
Using Logic Programm.ing

for Compiling APL

Howard .Derby

Computer Science Department
California Institute of Technology

5134:TR :84

Using Logic Programming
for Compiling APL

5134:TR:84

Thesis by
Howard Derby

In Partial Fulfilment of the Requirements for the Degree of
Master of Science

March 1984

Abstract

APL is a dynamic?-llY typed language which deals with arrays whose type,
number of dimensions (rank) and size are not fixed at compile time, but are instead
determined at run time. This makes APL more difficult to compile than static lan­
guages like Pascal or FORTRAN. This thesis describes a prototype implementation
of the core of an APL compiler. The intention thus far has been to demonstrate
techniques for dealing with some of the issues that arise when trying to implement
APL efficiently, rather than to produce a working implementation. The present
program does not do any of the initial lexical processing required, and only com­
piles into intermediate code. Object code is never produced. The prototype has
many APL features missing and is undoubtedly full of bugs.

1

APL[Iver62] is an old language but there are still no efficient implementations.
"Efficient" in this case means that an APL implementation of a particular algo­
rithm is roughly as fast as an implementation of the same algorithm in another lan­
guage. Other languages are generally more efficient than APL because compilers are
available for them, whereas all production APL implementations are interpreters.
APL's array primitives, which operate on arrays of arbitrary type and rank, are
what make it difficult to compile. Compiling APL by threading together code for
the individual primitives gives poor results because general implementations of the
primitives contain code for dealing with all the rank and type combinations that
can possibly occur, which makes them inefficient. Generating good code requires
having information about which ranks and types the programmer uses, so code is
produced for only those cases that actually occur. To do this, the compiler needs
to know the types and ranks of arrays at compile time. The method used to get
this information determines how the compiler will appear to the APL programmer.
If no restrictions are placed on the language, it will be impossible in most cases
to get the information that is needed, and inefficient code will result. A compiler
that required declarations for all types and ranks would be very restrictive on the
programmer but would be able to produce efficient code.

Reasonable approaches lie between these two extremes. The compiler can get
some of the information it needs by exploiting the relationships between an APL
primitive's arguments and its results. For example, it is known that p <I> X is pX. The
process of using these relationships is called type inference. Effective use of type
inference requires· having fairly complete information about the state at each point
in the program, because missing information propagates through an expression just
as known information does. This makes it essential that inference be done not
just within a statement but between statements as well. Doing inference between
separate functions APL is also very helpful. My work differs from other compiler
efforts [Weid83,Budd83] in that it stresses complete interprocedural inference in an
attempt to generate efficient code in spite of complete lack of declarations.

APL is a highly interactive, interpretive language, and this frustrates attempts
to do type inference between statements. Users can interrupt and edit functions at
run time. Language features like j_, which executes an arbitrary character vector
as an APL expression, can change any variable, ruining any dataflow analysis the
compiler does to support type inference between variables. In all but the simplest
cases it would be impossible to determine at compile time which, if any, variables
were modified. Not only would the executed expression have to be interpreted,
but in many cases much of the code that followed would have to be fully general,
making it inefficient. As a result, the presence of a single execute ca:ri negate most

2

of the benefits of compiling. APL also includes a large number of so-called "system
functions", which refer functions and variables using character strings. These can
also ruin the compiler's dataflow analysis. In addition, OFX and ~EX can change
a function's parse tree. Consider the statement A+--F-X. This can parse as either
A+-F(-X) or as A+-(F)-(X), depending on whether F is a monadic function or a
variable. Since system functions can change a name from a function to a variable or
vise versa, the execution of system functions can change the parse trees of defined
functions. This means the use of system functions in a function can have even more
extreme effects than the presence of j_.

This can be handled in a variety of ways. The approach taken in this compiler is
to remove ...t. and system functions from the language. Fortunately, many programs
don't use these features. Eliminating them makes APL essentially static, but
the most useful of the dynamic properties of APL, the variable array types and
ranks, are retained. APL programs that are heavily compute bound, such as signal
processing applications, would benefit immensely from a. compiler of this sort. APL
could be successfully applied to many new areas if a working compiler of this type
existed.

To make it possible for the compiler to extract the information it needs without
any declarations, several other restrictions have been imposed. The compiler works
on an entire workspace at once, allowing it to see the "big picture". Execution
always starts in the same function, which takes no arguments, and has no result.
No global variables exist when execution starts. Input (0 ~)must be done in such a
way that the result always has the same rank and type. The program must be such
that ranks and types can be determined at compile time. For example, a function
that works recursively over the rank of an array cannot be compiled.

Recursion over ranks

VZ+-F X
[1] Z+-X
[2] -+ CO=ppX) /0
[3] Z+-F +/X
v

There are also a large number of restrictions that are not inherent in the design
but are caused by omissions from the compiler. Most of the scalar functions are
missing, and ~ 'ffi T? are all not implemented. No input or output facilities

3

have been provided, because input raises system questions and APL output is
complicated. Indexed assignment is missing, but could easily be added. Norie of
these omissions represent fundamental problems but would simply require additional
programming effort to implement them. A problem that is more fundamental is
the inability of the compiled code to correctly handle integer overfiow. The code
generated by the present version will trap on integer overflow. In addition, the
compiler doesn't do any of the lexical preprocessing required and only generates
unoptimized intermediate code.

The compiler is based on logic programming. It uses an axiomatic description
of the APL primitives for boLh type inference and code generation. The primitives
are defined using a Prolog-like language that includes rewrite rules for defining
functions. The remainder of the compiler in written in Prolog.

PROLOG

A Prolog [Rou75, Clock81, Per78] program is a set of logical assertions about
abstract objects called terms. A term is either a variable, a constant, or a function
applied to one or more terms. Constants are either numbers, like 4, or atoms,
like foo. Variables are alphanumeric strings which must start with a capital letter,
which distinguishes them from constants, which must start with a lower case letter.
Example terms are:

fred sue 4666 Variable f(X,why) f(g(w(X)))

Functions may also be represented by prefix, postfix, or infix operators instead of
the usual mathematical notation. Functions to be used in such a way must be
declared to the parser. Examples of infix usage:

34+17 Z is 4*Y 3-2>4

The term "Z is 4*Y" is equivalent to "is(Z,*(4,Y))". Some common arithmetic
operations are already declared with the standard precedences.

The functions about which logical assertions are made are called predicates.
The assertions are organized as a list of Horn clauses. A typical clause is

4

~(X) :- g(X) , h(X).

This means f(X) is true if g(X) is true and h(X) is true. The infix operator :- has
the meaning "if", and the infix comma has the meaning "and". Thus to prove f(4),
it would suffice to prove both g(4) and h(4). The variable X represents any term.
Variables are local to the clause in which they appear. A clause may also be a
simple assertion without any antecedents, ie

gl(X,X).

The period at the end is necessary to indicate the end of the clause.

It is important to realize that none of the functions have any semantics as­
sociated with them; they represent symbolic, not computational connectives.

This Prolog program implements part of Peano ariLhm.etlc:

add(O,X,X).
&dd(s(X),Y,s(Z)) - add(X,Y,Z).

le(X,X).
le(X,s(Y)) le(X,Y).

The predicate add holds if the sum of the first two arguments equals the third.
The first clause asserts the common identity 0+ X=X. The second clause says that
the sum of the successor of X, andY is the the successor of the sum of .X and Y.
Note that the successor function s is not defined anywhere. It has no operational
behavior. The successor of 0 is not 1, but merely s(O). The results computed by
add are in terms of successor functions. The le predicate is true is its first argument
is less than or equal to its second.

A Prolog program is "run" by giving Prolog a theorem to prove. The theorem
to be proved is in the form of a list of terms to be proved, in order. Each term in
the list is called a goal. The goals are proved by searching the list of clauses for
one whose head unifies with the goal, and then proving its antecedents, treating
them as subgoals. This process is called resolution[Rob65]. Two terms are said to
unify if there exists a set of variable substitutions that will make the two terms

5

identical. For example, f(X,4) and f{ref,Y) unify with X=ref in the first term and
Y=4 in the second. Unification is the operation humans intuitively perform when
doing algebraic pattern matching.

If a subgoal is encountered which will not unify with the head of any clause, it
cannot be proven and is said to fail. If this occurs, Pro log backtracks in an attempt
to find a proof that does not depend on the failed subgoal. It rejects the proof of the
previous subgoal and attempts to re-prove it by resolving with a different clause.
If there are no untried clauses remaining, it too is failed and the backtracking
continues. If no alternative paths can be found, then the whole process fails. If
Prolog can prove all of a goal's subgoals, then the goal is said to succeed.

There are two other Prolog features that need to be described. One is the ";"
connective. A semicolon ea.n be used in a subgoallist to indicate "or" just as comma.
is used to indicate "and" . Thus

is equivalent to

f(X) a.(X) b(X).

f (X) - a.(X) .
f (X) : - b (X) .

Prolog also has a predicate called cut. It always succeeds but has the unusual effect
of preventing backtracking. If backtracking reaches a cut, the entire goal is failed.
The not predicate succeeds if its argument goal fails and visa versa. It may be
defined using cut by

not(P) :- P
not(P).

I
' . ' fa.il.

not works by first attempting to solve the goal P. If P succeeds, then a cut is
performed and then failed, which causes not(P) to fail without trying further ways
of proving P. If P fails, then the second clause for not succeeds.

6

REWRITE RULES

While Prolog contains good facilities for defining predicates, it has no way of
assigning semantics to functions. This can be done by adding rewrite rules. A
rewrite rule of the form X := Y states that a term of the form X may be replaced
by Y. For example, addition may now be defined by

O+X := X.
s(X)+Y := s(X+Y) .

.AJJ.y term in which a + operator appears will be rewritten as the sum, if the
arguments are numbers in successor notation. A term like s(O)+foo will be rewritten,
first as s(O+foo) and then as s(foo). There are some rather messy issues regarding
the precise semantics of rewrite rules, which in turn relate to how rewrites are
implemented. In particular, there are questions about which terms may be rewritten
and when during execution they may be rewritten. If the desired semantics of
rewrite rules is that of multi-valued functions, then care must be taken to assure
that no term is rewritten using two different rules. This does not apply to different
instances of the same term. The exact semantics the compiler uses will be discussed
later.

Rewrite rules may be used to define a programming language, such as APL.
APL data types are represented by terms, and functions are de.lirJ..ed Lhat access
the properties of those data types, much like defining abstract data types in object
oriented languages. APL's data type is an array of elements, which may be either
characters or numbers. The main properties of an APL array are its rank, shape,
and the elements it contains. For example, the constant vector 1 2 3 may be
represented in Prolog as vec([1,2,3]). (In Prolog, [a,b,c] is a three long list containing
a, b, and c.) As another example, consider the term iota(N). It represents the vector
returned by t.N, but does not compute its elements. Functions are needed to access
its properties. The rank function returns the rank of any term that represents an
APL array. Since LN returns a vector1 rank iota{N) = 1, and the rule

7

rank iota(N) := 1

is used to specify that fact. Likewise, a method for accessing the elements of an
array must be provided. The function Q represents subscripting with a list of integer
indices. Since iota(N) has rank one, "it requires a list of length one as a subscript.
iota(N) has i in the i'th place, so the rule

iota(N)O[I] := I

defines the elements of t.N. Defining the shape is more difficult. The APL function
p returns the shape of an array as a vector. It is easiest to define p directly on each
term that represents an array. For example, the shape of tN is given by the rule

(rho iota(N))0[1] := N.

The collection of rules of this form for each array defining term defines the element
properties of p, but it does not specify its rank or shape, which must be given
explicitly by

rank rho(X) := 1.
(rho rho X)0[1] := rank X.

Note that (rho rho rho X)0[1J = rank(rho X) = 1, and rank rho rho X= 1, ie ppX
always return.s a vector of length 1.

It is important to keep in mind that three very distinct types of objects are
being used. One type is the class of symbolic objects that have no significance to
the APL programmer and are simply intermediate data structures in the compiler's
implementation. The other two are APL arrays and APL array elements. The
distinction between these two is important because they often appear to have the
same form. This difference is imposed by the target machine, which can manipulate
numbers but knows nothing about the properties of the APL scalars. The indexing
operation Xai returns the value of an APL array X at position I not as an APL scalar
but as a number, which is suitable for manipulation by the arithmetic instructions.
This differs from the APL indexing function, which returns APL arrays. The scalar
constant 1 as used by the APL programmer can be represented by scalar(l). It
the usual array properties, like rank scalar(l)=O. It is not a number, so it cannot
be used in arithmetic operations- add(scalar(l),scalar(2)) is illegal. Scalars must

8

be indexed with an empty list of subscripts (since they have rank 0) to get their
numeric value. Thus scalar(l)OO=l , and add(scalar{l)00,scalar(2)00)=3. But just
as scalar(1) isn't a number, 1 isn't a scalar: rank(l) is undefined, as is 100.

These techniques can be applied with equal success to more complex APL
functions. The monadic scalar functions are readily defined using these techniques.
Because all of the monadic scalar functions have the same dataflow, they are first
grouped by representing all applications of them by msc(F ,X), where F is the
function to be applied (+-X+ etc) and X is the argument array. mscop(F ,X) is
defined for each monadic scalar function F, and it returns F applied to the number
X. The rules

rank msc(F,X) := rank X.
rho msc(F,X) :=rho X.
msc(F,X)OI := mscop(F,XOI).

define the element by element application of F to the array X. The result array is
defined to have the same rank and shape as the argument, and each element of the
result is the function F applied to the corresponding element of the argument.

APL operators can be defined similarly. Outer products o.F are first translated
to outer(X,F ,Y), where X andY are the left and right arguments. The defining rules
are

outer(X,F,Y) := outer(X,rank X,F,Y,rauk Y).
rank outer(X,RX,F,Y,RY) := RX+RY.
(rho outer(X,RX,F,Y,RY))O[I] := (rho X)O[I] I=<RX.
(rho outer(X,RX,F,Y,RY))O[IJ := (rho Y)O[I-RXJ.
outer(X,RX,F,Y,RY)QI := dscop(F,XQJ,YOK) :- split(I,RX,J,K).

The function dscop(F,X,Y) is defined analogously to mscop; it applies the dyadic
scalar function F to the values (not arrays) X andY. The predicate split(I,S,L,R)
splits the list S into a left part L of length I and the remainder R. Formally,
append(L,R,S) and length(L,I). This corresponds to outer product's effect of con~
catenating the axes of its left and right arguments. All of the APL (non-system)
functions and operators can be defined in this way, although most not as easily as
monadic scalar functions or outer product. All of this is done in terms of scalar
equations, so enough information exists to execute each APL operation on a scalar
machine.

g

There is no reason when creating a term for any rewrites to be done im­
mediately. This feature makes it easy for a rewrite system to use lazy evaluation,
only rewriting those terms that affect the progress of the computation. In practical
terms, it means that it is possible to compute, say, the rank of an array without
computing it's elements. It is also possible to do algebra on the definitions. For
example, the definitions of monadic - and L can be combined. The rules

iota(N)Q[IJ := I.
msc(F,X)OI := mscop(F,XOI).

can be combined to form the net rewrite

msc(F,iota(N))Q[I] := mscop(F,I).

For F = -, we have that the i'th element of -t.N is -i. The ability of the rules
to combine in this way allows "beating and dragging" to occur. The formation of
all of the intermediate arrays is not needed. There are cases when it is actually
desirable to create an intermediate array for reasons of efficiency. This occurs in
operations like compression or grade up where the data fiow is highly variable. In
these cases the operation can be defined in terms of an intermediate array. For
example compression uses an vector which contains the index of all the ones in
the left argument. Creation of intermediate arrays may also be beneficial when
each array element is referenced many times, such as in an inner or outer product.
At present, this possibility is ignored. Any array can be explicitly instantiated by
assigning it to an APL variable in the source program.

COJ.!PILnlG CODE FROM REWRITE RULES

Compiling requires generating intermediate code based on the rewrite descrip­
tion of the APL primitives. A goal can be compiled by a process very similar to
interpreting it. Subgoals that can be put off until run time generate intermediate
code. Those which cannot be done at run time are executed interpretively. The
rewrite system is augmented to include declarations of predicates and functions that
can be done at run time. The intermediate code operations are defined by these
rules. Also included in the rules are interpretive methods of execution, so that the
intermediate code can be executed at compile time. For example

10

code cmpe(X,Y) :- X=:=Y.

declares em pe to be an integer equality predicate that can be executed at run
time. The predicate =:= compares two Prolog integers, failing if they differ. The
statement

code iadd(X.Y) := Z :- Z is X+Y.

defines iadd as a run-time integer add. Consider the program

code prtnt(X) :- !ail. time
code iadd(X,Y) := Z :- Z is X+Y.
code cmpe(X,Y) :- X=:=Y.

inc(X) := iadd(X,1).
countCI,N) :- cmpeCI,N).
count(I,N) :-print(!) , count(inc(I),N).

The predicate count(I,N) prints the integers from I to N. The following is an
oversimplified description of the compilation process, but it retai:Q.s the essential
features. Suppose we compile the goal count(l,lOO). The process starts by attempt­
ing to resolve count. It finds two possibilities, and attempts to generate code for
both. The first possibility has one subgoal, cmpe(I,N), which is emitted as code.
The second alternative first does print(!), which is simply emitted. It then recurses.
Starting on the expressions, it must rewrite inc(!) since it cannot be done at run
time. It is rewritten as iadd(I,l), which can be. A temporary is needed to hold
the results of run time functions, so the code T < -iadd(I,l) is generated, with the
subgoal rewritten as count(T ,N). Since this is an example of tail recursion, a loop
is generated.

The actual compilation process is much less elegant than the idealistic one
described above. First, to simplify the analytic burden, run time alternatives and
tail recursion are spelled out explicitly rather then leaving them for the compiler
to discover. The operator ":" is used to express alternatives that may be executed
a.t run time. It is very similar to the Prolog ";". Recursive run-time code is never
needed in the de~cription of APL primitives, so no attempt was made to represent
loops recursively. Instead, the arcane syntax

11

F <: K :> G >> L

is used to describe a loop. F is executed first, then the condition K is checked. If
it succeeds, then the loop terminates. The "condition" K may contain additional
code after the test to do final calculations. If K fails, then G is executed. L is a tail
recursive-looking call to the predicate that contains this construct. It specifies the
correspondence of variable values when looping. The loop primitive can be defined
formally by

F <: K :> G >> L :- F' (K; GIL).

Second, something besides raw Prolog variables are need to represent run-time
variables. A term of the form temp(N,Type,Value,Code) is used to represent them.
This corresponds to a register or a memory location. If an explicit assignment is
made, as in a goal like

Q<-ia.dd(l,5)

a temporary will automatically be allocated. This means that in addition to emitting
the iadd operation, Q will be bound to a term representing a run-time variable.
When temporaries are assigned in more than one place, such as in a conditional,
it is necessary to pre-allocate the temporary. This necessitates dec1aring those
variables that will be used in that way. This is done by prefixing the subgoals with
a list of variables and the word "by".

dscop(=,X,Y) := Z :- [Z] by X=:=Y , Z<-1 : Z<-0.

This statement is part of the compiler. Note how ugly it is. The "[Z] by" part
declares that Z is to be set conditionally. The ":" acts just like Prolog's ";" except
that it generates a run-time conditional. The "< -" 's are just assignments. The
other messy thing is that when values are passed to loops to initialize counters and
such, they must be· passed not as constants but as temporaries. This means that
the simple counting program above would have to look like

inc(X) := iadd(X,1).
count(I,N) :- <:cmpe(I,N):> print(!) , T<-inc(I) >> count(T,N).

and be called with

12

count(copy(1),100).

The copy function simply copies its argument to a temporary. It is defined with

copy(X) := Y :- Y<-X.

The third issue that has been ignored in the rewrite system is backtracking. The
run-time rules are not allowed to backtrack. Alternatives on predicate failure are
restricted to those explicitly provided by the alternative and looping constructs. All
unification must be done at compile time; comparison of run-time values must be
done using comparison predicates. This is somewhat confusing because the inter­
mediate code expresses alternatives in terms of failure and backtracking. This does
not mean that backtracking can occur at runt-ime. Consider a piece of intermediate
c:ode(which looks much like the rewrite system code)

T<-iadd(4,X) , cmpe(T,I) , Z<-1 : Z<-0

In Prolog, the value ofT would be unbound if the cmpe were to fail. This is not
true in the intermediate code. Intermediate code rules leave T undefined if the cmpe
fails. Once a predicate succeeds, meaning all rewrites have been completed and all
subgoals have been solved, it cannot backtrack. It is as if a Prolog cut had been
placed at the end of each clause. No further alternatives for either subgoals or for
that predicate or function will be tried. New alternatives will have to be created
by the parent goal. This has the effect of making each procedure closed- after it
returns, no further activations are possible, so it's frame may be discarded.

It is now appropriate to discuss the precise rewrite semantics used by the
compiler. The rewrite rules are hashed by function. If a function has no rewrite
rules, then it is never given an opportunity to be rewritten and il:i treated as an
ordinary term. If there are rewrite rules present, then an attempt is made to rewrite
each use of that function when it is first encountered. If it cannot be rewritten, it is
left alone. Once this is done, no further rewrites may take place. First encountered
means when the term is needed. If it appears in a predicate, it is needed just before
execution of the predicate takes place. The rewrite system assembles subterms for
the predicate by rewriting all the arguments. If rewritable terms appear in the
arguments to a rewritable function, then they themselves are first rewritten. If a
rewritable term appears in the replacement field of a rewrite rule, it is first rewritten
before the substitution is made. Rewrites do not create fail points; once a rewrite

13

has been accepted it cannot be backtracked. If a rewrite should fail, meaning one
of its subgoals could not be solved, then the next matching rewrite is tried. If no
rewrite succeeds, then by default the term is not rewritten. Any intermediate code
generated by the rewrite process is inserted into the code stream in the order in
which the rewrites are encountered.

COMPILING APL

In order to generate good code for APL operations, the compiler must know the
ranks and types of the operands. Type in APL is not only whether an array contains
characters or numbers, but also the way in which a numeric array is represented
internally. APL represents numbers in three different internal forms: bit-packed
arrays for boolean (0,1) arrays, integers for arrays comprised solely of integers, and
floating point arrays when needed. However, aside from accuracy considerations
this is never the programmer's concern. Rules defining the type properties of APL
operations are put into the the rewrite system much like rules defining the other
properties of APL. Unfortunately, this presents somewhat of a problem because
operations on integers tend to produce integers but generate floating point results
when they overflow. As a result, the type rules are only approximate. Many
solutions to this problem are available, but none seem very good. The approach
taken here, which is clearly inconsistent with the definition of APL, is to generate
an error on integer over:B.ow and require that the programmer float numbers himself
if floating point is. required. This does not affect the automatic conversion when
integers are added to floating point, but only inhibits conversion on overflow. This
behavior is similar to that of static languages.

Interpreters spend much of their time checking type and rank cases, and if these
are known at compile time, great efficiency improvements are possible[Weid83J.
Operations like transpose can disappear completely, and the formation of many
intermediates becomes unnecessary. Unfortunately, it is impossible in all but the
simplest cases to get type and rank information for an isolated function. Some
information about how it is to be used is needed. There are several ways to
get this information. This compiler uses global int.erprocedural analysis, without
declarations of any sort. This means that an entire workspace must be compiled at
one time. It assumes that execution begins in the same niladic function each time.
There are no variables when execution starts, so all globals must be set up by APL
code. The compiler assumes that all ranks and types can be determined at compile
time. To aid in this process, the compiler will create a separate instance of an APL

14

statement for each type and rank case that can be shown to exist at compile time.
In (hopefully) most cases, it will be possible to exhaust the cases which occur and to
.determine the control flow conditions that govern them. If this can be done, then a
new APL program will have been produced in which the types and ranks occuring
within each APL statement are constant. The compiler cannot handle a program
which cannot be put in this form.

Type and rank information is accumulated by the first phase of the compiler.
To simplify the analysis, the compiler assumes that the input has been transformed
into an equivalent program where each statement is either a simple assignment
statement which assigns only one variable, a branch to an expression, a function
call where all arguments are variables and which assigns the result to a variable, or
a null statement which is the last statement in the function and simply indicates
return. The compiler follows the possible control flow paths from start to finish.
Execution begins in the main function, and initially there are no variables. Thus
all rank and type information is known. The compiler then examines the first
statement. It is one of the four basic statement types: assignment, branch, call, or
return. If it is an assignment 1 then it has the form

Var +- Expression

and the type and rank of var can be determined by evaluating type(Expression) and
rank(Expression). If Expression contains no variables, then its value is constant and
the type and rank are clearly calculable. If they do contain variables, (which cannot
happen in the first statement but may occur later) then the compiler will attempt
to determine what it needs to know about the variables by looking backward along
the control paths ·that lead to the statement being processed. This process is called
interstatemep.t inference. In many cases all that is required is the type and rank of
the variables, which will be known so no further work is required. If the expression
is such that the type and rank of the result do not depend solely on the type and
ranks of the variables it contains, then the compiler makes an attempt to determine
the values of these parameters. For example, consider the following program:

V'FOO
[1] X+-t4 ·
[2] Y+-Xp3
V'

When statement [2] is processed, the rank of Y will be equal to the shape of X,

15

which is 4. So when processing rank(Xp3), the compiler will derive rank(Xp3) =
rho(X)O[l]. The reWTite system has a rule for evaluating shapes of APL variables.
This rule couples the expression handling rewrite system to the interstatement
inference code. The compiler will discover that X was last specified by the first
statement, and that rho(X)O[l] = rho(t4)0[1]. This new expression is passed back
to the rewrite system, which calculates that rho(tA)C(l] = 4. Thus the rank of Y is
4.

We have now described the basic workings of interstatement inference. Not all
APL control flow is as simple as that of the example, and the proper allowances must
be made. The simplest complication is that of branching. The APL -+ operation
is a computed goto, which specifies the statement number where execution will
continue. The target of a goto may be any statement, or a -+0 which terminates
function execution and causes a return. Because of the adverse affects of considering
control paths that are never taken, the compiler assumes that all branches are done
using labels, and that the target of a branch is either the next statement (-+t.O)
or a statement whose label appears in the branch. The major restriction that this
imposes is that 0 cannot be used as a target to stop function execution. The code
that branches generate is just a computed goto, with checking for -+t.O.

The compiler. makes no attempt to determine which of the branch choices will
be taken. It considers all of the possible targets as potential next statements and
generates instances for those paths. This could result in an exponential explosion
in statement instances, since each instance of a branch is considered separately. To
help combat this growth, the compiler attempts to merge instances. Two instances
can be merged if all successors of the instance merge and the assumptions made
about the states of variables before the execution of each instance are the same.
In other words two instances can be merged if they and all their successors do the
same work. To aid in the merging process, the compiler stores the set of constraints
on variable values that must be satisfied if the code generated for each instance is to
work properly. Merger is checked by verifying each constraint in the environment
at the proposed merge point. If two instances are merged and the compiler later
discovers that they must be left separate, they are split.

16

Unmergeable Instances

VF
[1] -+X/L
[2J Y~l/Y
(S] L:Z+-Y+4
v

In the above example, statement [3] can be reached by two control paths;
directly from statement [2] or by branch from statement [1] Unfortunately, the
rank of Y will be different if the branch in statement [1] is taken than if it isn't.
AB a result, the compiler will generate two instances for statement [3], one for each
path.

Instance Merging

VFOO
[1] -+X/L
[2] Y+-Y+1
[S] L:Z+-Y+4
v

This example differs from the last in that statement [2] doesn't change the rari.k of
Y. As a result, Y will have the same rank in statement [3] independent of the path
taken. Statement merging takes place and only one instance is produced. There are
cases where the same efficient code can handle arrays of various ranks. For example,
the code for dividing by a constant (as in F[3J) doesn't depend on the rank of the
array. Matching ranks are sufficient but not necessary conditions for statement
merging. Unfortunately, the compiler doesn't know what the true conditions are.

Loops in APL are implemented using branches. The same code that handles
instance merging also handles loops. Consider the set of instances that would be
formed if the control flow paths in a function were followed for an arbitrary number
of steps. This could result in an infinite set of instances, but only if the types and
ranks kept changing. If closure occurs and a finite set is produced, then because
of instance merging the compiler will stop generating new instances once it has
completed the set. If closure does not occur, the compiler will get stuck and infinite
loop. In practice, this can only occur if the rank of an array is being increased in a
loop. This is fairly unusual, and represents a known limitation that a programmer

17

would have to avoid. In general, a compiler should recognize closure failures in
loops and give up, or better yet use more general code to handle it.

Closure Failure

V'FOO
[1] L:X+-X, [.S]X
[2] -+(O<I+-I-1)/L
v

This function increases the rank of X by one for each iteration. As a result, the
compiler will be unable to find a sufficient set of instances for statement [2]. Each
time the compiler reaches statement [2], the compiler will look for an appropriate
instance of statement [1]. Since the rank of X ha..c;; increased, none of the previously
generated instances will be satisfactory, and the compiler will generate a new
instance of statement [1]. This will require an instance of statement [2], which
the compiler will attempt to merge with the existing instances. The catch is that
each instance of statement [2] can lead to an instance of statement [1], and the
constraints on merging an instance of statement [2] include satisfying the constraints
of all nodes that follow it. This cannot be satisfied because X has increased rank, so
a new instance of statement [2] is also needed. This is an infinite loop, from which
the compiler will not escape until it runs out of memory.

Calls to defined functions present more of a challenge. The present compiler
handles each function call as a separate statement. This isn't a restriction because
an APL statement containing a function call can be broken down into an equiv­
alent set of statements such that this holds. The compilation of user functions is
governed by function use, not function definition. Because functions can be called
with different arguments and with different states of the global variables they use,
functions create instances much the same as statements do. Wben an new instance
of a function call is needed, the compiler looks for an existing function instance
that is compatible with the arguments and the global variables at that point. If no
such function instance can be found, a new function instance is created by creating
a new instance for the first statement of the function and letting things progrBss
from there. If interstatement inference shows that types and ranks depend upon
VBlues passed from outside, which can b~ either arguments or global variables, the
compiler requests the needed information from the caller. It also stores the infor·
mation obtained from outside as a constraint on the use of this function instance,
just as for statement instances. This allows the new function instance to be used
by other callers.

18

Since the control flow through a function is not guaranteed to be the same each
time it is executed, there are cases where the state after a function call depends on
control flow within the function in such a way that separate statement instances
are needed to handle the different cases after return. Because of this, a function
must have not one return but several, depending on what control path its execution
followed. The statement following a function call has one instance for each different
return path the function can take. In most cases these instances will merge since
like most APL functions, user functions tend to produce results whose types and
ranks are not control dependent .

. Di!ferent Return States

V:Z+-F X
[1] Z+-X
[2] -+K/L
[3] Z+-l/X
v

VZ+-G X
[1] T+-F X
[2] Z+-{S> T
v

In this example, the function F can return its argument unchanged or with rank
reduced by one, depending on the value of K. As a result, the function G will need
two different instances. of G[2], one for each case. Which instance is used will depend
on which return F takes.

Recursive functions complicate this because they refer to incomplete function
instances whose input and output properties are unknown. By taking care to update
the data structures in the proper order no problems occur unless closure of function
instances fails. This is analogous to failure of loop closure that can occur in ordinary
function processing. The key to successful treatment of recursive functions is to not
consider return paths until it is known that they can be reached. If when processing
a function a recursive call is encountered, the compiler may choose to implement
the call using an incomplete function instance (most likely the one that is currently
being built). The only return possibilities that need be considered immediately are
those that have already been shown to exist. The return conditions for all those

19

paths are known since the paths have been worked out. The catch is that if a new
return path is discovered, then all of the callers will need to generate a new return
case. Consider the following function:

V'Z+-FACT N; T
[1] Z+-1
[2] -+CN=O)/END
[3] T~FACT N-1
[4] Z-t-HX T

[6] END:

v

This function recursively defines factorial. Wb.en the compiler processes this func­
tion, it will first process statement 1. The branch in statement [2] has two possible
targets, and it will try the sequential possibility first. That brings it to statement
[3], where it encounters a recursive call. Checking the constraints for the existing
instance of FACT, (which is the one it is working on now) it finds that the only
constraint is that the argument be an integer scalar. That holds if N is an integer
scalar, which is the precondition for this instance of FACT, so this instance can
in fact be used. So statement [3] can be implemented with a recursive call to the
instance being created. Statement [4] comes next, and an instance is needed for
each return possibility- but there are none. So the compiler assumes for the time
being that FACT cannot return and continues evaluating branch alternatives. The
compiler has avoided needing the properties of the. result of FACT, which is cru­
cial since they are not yet available. Statement [2] can also execute a branch to
END, which is statement [5L so an instance of statement [5] is created for this flow
path. After statement [5] the function returns, so the compiler has now discovered
a return path. It must now go back and patch up all calls to FACT to account for
this possibility. The only call was in statement [3], so this new return possibility
causes an instance of statement [4] to be created for return from statement [3]. This
path has T an integer scalar, so statement [4] is compiled for those conditions. Next
comes statement (5], which gets merged with the existing instance of statement (5],
and the processing of FACT is complete.

Given the set of statement instances and the flow between them, it is easy
for the second phase of the compiler to generate intermediate code for each APL
statement using the techniques described for compiling code from rewrite rules.
Assignment statements are implemented by compiling a predicate which creates
an instance of a variable on the run-time heap. It does this by working through
the elements of the array in row major order, storing each as it is computed.

20

Indexed assignment has not been implemented but is a simple extension of normal
assignment. Gatos evaluate the shape of the target expression, and compute its first
element if the target is non-empty. Calls and returns are compiled in the obvious
way. Code generation produces intermediate code only; the machine code generator
was never implemented.

The storage manager was never implemented, but a brief description of its in­
tended function is in order. APL variables are always fully instantiated in memory.
All but scalars are stored on a heap. Garbage collection is not needed since it is
always clear what values are active. Compaction is necessary to prevent memory
fragmentation. New entries are simply allocated off the top of the heap. Each heap
entry is a vector of elements, which is pointed to by the variable that references it.
Array elements are stored. in row major order. The shape of an array is also stored
on the heap as a vector of integers. Every APL variable is associated with a two
word storage area. If it is a scalar, the first word holds its value and the second
is unused. If it is not, the first word points to the shape and the second points to
the data. Each heap entry has a back pointer so that if the garbage compactor has
to move an entry the forward pointer can be changed. It also has a. word which
contains the data length so the ·storage compactor knows ho·w much data to move.
Thus there is a two word overhead for each heap entry, giving a total of 6 words of
over head for each non-scalar APL array. Because this storage management scheme

. has never been tried, it is not clear how efficient it would be.

CONCLUSIONS

Because no working system was produced, it would be presumptuous to assert
that these techniques work. However, I find the results encouraging. First, the use
of rewrite rules to describe the APL primitives war ks very welL T'hey prov1de a
single description of APL for both inference and code generation purposes, avoiding
having two separate descriptions of APL. In addition, the rules look much like a
specification for the operations, even though they are suitable for computational
purposes. This allows fewer opportunities for error and helps to produce bug-free
descriptions of the primitives. The use of Prolog for doing the type inference code
was a mixed blessing. Many things were more difficult to do or do right in Prolog
than in other languages, and some things that would be required in a production
implementation are simply impm:~sible. On the uLher hand, Lhe use of Prolog is
what made writing this prototype possible at all. The amount of time spent coding
the prototype was about 4 weeks in 1982 and early 1983. One of the reasons I

21

believe that APL compilers are just starting to appear is the massive effort required
to program them in conventional languages. The prototype was developed using
Edinburg Prolog running under TOPS-20(Per78). I found Edinburg Prolog pleasant
to use and fairly efficient. To my knowledge it is still the Prolog of choice.

The intermediate code generated by the compiler is very poor. This was ex­
pected, but the code is worse than I had imagined. It contains a large number of
unnecessary move instructions, a lot of dead code and unpropagated constants, mul­
tiplications for subscript calculation tha.t need to be removed by strength reduction,
and a lot of generally inefficient ways of doing things. Even so, it captures the basic
dataflow characteristics of the APL operations much better than simply stringing
together implementations of the primitives would. Optimization and machine code
generation is left as a textbook exercise in compiler construction. Given a good op­
timizer, the compiler would generate code that I believe would compete favorably
with the code produced by current FORTRAN compilers in many cases.

Even though it would impose many restrictions on the APL programmer, I
believe that an APL compiler could be produced using these principles that would
place the efficiency of the language near that of more conventional languages, :such
as FORTRAN, and still retain APL's great advantage in ease of programming and
programmer productivity. The speed improvement over interpreted APL would
depend not only on the quality of the interpreter but also on the nature of the
programs being compiled. The compiler could be compatible with an interpreter so
tha.t programs could be developed interactively and then compiled without much
additional effort.

22

REFERENCES

[Budd83] Budd, Timothy A., "An APL Compiler for the UNIX Timesharing System"
APL83 Conference Proceedings, April, 1983

[Clock81] Clocksin, W. F., and Mellish, C. S. "Programming in Prolog" Springer­
Verlag: Berlin, New York, 1981

~ver62] Iverson, Kenneth E., "A Programming Language" John Wiley and Sons,
inc.: New York, London, Sidney, 1962

fPer78] Pereira, Luis Moniz; Pereira, Fernando C. N.; and Warren, David H. D.
"USER'S GUIDE to DECsystem-10 PROLOG"

[Rob65] Robinson, J. A., "A Machine-Oriented Logic Based on the Resolution
Principle" JACM vol. 12, pp. 23-29, 1965

[Rou75J Roussel, P. "Prolog Manuel ele Reference et d'Utilisation" Groupe d'Intelligence
Artificielle, Marseille-Luminy, 1975

[Weid83] Weidmann, Clark, "A Performance Com parason Between an APL Interpeter
and Compiler" APL83 Conference Proceedings, April, 1983

23

