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Abstract

A major unsolved problem in computer graphics is that of making high-quality models. Tradi-
tionally, models have consisted of interactively or algorithmically described collections of graphics
primitives such as polygons. The process of constructing these models is painstaking and often
misses features and behavior that we wish to model. Models extracted from volume data collected
from real, physical objects have the potential to show features and behavior that are difficult to
capture using these traditional modeling methods.

We use vector-valued magnetic resonance volume data in this thesis. The process of extracting
models from such data involves four main steps: collecting the sampled volume data; preprocessing
it to reduce artifacts from the collection process; classifying materials within the data; and creating
either a rigid geometric model that is static, or a flexible, dynamic model that can be simulated.
In this thesis we focus on the the first three steps.

We present guidelines and techniques for collecting and processing magnetic resonance data to
meet the needs of the later steps. Our material classification and model extraction techniques work
better when the data values for a given material are constant throughout the dataset, when data
values for different materials are different, and when the dataset is free of aliasing artifacts and
noise.

We present a new material-classification method that operates on vector-valued volume data.
The method produces a continuous probability function for each material over the volume of the
dataset, and requires no expert interaction to teach it different material classes. It operates by
fitting peaks in the histogram of a collected dataset using parameterized gaussian bumps, and by
using Bayes’ law to calculate material probabilities, with each gaussian bump representing one
material.

To illustrate the classification method, we apply it to real magnetic resonance data of a human
head, a human hand, a banana, and a jade plant. From the classified data, we produce “compu-
tationally stained” slices that discriminate among materials better than do the original grey-scale
versions. We also generate volume-rendered images of classified datasets clearly showing differ-
ent anatomical features of various materials. Finally, we extract preliminary static and dynamic
geometric models of different tissues.
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Chapter 1

Introduction

1.1 Goals and Motivation

The primary motivation for the work in this thesis is to develop methods and techniques for creating
high-quality computer graphics models of real-world objects. Our goal is to create flexible models
of plants and animals whose multiple parts can interact and whose behavior can be simulated. We
would like the models to have flexible parts that slide across one another without penetrating, that
can exert a pull on one another through some region of connection, and that can push and deform
one another as they are moved and simulated. Examples of such parts include bones, muscles,
subcutaneous fat, and skin. We present several steps towards achieving that goal, although the
models we have created for this thesis are preliminary.

Traditionally, computer graphics models have been created using programs or lists of graphics
commands. The models have consisted of collections of connected rigid objects or of kinematically-
deformed surfaces [Foley et al. 90]. More recently research has modeled fairly simple physically-
based flexible objects [Terzopoulos et al. 87] [Platt and Barr 88] [Terzopoulos and Fleischer 88]. In
addition to having fairly simple geometries, the flexible objects modeled generally consist of a
single “part” made of a single, homogeneous “material.” Examples of a single-part object include
a trampoline, a cube of jello, and an eggplant. The material of such a part is modeled as a flexible
object, and can interact with rigid models, such as a table top or ball, but cannot interact with
other flexible models.

While multiple parts and some of the desired interactions have been successfully mod-
eled kinematically, as can be seen in many computer graphics animations [Siggraph Films 87]
[Siggraph Films 88] [Siggraph Films 89], the resulting models are often ad-hoc and lack impor-
tant features of the real objects they are modeling. Using the kinematic techniques for this purpose
is also very painstaking and time consuming.

We propose creating models from measurements of real-world objects. Such models have the
potential to capture features and behavior that otherwise might be inaccurate or even absent.
Measurements that provide information about the inside of an object, not just about the surface,
are useful for modeling the parts of an object that are not visible from the the outside, such as the
bones and muscles in a hand.

There are several different measurement methodologies that produce data from which we could
extract models. Two-dimensional techniques include monocular camera images, stereo images,
and range data. True three-dimensional techniques include computed tomography (CT), magnetic
resonance (MR), optical sectioning, and physical sectioning.

From this collection of possibilities, we have chosen to use magnetic resonance data. MR



1. Data Collection

;

2. Artifact Reduction

¢

3. Material Classification

¢

4, Model Extraction

Figure 1.1: Four steps in creating computer graphics models from volume data.
In this thesis we focus on the first three steps of this process. [

data provides volume measurements; these measurements give information not only about external
surfaces of an object, but also about materials and properties inside the object, unlike camera images
and range data. Compared to physical sectioning, MR is non-invasive. MR is more acceptable for
human experimentation than CT, because MR does not significantly damage living tissue. MR
can image objects opaque to light, unlike optical sectioning. MR distinguishes soft tissues well,
measures more than one physical characteristic of an object, provides reasonably high-resolution
volume images, and is readily available.

Chapter 2 describes the MR data-collection process, and Chapters 2 and 3 address some of its
limitations and how to minimize them.

1.2 Overview

Our goal is to create models that have the behavior of flexible, physical objects, with parts that
interact with each other and with their environment. In Fig. 1.1, we identify four basic steps
involved in extracting models from volume data. In this thesis, we focus on the first three steps of
the process, which are prerequisites of the final model-extraction step.

1. Data Collection involves choosing objects to model and scanning them to obtain vector-
valued, three-dimensional volume data. Choosing the objects can be surprisingly difficult
because of the constraints imposed by the imaging technology and because of the level of
detail we desire in our models. The object must be small enough to fit in the machine, and
yet must not have detail too small to identify in the resulting volume data. It must also
contain materials that can be distinguished using MR. Selecting appropriate parameters to
differentiate selected tissues and sub-parts, to minimize artifacts, and to work well with the
subsequent steps of the model extraction procedure is also a highly-constrained problem. In
Chapter 2 we will discuss these problems, and our experience with collecting data from which
we can extract models.

2. Artifact Reduction focuses on reducing problems due to aliasing, mis-alignment of different
volumes collected from the same object, non-uniform response of a single type of material



within a volume, and poor contrast between different materials. These processes are discussed
in Chapter 3.

3. Material Classification is the third step of the process. In this step we define a continuous
“classification function” over the imaged volume, rather than picking a discrete material for
each sample. The value of this function is the probability density of the input point being
a particular material. To calculate these probability densities, we create a histogram of
the collected data and fit a sum of gaussian functions to the histogram. We then use each
gaussian to represent the distribution of data values for one material and use Bayes’ Law to
infer material probabilities. The classification algorithm is described in Chapter 4.

4. Model Extraction converts the highly detailed but low-level data into more abstracted geo-
metric or physically-based models that have enhanced behavioral and movement properties.
Our preliminary work on extracting static and dynamic models from classified MR datasets
is included in Chapter 5, “Applications to Visualization”.

Chapter 5 also illustrates the techniques and their applications with computationally stained
two-dimensional slices, and volume-rendered images of the classified data. As examples, we will
show images created from processed data of human heads, a human hand, bananas, and a jade
plant.

1.3 Related Work

This work extends and combines work from medical magnetic resonance imaging, pattern classifi-
cation, image processing, and computer graphics.

The MR literature is extensive [Wehrli 88] and describes many techniques for collecting volume
datasets of objects. We are primarily collecting data using a technique called spin-echo imag-
ing, which we describe in Section 2.2 [Keller 88]. We present guidelines for selecting objects and
collecting data that can be used effectively for creating computer graphics models.

The signal-processing and computer graphics literature discusses many techniques for process-
ing data to avoid and reduce artifacts [Oppenheim 83] [Lim 90]. MR machines use these techniques
to produce images appropriate to the medical community, which is their primary focus. Our goal
of extracting models from the data, rather than examining slices of the data, places different re-
quirements on the sampling process. We need to correct artifacts that impede our classification and
model-extraction techniques. For example, the use of a Hamming filter, as described in Chapter 2,
to low-pass filter the discretely sampled data to reduce aliasing is a known process. We believe
that within the computer graphics community the process is not applied often enough to eliminate
the artifacts evident in many static geometric models derived from volume data.

[Duda and Hart 73] describes matching parametric models of distributions to sets of samples
by applying statistical techniques to calculate the parameters directly. Finding the mean and
variance of a set of real numbers is a simple example of such a process. We, instead, fit similar
distribution models to histograms of samples. We attempt to avoid local minima and to determine
the number of different materials by identifying materials in the histogram one at a time, finding
the most prevalent materials first, and continuing until there are no significant histogram peaks
that correspond to unidentified materials.

Material-classification techniques in computer graphics and MR are becoming more common
[Drebin et al. 88], [Cline 90], [Kikinis et al. 90]. The technique in [Drebin et al. 88] involves in-
teractively classifying the histogram of a scalar-valued dataset. The other two references use in-
teractive, supervised techniques: a person trained in anatomy determines characteristic material



responses, and then the classification algorithm labels the rest of a volume dataset using that infor-
mation. [Yoo et al. 92] and [Pizer 90] present another technique that uses unsupervised methods
to divide a dataset into multiple regions, which are then interactively placed into different classes.
Our technique differs from all of these supervised ones because it does not require a trained operator
to distinguish the different materials and regions.

[Vannier et al. 85] and [Vannier et al. 88] use techniques originally designed and written to
process satellite images to identify different materials in data. Some of these techniques are unsu-
pervised, but they all identify each voxel as a single material. We produce a continuous function
of the volume, where each sample can consist of a mixture several materials. This function can be
evaluated anywhere within the volume. This continuous classification avoids some artifacts, like
aliasing and discontinuities, that discrete classification can cause in extracted models.

[Levoy 88], [Drebin et al. 88], and [Upson and Keeler 88] describe volume rendering techniques.
Some earlier work is described in [Kajiya and von Herzen 84]. Our contribution to these standard
volume-rendering techniques is our method for classifying the volume data and mapping it to
properties that the volume renderer can use to create images.

Related work has utilized 2-D image data in making computer graphics models [Muraki 91],
[Terzopoulos and Fleischer 88]. Our work differs because we are working with 3-D volume data.
[Lorensen and Cline 87|, [Snyder 92], and [Miller et al. 91] all extract surface models from volume
data. Our preliminary techniques are similar to those of [Lorensen and Cline 87] and [Snyder 92],
but we extend them to create dynamic models by including the “insides” of the objects as well as
the surfaces.

1.4 Thesis Organization

Chapter 2, “Data Collection,” discusses collecting MR, imaging data. Chapter 3, “Artifact Re-
duction,” presents the different artifacts for which we can compensate, together with the details
of the compensation techniques. Chapter 4, “Material Classification,” describes the creation of
multi-dimensional histograms of volume data, fitting each with a sum of parameterized gaussian
functions, and using the results to classify the volume data. Chapter 5, “Applications to Visu-
alization,” illustrates our techniques with computationally-stained images from the collected and
classified volume data, with volume-rendered images of the data, and with rudimentary geometric
and dynamic models that are extracted from the data. Results and future work are summarized in
Chapter 6.



Chapter 2

Data Collection

Our goal of automatically extracting geometric and dynamic models from three-dimensional MR
data leads to a number of goals for the data collection process. As explained in Section 2.2, MR
data is provided as discrete, vector-valued samples of a function of three-dimensional space. We
need the following properties in these sampled MR datasets:

sufficient resolution to distinguish the features that we are interested in,

different values for regions of an image corresponding to different materials in an object,
sufficiently small aliasing artifacts,

constant values in an image for regions of constant material in an object, modulo noise, and

geometric alignment of different scalar volume images of the same object, so that they can
be combined to form a vector-valued image.

This chapter will describe some background on sampling and its terminology, present some basic
information about how MR works, and briefly discuss parameters that control MR data collection.
We will also present some guidelines we have developed for choosing objects and parameters, and
describe some examples of the data that we have collected.

2.1 Sampling Terminology

In this section we review some terminology from digital signal processing and introduce related
notation that we will use. Appendix A is a more detailed summary than this review for readers
less familiar with the field. Sources such as [Oppenheim 83] or [Lim 90] provide an even more
in-depth treatment, while [Blinn 89a] and [Blinn 89b] give a more intuitive description. Terms in
this summary will be italicized at their first use.

For our purposes, digital signal processing consists of mapping from functions of continuous
parameters to sampled functions and back again, as well as operating on those functions or the
samples that represent them.

Functions are sampled at regular intervals using a particular kernel function to produce a set
of samples called a datasel. Each sample is a convolution of the original function with a translated
version of the kernel function. From that dataset we can reconstruct a continuous approximation
to the original function using another kernel function.

The fourier transform of a function is its representation in fourier- or frequency-space. The
fourier transform of a kernel function is its frequency response. Filtering a function involves con-
volving it with a kernel function (or filter kernel) at each point, and has the effect of scaling
the frequency-space representation of the input function by the frequency response of the kernel



function. Filtering a function with a filter kernel that attenuates high frequencies and passes low
frequencies relatively unchanged is called low-pass filtering.

A dataset can only represent a function containing frequency components less than the Nyquist
limit for the sampling rate of the dataset. If higher frequencies are not removed by the sampling
kernel function, they show up as aliasing artifacts in the dataset. Gibb’s phenomenon can also
cause ringing artifacts in a dataset if the frequency cutoff of the sampling kernel function is too
abrupt.

We discuss and use several specific kernel functions, including the Dirac é-function, the sinc
function, a boz function, a triangle function, a cubic b-spline approximation to a gaussian, and
a Hamming function for sampling, filtering, and reconstructing functions. See Appendix A for as
equations and figures for these functions, as well as a discussion of their performance and frequency-
response trade-offs.

Different MR, collection techniques use different sampling kernels. We will discuss these and the
collection techniques in Section 2.2 and in the aliasing subsection of Chapter 3.

2.2 Introduction to Magnetic Resonance

In order to create models, we need appropriate collected data. We describe the MR collection
process in this section to make clear the origin of some of the artifacts we remove and to explain
the basis for some of the collection guidelines we present at the end of this chapter. In this section,
we describe the characteristic material values that MR measures, discuss the sampling that an MR
machine does, and explain some of the parameters that control the data-collection process.

2.2.1 MR Terminology and Definitions

A physical material such as skin, muscle, or fat can be modeled as having three MR-measurable
values related to the atomic nuclei of some specific element. The first is net spin density, and the
other two are magnetic decay time constants characteristic for each material. These values are
often referred to as p(z),T1(z) and T(x), and are functions of 3-D space. We will describe these
values briefly. (See [Keller 88] [Wehrli 88] and [Wehrli] for more details.)

An object in an MR machine is subjected to a strong, constant magnetic field. Because atomic
nuclei are charged and are spinning, their axes tend to line up with the constant field of the machine.
They can line up spinning in either direction, but tend to favor one direction over the other. Net
spin density, sometimes referred to as p(z), measures this difference between the density of nuclei
spinning one direction and of those spinning the other direction.

Nuclei absorb radio-frequency (RF) energy at certain wavelengths related to the strength of
the magnetic field surrounding them, and are thus perturbed from their aligned position. They
then relax back into their aligned positions, and release that RF energy, with an exponential time
constant of 77(z).

Although nuclei tend to line up with the constant field, the alignment is not exact. As a result,
their rotational axes precess around an axis in the direction of the constant field. Because materials
can affect the magnetic field locally, the precession can happen at slightly different rates, and spins
that are initially all in phase get out of phase over time. The exponential time constant for this
dephasing is T5(z).

Typically, we measure these properties for hydrogen nuclei, or protons, because hydrogen is so
prevalent in biological tissue and because hydrogen nuclei produce a very strong MR signal relative
to other nuclei. Other nuclei, however, can produce a stronger signal than hydrogen nuclei within
materials that have little or no hydrogen.



The RF energy that is transmitted to and received from the nuclei is both produced and
measured by coils. In many cases, a single coil does both jobs. If the coil can deliver the same
amount of RF energy to every part of the volume being imaged, and can receive equally well
from every part, then the resulting images will show uniform materials with uniform intensities.
Transmission and reception efliciency are generally complicated functions of space, although there
are often regions of relative uniformity. For cylindrical coils, in particular, the region near the
center of the coil is relatively uniform, while near the ends of the cylinders the response drops off
quite a bit. For some other coils, unfortunately, there is no uniform region.

2.2.2 Spin-echo Data Collection

MR data is produced as vector-valued samples of a function of 3-D space. We primarily use a collec-
tion protocol called spin-echoimaging. Spin-echo imaging it is less sensitive to local inhomogeneities
in the constant magnetic field than other imaging techniques, and tends to avoid some geometric
and intensity distortions that those inhomogeneities can cause. We have also collected one dataset
using a gradient-echo technique, which provides thinner slices, but which is more susceptible to
geometric distortions.

Spin-echo values, v(z), of samples in datasets collected with the spin-echo technique can be
modeled by the following equation:

o(z) = pla)(1 - e TR/ ) TE/Tale), (2.1)

where Tr, the relaxation time, and Ty, the echo time are parameters that can be set for each
collection to vary the function of p, T1, and T3 that is collected. The collection sequence excites
the object with RF energy and measures the response from each excitation. The sequence pauses
for the relaxation time between excitations, and measures the response after each excitation at the
echo time. Varying these two parameters gives much control over the image values that different
materials give.

There are many ways to set Tp and Tg to get different spin-echo values, v(z), for the same
material. By varying these parameters we can get a spin-echo value for one material that is large
for one (Tr,Tg) pair and small for another, while spin-echo values for another material are large
for both (Tr,Tr) pairs. We can look up approximate values for p, 77, and T3 of materials similar
to those we are imaging to help choose (1Tr,Tg) pairs as described in Fig. 2.1. These values are
available in sources such as [Keller 88].

MR Term Conditions v(z) Approximation
proton-weighted Tr > T and T < T2 v(z) = p(x)

Ty-weighted TreTyand Ty < Ty v(z) ~ p(z)(1 — e~ Tr/T1(2))
Ty-weighted Tr>Tiand Tp =Ty, v(z)x p(x)e_TE/TQ(I)

Figure 2.1: For specific materials with known values of p, 71 and T, there are
(Tr,TE) combinations for which some terms of Eqn. 2.1 can be ignored, to first
approximation. Images produced in these modes are called proton-, T1-, or T5-
weighted. Note that in 7Tj-weighted images, materials with a larger 77 produce
smaller values, whereas in T5-weighted images, materials with a larger 75 produce
larger values. 77 and 73 tend to be correlated — materials with a long 77 tend to
have a long T as well. [



Figure 2.2: Four 2-D slices of a dataset of a human head. Samples are three-
vectors. Each row contains three images of the same slice with each image repre-
senting one of the elements of the vector. The echo time, Tk, is 25ms, 50ms and
100ms from left to right. The relaxation time, Tk, is 2000ms for all images. []

Figure 2.2 shows four slices from a dataset with samples that are three-vectors. The dataset
is of a human brain. FEach row shows the same slice with each image showing one element of the
vector. The three values making up the vector were collected with a different relaxation-, echo-time
combination. Note that the contrast between tissues changes across each row. The echo time, Tg,
is 25ms, 50ms, and 100ms, from left to right in each row, with the relaxation time, T = 2000ms.

2.2.3 Collection Parameters

MR datasets are influenced by several parameters which we divide into geometric and magnetic
categories.

Geometric parameters determine the volume of space over which data is collected and the spatial
resolution of the resulting data. They also determine the sampling kernel function k(z).

Magnetic parameters include the relaxation time, Tp, and the echo time, T, which deter-
mine the function of p, Ty, and Ty that is collected, as described in Eqn. 2.1. Figure 2.3 lists the
parameters and shows typical values for them.

2.2.4 MR Sampling

Spin-echo data is collected from the MR imaging machine in the fourier domain (see [Keller 88]),
and an inverse fourier transform is applied to it to produce images. The collection is often done as a
set of slices, which are imaged one at a time, with an inverse two-dimensional transform performed



Geometric Parameters Typical Values
x, y resolution 256x256, 512x512
field of view 10-30cm

X, y center 0,0

number of slices 8-60

slice thickness 3-8mm

slice spacing 0-10mm

slice locations varies
Magnetic Parameters Typical Values
imaging protocol spin-echo
relaxation time, Tr 100-7000ms
echo time, Ty 10-100ms
number of excitations (NEX) 1-4

Figure 2.3: Typical parameters controlling collection of medical resolution MR,
data. The geometric parameters determine the region of space to be imaged, and
the magnetic parameters affect the sampled values for different materials, as shown
in Eqn. 2.1. The number of excitations determines how many times the dataset will
be collected and averaged together to improve the signal to noise ratio. [

on each slice, although it is possible to image the entire volume volume. When a set of slices is
collected, the sampling kernel within each slice inherently low-pass filters the data because the
data is collected in fourier space within the slice. In the direction perpendicular to the slices, the
sampling kernel is often less well-behaved. It can be too narrow, or can otherwise have a frequency
response that passes frequencies higher than the Nyquist limit. In either case, aliasing artifacts can
be introduced into the reconstructed images.

When an entire volume is imaged, instead of one slice at a time, the data is collected in fourier
space for the entire volume, and an inverse three-dimensional fourier transform is applied to the
whole three-dimensional dataset. In this case, the 3-D sampling kernel low-pass filters the data in
all directions, and thereby avoids severe aliasing artifacts.

2.3 Collection Guidelines

There are interdependencies and tradeoffs among the many parameters that affect MR collections.
Some of the most notable goals that must be traded off are signal-to-noise ratio, spatial resolution,
sampling rate, collection time, and number of values per spatial point. In general, any improvement
in one of the measures above is almost always accompanied by a corresponding loss in one or more of
the others. The following guidelines are contradictory in places. The advantages and disadvantages
listed with the guidelines should help in making decisions about which to follow.

e Choose objects that will fit within the uniform region of the coil.
V' Avoids having to correct for non-uniform response of constant tissues.
V' Tends to reduce collection time because object is smaller.
X Reduces size of object that can be imaged.
X May push the resolution limit, since smaller objects may have smaller features that need
to be distinguished.
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Choose objects with sufliciently large features.

v/ Avoids need for data at finer resolution than is possible, either technologically or due to
time constraints.

v/ Tends to reduce collection time.

x Limits class of objects that can be imaged.

Choose objects with high hydrogen density. The signal-to-noise ratio is directly related to
the amount of hydrogen in the object.

V' Tends to reduce collection time.

V' Tends to increase data quality.

x Limits class of objects that can be imaged.

Choose objects without magnetic materials and without very sharp discontinuities in the
hydrogen density.

V' Avoids geometric and intensity distortions that are difficult to correct, such as ghosting
and ringing.

x Limits class of objects that can be imaged.

Use spin-echo collection protocol.

V' Reduces some geometric and intensity distortions that other protocols can cause. Is less
sensitive to static magnetic-field inhomogeneities than some other protocols.
Provides good range of contrast for materials with varying 77 and 7% values.

x Can require more collection time than some protocols.

Choose objects that do not change during the collection time, or limit collection time to the
time an object can remain relatively static.

V' Avoids artifacts due to motion or changes during collection.

X Rules out most living things, and so is often not practical. Blood flow in almost any
part of the body, respiration in the upper torso, and muscle movements in any part of
the body can cause artifacts.

Collect multiple different values for each point in space. Ideally, collect a proton-weighted
dataset; one or more Tj-weighted datasets, with relaxation time, Tr, spanning the range of
expected T3 values; and one or more T-weighted datasets, with echo time, T, spanning the
range of expected T, values.

V' Gives more opportunity for collecting data that will distinguish materials with similar
characteristics.

X Increases collection time.

Collect data with sufficient resolution to distinguish features of interest.

v Can find smaller features.

X Increases collection time.

Overlap slices if possible, or at least minimize slice spacing.

V' Avoids aliasing artifacts in the collected data in the slice direction.
Improves resolution.

x Can require interleaving two or more datasets, and can increase collection time for a
fixed-size volume.

Collect three-dimensional volume instead of slices.

V' Avoids aliasing problems in slice direction.

X Increases collection time because different slices cannot be collected simultaneously.

X Protocol not available on some machines.

Reconstruct data using filter kernels that do not pass high frequencies.

V' Avoids aliasing problems in the reconstructed data.

x Can require more computational time.
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2.4 Examples of Datasets

All of the data that we have used for this thesis have come from the Huntington Magnetic Resonance
Center in Pasadena, California. They operate a clinical GE 1.5-tesla Signa machine, which can
collect spin-echo slices down to 3mm thick, with resolution in each slice somewhat better than
lmm. The machine can image volumes within a cylinder up to approximately 750mm in diameter,
and 1m long. The data produced by the machine satisfies many of the criteria mentioned at the
beginning of this chapter, although it collects spin-echo data only as slices.

We have collected data of a number of objects using this machine, including human heads, a
human hand, a jade plant, and several bananas. Figure 2.4 lists some of the datasets that we have
collected, together with the collection parameters that we used.

We are just beginning to use a new MR facility here at Caltech. It currently collects data at a
resolution of about 0.lmm, and can image volumes within a cylinder up to approximately 25mm
in diameter and 25mm long.

2.5 Summary

In this chapter, we presented the goals for resolution, contrast, alignment and signal uniformity
in the data-collection process. We also briefly discussed sampling and reconstructing continuous
functions as these processes pertain to collecting and examining MR datasets. We then described
spin-echo MR collections, which primarily samples nuclear spin density, p(z), decayed by two char-
acteristic time constants of a material, Ti(z) and T3(z). Geometric and magnetic parameters
control what volume of space and what function of p(z), Ti(z), and T5(z) will be collected. We
suggested guidelines for collecting data, and listed the advantages and disadvantages of each guide-
line to help with deciding among them when they conflict. Finally, we enumerated the data we
used for this work and the machines that we collected it on.
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Figure 2.4: Datasets that we have collected and used as examples in this thesis.
SE = spin-echo, GRE = gradient-echo, NEX = number of excitations. [



Chapter 3

Artifact Reduction

Chapter 2 suggests guidelines that can help avoid many artifacts in collected MR data. Almost all
datasets, however, are collected with some artifacts. These can occur because conflicting goals pre-
vent some guidelines from being followed, or because there is no practical way to avoid a particular
problem. In this chapter we discuss some causes of artifacts and methods to reduce artifacts.

We have developed techniques for reducing several types of artifacts. First, we have been able to
reduce some aliasing artifacts, at the expense of decreasing the resolution of a dataset. Second, we
have compensated within datasets for non-constant response of constant materials. Third, we have
aligned multiple mis-aligned scalar-valued datasets of the same object to create a new vector-valued
dataset with each element a sample from one of the aligned scalar datasets. And fourth, from a
dataset collected with several (Tr,Tr) pairs we have generated datasets with different (Tr,Tx)
combinations so that the resulting datasets would better distinguish particular materials.

3.1 Aliasing

A sampled dataset will usually contain aliasing artifacts. This phenomenon occurs when frequencies
higher than the Nyquist limit for the sampling rate are aliased to frequencies below the limit. Higher
frequencies will then be included in the sampled data, even though they cannot be reconstructed
from it. These higher frequencies can show up as bumps in extracted models, as seen in Fig. 3.1.

We reduce these aliasing artifacts by determining what frequencies could have aliased infor-
mation in them, and band-limiting the function to the lowest such frequency. This band-limiting
causes correct information above that frequency to be lost; this reduces the resolution, but also
reduces the aliasing. As it is not possible to separate the correct data from the aliased data above
that frequency, maintaining only the correct information is not possible.

3.2 Non-constant Response of Constant Material

A second artifact often found in MR data is non-uniform data values for a single material. Figure 3.5
shows an example of this problem where a slice from a wrist dataset gets quite “dim” toward the
bottom of the image; the left image of Fig. 3.3 shows a slice of a bunch of bananas where the
image gets dim at the right and left edges. This problem has several possible causes. First, the
RF coil used as an antenna for exciting and measuring signal from the volume may not produce a
uniform field (see Section 2.2.1). Second, the static magnetic field of an MR machine can also have
inhomogeneities that cause similar distortions. And third, collection software can cause systematic
distortions of the image values. Software may try to avoid “wraparound” artifacts, where portions
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Figure 3.1: Geometric model of a human hand extracted from filtered MR data.
The model on the top was created directly from the data collected on the machine.
The model on the bottom was created from a dataset that had reduced aliasing
artifacts. Note the bumps on the model in the bottom image, particularly the
horizontal ridges within the boxes on the end of the thumb and near the bottom
right of the palm. Figure 3.2 shows details of these areas. [
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Figure 3.2: Details of two areas of the geometric models of the hand. The top
images show the areas within the boxes in the top image of Fig. 3.1, which was
created from data with aliasing artifacts. The bottom images show the areas within
the boxes in the bottom image of Fig. 3.1, which was created from data with aliasing
artifacts reduced. Note the horizontal ridges in each of the top images. The bottom
images do not show this artifact. [

of an object outside of the volume being imaged appear within the volume on the opposite side, by
attenuating the RF it delivers to slices near a face.

We have experimented with ways of correcting this problem, although more work needs to be
done in this area. We have tried two methods: The first makes the assumption that the attenuation
of the signal is a function of only one of the coordinate directions. This is a reasonable assumption
for the latter case where a cylindrical coil becomes less effective near its ends, and for the case
where the software has attenuated the response as a function of one direction. For this case, we can
statistically analyze the data in each “slice” of data perpendicular to the axis along which we are
assuming the variation occurs. By identifying a reference statistical value that should be the same
in each slice, we can linearly transform the data to make the reference values constant. The mean
or the median are reasonable candidates for this reference value. Figure 3.4 shows a few sample
histograms of slices on the left and the reference values as a function of z on the right.

While this technique can correct for some artifacts, it tends to significantly increase the noise
in slices that are scaled by a large amount. As a result, it is far preferable to collect data that does
not suffer from this problem by imaging within the uniform region of the coil and magnet.

A second method for reducing these artifacts does not operate with the assumption that the
attenuation is a function of one of the coordinate variables. This technique requires collecting data
of a single material, e.g., water, within the same volume as the dataset of object, and ensuring
that the two images are aligned properly. By dividing each value in the image of the object by
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Figure 3.3: The image on the left shows non-uniform response artifacts. Note the
dim areas near the left and right edge of this image. The brightness as a function
of the horizontal, or z, axis is shown in Fig. 3.4. The image on the right shows
the left image corrected for attenuation. Note the increased noise near the left and
right edges that occurs as a result of the very low signal-to-noise ratio there. [

Figure 3.4: The left graph shows histograms of four constant z slices from a
dataset whose values vary as a function of z. The value at which the peak occurs
in each histogram increases as a function of z. The right graph shows the relative
location of each peak as a function of the z value of the slice. The four marked
locations on the right graph correspond to the locations of the peaks in the four
sample histograms on the left. [

the corresponding value in the image of the water, we adjust for any inhomogeneity. As with the
previous technique, this technique tends to increase noise where the dataset is scaled by a large
amount, and so collecting data within the uniform region of the coil and magnet is preferable.

3.3 Alignment of Datasets

In many cases, MR data can be collected so that each of the scalar values making up the vector at
each spatial point are aligned. When the datasets are not aligned, for example when a live subject
moves between acquisitions, the data must then be computationally aligned.
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Figure 3.5: One slice from a high-resolution image of a human hand. Note that
the intensity of the image falls off particularly near the bottom of the wrist. [

choose one dataset as a fixed, reference dataset
for each moving dataset
align moving dataset with fixed datasets
add to list of fixed datasets
end

Figure 3.6: The alignment algorithm. We align datasets one at a time relative to
those datasets that have already been aligned. [

This problem is particularly difficult because even perfectly aligned images will look different.
Features within the images will be in the same places, but their dataset values may be higher or
lower, depending on their collection parameters. We somehow need to map from values in one
image to expected values in another image in order to compare directly. We also must address
the fact that the volume images we are aligning will not occupy the same space, and so we must
correctly deal with areas that are only inside a single volume, as well as with areas of overlap.

Consider a vector-valued volume dataset as several scalar-valued volume datasets, one for each
element of the vector. We align multiple such scalar datasets by holding one or more of them fixed
in position and moving and deforming another until it is optimally aligned. Then we repeat the
process, using the newly aligned dataset to help align the additional ones. The dataset that is
chosen as the initial fixed reference should distinguish as many distinct materials as possible, since
this will give the most information for aligning additional datasets.

To perform the alignment, we define a correlation function F(p) that tells us how well a de-
formed dataset is registered with respect to a collection of fixed datasets. E(p) is a function of the
parameters, p, of a deformation function that moves and deforms the moving dataset. We minimize
E(p) to find the optimal parameters of the deformation so that the moving dataset is registered
with respect to the fixed ones.
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Deformation Function

There are a number of design criteria for the deformation function of the moving dataset. The
deformation function should rotate, translate, and scale the moving dataset, since this would ac-
count for patient motion and the inaccuracy of positioning and orientation measurements of the
MR machine. In order to compensate for geometric distortions due to distance from the detector
coil, the deformation should also skew the moving dataset [Bradley 85]. While there can be more
complex geometric distortions due to magnetic field inhomogeneities and other effects, we have
chosen to ignore them and use a quasi-linear deformation. This choice achieves all of the goals
above, is reasonably simple, and empirically seems to work adequately.

Correlation Function

We define the correlation function, £(p), in terms of one or more fixed, or stationary, datasets and
one moving dataset. F(p) integrates the square of an error function over the volume of interest.
This least-squares method is a generic approach to many types of optimization problems. Consider
the basic form of the following equation:

B(p) = /‘ ¢(, p)dv, (3.1)

where E is the correlation function; e(z,p) is some sort of error function between the stationary
datasets and the moving dataset; z is the point at which we are evaluating the error function; p
represents the parameters of the deformation of the moving dataset; and V' is the volume of overlap
of the datasets.

This first choice has an undesirable solution for minimizing the function E(p): The datasets
can be moved so that they do not overlap at all. We can correct that bias by normalizing the
correlation function E(p) by the overlap volume of the datasets in question.

/V w(z)e*(z,p)dv
/V w(z)dv

where w is a weighting function that is zero where any dataset is undefined, and one where they all
are defined. The denominator eliminates the bias of the overlapping volume. For this choice, E(p)
is thus an average error value, or a “specific error” (error per unit volume), for the set of points
within the volume. The correlation function, E(p), is defined as long as there is some overlap
between the volumes. Typically we expect that the overlap will be significant, since the images

E(p) =

, (3.2)

usually represent the same geometry.
Now we refine the error measure, e(z, p), of the equation:

e(z,p) = Dm(z,p) = C(Dj(2)), (3.3)

where D, (z,p) and Dy(z) are the data values within the moving and fixed datasets, respectively,
and a conversion function, C', converts the values from the fixed dataset into a value that should
appear in the corresponding location in the moving dataset. The moving dataset function, D,,(z, p),
deforms the moving dataset according to the parameters p, and then returns the value of the dataset
at the specified point.
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Figure 3.7: An overlay of two volume datasets before and after alignment. On the
left we see three views of the datasets before alignment. Note in the top left that
the lighter colored dataset is significantly lower than the darker dataset. On the
right, they are aligned in all three views. [

Relating Values in Different Datasets

The conversion function, C', is of key importance in our algorithm because it is the mechanism by
which we are able to relate data values from different datasets. Without the C' function, we would
not be able to compare and align values from datasets with differing MR acquisition parameters. For
the purposes of alignment, we have used an easy-to-implement supervised classification technique
to calculate C', although an unsupervised technique could be substituted. Within each dataset,
we interactively select points representative of each material. Values from the fixed dataset are
classified with a tentative material based on their relationship to these points, and the mean value
for that material in the moving dataset is returned by C.
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We approximate the integral F(p) with a sum over a finite number of points using numerical
techniques, such as Monte Carlo integration, and have minimized it using a quasi-Newton minimizer
[NAG]. Figure 3.7 shows two volume datasets before alignment, on the left, and after alignment,
on the right.

3.4 Calculating New Spin-echo Values

The fourth type of processing that we perform on the MR data can help to create data values that

differ for different materials. As discussed in Chapter 2, Tp and Tr significantly affect the values

collected within a dataset. By collecting datasets for several values of Tr and T, we can calculate

p, 11, and T, for individual points in the collected volume. From these values, we can calculate

new data values for those points as if they were collected with different Tr and Tg values. We do

not need to actually collect this new data. We can vary the Tr and Tg to find the best contrast.
To calculate new datasets, we use the following equation based on Eqn. 2.1:

v; = p(1 — e Tri/T1)e=Tril T2 (3.4)

For the fixed values of p,T7, and T3 at a spatial point corresponding to a sample, Eqn. 3.4 defines
the values, v;, that will be measured by an MR machine as a function of Tp and Tg. Given a vector
of collected values, v;, and the corresponding vectors, Tr; and Tg;, we can find a least-squares
solution of Eqn. 3.4 for p, T}, and T5.

With this solution, we can calculate a new data value for any given T and T, and so can choose
(Tr,TE) pairs that produce the best possible contrast. Note that Eqn. 3.4 has three parameters, so
we need at least three collected values for each voxel in order to solve the equation. More collected
values will improve the least-squares solution.

3.5 Summary

In this chapter, we have discussed techniques for reducing four types of artifacts in MR data.
Reducing these artifacts gives us datasets that can be used to produce more accurate models.
First, aliasing artifacts can be reduced by low-pass filtering, using a filter kernel with a smooth
dropoff in frequency response at its boundaries. Second, inhomogeneities in the values for a simple
material within a volume can be normalized with respect to a statistical value calculated from the
data, or with respect to an additional collected reference value. Third, datasets can be aligned
by deforming them with respect to one another, and minimizing and correlation function that
determines how closely they are matched. And, fourth, contrast can be enhanced by calculating
datasets for new values of T and T from collected datasets.



Chapter 4

Material Classification

In this chapter we present an algorithm for identifying different materials in a volume dataset and
creating new datasets that represent the probability of each material in the object as a function of
3-D space. The main goal for our material-classification technique is to enhance models and images
created from sampled volumetric data. As [Drebin et al. 88] points out, classification techniques
that classify voxels as one of a fixed set of materials cause artifacts when used for computer graph-
ics because the techniques tend to create incorrect hard edges between materials. To avoid this
problem, we produce smoothly varying classified voxel data. The classified voxel values represent
the probability that a voxel is a particular material. Of course, the probabilities at a given voxel
for all materials must sum to one.

1. Histogram construction
2. Gaussian fitting
3. Data classification

Figure 4.1: The steps of the material-classification algorithm [

The steps of the algorithm are listed in Fig. 4.1. First, we create a multi-dimensional histogram
of the values in the image. If we have a sufliciently large number of samples in a volumetric dataset,
the law of large numbers [James 76] suggests that the distribution of MR values for a given material
will be gaussian. Second, we model the histogram as a sum of parameterized gaussian functions,
where each function represents the distribution of samples for a single material in the volume.
We find parameters for the collection of gaussian functions that make the model agree with the
histogram. Third, material probabilities are calculated by examining the sampled voxel data and
using the model to lookup the likelihood of each material given that data value.

One problem with modeling the histogram with a sum of gaussians is that noise in the histogram
can obscure a distribution for a material that only occupies a small portion of the volume. Since our
work on extracting models is usually concerned with the main materials that make up an object,
this problem is less limiting for us than it might be for other applications, where an abnormality
covering only a few voxels could be difficult to find in the histogram.

4.1 Terms and Definitions

We first introduce some notation and definitions we will use to describe our algorithm.

21
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Figure 4.2: A one-dimensional histogram of a a human brain dataset. Each “bin”
in the histogram is a constant value. Note the three peaks in this histogram and
compare this figure to Fig. 4.8, which shows the set of gaussians fit to it. [
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Figure 4.3: A two-dimensional histogram of a human brain dataset. Note the
correlation between this histogram and the one-dimensional histogram in Fig. 4.2.
Note also the correspondence in peaks in the histogram to the centers of colored
regions in Fig. 5.4. [

Data

Collected data, v = V(z), is an n-vector for each sampled point z in R3.

Histograms

We define a point in feature space as a point in R™ that corresponds to a particular vector of data
values. A histogram discretizes feature space into bins, or rectangular regions. The histogram
function

h=H(v)

is a piecewise constant function over these bins and maps R™* — R. Within a bin, the histogram
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function, H(v), is constant. H(v) returns the number of voxels with data values in the bin con-
taining v, divided by the size of the bin, or the number of voxels with a particular range of data
value per unit volume. Figures 4.2 and 4.3 show a one-dimensional example and a two-dimensional
example of a histogram.

We call the set of bins in a histogram H. Given a bin, b € ‘H, we define the bin location v, as
a feature space point within the bin, hj as the value of the histogram at that point, and s, is the

volume of the bin in feature space. syhy, then, is the cumulative frequency of all data values within
a bin, b.

Gaussian Functions

A gaussian is a multi-dimensional gaussian bump function representing a distribution of data values

[Larson 82]. The parameters p; = [hy,, ¢p;, Wp,, Tp;] controlling the gaussian bump are shown in
Fig. 4.4.
type description

hop, scalar height

Cp; n-vector center in feature space

wp, n-vector pre-rotation axial widths

2
Ty w—vector rotation

Figure 4.4: Parameters of a n-dimensional gaussian []

Figures 4.5 and 4.6 illustrate the effects of the parameters of one-dimensional and two-dimensional
gaussians, respectively.
We define the gaussian function as:

g(v,pi) = hp,e—hf(v,cpi wp; o)
k3

where ¢ transforms the point v to appropriately shape the gaussian, and is given by:

v, c,w,r) = (R(T)Wf(w))_l(v —c).

W(w) is a diagonal matrix containing elements of w and R(r) is a rotation matrix parameterized
by r. For one dimension, r is a zero-vector and R is the identity. For two dimensions r is a scalar,

av. p)

Figure 4.5: Parameters controlling a one-dimensional gaussian [
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<Y

Figure 4.6: Parameters controlling a two-dimensional gaussian. The elliptical
shape is a contour of the height function of the gaussian. [

and R is a rotation around the origin. For three dimensions, r is a three-vector and the rotation
matrix is a rotation around the axis represented by (—73,r1, —79) with a magnitude equal to the
length of r.

For the general d-dimensional case, we construct an anti-symmetric matrix w with the elements
of r above the diagonal and their negatives below. R, then, becomes e“.

We define a sum of gaussian functions, G(v,P), as

171l

G(v,P) = Z_: g(v, p;)

where P = {p;} is the collection of all the parameters of all the gaussians and ||P|| is the number
of gaussians.

4.2 Histogram Construction

Histograms for scalar volume data H(v) are piecewise constant curves as shown in Fig. 4.2. Note
that there are three clearly visible peaks in that figure, each of which will be fit by a gaussian
in the model of the histogram. To improve running time, a histogram should have bins large
enough to contain sufficient samples so that the resulting functions are relatively smooth, but
small enough that multiple individual bumps in the histogram do not merge together and become
indistinguishable.

Histograms for volume data with two values at each point (i.e. feature space is R?) are functions
from R? — R, or height fields, where the two axes of the base represent the different data values
and the height represents the frequency of that combination of values. See Fig. 4.3 for an example
of a two-dimensional histogram.
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while (max of (H — () is large enough)
(a) find max to use as new gaussian center
(b) fit new gaussian without moving center
(c) fit new gaussian varying all parameters
(d) fit “nearby” gaussians

end

(e) fit all gaussians

Figure 4.7: The histogram-fitting algorithm. We incrementally fit one gaussian at
a time to the histogram, and perform a global optimization at the end [

4.3 Gaussian Fitting

We model histograms as a sum of gaussians because the set of samples in a dataset represents
distributions of the sample values of the materials in the dataset. We make the assumption that
the distributions will be gaussian, and that we can fit a parameterized gaussian to each peak in the
histogram.

Our problem, then, is to find a set of parameters P and a ||P|| such that G(v,P) fits a particular
histogram H(v). Given a particular number of gaussians, finding the P which globally minimizes

Ez-deal(P):/vw(v)(H(v)—G(v,P))de.

gives us the best possible match to the histogram. V is all of feature space, and w(v) is a weighting
function used to indicate areas of interest to weight more heavily. In general, we use w(v) to isolate
the evaluation of F;4.q; to the area immediately around a peak in the histogram so that only data
from that histogram will affect the minimization. If w(v) is set too wide, then a nearby peak may
pull a gaussian away from a peak to which it should stay near. Note that F,4.q; is defined so that
it is small where the model and the histogram agree and increases as they disagree.

We approximate F;geq; as a sum over the bins of the histogram we are fitting:

Ehist(P]’) = Z w(vb)(hb — G(?Jb,P]‘))QSb. (4.1)
beH

Our algorithm is incremental, with the parameters for minimization j represented by P;. We
first build up an initial guess at a global minimum, and then perform a global minimization starting
at that guess. In addition to giving us a starting point with a reasonably small energy function for
the global minimization, this incremental process helps us to determine the number of bumps in the
model. By finding and locally fitting a single gaussian at a time, we are able to run minimizations
with a small number of parameters. For each minimization we hold some parameters in P;, fixed
and let others vary. We will give details on this process below. We also vary w(v) to indicate
different areas of interest. When we have fit enough gaussians, we can use the parameters in P; as
a starting point for a global minimization with all parameters varying. Since these parameters are
relatively close to optimal already, we avoid many higher local minima and reduce search time to
find a minimum. This final minimization over all parameters also catches any details we may have
missed in the histogram by focusing on peaks with w(v). Figure 4.7 summarizes the steps in the

algorithm.
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In all cases w(v) is zero where there are no histogram bins. The gaussians tend to stick near
maxima in the histogram, and so they are generally very small where there are no histogram
bins. Ignoring their contribution there could allow a gaussian to move out into that region, but in
practice this does not happen. Moving away from a histogram maximum out into the area where
the weighting function w(v) is zero would leave the maximum uncovered, thus increasing Fp;s.

Step (a): In the first step of the algorithm we search H(v)—G(v,P?~!) for the most important
peak to fit next, finding a global maximum by looping through all of the bins of the histogram.
To avoid picking a point that, through noise, has an artificially high value, we require that the
histogram points immediately neighboring the maximum be positive, but less than the chosen
point. There can be suflicient noise in the histogram that we will find the algorithm over-fitting
the data by trying to fit very short or very narrow maxima in H(v)— G(v, Pj_l). In this case it is
sometimes necessary to manually terminate the loop and move on to step (e).

Step (b): In the second step we attempt to fit to the histogram a gaussian centered at the
maximum found in the first step, with the height of the gaussian set to the value of the histogram at
that location, and with an initial width in each dimension a small multiple (3-10) of the histogram
bin size. We wish to fit the shape of this gaussian without too much influence from any other peaks
in the histogram, so we set the weighting function w(v) to a copy of the trial gaussian with the
widths decreased by some factor (we have found 25-50% to work well) and the height reduced to
one. w(v) does not change during the minimization. During this minimization we vary the width,
height, and rotation parameters of the trial gaussian while the center parameters remain fixed.

Step (c): We now have an approximate shape and location for the gaussian. We perform a
minimization where all the parameters of the trial gaussian are unconstrained, resetting w(v) to
a gaussian with a height of one and widths 25-50% those of the changed trial gaussian, again to
avoid being adversely affected by nearby unrelated bins in the histogram.

Step (d): One more minimization within the loop minimizes all of the parameters of all the
gaussians near the trial one. This step is necessary because the trial gaussian may have distorted
the gaussian sum where it overlaps with other bumps, and could therefore make the next maximum
difficult to find. We define two gaussians as near if either evaluates greater than ¢, = 10™* at the
center of the other. In this step we set w(v) to the sum of all the nearby gaussians, again with
their heights all reduced to one and with their widths all reduced by 25-50%.

Step (e): Once we are unable to find a new maximum, or the loop is manually terminated, we
perform a final minimization where we set w(v) to one for all non-zero histogram entries and allow
all parameters to be varied. Figure 4.8 shows a one-dimensional histogram that this algorithm has
fit with nine gaussians.

Minimization
We use a quasi-Newton minimizer [NAG]. It runs faster when the objective function is scaled to
lie between zero and one. We scale the function in Eqn. 4.1 by

1

Z w(vp)his
beH
This scaled version of Ej;s¢(P;) is one if G(v,P;) is zero, and zero if G(v,P;) fits the histogram
perfectly.
The parameters in P;, which are gaussian heights, centers, widths, and rotations, are defined
relative to feature space, and so do not lie within the range (—1,41). We calculate an approximate
minimum and maximum for each parameter, and map the minimum to —1 and the maximum to
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Figure 4.8: one-dimensional histogram and a nine-gaussian model fit to it. The
diamonds represent histogram values, and each gaussian is drawn separately in
addition to the sum G(v,P). This figure corresponds to the histogram in Fig. 4.2.
0

+1. For example, the center of the gaussian must lie within the range of the histogram in feature
space, so we linearly map that range onto (—1,+1).

The function that calculates Ej;g is called many times for each minimization, and must inte-
grate over all non-zero bins in the histogram for each evaluation of Fj;s:. As a speedup to each
minimization but the final one, we examine the possible contribution of each histogram point to
the resulting Fj;s: in advance and only sum over those bins where w(vb)hgsb is greater than some
small €,. The minimizations do not appear to be very sensitive to this parameter, which we have
varied from 10~'° to 10~7. Even if this introduces errors in the early steps, the final optimization
corrects any problems.

Our minimizer can calculate numerical derivatives of the objective function Fj;s(P) with re-
spect to its parameters. Because we have more information about the function, we can calculate
the derivative more quickly. From Eqn. 4.1,

dEpst(P)
=
—2 3" w(hy)(hy — G(vb,P))G(vbaP))%sb
beH b

We can calculate this derivative in the same loop that calculates Ej;s(P). Since each parameter
of G(v,P) only affects one gaussian, we can calculate % efficiently using finite differences on the
single gaussian that p; affects.
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4.4 Classification

With the fitted gaussian model we can convert the original MR data into probabilities. Let M be
the set of materials. There will be one material m; for each gaussian in the model. We wish to find
the probability of a particular material m; at a particular point z in modeling space. Using Bayes’
law we can calculate that probability as

Py |V(e) = S0

Parts of an object may contain more than one material and so may be represented by more
than one gaussian. In that case, the probabilities of the different materials can be added together
to produce the probability of a such a compound material.

4.5 Summary

In this chapter we have presented an unsupervised algorithm for classifying vector-valued volumetric
data. The algorithm creates a multi-dimensional histogram of the collected data, incrementally
fits a sum of gaussian distributions to the histogram, and applies Bayes’ law to infer material
probabilities.



Chapter 5

Applications to Visualization

This chapter presents some application areas which can take advantage of datasets that have
been produced using the techniques described in the previous chapters. These application areas
are computational staining, or creating datasets of colors from datasets of other values; volume
rendering, which creates images of the entire three-dimensional volumes; and model extraction,
which produces three-dimensional models from the data.

Figure 5.1: The three images on the left are three echos from one slice of a human
hand dataset. The image on the right is a combination of the three on the left with
one echo on each of red, green, and blue. [
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Figure 5.2: Each image is of a single slice from a multi-echo MR dataset with one
echo on each of red, green, or blue. The left image is from a human neck and the
right is from a human brain. [

5.1 Applications to Computational Staining

In this section we discuss several methods for staining a vector-valued MR dataset to produce color
images. Some of these techniques are simple and do not require the classification step described in
the previous chapter while others depend on it

The first method, which we call “RGB,” combines three different images into one by simply
displaying one as the red channel, one as the green channel, and one as the blue channel. The main
advantage of this method is that it tends to preserve smooth variations in the original data; it does
not introduce abrupt transitions in the data that could be interpreted incorrectly as boundaries
between different materials. It is also quite simple. Its major disadvantage is that it cannot
significantly increase differences between materials, and so two materials that appear similar before
staining will appear similar after staining as well. Figures 5.1 and 5.2 show examples of this staining
technique.

The “RGB” technique performs a linear transformation from feature space to RGB color space.
Another staining technique, which we call “SVD,” also performs a linear mapping. For this tech-
nique we interactively pick a number of points in the original vector-valued dataset and identify
each point as a particular material. Each material is assigned a color, and so for each spatial point,
we have a feature space point and a color. By arranging those points into a matrix and finding
its pseudo-inverse using singular value decomposition (SVD), we get the least-squares “best” linear
transformation from feature space to color space. Applying this mapping to an image slice gives
images like that on the left of Fig. 5.3. See [Kirk 90] for more information.

This technique has the advantage of being able to better separate different tissues than the RGB
technique. We can also choose particular colors for particular materials. Its primary disadvantages
are that it requires classification of a number of data points, it is sensitive to the location of the
origin in feature space, and it is a linear mapping, which prevents it from being able to separate
materials that are represented by linearly dependent vectors in feature space.

A third staining method produces a non-linear mapping from feature space to color space. In



Figure 5.3: Computationally stained brain slice. The left image uses interactively
selected tissue points and the SVD algorithm to find the optimal least-squares linear
mapping from original data to colors. The right image uses interactively selected
tissue points and the variable filter algorithm to select colors at each point. [

Figure 5.4: The lower right image shows the histogram of the dataset from the
brain image on the right of Fig. 5.2. Each gaussian is assigned a constant hue.
The color at each point is a combination of the colors for nearby gaussians. The
saturation of the color decreases for points further from the center of each gaussian
and the value increases for points further from the origin. The upper left image
is a computationally stained slice of MR dataset of the same brain. Note the
differentiation of different tissues made possible by the classification of the two-
dimensional histogram. [
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Figure 5.5: Colored histogram and slice from classified hand dataset []

this method, which we call “variable filter,” we use the interactively classified points to calculate a
mean and covariance matrix which define a simple probability distribution for each material. By
assigning a color to each material, either algorithmically or interactively, and coloring each feature
space point according to that distribution, we get images like that on the right of Fig. 5.3.

This method differentiates materials that are relatively similar in the original data much better.
White matter and grey matter, different tissue types within the brain, are colored pink and yellow
in the figure, illustrate the improved differentiation. The materials are much better differentiated
than with the RGB and SVD staining techniques. One disadvantages of the variable filter method
is that it tends to “lose” information for points that are not near any classified distribution. Note
the black areas in the right image of Fig. 5.3. This method is also dependent on an interactive
classification technique.

The fourth technique is similar to the variable filter technique. It uses the gaussian functions
calculated in the previous section as probability distributions. Colors are interactively assigned
to each gaussian. Figure 5.4 shows a human brain colored by this technique, together with the
two-dimensional feature space colored using the same color map. This figure also describes how the
images are colored using the distributions and the selected colors. The major advantages of this
technique are that it avoids the interactive classification step and that it differentiates tissues with
similar signal well. Its major disadvantage is shared with the variable filter technique: it “loses”
data that is not near any of the gaussians in feature space. This can happen for materials that are
very rare in an image or for samples that are very far from the mean of the material they represent,
but is usually not critical for identifying materials that make up a significant portion of an object.

Figure 5.5 shows a similarly stained image of a slice through a human hand.
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Figure 5.6: The left image shows a photograph of a jade plant. We collected
magnetic resonance data of the plant, and volume rendered that data to create the
image on the right. [

Figure 5.7: Volume-rendered image of banana with peel shown in transparent
yellow and meat shown in opaque white. [

5.2 Applications to Volume Rendering

We have created initial volume-rendered images of some of objects we have scanned. Qur volume
renderer ray traces volume data, integrating through densities dependent on the amount and type
of material present. See [Kajiya and von Herzen 84] and [Kay 92], among others, for more details
on ray tracing volumetric data.

The first volume-rendered image we show is of data collected from a jade plant. The dataset is
transparent where the data values are small and is progressively more opaque as the data values
get larger. Note the correspondence between a photograph of the jade plant on the left of Fig. 5.6
and the volume-rendered image on the right.

The volume-rendered image in Fig. 5.7 is of data of a banana. Peel and flesh materials have been
identified within the dataset, with the banana peel material rendered with a transparent yellow
color, and the banana flesh with an opaque white.

Figure 5.8 shows two volume-rendered images of a human hand. The image on the left has
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Figure 5.8: The volume-rendered image of a human hand on the left shows only
muscle and fat, while the image on the right shows only tendon. [

Figure 5.9: Volume-rendered images of human hand from the front and back, with
muscle in red, fat in yellow, and tendon in white. [

opaque red material where the classified dataset indicates muscle, and semi-transparent yellow
material where the classified dataset indicates fat. The volume-rendered image on the right is
opaque white where the classified dataset indicates tendon.

Figure 5.9 shows volume-rendered images of the front and back of the same human hand, with
the three materials combined.
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5.3 Applications to Geometric Model Extraction

In this section we describe how we use the probabilities produced by the material classification
algorithm in Chapter 4 to create preliminary geometric models. We first convert one scalar dataset
out of our vector-valued dataset of materials probabilities into a continuous function by using tri-
cubic b-spline interpolation. This corresponds to using a cubic gaussian approximation as a kernel
for reconstructing the continuous function. A geometric model is then extracted by computing a
polygonal approximation to an isosurface of this interpolation function.

The isosurface extraction is computed using the algorithm for implicit surface approximation
described in [Snyder 91]. The algorithm requires a function that can bound the output of the
interpolation function, given a bound on its input. Using interval arithmetic, this is relatively easy
to implement for tri-cubic interpolation.

The algorithm subdivides the space containing the model in order to compute rectangular par-
allelepipeds that completely bound the iso-surface. The algorithm then computes the intersections
of the isosurface with the edges of each region, and links the intersections into polygons.

In Fig. 5.10 we show an extracted geometric model of a jade plant on the left and separately
extracted models of the peel and flesh of a banana on the right.

Figure 5.10: Geometric models extracted from volume data collected. A model
of a jade plant is on the left. The model on the right is of banana skin and meat
displayed separately. The banana model is cut off at the bottom because the real
banana extended out of the uniform region of the MR coil. [

5.4 Applications to Dynamic Model Extraction

We have also extracted preliminary dynamic models from classified data. We use the same algorithm
as in the previous section to create a polygonal isosurface, and in addition create a set of rectangular
parallelepipeds that contain the isosurface and everything it encloses. By representing the vertices
of these cubes as mass points connected by spring-dashpots we can dynamically simulate the models.

We simulate the motion of the flexible cubes, and then deform the polygonal model that they
contain before rendering. Figure 5.11 shows, on the left, four frames of the dynamics of a simulation
of a jade plant model twisted abruptly. On the right, the figure shows four frames of a simulation
where the skin of the banana segment is peeled away from the flesh.
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Figure 5.11: Geometric/dynamic models of a jade plant and a banana extracted
from volume data. The left image shows four frames from an animation of the
dynamics of a flexible model of a jade plant. The right image shows four frames
from an animation of the dynamics of the skin being peeled off the banana. [

The classification process has helped to improve the extraction of dynamic models. Without
the ability to distinguish between peel and flesh, for example, extracting a model of a banana that
could be peeled would have been very difficult.



Chapter 6

Conclusion

6.1 Results

We have developed and presented techniques applicable to extracting models of real-world objects
from volume data. Our techniques are primarily in the first steps of the model-extraction pro-
cess: collecting volumetric magnetic resonance data, reducing artifacts in the data, and classifying
different materials.

We have presented guidelines for choosing objects and for choosing magnetic resonance imaging
collection parameters. While we advocate preventing artifacts in collected data when possible, we
have also presented techniques for reducing aliasing artifacts from collected data, for correcting
some causes of non-uniform response of a given tissue within a dataset, for registering datasets
that are not aligned, and for improving contrast by calculating datasets for different values of the
collection parameters.

Our unsupervised classification algorithm operates on the artifact-reduced data by creating a
histogram of the data, incrementally fitting a sum of gaussians model to the histogram, and then
using Bayes’ law to calculate material probabilities.

From the processed data we have created preliminary static and dynamic models of objects, as
well as computationally stained images of slices of the data and volume-rendered images of whole
datasets.

6.2 Future Work

The motivation for this work has been to improve the quality of computer graphics models of real-
world objects and to make the task of creating them more automated. Future work will ultimately
lead to a system that will be able to create models of objects quickly. We would like to be able to
take a real-world object, such as a cricket, a frog, a human face, or a human hand, and create a
model of the muscles, bones, tendons, and other parts. The relationships and constraints between
parts should be deduced from the data, or easily entered interactively. We would then like to be
able to simulate these parts by contracting the muscles, which would pull on the tendons, which in
turn would pull on the bones, moving them as they move in the real-world object.

Work in several areas is necessary to achieve the goals of a system for creating models of
real-world objects. First, we need to collect higher-resolution data with better contrast between
materials. We will be using data from the Beckman Imaging Center MR microscope, which is just
becoming available. We would like to be able to computationally optimize the collection parameters
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that we use to improve the contrast, signal-to-noise ratio, collection time and other qualities of the
collected data.

Second, the current classification process, which calculates material probabilities for a given
voxel, should estimate material quantities in each voxel, and should take into account local geomet-
ric information to better determine what materials are in each voxel. Once data is classified this
way, we can use it to make computationally stained images that will have smoother, more contin-
uous appearance, and models with more accurate boundaries and relationships between parts.

Third, we would like to be able to volume-render models that have deformed as a result of
simulations. Our volume-rendering technique is currently limited to rendering static volumes.
Dynamic simulation can produce deformations of those volumes that represent, for example, a
plant under some load, or a banana peel bending as it is peeled off. We would like to be able to
produce volume-rendered images of these deformed objects in addition to the polygonal renderings
we can currently produce.

Fourth, and finally, we would like to produce much more sophisticated and detailed static and
dynamic models. We need algorithms which create dynamic models that are more accurately shaped
than the cubes that we are currently using. We need to be able to extract models of “thin” object
parts, like skin or tendons. We will need a more sophisticated testbed for simulating these flexible
models with appropriate constraints, including constraints like a tendon attached to a muscle, skin
lying above fat and sliding around, and flexible bodies colliding with one another.



Appendix A

Review of Digital Signal Processing

In this appendix we review some concepts from digital signal processing. Readers unfamiliar with
the field should refer to a source such as [Oppenheim 83] or [Lim 90] for more detail, or [Blinn 89a]
and [Blinn 89b] for a more intuitive description. We will italicize terms where they are first defined.

For our purposes digital signal processing consists of mapping from functions of continuous
parameters to sampled functions and back again, as well as operating on those functions or the
samples that represent them. We will first discuss the one-dimensional case, and generalize to
higher dimensions in other sections. We start with a scalar function, f(z):

f:R—R.

Given a kernel function, k(z),

k:R—R,

the convolution transform of f(x) with k(z) is defined as

s(z) = (f o k)(z) = /_Oo FOke = 1)dt. (A1)
A sample, s(zq), of the function f(z) at the point zq for the kernel function k(z) is
s(20) = (f o k)(wo) = /_OO FOOK(E = z0)dt. (A.2)

By sampling a function at n regularly spaced points, z; = xg + th, for 0 < ¢ < n we produce a
dataset, D(f) = {f(zi)}. We call h the sample size.

Using a kernel function, k(z), we can create a new continuous function through a process called
reconstruction, which is implemented as follows:

fa) = Z Feh(e - z2). (A3)

We write the fourier transform of f(z) as (F7(f))(w). This new function is in fourier space,
(also called frequency space) because each point represents the contribution of one angular frequency,
w, to the original function, f(z). Analogously, DF7T(D(f)) is the discrete fourier transform of a
dataset, and each sample it contains represents a single frequency.

The fourier transform of a kernel function is its frequency response. The Convolution Theorem,

FI(fok)=FT(f)FT(k), (A4)
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Figure A.1: Sinc kernel function ks(z) = %ﬂ:—xl As the magnitude of the input of
ks(x) gets arbitrarily large, the output of the function continues oscillating around
zero. [

states that convolving with the function k(z) attenuates each frequency component of the fourier
transform of f(z) by the corresponding value in the fourier transform, or frequency response, of
function k(z). Performing such a convolution is often called filtering, with the kernel function k(z)
known as the filter kernel.

As an example, the Dirac delta function, é(z), which is zero everywhere except the origin, and
which has an integral equal to 1, can be used as a kernel function. Assume, for this example, that
f(@) is a continuous function. For this kernel function, Eqn. A.2 evaluates to f(zg). Such sampling
with a delta function kernel is known as point sampling, since it returns the function evaluated at
a single point. The delta function has uniform frequency response for all frequencies, so convolving
f(z) with é(z) does not modify f(z). Creating a sampled dataset using a delta kernel function
gives us a set of point samples. Reconstructing a function from those samples with the same delta
kernel function gives us a comb-like function that is zero everywhere except for the sampling points;
at those points it matches the original function.

If f(z) is not continuous, the sample, convolution, and reconstruction operations will behave
differently at any points of discontinuity, but will behave as described everywhere else.

A sinc kernel function, defined in [Oppenheim 83] as

sin(mwz)

ks(z) = sinc(z) = ——=, (A.5)

T

has some useful properties (Fig. A.1 and Eqn. A.5 show the sinc function for sample size h = 1).
The frequency response of the sinc function is a box function, similar to that of Fig. A.2. Convolving
a function with a sinc kernel function generates a new function that has no frequencies above a
certain limit known as the Nyquist limit. This new function is referred to as low-pass filtered.
Sampling a function using a sinc kernel and then reconstructing from those samples using a sinc
kernel produces a low-pass-filtered version of the original function. Note that it is possible to
exactly reconstruct the low-pass filtered function from the samples. The same samples can also be
calculated by point sampling the low-pass filtered function.

Practically, the sinc function is difficult to use directly, either for sampling or for reconstruc-
tion, because its output continues oscillating around zero as its input gets arbitrarily large, and so
a convolution requires integrating over all of R. The sinc function also tends to introduce ring-
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Figure A.2: Box and linear kernel functions k;(x) and ki(xz). The box kernel
function is zero outside the interval [—%, %] and the linear kernel function is zero
outside the interval [-1,1]. [
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Figure A.3: Cubic and Hamming kernel functions, k.(z) and kj(z). The cubic
kernel function is zero outside the interval [—2, 2] and the Hamming kernel function
is zero outside the interval [—4,4]. [

ing, or Gibb’s phenomenon, when it is convolved with a function, because of the sharp cutoff of
its frequency response. For these reasons, we approximate the sinc kernel function. Different ap-
proximations have different characteristics. Generally speaking, the approximations are windowed
(are zero beyond a certain distance from their centers), which limits the range of a convolution
integral. Wider approximations more faithfully replicate the frequency-limiting characteristics of
the sinc function. Narrower approximations generally allow quicker calculations. Some of the
approximations also tend to avoid the sharp frequency-domain cutoff of the sinc function.

Sampling kernel functions that pass frequencies above the Nyquist limit for a particular sampling
rate will cause the samples to inaccurately alias those higher frequencies to lower frequencies. The
artifacts caused are often referred to as aliasing artifacts and are difficult to remove because they
cannot be distinguished from frequency information that is not aliased.

We reconstruct a function from our datasets using a variety of kernel functions, generalized to
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three dimensions. The first kernel function that we use is a box (see Fig. A.2), which effectively
returns the value of the sample nearest to the point of evaluation. It is fast because it only
depends on a single sample from the dataset, but it is inaccurate because it produces only a
piecewise-constant approximation to the original function. The second fastest uses a linear kernel
(see Fig. A.2), and returns a weighted average of the nearest 2% = 8 neighbors. The third uses a
cubic B-spline kernel (see Fig. A.3 and Eqn. A.6), which returns a weighted sum of the nearest
43 = 64 neighbors.

z3 4+ 6224+ 122 + 8 if 2 € [-2,-1]
1 —32% — 622 4+ 4 if z € [-1,0]
ke(z) = p 32% — 62% +4 if 2 €[0,1] (A.6)
—2% + 622 — 122 +8 ifz €[1,2]
0 otherwise.

The fourth uses an eight-sample-wide Hamming kernel function (see Fig. A.3 and Eqn. A.7), which
returns a weighted sum of the nearest 8 = 512 samples.

k() = Smc(%x){ 8.54+ 0.46cos(Zz) if —4 <z <4 (A7)

otherwise.



Bibliography

[Barzel 92] Barzel, Ronen, “Physically-Based Modeling for Computer Graphics: A Structured Ap-
proach,” Academic Press, Boston, 1992 (in press).

[Blinn 89a] Blinn, James F., “What We Need Around Here Is More Aliasing,” IFFEE Computer
Graphics and Applications,9(1), January 1989, 75-79.

[Blinn 89b] Blinn, James F., “Return of the Jaggy,” IFFEFE Computer Graphics and Applica-
tions,9(2), March 1989, 82-89.

[Bradley 85] Bradley, William G., Jr., W. Ross Adey, and Anton N. Hasso, Magnetic Resonance
Imaging of the Brain, Head, and Neck, Aspen Publishers, Rockville, Maryland, 1985.

[Cline 90] Cline, Harvey E., William E. Lorensen, Ron Kikinis, and Ferenc Jolesz, “Three-
Dimensional Segmentation of MR Images of the Head Using Probability and Connec-

tivity,” Journal of Computer Assisted Tomography, 14(6), November/December 1990,
1037-1045.

[Drebin et al. 88] Drebin, Robert, Loren Carpenter, and Pat Hanrahan, “Volume Rendering,”
Computer Graphics (Proc. SIGGRAPH),vol. 22, 1988, 65-74.

[Duda and Hart 73] Duda, Richard P., and Peter E. Hart, Pattern Classification and Scene Anal-
ysis, John Wiley & Sons, New York, 1973.

[Foley et al. 90] Foley, James, Andries van Dam, Steven Feiner, and John Hughes, Computer
Graphics: Principles and Practice, Addison-Wesley, Reading, Mass., 1990.

[Horwitz et al. 71] Horwitz, Harold M, Richard F. Nalepka, Peter D. Hyde, and James P. Morgen-
stern, “Estimating the Proportions of Objects within a Single Resolutions Element of a

Multispectral Scanner,” International Symposium on Remote Sensing of Environment,
(7th : 1971 : Ann Arbor, Michigan), 1307-1320.

[James 76] James, Glenn, ed., Mathematics Dictionary, Van Nostrand Reinhold Company Inc.,
New York, 1976.

[Kajiya and von Herzen 84] Kajiya, James T., and Brian P. Von Herzen, “Ray Tracing Volume
Densities,” Computer Graphics (Proc. SIGGRAPH),vol. 18, 1984, 165-174.

[Kay 92] Kay, Timothy, From Geometry to Texture: Frperiments Towards Realism in Computer
Graphics, Ph. D. Thesis, California Institute of Technology, 1992.

[Keller 88] Keller, Paul, “Basic Principles of Magnetic Resonance Imaging,” GE Medical Systems
Report, Milwaukee, 1988.

43



BIBLIOGRAPHY Draft August 6, 1992 44

[Kikinis et al. 90] Kikinis, Ron, Rerenc A. Jolesz, Guido Gerig, Tamas Sandor, Harvey E. Cline,
William E. Lorensen, Michael Halle, Stephen A. Benton, “3D Morphometric and Mor-
phologic Information Derived From Clinical Brain MR Image,” NATO Advance Research
Workshop on 3D Imaging in Medicine, Springer-Verlag, 1990, 441-454.

[Kirk 92] Kirk, David B., Alan H. Barr, and David Laidlaw, “Registration and Computational
Staining of MRI Data,” Caltech Computer Science Technical Report, to appear.

[Kirk 90] Kirk, David B., “Representing Rough Surfaces and Volumes for Computer Graphics,”
M.S. Thesis, California Institute of Technology, 1990.

[Larson 82] Larson, Harold J., Introduction to Probability Theory and Satistical Inference, John
Wiley and Sons, New York, 1982.

[Levoy 88] Levoy, Marc, “Display of Surfaces from Volume Data,” IFEFE Computer Graphics and
Applications,vol. 8(3), May, 1988, 29-37.

[Lim 90] Lim, Jae S., Two-dimensional Signal and Image Processing, Prentice Hall, New Jersey,
1990.

[Lorensen and Cline 87] Lorensen, William, and Harvey Cline, “Marching Cubes: A High Resolu-
tion 3D Surface Construction Algorithm,” Computer Graphics (Proc. SIGGRAPH),vol.
21, 1987, 163-169.

[Miller et al. 91] Miller, James, David Breen, William Lorensen, Robert O’Bara and Michael
Wozny, “Geometrically Deformed Models: A Method for Extracting Closed Geomet-
ric Models from Volume Data,” Computer Graphics (Proc. SIGGRAPH),vol. 25, 1991,
217-226.

[Moik 80] Moik, Johannes G., Digital Processing of Remotely Sensed Images, (NASA SP; 431),
1980.

[Muraki 91] Muraki, Shigeru, “Volumetric Shape Description of Range Data using ‘Blobby
Model’,” Computer Graphics (Proc. SIGGRAPH),vol. 25, 1991, 227-235.

[NAG] NAG Fortran Library, Numerical Algorithms Group, Downers Grove, Illinois.

[Oppenheim 83] Oppenheim, Alan V., and Alan S. Willsky, with Ian T. Young, Signals and Sys-
tems, Prentice-Hall, New Jersey, 1983.

[Pizer 90] Pizer, S., “Toward Interactive Object Definition in 3D Scalar Images,” 3D Imaging in
Medicine, NATO ASI Series F, vol. 60, Springer- Verlag, Berlin, 1990, 83-105.

[Platt and Barr 88] Platt, John, and Alan Barr, “Constraint Methods for Flexible Models,” Com-
puter Graphics (Proc. SIGGRAPH),vol. 22, 1988, 279-288.

[Siggraph Films 87] Siggraph Video Reels, vols. 36-37, 1987.
[Siggraph Films 88] Siggraph Video Reels, vols. 38-39, 1988.
[Siggraph Films 89] Siggraph Video Reels, vols. 51-52, 1989.

[Snyder 91] Snyder, John, Generative Modeling: An Approach to High Level Shape Design for
Computer Graphics and CAD, Ph.D. Thesis, California Institute of Technology, 1991.



BIBLIOGRAPHY Draft August 6, 1992 45

[Snyder 92] Snyder, John, Generative Modeling for Computer Graphics and CAD, Academic Press,
Boston, 1992 (in press).

9

[Snyder 92a] Snyder, John, “Interval Analysis for Computer Graphics,” submitted to Siggraph 92.

[Terzopoulos et al. 87] Terzopoulos, Demetri, John Platt, Alan Barr, and Kurt Fleischer, “Elasti-
cally Deformable Models,” Computer Graphics (Proc. SIGGRAPH),vol. 21, 1987, 205-
214.

[Terzopoulos and Fleischer 88] Terzopoulos, Demetri, and Kurt Fleischer, “Modeling Inelastic
Deformation: Viscoelasticity, Plasticity, Fracture,” Computer Graphics (Proc. SIG-
GRAPH),vol. 22, 1988, 269-278.

[Upson and Keeler 88] Upson, Craig, and Michael Keeler, “V-BUFFER: Visible Volume Render-
ing,” Computer Graphics (Proc. SIGGRAPH),vol. 22, 1988, 59-64.

[Vannier et al. 85] Vannier, Michael W, Robert L. Butterfield, Douglas Jordan, William A. Mur-
phy, Robert G. Levitt, Mokhtar Gado, “Multispectral Analysis of Magnetic Resonance
Images,” Radiology, 154, 1985, 221-224.

[Vannier et al. 88] Vannier, Michael W. Christopher M. Speidel, and Douglas L. Rickman, “Mag-
netic Resonance Imaging Multispectral Tissue Classification,” Neural Information Pro-
cessing Systems (NIPS), August 1988.

[Wehrli 88] Wehrli, Felix, “Advanced MR Imaging Techniques,” GE Medical Systems Report, Mil-
waukee, 1988.

[Wehrli] Wehrli, Felix, “Introduction to Fast-Scan MR,” GE Medical Systems Report, Milwaukee.

[Wiersma et al. 76] Wiersma, D. J. and D. Landgrebe, The Use of Spatial Characteristics for the
Improvement of Multispectral Classification of Remoltely Sensed Data, IEEE Symposium
on Machine Processing of Remotely Sensed Data, 1976, 2A-18 2A-22.

[Yoo et al. 92] Yoo, Terry S., Ulrich Neumann, Henry Fuchs, Stephen M. Pizer, Tim Cullip, John
Rhoades, Ross Whitaker, “Direct Visualization of Volume Data,” I[IFEF Computer
Graphics and Applications,vol. 12(4), July, 1992, 63-71.



