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ABSTRACT

In recent years, two developments in the design of programming
languages have yielded significant improvements in a nwmber of areas from
the standard FBAPP programming model. These are the object-oriented
paradigm, and variable polymorphism.

The object-oriented programming model allows the specification, hence
restriction of the operations allowed on a data structure, something not
possible with the more traditional PASCAL-style record structuring. This
ability to encapsulate data from the ouiside world gives a greater security
and error aveoidance in very large software projects involving many
programmmers.

In addition, the object-oriented style is conceptually easy to program in,
providing a useful framework for the subdivision of large problems into
manageable pieces. This property is essential for the rapid and reliable
immplementation of large software systems.

Variable polymorphism refers to the ability of variables to change types
at runtime. This is in contradistinction to typelessness (as in BLISS) where
variables have no types asscciated with them. In most comrmon languages,
the programmer must declare the types of all the variables he uses; these
types are then static throughout the execution of the program. Declarations
allow the compiler to produce efficient code and te identify errors whose
detection must otherwise be deferred until runtime; however, they sacrifices
a good deal of the generality which is possible with less stringent variable
binding schemes. On the other hand, languages which don't require
declarations, and which allow variables to change types, such as SNOBOL and
LISP, provide this generality by virtue of their extremely late binding, but
thereby sacrifice efficiency. :

SMALLTALK is perhaps the purest language which embodies both object-
orientedness and declarationlessness. Unfortunately, these two features,
while of great benefit in increasing programmer productivity and program
reliability, suffer heavily from the pcint of view of runtime efiiciency.

The project is to investigate ways to obtain the undeniable advantages of
polymorphismm  and object-orientedness, without sacrificing runtime
efficiency. More specifically, The goal is to build a compiler for a dialect of
SMALLTAIK for the VAX under UNIX {Berkeley 4.1bsd), which incorporates
data-flow type inference algorithms enabling it to produce executable
programs of an efficiency comparable to that of programs produced by
compilers for more traditional but less powerful languages.

The optimization methods are described, test results are examined, and
indications of future directions are given.
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CHAPTER 1

INTRCDUCTION

1.1. General Description of Problem and Goals

In the development of general purpose high-level programming
languages, a number of advances can be pointed to as being of particular
significance. Perhaps the most noticeable is the set of concepts embodied
under the phrase "structured programming”, which is now acknowledged to
be a2 methodeology which increases programmer produetivity and program
reliability.

In recent yéa.rs the notion has surfaced that the next major advance in
the evolution of general burpose programming languages is the object-
oriented methodology. Languages such as SIMULA! [Birtwistle et al, 1873]
and MAINSAIL '[Wilcox et al, . 1978] are based on the object-criented
paradigm. In addition, the new Department of Defense language ADA
[Ledgard, 1980] [DARPA, 1981] has significant support for an object-oriented
programraing style. INTEL has recognized the new trend in its hardware; the
iAPX 432 [INTEL, 1981], INTEL's mest advanced microprocessor, is designed
around the concept of object-oriented pregramming.

The reason for this growing interest is that the object is a good means of
expressing not only the data abstraction available with conventional PASCAL
[Jensen and Wirth, 1974] style records, but also a data encapsulation giving

greater control over the manipulation of data. In PASCAL and similar

ISIMULA wes originelly designed to be e simuletion lénguage, but et Caltech it is used in-
steed as & general-purpose object-oriented lenguage.



languages, the record can specify the organization of data, but cannot
control access to it. An object-oriented language class specifies the

organization of data and also the operations which are to be allowed on it.

This protection of data from arbitrary corruption gives a greater
security and error avoidance in very large software projects involving many
programmers. In addition, it has been found at Caltech from the heavy use of
SIMULA, and more recently MAINSAIL, that the object-oriented style is
conceptually easy to program in, providing a useful framework for the
subdivision of large problems into manageable pieces. This property is
essential for the rapid and reliable implementation of large software

systermns.

The second major property to be examined is variable polymorphism,
and concomrmitant declarationlessness. In most widely used general purpose
languages, the programmer must declare the types of the variables he uses.
These variables then remain of the specified type throughout the execution
of the program. This allows the compiler Lo produce efficient code and to
identify errors whose detection must otherwise be deferred until runtime;
however, it sacrifices a good deal of the generality which is possible with less
stringent varieble binding schemes. On the other hand, polymorphic
languages (wbic‘h therefore don't require declarations), such as LISP and
SNOEOL, gain considerable generality by virtue of the ability of program
variables to change their types at runtime. They achieve this by extremely

latc binding, but thereby sacrifice cfficiencey.

SMALLTALK® [Byte, 1981] is an example of the latter category. It is a

polymorphic object-oriented language developed at XEROX Palo Alto

BSMALLTALK here refers to Smalltalk 80.



Research Center. Variables can be of any type, or "class", and can change
types merely by appearing on the left side of an assignment statement.
Associated with each class is a set of operations, or "messages” to which
variables of lhal class can respond, and lhe "melhods” lhat go with these
messages. A message is analogous to a function narne in PASCAL; a method to
a function definition. In PASCAL these are one-to-one, but in SMALLTALK all

messages are potentially generic, ie. the mapping from messages to

methods can be one-to-many.

As an example, the expression a+b is metaphorically interpreted te
mean "send the message + with argument b to the object & (called the
"receiver’”), Which routine is ‘actua.uy invoked to do the + depends on the
class of a at the time of execution. Thus, for every operation, a test must be
made as to the class of the receiver, and whether that class actually knows
how to do the operation, ’i’hjngs are further complicated by the fact that
SMALLTALK has a subclassing mechanism equivalent tc that of SIMULA,
whereby each rfjlass has a suiperclass and if 2 message is not understeod by

an object of some class, its hierarchy of superclasses is searched.

The problem is that runtime variable type changes are desirable when
the concern is generalily, and extremely undesirable when efficiency is of
primary importance. The goal is to have ocur cake and eat it; to gain the
efficiency when the generality isn't being used, but to have the generality
available when we need it. Specifically, the objective is to implement an
object-oriented language featuring no declarations and runtime variable
polymorphism in thé freest possible way, by assignment, but to do so in such

a way that efficiency is only sacrificed when necessary.



1.2. Vehicle for Examining the Problem

SMALLTALK provides the features needed to examine the preblem, but
unfortunately it also contains some totally extraneous cnes which sérve to
obscure the heart of the issue. For that reason, the language used as a basis
for implementing the optimization methods described later is based on
SMALLTALK, but is a good deal simpler. Those features incidental to the
problem have been thrown out or modified. The language, call it TINYTAIK, is 2
polymorphic, object-oriented language wusing the SMALLTALK message
sending metaphor as its procedural and expressional form, but with a

different form for control structures. It is important to note that TivvTalX is a

research tool and not a full-fledged general purpose language®.

1.8. How to Have Our Cake and Eat It

The problem boils down to how to avoid runtime type testing without
having the programmer have to tell the compiler the answers. The solution
which springs to mind is to make the compiler smart enough to work out the
types of variables at various points just from the program itself. For
example, if & is set egual te 2 somewhere, o is an integer until it gets
changed. Then a subsequent c+b need not result in a runtime test of the
type of a; the compiler can tell it is integer and that that the form of +
needed is the one associated with class nteger®. This is a simple example of
the sort of type inference of which TnvTALK is capable. The ideal result of
applying such type inference procedures to a program is that the only

variables which will have runtime type tests performed con them are those

3In particular, the runtime support at present has no input facilities; these not being need-
ed to examine the eflectiveness of the type inference optimizsations.

4Class names are traditionally written with the first letter cepitalized, whereas normal vari-
able names are entirely lower case.



that require it by the fact that they really can, in the normal execution of
the program. be one of a number of types at the same place at different

times.

1.4. Scope of the Project

The project consists of the design and implementation of a TmNYTAIK
" compiler for the VAX-11/780° running Berkeley UNIX® 4.1bsd, the design and
implementation of the algorithms necessary to do the type inference alluded

to above, and the testing of the resulting system to determine its

effectiveness.

1.5. Previous Work

There are basically two general methods of type inference [TEMPO]. The
first, the functional approach, is used mainly for languages like LISP, where
the metaphor ie function application. The second, data-flow, is used with
imperative languages like PASCAL. TINYTAIK is a cross between an applicative
and an imperative language. It has the imperative control fiow structuring,
but the message metaphor is basically applicative, with syntactic trickery to

make it look like normal expressions.

The functicnal approach has the feature that the possible types which a
function can return are expressed as a type expression in which the types of
the parameters appear as free variables, This avoids the pessibility of it
being necessary to re-analyze a function for each invocation. With data-flow
approaches, procedures which can take parameters of varying types, as can
all TINYTALK messages, may require re-analysis. In the TINYTAIX compiler,

message return types are also represented as type expressions with the

SVAX is & trademark of Digital Equipment Corporation.
SUNIX is a trademerk of Bell Laboratories.

-5 -



parameter types as free variables, making re-analysis unnecessary. Other

then this, the eppreoach taken in Twraix is data-flow.

The type inference algorithms developed and implemented m this
project are based primarily on the concepts and ideas presented in [TEMPO]
with reference to type inference in the language TEMPO. This work differs,
however, in a number of respects. First, the algorithms presented here must
deal with several kinds of variables: local, global, field, argurment, and so on,
whereas the algorithm used on TEMPO deals essentially cnly with local

variables, the easlest of those encountered in TINYTAIX.

Seccnd, the objective in TEMPO is to minimize not only runtime type
testing, but alsc the need for any runtime type tag at all wherever possible,
Since the structure of an object-oriented language such as TINYTALK requires
the existence of a runtime type tag for other reasons anyway, TEMPO's

second goal is not germanc here. This implies modification of the algorithms

used in TEMPO.

Third, and more notably, [TEMPO] gives no information on type
inference methods for TEMPO procedures, and, since ToyTalk is heavily

procedural, dealing with procedures is essential.



CHAPTER 2

DESCRIFPTION OF myrex

2.1. General Features

TYTALK features a message sending syntax and semantics virtually
identical to that of SMALLTALK It has a builtin if-then-else, control construct,
and while, and Jor looping constructs. Classes can be defined, messages
" defined in ‘these rclaiss‘e‘s, and methods asscciated with these messages.
Superclassing is as in'SMALLTALK. The main program has variables accessible
only within its body (these are called globals). Instances of classes have field
variables as it SMALLTAIK. Methods have arguments and locel variables as in

SMALLTALK.

2.2. Detailed Description

In thé following description of TiNvTaLK, some familiarity with SMALLTALK

is assumed.

2.2.1. Program Structure

A program consists of an optional sequence of class definitions and class
enhancements, followed by a main program. Each class definition creates a
new class of object. It specifies the class's superclass, the data attributes
(called fielde) of instances of the class, the messages to which instances will
respond, and the actual operation {method) to be performed when
responding. A class enhancement adds a message to an already defined

class.



2.2.2. Class Definition and Enhancement

A class definition is of the form:

-class <classname>
subclassof <classname> ]
fields <idlist> ]
begin
<message definition> { <message definition> }
end

where [ # ] indicates 0 or 1 vcocwrences of x and { z } indicales O or more

occurrences of <x>.

A class enhancement allows the addition of a message and associated

method to an existing (usually builtin) class, It is of the form:

class <classname>
understands
<message definition>

The <classname> must be the name of an existing class.

2.2.3. ¥essage Definition

A message definition is used to connect a message with a particular
class; objects which are instances of that class will then "understand” the
message, and the associated method will be invoked. There are three types
of messages: unary messages, binary messages, and keyword messages, A
unary message definition has the form:

message <message name> [ ] <local variable list> ]
<block>

The <local variable list> is a list of the names of the local variables of this
method. It is optional, and if present, is preceded by the character 1. A

binary message definition has the form:



message <operator> <formal parameter> [ | <local variable list> ]
<block>

See appendix A for the exact definition of an <operator>; basically it is a
sequence of one or more characters from the sct | !18X&*+,-
/5<=>%@\~_|~ ], with certain sequences reserved. The <formal

parameter> is just an identifier. For example,

message ++njlab
begin

end

defines a method associated with the message ++ having formal parameter n

and local variablesz and b, A keyword message definition has the form:

message <message name >: <formal, > <message name,>: <formal,> ...
[ | <local variable list> ]
<block> '

For example:

message at: index put: value |xy
begin

end
In this example, the message name is af:puf: the formal parameters are
inder, and value, and z and y are local variables.

In all three forms, <block> is the method body; just as in PASCAL a
block forms the body of a procedure.

2.2.4. The Block

In TINvTALK, a block is just a sequence of statements separated by ‘.’ and

enclosed by begin aﬁd end, or in parentheses. It is thus entirely analegous



to a PASCAL block, with one major difference. A TINVTALK block vields a value;
the value of the last statement in it. All other statements in the block are

"voided”, that is, their value is thrown away. Thus, for example
( a«"hello". 3)

has the value 3, and as a side effect sets ¢ to the string "helle”. As another

example,
(a. b.)

has no value at all, because the last statement in the block iz the null
statement. If such a block were used in a context where a value was needed
(e.g. on the right hand side of an assignment), a compile time error would
resuit. All parenthesized expressions are blocks. They contain one
statement. For example, the block {e+b) contains as its statement list a.
single statement and hence has as its value the value of that statement,

namely a+b.

2.2.5. Statements
2.2.5.1. The Unit

The most common type of statement in TMvraik is the unit. A unit is

enalogous to an assignment statement, procedure call, or expression in

PASCAL. The bagic form is:

f <id> « { <term> [ <keyword selector> { ; <keyword selector> } ]
The « is the assignment operator. A term is:
<factor> { <binary selector> ]

A factor is:

-10 -



<primary> { <unary selector> }

A primary is an integer, real, character, or string constant, a variable, a
predefined constant, self, or a block Predefined constants include frue,
false, and nil, The pseudo-variable self refers to the receiver of a message

inside the method activated upon receipt.

Working backwards, a unary selector is just the name of a unary

message. Then, an exatmple of & factor is
x negate invert

where z is the receiver of the unary message negale, and the result is then to

receive the unary message invert.

A binary selector is analogous to the invocation of an operater in ALGOL
88 or PASCAL (except that in PASCAL there are no user defined operators). It

Lias the form:

<binary message> <factor>
Thus, for example:

+ ¥ negate

iz a binary selector involving sending the message + with argument the value

of the factor y negete to some receiver. An example of a term, then is
B+3*4

in which 2 is the receiver of the binary message + with argument 3, and the
result subsequently receives the message * with argument 4. Note that there
is therefore no notion of priority in binary operators; all are the same

priority and evaluation is left-to-right.

-11,



A keyword message is analogous to a procedure call in PASCAL. It has

the form:

keyword: <term> { keyword: <term> }
For example,

at:2puttx+y

sends the message af:pul: with argurmnents € and z+y Lo some receiver. .

The most general right hand side of an assignment has the form:
<term> [ <keyword selector> { ; <keyword selector> ] ]

Here, <term> is evaluated, and then the messages indicated by the several
<keyword selector>s are sequentially sent to the result, with the specified
arguments. Note that <term> is evaluated only once. As a complete

example,
g«re+«x<<4at 1put: z; at: 2 put: 14 *q; at: 3 put: m negate

means: evaluate the term z << 4, (which is the binary messé.ge << with
argument 4 being sent to the receiver z), and save it in a secret place. Then
send the keyword message afpuf: with arguments z and £ to the secret
place, and throw away the return result of the message. Next, send afpuf:
again to the secret place, bul this time with arguments 2 and 74 * g, and
again discard the result. After that, once again send ofpuf: with arguments
this time of 3 and m megafe, Finally, take the return result of this last

message sent and assign it tog and to 7.

The value yielded by a unit is the result returned by the message in the

last keyword selector, if any, or the value of the term. In the above example,



itis z<<4 at: 3pui: m negale, this is also the value assigned to g and 7.

2.2.5.2. Primaries

As menticned in the previous section. primaries include integer, real,
string, and character constants; the builtin constants true, false and nil;

self; blocks; and variables.

2.2.5.2.1. Constants

Integer and real constants are standard. A character constant is a
single character or metacharacter in single quotes. A string constant is a
sequence of characters or metacharacters in double quotes. A
metacharacter is a two characterisequences, the first of which is a
backprime or backslash. These allow the specification of non-printing

characters within a character or string constant. See appendix A.

The buillin constanls are all of class object; frue and folse are returned

as the results of boclean messages and nil is the initial value of variables.

2.2.5.2.2. Variables

In TINYTALK (as in most languages) the unit of data is a variable. A variable
can be cne of several modes:

local
Local variables are variables declared local to a method, and go away
when the method returns. They are entirely analogous to local variables
in PASCAL except that they are initialized to nil,

global
Global variables are, in this implementation, accessible only from the

main program. They are illegal in methods (but see section 8.5). They

-18-



are also initialized to nil. A Global variable is created merely by using it
in the body of the main program.

field
Field variables represent the fields of an object. A field variable used
inside a method refers to the corresponding field of the receiver. Field
variables are analogous to SIMULA data attributes. When a new object is
created, its fields are initialized to nil. Field variables are illegal in the
main prograrm.

class
A class is the name of one of the user defined or predefined classes. It is
an instance of class Class, and is really a kind of constant.

argument
An argument variable represents the value, within a method, of an
actual parameter. It is illegal in the main program. Argumecnts are
passed by value, which means that although the argument can be
assigned to in the method, the value in the caller remains unchanged;
however, the argument's fields can be changed by the callee, since they
are variables in their own right.

self

The variable self appearing in a method refers te the receiver. It is

treated the same way as an argument.

2.2.5.3. The IF Statement

The if statement is exactly as in PASCAL:
if <unit> then <statement 1> [ else <statement 2> ]
The unit is evaluated and if it yields the predefined constant frue then

kl_é_,



statement 1 is executed; otherwise if the else part exists, statement 2 is

executed,

The value of an if statement is the value of whichever of statement 1 or
statement 2 is executed. If there is no else part, the value of an if statement

is the predefined constant nil. Thus, for example,
a « (if x==2 then 8 else (x«y. 8))

will set o equal to 8if z does equal £, and set a equal to 6 with the side effect
of setting z equal to y if £ doesn't equal 2. The else part:
(x«y. 8

is a statement which is a unit, which is a term, which is a factor, which is a
primary, which is a bleck, which is a statement list and has the value of the
last statement in it, which is a unit; a term; a factor; a primary; the integer
constant 6.

2.2.6.4. The WHILE Statement

The while statement is again standard:
while <unit> do <statement>

So long as the unit yields frue, the statement is executed. The value yielded

by a while statement is nil.

2.2.5.5. The FOR Statement

The for statement is exactly as in C [Kernighan and Ritchie, 1978], This
was done with the intention of making timing tests between the two

languages more easily interpreted. The syntax is:

-15-



for <unit 1> . <unit 2> . <unit 3> do <statement>

The semantics of such a for statement is defined to be equivalent to the

corresponding while statement:

<unit 1>

while <unit 2> do begin
<statement>
<unit 3>

end

Thus a for statement also yields nil as its value. Any of the three units in the
control pertion of the for statement can be left out; the first and third

default to nothing and the second to frue.

2.2.5.6. The RETURN Statement

The return statement is used to return values from methods. It has the

form:
return <unit>
or
~ <unit>
The method exits yielding the value of the unit. A method may also

terminate by falling out the bottom; in this case it returns its receiver. That

is, there is an implicit
return self

as the lasi slalemenl of each melhod. The return slalement is not legal in

the main program.
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2.3. Builtin Classes and Messages

The present TINYTALK runtime system has a number of builtin classes and
a fairly minimal set of builtin messages which these classes understand. The

predefined classes are Object, Class, Array, Integer, Real, Siring, Char.

2.3.1. Class Object

Class Object is the eventual superclass of all classes. If no subclassof
clause appears in a class definition, the superclass defaults to Object. Class
Object understands the messages == for equalily testing, and <> for
inequality testing. Thése test Srily whether the receiver and argument are
the same object, not whether they are different objects with the same values
for their fields. Note, however, that == and <> are also defined for nfegers,
Reals, Chars, and Strings, so as to compare the values, not the objects
themselves, Ohjects understand the message ',' (comma) which forms an
array of two elements from its receiver and argument. The message ‘.’ is
also understood by Arrays to mean concatenate the argument onto the

receiver,

2.3.2. Class (Class

Class Cless is an unusual one in that the only way to make new instances
of it is Lo do so at compile time with class definitions. A class definition, for

example

class Point

creates a variable Point which is an instance of class Class. Class Class
understands two related messages: new and new:to:. These are used to

create new instances of things. Thus the expression
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Point new

yvields a new instance of class point with all fields initialized to nil. The

message new:fo. is reserved for Arrays; the expression
Array new: 2 to: 10

makes a new array containing 9 elements numbered 2 through 10. It is a
runtime error to send the message ne@:to: to any instance of class (lass
excepl Array. It is a runtime error to send the message new to (lass, since
this is tantamount to making a new class at runtime, which would make type
inference, to say the least, difficult. {The hypothetical new class would be
useless anyway, since there would be no way to associate any messages with

it).

2.3.3. Class Aray

All arrays are one dimensional, and can contain as their elements
objects of any class, mcludiﬁg other (of the same) arrays. Class Array
understands messages to concatenate an element to an array, to access and
set an element of an array, and to get the lower and upper bounds. The */’
(comima) message concatenates the argument to the receiver array,
extending it by one element (its upper bound grows by one). The Ib and ubd
unary messages return the lower and upper bound, respectively, of their
receiver. The message af: returns the argument'th element of the receiver.
The message afput: sets the argumenti'st element of the receiver to

argument 2, and returns self.
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2.3.4. Class Inieger

Class [ntfeger understands the usual binary messages: +, -, * / for
addition, subtraction, multiplication, and division. These yield /ntegers if the
argument is /nteger, Feals if the argument is Feal, otherwise a runtime
error results. /ntegers also understand % (integer remainder), and the usual
comparison operators ==, <>, <=, >=, &, > 50 long as their argument is
Integer or Heal. These all return true or false. The messages csFeal and
asChar can be used to convert to Fea! and Cher, csChar returns a Char
having the ascii value of its receiver. /ntegers know how to print themeselves

with the message print.

2.3.5. Class Feal

Feals also understand the arithmetic and comparison operators, as well

as the conversion message as/nfeger, which truncates. Feals know how to

print themselves with print.

2.3.6. Class Chor

Chars can be converted to /ntegers and Sirings with as/nieger and

asString, and printed with print.

2.3.7. Class String

Substrings can be taken with from:o: which should be given nieger
arguments. Copies can be made of Strings using copy, The length can be
found with lengfth. The message af: returns as a Chaor the argument'th
element of a String. The message afput: can set an element of a Siring to a

particular Char. Strings can be printed with print. The message print: uses



its receiver as a printf! -style format string and prints its argument, which
should be an Integer, Feal, Chaor, String, or an array of these. Thus, for

example, if ¢ equals 31,

"The time is %d:%d.%d'n" print: (12,2,19)
will print

The time is 12:31.19

onto the standard output. Here, print: is being given as its argument the
array {12.a,19) formed with the comma message described above under

class Object and class Array.

2.4. Comparison to Smalitalk B0

TINYTALK is quite simple in comparison tc SMALLTALK B0. One immediately
notes the absence of global variables accessible inside messages, and of class

variables. See however section 6.5.

Another major difference is the lack of the SMALLTALK "block" (entirely
different from the syntactic entity described in section 2.24). In
SMALLTALK, the block forms the basis of all control structures. Bleocks are
inétances of class Fiock. They are basicaliy anonymous methods, or routine
texts to use ALGOL 68 terminology. They can be executed by being sent the
message valus. Blocks with pararncters exiet; they are scnt onc of the
messages value:, valuevalue,, ... depending on the number of parameters.
Blocks can access and modify local variables. They can be nested, and inner

blocks can access and modify the parameters of outer ones.

1Printf is & UNIX routine used to produce formetted outpui; its first argument is a string
specifying the format [UNIX].



The concept of block as described above can cause considerable
implementation headache. As an example, consider the SVALITALX fragment
which represents a definition of the message mess: which contains the

SMALLTALK versien of an i construct;

mess: X |ab

(a = b) ifTrue: [ ~ 12 ] ifFalse: [ ~ 15 ]

(In SMALLTALK the = is the comparison operator). What this means is that (o
= b) is evaluated, yielding one of the constants true or faise, which are
instances of class Object. This result is then sent the message ifTrueifFalse:
with two blocks as arguments. This rﬁessage examines its receiver, and if it
is frue, sends the message wvalue to its first argument, otherwise value is
sent to its seéond ergument. Now ask the question: what does the return in
[~12]or [ ~15] return from? Not from the block itself, which after all is an
anonymous method, Not from the ifTrue-ifFalse: message, that would be
useless. It should return, in this case, from mess;, the statically enclosing

method.

However, since a block is an object, it can be assigned to a variable; that
variable can be returned to a calling method; it can then be executed there.

Consider another example. Supposing some method contains the line:
~[~3]

The caller gets returned an cbject of class FBlock whose code represents the
operation "~ 3". The caller is, of course, entitled to send to this object the
message volue, which results in the execution of ~ 3. However, now the
return cannot be made from the statically enclosing method since it has

already gone away. Where is the return from? Not necessarily the method
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who sent the value message, since this might be an if7True-ifFalse; nor the
next non-anonymous dynamically enclosing methed, for the sarne reason?.

Now consider the statement
~[x«2]

where z is a local variable of the method. The caller gets returned a block, to
which he is once again entitled to send the message value. This results is the
statement = « 2 being executed, but where is z? It is a local variable of a

method which is done executing; whose stack frame is gone.

One solution to the problem of referencing no-longer-existing locals is to
keep activation records on the heap instead of in stack frames®, and to make
blocks contain pointers te the activation records of any locals they
reference., Note that since blocks can themselves have parameters
(essentially initialized locals), inner blocks can access these as well. Thus
blocks must potentially keep pointers to several activation records. This

scheme means that activation records won't be deleted until ne blocks need

them.

Needless to say, this whole design is an expensive one to use for a
construct that forms the basis of all the control structures in the language,
and was deemed not werth implementing in TINVTALK given the primary goal of
enhancing runtime efficiency. More significantly from the point of view of the
goals of this project, the intent of blocks is primarily te enable the user to
create his own control structures, and user definable conlrol structures

make data flow analysis, at the very least, rather difficult. The other primary

2[f anyone knows the enswer as defined in Smalltalk 80, I'd be interested to know.

33malltalk 76 does this for other reasons, namely that activetion records, called "contexts”
ere also objects.
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decrease in flexibility incurred by not putting activation records on the heap

is that ceroutines cannot be implemented with the stack model used in

TINYTALK.

One final note of difference is the idea of the recursive definition of a
unit; specifically the ability of a primary to be a block, allowing arbitrary
nesting of statements. This deliberately eliminates the difference between a
statement and an expression; an idea taken directly from ALGOL 68 [Lindsey
and van der Meulen, 1980] and, I think, an important one. From the point of
view of the implementation of a data fiow type inference algorithm, however,
it causes difficulties. In TEMPO, statements are the elements of analysis; this
is ot practical in TmyTalk because statements can contain other statements
in parenthesized subcomponents, to an arbitrary depth of nesting. The

solution to this dilemma is discussed in section 4.2.

2.5. Comparison to Simula

The polymorphic nature of Tvraik (and of SMALLTAIK) gives it a
significant conceptual advantage over SIMULA, which is of the same basic
metaphor, but which requires that variables be declared and that they

remain of one type throughout execution.

Variable polymeorphism gives, in particular, considerably more freedom
in the creation of data structures. In SIMULA4, if it is desired that a field (data
attribute) be able to contain data of one of several types, a class must be
created which is a superclass of all of those types, and the field must be
declared to be of that class. This is the only reason for the existence of class
Thing in Caltech SIMULA culture. Everything is a subclass of class Thing.
Then the programmer must play around with VIRTUAL declarations and QUA

to say what he means.
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In TD'YTALK if a field must be of one of several types, there is ne problem;
you just put whatever you want there. TINVTAIK does not need the concept of
VIRTUAL, or the QUA operator, because this comes free with the polymiorphic

nature of the variables,
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CHAPTER 3

RUNTIME REPRESENTATION

3.1. Target Machine

The target machine for the TyTaik compiler is the VAX 11/780 running
Berkeley UNIX 4.1bsd. The compiler produces as output an assembly
language program which is then assembled using the standard UNIX

assembler, as!, and linked with runtime libraries using the standard UNIX
linker, id.
3.2. Runtime Represeﬁtation of Objects

An object at runtime is actually a data structure kept on the heap which

has the fellowing form (words are 32 bits):

word -2 reference count

word -1 | pointer to class of which this is an instance
word 0 field O
word 1 field 1
word n fleldn

Figure 3.1 - Format of an Object in Memory
For details of the meaning of the reference count, see section 3.6.

It is important to distinguish between variables and objects. An object is
a block of memory on the heap or in static storage in the format of figure

3.1. A variable is a single word cecntaining a pointer to word 0 of such an

1UNIX takes the viewpoint of why should each compiler produce object files directly, if that
is what the job of the assembler is. The UNIX assembler is designed to be a back end for the com-
pilers, and ell of them use it.



object. The location of a variable depends on what kind it is; lecals and
arguments are on the stack: globals are in static storage: fields are on the

heap along with the objects they point at.

3.3. Runtime Representation of Classes

Since a class is an object, it has the standard two words of reference

count and class before it; the complete layout is:

word -2 reference count

word -1 pointer to class Class

word 0 peointer to message table

word 1 name of this class

word 2 | number of fields in objects of this class

Figure 3.2 - Format of 2 Class in Memory

The name of the class is actually not a string, but a smell integer which is an

index into a string table. This representation is as in the XEROX
implementation of Smalltalk 76, and the small integers are called unigue

strings,

The format of a message table is:

word 0 length of table

word 1 | message 1 unique string
word 2 | method 1 start address
word 3 | message 2 unique string
word 4 | method 2 start address

Figure 3.3 - Format of a Message Table

The message table is actually a hash table with the unique string being the
key variable in a hashing function. Thus any one of the unique string entries

can be zero indicating an empty hash table entry.
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3.4. Runtime Representation of Objects of Builtin Classes

Integers, reals, and chars are represented in the obvious way,; Lthey have
one fleld, which contains the value. Strings have two fields, the length and a
pointer to the text itself. Arrays have four filelds, the lower and upper bounds,
a pointer to the data, and an allocated space count. This last gives the size of
the area allocated to the array. It is usually larger than upper bound - lower
bound + 1, since Arréys are allocated and lengthened in chunks to speed up
appending elements. Instances of class Object have no fields at all, just the

reference count and class pointer.

3.5. Implementation of Methods and Messages

A method is just a VAX procedure, with argurmnents passed via the stack.

The sequence of steps to send a message is as follows:

(1) Push the arguments onto the stack in reverse order.
() Push the receiver's class.

(8) Push the message unique string.

(4) Call the lookup routine, which uses the values put on the stack in (2) and
(3) as arguments, This routine is part of the runtime system, and looks
up the message in the hash table dictionary of the class. If not found, it
looks in the superclass's message table, and continues this process until
the messeage is found, or until class Object is searched with no success. If
thekmessage is found, the associated method start address is returned

(see figure 3.3), otherwise a runtime error occurs.
(5) Push the receiver.

(6) Call the method returned by the lookup routine in step 4.
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The objective of the type inference is to allow the compiler to avoid the
necessity of the lookup (steps 2 through 4) and to call the ecorrect method
directly (step 6), or even, in the case of some builtin methods, to repléce the

entire seguence with an inline expansion of the method.

The prolog for a method consists merely of creating room on the stack
for local variables and initializing them to nil. Methods return values in a
register reserved for this purpose. The exact return sequence is:

(1) Decrement the reference count (and delete the object if zero) of all

local variables,

(2) Decrement the reference count of all arguments.

(8) Move the return value into the reserved register.

(4) Return.

3.68. Hemory Management
3.6.1. Memory Allocator '

The present version of TINYTALK uses a reference count strategy for
controlling the creation and deletion of objects. It has been éhown that, in
the standard case, reference co'unt'mg gives worse overall total performance
than garbage ccllection, but better per unit time worst case performance.
That is, more cycles are wasted in memory manipulation, but the lcad is
moere evenly spread. Sectlon 6.2 gives some ideas on using inference
information to eliminate unnecessary ref(erence counting cperations, which

may shift the balance in favor of reference counting.

The memory allocator uses a circular first fit strategy [Knuth 1973], but
" has overlaid on that a special interface which speeds up the creation and

deletion of objects. We will call the first the real allocater, the second the
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guick allocator. The quick allocator operates as follows: an array of linked
lists of free objects is maintained independently of the circular free list. The
index into the array is the size of the object; there is one list for each size up
to some limit MAXSIZE. When an object of with & size less than MAXSIZE is
freed, if the list for that size has less than MAXL.EN elements in it, the object
is prepended to that list instead of being returned to the circular free list, If
the object is too big, or its list is full, it is freed as normal. When an object of
some size less than MAXSIZE is requested, the appropriate list is first
examined to see whether it has such an object. and only if not is the real
allocator invoked. It is expected that in many cases most of the requests will
be dealing wilh objecls of one of the buillin classes, parlicularly miegers or
Fegls, and that allocations and frees of these tend to stay fairly in sync (see

sections 5.3 and 5.4).

3.6.2. Stralegy [or Hanipulaling Relerence Counts

The following rules are used to generate instructions to maintain correct

reference counts during the execution of the program:
(1) Increment the reference counts of variables appearing in expressions.

(2) Decrement the reference count of a unit being voided. A unit is voided
when it is fellowed by a period, or is in the controlling part of a control

structure (if, while, or for statement).

(8) Decrement the reference counts of local variables, arguments, and self

upon method exit.

(4) Increment the reference count of the right hand side of an assignment

for each left hand side.
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(58) Decrement the reference count of the old value of the variable on the

left hand side of an assignment.

(6) In a unit (or right-hand-side) of the form t m, ;m,,; ... ;' m decrement
the reference count of the return value of t m, tm, ...t m_ andof ¢

itself, but not of ¢ m_, since this is the value of the unit.

3.7. Runtime Frror Handling

Most errors that can occur at runtime are checked for. Array subscript
out of bounds, string subseript out of bounds, méssage not understoed by
receiver; all result in sensible errors. The unique string table is assembled
with the program, so that actual names of messages and classes are given.
One of the compile time options causes assembly of a line number table, so

that runtime errors give the source line on which they occur.
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CHAPTER 4

PROBLEM AND SOLUTION

4.1. The Problem

Consider the message sending sequence, Assuming a procedure is to be
called, the pushing of parameters and receiver onto the stack is unavoidable.
However, the lookup operation involves at the very least, a procedure call, a
hash value computation, a probe and comparison, and a procedure return. If
a reprobhe or two iz necessary into the message hash table, or if the message

‘is not found and the whole operation must be repeated with the message

table of the superclass, the overhead is even worse. This is the problem.

4.2 The Objective
All of this ean be avoided if the class of the receiver can be inferred at

compile time. As an example, consider the following statement:

yex+R
In the normal case, this results in:
(1) Push?
(2) Find the class of z.
(3) Look up + in its message table.
(4) Pushz.

(5) Call the method returned by the lookup.



However, if it can be inferred that z is an integer before the statement,

the steps could be:

(1) Push?2.

() Pushez.

(3) Call the Integer_plus routine.

thus eliminating the expensive lookup. In addition, if the message is a builtin
one that maps into a few native instructions, it is a candidate to be replaced
by an inline expansion. The objective is to do these simplifications wherever

possible.

4.3. The Solution

The basic body of information needed to remove lockups as described
above is the set of possible types of each variable at each program point.
First, what is a program point? In the type inference algorithms presented
in [TEMPO], a program peint is placed between every statement and the |
one(s) immediately following it in the flow of execution. This works in the
case of TEMPO, because of the one dimensional nature of TEMPO programs,
and because TEMPOC statements are defined in such a way that first
computation, then assignment tekes place. Thus no type changes caused by

a statement can affect the execution of that statement.

Unfortunately, since TmyTalx ellows nesting of statements, the statement
is not a good unit of execution for inference on TINYTALK pregrams. Instead,
the approach taken is to first compile the TINYTAIK program into an
intermgdiate form before doing type inference on it. The unit of execution
upon which inference takes place is the intermediate 'c’ode itemn. The general

outline of processing is divided into six phases:
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(1) Parse the entire program into a parse tree representation.

(2) Generate intermediate code for each message and for the main
program. At the same time construct a program flow graph by joining
with program points all pairs of intermediate code items which will

execute sequentially.

(3) Set up type expressions for variables affected by each code item in each

program point.
(4) Solve these type expressions.

(5) Use the results to replace lookups with direct calls or with inline
ex¥pansions.
(8) Produce the assembly program, doing some final peephole

optimizations, assemble and link,

Since we are dealing with the intermediate form, it is necessary to
introduce pseudo-variables which do not appear in the criginal program.

These include the stack variables §, S,.., 5, the temporary variables, 7,

%1

and the message return value refval. The stack pseudo-variables s, s,..., 5,
represent velues stored on the stack in the process of passing arguments to
metheds. The temporary pseude-variables, 7, are used to store
intermediate resulls in the evaluation certain complex units. In the VAX
implementaticn, temporary variables (and the pseude-variable refval) are

stored in registers.

4 4 Phase 1: Construct Parse Tree

The construction of the parse tree is handled by a standard recursive
descent parser based on the BNF for the language (see appendix A). The BNF

was designed so that one token lookahead is all that is necessary.
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4.5. Phase 2: Generate Intermediate Cecde and Flow Graph

4.5.1. Intermediate Code

The intermediate code is a set of code operators with variable mllmbers
of arguments, representing the primitives of TmyTAIK execution. The
arguments of all the code operators (SEND excepted) are of two forms,
variables and labels.

A varioble is a structure representing one unique user variable in the
program. It gives the name of the user variable, and additional qualifying
information. T'or an argument or local, the gqualifying informaticn consists of
the message in which it is defilned. For a field variable, the qualifier is the
class of which it is a field. Globals have no qualifiers. This gualification is
necessary since distinet variables can have the same name.

A label is a small unique integer used in the fina! output phase to create

a label name for the assembler,
The following are the code operators initially generated:

GENARG argument
This operator pushes an argument to a message onto the stack.
Argument is a variable.

SEND message, receiver, argument count
This operator is used to generate code Lo send a message. Messcge is
the unique string of the message being sent. Receiver is the variable
which is to receive the message. Argument count is the number of
arguments the message is being given.

RETURN value

This operator produces code to return from a methed, yielding value (a



variable) as the result. |

¥OVE from, to
This operator moves the value of one variable, from, to another, ‘to. It is
used in conjunction with reference count manipulation operators to

code assignments, and to manipulate temporary results.

]f"E'RUE variable, label
This operalor produces cede to jump to Iabel If variable is equal to the
builtin constant frue.

IFALSE variable, lobel
This operator produces code to jumup to lebel if variable is equal to the
builtin constant false. These two operators are used to implement
centrol flow in if, while, and for statements.

JUHP label
This operator implements unconditional branching and is used to jump
back td the top of a loop.

LABEL iabel
This operator places a label for a destination of a JUKMP, IFTRUE, or
IFALSE.

In addition, there are two operators which are used to do the reference

counting,

INCREF variable

Increment the reference count of variable by one.

DECREF variable

Decrement the reference count of variablie by cne.



Appendix B gives the VAX implementation of the code operators.

4.5.2. Generation of Flow Graph

In order to make type inferences using data flow analysis, the control of
fiow in the program must be represented. This is done by means of a flow
graph. When one code item can execute directly after another, a program
point is placed between them. The entire net of code items joined by

program points constitutes the flow graph.

A program point contains pointers to the preceding and following code
items and a list of variable instances. Each variable instance! gives the type
information about a variable at the program point. In addition, in erder to
keep track of the usage of the stack variables s, s,.., s , it is necessary to
know at each progra.m point the value of n, the height of the stack relative to

its height at the beginning of the method. Each program point records this

information as well.

A code item contains, as well oz it% code operater and arguments,
peinters to any preceding and following program peints. Each program point
has no more than one preceding and one following code item, however, code
itemms may have several preceding and following program pcints. The rules
below give the method of generating the connections between program

points and code items.

(1) The initial code item has a preceding program pcint {numbered 1)

whose preceding code item is null,

() The final code item has a following program point whose following code

item is null.

1See section 4.8.2
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(3)

(4)

(6)

GENARG, SEND, and MOVE code itermns have cne following program point.
They have one preceding pregram point unless preceded by a JUMP or
RETURN. If preceded by JUMP or RETURN, they represent unreachable
code; a warning is generated and everything up to the next LABEL is

flushed.

IFALSE and IFTRUE code items have one preceding program point, but
two following program points. One of these is between the TFATISE
(IFTRUE) and the code item which would be executed in the case of no
jump. The wther is between the IFALSE (IFTRUE) and the LABEL code

item which is the target of the jump if the condition is met.

JUMP code items have o.e preceding and one following pregram point.
The following program point is between the JUMP and its target LABEL

code item.

LABEL code ltems have one following program point and one or two

preceding program points.

The introduction of the LABEL code item type as the target for all branches

guarantees that no code item will have more than a total of three preceding

plus following program points.

As an example, the statement

while i<=10 doi « i+1.

produces the intermediate code (leaving out the reference count cperations)



LABEL Lo

GENARG 10

SEND 'e=' 1,1
IFALSE retval, L1
GENARG 1

SEND +i1
MOVE refval, 1
JUMP LO
LABEL L1

(LO and L1 represent small unique integers). When the program peints are

added, the result is as in figure 4.1,

4.8. Phase 3: Set up Type Expressions
4.6.1. Type Expressions

A type expression is used to represent the information about the type of

a variable at some point.

4.8.2. Composition of Type Expressions

A type expression is made up of primaries, representing sets of possible
types, combined with the U and N operators and grouped with parentheses.
The primaries are referred to hereafter as nodes; and are represented as

leaves of an expression tree whose internal nodes are U or n. The following

are the type expression nodes:

type set
This nede represents a set of types, or classes, of which the variable
might be an instance. For example, the set {Real Mnteger] represents
the possibility of being of class /nieger or of class Feal. Two type sets
are of gspecial interest: nuil, the null set, and gen, the set of all defined
classes, the universal set.

A(variable)

This node represents the type of an argument variable at the beginning
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Figure 4.1

Intermediate Code and Flow Graph for
while 1| <= 18 do | < i+l



of a method. The woriable is either an argument to the method, or is

self

V{variable, program point)
This node represents the type of a variable at scme program point.
R(message, rtype, argtype,, ..., argtypen)
This node represents the return type of message message when sent to a
receiver of type riype and given arguments of types argiype,. Message is
the name (unique string) of some message; Tfype and argiype, ...,
argtype_ are other type expressions. Note that this is a nen-trivial thing
to ealeulate because, if the receiver is not a type set with a single
element then a number of methods are implied by the message, each
with its own possible return type expression.
As an example, R{'+', {Integer], {Integer FKeal]) represents the
return value of '+' when the receiver is fnteger and the argument is

Integer or Real. Thus the type associated with € + z, might be of such a

form.

¥ (message)
This node represents the set of all types (classes) which understand

messege or have a superclass which does.

One point to note is that M primaries do not actually appear in any type
expressions. The value of an ¥ node can be determined at parse time, and
the resulting type set is used directly in the tvpe expressions. ¥ primaries

are used here only for clarity.

The procedure used to calculate the value of M(message) is a form of
transitive closure on the graph of subclass dependencies. The reason for this

is that if some class understands messoge, then for inference purposes, all
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its descendant classes do also; since sending that message to an instance of
one of the descendan! classes will nol resull in a runtime error. Thus the
value of M(message) is the set of all classes that understand messaée v all

their subclasses v all their subclasses U ...

Following are some simple examples of type expressions:
X {Integer, String}
x is of type Fnteger or of type String
y: H('+)
y is one of the types which understand '+'. This might initially be
{Integer, Real, Char, String}, but could be extended by user defined

methods for '+’ in other classes.
Z V{z,10)

z here is of the same type as x is at program pcint 10.

4.68.3. Variable Instances

Since the goal of the type inference procedure is to know the type of
each variable of interest at each program point, a structure céﬂed a
"“variable instance'" is created to represent this information. A program
point contains a list of these variable instances.

A variable instance contains the variable of which it is an instance and
four type expressions. The first, called the wi_fformula, is the type
expression giving the type at that program point. The seccond, called the
wi_dfype, iz the definitive type. The final result of solving the type
expressions {which is a type set) is stored here. The third and fourth, called
vatypéo and vi_piype, are used to store intermediate results in the type

expression solution phase (see section 4.7).
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4.6.4. Significant Variables

In the execution of a piece of code, only certain variables can be
accessed or modified. Hence these are the only variables which might need
variable instances in the program points of that piece of code. In particular,
a method can only access locals, arguments, and fields; the main program

can only access globals,

Fileld variables pose a significant problem. The reason for this is that
any message sent might potentially modify the type of a field even if it does
not do éo explicitly.  This is the aliasing problem found alse in program
proving theory. A field variable refers to thal particular field in the object
referred to as self, the receiver of the present message. However, if this
‘object is also the fleld of some other accessible object, or is in an array, it
has, in effect an alias. Then some message innocently called may change the
field in which we are inleresled by accessing Lhe object via ils alias, Whetlher
this is the case depends on the dynamic nature of the prcgrarﬁ, ie. we can't
tell without running it to find out. Static type inference methods cannot
detect such behavior. At present, fields are always assumed to be gen (but

see section 6.3).

In addition, in order to evaluate R type functions (see section 4.6.1), the
overall return type of each method must be recorded. This pseudo variable

7ill be called m__refurn. It is a significant variable in methods.

4.8.5. Rule=s for Propagatior of Types over Code Items

If, at some point in the program, a set of variables are known to be of
certain types given by their vi_fformules, the code item after that program
peint will possibly modify the vi_iformulas of a number of these variables.

Then the program point after the code item will have a variable instance list
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somewhat different from the program point before.

In the algorithm described in [TEMPO], a variable instance for every
significant variable occurs in the list for every program point. ’If one
considers a method of, say, three arguments, five local variables, two
temporaries, three stack variables and refval this amounts to 16 variables to
keep track of. If it has 100 program points, then 1,800 variable instances are
needed. Since the type expression solution algorithm must operate on all
the methods simultaneously, this is multiplied by, for example, 30 methods
in a small to medium program®, giving 48,000 variable instances. This is
clearly outrageous®. Since the code items affect the types of zero to at most
two variables, it is ridiculous to create a variable instance for all the

unaffected variables.

The approach taken here is to only put in the variable instance list of a
program polnt those varlables which have changed from the immediately
preceding program point(s). Thus, while the algorithm of [TEMPO] records
the type state at each program point, the algorithm described here records

only the changed state.

Program point 1 has no preceding code items; it represents the variable
type state at the beginning of the method and contains in its variable
instance list instances for all significant variables (section 4.6.3). Variable
instances for globals are given vi__tformulas of gen. Locals have the type set
{Object] as their vi_fformula, since they ére initialized to nil when a method
is invoked. The vi_tformulas of arguments are initialized to A primaries. Self

is initialized to a type sel whose only member is the class in which this

2The towers of hanoi program has 35 methods in it.

5In the present implementation, a varizble instance takes up 20 bytes, resulting in nearly
one megeabyte in variable instances alone, not counting the up to four type expressions (see sec-
tion 4.8.2) which go with each one.



method is defined.

Thercafter, the following rules give the effects of the varicus code items
on the vi_tformulas of the variables involved (P refers to the preceding
program point, Fto the following):

GENARG arg

F's stack counter is one more than P's. Call this new value n. A

variable instance for the stack variable s, is created and put into F's

variable instance list, and is given a vi_tfermula of V{arg,P). Basically,

pushing an argument conto the stack causes the top of the stack to have
the same type after the operation as the argument did before.

For example, after "GENARG 10", s_ is of type {/nfeger]. If after
program point 42 there is "GENARG z", at program point 48 s, is of type
Viz,42).

SEND message, receiver, argeount
F's stack counter is argcount less than P’s. Call this new value n. A
variable instance for the pseudo-variable refval is created and put in F

with a vi_tformula of R(message receiver,s s,

-1 'Sn-c?gcmmt-i-l)' More

intuitively, the type of retval after the SEND is the type returned by the
message with its arguments typed as before the SEND.

A special case exists when the message is new (or new:ta:) and the
receiver is a class constant, such as Mnfeger, Feal or a user defined
class. In this case, the type of refval is set to the class a new instance of
which is being created. This is the only time during the type expression
setup where knowledge about the semantics of a particular message is
used,

A variable instance in F for recetver is created and its vi_fformulc
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is set to M(message) n V({receiver,P). In English, the type of the receiver
after the SEND must satisfy simultaneously two constraints: it must not
have taken on a type which it couldn't have been before the SEND,‘ (since
methods cannot modify their receivers), and it must be of a type which
understands* the message (since otherwise a runtime error would have
occurred in the process of sending).

For example, if following program point 48 there is "SEND '+',z,12",
then at program peint 43 the type of refval is R('+' V(x,42), {Integer)),
and the type of = is B('+") n V(=,42).

MOVE fromvar,tovar
A variable instance in F for fovar is created and its vi_f{formula is set to
V{fromuar, P). That is, fovar after has the same type as fromwvar before.
For example, after "MOVE 'A’,z", z is of type {Char]. If "MOVE zy"

follows program point 42, then at program point 43 ¢ has type V{z.42).

RETURN val

This code item does not modify the varizble instance list; instead it

modifies m_return® for this method. Specifically, m_refurn =
m_return U ¥(val, P}, Essentially, the return type of a method is the

union of the types of the arguments of all its RETURN code items.

LABEL label
If the LABEL code item has only one preceding program point, then no
variable instances are put into F. If it has two preceding program points,
call them P, and F, then F's variable instance list has put in it one

variable instance for every significant variable, and one for each stack

4ynderstands” is here used in the sense of section 4.6.1, i.e. understands or has a super-
class that does.

Bsee section 4.6.3
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variable presently in use. This last can be determined from the stack
counter in P,, (which is always the same as in Pp). The vi_fformule of
the variable instance of each variable z in F is V(z,P,) U ¥(z,P,). What
this says is that if a LABEL can be reached from two program points,
then directly after the LABEL the type of a variable will be the union of
its types at each program point directly before the LABEL. The purpose
of this rule is explained in section 4.7.2.
IFTRUE, IFALSE, JUMP, INCREF, DECREF
These code items do not provide any information about the tvpes of

their variables, so their following program points always have empty

variable instance lists.

4.6.8. A Small Ezample

This section presents a small exa.nple of type equation propagation over
a few code itemns. The method
messagem: & | b
b«a+25.

~b
)

produces the intermediate code items (ignoring reference counting), with

program points assigned:
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[ PROGRAK POINT 1]
GENARG 25
[PROGRAM POINT 2]
SEND '+, a8, 1
[PrOGRAR FOLNT 8]
MOVE retval, b
[ PROGRAH POINT 4]
RETURN b
[ProGRAM POINT 5]

The significant variables are identified to be o and b, and equaticns for the

types of these variables. and of the pseudo-variables retval and the s; are as

follows:

[PROGRAM POINT 1]

a Ale) (a is an argument)
b: { Object] (b, a local is initialized to nil)
GENARG 2.5 | |
[PROGRAM POINT 2]
5, { Real) (a stack variable is used)
SEND +' a1
[PROGRAN POINT 3]
retval: R('+', ¥(a.2), ¥(s,,2)) (return value of '+')
a H(+) n¥V(a?) (a2 must understand '+°)
HMOVE retval, b
[PROGRAM POINT 4]
b: V(retval,3) (b =retval - type of b = type of refval)
RET J b ‘
[ PROGRAM POINT 5]

The value of m.refurn for this method is, as a resuit of the RETURN code

item, V{(b,4).



Notice that, in line with the comments of section 4.6.5, only type

equations for variables whose type has changed oceur at each program point.

Notice also that there are V nodes referring to variables and to program
peints not containing equations for those variables. For example, the
equation for & in program peint 3 contains a Vnode referring to the type of ¢
at program point 2, but there is no equation for the type of a in program

point 2. This problem is dealt with in section 4.7.2.

4.6.7. AFull Ezample

As another example, consider the following message definition which
adds the message sum to class oy to sum the elements of the array.
class Array understands

message sum |in
begin
for (n « 0.1« self Ib). i <= self ub. i+ i+1 do
n < n + (self at: i).
~n
end
Program 4.1

The intermediate code and flow graph is shown in figure 4.2, and variable
instances and their type expressions are added (figure 4.3). Note that, in
addition to the type expressions for each variable instance, a type expression

for the method return value, m_return, is produced. In this case, it is simply

V{n.20) since there is only one RETURN code item.
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program stack variable instance list
point top
1 0 i {Object}
n {Object}
self: {Array)
2 0 o {Integer}
3 0 self: V(self,2) n M('Ib")
retval: R('1b’, V(self,2))
4 0 i V{retval,3)
5 0 | V(i,4) U V(1,19)
n V(n,4) v V(n,19)
self: V(self,4) v V(self,18)
8 0 self: V(self,5) n M('ub")
retval: R(*ub’', V(self,5))
7 sp V(retval,8)
0 |i V(L,7) N M('<=")
retval: . R('<=', V(L.7), V(s,, 7))
8 8]
10 0
11 1 s V(i,10)
12 0 | self: V(self,11) n M('at:")
retval: R(‘at:' V(self,11),V(s,,11))
13 1 5 V(retval,1R)
14 n: V(n,13) N M(*+7)
retval: R('+,V(n,13),V(s,,13))
15 0 n V(retval,14)
18 1 s, {Integer]
17 0 n. V{i,18) n M(*+")
retval: R('+',V(i,18),V(s,.16))
18 0 i V(retval,17)
19 0
20 0
Figure 4.3

Type Equations for Intermediate Code in Figure 4.2




4.7. Phase 4: Solve Type Equations
4,7.1. General Description of Algorithm

The general method used to sclve the type expressions is to repeatedly
evaluate the vi_fformulas for each variable instance in the program using
the values from the previous iteration to substitute for any ¥ nodes. When an
R node is encountered, the type of its receiver implies a set of methods
which could be invoked. The value of the R node is, looscly specking, the
union of the evaluated m_return type expressions of each of these methods.
The solution procedure opeérates on the entire program at once, and the
main program is treated just like a classless method The algorithm is
roughly as follows:

=1
while any changes have been made to any vi_piypes
w:= l—w
for each method
for each program point
for each variable instance, v

evaluate v's vi_tformule and store
the result inte v's vipiype,

end for
end for
end for
end while

for each variable instance, v, in each program point in each method
put v's vi_ptype  into v's vidiype
end for

Algorithm 4.1

The purpose of w is to switch between vi_piype, end vi_piype al each
iteration. The while conditicn is then computed on the basis of comparisons

between the two.



4.7.2. Preliminaries

A number of preliminaries must be handled before the above algorithm
can be executed. First, the vi_{formulas in their coriginal form can contain

nodes V(z, P), which refer to a variable z at a program point P which does not

contain a variable instance for xS,

This is a problem because when a node
V{z, P) is being evaluated the value is found by looking in the vi_ptype, of the

variable instance for z in P,

The solution is to make a prelifninary pass over the vi_fformulas of all
the variable instances in the program looking for nodes ¥{z, P} and replacing
F with the preceding program point closest to P containing a variable
instance for z. This involves tracing backwards along the flow graph
searching for a program point with a variable instance for the variable in
question.

The rule for setting up the variable instance list after & LABEL code item
(section 4.5.3)guarantees that there are never two preceding program
points to chese frem in searching backwards. This is because the only type of
code item that can have two preceding program points is a LABEL, and a
LABEL with two preceding program points always contains variable instances
for all the significant variables ;Of the method and for all in-use stack
variebles and temporaries. Therefore, any backwards search would certainly
find its variable 1n the variable instance list of such a LABEL if not in a later
one. As an example, figure 4.4 gives the results of applying this process to
the type expressions of figure 4.3, with changed program point numbers in

bold face.

€This does not happen in the algorithm presented in [TEMPOQ] because each program peint
conteins a variable instance jor each variable, most of which have as type expressions ¥ nodes
whose program poimnt is the one immedietely preceding.
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prograrm stack variable instance list
point top
1 0 i {Object}
o {Object}
self: {Array}
P 0 n {Integers}
3 0 self: V(self, 1) n M('lb")
retval: R('1b', V(self,1))
4 0 i V{retval,3)
5 0 | V(i,4) U V(i,18)
n V(n,2) v V(n,15)
self: V(self,3) v V(self,12)
8 0 self V(self,5) n M('ub’)
retval: " R{'ub’, V(self,5))
s V(retval,6)
0 i V(1,5) n M(*<=")
retval: R('<=", V(i.5). V(s,.7))
8 0
10 0
11 1 sy V{i,8)
12 0 self: V(self,8) n M(at:")
retval: R('at:’',V(self,6),V(s,,11))
13 1 s V(retval,12)
14 0 n V(n,8) n M('+")
retval: R('+'V(n,5),V(s,,13))
15 0 |w Viretval,14)
18 s {Integer]
17 0 n V(i,B) n M('+")
retval: R('+".V(i,B),V(s,,16))
18 0 i V(retval,17)
19 0
20 ¢]
Figure 4.4

Corrected Type Equations from Figure 4.3




Another enhancement can be made for efficiency. The evaluation of a
vi_fformula involves evaluating any R or V nodes and replacing them with
type sets. If a vi_fformula contains no R or Vnodes, but only type sets and A
nodes combined with union and intersection, its evaluation will be the same.
Therefore, we make another pass over the variable instances and copy any

vi_tformulas of this form directly to vi_dtype. The algorithm then becomes

for each variable instance, v, in each program point in each message
if v's vifformula contains no Yor R nodes then
set v's vi_diype fo v's vi_tformula
end if
end for

w:=1
while any changes have been made te any vi_piypes
wi=1—w
for each method
for each program point
for each variable instance, v
if v's wviidiype = null then
evaluate v's vi_fformula and store
the result inte v's vi_ptype
end if
end for
end for
end for
end while
for each variable instance, v, in each program point in each method
if v's vi_dtype = null then
put v's vi_ptype  into v's diype
end if
end for

Algorithm 4.2

4.7.3. Evaluation of vi_tformulas

The algorithm for evaluating the wvi_{formulas is a straightforward
recursive traversal of the type expression tree evaluating its subcomponents.
For explanation purposes, a function value is defined which returns the value

of a type expression. It takes one more parameter, a fiag, which indicates
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what to do with A nodes. Then the treatment of the various types of nodes is

as follows:
stypeseti!

value(t,flag) =t
sAnodea

velue(a,fleg) = (if flag then gen else a )
« union

value(t, U t,fleg) = value(t, flag) U value(t, flag)
» intersection

value(t, N t,flag) = value(t, flag) nvalue(t, flag)
»V node

If the variable instance, v, for z in P has its vi_diype non-null, then

value(V(z, P),flag) = v's vi_diype, else value (V(:z:,P),ﬁig) = v's vi_ptype,
* Rnode

value(R(msg riype,a,.a,...,¢. ) flag) =

Rvalue(msg,value(rtype,true).vulue(a.l.true)....,vczlue(an,true)}

The evaluation of an R node involves the evaluation of the arguments, rfype,
a, &, ..., a , but with flag being true, implying the substitution of gen for A
nodes. This is because the types of A nedes are unknown, since the method
can be called with parameters of any type (but see section 8.4). It also
involves the function Fualue, the method' of eveluation for which is given in

the next section.



4.7.4. Evaluation of R Nodes

In order to explain the evaluation of R nodes, a funclion
Rualue(messege,rtype,a,a,....a ) is defined. At this point in the execution,
riype and a, a, .., @ are all type sets. Hesscge implies a number of
methods which may be invoked and return a value of some type. The set of
possible methods, ¥, is fcund as follows. First find the set of classes which
have methods for message, Note that this is net just M(mes=zage), it is more
restrictive since subclasses of classes containing methods for message are
net included, Next form the intersection of this with the rtype type set.
Finaily, M is the set of methods named messoge in the classes in this
intersection. The value of the R node is the union of the return types of all

the methods in M. The procedure for finding this union is:

(1) For each element m in M, form all possible n-tuples ¢ by taking one

element from each of O, Qp ..., Q.

() If m is a user defined method use the procedure outlined in section
4.7.4.1 to calculate the return type when the argument types are as in
the n-tuple t. Otherwise, use the procedure in section 4.7.4.2.

(3) Form the union of the return types for &all the n-tuples and for all

elements a, of #. This is the value of the R node.

If an argument is of type gen, special treatment is used: it is not split into its
component elements in (1), but remains a single entity. This avoids having to
perform many type expression evaluations for arguments with type gen, ie.

fields, and arguments whose type results from an A node evaluation.
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4.7.4.1. Return Type of a2 User Defined Method

The procedure for calculating the return type of a user defined method
is to evaluate its m_return type expression in exactly the same way las was
described in section 4.7.3 with reference to wvi_fformulas, with one
difference. A nodes are replaced with a type set containing as its single
element the corresponding element of the n-tuple for which the method
return type is being evaluated. Thus, if a node A(z) is to be evaluated, and =
is the second declared formal parameter, then the second element of the n-

tuple is used as the only element of a type set which is then Lthe value of A(x).

4.7.4.2. Return Type of a Builtin Bethod

The procedure for calculating the return type of a builtin method is
entirely different. It is essentially a pattern matching process. Each builtin
method has associated with it an ordered list of (type-n-tuple - return-type)
pairs. This list is searched for a pair whose fype-n-fuple matches the n-tuple
for which the method return type is desired, and the value is then the
refurn-fype. There is also a default return type, a catchall which is used if no
matches are found. For example, the pair list associated with the methed
Integer_+ is ( [Integer]-[/nteger], [Real]+[Real] ) and the default type is
{Integer,  Real}. Wha;t these really say is that /nteger + Inieger yields nfeger,
Integer + Real yields Feal, and (for the purposes of type inference) nteger +
anything yields nfeger or FReal.

One might expect that the catchall case should be nuil instead of
{Integer Real]. The reason it is not is due to the special handling of gen
described in the last section. If an element of the n-tuple is gen, that n-tuple
will not match any of the n-tuples in the pair list. In this case the default

value will be used, and it must therefore be the union of all the refurn-fypes



of all the pairs in the pair list.

4.7.4.3. Example of Evaluating an R Node

As an example, suppose some methods are defined:

class Integer understands
message ltm: x then: y
begin
if 0<=x then
~ X%
else
~y
end
class Real understands
message ltm: x then: y
begin
if self<=x then
~0
else
-~y
end

class Char understands
message ltm: X then: y
begin

if self<=x then
-~ l\@l

else
~y

end

The method Integer_ltm:then: (method Itm then’ in class /nteger) will have
as its m_refurn type expression the expression A(z) v A(y)?, Real_ltm then.:
will have as its m_return the expression {/nteger] U Aly), and {Char] u Aly)
will be the return type expression of Char_lim:then.

Suppose now that, given these definitions, it becomes necessary at some

point te evaluate

TActually it will be V(£,1) L ¥y, 1), bwt ¥(z,1) and Wy, 1) have as their vi_déypes Alz) and
Aly) respectively, so thet the earlier steges in the eveluetion of rn_refurn will change therm to A
nodes.
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R{itm:then:, {Integer Real Arrayl, {Integer Real}, {Siring, Char} )

We first find M, the sel ol melhods which mighl be invoked. As cutlined in
section 4.7.4, we find cut which classes have a method for ltm.;froy;z:. ie.
{Integer Real, Char]. Next we take the intersection of this with the receiver
type set {Integer, Real Arroyl, yielding {/nteger, Real}. Finally, M is the set of
methods in these classes with the name lmithen:, that is §
Integer_litm:then: Real lim:ithen: }. Next we form all 2-tuples possible by
taking one element from the first argument's type set, {/nteger, Reall and
cne from the second's, {String Char]. This gives the fouwr =2-tuples
[Integer,String], [Real,String], [Integer,Char], and [Real Char]. Now we
evaluate the m_reiurn type expression (Alz) U Aly)) of Integer_ltm. then:,

with each of these assignments to the iypes of the arguments, giving

Integer, String] {Integer} U {String]
Real, String] { Feal} U {String
Integer, Char] {Integer] U {Char]
Real, Char) {Feal] v {Char}

Then we do the same for Keal lim then: giving

[Integer,String] {Integer] U {String]
[ Real, String] {Integeri U { String)
Integer,Char] $Integer U { Chari
FReal, Char] {Integer’ U {Chari

Finally, taking the union of all this, we get {/nieger, Real, Siring, Char] as the

value of the B node,

4.7.5. Substitution of A Nodes

The result of the preceding manipulations is that each variable instance
of each program point of each message has as its vi__diype a type expression
devoid of R and V nodes. However, it may still contain A nodes. These must

be removed to finally reduce each expression to a type set. Thus each



vi_diype is evaluated once more using the function value (section 4.7.3) with

flog set, thus substituting gen for all A nodes. The complete algorithm is

then:

for each variable instance, v, in each program point in each method
i v's vi_iformula contains no ¥ or R nodes then
v's vi_diype 1= v's vi_tformula
end if
end for

w ;= 1
while any changes have been made to any vi_piypes
w = 1—w
for each method
for each program point
for each variable instance, v
if v's viidiype = null then
v's viptype, = velue(v's vi_fformula, false)
engd if
end for
end for
end for’
end while

for cach variable instanec, v, in cach program poeint in each method
if v's vi_diype = null then
v's diype .= value(v's vi_ptype,, true)
end if
end for

Algorithm 4.3

and the final result is that each variable instance has a type set giving the
sel of all poszible classes of which the variable can be an instance at that
peoint in the program. This is the information needed to simplify and

optimize the code.

4.8. Phase b: Using the Results of the Type Inference



4.8.1. Removing Lookups

The first stage is to replace SEND code items wherever possible with one
of two other forms of SEND: ESEND or DSEND. ESEND, or Exact SEND: is the
same as SEND, except that the message parameter® is replaced with an
actual method. ESEND generates code to directly call the method, without
any lockup being necessary. DSEND, or Decide and SEND, is the same as
SEND, except that it has as an additional parameter a list of [class,method]
pairs where the first is a possible class of the receiver which understands the
message, and the second is the method to call in that case. DSEND
generates code to test inline the class of the receiver on the basis that a few

tests are faster than a lookup.

The simplification procedure is to scan through the code items of each
message looking for SEND code items. When one is found, the flow graph is
scanned backwards for a varieble instance for its receiver. The back
scanning is as described in section 4.7.2. The vi_diype type set is obtained

and checked to see how many members it has.

If there are no members then an error message is issued to the effect

that the message is not understood by any possible classes of the receiver.

If there is onljf one member, it is checked to see if it understands the
message. lf not, its superclass is checked and so on until there is no
superclass, In this case an error message is again issued stating that the
message is not understood by any possible classes of the receiver.
Otherwise, an ESEND is generated with the method corresponding to the

message in the class which was found.

83ee section 4.5.1

-61-



If, on the other hand, there are several members, a DSEND must be

used,

Each element ¢ of the receiver’'s type set is checked to see if it has a
method for the message. If not its superclass is checked, and so on as above.
If a class is finally found, the method, m, for the message is used, along with
¢, to form a pair [c,m] which is added to a list, eventually to be used as the
additional argument for the DSEND. If no ancestor class of ¢ is found, no pair

is formed.

If the list of [e.m] pairs is empty, an error message is again issued
explaining that the message is not going to be understeod by the receiver.
Otherwise, the number of elements is checked against a threshold. This
threshold is i-:_ieaﬂy set at the point where the expected execution time of a
sequence of branch on type instructions is equal to the expected execution
time of a lookup®. If length of the list is greater than the threshold, the SEND

is not replaced..

Otherwise, the DSEND will generate a chain of <branch on class; call

methed> sequences. For example, suppese we have

class A
begin
message Xeep:

end

class B
subclassof A

Bor somewhat smealler, if code size is an imporia.nt consideretion, since & <branch on type;
call method> chain tekes up more instructions than e lookup call.

-62 -



class C
begin
LMessage Xeep.

end

class D

Xeep: is understood!® by 4, B, and C B by virtue of it being a subclass of 4
Now suppose zeep: is being SENT to a receiver known to be of type {F.C D}
Then the list of [¢,m] pairs would be {{B,A_xeep],[C, C_zeep ]}, and the SEND
would be replaced by

DSEND(zeep:, receiver, 1, {{ B A _zeep:].[C C_xeep:]])

generating the equivalent of

if receiver is of class? then
call A reep
elsif receiver of class Cthen
call C_xeep
else :
runtime error: "message 'xeep' not understood by receiver”

4.8.2. Generating Inline Code

The next optimization which can be done is to replace selected ESEND's
with inline code expansions. For this purpose, another code item, INLINE, is
introduced. Its arguments are the actual inline function being performed?!,

the receiver, and the method actual parameter(s).

In order to replace an ESEND with an INLINE, information about the type
of not only the receiver, but also the arguments may, in general, be needed.

VWhen, for example, the method /nteger__+ is ESENT, if the argument is known

0agzain, in the sense of section 4.8.1

1At present, the builtin erithmetic functions and compearisons between any combination of
integers end reals are expended inline, This deals with the common loop constructs.
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to be of class /nfeger, the INLINE operation add integer fo infeger will
replace the ESEND. Similarly, if the argument is kmown to be of class Feal,
the INLINE operation cdd infeger to real can be used. The inline expansions
presently implemented reguire that the argument be of only one type,

however this need not, in general, be the case (see for example section 8.8).

One final note: the standard return sequence for a method involves the
method decrementing the reference counts of the receiver and arsuments
just prior to returning'®. In addition, when the argument is simply a variable, |
en INCREF for it will appear directly before the GENARG!®, When an inline
expansion replaces an ESEND these INCREF's and DECREF's can frequently be

removed. In particular, at this stage a peephole optimization is made to

convert
INCEEF argument
GENARG argument
INCREF recelver
INLINE operation,receiver,s_
DECREF - receiver
DECREF argument

(recall that s_ is the stack variable created by the GENARG) to

GENARG ergument
INLINE operation,receiver,s

This yields another frequent case: the sequence

GENARG argument
INLINE operationreceiver,s

is replaced with
INLINE operation,receiver, argument

thus avoiding the unnecessary push of the argument onto the stack.

1Zsection 3.8.2, rule 3
18gection 3.8.2, rule 1
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Similarly, when the argument is the result of some calculation such that

no INCREF appears directly before its GENARG,

INCREF receiver
INLINE operation,receiver,s,
DECREF receiver

is converted to

INLINE operation receiver,s

4.9. Phase 86: Final Assembly

The final phase is to convert the code items of each message to actual
assembly language. The VAX representation of the various code items is given
in appendix B. After the assembly language is output, it is assembled and

linked with the runtime library,

One further peephole optimization is made at this stage: some more
unreachable code is removed. In particular the implicit "RETURN self” at the
end of each method is removed if all flow paths in the method lead to an

explicit RETURN.

(It also turns out that occasionally two INCREF's on the same variable

are generated in a row. This is replaced by a single "add 2" formy).

4.10. Hachine Independence

The use of code items for most manipulations of the program during
type inference optimizations provides a good degree of machine

independence. There are few assumptions made about the target machine.

It is assumed that a limited number of temporary variables are
available. Temporaries are needed to evaluate units of the form

tm,;my, .. ;m, tosave the value of £ so that the various m, can be sent to
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it. In the VAX implementation these come from the general registers, but

there is no reason that they must.

It may appear that the calling sequence must use a stack. However, it is
possible to implemnent GENARG in a way that does not use a stack. For
example, the first GENARG allocates a frame on the heap, subsequent
GENARG's add to it. SEND frees it when done. Thus any calling scheme which
minimally allows recursion can be used. One thing to note is that the

GENARG's are produced for the last argument first.
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CHAPTER 5

RESULTS

5.1. Introduction

The primary cbjective of the type inference optimizations implemented
as described above is to remove message lookups and do inline expansions
whenever possible. This is the compiler's main goal. To evaluate the the
overall eﬁectivenéss, itr is necessary to ad&reés two performance issues: how
good the compiler is at achieving its goal, and how much speedup this

actually buys.

The first performance issue is, more precisely: how often are SENDs
replaced by ESENDs or DSENDs, and how lnng, on average, are the
compare/branch sequences to which DSENDs expand. The second
performance issue Is: how much is an individual ESEND, DSEND, or inline

expansion better than a SEND.

5.2. Comparison te ALGOLdike languages

Before addressing the performance of the compiler, it would be nice to
have some idea of how much the polymorphic object-erientedness of TINvTaIK
costs relative to an ALGOL-like 1a.nguage' such as PASCAL or C. The unit of
measure is a "basic instruction”, something which is a single short machine

code instruction on most machines!. Two cases exist.

On the VAX, this is something line ADDL, CMPL, or PUSHL, but not CALLS, which involves &ll
sorts of stack manipulations end is counted as several "'besic instructions”.



5.2.1. Simple HMessages -

First, consider a builtin message which would not involve a procedure
call in a standard language. For example, integer addition on mest machines
is one "basic instruction”. In TINVTALK, the steps executed even if an inline
expansion is done include creation of a new object and placing the sum of the
value fields of the receiver and argument into its value field. The addition
takes one basic instruction again; the object creation takes seven in the
present implementation, assuming that the real allocator is not needed and
only the quick allocator is used® (the most common case). Thus even in the

best of situations a simple operation is somewhere around B times slowerina

totally polymorphic object oriented laﬁguage.

8.2.2. Cam?lex Messages

Next consider a message which would be implemented as a procedure in
an ALGOL-like language. Here the situation is considerably better in that, in
the best situation, where an ESEND is used, the only overhead is that of
reference counting. This amouhts to one or about seven basic instructions
each for decrementing the reference counts of the arguments and receiver
after the method terminates. The number of instructions is one if no free is
required, seven in the present implementation if decrementing the reference
count results only in a quick free. (It is considerably more than that if a real
free is needed, but this is a relatively uncommon event). These numbers for
overhead appear to be small compared to the lengths of the bedies of most

procedures.

It could be reduced to as little as 5 if the process were totally expanded inline,
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5.2.3. Summary

Given a factor of around 8 for simple operations and an approgimate
equivalency for complex operations, it is expected that any polymorphic
language will run (very roughly though perhaps somewhat less than) B times
slower than a language featuring strong typing in applications where the
generality of polymorphic variables is not necessary. This gives some idea of
the differenee between a best-casc object-oricnted progrom and a non
object-oriented one. Note that in applications where the full generality of
polymorphic variables is necessary, the standard language will run at least as
slowly, since the programmer must explicitly code all the manipulations
done automatically in TNyTALK, and that, in addition, the program will be

considerably harder to write and debug.

If a factor of B is the best that can be done, how closely does the
compiler approach this, i.e. whal [raclion of the SEND messages it replaces
with DSENDs, ESENDs, and inline expansions; how long are the average DSEND
<compare,branch> sequences; and how much faster does all this work really
makes things run. To ﬁnd these things out, two performance tests are

conducted.

5.3. Performance Tast 1: Iterative Program
The first test of performance is an iterative program simulating the

traditional PASCAL-like programming style. The program is simply

begin
fori«1 .i<=50000. i«~i+1 do
end

The compiler can be run with three levels of optimization. The first does

no type inference optimnizations at all The second does type inference
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optimizations but does not replace ESEND's with inline expansions. The third

does this as well,

The compilation of the program results in two SEND operations. At level
2. both of these are converted to ESENDs, since i is inferred to be of class
Integer at all points after the first éssignment. At level 3, both ESENDs are
converted to inline expansions, since the messages invoked involve integer
arithmelic and comparison. The type inlerence process required 5 iterations
to converge to a solution of the type expressions. Since the minimum is two®,

this is acceptable.

First, data on the memory system; this is the same for each level of

optimization:

Objects created 100000
Objects deleted 99989
Mcmory requests | 100000

Real Allocations 2
Quick Allocations 99098
Real Frees G
Quick Frees 98008

This shows that the two level memory management scheme (section 3.6.1) is
very effective in eliminating calls to the real allocator; most requests are
handled by the quick allocator. The fact that there are only two real
ellocations even though 10,000 objects are created shows that only two are
ever in existence at the same time, a fact readily apparent from the

program?®,

The timing and size information for the three levels follows:

One for vi_ptype, and one for viplype, See aL_c}on‘ihm 4.3 in section 4.7.5.
4the old and new values of i
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Level 1
Execution Time 37.9 seconds
Code Size 14338 bytes
Static Data Size 5336 bytes
Total Size 19672 bytes
Level 2
Execution Time 27.7 seconds
Code Size 14336 bytes
Static Data Size 5336 bytes
Total Size 19678 bytes
level 3
Execution Time  11.0 seconds
Code Size . 14338 bytes
Static Data Size 5338 bytes
Total Size 19872 bytes

These results indicate that the speedup of a simple counting loop, one of the
most common control constructs, is about 40% at level 2 and 250% at level 3.

Basically, at full optimization loops will execute 3)% times faster®.

5.4. Performance Test 2: Recursive Program

The second performance test, the recursive implementation of the
towers of hanoi®, involves heavy use of user defined classes and messages,
and is intended tc more nearly exemplify the object-oriented programming
style. The program is given in appendix D.

The compilation resulted in 128 SEND cperations. At level R optimization,

83 of these werce converted to ESENDs and 56 to DSENDs leaving only 10

SThese timing figures can not be used for comparison to other languages, beczuse the com-
piler at present produces debugging code io check reference counts, and because the runtime
system contains considerable code for metering execution and verifying correct operation of the
memery sysiem.

5The towers of hanoi can be solved using e simple heuristic: besically move from the tower
which was not the destination of the previcus move, but thisisn't 2 very useful test.
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SENDs. The average length of the test sequences for the DSENDs was 1.7
compare/branch pairs. At first glance, it would scem that this number must
be greater than two, however, in many cases where a DSEND is required, it is
because the receiver has been inferred to be of one of two types, only one of
which understands the message. Thus the DSEND produces code equivalent

to

if receiver is of classi then
call classl_message

else { receiver is of some class which doesn 't understand the messege |
runtime error

which has only one compare/branch. Given the éverage of 1.7, this happens
gomewhat less than half the time. The threshold for DSENDs was sct to 4. At
level 3 optimization, 7 of the ESENDs were converted to inline expansions,
leaving only 3 SENDs. The compiler required only B iterations to solve the

type expressions. The memory statistics for the towers of hanoi are:

Objects created 26203
Objects deleted | 26203
Memory requests | 26353

Real Allocations 40
Quick Allocations | 26313
Real Frees 0
Quick Frees 26353

Once again, the quick allocator shows its worth. Most of the real allocations
are probably for strings and arrays. The timing and size Information for the

three levels follows:

Level 1

Execution Time  16.3 seconds
Code Size 20480 bytes
Static Data Size 7364 bytes
Total Size _7844 byles




Level 2
Execution Time  13.8 seccnds
Code Size 19456 bytes
Static Data Size 7364 bytes
Total Size 26820 bytes

Level 3 !
Execution Time  13.2 seconds !
Code Size 19458 bytes |
Static Data Size 7364 bytes
Total Size 26820 bytes

These results show about a 20% speedup from level i to level 2. The results
differ from the previcus et in that there is scarcely any appreciable speedup
from level 2 to level 3. This is to be expected since only 7 ESENDs could be

replaced by inline expansions.

5.5, Summeary of Results

The results of the first test shew that in certain instances, the compiler
can infer enough about the program to make an optimal simmplification; all
the messages were replaced by inline expansions. In this ideal case a
speedup of 3% times is possible.

The first test also shows that the difference between SENDs and ESENDs
for relatively small methods (integer addition and comparison) is about 40%,
that is to say, lookups use up about 40% of the time. This would, of course,

decrease in the case of larger methods.

The difference between ESENDs and inline expansions. on the other
hand, is about a factor of 2%. The procedure calling overhead is once again a

dominant cost when weighed against the relatively short method body
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involved in simple” messages {in this case addition and comparison). It reall
p y

pays to be able to expand short methods inline®.

The second test shows that, even with the primitive assumptions about
the types of field® and argument!® variables, the compiler managed to infer
enough to remove all but three of the lockups from a total of 129, half with
direct calls to the correct meth»od. Furthermore, only eight iterations of the
inference algorithm were needed. Again remembering that the minimum is

two, this is an effectively rapid convergence.

Thus, even in more realistic circumstances than those provided by the
first test, a substantial fraction of the lookups can be replaced by compile
time sophistication. }ore disappointing is the relatively small number of
inline expansions, which, as the first test showed, yvielded the greatest gain.

One final note is thét the optimized code winds up‘being smaller than

the uncptimized versicn, since an ESEND takes less code than a SEND.

"see section 5.3.1

8Section 8.7 gives some ideas on how o extend inline expansion to selected user defmed
methods,

Bsection 6.4 deals with this problem.
1Csection B.3 deals with this problem.
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CHAPTER 6

FUTURE WORK

6.1. Use of General Registers

' The present version of the compiler stores all local variables on the
stack. However, the compiler has enough inforrﬁation to guess at the
relative frequency of use of local variables, and eould decide to store a
number of the most commonly used local variables of each message in
general registers. Stmilarly, {f one or more of the arguments are heavily

used, they could be copied to registers at the beginning of a method.

6.2. Constant Tracing

As well as tracing the type of a variable through successive code items,
the inference &lgorithm could trace whether a variable is a constant. For
example, in

X« 2.

y e X+1.
the normal rules for manipulation of the reference count state (see section
3.6.2) that the appearance c¢f z in the second statement will result in code to
increment z's reference count. This is unnecessary, however, because z has
just been set to a constant, which has an infinite reference count and is

never deallocated.

This optimization is certainly possible, but of deubtful usefulness. The
example above is clearly artificial, because the programmer would write

v « 3 instead for the second statement. It is not clear how often these



“constant variables" appear in actual programs. COne place is in the first
assignment to a local variable in a method. The local is initialized to nil.
which need not be dereferenced. The only obvious common programming
usage of a "constant variable” is as some kind of flag. This optimnization may

turn out not to be worth it.

6.3. Better Inferernce about Field Variables

Field variables present the most difficult inference problem. The
present version of the compiler assumes the type gen for field variables at all
points. The fact that every SEND code item potentially changes a field
variable even though thal variable may not appear as an argument or the
receiver of the SEND makes impossible any meaningful type propagation

based on static data fiow techniques.

One possibility which 1 believe would cause significant improvement in
the performance of the type inference algorithm is to examine the usage of
the various field variables not on a per-code-item basis, but on a global basis,
The idea is to note every appearance throughout the program of a field
variable of a certain class on the left-hand-side of an assignment, and to infer
that, during the execution of the program, the type of that field variable is

the union of the types of all the corresponding right-hand-sides.

Notice that this inference is a global one in contrast to the purely local
data-flow based inferences described in chapter 4; it uses information not
about the local operations performed on a variable, but instead about global
usages of the variable. It is therefore inherently worse than the local
inferencing because, although some variable might be of several types in
different places in the program, its polymorphism might also be well

localized, sormething which a local type inference method would take
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advantage of, but which global type inferencing cannot detect,

From the code-item viewpoint, every MOVE to a field variable provides
global information about the field's type. In the type expression setup
phase! a field type expression would be formed for each field variable
consisting of the union of the types of &ll the frem variables in MOVEs to that
field. Then in the solution phas-ez the evaluation of a V node for a field
varieble would result in the evaluation of the corresponding field type
expression.

In most cases the fields of objects of a particular class remain of the
same type throughout the execution of the program. For example, an object
of a user defined class Foint is likely to have the fields giving its coordinates
remaining Feal thz*cugﬁout (though note that Object is always a possible type
for a field, since fields are initialized to nil). Thus the above scheme would,
in many cases, replace gen with a type set containing only two elements

(Object and one-other), a significant improvement.

It is expected that such a scheme for globally accounting for possible
changes to the types of fields of a general object of some class, while not as
effective as some hypothetical scheme for locally accounting for the types of
the fields of particular objects, would nevertheless be very effiective in many

cases.

6.4. Better Inference about Hethod Arguments

In the last phase of solving the type expressions (section 4.7.5) all A
nodes, which represent the types of arguments at the start of a method, are

replaced by gen. A better choice would be the set of all types ever used as

lsection 4.8
Bsection 4.7
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that argument throughout the program.

A method similar to the one in the previous seclion [or field variables
can élso be used to globally account for the possible types of aréument
variables, Each distinct argument would have an argument type expression
associated with it in a way entirely analogous to the field type expression
associated with each distinct field variable as described above. Instead of a
MOVE signaling a possible modification of the type of the variable, the signal
is a BSEND of a méssage of the same name as the method in which the the

variable is an argument. For example, consider

class A
begin
message Xeep: X

end

class B
begin
message Xeep: y

end

begin § main program }
r“)'(eep: a

end

Here, 7 zeep: & will result in the intermediate code {leaving out reference

counting):

GENARG a
SEND ‘'seep:.r. 1

Then, after the SEND, something is known about the arguments of all
methods which might be invoked by the SEND. In particular, it is now known

that = in A reep: and ¥y in B _zeep: could be of whatever type o might be
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directly before the SEND.

The final value of each argument type expression is just the union of all
the types inferred from SENDs as described above. If all such SENDs are
accounted for in the type expression setup phase, then in the solution phase,
when an A node occurs, the corresponding argument type expression ig just

evaluated.

This procedure results in a falrly good Inference about the types of
arguments, but it is possible to do better. In the above example, the SEND
contributed general infermation about the types of the arguments of all
methods named zeep:, instead of only those which might be called. If, for
example, it turned out that 7 was never an instance of class 4, then the type
inferred for z would be needlessly less precise because of the unnecessary
inclusion of the impossible case. The SEND would never invoke A's zeep: and

so the type of @ could not affect the type of  as a result.

A better value for the type of, say z, is set of all types throughout the
programn which could actually be used as the argument to the method
A _zeep: rather than the message zeep: Unfortunately, this regquires
knowledge of the types of the receivers of messages reep:, and at the

expression setup phase no such knowledge is available.

The solution is to defer inference about arguments until after types of
receivers are known, after the solution phase. Then it is possible to restrict
the type of an argument variable to the set of types throughout the program

which could actually be used as that argument. For example, in

-79 -



C1: class Integer understands
02: message<<n

03: begin
04.
05 end

08: class Real understands
07: message<<k

0B: Dbegin

09:

10: end

11: begin

120 x+«R2 <K4,
13: y«R <<1.5.
14 zZ«1.6<<1.0
15; end

within the body of /nteger_<< (line 4), any references to n would presently
be optimized assuming its type at method entry to be gen. However, it is
clear from the rest of the program that the method is only called with its
argument being /nteger (line 12) or Real (line 13). Thus the set
{Integer Feali is a better value to use than gen.

Notice that, if the procedure describad at the beginning of this section
is used, ¥ in the body of Real << (line 8) would be inferred to be
{Infeger Real], since this is the set of argument types used in all sendings of
the message << (lines 12,18,14). The new procedure would infer it to be

{Reall based only on line 14, a better result.

The implernentation of the above enhancement is not straightforward,
because the determination of the correct type for an A node could depend on
the types of ether A nodes, and so on. Loops are possible, as in the following

example:
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01: class Integer understands
02: message @x

03: begin

04 ~self & x
05 end

08:

07: class Integer understands
08: message&y

09: begin

10 if self==0 then
11: ~0

12: else

18 ~ (self-1) @y
14: end

15:

16: begin

17: z«2@83

i8: end

Here, the final value to be used for A(z) in message '@’ al line 4 is delermined
by the types of the argument in 2ll usages of '@, that is in lines 13 and 17.
Line 17 is straightforward: the argument is Integer. The type of the
argument to '@ (i.e y) in line 13 depends on the value {o be used for Aly) in
message '&'. This is determined by the type of argument in all usages of '&’,
namely line 4. But this is A(z), which is what we wanted to find out in the first

place.

In order to solve this problem, we need some sort of iterative method
similar to the one used to solve the type expressions in the first place. The
question ig, is it worth it. It would seem that the answer is definitely in the
affirmative, because nearly all messages are not overlocaded in their
arguments. (Common exceptions are the arithmetic and comparison
cperations, but these do nnt matter since they are builting).  Most usger
defined messages expect eachv of their arguments to be of one particular
type, and always are so invoked. Thus the above enhancement would, in
many cases, replace gen with a type set containing only one element, a

significant improvement.



6.5. Global Variables in Messages

The present definition of TINYTAIK is severely limited in that global
variables are not accessible inside messages. This is a desirable feature from
the point of view of modularity, however, there are applications for which
global information is necessary. In TINvTAIK as defined, global variables are

really equivalent to local variables of the main program:

When global varlables are allowed inside messages, the type inference
algorithm becomes substantially more difficult. First of all, the list of
significant variables for methods must be expanded to include all global
variables, Even those not accessed éxplicitly in the method must be

included.

Furthermore, previously the SEND code item could cnly affect the
_pseudo-variable refval; in addition, something could be inferred about the
receiver. Now, a SEND can also affect the types of‘all global variables. The
process of setting up thé type expressions must not only keep track of fhe
return type of each method, but must also form type expressions for the
possible final types of eéch global variable based on their initial types. Thus &
new node, G{global woricble, message, receiver_type, orgl_fype, ..,
initial _fype), must be introduced, which is the set of possible final types for
global_wariable (having the initial type initial _type) after message is sent to
a receiver of type receiver_iype with arguments of types orgi_ftype, ...

Needless to say, evaluating a G node is not straightforward.

Class variables 4 la SMALLTAIK can be done in the same way.
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6.6. Elimination of Unnecessary Code

Methods return self when the execution falls out the botiom. In many
cases the value returned is simply voided. For example, in the towers of
hanoi program {appendix D) practically none of the methods which fall out

the bottom ever have the resulting self used for anything at the call site.

If a method falls out the boftom, and if the resulting self is never used
al any of the cell sites, the code to return self in the rmethod, and the code to
void it (decrement its reference count) at the call site, might as well not be
produced. This should produce noticeable, though not astronomical,

execution time savings.

6.7. Inline Expansion of User Defined Methods

As can be seen from the towers of hanoi program, most classes contain
methods to access or directly set the fields of objects of that class (get and

set messages). These messages are exemplified by

class A
fields x
begin
message X (~x) {gef message ]
message X. v (x «v) { set message }
end
These are very commpon in SMALLTALK programs, since unlike SIMULA, the

fields are not directly accessible.

The get and set messages are excellent candidates for inline expansion,
for two reasons. First, they are short and so execution time is dominated by
the method calling sequence. Second, these messages tend to be more
commonly called, since they are the primitive object manipulation operators

for user defined classes.
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To produce an inline expansion for a builtin arithmetic or comparison
operator (See section 4.8.2), the type of the argument must be Xnown to be a
single type in order to select the correct version of the operator. Hc;wever.
in the case of sef methods, it doesn't matter what the type of the argument
is, so a greater proportion of sets can be expanded inline {gefs pese no

problem here, having no arguments).

6.8. Type Assertions

In builtin methods such as, for example, cf; (array subscription) the
first thing the method does is to check whether its argument is an integer. At
present there is no way to do this in a user defined method. SMALLTALK
provides a builtin message understood by class (®ject which returns the

class of an object. Then something like

if x class # Integer then
{ complain }
is used to decide if the arguments are of the right type. Usually the
programrner doesn't bother and most user defined messages don't domain
check their arguments. Instead they assume that the arguments are of the
right type and let some builtin message fail later on if they are not. Using
sornething similar to the test above has two preblems. First, { complain }
isn't standardized, and much code is duplicated with this kind of argument
domain checking. Second, although it is clear to a human that after such a
construct z is of class Infeger (provided { complain } aborts execution), the
type inference algorithm would have to know about the semantics of

particular messages to figure this out, and it has no such knowledge.

Instead, a statement can be added specifically for the purpose of

meaking assertions about the types of variables. This gives the same result
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and does not require a more complicated type inference algorithm. The

format would be
assert varicble is class

The intermediate code generator would produce a single code item
ASSERT variable, class

for this. Then the setup phase of the type 'm.fereﬁ.ce algorithm would
recognize that, after such a code item, variable would be of class cless, The
result of expanding ASSERT weuld be to produce code to check that variable

is really of class closs and to abort with an appropriate error message if not.

This gives a standardized argument domain checking facility and helps
the compiler determine types of arguments (decreasing the severity of the A
node problem described in section 3.4). The assert statement is not, of
course, restricted to argument variables, but can be used as a form of note
to the compiler in places where it might otherwise have trouble making

useful inferences, and also as a &ebugging aid.

6.9. Special Representation For Integers

The present implementation of TINYTAIK treats integers exactly the same
as all other classes. SMAILTAIK 76 as implemented by XEROX dealt with
small integers specially. Integers sufficiently small to be less than the
smallest pointer were not stored in objects on the heap, but in the variables
(pointers) themselves, This encoding allowed integer arithmetic to proceed
without using the memory allocator; it basically allows the compiler to take
some advantage of the hardware operators transparently to the semantics of

the language. This is & possible practical enhancement, but isn't too
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interesting from a theoretical standpoint.

6.10. External Compilation

The method of type inference oplimizalion used in TNYTALK requires thal
the entire program be compiled at once. With very large programs, this is
clearly impractical. External compilation is an area in which work needs to
be done, but does not appear to pose any particularly difficult problems. The
method used in SIMULA, namely the creation of attribute files giving type
information about externally compiled classes, seems quite adequate to the

task.

6.11. Summary

This chapter has outlined a number of areas where future work could be
done te enhance the effectiveness of the compiler in inferring the types of
variables. The four most profitable a.feas appear to be the scheme for dealing
with fields types, the méthod for dealing with argument types, the inline

expansion of user defined methods, and the assert mechanism.
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CHAPTER 7

CONCLUSIONS

The results in chapter 5, coupled with the ideas in the last chapter lead
to the conclusion that the type inference methods presented in this work are
eflective In obtaining a significant speedup in a polymorphic language, even
one based on the object oriented paradigm with its accompanying high

procedure calling overhead.

The analysis in section 5.2 leads to the conclusion that even with optimal
type inference on a program which does not use the polymorphic nature of
variables a factor of arcﬁund B is lost in speed versus a typed langusge. This
is due to the object-oriented nature of the language; even simple operations
require the creation of an object to hold the result. It is also due to the
declarationless nature of the language; if it had declarations, then types for
which the hardware provides support could be handled as special cases, as is

done in SIMULA.

One result of chapter 5 is unexpected; the factor of speedup even when
all lookups are removed is only about 40%, which is significant, though not as
large as expected. This indicates that lookups are not the primary factor
causing object-oriented languages to be slow. The inline expansion, on the
other hand, saved an additional factor of 2% Apparently the main area in
which TivvTaix suffers, at least in this implementation, is the overhead of
procedure calling. Therefore, the primary goal of enhancements to the
methods presented here must be to increase inline expansicons, along the

lines of section 6.7, for example. Needless to say, the improved methods of



type inference described in sections 6.3, 6.4, and 8.8 are necessary to

increase the opportunities for such inline expansion.

Another result of chapter 5 is that the choice of memeory allocation
strategy is the major factor affecting execution speed. This is to be expected
since every message sent resulls in at least one, usually several, calls on the

allocator.

‘The ability of variables to change types gives a very natural approach to
overloading and generic procedures, and allows manipulation of complex
data structures to be much more simply and easily programmed. The
guestion is, is the corresponding B times decrease in performance worth the
gain. This work has shown that is it possible to approach the limiting factpr of
8 from a starting point of much worse by using data flow type inference
methods. Developmehts in hardware will hopefully close the gap by providing
object manipulation as a primitive just as addition and subtraction are on
current machines. When this happens, type inference method similar to
those described here can be used to produce efficient code for polymorphic,
object-oriented 1anguagés. The programmer will then be free from arbitrary
restrictions imposed to make it easier on the compiler, leaving him to

express algorithms-in a natural object-oriented way.
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Al Notation
() grouping
zly =zory
{xd 0 or more
[z optional x

<z> 1l or more 2z
word nonterminal
text literal text
text commentary

A2 lexical Categories

eof
keyword
id

op

op—character

int

real

string

character

comment

APPENDIX A

language Syntax

end of file
id:
letter § digit | letter }

< op_character >

. except thot <- end = ore reserved,

8%l &l ® |+ =7l <=1 2 l@iN~ L i~

[+ (

1]2|3l4i5/6|7/82 { digit ]
( 0x| 0X) < hexit > hex number
(00| 00]0) < octit > octal number

j(ob|OB)<O|1> binary number
4]

[+]—] <digit> [. { digit {1 [ e | B [+]-] <digit>]
characters or melacharacters in double guotes
two double quotes are used fo denote a double
quote in the string

character or metacharactfer in single guotes

{ text possibly containing nested ¢ and }



begin w=  (|BEGIN

end n= )} | END

null o=

metacharacter n= Twso character sequence designating some non-
printing character. The first charecter is a back-
prime or backslash, The sequences recognized ore:
* <upper case letter or one of @ \ ~ ][>
representing the corresponding control character
* <1 to 3octal digits>
representing the corresponding ascii cheractfer
K delete
*t tad
‘n newline (linefeed)
*b backspace
f Jfermfeed
‘r refurn
‘8 escape
Standard C escope seguences.

A.3 Syntax

program S { class_spec ] block eof -

class_spec = class id ( class_def | class add }

class_add = understands mess_def

class_def = subclassof id ]

fields idlist1 ]

begin { mess_def ] end

idlist = §id 3

mess._def = message mess_hdr [ | idlist ] block

mess_hdr = idl | op id2 | < keyword id >

block = begin stmt.list end

stmtlist = [ statement { . statement } ]

statement = unit | if_stmt | while_stmt | for__stmt

unit = [~] §id « } term [ k_selector { ; k_selector } ]
[ nuil

if_stimt =  if unit then statement [ else statement |

while_strmt = while unit do statement
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for_stmt
term
factor
u_selector
b_selector
k_selector

primary

for unit . unit . unit do statement
factor { b_selector |

primary { u_selector }

id

op factor

< keyword term >

id | integer | real | character | string | block
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APPENDIX B

VAX Implementation of Intermediate Code

B.1 Eegister Usage

In the VAX implementation, several of the 18 general registers are

reserved by the hardware and certain others by convention. The following

table gives the usages:

RO
R1

R2
R3-R8

RY
RB
RO
R10
R11
Ri2
R13
Ri4
R18

Reserved for method return values.

Reserved for interface to C routines returning
double results and net presently used.

Messed up by C unsigned divide routine -

and therefore not used.

Free for intermediate results

and saved by messages that use them.

Contains -1 for indexing an object's class,

Contains -2 for indexing an object’'s reference count.
retual.

Not used, reserved for pointer to class variables of self.
self.

hardware maintained argument pointer.

hardware maintained call frame pointer.

hardware maintained stack peinter,

hardware maintained program counter.

Reserving registers 7 and B to always contain -1 and -2 respectively makes it

possible to access the class and the reference count of an object directly

using the VAX addressing modes.

B.2 Accessing Variables

All of the various kinds of variables are accessible using VAX addressing

modes. The implementation is as follows (using UNIX as syntax):



global varname varname
lncal number n (-n*4)(fp)
argument number nn | ({n+1)}*4){ap)
field number n {({(n-1)*4)(r11)
self ril

clags (lassname #Classname

To access the reference count of.an object, we simply append [r8] to each of

these. Similarly, appending [r7] accesses the object’s class.

B.3 Intermediate Code Items

The implementation of the various types of intermediate code items in

terms of VAX machine instructions is given below

INCREF variable
incl variable[r8]
DECREF variable ‘
sobgtr  variable[r8] label
pushi variable
calls 31,05 free
label:
GENARG variable
pushl variable
SEND message, receiver, argcount
pushl  receiver[r8]
pushl message
calls 2,08 1ockup
pushl receiver
cells $argcount,(r0)
HOVE {rom,to
movl from,to
LABEL label
label;
JUMP label
jbr label
IFTRUE variable,label

# OS_iookup looks up the message,

# It takes as parameters the class ond
# the message unigue siring number
# ond returns the method address
#in register 0,
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cmpl Btrue,variable
jeqlu label

IFALSE variable,label

cmpl Bialse,variable
jeqlu label

RETURN variable
movl variable,r9
jbr returnlabel

I addition, the beginning of a method contains code to create and initialize
locals: one
pushal nil
per local variable, and code to set up self:
movl 4(ap),ril
Similarly, the method ending:

rmovl ril,rg # return self

retlab:
movl n,ril # pass number of locals, n, to procedure
jsb O3_freelocals # to decrement reference counts on locals
jsb OS_freeargs # Also decref args and self
movl r9,r0 # and locd refurn value into refurn register
ret # Finally refurn

decrements locals and args, and, in accordance with VAX convention, returns
the method result value via register 0. If there are no locals, the second and

third instructions are not generated.



APPENDIX C

Running the Compiler Under UNIX

The general format of the command to invoke the compiler is:

st [-0[0]] {-g] [-e] [-5] [-¥] sile (qls|o)

where the meanings of (), [] and | are, as usual, grouping, optional item, and

alternation, and file is any filename. If file has the suffix .g, it is compiled,

assembled, and linked. If the suflix is .s, only assembly and loading are

performed, arnd an suffix of .0 causes loading alone. These conventions are

the same as in the other UNIX compilers. The meaning of the various

switches is as follows:

O

Do type inference optimization and use ESENDs and DSENDs wherever

possible.

In addition te -0, replace ESENDs with inline expansions wherever

possible,

Compile debugging information inte the program. This results in
runtime errors giving the source line of the error, and provides some
support for the UNIX debugger sdb.

Compile and assemble only, do not link.

Compile only, do not assemble or link.

Produce statistics about the compiler execution. Output includes the
phase of compilation, data about the number of variables, parse tree
nodes, type equation nodes, program points, variable instances,

iterations through the type equation solver, and so on.



The result of compilation of file.q is three other files: file.s, file.o, and
file. These are the assembly source, the unlinked object module, and the
executable file respectively. The program can be run simply by typingl

file

to the UNIX cemmand interpreter, the shell.
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APPENDIX D

Towers of Hanoi Program

Towers of henoi program designed to run on vi58 style video ferminals.

Plays the game 50 times with a 4 disk pile.

Liberally transiated by Niklos Traubd from anenymous exemple in SIMULA
}

§{ Screen handling }

class Userview.
begin
message clear.
( "™$H'8J" print )

message home,
( "8$H" print )
end ‘

{ Class representing a point on the screen ]

class Point.

fieldsx y.

begin
message X. (~x)
message V. gﬂy)
message X: V. (X<V)
message y: v. (y«v)

message moveto.

(
“EY" print.
(59—y) asChar print.
(32+x, asChar print

message deltay: dy.

(

"§Y" print.
(69—y—dy) asChar print.
(3R+x) asChar print

message deltax: dx.

"“BY" print.



(59—y) asChar print.
(82+x+dx) asChar print

end
{ One of the Towers of Hanoi }

class Tower.

fields contents position top.
message contents.  (~contents)
message position. é*position)
message top. ~top)
message height. (~top+1)

{ Initiglization stuff }
message at: p. ( position « p )
message init }i.

contents « Array new: O to: 3. { ¢ high stock }
top « 0.
fori<Q. i<=3, i«i+1 do

contents at:iput: " | "

)

{ Drow each of the elements of the tower in a verticzl line af position }
message draw | p L.

position moveto.

fori<D. i<=3. i«i+1 do(
(contents at: i) print.
position deltay: i+1

)

{ Stack a disk on top of the tower |
message stack: d.

contents at: top put: d.
position deltay: top.
if d==false then ~false.
d print.
top « top+1
)
{ Remove the disk on top of the pile ]
message remove | d.

if top<=0 then ~false.

top « tep—1.

d < contents at: top.
contents at: top put: " | "
position deltay: top.
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(contents at: top) print.
~d
)

{ Feturn the disk on top of the pile |
message topdisk. (~contents at: top)
end

{ This Class defines the disks that are moved ground on the fowers |

class Disk.

fields size shape.

begin
message size. ( ~size)
message size: V. é size « V)
message shape: v. shape « v )

message print. { shape print )

end

class Game.
fields L1 t2 L3 pos.

begin
message t1. (~t1)
message t2. g»m)
message t3. ~t3)
message pos. (~pos)
message t1:t. (t1 « tg
message tR:t. (LR« t

message t3:t. (13 « t)
message at: p. (pos « p) °
{ Initialization }

message init.

t1 « Tower new init at: (Point new x (pos x+3); v:(posy+1)).

t2 « Tower new init at: (Point new x;
t3 « Tower new init at: (Point new x:

t1 stack: (Disk new size: 7; shape: "
t1 stack: (Disk new size: 5; shape: "
t1 stack: (Disk new size: 3; shape:
t1 stack: (Disk new size: 1; shape: "
celf draw

)

message draw.

pos moveto.
"

%pos x+18§; y:%pes y+1 %

V¥ (pos y+1

t2 draw.
t3 draw

)

message play.
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self move: t1 height from: t1 to: t2 via: £3.
pos moveto.
!l\nlr pl"int

)

message move: n from: al to: al via: aS.

if n <> 1 then self move: n—1 from: al to: a3 via: a2,
aR stack: (al remove).

if n <> 1 then self move: n—1 from: a3 to: a? via: al
end
{ main program }

begin
g « Game new.
user « Userview new.
g at: ( Point new x:10; y:10 ).
user clear.
user home.

Flay it &0 times to gef some reasonable fiming sfobtistics
Y g g

fori«<1. i<=50. i«i+1 do begin
g init.
g play.
"%d\n" print: i
end.
§ Now test out the memory aliccator. |
{ After this statement, the number of objects created |
{ and the number of objects freed should be the same, |
user < g « 1 « nil
end
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