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CHAPTER 1

Earl User's Guide

1. Introduction

Earl is an integrated circuit design system that supports the separated
hierarchy design methodology. In it, one designs leaf cells, that have only mask
layout in them, and compesition cells, that have only other cells in them. Earl
provides stretchable cells and guarantees that the connection points of the cells
connect in the finished layout. It is an interpreted language that was designhed
for simplicity, and to be able to easily express operations that are useful for cir-
cuit design.

Earl has functions for defining cells and connection points (called ports),
and for specifying constraints on the position of ports. It is related to APL and a
working knowledge of APL is helpful in writing Earl programs. Like APL, it
includes features for manipulation of lists, changing their elements, arithmetic,
ete. Functions have a syntax similar to APL, but Earl has a more familiar pre-
cedence. On the other hand, Earl is not, nor is it meant to be, a complete gen-
eral purpose programming language. Instead, Earl is specialized to the task of
designing primitive cells and connecting them together.

At Caltech, the most commonly used design tool up to now, LAP, was based
on fixed cells. The designer had to keep track of where the ports of each cell
were, through each coordinate transformation, as cells were drawn. Earl takes
care of that detail, assuring the designer that wires line up correctly. Though
the layout primitives spring direclly from CIF! and LAP, the discipline of
describing the stretchable layout actually makes digitizing the layout easier,
and changing it becomes vastly easier.

Earl was written in the programming language C, and runs under Berkeley
UNIX® It is being used by the integrated circuit design class at Caltech.

1.1. Overview

In Earl, the collection of variables, functions and celis defined is calied a
workspace. A workspace can be saved in a text form that can be edited and read
back by Earl. A workspace will usually contain enly one chip.

A chip is a collection of cells, along with any necessary functions. Cells are
declared at the same lexical level — they may not be nested inside one another.
A cell is a rectangular area on a chip that has interface locations, called ports,
and programs to execute that describe its layout. A port is a point whose ccor-
dinatcs will be computed by the constraint solution mechanism of Earl. The
coordinates of the points are given to the cell to be used in the generation of its
layout.

d A cell declaration has three parts: port declarations, constraint statements,
and the layout of the cell. Cells can be parameterized so that similar cells can
be made with one specification. Pure composition cells have little more than a
list of the cells to be composed. {This is where the user of Earl wins over other

systems.)

1 Described in [Mead&Conway 1980] chapter 4
® UNIX is a Footnote of Bell Laboratories.
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Ports are declared either in groups. or singly. A group is an ordered list of
ports used for connecting cells together. Singly declared ports are internal to
the cell, and serve for making constraints and layout. Four of the groups, north,
east, south and west, are special and serve as the edges of the cell for connec-
tion. All cells have these groups, even if they are empty.

Constraints relate x (horizontal) or y (vertical) coordinates of two points.
Constraints specify either a minimum on some directed distance, the minimum
value of one coordinate minus another, or the exact distance. Constraints are
used to build a graph where the nodes are collections of points that are con-
strained to move together, and the arcs are the stretchable constraints.

The layout is made of wires, boxes and contact cuts. Coordinates used in
the layout are all relative to some point. The basic philosophy of the system (a
subset of “Boston'' layout) is that lines at any angle and circular arcs are
allowed.

Functions are used as infix operators. User defined functions become infix
operators in the language.

1.2. A Simple Leaf Cell

The following is an example that shows how these concepts are used in Earl
designs. All leaf cells can be designed following this pattern.

This cell makes a poly box, and a metal wire that comes 'in’ on the north
and goes 'out’ the east.

cmos;
cell corner; /* simple wiring cell */

north group in; /* "in" is on the north */

east group out /* and "out” on the east */

constr

xcon west >3] in [>4] east, /* constrain x coordinates */

ycon south |=2| out |>6| north  /* constrain y coordinates */

%feotr;ll wire in,in x#out.y,out, /* make a metal wire */
poly box west.x+1#south.y+1,east.x-1#north.y-1 /* and a polysilicion box */
end
The first line
cmos;
tells Earl that this design will be in emos. The next line
cell corner; /* simple wiring cell */

begins the definition of a cell, named 'corner’. Characters between /* and */
are comments, and comments nest. That is, /* /* this is a comment */ and so is
this */ but this is not.

The lines
north group in; /* in is on the north */
east group out; /* and oul on the easl */

create a port called ‘in’ in the north group, and 'out’ in the east group.

After ports have been created, you must censtrain their positions in X and y.
The keyword constr begins the section of the cell where the constraints are
made using the functions xcon and yecon. Their argument is ports or groups
alternating with distance specifications. The distance specification between two
ports constrains the distance between them. The lines
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constr
xcon west |>3| in [>3] east; /* constrain X coordinates */
ycon south |>3| out [>3| north; “/* constrain y coordinates */

begin the declaration of constraints and then make some constraints in x then
y. The constraint specification [>3] means that the distance from ‘west’ to 'in’ is
greater than or equal to 3. Remember that the distance is directed! ''xcon west
[>3| in"' means something completely different from ''xcon in |>3| west.”" Nothing
more than the stated constraints are implied. If east is more than six more
than west, you are not guaranteed to have 'in’ in the middle of the cell. (In fact,
the)re is no way to constrain anything to be exactly in the middle of anything at
all.

The constraints specify the range of legal coordinates for a point. Earl com-
putes how the cell must be stretched to fit its environment, and executes the
statements following the keyword geom for each different stretching. In that
section the ports are used as coordinates to make the layout.

The statements

geom
metal wire in,in.x#out.y,out; /* make a metal wire */
poly box west.x+1#south y+1,east.x-1#north.y-1; /* and a polysilicion box */

make a single metal wire that runs from the port named ‘in’ to the peort named
'out’ making a right angle bend, and put a box in the cell. The optional left argu-
ment to wire can have a layer name, telling what layer to put that wire on, and a
number telling its width. (The layers available depend on the technology; see
the description of the layout section of a cell for details.) If you don't specify a
layer, it uses the last layer used. If a width isn't specified, it uses the minimum
width of the layer. The right argument is a list of coordinates describing the
center line of the wire. The second element of the list is a computed coordinate.
In Earl, all numbers and coordinates are complex numbers. The # operator con-
structs a complex number with the given real and imaginary part.

Box has an optional left argument, which is the layer to put the box on. The
layer defaults to the last layer used. The right argument must be a list with
exactly two values, defining opposite corners of the desired box.

When you type this cell to Earl, it responds "--corner’ telling you that it has
defined the cell corner.

When you have a cell defined you can preoduce a CIF file and route it to vari-
ous destinations. The function make will write a CIF file on the disk, plot will
send CIF to cifplot to be rasterized in black and white, colorplot will do the same
for color, and cifp will send CIF to a pen plotter (like an HP7221, or a Charles
terminal). For example:

plot corner;

1.3. Composition — horiz and vert

The easiesl way Lo connecl cells is Lo make a horizonlal or vertical composi-
tion. Functions called boriz and vert take a name for the resulting cell on the
left, and a list of 'instances’ on the right. An instance is the combination of a
cell definition with a transformation. Functions to transform instances are mx
instance (negate the x coordinate), my instance (negate the y coordinate) and
instance rot number (rotate the given instance some number of times 90
degrees counterclockwise). For example,

row horiz corner,mx corner;

will make a cell ‘'row’ that is the horizontal composition, from west to east, of a
corner and a corner mirrored in x. If there is no name for the resulting compo-
sition it is called ‘horizcell’ or 'vertcell’ and an instance of it is returned. This
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can be used in a statement such as
plot horiz corner, mx corner;

which will create, plot, and then delete this composition cell. The cells are con-
nected in order of increasing coordinate; corner will be to the left of corner mir-
rored in x. vert is basically the same, but it stacks instances up vertically,
south to north. The statement

diamond vert row, my row;
will take a row and connect it to a row mirrored in y.

2. Interpreter Language
2.1. Data

2.1.1. Null
Null is entered as ().

2.1.2. Identifiers and Scope

Idenlifiers are made up of letlers, digits and undersceres; a letter or an
underscore must be first, Note that upper and lower case are distinct. Only the
first twelve characters are significant; all extra characters are quietly ignored.
Keywords {e.g. if, constr, cell) and standard function names (e.g. cos, group,
print) are all reserved and may not be used for your variables.

Variables do not need to be declared before use; the type of a variable
depends on what was last assigned to it. In other words: data has types, vari-
ables do not.

When Earl evaluates an identifier, it looks in the current symbol table. If
the identifier is not found, it is created. Associated with every identifier is a flag
that tells if its value is global, or local tc the current cell or function. Global
identifiers are those referenced outside of a cell or function, and ¢an be made
accessible in a cell or function only with an external declaration.

2.1.3. Numbers

Numbers in Earl are represented by complex numbers. A single number
serves as a coordinate pair for doing layout, where the real part is x, and the
imaginary part is y. Each component of a number can be written in the usual
way, except that exponential notation is not allowed. (where in a circuit design
would you really need to have 4.3e19?) The components of the complex number
are separated with #, and arithmetic handles complex numbers properly.

Numbers have three components which can be accessed with the *'."” opera-
tor. They are: "".x,”’ the x coordinate; ".y,” the y coordinate; and '.r,"" the mag-
nitude.

Legal numbers are: .5, 3, 2#1

2.1.4. Strings

Strings are enclosed in double quotes (") and may not include a newline
unless it is preceded with a backslash {(\). Other meta-expressions available are:
\t, tab; \\, backslash itself; \b, backspace; \r, carriage return; \n, newline; \f,
form feed; \", a quote; \nnn, the character represented by the octal number
nnn. When strings are the result of an expression or are printed with the print
function they appear without the quotes and all the meta-expressions are
expanded.

ex: "Hello, World\n"
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2.1.5. Lvals

An lval is the structure that represents the location of a value. It is pro-
duced when an identifier is evaluated. The existence of lvals brings about many
useful effects in the language which will be pointed out later.

2.1.6. lists

A list is a variable size collection of cbjects. A comma separates elements,
except that when a list is printed no comma is put on either side of a string.
When a list is created by concatenating elements together, nulls are lost; how-
ever, null can be put into a list by assigning to a specific element. A list can be
an element of another list; braces ({]) enclose a list that is an element of a list.
An lval can be an element of a list, which means that with a single assignment
statement many variables can be changed concurrently. However, a list within a
list, and a list put into a variable cannot contain lvals. Here are some examples
of what can be dene with lists:

(1,2.3), (4,5,8) =1,2,3.458
§1.2.31, E) . $4,5,6] =§1,2,3],14,5,6)
§1,2,30, (4,5.8) {1,2,3},4,56
a=11.2; 11,23
b:=§3,"Hi"}; w{3,Hij
ab; t1.2).{3.Hi
ta,bl; ={{1,21,{3,Hij]
a,b:=b,a; ={3,Hi},{1,2] /* correctly exchange values */
fa,bl:=§1,2] will not work
2.2. Operators

2.2.1. Arithmetic Operators

Assignment 15 =,

The binary arithmetic operators are +, # - * /, % (modulus), and ~
(exponentiation). The ordinary ones do what you would expect on numbers. #
takes the value on the right. multiplies it by 7. and adds it to the value on the
left. It has a precedence lower than all the other operators, so 3-1#5 is 2#5 (not
2#-1). 1t can also be used as a unary operator; ##3 is -3. Exponentiation doesn't
work for complex numbers yet.

# has the lowest precedence, - and + come next, * /, and % after that and ~
is the highest. All but ~ group left to right. For example:

2+3 -5
5*2+3 -13
(44-3)*(443) =25
44-3%443 -4 4-9

Any one ol lhese operators may be followed with '=' to make it assign the
result to the left hand argument. var+=3, has a value of three more than var
was, and changes var to that new value, Used this way, they all have the same
precedence, that of assignment.

2.2.2. Logic Operators

Equality is =, and not equals is <> They have the same precedence. Above
them is €, <=, >=, and >, all with the same precedence. Their precedence is
lower than the arithmetic operators, as would be expected. The result of each of
these is either zero, or one. Any nonzero number is considered true, and zero is
false. Relational operators can operate on lists, just like arithmetic operators.
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3< (1to5)=0,0,01,1

Logical functions are and, or and mot. These work on boolean values, not
bits. There are no functions to do any bitwise operations. And and or always
evaluate both arguments. If you don't want both arguments to be evaluated,
there is andif and orif. They are equivalent to and and or except that if the first
expression determines the value, the second one is not evaluated. (Also, there
are synonyms && and ||.)

2.2.3. List Operators

The symbol @ is the value of the previous element of a list or the previous
expression. This is useful in describing the layout of a cell. For example:
3,@#3,3+@w3,3#3,6#3.

Lists also can be created with the function to. o to b gives a list of numbers
from a to b, with a difference of one between the elements.

lto4 w1234
4to1 w4321

List difference is the function without, which takes each element of the
right argument. and removes the first occurrence of it from the left argument.
It is okay for an element of the right not to be found on the left.

1 to 5 without 3 =] 245
1 to 5 without 3,6 w1 2,45
1to5, 1 todwithout3 =1,2451,23,45

The function thing rep count, makes a list of count copies of arg. This is
most useful in composing cells. I recommend that instead of listing a cell to be
composed many times, that rep be used so that the design can be easily
parameterized,

(1,3) rep 2 1313
regeell rep nregs = a list of regceells

Arithmetic also works with lists. Two lists must have the same shape to be
able to operate on them. Two things are the same shape if: they have the same
length and corresponding elements are the same shape; or one is a single thing
and the other is a list. If you operate on a list and a number, the resull is a list
of the same shape as the list, where each element has been operated on with the
number. Thus:

a=1to3,{4to 6}, =1,23,§4,5,6]

a+1 w2,3,4,{5,6,71

a*2 =2,4,6,18,10,12}

afla w1 41,242,343, {4 44,545,646}

Square brackets ([]) are used to index into lists. like arrays in most
languages. 1 selects the first element of a list. Indexing creates an lval for the
element. If a value gets assigned to it, the element need not have been in the
list before; the list will be extended as needed. If the value is used, then, of
course, it must have a value, The index expression can itself be a list; in which
case the result is lvals referencing elements of the original list in the order and
structure of the index expression. For example, using the above value of a;
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al1] -1
CIRSRY {1
al4] 456

a[1.3,{2,3,4}] =1,3,{2,3,{4,5,6}}
a[2,3]:=a[3,R] = 3,2 and 'a’ nowis 1,3,2,§4,5,6}

If an element of the list is itself a list, you must subscript again to get the
elements of the sublist. aj4][R]=5.

The function len list returns either the number of elements in a list, 1 if it is
not a list, or 0 if it is null.

2.2.4. String Operators

Strings can be compared with any of the relational operators. Strings are
concatenated with +, String concatenation is recursive. That is, concatenating
a string to a list of strings will produce a list of string where each element is the
concatenation of the string and the corresponding element from the argument
list. Relational operators work on strings, just like they do on numbers. max
and min work on strings, and return the larger or smaller argument, (for clar-
ity, the results of the examples are written with quotes and commas)

"Best of all” + " possible worlds” = "Best of all pessible worlds”

nregu + (”0”,“1”,”2”,”3”) ""l"egon.”reg1"|”I‘eg2”,”1‘eg3”
uauznAn ._D

”a”()”A” -.1

"summer’ min "adder" w'"adder”

2.2.5. Precedence Summary

In the list below, operators on the top lines of the list below will be evaluated
before operators on the lower lines. For operators of equal precedence, evalua-
tion proceeds from left to right except for the assignment operators.

~ (right to left)
*/ %

orif ||
to rep rot mx my, functions that make elements of lists

;111 other [unclions, including user written functions
;= 4= *=ete. (right to left)

2.3. Control Flow

Statements in Earl are separated with a semicolon. Unlike most languages,
there is no such thing as a begin-end pair. Instead each centrel structure has
its own terminating keyword which is always required.

2.3.1. If Expressions
An if expression executes one set of statements depending on a control
expression  lsing a mndified BNF (literals, {zero or more of these}, [zero or one
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of these]), the syntax is:
ifFxp ;.= if exp then actionStats
fefStat} [elseStat] fi
efStat ::= ef exp then nclionStats
elseStat ;.= else aclionStats
actionStats ;;= actionStat § ; actionStat }

The exp must produce a number. An ocfionStat is any statement except a
definition of a cell or function. ef means 'else if’ and is just a convenience to
save from writing a pile of fi's at the end.

The result of an if is the result of the last statement evaluated. If none is
selected, then the result is null.

2.3.2. Iterative Constructs
The iterative constructs are the while, repeat-until, and for loop. They are
written:

whileStatl ;.= while exp do aclionStats od

repealStat:; = repeat actionStats until exp

forStat = for name := exp do actionStals ed
The while and repeat-until do the usual thing. The exp in forStas should produce
a list. Each value of the list is assigned to the variable and then the actionSiats
are evaluated. mame must be a simple variable; no indexing or anything else,
There is no break or continue to alter the execution of the loops.

2.3.3. Other Control Structures
There are no others. No goto. No case statement.

3. Cell Declarations
This is where we get down to the nitty-gritty. The syntax of a cell declara-
tion is:
cellDef .= cell name [cellParams] ;
cellGuts end

cellParnoms::= ( name § , nome | )}
cellGuis ;.= actionStats
{ constr actionStats)

geom actionStats]

The name following the keyword cell is the name the cell will have. The
optional cellParams define parameters for the cell. When a cell with parameters
is used, a value must be given for each parameter. If there is only one parame-
ter, a list can be given without braces. If there is more than cne parameter,
then the values given must be in a list of the right length. A list could be given
to any parameter, if the list is in braces. Typical uses for cell parameters would
be telling a buffer to invert or not, telling a pad how strongly it should drive, etc.
For example, the declaration,

cell SBuffer(non};
(body of cell)
end

defines a parameterizable cell called SBuffer, with a single parameter called
non. The only thing that can be done with a parameterizable cell, is to give it
parameters to make a *‘fixed’’ cell. For example,

bufpair horiz SBuffer(0), mx SBuffer(1);

makes bufpair an inverting superbuffer connected to a non-inverting superbufier
that is mirrored in x.
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When a cell's symbol table is created, the layer names and lambda® are
automatically declared external. The syntax to declare other external symbols
is

externalDecl ;:= external name { , name }

3.1. Port Declarations

The first section of code for the cell creates the ports and groups which will
be used in the stretching of the cell. Groups of ports are created to carry infor-
mation about ports up the hierarchy, The groups named east, north, west and
south contain the ports which are connection points to the cell. They are special
in that transforming the cell changes their contents, and all the poris in them
are made externally accessible. All groups are composed by ordinary composi-
tion functions. That is, if a cell has a group called power, all the composition
cells that use it will have a group called power containing all the external ports
of its subcells that were in the power group. Ports not in a group may be used in
a cell to use the composition algorithm to figure out where to place the layout.
Groups and ports are declared with the group and points functions.

name group listOf Names ;
points lis{ Of Names ;

The first name will be the name of the group, the names following are the names
of the ports in the group. The ports in east, north, west and south must be in
order of increasing coordinate. If they are not, when you go to compose the cell,
it won't fit and you'll get a terrible, cryptic error message. There is hope
though. The function check instance checks a cell, or a given parameterization
of a parameterizable cell, to see if you have the ports out of order.

Ports have components x, y and ¢. x and y are just the value of that coordi-
nate. c is used to turn a port into a number. North and south have a component
y: east and west have a component x. They can be used in the layout to
represent the coordinate of the edge of the cell. eg., "north.y;"”

A port can be in more than one group, but not on adjacent edges of the cell.
{North and south are okay, but not north and east.) When you use the coordi-
nates of a porl on Lwo edges, you gel a list of Lwo coordinates, sorted in order of
increasing coordinate. That is, if vdd is on the east and on the west, vdd acts
like a list of two numbers. The first one is for the west, the second is for the east
(east.x is larger than west.x, right?) If you access the x or v component of such
a port, it will either give you a single number (vdd.y is a single number, the
height of vdd on both sides) or a pair (vdd.x is the x coordinate of vdd on the
west, followed by the x coordinate of vdd on the east).

The ports can depend on the parameters in several ways, A statemont like

west group ground,if doubleBus then busg i, busl, vdd;

will include the port bus?2 only if doubleBus is non-zero. (if it is zero, the if-
expression will return null. When null is concatenated with something, it is lost.)
Or, another useful thing to do, is to make the ports in a list.

south group gate[1 to 2*nInputs];

will make a two porls for each input, named gale[1], gate[2], and so on. (gate[1
to 2*nInputs] makes a list of 2*nlnputs lvals. group assigns a port to each lval
and gives the port the name of the lval.)

3 [Mead&Conway 1980], section 2.8
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3.2. Constraint Section

This section is preceded with the keyword constr. Here the user specifies
constraints on the coordinates the system may assign to the ports so that the
layout will satisfy design rules. Constraints deal with the directed distance from
one port to another, either specifying the exact value, or its minimum. Associ-
ated with each port is a node of the x and a node of the y constraint graph, and a
separation from them. Specifying an exact distance between two ports causes
them to reference the same node, with possibly different offsets from it. Speci-
fying a minimum value adds an arc to the constraint graph with a minimum
value for the difference in the coordinates.

Constraints are specified with the special functions xeon and ycon. The syn-
tax of the argument to these functions is:

constriist .= portOrGroup
| constrlist '] relation | exp | portOrGroup

relation = <|<=|=|>=|>
That is, a port or a group, followed by repeated groups of a bar, a relation, an
optional expression, another bar and a port or a group. (‘> is synonymous with
'>=', as is ‘<’ to ‘<='). It means, make a constraint between the ports or groups
such that the distance from the first port to the second port will fulfill the rela-
tion to the value of the expression. The value is zero if the expression is omit-
ted. This is applied to each pair along the list. For example:

xcon west |=| phi [>5] load;
first will make the x cocrdinate of phi be equal to the x coordinate of the west
edge of the cell (and all the ports on it), then will constrain the distance from
phi to load to be greater than or equal to 5.

Constraints can be in one dimension only; you cannot constrain something
to be square, for instance, A constraint can depend only on the distance from
one port to another; you cannot constrain something to be 'in the middie’ of two
other ports. If you specify constraints that cannot be satisfied, (for exarnple,
"xcon load |>5| read [>5| load;"" ) you will get an error that will be cryptic and

hard to interpret. 1 promise. (cross my heart and hope you won't ask me why?*)

3.3. Layout i

Earl passes control to this section once for each different way a cell gets
stretched. This is vital to understanding how Earl works. First it solves the con-
straint graphs, then it actually produces the layout based on it.

The layout foliows the keyword geom. Here the user takes the given coordi-
nates and makes wires and boxes using them. Stretching is accomplished by
merely giving different coordinates to the ports. The layout is specified with the
functions described below,

3.3.1. Layers

There is no function to set the current layer, just optional arguments to the
layout functions. The names of the layers are:

4 but you can read appendix B
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nMOS cMOS/S0S

diff island
implant implant
poly poly
metal metal
glass glass
cut cut
buried

3.3.2. Contact Cut Structures

Depending on the technology specified, there are various structures avail-
able for connecting the various layers together. Their names are constructed
from an abbreviation for the layers they connect together. The asymmetric
contacts also indicate the orientation. Fach contact is a function that puts the
specified contact at each coordinate in its argument list and returns its argu-
ment so it can be used in statements.

3.3.2.1. ¢cMOS/3S0S Contacts
{[abc] means one character from the set a, b, ¢)

im island to metal
pm poly to metal
iifen] island to island east/north

ip{enws] island to poly
ipi[en] island to poly to island
iin is used to short a dicde and has its long axis peinting north/scuth. ipe is
a butting contact from island to poly, where going from island to poly is going
east. ipie is an B by 4 lambda structure to short a diode and contact to poly at
the same time.

3.3.2.2. nMOS Contacts

dm diffusion to metal
pm poly to metal
dp diffusion to poly buried contact

dp[enws] diffusion to poly butting contact

(The designer should know what he can get fabricated before using butting
or buried contacts.) These follow the same conventions as the ¢cMO0S/S0S con-
tacts. dpe connects diffusion to poly, pointing east, centered on the given coor-
dinate,

3.3.3. Boxes

Earl only has boxes Manhallan slyle, boxes are orienled wilh Lheir edges
running only horizontally and vertically. A box is specified with an optional
layer, and a list with exactly two coordinates which are the coordinates of oppo-
site corners. For example, a unit poly box: “poly box 0#0,1#1;"

3.3.4. Vires and Polygons

Wires have a width, layer and path. If not specified, the layer defaults to the
last layer used, and the width dcfaults to the minimum width for the current
layer. Wires extend half the minimum width of the current layer beyond the
end points of the path. Polygons have a layer and a path. The default layer is
the previously specified layer.
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A path cannot always be completely specified with a list so there is a
current path. The wire and polygon functions set the current path, and return
it. The functions miss and seg add arcs and lines to the current path.

A path returned from the wire or polygon function can used as an argument
to wire or polygon later on. This lets the designer work on several paths bit by
bit, instead of having to finish one before beginning the next. The left argument
to wire is optional and can be a path (previously returned from wire), a layer, a
width, or a list of layer,width. The right argument is either a path or a list of
points. If either of the arguments is a path, the current path is set to it and
more segments can be added on the end. If neither argument is a path, a new
wire is made on the given layer of the given width (with the appropriate
defaults). If points are given on the right, they are points on the path of the
wire. The polygon function works exactly the same way, except that you can't
specify a width. For example:

metal, 4 wire busin,@+2;
gndrad*2 wire gnd;
poly  wire busin+3,east.x-1#bus.y,bus;
4 wire gndsmall, east.x-.5#@.y;
poly polygon a,b,c;

The first wire sets the current layer to metal, and draws a 4 wide wire that
starts at the port called busin and goes over 2 in x. The second wire computes
its width, and draws a wire from gnd on one side of the cell te gnd on the other
(remember if a port is on two sides, using it in arithmetic gives a list of two
coordinates.) The third is on poly with three points on the path. The last is 4
wide on poly. The poly polygon is a triangle.

The function miss point,radius appends a potential arc to the current path.
If the radius is positive the path will wrap counter-clockwise around the point; if
negative, clockwise, The path will actually only wrap if it needs to bend to miss
the point. If going straight will stay far enough away from the point, the miss is
ignored. The coordinates of the palh are computed to make tangents based on
the previous and following points and arcs; the user does not need to find where
on the arc the path should hit. If there is no tangent (a tangent to a circle can-
not contain any point in the circle), vou will get the message *'circle in a circle;”
and marks will be put on the comment layer to help you locate the problem,
(The arc is actually approximated with a polygon, Currently 12 sides are used;
that many appear to be quite sufficient. All the polygons bend at the same
angle, so design rules are not viclated.)

Neither the first nor the last parts of a path may be a miss — sometime
after a miss you must put a seg on the path. The function seg lis? of poinis adds
more points to the current path. It is only needed after an arc; other times it is
merely redundant.

poly wire e-2; miss e+1,-3; miss q,4; seg out;

poly wire c+2#-7; miss f,-4;

miss e+1,4; seg c+4#B8;

diff wire a.x+4#g.y-19; miss b+3,3; miss b+1#2,3;

miss (pm c+2#-8),-5; seg ¢-34-7;

metal wire pm a,b;

metal polygon a#-2; miss a,-8; seg aff; miss a+2,-2; scg a#-=3;

Notice in the third wire that a coordinate being missed is the result of a
contact cut function. The fourth wire puts down two contact cuts and runs a
metal wire between them. Using statements like that, related layout features
can be kept together in the source.
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3.3.5. Electrical Nodes
To help support Tom Hedges’ circuit extractor, there is a function to output
electrical node names into the CIF. The function is:

[layer] elecnode location [,"node name" [, "node type'] ]

The opticnal layer determines which layer is meant at the given location. The
node name is a text string for the desired name. The node type is a text string
whose meaning is defined by the extract program. If the location is a variable,
the node name defaults to the name of the variable. (This function causes the
information to be put into the CIF with a user extension. The extension is 84 x-
coord y-coord node-name opt-node-type.)

3.3.6. Including CIF

Finally, there is a function drawcif so that you can include cif produced by
another design tool. All it does is copy the cif, it does no checking, no stretch-
ing. It's so dumb it doesn't even read connectors to the cell so that you can
connect to its "ports.”’ The only thing that it does do, is to include other cells
referenced by the desired one, until it can fabricate the requested cell, drawcif
is used like this:

["file"] drawcif "cellnam” mz,rot location;

The "file" is an optional file to read the stuff out of If omitted it is
~earl/lib/nmos or ~earl/lib/cmos. the "cellnam' tells what cell to get. mz is
nenzero if you want it to be mirrored in x, rof gives how many times to rotate it
by 90, and location is the coordinate of where the cell's origin will go inside the
Earl cell drawing it.

4. Composition Cells

Cells are composed by abutment, with stretching to resolve mismatch. It is
up to the designer to discover if routing would save area. If so, it's also up to
him to do it, making a cell that does the necessary work. (It isn't very hard any-
way, since Earl will stretch the routing cell to fit too.)

4.1. Transformations
Because of the restrictions of the stretching algorithm, only mirroring, and

rotation by multiples of 90 degrees can be used. The functions are:

mx inst negate the x coordinates
my inst negate the y coordinates
inst rot num  rotate inst, num times 90 degrees counter clockwise.

The final positior of a cell is computed from the constraint graph; there is
no translation.

4.2. Naming Instances

For Lhe circuil extractor, instances of a cell can be named teo be able to dis-
tinguish one electrical node from another. The function is

insts named names

There must be as many instances as names, or just one instance or one name.
The function returns a list of instances that can then be composed. (This infor-
mation is put into the CIF file with a user extension. The extension is 85 inst-
Name; The name applies to each following call until the next 85. which can have
no name at all.)



Earl User's Guide 14

4.3. Composing

All that is necessary to specify for a composition cell is a list of instances to
be composed, and the direction to stack them. Optionally you may give the
composition a name to save it for later. If you don't give it a name, an instance
of it is produced and must be used right away.

Composition works by constraining corresponding ports on the edge
between the cells to be at the same place. (This is why the order of ports
matters.)

All this magic is done with the functions horiz and vert. They take an
optional left argument which can be a name, a merge parameter, or a list of a
name and a merge parameter. On the right is a list of instances that are to be
composed in this manner. The resulting cell is again constrained to have rec-
tangular edges.

Sometimes two cells are to be connected so that they share a wire. If each
cell has a port for that wire, the composition would have two ports at the same
place. That is likely to cause trouble when another cell tries to connect one wire
to one of those ports, and another to the other. For this there is an option to
boriz and vert called merge. Merging in a horizontal composition (in addition to
joining corresponding ports on the east of the first cell to those on the west of
the second) joins the ports on the north adjacent to the connection, producing
one port on the north of the composition, and jeins the ports en the scuth adja-
cent to the connection. Merging joins ports together, but doesn’t affect the lay-
out of the cells in any special way. You can ‘merge’ on both sides, or just on one
with the words [enws]merge. Ports that are to be merged must be allowed to be
on the corner of the cell. If not, the constraint graph will be broken and you will
get cryptic messages.

bufset horiz (SBuffer(1), mx SBuffer(1)) rep 2,SBuffer(1);
groundend vert botrowgnd,my groundcell,(gndpair rep nbits/2-1);
regpair,merge horiz mx regeell, regeell;

gndpair.wmerge vert groundecell.my groundcell:

The first example makes a row of five SBuffer cells, It repeats a list of an
SBuffer and a mirrored SBuffer twice, producing a list of four where alternating
ones are mirrored. Next it concatenates one more SBuffer onto the end. Horiz
composes these together and calls the cell produced bufset.

The second example makes a column of botrowgnd, groundcell mirrored in
y, then some number of gndpair cells.

regeell has a clock wire running up the west edge which is to be shared by
pairs of cells. The third example takes two of them, and connects the ports
between them, and the clock ports on the north and south. (A single regeell has
3 ports on the north. This composition has only 5.)

On the wesl edge of grouncell there is a wire thal is Lo be shared.

When two cells must be connected with some ports left out, extra,
"dummy', ports can be added to one of the cells. The extra ports connect to
the ports that are to be left ocut, and then ignored in the layout of the cell.

This method is not the most general way to compose, since it cannot pro-
duce some structures. But it is general enough, and so easy to use, that the
methods outlined in the next sections need to be used only rarely.

4.4. More General Composition

Horiz and vert evaluate the instance list in the context of a new cell, not in
the context where they are written. If you want to compute the list and not use
global variables, declare a cell, compute the list of instances, and call hcompose
list of instances or veompose list of instances.

These work just like horiz and vert, but they are normal functions, their
argument gets evaluated in the current context, They take an optional left
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argument which is the merging parameter, just like horiz and vert. You may
call them only cnce in a cell because it turns the cell into the composition.

cell PlaPair(l,r);

external placell, merge;

merge hecompose placell(l), mx placell(r);
end

cell PlaRow(r);

external placell, PlaPair;

for i:=(1 to floor (lenr)/2)*2-1 do
1s[i]:=PlaPair{r{i].r[i+1])

od;
if (len r)%2 then ls[len r]:=placell(r[len r]) fi;
hecompose lIs;

end

PlaPair makes a merged pair of placells; PlaRow makes a row of PlaPairs with an
extra placell on the end if necessary. Notice that the cells and merging parame-
ters must be declared to be external to the cell.

4.5. Messy Composition Cells

{This section shows the detail function of composition. It may be skipped
until you have more familiarity with Earl) Complicated composition cells use
the first section of a declared cell to draw other cells, connect them up, and
make their groups from the groups of the subcells.

In order to allow greater flexibility, instances of cells can be transformed as
desired. When the transformation is complete, the function draw insiance
instructs the system to draw the instance when this cell is drawn. Draw returns
an instance which is unique to that drawing of it. (That is, for "a:=b," a and b
point to the same instance. For "a:=draw’'b, they point to different ones. The
one a points to will be drawn.) Another thing it deoes, is add the transfermed
constraints of the instance and its ports to the constraint graph of the cell.

Once an instance has been drawn, its groups and external ports can be
accessed. They are accessed by instance . name of the group or port desired.
That is, “a.north' is a list of ports that correspond to the north edge of the
instance in variable a. (It is the north edge of the instance, not of the cell that it
is an instance of. If the instance is rotated or mirrored, the ports and/or the
order of them in the list may be changed.) These ports can be either connected
to another cell, or made external to the composition cell.

The function list of ports connect list of ports, takes pairs of ports, one
from the first list with one from the second list, and connects them together. It
does Lhis by conslraining Lhe ports Lo be al Lhe same place in Lhe inal layout.

An example of when one might want to do such a terrible thing, is if not all
the ports from a cell can be connected to another, for instance, a register array
with ports on the east and west that are vdd, bus, gnd, bus, ete., and it is to be
connected to a cell that gives it power on the west, and ground on the east.
Here is the code that would do that.
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cell regblock;

external emerge, array, groundend, prechpair, nbits;
prech:=draw (emerge vert (prechpair rep nbits/2));
arr:= draw array,;

gend:= draw groundend;

north := arr.north, gend.north;

south := prech.south[2], arr.south;

west := prech.west;

east := gend.east;

prech.east connect (arr.west without arr.ground);
(arr.east without arr.power) connect gend.west;
end

(This is what horiz, vert, hcompose, and vcompose do)

5. Built In Functions

5.1. Output CIF

Once a design is specified, You have to cutput it in a format that other pro-
grams know how to read. The best known format is CIF, and in fact that's all you
get. For convenience, Earl provides a variety of destinations.

5.1.1. CIF to a Disk File

The function '‘make’ takes an coptional left argument for the file name to
write the CIF to, otherwise it writes to cellName.cil On the right must be an
instance of a cell.

5.1.2. Piped to cifp

The function 'cifp’ opens a pipe to the cifp program and feeds it a CIF file.
The right argument is an instance of the cell to draw. The opticnal left argu-
ment is used as a command line argument to the program. This can he uged to
change what kind of plotter to drive, and set the physical device that it will send
the plot commands to. The command line options that cifp knows about are:

-pplotter Type
Define the kind of plotter to drive. plotferType is an abbreviation for the

plotter that is hooked up to the device selected. The plotters we have
around are called Charles, HP7221, GIGI, and BCOLOR. (It can also drive
some others, but they are not commonly connected.) The default is GIGI.

-ddevice Name
Send the plotter commands to the file specified by dewvice Narme (no space
between the -d' and the device name). The default depends on the plotter
selected.

As soon as the CIF has been read, cifp will begin to plot. For complete infor-
mation on cifp, read the manual page on cifp, (it is a different program that
Earl knows how to deal with. It is not a part of Earl.)

5.1.3. Piped to cifplot

The functions plot instance, colorplot instance, and colourplot instonce
open a pipe to the cifplot program and pipe it CIF. The right argument is an
instance of the cell to draw. Earl figures out whether to add the commands -¢
(color), and -x (cmos). Other arguments can be provided by modifying the vari-
able 'PLOTARGS'. It just has text which is appended to the command line for cif-
plot. For the meanings of the arguments, read the manual page on cifplot Sit is
a different program that Earl knows how to deal with. It is not a part of Earl.
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5.2. More Math
There is sin and cos which work correctly on complex numbers.

5.3. Input and Output

Earl keeps one file for input and one for output for programs being inter-
preted. They start out being the standard input and output files. They can be
re-directed with the functions infile fileName, outfile fileName, and appfile
fileName., The fileName] is a string which can use the ~loginName to represent
someone's home directory. Infile opens the input file, outfile and appfile open
the output file; outfile overwrites the file and appfile appends to it. These func-
tions return 1 if they succeed, and 0 if they don't.

Anything evaluated from the terminal is automatically typed back out. If
you wish to get a function to type something out, print exp will print the expres-
sion into the outputfile. It does not do toe much to the arguments, that's up to
you. In particular you must put a newline ("\n') where you want one,

The function getchar returns a number correspending to the ascii value of
the next character available on the input file, or -1 at the end of the file. get-
string returns a string containing the next line of text available from the file,
including the newline character. It returns null at the end of the file. geteval
parses an expressicn from the input file, evaluates 1t, and returns the result,
Any symbols in the expression are looked up in the global symbol table. Null is
returned at the end of the file, but since many expressions evaluate to null {like
a for statement), it is not possible to tell when you are at the end of the file,

5.4. String Functions

strlen exp gives the length of a string, or -1 if the expression is not a string.
siring subslr exp relurns a string where each character is selected from the
argument string based on the value of the corresponding element of the expres-
sion. The function cvs exp will convert numbers and lists of numbers to strings
or lists of strings.

For more convenient treatment of strings, there is ascii <exp>. It turns a
number into a string with one character and a string into alist of numbers. Ifit
gets a list, it converts consecutive numbers into a string with those characters,
strings into consecutive numbers, and sublista are treated recursively. (ascii is
almost its own inverse. It breaks down if a list has consecutive strings, or the
numbers do not exactly match characters.) (for clarity, the results of the exam-
ples are written with quotes and commas)

strlen "foo" 3

strien " ()

strlen 3 L}

"Proteus' substr 3 »'g"

"FEarl" substr 5,4,3 = "Ir"

cvs 1 g

cvs 1to3 —" g g
cvs 1,{2,33 w3
ascii 32 -t

ascii 48 Ll Vi

ascii "foo" =102, 111, 111
ascii ascii "hello” w'"hello"

ascii 32,"foo"
asecil "A", {"fon'"} 32

w102, 111, 111
=65, §102, 111, 1113, " "
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5.5. FErrors
If a program detects an error and wants to stop processing, abort exp, will
print the expression on the terminal and abort the execution of the program.

5.6. Miscelaneous Functions

The function ifem index list returns the index of the first place in the list
where the item is found, or 0 if it is not found. If the item is a list, index recurses
on itself, returning a list. This can also be used to determine if something is in a
list. If it is in the list, the result will be non-zero, which is true, otherwise the
result will be zero, which is false. It must be legal to compare the item to each
element of the list or index may fail.

4 index 3,8,4,2 -3

5 index 3,6,4,2 -(

4,5,16,3! index 3,6,4,2 w»3,0,{R,13
"window" index "window",'fenster","ventana'" w1

"hi" index 2,3,”hi",0 does not work

6. Function Definition

In Earl, Functions are polymorphic; functions can be defined that have the
same name, but different numbers of arguments. {This is part of how optional
arguments work.) After a function is defined, it becomes an infix operator; the
neme comes between the arguments if it has two arguments, before it if it has
one, and alone if it has none. Because of this, the parser requires that all user
defined functions that take arguments be prefixed with ';" when used. (This tells
the parser what will be a function before it is declared so that the order of func-
tion declarations doesn't matter.) The syntax of a function declaration is:

JuncDef .= func nomeAndArgs ;
octionStats
end

nameAndArgs ;1= nilName
| unaryNome argl
| arg2 binaryName argl

External symbols are declared just as they are for cells.

A value can be returned from a function with return [exp]. If the expression
is ommitted, null is returned.

argl and argZ are just variables local to the function, whose values are ini-
tialized to the value obtained by evaluating the expressions given when the fune-
tion is called. The frst nameAndArgs defines a function with no arguments. The
second defines a function with one argument. When it is used, the name (which
is unaryName) must be prefixed with "' and the argument to it is the expression
following it. The third defines a function of two arguments. Tt is used by
prefixing binaryName with a ' and the arguments are the expressions on either
side of it. For example:

func fact x;

return if x<=1then 1
else x* :fact x-1
fi

end
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func x fact y;
return (:fact x)/(:fact y)/:fact x-y
end

func fact;
return "That's a fact!”
end

fact 5 =120
7 :fact 3 =35
fact »"That's a fact!"

Functions cannot take more than two arguments. If it is necessary you can
use a global variable, or pass a list. If you have a function that is of general use,
mail a note to earl about it and it can be made standard.

Notice that you must prefix your functions with a *:' if they take arguments,
while that deoes not work for built in functions. This is because the system knows
that they are functions, and will always be functions. Since there is no guaran-
tee like that about user functions, the colon serves to tell the parser how it is
being used,

7. System Commands

System commands in general deal with the operating system., Saving and
restoring workspaces, running a text editor on cells or functions, ete. All sys-
tem commands are prefixed with ~ and go to the end of the line. Do not use a
semicolon to end the line. The actual command may be abbreviated, and case
doesn't matter. (This is the only case in Earl where it accepts abbreviations and
is case blind.)

~save file Name
Vrite the workspace to the named file and continue working. The
workspace i ordinary text that can be modified with any text editor.

~guspend
This writes the workspace to the flle ‘.earlspace’ and exits. When Earl starts
up, .earlspace is read and executed.

~copy fileName , '

Read the file, executing any statements and defining any cells or functions
that are contained in it.
~clear
Clear the workspace, that is, remove everything that is currently defined.
~load fileName
Clear the workspace and read the file,
~edit {cell and function names separated with spaces]
The variable "EDITOR" has the name of your favorite editor. It is run and
given the text ol the cells and funclions named. When the editor finishes,
those cells are read in again and replace any previous definitions.

~ishellCommand
Make the shell execute the given command. If there is no shell command,
you get an interactive shell to use.

~mark
From now on, when writing the top level cell, put marks on the comment
layer (which is NX in nMOS and SX in ¢cMOS-SOS) to show where the ports
and edges of the top level cell are.
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~nomark
Stop marking ports and edges.

~debug

Toggle debug output from the parser.

20



CHAPTER 2

Implementation Notes

1. But how does it work?

A good question, and one I often ask myself (along with the related, why
doesn't it work?). In this section I will describe how the interpreter works. If
you only want to use Earl, skip it; there is nothing useful here.

Beyond knowing C, most important to understand Earl's operation, is under-
standing the data structures and the routines that create, manipulate, and des-
troy them. After that, the operation of the parser and code evaluation will be
described; then other things as they come to mind.

1.1. Data Structures

Most of the structures thrown around by the system are conformable to the
structure called a ‘thing’. In the header, earl.h, Thing is defined to have all the
data common to each thing. This data includes a byte to label the type of the
object, a byte for flags, and a short for the reference count. There are symbolic
constants (all caps) to define the values for the type field in earlh. The various
structures are made by typedef and usually have the same name (all lower case)
a3 the symbolic constant type nuwmber. The meaning of the flags is usually
dependent on the object type, they are described in earlh pretty clearly. The
reference count is the biggest headache around. You must be be very careful
with it, otherwise grave disorder results. The correct way to use the reference
count is to increment it when you get a new copy of the pointer. When a pointer
is to be released, the reference count is decremented. At that peint, the pointer
must be either passed to a subroutine, returned, or given to eStatFree; it is your
responsibility to take care of it. For example, a routine that is ecalled by Eval
will be handed one or two arguments that have been popped off of the stack.
(These objects can have a reference count of zero.) The routine must free them,
store them, or return them. Unfortunately, not all routines are careful enough
with the counts and some memory gets lost, It loses memory slowly though, and
1 haven't put much effort into tracking down all the loss. If you meodify Earl, be
careful.

{One final thing about reference counts, they don't allow circular pointer
structures. For the most part, Earl doesn't use them, but there is an exception:
ports. When a port is on two sides of a cell, two separate ports are created, each
pointing at the other. To avoid the problems of circles in this loop, that pointer
is nut counted as a permanent pointer; the reference count is not incremented
when it is set.)

The types are symbolically defined in earlh, the names of the structures
are stored in the array typeNames in keytabs.c. Also, some structures are
shared for different type numbers, notably thing. This should cause no trouble.

To free an object if its reference count is zero, call eStatFree on it. It will
recursively free all structures the object points to. If the reference count is not
zero, or the object is null, eStatFree just returns.

Another class of objects are called wood (since they formed the structure of
the parse tree while the parser still constructed one). Wooden objects have a
line number and character number showing where they were in the current
source text. The line and character are used for error reporting.

Implementation Notes 21
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These are the principal data structures used in Earl:

1.1.1. Number
All numbers are complex. They have an xval and yval, for some operations
only the xval is considered.

1.1.2. Atom

An atom is wood (since it could be a niladic operator and need to report an
error), and has a null-terminated character string called anam. The space for
the string is allocated once the text is known.

1.1.3. List
To avoid allocating lots of little bitty sections of memory, lists are imple-
mented with arrays. The array of pointers to things is called vals, the number of

locations used in it is lused, and lsiz tells how long it is. Lists are used for
almosl everylhing in Earl. A value Lable for a cell or function is a lst, the parser

produces rpn strings in lists, the path for a wire is a list of segments, etc.

‘append’ takes a list and a thing pointer, makes the thing be the last ele-
ment of the list and returns the list. Since this can cause the list to grow, and
thus move, the returned list must be put back where it came from after append-
ing. If a list with multiple pointers to it moves, bad things will happen for sure.
Also, you can append to NULL. To keep from having to allocate all the lists one
might want in advance, if you append to NULL, a list is created with a reference
count of one to which the thing is appended.

1.1.4. Lval

Since value tables can grow and move during execution, an lval must be able
to describe how to find the pointer when it is used, not when it is created. This is
done by giving the static address of a pointer to a list (the address of the pointer
to the stack, sh, or the address of the pointer to the global vahie tahle, globVal.),
a count of the offsets, and an array of shorts. An lval is turned into the thing it
refers to with the function wantNum, and the address of the thing it refers to
(for use in changing the value of a variable) with the function wantLoc. wantLoc
implements copy on wrile (assuming that the only reason you wanl the address
of a thing is to change it). When it is traversing the lists looking for the desired
address, if it notices a list with multiple references, it makes a copy of the list
with a reference count of one and replaces it on its way down. It also extends
lists when the lval indexes beyond the end.

1.2. Parsing and Evaluating

1.2.1. Input

Input is in the module eio.c When reading in, it handles typing the prompts,
and saving the input text for later. If an error is seen during the parse, the
current location and error message is saved until the end of the line is read so a
complete line can be given with the error message. Up to five errors can be
saved in this way, after that it prints the errors that it has seen, so if there is an
exceptionally foul line, it may be printed before it is completed in the buffer.

To re-direct the input, the routine pushToFile will return the old input file,
and set the current file to its argument. doWork can then be called to read until
the end of that file, to effect a 'push’, or work can continue, to just change the
input file.
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1.2.2. Lexical Analysis

The lexical analyzer, in lexanal.c, recognizes comments and special charac-
ters. If it reads an identifier, it calls isKey, in symtab.c, to find out if it is any-
thing special. isKey will return four types of results. If it returns zero, the word
is unknown and assumed to be a user variable or function. The token type given
to the parser is IDENTIFIER, and the value is an atom with that name., In all
other cases, the value returned from isKey is a structure with the function
number and a pointer te two functions that will handle it. If isKey returns a
positive number, the word is a keyword, and the token type is the value
returned. If the value is from -1 to -999, it is a standard function that has a pre-
cedence low enough so that it can receive lists as arguments. Otherwise, the
return was less than -1000, and it is a standard function that has a precedence
so that its arguments can be expressions, but not lists. (for example 'to’).

The lexical analyzer also detects ‘system commands' beginning with '~'. 1t
reads the following word and calls sysParse to handle them right away; the
parser has nothing to do with these.

1.2.3. Parsing
The parser is a yacc parser in parse.y It has several shift/reduce and

reduce /reduce errors. Many of these are irrelevant, being immpossible to hit any-
way (for instance, on the error token when it is impossible to have an error), and
the others are between which of two possible error messages to give. It seems
to pick a good message, so I don't worry about it too much.

As work proceeds in the parser, sections of code are built up and con-
catenated together to produce an rpn string. The function that concatenates
them together, catOp, is in support.c and takes a variable number of arguments.
The first one tells how many other arguments there are, and the others are cede
fragments to be concatenated together. The concatenation is done by getting a
list big enough, taking the first code fragment if it is big enough already, then
copying the pointers in. If a fragment was a list, then all the reference counters
of the copied things are incremented, and the list is freed. Otherwise, the thing
itself is kept and nothing is freed.

1.2.4. Evaluating Codc

The routine Eval in earl.c takes the rpn strings preduced and evaluates
them. It is basically a simple ne-address stack machine. When a number is
seen, it gets pushed. Atoms get the corresponding lval pushed, unless it denotes
a niladic function, causing it to be evaluated, or it is a cell, which pushes an
instance of the cell. {you can't assign to a cell — you can't get an lval for it.)
There are ‘opcodes’ made using the structure of a thing with different type
numbers: dump causes the top of the stack to be popped and saved in 'Last’
(used between statements in a list of statements); givenull pushes a NULL (for
statements that otherwise produce nothing. There must be something on the
stack after all statements so the following dump doesn't remove something unin-
tended); Keeplast saves the top of the stack in 'Last’ (that's the value @
returns); quote has a pointer to a thing which gets pushed directly (for horiz,
vert, and the name to use for extract). Conditional branches take the top of the
stack as the condition and change the pc.

When an operator structure is seen, its arguments are popped and the func-
tion is called with the number of arguments, the given function number, and the
arguments (any unused are passed as rnull so there are always two pointers
passed). The return value from the function is pushed. If the operator needs to
evaluate the code from a cell, it passes the cell and the code to execute to
BeginCell, which does a Begin and fills values into the new ‘activation record’.
For a function, it passes the proc pointer to BeginProc, which also does a Begin
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and fills in the activation record. Activation records contain pointers to the
current source, a pc, a pointer to the current cell or proc, and so on. After the
Begin, Eval is called to execute the code that was set up. Eval returns the top of
the stack after the code is done; this value is only used at the top level. After
Eval is finished, the activation record is removed with End. End checks to see if
it is finishing a procedure, when it must dig around the value table and get out
the return value from the procedure. It frees up any extra stuff left on the
stack and returns.

Eval also knows about for loop constructs. The range of the loop is
evaluated, followed by the forbegin opcode. The range is saved on a for-stack,
and the code to the following forend opcode is executed once for each value in
the range. The forbegin opcode has a peointer to the controlled variable to set it;
the for-stack keeps track of the pc at the top of the stack.

2. Algorithms

2.1. Building a Constraint Graph

A constraint graph is made from a list of nodes, and a list of constraints
referencing those nodes.

A node in the graph represents a set of ports that move as a unit in one
dimension. The coordinates of a port are figured by adding an cffset to the posi-
tion of the nodes it references.

A constraint in the graph indicates by how much the position of the end
node must be larger than the position of the start node. There can be only one
constraint from a node to any other node, and no constraints from s node to
itself. Positions are assigned to nodes to minimally satisfy the constraints.

The constraint graph of a leaf cell is built cut of the constraints given by the
designer. A constraint specified to be an exact distance, like xcon B |=5] C,
replaces the x-node of C throughout the graph with the x-node of B, adding 5 to
the offset. B and C then have the same ¥-node, but C is be offset by 5. A con-
straint specified as greater than some distance, like xcon C |>8| D, creates a con-
straint from the x-node of C to the x-node of D with a minimum separation being
the x offset of C plus 6 minus the x offset of D. If there already is a constraint on
these nodes, the new dislance is compared Lo the old and only Lhe larger dis-
tance is kept. So xcon C [>8] D; xcon C [>7] D; will leave only the second con-
straint in the graph. A constraint specified as less than some distance, like xcon
D |<5| E, is treated exactly as the constraint xcon E |>-5| D.

The constraint graph of a composition cell is built out of the censtraints on
the external ports of the subcells. When a subcell is drawn into the composition
cell, the subcell must first calculate its external constraints (which is described
in the next section). Then a copy of ite external graph is built into the composi-
tion cell by creating nodes, ports, and constraints and linking them together to
reflect the rotation and mirroring of the subcell. (see the routine doDraw in
appendix C.) When that is finished, the graph from the subcell is disjoint from
the graph originaily in the constraint cell. They are joined by constraining the
connecting ports of subcells to be at the same location.

2.2. Extracting External Constraints

To get the external constraints for a cell, first the complete graph must be
built, as described in the previous section. The completed graph is then pre-
cessed to divide it into internal and external parts. The external graph only has
constraints on the external nodes; the internal one has constrainls with inlernal
and external nodes. This division reduces the number of nodes in a grapa by
hiding ncdes within cells. Since there may be a path in the full graph from one
external node to another through an internal node, Earl must find all such paths
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and make a constraint between the two external nodes that is the most restric-
tive of all the combined paths between them. This is done with a process that is
similar to transitive closure.

for each internal node
for each constraint that starts at this node

for each constraint that ends at this node
make a constraint between the other nodes in the
constraints with where the minimum separation is
the sum of the separations

if any were found ending at this node, remove the

constraint from this node

{see the routine tclose in appendix C.) This differs from transitive closure in that
it is not applied to all the nodes, and that it removes constraints from the graph.
The constraints that are removed are no longer necessary, since all the informa-
tion that they had is contained in the constraints that were ecreated For exam-
ple, suppose there are two external nodes, A and B, and an internal node ¢; and
there is a constraint from A to ¢ and one from c to B. The outer loop will be
applied only to c. The next loop will find the constraint from ¢ to B. The inner
loop will find the constraint {rom A Lo ¢, and produce a constrainl (rom A Lo B,
The constraint from c to B will be removed. The constraint from A to B will be
passed up the hierarchy, guaranteeing that there is enough space hatween them
to satisfy both of the original constraints, from A to ¢ and from ¢ to B. Since
positions are assigned to minimally satisfy the constraints, ¢ will be as close to A
as the constraint allows, guaranteeing that it satisfies the, now removed, con-
straint from ¢ te B also.

Origmol Final
[A] [A] —=xt >3]

N, S %
A\ & | N ©

D= external node O = Internal node
Extract External Constraints

Cycles in the constraints are resolved with this process. If there are exter-
nal nodes in the cycle, all the internal nodes will be removed from it and a
smaller cycle will be passed up the hierarchy. Otherwise, the loop will be
reduced until a constraint appears from a node to itself. If the spacing in that
constraint is less than or equal to zero, the constraint is always true, and is
thrown out. If the spacing is greater than zerc, the constraint is never true and
indicates an error in the constraint graph. Two of the nodes of the loop are
known, the one in the constraint and the internal node, and ean be given to the
designer to help in locating the problem.

A property of this algorithm is that when it terminates each internal node
may start constraints, or end constraints, but not both. The cnes that end up
starting constraints are those that had no constraints ending on them when they
were processed. If any constraints did end on a node, all of the constraints
starting with that node would be remooved. Once removed, no other constraints
can be created that start with that node, since the new constraints always start
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with a node that started a constraint, and end with a node that ended a con-
straint. This division means that there are no cycles left in the internal graph.
Also, if an internal node only begins constraints then it originally had no con-
straints ending on it, or it was part of a cycle of internal nodes that had ne con-
straints ending on it. (Only one of the nodes in the eycle will start constraints.
The other members of the cycle will be constrained by the one that starts con-
straints.) In either case, it is correct, though poor, for that node to get a posi-
tion that is infinitely less than the position assigned to any external node.

2.3. Assigning Coordinates

After building the constraint graph for the top level cell, Earl goes on to give
nodes positions. All the external nodes in a cell will receive coordinates from ‘on
high' that cannot be changed, and are put into a list of nedes (the initial crder
doesn't matter), Then

while the list isn't empty

for each internal constraint connected to the first node in the list
make sure it is satisfied by either assigning a coordinate
to the other node, moving the coordinate that it already had,
or just leaving it alone.
if the other node has not been in the list yet

put it at the end of the list
remove the first node from the list, making the second the new first,

If the list ever becomes empty and there are still nodes left to process, pick a
node that hasn't been in the list, give it some random coordinate (zero is pretty
random), and process it.

This algorithm is guaranteed to satisfy all the constraints in the original
graph when given an internal graph of the form produced by the external con-
straint extraction and the external nodes are assigned positions that satisfy the
transitive closure of the initial constraints. After all the external nodes have
been removed from the list, all the constraints between internal and external
nodes have been satisfied. Internal nodes that started constraints have a posi-
tion that is the minimum of the positions calculated from the position of an
external node minus the minimum spacing (though lower would still be correct).
Internal nodes that end constraints have the position determined by the max-
imum of the positions calculated from the position of an external node plus the
minimum spacing. Its position satisfies all original constraints starting on it,
since those constraints were passed back to constrain the positions of the exter-
nal nodes, leaving enough room between the external nodes for both constraints.
Next the internal nodes are processed. The only constraints that still haven't
been processed are those from internal nodes to internal nodes. If they aren't
already satisfied, they will be satisfied either by moving a node that starts con-
straints to a lower position, or moving a node that ends constraints to a higher
position. The first is always correct. The second case will be correct, since any
constraint which might be vioclated by such a move, will have been transformed
into a constraint starting on the first node so there will be enough room to make
the move without violating the constraint. That is, if node A moves node c closer
to node d, and there was a constraint from c to d, there is also a constraint from
A to d that will make sure the constrainl from c¢ to d is salisfied. Allhough Lhe
result may be different if nodes are processed in a different order, each
different solution is correct.
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Coordinate Hssignment

The algorithm must be modified slightly for top level cells, since they do nct
receive positions for external nodes from higher up in the hierarchy, and since
this algorithm does not handle cyclic graphs. What is done, is to redefine exier-
nal nodes to be the nodes that have no constraints ending on them, and apply
the external constraint extraction algorithm. This definition of external nodes
guarantees that no external constraints will be generated and all the nodes can
be given arbitrary positions. At that point, the ordinary coordinate assignment
algorithm can be applied.

Once all the nodes have a position, the coordinates of the ports can be found
by adding the offset to the position of the referenced nodes. Earl then computes
the positions of the external nodes of a subeell. It finds the coordinates of the
port called 'sw’ (which is put in by Earl to indicate the southwest corner of the
subcell) and computes the ofiset of each node relative to it. Using the transfor-
mation that drew the cell, the relative spacings are transformed back to find
where Lhe corresponding nede is in ils original cell. (Barl makes a list of the
positions of the external nodes in a ‘pvector’. The pvector gets used later to
determine if the cell was stretched in a different way, or if a previous CIF cell
represents it.) These positions determine the positions of the external nodes of
the subcell, and Earl recurses until all the cells have been drawn.

2.4. The Path of a Wire Using Arcs

The path of a wire is specified with a list of points with associated radii. A
radius of zero indicates that the center line of the wire is to include the point. A
non-zero radius indicates that the path must be at least that distance away from
the point. A path is scanned before it is written to remove any points that the
path will not need to curve around. The algorithm keeps a sorted list of line seg-
ments, in order of direction, that limit the region containing the possible path.
The input is the path of a wire, and it outputs another, possibly shorter, list of
points and radii. The algorithm is:
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QOutput the first point. (it must have a zero radius)
for each following point
if the radius is >0 {counterclockwise)
while the list is not empty
compute the path from the first point on the top segment
tangent to the current point.
if the direction from this new ray to the top ray is
negative (clockwise), exit the loop.
if the final point on the top ray has a negative radius
output that point
remove the top segment from the list
if the list is empty
put the ray from the last peint output to the current
point on top of the list
else if the radius of the last point of the top ray is >0
put the ray from the last point on the top ray to the
current point on top of the list
else (the radius of the last point on the top ray must be <0)
put the ray from the first point of the top ray to the
current peint on top of the list.
else if the radius is <0 (clockwise)
much the same as above, but work from the bottom of the list
up, the signs of each comparison is reversed, and the ray
gets added to the bottom of the list,
else {the radius of the current point must be zero)
do the loop for the case when the radius is positive
do the locp for the case when the radius is negative
output the current point {(the list must now be empty.)

(this is based on the circle obstacles algorithm in [Tompa B0].) Earl treats cir-
cles as dudecagons, since CIF does not have arcs,
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Quick Reference

1. Standard ldentifiers

The standard identifiers are in the symbol table and may be redefined, but
most of them should not be redefined. When they are used in functions or cells
they must be declared external.

nmos and cmos
Funclions Lo declare Lhe lechnology.

lambda
The scale of the project measured in microns. (lambda and the layers for
the current technolegy are automatically declared external to cells.{

EDITOR
The name of the editor to use with the ~edit command

PLOTARGS
Command line arguments to the cifplot program.

merge, emerge, nmerge, smerge and wmerge
Flags to the composition functions.
printgraph
Prints the constraint graph in an almost readable form. This is for debug-
ging only.
getchar, getstring and geteval
Input a character, a string, or an expression from the input file.

rebuild
Cause the constraint graphs to be rebuilt when they are needed again. This

happens automatically when a cell is parsed (it assumes that you are re-
defining a cell and could have changed the constraints in it). This would be
necessary if you changed a variable that determines the number of cells or
something like that.

2. Reserved Words

The following conventions are used to describe the functions. literals, [zero-
or-one-of-these], {zero-or-more-of-these}, one-of-something-like-this, » the-result.
When describing many similar functions, fn will stand for any one of them.

The reserved words are:

abort, and, andif, appfile, ascii, box, ccwmiss, ceil, cell, check, cifp, colorplct,
colourplot, connect, constr, cos, cvs, cwmiss, dm, do, dp, dpe, dpn, dps, dpw,
draw, drawcif, each, ef, elecnode, end, else, external, fcifp, i. floor, fcr, func,
geom, group, hcompose, horiz, if, iie, iin, im, indix, infile, ipe, ipie, ipin, ipn,
ips, ipw, len, make, max, mcifp, min, miss, mx, my, od, or, orif, cutfils,
named, not, plot, pm, point, points, polygon, ports, print, rep, repeat, return,
rot, seg, sin, sleep, strlen, substr, then, to, until, vcompose, vert, while, wire,
without, xcon, ycon



Layout functions

group-name group names-of-ports.
Create a group with a list of ports.

points poinf-names.
Creat internal points. (also point.)

dm, dp, dpe, dpn, dps, dpw, iie, iin, im, ipe, ipie, ipin, ipn, ips, ipw, pm:
In points msame-points. Connect layers at the points in the list and return
the list unchanged.

mx, my: In inst i =inst.
Mirror x (x coordinates negated), or y (y coordinates negated).

inst 1 rot num=insié.
Rotate instl num times 90° counterclockwise.

[layer] box pt1,pte.
Make a box on the given layer (default is the previous layer) that has ptl
and pt2 as opposite corners.

[layer | layer, width | width | old-path] wire (points | old-path)
= current-path, Make a wire on the layer (defaults to the last layer used) of
the given width (minimum width for the layer), or set the current wire to
the old wire. Append the points to the center line. To just set the current
path without adding peints, use no left argument and the old path is the
right argument.

[layer | old-path] polygon (points | old-path)
wcurrent-path. Make a polygon on the layer (defaults to last layer used), or
set the current path to the given path. Append the points to the path, the
edge of the polygon. To just set the current path without adding peints, use
no left argument and the old path is the right argument.

miss point, dist,
Ensure that the current path misses the point by at least dist at this part of
the path. (if the wire loops back it still can get too close.) Positive dis-
tances are counterclockwise, negative are clockwise.

cwmiss, ccwmiss: fn point, dist |
Just like miss, except that cwmiss muakes a clockwise turn, and cowmiss
makes a counierclockwise turn.

seg points.
Append more points onte the path of the current wire. Only necessary
after a miss.

draw inst 1 winst2,
Build the constraint graph of instl into this cell. When this cell is output,
inst1 will also. The ports and groups of inst2 are accessible.

parit-list 1 connect part-liste.
Connect the ports in listl te those in list2. The ports must come from
instances which have been drawn.

hcompose, veompose: [merging-parameter] In instance-list,
Cause the current cell to be a composition of the listed instances.
merging-parameter is one of merge , emerge , nmerge , simerge , or
wmerge .

insts named names " insts
set the nome of the instances so the circuit extractor can distinguish the
nodes,



[source-file] drawcif celinam,mx,rot, location.
When this cell is output, include a CIF call to the cell named celinam found
i]i'l]lthe source file (which defaults to ~earl/Lib/nmos or cmos). Avoid using
this.

[loyer] elecnode point node Name[,node Type]
Tell Tom Hedges’s circuit extractor the name of an electrical node. The
layer defaults to the most recently used layer.

Support Functions

check cell.
Check a cell for out of order ports. Does not always detect them! (it's
betler Lhan nolhing.)

[file-name] make cell.
Output CIF for the cell to the named file. The file defaults to cellName.cif
[cifp-options] cifp cell.
Compute CIF for the cell and pipe it to cifp. fcifp does the same thing, but
lets cifp subprocesses pipeline. mecifp is like feifp, but it beeps after finish-
ing plotting.
plot cell.
Compute CIF for the cell and pipe it to cifplot(1) to make a black and white
print., Put arguments to cifplot into the variable PLOTARGS,

colourplot cell,
Compute CIF for the cell and pipe it to cifplot(1) to make a color print. Put
arguments to cifplot into the variable PLOTARGS. (also colorplot.)

or, and, orif, ||, andif, &&: exp! fn expl™exp3.
or and and evaluate both arguments; the others evaluate the left one, and
evaluate the right one only if necessary. True is anything non-zero, False is
zero. There are no bitwise operations; there are no integers.

not expl ™ erpl.
cos, sin: fn exp 1™ ezpl.
start to stop=list, )
generate a list from start to stop.
list ] without list2wlist3,
remove each element of list2 once from list1 if it is there.

len expiwexpl.
give the length of a list, 1 if it isn't a list, or 0 if the argument is null.

strlen exp 1= expl.
give the length of a string, 0 if it is null, and -1 if it isn't a string.

max, min: exp! fn exploexp3
give the number with the larger (smaller) x componcent, or the string with
the larger (smaller) value. Uses corresponding elements of lists,

ceil, floor: fn exp 1w expl.
Convert the x and y components to integers: largest integer less than the
component or smallest integer larger than the argument.

exp] rep num™exrpl.
Repeat expl num times.

sleep num.
suspend execution for num seconds.



infile, outfile, appfile: fn file Name = flag.
open the file named for input, output, or append to the file. Returns 1
(true) on success and 0 (false) on failure.

print exp.
print the value of the expression on the output file.

abort exp.
print the value of the expression on the terminal and abort execution,

cvs expl ™ expl.
convert lists of numbers to lists of strings.

expl substr exp2™string.
make a siring by selecting characters from the string corresponding lo the
numbers in the second expression.

ascil exp ™ ezxp.
turn a number into a string with one character, and a string into a list of
numbers whose values correspond to the ascii value of the characters.
Turns consecutive numbers in a list into a string, strings in a list into a
bunch of numbers in the result list, and a list gets processed recursively by
ascit and becomes an element of the result list.

itemns index lisi »exp.
result is the same shape as items where each element is replaced by the
index of the first place it is found in the list, or zero if it is not found.

Obsolete Words
These are still in, but will be removed. Use none of them: each, ports



Syntax

This is a simplified version of the syntax of earl. (The actual syntax is in the
file parse.y)

statement .= actionStat ;
| defineStat
actionSiatl ;:= exp
| whileStat
| repeat Stat
| forStat
| external Decls
| confunc constraints
| return
| return exp
actionStats .= actionStat §; actionStat}
exp .:= Jdenlifier
| constant
| cellParameterization
(" [eap] ")
[ ¢ exp "}
| ezp [ exp"]"
| exp . Identifier
| unaryOp exp
| exp binaryOp exp
| horiz exp
| exp horiz exp
| vert exp
| exp vert exp
| if exp then actionStats {el exp then actionStats]
[else actionStats] fi
cellParameterization :.= Identifier "'('' exp )"
while Stat .= while exp do actionStals od
repeatStat ;.= repeat actionStats until exp
JorStat ;= for Identifier := ezp do actienStats od
externalDecls ;.= external /dentifier {, Identifier]
confunc ::= Xcon | ycon
constraints ;= exp {"'|" relop [exp] | exp}
defineStat ::= funcDef | cellDef
JuncDef ::= func nomeAndArgs
actionStats end
nameAndArgs .= funcName ;
| func Name arg1 ;
| argl funcNume wrgl
cellDef ::= cell cellName ["'("' paramName {, paramName} "')"'] ;
aclionStals
[constr actionStats]
[geom actionStats]
end



APPENDIX B

Captain Earl Secret Decoder Ring

Constraint Messages

Captain Earl uses a secret format to identify nodes in the constraint graph
when giving error messages. First the node number is given. Node numbers are
basically meaningless; they are assigned sequentially from zerc when Earl starts
up. Next, each port connected to it is listed. If the port is offset from the node,
the offset is listed first. Then, the name of the port in the leaf cell that declared
it. If the error occurs in a composition cell, the name will be followed with the
number of the subcell within the composition that the port came from. Finally,
which constraint graph, x or y, the node is in.

node number 15: =a.x, -3=b.x,

This shows that the x coordinate of a is the position of node 15, and the x coordi-
nate of & is the position of node 15 minus 3.

node number 234: +13=in.1y, +13=out.ky,

This shows that the port named in in the first instance, has the same y coordi-
nate as ouf in the second instance. The ports sw, and ne indicate the southwest
and northeast corners of every cell.

A self constraining node cccurs when a constraint is generated from a ncde
to itself, with a positive minimum separation. Such a constraint requires that
the position of the nede be greater than its position. They can be created
directly with a statement like:

xcon a |=3| b [>-2| a;

This is detected when the constraint is made. The error message tells which
port it was trying to constrain'when the error was detected (it will be a in this
case), and what the result weuld be if the constraint were made. This error can
be fixed by just looking at the constraints and making them consistent.

Self constraining nodes can alse be made by connecting two cells together.
For instance,

cell foo;

west group a,c
constr

yeon a i=1| ¢
end

cell bar;
east group b,d

anmatn
CONoLY

yecon b 1>2/d
end

boom horiz bar,foo;

When the composition boom builds its constraint graph, it will try to connect the
ports together. At first a and ¢ have the same y node because of the constraint
in cell foo. After connecting a and b, the ports a, b, and ¢ will all have the same



y node. When ¢ gets connected to d, the constraint from b to d cannot be
satisfied, since c is in the same node as b, That constraint will be shown, along
with the named nodes. This sort of problem often occurs when ports are not
connecting correctly. Check the node lists for ports that should not be in the
same nede.

An illegal constraint loop is a collection of nodes that form a loop, A con-
strains B constrains C constrains A, such that the sum of the minimum separa-
tions around the loop is positive. This is detected when extracting the external
constraints for a cell, but only after the loop has been reduced te two nodes.
The error message will identify the two nodes it has left and offer to print the
graph. Figuring out the cause of the loop is not difficult when it happens in a
leaf cell. When it happens in a composition cell, it is likely to come from con-
necting ports improperly. For example:

cell foo;

west group a,c
constr

yeon a |>3| ¢
end

cell bar;

east group b,d
constr

ycon d [>2| b
end

boom horiz bar.foo:

In cell bar, b comes before d in east, but d is constrained to come before b. The
best help for this situation is the function check inst. Check tries to see if ports
are constrained to have a position that is not in the same order as they are
declared in the groups. It only detects if there is a constraint that directly puts
them out of order, but that is often the case,

If that doesn't point out the error, you can look at the graph.

The Constraint Graph '

You can get the constraint graph by answering yes when it asks if you want
one, or by putting the printgraph at the point where you want to see what you
have. The '‘graph' begins with a listing of the ports in the cell. The name of
each port is listed, followed with an "*" if the port is accessible to the outside.
(Unnamed ports are created to have something to constrain for groups that
would otherwise have no ports. These ports can be ignored.) An edge is listed if
the port was on an edge; either of this cell or of a subcell. If a port was on the
edge of a subcell, it will have an edge letter, but no "*' Next comes the
numbers of the x and y nodes that this port is in, followed with the port's offsct
from its nodes. When the graph is printed in the layout section of a cell, the
actual coordinates of the port are shown. Sometimes a number will follow this,
indicating that the port is linked acress the cell to another port of the same
name. For the above exarmple, the port list would look like:



ports:

sw* 2.3 0#0
ne* 0,1 0#0
SW 2.3 0#0
ne 13,1 0#0
b E 13,18 0#0
d E 13,17 O#f0
swW 13,3 O#0
and so on.

The next section just lists the nodes in the cell, along with a bunch of debug-
ging information for me.

The last sections show constraints. There may be up to six lists showing the
Original, Internal and External graphs inX or Y. Each constraint is listed as

from -- mingep --> teo
showing the numbers of the from and to nodes, and the minimum separation
between them.

In my experience [ have found that the fastest way to fix this kind of prob-
lem is by using check, looking carefully at the ports that have been joined into
the nodes, and thinking about it. It is usually very difficult to find the error in
the graph.

Circle in a Circle

Circle in a circle means that somewhere on the path of a wire, you wanted to
find a tangent that didn't exist; either from a point inside a circle to the circle
or from one circle to one that it intersects.

Often this error is detected when you are building the path, in which case
BEarl will show the source line that is in error. To fix this, just move the points
farther apart. I often don't know how far to move them, so I use print exp to
show where the peints are.

This may also be detected between two non-adjacent points on the path
when writing CIF because of the properties of the algorithm that puts in the
arcs. When this happens you are given the coordinates of the centers, the radii,
and which cell it happened in.' Fixing the problem involves either moving the
points farther apart, or adding a point to the path forcing it te choose a route
that works.

Whenever it happens, marks are put on the comment layer to show where
the centers of the circles are, and a circle is drawn showing how far apart they
must be.



APPENDIX C

Selected Routines

doDraw
/% drau an instance. i.e., when this cell gets draun, so will the instance %/
thing xdoDraw(n, fun, arg,arg?)
int n, fun; thing %arg,%arg2;
§ instance xinsi;
BOOLEAN suapx, suapy, flips
list kvix,%viy,xnl,xicl,%xocl;
port ¥pi,xpj;
int is
constr %cni,%cnj;

/% get the arguments and check for errors x/
ASSERT (n==1 AND fun==1)};
if ((arg=pusharglarg, ''no instance'})->typ!=INSTANCE)
runError (""this is a %s, not an instance”, typeNames [arg->typl);
insi={instancex)copyThing{argl;
if (top->curCel |==NULL) {
runkarn{'warning--draw is not needed outside of a cell definition');
return{({thingk) insil;

if (insi->mydef->extra)
runError ("recursive draw of cell %s while in cell %s'",
insi->mydef->cname, tap->curlel |->cnamel ;
/% keep 2 list of draun subcells in the cell */
top->curlel | ->insts=append (top->curle | | ->insts, {thing%) insi);
/% if the x dimension gets negated %/
swapx={insi->rot>=2} ~ (insi->mx!=0};
/% if the y dimension gets negated %/
swapy={insi->rot==1)} OR (insi->rot==2);
/% if the dimensions will be swapped %/
flip=insi->roté&l;

/% compute the external constraints for the subcell if they aren’t knoun =/
getExt {insi->mydefl);

/% get vectors with as many nodes as mydef had externals x/

vix=neulist (insi->mydef->exnnuml;

for (i=insi->mydef->exnnum; i>8; —-i)
vix=append{vix, (thingk) newNode (! fiipl}:

viy=neulist (insi->mydef->eynnum) ;

for (i=insi->mydef->eynnuir; i>8; —-i)
viy=append(viy, {thing¥) newNode (f1ip});

/% copy mydef’s external ports into the current cell’s graph %/
/% as this is done, give it the proper nodes, adjust the offset



% and the edge number to account for the transformation, and copy
% the links across the cell %/
ni=insi->nydef->al ias;
for (i=@; i<nl->lused AND (pj={(portxIni->valslil}-dext; i++) §
if {pj->edge>=WEST AND pj->other !=NULL AND pj->other->ext}
continue;
/% enter the port into this cell’s list of ports %/
safeAl ias{pi=newPort{pj->pnamel);
/% make pi in this cell look as pj did in the subcel!l %/
transformPort(pi,pj, insi,vix, viy, swapx, swapy, flip);
if ({pj->edge==EAST OR p j->edge==NORTH)} AND pj->other !=NULL
AND pj->other->ext) §
/% if the port is linked to one on the other side, make the other %/
safeAlias{pi->other=neuPort{pj->pname) };
pi->other->other=pi;
transformPort (pi->other,pj—>other, insi,vix, viy, swapx, swapy, fl ip);

J

/% copy the external constraints from mydef into the current cel! ®/
for {curdimx=TRUE; curdimx>=FALSE; —-curdimx) §
ni=lcurdimx~flip)? vix : viy;
icl=(curdimx~flip)? insi->mydef->excon : insi->mydef->eycon;
ocl={(curdimx)? &top->curlell->oxcon : &top->curlel |~>oucon;
if Cicl!=NULL) §
for {i=icl->lused-1; i>=0; —-i)¢
cnj= {constrx)ici->valslil;
cni= ({curdimx~flip) ?swapx: swapy) ?
newConstr (
{nodex) ni->valslenj->tnd->numl,
cn j->minsep,
{nodex) nl->valslcnj->fnd->numl)
newConstr (
{nodex) nl->valslcnj->fnd->numl,
cn j->minsep,
(nodex) ni->valslcnj->tnd->numll g
%oc | =append{koc|, (thingk)cni);

3

$
eStatFree{(thing%) vix);
eStatFree ((thingklviy);
return{{thingx) insil;

}

teclose
/% nlist is the list of nodes, sorted so that the external gnes are first;

% clist is the list of constraints, random order;
% icons gets a list of the internal constraints
% econs gets a list of external constraints.

x/

tclose{nlist,clist, extnodnum, icons, econs)

list xnlist,%clist,%kicons,¥kecons;

int extnodnum;

§f register int j,k,nk;



register NU1M *consts;
int i,n,nsq;

constr %ci;

NUM xdps

double sep;

int found,ni,nsqg;

if {(clist==NULL OR nlist==NULL) return;

n=nl ist->lused;

if ({consts=(NUM%)mal loc{{unsigned) ( {nsg=nkn)xsizeof (NUM) ) })==NULL}
runError {("out of room in tclose');

/% fill the array with illegal flpating point values, to differentiate
% between arcs and no arcs. %/
nanfill lconsts,nsqg);

/% put the constraints into the array %/
for (i=clist->lused-1; i>=0; i--}{
ci=(constrx} (clist->valslil);
consts [n¥ci->fnd->num + ci->tnd->numl = ci->minsep; |

/% here’s the transitive closure work %/
/% for each internal node %/

ni=nsq;
for (i=n-1; i>=extnodnum; i--}}§
ni-=n;

/% for each constraint from this node %/
for {j=n-1; j>=0; j--)}}
if (isnumlconstsini + j1)}}
found=FALSE;

/% for each constraint to this node %/

nk=nsqgs; .
for (k=n-1; k>=0; k—-)
nk—=n;

if {isnum(constsink + i1})}

/% make a constraint between the other nodes %/
found=TRUE;
sep=constsIni+jl + constsink+il;
if (k==])}§
/% a loop was closed. If it illegal, give an error
* message %/
if (sep>8.05)
find_oop { (nodex)nlist->valslil,
{(nodexInlist->valslkl);
} else
dp= 8constslnk + jl;
if (NOT isnum(xkdp) OR Okdp < sep)) xdp=sep;

] /% end of constraint to this node %/

if (found) nanfill (&onstslni + j1,1);
3 /% end of constraint from this node %/



] /% end of transitive closure %/

Ethrow{ (thingkx) icons) ;
Ethrouw( (thingkk) econs) ;

/% now put the constraints into the lists %/
for (i=n-1; i>=8; i--)
for (j=n-1; j>=B; j-—-}
if (isnum(constslixn + j1)){
ci=nenConstr ((nodex)nlist->valslil,
constslixn + j1, (nodexIniist->vaisljll;
if (i<extnodnum AND j<extnodnum)
xecons=append (kecons, (thingklcil;

else
xicons=append(xicons, {(thingklci);

free ({charx)consts);

coordiNode

/% Assign positions to the npodes %/

coordiNode (nt,cl, snum)

list #nl,%cl; /% list of nodes and list of constraints %/

int snum; /% number of external nodes %/
¢ list sulists /x processing list %/

int is

constr %cij

node *nni;

/% put the external nodes into the processing list %/
wlist=neuwlist (n!->lused);
for (; snum>@; )

ul ist=append{ul ist,nl->vals--snuml )

/% snum is the index of the first element, to avoid copying %/
while (snum<nl->lused) §
if (snum>=ulist->lused) §
/% the list is 'empty’ but there are still nodes without positions */
for (i=B; i<nl->lused; i++}§
if INOT ni->valslil->set) ¢
Wl ist=appendlist,ni->vaislil);
({hodex)nl->valslil)->pos=0;
nl->valslil->set=TRUE;
break;

}

3
/% get the first node %/
nni={nodex) !l ist->valslsnuml;
if {cl!=NUL)
for {i=cl->lused-1; i>=8; i--)}
if { (ci=({constrx)cl->valslil))->fnd == nni) {
/% nni starts the constraint %/
if {ci->tnd->set) {



/% the other node has a position, make sure the

% constraint is satisfied %/

if (ci->tnd->pos < ci->fnd->pos + ci->minsep)
ci->thd->pos = ci->fnd->pos + ci-Dminsep;

{ else

/% the other node doesn’t have a position, give it a

% legal one %/

ci->tnd->pos=ci->fnd->pos + ci->minsep;

ci->tnd->set=TRUE;

/% and put it on the end of the processing list %/

wlist=append{niist, (thingxlci->tnd};

l ef;(ci—>tnd == nni) §
/* mi ends the constraint x/
if (ci->fnd->set) §
/% the other node has a position, make sure the
% constraint is satisfied %/
if (ci->fnd->pos > ci->tnd->pos - ci->minsep)
ci->fnd-dpos = ci-dnd-3pos - ni-Dninsep;
] else §
/% the other node doesn’t have a position, give it a
% legal one %/
ci~>fnd->pos=ci->tnd->pos - ci->uinsep;
ci->fnd->set=TRUE;
/% and put it an the end of the processing list %/
ulist=append{nlist, (thingklci->fnd);

!

/% move the index to the front of the list %/
SnUMH+3

eStatFree ({(thingklulist)s
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