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ABSTRACT

This thesis describes a novel approach to the problem
of generating dynamic TV raster displays for real-time
simulation (such as for visual flight simulation). In
particular, the most time consuming part of generating such
displays, the hidden surface elimination, is performed using
many identical custom VLSI processors. Each processor is
assigned a surface and, .for each pixel, all processors
compete to decide which object is visible. -

It is found that this approach 1leads to a practical
system which is conceptually and practically simple,
expandible, and reliable.
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1.0 INTRODUCTION

Numerous new applications of computer graphics have
resulted in increasing demand for real-time graphics; that
is, the generation of computer synthesized pictures of many
(e.g., 2000) 3-dimensional objects which appear to move
smoothly in time (i.e., a different frame every 1/10 to 1/60
of a second) and where all the computation is done at the
time of the display. Such graphics have been successfully
implemented for moderate cost in 1line drawing systems
utilizing random scan black and white CRT displays (e.g.,
Evans and Sutherland Picture System). While giving the user
a sensation of smooth movement, they lack the reality of
true objects because 1line drawings lack solidity, color,
shading, and hidden line elimination.

These disadvantages have been overcome by the use of
moderately priced frame buffer systems which typically
consist of a 512x512 resolution raster color TV monitor
connected to a large memory (typically 512x512x8 = 2M bits)
and a medium sized general purpose processor. While giving
a much greater sense of reality through the use of color,
hidden surface elimination and shading, these systems lack
real-time capability. That 1is, they can only produce new
pictures every few seconds.

Raster systems have been built which are both real-time
and give a sense of reality (through use of special purpose
hardware attached to a general purpose processor) but these
systems are typically very expensive (>$1M) and thus have
very limited applications (e.g., in visual flight simulation
for pilot training).

The purpose of this study is to design a system which
can provide all the advantages of a real-time raster system
at a significantly lower cost while keeping the system
simple, expandible, and reliable (highly testable). This is
realized through the use of highly parallel processing using
identical 1low cost custom LSI elements to implement a major
portion of the system.
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2.0 OVERVIEW OF THE APPROACH
2.1 The Problem To Be Solved

The problem is to represent a dynamic view of a 3-D set
of objects on a raster CRT screen where both the view and
the objects are chosen by the user of the system arbitrarily
(within system imposed limits). One can visualize this as
if the 3-D objects actually existed and were being imaged
from some moving location (the viewing location) by a TV
camera.

The problem then can be reduced to deciding what is to
be seen at each pixel (picture element) of the screen
(Figure la) at each instant of time. It is first necessary
to determine the location occupied by the projection of the
3-D objects on the screen (Figure 1b). Next, it must be
determined which of the many objects which are potentially
visible at each pixel are actually visible (i.e., closest to
the observer) (Figure lc).

Screen
V-

Figure 1la Figure 1b Figure ic

2.2 A General System Architecture

Clearly a simple system architecture suggests itself
(Figure 2). First, a data base contains the complete
description of all the 3-D objects which make up the
simulated space. For each view, the data base manager
choses those objects which are going to potentially
participate in the formation of the view and passes them to
the geometry processor. This processor calculates which
pixels on the screen each object can potentially occupy
(that is, if it is not obscured by others). This process is
easily accomplished through the use of well known geometric
transformations (e.g., rotation, translation, and
perspective projection).

Next, the hidden surface eliminator determines which
one of the many objects which are potentially visible at
each pixel is actually visible by chosing the one which is
closest to the observer. This set of pixels is then passed
(typically) to a post processor which enhances the picture
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Data Geometry Hidden
Base Processor Surface
Eliminator

Post
Processor

Figure 2 - A Typical System

by eliminating undesirable artifacts such as "staircasing”
and aliasing. Finally, the picture is sent to a display
screen (typically a TV monitor). Most if not all existing
systems which perform this function have a system
architecture similar to the one outlined here.

2.3 The Hidden Surface Eliminator

The data base manager and the geometry processor
computations grow linearly with the number of objects (as a
result of the fact that each object can be considered
independently of the others). However, the hidden surface
eliminator must consider interactions between objects.
Thus, the computations grow typically as n”2 and at best as
n*log(n) (by sorting the objects). This observation leads
author to concentrate attention on this bottleneck.

Conceptually, one can approach the hidden surface
problem in dual ways. The first is an object serial, pixel
parallel method. That is, the objects are considered in
sequence and placed 1in their appropriate locations in a
frame buffer. Whenever many objects fall on the same space,
it is necessary to resolve the dispute using depth (%)
coordinate information. Thus, each pixel can be thought of
as possessing a processing unit which considers the objects
in segquence. Consequently, if more objects are to be
processed per frame, the processing speed must be increased.
If, on the other hand, more pixels are to be processed per
frame, then more processing units must be added.

The second approach is pixel serial, object parallel.
Each object 1is interrogated at each pixel to determine
whether it is a potential candidate to appear there. If so,
it is decided which object 1is closest. Then, the pixel
takes on the color of that object. Thus, each polygon can
be thought' of as possessing a processing unit which
considers the pixels in sequence. Consequently, if more
pixels are to be processed per frame, the processing speed
must be increased. If, on the other hand, more objects are

to be processed per frame, then more processing units must
be added.
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Table 1 illustrates the duality discussed above. Most

existing systems utilize some combination of the above
approaches.

Comparison of Dual Approaches to
the Hidden Surface Problem

First Second
Approach Approach
One Unit Per: Pixel Object
Objects: Sequential Parallel
Pixels: Parallel Sequential
If More Objects: Faster Units More Units
If More Pixels: More Units Faster Units
Table 1

2.4 Chosing The Obvious

Clearly, the approach chosen by a designer is dependent
upon the technology in which the function will be
implemented. Since the author wishes to explore the
possible advantages of a VLSI approach to this problem, VLSI
is the technology chosen. VLSI implementations exhibit
their best performance when they are very regular and
repetitive (see also section 4.1). This fact, combined with
the desirability of generating pixels serially as needed for
the TV scan (so that no frame buffer is necessary) points to
an obvious implementation of the second approach outlined
above. That is, for each pixel all objects potentially

visible there compete among themselves. The object closest
to the observer "wins" and is displayed.

The most obvious implementation appears to be optimal.
Consider assigning each surface of each object to a special
purpose processor each frame. This processor consists of a
surface processor and a comparator processor (see figure
3a) . Each surface processor generates, for each pixel, the
color/intensity for that pixel (I) and the distance from the
observer (Z) independently of all other processors. The
comparator accepts 2 sets of (Z,I) pairs, and outputs the
(2,I) pair with the Z closest to the observer. Thus, for
each pixel, the (Z,I) of the front surface is available at
the output of the last comparator.
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2.5 Making The Obvious Work

This approach necessitates M (M = number of surfaces)
serial comparisons for each pixel. If one is to compute
pixels "on the fly" it is necessary to generate one every
100 ns (for a 512x512 raster updated at 30 Hz). This rather
severely limits the number of surfaces. However, it 1is
possible to use the well known pipeline concept in order to
skew the operation of the processors (figure 3b).

: Comparator L
L L
Zbackground —— 21 Zout — : —3 4 zout : 1 21 Zout _— : L —Zfront
Ibackground —3 1! Tout 1 ; — 11 lout e n Tout L5 _ }—Ifront
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h h h
Current
Pixel: i i-1 i-(M-1)

Figure 3b - Pipelined Competing Surface Processors
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Thus, only one comparison is performed by each
comparator during each pixel cycle. The pixels travel
through the pipeline at one surface comparison per cycle.
Thus, it takes each pixel M cycles to traverse the pipeline.
However, new pixels exit the pipeline each cycle after the
first one has exited. Clearly, all surface processors
operate on different pixels at each instant of time due to
the skewing effect of the pipeline. This necessitates

pipelining all control signals (such as "reset for a new
picture™).
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3.0 DETAILED ANALYSIS OF A PROCESSOR

Up to this point the nature of the surfaces which
constitute the 3-D objects has not been essential. In order
to actually implement a surface processor it is necessary to
limit this nature. It has been found that limiting the
surfaces to convex planar polygons allows an especially
simple implementation for the processor described above.
This does not imply that other shapes are not possible.
However, the present discussion will limit itself as stated.

For each pixel, each surface processor must determine
two things: 1) if the polygon is potentially visible, and
2) if it is visible, the value of Z (the distance from the
observer) and I (the intensity and color of the surface).

It is assumed that all 3-D objects are closed (implying
that only one side of any surface making up the object is
ever visible) and that all polygons making up the surface
are defined by an ordered 1list of their vertices which
proceed in a counterclockwise direction when viewed from the
outside (see figure 4). For example, the top of the cube
shown is defined as (Pl, P2, P3, P8). Note how back facing
polygons (which can”t possibly be visible because they are
known to be hidden by the front facing surfaces of the
object) project their vertices onto the screen in a
clockwise sense whereas front facing polygons (which are
seen unless obscured by other front facing polygons) project
their vertices onto the screen in a counterclockwise sense.

P1 P8
LS
P2z :
1 P3
!
I ~
|
]
,f{___l___ PG
p
psl - QD

P7

Figure 4 - A Typical Closed Object
Thus, a polygon is said to be potentially visible if it
is front facing (that is, if its vertices project onto the
screen in a counterclockwise sense) and if it projects onto
the visible part of the screen.

It is also assumed that the geometry processor (in
figure 2) has moved the 3-D objects into such a position
that it 1is only necessary to perform a perspective
transformation in order to obtain the screen coordinates of
the polygon vertices and has clipped any objects which fall
outside the active screen area when they are projected on
it. For the purposes of the following discussion, the
following (homogeneous coordinate) perspective transform is
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assumed:
Xs K*X /7 K*X| KOO O |X
Y¥s| — |K*Y/Z| — |K*Y| — |0 K 0 0] Y
Z2s K/Z K 000K zZ
1 1 zJ 0010 1

where Xs, Ys are the pixel coordinates on the screen and Zs
is some measure (not a true distance) of the distance from
the screen. Since this transformation is linear, it maps
straight 1lines in (X,Y,Z) space to straight 1lines in
(Xs,¥s,Z2s) space. A detailed discussion of homogeneous
transformations 1is available in "Principles of Interactive
Computer Graphics" by Newman and Sproull, McGraw-Hill, 1973.

3.1 Polygon Interior Determination

Consider the quadrilateral shown in figure 5a. Its
projection can be seen in figure 5b. Now, define lines Ll
through L4 as shown on the Xs-Ys plane so that they pass
through the appropriate projections of the vertices. These
lines can each be described as follows:

Screen

Figure 5b

-é @ v L3

s
z //// Figure ba i v

for Li: Fi(Xs,Y¥s) = Ai*Xs + Bi*¥s + K*Ci = 0

Ys
LA

(Xs,Y¥s) = pixel coordinate

The coefficients Al, Bl, Cl (for example) can be calculated
from the coordinates of the points through which the
corresponding line (Ll) passes (in this case Pl and P2). It
is assumed that the points Pl, P2, P3, P4 proceed in a
counterclockwise direction as projected on the screen (since
the clockwise direction polygons have been already
eliminated because they are never visible). From elementary
algebra it is known that L1 is described by:

(Yls-Y2s) *Xs + (X2s5-Xls)*¥Ys + Xls*Y2s-X2s*Yls = 0

but, Xs = K*X/Z2 Ys = K*Y/Z thus,
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(YL*Z22-Y2*%Z71) *Xs+ (X2*Z1-X1*Z2) *Ys+ (X1*Y2-X2*Y1)*K = 0
consequently: Fl(Xs,¥s) = Al*Xs + Bl*Ys + K*Cl = 0
where: Al=Yl*Z2-Y2%Z1 Bl=X2*Z1-X1*Z2 Cl=X1*Y2-X2*Y1l
It is clear that the value of Fi is positive on the polygon
side of the line and negative on the other side. Thus, the
condition for a pixel to be inside the polygon bounded by

the lines Li is:

for all 1i: Fi(Xs,¥s) > O

3.2 1Zs Coordinate Calculation
Due to the linearity of the perspective transform used,
the planar polygons in (X,Y¥,2) space remain planar in
(Xs,Ys,Ys) space. Thus, one can clearly relate Zs to Xs and
Ys as follows:
Zs(Xs,¥s) = Az*Xs + Bz*Y¥Ys + K*Cz
where Az, Bz, Cz can be easily determined as shown:

2%Z2s = Az*Z*Xs + Bz*Z*Ys + Cz*Z*K

but Zs

1

K/%Z Xs = K*X/Z Ys = K*Y/Z
thus: K = Az*K*X + Bz*K*Y + Cz*Z*K
1 = Az*X + Bz*Y + Cz*7Z

Thus, one can find Az, Bz, Cz by using 3 of the many
vertices of the polygon as follows:

- —_

X1 vl z1] [az] 1 Az X1 Y1l 21 1
X2 Y2 Z22 Bzl = |1 Bz| — (X2 Y2 722 1
X3 ¥3 Z3 Cz 1 Cz L§3 ¥3 z3 1

Zs is some measure of distance from the observer for each
pixel (Xs,¥s) and can thus be compared with the Zs of all
the other polygons at this pixel in order to determine which

is in front. Since Zs = K/Z, the largest Zs is closest to
the screen.
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3.3 I Calculation

If the 3-D object being modelled is actually made of
planar polygons then the intensity across the surface of the
polygon is constant. However, objects being modelled often
contain curved surfaces which are approximated by planar
polygons. In order to avoid the faceted appearance produced

by this approximation, a method known as Gouraud shading is
used.

In general, the intensity of a perfect diffuser (a
perfectly diffusing surface) is proportional to the cosine
of the angle between the normal of the surface and the
direction of the light source (assumed to be at infinity).

The normal (and hence the cosine of the angle) at the
interface between two polygons has a discontinuity which
causes the faceted effect. This effect can be avoided by

avoiding the step function of intensity at the polygon
interface.

This can be achieved by averaging the values of the
normals at each vertex between polygons to acquire an
average value of intensity at each such vertex. Intensities

inside the polygon can then be calculated by (somehow)
interpolating these values.

An easy way to visualize this process is to plot the
(Xs,¥s) coordinates versus the intensity. The intensity at

each vertex is well determined (using the averaging process
described) .

Boundaries of X,Y,I surface

> Xs
Ys

The most convenient method to assign intensity values along
the polygon edges is to interpolate linearly. This method
allows independent handling of polygons since they are
automatically matched in intensity at the boundaries. Then,
the problem is to find a surface in (Xs,Y¥s,I) space which is
continuous and meets the boundary conditions at the polygon
edges. 1In general there are many such continuous surfaces.
The one which appears to be optimal is the one which has the
minimum surface area (this is also known as the soap bubble
problem, i.e., the shape which a scap bubble will form on a
wire mesh representing the (Xs,Ys,I) contour).
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Unfortunately, it is difficult to solve the minimum
area problem for arbitrary (non-planar) polygons in
(Xs,¥s,I) space. A good compromise is to divide each
polygon into triangles and then to solve the minimum area
for each. This, of course, is trivial since the solution
for a triangle 1is always a plane in (Xs,Y¥s,I) space and

hence can always be expressed as:
I = AI*¥Xs + BI*Ys + K*CI
where AI, BI, CI can easily be determined as shown:
Z*¥T = AI*Z*Xs + BI*Z*Ys + CI*Z*K
thus, Z*I = K¥(AI*X + BI*Y + CI*Z)

using the 3 triangle vertices one acquires:

X1 vl 21| [az]  [zix1i mz]  [x1vioz1] [zis1i]
K+|X2 Y2 22| |Bz| — [z2*%I2 Bz| — |X2 Y2 z2| |22*I2|-X
X3 v3 23| |cz 23%13 Cz X3 Y3 23|  |23*13|

This scheme generates surfaces which are continuous but not
smooth (i.e., which have a discontinuous first derivative).
The coefficients AI, BI, CI can be easily calculated from
the coordinates and intensities at the vertices.
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4.0 IMPLEMENTATION OF A PROCESSOR
4.1 Why A VLSI Implementation?

The design described above is clearly ideal for VLSI.
VLSI implementations are optimal when the number of
different functional blocks (and chip types) 1is kept Ilow
while the functional blocks which are necessary are used in
high volume in order to 1lower the unit cost. Only two
functional blocks are necessary to implement the hidden
surface elimination system: the surface processor and the
comparator. There are two ways to achieve high volume. The
first, taken by most designs, is to use the functional block
in many systems .a few times per system. The second is to
use the function many times in each system thus drastically
reducing the number of systems necessary to make the VLSI

implementation economical. The second approach clearly
matches the requirements of this design: one processor is
required for each polygon in the image. Thus, one system

may contain 10,000 processors or more.

Another significant feature of VLSI is that the number
of gates per chip 1is expected to grow by an order of
magnitude every few years. This typically implies that the
issue of communication and interconnection of functions on
the chip becomes very important. Designs must be made to
scale appropriately without incurring disproportionate
increases in the ratio of interconnect to logic area. The
design described here easily scales up with no difficulty
due to the purely 1local nature of communication between
processors. That is, each processor only communicates with
its predecessor and successor. It is also noteworthy that,
independent of the number of processors in each package, the
number of pins on the package remains constant.

4.2 Specifications Chosen For This Implementation

For this implementation, the author has chosen a
512x512 raster size. Each pixel can take on one of 256
levels of color/intensity (typically used in conjunction
with a color map at the end of the pipeline). The Zs
coordinate passed to the comparators is 16 bits. These
specifications are chosen because they are adequate for many
commercial applications.

The majority of polygons in typical computer generated
images are convex and consist of 3 or 4 -edges.
Consequently, this implementation allows a maximum of 4
edges per convex polygon. If a polygon with more than 4
edges, or a concave polygon must be displayed, it can be
broken into many 3 or 4 edge convex polygons.



Page 13

4.3 The Running Sum Evaluator (RSE)

As indicated in section 3, all the values necessary for
the operation of the surface processor (to obtain the values
of F1, F2, F3, F4, Zs, 1) are of the form:

G(Xs,Ys) = A*Xs + B*Ys + C

It would first appear that two multiplications and three
additions are necessary in order to calculate G(Xs,¥s) at
each pixel. However, pixels are evaluated in scan line
order. Thus, one can calculate the pixel at G(Xs+l,Ys) as
follows:

G(Xs+l,Ys) = A*(Xs+1l)+B*Ys+C = A*Xs+B*Ys+C+A = G(Xs,¥s)+A

Thus, the value of G at pixel (Xs+l,Y¥s) can be calculated
from the value of G at (Xs,¥s) by one addition.

4.3.1 Single Field Operation -

If the frame is to be scanned in sequential line order
(line 1, 1line 2, line 3, etc.) then whenever a new line is
begun the following holds:

G(Xmin,¥s-1) = A*Xmin+B*Ys+C-B = G(Xmax,¥s)+B”
where B = -B+A* (Xmin-Xmax)

and where Xmin = value of Xs at the left of the screen, Xmax
= value of Xs at the right of the screen. Thus, the value
of G at the start of a new line (Xmin,¥s-1l) can be
calculated from the previous value of G at the end of the
last line (Xmax,Y¥s) by one addition. ’

At the beginning of each frame G is set equal to its
value at the upper left pixel:

G(Xmin,¥max) = C° where C° = A*¥min + B*Ymax + C

4.3.2 Double Field Operation -

For simplicity, the previous discussion has not
concerned itself with the issue of interlacing. Standard TV
monitors scan the frame at 30 Hz in two passes by first
scanning the even numbered lines (even field) and then the
odd numbered lines (0dd field). A vertical retrace preceds
each field. Interlacing is performed so as to reduce
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flicker. If the system of processors is to generate frames
in the sequence in which they are required, it must first
generate the pixels on the even scan lines, and then the
ones on the odd lines.

In this situation, when the end of the line is reached,
one must skip down two lines as follows:

G(Xmin,Y¥s-2) = A*Xmin + B*Ys + C - 2*B = G(Xmax,¥s) + B~
B” = -2*B + A*(Xmin-Xmax)
Thus, the value of G at the start of the new line
(Xmin,¥s-2) can be calculated from the previous value of G
at the end of the previously scanned line (Xmax,¥s) by one
addition.

At the beginning of the even field it is necessary to
set G equal to 1its value at the start of the first even
line:

G(Xmin,¥max) = C~ if Ymax falls on an even line

where C” = A*Xmin + B*Ymax + C
G(Xmin,¥max-1) = C~ if Ymax falls on an odd line
where C” = A*Xmin +B*Ymax + C - B
However, at the beginning of the odd field it 1is necessary
to set G equal to its value at the start of the first odd
line. Thus, C” must be redefined as follows:
G(Xmin,¥Ymax-1) = C~ if Ymax falls on an even line
where C° = A*Xmin + B*Ymax + C - B
G(Xmin,Y¥max) = C~ if Ymax falls on an odd line

where C° = A*Xmin + B*Ymax + C

Thus, it is necessary to change the value of C” between
frames as well as between fields.

4.3.3 RSE Implementation -

This analysis clearly suggests the hardware
implementation for the evaluation of G at successive pixel
locations depicted in figure 7. This circuit is called a
Running Sum Evaluator (RSE). When a New-Frame signal
occurs, G is initialized to its value at the first pixel
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(i.e., C° 1is 1loaded into the accumulator G). As the scan
proceeds across the screen, A is added to the accumulator in
order to calculate the new value of G. When a New-Line
signal occurs, B” is added to G as shown.

&
>
[ 5|

mox

New Line

New frame

Figure 7 ~ A Running Sum Evaluator  (RSE)

4.4 Simplified Block Diagram Of The Processor

Figure 8 shows a simplified block diagram for a
processor. Note that the 18 coefficients (A, B®, C° for
each of the 6 RSEs) must be somehow loaded into the
processor for each new view to be displayed. They are not
calculated inside the RSEs (see section 5).

As the pixel (Xs,Ys) 1is 1latched in, all the RSEs
calculate their respective values for the current pixel. If
all Fi > 0 then the quadrilateral is potentially visible at
this pixel. If Zs 1is closer to the observer than the
closest Zs found by previous processors and the
quadrilateral is  potentially visible, then the locally
computed values of Zs and I are passed on to the processors

following this one. Otherwise, the incoming Zs and I are
passed on.

Note how the control signals for the RSEs (New-Frame

and New-Line) travel down the pipeline with the pixel with
which they belong.

4.5 Accuracy Determination

At this point it is necessary to determine the accuracy
necessary for the calculation of the functions G (i.e., F1l,
F2, F3, F4, Z2s, I). This analysis determines the number of
bits necessary in the data paths of the respective RSEs.
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4.5.1 Accuracy For Fl, F2, F3, F4 -

As described in section 3.1, line L1 can be defined as
follows:

]

fl(Xs,¥Ys) al*Xs + bl*Ys + K*cl = 0

al = ¥Yls-Y¥Y2s bl = X2s-Xls K*cl = Xls*Y2g-X2s*Yls
thus: bl” = X1s-X2s+(Yls-Y2s)* (Xmin-Xmax)
and cl” = (Yls-Y2s)*Xmin+ (X2s-X1s)*Ymax+(X1ls*Y2s-X2s*Y1ls)

Note that (Al,Bl1,Cl) = 2z1*22*(al,bl,cl) thus, Fl = 21*Z2*fl,
But, Zi 2> 0 so the sign of fl = sign of Fl. Thus, one can

use the values al, bl®, cl” as coefficients to the Fl RSE
since only the sign of Fl1 is of use.

If X1s, Yls and X2s, Y2s are known as 9 bit signed
integers (-256 to 255) then it is clear that ai requires 10
bits, bi” requires 19 bits, and ci” requires 20 bits. Since

fi(Xs,¥s) = ai*Xs + bi*¥s + ci

the accumulator and adder both require 20 bits. However, as
section 3.1 indicates, Xs and Ys are never calculated
explicitly. Rather, the values RAi, Bi“, Ci” can be derived
directly from the 3-D coordinates X, Y, Z without the need
for any divisions. This, however, dgenerates values which
can be considered to be non integral. Without analyzing
this problem in detail, let it suffice to say that all

coefficients are expanded to 24 bits thus allowing for any
roundoff errors.

4.5.2 Accuracy For Zs -

In section 3.2 it was found that:
Zs(Xs,¥s) = Az*Xs + Bz*Ys + K*Cz

Since Z has been chosen to be limited to the range 0 to
2716-1, it 1is <clear that 16 bits of "integer" in the
accumulator and adder are sufficient. Similarly, since the
maximum number of times Az and Bz” are added to the
accumulator is 512, the maximum error introduced by the
inaccuracy in Az and Bz~ is 512*E(Az)+512*E(Bz”) (E(x) =
difference between truncated x and actual x value). If 8
fractional bits are allowed then:

E(Az) = +/- 2"-9 E(Bz”) = +/- 27-9
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thus: E(Zs) = +/- 512*(E(Az)+E(Bz”)) = +/- 2

Consequently, 24 bits are required to store each of Zs, Az,
Bz”, and CZ”°. It is noteworthy that the value of Zs is only
valid when the pixel being considered is within the area of

the polygon. When not inside it is easily demonstrated
that:

Zs(Xs,¥s) = Zs.true(Xs,¥s) mod 2716
where Zs.true is the value of Zs defined on the infinite

plane described by the polygon vertices. As a consequence,
the following is also true:

Cz” = Cz.true” mod 2”16 = Zs.true(Xmin,Ymax) mod 2"16

Bz” = Bz.true” mod 2716 = (-Bz+Az* (Xmin-Xmax)) mod 2°16

4.5.3 Accuracy For I -
In section 3.3 it was found that:
I(Xs,¥s) = AI*Xs + BI*Ys + K*CI

Since I is limited to the range 0 to 255 it is clear that 8
bits of "integer" in the accumulator and adder are
sufficient. Similarly, since the maximum number of times AI
and BI” are added to the accumulator is 512, the maximum
error introduced by the inaccuracy in AI and BI”® 1is

512*E(AI)+512*E(BI”). If 10 fractional bits are allowed
then:

E(AI) = +/- 27°-11 E(BI”) = +/- 27-11

thus: E(I) = +/- 512*(E(AL)+E(BI”)) = +/- .5
Consequently, 18 bits are required to store each of I, AI,
BI”°, and CI”“. It is noteworthy that the value of I is only

valid when the pixel being considered is within the area of

the polygon. When not inside it is easily demonstrated
that: :

I(Xs,¥s) = Itrue(Xs,¥s) mod 2°8
where Itrue is the value of I defined on the infinite plane
described by the polygon vertices in (Xs,¥s,I) space. As a
consequence, the following is also true:

CI” = CItrue” mod 2°8 = Itrue(Xmin,¥Ymax) mod 2°8
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BI“ = BItrue” mod 2”8 = (~BI+AI*(Xmin-Xmax)) mod 2°8

4.6 Detailed Block Diagram

Figure 9 depicts a detailed block diagram of the
processor. It is essentially the same as figure 8 but with
more implementation details added. Note that now the
processor contains 4 stages of latching on the pipeline path
rather than 1. This is done so as to reduce the the amount
of serial computation necessary in each pipeline step. With
this arrangement 4 cycles are required for a pixel to pass
through each processor. Nevertheless, a new pixel emerges
from the processor each cycle.

4.6.1 Pipeline Operation -

In the following discussion, a pixel 1is followed
through the processor as it passes through each of the 4
pipeline stages. While a pixel is in stage A (see figure 9)
its wvalues (Zin,Iin) are not affected. However, the RSEs
calculate whether the polygon to which they are assigned 1is
potentially visible (the Out Bus in figure 9), and what the
Zlocal and Ilocal are if it is visible. This information is
passed along with the incoming pixel to stage B.

In stage B the Zlocal and Zin are compared to determine
which is closer to the screen. This information is combined
with the decision of the Out Bus and is sent to the next
pipeline stage.

In stage C the multiplexer choses to either pass on the
incoming Zin, Iin (if this pixel is not inside the polygon
assigned to this processor, or if the polygon is behind the
incoming pixel) or to substitute its own Zlocal and Ilocal.
The new pair of Z, I is passed to the next pipeline stage.

In stage D the (Z,I) pair propagates from one processor
to the next. No processing is performed in order to allow
the pad drivers/receivers time to operate.

Note how the control lines New-Frame (indicating that
the RSEs should initialize to their respective C”) and
New-Line (indicating that the RSEs should add B® instead of
A) travel along with the pixel with which they belong.
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4.6.2 Loading Of Coefficients -

It is necessary to somehow load the 18 coefficients (A,
B, C° for each of Fl1, F2, F3, F4, Zs, I) representing a
quadrilateral into the RSEs every time a new frame is to be
displayed (typically this occurs every frame, i.e., at 30
Hz). Since a 24 bit data path already exists through all of
the processors (16 bits for Zs and 8 bits for I) and since
all of the coefficients are 24 bits or less (not
accidentally) it is desirable to devise a means by which
this data path can be used for the loading of coefficients.

This function is accomplished through the use of the
Pass and Load-In/Out signals described below. Referring to
the left part of figure 10, one can see how pixels travel
from one processor to the next. The path of each pixel
through the pipeline of processors is drawn versus time, and
each leaves a diagonal +track as shown. The start of the
pipeline is shown at the top of the figure where it |is
indicated that background intensity and Zs depth are
inserted into the pipeline.

Consider now the last pixel of a frame (indicated 1in
the figure). The first pixel of the next frame does not
follow it immediately because it is necessary to allow the
TV monitor to perform a vertical retrace (typically 1.2 ms).
Thus, after the last pixel exits the pipeline, the Pass bit
is set. This bit forces the multiplexer control to always
pass through the incoming Zs and I (now, however, these data
lines are Jjust a 24 bit word not related to Zs or I). The
pipeline becomes essentially a long shift register.

At this time the Load-In bit is sent into the pipeline
along with the first coefficient (A) of the first RSE (Fl)
of the first processor. It is followed in the next cycle by
the B” coefficient, etc. until all 18 coefficients of the
first processor are inserted into the pipeline. These are
followed by the coefficients of the second processor, etc.
until all coefficients of all of the processors are inserted
into the pipeline.

As shown in figure 9, the Load bit does not travel
along with the pixel with which it was inserted. 1Instead of
spending 1 cycle time in section A of the pipeline in each
processor it spends 18 cycles there. This is indicated in
figure 10 as a flat double 1line (i.e., the 1load bit is
remaining in the same processor). During each cycle that
the load bit spends in section A it enables the 1loading of
the appropriate coefficient from the 24 data lines. This
can be visualized in figure 10 as the intersection of the
coefficient tracks (diagonals) with the flat double line
representing the location of the locad bit. After the load
bit has loaded all of the RSE coefficients in one processor,
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it travels with the first coefficient of the next processor
through the pipeline (shown by the short diagonal double
line) to the A section of that processor where it again
remains for 18 cycles.

Eventually, the Load bit exits the pipeline. At this
point the pipeline idles until the vertical retrace of the
TV monitor is complete (this implies that the loading of the
coefficients can not take longer than the TV retrace time).
When the retrace is complete, the Pass bit is disabled thus
again enabling the multiplexer logic. The background color
of the first pixel of the new frame is then inserted into
the pipeline along with a New-Frame signal indicating to all
the RSEs (as the pixel and control signal reaches them) that

their accumulator should be initialized to their respective
c’.

The exact format of each coefficient as it must be
loaded on the Zs and I data lines is given in figure 11.

4

NSB ' LSD LSH 1 NSB
Usim sz fiofafs [7 e lsTulsTz]rfofo]r {23 (v |s{e|7] (Z2,1)
NSB LSB
Fi |23] lo|Ai, Bi', Ci'
I o] [z"zsluu, BI, CJ
MNSB LSB
z 3 o] Az, Bz, Cz

Figure 11 - Coefficient Format

4.7 Testing Of The Processor

It is imperative that the processor be easily and
completely testable. This is necessary for three reasons.
First, during debugging of the design it is important to be
able to isolate errors so that they can be corrected.
Second, after manufacture it is desirable to isolate bad
parts quickly. Third, after the processor has been inserted
into the system there must be a method to test each
processor automatically. This becomes especially important
as the number of processors grows (e.g., 1l0K) since if the
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pipeline fails, manual isolation of the bad processor is not
practical.

When the processor is being tested alone, it is
feasible to 1load it with variously shaped polygons while
feeding in a black background at infinity and to compare the
generated output with the predicted one. This procedure
tests the ability of the Fi RSEs to distinguish the inside
of the polygon, and the ability of the %2s and I RSEs to
perform the correct linear interpolation. The A, B ,and C~
coefficients can  be chosen so as to exercise worst case
conditions (long carries) for adders.

After that portion of the processor is known to work,
the comparator and the multiplexers can be tested by varying
the incoming Zs. Many more tests are possible in this vain.

However, this type of testing is usually not practical
after the processor 1is installed in a large system. This
method also gives very limited information about the nature
of the failure since the majority of internal values (i.e.,

the values of the 6 RSE accumulators) are not directly
accessible.

These difficulties can be easily overcome though the
use of a diagnostic shift register (figure 9). When the
Load Shift Register signal is asserted, the shift register
is loaded with the values of all RSE registers, the input
latch value and the multiplexer output. This information
can be shifted out at the pixel rate (one bit per pixel).

All RSE registers can be directly loaded using the
normal load protocol and the shift register allows access to
almost every storage element of the chip. As a result, each
small processing element can be tested independently of the
others with only a small amount of functioning circuitry
required. This allows fast and complete testing of the

entire chip and the ability to pinpoint the location of any
errors.

When the processors are used in a system, all the
diagnostic shift registers can be connected together.
Whenever the pipeline fails, it can be quickly and
automatically loaded with a test pattern. Then successive
"snap shots" can be taken using the diagnostic shift
register. This method provides a much beter opportunity to
detect a malfunctioning processor automatically since the
only requirement is that the diagnostic shift register work.
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4.8 The Layout

The author has implemented a processor as described
above wusing NMOS technology. Figure 12 depicts the layout
of the processor chip. Note the close correspondence to the
block diagram in figure 9. The 18 bit shift register of the
Load bit is distributed on the left of the RSEs (labeled
"Load SR"). There are 3 stages of this shift register in
each section, corresponding to the 3 coefficients to be
loaded 1in each RSE. The section on the left of the
comparator (labeled "Mux Dr") performs the 1logic and
latching necessary to decide which pair of Zs, I is to be
sent to the next processor. The latching for the New-Frame
and New-Line signals 1is performed on the periphery of the
chip next to the pads.

4.8.1 The Central Array -

The central array is designed using a bit slice
architecture. Data busses run vertically while power,
clocks and control signals run horizontally. A more
detailed example of the crosshatched portion of figure 12 is
provided in figure 13. Power and clock signals are not
shown for clarity. Some control signals (e.g., Load A, Load
B”, Load C”, Select A, Select B”) are generated on the left
or right edges of the RSE, whereas others (e.g., power
lines, clocks, Load SR) connect to vertical busses on the
left and right of the array.

Five of the six RSEs have their MSB (most significant
bit) on the 1left. However, it is necessary to align the
integer portion of the I register (8 bits) so that it falls
in those bit slice locations corresponding to the fractional
part of the Z register. Thus, the integer part of 1Is
occupies the left 16 bits while the integer part of I
occupies the right 8 bits. For this reason, the MSB of the
I register is to the right.

4.8.2 The Pad Arrangement -

Due to the fact that the processor has 63 pins it 1is
especially important that careful thought be given to the
pad placement (translating into pin assignments) so as to
allow effective layout of a P.C. (printed circuit) board
containing many such processors.

Figure 12 labels some of the pin numbers corresponding
to the pad locations (pin numbers are in parentheses) for
reference. Figure 14 shows a typical processor package and
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its required interconnect to the adjacent processors. Note
how this pin placement allows close packing of processors on
a P.C. board.

4.9 Timing

Figure 15 shows the details of the processor timing.
This processor utilizes two non-overlapping clocks (Prc and
Prc-bar) and an auxiliary clock (Ld-phi). All input data
lines (Load, New-Frame, New-Line, Zs, I, Diagnostic Shift
Register) are latched on the falling edge of Prc-bar. All
output lines begin to change state on the rising edge of Prc
and are guaranteed valid at the following falling edge of
Prc-bar.

As indicated, the New-Frame signal must be inserted
into the pipeline one cycle before the first pixel of the
new frame. Similarly, the New-Line signal must be inserted
two cycles before the first pixel of the new line is
inserted into the pipeline.

The Load bit is also expected to be inserted one cycle
before the first coefficient enters the pipeline. The load
bit must only be high during this cycle and not in any
following cycles.

Note that the discussions of previous sections assumed
that the delays actually required for New-Frame, New-Line
and Load were zero in the interest of simplicity. However,
as indicated here, they are not zero.

The Load Shift Register signal is actually a clock and
thus must be identical to the Prc-bar clock when it is
desired to load the shift register.

4.10 Significant Implementation Limitations

4.10.1 Accuracy Of Zs And I -

One significant limitation of this processor is its 2
and I word size. In many applications 16 bits of Zs depth
are not sufficient, especially when one considers the fact
that .

Zs = K/Z
Thus, the resolution of Zs becomes very poor as 2Z becomes

large. Secondly, 8 bits of intensity are not sufficient if
one wishes to allow a wide range of intensity values for
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each of many colors.

These two limitations can be solved if the data path
width is 1increased appropriately. This, however increases
the worst case carry propagation (since the accuracy 1is
larger) and consequently increases the cycle time. However,
the cycle time can be decreased by implementing more
pipeline delays in each processor. This allows additions
(and comparisons) to be performed in many stages thus
lowering the worst case carry delay (see also section 5.2).

4.10.2 Raster Size -

A second limitation is the resolution of the raster.
The present 512%x512 raster 1is too coarse for some
applications where small details are important. In order to
solve this problem, it 1is necessary to both decrease the
cycle time (as indicated above) and increase the accuracy of
the RSEs (since the errors are now multiplied by a bigger
raster size). See also section 5.2.

4.10.3 Coefficient Loading -

Another limitation of this design is well documented in
figure 10. As can be seen, in principle, there is no reason
why the first coefficient can not follow the last pixel
immediately into the pipeline. The present design can not
do this because the Pass bit 1is not pipelined and
consequently the pipeline must be clear of all pixels before
they are all (simultaneously) turned into a shift register
for the coefficients. This causes some wasted time during
the loading of coefficients.

This problem can be easily overcome by adding logic on
each chip which effectively sets the Pass bit for that
processor when it first encounters the Load Bit and resets
it whenever it encounters a New-Frame signal. This has the
effect of pipelining the pass bit without the need for 2
extra signals (Pass-In and Pass-Out).

4.10.4 Number Of Pins -

The large number of pins required for this
implementation is undesirable because it leads to a large
package size. This, in turn, causes a low packing density
on P.C. boards. This problem will become less significant
as the number of processors per chip increases. However, it
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is possible to multiplex the 24 data lines on less pins.

For example, one could transmit the 24 bits as 3 sets
of 8. Note that this implies that each set must be
transmitted in 1/3 of the pixel cycle time. Thus, strong
pad drivers (which use a 1large amount of power) are
required.
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5.0 ANALYSIS OF A SYSTEM OF PROCESSORS

Figure 16 depicts a block diagram of the hidden surface
eliminator shown in figure 2. Its main component is a
pipeline of the processors described above. The coefficient
calculator provides an interface between the geometry
processor and the pipeline.

Coefficients A, B', C*

y Coefficient| Pipclinc To Post-Processor
Calculator A
- (Zs,1i) for each pixel

3-D Coordinates
from Geometry -
Processor , Timing

Figure 16 - Hidden Surface Eliminator

The geometry processor provides the coefficient
calculator with a new set of 3-D coordinates of vertices of
the polygons which are potentially visible for each new
frame. The coefficient calculator then (optionally) stores
these values and operates on them to obtain the coefficients
for the processors using the formulas provided in section 3.

Each processor (i.e., each quadrilateral) requires &
triplets of coefficients (triplets of (A,B”,C”) for the 6
RSEs (Fl1l, F2, F3, F4, Zs, I)) each frame (or field, if in
double field operation). The coefficient calculator has (at
least) one full field time to calculate the values of the
coefficients. These coefficients can be stored and when the
pipeline is ready to accept the coefficients, they can be
quickly 1loaded into the pipeline (one every 100 ns). The
calculator can then begin to process the next field.

Referring to section 3, note that the coefficient
calculator can calculate all the necessary coefficients from
the 3-D coordinates of the polygon vertices without ever
having to perform the perspective transformation explicitly.
In fact, none of the calculations are data dependent and the
only divisions required occur in the inversion of the matrix
required for the calculation of the Z and I coefficients.
Thus, the coefficient calculator can be an extremely simple
processor.

If the TV monitor is being used in double field
operation (see section 4.3.2) the coefficient calculator
must load the coefficients into the pipeline before each
field. However, it is not necessary to recalculate the A or
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B’ coefficients. The C” coefficient is different but only
by the addition or subtraction of B.

Note that while the geometry processor and the
coefficient calculator have been conceptually separated in
this discussion, they can in fact be combined into one
entity since they perform very similar kinds of arithmetic
operations.

5.1 Simultaneous Coefficient Loading

A difficulty arises when the number of processors
becomes large. This is due to the fact that the vertical
retrace time of a typical TV monitor (NTSC standard) is 1.2
ms. Thus, if 100 ns are required for the loading of each
coefficient, only (roughly) 600 processors can be loaded
during vertical retrace.

A simple solution to this difficulty is to separate the
pipeline of processors into sections of 600 (figure 17).
During normal operation, the sections are connected end to
end. However, after the last pixel has gone all the way
through one of these sections, it can begin to be loaded.
Thus, in effect, the pipeline is disconnected into sections
for purposes of loading and, when completed, it 1is joined
back together. Due to the fact that now all sections can be
loaded simultaneously, the loading time is no longer a
limitation on the number of processors in a system.

Pipeline Sections

[ cocrticient / L >
Calculator FTDITD{H

Figure 17 - Sectionated Pipeline

A long pipeline does, however, increase the delay
between the time that a pixel is inserted into the pipeline
and the time that it emerges from the other end. This
problem may oecome critical in certain applications (e.g..
~ flight simulation) where it is important for the image not
to lag far behind. One solution to this problem is to
create a tree structure an example of which is shown in
figure 18. The comparator units shown operate identically
to the ones which are incorporated inside each processor.
That is, they pass through the (Zs,I) pair which is closer
to the observer. These comparators must, unfortunately, be
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made separately since, even though the early discussion of
the processors separates the surface processor from the
comparator, the actual implementation incorporates the
comparator next to each surface processor. This decision
was made in view of the large number of pins which would be
required for the implementation of a comparator (i.e.,
3*(8+16) = 72 pins).

~ HCPRL—'
—_ Cocfficient;“J CPR—m>

Calculator :_7~—€E::::}——Lﬁ
—f T

CPR

Figure 18 - Pipeline Tree

A pixel enters all 4 pipelines (in this example) at the
same time (assuming that all pipelines are the same length).
The pixels from the individual pipelines then compete to
decide which one of the 4 candidate pixels is the closest.
Note that now the pipeline delay has been cut almost by a
factor of 4 (since all 4 pipelines work in parallel).

5.2 Parallel Pipeline Operation

As might be expected, it 1is possible to operate
multiple pipelines in parallel in order to decrease the
effective pixel cycle time. Assume that it is desired to
divide the effective cycle time by N (where N divides the
number of pixels on a 1line evenly). Then, N 1identical
pipelines can be operated in an interleaved manner. That
is, each pipeline is caused to generate every N”th pixel
each cycle time. Thus, since there are N pipelines, N
pixels are available each cycle time thus decreasing the
effective cycle time by N.

Clearly, in this arrangement, N processors are assigned
to each quadrilateral (one processor in each pipeline). The
A and B” coefficients for these RSEs are the same in each
processor. However, C” (the initial RSE value) is different

to indicate the fact that each processor starts at a
different pixel.
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6.0 CONCEPT EXTENSIONS

The significant problem of aliasing is not addressed by
this method. This problem is due to the fact that the 3-D
image which is to be represented is not, in general, band
limited 1in spatial frequency. This approach to hidden
surface elimination basically samples the contents of the
image at the center of each pixel. Thus, as the well known
sampling theorem states, aliasing occurs since the image
being sampled contains spatial frequencies greater than half
the sampling frequency. This effect derives its name from
the fact that wunder-sampling results in high frequencies
being aliased (or wraped around) as low frequencies. This
results in disturbing Moire patterns.

Thus, a clear need exists for eliminating or
ameliorating this problem in order to make the resulting
image more appealing (less annoying) to the viewer.

While planar approximations to curved surfaces are
adequate for some purposes (accompanied by Gouraud shading,
of course) it is still desirable to be able to describe
- curved surfaces as such. Thus, a processor which fits into
the same pipeline described above but which can describe a
non-planar surface is desirable.

Finally, many applications which require very realistic
depictions of simulated environments need textured surfaces.
A processor which produces a textured I value would be
highly desirable in such applications.
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7.0 CONCLUSION

This thesis has outlined the design of a low cost
VLSI-based dynamic raster display system which provides a
sense of reality through the use of real-time hidden surface
elimination and shading.

A comparatively simple and ordered approach utilizing
highly parallel pipelined processing provides a practical
solution when implemented in current VLSI technology. In
fact, VLSI has proven to be uniquely appropriate for this
approach. The advances in this technology promise to make
this approach even more appealing in the future.

A complete display system which makes wuse of the
display system described above has been analyzed. This
system is simple, easily expandible and highly reliable (due
to the highly testable nature of the individual processors).
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