Parallel Programming
Archetypes

in Combinatorics and
Optimization

Thesis by
Svetlana A. Kryukova
Advisor: K. Mani Chandy

In Partial Fulfillment of the Requirements
for the Degree of Master of Science

California Institute of Technology
Computer Science Department
Pasadena, California 91125

June 12, 1995

Abstract

A Parallel Programming Archelype is a language-independent program de-
sign strategy. We describe two archetypes in combinatorics and optimiza-
tion, their components, implementations, and example applications devel-
oped using an archetype.

Acknowledgements

Many thanks to Mani Chandy whose guidance and encouragement as my
research advisor was very much appreciated.

Also I would like to thank the other members of Compositional Sys-
tems Research Group — Berna Massingill, Adam Rifkin, Eve Schooler, Paul
Sivilotti, John Thornley — for valuable discussions, comments and sugges-
tions.

I wish to thank Caltech and Green Hills for supporting my education.

Last, but not least, I would like to thank my husband, Anatoly, for his
loving support.

This research was supported in part by AFOSR grant F49620-94-1-0244
and by the NSF under Cooperative Agreement No. CCR-9120008.

i

Contents

1 Introduction
1.1 Goal o
1.2 Motivation
1.3 What Are Archetypes?
1.4 Architectures, Languages and Libraries
1.5 Overview L
2 The Divide-and-Conquer Archetype
2.1 Imtroduction
2.2 Archetype Skeleton oo oo oo
2.3 Archetype Components
2.3.1 Algorithmic Parameters
2.4 Approaches to Parallel Implementation
2.5 Data Flow Approach and Performance
2.5.1 Mappingo
2.5.2 Granularity oo oo
2.5.3 Skeleton Lo
2.6 Implementations
2.7 Applicationso
2.71 Mergesort Lo
3 The Branch and Bound Archetype
3.1 Imtroduction
3.1.1 Assumptions Lo
3.2 Archetype Skeletono oo oo
3.3 Archetype Components
3.4 Approaches to Parallel Implementation
3.5 Implementations

iii

3.6 Applications

3.6.1 Zero-One Knapsack
4 Conclusion
A Electronic Textbook

Bibliography

v

43

45

46

List of Figures

2.1
2.2
2.3
2.4
2.5

3.1

Data flow graph of a Divide-and-Conquer algorithm. 9
A mapping of a Divide-and-Conquer data flow graph. 13
GToup Processes. v v v v vt v e e e 17
Execution time of finding the minimum element. 18
Speedup of parallel mergesort on Touchstone Delta. 27

Execution time of zero-one knapsack program on Touchstone
Delta. . . . o o 41

Chapter 1

Introduction

1.1 Goal

The goal of this thesis is to study two archetypes in combinatorics and op-
timization, the Divide-and-Conquer Archetype and the Branch and Bound
Archetype, and to demonstrate how these archetypes can be used for the
systematic design of efficient sequential and parallel programs. The research
whose results are presented in this document is part of the ongoing project
on Parallel Programming Archetypes.

1.2 Motivation

As networks of workstations and distributed systems that can exploit par-
allel computing become more widespread, the need for tools to aid the de-
velopment of parallel programs grows as well. Many scientists do not take
advantage of the available hardware because often the effort required for de-
veloping a new parallel program from scratch or parallelizing existing code
is not justified by the potential speedup. We think that it is possible to
reduce this effort by using parallel programming archetypes.

Many parallel applications share common features in design, program
structure, communication pattern, reasoning, debugging, testing and per-
formance tuning. This allows for development of an archetype as an ab-
straction that embodies these common characteristics. Understanding of
an archetype helps a programmer to understand all algorithms contained
within the archetype’s application domain. Moreover, knowledge of several
archetypes forms a basis for a systematic approach to program design for a

new problem.

Archetypes are being developed as language-independent design meth-
ods, allowing users to choose programming languages and communication
libraries, as well as familiar programming environments and debugging tools.
For many archetypes most of the debugging and testing can be done on a
sequential program, from which a correct and efficient parallel program can
be easily derived.

1.3 What Are Archetypes?

An archetype is a method of problem solving characterized by a design strat-
egy. It consists of several parts including:

1. the structure of a class of programs,
2. methods of developing parallel and sequential applications,
3. frameworks for reasoning about correctness,

4. suggestions for test suites and debugging, and tips based on the expe-
rience of others,

5. suggestions for performance tuning and performance models for differ-
ent architectures, and

6. a collection of applications developed using an archetype, each with a
collection of programs in several programming languages.

Currently archetypes are being developed in two areas: archetypes for
scientific applications [5, 10] such as the Mesh Archetype and the Spectral
Methods Archetypes, and archetypes for combinatorics and optimization,
such as the Branch and Bound Archetype and the Dynamic Programming
Archetype.

1.4 Architectures, Languages and Libraries

Today many different architectures are available to the users for development
of concurrent programs: heterogeneous or homogeneous networks of work-
stations or PCs, massively parallel supercomputers and multiprocessor work-
stations. These architectures have different characteristics and may require
different programming approaches in order to achieve good performance. In

order to show how the archetypal approach can be used for different architec-
tures, we will consider two major architectures: networks of single-processor
computers, such as workstations or PCs, and a supercomputer. The former
can be characterized by low communication to computational speed ratio,
whereas the latter can be characterized by high communication speed. Most
programs in this report were written for a network of Sun SPARC stations
and for the Intel Touchstone Delta.

Archetypes are being developed as a language-independent approach to
sequential and parallel program design, allowing programmers to take ad-
vantage of the special features of parallel languages and communication
libraries. In this report we used C programming language together with two
of communication libraries and a task-parallel language:

PVM: Programs developed for networks of workstations were written using
the Parallel Virtual Machine (PVM) system developed at Oak Ridge
National Laboratory and the University of Tennessee [7]. The system
uses message passing to exploit parallel computing across a wide va-
riety of distributed systems, including networks of workstations and
massively parallel computers.

NX: Programs developed for the Intel Touchstone Delta were written in
the C programming language using the NX communication library for
message-passing between processes [8].

CC+H+: Several programs were written in Compositional C++ (CC++),
a parallel programming language based on the C++ programming
language and developed at Caltech [3, 12]. CC++ has a few simple
extensions to allow construction of parallel libraries on a variety of
architectures.

1.5 Overview

This report is divided into 2 chapters, each of which describes a different
programming archetype. Each chapter contains the following sections:

Introduction: an intuitive description of an archetype’s approach and pro-
grams in the archetype’s application domain.

Archetype Skeleton: the archetype’s strategy, presented in a more formal
way, with the skeleton of the main procedure.

Archetype Components: the specification of user-defined functions, pro-
cedures and data types.

Approaches to Parallel Implementation: one or more approaches to
parallel implementation of an archetype.

Implementations: description of several implementations of the archetype’s
programming template.

Applications: description of one or more applications from an archetype’s
domain.

The following points concerning assertional and coding notation should
be noted:

o All data type names used throughout the report end with “_t”.

e In some cases, the names of the procedures are also used as predicates
in the assertions. Such a predicate holds if and only if the execution
of the procedure with the given input parameters produces the given
output parameters. For example, if procedure proc(x, y) has input
parameter x and output parameter y, then predicate proc(a,b) holds
if and only if, after execution of proc(a,y),y = b.

Chapter 2

The Divide-and-Conquer
Archetype

2.1 Introduction

The Divide-and-Conquer Archetype is based on a well-known strategy [2, 11]
for solving large problems, if there exists an algorithm for solving smaller
problems of the same type. Although both recursive and non-recursive im-
plementations of this approach exist, it is usually described as the following
recursive algorithm: when given a large problem,

1. take the problem and divide it into strictly smaller problems of the
same type; continue dividing until a problem is reached that is small
enough to be solved directly. A problem of such size is usually called
a base-case problem, or simply a base-case;

2. upon reaching a base-case problem, solve it using some known algo-
rithm;

3. then take the solutions to the smaller problems and merge them into
the solutions to larger problems, until a solution to the original prob-
lem is obtained.

Whether this approach will produce an efficient sequential algorithm
depends on the ability to split a problem and/or recombine subsolutions
in efficient manner. However, even for problems that do not have efficient
sequential solutions, using the Divide-and-Conquer strategy, the archetype
might provide an eflicient parallel solution.

2.2 Archetype Skeleton

The outline of the sequential Divide-and-Conquer Archetype is as follows:

Solution_t DnC(Problem_t aProblem)

{

Solution_t aSolution;

if (Size(aProblem) < BaseCaseSize)
aSolution = BaseCaseSolution(aProblem);
else {
Problem_t subProblems[K];
OtherInfo_t Other;
Solution_t subSolutions[K];
int i;

Split(aProblem, subProblems, Other);
for (i = 0; i < K; i++)

subSolutions[i] = DnC(subProblems[i]);
aSolution = Merge(subSolutions, Other);

}

return aSolution;

}

Constants K and BaseCaseSize, and functions Size(), BaseCaseSolution(),
Split() and Merge() are described in the following sections.

2.3 Archetype Components

In general, in order to develop a sequential Divide-and-Conquer algorithm,
the user has to define 3 data types and several functions and procedures
on these data types. Additionally, for specification and reasoning purpose,
several predicates should be defined.

Data types:
Problem t is a user-defined data type representing a problem being solved.

Solution_t is a user-defined data type representing a solution to some prob-
lem of type Problem_t.

OtherInfo_t is an optional user-defined data type representing some infor-
mation which is produced by the Split() procedure in addition to the
subproblems, and then used by the Merge() procedure. Many Divide-
and-Conquer algorithms do not use this data type.

Predicates: For specification and reasoning purposes only, the user should
define two predicates on the variables of the user-defined data types:

isWell Formed(P) holds if and only if problem P is a well formed problem.
The reason for having this predicate is that programming languages
allow variables of certain types to have many values, some of which
are not well formed in the context of the problem being solved.

isSolution(P, 5) holds if and only if solution S is a correct solution to prob-
lem P.

Constants, Functions and Procedures: The following procedures and
functions must be defined for a Divide-and-Conquer algorithm according to
the specifications given:

Size() is a function that returns some metric value on the size of a prob-
lem. Together with the constant BaseCaseSize this function is used
to determine whether a given problem is small enough to be solved
directly.

BaseCaseSize is a constant that defines the largest problem that can be
solved directly (using some other algorithm). Any problems that have
size smaller than BaseCaseSize will be solved using some other algo-
rithm.

BaseCaseSolution() is a function that uses some algorithm to solve di-
rectly the problems of the size no larger than BaseCaseSize. The
formal specification of this function is as follows:

Solution_t BaseCaseSolution(Problemt aProblem)
/* Precondition: isWellFormed(aProblem) and

* Size(aProblem) < BaseCaseSize

* Postcondition: (Return value = aSolulion) and
* 1sSolution(aProblem, aSolution)

*/

Split() is a function that divides a given (large) problem into K subprob-

lems of strictly smaller size, whose solutions when merged produce the
solution to the given problem. Formally,

void Split(Problem t aProblem, Problem t subProblems[],
OtherInfo_t Other)

/* Precondition: isWellFormed(aProblem) and

* Size(aProblem) > BaseCaseSize

* Postcondition:

* (VE:0<k< K: Size(subProblems[i]) < Size(aProblem))
* and

* (3Sls[] :

* (Vk:0 <k < K :isSolution(subProblems[k], Sols[k])) :

* (VS :isSolution(aProblem,S): S = Merge(Sols, Other)))

+/

Merge() is a function that merges a given set of subsolutions into the solu-

2.3.1

tion to the bigger problem, such that the subproblems, to which the
given subsolutions are solutions, were produced by the split of that
problem. Formally:

Solution_t Merge(Solution_t subSolutions[],
OtherInfo_t Other)

/* Precondition: true

* Postcondition: (Return value = aSolution) and

* (3 Probs[]:

* (VE:0<k< K:

* isSolution(Probs(k], subSolutions[k])) :
* (VP : Split(P, Probs[], Other):

* isSolution(P, aSolution))

+/

Algorithmic Parameters

In the performance analysis we will use the following parameters of a Divide-
and-Conquer algorithm:

K is

the maximum number of the subproblems returned by the Split()
procedure, and

S/b is the maximum size of the subproblems returned by the Split(), where
S is the size of the original problem.

For example, for the Mergesort algorithm these parameters are K = 2 and
b = 2, for Binary search K =1 and b = 2.

2.4 Approaches to Parallel Implementation

The data flow structure of a Divide-and-Conquer algorithm is shown in fig-
ure 2.1. It consists of a growing tree of Split() processes concatenated with
a shrinking tree of Merge() processes. Two main approaches to parallel im-
plementation of a Divide-and-Conquer algorithms map this graph differently
in time and space.

Initial Problem

Final Solution

Figure 2.1: Data flow graph of a Divide-and-Conquer algorithm.

Data Flow Approach. If the subproblems produced by the Split() func-

tion are independent and can be solved separately, then one can paral-
lelize the solving of subproblems in the sequential algorithm (making a
parfor loop out of the for loop in the DnC() procedure in section 2.2).
Thus, Split(), Merge() and the solving of the subproblems will be
executed sequentially, with the subproblems solved in parallel. The
general program structure of this approach is given below:

Solution_t Parallel DnCi(Problem_t aProblem)
{
Solution_t aSolution;
if (Size(aProblem) < BaseCaseSize)
aSolsution = BaseCaseSolution(aProblem);
else {
Problem_t subProblems[K];
Solution_t subSolutions[K];
OtherInfo_t Other;
int i;

Split(Problem, subProblems, Other);
parfor(i = 0; i < K; i++)

subSolutions[i] = Parallel DnCi(subProblems[i]);
aSolution = Merge(subSolutions, Other);

Note that the structure of this approach does not require any changes
to the user-defined sequential functions Size(), BaseCaseSolution(),
Split() and Merge().

Control Flow Approach. This approach is applicable to Divide-and-Conquer

algorithms for which a problem and/or a solution can be represented
as a collection of independent parts of the same type. All component
functions of the archetype then can be rewritten as separate processes
which use messages to communicate parts of subproblems/subsolutions
to each other, and which produce parts of subproblems/subsolutions
based only on partial information (several parts of a subproblem /subsolution)
received from the other processes. Then, after the decision is made
whether a problem is a base-case problem or not, function Split(),

10

function Merge() and the solving of the subproblems can be executed
concurrently. The skeleton for this implementation is as follows:

Solution_t Parallel DnC2(Problem_t aProblem)
{
Solution_t aSolution;
if (Size(aProblem) < BaseCaseSize)
aSolution = BaseCaseSolution2(Problem);
else {
Problem_t subProblems[X];
Solution_t subSolutions[K];
OtherInfo_t Other;

par{
Split2(Problem, subProblems, Other);
parfor(int i = 0; i < K; i++)
subSolutions[i] = Parallel DnC2(subProblems[i]);

aSolution = Merge2(SubSolutions, Other);

Note that the declaration of subProblems and subSolutions as well as
the parameters to the functions corresponds more to the declarations
of the communication channels between the processes rather than to
the variable declarations. Also note that we use function names of
the form FunctionName2() instead of FunctionName() to indicate that
these functions differ from those used in the sequential algorithm.

Even though the Control Flow approach allows for more concurrency,

the Data Flow approach is very easy to use to parallelize already existing
sequential code. Even development of a parallel algorithm from scratch is
easier with this approach, since the user can develop and debug the sequen-
tial program first. The rest of this chapter focuses on the implementation
and performance analysis of the Data Flow approach.

11

2.5

Data Flow Approach and Performance

Once the user has developed a sequential Divide-and-Conquer algorithm,

the Data Flow approach can easily be used to obtain a parallel algorithm

from the sequential code. A programming template can be provided to the

user to obtain a parallel algorithm by simple instantiation of the component

sequential functions. However, in order for the parallel implementation to

be efficient several issues have to be taken into consideration, such as gran-

ularity and mapping of the processes.
To analyze and predict the performance of a parallel Divide-and-Conquer

algorithm, we need to know some performance characteristics of the target

architecture:

N,: the number of the processors in the system.

Teom: average time for communication between the processors or ma-
chines in the system. This time can be given as a function of the size
of the message or the size of a problem.

Tspuie: execution time of the sequential Split() procedure as a function
of the problem size.

Torerge: execution time of the Merge() procedure as a function of the
problem size.

Thase—case: execution time of the BaseCaseSolution() as a function
of the problem size.

We also make the following assumptions about the target architecture:

available processors are identical;

only asynchronous communication actions are used; in particular, only
non-blocking sends are used;

the time that the sender of a message spends on communication actions
is negligibly small.

Assuming that the size of the original problem is S = b7 and the size of

a base-case problem is BaseCaseSize = 1, and using the above functions,

we can express the execution time of the sequential algorithm as follows:

g—1
Tseq(bq) = Z K' (Tsplit(bq_l) + Tmerge(bq_l)) +](quase—case (21)
1=0

12

2.5.1 Mapping

Let us consider a mapping of the data-flow graph of a Divide-and-Conquer
algorithm (e.g., see figure 2.1) onto the processors of the system.

_Initial Problem

. R - mapped onto the same
Final Solution processor

Figure 2.2: A mapping of a Divide-and-Conquer data flow graph.

Note that the execution of a process at any level of the data-flow graph
does not start until all preceding processes (predecessors in the graph) have
terminated. If the sizes of the subproblems returned by the Split() func-
tions are approximately equal, then the execution times of all processes on
one level of the graph are equal. Then, suppose that we map the processes
onto the system as shown in figure 2.2. If the communication overhead is
relatively small, such a mapping will produce an eflicient implementation.

From the execution time functions for the BaseCaseSolution(), Split()
and Merge() procedures, we can derive a recursive expression for the execu-
tion time of the parallel algorithm with this method:

S
Tpa'r(s) = Tsplit(s) + Tpar(g) + Tmerge(s) + 2Tcom(s)

13

Suppose that the size of the original problem is S = b? and problems of size

~

S = b° are solved sequentially; then

q
T (B9) = 37 (Taptie(6) + Trmerge(b') + 2Teom (b)) + T0(5) (2.2)
t=c+1

2.5.2 Granularity

Theoretically, the execution time of a “good” parallel program should de-
crease as the number of processors available for computation increases. The
actual speedup of a program, however, is limited by the communication
speed. Efficiency of a parallel algorithm is not determined solely by whether
the algorithm uses all available resources or whether it uses them as soon as
possible.

Parallel Base-Case Size

Communication overhead will make the parallel Divide-and-Conquer algo-
rithm for problems of a certain size less efficient than the sequential algo-
rithm. Let ParBaseCaseSize be the largest size of a problem such that the
sequential algorithm is more eflicient for its solution than the parallel one.
Knowing the performance characteristics of the system, one can predict the
value of ParBaseCaseSize.

Infinite number of processors. Suppose that the target architecture
consists of an infinite number of identical processors (N, = o). Suppose
that each process is mapped onto a separate processor as described in sec-
tion 2.5.1. Let T7*" denote the execution time of the parallel implementation
in which subproblems in the first &k levels of the data flow graph are solved
the using parallel algorithm, and subproblems on the lower levels are solved
using the sequential algorithm. For example, T{*" corresponds to the im-
plementation in which the original problem is split into subproblems, which
are then solved using the sequential algorithm on separate processors, and
their subsolutions are then merged. T}7"" can be expressed as:

k
. s s s S
127(5) = 3 (Tote(r) + T (G0) + 2eom(5)) + T3 (23)

=1

Suppose that there exists a problem size S such that the sequential
solution of problems of size 5 is more efficient than their parallel solution

14

with one level of the graph executed in parallel:
T*7(8) < TI"(8)

Using equations (2.3) and (2.1) we can find a condition on the size S in terms
of execution time of sequential algorithm and communication overhead:

) < /—Tcom() (2-4)

For non-decreasing execution time functions Tp;;; and T,y,epge and constant
function T¢pp(5) it is possible to show that from inequality (2.4) follows
that:

b b

Vo =1,2,...: TPY(§) > T*(S),

Thus, if inequality (2.4) holds, then solving a problem of size bS with
any number of parallel steps is less efficient than its sequential solution.
Even though in most distributed systems communication time, T.,,,, is not
a constant, its dependence on the size of the message is usually relatively
small (in comparison with functions Ty and Ty,erge). Therefore, for such
systems the inequality (2.4) can be used as a good upper bound on the value
of ParBaseCaseSize.

Finite number of processors. If the system consists of a finite number
of processors of the same type, it imposes more restrictions on the value of
ParBaseCaseSize. Let us find an upper bound on ParBaseCaseSize for
the system in which the number of processors (N,) is a power of K, i.e.,
N, = K? for some p.

If the mapping strategy discussed in section 2.5.1 is used, then until
the execution of p-th level of the tree, there will be only one process per
processor. If the size of the original problem is b?, then at level p each
processor will be solving a subproblem of size S’ = 6977, If the problems
of size S" are then solved in parallel (with workload distributed equally
between the processors), then each processor will have to execute the same
total number of sequential procedures as if it were solving one problem of
size S’ sequentially. However, in addition to communication overhead, some
system overhead will be added due to context switching. Thus, it is more
efficient to solve problems of size S’ sequentially than by using the parallel
algorithm.

Therefore, for a distributed system with some finite number N, of iden-
tical processors, the parallel base-case size for the original problem of size

15

S is determined by the performance parameters of the system and by the
number of processors:

2

T5985) < ——Teom 2.
(§) < o Ten(S) (25)
ParBaseCaseSize = max{bg,i}

N,

Optimal Depth of Data Flow Subtree

Because of the strategy behind the Divide-and-Conquer Archetype, the split
of several levels of subproblems or the merge of several levels of subsolutions
can be easily combined in one sequential process (see figure 2.3). Let us
call such processes Group_Split and Group Merge. By changing the depth
of the data-flow subtree executed by one process, the user can control the
granularity of a parallel Divide-and-Conquer algorithm.

If #(s) is the execution time of one node in the graph (or ther Split()
or Merge() procedure), then the execution time of the process that executes
d levels of the tree is

Tyrowp(t,d, S) = Z K%(E)
=0

The optimal depth of the data-flow subtree achieving the best perfor-
mance can be found by solving the minimization problem. Suppose that the
optimal depth is equal to some constant D. Then, using the execution times
of Split(), Merge() and BaseCaseSolution(), we derive an expression for
the execution time of such an algorithm with depth D for original problem
of size S, T(D,S), and find the value of D by solving the minimization
problem:

mc}n T(d,S)
where T(d, 5) is:
-1 S S
T(d, S) = Z (Tgroup(TSplitv d, (ﬂ_d) + TQTOHP(TWSTQS’ d, bz_d))
=1

S S
+ Tgroup(Tsthv d27 bZ_d) + TQTOUP(Tm€7"957 d2’ bz_d)

+ T*¢Y(ParBaseCaseSize)

where N, = did + d3, and dy < d.

16

Figure 2.3: Group processes.

Figure 2.4 illustrates how the value of the depth of the subtree can affect
the execution time of the parallel algorithm. The graph shows the execution
time of two implementations of finding the minimum element in the array:
the upper curve corresponds to an implementation with D = 1, and the
lower curve corresponds to an implementation with D computed using the
suggested approach.

2.5.3 Skeleton

The Data Flow approach with mapping described in section 2.5.1 has the
structure shown below. Constant Depth denotes the depth of the data-
flow subtree mapped onto one process. Procedures Group_Split() and
Group_Merge() denote the group processes discussed in the previous section.

Solution_t Parallel DnCi(Problem_t aProblem)

17

{

5500

5000

4500

4000

3500

3000

2500

mlliseconds

2000

1500

1000

500

Qll
-~
i

Nunmber of Processors

Figure 2.4: Execution time of finding the minimum element.

Solution_t aSolution;

if (Size(aProblem) < ParBaseCaseSize)
/* Problem is too small to be solved in parallel,

* solve il sequentially */

aSolsution
else {

= DnC(aProblem);

/* solve problem in parallel x/
Problem t subProblems[KDePth];
Solution_t subSolutions[K];
OtherInfo t Other[2(Pepth-1)7.

int i;

Group_Split(Problem, subProblems, Other);

parfor(i =

0; i < KDePth; j44)

subSolutions[i] = Parallel DnCi(subProblems[i]);

18

64

aSolution = Group Merge(subSolutions, Other);

2.6 Implementations

We used the approach presented in section 2.5 to implement software tem-
plate in C with PVM, C with NX, and CC++. Since the code for all
templates is very similar, we will present and discuss the source code for the
CC++ implementation only.

A program is provided to the user to determine the optimal values of
constants Depth and BaseCaseSize. The user is required to provide the
parameters of the algorithm and the target system discussed in sections
2.3.1 and 2.5.

The user is required to define two classes Problem_t and Solution_t
with the following public interface:

class Problem t{
public:
Problem t();
~Problem_t();

int Size();

void Split(Problem t *);

friend CCVoid& operator< (CCVoid& , const Problem t&);
friend CCVoid& operator»>(CCVoid& , Problemt&);

}s

class Solution t{
public:

Solution t(){};

~Solution_t();

vold BaseCaseSolution(Problem t&);

void Merge(Solutiont *);

friend CCVoid& operator< (CCVoid& , const Solution_t&);
friend CCVoid& operator>»(CCVoid& , Solution_t&);

19

The last two functions in each class are data transfer functions required
by CC++ [12]. They define how the data of an object of the class should
be transferred from one processor object to another. These functions are
invoked when the objects of a class are used as arguments to procedures
invoked on a remote processor object.

The CC++ implementation defines processor object type DnC_t which
uses two classes Machines_t and Tree_t. These classes are provided to the
user.

Class Machines_t: is used for representing and manipulating arrays of the
names of the computers (processors) used in the computation. This class
has the following public interface:

typedef char *string;

class Machines_t{
public:
int number;
int +length;
string *names;

Machines_t();

Machines_t(int n);
Machines_t(int n, char #**nl1);
~Machines t();

void Part(int number of parts, int which part, Machines t& m);
friend CCVoid& operator< (CCVoid&, const Machines_t&);
friend CCVoid& operator»>(CCVoid&, Machines_ t&);

s

Member function Part is used to split the array of machine names into
the given number of subarrays, and assign given part number to the array
of machines m.

Class Tree_t: isused by procedures Group_Split()and Group Merge() for
storing and manipulating the tree of subproblems and subsolutions mapped
onto one processor object.

typedef struct tree level t {

20

int size;
// the number of nodes on the level
Problem_ t *subproblems;
// array of the subproblems of the level
Solution_t *subsolutions;
// array of the subsolutions of the level
// Puairs subproblems[i] and subsolutions[i] form
// the nodes of the level
int #child_index;
// array of indicies of the nodes of the lower level
// connected to the nodes of this level
} tree_level_t;

class Tree_t{
private:
tree_level t xLevels;
// arrays of the pointers to the levels of the tree
int NumberOfLevels;
// number of levels in the tree
int NumberO0fChildren;
// mazimum number of children for a node

public:

Tree_t(int levels = 1, int numberofchildren = 2);
~Tree_t();

tree_level t # Level(int number);

tree_level t * LastLevel();

void CreateNewLevel(int level);

}s

Processor Object Type DnC_t

Class DnC_t has the following interface:

global class DnC_t{
private:
Machines_t Processors;
int BaseCaseSize;
int ParBaseCaseSize;
int Depth;

21

int Number_0f_Children;

void Group Split(Problem t Problem, Tree t xTree);
Solution_t Group Merge(Tree_t *Tree);

public:

DnC t(int basecasesize, int par basecasesize, int splitdepth,
int numberofchildren, Machines t processors);

Solution t DnC(Problem t problem);

Solution_t Par DnC(Problem_t problem);

}s

Selected Member Functions

Function Par DnC() follows the skeleton presented in section 2.5.3 very closely
and does not requre any additional explanations.

Solution_t DnC_t::Par DnC(Problem_t aProblem)
{
if ((Processors.number == 1) ||
(aProblem.Size() < BaseCaseSize))
return Divide_and Conquer(aProblem);
else {
Solution_t aSolution;
Tree t * Tree = new Tree t(SplitDepth+1,
Number_0f_Children);
tree_level_t *xlast;
DnC_t+global Children[Processors.number];
int number of subproblems, part, k, i;

// split the problem into al most Processors.number
// of subproblems of size al most ParBaseCaseSize
Group_Split(aProblem, Tree);
last = Tree—LastLevel(SplitDepth);
number_of _subproblems = last—size;

assert (number _of subproblems < Processors.number) ;

// each subproblem will be solve at >= 1 processor

22

}

}

part = Processors.number / number_of_subproblems;

parfor (int k = 0; k < number_of subproblems; k++) {
Machines * M = new Machines();
Processors.Part(number of subproblems, k, *M);

{

proc_t placement = proc_t("DnC.out", M—names[0]);

Children[k*part] = new (placement)
DnC_t(BaseCaseSize, ParBaseCaseSize,
SplitDepth, Number Of Children, *M);
last—subsolutions[k] =
Children[k*part] .Par DnC(last—subproblems[k]);

delete Children[kxpart];

}

delete M;

}

aSolution = Group Merge(Tree);
return aSolution;

2.7 Applications

2.7.1 Mergesort

Problem Description:
ascending order.

Components:

Data types: Data types Problem_t and Solution_t for this problem are

arrays of integers, and data type OtherInfo_t is undefined:

typedef struct {

int size; /+* number of elements in the array */

int *values; /* the array of elements
} Problem t, Solution_t;

23

Given an array of N integers, sort the integers in

Predicate IsSolution

tsSolution(P,S) = P.size = S.size
and S.values is some permutation of P.values

and (Vi :0 <7 < n:S.valuesi — 1] < S.values]i])

BaseCaseSize BaseCaseSize =1

Functions and Procedures

int Size(Problemt P)

{

return P.size;

}

Solution_t BaseCaseSolution(Problem_t aProblem)

{

return aProblem;

}

void Split(Problemt aProblem,
Problem_t subProblems[],
OtherInfo_t Other)

subProblems[0] .size = aProblem.size/2;
subProblems[1] .size = aProblem.size - subProblems[0].size;
subProblems[0] .values = aProblem.values;
subProblems[1] .values = aProblem.values
+ subProblems[0].size;

Solution_t Merge(Solutiont subSolutions[],
OtherInfo_t Other)
{

int i, j;
Solution_t Solution;

Solution.size = subSolutions[0].size +
subSolutions[1].size;
i=0;3j=0;
while ((i < subSolutions[0].size) &&
(j < subSolutions[1].size))

24

if ((subSolutions[0].array[i]) <
(subSolutions[1].array[j1)) {
Solution.array[i+j] = subSolutions[0].array[i];
it++;
}
else {
Solution.array[i+j] = subSolutions[1].array[j];
j++;
}
for (; i < subSolutions[0].size; i++)
Solution.array[i+j] = subSolutions[0].arrayl[il;
for (; j < subSolutions[1].size; j++)
Solution.array[i+j] = subSolutions[0].arrayl[i];
return Solution;

}

Parameters: function Split() divides the given array into two arrays of
approximately equal size; thus, the algorithmic parameters of the merge-
sort are K = 2 and b = 2. Using linear regression it is possible to find
execution time functions for procedures BaseCaseSolution(), Split() and
Merge(). On the Touchstone Delta these functions (in milliseconds) and the
communication time function are:

Thase—case(n) = 0.0074
Topit(n) = 0.0006
Trerge(n) = 0.000757 4 0.00696
Teom(n) = 0.00116n + 0.24757

where n is the size of the array.

Performance results: Using the above parameters we can compute the
optimal depth and the value of ParBaseCaseSize. The value of ParBaseCaseSize
is 128.

Table 2.1 summarizes execution time of the algorithm on the Touchstone
Delta for different values of the depth. Execution time is given in seconds.
The numbers that correspond to the depth chosen by the performance model
as optimal are shown in emphasis font. The discrepancy between predicted
optimal depth and actual optimal depth can be explained by the fact that
the global clock was used in all performance measurements (including the
ones used for computing Tspps, Teom, etc) and by the fact that the perfor-
mance model does not take into account such parameters as contention in
the network, memory caching, and the overhead of recursive calls.

25

Number of processors | d =1 |d=2|d=3|d=4|d=5
2 10.4 — — — —
4 5.96 6.02 — — —
8 3.79 3.90 | 4.13 — —
16 2.71 2.82 | 3.06 3.41 —
32 2.20 2.31 2.55 2.89 3.28
64 1.94 2.05 | 2.35 2.65 3.03

Table 2.1: Execution time of the mergesort algorithm on Touchstone Delta
(in seconds).

The graph of speedup of the parallel mergesort with respect to the se-
quential algorithm is shown in figure 2.5. The parallel mergesort was imple-
mented using the depth predicted by the model.

26

60

50

40

30

20

10

32
Nurmber of Processors

64

Figure 2.5: Speedup of parallel mergesort on Touchstone Delta.

27

Chapter 3

The Branch and Bound
Archetype

3.1 Introduction

Branch and Bound is a technique for searching an implicit directed graph
which is usually acyclic or even a tree [2].

The Branch and Bound approach is often used for finding an optimal so-
lution to some problem specified by a finite but possibly very large space of
solutions. The search graph for such a problem consists of nodes correspond-
ing to a partition of the solution space, with successive nodes representing
smaller and smaller subpartitions of preceding nodes. For each node a bound
on the possible value of any solution within the partition of this node is cal-
culated. Usually, this bound is used to prune certain branches of a search
tree if a better solution has been already found. Sometimes, a depth-first
search or a breadth-first search strategy is used. More often, however, the
calculated bound is also used to choose which of the open nodes of the tree
should be explored first.

Because of the unstructured search strategy, a simple parallel implemen-
tation of the Branch and Bound algorithms often does not scale very well,
because processes exploiting some branches of the tree do not have current
information about the best solution found so far. One could improve the
performance of the program if a parallel Branch and Bound implementation
is composed with some heuristic algorithm for solving the problem. The
suboptimal solutions found by the heuristic algorithm can then be used to-
gether with the calculated bounds for pruning certain branches of the search

28

tree.

3.1.1 Assumptions

For the purposes of this report we make following assumptions:

o the problem being solved is a maximization problem that can be spec-
ified by problem type, objective function being maximized and a num-
ber of constraints,

e the bound of a partition is a single real number.

If these assumptions do not hold, the overall design approach described in
this chapter is still valid; only small number of details has to be changed.
Moreover, since any minimization problem can be easily converted into a
maximization problem (by changing the sign of the objective function), the
above assumptions hold for most problems that can be solved using the
Branch and Bound approach.

3.2 Archetype Skeleton

It has been suggested in many books on computer algorithms (e.g., [2])
that the set of open partitions — partitions yet to be expanded — should
be stored in a heap. In the program that follows we use data type Heap_t,
with the following interface:

void AddPartition(Heap t , Partitiont);
int Empty(Heap_t);

Partition t RemoveBestPartition(Heapt);
void RemoveWorseThan(Heap t , Partitiont);

Using this data type the skeleton of the Branch and Bound Archetype
is as follows:

Partition_t BnB(Partition_t OriginalPartition)
{

Heap_t UnexpandedPartitions;

Partition_t SubPartitions[K];

Partition_t BestSolution;

Partition_t aPartition;

int n, i;

29

AddPartition(UnexpandedPartitions, OriginalPartition);
while (!Empty(UnexpandedPartitions)) {
aPartition = RremoveBestPartition(UnexpandedPartitions);
n = Branch(aPartition, SubPartitions);
for (i = 0; i < n; i++) {
if (isSolution(SubPartitions[i]) &&

(Bound (SubPartitions[i]) > Bound(BestSolution))) {
BestSolution = SubPartitions[i];
RemoveWorseThan(UnexpandedPartitions, BestSolution);

}
else
if (Bound(SubPartitions[i]) > Bound(BestSolution))
AddPartition(UnexpandedPartitions,
SubPartitions[i]);

}
}

return BestSolution;

Constant K is the maximum number of subpartitions returned by the func-
tion Branch().

3.3 Archetype Components

In order to develop a Branch and Bound algorithm, the user has to define
one data type and several functions on that data type, as described below:

Data type: Partition_t is a user-defined data type representing a par-
tition in the space of feasible solutions, i.e., a non-empty set of feasible
solutions.

Predicates and Ghost Functions: For the purposes of specification and
reasoning, some predicates and ghost functions should be defined as follows:

Value(S) is anumber-valued function that returns the value of the objective
function for given feasible solutions.

Sel(P) is a function whose value is the set of all feasible solutions for par-
tition P.

30

Metric(P) is a number-valued function, whose value corresponds to some
metric of the partition, such that Metric(P) = 0 implies that partition
P contains only one feasible solution, that is |Set(P)| = 1. Functions
Set(P) and Metric(P) are related to each other as follows:

(Set(Py) C Set(Py)) = (Metric(Py) < Metric(Py))
and
(Set(Py) C Set(P2)) = (Metric(Py) < Metric(Py))

isWellFormed(P) is a predicate that holds if and only if given partition
P is a well-formed partition. This predicate is required because in
programming languages variables of the certain types are allowed to
take many values, some of which do not correspond to a valid partition
within the context of the problem being solved.

Procedures and Functions:

Branch() function divides a given partition into 1 or more subpartitions
with strictly smaller metric value. Formally, the Branch() function is
defined as follows:

int Branch(Partition_t aPartition,

Partition_t subPartitions[])
/* Precondition: isWellFormed(aPartition)
Postcondition: (Return value = n) and (n > 1) and
(Vi: 0 < ¢ < n:
* Metric(subPartitions[i]) < Metric(aPartition))
+ and (Set(aPartition) = |JI'=) Set(subPartitions[i]))

+/

* ¥

Note that this specification can be weakened if we use the set of all
feasible solutions to the original problem being solved, P. Then the
specification of function Branch() is as follows:

int Branch(Partitiont aPartition,
Partition_t subPartitions[])
/* Precondition: isWellFormed(aPartition)
* Postcondition: (Return value = n) and (n > 1) and

31

(Vi: 0< i<m:

Metric(subPartitions[i]) < Metric(aPartition))
and (Set(aPartition) C |J'=y Set(subPartitions[i]))
and (¥ 1:0 < i< n:Set(subPartitions[i]) C Set(P))

* ¥ ¥ X

+/

isSolution() is a function that tests whether a given partition contains
one or more feasible possible solution.

int isSolution(Partition_t aPartition)

/* Precondition: isWellFormed(aPartition)

* Postcondition:

* ((Return value = 0) and (|Set(aPartition)| > 1))

* or ((Return value = 1) and (|Set(aPartition) = 1))

*/

Bound() is a user-defined function that evaluates the bound on all feasible
solutions within a given partition. If a partition contains only one
solution (or equivalently, function isSolution() returns 1 for a given
partition), then function Bound() returns the true solution value for
the only solution in the partition; otherwise, Bound() returns some
upper bound on all possible solutions within a given partition.

float Bound(Partition_t aPartition)
/+ Precondition: isWellFormed(aPartition) and

* (|Set(aPartition)| > 1)

* Postcondition: (Return value = f) and

* (V s:s e Set(aPartition) : Value(s) < f)) and

* ((|Set(aPartition)| = 1) =

* (Vs : s € Set(aPartition) : Value(s) = f))

+/

The efficiency of a Branch and Bound algorithm depends on the tight-
ness of the bound returned by the Bound() function.

3.4 Approaches to Parallel Implementation

Any parallel approach to the best-first search strategy can be used to im-
plement a parallel Branch and Bound algorithm. Many approaches that

32

have been already described and analyzed (for example, see [6, 9]) can be
implemented as programming templates using the components described in
section 3.3.

One of the simplest centralized strategies is the master-and-slave strat-
egy. Ome processor is assigned the role of “master” and stores the list of
unexpanded partitions. Other processors are “slaves” that expand the par-
titions sent by the “master” process, calculate their bounds and return the
results to the “master”. At each instant, when a “slave” becomes idle the
“master” selects the best partition from the list of unexpanded partitions
and sends it to the “slave” process. Since in this strategy several partitions
are expanded at once, the parallel implementation may expand nodes that
would not be expanded by a sequential algorithm.

The performance of the master-and-slave strategy is limited by the fact
that a message is exchanged between the “master” and a “slave” processes
for each partition. This factor can affect the scalability of the parallel im-
plementation. Several small modifications to the strategy can be made to
improve performance:

o Together with the partition to be expanded, the “master” process
sends the best currently known solution, thus delegating part of the
pruning to the “slave” and reducing the number of messages in the
system.

e Another way to reduce the number of messages in the system is to
allow “slave” processes to expand partitions down to a certain level of
the search graph.

e The master-and-slave implementation of a problem can be composed
with some heuristic algorithm for solving the problem. Then, solutions
found by the heuristic process can then be used to eliminate some paths
of the search graph and avoid their expansion.

3.5 Implementations

The master-and-slave strategy and its several modifications were imple-
mented in C with NX and C with PVM. Since the source code for the
NX and PVM implementations is very similar, we will present and discuss
the PVM implementation only.

The user is required to define data type Partition_t, several functions
on that data type, and global data. In addition to the archetype’s compo-

33

nent functions, the user has to define procedure FreePartition() that deal-
locates the memory that was allocated for a partition, and several platform-
dependent communication procedures.

/* Archetype’s Components */
int Branch(Partitiont aPartition,
Partition_t *subPartitions);
float Bound(Partitiont aPartition);
int IsSolution(Partition_t aPartition);

/¥ Memory Management Procedure */
vold FreePartition(Partition.t aPartition);

/* Communication Procedures, %/
void SendGlobalData(long msg type, long node);
void ReceiveGlobalData(long msg_type) ;
vold SendPartition(Partition_t aPartition,
long msg_type, long node);
vold ReceivePartition(Partition._t * aPartition,
long msg_type);

Slave

Until a termination message is received from the “master” process, a “slave”
receives a partition to expand, divides it into several subpartitions using
function Branch(), calculates the bounds for each of the subpartitions, and
sends the results back to the master process, together with a request for
another partition.

void Slave(int MaxNumOfSubPartitions)
{
Partitiont p, *subpartitions;
float bound, solution;
int terminate = 0;
int i, n;
int master, dummy;
int bufid, bytes, msg type, tid, mytid;

/Hkx Initialize local variables xxx/
mytid = pvmmytid();
master = pvm_parent();
subpartitions = (Partitiont *)calloc(sizeof(Partitiont),

34

MaxNumQOfSubPartitions);

/*xx receive global data **x/
pvnrecv(master, MSG_GLOBALDATA);
ReceiveGlobalData(MSG_GLOBAL DATA);

while (!terminate) {
/*+x wait for the next message to arrive ***/
bufid = pvmrecv(master, -1);
pvn bufinfo(bufid, &bytes, &msg_type, &tid);

switch (msg_type) {

case MSG_TERMINATE: /* termination detection %/
pvnupkint (&dummy, 1, 1);
terminate = 1;
break;

case MSG_PARTITION: /* a partition received x/
pvnupkfloat (&solution, 1, 1);
ReceivePartition(&p, msg_-type);

n = Branch(p, subpartitions);
for (i = 0; i < n; i++) {
bound = Bound(&(subpartitions[i]));
if (IsSolution(subpartitions[i]))
msg_type = MSG_A_SOLUTION;
else
msg_type = MSG_PARTITION;
pvi_initsend(PvmDataDefault) ;
pvn_pkfloat(&bound, 1, 1);
SendPartition(subpartitions[i],
mytid«10+msg type, master);
pvmn_send(master, msg_type);
FreePartition(subpartitions[i]);
}
pvi_initsend (PvmDataDefault) ;
pvepkint (&dummy, 1, 1);
pvn_send (master, MSG_REQUEST) ;

FreePartition(p);
break;
}
}
}
Master

In the following implementation, the “master” process takes as an argument
an array of task id’s of “slave” processes. It assumes that initially all “slave”

35

processes are idle and are waiting for a partition to be sent. After global
information is transferred to the slave processes, the “master” sends off the
first partition. Depending on the type of the message received, the “master”
takes various actions: registers a received solution, inserts a received parti-
tion into the list of unexpanded partitions, sends another partition to the
“slave” process or registers “slave” process as idle. Whenever the received
solution is better than the current best solution, the “master” removes par-
titions with lower bounds from the list of unexpanded partitions. When all
“slave” processes are registered as idle and the list of unexpanded partitions
is empty, the “master” process terminates and sends termination messages
to all “slave” processes.

Partitiont Master(Partitiont aPartition,
int numWorkers, int s*Workers)

Node_t *xRoot = NULL;

Partitiont partition;

Partition_t aSolution;

float bound, solution = -1.0;

int found.a_solution = 0;

int first, last, numIdleWorkers, dummy;
int terminate = 0, 1ij;

int msg type, bufid, bytes, tid;

/Hkx Initialize local variables xxx/
first = 0;
last = numWorkers-1;
numIdleWorkers = numWorkers;

/xx Send global data off to all workers xxx/
for (i = 0; i < numWorkers; i++) {
pvi_initsend (PvmDataDefault) ;
SendGlobalData(MSG.GLOBAL DATA, Workers[i]);
pvn_send (Workers[i], MSG_GLOBAL DATA);

}

/+xx Send the first partition off to the first worker *xx/
pvi_initsend (PvmDataDefault) ;
pvn_pkfloat(&solution, 1, 1);
SendPartition(aPartition, MSG_PARTITION, Workers[first]);
pvn_send (Workers[first], MSG_PARTITION);
first = (first+1) % numWorkers;
numIdleWorkers—--;

/**x continue until there are no more partitions to ezpand
xxx and all workers are idle xxx/

36

while ((!isEmpty(&Root)) || (numIdleWorkers < numWorkers)) {
/xkk wait for a message to arrive xxx/
bufid = pvmrecv(-1, -1);
pvn bufinfo(bufid, &bytes, &msg_type, &tid);

switch (msg_type) {
case MSG_A_SOLUTION: /* message contains a solution */
pvnupkfloat (&bound, 1, 1);
ReceivePartition(&partition, tid+«10+msg_type) ;
if ((!found.a solution) ||
((found.a_solution) && (bound > solution))) {
if (found_a_solution)
FreePartition(aSolution);
aSolution = partition;
solution = bound;
RemoveBadNodes (&Root, solution);
found_a_solution = 1;
}
else
FreePartition(partition);
break;
case MSG_REQUEST: /* message contains a request for work x/
pvnupkint (&dummy, 1, 1);
if ('isEmpty(&Root)) {
partition = RemoveFirst(&Root);
pvi_initsend(PvmDataDefault) ;
pvn_pkfloat(&solution, 1, 1);
SendPartition(partition, MSG_PARTITION, tid);
pvn_send(tid, MSG_PARTITION) ;
FreePartition(partition);
}
else {
last = (last + 1) % numWorkers;
Workers[last] = tid;
numIdleWorkers++;
}
break;
case MSG_PARTITION: /* message contains a partition */
pvnupkfloat (&bound, 1, 1);
ReceivePartition(&partition, tid+«10+msg_type) ;
if ((!found.a_solution) ||
((found.a_solution) &% (bound > solution)))
if (numIdleWorkers > 0) {
pvn_initsend (PvmDataDefault) ;
pvn_pkfloat(&solution, 1, 1);
SendPartition(partition, MSG_PARTITION,
Workers[first]);

37

pvnsend (Workers [first], MSGPARTITION);
first = (first+1) % numWorkers;
numIdleWorkers—-;
FreePartition(partition);

}

else
InsertNode(&Root, partition, bound);
else
FreePartition(partition);

break;

/xxx Send “terminate” message to all workers xxx/
for (i = 0; i < numWorkers; i++) {

pvi_initsend (PvmDataDefault) ;

pvn_pkint (&terminate, 1, 1);

pvn_send (Workers[i], MSG_TERMINATE);

}

DeletelList (&Root) ;
return aSolution;

}

3.6 Applications

3.6.1 Zero-One Knapsack

Problem Description: Given a knapsack of capacity C, and n objects
with non-zero weights w; and non-zero values v;, find a collection of objects
to be put into the knapsack that maximizes its total value, or

maximize Y ") vz

subject to E:-L:_Ol w;x; < C
where z; € {0,1}

where z; = 1 means that object 7 is included in the knapsack, and z; = 0
means that it is not included in the knapsack.

Components: The problem being solved is defined by the values of the
following global variables:

float Capacity; /* capacity of the knapsack */
int numObjects; /* number of objects */
float ObjectWeights[numObjects]; /* objects’ weights */

38

float ObjectValues[numObjects]; /* objects’ values */
/* the objects are ordered in descending order according to the
* value-density */

Data type: A partition is defined by the number of objects about which
the decision has been made, that is, by the number of variables z;
whose values are fixed at 1 or 0, and by their values. Therefore, we
define the data type Partition_t as follows:

typedef struct {
int k; /+ number of fixed variables */
char x[k]; /* values of the variables, 1 or 0 */
float value; J* sum: 1 in 0..(k-1): z[k[xObject Values[k] «/
float weight; /* sum: i in 0..(k-1): z[kjx Object Weights[k] */
} Partition_t;

Predicate and Ghost Functions: The objective function Value(.5)is de-
fined only for partitions S such that 5.k = numObjects:

nunObjects

Value(S) = Z S.x[7] - ObjectValues[:]
=0

The set of feasible solutions in a given partition P, Set(P), is formed
by all possible combinations of numObjects values y; such that:

(Vi:0 <7< numObjects:y; € {0,1})
and (Vi:0<¢<Pk:y =Px[i])
nunObjects

and Z y; - ObjectWeight[i] < Capacity
=0

Finally, function Metric(P) is defined as follows:

Metric(P) = numObjects — P.k

Procedures: In order to calculate an upper bound on the value of the
knapsack in partition P, the cheesecake problem is solved for objects
Pk + 1,...,numObjects with capacity Capacity — P.weight:

39

float Bound(Partitiont aPartition) {
float value, capacity;
int i;

value = 0.0;
capacity = Capacity - aPartition.weight;
for (i = aPartition.K;
(capacity > 0.0) &% (i < numObjects); i++)
if (ObjectWeights[i] < capacity) {
value += ObjectValues[i];
capacity -= ObjectWeights[il;
}

else {
value += ObjectValues[il+capacity/ObjectWeights[il;
capacity = 0.0;

}

return (value+aPartition.value);

}

int isSolution(Partitiont aPartition) {
return (aPartition.k == numObjects);

The function Branch() divides the partition P into at most two subpar-
titions by making decision about the object P.k. In one subpartition
the object P.k is put into the knapsack, in the other one it is left out:

int Branch(Partitiont aPartition, Partitiont subPartitions[2]){
/* copy the values of the fized variables from aPartition */
subPartitions[0] = aPartition;
subPartitions[1] = aPartition;

/* fix value of (aPartition.k)-th variable */
subPartitions[0] .k = aPartition.k + 1;
subPartitions[1] .k = aPartition.k + 1;

/* do not put the object in the knapsack x/

subPartitions[0] .x[aPartition.k] = 0;

/* put the object into the knapsack (if possible) x/

if (ObjectWeights[aPartition.k] <

subPartitions[1].capacity) {

subPartitions[1].x[aPartition.k] = 1;
subPartitions[1].value += ObjectValues[aPartition.k];
subPartitions[1].weight += ObjectWeights[aPartition.k];
return 2;

40

}

else
return 1;

Performance Results: Figure 3.1 compares the execution time of the
sequential zero-one knapsack problem with the execution time of the master-
and-slave strategy (ms curve) and the master-and-slave strategy in which the
“master” process sends the best known solution together with the partition
to expand (ms1 curve). The measurements were taken on the Touchstone
Delta for 10,000 objects with uniformly distributed non-zero weights and
values.

35 TT T T T T
seq <—
s -+
nsl -8--
30 —
h
25 | 1
%) +
S20 \ -
o \ . e
n s
\ 7
15 Fo | L i
4 &
e S H
. B
10 b i
R =
11 1 1 1 1

12 4 8 16 32 64
Nurmber of Processors

Figure 3.1: Execution time of zero-one knapsack program on Touchstone
Delta.

The initial increase in execution time can be explained by the fact that
when only 2 processors are used there is only one slave process. Therefore,
the parallel implementation is computationally equivalent to the sequential
one, except for communication overhead. The increase in execution time

41

for more than 20 processors can be explained by the fact that the “slave”
processes spend some time expanding “bad” partitions and also by the in-

creasing amount of communication, so that the master process becomes a
bottleneck.

42

Chapter 4

Conclusion

We have presented two programming archetypes in combinatorics and opti-
mization. For each archetype the program skeleton, archetype components
and several implementations were given. For each archetype an example
application from the archetype’s domain was presented to illustrate how the
archetype can be used.

It is interesting to note that once the template for an archetype had
been written, the effort required for developing a parallel application was
decreased significantly. In addition to the examples presented in this re-
port several other example applications were developed: Manhattan Sky-
line, Nearest Neighbor, Traveling Salesman Problem and Zero-One Knap-
sack with two knapsacks.

Several directions for further development of the discussed Archetypes
present themselves:

o A software template can be written for the Control Flow approach to
parallel implementation of Divide-and-Conquer algorithms. The user
might be required to develop sequential program in a specific fashion,
so as to simplify the parallelization step.

¢ By using the Divide-and-Conquer archetype presented in chapter 2 the
user can reduce the effort required for developing a parallel Divide-
and-Conquer algorithm by developing and debugging the sequential
program first. However, the scalability of the presented approach is far
from perfect. A modified Divide-and-Conquer archetype with a more
scalable parallel implementation would be even more useful. Such
implementation is presented and discussed in [4].

43

e A performance model for the Branch and Bound archetype that can
predict the performance of a parallel implementation or choose an
efficient implementation for target architecture can be a wonderful
tool for programmers.

44

Appendix A

Electronic Textbook

The full text of the programming templates in CC++, C and NX, and C
and PVM, together with documentation, and several example programs in
addition to the ones presented in this report will be made publicly available
as part of the electronic textbook on Parallel Programming Archetypes.
Several chapters of the textbook are currently available on the World Wide
Web at http://www.etext.caltech.edu. The structure and contents of
the textbook are described in [1].

45

Bibliography

[1]

[2]

[3]

[7]

[8]

Paul Ainsworth and Svetlana Kryukova. A multimedia interactive en-
vironment using program archetypes: Divide-and-conquer. Technical
Report Caltech-CS-TR-93-36, Computer Science Department, Califor-
nia Institute of Technology, 1993.

Giles Brassard and Paul Bratley. Algorithmics: theory and practice.
Prentice-Hall, Inc., 1988.

P. Carlin, M. Chandy, and C. Kesselman. The compositional C++
language definition. Technical Report CS-TR-92-02, Computer Science
Department, California Institute of Technology, 1992.

K. Mani Chandy and Svetlana Kryukova. Parallel software architec-
tures. Technical Report forthcoming, Computer Science Department,
California Institute of Technology, 1995.

M. Chandy, R. Manohar, B. Massingill, and D. Meiron. Integrating
task and data parallelism with the collective communication archetype.
Technical Report CS-TR-94-08, Computer Science Department, Cali-
fornia Institute of Technology, 1994.

J. Eckstein. Control strategies for parallel mixed integer branch and
bound. In Supercomputing 94 Proceedings, pages 41-48. The Institute
of Electrical and Electronics Engineers, Inc., 1994.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sun-
deram. PVM: Parallel Virtual Machine A Users’ Guide and Tutorial
for Networked Parallel Computing. MIT Press, 1994.

Intel Corporation. Touchstone Delta C' System Calls Reference Manual,
1991.

46

[9]

[10]

[11]

[12]

Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. In-
troduction to Parallel Computing: design and analysis of parallel algo-
rithms, chapter Search Algorithms for Discrete Optimization Problems.
The Benjamin/ Cummings Publishing Company, 1994.

Berna L. Massingill. Parallel Programming Archelypes in Scienlific
Computing (working title). PhD thesis, Computer Science Department,
Caltech, 1995. working title.

Bernard M.E. Moret and Henry D. Shapiro. Algorithms from P to NP -
Volume I: Design and Ffficiency. The Benjamin/ Cummings Publishing
Company, 1991.

P. Sivilotti and P. Carlin. A tutorial for CC++. Technical Report
CS5-TR-94-02, Computer Science Department, California Institute of
Technology, 1994.

47

