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ABSTRACT

The problem of minimal time deadbeat regulation and control of
linear, stationary, sampled-data systems is studied in this dissertation,
assuming that only a limited number of the state variables are directly
observable. The problem is first solved for the usual one-input one-
output systems. The existing techniques for deadbeat digital compensa-
tion are all derived under the assumption that a specific initial state
always exists; it will be shown that if this condition is violated and
a digital controller is designed using the existing methods, the system
has a transient response with time constants corresponding to the stable
poles of the open-loop system. A technique to overcome this difficulty
is developed using both a state-space and a z-transform approach to the
problem. A digital controller which in a sense first identifies the
complete state and then proceeds to control it in a deadbeat fashion is
synthesized.

The problem is next solved for multi-input, multi-output
systems, using a state-space approach different from the one used for
the one-input, one-output systems. It is first shown that if all the
state variables are directly observable and the system is completely
controllable in N sampling periods, there always exists at least one
stationary, linear feedback law which will regulate the system in N
sampling periods. If only a limited number of the state variables are
directly observable, but the system is completely observable in N'
sampling periods, then there exist "discrete compensators" which will

regulate the system in (N + N') sampling periods.
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CHAPTER I

TIME OPTIMAL CONTROL

1l.1 Introduction

Feedback control systems have been the subject of a great deal
of investigation in the past decade or two. The early investigators
concentrated primarily on the analysis of these systems and this in turn
led to a study7of how such systems could be synthesized. In the 1950's
the synthesis aspect of control systems was pursued and this led to the
inevitable question of optimization which is to be studied in detail in
this dissertation for a specific case.

For the most part, until quite recently, the study of control
systems has been carried out using frequency domain techniques, like the
Laplace and Fourier transforms. These so called classical techniques
were the basic tools for both analysis and synthesis, and in a restricted
sense, for optimization also. For example, the classical problem of
choosing the value of an open-loop gaiﬁ can be looked at as an optimiza-
tion problem, because generally speaking too large a gain will cause
instability and too small a gain will decrease the accuracy of the system.
There is a trade-off to be considered here in the problem of finding an
"optimum" gain. There are, however, two main reasons why this classical
approach to the design of a control system did not lead exactly to an
optimization problem: first, the performance criterion was generally
more qualitative than quantitative, and second, the configuration of the
controller was generally more or less fixed (e.g. the controller is
assumed to be a time-invariant linear system).

The modern approach to the synthesis of control systems leads,

on the contrary, to real optimization problems. This approach may be
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sumarized as follows: - given a system to be controlled, or regulated,
and a certain number of constraints, which must be satisfied,
(a) define a performance iﬁdex which is to be maximized or minimized.
(b) determine the optimum control law, or control policy, (i.e. a
mathematical description of the controlling element) which will
maximize (or minimize) the performance criterion and satisfy all
the constraints.
(c) find a realizable controller which will implement, or at least
approximate,'the optimum control law.

It is possible that the optimum controller is very difficult
to realize.practically; however if one decides to trade optimality for
simplicity of realization, for example by restricting the controller to
be linear and stationary (i.e. time-invariant), it is then possible to
determine how much is sacrificed in the performance of the system by
adding this restriction. Thus, one of the main results of the optimiza-
tion problems is to present an absolute upper (or lower) limit for the

chosen performance index.

1.2 Time Optimal Control for Continuous Systems.

One of the first optimization problems which was triggered by
the study of relay-controlled linear systems is the so-called time optimal
control. This problem can be stated as follows: given a linear system,
what is the minimum amount of time necessary for bringing this system
starting from arbitrary initial conditions back to its equilibrium
position? TIn the case of continuous systems, it is always (mathematically)
possible to reduce the error to zero instantaneously by application of

an appropriate impulsive input. The problem is therefore meaningless
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unless some additional constraint is added. Generally the absolute value
of the forcing function is constrained to be smaller than a fixed
quantity.

Various methods have been devised for solving this problem at
least theoretically. Russian control engineers use L. Pontriagin's (1)
(2) maximum principle, other people use Bellman's (3) principle of
optimality and dynamic programming, finally others like Kalman (4) start
from the classical calculus of variations. Although all these methods
lead eventually to the same final result, they give different insights
into the problem and suggest different ways for realizing the optimum
control.

Even when assuming that the characteristics of the system to be
controlled are perfectly known, the difficulties encountered are of two
types. TFirst, in order to control in a truly optimum fashion, one needs
to know the initial conditions of the system exactly. This problem is
generally called the identificétion problem. Second, even if we assume
that the identification problem is solved, there are still great practical
difficulties to be overcome.

One way of realizing optimum control is to compute in advance
the optimal forcing function which will bring the system back to its
equilibrium position. This optimal forcing function will be a function
of time (over a finite length of time) dependent on the initial condition
of the system. One could conceptually store this information in a digital
computer and then use the measured initial position of the system to
choose the optimum control law. Since this optimal control law is de-
pendent only upon the initial condition, we really have an open-loop

control, and there is little hope of realizing exactly the desired
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equilibrium position at the end of the minimum time interval for several
reasons: first, a digital computer has a finite number of storage elements
so that one can store the forcing functions only for a finite number of
initial conditions and then approximate for the other ones; second, if
any external disturbance acts on the system during the period of control,
it is unnoticed un%il the end of that period. One way of improving the
effectiveness would be to measure, from time to time, the actual position
of the system and then correct, if necessary, the forcing function to be
applied at later times. That would be more of a closed-loop type control.

Another way of getting time cptimal control of linear systems
is to use the adjoint system. The problem has been shown to be equivalent
to a determination of the initial conditions of this adjoint system as
a function of the initial conditions of the system to be controlled (5).
Once the initial conditions of the adjoint system are known, the variation
of the forcing function with time is known. Here too, one can use a
digital computer to store the results of computations made in advance and
then operate either in a completely open-loop manner or introduce some
kind of feedback by recomputing from time to time new initial conditions
for the adjoint system as a function of the new initial conditions of the
controlled system.

It is clear that the storage problem increases very rapidly with
the order of the system to be controlled so that there is little hope of
getting practical realizations based on these two methods for systems of
average complexity.

It turns out, however, that for a large class of linear systems
operated from a limited source of power the time optimal solution (in

the continuous case) is obtained by at all times utilizing properly all
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of the power available. This is called the "bang-bang principle.
specifically, we want to bring a linear system from arbitrary initial
conditions back to its equilibrium position, in minimum time using a
forcing function which is limited in amplitude. The "bang-bang principle”
states that if there exists a forcing function which stays within the

prescribed bounds and takes the system back to its equilibrium condition,

then there exists a time optimal forcing function which is equal either

to its maximum or to its minimum value during all the time necessary to
bring back'the system. In other words, there exists an optimum relay
controller which will implement this optimum '"bang-bang" control law.
Moreover if the n poles of the system to be controlled are real and
distinct, it is known that if a solution exists, it will require at most
(n-1) switches, i.e. changes in sign of the forcing function.

It is therefore feasible, at least for this last class of
systems to try the following procedure: rather than compute in advance the
sequence of forcing functions to be applied as a function of the initial
conditions, and storing the results in a computer, use the computer to
find as quickly as possible the sequence of forcing functions, or more
exactly, the n switching times for each set of initial conditions. Of
course, the position of the controlled system changes while the computer
searches for the optimal solution and this could be taken into account
but if the computing time is short with respect to the time constants of
the system, one will get a good approximation of the optimal forcing
function. The equations to be solved are generally transcendental equa-
tions and therefore difficult to solve. However a priori knowledge of
the number of unknown switching times is of great help. In case the open-

loop poles are not real, the number of switching times is not known



6
a priori, so that the complexity of the computations is greatly increased.

Instead of trying to find all the switching times for given
initial conditions, which amounts to finding the complete optimal forcing
function, one can try to find the instantaneous value of the optimal
forcing function as a function of the instantaneous position of the system.
For bang-bang systems, this leads to the concept of switching surfaces
such that the instantaneous value of the optimal control can be found as a
function of the instantaneous position of the system.

This method is quite interesting, because it corresponds to a
closed-loop type control. However, these switching surfaces are difficult
to obtain for high order systems. Considerable effort has been spent by
many in&estigators to obtain approximate representations of the optimum
switching surfaces, at least (6) for low-order systems.

The overall picture for the time optimal control of continuous
systems with power limitation is that although the problem is theoretically
solved, any practical realization will involve an approximation which will
quite often result in the system oscillating around its equilibrium
position. One suggestion then is to use a dual-mode system in which time
optimal control is used far from the equilibrium position but when the
system is close to its equilibrium position the control becomes a classical
linear control. This linear control if properly chosen will drive the
system back to its equilibrium position in a theoretically infinite length
of time. Such a procedure would possibly eliminate the limit cycles but
would seem rather strange to a mathematician: one looks for time optimal
solutions and ends up with a practical system having an infinite response
time, while there exists solutions in a finite time. It turns out,

however, that a satisfactory solution to the problem of getting to the
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equilibrium position from a position near to it can be found, if one uses

a sampled data mode of operation instead of a continuous one.

1.3 Time Optimal Control for Sampled-Data Systems.

Every time we speak of a sampled-data system in this report, it
will mean a system in which the variables can be measured only at the
sampling instants and also, one in which control is exerted by means of
piecewise constant signals which can change only at the sampling instants.
This is a restricted kind of sampled-data systems, but it corresponds to
many systems which are controlled by a digital computer.

The optimal time regulating control is the control which will
bring a system starting from an arbitrary initial position back to its
equilibrium position in the minimum number of sampling instants. It turns

out that the optimal time control without amplitude limitation is a

meaningful problem in this case, because for a fixed sampling period, it
is no longer possible to have the unrealizable solution of an impulsive
forcing function. Of course if one considers the sampling period as
variable and lets it go towards zero, the sampled-data solution will lead
towards some kind of impulsive forcing function, as in the continuous case.
The problem with fixed sampling pefiod was first solved by Kalman and
Bertram (7) (13), in the case of a system with only one forcing function.
However, the identification of the initial conditions of the system was
not solved very satisfactorily.

If the amplitude of the forcing function is limited, Desoer and
Wing (8) have found an optimal strategy which becomes identical with the
switching surface technique as the sampling period goes to zero. It

amounts to defining at each sampling instant the value of the next
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forcing function as a function of the actual position of the system with
respect to a critical surface. This critical surface, for an n th order
system, is made up of parts of (n-1) hyperplanes, so that it can be a
little bit easier to implement than the switching surfaces for continuous
systems. However the difficulty here is of the same order as for
continuous systems and the tendency is towards finding some approximation
to the optimum control so as to get the system near its equilibrium
position. Once near the equilibrium position the amplitude constraint will
not have to be considered.

It is essentially that part of the optimal time control problem
that will be studied in this dissertation, namely time-optimal regulation
(and control) of a linear stationary system; the linearity excludes the
existence of amplitude limitations, so that the problem is only practically
meaningful for sampled-data systems. It will be shown that the identifi-
cation problem can be solved in a simple manner and that there exists a
discrete compensator which both identifies the position of the system and
implements the optimum control law.

As already noted, such a theory could be useful for a dual-mode
continuous system, in which, if the initial perturbation is large, one
would use an approximation to the optimum control law for continuous
systems (bang-bang) and then switch to a linear sampled-data mode of
Operation near the equilibrium position. This would eliminate some
difficulties inherent to bang-bang systems, like the existence of limit
cycles around the equilibrium position.

Another aim of this dissertation is to determine what happens
to the above stated problem when the system is a multi-input, multi-output

system. The words "single-variable systems" and "multi-variable systems"
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will be avoided here, because systems which are basically one~input,
one-output are often studied using mathematical models which look like
multi-variable systems. It will be shown that the only important factor,
at least for the minimal time regulation problem, is to know whether
the system has one or several independent inputs (or forcing functioms).

The theory of multi-input, multi-output systems is still in its

early stages, perhaps because one is tempted to try to extend the results
and methods worked out for one-input, one-output systems. This tendency
is well illustrated by the number of papers written on the following
subject: given two single-input, single-output systems with mutual
coupling, is it possible to find compensating circuits which will
uncouple them? In some cases this uncoupling may be desirable, but
certainly not in all cases. After all, why should the control be better,
easier or more efficient when the systems are artificially uncoupled?
The underlying reason for this approach is that once the systems are un-
coupled, they can be studied separately as one-input, one-output systems
and then there are a number of well known mathematical techniques at the
disposal of the designer.

Some people suggest that trying to extend the results and methods
of the simple case to the complicated case is a basically wrong attitude
and that one should try to attack the problems concerning multi-input,
multi-output systems with a fresh mind. This is certainly a valid remark
but it asks also for much more imagination. To solve the problem con-
sidered here, the method used in the one-input, one-output case does not
lead to the solution in the multi-input case. However, the method used
for solving the multi-input case can of course be applied to the one-

input case. With this introduction in mind, a summary of what is to follow
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is given below.

In Chapter II, we will review what has been done for deadbeat
compensation of one-input one-output linear sampled-data systems, using
z-transform theory. 1In Chapter III, we will indicate one method for
describing mathematically linear sampled-data systems. This mathematical
formulation applies very well to systems having any number of inputs and
outputs, and is quite suited to the study of time optimal control. The
solution to this problem for the one-input one-output case will be
explained in Chapter IV. And, finally the multi-input, multi-output case

will be solved in Chapter V.



CHAPTER ITI

CLASSICAL DEADBEAT COMPENSATION AND ITS DRAWBACKS

2.1 Digital Compensation for Deadbeat Response to Specific Inputs

The problem of determining digital compensators for systems with
only one input and one output has been extensively studied by many people
(9). The approach has always been made using z-transform theory and for
the purpose of completeness the main results and the idea from which they
originated will be presented here. In addition, by looking at this
problem now it will be possible to place in the proper perspective the
results which follow in later chapters.

To become specific consider the block diagram of the given
system shown in Figure 1. In this diagram a zero order hold circuit is
used as the data reconstruction device; in all of work which is to follow,
only zero order hold circuits will be used for this purpose. The classical
design problem can be stated in the following manner. TFind a discrete
compensator D(z) such that the output of the system c(t) becomes
identically equal to the input r(t) after a certain finite transient
time, when r(t) belongs to some class of deterministic functions of
time; the sampling period T i1s assumed to be known and the duration of
the transient time is to be considered in the design of D(z). The types
of inputs considered in determining D(z) are generally taken to be
polynomials in t, i.e., step inputs, ramp inputs, etc. and the system
is assumed to start from rest when computing its response to one of these‘
specific inputs.

Referring to Figure 1, the over-all pulse transfer function is:
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_C(z) _ D(z) GH(z)

K(2) = K27 = Too(e) ulz) (2.1.2)
The error sequence is:
Ei(z) = R(z) - ¢(z) = R(z) [1 - K(2)] (2.1.2)

If the reference input r(t) can be represented as an m th order poly-
nomial in t (starting at t=0), then the z-transform of this input is

given by

R(z) = Eijgéé%ﬁ;i (2.1.3)

where N(z) is a finite polynomial in 27t

If the steady-state error is to be zero, we must have (9)
1-k(z) = (l-z-l)m+l F(z)

where F(z) is generally an unspecified ratio of polynomials in z-l.
If the error sequence is to be of finite length, i.e., the transient time
is of finite duration, F(z) can only be a finite polynomial in 271 that

we will denote by P(z-l). Therefore

1 - K(z) = (1-;'1)m+1 p(z™1) (2.1.4)

This equation shows that K(z) must be a finite polynomial in zil,
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which means that all of the poles of K(z) are at the origin in the
z-plene. To minimize the transient time (often referred to as the
settling time of the system), the order of P(z-l) in z™T should be as
low as possible.

If these two conditions on [1-K(z)] are satisfied, then the
input and the output of this system are equal at all sampling instants
after a finite length of time; this does not guarantee, however, that the
continuous output becomes identical to the continuous input. The conditions
under which the contiﬁuous output equals the polynomial type input can be
readily determined. First, if the continuous output is to equal the input,
then the input to the plant ez(t) must be a polynomial in t for all
t z-ts, where ts is the duration of the transient. Because of this
property, ez(t) cannot be discontinuous for +t >t_. Now, since ez(t)
is the output of the zero-order hold circuit, ez(t) can only be a
constant function of time (possibly zero) for all t > t,. The signifi-
cance of this fact becomes clear from what follows.

Ez(z) can be expressed as

5,0:) = (s} =ty A (2:1.5)

Because the steady-state value of ez(t) is a constant, EZ(Z> contains
a first-order pole at z=1 and has all of its other poles at the origin.
Since equation 2.1.5 is an identity and K(z) cannot have a zero at

z=1 because of the equation 2.1.4, GH(z) must contain a pole of at
least m th order at z = 1 simply because of the form of R(z). This
means that such a feedback system which is to follow polynomial type

_inputs of order m in t must contain at least m integrators in its
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plant. Also equation 2.1.5 shows that K(z) must contain as its zeros
all the zeros of GH(z).

In summary, then, the classical design of digital deadbeat
compensation requires that four conditions be satisfied. These conditions
for deadbeat response to inputs expressible as polynomials in t of
order m are:

(1) K(z) is a finite polynomial in 2t
(2) K(z) must contain as its zeros all the zeros of GH(z)
(3) the plant contains at least m integrations
(4) 1-K(z) must contain the factor (l—z-l)m+l
However for practical reasons the additional following condition must also

be satisfied

(5) 1-K(z) contains as zeros all of the poles of GH(z) which
lie on or outside the unit circle in the z-plane.

These practical reasons become apparent in consideration of the
discrete compensator to be implemented. In terms of X(z), the pulse

transfer function of the discrete compensator is given by

1 K(z
2(z) = g5 14&(2)

D(z) will not contain as poles any zero of GH(z), since these are also
zeros of K(z). But D(z) will generally contain as zeros all the poles
of GH(z) except those at 2z=l. In other words, the discrete compensator
cancels all undesired poles of GH(z). Practically such a cancellation
will never be perfect; this is not very important if the poles of GH(z)

to be cancelled are inside the unit circle in the z-plane; but if GH(z)

contains poles outside this unit circle, an imperfect cancellation would
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introduce in K(z) an unstable pole which cannot be tolerated.

Before proceeding further, two features of this type of system
should be noted. First, if the plant contains exactly m integrations
and responds in a deadbeat manner to an input expressible as a polynomial
in t of order m, the driving function ez(t) becomes, after a transient
period, a non-zero constant function of time. Since the error signal is
zero after this transient period, the discrete compensator must contain
an integrator. Second, the four theoretical requirements given previously,
though necessary, are not quite sufficient. One should add another
condition on the plant to be controlled (10): none of the poles of G(s)
are such that sj—sk = ZrKi/T, r = i'l, i'2, ... Physically this suppresses
the possibility of having a transient term which vanishes at all sampling
instants but not in between. Mathematically, this condition is directly

related to the question of controllability of the sampled-data system and

will be discussed in detail in a later section.

2.2 Introduction of Initial Conditions in a Sampled-Data System

When the problem of digital compensation is being studied
through the use of the z-transform theory, the general problem consists in
finding a suitable compensator such that:

1l. The closed-loop system is stable, and

2. The response to some specific inputs, generally step or ramp,
fulfills some predetermined requirements.

The response to these specific inputs is always computed assuming the
system starts from rest, i.e., from zero initial conditions. When one
asks about the effect of non-zero initial conditions, the usual answer

is: since the closed loop system is stable, the effect of initial
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conditions will eventually disappear. This is not always true, and it is
interesting to determine the time constants of the decay of initial
conditions in particular for the case of deadbeat compensation.

Let us first recall the general method for introducing initial
conditions. Consider the plant being controlled. Iet x(t) represent
the continuous output of the plant and f(t) the input to this plant;
assume these two quantities are related to each other by a constant

coefficient differential equation of the form

m
é—% +b 4 d n—i + oeee box(t) = am.ggg +oeee + By ar aof(t)
dt dt dt dt

In other words, let the transfer function of the plant be

m
P(s) 8.8 + ees + 8y o
n-1

=n
Q(s) s + b, 18 + eee + by

S + a

a(s) =

If initial conditions at t = O are to be considered, it is convenient
to introduce a new function of time xl(t) which is equal to x(t) for

all +t >0 and obeys the following differential equation

dnxl dn_lxl i ar
+b ———+ ceo + b x (t) =8 — + vo. + a,,— + a.f(t)
e n-1 a1 0*1 m m 15, %

x(l)(o) +oeee + x(n‘l)(o)] 8,(t)

+ [yx(0) + b,

+ [Dx(0) + et 4 x(n‘z)(o)] 8, (t)

:

+ *Pecsrsersrsrrenssesscne

+x(0) 8, _,(t) (2.2.1)
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where all initial conditions on x; are identically zero (at t =07),

k
) (0) £ 8%
dt t =0

and 6O(t) is a unit impulse, Sl(t) a unit doublet, etc. This is the
standard result which says that initial conditions can be viewed as
additional forcing functions. There is nothing unusual here but the
interpretation of this result allows the effect of non-zero initial
conditions to be brought into a z-transform analysis. If N(s) is defined
as the Laplace transform of all the terms, except those involving f(t)
and its derivatives, on the right side of equation 2.2.1, divided by P(s),
the numerator of the plant transfer function, the situation can be
interpreted as that shown in Figure 2. For the complete error-sampled
system, we would have the situation shown in Figure 3.

To determine how the output is modified by the initial conditions
(i.e. by N(s) ), the sampled output will be computed. The Laplace trans-

form of the output, which will be denoted by c(s), is

N(s) a(s) + F(s) c(s)

Q
P
0
~~
I

but

F(s) Ef(s) D*(s) H(s)

Ef(s) = R*¥(s) - C*(s)
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N(S)

F(S) + &(s) X(s) N

Figure 2: Initial conditions in an open-loop system.
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Figure 3: TInitial conditions in a feedback system.
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Putting these relationships together and taking the z-transform

of the first equation gives

D(z) GH(z) N NG(z)
1 + D(z) GH(z) ~ 1 + D(z) GH(z)

Il

c(z) = R(z)

or

c(z) = R(z) K(z) + Ng(z) [1 - K(2)] (2.2.2)
In the last equation NG(z) is by definition the z-transform of N(s)
G(s). Since N(s) 1is the Laplace transform of impulses, doublets, etc.

divided by the numerator of G(s), it is easily seen that

NG(s) = polynomial in s of order (n-1)
- denominator of G(s)

and

polynomial in 2t of order (n-1)

NG(z) = denominator of G(z)

Since the poles of G(z) and the poles of GH(z) are identical, a
general remark can be made about non-zero initial conditions. Namely the
effect of initial conditions will gradually disappear if and only if

[1 - K(z)] contains among its zeros all of the poles of GH(z) which lie
outside or on the unit circle in the z-plane. This statement is identical

to the fifth condition (i.e., the one dictated by practical considerations)
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which was explained in the previous paragraph. But one can see that it is
more fundamental than that. Even if it were possible to perfectly cancel
the unde;irable poles of GH(z) through the use of a discrete compensator,
the effect of initial conditions would still not disappear after a certain
finite transient period if only the four conditions on KX(z) previously

presented were used to determine K(z).

2.3 Application to the Case of Deadbeat Compensation

It has been shown in Section 2.1 that for deadbeat compensation
[1 - X(z)] must contain as its zeros all those poles of GH(z) which

lie on or outside of the unit circle in the z-plane. Thus,

olynomial in z *
Na(z) [1 - K(z)] = PP Ja
n (1 - ay z-l)
i=1

where the ai's are all the poles of GH(z) which lie inside the unit
circle in the z-plane. This equation shows that the effect of initial
conditions will gradually disappear with increasing time, but that the
exponential decays associated with the non-zero initial conditions take
place with time constants corresponding to the stable poles of the open-
loop transfer function G(s), i.e., with time constants that correspond
to all the poles of GH(z) inside the unit circle. This is not a very
desirable situation.

As far as the effects of initial conditions are concerned, this
open-loop behavior can also be understood by locking at the sequence of

forcing functions applied to the plant. Refer to Figure 3 again and note
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that

E,(z) = D(z) E (z) = D(z) [R(z) - C(z)]

Ey(2) = D(z) [R(z) - R(z) K(2) - Ne(z) [1 - K(2)]]
E,(z) = D(z) [R(z) - N&(z)] [1 - K(2)]
E,(z) = [R(z) - NG(z)] 5%—2-); (2.2.3)

With this last equation it will be possible to show that Ez(z) is &
finite polynomial in z™1 Which means that eZ(nT) goes to zero in a
finite time. To show this note that K(z) contains among its zeros all
of the zeros of GH(z), this insures the fact that K(z)/GH(z) 1is a
finite polynomial in z_l. The sequence of forcing functions due to the
input is R(z) K(z)/GH(z), and for the specific inputs for which the
system has been designed, this sequence is either finite or reaches some
steady-state value after a finite number of sampling periods.

We now want to show that the term NG(z) does not change this,
and do so by noting that the poles of NG(z) are also poles of GH(z).
Thus the product NG(z) K(z)/GH(z) is a finite polynomial in z_l, and
the forcing function due to the initial conditions becomes identically
zero after a certain number of sampling periods. This explains the open
loop behavior of the system after a certain number of sampling periods as
far as the effects of initial conditions are concerned.

A simple example will serve to illustrate this situation. In

Figure 1 let G(s) = 1/s(s+l). If T = 1.0 second, we have
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.368(z + .TLT) _ _ 0.368271(1 + .Taz ")
(z - 1)(z - .368) (1 - z‘l)(l - o.368z'l)

GH(z) =

Since the plant contains an integrator it can certainly respond in a
deadbeat fashion to a step input. To find the digital compensator which

will give this deadbeat response in the minimum number of sampling

periods, it is necessary that

K(z) = a, z-l(l + .7172-1)

1-K(z)=(1 - z-l)(l + T, z_l)

A simple calculation shows

= 0.582

o
l

0.418

o'
1t

The corresponding discrete compensator is

1 K(z) _ 1.582 1- 0.368z'l
GH(z) 1 - x(z) 1+ 0.418271

D(z) =
When the input to this system is a step function and the output
and its derivative are zero when the step function is applied, the output

will become identically equal to the input after two sampling periods.
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¢(z) = K(z) R(z) = 0.5822" (1 + 0.7172™%)

1l-23z

0.5822"% + 1.027% 4 1.0273 4 ...

The input to the plant is

x(z) = R(z) K2) _ _1 1.582 (1 - 2751 - 0.36827%)
2 -1

i.e., it becomes identically zero after two sampling periods.
Now assume that when the unit step function was applied there

was a non-zero initial velocity @& This initial velocity term can be

0
taken into account by making N(s) equal to an impulse of value éo.

Then equation 2.2.2 becomes

-1 -1
¢(z) - 22022 (1 + 0772 ) | y () [(1 e o.ulaz‘l)J
l -2

c -1
where NG(z) = ;zfi 0 |- éo ~T 0.632z T
s(s+1) (L -2z 7)1 -0.3682"")

That part of the output due to the initial éo is therefore

5 O.632z~l (1 + O.hle—l)
0 (1 - 0.36827%)
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whose inverse transform can be expressed as

c(nT)

1,347 &, (.368)2"%

3.66 &, (.368)"

Clearly c{(nT) decays toward zero with the open-loop time constant. To
show that even when éO # 0 the input to the plant becomes identically
zero after two sampling periods, simply use equation 2.2.3 which shows

that
Ez(z) =1.582 (1 - 0.368z'1) - éo(o.632z"l) 1.582
Therefore
ez(nT) =0 for n> 2

Thus the system does operafe in an open loop manner after two sampling
periods.

This whole chapter has illustrated the fact that for single
input, single output systems, the z-transform theory is quite useful
because it leads to the solution not only of all problems in which the
performances of the system are evaluated from its behavior at the sampling
instants, but also of some problems in which the behavior of the system
between sampling instants is of interest. However, the direct trans-
position of this method to multi-input, multi-output systems, although

possible, turns out to be impractical. As a consequence very few papers
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had been published on problems involving multi-input, multi-output
systems before the introduction in the control field of a new mathematical

tool of which we shall spesk in the next chapter.
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CHAPTER IIT

STATE-SPACE TECHNIQUES

3.1 State Description of a Dynamical System

For many years the control systems research problems had been
limited to the study or design of linear, time-invariant, single-input,
single-output systems. For that class of systems it was possible and
guite useful to use transform methods and transfer functions: Laplace
transform, giving the usual transfer function, for continuous systems;
z-transform, giving the pulse transfer function, for discrete systems.
By looking at the properties of the system in this transform plane, it was
possible to quickly obtain a general idea of the characteristics of the
system; e.g. stability, bandwidth, duration of transients and maximum
overshoot in response to specific inputs. However, most of these charac-
teristics were evaluated using "rules of thumb" rather than by exact com-
putations. Moreover, all problems concerning systems which were either
multi-input, multi-output or time-varying could not be thoroughly
investigated because of a lack of adequate mathematical methods.

Such studies were by and large restricted to linear systems and
inevitably people became interested in the study of non-linear systems,
especially in a class of non-linearities for which it was impossible to
linearize the complete equations, namely relay-controlled linear systems.
The transform methods, applied in conjunction with a describing function
that characterized the non linear element, were still able to provide
partial results such as the existence of limit cycles. But it was no
longer easy or even possible to predict the approximate behavior of the

system by looking at its characteristics in a transform domain. Because
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ofvthis it became necessary to study these systems in the time domain
and this can be most easily done using mathematical techniques which have
been developed by mathematicians interested in non-linear differential
equations.

The unusual performances that can be obtained using a relay-
controlled linear system triggefed a new interest in the optimization of
systems and it was then realized that the mathematical techniques which had
proved so useful for the study of relay-controlled linear systems were
extremely useful for a whole range of control problems. In particular, by
formulating the problems involving linear, time-invariant, single-input,
single-output systems as a special case of a general formulation valid for
a much larger class of problems, it was possible not only to solve a few
new problems but also to understand better the difficulties presented by
some of the yet unsolved problems.

Although most of the actual research papers on control problems
use the above mentioned mathematical techniques (which are referred to as
state-space techniques by control engineers), there are very few tutorial
accounts of the notion of state, so that a few words on thils subject seem
warranted. The word state, which has not been mentioned before in this
dissertation, can be defined in somewhat abstract terms as follows.

The state of a dynamical system at a certain instant of time,
to, is the minimum amount of information required about the past history
of the system in order to predict its future evolution, i.e. to determine
its complete behavior for all t > to.

This definition implies that in the event that the dynamical
system is to be subjected to inputs, then inputs are known functions of

time for t > to. This definition of state is quite general and a little
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bit of thought will convince the reader that it includes all systéms that
one intuitively considers as being classically dynamical.

For example, consider an RLC circuit. It is well known that if
one is given the initial values of the currents through the inductors and
of the voltages across the capacitors, then one can find the response of
the circuit to any specified input. Consequently the state of this circult
at time t consists of the values of the currents through the inductors

0

and of the voltages across the capacitors at time + Note that when

0
speaking of the response of the circuit, it is not specified as to
whether we are referring to the voltage across a resistor, or to the
voltage across a terminal pair, or to any other measurable quantity of
interest which could also be called an output of the system and which
will generally be a function of time. The reason for this is simply that
a knowledge of the initial values of the currents through the inductors
and of the voltages across the capacitors is sufficient to compute the
future values of these same quantities, when the system is subjected to
any specified input. On the other hand, at any instant of time t > to
the value of each of the measurable quantities or outputs can be éomputed
as a function of the values of the basic guantities: currents through
inductors, voltages across capacitors. It is now easy to see why these
currents and voltages may be called the state variables of the circuit,
for the knowledge of their values (i.e. the values of the state variables)
at any instant of time, plus the knowledge of the input, is sufficlent to
compute the value of any physical output of the circuit and moreover to
compute the future values of the state variables when the system is sub-
jected to a specified input. The evolution of any physical output of

the system is looked at as a consequence of the evolution of the state,
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which completely characterizes the system. In other words, the dynamic
behavior of a system can be represented by the change in state as a
function of time.

More generally consider the situation in which a dynamical
system can be described by means of a first-order vector differential

equation of the fdrm

IF = E(E: u, t)

where X 1is an n-dimensional column vector, u an r-dimensional column
vector corresponding to r foreing functions, f is an n-dimensional
vector-valued function and t 1s the time.

The value of the vector x 1s the state of this system, because

a knowledge of x at time 1., plus the knowledge of the forcing

O)

functions (ul, coe ur) for t>1t, is sufficient to compute the values

0

of X for all t >t The vector X is called the state vector and

O.
its components xl(t), xz(t), P xn(t) the state variables. Another
case in which the state may be described by a finite set of numbers

corresponds to a discrete system whose input u and output c¢ are

related by a difference equation of the form

b, c[nT] + by c[(n-1)T] + ... + o c[0] = 8, u[nT] + «es + a, ul (n-p)T]

Tt is clear that the set

c[(n-1)T], +v. , c[0] ; u[(n-1)T], ... , u[(n-p)T]
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is the state of the system at the time t = (n-1)T because a knowledge
of these variables is sufficient to predict the evolution of the output
c(nT) of the system, given the input u[nT].

One can, however, see that there is a difference between these
two cases; in the first one, the state variables were instantaneous
values of what one could call the "outputs" of the system; in the second,
the Stafe variables correspond to past and present values of the input
and of the output of the System. In both examples, the future behavior
of the system could be predicted once the state and inputs were known.

These two examples show the flexibility of the state concept.
It is good at this point to note that it is not always possible to
describe the state of a system with a finite set of numbers. The state
may also be an infinite set of numbers. For example, consider a pure
differentiator whose input is denoted by wu(t) and output by y(t).

The state at time +t., denoted by St s 1s

0 0

8, = u(t), t

-1 <t <t
0 0

0
where 1 1s an arbitrarily small positive number, but non-zero. The
state is now a function of time defined on an arbitrarily small but
non-zero interval of time and therefore cannot be described by a finite
set of numbers.

Having illustrated the concept of state and hinted at its
generality, this concept will now be used to consider a simple pfoblem
which has caused some misunderstanding among people interested in control
problems. It is the problem of going from a classical transfer function

description of a system to a corresponding state description. Consider
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a linear, lumped-parameter, time-invariant, single input [u(t)], single
output [c(t)], system. Such a system is generally characterized by its

transfer function

c(s) as"+a lsm_l + eee 88 + Ay
G(s) = = = m- (3.1.1)
u(s) e +bs +D
n-1 o 1 0

In most systems encountered in practice m < n.
This transfer function means that the system obeys the following
linear differential equation, with constant coefficients

c<n)(t) + b c(n-l)(t) + ees + by c(t) = amu(m)(t) + oeee + aou(t)

-1

First assume that a = a = eee = 8
m m=-1 1

is well known that if the values of c¢(t) and its first (n-1) deriva-

= 0, aq # O. In such a case it

tives are given at t =t., and wu(t) is known for all +t >'t0’ the

0
behavior of the system is perfectly determined for all t<2'to' In other
words, the output and its first (n-1) derivatives can be taken as state

variables in this case. Using the conventional notation x for a state

vector, we would have

5(6) = g (8), e, % (6] = [(8), &(t), vnn , <P H)(e))

So that
("12"2
{ *p-1 T Xn
X = -b qX ... -bgx 4+ aOu(t)
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In matrix form, the n equations written above become

X = FX + Gu
where
- o ... ] 0
0 e 0
F: s s e s e e . G= :
0 0 0] coe 1 0
—bo —bl -bz e -bn-l ao

When the plant transfer function contains finite zeros, the
situation is a little different. Again assume that the input to the
system u(t) is known for t > ty. The knowledge of u(t) for t >t
implies a knowledge of u(t), ... , u(m)(t) for t > ty+ As before

0

u(t) 1s not known for t < 0; however 1t was implicitely assumed that
u(t) was bounded and therefore had at most a finite jump discontinuity
at t =0 when the transfer function had no finite zeros. Such a dis-
continuity could not influence the values of the output and its first
(n-1) derivatives at any time t > to, because the output and its
derivatives did not depend upon U(t), u(t), etc.

With a finite number of zeros in the transfer function the

equivalent forcing function f£(t) is defined by
. m
£(t) = agu(s) + aya(t) + ... +aul®(y)

and 1t will contain a delta function and its successive derivatives if

u(t) has a finite jump discontinuity. This "infinite" discontinuity
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of the equivalent forcing function will influence the future values of
c(n-l)(t), cee c(n-m>(t).
In this case one sees that a knowledge of c(t) and its first

(n-1) derivatives at +t = ., and the knowledge of wu(t) for t > %

6] 0’

are no longer sufficient to completely describe the future behavior of
the system; roughly speaking, there is a region of indeterminacy around

t = to. This indeterminacy could be suppressed either by giving u(t)

for ty - 1<t < ty» or by giving u(t), +e. , u(m)(t) for t > t,.
The second idea for circumventing the difficulty encountered

with finite zeros in G(s) leads to the following scheme. ILet

X = c(t)
< X, = &(t)
x =y

Then the system can be described by

m
. (1)
e L )E a,u (t)
i=0

If we define an n dimensional state vector

M e
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and an (m+l) dimensional input vector

u(t)
a(t)

u<m)(tz_

the system is characterized by the equation

g = FX + Gu

where
- B — -
O LI N O O LN ) O
0 0 eoe
F = s see and G =
0 0 0 P 1 0 0 ot 0
"b “b "b ¢ oo "b a a LI ) a
|0 L e n-1 | 0 1 m_ |

In other words, a one~input system has been transformed into an
equivalent multi-input system. Although very simple, such a choice of
state variasbles is not really desirable, because the fact that there is
only one input has been masked and the result is a "multi-input" system
in which the inputs are strongly interrelated. Moreover, in a later
section the drivihg functions will be restricted to be piecewise constant
and then u(t) and its successive derivatives will be impulse functions
and its successive derivatives which are generalized functions and not
always very easy to manipulate. Note also that the state variables so

defined will be discontinuous when the forcing function will undergo a
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finite jump discontinuity, so that it will be necessary to know

u(to), ﬁ(to), cee u(m)(to) in order to compute the state at t = tg

from its knowledge at + = tO

An alternate approach at this point seems desirable and it
will now be shown that for a transfer function of the form 3.1.1, where
m < n, it is always possible to find a set of n state variables whose
values at t = to, plus u(t) for t >-to, are sufficient to completely
describe the future evolution of the system. The output of the system
will be a linear combination of the state variables if m £ n, and also
of the input if m = n.

The easiest way to see this is to consider the implementation
(on an analog computer) of a transfer function given by equation 3.1.1.
The implementation indicated in Figure U4 clearly shows that one needs
only n integrators for an n th order system, in which m < n. Let

the outputs of the n integrators be the state variables.

=%

X2=X3

-1 T *n
\ K, =-b X -b x oo~ ...-bix, - box; + u(t)

Since u(t) by assumption can contain no infinite discontinuities it is

easily seen that a knowledge of (Xl’ Xps oee s Xn) at t =1t., and

0
u(t) for t > to, completely describes the future behavior of the system,

i.e., it completely determines (Xl’ Xpy ee s xn) for all t >t

0

Then at any instant
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c(t):aoxl(t)+alx2(t)+...+an_lxn(t)+an{é(t)-boxl(t)—blxz(t)-...-bn_lxn(tﬂ

To show that this formulation agrees with the given transfer function

Just write symbolically

- / =
SXl X2 XZ SXl
{ terseens i,e. seesecene
n—
SXn-l = Xn Xn =8 1Xl
n n-1
\ 8K = =D, X -+..-b X +U \(s b 18 Heeetdy) X = U

and also
n-1 n
C = (ao +8)85 + ... +a 18 +a.s) X,
so that
C a. + s + sn
¢ & al cee + an
- n
19) b. +b,8+ ... + 8

0 1

If the state variables are chosen using this procedure, these
state varisbles are continuous functions of time, éven when the input
undergoes jump discontinuities. The output and its derivatives are,
however, generally discontinuous, as they should be. In case a = 0,
the output is continuous when the input undergoes a first-order

discontinuity. Note that in case m > n, there is no such way to suppress



39

the indeterminacy around t = t.; one must either give u(t) for

0]

t. - 1<t <<t,, or give u(t) and its successive derivatives for

0 0

t >,

The state description given above is by no means unique and for
a given transfer function there correspond an infinity of wvector
differential equations. In particular, one can show that if a = 0
(i.e. the output is continuous when the input is discontinuous) it is
always possible to find a set of state variables such that the output is

. =8 = 0, the output

one of them. More generally if a_ = a = ..
n n-1 n-p

and its first p derivatives can be taken as state variables. This is
also most easily shown by considering an analog computer implementation for
the case where a = 0.

Referring to Figure 5,

e
il
>
+
Q
fwt

< (3.1.2)
kn—l =X +Qu

(- bn-lxn - bn-ZXn-l - eee = boxl) + O

,,,
e
it

One can always adjust Qys Oy eee s %1 in such a way that xl(t) =
c(t).

This is easily seen by eliminating X5y X cee s X in the

3}
above equations. Using symbolic calculus and multiplying by appropriate

polynomials in s, equations 3.1.2 can be put in the following form:
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n-2 n-1
(o 1D S e et 87 T4 )le

I

(b T l)(

5 Nl X+ ,U)

2 h-1

st

i

(b2+...+b Sn—3+sn—2) 736" 2)(X

Nl (b te..4b

n-1 3 n- 2 U)

(bn_l+s)an

-1 (bn_l+s)(Xn+in)

\ an = (-bn-an-bn-zXn—l- LI Y -bOXl) +%U

Add together these n equations to obtain after simplification

(b 405+t 8™ 24s ™)

sX, +U[;b+oi(b el 1H8) e et (b Foeots 'lﬂ

Rearrangement of the various terms leads to the final form

n-2
+..

(s™+b s il b s+by )X, = UE@n_ s +(a

n-1 1 l n-l n- 2)

..+(a (Dyteeetagd +ObJ

so that c(t) = xl(t) if the q's are chosen such that

Oi-l - an—l
o b +O = g

n-1 n-1 n-2 n-2 (3.1.3)

2006000000000 ss0ns0e

% - l 11 2 2+"'+Oibn 1% = 8

I
oY
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This system of equations clearly always has a solution and it is imme-
diately seen that if B, T ree = an_P = 0, then Q _q = e = oh-P = 0,
so that x =c, X, = &y, wes X1 = c(p).

When the transfer function contains no finite zeros,

8) =85 = ... =8 = O, this formulation shows that the state varisbles
are the output and its successive derivatives.

This last analog computer setup and the corresponding vector
differential equations may be considered as being the most useful ones
because they preserve as state varisbles the output and all the successive
derivatives which can be taken as state variables. Therefore, in what is
to follow it will be assumed that given a transfer function the state
variable formulation will be derived from this last analog computer setup.
The number of finite zeros will be assumed to be smaller than the number of

poles (m < n-1), and therefore the output will be one of the state varia-

bles for every single-input, single-output system.

3.2 QGeneral Time Solution

Whether or not the system is characterized by one or several
transfer functions we will always assume that the system may be described

by a vector differential equation which can be written

ax
— = £(x, u, t)

dt
Moreover we will assume that we are dealing with a linear system with
constant coefficients (i.e. stationary system) so that in matrix form the

system can be described by
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X = Fx + Gu (3.2.1)

where X 1is an n-dimensional vector representing the state of the system,
u is an r dimensional vector representing the r inputs, F is a
constant (n X n) matrix and G is a constant (n X r) matrix. The
outputs of the system will be linear combinations of the state variables,
so that if we have m outputs yi(i =1, 2, «v. , m), we define an
m~-dimensional output vector y such that

y(t) = Mx(t) (3.2.2)

where M is an (m X n) constant matrix. To solvé equation 3.2.1 we

first solve the homogeneous equation

| e
It
i
1%
[

x(0) = Xy

The solution of this equation can be expressed as (11)

x = eF?EO
where eFt is a matrix exponential function defined by means of the
infinite series
n,.n
eFt =L +Ft+ ... + Fn? + eee

This matrix series converges for all F for any fixed value

of t and for all t for any fixed F.
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Another property of the exponential matrix can be expressed as

eF(s+t) _ TS Ft

50 that letting s = -t, we get the result

-Ft_Ft
e e

eF(—t+t) ST

i Jr . . -Ft
Hence e 1s never singular and its inverse is e .

In the general case when the initial condition is E(to) = %,
we will write

x(t) = eF(t'to)_z_cO = Plt-ty)x,

where ¢(t-to) is a matrix depending on only one variable, namely

(t-t,). From what has been sald sbout e, it can be shown that ¢ has

the following properties:

1. ¢(0) =1
2. @ is never singular, and ¢-1(t-to) = ¢(to—t)

We turn now to the solution of the inhomogeneous equation
X = FX + Gu H E(to) = X,

write R

-F(t-to) .
X
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Hence
~F(t-t.) K -F(s-t.)
e 0 x(t) = X5 + j, e Gu(s)ds
tO
F(t-t.) t F(t-s)

x(t) =e ° Xy + j' e Gu(s)ds

tO
t

x(t) = ¢(t-to)x.O + ‘[ g(t-s)cu(s)ds

tO

In later work we will be using driving functions u which will be held
constant during each sampling period. To obtain a mathematical descrip-
tion for this condition one notes that if wu(t) = u(kT) is a constant

for kT <t < (k+1)T, we can write

(k+1)T
x[(k+1)T] = @(T) x(kT) + $[(k+1)T-s]Gds u(kT)
kT
If we let
(k+1)T T
AT) = @l (k+1)T-s]ads = /f @(T-s)Gds
kT 0
and.
x(iT) = x, ° u(iT) = u,

we then get the state transition equation
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X = 8(Dx + ATy, (3.2.3)

where ¢ 1is a non-singular constant (n X n) matrix and A 1is a
constant (n X r) matrix. This last equation expresses the fact that
because of the linearity of the system, its state at t = (k+1)T can
be expressed as the sum of two terms. The first one, independent of
the driving function, is the state the system would have reached if there
had been no driving function (i.e. corresponds to the free motion of the
dynamical system); the second term, independent of the initial state,
represents the effect of a constant driving function Ek over a length
of time T. The fact that the system is time-invariant implies that @
and A are only dependent upon the time interval T and not upon the
exact location of this time interval. Equation 3.2.3 together with

Yy = M_)_ck completely describe the dynamical system at the sampling
instants, i.e. at instants of time which are T seconds apart.

In what follows, we will mainly be working with this discrete-
time state transition equation because we are interested in digital
control. However our goal will be to design a system having deadbeat
performance, i1.e. one in which the state or the output becomes identical
to some given state or input for all time after a certain transient
period. If the given reference state or input is zero, it is conventional
to speak of deadbeat regulation. If it is not zero, one speaks of dead-
beat follow-up. .

One can immediately see that there is a difficulty in using a
discrete-time description of a system for solving such a problem; nothing

can be said about the behavior of the system in between the sampling
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instants. However since we always assume that this discrete-time dynamic
system arises from a continuous-time dynamic system by simply considering
the latter only at discrete instants of time, this difficulty can be
removed in a straightforward manner. For example, if we search for dead-
beat regulation of the state it is evident from the discrete-time
transition equation that -§k = 0, plus Ek+p =0 for all p >0 implies
§k+P = 0; 1.e., the system is at its equilibrium position at all later
sampling instants. But knowling that we are dealing with a continuocus-
time dynamic system described by é = FX + Gu, is enough to ascertain that
if x =0 and u(t) =0 for t >kT, then x(t) =0 for t > kT.

In other words, regulation of the system at all sampling instants is
sufficient to insure deadbeat regulation of the state.

Another difficulty appears when looking at the output vector
y. Assume that we want the output vector to become some predetermined
function of time Za(t) after a transient period. Considering the

continuous time description of the system, we have

y(t) = Mx(t) ' ' (3.2.2)

where M 1is generally a non-square matrix, because the output vector
generally has a smaller dimensionality than the state vector. If this
is the case, then for a given yd(t) there exists an infinity of

Ed(t) satisfying equation 3.2.éj Among this infinity of solutions of
equation 3.2.2 there may exjst several solutions of the vector differen-
tial equation X = FX + Gu where u is a stepwise constant function of
time. Therefore to a given Za(t), there may correspond several states

of the dynamic system each of which would result in an output equal to
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Zd(t>' This means the solution to a problem may not be unique. However,
in the case of deadbeat regulation of the output, i.e. the desired output
is Za(t) = 0, there is always at least the solution Ed(t) = 0, which
amounts to regulating the state. There may exist other solutions but we
will 1imit ourselves to this particular one and avoid the difficulties of
a multiple solution problem.

As an extreme example, consider the system shown in Pig. 6. It
is clear that yl(t) can vanish for all times, although x(t) =
[xl(t), xz(t)] is non-zero. For example, choose ul(t) and uz(t) S0
that 51(t) = -xz(tj = C after a certain transient period, where C 1is an
arbitrary constant.

We will even show that for a one-input, one-output system des-
cribed by an ordinary transfer function and driven by a stepwise constant
function of time, deadbeat regulati&n of the output can be obtained
without having deadbeat regulation of the state. Take the usual description

given in 3.1.2 for an n th order system

X, =X, +Q u
n

2 3

Xn—l = Xn + Oiu

k x = (- boXy = biX, - ... - bn—lxn) + a.u

and
xl(t) = c(t), the output of the system

We want deadbeat regulation of the output after a finite tran-

sient period, i.e.
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Figure 6: A very special multiple input,
single output system.
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xl(t) =0 for t >t

In particular

il
(@]

Xl for t > ts

for t >t

o
il
O

But by previous restriction u(t) must be a stepwise constant function of
time. Therefore kz must be zero, except perhaps at the sampling instants.
Continuing with the same type of reasoning, one gets the following condi-

tions for deadbeat regulation

x. =0

xz + Oh—lu =0

< x3 + oh_zu =0
Xn + aiu =0

- blx2 - b2X3 - eee = bn-lxn + obu =0

\

The last n linear equations contain the n unknown X5y X X

3 e %y
and u. There will exist at least one non-trivial solution if and only

if the determinant is zero. PEquivalently write
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and substitute these values into the last equation

Il
(@]

(blo:n_l + bzoh_z + oo + bn-loi + ob)u

or using 3.1.3

If a, # 0, then the only solution is u = O which leads to the
trivial solution x = O.

But if 8y = 0, i.e. for a transfer function of the form

m
8,5 + «eo + 8 8
m

1

n
bo + bls + oo + 8

a(s) =

there are an infinity of solutions. Namely, the states to be reached for
getting an output vanishing identically are all on & straight line in the
state space. Notice that this can only happen if the plant contains
"numerator dynamics."

If it is desired that the output vector becomes identical to
some non~zero function of time gh(t), the problem is more complicatéd,
because then there 1s no obvious solution fér §d(t). This problem will

be discussed in a later section of this dissertation.
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CHAPTER IV

DEADBEAT REGULATION AND CONTROL OF SINGLE INPUT, SINGLE CUTPUT SYSTEMS

4.1 Continuous Compensation in an Optimal Regulating System.

Rather than consider the problem of digital compensation at the
outset, it is more instructive to first lock at continuous compensation.
This will give us a much better understanding of the role of the discrete
compensator which, as we shall see, can also be directly determined using
the z-transform theory. In the material which immediately follows the
problem solved by Kalman and Bertram (7) will be discussed. The arguments
and explanations used by the guthors will not be repeated here but rather
we shall use a different and somewhat heuristic approach to obtain a
solution.

We want to consider a single input, linear, time invariant
sampled-data system. Let X, an n~dimensional vector, represent the
state of the system at time +t = kT, when T is the sampling period. The
input to the plant, referred to as the control, is constant during each

sampling interval and may be expressed as
w = u(kT) kT <t < (k+1)T
The state transition equation can be written as

Xkl = ¢§k + Auk *

wvhen ¢ is a non-singular constant (n X n) matrix and A is a

constant (n x 1) matrix, i.e. a vector in the n-dimensional state space.
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- With this description we wish to solve the following problem.
Given an arbitrary initial state Xy find the control sequence (specified
by Ugs Uqps U, «+.) which will force the system to its equilibrium posi-
tion (i.e. to the state X = 0) in the minimum number of sampling periods.
We shall also assume that all of the state varisbles are instantaneously
available.

We assume that the system is controllable, i.e. that the

vectors A, @A, ¢ZA” cee ¢(n—l)A span the n-dimensional space, and will
show shortly why this assumption is necessary. Then, if the system is
controllable, the problem we wish to solve does have a solution and further-
more the solution will show that it is possible to reach the equilibrium
state in at most "n" sampling periods. In other words, we can always
determine & control sequence Ugs Ups eee 5 U 5 such that X = 0
for k > n, starting from an arbitrary X5e In addition, the required
control can be obtained using a linear, time invariant feedback scheme

in which

Y T Oixk,l * azxk,Z Foeee v Oy ,n

A heuristic proof of the above statements proceeds as follows.

The state of the system at successive sampling instants is given by

X = 0%y + ugh
2
Xy = P7%y + wPA £ uA

n n-1 n-2
x =@Fx, rud A+ uf A+ e+ wo LA



54

Since we desire that x =0 and since ¢ is non-singular, we must have

-1 -2 -n
2{_0 = - U_O¢ A - l¢ A - e