 2.3 for definition of force and charge class signals.

17

5.3. Input/output mapping

The characteristics of MOS pass transistors create a mapping problem for the 1/0
interface of an NDL element. While RTsim expects data flow in the simulated system to be
unidirectional, a given implementation may utilize bidirectional characteristics of pass
transistors. RTsim allows the user to equate "dataOut” to “dataln” in an NDL element to
form a bidirectional vector. Refer to appendix I for an example. If a particular NDL
element has a bidirectional vector, RTsim performs a slightly different signal conversion
scheme by assuming the node capacitance of the 1/0 vector is the greatest among all
nodes connected to it. As the input of an NDL element, a RTsim signal in the force class
converts Lo a charge class signal in MOSSIM!® with a "shouldBeForcedFlag” set. During
simulation, if a signal changes to opposite logic state, i.e., 1 to 0, Oc to 1, etc., MOSSIM will
check the "shouldBeForcedFlag"”. If the flag is on, MOSSIM forces the signal to the X state

- indicating a drive conflict. As the output of an NDL element, a MOSSIM signal converts to a
RTsim signal as in section 5.2. By using the CATCH command (refer to section 8), drive
conflicts which are normally reported as errors, could also be caught at the 1/0 vector of
an NDL element.

8. Future work

The present version of the simulator uses an embedded language to describe the
behavior of a hardware component. The description of a concurrent component is difficult
to express in the MAINSAIL language. The use of portions of a vector to represent different
fields makes things even worse. A better approach is to introduce a new language capable
of meanipulating variable length bit vectors in 4-state logic with bit vector extraction,
masking, etc., as primitive operations. This language should provide an alias mechanism.
A logical name can be associated with portions of a vector with the primitive operations
intelligent enough to perform field extraction automatically. This makes the code easier
to write and easier to read. Another approach is te enhance the RTD language to include
certain primitive elements like latches, adders, etc. The behavior of a component can be
expressed in terms of a set of legal connections of these primitive elements in the "DESP"
section of the language. During simulation, a special routine is called to simulate the
behavior of a component together with the primitive library.

The RTsim assembler uses a table lookup method to assemble symbolic code. Macro
can be implemented on top of the assemnbler to customize to a particular instruction
format. This is particularly useful when working with a highly vertically instruction format.

10 JJOSSIM I is slightly modified.

18

For example, the user may wish to use "(Rn)+" to represent a post increment mode which
is not possible for the RTsim assembler. "(Rn)+" may be implemented as a macro which
translates to two different fields, say "Rn Pos". Finally, the assembler may be used to
assemble the symbolic code.

The current implementation does not provide a leader. The RTsim assembler
assembles the symbolic code to absolute addresses. A general purpose loader should be
implemented, which provides maximum compatibility towards a particular instruction
architecture.

The RTD file which describes the architecture is translated into the internal data
structure which is used by the simulator during simulation. There is no reason why the
RTD description cannot be compiled. The length of a vector is always known during
compile time. Customized code can be generated to perform vector operations tailored to
a particular vector length. The execution speed of the simulator can be increased
significantly by compiling the RTD description into MAINSAIL, code. But much more
research effort is needed before a simulator compiler can be developed.

7. Simulator commands and usage

7.1. System starts up
RTsim is invoked interactively by typing the command
rtsim<eol>

while at the monitor level. When it starts up, the program will attempt to take command
from file "rt.com”. All commands executed at start up will not be echoed. After the end of
the file is reached, the program will return with the prompt "~ “ indicating it is ready to
accept user input. In a typical simulation, the user will first parse a register transfer
description (RTD) file to build up the data structure. Then micro and/or macro
instructions may be assembled and lcaded into memory. If a clocking scheme other than
two-phase clocking is used, the user must set it up. Simulation can be started by various
stepping and tracing commands. Refer to appendix H for a sample run. Only enough letters
of a command word need be given to disambiguate it from other commands. The list of
possible commands can be displayed by typing "?<eol>". A command with '# in its first
column will be treated as a comment,

7.2. System commands

19

7.2.1. ASSEMBLE
ASSEMBLE filename

This command assembles an ASM file. Based on the symbol table in the register
transfer descriptions, the assembler will assemble and load the symbolic code to the
memory instance. In order to use this command, the symbol table of the symbolic
constants must be built first (see PARSE). The default file extension is asm. See file
nrmin.asm and multiply.asm for examples. The following is a brief summary of various
pseudo-ops and number representations, where pc is the current location the assembler

working on, n is a number, b is a bit pattern, and x is a string. Refer to section 3.2 for
details.

Label:

:label - label must be preceded by a colon
Pseudo-ops:

Jdocn -setpcton

Joad x - load symbol table for instance x

.word n - put number n in memory

.align b - set pe to n where n contains bit patternb

and is >= old pe.

Number representations:

n - number in base 10

8n or b - number in base 18

~nor ~b - number in base B

n - number in base 2

'b - nurnber in base 2, can have X for don't care
7.2.2. BREAK

BREAK [instance [bitVec [*]]]

This command sets a break point at an instance. If i is present, the break point will
be set at the internal data of the instance. The presence of the opticnal * indicates the
control input. Otherwise, the data input will be set. It will break before the instance is
evaluated with input bitVec. If bitVec is omitted, it will break every time before the
instance is evaluated. If no argument is given, all break points currently set will be
displayed with the corresponding break no, instance name and data or control bitVec. For
example (in base 2):

20

2 break points:
1: R[0] 2ZZZZZZZXXZZ1ZZ0ZZZZ7Z7011101110
2 ALU 7211 =

The bitVec must be a stream of legal digits depending on the setting of switch BASE (see
SWITCH BASE), where Z denoles a don't care bil and X denotes an undefined bit. If the
length of bitVec does not match the length of the input vector, the bitVec will be filled
with don't care bits at the left end. "

7.2.3. CATCH

CATCH {instanceName]

This command sets flags te catch and report X-bit in the 1/0 vector of a list of
instances during simulation. If no argument is given, all instances will be set. It is
.perticularly useful to catch drive conflicts when using the MOSSIM interface (see section
5).

7.2.4. CHARGE
CHARGE instanceName bitVec [*]

This command sets the data input of an instance to the value of bitVec. If * is
present, the control input will be set. As opposed to the FORCE command, this
command does not attempt to hold the settings. The bitVec must be a stream of legal
digits depending on the setting of switch BASE (see SWITCH BASE), where Z denotes a
don't care bit and X denotes an undefined bit. If the length of bitVec does not match the
length of the input vector, the bitVec will be filled with don't care bits at the left end.

7.2.5. CLEAR
CLEAR {break point noj
This command clears a list of break points. If no argument is specified, all break
points will be cleared. If break point no is specified, the corresponding break point will be
cleared (see BREAK).
7.2.6. CLOSELOG
CLOSELOG
. This command will close the log file.
'7.2.7. COMMENT

COMMENT <any text string>

This command inserts a comment line into the output stream.
7.2.8.- CONTINUE or <eol> '

21

CONTINUE | <eol>

This command continues from a pause if in a pause mode or executes the previous
command if in an command mode. A pause can be generated by various debug
commands (see SWITCH PAUSE, CATCH and SWITCH MONITOR). When in the pause mode,
the program will use "Pause . " as a prompt.

7.2.9. CYCLE
CYCLE [n]

This command performs simulation for ncycles (see SWITCH PHASE for definition of
a cycle). If n is omitted, it will be set to one. '

7.2.10. DISPLAY
DISPLAY {instanceName]j

This command displays the 170 information of a list of instances. If instanceName
is omitted, all instances are displayed. For example:

"DISPLAY r[C],mir" may produce (in base 18)

R[0] | Ctrl:01 Input:X2000KXX Output:ZZZZ*5*7 Value:0003
MIR | Ctrl:0 Input:1C20030E Output: [0: :reset and zero resei]

where the Z bits denoted high impedance {undriven) state. The X bits denoted undefined
state, i.e. between 0 and 1 inclusive. The * bits denoted a combination of X, Z and
others mixed together. If SWITCH EXPAND is set, the simulator will display a "* vector” in
binary form.

7.2.11. DOCUMENT
DOCUMENT [command]

This command enters the documentation subsystem. Type ? for a list of commands.
Type carriage return to leave the subsystem. Type HELP DOCUMENT * for more help
information.,

7.2.12. DONE
DONE

When used in pause mode, this command can cause CYCLE, SUBCYCLE or PROCEED
commands to terminate in the next subcycle. If interrupt is enabled, this command will
terminate simulation in progress.

7.2.13. DUMP

DUMP instanceName [filename]

2

This command dumps the memory content of a memory type instance on to a file. It
should be used in conjunction with LOAD command. The default file name is
instanceName.mem. The default file extension is mem.

7.2.14. EXAMINE
EXAMINE instanceName (n|nl-n2]

This command examines the content of a memory location. If no argument is
specified, all contents will be displayed. It works only for memory type instances,

7.2.15. FORCE
FORCE instanceName bitVec [*]

This command sets the data input of an instance to the value of bitVeec, If * is
present, the control input will be set. When the input of an instance is set, it will be
‘held to that value until the UNFORCE command is used. The bitVec must be a stream of
legal digits depending on the setting of switch BASE (see SWITCH BASE), where Z denotes a
don't care bit and X denotes an undefined bit. If the length of bitVec does not match the
length of the input vector, the bitVec will be filled with don't care bits at the left end.

7.2.16. FREEZE
FREEZE [filename]

This command saves all information about the current state of the simulator on a
file. Since RTD elements are MAINSAIL modules which may have their own or internal
variables, the program will go below data types ordinarily supported by MAINSAIL.
Primitive data types like address or charAdr will not be supported. So is the internal data
of other modules which is binded by the RTD element. Within an RTD element, no dynamic
allocation is allowed during the simulation process. All new or newUpperBound
statements must be used in the setup or initial procedure (see section four of this thesis).
This command does not work with NDL elements. (See NDL and MOSSIM.) The default file
name is rt.frz. The default file extension is frz. (Also see RESTORE.) RESTORE)

7.2.17. HELP
HELP [command [subCommand]]

This command enters the help subsystemn. Type ? for a list of topics. Type carriage

return to leave the subsystem. Type HELP * to get an explanation of all top level
commands. Type HELP subsystem * to get an explanation of all subsystem commands.

7.2.18. LIBRARY
LIBRARY {filename}

This command opens a list of library files. RTD or NDL elements needed in the RTD file
(see PARSE, NDL and RTD) will be searched through the already opened libraries as

23

supported by the underlining MAINSAIL language. Libraries are searched in order
starting with the most recently opened. The document subsystem (see DOCUMENT)
provides the user the facility of module sharing. The user may choose to put his LIBRARY
commands in the rt.com file which is executed when system the starts up. The default
file extension is lib. '

7.2.19. LIST
LIST {instanceName]

This command prints a list of instances in the current simulation environment
together with its module name, module type and various attributes. For example:

"LIST r[3],clk" may pr‘oduce

Iostance: R[3]®@ Type: ZZDREG
Instance: CLK* Type: CLOCKR2

I an instance’s module type is preceded by a %, it is an NDL element. Otherwise, it is an
RTD element. The presence of the @ character denotes the instance is linked to a bilink
element {see PARSE). If the * character is present, it is a clock element.

7.2.20. LOAD
LOAD instanceName [filename]

This command loads the memory content of a memeory type instance from a file. The
default file name is instanceName.mem. (Also see DUMP.)
7.2.21. MAINSAIL
MAINSAIL compile | debug

This command calls the MAINSAIL compiler or debugger depending upeon its
argument,
7.2.22. MOSSIM
MOSSIM [mossimCommand]

This command enters the MOSSIM command subsystem. Type ? for a list of
commands. Type carriage return to leave the subsystem. Refer to MOSSIM User's Manual
for assistance.

7.2.23. NDL

NDL instanceName NDLmoduleName

This command replaces an RTD element by an NDL element. During simulation,
the transistor network in the NDL element will be simulated using the switch-level
simulator MOSSIM II. (See NETWORK, MOSSIM, RTD, and LIST.) Also refer to the MOSSIM

24

interface section in this thesis.
7.2.24. NETWORK
NETWORK [filename] [*]

This command generates a network file from all NDL elements. The resulting file
which contains a forest of transistor networks, is read in by MOSSIM. (See MOSSIM, NDL,
LIST, and RTD.) If *is present, the file is used without regenerating the networks. If no
file name is given, the default file rt.ntk is used. This command will be called
automatically by the simulation ecommands if the simulator detects a change in status
of the NDL elements. The default file extension is ntk.

7.2.25. OPENLOG

OPENLOG [filename]

This command cpens or appends to a log file. All terminal conversations will
be recorded on the log file. If the filename is omitted, it will append to the previously
opened log file. If no log file is previcusly opened, it will open the default file rt.log. The
default file extension is log. Also see CLOSELOG.

7.2.26. PARSE
_PARSE filename

This command parses the syntax and builds the data structure from an RTD file. The
default file extension is rtd. For more details, see section 3 of this thesis. Also see file
nrmin.rtd for an example.

7.2.27. PROCEED
PROCEED [n]

This command will proceed with the simulation for at most n subcycles. If break
point is encountered before the subcycle count is up, this command will first break and
then return control to the user in the next subcycle. If n is omitted, it will be set to
something large.

7.2.28. QUIT
QUIT
This command terminates the program and closes all opened files.
7.2.29. RESTORE
RESTORE [filename]

This command restores the simulator states saved by the FREEZE command. The
default file name is rt.frz.

_5

7.2.30. RTD
RTD {instanceName]
This command reverses the effect of the NDL command.
7.2.31. SET
SET instanceName

This command sets the internal data of an instance. It should prompt the user for
the information needed. The detail varies with the RTD elements.
7.2.32. SUBCYCLES
SUBCYCLE [n]

This command performs simulation for n subcycles. A subcycle is defined as the

period from one steady state to another. If n is omitted, it will be set to one.
7.2.33. SWITCH
SWITCH [switchName]

This command enters the switch subsystem. Type ? for a list of switches. Type
carriage return to leave the subsystem. Type HELP SWITCH * for more help
information.

7.2.34. TAKE
TAKE filename

This command re-directs the command input from a file. The default file extension
is com. The file rt.com is always exccuted when RTsim starts up. The uscr is cncouraged
to put in commands to set up various switches and search paths. The command
interpreter will ignore all lines with '# in its first column. This comnmand can be nested.
7.2.35. TRANSLATE
TRANSLATE inst1 [instR] [n1-n2] [*]

This command translates a portion of the output vector of instl according to the
symbol table defined for inst2. Hence inst2 must be a memory type instance. nl and n2 .
_ are the starting and ending indexes of the vector to be translated. The content of inst?2 is

assumed not to be changed throughout the simulation. The translated output will not
reflect those changes. For example:

~ TRANSLATE mir store
~ DISPLAY mir

may give
MIR | CtrL0 Input:1C20030E Output: [0: :reset and zero resel]

If only inst1 is given, inst1 will be translated according to its own symbol constants. If *is

<6

present, this command will also check and report for identical words in the memory.
(Also see UNTRANSLATE)
7.2.38. UNCATCH
UNCATCH {instanceName}
This command reverses the effect of CATCH.
7.2.37. UNFORCE
UNFORCE instanceName [*]

This command releases the holding of the input vector of an instance enabled by
the FORCE command. The input vector of the instance will then be collected from its
predecessors and its output will propagate until a steady state is reached.

7.2.3B. UNTRANSIATE
- UNTRANSLATE {instanceName]

This command reverses the effect of TRANSLATE.
7.2.39. UNWATCH
UNWATCH {instanceName}

This command reverses the effect of WATCH.
7.2.40. UPDATE
UPDATE {moduleName}

This command updates all instances of an RTD element module. The instances
will first be disposed of, and then binded with the same options turned on.
7.2.41. WATCH
WATCH [phase] {instanceName} [*]

This command sets flags to display information about a list of instances. If * is
omitted, all I/0 and internal information will be displayed. Otherwise, only internal
information of an instance will be displayed. If the instance name is not given, all
instances will be set. The phase tells the simulator what phase in a cycle to watch. If
-omitted, all phases will be watched. The current phase and cycle number can be
displayed by switch STATISTIC. (See SWITCH STATISTIC.)

7.3. Document subsystem
7.3.1. DELETE
DELETE elementName

This command deletes a document filed under elementName. Only the owner of
the document can delete it by knowledge of its secret code. When used constructively

_7

with FILE and PRINT, the users can share their RTD elements.
7.3.2. FILE
FILE

This command files an RTD document. When invoked, the program will prompt
interactively for the various needed information. When used in conjunction with PRINT
constructively, the users will be able to share access to their RTD element modules. The
DELETE command is provided in case the user chooses to delete or update his document.
Also see PRINT and DELETE.

7.3.3. PRINT
PRINT [elementName | searchKey]

This command displays documentation on an element or searches the headers for
a searchKey. The searchKey must be a string of alphabets.

With no argument, headers of all entries will be displayed. The following shows a
typical entry for an RTD element:

Element : dreg

Designer: lam

Location: <path name>ele.lib

Header : A dual port, static register

Descriptions:

Element descriptions

Also see FILE and DELETE.

7.4. Switch subsystem
7.4.1. BASE
BASE [n]

This command sets the 1/0 format of vectors to either base 2. B or 18 by setting n to
2, Bor 16 respectively. If n is omitted, the current format will be displayed. The default
setting is 2.
Legal formats:
base 2 = {0,1,X,Z}
base 8 = {0,1,2,3,4,5,8,7.X.Z}
base 18 = {0,1,2,3,4,5,6,7,8,9,A,B,C,D,.E,F.X,Z}

Base 10 is not supported.

28

7.4.2. CAPACITANCE
CAPACITANCE [on | off]

This command models MOS capacitance. If turned on, the input vectors of an instance
will hold their values for N more subcycles after its driving signals are turned off, where
the charge hold time N is the setting of SWITCH CHARGE-HOLD-PERIOD. The peried N
will assume infinite if CAPACITANCE is set to off, which is the default. If no argument is
given, the current setting will be displayed.

7.4.3. CHARGE-HOLD-PERIOD
CHARGE-HOLD-PERIOD [n]

This command sets the charge hold period to model MOS capacitance. (See
SWITCH CAPACITANCE.) If no argument is given, the current setting will be displayed. The
- default is 0.

7.4.4. DEBUG
DEBUG [on | off]
This command is used by the author to debug the simulator. The default is off.
7.4.5. EXPAND
EXPAND [on | off]
This command overrides the setting of SWITCH BASE if turned on. All vectors having
Xor Z bits will be displayed in binary form. The default is off.
7.4.6. INTERRUPT '

INTERRUPT [on | off]

This command controls interrupt. If turned on, simulation cormmands like SUBCYCLE,
CYCLE, and PROCEED will yield to any command entered from the terminal. The simulator
will resume execution after all terminal commands have been processed. The default
is on. If no argument is given, the current setting will be displayed. This command is
only available on some systems.

7.4.7. TTERATIONS
ITERATIONS [n]

This command sets the maximum number of iterations to n. Steady state must
occur within n iterations or the simulator will report an error. If n is omitted, the
number of iterations currently set will be displayed. The iteration variable is set to 16
when the system starts up. In case the user wishs to examine excitation statistics, he can
use the SWITCH STATISTIC command.

29

7.4.8. MONITOR
MONITOR [on | off]

This command meonitors the simulation step by step. The simulator will display the

1/0 data and pause after an instance is evaluated. It is useful to trace the firing
sequence and verify the connection scheme. If no argument is given, the current setting

will be displayed. The default is off.
7.4.9. PAGEWIDTH

PAGEWIDTH [n]

This command controls the output page width. If ne argument is given, the current
setting will be displayed. The default is 80.
7.4.10. PAUSE
PAUSE [on | off]

This command sets the PAUSE flag. When PAUSE is on, the simulator will prompt the
user whenever an error is reported. If no argument is given, the current setting will be
displayed. The default is on.

7.4.11. PHASE
PHASE [n]
This command sels the number of phases in a clock cycle. It will be initialized Lo

two when RTsim starts up. It is useful to implement different clocking conventions. Ifn
is omitted, its current setting will be displayed.

7.4.12. STATISTIC
STATISTIC

This command displays excitation statistics, cycle number, and phase information
for the current subcycle.

B. Ut.iﬁties

B.1. IBits utilities

The following 1Bits manipulation procedures are rprovided. This is an attempt to free
the element designer from knowing the detail representation of 1Bits. The unused portion
of the 1Bits is expected to be zero before the procedure call and will stay zero afterwards.

procedure andBits(lbits dst,sre);
This procedure performs a bitwise logical and on the two 1Bits, and puts the resuit in

30

dst. If the length of 1Bits do not match, the length of src will be modified to that of dst.

integer procedure bitCount(1Bits src);
The procedure returns the number of 1-bit in sre.

bits procedure bitVal(1Bits sre; integer offset,length};
This procedure returns a set of at most 16 bits starting from a given offset, where bit
0is the L.S.B.

procedure checkBreak(IBits d,x);

This procedure checks a vector!! against all internal break points set by the user. It
will cause the simulator to break if a match is found.

procedure clearAbit(1Bits dst; repeatable integer n);
This procedure clears bit n of dst where bit 0 is the L.S.B.

- procedure clrBits(lbits dst,src);

This procedure clears any 1-bit in dst whose corresponding location in sre is also 1-
bit. If the length of 1Bits do not match, the length of sre will be modified to that of
dst.

procedure copyBits(modifies 1Bits dst; IBits sre);
This procedure copies from src to dst. If dst has not been allocated, getBits will be
called. If the length of 1Bits do not match, the length of dst will be modified to that of

src,

procedure displayBits(1Bits d; optional 1Bits x; optional integer format});
If 1Bits x is present, this procedure outputs the vector to the terminal. If not, the 1Bits
d will be cutput. The output format of the vector depends on the value of the format,
which is either 2, B or 18. ‘

boolean procedure equBits(1Bits srel,src2);
This procedure returns true if src1 equals src2.

procedure extendBits(IBits dst; integer length);
This procedure modifies the length of dst.

procedure extractBits(modifies 1Bits dst; 1Bits sre; integer offset,length);
This procedure extracts from src a 1Bits of specific length starting from a specific
offset. Dst is allocated if necessary.

|Bits procedure getBits(integer length);
Since a IBits variable is a pointer, it is necessary to allocate the structure before
using it. This procedure will allocate a 1Bits of specific length and return the pointer.
The newly allocated 1Bits with be zeroed out. :

11 A vector consists of 2 1Bits (d and x) where each bit can have values in in the set {0,1,X,Z]. Refer to figure 4.

31

1Bits procedure getMask(integer length,startIndex,endIndex);
This procedure returns a 1Bit of specific length with bit startIndex to endIndex set to
one.

procedure inputInt(produces integer n);
This procedure reads in an integer from the terminal. This is preferred because it will
output to the log file if necessary.

procedure inputVec(IBits 4,x);
This procedure reads a string from the terminal, converts it to a vector according to
the setting of SWITCH BASE, and returns the vector as its arguments. The 1Bits d and x
must be allocated explicitly. If the input is a null string, d and x will not be changed.
boolean procedure isAllOneBits(1Bits src);
This procedure returns true if all bits are set to one in srec.

boolean procedure isAllZeroBits(1Bits src);
This procedure returns true if all bits are set to zero in src.

procedure killBits(repeatable modifies 1Bits dst);
This procedure disposes the 1Bits pointed to by dst.

procedure negBits{1Bits dst);
This procedure performs a one's complement on dst.

procedure orBits(lbits dst,sre);
This procedure performs a bitwise inclusive or on the two 1Bits, and puts the result in
dst. If the length of IBits do not match, the length of src will be modified to that of dst.

procedure setAbit(IBits dst; repeatable integer n);
This procedure sets bit n of dst to one.
procedure setAllOneBits(repeatable 1Bits dst);
This procedure sets all bits in dst to one.
procedure setAllZeroBits(repeatable 1Bits dst);
This procedure clears all bits in dst.
~ procedure setBits(1Bits dst,.sre; integer offset);
This procedure copies src onto dst starting from a specific offset. The length of dst
will be modified if necessary.
procedure setBitsWithMask(1Bits dst,src,mask);
This procedure will set a portion of dst specified by the mask to that of sre. Every bit
in dst will be replaced by src if the corresponding mask bit is set.

macro setUndefVec(IBits 4,x);
This macrec sets the vector to the X state. Refer to figure four for the X state

32

representation.

procedure shiftBits(1Bits dst; integer n);
This procedure does a logical shift right for n bits if n is positive. If n is negative, it
will shift left.

integer procedure strTolnt(string s; optional integer format);
This procedure converts a string of digits to an integer according to the value of the
format which is either 2, 8 or 18.

boolean procedure strToVec(string s; modifies 1Bits d,x; optional integer format);
This procedure converts a string to a vector and returns true if successful. The
conversion depends on the setting of the format which is either 2, B or 18. The vector
will be allocated if necessary.

_integer procedure sumBits(1Bits src);
This procedure returns the integer representation of the least significant 15 bits of
sre.

string procedure vecToStr(IBits d; optional 1Bits x; optional integer format); :
This procedure converts a 1Bits d to a string. The conversion depends on the setting
of the format which is either 2, B or 16. If x is present, it converts a vector to a string.

procedure xorBits(lbits dst,src);
This procedure performs a bitwise exclusive or on the two 1Bits, and puts the resull in

dst. If the length of IBits do not match, the length of src will be modified to that of dst.

8.2. Others

string procedure curlns;
This procedure returns the name of the currently active instance. Curlns may be
used in an RTD element to get its corresponding instance's name.

boolean procedure printVec(string s; optional boolean eject);
This procedure prints a string justified according to page width. (See SWITCH
PAGEWIDTH.) I eject is true, a carriage return will be appended to the end of the
string. If any carriage return is printed by the procedure, it returns true. Refer to
appendix A for an example of its usage.

macro scriptOut(s);
This macro prints the string in the log file if it is opened.

macro errorQut(s);
This macro is the same as macro ttyOut followed by macro pauselfEnable. See below.

33

macro ttyOut(s);
This macro is the same as ttyWrite, with the exception that it also outputs to the log
file if it necessary. This macro should be called with the following format.

ttyOut([<parameters>]);

macro ttyCOut(s); ‘
This macro is the same as ttyCWrite except it also outputs to the log file if it is
opened.

macro pauselfEnable;
This macro will prompt for user input if SWITCH PAUSE in the command system is set.

macro setBilinked;
This macro turns an RTD element into a bilink element.

macro setClocked;
This macro turns an RTD element into a clock element.

macro setRefreshClock({refreshClock);
This procedure sets refreshClock to the simulation clock value N subeycles later,
where N is the setting of SWITCH CHARGE-HOLD-LIMIT if SWITCH CAPACITANCE is on or
infinite if it is off.

boolean macro refreshClockExpired(refreshClock);
This macro returns true if refreshClock equals systemClock.

8.3. Simulation variablca

long integer systemClock
This is the simulation clock variable. It is incremented once every subceycle.

integer phi,maxPhi
Phi denotes the current phase in a clock cycle. It counts from zero to maxPhi-1 and
back to zero, where maxPhi is set by the SWITCH PHASE (section 6) command.

34

Appendix A - An RTD element example - dual port register

#

FILE: dreg.fun

dual port static register

5 control lines, from B to 4: refresh, |dA, id8,rdA,rdB
#

bégin "dreg"

noChecks

sourcefile '"rtsim.h"; # file In rtsim directory

element (dreg);

'# Global variables
IBits bd,bx;
integer len;
iong integer refClk; # keeps the refresh clock timit

procedure setup;
set up no of control lines

begin
no0fCtris=5; # no of contral lines
len: =na0fIn div 2; # get the affset or length for bus B
if no0fIn mod 2 neq @ then
begin
ttyut{curIinsd”: no of bits must be multiple of 2"8eoll};
return;
end; .
bd:=getBits(len); - # allocates locals
bx:=getBits{len);
end;

procedure dispiaus;
printYec (''Value: "8vecToStr (bd,bx}) ;

procedure setlntern;

begin

ttyOut ("Value: "); # prompt for node value

inputVec(bd, bx}; # input a vector

setRefreshClack (refClk); # data retain period depends on duration
end:

procedure signal;
begin
bits b;
if refreshClockExpired (refCik) then # refresh period expired?
setlndefVec (bd, bx}; # data become undefined

35

if bitVal (cx,8,5) neqg '37 then # something no defined?
begin
setndefVec (bd, bx) ; # everything undefined
setlnde fVec (od,ox) ;
checkBreak (bd, bx) 3 # check for internal break
return; : :
ends
b:=hitVal (cd,8,5); # extract start from bit B for length 5
if b="1 then # refresh data?
setRefreshClock (refClk) # set data retain period
ef not (b msk *B11821) then # 1dA or IdB?
begin
case cvi (bitVal(cd,1,2)) of
begin
e ; #no op
[11 begin # 1dA

extractBits(bd, id,8, len); # get bits start from 8 of length len
extractBits(bx, ix,8, len); # that is <@:len>
setRefreshClock (refClk}; # set data retain period
ends;

21 begin # 1d8
extractBits{bd, id, len, len); # get bits start from len of len len
extractBits(bx, ix,len, len); # that is <len:2xien-1>
setRefreshClock (refCik); # set data retain period

end;
(381 setUndefVec(bd,bx}; # fighting
end; -
end
ef not (b msk *BEI111) then # rdA or rd&8?
begin
caece cvi(bitVal (ed,3,2)) of
begin
a s # no op
1] begin # rdA
setBits{od,bd,B); # copy all bits of bd into od start at @
setBits{ox,bx,8);
ends;
21 begin # rdB
setBits(od,bd, len}; # copy all bits of bd into od start at len
setBits (ox,bx, len);
end: :
(31 begin #rdA and rdB (valid)
setBits{od,bd,B); # copy all bits of bd into od start at 8
setBits (ox,bx,8) ;
setBitslod,bd, len); # copy all bits of bd into od start at len
setBits{ox, bx, len);
ends
end;
end
else # fighting

begin

settndefVec (bd,bx) ;
setUndefYec (od,ox};
end;
checkBreak {bd, bx) ;
end;

end ''dreg'’s

everything undefined

check for internal break

36

Appendix B - An RTD element example - static RAM

#

FILE: sram. fun

contain the sram element for simulation

#

begin "sram”

noCheck; .

sourcefile 'rtsim.h'; # file in rtsim directory

element(sram);

control vector meaning

B tristate
18 v write
U read

iBits bd,bx,b,x;

procedure setup;

begin
nolfCtrl:=2; # read/urite control, l=write, @=read
depths =no0fIn-noCf0ut; # no of addr bits
bd: =getBi ts{depthl ; # allocate address bit
bx:=getBits(depth) ; # al locate address bit
b:=getBits(no0flut); # allocate locals
x:=getBits (noDf0ut);

end;

procedure setlintern;

begin
integer loc;
ttyOut ("Location: "3 # prompt for location
inputlnt(iocc); # get an integer
ttylut ("Value : "); # prompt for value
inputVec(b,x); # get a input line and set
1f loc<B or loc>bitArr.ubl then # check index
begin
ttylut(curlns&”: Index out of bound'&eoll;
return;
ends
copyBits{bitArriocl,b); # save bit value
end;

procedure signals
begin
integer addr;
if not bitArr then # array not initialize

37

begin : :
ttylut{curins&"s RAM not initialized''8&eoll);
return;
ends
if isAliZeroBits{cx) then " # undefined
begin
errorOut (curlnsd’: control input undefined”"&sal)s
return;
end;
if bitVal {ed,1,1)="0 then # tristate
return;
extractBi ts(bd, id, no0f0ut,depth);
extractBits(bx, ix,nc0f0ut,depth);

if bitVal (ed,8,1)="8 then # read
begin
if isAl IOneBits{bx) then
begin
addr:=sumBits(bd); ’ # calculate bit sum of input

if bitArr [addr] neq nul iPointer then
copyBits (od,bi tArr [addr])
else
begin _
ttylut{[curlns,”: uninitialized location ”,addr,
“{decimal), assume X",eoll);

setlndefVec (od, ox};
return;
. end;
setAl[OneBits{ox); # all output defined
end
else
setUndef¥Yec{od,ox);
end
else #urite
begin
if isAllOneBits(ix} then
begin
addr:=sumBi ts{bd}; # calculate bit sum of input
extractBits(bitArr [addrl, id, 8, no0f0ut); '
end
ef isAl!0neBits{bx) then
begin
addr:=sumBi ts{bd) ; # calculate bit sum of input
bitArr laddr] :=nul IPointer; # clear the pointer
end
else .
errorOut{lcurlns,”: input address bit undefined for",
" memory write",eoll);
end;

end;

end ‘‘sram'';

38

39

Appendix C - BNF description for RTD language

BNF

Anything preceded by * will be a punctuation mark inside the language
{{% — zero or more times
{4+ — one or more times

[1 — optional
{(]) - either ore
#§ — continue on next line

The rest are pretty much standard

prg ::= elelec eieCon [eieles 1] EDi‘=

eleDec ::= INST decBody

decBody t:= § declne %

decOne ::= ID T *ONUM ¢« NUM T 1 \NID £ D NUM ‘11 #
[<bits >]1 [(ID §, IDx)1;

bits se= NUM ¢ NUM [] NUM : NUMT | ¢} NOM @ NUM | NUM ¢ NOM ¢

eleCon ::= CONN conBody

corBody ::= § conOnel | conOne2 {%

cornel ::~ onePartl § = [NUM 1 onePartl i+ ;

corOne2 ::= onePart2 = § onePart2 }+ ;

onePartl ::= ID [‘LN *1 1 . (injout]ctri) [< bitCon >1
onePart2 ::= I0 [< bitDesp > 1

bitDesp ::= NUM ¢« NUM

eleDes ::= DESP desHody

desBody ::= §{ oneEle Ix

oneEle ::= ID blocks

blocks ::= caseStat | BEGIN { caseStat }+ END ;

caseStat ::= CASE put < bitDesp > IN GROUP NUM OF subBlocks

subblocks ::= equStat | BEGIN { equStat }+ END ;

equStat s:= NUM =ID s | TNUMIT ‘I NUM - NUM € =ID I NUM - NUM ‘] ;

ID ::= { letter {+ { letter | digit |
NUM ss=" §8..1 J+ | ~{08..7 }+] 8}
letter s:= A..Z
digit ::= 8..3

J%
B..7 | A..F I+ | digit+

Appendix D - Network model of MIN processor in RTD

FILE: NRMIN.RTD
Based on the MIN processor of "How to Flowchart for Hardware"
by Nick Tredennick in the Dec 13981 issue of Computer[4].

Microword format
g-5 next address
6-7 address select
8-9 constant select

13-16 B dest.
17-19 B source
20-23 A dest.
264268 A source

HeA T WThIFR NI W I IsIeII

27-28 IRs

Instruction format
Group 1
82 Ry 9-2
3-4 Mode 3-6
5-7 Rx 7-7
8-11 opcode 8-11

INST # instances declaration

18-12 ALU function select

Group 2
Ry

cC

Not
opcode

saction

execution unit declaration

AC\addreg<@:31 | 9:153;
PC\dreg<@:31>;
T2\dreg<@:31>;
Ti\treg<@:47 | 8:31>;
R[8:7]1\dreg<®@:31>;
ALUNminALU<B:47 | 8:18>;
K\const<] 2:15>;
DIN\regl <B:15>;
DO\regl<@:15>;
IR\regl<@: 15>
IRENregl<@: 15>
Bus\piLink<@:31>;

microprogram control uni
STORENrom<B@:5 | B:28>;
MIR\latch<@:28> (posTran);
MOL \decod2<@:38 | B:76>;
ID\decodS5<@:15 | 9:7>;
RESET\resdis<@:9 | 8:5>;
MPX\mux<@:15 | B:3>s

address register, 32 bits in, 16 hits out

program counter

temporary registers

temporary reg., 48 bits in, 32 bits out
general registers
#ALU, 48 bits in, 20 bits out
constant generator, no inputs

data input register

data output register

instruction register

instruction register for execution
#bus A and B

t declaration
control store
micro instruction register
micracode decoder logic
instruction decoder
reset and dispatch circuit
address input multiplexor

40

FL\latch<@:3> (negTran); #1 bit latch

MAM\addMod<B:7 | B:3>; # micro address modifier
ClK\clock2<| B:1>; # 2-phase clock distributor
ZERON\zero<] 8:3>; # output constant zero

External Memory
MEM\sram<@:25 | B:15>: # primary memory

CONN # connection section
execution unit connections

Bus connections

Bus = PC = T1 = T2 = R; # on both bus A and B
Bus.out = AD.in = ALU. ins # take input from bus A and B
Bus. out<@:15> = D0. in; # take input from bus A only

DIN. out = Bus. in<B8:31>; # drive bus B only

K.out = ALU. in<B32:47>4 # connect K to ALU
ALU.out<@:15> = T1.in<B2:47>; # connect ALU to T1

ALU, out<lB:19> = FL.in; # flag bit

MIR.outd2:12> = FL.ctrl; # latch bit

FL.out = MAM. in; # latch flag on ALU instructions
D0.out = MEM. in; # comnect D0 to MEM

MEM.out = DIN.in = IR.ins
IR.out = IRE. ing

control unit connections

IRE.qut = ID.in; # camnect to instruction decoder
IRE. out<B:2> = MOL. in<24:28>; # connect to static decode, Ry
IRE. cut<@:6> = MAM. indi: 7> # cornect condition code mask
IRE. out<7:7> = MAM.ctrl; # control negation

IRE.out<S:7> = MIL. in<21:23>; # connect to static decode, Rx
IRE. out<8:11> = MIL.in<27:38>; # connect to static decode, opCode

I0.out = MPX. in<8:15>; #RB, RD

MAM. out = MPX. in<4:7>; #BC

ZERO.out = MPX. in<@:3>; # zero input

MPX.out = RESET. in<B:3>; :

RESET.aqut = STORE. in; # control store address
STORE.out = MIR. in; # latch in micro instructior register
MIR.out<@:5> = RESET. in<®:5> # B

MIR.out<B:7> = MPX.ctr!; # address select
MIR.cut<B:28> = MIL.in<@:28>; # connect to decoder logic
ClK.out<@:8> = ML.ctrl; # connect to ML
ClK.out<l:1> = MIR.ctri; # connect to MIR

AQ.out<@:3> = MEM. in<16:25>: # connect to external memory

contro! lines
MDL. out<B:2> = AQ.ctrl;
MOL.out<B:7> = PC.ctrl;

41

MOL.out<B:12> = TZ.ctrl;
MOL.out<d3:17> = Tl.ctri;
MOL.out<18:22> = RIBAI.ctrls
MOL.out<23:27> = RI1l.ctrl;
MO..out<28:32> = R[2].ctri;
MDL.out<83:37> = RI3l.ctri;
MOL.out<38:42> = R4).ctri;
MOL. out<%3:47> = R[El.ctri;
ML..out<t8:52> = RIBl.ctri;
MOL.out<G3:57> = R[7l.ctrl;
MOL. out<58:68> = AlU.ctrli;
ML.out<Bl:62> = K.ctrl;
MO..out<B3:65> = DIN.ctri;
MOL.out<gB:68> = D0.ctrl;
MOL.out<€39:71> = IR.ctrl;
M..out<2:74> = IRE.ctrl;
MOL.out<75:76> =3 MEM.ctri;

DESP
STORE
begin # symbolic microcode definitions for STORE

case out<@:5> in group 1 of
begin # allocate the next address field
8 = absolute; # specify an absolute address field
end;

case out<B:7> in group 1 of
begin # address select
g = def: # default is DB address
1 = BC; # BC address
2 = RB; # select opcode
3 = RO; # select addr. mode
end;

case put<B:3> in group 1 of
begin # constant select
1 = plusl; #+1
g = zeros #8
2 = minusl; #-1
3 = def; # default, is from B bus
ends;

case out<l@:12> in group 1 of :
begin # ALU function select
8 = def; # default, nop
1 = add; # addition
2 = sub; # subtraction
3 = and; # logical and
4 = ops # static decode
S = test; # test data
ends;

case out<13:16> in group 1 of

begin # B dest.
8 = nop; # nop
1 = PCs # program counter
2 = A0s # address register
3 =12 # temporary register
4 = T1; # temporary register
5 = Rx; # use Rx
B = Rys # use Ry
9 = RxT2; # Rx and T2
18 = Ry72; #Ry and T2
11 = RyAD; # Ry and AD
12 = T2A0; # T2 and AD
ends;

case out<l7:139> in group 1 of
begin # B source
B = nop; # nop
1 =PC; # program counter
3 = T2 # temporary register
4 = Tls # temporary register
5 = Rx; # use Rx
8 = Rys # use Ry
7 = DIN; # data input register
end;

case out<2@:23> in group 1 of
begin # A dest.
8 = nop; # nop
1 =PC; # program counter
2 = AQ; # address register
3 =T12; # temporary register
4 =Ti; # temporary register
5 = Rx; # use Rx
B = Ry; # use Ry
7 = D0s # data output register
9 = RxT2; #Bx and T2
18 = RyT2; # Ry and T2
11 = RyAQ; # Ry and AD
12 = T2A0; # 12 and AQ
end;

case put<24:28> in group 1 of
begin # A source
8 = nops # nop
1 =PC; # program counter
3 =T2 # temporary register
4 = T1; # temporary register
5 = Rx; # use Rx:
B = Ru; # use Ry
end;

case out<@27:28> in group 1 of
begin # instruction registers
@ = def; # default, nop
1 = ldr;

load IR

43

2 = |dre; # load IRE

3 = ldd; # load DIN
ends;
ends;
MEM
begin # sumbolic macro instructions
case out<®:2> in group 1 of # in base 2, Ry
{’8-"1111 = RIB-71; #8=R8, to 7 =R7
case out<B:4> in group 1 of
begin # mode
B = def; # default, register direct
1=1; # register indirect
2=0; # base + displacement
ends
case out<5:7> in growp 1 of # Bx
[8-7] = RIB-71; #0 =Rg, to 7 =R7
case out<B:11> in group 1 of # in base 8
begin # opcode :
$1 = adds # operate class
82 = subs
$3 = and;
$4 = load; # general addr. mode
85 = test; :
86 = store;
88 = push; # special instruction
$3 = pop;
8a = zero:

8$f = reserved_group 2_instruction;
ends

case out<B:11> in group 2 of

$f = br; # branch class

case out<3:7> in group 2 of
 begin # branch condition

88 = NR; # never

$18 = def; # always

$1 =0 # carry set

811 = NC; # carry not set

82 = N; # negative

812 = NN; # not negative

84 =27 # zera

814 = NZ; # not zero

88 = V: # averflow

818 = NV; # not overflow

ends;

case out<@:2> in group 2 of # in base 2
[’8-'111] = R([8-71; #86=R8, to 7 =R7

case out<B:3> in group 3 of
8 = absolute; # allocate an absolute address field
end;

Appendix E - Microcode for MIN processor

RTsim Assembler Listing for nrmin.asm

#

FILE: NRMIN.asm

symbol ic microcode for the MIN processor

#
. load STORE # load symboi table
.loc @

reset

:reset and zerg resel #get PC at loc B

addressing mode dispatch (RD dispatch to $2)

.doc 1

sadrml Idd Ry T2A0 RB brzz3 # Ry, indirect

tabdml |dd PC AQ add plusl abdm2 # (Ry + d}, base + disp.

Reg-Reg instructions (RD dispatch to $8)
.loc 3

toprrl Rx nop Ry op oprr2 # add, and, sub
tldrrl Idr PC AD Ry RxT2 add plusl idrm2 # load
s tstrl Rx test zero brzz3 # test

tstrrl ldr PC AD Rse RYT2 add plusl idrm2 £ atore

#ispecial instructions (RD dispatch to $9)
.loc $8

:pushl Ry add minusl push2 # push
tpoprl Idd Ry AQ add pliusl popr2 # pop
:zerol Idr PC T2A0 and zero zero2 # zero

rest of the reset sequence
.loc 80

tresel idd T1 AO rese2
trese2 DIN PC brzz3

start of branch instruction (RD dispatch to $8)
. loc 8F
:brzzl |dr Ry AD add plusl BC brzz3 # branch on condition

fconditional branch instructions (BC dispatch to $18)

.loc 818

tbrzz3 Idr PC AD add plusl brzz2 #here, if cond. is false
tbrzz2 ldre 71 PC RO reset # here, if cond. is true

46

18:

19:
28:
21:
22:

243
25:
26¢

272
28:
29:

31:

rest of mem operate
.loc $12
:oprm2 T1 DO T2 AQ brzz3

#fnem ref. instructions {RB dispatch to $18)

. loc 813

saprml Rx nop DIN op oprm2 # add, and, sub

¢t ldrml tdr PC AD DIN RxT2 add plusl !drm2
stestl Idr PC AD DIN T2 add plusl [drm2
sstrml Rx DO T2 A0 test zero brzz3 # store

load
test

the rest of the addressing mode sequence

.loc 818

sabdm2 T1 PC abdm3

tabdm3 Ry nop DIN add abdmé4

tabdm4 1dd T1 T2A0 RB brzz3

the rest of the sequences

toprr2 Idr PC AD T1 Ry add plusl brzz2
:popr2 T1 Ry DIN Rx brzz3 # 2nd step
tpush2 Rx 00 T1 RuyAQ brzz3 # 2rd step
tzerg2 T2 nop Tl Rx add plusl brzzZ

tldrm2 Idre T2 nop T1 PC test zero RD reset

2nd step

zero register Rx
2nd step

47

34:

Appendix F - Sample program for MIN processor

RTsim Assembler Listing for multiply.asm

oM

snegl

FILE: multiply.asm
multiply two unsigned numbers

. load mem # load symbol table
.loc B

ehi f tAndSum # put in the entry point
JWord $FFFf #put ina-1

.loc $28

multiply two number in RB and R1, put result back in R3
: shi f tAndSum

zero R3 # use R3 as sum

zero RS # absglute reference

load RE O RS

addr2

load R7 D RS

negl

load R4 O RS

count

load RZ D RS

exit
s loop2 add R7 R4 # decrement counter

br N R2 # goto addr2, if -ve

add R3 R3 # shift R3 left by one bit

add R@ R@ # shift left one bit

b NC R6 # goto loogp2 if not carry

add R1 R3 # sum R1

br RE # gote loop2 if not zero
saddr2 loop2 # put in the loop address
texit addrZ # put in addrZ address

scount .uord 16

Appendix G - Block diagrams for HMIN processor

1) Upper case word = Instance name

2) Word in parentheses = RTD element name

3) € = Contro! input

4} Blocks with sk connects to CLK(clock2), a 2 phase clock generator
5) Data Path is 1B bits wide

Control Unit:

ICtrl Store | JRESET | [Multiplexor |<—————-} |
| STORE | <=1 |]<=={ MPX 4 to 1| | ID (decodS) |
| (rom) | | (resDis)| | (mux) | &~————~| Instruction decoder |

| C~ ~ Ea ~ =~ -~

I I | | !

| Ext. Res. — | MR & | IRE

v | P
koK I . I
|Micro Instr. Reg. | | | |
| LATCH Uatch) | | | Address | | |]]

| | Modifier]|<— | FL (iatch) |

| I || MAM | | Flagbit |

| e— | (addMod) |<--—] from ALU |]

+ >| | | | |

| C

v ~ | Instr. Reg.]
sofok] | for |
| Micro Instruction Decoder] | Execution |
I ML [<~}——-] IRE |
| {decod?) |]] (regl) |

| From output of ALU -~

v
Goes to Control Input of Data Path S _—
|Instr. Reg.|
| IR I
| (regl) |

49

50

Data Path:

Y
N ig
!.a..v_m i 1o _ - @
| = | = .
e
—— X
| = | w
] = 1
| 251
] O - 1
| 28 |
I
]]]]] v | o ————
Lol
|72
I e } 1
~ 7~
//w._.\\
|
Ny
(——> - { ——>
3 - m
0
< t—=—> 2ok >)
(——> IIWI... { —— >
{ ——m > m { —~—— > m
IIIII @
IIIIII c
_ ¢ ——— 8~
__2__ 8
S
llllllllllllllllllllll x
llll — — I'['II'IIIE

External Memory:

EAB-———->

External Memory
MEM
(sram)

Cemmmm3EB

51

Appendix H - A sample run

RTsim Terminal Session
~ take &nrmin.com

~#

~ # This is a sample architecture contains in Appendix of RTsim User Guide
~ # '8&rmin.dia’ contains the block diagram of the architecture

~#

~ # All files preceded by & could be found in the rtsim directory
~ suitch base 15

~ |ib 8ele.lib

~ parse dnrmin.rtd

pass 1

pass 2

exec(17)-{: only 18 out of 11 bits have been connected in instance RESET
exec (17} l: a total of 1 bite not connected

~ assemble &rmin.asm

pass 1

pass 2

~ agssemble &multiply.asm

pass 1

pass 2

~ faorce reset 1 %

~ subcycle 2

Phase 8

~ force reset B %

~ translate mir store

~ translate store %

Processing STORE

~ translate mem

~ watch mir,mem

~ # Try some simulation commands |ike, subcycle or step, etc.

End of ps: <ssp.rt-sim>nrmin.com

~ comment : watch on MIR, the micro instruction register, MEM, memory

~cycle 3

MIR | Ctr1:8 Input:1C2003€E Output: [8: :reset and zero resell
MEM | Ctrl1:8 Input:O00KXX Output: ZZ7Z

MIR | Ctrl:1 Input:@B8EZ2318 Output: [M: sresel ldd T1 AQ reseZl
MEM | Ctri:8 Input:XXQOXXX Output:ZZZ

MIR | Ctri:8 Input:@QPEZ310 Output: [D: sresel Idd Tl AD reseZl
MEM | Ctr1:2 Input: BBXXX Output: [shiftAndSuml

MIR | Ctri:l Input:@9288511 Output: [E: :rese2 DIN PC brzz3}
MM | Ctri:8 Input:BBOXXXX Output: ZZZZ

MIR | Ctri:8 Input:83280511 Output: [E: :reseZ DIN PC brzz3l
MEM | Ctrl:8 Input:B8XXXX Outputs ZZZZ

~ break ire 9934
~ comment : set a break point at IRE with bit vector 8834 (Hex)

52

53

and zero resell

ldd Ry T2A0 RB brzz31

ldd PC AD add pluel abdm2l

Rx nop Ry op aprr2l

ldr PC AD Ry RxT2 add plusl ldrm2]
Rx test zero brzz3]

Idr PC AD Rx RyT2 add plusl Idrm2]

Ry add minusl push2l
Idd Ry AD add plusl popr2l
ldr PC T2A0 and zero zeroZ2l

ldd T1 AD rese2l

DIN PC brzz31

ldr Ry AD add plusl BC brzz3]

ldr PC AD add plusl brzz2]

tdre T1 PC RD resetl

Tl D0 T2 AQ brzz31

Rx nop DIN op oprm2l

ldr PC AD DIN RxT2 add plusl ldrm2]
Idr PC AD DIN T2 add plusl ldrm2]
Rx 00 T2 AD add zero brzz3l

T1 PC abdm3]

Ry nop DIN add abdm4l

Idd T1 T2A0 RB brzz3]

ldr PC AQ T1 Ry add plusl brzz2]

T1 Ry DIN Rx brzz3]

Rx DO T1 RyAD brzz3]

T2 nop T1 Rx add plusl brzz2]

idre T2 nop Tl PC add zero RO resetl

~ comment : examine the content of control store, range B - 1f

~ break
1 break points:
1: IRES834
~ examine store B-1f
2H] [sreset
1: {zadrml
2 {3 abdml
3: {:oprrl
4e [:1drrl
- [:tstrl
B: [:strrl
7: none set
8: [:pushl
9: [:poprl
A: [:zerol
B: none set
C: none set
" De [:resel
E: [:rese2
Fe [sbrzzl
18: [:brzz3
11: [sbrzz2
12: [:0prm2
13: {:oprml
14 {:idrml
15: [:testl
16: [:strml
17: none set
18: [: abdm2
19: [:abdm3
1A: [: abdmé
1B: [:oprr2
1C: [:popr2
1D: [: push2
1E: [:zero2
1F: [sldrm2
~ # etc...
~ close

Log file sample.run is closed.

Appendix I - An NDL example

begin 'zdreg"

sourceFile 'ndl.mi"; # file in rtsim directory
sourceFile “nmosib.mi’;

element (zdreg) ;

This is the NDL replacement for the RTD element in appendix A

net{dreglvector ctrl; node inbusA, inbueB, outhusA, outbusB, inNode; iName))
A 1-bit Dual port register
node outNode,mid;
beginNet
smal | {outNodel}; small(mid};

Ntrans{strong,ctr|[8], irfNode, outNode}; # ctrl8] = refresh
Ntrans(strong,ctr| [11, inbusA, irNode}; # ctrlfl]l = Id_A
Ntrans(strong,ctr] [2], inbusB, inNode}; Jf etrl[2] = IdB
Ntrans(strong, ctr| [31, outNode, outbusA) ; # ctr1 (3] = rd A
Ntrans{strong, ctr| [4], outNode, outbusB) ; # ctri 4] = rd B

inv{irNode,mid);
invimid, outNode};
endNet;

net(register (vector ctrl,innus,outnus,TnNodei'integer uidth; iName));
integer i
beginNet
for i:=0 upto nidth-1 do # form a n bits dual port register
dreglctrl, inbuslil, inbusli+uidthl,
outbus[il,outbusli+uidthl, inNodelil,cvs(i}};
endNet;

pracedure generate(integer no0fCtr!,no0fln, no0f0ut);
this procedure generates the NOL network
dataln and datalut are the same
begin
vector ctrlln,dataln,datalut, inNode;
smal IVec (ctrlIn,B,no0fCtrl-1): # create the control vector

largeYec(dataln, 8,no0fIn-1); # create the input data vector
datalut: =dataln; # make data input = data output
keepYecRev (ctriIn); # keep symbaolic names
keepYecRev(dataln) # NOTE: ctriln,dataln,datalut
keepYecRev (datalut); # must be kept.

smal |Yec (inNode, 8,noDfIn div 2 - 1};

keepYecRev {inNode) ; # keep internal name

register {ctriIn,dataln,datalut, inNode, nolfln div 2, ignoreP);
end;

end "zdreg'';

54

55

Appendix J - Runtiﬁle

Suitch Network Total RTsim MOSSIM subcyc. ‘ time/sub.

- 8 43.3 43.9 - 551 8.038
- 1 B65.5 45.543 19.357 551 8.113
- 8 283.6 5B6.365 153.28% 551 8.388
Cap. on 8 B4.0 64.8 - 551 8.116
Catch X 8 47.9 47.9 - 542 8.888

The above chart tabulates the runtime of the MIN processor architecture outlined in
appendix G. All times are measured in DEC system 2080 CPU seconds. The "network"
column in the chart shows the number of registers replaced by NDL networks, where each
network consists of 87 nodes and 144 transistors. Refer to appendix I for the NDL code. In
‘the third row, register R[3] in the data path is replaced by an NDL network. In the fourth
row, registers R[0] to R[7] in the data path are replaced by NDL networks. The "MOSSIM"
column in the chart represents the CPU time spent by MOSSIM and the "RTsim" column
represents the CPU time spent by RTsim and the RTsim-MOSSIM interface. The "switch”
column represents various RTsim switches which are turned on. The "cap. on' switch
models MOS capacitance; the "catch X' switch catches X-bit generation during simulation.
Refer to section 2 for details.

58

Appendix K - Installation

The source and documentation files of RTsim and its supporting programs consist of
the following (star (*) is the filename wildcard character):

ALLFILES A list of all files

*m MAINSAIL module files

*fun RTD element module files

*.mi MOSSIM interface files

*h RTsim interface files

*.5 Interrupt routines

*.mcl MAINSAIL compiler command files
* mlb MAINSAIL librarian command files
*.com RTsim command files

* doc Documentation files

All files must reside in a single directory, hereafter referred to as the "RTsim directory”.

The files "rtsim.h" and "syspro.m" must be edited to incorporate system dependent
changes. The variable "homePath” in "rtsim.h" must be set to the name of the RTsim
directory. Versions of interrupt routines for the DEC-R0 {Tops20), VAX (Unix Version 7) are
available by setting one of the variables "isDecR0” or "isVax" in “rtsim.h" to one. The
variable "isGeneral" can be set to one for other systems to disallow interrupts. The files
"ele.idx", "ele.hdr”, and "ele.doc"” are used by the RTsim documentation system. Their
protection modes should be set to allow public read/write access.

If switch-level simulator MOSSIM 1I is available, the variable "hasMossim' in "rtsim.h"
should be set to one to enable the RTsim - MOSSIM interface routines. The file "sysmod.mi"
should also be edited according to instructions for MOSSIM I1.

Once "rtsim.h" and "syspro.m'" are updated, the MAINSAIL medules comprising the
RTsim programs may be compiled. This is accomplished by running the MAINSAIL
Executive and executing the compiler COMPIL with the following commands where <ecr>
means carriage return:

*compil,
>cmdfile rtsim.mel
><cr>

57

If MOSSIM II is available and "sysmeod.mi" is updated, the MAINSAIL modules comprising the
RTsimm - MOSSIM Il interface may be compiled.

*compil,

>cmdfile mossim.mecl

><cr>

After all of the modules are compiled {(and possibly assembled), the Module library
files containing the object modules may be created by executing the MAINSAIL Module
Librarian MODLIB with the following commands:

*modlib,
MODLIB: read rtsim.mlb
MODLIB: <cr>

If MOSSIM 11 is available, the MOSSIM module library "meoessim.lib" should be copied from
the MOSSIM directory to the RTsim directory. Then, the MAINSAIL Module Librarian
MODLIB should be invoked with the following commands:

*moedlib,
MODLIB: read mossim.mlb
MODLIB: <cr>

On some systems, the default number of pages reserved for module storage in library
files is insufficient, and MODLIB will return a library full error message. In this case, the
user must specify a larger number of pages to reserve as an argument to the "create"
command in the appropriate "*.milb" file. Please refer teo the Module Librarian section of

the MAINSAIL Utilities User Guide for assistance.

Finally, the executable bootstrap files for RTsim may be created by executing the
MAINSAIL configurator CONF with the following commands where the name of the RTsim
directory is substituted in place of the string <RTsim directory>:

*conf
CONF: bootfilename rtsim.s
CONF: commandstring

rtsim,

preloadlibrary <RTsim directory>rtsim.lib

preloadlibrary <RTsim directory>mossim.lib (if available)
<cr>

CONF: globalprocedures

flagaddr (if isDec20 is 1)

-sigsys (if isVax is 1)

—interrupt _ (if isVax is 1)

58

—write_address ' (if isVax is 1)

-times (if isVax and hasMossim are 1)
<er>

CONF: <cr>

The resulting bootstrap file "rtsim.s" may then be assembled and linked to the
interrupt routines in "dec20int.s" if "isDec20" is set, or "vaxint.s" if "isVax" is set. The user
should refer to the host system's MAINSAIL User Guide for assistance. The resulting
executable file may then be copied to the host system's public directory.

With the executable bootstrap file, we can now regenerate the on line decumentation
systems with the following commands:

rtsim
~ take regenerate.com
~ quit

The file "message” may be edited to incorporate system dependent messages, which
will be printed when RTsim starts up.

(1]
(]
(3]

(4]
(8]

6]

(7]

59

References

R. Bryant, M. Schuster, D. Whiting, MOSSIM II' A switch-level simulator for MOS LSI
User's Manual, Computer Science Dept., Caltech, Jan. 1983.

M. Barbacci, An introduction to ISPS, in Computer Structures: principles and
examples, 1982,

R. Bryant, A switch-level simulation model for integrated logic circuits, Labofatory for
computer science, M.1.T., March, 1981.

N. Tredennick, How to flowchart for hardware, computer, Dec. 1881,

W. Cory, Symbolic simulation for functional verification with ADLIB and SDL, 18th
Design Autormation Conference, 1981.

W. Sherwood, A hybrid scheduling technique for hierarchical logic simulators, 16th
Design Automation Conference, 1879,

D. Hill, W. vanCleemput, SABLE: a tool for generating structured, muiti-level
simulations, 18th Design Automation Conference, 1979.

C. Wilcox, M. Dagenforde, G. Jirak, MAINSAIL language reference manual, Xidak, 1879.

