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ABSTRACT 

In chapter I a global lunar topographic map is derived from Ear t h­

based and orbital observations supplemented in areas without data by 

a linear autocovariance predictor. Of 2592 bins, each 5° square, 

1380 (64.7% by area) contain at least one measurement . A spherical 

harmonic analysis to degree 12 yields a mean radius of (1737.53 ± 0.03) 

km (formal standard error) a nd an offset of the center of figure of 

(1.98 ± 0.06) km toward (19 ± 2) 0 S, (194 ± l)
0

E. A Bouguer gravity 

map is also presented. It is confirmed that the low- degree gravity 

harmonics are caused primarily by surface height variations and only 

secondarily by lateral density variations . 

In chapter II a series of models of the lunar interior are deri ved 

from topographic, gravitational, librational and seismic data . The 

moon departs from isostasy, even for the low-degree harmonics, with 

a maximum superisostatic stress of 200 bars under the major mascon 

basins. The mean crustal thicknesses under different physiographic 

regions are: mascons, 30- 35 km; irregular maria, 50- 60 km; and 

highlands, 90-110 km. A significant correlation between lunar surface 

chemistry and crustal thickness suggests that regions of thicker crust 

are more highly differentiated. A possible mean composition consistent 

with our model is an anorthositic crust, underlain by a predominantly 

forsterite upper mantle which grades into a refractory rich lower 

mantle surrounding a pyrrhotite core . 



vi 

In chapter III a model of martian global topography is obtained 

by fitting a spherical harmonic series of degree 16 to occultation, 

radar, spectral and photogrammetric measurements. The existing 

observations are supplemented in areas without data by emperical 

elevation estimates based on photographic data. The mean radius is 

(3389.92 ± 0 . 04) km . The corresponding mean density is (3.933 ± 0.002) 

-3 
g em The center of figure is displaced from the center of mass by 

(2.50 ± 0.07) km towards (62 ± 3)
0 S, (272 ± 3)

0 W. The geometric 

fla~tening [f = (6.12 ± 0 .04) 
g 

10-3 ] is too great and the dynamic 

flattening [fd (5.22 ± 0 . 03) 10- 3 ] is too small for Mars to be 

homogeneous and hydrostatic. It is confirmed that, similar to the 

Moon, the martian low- degree gravity harmonics are produced primarily 

by surface height variations and only secondarily by lateral density 

variations. Maps of the global topography and Bouguer gravity are 

presented. These are interpreted in terms of a crustal thickness map 

which is consistent with gravity, topography and recent preliminary 

Viking seismic results. Using plausible density contrasts and an 

assumed zero crustal thicltness at Hellas, the inferred minimum mean 

crustal thickness is {28 ± 4) km. 

In chapter IV it is shown that the topographic variance spectra 

of the Earth, Moon, Mars and Venus are all very similar. The variance 

per harmonic degree V(H;n) decreases roughly as the inverse square of 

the degree, or more precisely V(H;n) = V(H;O)/(n)(n+l). On the Earth 

and Moon this relationship has been confirmed down to scale lengths as 
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small as L ~ 100 m. At the other end of the spectrum, the variance 

appears to be deficient relative to this model for scale lengths 

greater than L = 2000 km. The most satisfactory explanation for this 

phenomenon appears to be a simple equilibrium between constructional 

or "tectonic" processes which tend to roughen the surface uniformly 

at all scales, and destructional or erosive processes which tend to 

smooth the surface preferentially at small scales. The deficiency 

in the low-degree variances is attributable to visco-elastic 

deformation. 
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PREFACE 

The surface topography of a planet is one of its most important 

characteristics, since it reflects the complex history of interaction 

between exogenic and endogenic processes which have formed and 

subsequently modified the planet. Topographic data can also be used 

in conjunction with gravity observations to e stimate the lateral 

variation of subsurface density and the stress distribution which 

maintains the gravity anomalies. 

The initial objective of this investigation was t o obtain 

spherical harmonic representa tions of lunar a nd martian topography 

of sufficient resolution and fidelity to be of use in performing 

g lobal Bouguer analyses and in internal density modeling. The 

results of these efforts are reported in the f irst three chapters. 

In the course of this research it was discovered that the 

topog raphic variance spectra of the Moon and Mars are very similar 

to the Earth's . The statistical similarity of these surfaces which 

have been subjected to vastly different formative processes seems to 

require some explanation. In the fourth chapter we investigate this 

phenomenon and find a simple explanation in terms of equilibrium 

between constructional and erosive activity. The statistical aspects 

of the resultant surface are largely independent of the details of 

the processes producing it. 
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I. A HARMONIC ANALYSIS OF LUNAR TOPOGRAPHY 

A. INTRODUCTION 

The objective of this investigation has been to obtain a lunar 

topography model that resolves basin-sized features, and can be used 

with a gravity model of equivalent resolution to perform global 

~~er analyses . A variety of elevation data types have been used 

to derive a spherical harmonic representation of the lunar figure. 

Previous analyses of lunar topography (Goudas, 1971; Jones, 1973; 

Chuikova, 1976) have suffered from inadequate data coverage and 

insufficient model resolution. 

This chapter presents a discussion of the data used in the 

analysis, its selenographic distribution , and associated errors. 

A development is also presented of the analysis technique used to 

compensate for the irregular data distribution. 

Maps of the global topography and its formal uncertainty are 

presented, along with a Bouguer anomaly map. The implications of 

some of the low-degree harmonics are considered separately. 

B. DATA 

The determination of the figure of the Moon has had a long and 

interesting history (see, e .g., Kopal and Carder, 1974). The measure­

ments have been referred to several similar , but fundamentally dif­

ferent , coordinate systems. All measures are of the basic form 

R(8,~), where R is the radial distance from t he orig i n , 8 is the 

latitude, and ~ is the (east) longitude. The angles are measured 

from the mean sub-Earth point. 
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The basic difference between the various reference systems 

used is in the location of their respective coordinate origins. For 

analytical purposes, the most convenient coordinate origin is the 

lunar center of mass. Before combining the various data types used 

in this analysis, we will refer them to this selenodetic coordinate 

system. 

The data used which are already selenodetically referenced 

consist of Apollo lase r altimetry (Roberson and Kaula, 1972; 

Wollenhaupt and Sjogren, 1972; Wollenhaupt et al., 1974; Kaula et al . , 

1972, 1973, 1974), vertical and oblique metric photogrammetry 

(Schimerman, 1975, personal communication), and landmark tracking 

data (Wollenhaupt et al . , 1972). 

The data which were not initially in a selenodetic coordinate 

system consists of Watts' (1963) limb profiles (sampled at 2?5 inter­

vals in the libration frame) and ground-based stereoscopic photo­

grammetry (Hopmann, 1967; Mills and Sudbury, 1968; Arthur and Bates, 

1968). These limb and photogrammetric data were referred t o the 

selenodetic system by means of transformations determined by 

Van Flandern (1970) and Schimerman et al . (1973), respectively. 

Other recent data which we have examined but have n o t used 

(either because of redundancy with the above data or because of 

ambiguity in the associated coordinate systems) include more ground­

based photogrammetry (Baldwin, 1963) , Zond- 6 limb profiles (Rodionov 

et al., 1971), lunar orbiter photogrammetry (Jones, 1973), radar 
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interferometry (Zisk, 1972), and Apollo radar al timetry (Brown et al., 

1974). 

Table 1.1 is a summary of the various data types used, the 

number of points measured, and their estimated accuracies. Figure 

1.1 indicates the approximate distribution of the data, summa-

rized according to 5° x 5° bins. The most important aspect of this 

distribution is the complete lack of data for large regions on the 

far side . This situation considerably complicates our analysis . 

Data type 

Inertial 

Laser altimeter 

Apollo 15 
Apollo 16 
Apollo 17 

Orbita l photogrammetry 
Landmark tracking 

Noninertial 

TABLE 1.1 

DATA SOURCES 

Earth-based photogrammetry 

Hopmann 
Mills and Sudbury 
Arthur and Bates 

Limb profile 

Number 
of 

points 

919 
1 353 
3 359 

12 432 
31 

1 049 
906 

1 356 
483 

Error 
(km) 

0 . 30 
0 . 30 
0.30 
0.30 
0.50 

0.80 
0 .40a 
0.90a 
0.38 

a 
Errors are estimated for each poin t separately. Number quoted 

is the mean of the individual err ors. 
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FIGURE 1 . 1 -Data Distribution. The lunar surface is shown divided 

into 2592 bins, each 5° x 5°. The dot pattern indicates those bins 

(1380) which contain at least one measurement. A linear auto­

covariance analysis was used to estimate elevations in remaining 

bins . 



NORTH POLAR REGION 

45 j ··) ' j · b .. -;-; f J ', 1·. 
0 1 I , • • ' • ,, I ' f \' 

I ' I : ) j l I ) ' ) ' : o\ ) ' ' · ' ) o I ' ) 

\ , ' · \ ' ' I ~/ )1 : ~ • 1•1 l' ,..l • .. - '""' i - :.. 
J0h' '• • ., ' 1'>.' ,I I\:.; .• \ - '.' • ~1.'<£'~ -~ 

I :. ') . > , • •· ., r )·_ · ·_, ... ~ > · • .- "" ·t: ~~~J:I - t;JJJ'r-~~w.~_:n:; 
, , • l • . - ~ l J ~ 

• '\ .. . • • ! , , ·.'· •I , ; · , > ; ' I 'tt 
, l J ~ J -) ). , I > 

151. ,, ':> ·\./ ,• () . ...... . ~7' ~ 
u ... •J.• .. it.hw .t~l<ll 

LONGITUDE 
(EAST ) 

SOUTH POLAR REGION 

0 

Q'\ 

f71il."."~h'7. '· ."tl'~~"WP..'!?,;.\1 ·~-.i:ot 'l )~ 4S 

60 ISO 

30 

IS 

0 

- IS 

... 
0 
:J 
!::: ... 
:3 

- 30 

- 4S 
180 



7 

In addition to the spherical coordinates (R,8,~), we will have 

occasion to use a Cartesian coordinate system (X
1

,x2,x
3
), with its 

origin at the lunar center of mass. This system is right-handed and 

oriented such that the x
1 

axis lies along the mean Earth-Moon line 

(positive toward Earth), the x
2 

axis points east along the orbit 

(positive away from direction of orbital motion), and the x
3 

axis 

lies along the rotation axis (positive toward north). 

C. ANALYSIS 

Given the data discussed in the previous section, we now have the 

problem of how best to estimate a set of harmonic coefficients which 

characterize the shape of the lunar surface. We will be interested 

not only in the complete ensemble of harmonics and the global lunar 

configuration which they represent, but also in some of the low­

degree harmonics, considered separately . Therefore, it is imperative 

that we obtain harmonic coefficient estimates which not only accu­

rately represent the data, but are also optimally uncorrelated with 

one another, consistent with the uneven data distribution . An 

intimately related problem is that we desire to avoid unreasonable 

values for our harmonic model in regions containing no direct measure­

ments. We will now formulate this problem more rigorously and present 

our s olution thereto. 

Given a collection of topographic data F, with standard deviation 

~ . distributed on a sphere 

(1.1) 
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we desire optimally uncorrelated estimates of the harmonic coeffi-

cients H through degree and order N. 
nm 

where 

Our basic model is of the form 

R(8 ,cp) 
r, 12 n 

= Ro[ + ~1 ~o 

Hnm [:::] :[ ::] 

H T A 
nm nm 

A (8 ,cp) = P [sin (8)] [cos (m:p)J 
nm nm . () 

S1!1 m:p 

(1. 2) 

are the normalized harmonic coefficients and surface spherical har-

monic functions, respectively. These functions are defined and 

discussed at some length in Appendix A. 

A 12-degree model was chosen since it i s capable of resolving 

the major lunar basins. This facilitates comparison with recent 

gravity studies. A higher-degree model was not utilized because 

of the adverse effect of data gaps. For the ensemble of observations, 

(1.2) can be written as 

F . = (oF . 1 az . ) z . = A. . z . 
1 1 J J l J J 

(1. 3) 

where Z. is the vector of H 
J nm 

In this notation, the weighted 

least-squares estimator is (see, e.g., Lawson and Hanson, 1974) 

(1.4) 

where the weighting matrix B is the inverse of the data noise 
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covariance matrix (assumed, in this analysis, to be diagonal). 

To obtain uncorrelated estimates of the parameters Z., we must 
J 

diagonalize the solution covariance matrix 

where E(•) is the expectation operator. Since we are assuming that 

B is diagonal, the problem thus reduces to the diagonalization of 

A.A . dl-!d<f> 
~ J 

(1. 6) 

where 1-1 =s in (9). The problem then is the optimal approximation 

of an integral by a finite sum. If we had data of uniform accuracy, 

evenly distributed over the sphere, the evaluation of this integral 

could be performed by any standard quadrature formula. However, the 

very uneven distribution of the data necessitates further analysis 

(Carlson and Helmsen, 1969). 

The approach we have taken is to determine the weighted mean and 

standard deviation of all the data within each of 2592 5°x 5° bins. 

Actually, only 1380 of the bins , r epresenting 64.7% of the lunar 

surface, contain data (see Fig. 1.1). In the remaining bins, we 

have used a linear autocovariance technique (see, e.g., Kaula, 1967; 

Heiskanen and Moritz, 1967) to estimate the most probable elevations 

and associated errors, consistent with the known statistical charac-

teristics of the available data. Chapman and Pollack (1975) have 

applied a linear cross-covariance predictor to a very similar problem 

in terrestrial heat flow measurements. 
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In much of what follows, it will be useful to regard the surface 

of the Moon as a realization of a homogeneous stochastic process 

on a sphere (see Appendix C). A process is said to be homogeneous 

if its first and second moments are invariant under the group of 

rotations of the sphere. This is equivalent (Roy, 1973) to station-

arity, i.e., constancy of the mean E[F(8 ,~)], and isotropy of the 

covariance function 

C(y) = E[F(O)F(O + y) ] (1. 7) 

where 0 = (8,~), i.e. C(y) depends only on the angular separation y 

between the points (8 ,~) and (9 + .6.8 , ~ + .6.~). This separation is 

given by 

2 cos(y ) = (cos(~) + 1) cos(69) 

+ (cos(t,.~) - 1) cos(~8) (1. 8) 

A A2 
The predicted radii R and associated variances a are calculated 

from the covariance function and the known radii F. as follows: 
l. 

where 

and 

(1. 9) 

the known-known and known-unknown covariance matrices, respectively, 

are obtained fr om C(y). 

In a further effort to compensate for the extremely uneven 

distribution of the data, a lower bound of 0 . 05 km was imposed on 

the bin standard deviation. This measure prevents those regions in 

which the data are most densely concentrated from completely 
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dominating the solution, at the expense of other regions. This 

censoring affected 220 bins, representing 12.9% of the lunar surface . 

Finally , the weighted l east-squares estimate of the harmonic 

coefficients was obtained by applying (1.4) t o the averaged data , 

augmented by the predicted radii in the unsurveyed areas. The 

weighting of each point was proportional t o the area of its bin and 

inversely proportional to the variance of the measurement or 

prediction: 

B . . 
~J 

2 sin(~8/2) cos(e.) ~~ 6 .. I a~ 
1 ~J ~ 

(1.10) 

The estimates of the normalized harmonic coefficients and their 

formal uncertainties are presented in Table 1.2. 

Solutions were also obtained in which the predicted elevations 

were weakly weighted (o = 5, 10 km). These solutions were charac-

terized by unrealistically large estima tes for the high-degree 

coefficients and large height excurs ions in the regions containing no 

data . 

D. RESULTS 

Figure 1 .2 shows a comparison between raw laser altimeter data 

and the harmonic model evaluated along the ground tracks of represen-

tative orbits of Apollo missions 15, 16, and 17. The amount of high-

frequency information contained in the data is indicated, as well as 

the fidelity of the harmonic model to the global and regional shape 

of the Moon. The variance of the 21 888 unaveraged data is 4.22 km2
, 

whereas the model variance is 



n 

1 
1 

2 
2 
2 

3 
3 
3 
3 

4 
4 
4 
4 
4 

5 
5 
5 
5 
5 
5 

6 
6 
6 
6 
6 
6 
6 
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TABLE 1.2 

NORMALI ZED LUNAR TOPOGRAPHY HARMONICS (xl06) 

m 

0 
l 

0 
1 
2 

0 
1 
2 
3 

0 
1 
2 
3 
4 

0 
.1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 
6 

-c 
run 

-212.3 
-605.8 

-135.9 
-149.8 

11.5 

62.2 
102.1 
47.2 

250.1 

104.2 
30.<1 

-115.5 
-13.1 
-92.1 

0.6 
-50.6 

5.5 
-48.2 
-2.0 
86.9 

-56.4 
-27.!: 
-3.5 
-1.9 
-62.~ 
-70.5 
-30.9 

-s 
run 

147.4 

-23.6 
-167.1 

-53.1 
-51.9 
-28.9 

-51.3 
25.6 
41.0 

-20.9 

79.·2 
-35.9 
-51.7 

6.6 
10.5 

44.5 
-15.3 
-32.2 

44.2 
62.0 

-54.6 

o (C ) nm 

25.7 
17.5 

22.1 
26.5 
11.5 

20.5 
28.0 
18.1 
11.1 

20.5 
26.7 
20.7 
18.0 

9.6 

20.3 
25.4 
21.4 
20.3 
16.0 

8.2 

19.8 
24.6 
21.1 
21 .0 
19.3 
13.8 
7.3 

o (S ) 
nm 

13.6 

1 c;. 3 
14.5 

18.2 
22.7 
11.4 

17.0 
24.2 
18.5 
10.1 

16.2 
23.5 
21.2 
16.0 

8.7 

15.4 
21.8 
22.0 
18.5 
1 4.5 
7.3 



n m 

1 0 
7 l 
1 2 
7 3 
7 4 
1 5 
7 6 
7 7 

8 0 
8 l 
8 2 
8 3 
8 4 
8 5 
8 6 
8 7 
8 a 
9 0 
9 1 
9 2 
9 3 
9 4 
9 5 
9 6 
9 7 
9 8 
9 9 

10 0 
10 1 
10 2 
10 3 
10 4 
10 5 
10 6 
10 7 
10 . 8 
10 9 
10 10 

-c 
nm 

-60.4 
219.4 
107.1 
-76.9 
-14.9 
107.5 
54.0 
4.1 

85.6 
-0.4 

-134. ~ 
-23.8 
69.9 
45.6 

-156.3 
-12.5 

31.0 

9.8 
64.4 
13.2 

-63.0 
-67.3 

53.4 
39.5 
25.1 
48.0 
-1.2 

95.0 
33.0 

-55.2 
-1.6 
34.5 
25.8 

-75.5 
2.4 

16.8 
8. 5 

54.9 
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TABLE 1.2 (Cont' d) 

-s 
nm 

-18.2 
23.6 
12.7 

-14.0 
20.2 
2.2 

-29.2 

35.7 
-54.6 
-8.2 

-64.9 
-0 .. 1 

o.s 
52.5 

-41.5 

-28.0 
56.6 

3.8 
13.9 

115.6 
-36.0 
-14.2 
-45.7 

16.8 

12.3 
6.9 

-31.3 
-32.8 

34.2 
-44.3 

48.5 
.. -6.0 

59.6 
-27.3 

cr(C ) 
nm 

a (S ) 
nm 

18.5 
22.8 15.2 
20.0 20.2 
20.3 21.4 
20.1 19.3 
16.4 16.8 
12.2 12.3 
6.2 6.2 

18.0 
21.2 14.3 
18.9 19.2 
19.0 2C.O 
19.8 19.6 
17.2 17.6 
14.4 14.3 
10.1 10.3 

5.1 5.1 

16.9 
19.7 13.5 
17.6 16.9 
17.6 18.3 
18.2 17.9 
17.4 17.7 
14.8 15.0 
12.3 1£.1 

8.5 8.0 
4.0 4.0 

14.2 
15.9 1:2.5 
14.7 - 14.0 
14.9 14.7 
15.2 15.1 
14.8 14.8 
13 .• 4 14.1 
11.4 11.3 
9.4 <;. 5 -· 
6.5 6.4 
3.6 3. 6 



n m 

11 0 
11 1 
11 . 2 
11 3 
11 4 
11 5 
11 6 
11 1 
11 8 
11 q 

11 10 
ll 11 

12 0 
12 l 
12 2 
12 3 
12 4 
12 5 
12 6 
12 1 
12 8 
12 9 
12 10 
12 11 
12 12 

-c 
nm 

41.2 
-99.0 
35.~ 

-69.0 
-30.9 

51.5 
-29.2 
43.4 
35.0 
11.<; 
8.6 

-17.1 

-38.8 
-33.6 
15.2 

-10<:J. 2 
13.9 

-15.8 
-11.1 

9.2 
-76.3 
32.9 

-20.0 
43.0 

-35.1 

14 

TABLE 1. 2 (Cont ' d ) 

-s 
nm 

-52.6 
-33.6 
-98.1 

63.7 
-71.8 
-63.6 
-38.2 
-9!".5 

53.6 
-31.7 
-54.2 

8.3 
2.1 

2<J.3 
20.5 
0.6 

-10.3 
9.6 

40.0 
33.6 

-70.9 
15. 8 

-41.7 

cr ( C ) 
nm 

cr ( s ) 
nm 

11.9 
13.4 1 o.a 
11.4 12.2 
12.0 12.3 
11.7 12.0 
11.6 12.0 
10.8 11.1 
9.4 <;.5 
7.5 7.2 
6.5 6.4 
4.1 4.2 
3.0 3.0 

<:J.5 
10.2 8.8 
9.5 <:J.4 
9.2 <:J.4 
<:J.4 <:J.l 
8.8 c;.l 
8.6 c;.o 
8.0 a.o 
6.9 7.1 
5.6 5. 8 
5.0 5.0 
3.6 3.6 
2.6 2.1 
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FIGURE 1.2 - Comparison of laser data and harmonic model. Elevations 

relative to 1738.0 km sphere. Indicates amount of high frequency 

information in data and general fidelity of model to global and 

reg ional scale features. 
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3.08 km2 

H 
nm 

(1. 11) 

Figures 1.3 and 1.4 are maps of lunar topography, as given by our 

model, and the associated formal uncertainties, repectively. These 

are derived from the rela tionships (Graybill, 1961) 

R(S,cp) T A (8,cp) Z 

2 
a (S,cp) AT(S,cp) [ATBA] -l A(8,cp) (1.12) 

The err or map reflects the distribution of the data, showing quite 

clearly the regions where we have no direct data. Since the model 

duplicates 73.0% of the original data variance, this computed error 

map should be a good first-order approximation to the actual error 

distribution. The topographic map, with heights relative to the lunar 

mean radius, resolves most major f eatures within the areas of data 

coverage. This was a major objective in the construction of the 

model and permits comparison with equivalent-resolution g ravity 

models for the purpose of de termining the lunar internal density 

distribution. 

Dimensionless degree variances V(H;n) of lunar topography and 

the associated error variances W(H;n) are listed in Table 1 . 3 . 

These variances are given by: 
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FIGURE 1. 3 - Lunar topography. Twelfth degree model. Elevations 

relative to 1737.53 km mean sphere. Contour interval is 1 km 

(solid line). Selected ~ km contours indicated (dashed line). 
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FIGURE 1. 4 - Lunar topography error. Formal standard error computed 

from equation (1 . 12) . Actual error can be somewhat larger. Contour 

interval is 0.2 km. 
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TABLE 1. 3 

LUNAR TOPOGRAPHY AND ERROR VARIANCES (x108) 

Degree Topography Error 
n V(H;n) W(H;n) 

1 43.38 0.12 

2 6.95 0.19 

3 8.54 0.26 

4 3.99 0 . 33 

5 2 . 29 0 . 38 

6 2.58 0 .43 

7 8 . 64 0 .45 

8 7.15 0.45 

9 4 . 17 0.43 

10 3.62 0.33 

11 6.97 0 . 23 

12 3. 71 0 .15 
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n 

V (H;n) L H T H 
nm nm 

m=O 

n 

W (H; n) L aT (H ) 
nm a(H ) nm 

(1 . 13) 

m=O 

2 
where a (Hnm)' the variance of the error in Hnm' is obtained from 

the solution covariance matrix [ATBA] - 1 . We note that the topogr aphic 

degree variances decreas e in magnitude with increasing harmonic 

degree approximately as 

V(H;n) -
V(H,O) 

(n)(n+l) 
(1. 14) 

We will discuss the significance of this spectral behavior at con-

siderable length in Chapte r IV . We also note that in the case of 

uniformly accurate data, i . e . , a [R (8,~)] 

variances are (Heiskanen and Moritz, 1967) 

W(H;n) = 2n + 1 

4TT 

2 

( :0) 
0 

a , the degree e rror 
0 

( 1. 15) 

The small departures of our error variances from this simple form a re 

due to the irregular data distribution. 

The observed gravity of a planet may be con sidered as t he sum of 

contributions due t o internal lateral density variations and surface 

topography. The topography of a p lanet characterized by harmonics H , 
nm 

gives rise to g ravitational potential perturbations 6G , where 
run 

(MacRobert, 1967) 
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( 
2n3 + 1) p !::.G = p (R ) H 

nm o nm (1. 16) 

and o(R ) and p are the surface and mean mass densities , respectively, 
0 

of the planet. The difference between the ob s e r ved gravity and the 

topographic correction, known as the Bouguer anomaly, is thus a 

measure of the extent of l ateral density variation. 

Figure 1 .5 is a map of lunar Bouguer gravity, evaluated at an 

elevation of 100 km above the mean luna r radius . This is calculated 

as t he radial component of t he gradient of the 12th degree Bouguer 

anoma l y potential 

B 
nm G nm 

(1. 17) 

t:.G nm 

~-.~h ere G is the g r avita tional cons tant , M is the planetary mass , G 
nm 

is a harmonic coefficient of the observed gravitational field 

(Ferra ri , 1977) , and we have assumed a surface density p(R) = 2 . 7 
0 

- 3 
g em We find that the low- degree harmonics of the gravitational 

field a r e determined primarily by surface height variations and only 

secondarily by latera l density variations . The most striking feature 

of this map i s the a ss ociation of large positive anomalies with the 

mascons (Huller and Sj ogr en, 1968). It is also interesting to note 

that large r egions of the farside highlands are associated with 

strong negative anomalies . This map, along with other da t a type s 

such as librational and s eismic observations, can be used to i nfer 
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FIGURE 1 . 5 - Lunar Bouguer gravity anomaly. Twelfth degree model. 

Evaluated 100 km above mean sphere . Contour interval 100 mGa l : 

- 2 
0.1 em sec . Free-air gravity f rom Ferrari (1977). Assumed crustal 

-3 density is 2.7 gm em 
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lunar crustal and upper mantle structure, an effort which we discuss 

in the next chapter (see also, Bills and Ferrari, 1977). In that 

analysis a mean crustal thickness of 70 km is estimated by matching 

the gravimetrically derived local crustal thi ckness with the seismic 

results (Toksoz et a1., 1974) from Mare Cognitum . 

We now turn our attention to the harmonics of degrees 0, 1, and 2. 

These represent the mean radius, center of figure displacement, and 

triaxial figure , respectively . 

The estimated lunar radius is (1737 . 53 ± 0 . 03) krn. Thi s, in 

3 - 2 
conjunction with estimates of GM = (4902.796 ± 0 . 003) krn sec 

(Sinclair et al., 1976) and G = (667.32 ± 0.31 x lo- 25 ) km3 g- l 

(Heyl and Chrzanowski, 1942), yields an estimate for the mean 

- 2 sec 

- 3 
density of p = (3 . 3437 ± 0.0016) g em Most of this error comes 

from the error in G. The mean density, in conjunction with t h e mean 

inertial moment, places important constraints on models of lunar 

internal composition and structure (Gast and Giuli, 1972; Bills and 

Ferrari, 1977). 

We now consider the first-degree terms in the topography. They 

represent a displacement of the center of figure (C.F.) from the 

center of mass (C .M. ) . In terms of rectangular coordinates, and 

un-normalized harmonics, the location of the C.F. is 

t.xl cl 1 - 1.823 ± 0 . 053 
' 

/S£.2 R 51,1 = 
0 

- 0.444 ± 0 . 041 km (1.18) 

6){3 c1 o - 0 . 639 ± 0.077 
' 
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or in terms of spherical coordinates, 

R (1.982 ± 0.057) km 

e = (18~8 ± 2~1) s 

cp (193~7 ± 1~1) E 

where , as before, the origin is at the C.M. 

This offse t , by definition, implies a departure from spherical 

symmetry in the internal density distribution. Attempts have been 

made to explain this asymmetry in terms of two - layered models, with 

either an offset between the centers of the spheres comprising the 

model (Ransford and Sjogren, 1972; Kaula et al., 1972) or an outer 

layer of randomly varying thickness (Kobrick, 1976). Large-scale 

internal convection (Lingenfelter and Schubert, 1973) and asymmetric 

bombardment (Wood, 1973) have been suggested as possible mechanisms 

for the preferential thinning of the crust of the earthward hemisphere 

and concomitant thickening in the opposite hemisphere. 

We now consider the shape and orientation of the triaxial 

fig ure represented by the second-degree harmonics. The principal 

axes of this figure are 

x' 
1 

(1738 . 43 km , 13~ 58 s, 38~ 40 E) 

x' 2 (1737.50 km, 32~ 70 N, 119~48 E) 

X I = ( 1 7 3 6 . 6 6 km , 53~ 91 N • 3 2 7~ 7 6 E ) 
3 

(1. 19) 

This misalignment between these axes and the principal inertial axes 

implies that, if all lateral density variation occurs as undulations 

on the crust-mantle interface , the principal axes of the triaxial 
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mantle must be skewed in the opposite direction. According to this 

simplified model, the region of minimum crustal thickness is in 

southern Procellarum. Many deep-focus moonquakes occur along two 

great circle arcs which intersect in this same area (Lammlein et al., 

1974; Lammlein, 1977). Thus, the stresses induced by near surface 

mass anomalies may control the release of seismic energy at depth. 
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II. A LUNAR DENSITY MODEL 

A. INTRODUCTION 

Lunar interior models of increasing complexity are derived from 

topographic, gravitational, librational, and seismic data. A series 

of models, rather than only the final one, is presented in an effort 

to demonstrate the unique contribution of each data type and its 

effect on determining model parameters for the lunar density structure. 

The various data types and their errors are discussed, and these 

data are cast into a form most convenient for internal model deter­

mination. The basic theory for this analysis is developed, and a 

series of lunar interior models are derived from the different data. 

Discussions are presented at each level of modeling, showing which 

data are satisfied and presenting the geophysical significance 

of that stage of the model development. Ultimately, a six-layered 

model is determined which satisfies all the data. The innovative 

aspects of this investigation are discussed in light of previous 

work, and the compositional implications of this lunar interior model 

are analyzed. 

B. DATA 

The topography of the Moon will be represented in this analysis 

by the harmonic model developed in the preceding chapter (see also 

Bills and Ferrari, 1977). However, in the present chapter, it will 

be more convenient to use the un-normalized harmonics (see Appendix A). 
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As a representation of lunar gravity, we will use Ferrari's (1975) 

model truncated to degree twelve for consistency with the topography 

model. 

The physical librations of the Moon are dependent upon both the 

low-degree gravity harmonics and the parameters (a, S, y), which 

are defined in terms of the principal inertial momen~ A ~ B < C as 

a= C - B 
A 

C - A 13 = - ­
B 

y = B - A 
c (2 .1) 

Sinclair et al. (1976) have estimated the low-degree gravity 

harmonics and librational parameters from a combination of Doppler 

and laser - ranging data . Table 2.1 presents these estimates, the 

low-degree topography harmonics (Bills and Ferrari, 1977), and an 

estimate of the gravitational constant G (Heyl and Chrzanowski, 

1942). 

The resulting estimates for the lunar mean density and moments 

are 

p 3 . 3437 ± 0 . 0016 g -3 em 

c (4C22g/y)MR
0

2 = (0.3933 ± 0.002l)MR
0

2 

I = A + B + C = [ 3 + @ + y - @y J C = (0 3931 
3 3(1+8) . 

The moments M of the radial density distribution are 
n 

(2. 2) 

2 
± 0.002l)MR

0 
. 

(2. 3 

where ~ r/R
0

. On the basis of the values listed in (2.2), the second 



n m 

0 0 

1 0 

1 1 

2 0 

2 1 

2 2 

TABLE 2.1 

LUNAR GRAVITATIONAL , TOPOGRAPHIC AND LIBRATIONAL DATA 

G = 
GM 

R 
0 

s = 

y 

TOPOGRAPHY 

ct X 106 
nm 

10
6 

-367.7 ± 44.6 

-1049.3 ± 30.3 

-303.9 ± 49.5 

-193.4 ± 34.2 

7.4 ± 7.4 

-10 1 -2 -1 (667.32 ± 0.31) x 10 em sec gm 
15 3 -2 (4902.796 ± 0.003) x 10 em sec 

5 (1737.59 ± 0.24) x 10 em 

(631.68 ± 0.13) X 10- 6 

(227.82 ± 0 . 08) X 10- 6 

st x 106 
nm 

rf X 106 
nm 

106 

-255.4 ± 23.6 

GRAVITY 

- 203.62 ± 1.09 

30 . 4 ± 24.9 

107.8 ± 9.4 22.40 ± 0 .12 

NOTE: --- indicates zero by definition. 

sg x 106 
nm 

\.;..) 
-....J 
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and fourth moments are 

M2 = p = 3.3437 ± 0.0016 

- 2 M4 = 5pl/2MR0 = 3.286 ± 0.018 
(2 .4) 

This form will prove useful for comparison with models to be derived 

later. 

The seismic data used consist of (1) the inferred crustal 

structure in the region of the Apollo seismic array including 

discontinuities at depths of ~20 and 50-60 km (Toksoz et al., 1974), 

and (2) the travel time as a function of epicentral distance for P 

and S waves (Nakamura et al., 1974). 

C. THEORY 

We will be mainly concerned with models consisting of nearly 

concentric nearly spherical shells of uniform density material . Each 

shell t will be characterized by the normalized radius of its outer 

surface, S£ = Rt/R0 ; a density contrast from the immediately over-

lying layer, 6P£ = p£ - p£ _1; and a set of spherical harmonic 

coefficients H t which represent the shape of the outer surface of 
nm 

the layer. Thus the interface has the form 

12 n 

R(S,cp) = R0st.Ll': 
n=O m=O 

(H t)T A (8 ) nrn nm ,cp (2. 5) 

The mean density and mean inertial moment of such a model are 

expressed by 
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(2. 6) 

The complete inertia tensor of such a configuration is given by 

5 

I .. 
8nR0 ~ _ 5 /., 

(2. 7) 
l.J = ~ 6p~., < s~.,) Lij 

/., 

wher e, in terms of un-nonnalized shape harmonics, 

/., 

Lll 
/., 

1 +2 [<sn.e ) 2 .e 2] 
c2o 

3C22 
.t 

= + (ClO ) +--2 2 

/., 

.t 
1 +2 [<c £)2 + (C .t ) 2] 

c2o .e 
L22 = + -2- + 3C22 2 11 10 

.e 
1 +2 ~c .e) 2 (S .t )2] 

.t 
L33 + c2o 2 11 11 

/., .e 5 .t /., 
3S22 

.t 
L12 = L21 - - 2 (ell sll ) 

.e .e 5 .e .e 3 /., 
Ll3 = L31 - - 2 (Cll ClO ) 2 c21 

The gravitational harmonics of the conf iguration are given by 

( 
2n + 1) oG = ~ 6 S n+3H .e 

3 nm L..J P.e .e nm 
.e 

(2. 8) 

.e t o first order in the H . From the relation between the inertia 
nm 

tensor and the un- normalized gravity harmonics 
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g 2 
C20 MRO = (Ill+ I22 - 2I33) /2 

g 2 
C21 MRO Il3 = I31 

g 2 
521 MRO I23 + I32 (2. 9) 

we note that for n 2 , (2 . 8) is merely the linear approximation to 

(2.7). We will thus use (2.7) in place of (2. 8) for n = 2, 

We will also be interested in the extent to which our models 

depart from isostatic equilibrium. This will be measured in terms 

of the variations about the mean of the hydrostatic pressure at 

the crust-mantle interface. The mean pressure at this level is 

approximately, 

and the pressure deviations are 

where 

t:, P (8 ,cp) 

J nm 

2 
4nGR

0 
3 

J T /\ (8 ,q:J) 
nm nm 

= HnmO + (6;1)(~) Sl2 Hnml 
0 p 

and p
1 

is the mean density of the Moon beneath the crust. 

(2 .10) 

(2 .11 ) 

In order to use seismic data as a constraint on lunar internal 

structure, we will need to specify compressional and shear wave 

velocities V and V at each layer. These two velocities are 
p s 
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determined by 

v 2 
p 

(K + 4!1/ 3) I p 

where 

K = o(oP/op) 5 

v 
2 = !1/0 s (2. 12) 

is the adiabatic bulk modulus and 11 is the shear modulus or rigidity. 

These in turn are functions of temperature and pressure for any given 

material. We will assume a linear dependence on temperature and 

pressure: 

p(T,P) pSTP + (op/ pT)6 T + (oo/oP) 6P 

K (T, P) KSTP + (oK/oT)6T + (oK/oP)C!P (2 .13) 

u(T,P) = llsTP + (ou/oT)6T + (o11/oP)6P 

A number of estimates of the lunar internal temperature distri-

bution are available (e.g ., Toksoz and Solomon, 1973). All such 

models are characterized by a steep gradient near the surface and a 

more gradual gradient at depth. We will assume a temperature profile 

of the form (Nakamura and Latham, 1969) 

T(~) = T(O) + 6T~n (2. 14) 

with the parameters chosen to match the near-surface gradient and deep 

interior temperatures. A more complex model is not justified in 

light of the lack of constraints on the problem. 

The pressure at each level is obtained by numerically integrating 

the equation of hydrostatic equilibrium . The pressure and temperature 

are then used to estimate the ambient density and elastic moduli from 
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their assumed STP values. 

The seismic travel times T and epicentral angles 6 are calculated 

from the velocity profile V(S) for a given ray path by (Bullen, 1963) 

T / 
~m 

[ 
2 2]-1/2 zds 

n - ~ T 
(2. 15) 

1 

f [ 2 2]-1/2 ~ 
6 2~ T) - ~ ; 

sm 
where Tl = s/V(S) and 1u is the value of Tl at the midpoint of the ray 

path, where it reaches its minimum radius S . 
m 

D. MODELS 

The simplest model considered has a uniform density of p 

g cm-3 and the outer surface is characterized by the topography 

0 
harmonics H nm 

An interesting aspect of this model is that its 

liberational parameters are 

-6 -6 
~ = (5,28 + 485,39) X 10 = 490.67 X 10 

y (5.65 + 45.29) X 10-6 = 50.94 X 10-6 

3.3437 

where the parenthetical terms are the first- and second-degree contri-

butions, respectively. We thus conclude that the first-degree harmon-

ics are of little consequence dynamically in comparison to the second-

degree harmonics. Comparing these estimates with the values in 

Table 2.1, we note that the assumption of uniform density, coupled 

with the actual topography, gives, at least qualitatively, reason-

able estimates of 8 and y, whereas Kopal (1969) has shown that the 
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rotational and tidal distortions of a hydrostatic moon would yield 

-6 S = 37.39 X 10 
H Y = 27.97 X 10-6 

H 

Two basic c onclusions are obtained from this comparison: first, the 

orientation and rotational dynamics of the Moon are intrinsically 

d e t ermined primarily by surface h e ight variations and only secondarily 

by lateral density variations, and second, the Moon is not well 

approximated by a hydrostatic model (Kopal, 1969) . 

We now turn our attention to models with a radial density varia-

tion. The simplest such model considered consists of two concentric 

sphe rical she l ls having a density p
0 

in the outer shell and a 

d ensity contrast 6p
1 

across the interface at a normalized radius of 

~1/R0 = s
1

. A weak compositional constrain t is imposed in that 

we assume 

2.7 $ O(S) $ 5.4 g 
-3 

em 

~here the lower bound corresponds roughly to anorthosite and the 

~pper bound to an Fe-FeS eutectic composition (Brett, 1973) at the 

1unar central pressure (~SO kbar ) and room tempera ture. These bounds 

ctre shown by t he dot-dash lines Figure 2.1. If in addition, the model 

Ls constrained to have the observed mean density and density inversions 

~ith depth a r e not allowed, the envel ope of acceptable density profiles 

L s given by the dashed lines in Figure 2 .1 . When the model is sub-

j ected to the additional constraint that i t have the correct mean 

~oment of inertia, the resulting density bounds are those given by the 

s o lid lines in Figure 2. 1. 
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FIGURE 2.1 -Envelope of plausible lunar density profiles. Successively 

applied model constraints: 1) 2.7 ~ o ~ 5.4 (dot-dash lines); 

2) observed mean density p = 3.344 ± 0.002 (dashed lines); 3) observed 

mean inertial moment I/MR~ 0.393 ± 0.002 (solid lines). 
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These lower and upper bounds for the mean moment of inertia 

are simply the solutions for p0 (s) and o
0

(s) + ~o1 (S), respectively, 

subject to 

They represent the envelope of all possible monotonic density distri-

butions subject to the above constraints. However, not all models 

falling within these bounds are allowed. In particular, a uniform 

densi ty model is inconsistent with these constraints. Although these 

bounds are not tight enough to be of real value in determining the 

composition of the lunar interior, they do exclude such extreme 

cases as either a uniform density or an Fe-Ni core with a radius of 

380 km or greater . These bounds are also useful in conjunction 

with other data types . 

The next step in complexity is to allow the model to depart 

from spherical symmetry in order to match not only the actual topo-

graphy, as was done before, but also the gravitational potential to 

degree and order 12 and the entire inertia tensor, three moments 

and three products of inertia, rather than just the mean moment. 

To do this, we start by including the first- and second -degree 

harmonics H ~ (t = 0, 1; n = 1, 2) describing the shape of the 
nm 

outer surface and the crust-mantle interface. The eight harmonics 

H 
0 

(three first degree and five second degree) of the outer layer nm 

are known from the observed topography (Bills and Ferrari, 1977) 



TABLE 2.2 

TWO LAYERED LUNAR DENSITY MODEL 

REPRESENTATIVE SOLUTIONS 

parameter a priori a posteriori a posteriori 

R = 0 R = 400 km e e 
-3 p = 5.4 gm em 

e 

-3 2.90 ± 0.20 2.72 ± 0.07 2.75 ± 0 . 06 P (gm em ) 
0 

-3 t::. p(grn ern ) 0.50 ± 0 . 20 0 . 74 ± 0.08 0.64 ± 0 , 07 
.c-. 

T (krn) 69.5 ± 17.4 95.7 ± 15.6 73 . 2 ± 15 . 8 '-1 
e 

L>x
1 

(km) 0 . 00 ± 1.64 8 . 33 ± 1.20 9 . 40 ± 1.30 

t::.x2 
II It 1.1 2.53 ± 0.56 2.86 ± 0.40 

b.X " " " 1.40 ± 0.20 1.57 ± 0 , 22 3 

1 -4 
c20c1o ) 0.00 ± 10.00 ~7 . 98 ± 0.63 -8.40 ± 0 . 66 

1 
c21 " II " 10.45 ± 1.51 11.43 ± 1.59 

1 
s21 

II II " -0.25 ± 0.04 -0.27 ± 0.04 
1 

c22 " II " 0 . 45 ± 0.004 0.44 ± 0 . 01 

1 
" " " -5 . 71 ± 0.84 -6.26 ± 0.89 822 
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(see Table 2.1), but the crustal density p
0 

and the eight harmonics 

1 
of the crust-mantle interface H , as well as the density contrast 

nm 

~pl and the normalized radius s1 = R1/R0 , are unknown and must be 

determined from (2.7) and (2.8) by constraining the inertia tensor 

of the model to the observed values. Equation (2.8) applied 

to the first-degree harmonics ensures that the center of figure of 

the mantle is offset in such a way as to counterbalance the center 

of figure displacement of the outer layer. 

Such a model has 11 unknown parameters [Hnml (eight), p
0

, ~p1 , 

and s
1
J, but only 10 constraints [G (three), I .. (six), and p] . 

nm ~J 

However, we have some a priori knowledge about each of the para-

meters, and since this makes the system effectively overdetermined, 

we can perform a weighted least squares inversion. See Table 2 . 2 

for some repr esentative results. Therein are presented the a priori 

and a posterior estimates and uncertainties for each of the 11 

parameters for both the nominal solution and a solution with a 

core of radius R 
c 

-3 400 km and density 0 = 5.4 g em 
c The first -

degree harmonics are presented in terms of the corresponding center 

of figure displacement 

and the crustal thickness is Tc = R
0

(1- s1) · 

We discover two important facts from this model. First, in 

the case with no core the mean crustal thickness is significantly 

greater than that inferred from the locally derived seismic value, 
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even though the densities are quite reasonable. This conflict can 

be removed by inclusion of a region of higher density at depth. 

Although the core model presented (R = 400 krn and o 
c c 

-3 = 5.4 g ern ) 

is by no means unique, the amount of density increase required is 

greater than can be accounted for by self-compression of a homo-

geneous moon for any reasonable elastic moduli and temperature 

profile. 

Second, this model may be shown to depart from isostatic 

equilibrium, even for the low-degree harmonics . We shall have 

more to say about isostasy later. 

Having established the inadequacy of a two layered model, we 

will now present a more detailed model in which the density, elastic 

moduli, and temperature are all allowed to vary more or less contin-

uously with depth. Our analyses have shown that a three-layered 

model satisfies the constraints imposed by the gravitational, 

topographic, and librational data. However, current seismic 

studies (e .g., Nakamura et al., 1974) suggest a more complex 

internal structure. The model that we have chosen has six distinct 

regions. The approximate depths to the boundary interfaces are: 

upper and lower crust, 20 and 70 krn; upper, middle, and lower mantle, 

300, 800, and 1400 krn . The core has a radius of 340 krn. The 

crustal and upper mantle interfaces correspond to seismic discontin-

uities (Toksoz et al., 1974; Nakamura et al., 1974). The middle 

and lower mantle and core are inferred from deep seismic events 

(Nakamura et al., 1974), electrical conductivity profiles (Dyal et al . , 
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1976), and thermal and compositional constraints (Brett, 1973). 

For modeling purposes the normalized radii of the interfaces are 

taken to be st = 1.00, 0.99, 0 . 96, 0.83, 0.54, and 0.20. 

Within each region the STP density and elastic moduli are 

assumed to vary linearly with depth between the values specified 

at the upper and lower boundaries. The ambient density and elastic 

moduli at each layer are then calculated from the STP values and 

the ambient temperature and pressure. 

The assumed temperature and pressure derivativies of the density 

and elastic moduli correspond in the crust to anorthoiite (Baldridge 

and Simmons, 1971), in the mantle to forsterite, and in the core 

to pyrite (Skinner, 1966 ; Birch, 1966). The STP density and bulk 

modulus of the core are those estimated for an Fe-FeS eutectic 

composition (Brett, 1973; Brett and Bell, 1969; King and Ahrens, 1973). 

The crustal density profile is from Cast and Giuli (1972), and the 

elastic moduli were chosen to duplicate a suitable average of the 

crustal velocity profile as given by Toksoz et al., (1974) . 

The lunar temperature profile is imprecisely known, particularly 

in the deep interior (e.g., Toksoz and Solomon, 1973). We have 

0 0 assumed surface and central temperatures of 250 and 1900 K, respec-

tively, and have treated the actual temperature distribution with 

depth as a variable determined by the parameter n in (2.14) . The 

value ultimately used was n = 4 . 0. 

A family of models was generated by varying the density and 

elastic moduli at the mantle region interfaces (S = 0.96, 0.83, 0.54, 



TABLE 2.3 

LUNAR INTERI OR STRUCTURE MODEL 

Pressure, -3 
\ ' p , vs , 

~ Depth, km Temper ature, "K kbar p, g em K, Mbar (J kD s-1 k::: s-1 

Uoper Crus t 

1.00 0 250 o.oo 2.703 0 . 410 0-250 5.22 3. c;: 
0.99 20 315 0 . 76 2.703 0.410 0.250 5.22 3 . 0: 

Lower Crust 

0 . 99 20 315 0.76 2. 852 0.651 0.293 6.12 3. 3l 
0.96 70 499 3.19 2.950 0.769 0 . 296 6.52 3.51 

Upper Mz!l:le Ul 
1-' 

0.96 70 499 3.19 3. 371* 1.222* 0.246* 8.11 4 .71 
0.83 300 1117 14.57 3.382* 1. 234* 0 .275* 7.89 4.39 

Middle Mantle 

0.83 300 1117 14.57 3.408* 1.234* 0.275* 7. 89 4 . 39 
0.54 800 1760 34.36 3.397* 1.691* 0.420* 7.80 2. 89 

Lower Mantle 

0. 54 800 1760 34.36 3.399* 1. 691* 0.420* 7.80 2.89 
0.20 1400 1897 48.13 3. 424* 1. 745* 0.443* 7.68 2. 46 

Core 

0.20 1400 1897 48.13 5. 209 1.400 0.500 5. 18 0.00 
0.00 1740 1900 52.95 5 . 223 1. 423 0 . 500 5 . 22 o.oo 

*Parameter which was varied i n search for acceptable model. 



52 

and 0.20) subject to the constraints that (1) the STP values of p, 

K, and Poisson's ratio cr (3K - 21J.) I (6K + 21J.) are all nondecreasing 

with depth and (2) K and a are continuous across the interfaces at 

~ = 0.83 and 0.54. The STP values of p, K, and a at intermediate 

points are found by linear interpolation, and the ambient values 

of these parameters are found, as they were before, from the ambient 

temperature and pressure. These perturbations are performed until 

a model is found which has the desired mean density and moment as 

well asP and S wave travel times. The resultant temperature, 

pressure, density, bulk modulus, Poisson ratio, and seismic velocity 

profiles of such a model are given in Table 2.3 . Table 2.4 gives 

the moments of the density distribution M (n = 0, 1, .. . , 8). The 
n 

seismic travel time as a function of epicentral distance for the 

model is compar ed with observed t eleseismic data (Nakamura et al., 

1974) in Figure 2.2. The seismic phases shown are identified according 

to the nomenclature usually applied to the earth (Jeffreys, 1959). 

TABLE 2.4 

MOMENTS OF DENSITY DISTRIBUTION M n 

n M n M n M n n n 

0 3.7409 3 3.3101 6 3.2496 

1 3.4247 4 3.2875 7 3.2322 

2 3 . 3433 5 3 . 2 6 79 8 3 . 2156 

Observed values a re M2 3.3437 ± 0.0016 and M
4 

3.2858 ± 0.0211. 
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FIGURE 2.2 - Lunar seismic travel times. Curves represent model 

calculations; circles represent data (Nakamura et al., 1974). 
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We tentatively interpret the P wave arrivals near 6 = 150° as 

rays diffracted around the core and the weak arrival at 6 = 168° as a 

PKP
2 

phase (not shown in the figure) due to a rapid decrease in 

seismic velocity at the mantle-core interface. 

A comparison of the STP density and elastic moduli with those 

of olivine and pyroxene (Chung, 1970; Nakamura et al., 1974) reveals 

that a mineral assemblage consisting largely of olivine (80- 85% 

forsterite) and some pyroxene is consistent with the upper mantle 

model . The increase in density and bulk modulus with depth is 

consistent with an increase in CaO, Ti0
2

, and/or Al
2
o

3 
(Simmons and 

Wang, 1971; Anderson, 1975). 

Given values for the mean crustal thickness and density and 

the density contrast with the mantle, we can include the higher 

harmonics of topography and g ravity in our model, solving for H 
1 

nrn 

from H 
0 

and G by (2 .7 ) and (2 . 8). We are thus able to estimate 
nrn nm 

the variation of crustal thickness over the planet on the assumption 

that all lateral density variations occur as undulations on the 

mantle-crust interface, which is at a depth of 50-60 km in the 

area of the Apollo seismic array. For the densities in our model, 

a mean crustal thickness of 70 km is required to match the seismic 

values. The resultant crustal thickness map is presented in 

Figures 2.3a and 2.3b. Wood (1973) has presented a similar analysis 

based on a more restricted data set . He inferred crustal thicknes ses 

which are systematically less than our estimates . 
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FIGURE 2.3a - Crustal thickness variations. Lunar n earside. Twelfth 

degree model. Gravity from Ferrari (1975). Assumed mean crustal 

-3 -3 
density is 2.9 gm em crust-mantle density contrast is 0.4 gm em 

and mean crustal thickness is 70 krn. 

FIGURE 2.3b - Crustal thickness variations. Lunar farside. See 

caption of Figure 2.3a. 
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The crustal thickness indicated in the mascon basins is somewhat 

of an underestimate, since the effect of a surface layer of basalt 

is ignored. Bowin et al. (1975) estimate that such a surface fill 

accounts for roughly 20% of the observed gravity anomaly. They 

estimate a mantle uplift in Mare Serenitatis of 12 km, compared to 

our estimate of roughly SO km. However, there is a factor of 2 

discrepancy between the free-air anomaly estimates used, and the 

fact that Bowin et al. are modeling only fr ee -air gravity, whereas 

we are modeling Bouguer gravity, accounts for an additional factor 

of 2 . 

The mean crustal thicknesses under different physiographic 

regions are: mascons, 30- 35 km; irregular maria, 50-60 km; and high­

lands, 90-110 km . 

Schonfeld (1977) has recently shown significant correlations 

between lunar surface chemistry and the above crustal thickness 

model. From Al/Si and Mg/Si ratios determined by x-ray fluorescence 

measurements and Mg and Fe concentrations as determined by gamma ray 

spectroscopy, he has determined that, in the non-mare regions, 

total Al 2o
3 

shows a positive correlation, whereas both total FeO 

and the MgO/FeO ratio are negatively correlated with crustal 

thickness. Though these quantities show the same type of correlation 

with surface elevation alone, their correlation with crustal thickness 

is much be tter. 

The mere existence of compositional and thickness variations in 

the crust suggests that the processes of crustal formation and 
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differentiation did not completely homogenize the surface material. 

The additional fact that these variations are mutually correlated 

requires further explanation . Recalling that magmatic differentia­

tion leads to enrichment in Al and depletion in Fe, as well as 

lowering of the Mg/Fe ratio in the surface layers (Schonfeld, 1977), 

we see that a possible model for the observed correlations involves 

the simple assumption that regions of thicker crust are more highly 

differentiated. 

As was previously mentioned, this crustal thickness model is 

not in isostatic equilibrium; i.e., the pressure at the crust-mantle 

interface varies with position about its mean value of 3.2 kbar . 

The maximum superisostatic stress, as calculated from (2.11), is 

a value, slightly in excess of 200 bars, associated with the major 

mascon basins Imbrium , Serenitatis, and Crisium. Other regions have 

smaller stresses, and the global rms stress variation is 64 bars. 

It should be noted that it is possible to produce a model which 

satisfies both topographic and gravitational data and is also 

isostatically compensated at depth. However, when such models were 

attempted, the depth of compensation of the low- degree harmonics 

approached that of the presently proposed mantle-core interface. 

Since the superisostatic stresses implied by the above model are 

close to the stresses found in the Earth, it appears more reasonable 

to accept a nonisostatic Moon . 
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E. SUMMARY 

We have presented a series of lunar models culminating in a 

six-layered model with undulations on the outer surface and at the 

crust-mantle interface. This model is consistent with all available 

topographic, gravitati onal, librational, and seismic data. 

We have concluded that the librational parameters of the Moon 

are determined primarily by surface height variations and only 

secondarily by lateral density variations and that the surface 

topography is not isostatically supported, nor is it predominated 

by a fossil tidal or rotational bulge. The largest pressure 

departures from isostasy are approximately 200 bars under the major 

mascon basins. The crustal thickness varies from 30-35 km under 

mascon basins to 90-110 km under the highlands, \vith the irregular 

maria intermediate at 50-60 km. 

All of the data considered are consistent with an anorthositic 

crust extending to a mean depth of 70 km underlain by a predominantly 

forsterite upper mantle grading into a refractory-rich lower mantle 

surrounding a pyrrhotite core. Such a composition is consistent 

with, but not uniquely specified by, our model calculations . 

We note that a smaller estimate of the mean inertial moment 

would be consistent with a larger core, which in turn would simplify 

the interpretation of the P wave arrival times near ~ = 150 and at 168 

deg, which are presently interpreted as diffracted P and PKP
2

, 

respectively. 
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III. A HARMONIC ANALYSIS OF 1-'!ARTIAN TOPOGRAPHY 

A. INTRODUCTION 

The primary objec tive of this investigation was to obtain a 

spherical harmonic representation of Martian topography of sufficient 

resolution and fidelity to be of use in performing global Bouguer 

gravity analyses. Previous harmonic analyses (Pettengill et al., 

1969; Cain et al., 1972; Christensen, 1975) have suffered from 

inadequate data coverage and insufficient model resolution. An 

improved model of Hartian global topography has been obtained by 

fitting a sixteenth degree harmonic series to occultation, radar, 

spectral and photogrammetric measurements. The data are described 

by Christensen (1975) and Wu (1975). Our analysis differs from 

Christensen's mainly in that we have attempted to compensate for 

the very uneven distribution of the data by a process of interpolation 

similar to that used in our analysis of lunar topography in Chapter I 

(see also Bills and Ferrari, 1977a). 

This chapter presents a brief discussion of the data used in the 

analysis, its spatial distribution and associated errors. The 

technique used to compensate for the irregular data distribution 

is then elaborated. The resulting harmonic estimate s are presented 

and compared with previous analyses . Some of the low degree harmonics 

and their geophysical implications are discussed separately. The 

center-of-figure displacement and the excess topographic oblateness 

receive particular attention. 
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Maps of the global topography and the Bouguer gravity anomaly 

are presented, followed by a crustal thickness map consistent with 

gravity, topography and recent preliminary Viking seismic results. 

B. DATA 

The basic data used in this analysis are identical to those used 

by Christensen (1975). They consist of occultation and spectral 

measurements from Mariner 9, and Earth-based radar data. The 

occultation measurements yield absolute distances of surface points 

from the center of mass. All the other data are only relative. 

Christensen (1975) solved for and partially eliminated the biases 

between the various reference surfaces, and thus produced a more 

unified data set. Figure 3.1 indicates the approximate distribution of 

these data, summarized according to 5° x 5° bins. An important 

aspect of this distribution is its uneven character. Only 1381 of 

the 2592 bins, representing 68.5% of the total surface area, contain 

any data. Even among these, the number and quality of measurements 

varies widely, from only one measurement per bin in some high 

latitude regions, to over a hundred measurements per bin in the low 

southern latitudes. 

Carlson and Helmsen (1969) have shown that it is the unevenness, 

rather than the sparsity, of the data distribution which causes 

the greatest difficulty in obtaining reliable estimates of harmonic 

coefficients. It is primarily in our treatment of this problem that 

our analysis differs from Christensen's. 
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FIGURE 3.la -Data distribution. Mid-latitudes. The Martian surface 

is shown divided i nto 2S92 bins, each S0 x S0
• Shading indicates 

those bins (1381) which contain at least one measurement. Photographic 

data were used to estimate elevations in the remaining bins. 

FIGURE 3.lb - Data distribution. Polar regions. See caption of Figure 

3.la. 
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In a similar analysis of lunar topography in Chapter I, we 

relied on a linear auto-regressive interpolation scheme to obtain 

estimates, in the regions without data, of the most probable elevations 

and associated errors, consistent with the known statistical charac­

teristics of the available data. This process minimizes the expected 

mean square error of the estimates, but , unfortunately, it totally 

ignores the actual topography in the unmeasured regions. Fortunately, 

in the case of Mars, we can do better . 

Wu (1975) has used essentially this same data set, in conjunction 

with photographic interpretation, to produce a topographic contour 

map of Mars. In the regions without direct measurements, the 

contours have been interpolated by photogrammetric and interpretive 

techniques. Presumably this interpolation procedure gives a faithful 

representation of the high frequency components of the topography, 

but may suffer from low frequency distortion of bias errors. 

Our complete data set thus consists of Christensen's (1975) 

data, where available, augmented by a bias corrected version of Wu's 

interpolation in the regions without direct measures. This is 

preferable to leaving large voids in the data distribution. 

All data are of the basic form R(8,w), where R is the radial 

distance from the origin, e is the latitude, and~ is the (west) 

longitude. In addition to the spherical coordinates (R,9,~), we 

will have occasion to use a Cartesian coordinate system (X
1

, x
2

, x
3

) 

with its origin at the center of mass . This system is right-handed 
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and oriented such that the x
1 

and x
2 

axes are in the equator plane 

with the positive x1 axis on the ~ 0° meridian and the positive 

x
2 

axis on the ~ = 270° meridian . The x
3 

axis lies along the rotation 

axis (positive towards north). 

C. ANALYSIS 

As discussed in the previous section, the greatest problem we 

face in the analysis of the data is compensating for their irregular 

spatial distribution . We will be interested, not only in the complete 

ensemble of harmonics which characterize the Martian sur face, but also 

in some of the low degree harmonics considered separately . Therefore 

we r equire harmonic coefficien ts which not only accurately repr e-

sent the data, but which are also optimally uncorrelated with on e 

another, consistent with the uneven data distribution. 

Given a collection of topographic data F. with associated 
1. 

standard deviation a. distributed on a sphere, 
1. 

(3 .1) 

we desire optimally uncorrelated estimates of the harmonic coefficients 

H through degree and order N. 
nm 

Our basic model is of the form 

[ 

16 n 

R( S ,q>) = R0 1 + ~~ A (9 ,co)] 
nm · 

(3 . 2) 
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where, as before 

H nm " [ ::: l " [:: l 
A (8,~) = P [sin(8)] [cos(~)] 

nm nm . ( ) s 1.n m::p 

are the normalized harmonic coefficients and surface harmonic func -

tions, respectively. A sixteenth degree model was chosen as a 

compromise between resolution and credibility, since, as the sphere 

is tesselated into a finer mesh of bins, the proportion of bins 

containing data decreases. This model resolves many of the major 

physiographic features, and in fact exceeds the resolution of any 

presently available Martian gravity model. A higher degree model 

was not utilized because of the adverse effect of the data gaps. 

For the ensemble of observations, equation (3.2) can be 

written as 

(3. 3) 

where Z. is the vector of harmonic coefficients H 
J nrn 

In this 

notation, the weighted least-squares estimator is (see e.g., Lawson 

and Hanson, 1974) 

(3 .4) 

where the weighting matrix B is the inverse of the data noise 

covariance matrix (assumed, in this analysis, to be diagonal), and 

superscript T denotes transposition. 
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To obtain uncorrelated estimates of the parameters Z., we must 
J 

diagonalize the solution covariance matrix 

E(ZZT) = [ATBA]-l (3.5) 

where E(• ) is the expectation operator. Since we are assuming 

that B is diagonal, the problem thus reduces to the optimization 

of the uniformity of the effective data distr i but ion. If we had 

data of uniform accuracy, evenly distributed over the sphere , we 

would be assured of uncorrelated estimates. However, the very 

uneven distribution of the data necessi tates further analysis. 

The approach we have taken is to r epr esent the surface of Mars, 

in each bin which contains data, by an average of those data, and, 

in the bins lacking direct measures, by elevations from Wu's (1975) 

map corrected for low frequency biases. The firs t step was to deter-

mine the weighted mean of all the data within each of the 1381 

S0 xS0 bins which contain data. We then sampled Wu's map at the mid-

point of each of the 2592 5° x 5° data bins. The map e levations 

are referenced to the equipotential surface of Jordan and Lorell's 

(1975) gravity model with mean radius R = 3382.946 km. This 

approximately corresponds to the 6.1 mb equipressure level. Absolute 

radii were thus constructed by adding the map elevations to the radii 

of the corresponding points on the equipotential. These radii were 

then expanded in a harmonic series of degree sixteen, with coeffi-

cients H 1 
• nm 

To determine the bias , if any, between the averaged data Rand 

the map radii R , we define the difference function 
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= {R(8,cp)- R( 8,cp) if (8,cp)e:D 
6H(8 ,cp) 

0 otherwise 
(3. 6) 

where D is the set of points (8,cp) enclosed in the 1381 bins which 

contain data. This difference function can be represented as 

6H=b•w (3. 7) 

the product of the true bias b (8 ,cp) times a sampling window function 

{: 
if ( 8,cp) e:D 

w(8,cp) = (3. 8) 
otherwise . 

Therefore, in a harmonic series expansion of 6H(8,cp), the coefficients 

6H nm b * w nm nm 
(3. 9) 

are convolutions of the bias function coefficients with the window 

function coefficients. 

We are unable to perform a direct deconvolution. However, since 

the detrimental effect of this convolution is greatest in the high 

degree harmonics, and since our a priori expectation is that most of 

the actual bias introduced by Wu's (1975) interpolation is of a low 

degree nature, we desire a low-pass filtered version of the difference 

function to use as our estimate of the actual bias. A candidate low-

pass filter is realized by truncating the harmonic expansion at some 

low degree N. However, this filter is rather too abrupt for the present 

purpose, and the choice of cutoff degree is somewha t arbitrary . 

There fore, we have chosen to convolve the difference function with a 

Gaussian function of angular distance y (Roberts and Ursell, 1960) 
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c:c 

G(y) = L (2n+l) e-(n)(n+l)Gl/4 p (cos(y)) 
4rr n 

(3.10) 

n=l 
with angular variance 

8 
_ 4rr 
- (N) (N+l) N = 16 

equivalent to the resolution of a sixteenth degree harmonic series. 

According to the addition theorem of spherical harmonics (see 

Appendix A) 

where 

P (cos (y)) 
n 

n 

~1 "'"' 2n + 1 L-J 
m=O 

(3 .11) 

is the angular separation between points (8,cp) and (8 ' ,cp ' ) = (8+l:l8, 

cp + 6cp). Therefore, the resul t of convolving the difference function 

with the specified Gaussian function and expanding the convolution in 

a harmonic series is 

L:!H
1 

= 6H 
run nm 

- (n) (n+l) Gl/4 
e 

where 6H is a harmonic coefficient of the difference function. nm 

(3. 12) 

Our final bias corrected harmonic coefficient estimate is thus 

H = H I + L:!H1 

nm nm nm (3 . 13) 

where H1 is a harmonic coefficient of the elevations from Wu's (1975) 
nm 

map . 
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In performing these harmonic expansions, we have used the weighted 

least-squares algorithm [equation (3 . 4)]. The weighting of each point 

was proportional to the area of its bin and inverse l y proportional to 

the variance of the measurement or interpolation: 

B .. 
lJ 

2 sin(69/2) cos(9.) 6~ 6 . . I a 2
1
. 

l lJ 

The presumed errors were a 0.3 km for the actual data and a 

for the i nterpolation. 

(3 .14) 

1.0 km 

The estimates of the normalized harmonic coefficients and their 

formal uncertainties a re presented in Table 3.1. 

D. RESULTS 

1. Low Degree Harmonics 

We will now consider the harmonics of degree zero, one and two. 

These represent the mean radius, center of figure displacement, and 

tri - axia l figure, respectively. 

The es timated mean Martian radius is R
0 

= (3389.92 ± 0 . 04) km. 

This , i n con j unction with estimates of GM = (42828 .1 ± 0.5) km3sec-
2 

(Born, 1974) and G = (667.32 ± 0.31) x lo-25 km3 sec- 2 gm-l (Heyl 

and Chrzanowski, 1942) yields an estimate for the mean density of 

-3 
0 = (3.9331 ± 0 . 0018) gm em Most of this error comes from the 

error in G. The mean densit~ in combination with the mean inertial 

moment, places important constraints on models of Martian internal 

structure and composition (see e . g ., Johnston e t al., 1974). 

We now turn our at tention to the first degree harmonics. They 

represent a di splacemcnt of the center o( fir,ure (C .F .) f r om the 



77 

TABLE 3.1 

Normalized Martian Topography Harmonics ( X 106) 

R = 3389 .916 
0 

± 0.038 km 

n m c s o (C ) a (S ) 
nm nm nm nm 

1 0 -376.0 12.7 
1 1 -!::l.l -199.8 10.3 10.6 

2 0 -1823.'7 12.2 
2 1 71.7 103.0 11.b l l. !::l 
2 2 -288.1 214.~ 10.1 10.1 

j 0 73.4 12.5 
3 1 -2 7. 7 23.4 11.? 11.4 
3 2 -J7.<; 68.1 11.3 l.1.3 
3 3 111.5 250.7 9 .9 10.0 

4 0 19. 6 12.6 
r. 1 3.0 14.3 11.3 11.3 
4 2 121.9 -6:;.2 11.3 11.3 
4 3 -109. 3 -4.2 10.9 11. 1 
4 4 -15.1 -61.0 9. 8 9.8 

5 0 -1.2 12.1 
5 1 7. 8 16.2 11.5 11.7 
5 2 -60.1 19.9 11.0 10.9 
5 3 -5.<; 45.4 11. 1 11.3 
5 ~ -14.7 -95.2 10.7 1 o. 7 
5 5 -47 . 3 17.0 9.8 9.8 

6 u 51 .7 11.8 
6 l -3.1 -64.7 11.4 11.6 
6 2 -oo.1 47.3 11.1 11.0 
6 3 -22.. 3 -22.5 10.8 10.9 
6 4 27.6 52.7 11.0 11.0 
6 5 59.0 12.1 10.5 10.5 
6 t> t:0.3 4.4 9.9 9.9 
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TABLE 3.1 (Cont 'd) 

-
n m c s u (C nm) o (S ) 

nm nm nm 

7 0 98.2 11.4 
7 1 -8.2 29.3 11.3 11.4 
7 2 48.0 -15.4 10.9 11.0 
7 3 17.7 -24.4 10.8 10.8 
7 4 14.9 5.0 10.8 10.7 
7 5 25.7 13.2 10.9 10.8 
7 6 22.6 3.6 10 .4 1C.4 
7 7 35. 1 -43.5 10.0 10.0 

B () 29.8 11.1 
8 l -9.1 35.7 11.2 11.2 
8 2 9.2 15.0 10.8 l 0.9 
8 3 15.1 16.6 10.7 10.7 
8 4 -G.6 32.6 10.7 10.6 
8 ~ 37.4 20.5 10.7 10.7 
8 6 -38.7 -15.2 10.7 10.7 
8 7 33. ~ 7.3 10.4 10.3 
ti d -28.6 5.3 10.1 10.1 

9 0 34.8 10.9 
9 1 30.6 -10.6 10.9 l 0. 9 
9 2 2 .9 ).8 10.8 10.8 
9 3 -S.7 -0.5 10.5 10.6 
9 4 4.2 15.4 10.6 10.6 
9 5 -23.8 8.1 10.6 10.6 
9 b Z.9 -'·b 10.6 10.6 
9 1 14.2 -14.0 10.6 10.5 
9 8 -JJ.1 -11.1 10.3 10.3 
9 9 -30.2 12.2 10.2 10.2 

10 0 13.6 10.8 
10 1 20. 5 -1.0 10.7 10.7 
10 2 9.9 -21.7 10.7 1C.7 
10 3 2 5. c; 9.1 10.~ 10.5 
10 4 2.3 -21.0 10.5 10.5 
10 5 -18.0 3 . 0 10.6 10.6 
10 b l. 9 -14.3 10.5 10.5 
10 7 -12.2 -12.9 10.6 1 o. 5 
10 8 -8.1 -9.3 10.5 1 c.5 
10 9 -25.6 -12.7 10.3 10.3 
10 10 6.7 13.5 10.3 10.3 
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TABLE 3 . 1 (Cont ' d) 

n m c s o (C ) o(s ) nm nm nm nm 

ll 0 -2.1 10.6 
11 l 1. 6 -8.6 10.6 10.6 
11 2 - 2 .4 - 8 .9 10.6 1 C.6 
11 3 -2. 5 -14. 3 10.5 10.5 
11 4 -1.3 -9.3 10.5 10.5 
11 5 3.3 -8 .6 10.5 10.5 
11 6 11.G 10.8 10.5 10.5 
11 1 1.5 -1.4 10.5 10.S 
11 d 0.2 11.4 10.5 10.5 
11 9 -12.3 -4.4 10.4 10.5 
11 .1. 0 12.1 14.6 10.4 10.4 
11 11 6.<; -8.7 10.3 10.3 

12 0 23. 3 10.6 
12 1 2.5 -13.8 10.5 10.5 
12 2 8.17 -6.0 10.5 10.5 
12 3 -18.1 -0.8 10.5 1o. 5 
12 4 -6.o -7.1 10.5 10.5 
12 5 ~- 1 o.s 10.4 10.4 
12 0 0.1 -11.3 10.5 10.5 
12 7 2.9 11.7 10.5 10.5 
12 ti 0.8 -10.2 10.5 l o. 5 
12 '} 3.8 2.S 10.5 10.5 
12 10 15.9 17.7 10.4 10.4 
12 ll -8.7 -3.6 10.4 10.4 
12 12 5.3 -o.1 10 .4 10.4 

13 l) -5.2 10.5 
13 1 2.2 19.1 10.5 1 o. 5 
1 3 2 -2.9 -3.3 10.5 10.5 
13 .3 10 .o 10.8 10.5 lC.? 
1 3 4 4.4 1 .1 10.5 10.4 
13 s 1. 8 3.4 10.4 10.4 
13 6 -2.9 3.4 10.4 10.4 
13 7 -3. 2 - 8 .4 10.4 10.4 
13 d -2.1 - ti .1 1 0 .4 1(.).4 
13 9 0.6 2.9 10.4 10.4 
13 10 t3. 1 0.8 10.4 10.4 
13 11 -1.0 -9.3 10.4 1C.4 
13 12 -3.t: 3.1 10.4 10.4 
13 13 -z 1. 5 -4.6 10.4 10.4 



n m 

14 0 
lit 1 
14 2 
14 3 
14 It 
14 5 
14 6 
14 7 
14 t) 

14 9 
14 1u 
14 11 
14 12 
14 13 
14 14 

15 l) 

15 1 
15 2 
15 3 
15 4 
15 5 
15 6 
15 7 
15 8 
15 9 
15 10 
15 11 
15 1~ 
15 13 
15 14 
15 15 

c 
ru:1 

4.7 
-4.0 

-10.1 
5.8 
3.1 
3.1 
1.4 

-10.1 
0.7 
0.3 

-1. 4 
-18.3 

4. t: 
5.S 

-1.7 

-4.6 
-3.3 
-3.3 

-10.6 
-2.5 
-3.3 
-o. 2 
-2.6 

1. 0 
-6.C 
-4.4 
-8.0 

5.5 
1.9 

-3.t 
5.0 
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TABLE 3.1 (Cont'd) 

s 
nm 

8.8 
5.2 

-3.2 
5.1 

-3.4 
7.2 

- 2.0 
7.4 
1.7 

-4.0 
-11.7 

2.4 
1. 8 

10.2 

-1 2 .2 
4.8 

-10.6 
4.7 

-6.2 
-1.1 
-0.5 

0.4 
12.3 
-0.3 
4.0 
1.0 
1.6 

-6.3 
5.8 

a( c ) 
nm 

a( s ) 
nm 

10.5 
10.5 10.5 
10.5 10.5 
10.5 10.5 
10.4 10.4 
10.4 10.4 
10.4 10.4 
10.4 10.4 
10.4 10.4 
10.4 10.4 
10.4 10.4 
10.4 10.'t 
lO.'t 10.4 
10.4 10.4 
10.4 10.4 

10.4 
10.4 10.4 
10.4 10.4 
10.4 10.4 
10.4 10.4 
10.4 10.4 
10.4 10.4 
10.4 10.4 
10.4 10.4 
10.4 10.4 
10.4 10.4 
10.4 10.4 
10.4 10.4 
10.4 10.4 
10.4 10.4 
10.4 10.4 
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TABLE 3.1 (Con t ' d.) 

n m c s n (C ) r) (s ) 
nm nm llln nm 

16 0 15 .1 10.4 
16 l 10.0 1. 5 10.4 10.4 
16 l 11.0 - 5 . 0 10.4 lU.4 
16 3 5.8 - b .6 10.4 10.4 
16 4 -o.u -6.4 10 .4 10.4 
16 5 1. 6 0.1 10 .4 10.4 
16 6 -11.1 -10.8 10.4 10.4 
16 7 0.9 5.5 10.4 10.4 
16 t3 1.5 -7. 2 10.4 10.4 
16 9 4.9 8 .8 10.4 10.4 
16 10 c. 7 9.6 10.4 10.4 
16 ll 2.1 -9.2 10.4 10.4 
16 J.2 -10.7 11.0 10.4 10.4 
16 13 4. 4 10.8 10.4 10.4 
lb 1<t -5.9 -10.6 10.4 10.4 
16 15 1.2 18.1 10.4 10.4 
16 16 -5.3 -6.7 10.4 10.4 
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center of mass (C.M.). In terms of rectangular coordinates, the 

location of the C.F . is 

LlXl cl 1 - 0.047 ± 0.061 
' 

LlX2 Ro -sl , l = 1.173 ± 0.062 km (3 . 15) 

6X
3 cl,o - 2.208 ± 0.075 

or in terms of spherical coordinates 

[ ~] 
[ (2. 501 ± 0.073) 

:J = (62~0 ± 3~ 7) 

(272~3 ± 3~0) 

where, as before, the origin is at th e C.M. This offset, by definition, 

implies a departure from spherical symmetry in the internal density 

distribution. 

Love (1911) investigated the problem of gravitational instabil-

ities in an initially homogeneous planet . He found that if the 

rigidity is sufficiently small, the initial homogeneous configuration 

will be unstable, and the mass will redistribute itself into a more 

stable state. Any such displacement of mass can be expressed as a 

sum of spherical harmonics. The critical rigidity for the onset 

of instabi l i ty is a decreasing function of harmonic degree. Thus, 

as a plane t is heated during accretion, or subsequently by radio-

genic process es, and the rigidity decreases, the first mode to 

become unstable is that of degree zero which is characterized by 

purely radial disturbances. In an extreme case, this may involve 

radial differentiaion into a core, mantle and crust. The next 
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mode to become unstable is the first degree, which represents 

hemispherical disturbances . Thus~ it is not surprising that all 

known differentiated terrestrial planets have sizable 

C.F. offsets. Lingenfelter and Shubert (1973) have 

discussed large scale thermally driven convection as a possible 

mechanism for the production of these offsets. 

Both the Earth and Mars display a dichotomy in physiography 

as well as topography. Balmino et al., (1973) have determined the 

distribution of oceanic and continental regions, as well as the 

global topography of the Earth. The Earth's C.F. offset is toward 

(41~6 N, 34~7 E) , whereas the center of the continental province is 

(46° N, 27° E). In a coordinate system centered at the latter point, 

much of the boundary between continental plates and oceanic plates 

occurs between colatitudes of 90° and 110°. Much of the vo lcanic and 

seismic activity of the Earth occurs in this transition zone, with 

an additional clustering near the pole. 

The surface of Mars can also be divided into two broad physio­

graphic regions: a high, heavily cratered southern region and a low, 

northern region which contains smooth plains as well as the Tharsis 

and Elysium volcanic provinces . The direction of the C.F. offset 

(62°S, 272°W) is fairly close (y ~ 30°) to the center of the southern, 

heavily cratered region (55°S, 335°W) as determined by Mutch and 

Saunders (1976). In a coordinate system centered at the latter 

position, the boundary between cratered uplands and smooth lowland 



84 

plains approximately follows the equator. There is also a concentra-

tion of volcanoes in the colatitude band between 120° and 150°, with 

another grouping near the pole . In this regard, Mars is obviously 

very similar to the Earth. 

Mutch and Saunders (1976) have suggested that this distribution 

may be due to convective motions under the control of rotational 

forces. In fact, they argued that the axis of this shifted coordinate 

system may have coincided with the rotation axis prior to the 

structural uplift in the Tharsis region. Though global scale 

convection may well have been responsible for the physiographic and 

tectonic dichotomy of Mars, and the symmetry axis may have temporar i l y 

coincided with the rotation axis, it appears doubtful that there 

was any causal connection between these events . The argument 

is as follows: 

The influence of rotation on the pattern of convection in the 

Earth's mantle has received considerable attention (see e . g., 

Knopoff, 1964; McKenzie, 1968) and is known to be negligible at present. 

In general the effect of rotation can be estimated in terms of the 

Taylor number (Roberts, 1968) 

_ ( 20 R~ )2 

/Y'--v (3 .16) 
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where R
0 

is the mean radius (em), 0 is the rotational angular 

-1 2 - 1 
velocity (sec ) and~ is the kinematic viscosity (stoke= em sec ). 

This is essentially the square of the ratio of Coriolis to viscous 

forces. For rotational effects to be significant, the Taylor 

number must exceed unity. For the Earth and Mars, the values are 

27 2 26 2 . 
3.6 x 10 /~ and 2 . 6 x 10 /~ , respect~vely. Weertman (1970) 

has e stimated the effective viscosity (at a constant strain rate) as 

a function of depth for the present-day Earth and Mars. In both 

planets, the viscosity i n itially decreases with depth, due to 

20 
increasing temperature, goes through a minimum (~ ~ 2 x 10 stokes) 

and then increases due to increasing pressure. Even during initial 

planetary differentiation, the effective viscosity was likely no 

18 
less than 10 stokes (Tozer, 1972). This minimum viscosity is still 

great enough to preclude the r ota tion from influencing the pattern 

of convection . 

Furthermore, in situations where Coriolis forces do dominate 

convective motion, the induced flow is often highly inclined to the 

rotation axis (Roberts, 1968). The motion invoked by Mutch and 

Saunders (1976) is parallel to their purported rotation axis. 

We now consider the shape and orientation of the tri-axial 

figure represented by the second degree harmonics. The principal 

axes of this figure are: 
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x' 
1 (3394. 5 ± 0.3 km, 0~ 7 ± 0~2N, 18~5 ± 0~8W) 

x ' = (3399.2 ± 0.3 km, 2~0 ± 0~ 2S, 108~4 ± 0~8W) (3 .17) 2 

x' (3376 .1 ± 0.4 km, 8~9 ..!.. 0~ 2N, 128~8 ± 6~3W) 3 

These differ somewhat in orientation from the principal inertial 

axes, as determined from the second degree gravity harmonics 

(Sjogren et al. , 1975): 

x" 
1 

(O~ON, 15~ 7 ± l~OW) 

x" 2 (O~ON, 105~ 7 ± l~OW) (3 . 18) 

x" 
3 

(90~0N). 

This misalignment, if confirmed by subsequent analysis, implies some 

lateral density variation. If such variation occurs as undulations 

on the crust-mantle interface, the principal axes of the tri-axial 

mantle must be skewed in the opposite direction. We shall pursue 

this idea further in a subsequent section . First, we will consider 

the problem of Mars' excessive oblateness. 

When subjected to a disturbing potential characterized by 

harmonic coefficients ~ , an elastic sphere suffers a surface distor­
nm 

tion 

H' = h ~ 
nm n nm 

(3. 19) 

and this redistribution of mass gives rise to a further disturbance 

of the potential 

G' 
nm k ~ n nm 

The Love numbers h and k , for a homogeneous, incompressible 
n n 

e lastic sphere are g iven by (Munk and MacDonald, 1960) 

(3 .20) 



where 
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kn = 2(n
3
-l) (l+N(~)!-1/Pc) 

= ( 2n 3+ 1) kn h 
n 

N(n) 

p 
c 

= 2(n+l)
2 

+ 1 
2n 

= 
3GM2 

8TTR 4 
0 

(3.21) 

is the hydrostatic pressure at the center of the sphere and ~ is the 

elastic rigidity. See Appendix E for a more complete discussion of 

these matters. 

The disturbing potential induced by r o tation is, in t erms o f 

on-normalized harmonics, 

m 

3 (3.22) 

where 0 is again the rotational angular velocity and m is the ratio of 

centrifugal to gravitational accelerations on the equator. We shall 

use the usual geodetic terminology and denote by "gravjtation" 
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the attraction due to the mass of a planet and by "gravity" the 

combined effect of gravitation and rotation. Thus the rotational 

contributions to the surface topography and to the shape of the 

gravity equipotential are 

_ S ( l \ l- rlRO 
3J - 2 1+19~/4Pc/ 3GM --

I 

H 2 0 
' 

2f 
__.£ 

3 

and (3.23) 

respectively. Here fg and fd are the geometric and dynamic flatten­

ings. They are defined as the fractional difference between equa-

torial and polar radii of the actual topography and the gravity 

equipotential surfaces, respectively. 

If the rotation of Mars has been essentially uniform for a 

period longer than its second degree visco- elastic relaxation time 

r '
2

, where (Darwin, 1879) 

-1 -1 
and~= ov is the dynamic viscosity (po~se =gem sec ), we should 

expect the topography to conform to an equipotential surface. Since 
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-3 
~2 , 0 (0) = -1.523 x 10 , we would expect fo r a homogeneous, incom-

pressible fluid Mars: 

I 

H 2,0 -3.808 X 10-3 

I 

G 2 0 = 
' 

-2.285 X 10-3 

However, we find 

H2 ,0 = (- 4.078 ± 0.027) x 10- 3 

and Sjogren et al. (1975) have found 

(-1.958 ± 0 . 021) X 10-3 

(3. 24) 

Thus the topographic oblateness is too grea t , and the gravitational 

oblateness is too small for Mars to be homogeneous and hydrostatic. 

The radial variation of density inside Mars is easily incorporated 

into the hydrostatic theory. In the traditional notation, the flat -

tening of a hydrostatic configuration is (Da rwin, 1900) 

(3. 2 5) 

where C is the polar moment of inertia. The homogeneous case we 

previously considered corresponds to C = 2MR;/s and therefore 

f 
g 

f = Sm 
d 4 

(3. 2 6) 

Since the rate of precession of Mars• rotation axis is not known, 

all present estimates of the moment of inertia are obtained from 
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the dynamic flattening according to the hydrostatic theory. The 

discrepancy between dynamic and geometric flattening makes this 

approach rather suspect. This problem has a long and interesting 

history. We will digress now to a brief discussion of the principal 

points. 

The earliest determination of the dynamic flattening of Mars 

appears to be that of Struve (1895), who analyzed the precession of 

the orbits of Phobos and Deimos. His result was fd 5.210 X 10-3 

-3 
(G

2
,
0 

= -1.951 x 10 ). Subsequent analyses (Table 3.2) of the 

motions of both natural and artificial satellites have essentially 

confirmed this result. The situation is very different regarding 

the geometric flattening (Table 3.3). Though the early estimates 

varied widely, they tended to be large . Darwin (1877) pointed out 

that the best estimates available to him exceeded even the flattening 

predicted for a homogeneous fluid planet. A summary of the best 

Earth-based telescopic determinations is given by de Vaucouleurs 

(1964). The mean of 32 polar radius determinations spanning the 

period 1890-1958 yields 3378 ± 3.6 km. The mean of 68 measurements 

of the equatorial radius from the period 1879-1958 is equivalent to 

3414.2 ± 3.6 km. The corresponding flattening is f 
g 

(10.6 ± 0.5) 

10-3 . It is interesting that these early polar radius estimates 

essentially agree with present estimates whereas the equatorial 

radius was consistently overestimated. It has been suggested 

(de Vaucouleurs, 1964) that the excess apparent equatorial radius 



TABLE 3.2 

Mars Dynamic Flattening 

3 3 
Source fd X 10 c

2 0 
x 10 , 

Struve (1895) 5.210 - 1.951 

Woolard (1944) 5.215 -1. 955 

Wilkins (1967) 5.208 ± 0.030 -1.950 ± 0.020 \.0 
t-' 

Sinclair (1972) 5.232 ± 0.005 -1.966 ± 0.003 

Lorell et a1. (1973) 5.223 ± 0.015 -1.960 ± 0.010 

Born (1974) 5.223 ± 0.027 -1.960 ± 0.018 

Sjogren et al. (1975) 5.220 ± 0.032 -1.958 ± 0.021 

Reasenberg et al. (1975) 5 . 216 -1.955 



TABLE 3.3 

Mars Geometric Flattening 

X 103 3 
Source f Hz O X 10 g , 

---

Schur (1896) 21.5 ± 1. 7 -14.3 ± 1.1 

Hartwig (1899) 8.6 ± 1. 5 -5.7 ± 1.0 

Trumpler (1924) 10.4 ± 0.6 -7.1 ± 0.4 "' N 

Camichel (1954) 12.0 ± 4 . 7 -8.0 * 3.1 

Do1lfus (1972) 7.9 * 1.5 -5.3 ± 1.0 

Cain et a1. (1972) 5.39 ± 0.15 -3.59 ± 0.10 

Christensen (1975) 5.90 -3.93 

Present work 6.117 ± 0.041 -4.078 ± 0.027 
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may be an atmospheric effect . In any event, it gave rise to a 

number of interesting theories which attempt to explain an actual 

excess oblateness. Darwin (1877) considered, but discarded, the 

idea that Mars is in hydrostatic equilibrium, but has a density which 

decreases with depth. Urey (1950) hypothesized an equa t orial belt 

of isostatically supported mountains . Lamar (1962) proposed instead 

that the elevation of the surface increases gradually from the poles 

to the equator, and that this increase is isostatically compensated 

by variation in the crustal thickness. Runcorn (1967) suggested that 

second order convection cells might produce the excess flattening. 

This unexplained oblateness was one of the greatest Martian geophysi-

cal problems prior to spacecraft exploration (Loomis, 1965). 

More recent radar (Pettengill et al., 1969; Downs e t al. , 1975) 

and spacecraft (Cain et al., 1972; Fjeldbo et al., 1972) observations 

have confirmed a smaller mean equatorial radius, and the problem of 

excess topographic oblateness has fallen into relative obscurity. 

The prime geophysical problem has become the support, isostatic or 

otherwise, of the Tharsis ridge and associated volcanic constructs 

(Carr, 1973). Phillips and Saunders (1975) investigated the isostatic 

support of three low degree harmonics (H2 2 , H
3 2 and H

3 3
) which 

' . ' 
contribute significant ly to the Tharsis uplift. They conclude 

that the Tharsis plateau and the adjacent Chryse and Amazonis low-

lands are geologically young and only partially compensa t ed, . whereas 

the isostatic support of oth er, older areas is essentially complete. 

Recently, Reasenberg (19 77 ) has attempted to estimate the influence 
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of the Tharsis region on the topographic and gravitational oblateness. 

His basic premise is that,prior to the uplift of Tharsis, Mars was in 

hydrostatic equilibrium (fg = fd). By excising Tharsis and the 

adjacent lowlands, he obtains an estimate of the equilibrium gravi-

tational oblateness G2 o(E) = (-1.829 = 0.012) X l0-
3

[fd = (5.027 , 

± 0.018) x 10-3]. He then argues (but not convincingly) that the 

minor (rather than the mean) equatorial radius should be used in 

computing the topographic flattening of the pre-Tharsis Mars. 

Thus, based on Christensen's (1975) topography model, he finds 

-3 
H2,0(E) = 3.418 X 10 [fg 5.127 x 10- 3 ]. When calculated this · 

way, the topographic and dynamic flattenings are nearly equal. If 

this result is correct, it is profound not only in the historical 

context of showing that the solution to the older excess oblateness 

problem is to be found in studying Tharsis, but also because this 

hydrostatic flattening estimate gives a substantially reduced estimate 

for the moment of inertia of Mars. Previous estimates of G2 0 
= , 

(-1.966 ± 0.003) x 10-
3 

(Sinclair, 1972) yield C/MR; 0.3768 ± 

0.0003, whereas Reasenberg's estimate yields C/MR; = 0 .3660 ± 0.0010. 

This has important implications for the internal structure of Mars. 

Most internal models (Jeffreys, 1937; Bullen, 1949; MacDonald, 1962; 

Anderson, 1972; Johnston et al., 1974) have found a high density 

mantle and a small core. This new estimate for the moment of inertia 

would imply a lower mantle density and a larger core. This would 

appear to be consistent with a more extensively differentiated 

interior than has previously been supposed. 
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Another effect which could contribute to the discrepancy between 

the geometric and dynamic flattenings is a possible secular decrease 

in the rotation rate of Mars. Hartmann et al. (1975) have discussed 

possible rotation histories for Mars and suggest on dynamical 

grounds that it rotated more rapidly in the past. Binder and 

McCarthy (1972) have suggested a despinning of Mars based on tectonic 

arguments. 

The influx of debris from the asteroid belt could have slowed 

Mars' rotation at a rate which could be significant over geologic 

time. In order to account for the entire excess flattening as a 

fossil bulge left over from a period when Mars rotated more rapidly, 

h m s 
the ancient rotation period would be 82050 sec(22 44 30 ) as opposed 

to the present period of 88642.67 sec (24h 37m 22~67). The slowing 

of Mars to its present rotation rate by accretion of asteroidal debris 

would have involved the accumulation of a debris mantle some tens 

of kilometers thick. This would presumably tend to mask any excess 

oblateness due to former spin states. However, some degree of 

despinning by this or other mechanisms may have occurred. 

2. High Degree Harmonics 

In common wi th the Earth (Balmino et al ., 1973) and the Moon 

(Bills and Ferrari, 1977a), the topography of Mars is dominated by 

the low degree harmonics. Furthermore, the rate at which the total 

topographic variance per degree decreases with increasing degree is 

* similar for all three planets. Dimensionless degree variances V(H ;n), 

of equipotentially referenced Martian topography and the 
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associated error variances W(H;n) are displayed in Figure 3 . 2. 

These variances are given by: 

* 

n 

* --L H*T Hi< V(H ;n) 
nm nm 

m=O 

cr(H ) 
nm 

(3. 2 7) 

where H = H - G 
nm nm nm 

We note that the topographic variances decrease 

approximately as 

* *· ~ V(H ;0) 
V(H ,n) - (n) (n + 1) 

We further discuss this relationship and its implications in the 

next chapter. We also note that, in the case of uniformly accurate 

data, i.e . , a[R( 8 ,cp)] = a ' 0 
the degree error variances are (Heiskanen 

and Moritz, 1967): 

W(H;n) = 2n + 1 ( C1 o) 2 

4n R 
0 

(3. 28) 

The small departures of our calcul ated error variances from this 

simple form are due to the irregular data distribution. 

In order to compare our results Hnm' \vith those of Christensen 

(1975) H1 
, we have calculated the degree correlation coefficients 

nm 

(Kaula, 1967) 

Q ( 1) V (H, H 
1 

; n) ~-' H , H = __ ....:.....>._:.:....<...:._ "--'--.:.....<--_ ---::-:-:-

n 1 ]1/2 
[ V (H ; n) V (H ; n ) 

(3 . 2 9) 
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FIGURE 3.2 - Martian topographic variance spectrum. The actual 

dimensionless variances, V(H;n), of the equipotentially referenced 

topography follow quite well the relationship V(H;n) = V(H;O)/(n)(n+l). 

The error variances, W(H;n), are approximated by 4n W(H;n) = (2n+l) 

2 
(oo/Ro) . 
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In Figure 3.3, we present these corre lation coefficients and the 

critical values for various confidence levels. The correlation is 

seen to be very good. In computing the correlation, we have corrected 

two typog raph ical errors in Christensen's original paper. The 

correct values for c4 , 1 and c4 , 2 are ten times the values listed 

(E. J. Christensen, personal communication , 1977). 

Figure 3 .4 is a map of Martian topography derived from our 

harmonic model. The map elevations are referenced to the 6.1 mb 

equipressure surface. This surface will be referred to as the 

reference equipotential or areoid. It is approximated by 

R
1 

(6,q)) 

4 n 

+ ~ cos
2

(8) + ~ ~ 
n=2 m=O 

G T A (8 )] nm nm ,q) (3. 30) 

where R' = 3382.946 krn (Wu, 1975) and G are the coefficients of 
o nm 

Jordan and Lorell's (1975) gravity model. The rotational contribu-

tion can be expressed as an increase in the reference oblateness, 

G~ 
0 

= c
2 0- m/3, and an increase in the reference mean radius , 

' ' 
R

11 = R
1 (1 +m/3) = 3388.099 km . The heights are thus H(8 ,q)) = 

0 0 

R(8,q)) - R1 ( 8,q)), where Rand R 1 are given by equations (3.2) and 

(3.30) respectively. 

As expected, we find a considerable increase in resolution over 

Christensen's (1975) eighth degree model. In fact, our model resolves 

most major features within areas of adequate data coverage. This was 

a major ob j ective in the construction of the model and permits 

comparison with equivalent resolution gravi ty models for the purpose 
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FIGURE 3.3 - Correlation coefficients: topography with topography. 

Comparison of present model with Christensen's (1975) model. Confi ­

dence levels indicate probability of specified correlation between 

Gaussian random variables . 
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FIGURE 3.4a -Martian topography. Mid-latitudes . Sixteenth degree 

model. Elevations relative to the 6.1 mb areoid. Main contour 

interval is 2 km (solid line). Selected 1 km contours indicated 

(dashed line) . 

FIGURE 3.4b - Martian topography . Polar regions . See caption of 

Figure 3 . 4a . 
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of determining the internal density. ~ve will now attempt to do just 

that. 

As a first step, we wish to know what correlation, if any, 

exists between the topography and gravity of Mars. For that purpose, 

we have calculated degree correlation coefficients 8 (H,G) for 
n 

n ~ 10 of our topography model with the gravity models of Sjogren 

et al. (1975) and Laing (1977, private communication). These are 

presented in Figure 3.5. It is seen that the low degree correlations 

are significant. Thus, the low degree gravity harmonics appear to be 

primarily due to surface height variations and only secondarily due 

to density anomalies. The decrease in correlation of the higher 

degree harmonics is presumably due to the relatively poor determina-

tion of the relevant coefficients, but may reflect an actual property 

of the planet. 

The observed gravitational anomalies may be ascribed to contri-

butions from both lateral density variations and surface topography. 

The topography of a planet with crustal density p and mean density 
0 

p gives rise to gravitational potential perturbations (MacRobert, 1967): 

where 

~~ (R, 8 ,co) = 
GM 
R 

0 

( 2n+l)otJG = H 
3 nm Po nm 

The difference between"the observed gravity and the topographic 

(3.31) 
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FIGURE 3.5 - Correlation coefficients: topography with gravity. 

Comparison of present topography model with gravity models of 

Sjogren et al. (1975) and P . A. Laing (1977, personal communication). 

The low degree harmonics are significantly correlated . 
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correction,known as the Bouguer anomaly, is thus a measure of the 

extent of lateral density variation. 

Figure 3.6 is a map of the Martian Bouguer anomaly evaluated on 

the areoid. This is calculated as the vertical component of the 

gradient of the Bouger anomalous potential on the reference surface 

(Heiskanen and Moritz, 1967) 

10 n 

:~ LL [R:r (n- 1) 
where 

B 
nm 

0 

G 
nm 

n=l m=O 

t:.G 
nm 

(3. 32) 

-3 
and we have assumed a surface density p = 2.9 gm em The series 

0 

is truncated to tenth degree because of limitations of the gravity 

model (Sjogren et al., 1975). 

As was anticipated in our discussion of the correlation coeffi-

cients, the low degree harmonics of the gravitational field are 

produced primarily by surface height variations , and only secondarily 

by lateral density variations . However, it is interesting to note 

the large negative anomalies associated with Phlegra Montes (3S0 N, 

200°W), near the Elysium volcanics, and with Tharsis Montes (S0 N, 

110°\-7) another high volcanic province. This latter feature is 

flanked by prominent positive anomalies in Amazonis Planitia (S 0 N, 

160° W) and Chryse Planitia (20° N, 40° W). Other significant positive 

anomalies are in the low regions of He llas Planitia (3S0 S, 290° W) 
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FIGURE 3.6 - Martian Bouguer gravity anomaly. Tenth degree model. 

Evaluated on areoid. - 2 Contour interval is 100 mGal = 0 . 1 em sec . 

Free-air gravity from Sjogren et al. (1975). 
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and Isidis Planitia (l5°N, 270° W). Most of the prominent negative 

anomalies are associated with topographic highs, and conversely. 

This implies some degree of isostatic compensation. To ascertain the 

degree of compensation, we need to know how the crustal thickness 

varies with elevation and location on the surface of Mars. 

Recent seismic results (Anderson et al., 1977), although tentative, 

can be interpreted as indicative of a crustal thickness of 15 km in 

the vicinity of the second Viking landing site (47~89N, 225~86W). 

We can estimate the variation of crustal thickness implied by the 

Bouguer anomaly map on the assumption that all lateral density 

variations occur as undulations on the crust-mantle interface (Khan , 

1977; Bills and Ferrari, 1977b). These undulations are determined 

from the relation 

( 2n+l) Pc = p H (o) + b. o Sn+3 H(l) 
3 nm onm nm (3. 33) 

where H(o) and H (l) define the shape of the surface topography and 
nm nm 

crust-mantle interface, respectively. The mean normalized radius of 

the interface is S = R/R • The crustal density and density contrast 
0 

across the interface are p and b.p, respectively. These latter 
0 

three parameters are unknown. 

We have examined a number of cases and will discuss three of 

them in particular. For this discussion, we have assumed an upper 

- 3 
mantle density of p + t:-,p = 3.5 gm em (Anderson, 1972). We then 

0 

-3 
consider the three cases p = 2 . 7, 2. 8 and 2. 9 gm em , which span the 

0 
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range of probable crustal densities. The mean crustal thickness was 

varied in each case until a 15 km thickness was obtained at the Viking 

landing site. The value s ob tained are 34, 36 and 40 km respectively. 

The resulting map for the high crustal density case (p = 2.9 gm cm- 3) 
0 

is shown in Figure 3.7. The maps corresponding to the other cases 

are qualitatively very similar. However, when the crustal density 

is low and the c r ust -mantle dens i ty contrast is accordingly high, 

smaller amplitude undulations on the crust-mantle interface are 

required to produce the observed Bouguer anomalies. For example, the 

maximum crustal thickness was obtained in all cases under Tharsis . 

These maxima were 61, 67, and 77 km, respectively. Likewise , all three 

models exhibited a minimum crusta l thickness under Hellas (10, 9 and 

8 km). 

Because the Viking crusta l thickness estimate (Anderson et al., 

1977) is based on a single anomalous event that cannot be proven to 

be of internal or igin and may, in fact, be a wind event, we have also 

considered models based on the assumption of zero crustal thickness in 

Hellas. These yield minimum mean crustal thickness estimates for a 

given density regime. For the densities previously considered, 

-3 
p = 2.7 , 2.8 and 2.9 gm em , the mean crustal thickness estimates 

0 

are 23, 24 and 32 km, respectively . The corresponding crustal thick-

ness estimates under Tharsis are 50, 58 and 68 km, and at the Viking 

landing site 5, 6 and 7 km, respectively. 

None of these models is completely isostatic . However, it was 

found that the mean squared supe r- isostatic stress at the c rust 
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FIGURE 3 . 7 - Martian crustal thickness. Tenth degree model. Gravity 

from Sjogren et al. (1975). 
-3 

Assumed crustal density is 2 . 9 gm em 

- 3 
crust-mantle density contrast is 0.6 gm em and mean crustal 

thickness is 40 km. Second Viking landing site (47~89N, 225~86W) 

is indicated by dot. Crustal thickness at that location tentatively 

e stimated from Viking seismic data (Anderson et al., 1977) . 
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mantle interface was least for models with low crustal density, 

thin crust and high density contrast across the interface. The range 

of models we considered indicate that Tharsis is 60-65% compensated, 

whereas, Hellas is 95-105% compensated. A complete discussion of 

Martian isostasy is beyond the scope of this paper. 
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IV. TOPOGRAPHIC VARIANCE SPECTRA OF THE EARTH, 

MOON AND MARS: AN EQUILIBRIUM MODEL 

A. INTRODUCTION 

The surface topography of a solid planet or satellite may be 

thought of as the superposition of two components; one deterministic, 

the other stochastic. The nature of the deterministic component 

(due to influences such as rotational and tidal deformation) has 

been extensively studied and is rather well understood (see e.g., Kopal, 

1960; Chandrasekhar, 1969). In such analyses, the solid planets are 

usually modeled as fluids in equilibrium with simple deformational 

forces possessing axial or radial symmetry. The attention this 

deterministic approach has received is well deserved, since for 

most planets and satellites, the basic spherical shape, as well as the 

principal departures from sphericity, are adequately understood in 

this paradigm. However, on a local or even regional scale, the 

topography is dominated by its stochastic component. Though the 

individual constituent features of this topography (ridges, mountains, 

craters, etc.) have received attention previously and are fairly 

well understood in isolation, it is the random superposition of many 

such features , each basically deterministic, which produces the 

stochastic nature of the topography. 

A general lack of understanding and appreciation for this aspect 

of the problem is well illustrated by the statement of Cook (1973) 

that "the shape of the solid surface of the Earth is very irregular 

and of no scientific interest ." 
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The principal objective of this chapter is to isolate the 

stochastic components in the topography of the Earth, Moon and Mars 

(with brief reference to Venus) and gain a better understanding 

of their properties. We will find interesting statistical 

similarities among these rather diverse surfaces. In 

particular, we will consider the hypothesis that the variance 

spectra of all solid planets have the form 

V(H ;n) V(H;O) 
(n) (n+l) (4 .1) 

for all n such that R
0

/ n ~ 2000 km, and that furthermore, the 

individual harmonic coefficients H . are Gaussian random variables 
nm~ 

2 
N(O,a ) with mean u 

n 

a 
n 

2 

0 and variance 

V(H;n) 
2n + 1 

(4. 2) 

For comparison with later observations, in figure 4.1 we present 

a topographic variance spectrum constructed according to this hypothesis. 

For each harmonic degree n: 1 ~ n ~ 30, the 2n + 1 harmonic coeffi-

cients H . were assigned values drawn from a population of Gaussian 
nm~ 

N(O,a
2

) random variables. The fluctuations of the resultant 
n 

sample variances relative to the population variances are distributed 

as x2
/(2n + 1), i.e., chi-square over degrees of freedom with 2n + 1 

degrees of freedom (see Appendix B) . The critica l values for the 

90% confidence level are indicated. There is thus a 10% chance that 

the sample variance will fall outside these limits if the population 

variance is as specified by the model. The value of V(H;O) = 10-
6 

was chosen to be representative of actual planetary values. 
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4.1 Simulated spherical topographic variance spectrum. Harmonic 

coefficients are N(O,cr 
2

) Gaussian r andom variables with n 
2 -6 a = 10 /(n)(n+l). Points are sample variances . Solid 

n 

line is theore tical variance. Dotted lines indicate crit ical 

values f or 90% confidence level. 
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In the remainder of the chapter, we will discuss some observa-

tions relevant to this hypothesis , and then examine a numb e r of 

possible explanations for this peculiar behavior. Lastly, we will 

consider some of its implications and point ou t some directions for 

future research. 

B. OBSERVATIONS 

1. Variance Soectra 

Earth 

Vening-Meinesz (1951) was apparently the first t o call a ttention 

to the fact that the Earth's topographic variance spectrum, as obtained 

from Prey's (1922) h a rmonic analysis, is approximated by equation 

(4.1) at least for harmonic degrees n: 1 ~ n ~ 16. We shall therefore 

refer to this ideal form as the Vening-Meinesz spe ctrum. In a later 

paper (Vening-Meinesz , 1962), he showed that a n unpublished harmonic 

analysis by G.J. Bruins, with n ~ 31 , furth er supports and extends the 

observed range of validity of his initial observation . Balmino et al. ---------
(1973) have performed a harmonic analysi s complete through degree 

and order 36 . In Figure 4.2, we present the deg ree variances from 

this analysis compared with the Vening-Meines z spe ctrum. The value 

of V(H;O) was adjusted to optimize the match with the actual spectrum. 

We will often loosely refer to V(H;O ) as the total variance . 

However, this is only strictly true for the pure Ven i ng-Meinesz 

spectrum. I n most cases, C(H;O) ~ R 
2 

V(H; O) (see Appendix D) . 
0 
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It is eas ily seen that the largest departures from the Vening­

Meinesz s pectral form are for th e first few harmonic degrees. Though 

the confide nce limits for the low degree harmonics are quite wide, it 

still seems significant that for the Earth, Mars a nd Venus, th e 

l ow degree variances are cons i stently deficient relative to our 

expectations. We shall return to th is point later. First , we want to 

find out what happens at the high frequency end of the spectrum. 

For sufficiently high spatial frequencies, sph erical harmonic 

analysis become s computationally impractical. For small enough 

areas, the curvature of the earth may be neglec t ed and a simple 

planar Fourier analysis is quite adequate. Severa l such analyses 

have been pe rformed over a wide spec t ral range (see e . g . , Cox and 

Sandstrom, 1962 ; Krause and Menard , 1965; Bretherton, 1969; Warren , 

1973; Pike and Rozema , 1975). Recently, Bell (1975) has compiled 

the results of several previous analyses and, in conjunction with 

his own analysis of the oceanic abyssal hills province, has shown a 

rather i mpressive agreement between various spectral e stimates over 

a cumulative spatial frequency range corresponding to harmonic 

degrees n: 1 ~ n ~ 300 ,000. Even more impressive is the fact that 

these spectral estimates approximate t h e Vening -Meinesz spectrum 

over essentially the enti r e range (see Figure 4 .3). 

Since the topography of the Earth i s dominated by the continent­

ocean dichotomy, particularly in the low degree harmonics , it is 

possible to investigate the history of the Earth's topography 

spectrum from reconstructions of previous continental configurations 
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4.2 Earth - Spherical topographic variance spectrum. Harmonic · 

coefficients are from Balmino et al. (1973). Points are 

computed degree variances. Solid line is Vening-Meinesz 

- 7 
spectrum: V(H;n) = 2.6 x 10 /(n)(n+l). Dotted lines 

indicate critical values for 90% confidence level. 

4.3 Earth - Composite topographic variance spectrum. Adapted from 

Bell (1975). Used by permission. The smalle st scale features 

~arrnonic degree n = 3 x 10
5

) have dimensions L = 2n R
0
/n ~ 120 m. 
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(Dietz and Holden, 1970). A prelimi na r y analys is of this s ort 

indicates a shift of spectral energy from t h e l owest degrees (1 ~ n ~ 3) 

to the higher harmonic s as the continents have dispersed. This ma y be 

relevant to the previ ously mentioned fact that l ow degree variances 

are deficient r e lative t o the higher harmoni cs. 

Moon 

Due to the paucity and uneven distributi on of lunar t opographic 

data, the variance spe ctrum calculate d f r om harmonic coefficient 

estimates is not as r epresentative of the true variance spectrum 

as was the case for th e Earth . Neverthe l e ss , recent harmonic 

analyses (Goudas, 1971; Chuikova, 1976; Bills and Fe rrari, 1977a) 

indicate that lunar t opography is also dominated by the low degr ee 

harmonics, and even suggest that the spectrum may approximate the 

Vening-Meinesz form. See Figure 4 . 4 f or a comparison of the spectrum 

from Bills and Ferrari (1977a) with the Vening -Me ine sz theoret ical 

spectrum. Though the agreement is no t outstanding, we should no t 

reject the hypothesis that the Moon has a t opographic variance 

spectrum similar to the Earth's until we examine some further 

evidence, particularly considering the amount of spectral distor t ion 

induced by the irregular data di~tribution - in spite of the e ff or ts 

described in Chapter I to compensate f or this effect. 

As an independent estimation of the variance spectrum a nd to 

extend it to higher harmonic degree, a simple one-dimensional Fourier 

analysis has been performed on complete orbital segments of laser 
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altimetry data f rom Apollo missions 15, 16 and 17 (Kaula et al. 1972, 

1973, 1974). The resultant spectra were then averaged and are 

displayed in Figure 4.5 . This technique of averaging raw spectra 

provides statistical stability at low harmonic degree, and is 

equivalent to smoothing the spectra with a Bartlett window (Jenkins 

and Watts, 1968). Since the effective domain of these data is a 

circle rather than a sphere, the appropriate comparison spectrum is 

V (H ;n) V(HjO) 
2 

n 

rather than equation (4.1) (see Appendix A). It can be seen that, 

(4 . 3) 

at least in the range 1 ~ n ~ 32, the variance spectrum of the Moon 

conforms to the Vening -Meinesz pattern. 

A further, more stringent test of the applicability of the Vening-

Meinesz spectrum to the Moon at high harmonic degrees involves com-

parison of r.m . s. slopes at various slope lengths with model values. 

As is shown in Appendix G, the mean square slope between points a 

distance L R
0

y apart on a planet characterized by a Vening-Meinesz 

spectrum is 

s2
(y) = 4 V(H;O) 0n [l+sin(y/2)]/l (4 .4) 

which for y << 1, reduces to 

s2
(y) • 2V(H;O)/y (4. 5) 

Thus, given an estimate for V(H;O), we can estimate values for 

the r.m.s. slope angle 
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4.4 Moon - Spherical topographic variance spectrum. Harmonic 

coefficients are f rom Bills and Ferrari (1977a). Points are 

computed degree variances. Solid line is Vening- Meinesz 

spectrum: - 6 V(H;n);;;:: 1.5 x 10 /(n)(n+l) . Dotted lines indicate 

critical values fo r 90% confidence level. 

4 . 5 Moon - Circular topographic variance spectrum. Points are 

averaged degree variances from Fourier analysis of Apollo 

laser altimetry data. Solid line is model variance spectrum: 

- 6 2 
V(H;n) = 1.5 x 10 /(n) . This is the circular analog of the 

Vening-Meinesz spectrum . 
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@(L) -1 
tan [S (L/R

0
)] (4. 6) 

at any linear separation L. In Figure 4.6, we compare this estimate 

with photogrammetrically detennined r.m.s. slopes for typical 

highland and mare regions of the Moon over the range 25 m ~ L ~ 1000 m 

(Moore and Tyler, 1973). The agreement with these observations could 

be made much better by reducing the value of V(H;O), however, we 

have used the value estimated from the spectrum in Figure 4.5. Thus, 

we are extrapolating from n ~ 32 ton= 2nR / L ~ 40,000 (L =250m). 
0 

We note that our predicted slopes are intermediate between the highland 

and mare values and actually parallel the mare values . The highlands, 

though rougher than the maria at all slope lengths considered, 

exhibit weaker dependence of slope angle on slope length. This agree-

ment between observed and predicted slopes is a strong confirmation 

of the validity of the Vening -Meinesz spectrum as applied t o the Moon . 

Mars 

The earliest topographic spectral estimates for Mars appear to 

be those of Pettengill et al. (1969), who perfonned a Fourier 

analysis of elevations along the 22° N latitude parallel as determined 

from radar observations. They first argued from terrestrial topo-

graphy data that "the Fourier spectrum of the topographic variation 

around any great circle (e . g ., the equator), or near-equatorial 

parallel of latitude, will tend to approximate the spherical harmonic 

spectrum." They then showed that their estimated topographic 
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4.6 Moon - Slope analysis . Points are photogrammetrically determined 

r.m.s. slopes on different lunar terrain types from Moore and 

Tyler (1973). The solid line indicates theoretical slope angles 

given by equations (4.5) and (4.6) using the value V(H;O) = 
-6 1 .5 x 10 determined from Figure 4.5. A representative 

slope length (L = 250 m) corresponds t o a harmonic degree of 

n = 2n R /L = 40,000. 
0 
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variance spec t rum for Mars , which covered the r ange 1 s: n s: 16 , is 

quite similar t o the Earth's . 

As was true of the lunar spectrum , the Mart i an variance spectrum 

as computed from spherical harmonics (Figur e 4. 7) is somewhat 

corrupted by the irregular data dis t ribu t ion, in spite of efforts 

such as those described in the last chap t er. Nevertheless , ha rmoni c 

analyses by Christensen (1975) , with 1 ~ n s: 8, and by Bills and 

Ferrari (1977c), with 1 s: n s: 16 (see Chapter III ) , have confirmed that 

the spectral behavior discovered by Pettengill et al. (1969) is 

indeed a feature of the entire planet rather than merely characteristic 

of a single latitude band. 

As of this writing , r.m.s. slope de terminations from Viking 

photogrammetry are still unavailable (H . Masursky, personal communica­

tion) for comparison with predicted slopes , as was done for the Moon. 

Venus 

The only topographic data presently avai labl e for Venus come 

from radar observations (Smith et al., 1970; Campbell et al ., 1972; 

Shapiro et al., 1973) and are essentially restricted to the sub-Earth 

points. A preliminary Fourier analysis (1 s: n s: 16) of the data fr om 

Shapiro et al. (1973) , which have complete longitude coverage but are 

severely limited in latitudinal extent , sh ows a distinct tendency 

toward decreas i ng variance with increasing deg ree (Figure 4.8 ) . 

Though the spec tn.m1 is somewha t "noisy" , th e general trend is 

surprisingly consistent with the Vening-Meine~z model. 
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4.7 Mars- Spherical topographic variance spectrum. Harmonic 

coefficients are from Bills and Ferrari (1977c). Points 

are computed degree variances. Solid line is Vening-Me inesz 

spectrum: V(H;n) = 5.5 x 10- 7
/(n)(n+l ) . Dotted lines 

indicate critical values for 90% confidence level. 
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4 . 8 Venus - Circular topographic variance spectrum. Points are 

degree variances from Fourier analysis of near equatoria l 

radar altimetry data of Shapiro et al. (1973). Solid line 

is mode l variance spectrum: -7 2 V(H;n ) = 1.1 x 10 / n . 

the circular analog of the Vening-Me inesz spectrum. 

This i s 
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2 . Isotropy 

Ano ther aspect uf our original hypothesis wa s that, apart from 

rotational and tidal effects, the topography should be essentially 

random. A convenient and i nformative way to ch eck thi s con jecture is 

to measure the i sotropy of the surface. As is developed in Appendix G, 

a necessary condition for isotropy i s that the mean square east-west 

slope at zero slope l eng th 

S~(O) 

equals the mean square north- south slope at ze ro slope length 

n=l 

where the degree tilts are 

T (n) 
~ 

± [(2n ~ 1) {m) J Hn! Hnm 

m=O 

T (n ) 
~ 

(4. 7) 

(4. 8) 

(4 . 9) 

A sufficient condition f or mean square isotropy is the equality of 

the degree tilts for each harmonic degree. We thus define a 

degree isotropy parameter 

a = T8 (n) / T (n) 
n ~ 

(4 .10) 
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In Figure 4 . 9a, \ve present the isotropy spec trum for the random 

harmonic model previous ly discussed. Figures 4 . 9b- d are 

isotropy spectra calculated from spherical harmonic models of the 

topography of the Earth (Balmino e t al . , 1973), Mars (Bills and Ferrari, 

1977c) and the Moon (Bil ls and Ferrari, 1977a), respectively. For 

the Earth, the topography was measured relative to the geoid, and 

thus the primary effect of rotation has been removed. For Mars 

and the Moon, the original hannonic analyses a r e for spherically 

r eferenced elevations, but for this analysis, the second degree 

t e nns have been corre c ted for r otat ional effec ts. For all three 

planets, we find quite consistent isotropy, with the largest departures 

for the low deg rees. 

3. Simulation 

As a further, s omewhat subj ective criterion Eor judging the 

va lidity of our primary hypothesis that the topography of a solid 

planet or satellite is well modeled by zero-mean Gaussian random 

harmonic coefficient s with a Vening-Meinesz variance spectrum, we 

would expect that a contour map produced from these coefficients 

would appear qualitatively similar to equivalent resolution maps of 

actual plane t ary surfaces. Figures 4 .10a-c are topographic maps 

generated from harmonic representations of the Noon , Mars and 

Earth, all truncated at degree n = 12. For comparison, Figure 4.10d 

is a map of the random topography represented by the harmonic 

coeff icients used in producing Figures 4.1 and 4.9a, also truncated 



146 

4.9a Simulated isotropy spectrum . Points are ratios a = T~(n)/T (n) 
n c <;o 

of east-west degree tilts r
8

(n) to n orth -south degree tilts 

T (n) as defined in equa tion 4.9. Harmonic coefficients are 
<;o 

the same random variables used in generating figure 4.1. 

Solid line represen ts perfect isotropy a = 1.0. 
n 

4.9b Earth - Isotropy spectrum. Harmonic coefficients are from 

Balmino et a l. (1973). See caption to Figure 4 . 9a. 

4.9c Mars - Isotropy s pectrun1 . Harmonic coefficients are from Bills 

and Ferrari (1977c). See caption to Figure 4 . 9a. 

4.9d Moon - Isotropy spectrum. Harmonic coefficients are from Bills 

and Ferrari (1977a). See caption to FigurP 4.9a . 
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at n = 12. All of th e se figures are Mercator projections and cover 

the l atitude range -75° ~ 8 ~ +75° . Th e contour interval in each 

case i s 1. 0 km. The mean radius of the random planet \vas arbitrar ily 

taken to b e R0 = 3000 km. This, in conjunction \vith the assumption 

that V(H ; O) 10-
6

, determines the physical variance of the surface . 

A de cision as t o the adequacy of this simulation, being rather 

sub jective, will be left to the judgment o f the reader. 

4. Summary 

In summary, we find tha t on a ll planets for which we have 

s u fficient da t a to ch eck our hypothesis the stochastic component of 

the t opography i s ver y nearly isotropic and the degree variances 

de crea s e wi t h incr e a sing harmonic deg ree consistent with the Vening -

Meines z spectrum (equation 4 . 1) . Furthermore, we find that the 

l a r ges t r e liably determined depa r tures from this basic model are 

fo r the low degree h armonics. In f act, the point of incipient 

de parture a ppears t o cor respond roughly to a scale leng th L = R
0

/n 

of 1700- 2100 km (Ear th : L = 6380/3, Venus: L=6050 /3, 

Mar s : L = 3390/2, Moon : L = 1740/1 ). 

Si nce this Vening - Meinesz spectral form is appl icable over such 

a wi de r a nge of fea t u r e sizes a nd on planets sub ject to widely 

differ ing geomorphic proces ses, it appears to ref lect some fundamental 

prop e rty of the terrestrial planets. We wil1 now attempt to gain 

a b e tt e r theoretical understanding of this spectrum in hopes of 

being able to explain its ubiquity . 
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4.10a Moon - Topographic contour map. From h a rmonic coefficients of 

Bills and Ferrari (1977a) truncated at deg ree N = 12. Mean 

radius R = 1737.5 km. Contour interval t H = 1.0 km. Solid 
0 

lines are above reference level, dashe d lines are below it. 

M . . . h 1 . d - 7 5° ...- 8 ...- 7 5° • ercato r proJect~on w~t at~tu e range ~ ~ 

4. l Ob Mars - Topographic contour map. From harmonic coefficients of 

Bills and Ferrari (1977c) truncated at degree N = 12 . Hean 

radius R 
0 

3389 . 9 km . Heights are referenced to 6 .1 mil libar 

l evel. See caption to Figure 4 . lOa 

4.10c Earth -Top ographic contour map . From harmonic c oefficients 

o f Balmino et al. (1973) truncated at degree N = 12. }1ean 

radius = 6371 . 0 km . Heights are r efe renced to geo id. See 

caption to Figure 4. lOa 

4 . lOd Simulated topographic contour map. From harmonic coefficients 

used in figures 4.1 and 4 . 9 truncated at degree N = 12 . Assumed 

mean radius R = 3000 km. See caption to Fi gur e 4. lOa 
0 
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C. ANALYSIS 

In this section, we will attemp t to understand why planetary 

surfaces are characterized by the Vening -Meinesz spectral form 

(equ . 4.1). We will first consider (and subsequently reject) a 

specific physical mechanism championed by Vening -Meinesz himself -

thermal convection. We will then examine some of the geometrical 

implications of this spectral form. This will l ead to a completely 

equiva lent reformulation of the problem i n terms of a particular 

stochastic process rather than the variance spectrum. We then 

turn our attention to a number of physical systems which have 

analogous spectral forms to see how energy is transferred from one 

spectral component to another. Next, we will consider a fairly 

specific model for the topography which involves superposition of 

random pulses. We will see that the size-frequency distribution of 

pulses largely determines the spectral form of the resulting surface. 

Finally, we will consider a model which supposes only that there is 

a degree of equilibrium between erosive and constructional processes 

acting on the surface . In terms of simplicity of assump tions and 

verisimilitude of results, we consider this the most satisfactory 

explanation of the Vening -Meinesz spectral form. We close the section 

with a conjectured characterization of planetary surfaces in terms of 

continuity, fixed variance and maximal entropy . 
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1. Convection 

Vening-Meinesz (1951) not only provided the earliest reference to 

the shape of the Earth's topographic variance spectrum, but also 

offered the earliest explanation. He argued that both the general 

pattern given by equation 4.1 and the principal departures therefrom 

are related to thermally driven convection in the mantle. The 

increased variance at degrees 5, 10 and 15, as best seen in the slope 

variance spectrum 

V(S;n) = (n)(n+l)V(H;n) 

were taken to be manifestations of a predominantly fifth degree 

convection pattern. 

(4.11) 

Walzer (1971, 1972a . b) has invoked c. ccr .plex pattern of convective 

cells to explain the Earth's topographic variance spectrum over the 

range 1 ~ n ~ 31. Convective models have also been proposed for the 

Moon (Runcorn, 1967) and Mars (Wells, 1971). 

Coode (1966, 1967) showed that in a harmonic analysis of the 

locations of active and passive oceanic ridges and continental rift 

zones, the aseismic ridges have a major spectral peak at degree 4 and 

a secondary peak at degree 9, whereas the active seismic ridges have 

major and secondary spectral peaks at degrees 5 and 10 respectively. 

He interpreted this as evidence of a change in the dominant mode of 

mantle convection from degree 4 to 5. Runcorn (1965) further 

extended this notion in claiming that the core of the Earth has 

been steadily growing and that, as it has grown, the stable mode of 
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mantle convection has been increasing. In particular, he claims that 

the most recent change of mode (from 4 to 5) occurred in the Permian 

(200 My. ago) and initiated the present era of continental drift. 

Convection may very well influence the topography of the Earth 

and other planets. In fact, McKenzie et al . (1973) have found both 

positive relief features and positive gravity anomalies associated 

with rising convective flows in their numerical simulations. However, 

to infer the modes of convection in a planet from wiggles in its 

topographic or gravitational variance spectrum seems unjustified. 

Furthermore, even if convection could explain part of the spectrum , 

if a single explanation is sought for the form of the variance 

spectrum on all planets and over the ent i r e observed spectral range, 

then convection is clearly inadequate. 
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2. Geometry 

There are s everal interesting geometrica l aspects of planetary 

topography which relate directly to the var iance spectrum . A brief 

consideration of the geometry will give us better insight into the 

significance of the Vening-Meinesz spectral form; and , in fact , 

will enable us to reformulate our basic problem in differen t , but 

equivalent terms . We will be better able to say what the topography 

is like, but not necessari l y better ab l e to say why. 

A common observation is that even those landscapes which appear 

quite smooth when viewed from a fa r , are often quite r ough at a 

small scale. If we suppose this behavior to continue t o arbitrarily 

small scale, we could characterize the surface as continuous but no t 

differentiable. Based on the analyses of Beers and Dragt (1970) 

and of Beers (1972), we show in appendix A that a function on a sphere 

which is continuous, but not differentiable , has a variance spectrum 

which is asymptotically proportional t o 1/(n)(n+l). Thus, if we 

could explain why planetary surfaces appear t o be continuous, but not 

differentiable , we would at least understand the asympto tic behavior 

of the variance spec trum. However, we would still have the p roblem 

of why the low degree harmonics behave this way. 

Another simple model is obtained by assuming that the surface is 

random and that the slope at any point is uncorrela ted with the slope 

at any other point. In this case, the slope covariance is a delta 
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function (Yaglom, 1962; Parzen , 1962) (see Appendix D) 

C (S; y) = S ,dy) 
0 

and the slope variance spectrum is constant 

V(S;n) = S 
0 

Using the relationship between topographic v~riance and slope 

variance in equation (4 .11), we see that this implies 

s 

(4.12) 

(4 . 13) 

V(H;n) = (n) (~ + l) (4.14) 

The spherical Wi ener process (see Appendix C) is the only stochastic 

process with continuous realizations which has these properties. \.Je 

may, in fact, reformulate the main problem of this section. \.Je may 

now ask: why are the surfaces of pl anets and satel lites reali zations 

of a spherica l Wiener stochastic process? We will return to this 

notion later. 

Vening-Meinesz (1951) made another interesting observation 

concerning the variance spectrum. He claimed that it is a result 

of the topography being composed of "features with elevations roughly 

proportional to their horizontal dimensions." As we shall see later 

when we consider a random pulse model for the topography, this direct 

proportionality is a sufficient , but not necessary, condition for the 

desired spectral form. However, the idea was a good one and can be 

developed further . 

The increments 

6F(g,g+y) = F(g+y)- F(g) (4. 15) 

of a random function F: G - R are said to be self-similar with 
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with parameter ~ if, for any y > 0 and any g € G 

6F(g,g+ y ) = y-(:3 6F(g,g+(:3y) (4 .16) 

where the indicated equality means that the two random variables are 

identically distributed. The traditional Wiener process has self-

similar increments with parameterS= 0.5. Mandelbrot (1967, 1975b, 

1977) has introduced the concept of fractional Weiner processes WS 

which have self-similar increments with 0 ~ S ~ 1. He also claims, 

on the basis of various landscape simulations , that the topography 

of the Earth is a realization of a fractional Weiner process with 

S ; 0.65. However, we note that the variance spectrum of WS on 

a circle is proportional to n- (2S + l), and the observed variance 

spectrum of the Earth (Figure 4.3) is closer to n- 1 · 9 (S = 0.45) 

than 

with 

to n-2 ' 3 (S = 0.65) 

n-
2

· 0 (S = 0.5). 

and within probable errors is consistent 

Another interesting aspect of the Wiener and fractional Wiener 

processes is the extreme irregularity of their realizations. 

Generalizing a result of Mandelbrot (1975a) (see Appendix C) , we 

suggest that if D[G] is the dimension of its parameter set, the 

dimension of a realization of WS(g) satisfies 

D[WS(g)] = D[G] + S (4.17) 

Since for our topography model D[G] = 2 (the surface of a sphe re), 

we conclude that the dimension of the surface of the Earth is 

2 + S ~ 2.5. It is thus intermediate between a traditional surface 

(D = 2) and a solid (D = 3). 
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3 . Energy Redistribution 

There are a number of physical systems which might serve as 

models for various aspects of the process or processes responsible for 

the observed topographic variance s pectra of the terrestrial planets. 

A common feature o f the systems we will consider is that energy is 

typically fed into th e system over some characteristic range of 

spatial wavenumbers and, through non- linear interactions, this 

energy is r edistributed across the spectrum - typical l y to high 

wavenumbers where it is dissipated. 

Elastic Energy Reduction 

Shaham and coworkers (Pines and Shaham, 1973; Au and Shaham, 1974) 

have suggested an elastic energy reduction principle for planets 

according to which "the direction of irreversible crustal motions must 

always be such as to reduce the overall elastic energy ." They fu r ther 

suggest that an important source of elastic energy, at l east for 

the Earth , is excess oblateness due to tidal despinning . As is sho~vn 

in Appendix F, if we suppose that the total topographic variance is 

fix ed, a shift of variance across the spectrum to higher wavenumb er 

will in fact result in a decrease in both elastic and gravitational 

energy. However, at this point we have no reason to suppose that 

variance is conserved. 
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Two Dimensional Fluid Flow 

There is a system in which analogs of both topographic variance 

and slope variance are conserved . Non-divergent two dimensional 

inviscid fluid flow on a sphere may be characterized by a 

stream function $ in terms of which velocity v and vorticity w are 

If the vorticity is expanded in a harmonic series 

oo n 

w(8,cp) == L L 
n==l m;:;Q 

T 
w 

nm 
A (8 ,cp) 
nm 

(4 .18) 

(4 .19) 

(4.20) 

then the kinetic energy E and enstrophy F (mean square vorticity) may 

be expressed as (Baines, 1976), 

tJ (V'¥)
2 

dS 

00 

E TT 2: E 
n 

n==l 

(4. 21) 

t[ (i1(1)
2 

dS 

00 

F TT 2: F 
n 

n==l 

(4 . 22) 

where 

F 
E 

n 
n (n)(n+l) (4 . 23) 

and 

n 

F 2: T 
w w n nm nm 

(4 . 24) 

m==O 
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These quantities are clearly analogous to topographic variance and 

slope variance, respective ly. 

Fjortoft (1953) has shown that for a system in which both energy 

and enstrophy are conserved, any energy transfer across the spectrum 

must take place between components with (at least) three different 

values of n. Also if one of three component s is a source or sink 

for both of the other two, its n value must be between those of the 

latter. The net redistribution of energy across the spectrum in 

such a case is rather limited . 

However, in a turbulent two dimensional flow, enstrophy 

systematically cascades to very small scales, at which it is dissipated 

(Bretherton and Haidvogel, 1976). The kinetic energy , on the other 

hand, remains at large scales and the total kinetic energy is constant. 

In fact, there is an inverse energy cascade. Since the total energy 

co 

E TIL 
n=l 

E 
n 

remains constant while the enstrophy 

co 

F TI L 
n=l 

(n)(n+l) E 
n 

decreases, the energy must become more concentrated at low n. 

The obvious analogy is to a system in which we maintain a fixed 

(4 . 25) 

(4.26) 

topographic variance while reducing the mean square slope. In such 

a system there will be an inverse topographic variance cascade, 
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the slope spectrum will become flatter and the topography spectrum 

will approach the Vening-Meinesz form. We shall return to this 

notion later. Incidentally, turbulence in three dimensional flows 

is more complicated (Hinze, 1959; Mandelbrot, 1975a). 

4. Random Pulse Model 

We have seen that the spherical Wiener process is an exce llent 

model for planetary surface topography. We now hope to gain some 

further insight into this situation by considering representations 

of random processes by superposition of random pulses. The general 

theory of such phenomenological models for random processes is dis­

cussed by Middleton (1951). 

Halford (1968) has shown that processes with variance spectra 

proportional to n - a over an arbitrarily large range of frequencies 

can be generated from a physically realizable class of pulses only 

if 0 ~ a~ 2. Bell (1974) has recently considered the inverse 

problem of inferring the pulse size-frequency distribution from 

the variance spectrum of the process and an assumed pulse shape. 

We shall only be directly concerned with the forward problem. 

As a model for a broad class of stochastic processes on the 

sphere, we may consider the superposition of a collection of zero­

sum binary pulses AkZ(y,yk) with random amplitudes, widths and 

locations. These pulses represent individua l topographic features 

and the conservation of mass requires that 
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where y is angular distance and~= cos(y). See Appendix A f or more 

about these pulses and Appendices A and D for discussion of several 

theorems mentioned in the following . 

To facilitate the calculation of th e covariance function and 

variance spectrum of this model, we will first consider two simpler 

scenarios. This will enable us to obtain valuable intermediate 

results. The first configuration is a Poisson distribution of unit 

delta functions with an average of a impulses per unit area: 

(4 .28) 

where ( 8k ,~ ) is the location of the k-th impulse . By a simple 

application of Campbell's theorem, equation (D .23), we find that the 

covariance function is 

C(F;y) =a 5(y) 

and therefore the variance spectrum is 

V(F;n) = ll C(F;J..L) Pn (J..L) dJ.l 

-1 

=a 

(4. 2 9) 

(4. 30) 

Obviously, this is not a very good model for topography, since the 

spectrum is flat. 
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The next model we consider consists of a Poisson distribution 

of zero-sum pulses with amplitude A, width y and an average density 
0 

of a pulses per unit area. We use the relocation property of convolu-

tion.with a delta function to express this configuration as : 

G(8,cp) =L Ao Z(y , yo) * 6 (8- ek, cp - cpk) 

k 

(4.31) 

The variance spec trum is, by the convolution theorem, equation (D . 25), 

V(G;n) =[A Z (!J )]
2 

V(F;n) o n o 

4 a A2 2 n 1-lo 
[ 

pI ( ) 

o (l - 1-lo) (n) (n + 1) r (4. 32) 

This is a better model in that the variance spectrum does generally 

decrease with inc r easing degree, but it is still unsatisfactory since 

the spectrum is quite irregular. Superimposed on the overall decrease, 

there are nearly periodic variations which correspond t o fluctuations 

in P 1 (1-l) with varying n. For y = 0, the spectrum is still flat. 
n o o 

However, as the pulse width increases the spectrum begins to fall 

off more rapidly and the fluctuations get closer together and 

generally more pronounced . Finally when y = n/2, all the even 
0 

degree harmonics are identically zero. 

Finally, we consider the case where the amplitudes and widths of 

the pulses are also random: 

H(S,cp) = L Ak zcy, yk) * oce - ek,cp - ~) 
k 

(4. 33 ) 

This will maintain the overall ·>pectra l decrease, but smooths out the 
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the fluctuations. If p(A,~0 ) is the joint probability density of 

pulse amplitudes and widths, then we can write the variance spectrum 

as 

V(H;n) 
2 

p(A,\1 ) (A Z ~ )) 
o n o 

(4. 34) 

We can simplify this somewhat by noting that 

where p(u ) is 
0 

A
2 ~ ) is the 

0 

We thus find 

V(H;n) 

(4 . 35) 

the marginal probability density of pulse widths and 

-1 
mean square amplitude of pulses of width y =cos ~ ). 

0 0 

1 

af 
-1 

1 

p(~o) [A(\lo) Zn(~o)J duo 

4a 

(4 . 36) 

[(n)(n+l)]
2 / P (~ ) [A (u ) (1 - ~ ) P' (u )12 d\1 o o o n o ~ o 

In order to make further progress with this integral, we will need 

to make some assumptions concerning the distribution of pulse sizes. 

A particularly interesting distribution results from the assumption 

that the product 
1 - I.L 

0 

1 + I.L 
0 

is a constant. The resulting variance spectrum is 

(4.37) 
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1 

V(H;n ) 
4~ f (l - i)[P' (U ) ]

2 
du 

[ (n) (n + 1)] 
2 o n o 0 

-1 

(4. 3B) 
Ba~ 

(n) (n + 1) 

since 

1 

J (1- 2)[P'( )]2 
Uo n 1-lo du 

0 
2(n) (n +l) (4. 39) 

-1 

If we n ow increase the average density of pulses a and decrease 

the average pulse size in such a way that the product as r emains 

constant, we obtain a good approximation to a spherical We iner 

process. The covariance function and t ota l va riance are : 

00 

C (H; y) 2: V(H;n) P [cos(y)] 
n 

n=l 

00 

2: 
P [cos (y)] 

= BaS n 
(n) (n + 1) (4. 40) 

n=l 

BaS ( 1 - 2 P/ll [ 1 + sin ( y I 2 ) J) 
C (H; 0) BaS 

In the next few paragraphs, we will attempt t o jus tify the 

assumed pulse size- fr equency distribution used in the above derivation. 

Perhaps the strong est justification comes simply from the f act that 

it produces the observed variance spectrum, and , within the context 

of this random pulse model, it is the only way to do so. However, we 

should try to find out more about why i t \vorks. Paraphrasing Halfor d 
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(1968), "the crucial problem is to find the physical circumstances 

2 
which cause the product p(~ ) A (~ ) t o vary approx imate ly as 

0 0 

(1 + ~ )/ (1- ~ ) ; the shape of the perturba t ion is probably irrelevant." 
0 0 

We will therefore consider both A2 (~ ), the r e lation between mean 
0 

square pulse amplitude and width or horizontal extent, and p(~0 ), 

the pulse width-frequency distribution, in a number of different 

contexts. 

Energy Equipartitioning 

Bell (1975 ) has presented an in teresting model which essentially 

argues for constancy of the product 

(4 . 41) 

based on putative eqnpartitioning of gravitational potential energy 

amongst variou s hill sizes. His analysis was se t on a l ine rath e r 

than a sphere, and thus ignores bo th the curvature and two-dimensiona l 

nature of the domain; however , nei th er of these are serious problems. 

In essence, he claims that the potential energy of a binary pulse 

- 1 
with amp l itude A and width y

0 
= cos (~0 ) is proportional to 

A2 (1-~ )/(1-+,...1) and that p(~) is the relative frequency of these pulses . 
0 0 0 

He then claims that "the observed sh ape of the spec truro imp lies an 

equilibrium state of maximum disorder in which ene r gy of formation is 

distributed uniformly over all hill sizes .. . The smaller hi ll s 

may require less energy of formation, but are sufficiently mor e 

numerous than the larger hill s so as to insure this equipartition of 

energy." 
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Though this argument has a certain appeal, some of which accrues 

from analogies '"i th thermodynamic concepts such as en tropy maximi -

zation , energy equipartit ioning and statistical equil ibrium, which we 

shall mention again later , it has at least two serious flaws. First, 

as is shown in Appendix F, the potential energy perturbat ion of a 

cylindrical mass on the surface of a sphere is not simply proportional 

to the basal area time s the squared height. To assume so is t o 

neglec t the sel f-po t entia l of the added mass which significant ly 

alters the potential energy spectrum. Secondly, there is no obvious 

physical reason why energy should be equal l y partitioned among 

hill sizes. The thermodynamic analogy invoked would appear to be 

valid only for energy distribution among the normal modes of the 

system (Kampe deFeriet, 1962) . 

Slope Stabili ty 

The height of a t opographic feature may be limited simply by 

the strength of its constituent materials. Hartmann (1972) and 

Johnson and McGetchin ( 1973) have attempted to expla in the scale of 

planetary topog r aphic features in this way . As shown in Appendix G, 

a simple slope stability analysis (Culmann, 1866) ind i cates that, 

neglecting internal friction , the maximum stable height of a slope 

of length L in material characterized by density p and cohesion c 

on a planet with surface gravity g is given by 

(4 .42 ) 

where 



L 
0 

2c 
og 
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has a value of meters to possibly tens of meters in typical t erres -

trial or l una r soi ls. Thus, at the scales in which we are interested 

L >> L , and we have approximately 
0 

(4 . 43) 

Thus, we might expect the mean square height of topographic features 

to be directly proportional to their horizontal extent. We shall 

find, in fact , that this is a reasonable approxima tion in several 

important situations . 

A further implication of the above analysis is that the mean 

square slope between points a distan ce L = R Y apart should be 
0 

approximately 

2 
s (y) = 

H
2

(R y) 
0 

(R )2 oy 

8c 
pgR y 

0 

Comparing this result with equation 4.5, we see that our slope 

stability analysi s has yielded not only the correct functional 

dependence on y, but a lso an estimate of the tota l topographic 

variance 

V(H · O) = ~ 
' pgR 

0 

Impact Cratering 

(4. 44) 

(4. 45) 

Impact cratering has been an important process on essentially 

all planetary surfaces. Malin and Dzurisin (1977) summarize morpho-

logy and depth/diameter relationships for craters on the Moon, Mars 
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and Mercury . They find that the relationship between depth d And 

diameter D for morphologically fresh craters is adequate ly represented 

by a two part power l aw : 

d d (D/D )b 
0 0 

(4.46) 

for craters with D ~ 10 km the exponent is appr oximately b = 1.0, 

whereas for D > 10 km , the exponent decreases to 0.25-0.45 depending 

upon the data set analyzed. Our slope stability ana l ysis in the 

previous paragr aphs would imply b = 0 . 5. If both fresh and degraded 

craters are considered t ogether, there is an increased scatter, but 

a single power law is quite adequate to describe the entire r ange 

of crater sizes and the corresponding exponent is approxima tely 

b = 0.6 on all three planets . 

Another important aspect of impact cratering is the r esul tant 

distribution of crater sizes. We may imagine an initially uncrate red 

surface upon which c r aters are being produced at random. We furthe r 

suppose that the relative frequency of craters larger than D being 

produced is 

- C 
N = N (D/D ) 

0 0 
(4 . 47) 

As the first few craters are formed, there will be little ob l iteration 

of pre-exist i ng craters and the size-density distr ibution of the 

surface will reflect the production distribution. As more craters 

are formed, older craters wi ll be destroyed, and the si ze-dens i ty 

distribution will tend more to ref l ect the details of the obliteration 
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process rather than the production size di stribution. Eventually a 

point may be reached where the size-dens ity distribution n o l onger 

changes with the formation of addit ional crate rs. If the crater­

destroying process is simply geometrical overlap , the surface will be 

said to have attained saturation. I f, in addition to crater overlap, 

crater destruct ion occurs by processes of erosion and fi ll ing , the 

surface will be said to have attained equilibrium. Woronow (1977) 

notes that "saturation results from pur e l y geometrica l and sta tistical 

considerations, valid for any hypothetica 1 surface any,.;rhere, whereas 

equilibrium results from the interaction of the crater population 

with its physica l envi r onment .... The difference be t ween the cra t er 

densities at satur ation a nd at equilibrium on any planetary body 

indicates the vitali ty of th e degrada tiona l process e s present 

there." 

The equilibrium and satura tion size - density dis tributions have 

been studied through stochastic mode l s of formation and survival of 

craters (Marcus , 1964, 1966, 1967, l9 70b; Neukum and Dietzel , 1971) 

and Monte-Carlo simulations (\Voronow , 1977 ) . An interesting result 

is that a production distribution with c > 2 leads to a satur ation 

population with c = 2, \vhereas production distribut i ons with 

1 .5 ~ c ~ 2 lead to saturation populations with c appr oaching 1 .0. 

Furthermore, i t i s fo und t hat equi librium populations always have 

c ~ 2, with equa lity only as equilibrium degenera tes to saturation. 

Observed size-density d i stributions tend to have c ~ 1.7 for crate rs 

larger than a kilometer (Soderblom, 1970 ) . 
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We will now compare these observations with Halford's (1968) 

-a 
one dimensional puls e cri terion for an n spectrum. The requirement 

is that 

(4 .48) 

The probability distribution p(D) corresponding to a cumulative size-

frequency distribution of the form (4.47) 

(4 .49) 

and the mean-square amplitude distribution corresponding to the depth -

diameter relation (4.46) is 

(4 .50) 

In this case, Halford's criterion reduces to 

a 2 - 2b + c (4.51) 

For the observed mean values of c = 1.7 and b = 0 .6, we find a= 2.4. 

On the other hand, if we consider a surface saturated with small 

(D ~ 10 km) craters for wh ich c = 2 . 0 and b = 1.0 , we do obtain 

a = 2 . 0 , as desired. 

Though this agreement (or lack thereof) is instructive, it is 

not as definitive as we might hope , since the actual shape of the 

craters changes as a function of size, contrary to the assumption of 

of Halford's (1968) model. Thus, depth and diameter measurements 

and counts of craters do not suff ice to directly e stimate the 

spectrum of a planetary surface. 
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5. Equilibrium 

Historical Background 

At least since the work of Gilbert (1877), it has been widely 

recognized that most terrestrial landforms are in a sta te of 

dynamic equilibrium between the erosional and constructional processes 

to which they are subjected. Most of the quantita tive applications 

of this concept have dealt with single landform elements. For 

example, Kirkby (1971) states that in the development of a hillslope 

"the influence of t he initial form of the slope can be shown t o 

decrease rapidly with t i me, whi le the slope forms tend closer and 

closer towards a 'characteristi c form,' in which the elevation of 

each point continues to decline with time, but is i ndependent of 

the initial form." He further notes that this equilibrium form 

"depends solely on the nature and relative rates of the formative 

process and not at al l on the initial profile of the hillslope ." 

This relationship between form and process is further developed by 

Carson and Kirkby (1972), again in relation to hillslopes. 

Leopold a nd Langbein (1962) have attempted to apply the 

equilibrium approach t o the more general problem of evolution of 

an entire landscape. They claim tha t, for example, "the mo s t probable 

condition exists when energy in a river system is as uniformly 

distributed as may be permitted by physical constraints." An analogy 

is drawn with closed thermodynamic systems in which entropy is 

maximized at equilibrium and topographic elevation is identified as 

the corresponding analog of temperature. Though t h e analogy is 



178 

enlightening, they do not rigorously justify it, and furthermore they 

fail to produce any quantitative results f or general landscapes. 

However, they do examine a "most probable" river profile in which the 

downstream rate of entropy production is constant. 

Culling (1960, 1963, 1965) , in developing an analytical theory 

of erosion, states that "slope erosion is subject to a minimal 

law; that factor , whether the rate of transport or the rate of 

weathering, which is relatively the least efficient, controls the 

general course of denudation. On s oil covered slopes the rate of 

transport is the dominant denudational control, soil creep being the 

responsible agency." He further c oncludes that the mass movement 

of weathered material on a hillside slope takes place at a rate 

proportional to the surface gradient. This leads to a diffusivity-

type equation for elevation change 

(4.52) 

This model is not only consistent with a microscopic analysis of 

motions of individual soil particles, but also, on a macroscopic level, 

it predicts slope forms actually observed on soil covered slopes. 

Soderblom (1970) has considered a similar model for erosion due to 

impact cratering. 

Scheidegger and Chaudhari (1964 ) have examined these the rmo-

dynamic analogies in some detail. They conclude that 1~henever a 

system is a linear combination of a large number of fluctuating 

systems, and in the 'large' system a certain quantity is a constant 
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of the motion to which the component systems contribute positive-

definite amounts, then, under equilibrium conditions, that quantity 

is canonically distributed in the component systems and, under 

nonequilibrium conditions, assuming linear regression of the 

fluctuations and microscopic reversibil ity, the quantity in question 

is subject to a diffusivity equation with symmetric diffusivity 

tensor." Scheidegger (1967) then attempted to develop a complete 

thermodynamic analogy for landscape evolution in which the conserved 

quantity is mass or equiva lently mean topographic elevation. Local 

elevation is then analogous to temp~rature. Though the complete 

analogy is interesting and even extends to Carnot cycles and the 

like, it is not clear that anything additional of real relevance to 

the topographic variance spectrum emerges from this analysis. 

Another criticism of the model is that topographic elevation can 

be either positive or negative, and thus is not a suitable t emperature 

analog. Perhaps in addi tion to conserving mass (mean e levation), 

we should consider a model in which topographic variance (mean 

square elevation) is conserved (Chung and Scheidegger, 1968). 

We shall return to this notion in our final attempt to explain 

the Vening-Meinesz spectrum. 

Dynamic Model 

Up t o this point, we have paid little explicit attention to 

the time variation of surface topography. However, we now have all 

the necessary background information for our penultimate model in 

which we consider the dynamics of planetary surfaces . We simply 
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suppose that the observed surface is formed by two opposing processes, 

erosion and uplift. We model the erosion by the diffusivity equation 

(Culling, 1960, 1963, 1965) 

(4. 53) 

where ~', a measure of the intensity of the erosion, is assumed 

constant. We further suppose that linearly additive constructional 

or "tectonic" events occur essentially instantaneously relative to 

the erosive time scale and that they occur at random times and places. 

The times of occurence have a Poisson distribution with an average 

of a.' events per unit time. A typical event has the form 

f(9,ql) R 
0 

CD n 

LL 
n=l m=O 

2 
where f are zero -mean Gaussian random variables N(O,a ), where 

nm n 

2 
a 

n 
V(f;n) 
2n +1 

and the degree variances of the process are 

V (f ;n) f 
nm 

(4. 54) 

(4. 55) 

(4.56) 

We will now determine what form the variance spectrum of the construe-

tional process must take in order to produce the Vening-Meinesz 

topographic spectral form. 

The spatial covariance of the topography initially produced by 

a single event is 

CD 

C(f; y) R
2 L V(f;n) P [cos (y)] 
o n=l n 

(4. 57) 



181 

However, erosion reduces the effect at time t of a single tectonic 

event which occurred at an earlier time t - T to 

f 1 (9,cp;T) 
cc n 

R ' ' f T A (9 ,q)) 8_ (T) 
OL-~ nm nm n 

(4.58) 

n=l m=O 

where 

& (T) = e-(n)(n+l) T/S ' 
n 

(4. 59) 

(see Appendix A). Therefore, the spatial and temporal covariance 

function of the equilibrium surface produced by these processes is, 

by the convolution theorem, 

C(H; y ,T) = E [ H(O,t) H(O+ y, t +T)] 

t 

= CL 1 R~ J 
-cc 

L 
n=l 

V(f;n) P [cos(y)] 
n 

• 8__ (t - s) {1 (t + T- s ) ds. 
n n 

(4 . 60) 

We can simplify this by taking terms with no time dependence outside 

the integral and noting that 

t 

J ~ (t- s) {t_ (t+T- s) ds 
n n 

- cc 

fl (-2s) ds 
n 

(4. 61) 

- cc 

s' ~ <n n 

2 (n) (n + 1) 

Therefore, we obtain 
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co 

C(H; y , T) = ~ R 2 L _y_(f,n) P [cos (y) 1 8_ ( T) 
2 o n=l (n) (n + 1) n n 

(4 . 62) 

The resulting purely spatia l (T = 0) and pure ly t emporal (y 0) 

covariance functions are 

and 

co 

C(H; y ) = ~~2 L V(f;n) p [cos(y )J 
2 o n=l (n) (n+l ) n 

C(H;T) 

co 

a.'~' R 2 L V (f ;n) 8 ( r ) 
2 o n=l (n)(n+l) n 

(4. 63) 

(4. 64) 

respectively, since P [cos(O)] = {l (0) 
n n 

1. Generalizing a result 

of Grenander (1975), we assert that for a model of this type, 

given the heights at a time t 

co n 

H(8 ,cp ;t) Ro ~ ~0 HnmT Anm(8,cp) (4. 65) 

the optimal estimate (in the s ense of least-squa re error) of he ights 

at an earlier or late r time t ± T is given by 

co n 

~ ( 8 ,cp ; t ± T ) = R
0 
~ L Hn! Anm ( 8 ,cp ) ~n (r ) 
n=l m=O 

(4.66) 

The mean square error of the estimate is 

co (4. 6 7) 

= R 
2 L V(H;n) [1 -0 (2r)l 

o n=l n J 

Unfortunately, unless we have independent estimates of a.'V(f;n) or 

~I > we cannot evaluate 8 ( T), since all that is observable at one 
n 

time is 
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V(H;n) ~ 
2 

V (f ;n) 
(n) (n+l) 

(4. 68) 

In order to duplicate the Vening-Meinesz spectrum, we simply 

require that 

V (f; n) 2 
V(H;O) (4. 69) = 

a.'S I 

i.e. the variance spectrum of the constructional process must be 

constant. This has the interesting interpretation that there is no 

preferred scale at which tectonic or constructional processes occur . 

In order to match the observed low degree variances as well, 

we must either allow for a decrease in constructional activity at 

scale lengths greater than L ~ 2000 km, or assume more erosive or 

attenuative activity at that scale than the diffusivity model 

predicts. Note that, whereas diffusive erosion is essentially a 

low pass filter, visco-elastic deformation acts as a high pass 

filter and would selectively attenuate the low degree harmonics. 

We will now consider this in more detail. 

Visco-Elastic Deformation 

Darwin (1879) determined that a homogeneous Maxwell sphere 

(see .A!JpendP<E) subjected to a surface load of height f(8,cp) at 

time twill deform in such a way that, at a later time t + T, the 

load height will be reduced to 

f
1

(8,cp;T) = Ro I i 
n=l m=O 

T 
f A ce ,cp) nm nm 

-T/T
1 

e n (4. 70) 

If the sphere of radius R
0 

has density p, viscosity ~ and rigidity ~. 

then the relaxation time will be 
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where 

is the hydrostatic pressure at the center of the sphere and 

N (n) = 
2 (n+l)

2 + 1 
2n 

is a geometrical factor determined by the sphe rical boundary 

conditions. This can be rewritten as 

T
1 = T + T 
n n M 

where T = ~ N(n)/P is the corresponding relaxation time for a 
n c 

(4. 71) 

(4. 72) 

(4. 73) 

(4. 74) 

purely viscous sphere and TM = ~~~ is the Maxwell relaxation time 

of the material. For times T < TM' the behavior is predominantly 

elastic, whereas for T > TM, viscous behavior predominates. 

If the topography of a Maxwell sphere is then subjected to 

erosion, the attenuating factor for the harmonics of degree n will be 

, -[(n)(n+l)T/8' + T/T 1
) 

~ (T) = e n 
n 

rather than (4 .59). If we now carry through the same covariance 
I 

analysis as before, substituting ~ for {! , we find tha t the 
n n 

resultant topographic varie~rtce spectrum i ~: 

_ ~ V(f;n) 
V (H ; n) - 2 ( n) ( n + 1) A ( n) 

where 
-1 

A(n) [ 
s' 

= 1 +--'---
(n)(n+l) d 

(4. 75) 

4.76) 

(4. 77) 



185 

If we neglect the elastic component, this is approximately 

A(n) = 1 + c [ 
2P f3

1

/ T) ]-1 
(n + 1) (2 (n + 1) 

2 + 1) 
(4 . 78) 

This model succeeds in predicting attenuation of the low degree 

variances. Furthermore, because of the strong dependence of P on 
c 

R , it also predicts relatively more attenuation on large planets 
0 

than on small planets with the same material properties. A value 

of P S ' /T) ~ 70 yields a spectrum very similar in shape to those of 
c 

the Earth and Venus. 

A possible criticism of the above model is that it assumes the 

planets to be homogeneous. However, more sophisticated analyses 

of the viscous relaxation time spectrum T of the Earth (e . g., 
n 

Anderson and O'Connel, 1967) have shown it to be qualitatively 

similar to the homogeneous case. The important point is that T 
n 

is a rapidly increasing function of harmonic degree. 

The success of this model in duplicating the entire topographic 

variance spectrum on all planets for which we have observations 

increases our confidence in the model and strengthens our earlier 

conclusion that there is no preferred scale of constructional 

activity on the planets. 

In addition to duplicating the Vening-Meinesz spectral form , 

the models we have considered have given us three separate estimates 

of the total dimensionless variance. From slope stability considera-

tions, we find 



V(H;O) = 4c 
pgR 

0 

186 

from the random pulse model, we have 

V(H;O) 

= 8a.S 

[

1 - 110] 
l+IJ 

0 

and from the equilibrium model, we obtain 

rr 1 R 1 

V(H;O) = ~ V(f;O) 

(4. 79) 

(4. 80) 

(4.81) 

We would like to use these model variances to predict the actual 

variance on planetary surfaces which have not yet been measured. 

However, the only one of these formulas with any real predictive 

value is the first, since we have no good a priori estimates of 

the parameters in the other two. The greatest uncertainty in equation 

(4.79) is the mean cohesion c. It turns out that a value of c 

between 0.2-0.8 bar gives the correct variance on all four planets 

we have considered. These values roughly correspond to a loosely 

consolidated soil. 

A still better prediction comes from the observation that the 

physical variance C(H;O) of the four planets we have studied all 

2 
fall in the range 4 .0-6 .5 km (Moon, 4.5; Mars, 6.4; Venus , 4.0; 

Earth 5.6). This is perhaps suggestive of a plastic rather than 

visco-elas tic rheology . However, we shall not pursue this matter 

further. 
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Maximum Entropy Conjecture 

Our final attempt at explaining the topog raphy of the planets 

focuses on the fact that planetary surfaces resemble real izations 

of the spherical Wiener stochastic process. First, we are going 

to make two conjectures concerning the Wiener process: neither of 

them will be proven, but we will give plausibility a r gument s for 

both. We will then discuss how this relates to plane tary surfaces. 

As background for our first con jecture, we note that the process 

whichwe have glibly referred to as the spherical Wiener process 

differs from the usual Wiener proces s W(~) in severa l fundamental 

aspects. The domain ~ of W(~) is usually taken to be either the 

real lineR or some Euc lidean space Rn (Levy, 1948), and on those 

dornmains W(~) is not s tationary. However, Levy (1954) has shown that 

a process defined as 

co 

h(~) ~ s! Am (~) 
m=l 

(4.82) 

where 

[c~s (ntp)] 
A (~) m 

(ntp) s1.n 
(4.83) 

and 

.. [Sml] -;,m 
sm2 

(4 . 84) 

is equivalent to 

h(~) = W(~) - _SL W(2TI) 
2n (4. 85) 

2 and is stationary, if S . are Gaussian random variables N(O, a ) with 
m1. m 
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2 
a 

m 

V(h;O) 

2m
2 (4 . 86) 

Of course, this is nothing more than a gr eat circle slice of what 

we have been calling a spherical Wiener process. Another stationary 

process which otherwise resembles the Wi ener process is the Ornstein-

Uhlenbeck process (see App~ndix C). It is obtained from a r andom 

walk subjected to a r e storing force in the limit as the step size 

goes to zero. Our first conjecture then is that, when the domain 

of the process is a sphere (or circle), the Wien er and Ornstein-

Uhlenbeck processes are identical. Since these are both Gaussian 

processes , all that is required for the proof is a demonstrat ion 

that their covariance functions are identical. Though this appears 

likely, we have not rigorously shown it to be so. In our discussion, 

we have assumed that the conjecture is true and simply refer to the 

process in question as a spherical (or circular) Wiener process . 

Our second conjecture is that for a given variance, the spherical 

(or circular) Wiener process is the unique maximal entropy spherical 

(circular) process with continuous realizations and infinite band-

width. As an argument for the plausibility of this conjecture, 

consider our random pulse model. The positions of the pulses are 

governed by a Poisson distribution which has the max imum entropy 

rate of any point process for a given intensity a (McFadden, 1965). 

As we let the average variance pe r pulse ~ decrease while increasing 

a so as to maintain a constant total variance ~. the central limit 

theorem assures us that the distribution of heights tends to a 
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Gaussian, which is the maximal entropy distribution for a fixed 

mean and variance. This argument is suggestive only and not 

conclusive, since our conjecture concerns the entire process describ-

ing the surface and not merely the distribution of heights. The 

fact that the spherical (circular) Wiener process io a Gaussian 

process is probably a necessary condition, but is definitely not 

sufficient for our conjecture. 

A proof might be developed as follows. For simplicity, we 

consider Levy's (1954) construction of the circular Wiener process 

(4.79). The system has two degrees of freedom for each harmonic 

degree m. The variance and entropy per degree of freedom are 

(Shannon, 1948) 

v(h) 

e (h) 

2 a 
m 

Therefore, the total variance and entropy are 

CX> 

V(h) = L 
m=l 

CX> 

E(h) = L 
m=l 

2o 
2 

m 

2 
1 + 2n(2rro ) 

m 

The requirement of continuous realizations f or the process is 

essentially assured by maintaining finite total variance. This, 

(4. 87) 

(4.88) 

(4.89) 

(4. 90) 

in conjunct ion with the requirement of infinite bandwidth, requires 

(4. 91) 
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Our conjecture is that the extremal value of E subject to these 

constraints is obtained when 

since 

(J 
m 

2 

00 

3 V(h) 

(mn)2 

2 
TT 
6 

The application of this conjecture to planetary topographic 

(4.92) 

(4.93) 

variance spectra is very simple, and is akin to the thermodynamic 

analogies of Scheidegger (1967) with the additional constraint 

of fixed variance . Our final model for the Vening-Meinesz spectrum 

merely supposes that the surface of a planet is as random or chaotic 

as it can be subject to the constraints of continuity and finite 

variance. 

D. IMPLICATIONS 

The simplest application of this study is to predict the form 

of the topographic variance spectra of other planets and satellites. 

Therefore, we make the following 

Prediction: 

The topographic variance spectra of the surfaces of 

all solid planets and satellites have the form 

V(H;n ) 
0 

n ~ n 
0 

V(H;n) == 
V~Hi02 n ~ n (n) (n+l) 0 

(4.94) 
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where L = 2nR /n ~ 2000 km. 
0 0 0 

Furthermore , the total physical variance is 

co 

C (H;O) - R 2 I V(H;n) 
0 

n=l 

• 2 1an2 = 5 ± 

independent of the size of the body, for all 

R :2: 10 1an 
0 

(4.95) 

We note that recent observations of Phobos (R = 11.2 km) and 
0 

Deimos (R 
0 

6.3 km) indicate rough, heavily cratered surfaces with 

variances of 2-3 km
2 

about the best fitting tri-axial ellipsoids 

(Duxbury, 1974 , 1976). 

Our observations concerning topographic variance spectra may 

contribute to another problem of current interest : determining the 

depth of sources of planetary gravity anomalies . The main difficulty 

is the inherent non-uniqueness of the density distribution 

associated with a given external potential 

~(R ,9,cp) GM [ R o + ~ ~ (R o)n+l G T A ( 9 ) ] 
R R L L R nm nm ,cp 

o n=l m=O 

This non-uniqueness is evident in the relationship 

2n + 1 
3 

(~) ~n+2 d~ p -:, -:, -:, 
nm 

(4. 96) 

(4.97) 

(4. 98) 
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where S = R/R , since these integral constraints can be satisfied 
0 

by an infinite class of density distributions. However, if we 

have additional information or are willing to make some plausible 

assumptions, we can make some progress. It is also possible to 

characterize the class of admissible density distributions in terms 

of various extremal properties such as greatest lower bound on 

density contrast or least upper bound on the depth of burial of an 

anomalous mass (Parker, 1974,1975). 

Another approach is to assume that the density anomalies are due 

to undulations of an interface across which there is a density 

contrast t:.p . If the mean radius of the interface is R = SR and the 
0 

height of the undulations is 

h (8 ,cp) = R I i 
n=l m=O 

h T A (8 ,rn) 
nrn nm '1"' 

then the potential coefficients are 

2n+l 
3 

-p G = /::.p Sn+3 h 
nrn nm 

(4.99) 

(4 .100) 

This approach was used to model lunar and Martian crustal thickness 

variations in chapters II and III respectively (Bills and Ferrari, 1977, 

b,c). It has also been applied to terrestrial data by Bott (1971) 

who attributed the gravity anomalies to undulations in the mantle 

phase transition boundaries, and by Hide and Horai (1968) who placed 

the topography on the core-mantle interface. As can be seen from 

equation (4.97) , an increase in the depth of the interface requires 

an increase in either the density contrast or the amplitude of the 
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undulations. This effect is more pronounced for high degree 

harmonics. 

With that fact in mind, Higbie and Stacey (1970) have sought 

the depth at which the stresses required to support the density 

anomalies would be most nearly equal across the spectrum . After 

considering a number of different gravity models, they concluded 

that the most like ly location of the anomalous masses is in the 

upper mantle. 

The method which has received the most attention, though, 

"rests only on the assumption that the gravity anomalies arise from 

many independent density variations and that correlation between 

the density variations at different points falls to zero as the 

distance between the points increases" (Allan, 1972). This 

assumption is actually implemented through the use of a flat spectrum 

for the density anomalies or interface undulations . It has been 

widely used (Guier and Newton, 1965 ; Kaula , 1967; Allan, 1972; 

Lambeck, 1976; McQueen and Stacey, 1976; and Khan, 1977), and its 

practitioners consistently find two separate source depths: the 

low degree harmonics (n ~ 5) derive from depths of 800-1500 km 

whereas the higher harmonics have a shallower source (200-400 km). 

However, this result is highly suspect because of both the neglected 

surface topographic effect and the assumed source spectrum. Obviously, 

the correct spectrum to examine in seeking the depth of the 

source mass anomalies is the Bouguer spectrum and not the 
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free-air spectrum. Yet every one of the above studies used the 

free-air spectrum. The assumed spectral behavior of the source 

warrants further discussion. 

The models which incorporate a flat source spectrum are infor-

mative, since they yield a maximum source depth for a given potential 

spectrum (Naidu,l968). Furthermore, McQueen and Stacey (1976) 

have argued that "the superposition of sharp features on an otherwise 

spherically symmetrical distribution of any kind can be represented 

by a white spatial spectrum, that is by a sum of spherical harmonic 

terms of equal amplitudes . Thus if phase boundary undulations 

are highly localized relative to the wavelengths corresponding to 

the highest available harmonic terms, their spatial spectra will 

be white." On the other hand it might be more reasonable to suppose 

that all equi-density surfaces in a planet have roughly the same 

spectral form as the external surface topography. The resulting 

model potential variance for a single interface at a depth D = R 
0 

(1 - S) is 

" V(G;n) = 9a. v (h ;0) 

(n) (n + 1) (2n + 1)
2 (4 .101) 

- 2 where a. = (6p/p) . This model is still lacking in realism though, 

since it seems unlikely that all of the density anomalies would be 

concentrated at one depth. 

The last approach we consider makes a less restrictive assumption 

about the source behavior. We simply assume that the density 

anomalies satisfy 
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2 k 
V [R p (R, 9 ,cp)] = 0 (4.102) 

where k is an integer. In this case Tscherning (1976) has shown that 

the variance spectrum and covariance of the density anomalies which 

are consistent with the potential variances V(G;n) have the form 

(
2n

3
+ 1)

2 
2 V(p;n) = (2n+3- k) V(G;n) 

-2 
C(p. ,p.) = p 

1. J 

c:> 

L 
n=l 

n-k 
V(p;n) (s.s.) P (cos(y .. )) 

1. J n l.J 

(4.103) 

(4 .104) 

It may be shown that the potential covariance is the convolution of 

the covariances of the density anomalies and the Green's function 

(Kautzleben et al., 1977). We note also that the case of k = 0 

corresponds to the density distribution of minimum variance which 

will produce the observed spectrum. 

E. SUMMARY 

In this chapter we have seen that the topographic variance 

spectra of the Earth, Moon, Mars and Venus are all very close to 

the Vening-Meinesz spectral form (4.1), in spite of vast differences 

in the geomorphic processes acting on these surfaces. This 

observation has prompted the conjecture that the solid surfaces of 

all planets and satellites are similarly characterized by this 

spectral form. Equivalently, these surfaces are conjectured to be 

realizations of a spherical Wiener stochastic process . 



196 

In examining a number of possible explanations for this 

behavior, we have found the most promising model to involve a simple 

equilibrium between constructional or "tectonic" processes which 

tend to roughen the surface uniformly at all scales, and destructional 

or erosive processes which tend to smooth the surface preferentially 

at small scales. This balance is maintained in such a way that the 

resultant surface is continuous almost everywhere but is differentiable 

almost nowhere. 

This impr0ved insight into the topographic variance spectrum 

may ultimately lead to a better understanding of the gravitational 

variance spectrum and the distribution of anomalous source masses. 

Another possible area for future research involves the connection 

between plate tectonics, elastic energy reduction and the . resultant 

topographic variance spectrum. 
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V. APPENDICES 

A. SPHERICAL HARMONICS 

We will mainly be concerned with functions whose domain of 

definition is the surface of a sphere. Points on the sphere will 

usually be identified by their latitude (9) and longitude (~) rela-

tive to some coordinate system. Angular distance between points is 

better expressed in terms of colatitude (y) or direction cosine 

(~ = cos(y )) of one point relative to the other. We will occasiona lly 

interchange the coordinate pairs (9,~) and (~,~), where no\..r 

~ = sin(9) , as the argument of a functi on while retain i ng the same 

symbol for the function, e.g., F(9,~) = F(~,~). This should cause 

no confusion. 

The family of functions on the sphere which are continuous 

almost everywhere (i.e., except on a set of measure zero) may be 

converted into a Hilbert space by introduction of a scalar product 

2n 1 

< F ,G) = 4; f f F(~,~) G(~,~) d~ d~ A.l 

0 -1 

The associated norm is given by 

IIF II 1/2 A.2 

Any function for which IIF 'I < oo will be said t o be square integrable. 

It will often prove convenient to express a function defined 

over the surface of a sphere as a product of a dimensionsl scale 

factor times a non-dimensional sum of orthogonal functions - 'the 
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surface spherical harmonics. This summation, sometimes referred to as 

2 
a Fourier-Legendre series, is the analogue on the sphere S of a 

simple Fourier series on the circle s1
, and shares many of its 

properties. For example, the topography of a planet with mean radius 

R might be represented as 
0 

F(~,cp) = 

where 

R 
0 

[C cos(mq:J) + S nm nm 
sin 

A.3 
T 

F nm Anm (~,cp) 

is the vector of harmonic coefficients or Fourier-Legendre transforms, 

of degree n and order m. The superscript T (as in F T) denotes 
nm 

transposition and 

( 

Anml (IJ,cp)) _ (cos (m:p)) 
A (~,cp) = = P (~) nm nm 

A 2 (1J ,cp) sin(mcp) nm 

the vector of normalized surface harmonic functions, is the product 

of a normal ized Legendre function in latitude times a trigonometric 

(Fourier) vector in longitude. The Legendre polynomials P (~) and 
n 

associated Legendre functions P (~) are solutions of the differential 
nm 

equation (see e.g ., MacRobert, 1967) 
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d!J r 

2 dP ] 
L(l- ~ ) d: + 
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[(n) (n + 1) p :;:: 0. 
nm 

In the un-normalized form, they satisfy the initial condition 

1 m 0 
p (1) 

nm 
0 n :f 0 

and are given by 

p (1-.l) 
nm 

The normalized form is denoted by a bar Pnm(!J) and is given by 

p (!J) = N p (1-.l) 
nm nm nm 

where the normalization fa c tor 

N 2 = (2- & 
0

) (2n + 1) (n- m) ~ 
nm m (n+m)~ 

A.4 

A.S 

A.6 

A. 7 

is chosen so as to make the harmonics orthonormal over the sphere i . e . 

<A A I I.\ = 0 I 0 I 0 . . nmi' n m J) nn mm 1J 
A.8 

The rate of convergence of a Fourier-Legendre series depends on 

the smoothness of the function F being represented, i.e., smooth 

functions have rapidly convergent series representations. The indi ·· 

vidual harmonic coefficients F depend, not only on the function F, 
nm 

but also on the particular orientation of the coordinate system. 

However, the sum of the square s of all the coefficients of a given 
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degree 

n 

V (F;n) =~ F T F L...J nm nm A.9 

m=O 

is invariant under rotation (Kaula, 1967) and is thus better suited 

to discussions of convergence. Using the facts that 

"i I\ + (n) (n + 1) I\ = 0 nm nm 

II 1\.nmi !1 2 = 1 A.lO 

II 'V/1. . 11
2 

(n)(n+l) 
nml. 

where 'V and 'V
2 

are the gradient and Laplacian differential ope rators, 

respectively, i t may be shown (Beers and Dragt , 1970) that if the p-th 

derivative of F exists and is square integrable, i . e . , if 

then 

V(F;n) = ~( l +l) 
[ (n) (n + l)]p 

A.ll 

A more general result (Beers, 1972) is tha t, fo r a function F 

defined on the hypersphere Sk (S 1 is a circle, s2 is a sphere, etc.) 

with a square integrable p-th derivative, 

V(F;n) = ~( 1 ) 
[ (n) (n +k- 1) ]p+l 

A.l2 

where now V(F;n) is the sum of the square s of all 

(n+k - 2)! 
M(n ,k) = (2n +k - 1) (n)! (k _ l)! 

hyperspherical harmonic coefficients of degree n, and (n) (n +k- 1) 
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is an eigenvalue of the Laplacian on Sk. Thus, for functions with 

bounded variation, but which are not differentiable almost ever~vhere, 

we have 

V(F;n) =@( -t) 1 F: S ..... R 
n 

A.l3 

V(F;n) = @( (n) (~ + 1) ) F: s2 ..... R 

on circles and spheres, respectively. On the other hand , infin i tely 

differentiable functions give rise to harmonic coefficients which 

fall off faster than any inverse power of n, i.e., they de crease 

exponentially 

V (F ;n) A.l4 

for somea > 0. 

Functions whose domain of definition extends beyond the surface 

of a sphere to include its interior and exterior may be expressed as 

a sum of solid spherical harmonics . For exampl e, the gravitational 

potential exterior to a planet might be represented as 

~ (R, e ,cp) 
[ 

CD n+l n J 
= GM Ro + ' (Ro) ' G T A ( 8 ,cp) 

R R ,t_. R ,t_. nm nm 
0 n=l m~o 

, R :;?; R 
0 

whereas, the potential interior to a homogeneous planet would be 

~ (R, e ,cp) 

A.l5 

where G is the gravitational constant and M is the planetary mass. 
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In many applications , we will be more conce rned with the angular 

distance 

between the points (8 ,cp) and (8' ,c/) = (8 + 68 , cp+ 6cp), than with the 

specific location of the points. In such situations, we will invoke 

the so-called addition theorem of spherical harmonics (see e. g ., 

Heiskanen and Moritz , 1967) which states that: 

n 

p (") = _..;::..1_'""" A T 
n ,_.. 2n + 1 L..J nm A.l8 

m=O 

We will also have occasion to use the convolution theorem, which 

states that convolution in the spatial domain is equivalent t o 

multiplication in the transform domain, and conversely. Thus , if 

then 

F(8,cp) = A(8,cp) * B(8,cp) 

2n n/2 

= 4~ .f f A(8' ,cp ' ) B( 8 - 8 ' , cp - cp ') cos (8') 

0 - TT /2 

• d8 'dcp 1 

F =A B o .. 
nm nmi nmj 1J 

A.l9 

A.20 

A simplification occurs if B has no azimuthal variation, i .e., 

B ( 8- 8 I , cp- cp') = B (y) = I: (2n + 1) B P (cos ( y )) 
n n 

A.21 

n=O 

where now 
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n 

= 
1 

4n (l 
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1 

B (fl) Pn (fl) dfldcp = I J 
-1 

is the Legendre transform of B. In that case, 

F nm A B 
nm n 

A.22 

A. 23 

We will now consider some particularly useful examples o f such 

azimuthally symmetric functions. Our first example is a delta 

function of magnitude M 

for which 

B (y ) 

B 
n 

M 
2 

M o(y) 

The result of convolving a function of (9
1 ,cp' ) with a unit delta 

function located at (8 ,~) is simply , 

2n n /2 

4;- J f A(8 ' ,cp ' ) 5(9- 8' ,cp- cp ') cos(9 ') d9'dcp ' 

0 - n/2 

A.24 

A.25 

the original func tion evaluated at (8 , cp) . This relocation property 

of delta functions under convolution will prove quite useful i n the 

sequel. 

A rather wide class of azi muthally symmetric spherical functions 

can be obtained as solutions of the diffusion equation 

oF 2 2 - +a. \i'F at 

and the wave equation 

0 A.26 
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A . 27 

by suppressing the radial and azimuthal dependence of the Laplacian 

differential operator so that it has the form 

2 a [ 2 oJ v = o~ (l - IJ ) ou 

We first consider the diffus ion equa tion 

subject to the initial condition 

F(~,O) = A(IJ) 

Taking Legendre transforms of these equations, we obtain: 

oF (t) 
2 

---:~~t- + !)_ (n)(n + 1) Fn (t) 0 

F (0) = A 
n n 

The solution of this transformed system is 

F ( t ) = A 
n n 

2 
- (n)(n+l)a t 

e 

so that th e solution of the original system is 

co 

F (~, t) 
2 

e - (n)(n+l )a t(2n+l) P (~) 
n 

A.28 

A.2~ 

A.30 

A.31 

A . 32 

The process of diffusion is seen to act as a low-pass filter, since 

it attenuates the high degree harmonics of the initial condition. 

In the important case where the initial condition corresponds to a 

unit delta function, we find 
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A.33 

This is the spherical analogue of the normal or Gaussian probability 

density of variance o
2 = 4a2 t (Roberts and Ursell, 1960). Obviously, 

when o2 = 0, this reduces to the original unit delta function. 

We now consider the wave equation 

subject to the i nitial conditions 

F(!-L,O) A(f.l) 

oF&~ , O) = B(f..L) 

Transforming these equat ions, we obtain the system 

o
2

F (t) n 

ot
2 

F (0) 
n 

oF (O) 
n 

ot 

whose solution 

F (t) 
n 

2 
+ ~ (n)(n+ l ) F (t) 0 

n 

A 
n 

= B 

is 

n 

A + B t 
0 0 

A cos(wt) + B 
n n 

sin (wt) 
w 

n 0 

n f: 0 

A.34 

A.35 

A.36 

2 
where w 

2 f3 (n) (n + 1). In a time averaged s ense, the displacement 

field of such a wave preserves the s pec tral charac ter of its displace-

ment initial condition [A(f..L)], but is smoother than its velocity 
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initial condition [B(~)J, since it attenuates the high degree harmonics. 

Another important class of azimuth a lly symmet r ic functi ons is 

represented by the binary pulse 

1 y ~ yo 
B (v , y ) 

0 

0 y > yo 

This will alternatively be denoted B(~,~0 ), where~ 

1-10 cos(y ). 
0 

cos(y) and 

A. 37 

In the evaluation of the Legendre transform of this and similar 

functions, we will use the relation (Erdelyi, 1953, p . 170) 

(l _ 2) [ p pI - p 1 p J 13 
~ n m n m 

(n-m)(n+m+l ) 
A.38 

a 

where the prime denotes differentiation. Applying this formul a , 

we find that the Legendre transform of the unit impulse is 

B (~.~ ) P (u) d~ o n p (IJ ) d~ n o 
A. 39 

~0 

2 
2n(l - ~0 ) P~ (1J

0
) 

(n)(n+l) 

In some a pplications, it will be more convenient to use a simp le 

binary pulse Z with the added property that 

A.40 

The functional form of this zero-sum pulse is 



218 

1 y ~ yo 

Z(y ,y ) 

-[:~ ~: ] 
A. 41 0 

\' > y 
0 

and its Legendre transform is 

z (~ ) 
n o 

p (~) d~ 
n 

2n[/ 
IJO 

( 
1- ~ \f~o 

P n (~) diJ - 1 + u 
0

) P n (u) 
0 - 1 

A.42 

4n(1 - 1-l ) P' (u ) 
= o n o 

(n) (n + 1) 
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B. PROBABILITY DENSITIES 

In much of our analysis, we will be concerned with probabilistic 

arguments. Therefore, in this section we briefly introduce some of 

the basic notions and termino logy which will be employed elsewhere. 

Most of this material is quite well known and unless othenvise noted 

can be found in standard texts (e.g., Gal lager, 1968; Middleton, 1960; 

Thomasian, 1969). 

A probability density is a real-valued function p : 0 -R, defined 

on some set n and satisfying the conditions: 

p(w) 2: 0, 

[ p(w)dw 

0 

for all we 0 

1 

B.l 

B.2 

The set 0 is called the sample space, an element w of 0 is called a 

sample point, and each subset of 0 is called an event . The probability 

of an event A 

P(A) = Jp(w)dw 

A 

B.3 

is thus a real-valued function whose domain is the class of events in 

0. The function P and the ordered pair (O,P) are called the probability 

measure and the probability space, respectively, corresponding to the 

probability density p: 0 ..... R. A random variable with associated 

probability space (O,P) is any real-valued function F: 0 ..... R. 

If A and B are events in 0, with P(A) > 0, then the conditional 

probability of A, given B, is defined 
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P(AIB) = P(AB)/P(A) 

The events A and Bare said to be independent, if and only if 

P(AB) = P(A) P(B) 

The n-th moment of a density is defined as 

Mn(p) = J(wn p(w)dw 

0 

All densities are normalized so that M
0 

mainly with the mean (first moment ) 

E (w) = J w p (w)dw = M
1 

0 

1. We will be concerned 

where E(•) is the expectation operator, and the variance (second 

moment about the mean) 

2 
a w 

B.4 

B.S 

B.6 

B.7 

B.8 

In predicting the value of a random variable, a highly concentrated 

probability distribution conveys more information than a relatively 

uniform distribution . To quantify this notion, we introduce the 

self-information 

I(w) = - % [p(w)] 

and the average information or entropy 

H(w) = E[I(w)] = -J( ~ [p(w) ] p(w) dw 

0 

The entropy, thus defined, depends not only on the probability 

distribution, but also on the coordinate system used. If we have 

B.9 

B.lO 
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a joint probability distribution p(X) for the variables X= (x
1

,x
2

, ... , 

xn) and then change variables toY= (y1 ,y 2 , ... yn)' the new distribution 

is 

q (Y) 

where 

Oyi 
Ox. 

J 

is the Jacobian determinant of the transformation, and therefore 

In spite of this dependence on the coordinate system, entropy is 

a useful way to characterize probability distributions, since we 

B.ll 

B.l2 

will be mostly interested in relative entropies. In fact, many of the 

distributions we will encounter can be obtained by seeking the dis-

tribution with maximum entropy subject to constraints such as fixed 

mean or variance. This approach ensure s tha t the distribut i on so 

obtained incorporates all of our prior knowl edge about the system 

of interest, but no more. 

In the remainder of this section, we will introduce the one 

dimensional forms (i.e., 0 = R) of some e lementa ry probability 

densities which we will need later. 

The simplest form we consider is the un i form density, which is 

the maximum entropy solution subject only to the constraints that 

co 

J p(X)dX = 1 B.l3 

-co 
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p (X) = 0 unl ess 'J ~ X ~ ~ 

It thus a ri ses in the situation where a random variab l e is certain 

to lie in the interval (a,~), but nothing is known further about 

its location. The functional form of the uniform density is 

--{ (~o - rx ) -1 
p (X) 

and its moments and entropy are 

v 

a+~ 
2 

2 
(~ - a) 

12 

M2 

H(X) 

otherwise 

2 
+ a.~ + ~2 = a 

3 

= !i'!! (~ - a.) 

The nor mal or Gaussian density arises in the analysis of the 

sums of independent random variables. In fact, the central limit 

B.l4 

B.lS 

B.l6 

theorem asserts that under quite general conditions, the standardized 

sum of independent r andom variables has an approximately normal dis -

tribut ion . 
2 

The normal density with the two parameters, ~and a has 

the f orm 

p(X) = [ 

2 / ¥Y]-l/2 
2no e\ 

and its moments and entropy are 

v 2 
a H (X) 

2 2 = ~ + c 

t [ 1 + Qrt 2ni ] 

B.l7 

The normal distribution has the maximum entropy of any distribution 

with the same mean and variance. We will occasionally use the symbol 
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N(~,o2 ) t o indicate that a random variable i s normal with mean 

2 
~ and variance a . 

The Rayleigh distribution characterizes t he fluctuations in 

amplitude of the sum of independent random variables . Thus, if 

A cos (m:p) + B sin (m:p) = J cos (m:p + 6,cp) B. 19 

where A and B are independent N(0, ~2 ) r andom variables, then J and 

tlcp are independent random variables, tlcp is uniformly distributed on 

the interval (0,2n) and J is Rayleigh distributed with probability 

density 

X ~ 0 
B.20 

X < 0 

The Rayleigh distribution has a single parameter~, and its moments 

are 

1/2 
M1 = ( ¥) 8 M = 2Q2 

2 1-' 

B.21 

If [x.: 
~ 

2 
i = 1,2, . . . ,2n} are independent N(O,o) random variables, 

then 

has a chi-square density with 2n degrees of freedom. The functional 

form of the density is: 
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p (X) 
~· [2r (n) I -l (X/2)n-l e-X 

12 

l 0 X < 0 

X ::?: 0 

B.23 

where the gamma function takes the value s 

(n - 1)! 2n = 2 , 4,6, ... 
I' (n) 

B.24 

2n 1, 3, 5, ... 

The chi-square distribution has a single paramete r, 2n and its 

moments are 

2n 4n(n+l) 

B.25 
V = 4n 

If independent random events occur at a constant mean rate X, 

the probability that k events occur in an interval of length X is 

Poisson distributed with discrete density 

{ 

-ax k 

p(k) = : (kl~x) k 0,1 ,2, .. . 

o therwi se 

B . 26 

Since this is a discrete density, its moments are de fined in t e rms 

of sums rather than integra ls: 

CXl 

B.27 

The Poisson distribution has a single paramete r , ox, and its first 

two moments, variance and entropy are 
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· 2 
N

2 
= ax + (a.x) 

H(X) =ax [1 - ~-z (a)] 
B. 28 

Of all point processes with intensity a, the Poisson process has the 

maximum entropy rate dH(x)/dx (McFadden, 1965). 
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C. STOCHASTIC PROCESSES 

A stochastic proc e ss is, r oughly speaking, an ensemble of random 

functions, all governed by the same probability law. More precisely 

(Parzen, 1962; Thomasian, 1969) , a stochastic process consists of 

a probability space (O, P) , a non-empty set G, called the pa rame ter 

set , and a r andom variable, F : 0 - R, assigned to each g e G. The 
g 

only parameter sets we will explicitly consider a re the real line R, 

the positive reals R+, the circle s1 , and the sph e r e s2
. 

For any w € 0 , the function H : G ..... R, defined by 
w 

H (g) = F (w) 
w g 

for all g eG 

is called a realization, or sample function, of the stochastic 

process. For any (g,h) 

defined by 

E: G x G, the function t.F h: G x G ..... R, 
g, 

is called the increment ofF from g to h . 

A very important class of processes are thos e with sta tionary 

and independent increments. The increments of a process are said 

to be stationary if the distribution of t.F h depends on g a nd h 
g, 

only through their difference !h- gl . If the parameter set G is 

a sphere, this difference is just the angular distance y be tween 

the points g = (9,~) and h (9 + t.9, ~ + 6cp) . The increments of a 

process are i ndependent if the random variabl es t.F h and t.F 1 hi 
g' g ' 

C.l 

C.2 

are independent wh enever t he intervals (g,h) and (g
1 ,h 1

) are disjoint. 

The only processes we will actually encounter in this a nalysis are 
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the Poisson and Wiene r processes and some of their generalizations. 

All of these processes have stationary and independent increments. 

1. Poisson Process 

The Poisson process is basically a counting process. We define 

a c ounting function as any non- decreasing func tion N whose range i s 

r estricted to the non-negative integer s [ 0,1,2, . . . } a nd which 

assumes every value in its range less than N
0

, i f it assumes the 

value N
0

• We then define a Poisson process N with parameter a as 
g 

any process wi th stationary independent inc r ements such that the 

random variable N induces a Poisson density with mean ag, and every 
g 

realization of the process is a counting function . 

A process X is said to be a filtered Poisson process if it 
g 

can be represented by 

N 
g 

xg = L 
n=l 

B (g ,h , A ) 
n n C. 3 

where N is a Poisson process with intensity a , [A } is a sequence of 
g n 

indentically distributed random variables, independent o f one 

2 
another and of N , and B(g,h,A) : G x R- R is the response function. 

g 

We may interpret B(g,h,A) as the value at g of a response of magnitude 

A to an impulse at h. X is thus the value at g of N such responses. 
g g 

2 . We iner Process 

The Weine r process is obtained as the limit of a random walk 

as the step size decreases to zero . Specificall y, a Weiner process 

W(g) with parameter cr
2 

is any stationary independent increment process 
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such that the random variable W(g) induces a normal N(O,a2
) 

density, and every realization of the process is a continuous 

function. Thus, if y =lh -gl is the length of the interval (g,h) 

in the parameter set G, then the increment 6W(g,h; w) is normally 

2 
distributed as N(O,ycr ). Although realizati ons of a Weiner process are 

continuous, they are almost nowhere differentiable, i . e., for any 

g e G, the set of realizations which have a derivative at g has 

probability zero . 

The Wiener process has a number of other inte resting properties. 

For example, it might be supposed that in a typical interval, the 

fraction (X) of the interval over which the process is positive, 

would be normally distributed about its mean 0 . 5. However, as first 

shown by Levy (1948, pg . 216) the probability density is minimum 

at its mean and is concentrated toward the extremes 0 and 1. In 

fact, the density is 

p(X) 
1 1 

n J(X)(l - X) 

and therefore the probability 

= 
2 
n 

j(X) (1 - X) 

- 1 
sin (u) 0 ::;: u ::;: 1. 

This arc-sine law obviously also gives the di stribution of the 

C.4 

c.s 

fraction (1 - X) of the interval over which the process is negative. 



229 

The points at which the process assumes its mean value are also 

of interest. Let yk be the length of the k -th interval between 

consecutive returns to the mean. Short inte rvals are more frequent 

than long ones. In particular, when the parameter set is the real 

line or the positive reals, G € [R,R+}, the probability distribution 

( 8 )1/2 
P[yk = u} = n - 3/2 

u 

This distribution is approximately the same when the parameter set 

is the circle or sphere, G e {s1 ,s2}, if the intervals considered 

are sufficient l y short, i.e . , y << 2n This is also true of a number 

of the other properties we will consider below. 

We now consider a generalization of the I.Jiener process whose 

increments are a moving average of the increments of the standard 

Wiener process . Following Mandelbrot and Van Ness (1968), we define 

2 
a fractional Wiener process WS (g) with parameters ~ and a 

(0 ~ ~ ~ 1, 0 ~ o
2

) as any stationary increment process such that 

all the realizations of the process are continuous and the increments 

2 2 ~ I I 6W~ (g ,h) are normally distributed a s N(O, o y ) , where y = h- g 

is the distance between the points g and h in the parameter set . 

The increments of WS (g) are independent if, and only if, ~ =I· 
In that case, we merely obtain the traditional Wiener process, 

w
112

(g) = W(g). The fractional process is similar to the traditional 

process in that, although all its realizations are continuous, they 

are nowhere differentiable. 
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The realizations of a fractional Wiener process have a degree of 

invariance with respect to changes of scale . To quantify this no tion, 

we introduce the concept of self - similarity. The increments of a 

random function F(g) are said to be self-similar with parame t e r Q if 

for any y > 0, and any g e G, 

6F(g,g+y) Y- Q 6F(g,g +yQ) C.6 

where the indicated equality means that the t\vO random variables 

are indentically distributed. + If the paramete r set G e [ R,R } then 

the fractional Weiner process WS~g) has self-similar increments with 

parameter s. If G e [s1 ,s2}, then l.J
8

(g) is asymptotically self­

similar for small y . 

The realizations of I.JS (g) are also characterized by their 

extreme irregularity. This is, of course, suggested by their lack of 

differentiability. However, when we consider the realizations of 

a process with G € (R,R+}, we find that i n th ei r degree of convolu tion 

and intricacy they are , in fact intermediate between a smoo th 

rec tifiable curve and a Peano curve, which pass es through every point 

of a two dimensional region. This, in conjunction \vith a self-

similarity parameter 0 ~ S ~ 1, suggests a dimensionality D for the se 

realizations with 1 ~ D ~ 2. In fact, generali zing a result of 

Mandelbrot (1975), we suggest that if D[G] is the dimension of its 

parameter set, the dimension of a reali za tion of WS(g) satisfies 

D[G] + S C.7 

Thus, for example, if G s1 or s2
, then D[w

8
(g)]=l+s or 2+S r espective ly . 
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3. Ornstein-Uhlenbeck Process 

We now consider another extension of the Wiener process. If 

{.J(g) is a standard Wiener process, then 

C.8 

is called the Ornstein- Uhlenbeck process (Uhlenbeck and Ornstein, 

1930; Doob , 1942) with parame ters a > 0 and ~ > 0. It is a stationary 

normal process with zero mean and covariance 

C(U; y) =a e -~y 

Whereas the {.Jiener process is ob tained f rom a random walk i n 

the limit as the step length goes to zero, the Ornstein-Uhlenbeck 

process is derived by a similar limiting procedure f rom a random 

walk subjected to a r e storing force. Thus , the Ornstein- Uhlenbeck 

process is stationar y, whereas the Wiener process is not. 

C.9 



232 

D. COVARIANCE FUNCTIONS 

In much of what follows, it will be useful to consider functions 

on the sphere F(8,~) which are realizations of homogeneous stochastic 

processes. A process is said to be homogeneous if its first and 

second moments are invariant under the group of rotations of the 

sphere. This is equivalent (Roy, 1973) t o sta tionarity, i.P.., 

constancy of the mean E[F(8,~) ] and isotropy of the covariance 

function E[F(8,~)F(8' .~')], i.e., the covariance depends only on 

the angular separa tion y, bet\veen the points (8 ,cp) and (8' , ~ ' ) . 

If we now consider two functions A(8 ,~) and B(8 , ~), we may 

calculate the expected value of the product A(l') •B(f + y), where 

r = (8,~) and r + y = (8 1 ,~ 1 ) are any two points on the sphere which 

are an angular distance y apart. This mean product is known as the 

cross-correlation of A and B (Middle ton, 1960). In the case where 

E(A) = E(B) = 0, it is known as the cross-covariance and is designated 

C(A,B; y ) = E[A(f ) •B(f+ , )] D.l 

The requirement that E(A) = E(B) = 0 is easily met by defining new 

functions, A'= A-E(A) and B' = B-E(B). This is equivalent to the 

vanishing of the harmonic coefficients of degree zero; AO,O 

For example, instead of topographic radius R(8 ,~), we will use 

topographic heigh t ; H(8,~) = R(8,~) - R0 . 

The covariance of a function with itse lf is known as the auto-

covariance, or simply the covariance, and is denoted variously as 

C(A,A; y ) = C(A;y) = C(y) = E[A(f) A(f + y) ] D.2 
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The (cross-) covariance of the functions A and B at se paration 

y has a convenient representation in tern1s of Legendre polynomials 

in ~ = cos (y ), and the harn1onic coefficients A and B nm nm 
Applying 

th e addition th eorem 

P (cos(y)) 
n 

1 
2n + 1 

n 

L 
m=O 

A I I (8 ,cp) i \ (8 , cp ) 
nm 

where y is again the angular distance between (8 ,cp) and (8' ,cp'), 

we find (Heiskanen and Moritz, 1967; Kaula, 1967) 

where 

C(A,B ; Y) 

00 

R0
2 L V(A,B;n) Pn[cos(y )] 

n=l 

n 

V(A,B;n) AT B 
nm nm 

m=O 
is the (cross-) variance spectrum of A with B. For a given n, 

V(A,B;n) will be referred to as the degree (cross-) variance. For 

further discussion of spectral analysis of random processes on the 

sphere, see Jones (1963) and Roy (1976) . 

The (cross-) covariance at zero separation is known as the 

(c ross-) variance and has the form 

since 

C(A,B;O) 

00 

R
0

2 
L v(A,B;n) 

n=l 

p [cos (0)] l. 
n 

D. J 

D.4 

D.S 
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If a random variable X has mean E(X) = ~ 
X 

2 
and variance E (X - ~ ) 

X 

= (J 
X 

2 
then (Thomasian, 1969; pp. 202-208) 

* X 
X - II 

~'-'x 

(J 
X 

is called the standardized random variable corresponding to X, and 

has zero mean and unit variance: 

* E(X) = 0 

E(x*) 2 = 1 

D.6 

D. 7 

If X and Y have finite, nonzero variances, then the covariance between 

their standardizations is called the ir correlation coefficient and 

is denoted by 

(X ,Y) 
C (X, Y) 
cr a 

X y 

For random variables on the sphere, we also define the degree 

correlation coefficient 

p(X , Y;n ) * * = V(X ,Y ;n) 
V(X,Y;n) 

[ V (X ; n) V (Y; n) ] 1/2 

Clearly , -1 ~ pxy = pyx~ 1, and Pxy 1 (-1) i f f X and Y are 

perfectly (anti-) correlated, whereas p = 0 means that X and Y 
xy 

are uncorrelated. Thus, p is a standardized measure of the 
xy 

degree of statistical dependence between X and Y. 

D.8 

D.9 

If we desire to predict the value of a random var i able Y based 

on observations of another random variable X, we may seek the numbers 

a and S which minimize the error variance 

E ( Y - (oX + 8 )] 
2 
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In t erms of standardized va riables, the soluLion is 

a = P xy 

and the error variance is 

f3 = 0 

* * 2 2 E (Y - p X ) = 1 - p 
xy xy 

D.lO 

D.ll 

In terms of nonstanda rdized variables , the so called regression line 

and error variance are: 

y 

2 
E [ Y - (oX + f3) ] 

2 2 
a (1 - P ) y xy 

The Wiener-Khintchine theorem (Middleton , 1960; pp. 141-144 ) 

states that und er quite gen e r a l conditions the (cross-) covariance 

D. l2 

D. l J 

function and the (cross-) variance spectrum are re l a ted by a pair of 

integral (or s eries) transforms . In the case of spherical geometry, 

we h ave a Legendre transform relationship: 

00 

c (~) R
0 

2 ~ V(n) Pn (~ ) 
n=l 

2 
R

0 
V(n) 

1 

2n
2 
+ 11 

- 1 

C(~) P (~) du 
n 

D.l4 

Thus we can dea l with whicheve r quantity is more convenien t or gives 

grea ter insight into a problem. A case of particular inte r est i s 

the spherical Wiener process, which is r epresentative of the stochastic 
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component of the topography of the t errestria l planets: 

V(H·n) = V(H;O) 
' (n)(n+l) 

The covariance in this case is 

C(H;y) = R 
2 

0 

~ P [cos (y) ] 
V (H; 0) L..J ~ n) ( n + 1 ) 

n=l 

We can obtain a closed-form expression for this series by noting 

that 

l 1 1 
(n) (n + 1) n n + l 

and (\.fueelon, 1968; pg. 53) 

n=l 

n=l 

P [cos(y)] 
n 

n 
- ( en [sin(y/2) ]+ e1l[l + sin(y/2) l) 

P [cos(y)] 
_n_n_+_l_ =- (1 + e-71 [sin(y /2)] - ~ [1 + sin(y/2)1) 

Therefore, we find that: 

C(H; y ) = R 2 
0 [Leo P [cos (y)] 

V(H;O) _n _ __ _ 
n 

n=l 

~ Pn[cos(y )]J 
L.J n+l 
n=l 

= Ro 
2 

v (H ; 0 ) ( l - 2?"1 [ 1 + sin ( y I 2 ) J) 

When y = 0, this has the form 

2 
C(H;O) = R0 V(H;O) 

since 

P [cos(O)] l 
n 

0.15 

D.l6 

0.17 

0.18 

0.19 

0 .20 

D.2l 
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and 

L: 1 
-(n-) -(n_+_l_) ""' l. 

n=l 

Similarly, for a fractional Wiener process W~ on a circle, the 

variance spectrum is 

Campbell's theorem (Rice, 1944) gives convenient expre ssions 

for the mean and covariance function of those filtered Poisson 

processes which can be expressed as 

N 

X (g) L 
n=l 

A 
n 

B (g - h ) 
n 

0 . 22 

0.23 

where N is a Poisson process of intensity a , A is the amplitude of 
n 

the n - th pulse, a nd B(g - h ) is the response at g to a unit pulse 
n 

at h . If the parameter set of the process is G, then 
n 

E (X) 

C (X; y ) 

aE(A) J B(g) dg 

G 

a E(A)
21 B(g) B(g +y) dg 

G 

As the intensity a is increased, the process X(g) approaches a 

normal distribution with mean E(X) and variance C(X;O), as given 

above . 

D. 24 

As an application of the convolution theorem to the calculation 

of variance spectra and covariance functions, we note that, if the 

function F is a convolution of A and B, 
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F(8 ,cp) 

2rr n /2 lJ J II I I 
4TT A (8 ,cp ) B (8 - 8 ,cp - cp ) 

0 - rr/2 

cos(8 1
) d8 1 dcp 1 

and if B has no azimuthal variation , then the variance spectrum 

of F is simply 

2 
V(F;n) = Bn V(A;n) 

and the covariance functi on is 

C(F; y ) 

CXl 

R0
2 L Bn

2 
V(A ;n) Pn[cos(y)] 

n=l 

D. 25 

D. 26 

D. 27 
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E. VISCO-ELASTIC DEFORMATION 

The response of a planet to applied stress depends on the size 

and composition of the planet as well as the spatial and temporal 

distribution of the stresses. We will restrict our attention here 

to planets composed of homogeneous, incompressible, linear visco-

elastic materials. This considerably simplifies the analysis while 

retaining many of the behavioral features of a more complex substance . 

A planet will thus b e characterized by its radius R
0

[cm], either 

3 -2 mass M [gm] or density [gm em- ], rigidity~ [dyne em ] and either 

kinematic viscosity 
2 -1 

v[stoke = em sec ] or dynamic viscosity 

-1 -1 n = pv [poise= gm em sec ]. 

- 2 
The relationship between applied stress 0 [dyne em ] and con-

sequent deformat ion, as expressed in terms of either strain € 

• -1 
[dimensionless] or strain rate € = de/dt [sec ] , depends on the 

material being deformed. For linear elastic, linear viscous and 

Maxwell visco-elastic materials, the r elations are: 

a/~ (elastic) E.l 

(viscous) E.2 

(visco - elastic) E.3 

This latter form is only one of many possible models for linear 

visco-elastic behavior, but we focus on it because of historical 

precedent (Maxwell, 1868; Darwin, 1879) and ana lytical simplici t y. 

Furthermore , it is apparently a reasonable model in many situations 

of geophysical interest (McKenzie, 1967). 
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A Maxwe ll material subjected to a constant stress a , i nitially 

undergoes an elas tic deformation € a/~, but also commence s creeping 

. 
at a r ate e = a /n. After a time t TM ' known as the Maxwe ll 

relaxation time, the viscous deformation € = at/~ exceeds the initial 

elastic deformation. Thus, for short time pe riods (t < TM) the 

material is essentially elastic, whereas , for l ong time periods 

(t > TM), the behavi or is predominantly viscous . 

We will now examine the short time or e lastic limit in th e 

behavior of visco-elastic planets under stress. \~en subj ected to 

a disturbing potential 

q, (R, 8 ,cp) 
GM 

Ro 
t (:0r1 t 
n=l m=O 

q, T A (8 , cp) 
nm nm 

an elastic sphere suffers a surface distortion proportional t o the 

disturbing potential 

u (8 ,cp) q,nmT U (8 ,cp) 
nm 

where U (8,cp) is a ve ctor spherical harmonic whose components in 
nm 

A A A 

the direction of the unit vectors (eR, e 8 , ecp) are : 

A 

e • u (8 ,cp) h A nm (8 ,cp) R nm n 
A 

£, 0 
e • u ( 8 ,cp) n o8 Anm (8 ,cp) e nm 
A .t n o 
e • U (8,cp) = cos(8) 0cp Anm( S ,cp) cp nm 

E.4 

E.S 

E. 6 

This redistribution of mass gives rise to a further disturbance of the 

potential whose harmonic coefficients are 



241 

6~ nm 
k ~ 

n nm 
E. 7 

These constants of proportionality L = (k ,h ,£ ) are kno\ro 
n n n n 

as Love numbers (Love , 1927 , pp. 257- 299; Munk and MacDonald , 1960, 

pp. 29-31) , and their functional form depends on the nature of the 

disturbing potential. For a potential which does not load the surface, 

such as a rotational or tida l potential , a cting on a homogeneous 

elastic sphere 

k 
3 ( l +N(~) ) n 2(n-l) IJ./P 

c 

li ( 2n 
3
+ 1) k 

n n 
E.8 

t ( ~) kn n 

where 

p 3GM
2 

4 c 8nR
0 

E.9 

the hydrostatic pressure at the cente r o f th e planet, is a measure of 

the gravita tional resis tance to deformation, 1-1 is the elastic rigidi ty, 

and 

2 
N(n) = 2( n+l) + 1 

2n 
E.lO 

is a purely geometrical factor related to the boundary conditions for 

the sphere. In a fluid planet IJ. = 0, and the restoring for ce is 

purely gravitational. Since N(n) is an increasing function of n, 

the e l astic response is clearly more important for small features. 
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If the perturbing potential is due to a surface l oad of 

material of the same dens ity as the rest of the planet, and the height 

of the surface load is 

co n 

H(9 ,cp) R0 ~ ~ H~~ Anm (9,cp) 

then the po tential h armonics are 

In this case, t he deformat i on due t o the normal stress applied by 

th e load is oppos ed by the gravitational attraction of the planet 

by the load. The corresponding Love numbers are thus 

L' = [1- 2n+l] L 
n 3 n 

whe re L are the Love numbers for a potential which does not l oad 
n 

the surface . Thus , we have explicitly 

k' 
(l + N(!)I-!/Pc ) n 

h' = ( 2n 3+ 1) k' 
n n 

;, ' = ( ~ ) k~ n 

If a load of initial height H
1 were placed on a sphere, the 
nm 

original surface wou ld deform by h ' ~ , and the final height of n nm 

the load would be 

H = H' +h I ~ 
nm nm nnm 

However, since 

E.ll 

E .12 

E .l3 

E.l4 

E.l5 
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H' en 3+ 1) ~ 
nm nm 

h' ( 2n t 1) k' 
n n 

this can be rewritten as 

H (1 +k') H' 
nm n nm 

Clearly, if the body were perfectly fluid, so that ~ 

would have k' 
n 

-1 and thus H = 0. 
nm 

E.l6 

E.17 

0, then we 

The Love numbers have the following asymptotic behavior in the 

limit of small wavelength features: 

lim 

lim 

p 
c 

p 
c 

1 

3/2 E.l8 

3/2 

2/3 

1 E.19 

1 

Darwin (1879) solved the problem of purely viscous deformation 

of a homogeneous sphere by a surface load. If the load has the same 

density as the sphere, and the initial height of the load is 

characterized by harmonic coefficients 

H (O) = A 
nm nm 

E.20 

then, at a later time t, the load height harmonics will be attenuated 

to 

H (t) 
nm 

A 
nm 

-t/T e n E.21 
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where the relaxation time for degree n is 

E.22 

and ~ is the dynamic viscosity. Since T is an increasing function 
n 

of n, the proportional attenuation of laterally ex tensive features 

is more rapid than for small features. This is just opposite the 

behavior of d iffusion processes. 

The deformation of a Maxwell sphere due to a surface load was 

also determined by Darwin (1879) and is essentially identical to 

the behavior of a purely viscous sphere. The only difference is 

that the relaxation times are uniformly increased to (McKenzie, 

1967; Peltier, 1974) 

T~ • [N~:) + ~ J ~ 
E.23 

= 

where Tn is the viscous spherical relaxation time, and TM is the 

Maxwell relaxation time of the material. 
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F. POTENTIAL ENERGY 

The configuration of lowest energy f or an isolated mass of 

homogeneous material is a sphe r e . Any departure from sphericity 

thus represents an increase in potential energy, both elastic and 

gravitational. We will now estimate the ene r gy corr esponding to 

harmonic surface loads and use the constraint of finite total energy 

to place bounds on possible surface configurations. He will first 

consider elastic energy. 

1 . Elastic Energy 

The elastic energy density, which is the work done per unit 

volume in elastical ly deformi ng the materia l, is given by 

3 3 

e ~ L: L: 
i=l j=l 

(J. . 8 . . 
~J ~J 

where crij and €ij are the stress and strain tensors respectively. 

The constitutive relation between s tress and strain for an incom-

pressible material is 

cr .. = ~ 8 .. 
~J ~ J 

and thus the energy density simplifies to 

3 3 

e t!2 L: L: 8 .. 8 .. 
i=l j"'l ~J ~J 

F.l 

F.2 

F.3 

In a system with coordinate axes X., the strain tensor i s obtained 
~ 

from the displacement vector U. by the formula 
~ 

8 . . 
q 

1 ( oui ou.) 
- -+__l 
2 ox. ox. 

J ~ 

F.4 
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In spherical coordinates, the stra in componen t s are: 

E: = 
R8 

_Rl [uR + tan (8) u
8 

+ l 
cos (8) 

- 1 [ ouR oue 1 
E: 8R - 2 R T8 + R oR - U 8 

1 [ 1 ouR au 
E:cpR = 2R cos (8) ~ + R ~ - u l 

cpj 

1 [ 1 au 8 au J 
E: /4t.n = E:rn8 = -2 ( 6) -;.- + _.ie- tan(8) urn 

"'+' '1' R cos ocp 0 8 '1' 

F.S 

Substituting the displacement due to a single harmonic disturbing 

potential 

GM(R)n T ~(R, 8 ,cp) = -R -R ~ A (8, ~) 
0 0 

nm nm F.6 

into the above equations we obtain 

(
R)n T 1 

€ . . (R, 8 ,cp) = -R ~ E: .. (8 ,rn) 
1 J 0 nm 1J '1' 

F . 7 

where 

I 
n h A E: RR n nm 

a
2

A 
I h A +.t nm 

e:e 8 n nm n 
ae

2 

h 
m2.t a A 

(.I = - n ]A +£ tan(8 ) nm 
cttp cos2(8) nm n --as 
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oA 
2e:~e = 

run 

o8 

oA 
nm 

aq; 

2€ I = 
&+> 

£, 
n 0 [ oA J - 2 ~ - tan(8) A 

~cp o8 run cos (8) 

where the form of the Love numbers depends on the nature of the 

disturbing potential, i.e., whether it loads the surface or not. 

As our principal interest is in the asy mptotic behavior ·of the 

energy density for large n, we can neglect the terms in £, , since 
n 

£, _ 3 n ~ ) 

h 

n 2n + 1 n 

Using the approximation £, = 0 
n 

and the fact s 

l... I (/\ )2 
dS = 1 4n nm 

s 

tJ (";e)2 dS (n)(n+l) _ (2n+l)(m) 
2 

s 

~TT J ~ ( 0~:)2 dS = 
s cos (8) 't" 

(Lowes, 1966), we find that 

(2n + 1) (m) 
2 

3 3 
1 

( L L e:~J· E:~J· dS = fn
2 

+2 + (n)(~+l)]h~ 
4TT Js i=l j=l L 

Therefore, the total elastic energy c orre sponding to the harmonic 

disturbance ~ nm is E 
run 

F.8 

F.9 

F .10 

F.ll 

F . 12 



E 
nm 

!:! ( 3n 
2 

+ n + 4) h 2 
2 2 n 
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m.LR~ ( 3n
2 

+n +4) h2 ~ 2 
3 2n + 3 n nm 

where s = R/R0 . 

~2n+2 ds 

I f we consider th e surface topogr aphy of a planet 

co n 

H(8 ,cp) = R
0 
L L: HT 
n=l m=O nm 

1\ ( 9 ,q:>) 
nm 

to be the result of the emplacement of a surface load H1 (8,q:>) and 

F.l3 

F .l4 

the subsequent deformation of th e original surface, we can calculate 

the total elastic ener gy stor ed during the deformat ion. In this 

case, 

(2n+l) ~ =HI 
3 nm nm = 

H 
nm 

1 +k I 
n 

so that a sum over all 2n + 1 terms of degree n in the harmoni c 

expansion of the surfa ce load yields 

where 

E 
n 

2 
3TT).1R 3 3n + n + 4 

0 
(2n + 3) (2n + 1) 

2 

n 

V(H;n) =L 
m=O 

HT H 
nm nm 

(
h I )2 

_n_ V(H;n) 
1 +k I 

n 

is the t opographic degr ee variance. The t o tal e lastic energy due 

to the topography is thus simply 

F.l5 

F . 16 
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=L 
n=l 

However, since 

E 
n 
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3 CXl 

4nRO Le 
3 n==l n 

lim n 

( 

h' ) 

Therefore, 

n _. oo 1 + k~ = 

lim 
(2n + 1) e = 

n 

3P 
2 

0 
411 

V(H;n) 

i.e., the elastic energy density per harmonic degree converges to 

zero more rapidly than the topographic degree variances. It would 

thus be possible to have infinite topographic variance and finite 

elastic energy. 

2 . Gravitational Energy 

F.l7 

Ii'. 18 

F.l9 

We now direct our attention to the gravitationa l energy associated 

with the surface topography of a planet. The gravitational energy 

density is just the work done per unit volume against the gravitational 

field in assembling the configuration from some reference state. It 

is calculated from 

F.20 

where, as before, p is the mass density and ~ is the gravitational 

potential. We have already seen that the potential of a homogeneous 

spheroid with mean radius R and mass M has the form 
0 

[ 

2 n+l 
GM ( 3 - (R/RO) ) oo ( ~0 ) n T 

~i (R, e,cp) = R
0 

2 + L R L ~nm 
n=l m=O 

for interior points (R ~ R
0
), and 

F.21 
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[

R oo R n+l n 

~e(R,S ,cp)=~ R
0 +L(:) L 

0 n=l m=O 

for exterior points R ~ R
0

, where 

(
2
n3+l) ~nm = Hnm 

and H are the harmonic coefficients fo the topographic heights. 
nm 

If we denote the potential of a homogeneous sphere by ~0 (R), then 

the gravitational energy of such a spherical configuration is 

However , since p(R) = 0 for R > 0, thi c ~En b e written 

dR d!J dcp 

GM 
=-

2Ro 

3 5 ] 

[
l (4TIRO ) - ____ l (4TIRO ) 
2 3 2R 2 5 

0 

The ~ff~ct of surface topography H(!J, cp), i o found f r om the 

integral 

2TI 1 oo 

E = t f f f p(R) ~(R,!J,cp) R
2 

dR d!J dcp 

0 -1 0 

F.22 

F.23 

F .24 

F.25 
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where now ~(R,~,~) includes the topographic pe rturbations. We will 

evaluate this interval over three disjoint reg ions: 1) the interior 

of the sphere, R < R
0

, 2) an infinitesimal sh e ll at the surface R = R
0

, 

where we let dR = H(~.~), and 3) the exterior o f the sphere R > R
0

, 

where p(R) = 0. The desired integral will be the sum of these 

three parts. 

The first integral is 

E' ~ fp r / t ~.(R) R
2 

dR d~ ~ 
1 

0 -1 0 

n=l m=O 

~ T 
nm 

2TT 1 

f J 
0 -1 

but this last term is zero due to the orthogonality of A 
nm 

E
1 

= E 
0 

The second part, or integral over the surface shell is 

2n 1 

E 
11 

= fP J J ip (RO , ~ , ~) H (~ , ~) RO 
2 d~ d~ 

0 -1 

<Xl n 

= GM..Q 
[4n R0 

3 L L ~ T 
Hnm] 2R

0 
nm 

n=l m=O 

<Xl n 

E ]2 ~) 
HT H 

= nm nm 
0 2 "'--' 

...._ 
2n + 1 

n=l m=O 

F.26 

Thus, 

F.27 

F.28 
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where we have used the relationship between ~ and H t o s i mpli fy 
nm nm 

the last expression. The third integral is trivially E"' = 0 , since 

p(R) = o for R > R
0

. 

Thus, the effect of surface topography on a homog eneous planet 

is to increase the gravitational energy above the spherical value 

[1 + 

00 n HT ] E E 15 

I I 
H F.29 

0 2 nm nm 

n=1 m=O 2n + 1 

where 
n HT H 

E 15 L nm nm 
2 2n + 1 n 

m=O 

is the contribution of harmonic degree n to the total. The gravita~ 

tional energy is similar to the elastic energy in that their incre-

ments per degree both decrease with increasing degree more rapidly 

than the corresponding increments in topographic variance, and, in 

fact, the asymptotic convergence rates of the two energies are 

identical. 
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G. SLOPES 

Given a representation of the topographic heights on a planet 

H(8,~), we now desire a characterization of the slopes on the surface . 

We will first develop expressions for the mean square slope of given 

slope length , and criteria for the establishment of isotropy of the 

topography, and then we will consider the problem of mechanical 

stability of the slopes. In much of this analysis, we will consider 

the topography to be a realization of a homogeneous stochastic process. 

The slope of the secant line b etween any two points a distance 

L R y apart is 
0 

uH 
L 

I H (I'+ y) - H (1)1 
R

0
y 

and the mean square slope with slope length L is 

E[H
2

(1+y)] - 2E[H(I'+y)H(l)] + E[H
2

(1)] 
2 

(Roy) 

However, by the assumed stationarity of the topography 

and, we already have 

E[H
2 (1)] = C(H;O) 

and 

E[H(I'+y) H(I')] = C(H; y ) 

G.l 

G. 2 

G.3 

G.4 

G.5 
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Therefore, the mean square slope of length L is 

2[C(H;O) - C(H;y)] 
L2 

2L [

1 - Pn(cos(y)) l 
V(H;n) 2 , 

y .J 
n=l 

G.6 

As the slope length goes to zero and the secants defining the slope 

approach tangency (if the surface is, in fact, differentiable), 

we obtain 

since 

Q) 

~ V(H;n) (n) (n + 1) 

n=l 

lim jl- Pn(cos(y )) J- (n)(n+l) 
y ... o L y2 - 2 

In the important case where 

. _ V(H;O) 
V(H,n) - (n) (n + 1) 

we obtain the closed form expression 

S2 (L) ; [1 - pn (cos (y) J 
= 2 V(H;O) L- (n) (n + l) 

n=l 

4 V (H; 0 ) 1"1[ 1 + sin (y/2) ] 
2 

y 

G.7 

G.8 

G.9 

(see Appendix D for more details). When the slope length is small, 

we have app r oximately 
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so that 
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S 2 (L) • 2 V (H; 0) 
y 

3 5 
sin (x) X -

X X 
3!+5!" 

07!(1 +x) 
2 3 

X +~ 
X - 2"! 3! 

2 3 

2 
X X 
8 + 48 en[ 1 + sin (x/2)] 

X 
=- -

1. Isotropy of Slopes 

Though we have assumed isotropy of covariance (and therefore 

of slopes) in modeling the topography as a realization of a homo-

G.lO 

geneous stochastic process, it is possible to check the validity of 

this assumption. We first recall that the differential arc length 

is given by 

2 2 [ 82 2(8) drn2] = R2 dy2 dL = RO d +cos 't' O G. ll 

We then calculate the mean square infinitesimal slopes facing east-

west 

s2 (O) = _.!.._ J ( cm)
2 

dA 8 4n oL 8 
A 

G.l2 

and similarly for north-south facing slopes 

= _.!.._ f ( oH)2 dA 
4n oL 

A cp 

G.l3 
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where the subscript indicates which coordinate is held fixed and 

the integration is over the entire surface of the sphere. We note 

that 
oo n HT ')' L _n_m___,._ o Anm (8 ,cp) 

~l m=O cos(G) 0cp (~:)(~) 

and 
oo n 

( oH) = (oH)(oe) = L L, HT 
oL cp o8 oL n=l m=O nm 

o A (8, cp) 
nm 

o e 

The required integrals are (Lowes, 1966) 

1 J 1 
4n 2(S) A cos 

and 

oA 
2 

( ~m) dA = (2n + ~) (m) 

(n)(n+l)- (2n+l)(ml 
2 

Therefore, the mean square east-west slope is 

00 

s~ (O) L T8 (n) 
n=l 

and the mean square north -south slope is 

where the degree tilts are 

n 

T (n) 
cp 

L [(2n ~ 1) (m)'j H T H 
m=O nm nm 

n 

T (n) 
cp L j(n)(n+l) 

m=O L 

(2n + ~) (m) J, H T H 
nm nm 

G.l4 

G. lS 

G.l6 

G.l7 

G.l8 

G.l9 

G.20 
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The total mean square slope at zero slope length is simply 

CD 

CD 

~ (n) (n + 1) V (H; n) 

n=l 

as previously established. 

Our desired criterion for mean square isotropy of a function 

H(9 ,~) on a sphere is thus 

or equivalently 

n 

m=O 

T (n) 
~ 

n 

m=O 

for all n. Here H are the normalized Fourier-Legendre transforms 
nm 

of H(9,~) . 

2. Slope Stability 

G.21 

G.22 

Physical slopes are limited in height by the strength of their 

constituent materials. The stability of a slope in soil is dependent 

upon characteristics of the soil [density (p), cohesion (c) and 

internal friction angle (~)], characteristics of the slope [height (H), 

length (L) and inclination (i)] and a characteristic of the 

planetary surface on which the slope resides, [the local gravity (g)]. 

If a slope of constant inclination is extended in height, the shear 

stress (T) will eventually exceed the shear resistance of the 
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material and the slope will fail. A common failure criterion is the 

Mohr-Coulomb relation 

'T = c + a tan(cp) G.23 

which expresses a linear increase in shear stress at failure with 

increasing normal stress (cr). The generai determination of slope 

stability is a difficult variational problem (Revilla and Castillo, 

1977), but in the case of shallow slopes the failure surface is 

essentially planar and the analysis of Culmann (1866) is adequate 

(see e.g., Terzaghi, 1943). According to this analysis the maximum 

height attainable in a slope of length L is 

H(L) = 4c [sin (i) cos (cp) J 
pg 1 - cos ( i - cp) 

G.24 

In many situations the effects of internal friction are negligible, 

so we shall assume cp = 0, and 

H(L) _ 4c [sin(i) J 
- pg 1 - c 0 s ( i) 

In a rectilinear slope segment, we also obviously have 

H(L) = L tan(i) 

so that 

cos(i) 

Thus, the squared height is 

where 
L 

0 

2c 
pg 

8cL 
og 

+~ 
pgL J 

-1 

L 

(1 + Lo) 

G.25 

G.26 

G. 27 

G.28 
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However, on the Moon, for example 

c 0.1 bar ~ 
3.0 -3 p gm em 

J g = 160 gal 

Thus, to a good approximation 

~L 
0 

4m 

L >> L 
0 

G.29 

G.30 

i.e., the squared height of a stability limi t ed slope is propor t ional 

to the length of th e slope. 

It is interesting to note an analogous behavior exhibited by 

the Wiener process. If we consider the slope profile to be a 

realization of a Wiener process on the positive reals with parameter 

2 a = 3c/pg and W(O) = 0 then 

8cL 
pg 

i.e., the variance of the process is proportional to the length of 

the slope. 

G.31 

The spherical Wiener process also exhibits this type of b ehavior 

for · sufficiently short slopes (y << 2n). Since the covariance has 

the form 

C (H; y) C(H;O) I. 
p [cos (y)] 

n 
(n)(n+l) 

n=l G.32 

= C(H;O) [1 - 227! [1 + sin(y /2)]] 

the mean square range over a distance L = R
0

y is 
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E([H(f+y) - H(f)) 
2
) = 2[c(H;O) - C(H;y)j G.33 

= 4C(H;O) lm [1 +sin(y/2) 

For short distances, this reduces to 

y << 2TT G.34 

i.e., the mean square slope height is proportional to slope length. 

If we let C(H;O) = 4c R0 /pg, we recover the slope stability result 

exactly . 
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