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ABSTRACT

In chapter I a global lunar topographic map is derived from Earth-
based and orbital observations supplemented in areas without data by
a linear autocovariance predictor. Of 2592 bins, each 5° square,

1380 (64.7% by area) contain at least one measurement. A spherical
harmonic analysis to degree 12 yields a mean radius of (1737.53 = 0.03)
km (formal standard error) and an offset of the center of figure of
(1.98 + 0.06) km toward (19 + 2)°S, (194 %+ 1)°E. A Bouguer gravity
map is also presented. It is confirmed that the low-degree gravity
harmonics are caused primarily by surface height variations and only
secondarily by lateral density variations.

In chapter II a series of models of the lunar interior are derived
from topographic, gravitational, librational and seismic data. The
moon departs from isostasy, even for the low-degree harmonics, with
a maximum superisostatic stress of 200 bars under the major mascon
basins. The mean crustal thicknesses under different physiographic
regions are: mascons, 30-35 km; irregular maria, 50-60 km; and
highlands, 90-110 km. A significant correlation between lunar surface
chemistry and crustal thickness suggests that regions of thicker crust
are more highly differentiated. A possible mean composition consistent
with our model is an anorthositic crust, underlain by a predominantly
forsterite upper mantle which grades into a refractory rich lower

mantle surrounding a pyrrhotite core.
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In chapter IITI a model of martian global topography is obtained
by fitting a spherical harmonic series of degree 16 to occultation,
radar, spectral and photogrammetric measurements. The existing
observations are supplemented in areas without data by emperical
elevation estimates based on photographic data. The mean radius is
(3389.92 = 0.04) km. The corresponding mean density is (3.933 % 0.002)
g cm_3. The center of figure is displaced from the center of mass by

(2.50 + 0.07) km towards (62 + 3)°S, (272 + 3)°W. The geometric

i

flattening [fg (6.12 + 0.04) 10-3] is too great and the dynamic
flattening [fd = (5.22 + 0.03) 10-3] is too small for Mars to be
homogeneous and hydrostatic. It is confirmed that, similar to the
Moon, the martian low-degree gravity harmonics are produced primarily
by surface height variations and only secondarily by lateral density
variations. Maps of the global topography and Bouguer gravity are
presented. These are interpreted in terms of a crustal thickness map
which is consistent with gravity, topography and recent preliminary
Viking seismic results., Using plausible density contrasts and an
assumed zero crustal thickness at Hellas, the inferred minimum mean
crustal thickness is 428 £ 4) km.

In chapter IV it is shown that the topographic variance spectra
of the Earth, Moon, Mars and Venus are all very similar. The variance
per harmonic degree V(H;n) decreases roughly as the inverse square of
the degree, or more precisely V(H;n) = V(H;0)/(n)(n+l). On the Earth

and Moon this relationship has been confirmed down to scale lengths as
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small as L = 100 m. At the other end of the spectrum, the variance

appears to be deficient relative to this model for scale lengths
greater than L = 2000 km. The most satisfactory explanation for this
phenomenon appears to be a simple equilibrium between constructional
or "tectonic'" processes which tend to roughen‘the surface uniformly
at all scales, and destructional or erosive processes which tend to
smooth the surface preferentially at small scales. The deficiency

in the low-degree variances is attributable to visco-elastic

deformation.
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PREFACE

The surface topography of a planet is one of its most important
characteristics, since it reflects the complex history of interaction
between exogenic and endogenic processes which have formed and
subsequently modified the planet. Topographic data can also be used
in conjunction with gravity observations to estimate the lateral
variation of subsurface density and the stress distribution which
maintains the gravity anomalies.

The initial objective of this investigation was to obtain
spherical harmonic representations of lunar and martian topography
of sufficient resolution and fidelity to be of use in performing
global Bouguer analyses and in internal density modeling. The
results of these efforts are reported in the first three chapters.

In the course of this research it was discovered that the
topographic variance spectra of the Moon and Mars are very similar
to the Earth's. The statistical similarity of these surfaces which
have been subjected to vastly different formative processes seems to
require some explanation. In the fourth chapter we investigate this
phenomenon and find a simple explanation in terms of equilibrium
between constructional and erosive activity. The statistical aspects
of the resultant surface are largely independent of the details of

the processes producing it.



I. A HARMONIC ANALYSIS OF LUNAR TOPOGRAPHY

A. INTRODUCTION

The objective of this investigation has been to obtain a lunar
topography model that resolves basin-sized features, and can be used
with a gravity model of equivalent resolution to perform global
Bouguer analyses. A variety of elevation data types have been used
to derive a spherical harmonic representation of the lunar figure.
Previous analyses of lunar topography (Goudas, 1971; Jones, 1973;
Chuikova, 1976) have suffered from inadequate data coverage and
insufficient model resolutionm.

This chapter presents a discussion of the data used in the
analysis, its selenographic distribution, and associated errors.

A development is also presented of the analysis technique used to
compensate for the irregular data distribution.

Maps of the global topography and its formal uncertainty are
presented, along with a Bouguer anomaly map. The implications of
some of the low-degree harmonics are considered separately.

B. DATA

The determination of the figure of the Moon has had a long and
interesting history (see, e.g., Kopal and Carder, 1974). The measure-
ments have been referred to several similar, but fundamentally dif-
ferent, coordinate systems. All measures are of the basic form
R(B,p), where R is the radial distance from the origin, 6 is the
latitude, and ¢ is the (east) longitude. The angles are measured

from the mean sub-Earth point.



The basic difference between the various reference systems
used is in the location of their respective coordinate origins. For
analytical purposes, the most convenient coordinate origin is the
lunar center of mass. Before combining the various data types used
in this analysis, we will refer them to this selenodetic coordinate
system,

The data used which are already selenodetically referenced
consist of Apollo laser altimetry (Roberson and Kaula, 1972;
Wollenhaupt and Sjogren, 1972; Wollenhaupt et al., 1974; Kaula et al.,
1972, 1973, 1974), vertical and oblique metric photogrammetry
(Schimerman, 1975, personal communication), and landmark tracking
data (Wollenhaupt et al., 1972).

The data which were not initially in a selenodetic coordinate
system consists of Watts' (1963) limb profiles (sampled at 2°5 inter-
vals in the libration frame) and ground-based stereoscopic photo=-
grammetry (Hopmann, 1967; Mills and Sudbury, 1968; Arthur and Bates,
1968). These limb and photogrammetric data were referred to the
selenodetic system by means of transformations determined by
Van Flandern (1970) and Schimerman et al. (1973), respectively.

Other recent data which we have examined but have not used
(either because of redundancy with the above data or because of
ambiguity in the associated coordinate systems) include more ground-
based photogrammetry (Baldwin, 1963), Zond-6 limb profiles (Rodionov

et al., 1971), lunar orbiter photogrammetry (Jones, 1973), radar




interferometry (Zisk, 1972), and Apollo radar altimetry (Brown et al.,
1974).

Table 1.1 is a summary of the various data types used, the
number of points measured, and their estimated accuracies. Figure
1.1 indicates the approximate distribution of the data, summa-
rized according to 5° x 5° bins. The most important aspect of this
distribution is the complete lack of data for large regions on the

far side. This situation considerably complicates our analysis.

TABLE 1.1

DATA SOURCES

Data type Number Error
of (km)
points

Inertial

Laser altimeter

Apollo 15 919 0.30
Apollo 16 L 353 0.30
Apollo 17 3 359 0.30
Orbital photogrammetry 12 432 0.30
Landmark tracking 31 0.50
Noninertial
Earth-based photogrammetry
Hopmann 1 049 0.80
Mills and Sudbury 906 0.402
Arthur and Bates 1 356 0.902
Limb profile 483 0.38

a 3 .
Errors are estimated for each point separately. Number quoted
is the mean of the individual errors.



FIGURE 1.1 - Data Distribution. The lunar surface is shown divided
into 2592 bins, each 5° x 5°. The dot pattern indicates those bins
(1380) which contain at least one measurement. A linear auto-

covariance analysis was used to estimate elevations in remaining

bins.
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In addition to the spherical coordinates (R,6,yp), we will have
occasion to use a Cartesian coordinate system (Xl’XZ’X3)’ with its
origin at the lunar center of mass. This system is right-handed and
oriented such that the Xl axis lies along the mean Earth-Moon line
(positive toward Earth), the X2 axis points east along the orbit
(positive away from direction of orbital motion), and the X3 axis
lies along the rotation axis (positive toward north).

C. ANALYSIS

Given the data discussed in the previous section, we now have the
problem of how best to estimate a set of harmonic coefficients which
characterize the shape of the lunar surface. We will be interested
not only in the complete ensemble of harmonics and the global lunar
configuration which they represent, but also in some of the low-
degree harmonics, considered separately. Therefore, it is imperative
that we obtain harmonic coefficient estimates which not only accu-
rately represent the data, but are also optimally uncorrelated with
one another, consistent with the uneven data distribution. An
intimately related problem is that we desire to avoid unreasonable
values for our harmonic model in regions containing no direct measure-
ments, We will now formulate this problem more rigorously and present
our solution thereto.

Given a collection of topographic data F, with standard deviation

¢, distributed on a sphere

R(Bi,mi) = F1 + oy 5 (1.1)



8
we desire optimally uncorrelated estimates of the harmonic coeffi-
cients Hnm through degree and order N.

Our basic model is of the form

12 n
RO =R |1+ ) D BT AL G0 (1.2)

n=1m=o
where

nml Cnm

ja
]

nm _
nm2 Snm

_ cos (my)
A _(8,9) =P_[sin (8)]
o sin (mp)

H

are the normalized harmonic coefficients and surface spherical har-
monic functions, respectively. These functions are defined and
discussed at some length in Appendix A.

A 12-degree model was chosen since it is capable of resolving
the major lunar basins. This facilitates comparison with recent
gravity studies. A higher-degree model was not utilized because
of the adverse effect of data gaps. For the ensemble of observations,
(1.2) can be written as

F, = (6F,y0Z.) Z. = A . Z. 1.3
= QF /) 2= Az, (1.3)

where Zj is the vector of Hnm' In this notation, the weighted

least-squares estimator is (see, e.g., Lawson and Hanson, 1974)

7 = (AT8a1 Y (aTBE] (1.4)

where the weighting matrix B is the inverse of the data noise



covariance matrix (assumed, in this analysis, to be diagonal).
To obtain uncorrelated estimates of the parameters Zj’ we must

diagonalize the solution covariance matrix

-1
E(zz') = [ATBA] (1.5)
where E(*) is the expectation operator. Since we are assuming that
B is diagonal, the problem thus reduces to the diagonalization of

21 i)

T -
(A A]ij —‘/" '/F Ay dudp (1.6)

0 -1
where 4 = sin (8). The problem then is the optimal approximation
of an integral by a finite sum. If we had data of uniform accuracy,
evenly distributed over the sphere, the evaluation of this integral
could be performed by any standard quadrature formula. However, the
very uneven distribution of the data necessitates further analysis
(Carlson and Helmsen, 1969).

The approach we have taken is to determine the weighted mean and
standard deviation of all the data within each of 2592 5 x 5° bins,
Actually, only 1380 of the bins, representing 64.77 of the lunar
surface, contain data (see Fig. 1.1). 1In the remaining bins, we
have used a linear autocovariance technique (see, e.g., Kaula, 1967;
Heiskanen and Moritz, 1967) to estimate the most probable elevations
and associated errors, consistent with the known statistical charac-
teristics of the available data. Chapman and Pollack (1975) have
applied a linear cross-covariance predictor to a very similar problem

in terrestrial heat flow measurements.
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In much of what follows, it will be useful to regard the surface
of the Moon as a realization of a homogeneous stochastic process
on a sphere (see Appendix C). A process is said to be homogeneous
if its first and second moments are invariant under the group of
rotations of the sphere. This is equivalent (Roy, 1973) to station-
arity, i.e., constancy of the mean E[F(8,p)], and isotropy of the
covariance function
cy) = E[FQFQ+Yv)] (1.7)
where 0 = (8,p), i.e. C(y) depends only on the angular separation vy
between the points (8,p) and (8 +A8, p+Aw). This separation is
given by
2 cos(y) = (cos(Ap) + 1) cos(a9)
+ (cos(Ayp) - 1) cos(ZB) ; (1.8)
The predicted radii % and associated variances %2 are calculated
from the covariance function and the known radii Fi as follows:

A -
R=q'slr |

o’ c) - Q¥slq (1.9)

where
S = E(F'F) and Q = E(F'R),
the known-known and known-unknown covariance matrices, respectively,
are obtained from C(Yy).
In a further effort to compensate for the extremely uneven

distribution of the data, a lower bound of 0.05 km was imposed on
the bin standard deviation. This measure prevents those regions in

which the data are most densely concentrated from completely
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dominating the solution, at the expense of other regions. This
censoring affected 220 bins, representing 12.9% of the lunar surface.

Finally, the weighted least-squares estimate of the harmonic
coefficients was obtained by applying (1.4) to the averaged data,
augmented by the predicted radii in the unsurveyed areas. The
weighting of each point was proportional to the area of its bin and
inversely proportional to the variance of the measurement or

prediction:

= i 2
Bij 2 sin(A8/2) cos(ei) Ay 6ij / oy

(1.10)

The estimates of the normalized harmonic coefficients and their
formal uncertainties are presented in Table 1.2.

Solutions were also obtained in which the predicted elevations
were weakly weighted (o = 5, 10 km). These solutions were charac-
terized by unrealistically large estimates for the high-degree
coefficients and large height excursions in the regions containing no
data.

D. RESULTS

Figure 1.2 shows a comparison between raw laser altimeter data
and the harmonic model evaluated along the ground tracks of represen-
tative orbits of Apollo missions 15, 16, and 17. The amount of high-
frequency information contained in the data is indicated, as well as
the fidelity of the harmonic model to the global and regional shape
2

of the Moon. The variance of the 21 888 unaveraged data is 4.22 km™,

whereas the model variance is
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TABLE 1.2

6
NORMALIZED LUNAR TOPOGRAPHY HARMONICS (x10 )

o " nm Snm G(Cnm) G(Snm)
1 ] “21203 25-7

1 1 -605.8 147 .4 17.5 13.6
2 Q =135+9 22.1

2 Z 11.5 -167.1 11.5 14.5
] 0 62.2 20.5

3 1 102.1 —53.1 28-0 18.2
2 3 250.1 -28.9 11.1 11.4
B 0 104.2 20.5

4 2 =-115.5 256 207 2442
4 3 =131 41.0 18.0 18.5
4 4 -92.1 =209 9.6 10.1
5 0 0.6 20.3

5 1 =-50.6 79.2 25.4 16.2
5 2 55 =359 21.4 23.5
5 3 -48.2 —5]..7 20.3 2102
S 4 -2.0 6.6 16.0 1€.0
5 5 86.9 10.5 8.2 8.7
6 C ~56.4 19.8

6 1 -2T. € 44-5 2406 15.‘0
6 £ =35 =153 21l.1 21.8
6 3 —log -32.2 21.‘0 22.0
6 4 -62.¢ 44,2 19.3 18.5
6 5 "'70.5 62.0 13.8 1405
<] 6 =-30.5 ~54.6 T.3 T3
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TABLE 1.2 (Cont'd)

al

nm nm G(Cnm) G(Snm)
7 0 -60.4 18.5
7 1 219.4 -18.2 22.8 15,2
7 2 107.1 23.6 20.0 20.2
7 3 -7609 12.7 20-3 21."
1 4 -14.9 -14.0 20.1 19.3
7 5 107.5 20.2 16.4 1€6.8
7 6 54.0 2a2 12.2 12.3
7 7 4.1 —29.2 6.2 6.2
8 0 85.6 18.C
8 1 -0.4%4 38T 21 .2 14.3
8 Z -134.2 -54.6 18.% 19.2
8 3 -23.8 ~-8,2 19.0 2C.0
8 4 69.9 ~-64.9 15.8 19.6
3 5 45. € -0.1 17.2 17.6
8 6 -156-3 0.8 14." 14.3
8 7 -12¢5 5205 10-1 10‘3
8 3 31.0 "41.5 5.1 501
S 0 9.8 16.9
9 1 644 -2800 1907 13-5
9 2 13.2 5646 17.6 16.9
9 3 -63.0 3.8 17.6 18.3
9 4 -67.3 13.9 18.2 17.9
9 5 53.4 115.6 17 .4 17.7
9 6 39.5 -36.0 1"?08 15.0
S T 25.1 "'}.4-2 12.3 12.1
9 8 48.0 -45.7 8.5 8.0
9 9 ] ad 16.8 4.0 4.0
0 95.0 14,2
1 33.0 12.3 15.9 12.5
2 =554 2 6.9 14.7 = _14.0
3 -1.6 -31-3 14-9 14.7
4 34.5 -32.8 15.2 15.1
D 25.8 35,2 14.8 14.8
6 -75.5 -44.3 13.4 14.1
W 2.4 48.5 11.4 11.3
8 16.8 =60 9.4 . S.5.
9 8.5 59.6 6.5 E.d
10 54.9 -27.3 3.8 3.6
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TABLE 1.2 (Cont'd)

n - nm Snm U<Cnm) cF(S'ﬂm)
11 0 4l.2 11.9

11 1 -99.0 ~52.6 13.4 1J.8
11 £ 3Ds32 =-33.6 11.4 12.2
ll 3 -69.0 "'98.1 12 .0 12.3
Ll & -30.9 63.7 11-7 1200
11 5 57.5 ~T18 11.6 12.0
11 <] =292 -63.6 10.8 11.1
11 4 43.4 =38s2 9.4 Se5
11 8 35.0 -9105 705 7-2
11 S 11.S 53.6 6.5 €. 4
11 10 B.6 -31.7 "ol 4.2
11 11 -17.1 —5402 3.0 3.0
12 ¢} -38-8 9.5

12 | =33.6 B.3 10.2 8.8
12 2 15.2 261 9+5 S.4
12 3 =-109. 2 293 9.2 S.4
12 4 13.9 20.5 G4 S.1
12 5 =1558 0.6 8.8 S.l
12 6 =11sl -10.3 8.6 S.0
12 7 9.2 9.6 8.0 8.0
12 8 -76-3 "OOO 6.9 7.1
12 9 32.9 33,6 56 5.8
12 10 -20.0 -70.9 5.0 5.0
12 11 43.0 15,8 3.6 3.6
12 12 -35.1 -41.7 2e6 2e7
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FIGURE 1.2 - Comparison of laser data and harmonic model. Elevations

relative to 1738.0 km sphere. Indicates amount of high frequency
information in data and general fidelity of model to global and

regional scale features.
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12 n
R 4 }IT H
o] Z 2 : nm nm
n=1m=0

3.08 km2 (1.11)

C(0)

Figures 1.3 and 1.4 are maps of lunar topography, as given by our
model, and the associated formal uncertainties, repectively. These

are derived from the relationships (Graybill, 1961)

aT(8,0) z :

o2 (0,0) = AT(6,0) [ATBAITY A(B,p) . (1.12)

The error map reflects the distribution of the data, showing quite
clearly the regions where we have no direct data. Since the model
duplicates 73.0% of the original data variance, this computed error
map should be a good first-order approximation to the actual error
distribution. The topographic map, with heights relative to the lunar
mean radius, resolves most major features within the areas of data
coverage., This was a major objective in the construction of the
model and permits comparison with equivalent-resolution gravity
models for the purpose of determining the lunar internal density
distribution.

Dimensionless degree variances V(H;n) of lunar topography and
the associated error variances W(H;n) are listed in Table 1.3.

These variances are given by:
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FIGURE 1.3 - Lunar topography. Twelfth degree model. Elevations
relative to 1737.53 km mean sphere. Contour interval is 1 km

(solid line). Selected % km contours indicated (dashed line).
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FIGURE 1.4 - Lunar topography error. Formal standard error computed
from equation (1.12). Actual error can be somewhat larger. Contour

interval is 0.2 km.
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TABLE 1.3

LUNAR TOPOGRAPHY AND ERROR VARIANCES CxIOS)

Degree Topography Error
n V(H;n) W(H;n)
1 43,38 0.12
2 6.95 0.19
3 8.54 0.26
4 3.99 0.33
5 2.29 0.38
6 2,58 0.43
7 8.64 0.45
8 7.15 0.45
9 4.17 0.43

10 3.62 0.33
11 6.97 0.23

12 3 7L 0.15
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n
.=§:T
V(H;n) Hnm Hnm
m=0
n
_ T
W(H;n) E o (Hnm) O(Hnm) (1.13)
m=0
where 02(Hnm), the variance of the error in Hnm’ is obtained from

. ; : T ,y=1 :
the solution covariance matrix [A BA] ~. We note that the topographic
degree variances decrease in magnitude with increasing harmonic

degree approximately as

V(H,0)
(m)(n+1) ' (1.14)

V(H;n) =
We will discuss the significance of this spectral behavior at con-
siderable length in Chapter IV. We also note that in the case of

uniformly accurate data, i.e., O[R(2,9)] = Cy the degree error

variances are (Heiskanen and Moritz, 1967)

o)
W(H;n) = 2n + 1 (_2) . (1.15)

4rr R,

The small departures of our error variances from this simple form are

due to the irregular data distribution.

The observed gravity of a planet may be considered as the sum of

contributions due to internal lateral density variations and surface

topography. The topography of a planet characterized by harmonics H
nm

gives rise to gravitational potential perturbations AGnm’ where

(MacRobert, 1967)
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ZaiE Ty == _
(-—7?__) P AGnm - Q(Ro) Hnm ’ (1,16

and O(Ro) and E are the surface and mean mass densities, respectively,
of the planet. The difference between the observed gravity and the
topographic correction, known as the Bouguer anomaly, is thus a
measure of the extent of lateral density variation.

Figure 1.5 is a map of lunar Bouguer gravity, evaluated at an
elevation of 100 km above the mean lunar radius. This is calculated
as the radial component of the gradient of the 12th degree Bouguer

anomaly potential
12 fixl m

GM Ro

9 .p = e -

A%, (R,8,0) = ¢ ? - > B A (8,9 (1.17)
(o]
n=1 m=0
with
B =G - AG
nm nm nm

where G is the gravitational constant, M is the planetary mass, Gnm
is a harmonic coefficient of the observed gravitational field
(Ferrari, 1977), and we have assumed a surface density p(RO) = 2,7

g cm-a. We find that the low-degree harmonics of the gravitational
field are determined primarily by surface height variations and only
secondarily by lateral density variations. The most striking feature
of this map is the association of large positive anomalies with the
mascons (Muller and Sjogren, 1968). It is also interesting to note
that large regions of the farside highlands are associated with
strong negative anomalies. This map, along with other data types

such as librational and seismic observations, can be used to infer
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FIGURE 1.5 - Lunar Bouguer gravity anomaly. Twelfth degree model.
Evaluated 100 km above mean sphere. Contour interval 100 mGal =
0.1 em sec_z. Free-air gravity from Ferrari (1977). Assumed crustal

density is 2.7 gm cm_3
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lunar crustal and upper mantle structure, an effort which we discuss
in the next chapter (see also, Bills and Ferrari, 1977). In that
analysis a mean crustal thickness of 70 km is estimated by matching
the gravimetrically derived local crustal thickness with the seismic
results (Toksoz et al., 1974) from Mare Cognitum,

We now turn our attention to the harmonics of degrees 0, 1, and 2.
These represent the mean radius, center of figure displacement, and
triaxial figure, respectively.

The estimated lunar radius is (1737.53 £+ 0.03) km. This, in

conjunction with estimates of GM = (4902.796 + 0.003) km3 sec-2

3 -2

(Sinclair et al., 1976) and G = (667.32 % 0.31 x 10™>°) kn® g sec
(Heyl and Chrzanowski, 1942), yields an estimate for the mean
density of E = (3.3437 £ 0.0016) g Cm~3. Most of this error comes
from the error in G. The mean density, in conjunction with the mean
inertial moment, places important constraints on models of lunar
internal composition and structure (Gast and Giuli, 1972; Bills and
Ferrari, 1977).

We now consider the first-degree terms in the topography. They
represent a displacement of the center of figure (C.F.) from the
center of mass (C.M.). 1In terms of rectangular coordinates, and

un-normalized harmonics, the location of the C.F. is

AX1 Cl,l -1.823 £ 0.053
AXZ = R0 Sl,l = |-0.444 £ 0.041 | km (1.18)
AX C -0.639 £ 0.077

3 1,0
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or in terms of spherical coordinates,

R (1.982 + 0.057) km
8| = |as8%8 =+ 2%1) s
® (193%7 + 1°1) E

where, as before, the origin is at the C.M.

This offset, by definition, implies a departure from spherical
symmetry in the internal density distribution. Attempts have been
made to explain this asymmetry in terms of two-layered models, with
either an offset between the centers of the spheres comprising the
model (Ransford and Sjogren, 1972; Kaula et al., 1972) or an outer
layer of randomly varying thickness {(Kobrick, 1976). Large-scale
internal convection (Lingenfelter and Schubert, 1973) and asymmetric
bombardment (Wood, 1973) have been suggested as possible mechanisms
for the preferential thinning of the crust of the earthward hemisphere
and concomitant thickening in the opposite hemisphere.

We now consider the shape and orientation of the triaxial
figure represented by the second-degree harmonics. The principal
axes of this figure are

' = (1738.43 km, 13°58 s, 38%40 E)

>
]

1
xé = (1737.50 km, 32570 N, 11948 E) , (1.19)
xé = (1736.66 km, 5391 N, 327976 E)

This misalignment between these axes and the principal inertial axes
implies that, if all lateral density variation occurs as undulations

on the crust-mantle interface, the principal axes of the triaxial



29

mantle must be skewed in the opposite direction. According to this
simplified model, the region of minimum crustal thickness is in
southern Procellarum. Many deep-focus moonquakes occur along two
great circle arcs which intersect in this same area (Lammlein et al.,
1974; Lammlein, 1977). Thus, the stresses induced by near surface

mass anomalies may control the release of seismic energy at depth.
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II. A LUNAR DENSITY MODEL

A. INTRODUCTION

Lunar interior models of increasing complexity are derived from
topographic, gravitational, librational, and seismic data. A series
of models, rather than only the final one, is presented in an effort
to demonstrate the unique contribution of each data type and its
effect on determining model parameters for the lunar density structure.

The various data types and their errors are discussed, and these
data are cast into a form most convenient for internal model deter-
mination. The basic theory for this analysis is developed, and a
series of lunar interior models are derived from the different data.
Discussions are presented at each level of modeling, showing which
data are satisfied and presenting the geophysical significance
of that stage of the model development. Ultimately, a six-layered
model is determined which satisfies all the data. The innovative
agspects of this investigation are discussed in light of previous
work, and the compositional implications of this lunar interior model
are analyzed.
B. DATA

The topography of the Moon will be represented in this analysis
by the harmonic model developed in the preceding chapter (see also
Bills and Ferrari, 1977). However, in the present chapter, it will

be more convenient to use the un-normalized harmonics (see Appendix A).
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As a representation of lunar gravity, we will use Ferrari's (1975)
model truncated to degree twelve for consistency with the topography
model.

The physical librations of the Moon are dependent upon both the
low-degree gravity harmonics and the parameters (a, 8, Yy), which

are defined in terms of the principal inertial moments A < B < C as

(2.1)

Sinclair et al. (1976) have estimated the low-degree gravity
harmonics and librational parameters from a combination of Doppler
and laser-ranging data. Table 2.1 presents these estimates, the
low-degree topography harmonics (Bills and Ferrari, 1977), and an
estimate of the gravitational constant G (Heyl and Chrzanowski,

1942).

The resulting estimates for the lunar mean density and moments

are
D = 3.3437 % 0.0016 g cm >
C = (4c..8/v)MR % = (0.3933 % 0.0021)MR > 2.2)
22 ” 0
_A+B+cC _[3+8+y-8v]. _ 2
I = : [ et }c (0.3931 + 0.0021)MR," .

The moments Mn of the radial density distribution are
1
Moo= @+1) | p(EE" a8 2.3
0

where £ = r/RO. On the basis of the values listed in (2.2), the second



TABLE 2.1

LUNAR GRAVITATIONAL, TOPOGRAPHIC AND LIBRATIONAL DATA

N NN = = O
N = ©O = O O

G
GM
Ro
B
y
TOPOGRAPHY
Cgm X 106
106
-367.7 + 44.6
-1049.3 £ 30.3
-303.9 * 49.5
-193.4 + 34.2
7.4 £ 7.4

(667.32 + 0.31) x 1579 o

15

(4902.796 £ 0.003) x 107" ¢

(1737.59 £ 0.24) x 105 cm

(631.68 + 0.13) x 10”°
(227.82 + 0.08) x 1076

-255.4 + 23.6

sec ~ gm
3 -2
sec

1

GRAVITY

- -203.62 + 1.09

30.4 + 24.9
107.8 = 9.4

22.40 + 0.12

NOTE:

--=- indicates zero by definition.

LE
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and fourth moments are

M, = p = 3.3437 & 0.0016
3 5 (2.4)
M, = 5pI/2MR,” = 3.286 + 0.018

This form will prove useful for comparison with models to be derived
later,

The seismic data used consist of (1) the inferred crustal
structure in the region of the Apollo seismic array including
discontinuities at depths of ~20 and 50-60 km (Toksoz et al., 1974),
and (2) the travel time as a function of epicentral distance for P
and S waves (Nakamura et al., 1974).

C. THEORY

We will be mainly concerned with models consisting of nearly
concentric nearly spherical shells of uniform density material. Each
shell £ will be characterized by the normalized radius of its outer

surface, §£

= RI/RO; a density contrast from the immediately over-
lying layer, AP, = Py - Y and a set of spherical harmonic
coefficients Hnmz which represent the shape of the outer surface of

the layer. Thus the interface has the form

12 n
RO =ReE, Y > @ T A @0 2.5)

n=0 m=0
The mean density and mean inertial moment of such a model are

expressed by
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M, =p0= Ap,E . ., M, = 2L - Ap,E 3 (2.6)
2 178 b i 2 )
£ 0 L

The complete inertia tensor of such a configuration is given by

5
I = ETTR_O Ap, (B )5L 2 2.7)
ij 15 257 B :

L

where, in terms of un-normalized shape harmonics,

) )
- c
L_ .5 2.2 22| S0 . 1
by =35 {8 X 8y J | ¥ g ¥
— 9 C £
¢ _ .5 2.2 2.2] , 20 )
Lyg =145 [(C ) + (G ) | +—3 * 36,
L _ 5 [. 2.2 2.2 £
- E R I I By ) } " €20
TR - I
12 "Ly 7 Vg By 2 = 35
L_ . 4 _ 5. & & 3 _ &
bia Tly =57 € %0 ) = 2%
L. A _ 5. 4. & 3. &
Ly Sl =-7 G110 -2 5y

The gravitational harmonics of the configuration are given by

2n + 1Y — _ E : n+3 £
(__TT"-) OGnm B Apﬁgﬁ Hnm (2.8)
£

: . £ . ¢ F
to first order in the H . From the relation between the inertia
nm

tensor and the un-normalized gravity harmonics
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Byg 2 = .
Coo MRy = (Tyy+1,,-2154)/2
Bvr 2 = -
Cop MRy = T4 =I5
s. 8vR % =1 +1
21 MRy 23 T I3 (2.9)

2 _
Cpp MRG® = (I, =1;;)/4

Eors & _
Sy MR, Ii5/2 = L, /2

Il

we note that for n = 2, (2.8) is merely the linear approximation to
(2.7). We will thus use (2.7) in place of (2.8) for n = 2.

We will also be interested in the extent to which our models
depart from isostatic equilibrium. This will be measured in terms
of the variations about the mean of the hydrostatic pressure at
the crust-mantle interface. The mean pressure at this level is

approximately,

P = (lmGROz/B) 005(1 - %1) (2.10)

and the pressure deviations are

lmGR02 A& 5
AP(8,) = —5—— P,P E E g5 A (8,9) (2.11)
n=1 m=0

where _
AP,y /P

J = Hmn0 + (—5-1)(—_"1- 512 Hnml
07" p

and 61 is the mean density of the Moon beneath the crust.

In order to use seismic data as a constraint on lunar internal
structure, we will need to specify compressional and shear wave

velocities Vp and VS at each layer. These two velocities are
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determined by

vp2 = (K+4u/3)/po , \Y 2 . /o (2.12)

where

K = O(BP/BQ)S

is the adiabatic bulk modulus and K is the shear modulus or rigidity.
These in turn are functions of temperature and pressure for any given

material. We will assume a linear dependence on temperature and

pressure:
P(T,P) = ogpp t (3p/oT)AT + (d0/3P) AP
K(T,P) = KSTP + (OK/3T)AT + (JK/3P)AP (2.13)
u(T,P) = pgrp + (BU/JT)AT + (du/BP)AP

A number of estimates of the lunar internal temperature distri-
bution are available (e.g., Toksoz and Solomon, 1973). All such
models are characterized by a steep gradient near the surface and a
more gradual gradient at depth. We will assume a temperature profile

of the form (Nakamura and Latham, 1969)

T(E) = T(0) + ATE" (2.14)
with the parameters chosen to match the near-surface gradient and deep
interior temperatures. A more complex model is not justified in
light of the lack of constraints on the problem.

The pressure at each level is obtained by numerically integrating
the equation of hydrostatic equilibrium. The pressure and temperature

are then used to estimate the ambient density and elastic moduli from
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their assumed STP values.
The seismic travel times T and epicentral angles A are calculated
from the velocity profile V(§) for a given ray path by (Bullen, 1963)

i

-1/2 2
_ 2 2 dg
T = 2Ry J[ [T? = My } I¥§"
gﬂ'l
. 2.15)
2 2 -1/2 de
Y BLEES
g'n'l

where n = §/V(E) and ", is the value of m at the midpoint of the ray
path, where it reaches its minimum radius §m.
D. MODELS

The simplest model considercd has a uniform density of p = 3,3437
g cm-3 and the outer surface is characterized by the topography
harmonics Hnmo. An interesting aspect of this model is that its
liberational parameters are

6 6

= 490.67 x 10~
6

(5.28 + 485.39) x 10

(5.65 + 45.29) x 107% = 50.94 x 10°

8

Y

where the parenthetical terms are the first- and second-degree contri-
butions, respectively. We thus conclude that the first-degree harmon-
ics are of little consequence dynamically in comparison to the second-
degree harmonics. Comparing these estimates with the values in

Table 2.1, we note that the assumption of uniform density, coupled
with the actual topography, gives, at least qualitatively, reason-

able estimates of B8 and y, whereas Kopal (1969) has shown that the
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rotational and tidal distortions of a hydrostatic moon would yield

8 =137.39 x 107° 6

H

Two basic conclusions are obtained from this comparison: first, the

Yg = 27.97 x 10

orientation and rotational dynamics of the Moon are intrinsically
determined primarily by surface height variations and only secondarily
by lateral density variations, and second, the Moon is not well
approximated by a hydrostatic model (Kopal, 1969).

We now turn our attention to models with a radial demsity varia-
tion. The simplest such model considered consists of two concentric
spherical shells having a density o in the outer shell and a
density contrast Apl across the interface at a normalized radius of
IRI/RO = §1. A weak compositional constraint is imposed in that
we assume

2.7< 0(E) <5.4 ¢ cmﬂ3
where the lower bound corresponds roughly to anorthosite and the
upper bound to an Fe-FeS eutectic composition (Brett, 1973) at the
L unar central pressure (~50 kbar) and room temperature. These bounds
are shown by the dot-dash lines Figure 2.1. If in addition, the model
i s constrained to have the observed mean density and density inversions
writh depth are not allowed, the envelope of acceptable density profiles
i s given by the dashed lines in Figure 2.1. When the model is sub-
J ected to the additional constraint that it have the correct mean
moment of inertia, the resulting density bounds are those given by the

S olid lines in Figure 2.1.
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FIGURE 2.1 - Envelope of plausible lunar density profiles. Successively

applied model constraints: 1) 2.7 < p < 5.4 (dot-dash lines);

3.344

H

2) observed mean density 5

mean inertial moment I/MRS =0.393 + 0.002 (solid lines).

0.002 (dashed lines); 3) observed
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These lower and upper bounds for the mean moment of inertia
are simply the solutions for po(i) and oo(i) + Aol(g), respectively,
subject to
< =5
2.7 % < p0 + Apl 5.4

3

= = 5

§ = M, = 3.286

F
+ 40,5 4

0
They represent the envelope of all possible monotonic density distri-
butions subject to the above constraints. However, not all models
falling within these bounds are allowed. In particular, a uniform
density model is inconsistent with these constraints. Although these
bounds are not tight enough to be of real value in determining the
composition of the lunar interior, they do exclude such extreme
cases as either a uniform density or an Fe-Ni core with a radius of
380 km or greater. These bounds are also useful in conjunction
with other data types.

The next step in complexity is to allow the model to depart
from spherical symmetry in order to match not only the actual topo-
graphy, as was done before, but also the gravitational potential to
degree and order 12 and the entire inertia tensor, three moments
and three products of inertia, rather than just the mean moment.
To do this, we start by including the first- and second-degree
harmonics Hnm£ 4 =0, 1; n =1, 2) describing the shape of the
outer surface and the crust-mantle interface. The eight harmonics
H Q (three first degree and five second degree) of the outer layer

nm

are known from the observed topography (Bills and Ferrari, 1977)



TABLE 2.2
TWO LAYERED LUNAR DENSITY MODEL
REPRESENTATIVE SOLUTIONS

parameter a priori a posteriori a posteriori
R =0 R = 400 km
c c -3
B, = 5.4 gm cm

b, (gm e ) 2.90 + 0.20 2.72 + 0.07 2.75 + 0.06
Bem o ) 0.50 + 0,20 0.74 + 0.08 0.64 + 0,07
Tc(km) 69.5 * 17.4 95,7 % 15,6 73,2 = 15.8
AXl(km) 0.00 + 1.64 8.33 * 1,20 9.40 % 1,30
AXZ " " M 253 & 10,56 2,86 + 0,40
AXB " " L 1.40 = 0,20 157 & 0522

1 -4
020(10 ) 0.00 * 10,00 -7.98 * 0,63 -8.40 * 0,66

1 n n n
021 10,45 + 1.51 11.43 = 1.59

1
821 " L i -0.25 = 0.04 ~0.27 + 0.04

1 " " "
C22 0.45 * 0,004 0.44 + 0,01

1
S H L i ~5.,71 + 0.84 -6.26 + 0,89

Ly
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(see Table 2.1), but the crustal density ®o and the eight harmonics
of the crust-mantle interface Hnml, as well as the density contrast
Ap, and the normalized radius El = R1/RO, are unknown and must be
determined from (2.7) and (2.8) by constraining the inertia tensor
of the model to the observed values. Equation (2.8) applied
to the first-degree harmonics ensures that the center of figure of
the mantle is offset in such a way as to counterbalance the center
of figure displacement of the outer layer.

Such a model has 11 unknown parameters [Hnml (eight), 0> Apl,
and §1], but only 10 constraints [Gnm (three), Iij (six), and B].
However, we have some a priori knowledge about each of the para-
meters, and since this makes the system effectively overdetermined,
we can perform a weighted least squares inversion. See Table 2.2
for some representative results. Therein are presented the a priori
and a posterior estimates and uncertainties for each of the 11
parameters for both the nominal solution and a solution with a
core of radius Rc = 400 km and density 0. = 5.4 g cm'3. The first-
degree harmonics are presented in terms of the corresponding center

of figure displacement

B 1 1 1
AX = RgS1(Cyy7s Sp7 5 Cpp)

and the crustal thickness is TC = Ro(l- §1).
We discover two important facts from this model. First, in

the case with no core the mean crustal thickness is significantly

greater than that inferred from the locally derived seismic value,



49

even though the densities are quite reasonable. This conflict can
be removed by inclusion of a region of higher density at depth.
Although the core model presented (RC = 400 km and %, = 5.4 g cm-3)
is by no means unique, the amount of density increase required is
greater than can be accounted for by self-compression of a homo-
geneous moon for any reasonable elastic moduli and temperature
profile.

Second, this model may be shown to depart from isostatic
equilibrium, even for the low-degree harmonics. We shall have
more to say about isostasy later.

Having established the inadequacy of a two layered model, we
will now present a more detailed model in which the density, elastic
moduli, and temperature are all allowed to vary more or less contin-
uously with depth. Our analyses have shown that a three-layered
model satisfies the constraints imposed by the gravitational,
topographic, and librational data. However, current seismic
studies (e.g., Nakamura et al., 1974) suggest a more complex
internal structure. The model that we have chosen has six distinct
regions. The approximate depths to the boundary interfaces are:
upper and lower crust, 20 and 70 km; upper, middle, and lower mantle,
300, 800, and 1400 km. The core has a radius of 340 km. The
crustal and upper mantle interfaces correspond to seismic discontin-
uities (Toksdz et al., 1974; Nakamura et al., 1974). The middle
and lower mantle and core are inferred from deep seismic events

(Nakamura et al., 1974), electrical conductivity profiles (Dyal et al.,
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1976), and thermal and compositional constraints (Brett, 1973).
For modeling purposes the normalized radii of the interfaces are
taken to be gz =1.00, 0.99, 0.96, 0.83, 0.54, and 0.20.

Within each region the STP density and elastic moduli are
assumed to vary linearly with depth between the values specified
at the upper and lower boundaries. The ambient density and elastic
moduli at each layer are then calculated from the STP values and
the ambient temperature and pressure,

The assumed temperature and pressure derivativies of the demnsity
and elastic moduli correspond in the crust to anorthosite (Baldridge
and Simmons, 1971), in the mantle to forsterite, and in the core
to pyrite (Skinner, 1966; Birch, 1966). The STP density and bulk
modulus of the core are those estimated for an Fe-FeS eutectic
composition (Brett, 1973; Brett and Bell, 1969; King and Ahrens, 1973).
The crustal density profile is from Gast and Giuli (1972), and the
elastic moduli were chosen to duplicate a suitable average of the
crustal velocity profile as given by Toksoz et al., (1974).

The lunar temperature profile is imprecisely known, particularly
in the deep interior (e.g., Toksoz and Solomon, 1973). We have
assumed surface and central temperatures of 250° and 1900°K, respec-
tively, and have treated the actual temperature distribution with
depth as a variable determined by the parameter n in (2.14). The
value ultimately used was n = 4.0.

A family of models was generated by varying the demsity and

elastic moduli at the mantle region interfaces (£ = 0.96, 0.83, 0.54,



TABLE 2.3

LUNAR INTERIOR STRUCTURE MODEL

Pressure, -3 Vo, Vo,
£ Depth, km Temperature, °K kbar p, £ Cm K, Mbar g km s™4 = sl
Upper Crust
1.00 0 250 0.00 2.703 0.410 0.250 5.22 5.C
0.99 20 315 0.76 2.703 0.410 0.250 5.22 2.02
Lower Crust
0.99 20 315 0.76 2.852 0.651 0.293 6.12 d; 34
0.96 70 499 3.19 2.950 0.769 0,296 6.52 351
Upper Mantle
0.96 70 499 3.19 3.371%* 1.222% 0.246% 8=11 4.71
0.83 300 1117 14.57 3.382% 1.234% 0.275% 7.89 4.39
Middle Mantle
0.83 300 1117 L& 57 3.408% 1.234% 0.275% 7.89 4.39
0.54 800 1760 34.36 3.397% 1.691%* 0.420% 7.80 2.89
Lower Mantle
0.54 800 1760 34.36 3.399% 1.691%* 0.420% 7.80 2.89
0.20 1400 1897 48.13 3.424% 1.745% 0.443% 7.68 2.46
Core
0.20 1400 1897 48.13 5.209 1.400 0.500 5.18 0.00
0.00 1740 1900 52.95 5,223 1.423 0.500 5.22 0.00

*Parameter which was varied in search for acceptable model.

18
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and 0.20) subject to the constraints that (1) the STP values of p,
K, and Poisson's ratio 0 = (3K-2u)/(6K+2u) are all nondecreasing
with depth and (2) K and 0 are continuous across the interfaces at
£ =0.83 and 0.54. The STP values of p, K, and 0 at intermediate
points are found by linear interpolation, and the ambient values
of these parameters are found, as they were before, from the ambient
temperature and pressure. These perturbations are performed until
a model is found which has the desired mean density and moment as
well as P and S wave travel times. The resultant temperature,
pressure, density, bulk modulus, Poisson ratio, and seismic velocity
profiles of such a model are given in Table 2.3. Table 2.4 gives
the moments of the density distribution Mn (n=0,1, ..., 8). The
seismic travel time as a function of epicentral distance for the
model is compared with observed teleseismic data (Nakamura et al.,
1974) in Figure 2.2. The seismic phases shown are identified according

to the nomenclature usually applied to the earth (Jeffreys, 1959).

TABLE 2.4

MOMENTS OF DENSITY DISTRIBUTION Mn

n M n M n M

n n n
0 3.7409 3 3.3101 6 3.2496
1 3.4247 4 3.2875 7 3.2322
2 3.3433 5 3.2679 8 3.2156

Observed values are M2 = 3,3437 + 0.0016 and M& = 3.2858 + 0.0211.
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FIGURE 2,2 - Lunar seismic travel times. Curves represent model

calculations; circles represent data (Nakamura et al., 1974).
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We tentatively interpret the P wave arrivals near A = 150° as
rays diffracted around the core and the weak arrival at A = 168° as a
PKP2 phase (not shown in the figure) due to a rapid decrease in
seismic velocity at the mantle-core interface.

A comparison of the STP density and elastic moduli with those
of olivine and pyroxene (Chung, 1970; Nakamura et al., 1974) reveals
that a mineral assemblage consisting largely of olivine (80-85%
forsterite) and some pyroxene is consistent with the upper mantle

model. The increase in density and bulk modulus with depth is

and/or Al,0, (Simmons and

consistent with an increase in Ca0, TiOz, 204

Wang, 1971; Anderson, 1975).

Given values for the mean crustal thickness and density and
the density contrast with the mantle, we can include the higher
harmonics of topography and gravity in our model, solving for Hnml
from Hnmo and G o by (2.7) and (2.8). We are thus able to estimate
the variation of crustal thickness over the planet on the assumption
that all lateral density variations occur as undulations on the
mantle-crust interface, which is at a depth of 50-60 km in the
area of the Apollo seismic array. For the densities in our model,
a mean crustal thickness of 70 km is required to match the seismic
values. The resultant crustal thickness map is presented in
Figures 2.3a and 2.3b. Wood (1973) has presented a similar analysis
based on a more restricted data set. He inferred crustal thicknesses

which are systematically less than our estimates.
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FIGURE 2.3a - Crustal thickness variations. Lunar nearside. Twelfth
degree model. Gravity from Ferrari (1975). Assumed mean crustal
density is 2.9 gm cm-3 crust-mantle density contrast is 0.4 gm cmﬂ3

and mean crustal thickness is 70 km.

FIGURE 2.3b - Crustal thickness variations. Lunar farside. See

caption of Figure 2.3a.
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The crustal thickness indicated in the mascon basins is somewhat
of an underestimate, since the effect of a surface layer of basalt
is ignored. Bowin et al. (1975) estimate that such a surface fill
accounts for roughly 20% of the observed gravity anomaly. They
estimate a mantle uplift in Mare Serenitatis of 12 km, compared to
our estimate of roughly 50 km. However, there is a factor of 2
discrepancy between the free-air anomaly estimates used, and the
fact that Bowin et al. are modeling only free-air gravity, whereas
we are modeling Bouguer gravity, accounts for an additional factor
of 2.

The mean crustal thicknesses under different physiographic
regions are: mascons, 30-35 km; irregular maria, 50-60 km; and high-
lands, 90-110 km.

Schonfeld (1977) has recently shown significant correlations
between lunar surface chemistry and the above crustal thickness
model. From Al/Si and Mg/Si ratios determined by x-ray fluorescence
measurements and Mg and Fe concentrations as determined by gamma ray
spectroscopy, he has determined that, in the non-mare regioms,
total A1203 shows a positive correlation, whereas both total FeO
and the MgO/FeO ratio are negatively correlated with crustal
thickness. Though these quantities show the same type of correlation
with surface elevation alone, their correlation with crustal thickness
is much better.

The mere existence of compositional and thickness variations in

the crust suggests that the processes of crustal formation and
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differentiation did not completely homogenize the surface material,
The additional fact that these variations are mutually correlated
requires further explanation. Recalling that magmatic differentia-
tion leads to enrichment in Al and depletion in Fe, as well as
lowering of the Mg/Fe ratio in the surface layers (Schonfeld, 1977),
we see that a possible model for the observed correlations involves
the simple assumption that regions of thicker crust are more highly
differentiated.

As was previously mentioned, this crustal thickness model is
not in isostatic equilibrium; i.e., the pressure at the crust-mantle
interface varies with position about its mean value of 3.2 kbar.

The maximum superisostatic stress, as calculated from (2.11), is
a value, slightly in excess of 200 bars, associated with the major
mascon basins Imbrium, Serenitatis, and Crisium, Other regions have
smaller stresses, and the global rms stress variation is 64 bars.

It should be noted that it is possible to produce a model which
satisfies both topographic and gravitational data and is also
isostatically compensated at depth. However, when such models were
attempted, the depth of compensation of the low-degree harmonics
approached that of the presently proposed mantle-core interface.
Since the superisostatic stresses implied by the above model are
close to the stresses found in the Earth, it appears more reasonable

to accept a nonisostatic Moon.
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E. SUMMARY

We have presented a series of lunar models culminating in a
six-layered model with undulations on the outer surface and at the
crust-mantle interface. This model is consistent with all available
topographic, gravitational, librational, and seismic data.

We have concluded that the librational parameters of the Moon
are determined primarily by surface height variations and only
secondarily by lateral density variations and that the surface
topography is not isostatically supported, nor is it predominated
by a fossil tidal or rotational bulge. The largest pressure
departures from isostasy are approximately 200 bars under the major
mascon basins. The crustal thickness varies from 30-35 km under
mascon basins to 90-110 km under the highlands, with the irregular
maria intermediate at 50-60 km,

All of the data considered are consistent with an anorthositic
crust extending to a mean depth of 70 km underlain by a predominantly
forsterite upper mantle grading into a refractory-rich lower mantle
surrounding a pyrrhotite core. Such a composition is consistent
with, but not uniquely specified by, our model calculations.

We note that a smaller estimate of the mean inertial moment
would be consistent with a larger core, which in turn would simplify
the interpretation of the P wave arrival times near A = 150 and at 168
deg, which are presently interpreted as diffracted P and PKP

2’

respectively.
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III. A HARMONIC ANALYSIS OF MARTIAN TOPOGRAPHY

A. INTRODUCTION

The primary objective of this investigation was to obtain a
spherical harmonic representation of Martian topography of sufficient
resolution and fidelity to be of use in performing global Bouguer
gravity analyses. Previous harmonic analyses (Pettengill et al.,
1969; Cain et al., 1972; Christensen, 1975) have suffered from
inadequate data coverage and insufficient model resolution. An
improved model of Martian global topography has been obtained by
fitting a sixteenth degree harmonic series to occultation, radar,
spectral and photogrammetric measurements. The data are described
by Christensen (1975) and Wu (1975). Our analysis differs from
Christensen's mainly in that we have attempted to compensate for
the very uneven distribution of the data by a process of interpolation
similar to that used in our analysis of lunar topography in Chapter I
(see also Bills and Ferrari, 1977a).

This chapter presents a brief discussion of the data used in the
analysis, its spatial distribution and associated errors. The
technique used to compensate for the irregular data distribution
is then elaborated. The resulting harmonic estimates are presented
and compared with previous analyses. Some of the low degree harmonics
and their geophysical implications are discussed separately. The
center-of-figure displacement and the excess topographic oblateness

receive particular attention.
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Maps of the global topography and the Bouguer gravity anomaly
are presented, followed by a crustal thickness map consistent with

gravity, topography and recent preliminary Viking seismic results.

B. DATA

The basic data used in this analysis are identical to those used
by Christensen (1975). They consist of occultation and spectral
measurements from Mariner 9, and Earth-based radar data. The
occultation measurements yield absolute distances of surface points
from the center of mass. All the other data are only relative.
Christensen (1975) solved for and partially eliminated the biases
between the various reference surfaces, and thus produced a more
unified data set. Figure 3.1 indicates the approximate distribution of
these data, summarized according to 5° x 5° bins. An important
aspect of this distribution is its uneven character. Only 1381 of
the 2592 bins, representing 68.57% of the total surface area, contain
any data. Even among these, the number and quality of measurements
varies widely, from only one measurement per bin in some high
latitude regions, to over a hundred measurements per bin in the low
southern latitudes.

Carlson and Helmsen (1969) have shown that it is the unevenness,
rather than the sparsity, of the data distribution which causes
the greatest difficulty in obtaining reliable estimates of harmonic
coefficients. It is primarily in our treatment of this problem that

our analysis differs from Christensen's,
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FIGURE 3.la - Data distribution. Mid-latitudes. The Martian surface
is shown divided into 2592 bins, each 5° x 5°. Shading indicates
those bins (1381) which contain at least one measurement. Photographic

data were used to estimate elevations in the remaining bins.

FIGURE 3.1b - Data distribution. Polar regions. See caption of Figure

3.1a.
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In a similar analysis of lunar topography in Chapter I, we
relied on a linear auto-regressive interpolation scheme to obtain
estimates, in the regions without data, of the most probable elevations
and associated errors, consistent with the known statistical charac-
teristics of the available data. This process minimizes the expected
mean square error of the estimates, but, unfortunately, it totally
ignores the actual topography in the unmeasured regions. Fortunately,
in the case of Mars, we can do better.

Wu (1975) has used essentially this same data set, in conjunction
with photographic interpretation, to produce a topographic contour
map of Mars. In the regions without direct measurements, the
contours have been interpolated by photogrammetric and interpretive
techniques. Presumably this interpolation procedure gives a faithful
representation of the high frequency components of the topography,
but may suffer from low frequency distortion of bias errors.

Our complete data set thus consists of Christensen's (1975)
data, where available, augmented by a bias corrected version of Wu's
interpolation in the regions without direct measures. This is
preferable to leaving large voids in the data distribution.

All data are of the basic form R(8,yp), where R is the radial
distance from the origin, 6 is the latitude, and ¢ is the (west)
longitude, In addition to the spherical coordinates (R,8,0), we
will have occasion to use a Cartesian coordinate system (Xl, X2’ X3)

with its origin at the center of mass. This system is right-handed
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and oriented such that the Xl and X, axes are in the equator plane

2
with the positive Xl axis on the ¢ = 0° meridian and the positive

axis on the o = 270° meridian. The X, axis lies along the rotation

A 3

2

axis (positive towards mnorth).

C. ANALYSIS

As discussed in the previous section, the greatest problem we
face in the analysis of the data is compensating for their irregular
spatial distribution. We will be interested, not only in the complete
ensemble of harmonics which characterize the Martian surface, but also
in some of the low degree harmonics considered separately. Therefore
we require harmonic coefficients which not only accurately repre-
sent the data, but which are also optimally uncorrelated with one
another, consistent with the uneven data distribution.

Given a collection of topographic data F, with associated
standard deviation o distributed on a sphere,

R(Bi,mi) =F, +0; g (3.1)

we desire optimally uncorrelated estimates of the harmonic coefficients
Hnm through degree and order N.

Our basic model is of the form

16 n
- T
R =R [T+ Y Y 0L A (5,0) (3.2)

n=1 m=0
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where, as before

H C
nml nm
Hnm= = _
Han Snm
_ cos (mp)
Anm(e,w) = an[sin(e)] '
sin (mp)

are the normalized harmonic coefficients and surface harmonic func-
tions, respectively. A sixteenth degree model was chosen as a
compromise between resolution and credibility, since, as the sphere
is tesselated into a finer mesh of bins, the proportion of bins
containing data decreases. This model resolves many of the ma jor
physiographic features, and in fact exceeds the resolution of any
presently available Martian gravity model. A higher degree model
was not utilized because of the adverse effect of the data gaps.
For the ensemble of observations, equation (3.2) can be

written as

BFi
Fi = SE; Zj = Aijzj (3.3)

where Zj is the vector of harmonic coefficients Hnm' In this
notation, the weighted least~squares estimator is (see e.g., Lawson
and Hanson, 1974)

7z = (aTBA]"" ATEF (3.4)
where the weighting matrix B is the inverse of the data noige

covariance matrix (assumed, in this analysis, to be diagonal), and

superscript T denotes transposition.
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To obtain uncorrelated estimates of the parameters Zj’ we must

diagonalize the solution covariance matrix

E@z') = [ATBA]7 (3.5)

where E(e) is the expectation operator. Since we are assuming

that B is diagomal, the problem thus reduces to the optimization
of the uniformity of the effective data distribution. If we had
data of uniform accuracy, evenly distributed over the sphere, we
would be assured of uncorrelated estimates. However, the very
uneven distribution of the data necessitates further analysis.

The approach we have taken is to represent the surface of Mars,
in each bin which contains data, by an average of those data, and,
in the bins lacking direct measures, by elevations from Wu's (1975)
map corrected for low frequency biases. The first step was to deter-
mine the weighted mean of all the data within each of the 1381
5°x 5° bins which contain data. We then sampled Wu's map at the mid-
point of each of the 2592 5° x 5° data bins. The map elevations
are referenced to the equipotential surface of Jordan and Lorell's
(1975) gravity model with mean radius R = 3382.946 km. This
approximately corresponds to the 6.1 mb equipressure level. Absolute
radii were thus constructed by adding the map elevations to the radii
of the corresponding points on the equipotential. These radii were
then expanded in a harmonic series of degree sixteen, with coeffi-
cients H;m.

To determine the bias, if any, between the averaged data R and

the map radii R, we define the difference function
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R(8,p) - R(8,¢) if (8,9) €D
AH(B,p) = (3.6)
0 otherwise
where D is the set of points (8,p) enclosed in the 1381 bins which
contain data. This difference function can be represented as
AH =b v w 3.7)

the product of the true bias b(8,p) times a sampling window function

1 if (6,¢p) €D
w(B,mp) = (3.8)
0 otherwise.

Therefore, in a harmonic series expansion of AH(S8,yp), the coefficients

MM =Db_ *w (3.9)
nm nm nm

are convolutions of the bias function coefficients with the window
function coefficients,

We are unable to perform a direct deconvolution., However, since
the detrimental effect of this convolution is greatest in the high
degree harmonics, and since our a priori expectation is that most of
the actual bias introduced by Wu's (1975) interpolation is of a low
degree nature, we desire a low-pass filtered version of the difference
function to use as our estimate of the actual bias. A candidate low-
pass filter is realized by truncating the harmonic expansion at some
low degree N. However, this filter is rather too abrupt for the present
purpose, and the choice of cutoff degree is somewhat arbitrary.
Therefore, we have chosen to convolve the difference function with a

Caussian function of angular distance Yy (Roberts and Ursell, 1960)
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@

2 = ®
G(y) = E 'glﬁgji-e (n) (n+1)0/4 Pn(cos(Y)) (3.10)
n=1
with angular variance
. _
PTma 0 N8

equivalent to the resolution of a sixteenth degree harmonic series.
According to the addition theorem of spherical harmonics (see

Appendix A)

n

P_(cos(y)) = h—if—z AL (8,0 A (8",0) (3.11)

m=0
where

vy = cos-1 [Egﬂié%l_i_l cos (AB) + cos (%qo =1 cos(ZB)]

is the angular separation between points (6,p) and (8',@') = (B+A8,
@ + Ap). Therefore, the result of convolving the difference function
with the specified Gaussian function and expanding the convolution in

a harmonic series is

s e @) (H)O/4

i - (3.12)

where AHnm is a harmonic coefficient of the difference function.
Our final bias corrected harmonic coefficient estimate is thus
7

H =H' +pH’

nm nm nm (3.13)

where Hém is a harmonic coefficient of the elevations from Wu's (1975)

map.
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In performing these harmonic expansions, we have used the weighted

least-squares algorithm [equation (3.4)]. The weighting of each point
was proportional to the area of its bin and inversely proportional to

the variance of the measurement or interpolation:

o A
Bij 2 sin(A6/2) cos(ei) Ag °ij / oy (3.14)

The presumed errors were 0 = 0.3 km for the actual data and 0 = 1.0 km
for the interpolation.

The estimates of the normalized harmonic coefficients and their

formal uncertainties are presented in Table 3.1.

D. RESULTS
1. Low Degree Harmonics

We will now consider the harmonics of degree zero, one and two.
These represent the mean radius, center of figure displacement, and
tri-axial figure, respectively.

The estimated mean Martian radius is RO = (3389.92 + 0.04) km.
This, in conjunction with estimates of GM = (42828.1 + 0.5) kmBsec_2
(Born, 1974) and G = (667.32 + 0.31) x 10-25 km3 sec-2 gm-l (Heyl
and Chrzanowski, 1942) yields an estimate for the mean density of
0 = (3.9331 + 0.0018) gm cm_a. Most of this error comes from the
error in G. The mean density, in combination with the mean inertial
moment, places important constraints on models of Martian internal
structure and composition (see e.g., Johnston et al., 1974).

We now turn our attention to the first degree harmonics. They

represent a displacement of the center of figure (C.F.) from the
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TABLE 3.1
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TABLE 3.1 (Cont'd)

S ag(C ) o(S
nm nm nm
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TABLE 3.1 (Cont'd)

S
nm
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11.4
4.4
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0.5
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11.7

-10.2

2.5
17.7
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TABLE 3.1 (Cont'd.)

nm

l.5
-5 0
—6eb
b

0.1

-10.8

S5e5
-702

8.8

9.6
-902
11.0
10.8

-10.6
18.1
_607

a(C

'm“
10.4
10.4
10.4
10.4
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10.4
104
10.4
10.4
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1C.4
10.4
10.4

vﬂg
nm
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center of mass (C.M.). In terms of rectangular coordinates, the

location of the C.F. is

AX1 Cl,l -0.047 £ 0.061
AXZ = RO -Sl,l =1 1.173 = 0.062 | km (3.15)
AX3 CI,O -2.208 £+ 0.075

or in terms of spherical coordinates

R (2.501 £ 0.073) km
) = | (6250 + 3°7) s
P (27253 + 3%0) W

where, as before, the origin is at the C.M. This offset, by definition,
implies a departure from spherical symmetry in the internal density
distribution.

Love (1911) investigated the problem of gravitational instabil-
ities in an initially homogeneous planet. He found that if the
rigidity is sufficiently small, the initial homogeneous configuration
will be unstable, and the mass will redistribute itself into a more
stable state. Any such displacement of mass can be expressed as a
sum of spherical harmonics. The critical rigidity for the onset
of instability is a decreasing function of harmonic degree. Thus,
as a planet is heated during accretion, or subsequently by radio-
genic processes, and the rigidity decreases, the first mode to
become unstable is that of degree zero which is characterized by
purely radial disturbances. In an extreme case, this may involve

radial differentiaion into a core, mantle and crust. The next
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mode to become unstable is the first degree, which represents
hemispherical disturbances. Thus, it is not surprising that all
known differentiated terrestrial planets have sizable

C.F. offsets. Lingenfelter and Shubert (1973) have

discussed large scale thermally driven convection as a possible
mechanism for the production of these offsets.

Both the Earth and Mars display a dichotomy in physiography
as well as topography. Balmino et al., (1973) have determined the
distribution of oceanic and continental regions, as well as the
global topography of the Earth. The Earth's C.F. offset is toward
(&1?6 N, 3457 E), whereas the center of the continental province is
(46° N, 27 E). In a coordinate system centered at the latter point,
much of the boundary between continental plates and oceanic plates
occurs between colatitudes of 90° and 110°, Much of the volcanic and
seismic activity of the Earth occurs in this transition zone, with
an additional clustering near the pole.

The surface of Mars can also be divided into two broad physio-
graphic regions: a high, heavily cratered southern region and a low,
northern region which contains smooth plains as well as the Tharsis
and Elysium volcanic provinces. The direction of the C.F. offset
(62°s, 272°W) is fairly close (Y & 30°) to the center of the southern,
heavily cratered region (55°S, 335°W) as determined by Mutch and
Saunders (1976). 1In a coordinate system centered at the latter

position, the boundary between cratered uplands and smooth lowland
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plains approximately follows the equator. There is also a concentra-
tion of volcanoes in the colatitude band between 120° and 150°, with
another grouping near the pole. In this regard, Mars is obviously
very similar to the Earth.

Mutch and Saunders (1976) have suggested that this distribution
may be due to convective motions under the control of rotational
forces. In fact, they argued that the axis of this shifted coordinate
system may have coincided with the rotation axis prior to the
structural uplift in the Tharsis region. Though global scale

convection may well have been responsible for the physiographic and

tectonic dichotomy of Mars, and the symmetry axis may have temporarily
coincided with the rotation axis, it appears doubtful that there
was any causal connection between these events. The argument
is as follows:

The influence of rotation on the pattern of convection in the
Earth's mantle has received considerable attention (see e.g.,
Knopoff, 1964; McKenzie, 1968) and is known to be negligible at present.
In general the effect of rotation can be estimated in terms of the
Taylor number (Roberts, 1968)

22
ZQRO)

v

7|

(3.16)
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where RO is the mean radius (ecm), (0 is the rotational angular
velocity (sec-l) and V is the kinematic viscosity (stoke = cmzsec-l).
This is essentially the square of the ratio of Coriolis to viscous
forces. For rotational effects to be significant, the Taylor

number must exceed unity. For the Earth and Mars, the values are
3.6 x 1027/\)2 and 2.6 x 1026/v2, respectively. Weertman (1970)

has estimated the effective viscosity (at a constant strain rate) as
a function of depth for the present-day Earth and Mars. In both
planets, the viscosity initially decreases with depth, due to
increasing temperature, goes through a minimum (v X 2 x 1020 stokes)
and then increases due to increasing pressure. Even during initial
planetary differentiation, the effective viscosity was likely no

less than 1018 stokes (Tozer, 1972). This minimum viscosity is still
great enough to preclude the rotation from influencing the patternm
of convection.

Furthermore, in situations where Coriolis forces do dominate
convective motion, the induced flow is often highly inclined to the
rotation axis (Roberts, 1968). The motion invoked by Mutch and
Saunders (1976) is parallel to their purported rotation axis.

We now consider the shape and orientation of the tri-axial

figure represented by the second degree harmonics, The principal

axes of this figure are:
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X', = (3394.5 £ 0.3 km, 0%7 = 052N, 18%5 = 0%8W)
x'2 = (3399.2 + 0.3 km, 250 + 092s, 1084 + 0°8W) (3.17)
X', = (3376.1 + 0.4 km, 8759 = 022N, 12858 + 623W)

These differ somewhat in orientation from the principal inertial
axes, as determined from the second degree gravity harmonics

(Sjogren et al., 1975):

1

B = (0%0N, 1527 + 1%0wW)
x’; = (020N, 10557 + 1°0w) (3.18)
x’% = (90%0N).

This misalignment, if confirmed by subsequent analysis, implies some
lateral density variation. If such variation occurs as undulations
on the crust-mantle interface, the principal axes of the tri-axial
mantle must be skewed in the opposite direction. We shall pursue
this idea further in a subsequent section. First, we will consider
the problem of Mars' excessive oblateness.

When subjected to a disturbing potential characterized by
harmonic coefficients énm’ an elastic sphere suffers a surface distor-
tion

H o hn énm (3.19)

and this redistribution of mass gives rise to a further disturbance
of the potential
!

G =k_ @ % (3.20)

nm n nm
The Love numbers h and kn’ for a homogeneous, incompressible
n

elastic sphere are given by (Munk and MacDonald, 1960)
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T 2(n- i5) (1 +N(n)u/P )

(3.21)
hn = ( 3 k
where
2
_2@HF1)y 1
N(“) - zn ]
_ 3GM2
E T T
“ 8TR
o

is the hydrostatic pressure at the center of the sphere and u is the

elastic rigidity. See Appendix E for a more complete discussion of

these matters,

The disturbing potential induced by rotation is, in terms of

un-normalized harmonics,

—QZR03 m
2,0 "3 T3 Wa2ed

where (I is again the rotational angular velocity and m is the ratio of
centrifugal to gravitational accelerations on the equator. We shall

use the usual geodetic terminology and denote by "gravitation"
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the attraction due to the mass of a planet and by '"gravity" the
combined effect of gravitation and rotation. Thus the rotational
contributions to the surface topography and to the shape of the
gravity equipotential are

3

2
Hl = 2 l \ - Q RO = - Eg.
2,0 2\T#19u74P_, 3GM 3

and (3.23)

3GM

respectively. Here fg and £, are the geometric and dynamic flatten-

d
ings., They are defined as the fractional difference between equa-
torial and polar radii of the actual topography and the gravity
equipotential surfaces, respectively.

If the rotation of Mars has been essentially uniform for a

period longer than its second degree visco-elastic relaxation time

T'z, where (Darwin, 1879)

Pc u

. =[M+1Jm
n
and N = OV is the dynamic viscosity (poise = g cm.1 sec-l), we should

expect the topography to conform to an equipotential surface. Since
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éz O(Q) = -1.523 x 10-3, we would expect for a homogeneous, incom-

pressible fluid Mars:

3

H‘2 o = ~3-808 x 10°

'

2,0

3 (3.24)

G -2.285 x 10

However, we find

Hy 5 = (-4.078 % 0.027) x 1073

and Sjogren et al.(1975) have found
Gy o = (-1.958 £ 0.021) x 107
Thus the topographic oblateness is too great, and the gravitational
oblateness is too small for Mars to be homogeneous and hydrostatic.

The radial variation of density inside Mars is easily incorporated
into the hydrostatic theory. 1In the traditional notation, the flat-

tening of a hydrostatic configuration is (Darwin, 1900)

- 5m/?2
g d 2
1+[g (- 2)]
2MR

where C is the polar moment of inertia. The homogeneous case we

(3.25)

previously considered corresponds to C = ZMRg/S and therefore
£ =§f, == s (3.26)

Since the rate of precession of Mars' rotation axis is not known,

all present estimates of the moment of inertia are obtained from
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the dynamic flattening according to the hydrostatic theory. The
discrepancy between dynamic and geometric flattening makes this
approach rather suspect. This problem has a long and interesting
history. We will digress now to a brief discussion of the principal
points.

The earliest determination of the dynamic flattening of Mars
appears to be that of Struve (1895), who analyzed the precession of

the orbits of Phobos and Deimos., His result was f, = 5.210 x 10-3

d
= -1.951 x 10-3). Subsequent analyses (Table 3.2) of the

€30
motions of both natural and artificial satellites have essentially
confirmed this result. The situation is very different regarding

the geometric flattening (Table 3.3). Though the early estimates
varied widely, they tended to be large. Darwin (1877) pointed out
that the best estimates available to him exceeded even the flattening
predicted for a homogeneous fluid planet. A summary of the best
Earth-based telescopic determinations is given by de Vaucouleurs
(1964). The mean of 32 polar radius determinations spanning the
period 1890-1958 yields 3378 + 3.6 km. The mean of 68 measurements
of the equatorial radius from the period 1879-1958 is equivalent to
3414.2 + 3.6 km. The corresponding flattening is fg = (10.6 + 0.5)
10—3. It is interesting that these early polar radius estimates
essentially agree with present estimates whereas the equatorial

radius was consistently overestimated. It has been suggested

(de Vaucouleurs, 1964) that the excess apparent equatorial radius



Mars Dynamic Flattening

TABLE

3.2

Source fd X 103 GZ,O X 103
Struve (1895) 5.210 -1.951

Woolard (1944) 5215 ~1:955

Wilkins (1967) 5.208 + 0.030 -1.950 + 0.020
Sinclair (1972) 5.232 + 0.005 -1.966 + 0.003
Lorell et al. (1973) 5.223 £ 0.015 -1.960 + 0.010
Born (1974) 5.223 +£ 0,027 -1.960 + 0.018
Sjogren et al. (1975) 5.220 + 0.032 -1.958 + 0,021
Reasenberg et al. (1975) 5.216 -1.955

16



TABLE 3.3

Mars Ceometric Flattening

Source fg % 10° Hy o % 103
Schur (1896) 2145 4+ 1.7 -14.3 - g e |

Hartwig (1899) 8.6 # 1 d -5.7 + 1.0

Trumpler (1924) 10.4 + 0.6 -7.1 + 0.4

Camichel (1954) 12.0 : S | -8.0 + 3.1

Dollfus (1972) 7.9 # 1:5 -5.3 + 1.0

Cain et al. (1972) 5.39 % 0.15 -3.59 % 0.10
Christensen (1975) 5.90 -3.93

Present work

6.117 + 0.041 -4.078 + 0.027

4
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may be an atmospheric effect. 1In any event, it gave rise to a
number of interesting theories which attempt to explain an actual
excess oblateness. Darwin (1877) considered, but discarded, the
idea that Mars is in hydrostatic equilibrium, but has a density which
decreases with depth. Urey (1950) hypothesized an equatorial belt
of isostatically supported mountains. Lamar (1962) proposed instead
that the elevation of the surface increases gradually from the poles
to the equator, and that this increase is isostatically compensated
by variation in the crustal thickness. Runcorn (1967) suggested that
second order convection cells might produce the excess flattening.
This unexplained oblateness was one of the greatest Martian geophysi-
cal problems prior to spacecraft exploration (Loomis, 1965).

More recent radar (Pettengill et al., 1969; Downs et al., 1975)
and spacecraft (Cain et al., 1972; Fjeldbo et al., 1972) observations
have confirmed a smaller mean equatorial radius, and the problem of
excess topographic oblateness has fallen into relative obscurity.

The prime geophysical problem has become the support, isostatic or
otherwise, of the Tharsis ridge and associated volcanic constructs
(Carr, 1973). Phillips and Saunders (1975) investigated the isostatic

support of three low degree harmonics (H H and H3 3) which

2027 3,2

contribute significantly to the Tharsis uplift. They conclude

that the Tharsis plateau and the adjacent Chryse and Amazonis low-
lands are geologically young and only partially compensated, whereas

the isostatic support of other, older areas is essentially complete.

Recently, Reasenberg (1977) has attempted to estimate the influence
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of the Tharsis region on the topographic and gravitational oblateness.
His basic premise is that,prior to the uplift of Tharsis, Mars was in

By excising Tharsis and the

hydrostatic equilibrium (fg = fd).

adjacent lowlands, he obtains an estimate of the equilibrium gravi-
tacional oblateness G, ((E) = (-1.829 % 0.012) x 10 (£, = (5.027
+ 0.018) x 10—3]. He then argues (but not convincingly) that the
minor (rather than the mean) equatorial radius should be used in
computing the topographic flattening of the pre-Tharsis Mars.

Thus, based on Christensen's (1975) topography model, he finds

3 3]. When calculated this-

Hy o(E) = 3.418 x 10” [f, =5.127 x 10°
way, the topographic and dynamic flattenings are nearly equal. 1If
this result is correct, it is profound not only in the historical
context of showing that the solution to the older excess oblateness
problem is to be found in studying Tharsis, but also because this

hydrostatic flattening estimate gives a substantially reduced estimate

for the moment of inertia of Mars. Previous estimates of G =

2,0
(-1.966 £ 0.003) x 10-3 (Sinclair, 1972) yield C/MRS = 0.3768 +
0.0003, whereas Reasenberg's estimate yields C/MRg = 0.3660 = 0.0010.

This has important implications for the internal structure of Mars.
Most internal models (Jeffreys, 1937; Bullen, 1949; MacDonald, 1962;
Anderson, 1972; Johnston et al., 1974) have found a high density
mantle and a small core. This new estimate for the moment of inertia
would imply a lower mantle density and a larger core. This would
appear to be consistent with a more extensively differentiated

interior than has previously been supposed.
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Another effect which could contribute to the discrepancy between
the geometric and dynamic flattenings is a possible secular decrease
in the rotation rate of Mars. Hartmann et al. (1975) have discussed
possible rotation histories for Mars and suggest on dynamical
grounds that it rotated more rapidly in the past. Binder and
McCarthy (1972) have suggested a despinning of Mars based on tectonic
arguments.

The influx of debris from the asteroid belt could have slowed
Mars' rotation at a rate which could be significant over geologic
time. In order to account for the entire excess flattening as a
fossil bulge left over from a period when Mars rotated more rapidly,
the ancient rotation period would be 82050 see(22® 44™ 30°) as opposed
to the present period of 88642.67 sec (24h . & i 22?67). The slowing
of Mars to its present rotation rate by accretion of asteroidal debris
would have involved the accumulation of a debris mantle some tens
of kilometers thick. This would presumably tend to mask any excess
oblateness due to former spin states. However, some degree of
despinning by this or other mechanisms may have occurred.

2. High Degree Harmonics

In common with the Earth (Balmino et al., 1973) and the Moon
(Bills and Ferrari, 1977a), the topography of Mars is dominated by
the low degree harmonics. Furthermore, the rate at which the total
topographic variance per degree decreases with increasing degree is
similar for all three planets. Dimensionless degree variances V(H*;n),

of equipotentially referenced Martian topography and the
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associated error variances W(H;n) are displayed in Figure 3.2.

These variances are given by:

n
E : *
V(H*;n) = H I H*
nm nm
m=
n (3.27)
_ T
WH;n) = E a (Hnm) U(Hnm)
m=0
%
where H__=H - G__. We note that the topographic variances decrease
nm nm nm
approximately as
V!H*ZOE
*, = :
VETD) = oY+ D ;

We further discuss this relationship and its implications in the

next chapter. We also note that, in the case of uniformly accurate
data, i.e., o[R(B,p)] = Go’ the degree error variances are (Heiskanen
and Moritz, 1967):

s\ 2
W(Hsn) = 2—’2:—1-(%—"-) (3.28)

o
The small departures of our calculated error variances from this
simple form are due to the irregular data distribution.

In order to compare our results Hnm’ with those of Christensen
(1975) Hr'lm, we have calculated the degree correlation coefficients
(Kaula, 1967)

V(H,H ;n)
[v(an) vea’sn)1t/2

B (H,H') = (3.29)
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FIGURE 3.2 - Martian topographic variance spectrum. The actual
dimensionless variances, V(H;n), of the equipotentially referenced
topography follow quite well the relationship V(H;n) = V(H;0)/(n) (n+l).
The error variances, W(H;n), are approximated by 4m W(H;n) = (2n+1)

2
(UO/RO) .
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In FPigure 3.3, we present these correlation coefficients and the
critical values for various confidence levels. The correlation is
seen to be very good. In computing the correlation, we have corrected
two typographical errors in Christensen's original paper. The
correct values for 04’1 and C4,2 are ten times the values listed
(E.J. Christensen, personal communication, 1977).

Figure 3.4 is a map of Martian topography derived from our
harmonic model. The map elevations are referenced to the 6.1 mb

equipressure surface. This surface will be referred to as the

reference equipotential or areoid. It is approximated by

4 n
’ / m 2 T
R'(8,p) =R’ |1 +3 cos™(8) + § ’ 2 r G oM (850) (3.30)

n=2 m=0
where R; = 3382.,946 km (Wu, 1975) and Gnm are the coefficients of
Jordan and Lorell's (1975) gravity model. The rotational contribu-

tion can be expressed as an increase in the reference oblateness,

’ —
2,0 %20

R”O = R(;(I +m/3) = 3388.099 km. The heights are thus H(8,p) =

G - m/3, and an increase in the reference mean radius,
R(8,p) - R'(8,»), where R and R’ are given by equations (3.2) and
(3.30) respectively.

As expected, we find a considerable increase in resolution over
Christensen's (1975) eighth degree model. 1In fact, our model resolves
most major features within areas of adequate data coverage. This was
a major objective in the construction of the model and permits

comparison with equivalent resolution gravity models for the purpose
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FIGURE 3.3 - Correlation coefficients: topography with topography.
Comparison of present model with Christensen's (1975) model. Confi-
dence levels indicate probability of specified correlation between

Gaussian random variables,
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FIGURE 3.4a - Martian topography. Mid-latitudes, Sixteenth degree

model. Elevations relative to the 6.1 mb areoid. Main contour

interval is 2 km (solid line). Selected 1 km contours indicated

(dashed line).

FIGURE 3.4b - Martian topography. Polar regions. See caption of

Figure 3.4a.
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of determining the internal density. We will now attempt to do just
that.

As a first step, we wish to know what correlation, if any,
exists between the topography and gravity of Mars. For that purpose,
we have calculated degree correlation coefficients Sn(H,G) for
n < 10 of our topography model with the gravity models of Sjogren
et al. (1975) and Laing (1977, private communication). These are
presented in Figure 3.5. It is seen that the low degree correlations
are significant. Thus, the low degree gravity harmonics appear to be
primarily due to surface height variations and only secondarily due
to density anomalies. The decrease in correlation of the higher
degree harmonics is presumably due to the relatively poor determina-
tion of the relevant coefficients, but may reflect an actual property
of the planet.

The observed gravitational anomalies may be ascribed to contri-
butions from both lateral density variations and surface topography.
The topography of a planet with crustal density po and mean density

) gives rise to gravitational potential perturbations (MacRobert, 1967):

<] n n+l
AB(R,6,0) = 2 E E [Z—"] 86 Ao (8,9 (3.31)
° a1 w0

where

2n+1)\ = _
( 3 ) P AGnm Oo Hnm

The difference between the observed gravity and the topographic




106

FIGURE 3.5 - Correlation coefficients: topography with gravity.
Comparison of present topography model with gravity models of
Sjogren et al. (1975) and P.A. Laing (1977, personal communication).

The low degree harmonics are significantly correlated.
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correction, known as the Bouguer anomaly, is thus a measure of the
extent of lateral demnsity variation.
Figure 3.6 is a map of the Martian Bouguer anomaly evaluated on
the areoid. This is calculated as the vertical component of the
gradient of the Bouger anomalous potential on the reference surface

(Heiskanen and Moritz, 1967)

10 n 0
R
__GEE :z : O (m-1) BT A
Ay (R.0,0) = 2 {R} (m-1) B_A _(8,0) (3.32)
o

n=1 m=0
where

B =G_ - AG
nm nm nm

and we have assumed a surface density 6, = 2.9 gm cm_3. The series
is truncated to tenth degree because of limitations of the gravity
model (Sjogren et al., 1975).

As was anticipated in our discussion of the correlation coeffi-
cients, the low degree harmonics of the gravitational field are
produced primarily by surface height variations, and only secondarily
by lateral density variations. However, it is interesting to note
the large negative anomalies associated with Phlegra Montes (35°N,
200°W), near the Elysium volcanics, and with Tharsis Montes (5°N,
110°W) another high volcanic province. This latter feature is
flanked by prominent positive anomalies in Amazonis Planitia (5°N,
160°W) and Chryse Planitia (20°N, 40°W). Other significant positive

anomalies are in the low regions of Hellas Planitia (3505, 290°W)
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FIGURE 3.6 - Martian Bouguer gravity anomaly. Tenth degree model.
Evaluated on areoid. Contour interval is 100 mGal = 0.1 cm sec-z.

Free-air gravity from Sjogren et al. (1975).
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and Isidis Planitia (15°N, 270°W). Most of the prominent negative
anomalies are associated with topographic highs, and conversely.
This implies some degree of isostatic compensation. To ascertain the
degree of compensation, we need to know how the crustal thickness
varies with elevation and location on the surface of Mars.

Recent seismic results (Anderson et al., 1977), although tentative,
can be interpreted as indicative of a crustal thickness of 15 km in
the vicinity of the second Viking landing site (47°89N, 225%86W).
We can estimate the variation of crustal thickness implied by the
Bouguer anomaly map on the assumption that all lateral density

variations occur as undulations on the crust-mantle interface (Khan,

1977; Bills and Ferrari, 1977b). These undulations are determined

from the relation
(2n3_+1) e =0 H () 4p g™ Ht(;) (3.33)

where Hé;) and Hnél) define the shape of the surface topography and
crust-mantle interface, respectively. The mean normalized radius of
the interface is £ = R/Ro' The crustal density and density contrast
across the interface are o and Ap, respectively. These latter
three parameters are unknown.

We have examined a number of cases and will discuss three of
them in particular. For this discussion, we have assumed an upper
mantle density of % + Ap = 3.5 gm cm'3 (Anderson, 1972). We then

-3 ;
consider the three cases po=2.7, 2.8 and 2.9gmecm ~, which span the
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range of probable crustal densities. The mean crustal thickness was
varied in each case until a 15 km thickness was obtained at the Viking
landing site. The values obtained are 34, 36 and 40 km respectively.
The resulting map for the high crustal density case (oo = 2.9 gm cm-3)
is shown in Figure 3.7. The maps corresponding to the other cases
are qualitatively very similar. However, when the crustal demnsity
is low and the crust-mantle density contrast is accordingly high,
smaller amplitude undulations on the crust-mantle interface are
required to produce the observed Bouguer anomalies., For example, the
maximum crustal thickness was obtained in all cases under Tharsis.
These maxima were 61, 67, and 77 km, respectively. Likewise, all three
models exhibited a minimum crustal thickness under Hellas (10, 9 and
8 km).

Because the Viking crustal thickness estimate (Anderson et al.,
1977) is based on a single anomalous event that cannot be proven to
be of intermal origin and may, in fact, be a wind event, we have also
considered models based on the assumption of zero crustal thickness in
Hellas. These yield minimum mean crustal thickness estimates for a
given density regime. For the densities previously considered,
Py = 2.7, 2.8 and 2.9 gm cm-3, the mean crustal thickness estimates
are 23, 24 and 32 km, respectively. The corresponding crustal thick-
ness estimates under Tharsis are 50, 58 and 68 km, and at the Viking
landing site 5, 6 and 7 km, respectively.

None of these models is completely isostatic. However, it was

found that the mean squared super-isostatic stress at the crust
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FIGURE 3.7 - Martian crustal thickness. Tenth degree model. Gravity
from Sjogren et al. (1975). Assumed crustal density is 2.9 gm cm-3,
crust-mantle density contrast is 0.6 gm cm—3 and mean crustal
thickness is 40 km. Second Viking landing site (47?89N, 225?86W)

is indicated by dot. Crustal thickness at that location tentatively

estimated from Viking seismic data (Anderson et al., 1977).
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mantle interface was least for models with low crustal density,

thin crust and high density contrast across the interface. The range
of models we considered indicate that Tharsis is 60-657 compensated,
whereas, Hellas is 95-105% compensated. A complete discussion of

Martian isostasy is beyond the scope of this paper.
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IV. TOPOGRAPHIC VARIANCE SPECTRA OF THE EARTH,

MOON AND MARS: AN EQUILIBRIUM MODEL

A. INTRODUCTION

The surface topography of a solid planet or satellite may be
thought of as the superposition of two components; one deterministic,
the other stochastic. The nature of the deterministic component
(due to influences such as rotational and tidal deformation) has
been extensively studied and is rather well understood (see e.g., Kopal,
1960; Chandrasekhar, 1969). 1In such analyses, the solid planets are
usually modeled as fluids in equilibrium with simple deformational
forces possessing axial or radial symmetry. The attention this
deterministic approach has received is well deserved, since for
most planets and satellites, the basic spherical shape, as well as the
principal departures from sphericity, are adequately understood in
this paradigm. However, on a local or even regional scale, the
topography is dominated by its stochastic component. Though the
individual constituent features of this topography (ridges, mountains,
craters, etc.) have received attention previously and are fairly
well understood in isolation, it is the random superposition of many
such features, each basically deterministic, which produces the
stochastic nature of the topography.

A general lack of understanding and appreciation for this aspect
of the problem is well illustrated by the statement of Cook (1973)
that "the shape of the solid surface of the Earth is very irregular

and of no scientific interest."
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The principal objective of this chapter is to isolate the
stochastic components in the topography of the Earth, Moon and Mars
(with brief reference to Venus) and gain a better understanding
of their properties. We will find interesting statistical
similarities among these rather diverse surfaces. In
particular, we will consider the hypothesis that the variance

spectra of all sclid planets have the form

- VH;0)

BHm) = o D

(4.1)

for all n such that Ro/n < 2000 km, and that furthermore, the
individual harmonic coefficients Hnmi are Gaussian random variables

N(O,Uﬁ) with mean u = 0 and variance

- 2 _ V(H;n) ) 4.2)

n 2n + 1

For comparison with later observations, in figure 4.1 we present
a topographic variance spectrum constructed according to this hypothesis.
For each harmonic degree n: 1 < n < 30, the 2n + 1 harmonic coeffi-
cients Hnmi were assigned values drawn from a population of Gaussian
N(O,ci) raﬁdom variables. The fluctuations of the resultant

sample variances relative to the population variances are distributed

as Xz/(2n + 1), i.e., chi-square over degrees of freedom with 2n + 1

degrees of freedom (see Appendix B). The critical values for the

90% confidence level are indicated. There is thus a 10% chance that

the sample variance will fall outside these limits if the population
-6

variance is as specified by the model. The value of V(H;0) = 10

was chosen to be representative of actual planetary values.
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Simulated spherical topographic variance spectrum. Harmonic
coefficients are N(O,an) Gaussian random variables with
onz = 10-6/(n)(n-+1). Points are sample variances. Solid

line is theoretical variance. Dotted lines indicate critical

values for 907 confidence level.
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In the remainder of the chapter, we will discuss some observa-
tions relevant to this hypothesis, and then examine a number of
possible explanations for this peculiar behavior. Lastly, we will
consider some of its implications and point out some directions for
future research,

B. OBSERVATIONS

1. Variance Spectra

Earth
Vening-Meinesz (1951) was apparently the first to call attention
to the fact that the Earth's topographic variance spectrum, as obtained
from Prey's (1922) harmonic analysis, is approximated by equation
(4.1) at least for harmonic degrees n: 1 < n < 16. We shall therefore
refer to this ideal form as the Vening-Meinesz spectrum. In a later
paper (Vening-Meinesz, 1962), he showed that an unpublished harmonic
analysis by G.J. Bruins, with n < 31, further supports and extends the
observed range of validity of his initial observation. Balmino et al.
(1973) have performed a harmonic analysis complete through degree
and order 36. In Figure 4.2, we present the degree variances from
this analysis compared with the Vening-Meinesz spectrum. The value
of V(H;0) was adjusted to optimize the match with the actual spectrum,
We will often loosely refer to V(H;0) as the total variance.
However, this is only strictly true for the pure Vening-Meinesz

2
spectrum. In most cases, C(H;0) SZRO V(H;0) (see Appendix D).
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It is easily seen that the largest departures from the Vening-

Meinesz spectral form are for the first few harmonic degrees. Though
the confidence limits for the low degree harmonics are quite wide, it
still seems significant that for the Earth, Mars and Venus, the

low degree variances are consistently deficient relative to our
expectations. We shall return to this point later. First, we want to
find out what happens at the high frequency end of the spectrum.

For sufficiently high spatial frequencies, spherical harmonic
analysis becomes computationally impractical. For small enough
areas, the curvature of the earth may be neglected and a simple
planar Fourier analysis is quite adequate. Several such analyses
have been performed over a wide spectral range (see e.g., Cox and
Sandstrom, 1962; Krause and Menard, 1965; Bretherton, 1969; Warren,
1973; Pike and Rozema, 1975). Recently, Bell (1975) has compiled
the results of several previous analyses and, in conjunction with
his own analysis of the oceanic abyssal hills province, has shown a
rather impressive agreement between various spectral estimates over
a cumulative spatial frequency range corresponding to harmonic
degrees n: 1 < n < 300,000. Even more impressive is the fact that
these spectral estimates approximate the Vening-Meinesz spectrum
over essentially the entire range (see Figure 4.3).

Since the topography of the Earth is dominated by the continent-
ocean dichotomy, particularly in the low degree harmonics, it is
possible to investigate the history of the Earth's topography

spectrum from reconstructions of previous continental configurations
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Earth - Spherical topographic variance spectrum, Harmonic
coefficients are from Balmino et al. (1973). Points are
computed degree variances. Solid line is Vening-Meinesz
spectrum: V(H;n) = 2.6 x 10-7/(n)(n-+1). Dotted lines
indicate critical values for 907% confidence level.

Earth - Composite topographic variance spectrum, Adapted from

Bell (1975). Used by permission. The smallest scale features

(harmonic degree n = 3 x 105) have dimensions L = 27 Rofn = 120 m.
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(Dietz and Holden, 1970). A preliminary analysis of this sort
indicates a shift of spectral energy from the lowest degrees (l<n<3)
to the higher harmonics as the continents have dispersed. This may be
relevant to the previously mentioned fact that low degree variances
are deficient relative to the higher harmonics.
Moon

Due to the paucity and uneven distribution of lunar topographic
data, the variance spectrum calculated from harmonic coefficient
estimates is not as representative of the true variance spectrum
as was the case for the Earth. Nevertheless, recent harmonic
analyses (Goudas, 1971; Chuikova, 1976; Bills and Ferrari, 1977a)
indicate that lunar topography is also dominated by the low degree
harmonics, and even suggest that the spectrum may approximate the
Vening-Meinesz form. See Figure 4.4 for a comparison of the spectrum
from Bills and Ferrari (1977a) with the Vening-Meinesz theoretical
spectrum. Though the agreement is not outstanding, we should not
reject the hypothesis that the Moon has a topographic variance
spectrum similar to the Earth's until we examine some further
evidence, particularly considering the amount of spectral distortion
induced by the irregular data distribution - in spite of the efforts
described in Chapter I to compensate for this effect.

As an independent estimation of the variance spectrum and to
extend it to higher harmonic degree, a simple one-dimensional Fourier

analysis has been performed on complete orbital segments of laser
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altimetry data from Apollo missions 15, 16 and 17 (Kaula et al. 1972,
1973, 1974). The resultant spectra were then averaged and are
displayed in Figure 4.5. This technique of averaging raw spectra
provides statistical stability at low harmonic degree, and is
equivalent to smoothing the spectra with a Bartlett window (Jenkins
and Watts, 1968). Since the effective domain of these data is a

circle rather than a sphere, the appropriate comparison spectrum is

V(H;n) = !15%91 (4.3)
n

rather than equation (4.1) (see Appendix A). It can be seen that,
at least in the range 1 < n < 32, the variance spectrum of the Moon
conforms to the Vening-Meinesz pattern.

A further, more stringent test of the applicability of the Vening-
Meinesz spectrum to the Moon at high harmonic degrees involves com-
parison of r.m.s. slopes at various slope lengths with model values.

As is shown in Appendix G, the mean square slope between points a
distance L = ROY apart on a planet characterized by a Vening-Meinesz

spectrum is

s2(y) = & V(H;0) 0n [1+sin(y/2)1/v> .4)

which for vy << 1, reduces to

2
ST (y) = 2V(H;0) /v . (4.5)
Thus, given an estimate for V(H;0), we can estimate values for

the r.m.s. slope angle
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Moon - Spherical topographic variance spectrum. Harmonic
coefficients are from Bills and Ferrari (1977a). Points are
computed degree variances, Solid line is Vening-Meinesz
spectrum: V(H;n) = 1.5 x 10-6/(n)(n-+1). Dotted lines indicate
critical values for 907% confidence level.

Moon - Circular topographic variance spectrum. Points are
averaged degree variances from Fourier analysis of Apollo

laser altimetry data. Solid line is model variance spectrum:
V(H;n) = 1.5 x 10-6/(n)2. This is the circular analog of the

Vening-Meinesz spectrum.
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@) = — [S(L/RO)I (4.6)

at any linear separation L. 1In Figure 4.6, we compare this estimate
with photogrammetrically determined r.m.s. slopes for typical
highland and mare regions of the Moon over the range 25 m < L < 1000 m
(Moore and Tyler, 1973). The agreement with these observations could
be made much better by reducing the value of V(H;0), however, we
have used the value estimated from the spectrum in Figure 4.5. Thus,
we are extrapolating from n < 32 to n = ZnRO/L = 40,000 (L = 250 m).
We note that our predicted slopes are intermediate between the highland
and mare values and actually parallel the mare values. The highlands,
though rougher than the maria at all slope lengths considered,
exhibit weaker dependence of slope angle on slope length. This agree-
ment between observed and predicted slopes is a strong confirmation
of the validity of the Vening-Meinesz spectrum as applied to the Moon.
Mars

The earliest topographic spectral estimates for Mars appear to
be those of Pettengill et al. (1969), who performed a Fourier
analysis of elevations along the 22° N latitude parallel as determined
from radar observations. They first argued from terrestrial topo-
graphy data that 'the Fourier spectrum of the topographic variation
around any great circle (e.g., the equator), or near-equatorial
parallel of latitude, will tend to approximate the spherical harmonic

spectrum.'" They then showed that their estimated topographic
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Moon - Slope analysis. Points are photogrammetrically determined
r.m.s. slopes on different lunar terrain types from Moore and
Tyler (1973). The solid line indicates theoretical slope angles
given by equations (4.5) and (4.6) using the value V(H;0) =

1.5 % 10-6 determined from Figure 4.5. A representative

slope length (L = 250 m) corresponds to a harmonic degree of

n = 2m RO/L = 40,000.
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variance spectrum for Mars, which covered the range 1 < n < 16, is
quite similar to the Earth's.

As was true of the lunar spectrum, the Martian variance spectrum
as computed from spherical harmonics (Figure 4.7) is somewhat
corrupted by the irregular data distribution, in spite of efforts
such as those described in the last chapter. Nevertheless, harmonic
analyses by Christensen (1975), with 1 < n < 8, and by Bills and
Ferrari (1977c), with 1 < n < 16 (see Chapter III), have confirmed that
the spectral behavior discovered by Pettengill et al. (1969) is
indeed a feature of the entire planet rather than merely characteristic
of a single latitude band.

As of this writing, r.m.s. slope determinations from Viking
photogrammetry are still unavailable (H. Masursky, personal communica-
tion) for comparison with predicted slopes, as was done for the Moon.

Venus

The only topographic data presently available for Venus come
from radar observations (Smith et al., 1970; Campbell et al., 1972;
Shapiro et al., 1973) and are essentially restricted to the sub-Earth
points. A preliminary Fourier analysis (1 < n < 16) of the data from
Shapiro et al. (1973), which have complete longitude coverage but are
severely limited in latitudinal extent, shows a distinct tendency
toward decreasing variance with increasing degree (Figure 4.8).

Though the spectrum is somewhat 'moisy", the general trend is

surprisingly consistent with the Vening-Meinesz model.
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Mars - Spherical topographic variance spectrum. Harmonic
coefficients are from Bills and Ferrari (1977c¢). Points

are computed degree variances. Solid line is Vening-Meinesz
spectrum: V(H;n) = 5.5 x 10-7/(n)(n~+1). Dotted lines

indicate critical values for 90% confidence level.
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Venus - Circular topographic variance spectrum. Points are
degree variances from Fourier analysis of near equatorial
radar altimetry data of Shapiro et al. (1973). Solid line

is model variance spectrum: V(H;n) = 1.1 x 10-7/n2. This is

the circular analog of the Vening-Meinesz spectrum.
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2. Isotropy

Another aspect of our original hypothesis was that, apart from
rotational and tidal effects, the topography should be essentially
random. A convenient and informative way to check this conjecture is
to measure the isotropy of the surface. As is developed in Appendix G,
a necessary condition for isotropy is that the mean square east-west

slope at zero slope length

2
Se(O) = 21 Te(n) (4.7)
n'—-—

equals the mean square north-south slope at zero slope length

@

2
= 4,
Scp(o) E Tw(n) (4.8)
n=1

where the degree tilts are

n
z 2n+1)(m HTH
nm nm

TG(“) -
4.9)
n
_ _ iz n-Flggm!
TCP(n) - Z [(n)(n"rl) :I nm nm
m=0

A sufficient condition for mean square isotropy is the equality of
the degree tilts for each harmonic degree. We thus define a

degree isotropy parameter

o, = Te(n)/Tm(n) ; (4.10)
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In Figure 4.9a, we present the isotropy spectrum for the random
harmonic model previously discussed. Figures 4.9b-d are
isotropy spectra calculated from spherical harmonic models of the
topography of the Earth (Balmino et al., 1973), Mars (Bills and Ferrari,
1977¢) and the Moon (Bills and Ferrari, 1977a), respectively. For
the Earth, the topography was measured relative to the geoid, and
thus the primary effect of rotation has been removed. For Mars
and the Moon, the original harmonic analyses are for spherically
referenced elevations, but for this analysis, the second degree
terms have been corrected for rotational effects. TFor all three
planets, we find quite consistent isotropy, with the largest departures
for the low degrees.

3. Simulation

As a further, somewhat subjective criterion for judging the
validity of our primary hypothesis that the topography of a solid
planet or satellite is well modeled by zero-mean Gaussian random
harmonic coefficients with a Vening-Meinesz variance spectrum, we
would expect that a contour map produced from these coefficients
would appear qualitatively similar to equivalent resolution maps of
actual planetary surfaces. Figures 4.10a-c are topographic maps
generated from harmonic representations of the Moon, Mars and
Earth, all truncated at degree m = 12. For comparison, Figure 4.10d
is a map of the random toOpography represented by the harmonic

coefficients used in producing Figures 4.1 and 4.9a, also truncated
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4.9a Simulated isotropy spectrum, Points are ratios o, = TS(“)/T$(R)
of east-west degree tilts Tg(n) to north-south degree tilts
qy(n) as defined in equation 4.9. Harmonic coefficients are
the same random variables used in generating Figure 4.1.
Solid line represents perfect isotropy o = 1.0,

4.9b Earth - Isotropy spectrum. Harmonic coefficients are from
Balmino et al. (1973). See caption to Figure 4 9a,

4.9c Mars - Isotropy spectrum. Harmonic coefficients are from Bills
and Ferrari (1977c). See caption to Figure 4.9a.

4.9d Moon - Isotropy spectrum. Harmonic coefficients are from Bills

and Ferrari (1977a). See caption to Fizure 4.9a.
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at n = 12, All of these figures are Mercator projections and cover
the latitude range -75° < 3 < +75°. The contour interval in each
case is 1.0 km. The mean radius of the random planet was arbitrarily
taken to be RO = 3000 km. This, in conjunction with the assumption
that V(H;0) = 10_6, determines the physical variance of the surface.
A decision as to the adequacy of this simulation, being rather

subjective, will be left to the judgment of the reader.

4. Summary

In summary, we find that on all planets for which we have
sufficient data to check our hypothesis the stochastic component of
the topography is very nearly isotropic and the degree variances
decrease with increasing harmonic degree consistent with the Vening-
Meinesz spectrum (equation 4.1). Furthermore, we find that the
largest reliably determined departures from this basic model are
for the low degree harmonics. In fact, the point of incipient
departure appears to correspond roughly to a scale length L = Ro/n
of 1700-2100 km (Earth: L = 6380/3, Venus: L=6050/3,
Mars: L = 3390/2, Moon: L = 1740/1 ).

Since this Vening-Meinesz spectral form is applicable over such
a wide range of feature sizes and on planets subject to widely
differing geomorphic processes, it appears to reflect some fundamental
property of the terrestrial planets. We will now attempt to gain
a better theoretical understanding of this spectrum in hopes of

being able to explain its ubiquity.
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4,10a Moon - Tovographic contour map. From harmonic coefficients of

Bills and Ferrari (1977a) truncated at degree N = 12, Mean
radius Ro = 1737.5 km. Contour interval AH = 1.0 km. Solid
lines are above reference level, dashed lines are below it.
Mercator projection with latitude range -75's 3 < 75°.

4.10b Mars - Topographic contour map. From harmonic coefficients of
Bills and Ferrari (1977c) truncated at degree N = 12, Mean
radius Ro = 3389.9 km. Heights are referenced to 6.1 millibar
level. See caption to Figure 4,10a

4.10c Earth - Topographic contour map. From harmonic coefficients
of Balmino et al. (1973) truncated at degree N = 12, Mean
radius = 6371.0 km. Heights are referenced to geoid. See
caption to Figure 4. 10a

4,10d Simulated topographic contour map. From harmonic coefficients
used in figures 4.1 and 4.9 truncated at degree N = 12, Assumed

mean radius R = 3000 km. See caption to Figure 4 10a
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C. ANALYSIS

In this section, we will attempt to understand why planetary
surfaces are characterized by the Vening-Meinesz spectral form
(equ. 4.1). We will first consider (and subsequently reject) a
specific physical mechanism championed by Vening-Meinesz himself -
thermal convection. We will then examine some of the geometrical
implications of this spectral form. This will lead to a completely
equivalent reformulation of the problem in terms of a particular
stochastic process rather than the variance spectrum., We then
turn our attention to a number of physical systems which have
analogous spectral forms to see how energy is transferred from one
spectral component to another. Next, we will consider a fairly
specific model for the topography which involves superposition of
random pulses. We will see that the size-frequency distribution of
pulses largely determines the spectral form of the resulting surface.
Finally, we will consider a model which supposes only that there is
a degree of equilibrium between erosive and constructional processes
acting on the surface. In terms of simplicity of assumptions and
verisimilitude of results, we consider this the most satisfactory
explanation of the Vening-Meinesz spectral form. We close the section
with a conjectured characterization of planetary surfaces in terms of

continuity, fixed variance and maximal entropy.
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1. Convection

Vening-Meinesz (1951) not only provided the earliest reference to
the shape of the Earth's topographic variance spectrum, but also
offered the earliest explanation. He argued that both the general
pattern given by equation 4.1 and the principal departures therefrom
are related to thermally driven convection in the mantle. The
increased variance at degrees 5, 10 and 15, as best seen in the slope
variance spectrum

V(S;n) = (n)(n+1)V(H;n) (4.11)
were taken to be manifestations of a predominantly fifth degree
convection pattern.

Walzer (1971, 1972a.b) has invoked & ccriplex pattern of convective
cells to explain the Earth's topographic variance spectrum over the
range 1 < n < 31. Convective models have also been proposed for the
Moon (Runcorn, 1967) and Mars (Wells, 1971).

Coode (1966, 1967) showed that in a harmonic analysis of the
locations of active and passive oceanic ridges and continental rift
zones, the aseismic ridges have a major spectral peak at degree 4 and
a secondary peak at degree 9, whereas the active seismic ridges have
major and secondary spectral peaks at degrees 5 and 10 respectively.
He interpreted this as evidence of a change in the dominant mode of
mantle convection from degree 4 to 5. Runcorn (1965) further
extended this notion in claiming that the core of the Earth has

been steadily growing and that, as it has grown, the stable mode of
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mantle convection has been increasing. In particular, he claims that
the most recent change of mode (from 4 to 5) occurred in the Permian

(200 My. ago) and initiated the present era of continental drift.

Convection may very well influence the topography of the Earth
and other planets. In fact, McKenzie et al. (1973) have found both
positive relief features and positive gravity anomalies associated
with rising convective flows in their numerical simulations. However,
to infer the modes of convection in a planet from wiggles in its
topographic or gravitational variance spectrum seems unjustified,
Furthermore, even if convection could explain part of the spectrum,
if a single explanation is sought for the form of the variance
spectrum on all planets and over the entire observed spectral range,

then convection is clearly inadequate.
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2. Geometry

There are several interesting geometrical aspects of planetary
topography which relate directly to the variance spectrum. A brief
consideration of the geometry will give us better insight into the
significance of the Vening-Meinesz spectral form; and, in fact,

will enable us to reformulate our basic problem in different, but

equivalent terms. We will be better able to say what the topography

is like, but not necessarily better able to say why.

A common observation is that even those landscapes which appear
quite smooth when viewed from afar, are often quite rough at a
small scale. If we suppose this behavior to continue to arbitrarily
small scale, we could characterize the surface as continuous but not
differentiable. Based on the analyses of Beers and Dragt (1970)
and of Beers (1972), we show in appendix A that a function on a sphere
which is continuous, but not differentiable, has a variance spectrum
which is asymptotically proportional to 1/(n)(n+1). Thus, if we
could explain why planetary surfaces appear to be continuous, but not
differentiable, we would at least understand the asymptotic behavior
of the variance spectrum. However, we would still have the problem

of why the low degree harmonics behave this way.

Another simple model is obtained by assuming that the surface is
random and that the slope at any point is uncorrelated with the slope

at any other point. In this case, the slope covariance is a delta
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function (Yaglom, 1962; Parzen, 1962) (see Appendix D)

C(S3v) =8 2(y) , (4.12)

and the slope variance spectrum is constant

V(S;n) = So . (4.13)

Using the relationship between topographic variance and slope

variance in equation (4.11), we see that this implies

S

___0° (4.14)
(m)(m+1)

V(H;n) =
The spherical Wiener process (see Appendix (C) is the only stochastic
process with continuous realizations which has these properties. We
may, in fact, reformulate the main problem of this section. We may
now ask: why are the surfaces of planets and satellites realizations
of a spherical Wiener stochastic process? We will return to this
notion later.

Vening-Meinesz (1951) made another interesting observation

concerning the variance spectrum. He claimed that it is a result
of the topography being composed of '"features with elevations roughly

" As we shall see later

proportional to their horizontal dimensions.
when we consider a random pulse model for the topography, this direct
proportionality is a sufficient, but not necessary, condition for the
desired spectral form. However, the idea was a good one and can be
developed further.
The increments
AF(g,g+Y) =F(@g+y) - F(g) (4.15)

of a random function F: G = R are said to be self-similar with
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with parameter B if, for any vy > 0 and any g € G

AF(g,gtv) = Y.B AF (g,g +BY) . (4.16)

where the indicated equality means that the two random variables are

identically distributed. The traditional Wiener process has self-
similar increments with parameter 8 = 0.5. Mandelbrot (1967, 1975b,

1977) has introduced the concept of fractional Weiner processes W

B

which have self-similar increments with 0 < 8 < 1. He also claims,
on the basis of various landscape simulations, that the topography
of the Earth is a realization of a fractional Weiner process with

B = 0.65. However, we note that the variance spectrum of W, on

B
-(28+1)

a circle is proportional to n , and the observed variance

spectrum of the Earth (Figure 4.3) is closer to n-l'g(

than to n-Z'B(B = 0.65) and within probable errors is consistent

B = 0.45)

vith n 20 8 = 0.5).

Another interesting aspect of the Wiener and fractional Wiener
processes is the extreme irregularity of their realizationms.
Generalizing a result of Mandelbrot (1975a) (see Appendix C), we
suggest that if D[G] is the dimension of its parameter set, the
dimension of a realization of Ws(g) satisfies

D[Ws(g)] = Dp[Gc] + B . 4.17)
Since for our topography model D[G] = 2 (the surface of a sphere),
we conclude that the dimension of the surface of the Earth is

2 +8 =2.,5. It is thus intermediate between a traditional surface

(D = 2) and a solid (D = 3).
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3. Energy Redistribution

There are a number of physical systems which might serve as
models for various aspects of the process or processes responsible for
the observed topographic variance spectra of the terrestrial planets.
A common feature of the systems we will consider is that energy is
typically fed into the system over some characteristic range of
spatial wavenumbers and, through non-linear interactions, this
energy is redistributed across the spectrum - typically to high
wavenumbers where it is dissipated,

Elastic Energy Reduction

Shaham and coworkers (Pines and Shaham, 1973; Au and Shaham, 1974)
have suggested an elastic energy reduction principle for planets
according to which "the direction of irreversible crustal motions must
always be such as to reduce the overall elastic energy.'" They further
suggest that an important source of elastic energy, at least for
the Earth, is excess oblateness due to tidal despinning. As is shown
in Appendix F, if we suppose that the total topographic variance is
fixed, a shift of variance across the spectrum to higher wavenumber
will in fact result in a decrease in both elastic and gravitational
energy. However, at this point we have no reason to suppose that

variance is conserved.



164

Two Dimensional Fluid Flow

There is a system in which analogs of both topographic variance
and slope variance are conserved. Non-divergent two dimensional

inviscid fluid flow on a sphere may be characterized by a

stream function | in terms of which velocity v and vorticity w are

<
I

vy (4.18)

w = Vzll! " (4.19)

If the vorticity is expanded in a harmonic series

© n
W@ = D D wl A (B (4.20)

n=1 m=0
then the kinetic energy E and enstrophy F (mean square vorticity) may

be expressed as (Baines, 1976),

1 2
E = 7 (V)" ds = 17 En 4.21)
S n=1
@®
) 242 -
F 5 (v " ds =nm Fn (4.22)
S n=1
where
Fn
En = m (4.23)
and
n

= T 4
Fn Z W Moo ; (4.24)
=0
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These quantities are clearly analogous to topographic variance and
slope variance, respectively.

Fjortoft (1953) has shown that for a system in which both energy
and enstrophy are conserved, any energy transfer across the spectrum
must take place between components with (at least) three different
values of n. Also if one of three components is a source or sink
for both of the other two, its n value must be between those of the
latter. The net redistribution of energy across the spectrum in
such a case is rather limited.

However, in a turbulent two dimensional flow, enstrophy
systematically cascades to very small scales, at which it is dissipated
(Bretherton and Haidvogel, 1976). The kinetic energy, on the other
hand, remains at large scales and the total kinetic energy is constant.

In fact, there is an inverse energy cascade. Since the total energy

o]

E =1 Z E_ 4.25)
n=1

remains constant while the enstrophy

@©

F=m D (n)@m+1) E_ (4.26)

n=1
decreases, the energy must become more concentrated at low n.
The obvious analogy is to a system in which we maintain a fixed
topographic variance while reducing the mean square slope. In such

a system there will be an inverse topographic variance cascade,
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the slope spectrum will become flatter and the topography spectrum
will approach the Vening-Meinesz form. We shall return to this
notion later. Incidentally, turbulence in three dimensional flows
is more complicated (Hinze, 1959; Mandelbrot, 1975a).

4., Random Pulse Model

We have seen that the spherical Wiener process is an excellent
model for planetary surface topography. We now hope to gain some
further insight into this situation by considering representations
of random processes by superposition of random pulses. The general
theory of such phenomenological models for random processes is dis=-
cussed by Middleton (1951).

Halford (1968) has shown that processes with variance spectra
proportional to n-rl over an arbitrarily large range of frequencies
can be generated from a physically realizable class of pulses only
if 0 <o =<2, Bell (1974) has recently considered the inverse
problem of inferring the pulse size-frequency distribution from
the variance spectrum of the process and an assumed pulse shape.

We shall only be directly concerned with the forward problem.

As a model for a broad class of stochastic processes on the
sphere, we may consider the superposition of a collection of zero-
sum binary pulses AkZ(Y,Yk) with random amplitudes, widths and
locations. These pulses represent individual topographic features

and the conservation of mass requires that
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Z(, ) du =0 (4.27)
-1

where Yy is angular distance and yu = cos(y). See Appendix A for more
about these pulses and Appendices A and D for discussion of several
theorems mentioned in the following.

To facilitate the calculation of the covariance function and
variance spectrum of this model, we will first consider two simpler
scenarios. This will enable us to obtain valuable intermediate
results. The first configuration is a Poisson distribution of unit

delta functions with an average of 0 impulses per unit area:
6 ——‘2 (4.28)
F = = AN - .
k

where (ek’¢h) is the location of the k-th impulse, By a simple

application of Campbell's theorem, equation (D.23), we find that the

covariance function is
C(F;Y) =a 8(y) (4.29)

and therefore the variance spectrum is
1

V(F;n) =[ C(F5w) 2, () du
=1 (4.30)

=0k .
Obviously, this is not a very good model for topography, since the

spectrum is flat.
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The next model we consider consists of a Poisson distribution
of zero-sum pulses with amplitude A, width Y, and an average density
of & pulses per unit area. We use the relocation property of convolu-
tion.with a delta function to express this configuration as:
= A / 5(8 - D=0 : 4,31
G(B,9) =D A Z(V,v)) * 8(B-8,,9-9) (4.31)
k

The variance spectrum is, by the convolution theorem, equation (D.25),

v = [az @))% vaEsn)
’ 2
P’ () ] (4.32)
_ 2 2 n' o
=52 Ao (l"uo) [(n)(n-+1) :

This is a better model in that the variance spectrum does generally
decrease with increasing degree, but it is still unsatisfactory since
the spectrum is quite irregular. Superimposed on the overall decrease,
there are nearly periodic variations which correspond to fluctuations
in Pn'(uo) with varying n. For Y, = 0, the spectrum is still flat,
However, as the pulse width increases the spectrum begins to fall

off more rapidly and the fluctuations get closer together and
generally more pronounced. Finally when T = m/2, all the even

degree harmonics are identically zero.

Finally, we consider the case where the amplitudes and widths of

the pulses are also random:

HB,p) = D A ZOY) % 8(6-6,.9-1) . (4.33)
k

This will maintain the overall spectral decrease, but smooths out the



169

the fluctuations. If p(A,uo) is the joint probability density of

pulse amplitudes and widths, then we can write the variance spectrum

as

o 1 2
V(H;n) = a ffp(A,uo) [Az )] duda (4.34)
o =1
We can simplify this somewhat by noting that
©
f Py A%an = p(u) A% @) (4.35)
o

where p(uo) is the marginal probability density of pulse widths and
AZQJO) is the mean square amplitude of pulses of width Yo = cos_lqdo).

We thus find

1
2
V(H;n) = af p) [A(uo) Zn(uo)] du
|
1 (4.36)
4o , 2
= pu) [Aw)(T-p) P ()| du .
[(n)(nJrl)]2 © [ = & R O:l 0

-1
In order to make further progress with this integral, we will need
to make some assumptions concerning the distribution of pulse sizes.

A particularly interesting distribution results from the assumption

that the product
1 - My

p) Az(uo) T B (4.37)
o]

is a constant. The resulting variance spectrum is
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i 4
4a8 2 , 2
V(H;n) = A-u))P W) du
[(n)(n+1)12f 0* 'm0
-1
(4.38)
_ 8
™ (n+1)
since
1
2 P 2
f - wpr’? au, = 2m)@+l) (4.39)
-1

If we now increase the average density of pulses a and decrease
the average pulse size in such a way that the product af remains
constant, we obtain a good approximation to a spherical Weiner

process. The covariance function and total variance are:

@

C(H;Y) = 2, V(H;n) P_[cos(y)]

n=1

P [cos (V)]
808 Z Ay (4.40)

828 (1 -2m1 +sin(y/2)])

C(H;0) 8ap

In the next few paragraphs, we will attempt to justify the
assumed pulse size-frequency distribution used in the above derivation.
Perhaps the strongest justification comes simply from the fact that
it produces the observed variance spectrum, and , within the context
of this random pulse model, it is the only way to do so. However, we

should try to find out more about why it works. Paraphrasing Halford
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(1968), "the crucial problem is to find the physical circumstances
which cause the product p(uo) Az(uo) to vary approximately as
(1-+u0)/(1-140); the shape of the perturbation is probably irrelevant.,"
We will therefore consider both Az(uo), the relation between mean
square pulse amplitude and width or horizontal extent, and p(uo),

the pulse width-frequency distribution, in a number of different
contexts.

Energy Equipartitioning

Bell (1975) has presented an interesting model which essentially

argues for constancy of the product

1-u
B = pGu) A% () (Hu") (4.41)
o]

based on putative eqipartitioning of gravitational potential energy
amongst various hill sizes. His analysis was set on a line rather
than a sphere, and thus ignores both the curvature and two-dimensional
nature of the domain; however, neither of these are serious problems.
In essence, he claims that the potential energy of a binary pulse

with amplitude A and width Yo = cos-l(uo) is proportional to
Az(l-uo)ﬂl+uo) and that p(uo)is the relative frequency of these pulses.
He then claims that '"the observed shape of the spectrum implies an
equilibrium state of maximum disorder in which energy of formation is
distributed uniformly over all hill sizes... The smaller hills

may require less energy of formation, but are sufficiently more
numerous than the larger hills so as to insure this equipartition of

energy."
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Though this argument has a certain appeal, some of which accrues
from analogies with thermodynamic concepts such as entropy maximi-
zation, energy equipartitioning and statistical equilibrium, which we
shall mention again later, it has at least two serious flaws. First,
as is shown in Appendix F, the potential energy perturbation of a
cylindrical masc on the surface of a sphere is not simply proportiocnal
to the basal area times the squared height. To assume so is to
neglect the self-potential of the added mass which significantly
alters the potential energy spectrum. Secondly, there is no obvious
physical reason why energy should be equally partitioned among
hill sizes. The thermodynamic analogy invoked would appear to be
valid only for energy distribution among the normal modes of the
system (Kampé de Fériet, 1962).

Slope Stability

The height of a topographic feature may be limited simply by
the strength of its constituent materials. Hartmann (1972) and
Johnson and McGetchin (1973) have attempted to explain the scale of
planetary topographic features in this way. As shown in Appendix g,
a simple slope stability analysis (Culmann, 1866) indicates that,
neglecting internal friction, the maximum stable height of a slope
of length L in material characterized by density p and cohesion ¢

on a planet with surface gravity g is given by

L
2 8cL 0
H™ (L) o Q,+ I )

where
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has a value of meters to possibly tens of meters in typical terres-
trial or lunar soils. Thus, at the scales in which we are interested
L >> Lo’ and we have approximately

HZ(L) = §§ L - (4.43)

Thus, we might expect the mean square height of topographic features
to be directly proportional to their horizontal extent. We shall
find, in fact, that this is a reasonable approximation in several
important situations.

A further implication of the above analysis is that the mean
square slope between points a distance L = RDV apart should be

approximately

S (y) = = . (4.44)

Comparing this result with equation 4.5, we see that our slope
stability analysis has yielded not only the correct functional
dependence on Y, but also an estimate of the total topographic

variance

V(H;0) = =& . (4.45)

c>gRo

Impact Cratering

Impact cratering has been an important process on essentially
all planetary surfaces. Malin and Dzurisin (1977) summarize morpho-

logy and depth/diameter relationships for craters on the Moon, Mars
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and Mercury. They find that the relationship between depth d and

diameter D for morphologically fresh craters is adequately represented

by a two part power law:

; b _
d =d_ (/D) : (4.46)

for craters with D < 10 km the exponent is approximately b = 1.0,
whereas for D > 10 km, the exponent decreases to 0.25-0.45 depending
upon the data set analyzed. Our slope stability analysis in the
previous paragraphs would imply b = 0.5. If both fresh and degraded
craters are considered together, there is an increased scatter, but
a single power law is quite adequate to describe the entire range
of crater sizes and the corresponding exponent is approximately
b = 0.6 on all three planets.

Another important aspect of impact cratering is the resultant
distribution of crater sizes. We may imagine an initially uncratered
surface upon which craters are being produced at random. We further

suppose that the relative frequency of craters larger than D being

produced 1is

N=N (/D). (4.47)
0 (8]

As the first few craters are formed, there will be little obliteration
of pre-existing craters and the size-density distribution of the
surface will reflect the production distribution. As more craters

are formed, older craters will be destroyed, and the size-density

distribution will tend more to reflect the details of the obliteration
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process rather than the production size distribution. Eventually a
point may be reached where the size-density distribution no longer
changes with the formation of additional craters. If the crater-
destroying process is simply geometrical overlap, the surface will be
said to have attained saturation. 1If, in addition to crater overlap,

crater destruction occurs by processes of erosion and filling, the

surface will be said to have attained equilibrium. Woronow (1977)
notes that "saturation results from purely geometrical and statistical
considerations, valid for any hypothetical surface anywhere, whereas
equilibrium results from the interaction of the crater population
with its physical environment.... The difference between the crater
densities at saturation and at equilibrium on any planetary body
indicates the vitality of the degradational processes present
there."

The equilibrium and saturation size-density distributions have
been studied through stochastic models of formation and survival of
craters (Marcus, 1964, 1966, 1967, 1970b; Neukum and Dietzel, 1971)
and Monte-Carlo simulations (Woronow, 1977). An interesting result
is that a production distribution with ¢ > 2 leads to a saturation
population with ¢ = 2, whereas production distributions with
1.5 < ¢ £ 2 lead to saturation populations with ¢ approaching 1.0,
Furthermore, it is found that equilibrium populations always have
c £ 2, with equality only as equilibrium degenerates to saturation.
Observed size-density distributions tend to have c¢ = 1.7 for craters

larger than a kilometer (Soderblom, 1970).
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We will now compare these observations with Halford's (1968)
one dimensional pulse criterion for an n 2 spectrum. The requirement

is that
p(D) AZ(D) = pOAOZ(D/DO)'a+1 . (4.48)

The probability distribution p(D) corresponding to a cumulative size-
frequency distribution of the form (4.47)

p®@) =p /D) (4.49)

and the mean-square amplitude distribution corresponding to the depth-

diameter relation (4.46) is
2
a?@) = 4 % m/m ) . (4.50)

In this case, Halford's criterion reduces to

a=2=12b+ec . (4.51)
For the observed mean values of ¢ = 1.7 and b = 0.6, we find a = 2.4.
On the other hand, if we consider a surface saturated with small
(D = 10 km) craters for which ¢ = 2.0 and b = 1.0, we do obtain
a =2,0, as desired.

Though this agreement (or lack thereof) is instructive, it is
not as definitive as we might hope, since the actual shape of the
craters changes as a function of size, contrary to the assumption of
of Halford's (1968) model. Thus, depth and diameter measurements
and counts of craters do not suffice to directly estimate the

spectrum of a planetary surface.
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5. Equilibrium

Historical Background

At least since the work of Gilbert (1877), it has been widely
recognized that most terrestrial landforms are in a state of
dynamic equilibrium between the erosional and constructional processes
to which they are subjected. Most of the quantitative applications
of this concept have dealt with single landform elements. For
example, Kirkby (1971) states that in the development of a hillslope
"the influence of the initial form of the slope can be shown to
decrease rapidly with time, while the slope forms tend closer and
closer towards a 'characteristic form,' in which the elevation of
each point continues to decline with time, but is independent of

the initial form."

He further notes that this equilibrium form
"depends solely on the nature and relative rates of the formative
process and not at all on the initial profile of the hillslope."
This relationship between form and process is further developed by
Carson and Kirkby (1972), again in relation to hillslopes.

Leopold and Langbein (1962) have attempted to apply the
equilibrium approach to the more general problem of evolution of
an entire landscape. They claim that, for example, "the most probable
condition exists when energy in a river system is as uniformly

distributed as may be permitted by physical constraints.”

An analogy
is drawn with closed thermodynamic systems in which entropy is

maximized at equilibrium and topographic elevation is identified as

the corresponding analog of temperature. Though the analogy is
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enlightening, they do not rigorously justify it, and furthermore they
fail to produce any quantitative results for general landscapes.
However, they do examine a "most probable'" river profile in which the

downstream rate of entropy production is constant.

Culling (1960, 1963, 1965), in developing an analytical theory
of erosion, states that '"slope erosion is subject to a minimal
law; that factor, whether the rate of transport or the rate of
weathering, which is relatively the least efficient, controls the
general course of denudation. On soil covered slopes the rate of
transport is the dominant denudational control, soil creep being the
responsible agency." He further concludes that the mass movement
of weathered material on a hillside slope takes place at a rate
proportional to the surface gradient. This leads to a diffusivity-

type equation for elevation change

8/ — = v°H (4.52)

This model is not only consistent with a microscopic analysis of
motions of individual soil particles, but also, on a macroscopic level,
it predicts slope forms actually observed on soil covered slopes.
Soderblom (1970) has considered a similar model for erosion due to
impact cratering.

Scheidegger and Chaudhari (1964) have examined these thermo-
dynamic analogies in some detail. They conclude that 'whenever a
system is a linear combination of a large number of fluctuating

systems, and in the 'large' system a certain quantity is a constant
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of the motion to which the component systems contribute positive-
definite amounts, then, under equilibrium conditions, that quantity
is canonically distributed in the component systems and, under
nonequilibrium conditions, assuming linear regression of the
fluctuations and microscopic reversibility, the quantity in question
is subject to a diffusivity equation with symmetric diffusivity
tensor." Scheidegger (1967) then attempted to develop a complete
thermodynamic analogy for landscape evolution in which the conserved
quantity is mass or equivalently mean topographic elevation. Local
elevation is then analogous to temperature. Though the complete
analogy is interesting and even extends to Carnot cycles and the
like, it is not clear that anything additional of real relevance to
the topographic variance spectrum emerges from this analysis.
Another criticism of the model is that topographic elevation can

be either positive or negative, and thus is not a suitable temperature
analog. Perhaps in addition to conserving mass (mean elevation),

we should consider a model in which topographic variance (mean
square elevation) is conserved (Chung and Scheidegger, 1968).

We shall return to this notion in our final attempt to explain

the Vening-Meinesz spectrum.

Dynamic Model

Up to this point, we have paid little explicit attention to
the time variation of surface topography. However, we now have all
the necessary background information for our penultimate model in

which we consider the dynamics of planetary surfaces. We simply
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suppose that the observed surface is formed by two opposing processes,
erosion and uplift. We model the erosion by the diffusivity equation

(Culling, 1960, 1963, 1965)

8’ — = vH (4.53)

where B’, a measure of the intensity of the erosion, is assumed
constant. We further suppose that linearly additive constructional
or "tectonic" events occur essentially instantaneously relative to

the erosive time scale and that they occur at random times and places.
The times of occurence have a Poisson distribution with an average

of a’ events per unit time. A typical event has the form

© n
— T
f(8,p) = R0 Z Z fnm Anm(e,cp) (4.54)
n=1 m=0

: ; 2
where fnm are zero-mean Gaussian random variables N(O,Gn), where

2 V(f;n)
= ( »
%h = Zn+1 )

and the degree variances of the process are

n

V(f;n) = f:fm £ S (4.56)

n=
We will now determine what form the variance spectrum of the construc-
tional process must take in order to produce the Vening-Meinesz
topographic spectral form.

The spatial covariance of the topography initially produced by

a single event is

C(E5v) = B2 2, v(sm) B [eos )] - (4.57)
n=1
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However, erosion reduces the effect at time t of a single tectonic

event which occurred at an earlier time t - T to
‘ = e T )
£09:T) TR, SN £ AL B (D (4.58)
n=1 m=0
where
7
éan(.l-) - e'(n)(n+1)T/B (4-59)

(see Appendix A). Therefore, the spatial and temporal covariance
function of the equilibrium surface produced by these processes is,

by the convolution theorem,

C(H;y,T) =E[H@,t) HQ+vy,t +7)]
t ©
=<:L'R2f Z V(f;n) P [cos(Y)] (4.60)
o] =l n

e (c-8)E (t+7-5) ds.

We can simplify this by taking terms with no time dependence outside
the integral and noting that

t
(an(t -s) (g)n(t+'r -s) ds

- 0

L I
= (?n(ztﬂ)f (ﬁ’l(—zs)ds (4.61)
8" &, (1)
2(m)(n+1)

Therefore, we obtain
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‘g’ v(f 5
ClHL, ) = giﬁ— ROZ P ?E§z:¥gij Pn[cos(y)] é;(w) (4.62)

The resulting purely spatial (T = 0) and purely temporal (y = 0)

covariance functions are

8

|
Q
-
w -~
N
<
h
=1
o

casy) = LER2 2. Gyt o [e0s ] (4.63)
and N

C(H;T) = O“;B'ROZ nz=:1 Y(-g—i(%‘gr—l) (g‘nm (4. 64)
respectively, since P_[cos(0)] = (511(0) = 1. Generalizing a result

of Grenander (1975), we assert that for a model of this type,

given the heights at a time t
® n

HE.@it) =R 2, 2 0T A_(8,0)

n=1 m=0

(4.65)

3

the optimal estimate (in the sense of least-square error) of heights

at an earlier or later time t + T is given by

[
M =

HO,p3e47) = R Ho An @) & (M . (4.66)

1 m=0

o
Il
3
1l

The mean square error of the estimate is

E [\ﬁ €, t7) - H(Q,ti7)|2]

= ROZ nz=1 V(H;:n) [1 -(Sl‘n (2’!‘)]

(4.67)

Unfortunately, unless we have independent estimates of a’V(f;n) or

o
8’ , we cannot evaluate (gn(T)’ since all that is observable at one

time is
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a’B’ V(f;n)

VED) = 5 D)

(4.68)

In order to duplicate the Vening-Meinesz spectrum, we simply
require that

2
G.IB /

V(f;n) =

V(H;0) (4.69)

i.e. the variance spectrum of the constructional process must be
constant. This has the interesting interpretation that there is no
preferred scale at which tectonic or constructional processes occur.

In order to match the observed low degree variances as well,
we must either allow for a decrease in constructional activity at
scale lengths greater than L = 2000 km, or assume more erosive or
attenuative activity at that scale than the diffusivity model
predicts, Note that, whereas diffusive erosion is essentially a
low pass filter, visco-elastic deformation acts as a high pass

filter and would selectively attenuate the low degree harmonics.

We will now consider this in more detail.

Visco-Elastic Deformation

Darwin (1879) determined that a homogeneous Maxwell sphere
(see Anpendix E) subjected to a surface load of height f(6,p) at
time t will deform in such a way that, at a later time t + T, the

load height will be reduced to

n

/
£/(0,0;7) = R, Z Z fn:l UL o Ty ’ (4.70)

n=1 m=0
If the sphere of radius Ro has density p, viscosity m and rigidity u,

then the relaxation time will be



F o= N!n! l
T n [P +~u] (4.71)
c
where
_ 2. 2
P, = 2MGP'R /3 (4.72)

is the hydrostatic pressure at the center of the sphere and

2
N(n) = = (4.73)

is a geometrical factor determined by the spherical boundary
conditions, This can be reyritten as

=T 4 (4.74)

where =N N(n)/Pc is the corresponding relaxation time for a
purely viscous sphere and ™ = N/u is the Maxwell relaxation time

of the material. For times T ™ the behavior is predominantly

elastic, whereas for 7> T

M’ viscous behavior predominates.

If the topography of a Maxwell sphere is then subjected to
erosion, the attenuating factor for the harmonics of degree n will be

' -[(m) m+1)T/B* + 7/7']
é’n(n = e n (4.75)

rather than (4.59). If we now carry through the same covariance
/

analysis as before, substituting éilfor éiﬁ we find that the

resultant topographic variance spectrum is

a’8’ V(f;n)

V(H;n) = 5 ) 0 £ 13 A(n) 4,76)
where
, -1
A(n) = [1 + B . (4.77)
@) @+1) 7’
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If we neglect the elastic component, this is approximately

. 2p B’/n -1
A(m) = |1+ -

5 . (4.78)
m+1)2Mm+1)" + 1)

This model succeeds in predicting attenuation of the low degree
variances. Furthermore, because of the strong dependence of PC on
Ro’ it also predicts relatively more attenuation on large planets
than on small planets with the same material properties. A value
of PCB'/ﬂ = 70 yields a spectrum very similar in shape to those of
the Earth and Venus.

A possible criticism of the above model is that it assumes the
planets to be homogeneous. However, more sophisticated analyses
of the viscous relaxation time spectrum T, of the Earth (e.g.,
Anderson and 0'Connel, 1967) have shown it to be qualitatively
similar to the homogeneous case. The important point is that Tn
is a rapidly increasing function of harmonic degree.

The success of this model in duplicating the entire topographic
variance spectrum on all planets for which we have observations
increases our confidence in the model and strengthens our earlier
conclusion that there is no preferred scale of constructional
activity on the planets.

In addition to duplicating the Vening-Meinesz spectral form,
the models we have considered have given us three separate estimates
of the total dimensionless variance. From slope stability considera-

tions, we find
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4e
V(H;0) = , 4.79
(150) = Zo- 4.79)
from the random pulse model, we have
V(H;0) = 8 . alilla
50) = 80 pu) A" (uy) | Ty (4.80)
= 8&8
and from the equilibrium model, we obtain
I~
vao) = S veg0) (4.81)

We would like to use these model variances to predict the actual
variance on planetary surfaces which have not yet been measured.
However, the only one of these formulas with any real predictive
value is the first, since we have no good a priori estimates of
the parameters in the other two. The greatest uncertainty in equation
(4.79) is the mean cohesion ¢, It turns out that a value of c
between 0.2-0.8 bar gives the correct variance on all four planets
we have considered. These values roughly correspond to a loosely
consolidated soil.

A still better prediction comes from the observation that the
physical variance C(H;0) of the four planets we have studied all
fall in the range 4.0-6.5 km2 (Moon, 4.5; Mars, 6.4; Venus, 4.0;
Earth 5.6). This is perhaps suggestive of a plastic rather than
visco-elastic rheology. However, we shall not pursue this matter

further.
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Maximum Entropy Conjecture

Our final attempt at explaining the topography of the planets
focuses on the fact that planetary surfaces resemble realizatioms
of the spherical Wiener stochastic process. First, we are going
to make two conjectures concerning the Wiener process: mneither of
them will be proven, but we will give plausibility arguments for
both. We will then discuss how this relates to planetary surfaces.
As background for our first conjecture, we note that the process
which we have glibly referred to as the spherical Wiener process
differs from the usual Wiener process W(p) in several fundamental
aspects. The domain ¢ of W(p) is usually taken to be either the
real line R or some Euclidean space R (Levy, 1948), and on those
dommains W(p) is not stationary. However, Levy (1954) has shown that

a process defined as

h(yp) = z %:l A @ (4.82)
m=1
where
cos (mp)
Am(¢) = (4.83)
sin (mp)
and
g - gml
“m (4.84)
ng

is equivalent to

h@@) = W) - 50— WM (4.85)

and is stationary, if §mi are Gaussian random variables N(0,0mz) with



g = > . (4.86)

Of course, this is nothing more than a great circle slice of what
we have been calling a spherical Wiener process. Another stationary
process which otherwise resembles the Wiener process is the Ornstein-
Uhlenbeck process (see Appendix C). It is obtained from a random
walk subjected to a restoring force in the limit as the step size
goes to zero. Our first conjecture then is that, when the domain
of the process is a sphere (or circle), the Wiener and Ornstein -
Uhlenbeck processes are identical. Since these are both Gaussian
processes, all that is required for the proof is a demonstration
that their covariance functions are identical. Though this appears
likely, we have not rigorously shown it to be so. In our discussion,
we have assumed that the conjecture is true and simply refer to the
process in question as a spherical (or circular) Wiener process.

Our second conjecture is that for a given variance, the spherical
(or circular) Wiener process is the unique maximal entropy spherical
(circular) process with continuous realizations and infinite band-
width. As an argument for the plausibility of this conjecture,
consider our random pulse model. The positions of the pulses are
governed by a Poisson distribution which has the maximum entropy
rate of any point process for a given intensity a (McFadden, 1965).
As we let the average variance per pulse B decrease while increasing
0 so as to maintain a constant total variance 08, the central limit

theorem assures us that the distribution of heights tends to a
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Gaussian, which is the maximal entropy distribution for a fixed
mean and variance. This argument is suggestive only and not
conclusive, since our conjecture concerns the entire process describ-
ing the surface and not merely the distribution of heights. The
fact that the spherical (circular) Wiener process is a Gaussian
process is probably a necessary condition, but is definitely not
sufficient for our conjecture.

A proof might be developed as follows. For simplicity, we
consider Levy's (1954) construction of the circular Wiener process
(4.79). The system has two degrees of freedom for each harmonic
degree m. The variance and entropy per degree of freedom are
(Shannon, 1948)

2

9, (4.87)

]

v(h)

efh) —21-[1 +2n(2ﬂ0m2)] . % .88)

Therefore, the total variance and entropy are

V(h) = z 2 * (4.89)
m=1 &

E(h) = z 1 +(2m0_”) : (4.90)
m=1

The requirement of continuous realizations for the process is
essentially assured by maintaining finite total variance. This,

in conjunction with the requirement of infinite bandwidth, requires

om2 =ﬁ(m-2) . (4.91)
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OQur conjecture is that the extremal value of E subject to these

constraints is obtained when

2
Gm = é_zigl (4.92)
(Tm)
since

- 2
1

Z e % . (4.93)

m=1 m

The application of this conjecture to planetary topographic
variance spectra is very simple, and is akin to the thermodynamic
analogies of Scheidegger (1967) with the additional constraint
of fixed variance. Our final model for the Vening-Meinesz spectrum
merely supposes that the surface of a planet is as random or chaotic
as it can be subject to the constraints of continuity and finite
variance.

D. IMPLICATIONS

The simplest application of this study is to predict the form
of the topographic variance spectra of other planets and satellites.
Therefore, we make the following
T S e e e R N A N A N N N N N N S S S N S S N N N N

Prediction:

The topographic variance spectra of the surfaces of
all solid planets and satellites have the form
V(Hinc) n<n

0

Vile) = v (1;0) (4.94)
(n) (n+1) n =,
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where L = 2rmR /n_ = 2000 km.
o o o

Furthermore, the total physical variance is

@

2
R0 ji V(H;n) (4.95)

n=1

1}

C(H;0)

5 & 2 km2

independent of the size of the body, for all

R =210 km .
[
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We note that recent observations of Phobos (Ro = 11.2 km) and
Deimos (R = 6.3 km) indicate rough, heavily cratered surfaces with
o
variances of 2-3 km2 about the best fitting tri-axial ellipsoids

(Duxbury, 1974,1976).

Our observations concerning topographic variance spectra may
contribute to another problem of current interest: determining the
depth of sources of planetary gravity anomalies. The main difficulty

is the inherent non-uniqueness of the density distribution

© n
@8 =B [1+ D, 2 oL ® A5 (4.96)
n=1

m=0

associated with a given external potential

R @ n R n+l
T
¢(Rr,0,p) = % ?o £ z Z (TO) Gnm Anm(e,tp) . (4.97)
n=1 m=0

o
This non-uniqueness is evident in the relationship

1 n+2
2n + 1 _ (€) § dg (4.98)
3 Gnm - pnm
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where § = R/Ro’ since these integral constraints can be satisfied
by an infinite class of density distributions. However, if we
have additional information or are willing to make some plausible
assumptions, we can make some progress. It is also possible to
characterize the class of admissible density distributions in terms
of various extremal properties such as greatest lower bound on
density contrast or least upper bound on the depth of burial of an
anomalous mass (Parker, 1974,1975),

Another approach is to assume that the density anomalies are due
to undulations of an interface across which there is a density
contrast Ap. If the mean radius of the interface is R = ERO and the

height of the undulations is

@ n
= T
h(8,9) =R Z z h A Guyp) : (4.99)
n=1 m=0
then the potential coefficients are
2n+1 = _ n+3
3 PG, =4pPE h . (4.100)

This approach was used to model lunar and Martian crustal thickness
variations in chapters II and III respectively (Bills and Ferrari, 1977,
b,c). It has also been applied to terrestrial data by Bott (1971)

who attributed the gravity anomalies to undulations in the mantle

phase transition boundaries, and by Hide and Horai (1968) who placed

the topography on the core-mantle interface. As can be seen from
equation (4.97), an increase in the depth of the interface requires

an increase in either the density contrast or the amplitude of the
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undulationg. This effect is more pronounced for high degree
harmonics.

With that fact in mind, Higbie and Stacey (1970) have sought
the depth at which the stresses required to support the density
anomalies would be most nearly equal across the spectrum. After
considering a number of different gravity models, they concluded
that the most likely location of the anomalous masses is in the
upper mantle.

The method which has received the most attention, though,
"rests only on the assumption that the gravity anomalies arise from
many independent density variations and that correlation between
the density variations at different points falls to zero as the
distance between the points increases” (Allan, 1972). This
assumption is actually implemented through the use of a flat spectrum
for the density anomalies or interface undulations. It has been
widely used (Guier and Newton, 1965; Kaula, 1967; Allan, 1972;
Lambeck, 1976; McQueen and Stacey, 1976; and Khan, 1977), and its
practitioners consistently find two separate source depths: the
low degree harmonics (n < 5) derive from depths of 800-1500 km
whereas the higher harmonics have a shallower source (200-400 km).
However, this result is highly suspect because of both the neglected
surface topographic effect and the assumed source spectrum. Obviously,
the correct spectrum to examine in seeking the depth of the

source mass anomalies is the Bouguer spectrum and not the
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free-air spectrum. Yet every one of the above studies used the
free~air spectrum. The assumed spectrél behavior of the source
warrants further discussion.

The models which incorporate a flat source spectrum are infor-
mative, since they yield a maximum source depth for a given potential
spectrum (Naidu,1968). Furthermore, McQueen and Stacey (1976)
have argued that '"the superposition of sharp features on an otherwise
spherically symmetrical distribution of any kind can be represented
by a white spatial spectrum, that is by a sum of spherical harmonic
terms of equal amplitudes. Thus if phase boundary undulations
are highly localized relative to the wavelengths corresponding to
the highest available harmonic terms, their spatial spectra will
be white." On the other hand it might be more reasonable to suppose
that all equi-density surfaces in a planet have roughly the same
spectral form as the external surface topography. The resulting
model potential variance for a single interface at a depth D = R0
(1-8) is

9a V(h;0) . £20+6 %.101)
(m)(m+1)(2n+1)

A
V(G;n) =

where O = (AD/B)Z. This model is still lacking in realism though,
since it seems unlikely that all of the density anomalies would be
concentrated at one depth.

The last approach we consider makes a less restrictive assumption
about the source behavior. We simply assume that the density

anomalies satisfy
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2
v RS o001 =0 %.102)
where k is an integer. 1In this case Tscherning (1976) has shown that
the variance spectrum and covariance of the density anomalies which

are consistent with the potential variances V(G;n) have the form

2
V(p;n) = (2n—;—1) (2n+3-k)2 V(G;n) (4.103)
C(p.,p;) = 52 Z v(p;n) (§ %Jn'kP (cos(y..)) . (4.104)
1] e i-] n ij

It may be shown that the potential covariance is the convolution of
the covariances of the density anomalies and the Green's function
(Kautzleben et al., 1977). We note also that the case of k = 0
corresponds to the density distribution of minimum variance which

will produce the observed spectrum,

E. SUMMARY

In this chapter we have seen that the topographic variance
spectra of the Earth, Moon, Mars and Venus are all very close to
the Vening-Meinesz spectral form (4.1), in spite of vast differences
in the geomorphic processes acting on these surfaces. This
observation has prompted the conjecture that the solid surfaces of
all planets and satellites are similarly characterized by this
spectral form. Equivalently, these surfaces are conjectured to be

realizations of a spherical Wiener stochastic process.
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In examining a number of possible explanations for this
behavior, we have found the most promising model to involve a simple
equilibrium between constructional or "tectonic'" processes which
tend to roughen the surface uniformly at all scales, and destructional
or erosive processes which tend to smooth the surface preferentially
at small scales. This balance is maintained in such a way that the
resultant surface is continuous almost everywhere but is differentiable
almost nowhere.

This improved insight into the topographic variance spectrum
may ultimately lead to a better understanding of the gravitational
variance spectrum and the distribution of anomalous source masses.
Another possible area for future research involves the connection
between plate tectonics, elastic energy reduction and the .resultant

topographic variance spectrum.
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V. APPENDICES

A. SPHERICAL HARMONICS

We will mainly be concerned with functions whose domain of
definition is the surface of a sphere. Points on the sphere will
usually be identified by their latitude (8) and longitude () rela-
tive to some coordinate system. Angular distance between points is
better expressed in terms of colatitude (Yy) or direction cosine
(u = cos(y)) of one point relative to the other. We will occasionally
interchange the coordinate pairs (8,p) and (U,p), where now
U = sin(8), as the argument of a function while retaining the same
symbol for the function, e.g., F(8,p) = F(u,p). This should cause
no confusion.

The family of functions on the sphere which are continuous
almost everywhere (i.e., except on a set of measure zero) may be

converted into a Hilbert space by introduction of a scalar product
2m 1
/ \_1 [
\F,G = F(u,) G(u,p) du do : Al
/o 4m
o =1
The associated norm is given by
IF |l =<F,F> L/2 A2
Any function for which “F*i< o will be said to be square integrable,
It will often prove convenient to express a function defined
over the surface of a sphere as a product of a dimensionsl scale

factor times a non-dimensional sum of orthogonal functions - ‘the
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surface spherical harmonics. This summation, sometimes referred to as
; : . 2
a Fourier-Legendre series, is the analogue on the sphere S™ of a
. . . . 1 ;
simple Fourier series on the circle S, and shares many of its
properties. For example, the topography of a planet with mean radius

R might be represented as

© n
Ro (1 + E E Fgm(u) [Cnm cos (myp) + Snm sin (m$)g

F(u,p) =
n=1 m=0
A.3
= R E E Fom A )
n=0 m=0
where

F C . )
F_=( ") =—1-<F,A \
nm R nm /
F S © |

nm2 nm

is the vector of harmonic coefficients or Fourier-Legendre transforms,
» . T
of degree n and order m. The superscript T (as in an} denotes

transposition and

A (M,0) _ cos (mp)
NORSIEY B =7 (W ;

nm

T sin (myp)

the vector of normalized surface harmonic functions, is the product

of a normalized Legendre function in latitude times a trigonometric
(Fourier) vector in longitude. The Legendre polynomials Pn(u) and
associated Legendre functions an(u) are solutions of the differential

equation (see e.g., MacRobert, 1967)
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d 2 dan m2
o = e 3 e e =
w |G- & |+ [@maerD 5|2 =0
1 -u
L A.4

In the un-normalized form, they satisfy the initial condition

1 m =0
P (1) = A.5
o 0 n#0
and are given by
m
dPp
= ]2 n
an(u) (1-u%) o (U9
du
A.6
o y2 e’ -yt
n+m
du
The normalized form is denoted by a bar iﬁm(u) and is given by
B () =N_ P () A7

where the normalization factor

N2= (- 5.0) 2n+1) m-m) .

nm
is chosen so as to make the harmonics orthonormal over the sphere i.e.
<Anmi, An:m:j> = S0’ O’ 814 . A.8

The rate of convergence of a Fourier-Legendre series depends on
the sﬁoothness of the function F being represented, i.e., smooth
functions have rapidly convergent series representations. The indi-
vidual harmonic coefficients an depend, not only on the function F,
but also on the particular orientation of the coordinate system.

However, the sum of the squares of all the coefficients of a given
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degree

n

V(F;n)=§ FLF A.9
nm nm

m=0
is invariant under rotation (Kaula, 1967) and is thus better suited

to discussions of convergence. Using the facts that

vanm + (n)(n+1) Anm =0

A %=1 A.10
nmi

lor %= @@+

2
where V and V are the gradient and Laplacian differential operators,
respectively, it may be shown (Beers and Dragt, 1970) that if the p-th

derivative of F exists and is square integrable, i.e., if

NPF| <

then

- 1
V(F;n) = () . A.11
(([ (n)(n+1)1"“)

A more general result (Beers, 1972) is that, for a function F
defined on the hypersphere Sk (Sl is a circle, 52 is a sphere, etc.)

with a square integrable p-th derivative,

V(F;n) = f)( L ) A.12

[()@m+k-1)1P"T

where now V(F;n) is the sum of the squares of all

(nt+k-2).

M(n,k) = 2n+k=-1) M) (k- 1)!

hyperspherical harmonic coefficients of degree n, and (n)(n+k-1)
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: . : k. .

is an eigenvalue of the Laplacian on S ~. Thus, for functions with
bounded variation, but which are not differentiable almost everywhere,
we have

V(F;n) =66('J§\) F: §& - R
" A.13

= 1 . g2

on circles and spheres, respectively. On the other hand, infinitely
differentiable functions give rise to harmonic coefficients which
fall off faster than any inverse power of n, i.e., they decrease

exponentially

V(F;n) = @(e'a(“)(nﬂ'l)), F: S° - R A. 14

for somex > 0.

Functions whose domain of definition extends beyond the surface
of a sphere to include its interior and exterior may be expressed as
a sum of solid spherical harmonics. For example, the gravitational

potential exterior to a planet might be represented as

ntl n
T
ER,0,p) = o= |2 +Z(—) 2.6 A G| ,R2R A5
m=0

whereas, the potential interior to a homogeneous planet would be

(R/R )2
FR,0,0) = o |[—5—2—+ Z( ) Z G A (8.9 R SR A.16
0

where G is the gravitational constant and M is the planetary mass.
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In many applications, we will be more concerned with the angular

distance

K = cos(Y) =(59§£é%l—i—l) cos (AB) + (Sgglé%QJLl)cos(28-+A6) A.17

between the points (8,p) and (6”,0") = (8+A8, w+Ayp), than with the
specific location of the points. 1In such situations, we will invoke
the so-called addition theorem of spherical harmonics (see e.g.,
Heiskanen and Moritz, 1967) which states that:

n

_ 1 T ’ ’ .
Pn(u) T 2n + 1 E :Ahm ©e) Anm(e’¢) : 4,18
m=0

We will also have occasion to use the convolution theorem, which
states that convolution in the spatial domain is equivalent to

multiplication in the transform domain, and conversely. Thus, if

F(0,p) = A(B,p) * B(0,p)

2 /2
= A(B’,0") B(B-6",0-0") cos(8’) A.19

0 -m/2

. dG'dw'
then

F_=A .B ,5,, ' A.20

nm nmi mnmj ij

A simplification occurs if B has no azimuthal variation, i.e.,

@©

B(G-e',cp-cp') = B(y) = Z (2n +1) Bn Pn (cos (v)) A.21

n=0

where now
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211 1 1

B, = J—ﬂ f f B(u) P_(H) dudy = %f B(WP_ (u)du A.22
0 ~1 -1

is the Legendre transform of B. 1In that case,

F = A B . A.Z3
nm nm n

We will now consider some particularly useful examples of such
azimuthally symmetric functions. Our first example is a delta
function of magnitude M

B(Y) =M &8(y) A.24
for which

B =

M
n 2

The result of convolving a function of (Bl,ﬁ') with a unit delta

function located at (9,Y) is simply,

20 /2
Zln‘f f A ,0") 8(8-8",0-0") cos(8’) d8'dy’
0o -m/2 A.25

= A@B,p)
the original function evaluated at (6,p). This relocation property
of delta functions under convolution will prove quite useful in the
sequel.
A rather wide class of azimuthally symmetric spherical functions
can be obtained as solutions of the diffusion equation

QE + az VZF =0 A.26
at

and the wave equation
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-—2+B V'F =0 A.27

by suppressing the radial and azimuthal dependence of the Laplacian

differential operator so that it has the form

2 _ 9o 2, 3
v 30 [(1-u) au] . A.28
We first consider the diffusion equation
2
9%%%51 +a% ¢ F(u,t) = 0 A.29

subject to the initial condition

F(u,0) = AQu)
Taking Legendre transforms of these equations, we obtain:

aFn (t)

T + a0 (n)(n+l) Fn(t) =0 A.30

Fn(O) = An
The solution of this transformed system is

~(n) (n+1)a’t

Fn(t) = An e A.31
so that the solution of the original system is
- 2
- +
F(u,t) = E A et MG B @) A.32
n=

The process of diffusion is seen to act as a low-pass filter, since
it attenuates the high degree harmonics of the initial condition.
In the important case where the initial condition corresponds to a

unit delta function, we find
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-(n) (1)’ ¢

1
P (£} =8 A.33

This is the spherical analogue of the normal or Gaussian probability
density of variance 02 = Aazt (Roberts and Ursell, 1960). Obviously,
when 02 = 0, this reduces to the original unit delta function.
We now consider the wave equation
angH,tg 2 2
atz + 8" ¥ F(u,t) =0 A.34

subject to the initial conditions

F(u,0) = AQu)
Eé%’gl = B(u)

Transforming these equations, we obtain the system

BZF (t)
“2 +B°(M)Mm+1) F (t) =0 A.35
n
ot
F (0) = A
oF_(0)
n a—
ot - Bn

whose solution is

A +B t . n=20
o o

Fn(t) = A.36

in (Wt
A cos(wt) +B_ §1%§£_l : n#0

2 . .
where w = BZ(n)(n'+1). In a time averaged sense, the displacement
field of such a wave preserves the spectral character of its displace-

ment initial condition [A(u)], but is smoother than its velocity
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initial condition [B(u)], since it attenuates the high degree harmonics.
Another important class of azimuthally symmetric functions is
represented by the binary pulse

1 Y <Y,

B(v,vo) = A.37

0 s
This will alternatively be denoted B(u,uo), where U = cos(y) and
“o = cos(Yo).
In the evaluation of the Legendre transform of this and similar

functions, we will use the relation (Erdelyi, 1953, p. 170)

B a-u®ep -ee 1 |F
P P du= LB A.38
n m (m=-m)(n+m+1)
a a
where the prime denotes differentiation. Applying this formula,
we find that the Legendre transform of the unit impulse is
Bn(uo) = 27 J( B(H,uo) Pn(u) du = ZWJ/. Pn(uo) du A.39
=i ™

211 - 1) B! ()

(n)(n+1)
In some applications, it will be more convenient to use a simple
binary pulse Z with the added property that
1

Z(u,uo) du = 0 A.40
-1

The functional form of this zero-sum pulse is



1 ) Y <Yy
o
Z(y,y
(\,xo.\ - A.41
. v >y
ik M @
and its Legendre transform is
1
zn(uo) = 2n[ Z(u,u ) P du
-1
1 (l-uo) Ho
N = 42
2m Pn(u) du 1+uo Pn(u) dy A4
Mo -1

4ri(l-u)) Pt'l(uo)
(n)(n+1)
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B. PROBABILITY DENSITIES

In much of our analysis, we will be concerned with probabilistic
arguments. Therefore, in this section we briefly introduce some of
the basic notions and terminology which will be employed elsewhere.
Most of this material is quite well known and unless otherwise noted
can be found in standard texts (e.g., Gallager, 1968; Middleton, 1960;
Thomasian, 1969).

A probability density is a real-valued function p: 2= R, defined
on some set ()} and satisfying the conditions:

p(w) = 0, for all we © B.1

f p(wdw =1 ‘ B.2
0

The set (I is called the sample space, an element w of () is called a
sample point, and each subset of () is called an event. The probability
of an event A
P(A) Efp(w)dw B.3
A

is thus a real-valued function whose domain is the class of events in
(0. The function P and the ordered pair ({,P) are called the probability
measure and the probability space, respectively, corresponding to the
probability density p: 0 # R. A random variable with associated
probability space (Q,P) is any real-valued function F: (I = R.

If A and B are events in (I, with P(A) > 0, then the conditional

probability of A, given B, is defined
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P(A|B) = P(aB)/P(aA) : B.4
The events A and B are said to be independent, if and only if
P(AB) = P(A) P(B) . B.5

The n-th moment of a density is defined as

fwn p(w)dw . B.6
Q

All densities are normalized so that MO = 1. We will be concerned

i

M (p)

mainly with the mean (first moment)
E() = fu) p(Wdw =M1 =, B.7
Q
where E(*) is the expectation operator, and the variance (second
moment about the mean)

Vw) = E(m-;.zw)2 = M2 - Mi = ci) ’ B.8

In predicting the value of a random variable, a highly concentrated
probability distribution conveys more information than a relatively
uniform distribution. To quantify this notion, we introduce the
self-information

I(w) = - o [pw)] B.9

and the average information or entropy

H(w) = E[I(w)] = -f on [p(w)] p(w)dw B.10
Q

The entropy, thus defined, depends not only on the probability

distribution, but also on the coordinate system used. If we have
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a joint probability distribution p(X) for the variables X = (XI’XZ""’

xn) and then change variables to Y = (yl,yz,...yn), the new distribution
is
oY

q(Y) = p(X) ﬁl B.11
where

av|= | ¥y

oX ox .

J

is the Jacobian determinant of the transformation, and therefore

H(Y) = H(X) -f’?n |§l p(X) dx B.12

In spite of this dependence on the coordinate system, entropy is

a useful way to characterize probability distributions, since we

will be mostly interested in relative entropies. 1In fact, many of the
distributions we will encounter can be obtained by seeking the dis-
tribution with maximum entropy subject to constraints such as fixed
mean or variance. This approach ensures that the distribution so
obtained incorporates all of our prior knowledge about the system

of interest, but no more.

In the remainder of this section, we will introduce the one
dimensional forms (i.e., 2 = R) of some elementary probability
densities which we will need later.

The simplest form we consider is the uniform density, which is

the maximum entropy solution subject only to the constraints that

@

f pX)dX =1 B.13

-0



[S]
(%]
(g% ]

pX) =0 unless o <X < B B.14
It thus arises in the situation where a random variable is certain
to lie in the interval (n,B), but nothing is known further about

its location. The functional form of the uniform density is

@-0)' , asxss
pX) = B.15
0 otherwise
and its moments and entropy are
2 2
M _a+B M =& +aB + 8
1 2 2 3
) B.16

The normal or Gaussian density arises in the analysis of the
sums of independent random variables. In fact, the central limit
theorem asserts that under quite gemeral conditions, the standardized
sum of independent random variables has an approximately normal dis-

. : < Z 2
tribution. The normal density with the two parameters, u and ¢ has

the form
/x_ )2 "1/2
pX) = 2ﬂ02 e\ ? =0 <X <= B.17
and its moments and entropy are
= _ .2 2
Ml =i ! M2 Mot C
v o= o’ H(X)=%[1 +0n2rr02]

The normal distribution has the maximum entropy of any distribution

with the same mean and variance. We will occasionally use the symbol
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N(u,cz) to indicate that a random variable is normal with mean

. 2
i and variance T .

The Rayleigh distribution characterizes the fluctuations in

amplitude of the sum of independent random variables. Thus, if

A cos (mp) + B sin (mp) = J cos (mp+Ap) B.19
where A and B are independent N(O,Bz) random variables, then J and
Atp are independent random variables, Agp is uniformly distributed on

the interval (0,21) and J is Rayleigh distributed with probability

:,

pex) = B k=4 B.20

0 X <0

density

The Rayleigh distribution has a single parameter 3, and its moments

are
1/2
i _ -
Ml—(z) 8 M, = 28
B.21
(b4 -1 2
V"( 2 )5
TE [Xi: i = 1,2,...,2n] are independent N(O,Gz) random variables,
then
2n 2
2 _ Xy
X2n o)
i=1

has a chi-square density with 2n degrees of freedom. The functional

form of the density is:
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. - -1 -X/2
{[ZF(n)] L2y le , X=0
pX) = B.23
l 0 3 X <0
where the gamma function takes the values
(n-1)! s 2n = 28,65 o
T =
(=) 178 B.24
1
S | S {2n-1). , 2n = 1,3,5,...
42n-1 (Zn- '
5 )
The chi-square distribution has a single parameter, 2n and its
moments are
Ml = 2n M2 =4n(n+1)
B.25
V =4n
If independent random events occur at a constant mean rate X,
the probability that k events occur in an interval of length X is
Poisson distributed with discrete density
-0x k
e gaxl -
T k=01 52 555
(k):
p(k) = B.26
0 otherwise
Since this is a discrete density, its moments are defined in terms
of sums rather than integrals:
-]
- 2 : n
Mn = k p(k) . B.27
k=0

The Poisson distribution has a single parameter, 0x, and its first

two moments, variance and entropy are
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]

2
M. = gx M ax + (ax)

1 2
B.28

V =ax HX) = ox [1 -2 (@)]
Of all point processes with intensity o, the Poisson process has the

maximum entropy rate dH(x)/dx (McFadden, 1965).
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C. STOCHASTIC PROCESSES

A stochastic process is, roughly speaking, an ensemble of random
functions, all governed by the same probability law. More precisely
(Parzen, 1962; Thomasian, 1969), a stochastic process consists of
a probability space ((},P), a non-empty set G, called the parameter
set, and a random variable, Fg: Q - R, assigned to each g ¢ G. The
only parameter sets we will explicitly consider are the real line R,
the positive reals R+, the circle Sl, and the sphere Sz.

For any w ¢ (), the function Hw: G = R, defined by

Hw(g) - Fg(w) for all g €G Gs 1

is called a realization, or sample function, of the stochastic

process. For any (g,h) G x G, the function AF : Gx G~R,

g,h’
defined by

AF =EF = F C.2
g

is called the increment of F from g to h.
A very important class of processes are those with stationary
and independent increments. The increments of a process are said

to be stationary if the distribution of AF depends on g and h

g,h
only through their difference]h -g| . I1f the parameter set G is
a sphere, this difference is just the angular distance Yy between
the points g = (8,p) and h = (6 +A6, ®+ip). The increments of a

process are independent if the random variables AF and AFg,

g,h ,h'

are independent whenever the intervals (g,h) and (g’,h’) are disjoint.

The only processes we will actually encounter in this analysis are
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the Poisson and Wiener processes and some of their generalizations.
All of these processes have stationary and independent increments.

1. Poisson Process

The Poisson process is basically a counting process. We define
a counting function as any non-decreasing function N whose range is
restricted to the non-negative integers {0,1,2,.,,} and which
assumes every value in its range less than NO‘ if it assumes the
value NO. We then define a Poisson process Ng with parameter o as
any process with stationary independent increments such that the
random variable Ng induces a Poisson density with mean o0g, and every
realization of the process is a counting function.

A process Xg is said to be a filtered Poisson process if it

can be represented by

N
g

X, = Z B(g,h_,A ) 6.3

n=1
where Ng is a Poisson process with intensity a, {An} is a sequence of
indentically distributed random variables, independent of one
another and of Ng, and B(g,h,A): G2 x R # R is the response function.
We may interpret B(g,h,A) as the value at g of a response of magnitude
A to an impulse at h., X is thus the value at g of Ng such responses.

2. Weiner Process

The Weiner process is obtained as the limit of a random walk
as the step size decreases to zero. Specifically, a Weiner process

2 . , -
W(g) with parameter ¢ is any stationary independent increment process
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such that the random variable W(g) induces a normal N(O,Gz)
density, and every realization of the process is a continuous
function. Thus, if ¥ =|h -g[ is the length of the interval (g,h)
in the parameter set G, then the increment AW(g,h;w) is normally
distributed as N(O,Ycz). Although realizations of a Weiner process are
continuous, they are almost nowhere differentiable, i.e., for any
8 ¢ G, the set of realizations which have a derivative at g has
probability zero.

The Wiener process has a number of other interesting properties.
For example, it might be supposed that in a typical interval, the
fraction (X) of the interval over which the process is positive,
would be normally distributed about its mean 0.5. However, as first
shown by Levy (1948, pg. 216) the probability density is minimum
at its mean and is concentrated toward the extremes 0 and 1. In
fact, the density is

1 1

PR = = e C.4
V&) (1-X)
and therefore the probability
2
u
V&) (1-X)
0 C.5
2 -1
= — i < = 1.
p= sin " (u) 5 0 u 1

This arc-sine law obviouslv also gives the distribution of the

fraction (1 -X) of the interval over which the process is negative.
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The points at which the process assumes its mean value are also
of interest. Let Yie be the length of the k-th interval between
consecutive returns to the mean. Short intervals are more frequent
than long ones. In particular, when the parameter set is the real
line or the positive reals, G € {R,R+}, the probability distribution

of Yk is

P[vk -

ul] = (ﬁ)lfz u_3/2

This distribution is approximately the same when the parameter set
is the circle or sphere, G ¢ {Sl,Sz}, if the intervals considered
are sufficiently short, i.e., Y << 211 This is also true of a number
of the other properties we will consider below.

We now consider a generalization of the Wiener process whose
increments are a moving average of the increments of the standard
Wiener process. Following Mandelbrot and Van Ness (1968), we define
a fractional Wiener process ws(g) with parameters B and 02
(0=B=<1,0= 02) as any stationary increment process such that
all the realizations of the process are continuous and the increments
AW. (g,h) are normally distributed as N(O,Gzyzs), where y = Eh -g

B

is the distance between the points g and h in the parameter set.

The increments of W, (g) are independent if, and only if, B = 1

B 27
In that case, we merely obtain the traditional Wiener process,
wl/Z(g) = w(g). The fractional process is similar to the traditional

process in that, although all its realizations are continuous, they

are nowhere differentiable.
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The realizations of a fractional Wiener process have a degree of
invariance with respect to changes of scale. To quantify this notion,
we introduce the concept of self-similarity. The increments of a
random function F(g) are said to be self-similar with parameter Q if

for any vy > 0, and any g € G,

AF(g,g+Y) = Y ? 4F (2.8 +YQ) C.6
where the indicated equality means that the two random variables
-+
are indentically distributed. 1If the parameter set G € {R,R } then

the fractional Weiner process W,(g) has self-similar increments with

B
parameter B. If G ¢ {SI,SZ}, then WB(g) is asymptotically self-
similar for small v.

The realizations of wB(g) are also characterized by their
extreme irregularity. This is, of course, suggested by their lack of
differentiability. However, when we consider the realizations of
a process with G € [R,R+}, we find that in their degree of convolution
and intricacy they are, in fact intermediate between a smooth
rectifiable curve and a Peano curve, which passes through every point
of a two dimensional region. This, in conjunction with a self-
similarity parameter 0 < B < 1, suggests a dimensionality D for these
realizations with 1 < D < 2, 1In fact, generalizing a result of
Mandelbrot (1975), we suggest that if D[G] is the dimension of its
parameter set, the dimension of a realization of ws(g) satisfies
p[c] +8 c.7

S1 or Sz, then D[ws(g)]=1+ﬁ or 2+8 respectively.

D[we(g)]

Thus, for example, if G
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3. Ornstein-Uhlenbeck Process

We now consider another extension of the Wiener process. If

W(g) is a standard Wiener process, then

U(g) = e“Bg W(aeng) .8
is called the Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein,
1930; Doob, 1942) with parameters o > 0 and 8 > 0. It is a stationary
normal process with zero mean and covariance

Csv) = o e PY . c.9

Whereas the Wiener process is obtained from a random walk in
the limit as the step length goes to zero, the Ornstein-Uhlenbeck
process is derived by a similar limiting procedure from a random
walk subjected to a restoring force. Thus, the Ornstein-Uhlenbeck

process is stationary, whereas the Wiener process is not.
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D. COVARIANCE FUNCTIONS

In much of what follows, it will be useful to consider functions
on the sphere F(8,p) which are realizations of homogeneous stochastic
processes. A process is said to be homogeneous if its first and
second moments are invariant under the group of rotations of the
sphere. This is equivalent (Roy, 1973) to stationarity, i.e.,
constancy of the mean E[F(8,p)] and isotropy of the covariance
function E[F(8,$)F(6',¢')], i.e., the covariance depends only on
the angular separation Y, between the points (8,p) and (6',m').

If we now consider two functions A(8,p) and B(B,@), we may
calculate the expected value of the product A()+B(I'*v), where
F'=@®,9) and T +y = (9’,@') are any two points on the sphere which
are an angular distance Yy apart. This mean product is known as the
cross-correlation of A and B (Middleton, 1960). 1In the case where
E(A) = E(B) =0, it is known as the cross-covariance and is designated

C(A,B;y) = E[A(M) BT +y)] . D.1
The requirement that E(A) = E(B) = 0 is easily met by defining new
functions, A’ = A-E(A) and B’ = B-E(B). This is equivalent to the
B. ~-= 0.

A9.0 = Bo.o

For example, instead of topographic radius R(8,yp), we will use

vanishing of the harmonic coefficients of degree zero;

topographic height; H(8,p) = R(6,yp) - RO.
The covariance of a function with itself is known as the auto-
covariance, or simply the covariance, and is denoted variously as

C(A,A;v) = C(A;y) = C(Y) =E[AT) AT +v)] D.2
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The (cross-) covariance of the functions A and B at scparation
vy has a convenient representation in terms of Legendre polynomials
in g4 = cos(y), and the harmonic coefficients Anm and Bnm' Applying
the addition theorem

n

_ 1 T A ’ ‘ot
P (cos(Y)) = 577 E A B A (8.07) D.3

m=0

where Y is again the angular distance between (8,p) and (8’,w'),

we find (Heiskanen and Moritz, 1967; Kaula, 1967)

2 z : .
C(A,B3Y) = R V(A,B;n) Pn[cos(‘,)] D.4
n=1
where
n
V(A,B;n) = A i B
§ : nm nm
m=0

is the (cross-) variance spectrum of A with B. For a given n,
V(A,B;n) will be referred to as the degree (cross-) variance. For
further discussion of spectral analysis of random processes on the
sphere, see Jones (1963) and Roy (1976).

The (cross-) covariance at zero separation is known as the

(cross-) variance and has the form

@

C(A,B;0) = RO2 E V(A,B;n) D.5

n=1
since

Pn [cos(0)] = 1.
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If a random variable X has mean E(X) = M and variance E(X-—p.x)2

= oxz, then (Thomasian, 1969; pp. 202-208)

is called the standardized random variable corresponding to X, and
has zero mean and unit variance:
*
EX ) =0
D.7
%2
EX")" =1
If X and Y have finite, nonzero variances, then the covariance between
their standardizations is called their correlation coefficient and

is denoted by

_ * %, _ CH,Y
X;Y) =CcX ;¥ ) = = : D.8
X ¥

For random variables on the sphere, we also define the degree

correlation coefficient

) = vx® v en) = — X, Y;n)
p(X,Y,n) V(X )Y sn) [V(‘X;n) V(Y;n)]l/Z D'9

Clearly, -1 < Py = P XS 1, and P = 1 (-1) iff X and Y are

y y
perfectly (anti-) correlated, whereas pXy = 0 means that X and Y
are uncorrelated. Thus, pxy is a standardized measure of the
degree of statistical dependence between X and Y.

If we desire to predict the value of a random variable Y based

on observations of another random variable X, we may seek the numbers

a and B which minimize the error variance

E[Y - (ax+8)]2
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In terms of standardized variables, the solution is

a = Py B=0 D.10

and the error variance is

*
E (Y - X)) =1-p D.11

Pxy Xy
In terms of nonstandardized variables, the so called regression line
and error variance are:

X - ux
Y I.J.v C_V pXY Gx D.,12

2 2 2
E[Y- (X +8)] = Gy (1-pxy) i D.13

The Wiener-Khintchine theorem (Middleton, 1960; pp. 141-144)
states that under quite general conditions the (cross-) covariance
function and the (cross-) variance spectrum are related by a pair of
integral (or series) transforms. In the case of spherical geometry,

we have a Legendre transform relationship:

oo

cw) = ROZZ V@) P ()

n=1

2 _2n +1
R0 V(n) = > C(u) Pn(u) du D.14
-1
Thus we can deal with whichever quantity is more convenient or gives

greater insight into a problem. A case of particular interest is

the spherical Wiener process, which is representative of the stochastic



236

component of the topography of the terrestrial planets:

V(H;0)

V(H; = .
) = @+ D) DL3
The covariance in this case is
P LCOS(\()]
C(H;Y) = R,” V(H;0 E .
(H;Y) (H;0) (n)(n+1) D.16
We can obtain a closed-form expression for this series by noting
that
1 1 1
M@+ n n+1 .
and (Wheelon, 1968; pg. 53)
= Pn[cos(y)]
E —————— = - (alsin(y/2) 1+ 0n[1 + sin(y/2)]) D.18
n=1
@
P [cos(y)]
———7— = - (1 +% [sin(y/2)] - & [1 + sin(y/2)]) D.19
n=1

Therefore, we find that:

=+ P _[cos(Y)] <P [cos(Y)]
2 E n 2 n
RO V(H;O)[ n - n+1 ]

C(H;y) =
n=1 n=1
D.20
= R02 V(H;0) (1 - 2 [li-sin(v/Z)]j
When ¥ = 0, this has the form
C(H;0) = RO2 V(H;0) D.21

since

Pn[cos(O)] =
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and

@

2. T b

n=1
Similarly, for a fractional Wiener process wB on a circle, the

variance spectrum is

-(23+1)

V(Ws;n) = V(WS;O) n . D.22

Campbell's theorem (Rice, 1944) gives convenient expressions
for the mean and covariance function of those filtered Poisson
processes which can be expressed as

N
X(g) = Z A B(g-hn) D. 23

n=1
where N is a Poisson process of intensity o, An is the amplitude of
the n-th pulse, and B(g-hn) is the response at g to a unit pulse

at hn. If the parameter set of the process is G, then

EX) = o E(A) |B(g) dg

G

CE;y) = a E(A)zf B(g) B(g+Y) dg
G

As the intensity o is increased, the process X(g) approaches a
normal distribution with mean E(X) and variance C(X;0), as given
above.

As an application of the convolution theorem to the calculation
of variance spectra and covariance functions, we note that, if the

function F is a convolution of A and B,
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2w Ti/2
1
F(8,9) = 7~ A8 ") B(B-0",p-0") cos(8’) d6'dy’ D.25

0 =m/2
and if B has no azimuthal variation, then the variance spectrum
of F is simply

V(F;n) = an V(A;n) D.26

and the covariance function is

@

C(F;v) = ROZZ an V(asn) P [cos(v)] . D.27

n=1
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E. VISCO-ELASTIC DEFORMATION

The response of a planet to applied stress depends on the size
and composition of the planet as well as the spatial and temporal
distribution of the stresses. We will restrict our attention here
to planets composed of homogeneous, incompressible, linear visco-
elastic materials. This considerably simplifies the analysis while
retaining many of the behavioral features of a more complex substance.

A planet will thus be characterized by its radius R [em], either

0
. : -3 R -2 :
mass M [gm] or density [gm cm "], rigidity u [dyne cm "] and either
. . . . 2 -1 . . .
kinematic viscosity V[stoke = cm sec ] or dynamic viscosity
_ . -1 -1
N = pv [poise = gm ecm ~ sec ].
The relationship between applied stress ¢ [dyne cm-z] and con-
sequent deformation, as expressed in terms of either strain ¢
[dimensionless] or strain rate ¢ = de/dt [sec-ll, depends on the

material being deformed. For linear elastic, linear viscous and

Maxwell visco-elastic materials, the relations are:

e = o/u (elastic) E.1
e = o/mn (viscous) E.2
e = g/u + o/n (visco-elastic) E.3

This latter form is only one of many possible models for linear
visco-elastic behavior, but we focus on it because of historical
precedent (Maxwell, 1868; Darwin, 1879) and analytical simplicity.
Furthermore, it is apparently a reasonable model in many situations

of geophysical interest (McKenzie, 1967).
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A Maxwell material subjected to a constant stress 0, initially
undergoes an elastic deformation £ = 0/uU, but also commences creeping

at a rate € = g/n. After a time t = known as the Maxwell

TM’
relaxation time, the viscous deformation & = Ot/m exceeds the initial
elastic deformation. Thus, for short time periods (t < TM) the
material is essentially elastic, whereas, for long time periods
(t > TM), the behavior is predominantly viscous.

We will now examine the short time or elastic limit in the

behavior of visco-elastic planets under stress. When subjected to

a disturbing potential

= Ik
M 0
B(R,0,p) = == Z (*R')
Rop n=1

an elastic sphere suffers a surface distortion proportional to the

n

+1
T
:E: énm Anm(e,@) E.4
m=0

disturbing potential

U__(8,9) E.5

— n
Z Zé:m nm

n=1 m=0

U (8 =

where Unm(e,@) is a vector spherical harmonic whose components in

A A A
the direction of the unit vectors (eR, eqs eW) are:
A
e’ Unm(a,w) = hn Anm(9:$)
) 3
g Um(®:@ = £y 35 A (9,0) K%
A zn o]

. [a] = —— ——
e$ Unm(“’w) cos (8) oy Anm(e’w)
This redistribution of mass gives rise to a further disturbance of the

potential whose harmonic coefficients are
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A@nm = kn @nm . E.7
These constants of proportionality Ln = (kn,hn,ﬂn) are known
as Love numbers (Love, 1927, pp. 257-299; Munk and MacDonald, 1960,
PP. 29-31), and their functional form depends on the nature of the
disturbing potential. For a potential which does not load the surface,

such as a rotational or tidal potential, acting on a homogeneous

elastic sphere

B = 3 1
n 2(n-1) \1+N(n) “/Pc)

h =(2“+1)k E.8
n 3 n
2 =(l)k
n n n
where
BGM2
P = = 5 E.9
c
BWRO

the hydrostatic pressure at the center of the planet, is a measure of

the gravitational resistance to deformation, |4 is the elastic rigidity,
and

2 ndTE @ )

N(@m) = 2n

E.10

is a purely geometrical factor related to the boundary conditions for
the sphere. 1In a fluid planet u = 0, and the restoring force is
purely gravitational. Since N(n) is an increasing function of n,

the elastic response is clearly more important for small features.
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If the perturbing potential is due to a surface load of

material of the same density as the rest of the planet, and the height

of the surface load is

@ n
: _ 7T i
HE.®) =Ry D 2 BN A (8,9) E.11

n=1 m=0

then the potential harmonics are

(2“+1) & =H' . E.12
3 nm nm

In this case, the deformation due to the normal stress applied by

the load is opposed by the gravitational attraction of the planet

by the load. The corresponding Love numbers are thus
Ll = [1 _ 2n+1] 1L E.13
n 3 n

where Ln are the Love numbers for a potential which does not load

the surface. Thus, we have explicitly

" = 1

n 1 + N(n) u/PC
hl = Zn¥1] kr E 14
n 3 n :

z’=(l)k' .
n n n

If a load of initial height u;m were placed on a sphere, the
original surface would deform by h; Qnm’ and the final height of

the load would be

) E.15
nm nm n nm

However, since



nm 3 nm
E.16
! = 2n+1 K’
n 3 n
this can be rewritten as
H = (1+kx’) v’ . E.17
nm n nm

Clearly, if the body were perfectly fluid, so that u = 0, then we
would have k' = -1 and thus H = 0.
n nm
The Love numbers have the following asymptotic behavior in the

limit of small wavelength features:

- - )
ph | 1
2 E
lim n‘k = = 3/2 E.18
n—o n 5
nal 3/2
L - <
hr’l -‘ 2/3
P
lim nk’ = = 1 E.19
n—w«° an U’
n 4 1
L = L

Darwin (1879) solved the problem of purely viscous deformation
of a homogeneous sphere by a surface load. If the load has the same
density as the sphere, and the initial height of the load is
characterized by harmonic coefficients

Hnm(o) = Anm E.20

then, at a later time t, the load height harmonics will be attenuated

to

" -t/Tn

E.21
nm

Hnm(t) = A



244

where the relaxation time for degree n is

LU [MP‘—Q] n E.22
C

and 7 is the dynamic viscosity. Since T is an increasing function
of n, the proportional attenuation of laterally extensive features
is more rapid than for small features, This is just opposite the
behavior of diffusion processes.

The deformation of a Maxwell sphere due to a surface load was
also determined by Darwin (1879) and is essentially identical to
the behavior of a purely viscous sphere. The only difference is
that the relaxation times are uniformly increased to (McKenzie,

1967; Peltier, 1974)

E.23

where Tn is the viscous spherical relaxation time, and TM is the

Maxwell relaxation time of the material.



245

F. POTENTIAL ENERGY

The configuration of lowest energy for an isolated mass of
homogeneous material is a sphere. Any departure from sphericity
thus represents an increase in potential energy, both elastic and
gravitational. We will now estimate the energy corresponding to
harmonic surface loads and use the constraint of finite total energy
to place bounds on possible surface configurations. We will first
consider elastic energy.

1. Elastic Energy

The elastic energy density, which is the work done per unit

volume in elastically deforming the material, is given by

3

3
e =-% z : Gi. Ci. F.1
i=1 j=1 3 *J

where oij and €. are the stress and strain tensors respectively.

ij
The constitutive relation between stress and strain for an incom-

pressible material is

G,. T &, , F.2

and thus the energy density simplifies to

3

15=1 M

3
i=
In a system with coordinate axes Xi’ the strain tensor is obtained

from the displacement vector Ui by the formula

eij=5 aTj+aX. . F.4

1
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In spherical coordinates, the strain components are:

“RR 3R
el i}

" 3 _98
‘88 R {UR * ae]
ecpcp = g [Yr T tan (9) Uy + enatE) - Bp
RO B8R 2R | 98 oR 8
.. 1 1 BUR+R6U-U"]
Rep PR 2R |cos(8) o&p SR o ]

QU au

R 1 1 "8, "o _

F“ch ¥8 2R [coS(e) dp T d8 Eanil) UcpJ

Substituting the displacement due to a single harmonic disturbing

potential

n
@(R,e,cp)=gy-(§3—) 8T A ®,@) , R <R, F.6

=]

n
- [R T ’
eij(R,G,Cp) = (Ro) Qnm € ij(e,cp) F.7
where
€RR n hn Anm ,
‘ ° Anm
€ = h A + £
68 n nm n ae2

’ " 'En a“\mn
e = h - —'—'—]Anm + En taﬂ(e) —se—*
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oA

; - nm
Zefy = [hn + (n=1) zn] -
oA
2 4 o _ 1 nm
sch [hn *m=1) Ln] cos(B) 9d o
20! = zn— k-3 2 %_“_‘ - tan(8) A
Eacp cos(8) 3o 368 nm

where the form of the Love numbers depends on the nature of the
disturbing potential, i.e., whether it loads the surface or not.
As our principal interest is in the asymptotic behavior of the

energy density for large n, we can neglect the terms in En’ since

3 hn
'cn =(2n+1) n E.

Using the approximation £n= 0 and the facts

1 - S
e ] (A )" ds =1 F.
: 2
1 KaAnm) as = m)@+1) - LotDm .
417 o8 ’
S
oA \2

1 1 ( nm) ds = (Zn+1) (m) F
il s cos2 (8) o 2

(Lowes, 1966), we find that

3
1
), 2 -

s i=1 j

]

3
’ ’

2 el el s

=1 11 1]

[n2+2+@)_<%+_u]h§ ’
1

(3n2+n+4)h2
2 n

Therefore, the total elastic energy corresponding to the harmonic

. .3
disturbance Qnm is Enm lm'Ro enm/3, or

10

;L1

.12



2 4TR 1 1
_ U (3n " +n+4). 2 . 2 0 2n+2 .
Em1 2( 2 : @m1 3 : ds E:23
0
ﬂuR3 2
_ 0(3n tn+a) 2 o2
3 2n+3 n nm

where £ = R/RO.

If we consider the surface topography of a planet

n

H(3,p) = R, > HY A (8,0) F.14

n=1 mp=0 " ™
to be the result of the emplacement of a surface load H'(B,w) and
the subsequent deformation of the original surface, we can calculate

the total elastic energy stored during the deformation. 1In this

case,

H
+
(2“ l)énm=ﬂ’ = F.15
1+k’
n

so that a sum over all 2n+1 terms of degree n in the harmonic

expansion of the surface load yields

5 n *\2
+n +
En=3TnJR3 20 ¥t = [ V(H;n) F.16
(2n+3)(2n+1) 1“‘;1
where
n
V(H;n) =Z HT
nm nm
m=0

is the topographic degree variance. The total elastic energy due

to the topography is thus simply



= lm'R3 =
Ee1=EE =‘3_Oze F.17

n=1 " n=1 "
However, since
/
lim hn - 2PO
" 1+x’)] M roie
n
Therefore,
2
P 3P
lim 0
i s (2n+1) e = 4—“- V(H;n) F.19

i.e., the elastic energy density per harmonic degree converges to
zero more rapidly than the topographic degree variances. It would
thus be possible to have infinite topographic variance and finite
elastic energy.

2. Gravitational Energy

We now direct our attention to the gravitational energy associated
with the surface topography of a planet. The gravitational energy
density is just the work done per unit volume against the gravitational
field in assembling the configuration from some reference state, It
is calculated from

e = % p & . F.20

where, as before, p is the mass density and & is the gravitational
potential. We have already seen that the potential of a homogeneous

spheroid with mean radius RO and mass M has the form

- R/ )2 - n+1
s -2 (L) 5 (B) Pt 6]

n=1 m=0

for interior points (R < RO), and
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R x R n+l n
GM 0 -
8, (R,8,9) = 2= [—R— Z(?") & A (8, cp)] F.22
0 n=1

for exterior points R 2 RO’ where

(2n+1) 8 =H
3 nm nm

and Hnm are the harmonic coefficients fo the topographic heights.

If we denote the potential of a homogeneous sphere by QO(R), then

the gravitational energy of such a spherical configuration is

=%J JJ p(R)@(R)Rdeudcp F.23

However, since p(R) = 0 for R > 0, thiz <zn be written

2m 1 R

3 -(R/R ) 2
3 5 F.24
oM [2 (4ﬂRO ) 1 (4ﬂR0 )}
2RO 2 3 2R 2 5
0
- 3GM2
5R0

The ~ffect of surface topography H(u,p), is found from the

integral

2 1 o

E =% [ J J o(R) ®(R,u,0) R> dR du dep F.25
0 -1 0
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where now & (R,u,p) includes the topographic perturbations. We will
evaluate this interval over three disjoint regions: 1) the interior

of the sphere, R <R 2) an infinitesimal shell at the surface R = RO’

0’
where we let dR = H(u,yp), and 3) the exterior of the sphere R > RO,
where Pp(R) = 0. The desired integral will be the sum of these

three parts.

The first integral is

2m 1 R
g =4 * R) R® dR d
B &l e F.26
© 3 n 27 1
GM (R
0 T
— +—E '
E, 7R, Z \n+3) Z - f f A (@)du do
n=1 m=0 0 -1
but this last term is zero due to the orthogonality of Anm' Thus,
E' =E. . F.27

0
The second part, or integral over the surface shell is

2 1
] 1 2
’ 'z—p f f ® (RO sH acp) H (Ll ,CP) RO dlul dfP

0 -1

1
Il

© n
_GMp 3 T
iy [lm R, > > ¢ - H_ F.28
n=1 m=0
- - HT H
15 N° nm nm
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where we have used the relationship between ¢ and H to simplify
nm nm
the last expression. The third integral is trivially E = 0, since

p(R) = 0 for R > RO.

Thus, the effect of surface topography on a homogeneous planet
is to increase the gravitational energy above the spherical value

of E, = 3GM2/SRO to

0
@© n £
E=E0 1+ l—gz Z Hnm Hnm F.29
Nl e 2n + 1
where
n HT H
E = 15 nm _nm
n 2 = 2n + 1

is the contribution of harmonic degree n to the total. The gravita-
tional energy is similar to the elastic energy in that their incre-
ments per degree both decrease with increasing degree more rapidly
than the corresponding increments in topographic variance, and, in
fact, the asymptotic convergence rates of the two energies are

identical.
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G. SLOPES

Given a representation of the topographic heights on a planet
H(6,p), we now desire a characterization of the slopes on the surface.
We will first develop expressions for the mean square slope of given
slope length, and criteria for the establishment of isotropy of the
topography, and then we will consider the problem of mechanical
stability of the slopes. In much of this analysis, we will consider
the topography to be a realization of a homogeneous stochastic process.

The slope of the secant line between any two points a distance
L= ROY apart is

M _ [HTC+y) - HEOD)

> G.1
L ROY
and the mean square slope with slope length L is
2 HO+y) - 5@
sty =] )
R,Y
0
G.2
_EEC+y)] - 2EHC+DE@)] + EHED)]
2
(RgY)
However, by the assumed stationarity of the topography
2 2
E[H (T+y)] =E[H (D)] G.3
and, we already have
B @)1 = C@H;0) G.4

and

E[HT+y) HT)] = Cc(H;y) G.5
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Therefore, the mean square slope of length L is

s? 1) = 2LC@;0) - c@®;v)]

LZ

z 1 - P (cos(y))
2 D V(H;n) |: —_ ]
n=1 Y

J

As the slope length goes to zero and the secants defining the slope

approach tangency (if the surface is, in fact, differentiable),

we obtain

5°0) = > vatm) @) @+1) G.
n=1
since
1im [-1 = Pn(COS(Y)) _ (n) (n+1)
Yy =0 | Y2 2

In the important case where

V(H;0

V(H;n) = @ m+ 1) G.8

we obtain the closed form expression

® [1-P (cos(y)
2
SRPRT o ey
n=1

G.6

G.9

4 V(H;O)‘%dl +-;in(Y/2)]

y

(see Appendix D for more details). When the slope length is small,

we have approximately



Py Lo LLO) .
since
X3 xs
Si.'ﬂ(x) =X - 3—|+?'--
X2 x3
on(1 +x) =x-2—,+3_'_ .
so that
X X2 }(3
a1 + sin(x/2)] =5 - 5 + 75 -

1. Isotropy of Slopes

Though we have assumed isotropy of covariance (and therefore
of slopes) in modeling the topography as a realization of a homo-
geneous stochastic process, it is possible to check the validity of
this assumption. We first recall that the differential arc length
is given by

2

dL” = Rg [d82-+cosz(9) d¢?] = Rz

2
0 dy : G.11

We then calculate the mean square infinitesimal slopes facing east-

west

2

2,00 - 1 [ (au

52(0) = aﬁj(aL)e dA G.12
A

and similarly for north-south facing slopes

2

2.0y = L | (2

5,(0) sz(aL) dA G.13
A (O
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where the subscript indicates which coordinate is held fixed and

the integration is over the entire surface of the sphere. We note

that
o HT 3 A (8,p)
(g_;l)e - (%)(%‘f) ) ;;1 mZ‘—'O Zo ] S
and
© n
3 A__(8,p)
) -BE) -2 Z o %

The required integrals are (Lowes, 1966)

2
1 1 aj\’mn _ (2n+1)(m)
dA = >
cos (B8) xp

and

2’I_J’ nm Ah = (a¥en+1) - (2n+;“m)_
A

Therefore, the mean square east-west slope is

@

2 _
SB(O) = Z Te(n)

n=1

and the mean square north-south slope is

-
5,(©) T;TCP(“)

where the degree tilts are

_ (n+1!gm! T
T = Z [ B Pl
m=0
n - A
_ _@th@], T
Tcp(n) Z |L(n)(n+1) 5 JHnm Hnm

.14

«15

.16

o 17

.18

+19

.20
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The total mean square slope at zero slope length is simply

@

Z Te(n) + Ttp(n)

n=1

s?(0)

G.21

Z () (n+1) V(H;n)

n=1
as previously established.
Our desired criterion for mean square isotropy of a function
H(O,p) on a sphere is thus

Te(n) = Em(n) G.22

or equivalently

n n

@n+1) 3 @ Ho = @@+ DR e

m=0 m=0
for all n. Here Hnm are the normalized Fourier-Legendre transforms
of H(B,p).

2, Slope Stability

Physical slopes are limited in height by the strength of their
constituent materials. The stability of a slope in soil is dependent
upon characteristics of the soil [density (p), cohesion (c) and
internal friction angle (@)], characteristics of the slope [height (H),
length (L) and inclination (i)] and a characteristic of the
planetary surface on which the slope resides, [the local gravity (g)].
If a slope of constant inclination is extended in height, the shear

stress (T) will eventually exceed the shear resistance of the
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material and the slope will fail. A common failure criterion is the
Mohr-Coulomb relation

T =c + 0 tan(p) G.23
which expresses a linear increase in shear stress at failure with
increasing normal stress (0). The general determination of slope
stability is a difficult variational problem (Revilla and Castillo,
1977), but in the case of shallow slopes the failure surface is
essentially planar and the analysis of Culmann (1866) is adequate
(see e.g., Terzaghi, 1943). According to this analysis the maximum

height attainable in a slope of length L is

_ 4c [sin(i) cos(¥)
e [l-cos(i-cp) ] ) Ga2h

In many situations the effects of internal friction are negligible,

so we shall assume ¢ = 0, and

_4c rsin(d
H(@) = B [1—_333'(—1)] . .25

In a rectilinear slope segment, we also obviously have

H(L) = L tan(i) G.26
so that
b4e -1
cos(i) = [1 +E] = G.27

Thus, the squared height is

L
2 8cL ( o)
=== (1 + — .28
H (L) o8 I G

where
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However, on the Moon, for example

¢ = 0.1 bar “L
P = 3.0 gm cm_3 = L0 = 4m G.29
g = 160 gal

Thus, to a good approximation

8cL

12 (L) = L> L , G.30

i.e., the squared height of a stability limited slope is proportional
to the length of the slope.

It is interesting to note an analogous behavior exhibited by
the Wiener process. 1If we consider the slope profile to be a
realization of a Wiener process on the positive reals with parameter

02 = 3c/pg and W(0) = 0 then
E[WZ(L)] = OZL S " G.31

i.e., the variance of the process is proportional to the length of
the slope.

The spherical Wiener process also exhibits this type of behavior
for sufficiently short slopes (y << 2m). Sinée the covariance has
the form

P [COS(Y)]
C(H;0) Z “GmrD

C(H;Y)

G.32

Il

C(H;0) [1 - 2,m(1 + sin(Y/Z)]] -

the mean square range over a distance L = ROY is
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2c;0) - c(H;Y) G.33

4C(H;0) 2n [1+sin(y/2)

E([HC+Y) - B ?)

For short distances, this reduces to

E([H(T‘Fy) - H(T)]Z) = 2C(H;0) vy ; y << 21, G.34
i.e., the mean square slope height is proportional to slope length.
If we let C(H;0) = 4c Rolpg, we recover the slope stability result

exactly.
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