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ABSTRACT 

QUANTITATIVE PERFORMANCE AND TRADEOFFS IN THE  

MAP KINASE SIGNALING MODULE 

January, 2009 

 

Stephen Chapman, B.S. University of California, Berkeley 

M.S., Chemical Engineering, California Institute of Technology 

Ph.D., Chemical Engineering, California Institute of Technology 

 

 Intracellular signal transduction networks propagate and integrate the information 

that cells sense from environmental stimuli. The quantitative performance of signaling 

networks regulates cell decisions, and aberrations in network performance lead to 

pathologies such as cancer. The mitogen-activated protein (MAP) kinase cascade is a 

highly-conserved signaling module that regulates diverse cellular processes, such as 

proliferation, differentiation, and apoptosis in eukaryotic species ranging from yeast to 

human. While the principal components and mechanisms that define the MAP kinase 

module are well established, our understanding of and ability to tune its quantitative 

performance is limited. Here, we probe more deeply how the quantitative properties of 

the MAP kinase module may be affected by variations in the expression levels of the key 

constituents of the cascade—kinases, phosphatases and scaffolds. 

 

Using a computational approach, we delineate how four quantitative properties—

responsiveness to input, dynamic range of output, signal amplification, and signal 
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lifetime—depend on the relative abundances of the two core components of the MAPK 

module, kinases and phosphatases. We identify a reduced metric termed the ‘resistance to 

activation’ that predicts the quantitative properties of the module across a wide range of 

parameter values. Its predictive utility extends to dynamic properties such as signal 

lifetime, which often dictates the MAP kinase’s effect on cell function. Our analysis 

highlights tradeoffs in design, as not all quantitative attributes of the module can be 

simultaneously optimized. Thus, the resistance to activation captures the fundamental 

principles that determine cascade behavior and can be exploited to guide quantitative 

redesign of the MAP kinase module. 

 

In addition to the expression levels of kinases and phosphatases, scaffolds play a 

key role in signal propagation through the MAP kinase module. Protein scaffolds bring 

together multiple components of a signaling pathway, thereby promoting signal flux 

along a common physical “backbone.” Scaffolds figure prominently in natural signaling 

pathways and are emerging as a promising platform for synthetic circuits. To better 

understand how scaffolding quantitatively affects signal transmission, we conducted an in 

vivo experimental sensitivity analysis of MAP kinase response to broad perturbations in 

the expression level of Ste5, an exemplar scaffold of the yeast mating pathway. Our 

results demonstrate that the expression level of Ste5 significantly affects several 

quantitative aspects of signal propagation, including signal throughput, pathway 

ultrasensitivity, and baseline leakage. These new insights into the quantitative role of 

scaffolding in MAP kinase signaling suggest advantages and limitations in designing 

synthetic scaffold-based regulatory networks. 
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CHAPTER I.  INTRODUCTION 

 Intracellular signal transduction networks propagate and integrate the information 

that cells sense from environmental stimuli (Asthagiri and Lauffenburger, 2000). The 

quantitative performance of signaling networks regulates cell decisions in complex 

microenvironments, and aberrations in network performance lead to pathologies, such as 

cancer (Hanahan and Weinberg, 2000). It has been proposed that signaling networks are 

composed of modular sub-networks and that a quantitative understanding of these 

modular building blocks would provide deeper insights into cellular decision-making 

(Asthagiri and Lauffenburger, 2000; Hartwell et al., 1999). One such prominent signaling 

module is the Mitogen-Activated Protein (MAP) kinase cascade. This signaling cascade 

controls diverse cellular processes, such as proliferation, differentiation, and apoptosis in 

eukaryotic species ranging from S. pombe to H. sapiens (Lewis et al., 1998). While the 

principal molecular components and mechanisms that define the MAP kinase module are 

well established, how these components and mechanisms work together to determine the 

quantitative performance of the module remains an area of intense research. A better 

understanding of this relationship between individual module components and the 

integrated behavior of the module would provide design strategies for re-engineering 

module performance by targeting critical components within the module.  

 

1.   The canonical MAP kinase cascade 

 The canonical MAP kinase cascade consists of three serially activating kinases: 

the MAPK kinase kinase (MAPKKK) phosphorylates and activates MAPK kinase 
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(MAPKK), which in turn phosphorylates and activates MAPK (Figure I-1). This structure 

is a widely recurring motif in intracellular signaling pathways across a range of species 

and has, therefore, garnered the label of a “signaling module.”  

 
 

I 

MAPKKK  MAPKKK*  
PMAPKKK  

MAPKK MAPKK*  
PMAPKK  

MAPK  MAPK*  
PMAPK  

Output 

I 

Raf Raf* 
PRaf  

Mek Mek* 
PMek 

Erk Erk* 
PErk 

Output 

Stage 1  

Stage 2 

Stage 3 

 
Figure I-1. MAP kinase model schematic. 
The canonical MAP kinase cascade is depicted above as three serially-activated 
kinases (Ks), balanced at each stage of the cascade by a deactivating phosphatase 
(Ps). On the right, the Erk subfamily is shown. 

 

In mammalian cells, MAP kinase cascades are categorized into one of three 

subfamilies: Erk, JNK, and p38. The best-characterized subfamily is the Erk module 

(Figure I-1), which contains the kinases Raf (MAPKKK), Mek (MAPKK), and Erk 

(MAPK). Commonly stimulated by growth factors, the output of the Erk module, active 

Erk, proceeds to activate transcription factors and other proteins ultimately influencing 

important cellular processes such as proliferation and differentiation (Lewis et al., 1998; 

Pearson et al., 2001; Widmann et al., 1999). 
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MAP kinase modules play a key role in many non-mammalian eukaryotic species 

as well. In Saccharomyces cerevisiae, multiple MAP kinase modules regulate diverse 

responses such as mating, invasive growth, and the high-osmolarity glycerol (HOG) 

stress response (Gustin et al., 1998). Consistent with the conserved architecture, the yeast 

mating pathway consists of three serially-activating kinases: Ste11 (MAPKKK), Ste7 

(MAPKK), and Fus3 (MAPK). Pheromone-mediated stimulation of this pathway 

culminates in Fus3 activation, which precipitates cell cycle arrest and morphological 

changes associated with mating (Gustin et al., 1998; Widmann et al., 1999). 

 

The activation and deactivation of MAP kinases is driven by the opposing actions 

of upstream kinases and protein phosphatases, respectively. Generally, signaling 

pathways require the constitutive action of protein phosphatases in order to dampen 

kinase activity when stimulus is absent or has been removed, restoring kinases to their 

inactive state (Keyse, 2000). Protein phosphatases also contribute to the quantitative 

performance of MAP kinase modules. By altering their expression level, protein 

phosphatases modulate MAP kinase signal properties, ultimately influencing cell 

behavior (Bhalla et al., 2002; Keyse, 2000). 

 

In addition to the core kinases and phosphatases, protein scaffolds play a 

prominent role in MAP kinase signal propagation. By definition, scaffold proteins bind 

multiple members of the MAP kinase module, bringing together various kinases onto a 

single, physical backbone. Protein scaffolds have been associated with virtually all MAP 

kinase cascades ranging from yeast to humans (Dard and Peter, 2006). Despite their 
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widespread prevalence (and in contrast to the kinases of the MAP kinase cascade), MAP 

kinase scaffolds share little structural homology between orthologous pathways, leaving 

only functional similarities to define and guide our understanding of signaling scaffolds.  

  

The role that scaffolds play in signal transduction is a current area of intense 

research. Scaffolding proteins confer signal specificity by assembling the appropriate 

group of upstream activators in order to selectively direct activation of a target MAP 

kinase. For example, the yeast scaffold Ste5 recruits Ste11 (MAPKKK), Ste7 (MAPKK) 

and Fus3 (MAPK) (Bardwell, 2006). Meanwhile, another yeast scaffold, Pbs2, recruits 

Ste11 and Hog1 (MAPK); Pbs2 itself possesses the MAPKK functionality. Thus, Ste5 

provides a route for Ste11  Fus3 signal transfer, while Pbs2 provides an alternative 

route: Ste11  Hog1 (Figure I-2). By providing specific routes to activate Fus3 and 

Hog1, the scaffolds encode the appropriate cellular response, mating or osmolarity 

response, respectively. Moreover, the stimulus-response identity can be reassigned by 

simple concatenation of scaffold binding domains (Park et al., 2003), highlighting the 

potential for re-directing signal flow through molecular engineering of scaffolds. 
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Figure I-2. MAP kinase scaffolds direct signal flow. 
 

2.   Quantitative attributes of MAP kinase pathways 

2.1 Ultrasensitivity: The MAP kinase module as a biochemical switch 

 The conserved architecture of the MAP kinase cascade has raised questions 

regarding what signaling attributes such a structure might confer. One phenomenon that 

has been investigated extensively is the role of cascade structure in generating a steep 

steady-state stimulus/response curve, a property termed ultrasensitivity (Figure I-3). As 

originally defined, ultrasensitive responses are those that achieve a steeper output 

response with respect to stimulus than a hyperbolic reference curve, described by the 

Michaelis-Menten equation (Goldbeter and Koshland, 1981). Typically, the Hill 
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coefficient (nH)1 is used to quantify the sharpness of the curve, and has been generalized 

to describe the degree of the ultrasensitive response (Huang and Ferrell, 1996). 

 

 

Figure I-3. Hill equation characterizes MAP kinase ultrasensitivity. 
As the Hill coefficient increases, the dose-response curve becomes more switch-
like. The non-sigmoidal Michaelis-Menten curve (nH=1) serves as a reference for 
comparison. 

 

In Huang and Ferrell’s model of the MAP kinase cascade, a particular form of 

multi-step activation that results in an ultrasensitive response is identified. In the model, 

the activation of MAPKK and MAPK by MAPKKK and MAPKK, respectively, proceeds 

through a distributive, two-collision mechanism rather than through a processive, one-

collision mechanism. Experimental studies in Xenopus oocytes confirmed that the 

                                                
 
 
1 The Hill coefficient compares the ‘steepness’ of a stimulus/response curve to that of the Michaelis-
Menten reference curve – the greater the Hill coefficient, the steeper the response. Responses characterized 
by Hill coefficients < 1 are not ultrasensitive. 
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activation of p42 MAP kinase by Mek indeed occurs by a distributive, two-collision 

mechanism (Ferrell and Bhatt, 1997; Huang and Ferrell, 1996). Furthermore, the multi-

level cascade structure itself contributes to the overall ultrasensitive response through 

multiplicative amplification of the individual responses at each stage (Brown et al., 1997; 

Ferrell, 1997; Kholodenko et al., 1997). The model predicts that the distributive 

activation mechanism, in concert with the combinatorial effect of the cascade structure, 

can result in an ultrasensitive response characterized by a Hill coefficient of 4.9. These 

predictions are in excellent agreement with experiments performed in Xenopus oocyte 

extracts (Huang and Ferrell, 1996).  

 

However, experimental analysis of MAP kinase activation in intact Xenopus 

oocytes revealed that the ultrasensitive response in single cells was characterized by a 

Hill coefficient of 42, far exceeding the Hill coefficient of 4.9 observed in protein 

extracts and predicted by the model (Ferrell and Machleder, 1998). This discrepancy was 

attributed to the fact that the MAP kinase cascade is embedded in a positive feedback 

loop in vivo, where p42 MAP kinase activation promotes the accumulation of Mos 

(MAPKKK), thereby strengthening signal throughput (Matten et al., 1996). Indeed, 

positive feedback is yet another mechanism by which to generate ultrasensitivity. The 

intrinsic ultrasensitivity of the cascade together with the positive feedback loop results in 

a biochemical switch, where a graded stimulus is converted into a binary output (Ferrell, 

1999). 
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2.2 Bistability: Discrete transitions and biochemical ‘memory’  

Bistability in signaling networks has generated particular interest due to its ability 

to explain discrete, often irreversible, transitions that are commonly observed in biology 

(Sible, 2003). The maturation of Xenopus oocytes is an excellent example of a cellular 

event that progresses through distinct, stable phases. The ultrasensitive MAP kinasse 

response has been placed at the center of the biochemical network that controls the 

irreversible transition inherent in Xenopus oocyte maturation (Ferrell, 2002). By adjusting 

the gains of the positive and negative feedback loops, a monostable, switch-like response 

can bifurcate into a bistable, hysteretic response (Ferrell and Xiong, 2001). Experimental 

analysis has provided abundant evidence confirming that the Mos/Mek/p42 MAP kinase 

cascade indeed controls and stably maintains the irreversible oocyte maturation decision 

(Ferrell and Machleder, 1998; Xiong and Ferrell, 2003). 

 

In addition to its role in Xenopus oocytes, the MAP kinase cascade is prevalent in 

other signaling networks that have been found to exhibit bistability, such as the 

Epidermal Growth Factor (EGF) Receptor signaling pathway (Bhalla and Iyengar, 1999; 

Bhalla and Iyengar, 2001; Bhalla et al., 2002). The most notable of these studies 

identifies MAP Kinase Phosphatase-1 (MKP) as the “locus of flexibility” that can toggle 

the network between bistable and monostable regimes (Bhalla et al., 2002). Initial 

activation of the network by a transient stimulus elicits a sustained, supra-basal response 

that is maintained by positive feedback. The sustained activation of the cascade is 

eventually attenuated through slow-acting, negative feedback actuated by the up-

regulation of MKP expression. The phosphatase serves two functions: (1) increased MKP 
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expression leads to signal adaptation2, and (2) the continued presence of MKP after 

adaptation serves to attenuate any subsequent stimulation of the network. Thus, MKP not 

only precipitates signal adaptation, but also confers a ‘memory’ function by temporally 

preventing re-activation of the network. 

 

2.3 Signal dynamics: Transient versus sustained MAP Kinase responses lead to 

distinct cellular fates 

In addition to ultrasensitivity and bistability, the MAP kinase cascade is known to 

communicate biochemical information via its dynamic response. The MAP kinase 

response in PC12 cells serves as a paradigm that demonstrates the relevance of signal 

duration (Figure I-4): stimulation with EGF leads to a transient response that promotes 

proliferation, while stimulation with Nerve Growth Factor (NGF) leads to a sustained 

response that induces neuronal differentiation (Marshall, 1995). A similar transient versus 

sustained response occurs in S. cerevisiae, where a common MAP kinase cascade 

mediates two developmental options—invasive growth and mating. Yeast grows 

invasively when Kss1 activation is sustained, while when activated in a transient manner, 

Kss1 helps support the mating response (Sabbagh et al., 2001). 

 

                                                
 
 
2 Adaptation refers to the re-setting of signal output to pre-stimulus levels. 
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Figure I-4. MAP kinase signal duration controls cell behavior. 
 

To examine more deeply the mechanisms that determine transient versus 

sustained signaling, a model of the MAP kinase signaling pathway that focused on signal 

adaptation as a function of multiple forms of negative feedback was developed (Asthagiri 

and Lauffenburger, 2001). An important conclusion reached by this model analysis was 

that two forms of negative feedback—decoupling deactivation and constitutive 

deactivation—were required to achieve full signal adaptation. Although negative 

feedback could mitigate continued stimulation of the cascade, constitutive deactivators 

were required for the specific deactivation of the accumulated output.  

 

An ancillary effect of the decoupling negative feedback was that of ultra-

desensitization of the network. Ultra-desensitization describes a situation in which the 

signal output decays, and continues to decay, even in the presence of an increasing 

stimulus. Thus, for sufficiently strong decoupling deactivation, it is possible to sever 

signal throughput completely, effectively ignoring any further change in stimulus. As a 

result of signal decoupling, then, the output was free to decay via constitutive 

deactivation (Asthagiri and Lauffenburger, 2001). 
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2.4 Protein scaffolds quantitatively affect MAP kinase output 

In addition to their role in determining signal specificity, scaffolds quantitatively 

contribute to signal output. Scaffolds are not simply passive platforms for binding 

signaling components. Rather, many functionalities of scaffolds, both hypothesized and 

verified, suggest that they actively participate in signal transduction. For example, 

scaffolds may orient bound kinases for optimal interaction, thereby providing a catalytic 

advantage for signal activation (Dard and Peter, 2006). Some scaffolds form dimers, 

permitting both a cis- and a trans-phosphorylation mechanism for facilitating signal 

activation (Yablonski et al., 1996; Yasuda et al., 1999). Finally, recruitment of pathway 

effectors to scaffold complexes can quantitatively influence signaling output, a property 

that has been recently exploited to synthetically tune network behavior (Bashor et al., 

2008).  

 

 Since scaffolds bind to multiple components of a signaling pathway, the 

stoichiometric relation of the scaffold to its binding partners will affect signal 

propagation. The effect of scaffold expression level on MAP kinase module performance 

was explored through computational analysis (Levchenko et al., 2000). In the model, 

protein scaffolds promote signaling by recruiting pathway components and localizing 

them onto a single complex. Thus, the scaffold provides a kinetic advantage by reducing 

the diffusional limitation of kinase activation; the model assumes no catalytic advantage. 

This model predicts a biphasic relationship between the scaffold concentration and the 

MAP kinase output, and is not sensitive to binding constants or cooperative binding of 

the kinases to the scaffold. The mechanism responsible for the decrease in signal 
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throughput at high scaffold concentration is combinatorial inhibition, an effect that arises 

when too much scaffold interferes with the optimal formation of competent signaling 

complexes (Figure I-5).  

 

Figure I-5. MAP kinase signal propagation biphasically depends on scaffold 
concentration. 

  

 In addition to the biphasic effect on signal propagation, scaffolding can also 

influence the ultrasensitivity of MAP kinase signal propagation (Levchenko et al., 2000). 

Scaffold-bound kinases may be activated processively, while unbound kinases can be 

activated in a distributive, two-collision fashion. As a consequence, a reduction in 

module threshold properties may result from scaffold-mediated activation. Conversely, 

because they can dimerize, scaffolds may contribute to the ultrasensitivity of the MAP 

kinase response (Ferrell, 2000). Thus, how scaffolds quantitatively influence pathway 

ultrasensitivity remains to be determined.  
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3.   Current results: The effect of varying the expression levels of module 

components on the quantitative performance of the MAP kinase 

cascade 

Previous studies have identified many biologically-relevant quantitative features 

of MAP kinase pathways, including ultrasensitivity, bistability, and signal lifetime. Here, 

we probe more deeply how these quantitative properties may be affected by variations in 

the expression levels of the key constituents of the MAP kinase module—kinases, 

phosphatases and scaffolds. There are three principal reasons to focus on module 

sensitivity to expression level of its components. First, the expression levels of proteins 

vary from cell-to-cell even among genetically identical cells, i.e., cells are not 

quantitative clones even if they are genetic clones. Thus, understanding how sensitive the 

MAP kinase module is to perturbations in the expression level of its protein components 

will provide insights into cell population heterogeneity in MAP kinase signal 

propagation. Second, protein expression levels are not static. Cells dynamically alter 

protein expression levels to modulate cascade performance (Bhalla et al., 2002; 

Brondello et al., 1997; Matten et al., 1996). Understanding quantitatively how module 

performance is affected by these changes in protein expression would shed insight on the 

regulatory schemes that control MAP kinase-dependent cell processes. Finally, varying 

protein expression levels is a tractable design strategy that can be implemented using 

current molecular biology tools. Thus, it would be useful from an engineering perspective 

to better understand how such manipulations would affect the quantitative performance 

of the MAP kinase module. 
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In Chapter II, we use a computational approach to delineate how four quantitative 

properties of the MAP kinase module—responsiveness to input, dynamic range of output, 

signal amplification, and signal lifetime—depend on the relative abundances of the two 

core components, kinases and phosphatases. We uncover a reduced metric termed the 

‘resistance to activation’ that predicts the quantitative properties of the MAP kinase 

module across a wide range of parameter values. This resistance metric successfully 

predicted signal lifetime, revealing two distinct regimes of signal decay: (1) stimulus 

limited decay and, (2) resistance limited decay. The resistance also captured other module 

properties such as the dynamic range and the responsiveness to input. Our analysis shows 

that all module attributes cannot be simultaneously optimized, revealing tradeoffs in 

module design. Thus, the resistance to activation captures the fundamental principles that 

determine cascade behavior and can be exploited to guide quantitative redesign of the 

MAP kinase module. 

 

 In addition to the expression levels of kinases and phosphatases, scaffold 

abundance will quantitatively affect MAP kinase signaling properties. In Chapter III we 

present an experimental sensitivity analysis that quantifies how MAP kinase module 

performance is affected by systematic variations in scaffold abundance. Our results show 

that scaffold abundance significantly affects several quantitative aspects of signal 

propagation, including signal throughput, pathway ultrasensitivity and baseline leakage. 

We demonstrate that tuning scaffold abundance comes with trade-offs in module 

performance: while changes in scaffold expression do not compromise signal specificity, 

it increases baseline leakage when no stimulus is present. These new insights into the 
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quantitative role of scaffolding in MAP kinase signaling suggest advantages and 

limitations in designing synthetic scaffold-based regulatory and metabolic circuits. 
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CHAPTER II.   RESISTANCE TO SIGNAL ACTIVATION GOVERNS 

DESIGN FEATURES OF THE MAP KINASE SIGNALING MODULE 

1.   Abstract 

Given its broad influence over numerous cell functions, redesigning the mitogen-

activated protein (MAP) kinase signaling module would offer powerful means to 

engineer cell behavior. Early challenges include identifying quantitative module features 

most relevant to biological function and developing simple design rules to predictably 

modify these features. This modeling study delineates how features such as signal 

amplification, input potency and dynamic range of output may be tuned by manipulating 

chief module components. Importantly, the model construction identifies a metric of 

resistance to signal activation that quantitatively predicts module features and design 

trade-offs for broad perturbations in kinase and phosphatase expression. Its predictive 

utility extends to dynamic properties such as signal lifetime, which often dictates MAP 

kinase effect on cell function. Taken together, we propose that predictably altering MAP 

kinase signaling by tuning resistance is not only a feasible engineering strategy, but also 

one exploited by natural systems to allow each MAP kinase to exert pleiotropic effects in 

a context-dependent manner. External stimuli not only activate kinases, but also alter 

phosphatase expression and activity, thereby reconfiguring a single module for 

quantitatively distinct modes of signaling such as transient versus sustained dynamics, 

each with unique effects on cell function. 

Stephen Chapman and Anand R. Asthagiri, Bioengineering and Biotechnology, © John 
Wiley & Sons, Inc, 2004.  Reprinted with permission from Wiley-Liss, Inc. a subsidiary 
of Wiley & Sons, Inc. 
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2.   Introduction 

The MAP kinase family of serine/threonine protein kinases are found among 

species ranging from S. pombe to H. sapiens (Lewis et al., 1998; Pearson et al., 2001). In 

mammals, MAP kinases have been implicated in regulating cell migration, apoptosis, 

proliferation and differentiation. Because of its broad influence, establishing strategies to 

redesign MAP kinase signaling would offer powerful means to engineer cell behavior. 

Recently, conceptual understanding of how MAP kinase pathways utilize scaffolds to 

maintain fidelity of stimulus-response relationships was elegantly exploited to engineer 

an artificial scaffold that converts yeast cell response to ! -factor from the natural mating 

response to an osmolarity-stress response (Park et al., 2003). Notably, the growing 

emphasis to transform conceptual description of signaling mechanisms into quantitative, 

dynamical models (Endy and Brent, 2001) would further expand the design space to 

include the possibility of quantitatively tuning information flow through signaling 

networks. This work focuses on early challenges to such quantitative redesign of the 

ubiquitous MAP kinase signaling module. 

 

Most MAP kinases signal through a well-preserved mechanism, involving serial 

activation of a cascade of enzymes (Figure II-1). The wide recurrence of this cascade 

structure has garnered its label as a ‘signaling module’ and has raised interest in the 

inherent utility of its design. Classically, these cascades have been viewed as signal 

amplifiers (Pearson et al., 2001). Each active enzyme at the top of the cascade ( *

1
E ) 

activates several targets (
2
E ); and each of those activated target enzymes *

2E( ) would, in 
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turn, activate its own group of targets 3E( ). Hence, magnitude amplification has been 

conjectured as a canonical function for enzyme cascades. 

 

 

Figure II-1. Model schematic. 

The MAP kinase module consists of a cascade of three kinases (
i
E ) and their 

counterpart phosphatases (
i
P ) as illustrated on the left. On the right, an example 

cascade is depicted: the Erk subfamily of MAP kinases is activated via the Raf-
Mek-Erk cascade. An input initiates the cascade by activating the topmost kinase, 
while the module output is the number of active MAP kinase, in this case Erk. At 
each stage s , phosphatases catalyze the deactivation of kinases. More generally, at 
stage s  an activated, upstream kinase (

1s
K ! ) converts its substrate (

s
K ) from an 

inactive to active form. Meanwhile, phosphatases at each stage (
s
P ) deactivate the 

kinase. Although not depicted, each enzyme(E)-substrate(S) reaction involves the 
formation of an SE!  complex: 

! 

E +S"E#S$E + P . 

 

Computational models offer a framework to examine such issues in a rigorous 

manner (Tyson et al., 2001). Inferring specific insight into the MAP kinase module from 

models of large-scale signaling networks is thwarted by the inclusion of numerous 
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mechanisms external to the cascade (Schoeberl et al., 2002). A complementary approach 

focuses on the module, typically represented by a cascade of three kinases 

counterbalanced by constitutive deactivation enzymes (phosphatases) at each level of the 

cascade (Ferrell, 1996). Such models and congruent experimental work in Xenopus 

oocyte extracts have demonstrated that mechanisms such as distributive, two-step kinase 

activation confers ultrasensitivity at each step of the cascade (Huang and Ferrell, 1996). 

Moreover, cascade structure helps to accumulate this ultrasensitivity from each stage, so 

that module output reveals switch-like, steady-state responses to changes in stimulus 

concentration (Brown et al., 1997; Ferrell, 1997). In addition, aforementioned scaffolding 

mechanisms have been analyzed using a similar modular approach, revealing that an 

optimal, intermediate scaffold concentration may be required for maximal signal 

(Levchenko et al., 2000). 

 

In addition to delineating signaling properties conferred by cascade structure and 

its internal mechanisms, computational analysis is necessary to develop strategies to re-

engineer this module toward novel performance objectives. In fact, the first challenge is 

to identify quantitatively the design objectives themselves, with focus on enhancing 

biological efficacy or altering the information content of this cascade. Here, we delineate 

how such design goals may be defined in terms of quantitative features of the module, 

including the threshold amount of input required to trigger the MAP kinase switch. Since 

signaling via the Erk subfamily of MAP kinases is required for proliferation (Pages et al., 

1993), redesigning the Erk module to respond to lower input levels may improve cell 

sensitivity to a mitogenic factor. Such hyper-responsive, re-engineered cells may help to 
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reduce costs associated with growth factors necessary for ex vivo repopulation of tissue 

engineering scaffolds. Alternatively, in instances where the MAP kinase of interest, such 

as JNK, drives apoptosis or programmed cell death (Davis, 2000), it may be desirable to 

reduce its sensitivity to environmental stresses, with possible implications for cell culture 

maintenance in bioprocess applications. 

 

Ultimately, even modules with altered sensitivity to stimulus must effectively 

communicate with downstream targets to elicit cellular response. In some instances, 

MAP kinase modules perform as a switch, shifting between on- and off-states (Huang 

and Ferrell, 1996). In order for this switch to impart disparate cellular responses, 

downstream effectors must clearly distinguish between on- and off-states. Thus, the 

module must communicate with output intensity of adequate dynamic range. 

 

Finally, in addition to optimizing module communication with upstream input and 

downstream targets, it is desirable to tune the information content of the module itself. 

This information is often embedded in signal dynamics as in the case of Erk and JNK, 

whose transient activation has been linked to proliferation and survival, respectively, 

while sustained activation yields differentiation and apoptosis, respectively (Kao et al., 

2001; Marshall, 1995; Roulston et al., 1998). Thus, tuning signal lifetime would offer 

control over cell fate, with direct implications for rationally designing therapeutic 

strategies that seek to revert pathological cell behavior. Of particular relevance are those 

disease states, such as cancer, in which aberrant MAP kinase signaling plays a 

significant, mechanistic role in leading to hyperproliferation and de-differentiation 
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(Lewis et al., 1998). This work delineates how these features—responsiveness to 

stimulus, range of output, and signal lifetime—and other quantitative attributes of the 

MAP kinase module may be re-engineered by manipulating experimentally-accessible 

system variables. 

 

Importantly, a second challenge is to guide redesign of these quantitative features 

of information flow with a priori knowledge of potential consequences caused by 

specific manipulations. Our model construction identifies a metric of resistance to signal 

activation, which serves as such a predictive tool. Thus, the resistance effectively predicts 

both steady-state and dynamic features of the module for broad perturbations in kinase 

and phosphatase expression levels. Notably, these system variables are manipulable using 

established techniques, such as RNA interference, antisense RNA or exogenous 

overexpression from mammalian expression vectors, making the proposed redesign 

strategies practically feasible. Taken together, we propose that predictably altering MAP 

kinase signaling by tuning resistance is not only a practical engineering strategy, but also 

one exploited by natural systems to allow each MAP kinase to exert pleiotropic effects on 

cell behavior. 
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3.   Model Development - Schematic and Equations 

A first-level representation of the MAP kinase module involves three kinases in 

series, each activated by its predecessor. A schematic of such a cascade is shown in 

Figure II-1 for the Erk subfamily of MAP kinases. At each stage ( s ), there are two 

reactions ( 3,= +ssi ), one catalyzed by the upstream activator, and the other by the 

counteracting phosphatase. A representative pair ( 2,5=i ) of reaction mechanisms for the 

second stage is given below:  

 

! 

Raf
*

+Mek"{Raf
*
#Mek}$Raf

*
+Mek

*  (1) 

 

! 

PRf + Raf
*
"{PRf#Raf

*
}$ PRf + Raf  (2) 

where enzyme-substrate complexes are denoted by }SE{ ! . For Reaction 1, the association 

of *
Raf  and Mek  is governed by the second-order rate constant ,2k+ , while the first-

order rate constant for dissociation of the complex is given by ,2k! . Finally, the rate of 

product formation from this enzyme-substrate complex is dictated by the constant cat,2k . 

In general, the rate constants of each enzyme-substrate reaction i  is given by 

! 

k+,i, i,k! , 

and icat,k  where 61= !i . 

 

Taking into account the free ( I ), active ( *
I ) and Raf-associated ( RafI

*
! ) forms of 

the input species, there are 17 components of the module. The amount of each of these 

components per cell were normalized by the total amount of each kinase and each 

phosphatase present in the system. Normalized, non-dimensional quantities are shown in 

italics to distinguish them from their dimensional counterparts: 
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 (3) 

Among the 17 non-dimensional variables, the fraction of input species in the 

active state ( *
I ) is provided as the driving function for the module. The values of the 

remaining 16 unknown dimensionless variables are determined partly by the following 

seven mass balances:  

 }{=1 RafIII **
!++  (4) 

 }{}{}{=1 11

*

Rf

*** RafPMekRafRafIRafRaf !+!+!++ "#  (5) 

 }{}{}{=1 22

*

Mk

*** MekPErkMekMekRafMekMek !+!+!++ "#  (6) 

 }{}{=1 33

*

Ek

**
ErkPErkMekErkErk !+!++ "#  (7) 

 }{=1 *

RfRf RafPP !+  (8) 

 }{=1 *

MkMk
MekPP !+  (9) 
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 }{=1 *

EkEk
ErkPP !+  (10) 

In conjunction with above, the following nine differential equations fully specify the 

behavior of the module:  

 

! 

dRaf
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1
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1
#
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"
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.
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 (11) 
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Appearing in Equations 4-19 are five classes of dimensionless parameters: 
s

! , 
s

! , 
i

! , 

i
!  and 

i
! . Their form, significance and range of values are summarized in Table II–1. 

Simulations were performed using Matlab v. 6.1 and the ode23s and fsolve subroutines. 

 
Table II–1. Five classes of dimensionless parameters specify module attributes. 

Dimensionless 
Group Significance Symbol Range of Values 

! 

P
s
/K

s
 amount of phosphatase  

relative to kinase at stage s s
!  0.01-100 

s1s
/KK !  amount of upstream kinase relative to 

kinase at stage s s
!  0.3-3 

i,Ti, /kIk !+  proportional to affinity for  
each enzyme-substrate pair i i

!  0.1-10* 

i,icat, /kk !  
efficiency with which each E.S 

complex i will form product versus 
dissociate in a non-productive fashion 

i
!  0.01-1* 

icat,cat,1/kk  

characteristic time for product 
formation from each E.S complex i  
relative to characteristic time for 
product formation from 

! 

I
*
"Raf{ }  

i
!  0.1-10* 

*Typical values for 
i

! , 
i
! , 

i
!  were 0.6 , 0.2  and 1, respectively (Asthagiri and 

Lauffenburger, 2001; Ferrell, 1996; Levchenko et al., 2000). For sensitivity analysis (see 
Appendix), these values were varied over two orders-of-magnitude near their typical 
value as indicated. 



30 

 

4.   Results 

4.1 Model construction identifies most tangible design opportunities 

 Our model construction by dimensional analysis and further parameter grouping 

reveals five classes of dimensionless parameters, which govern module behavior (Table 

II–1). Three of these parameter classes (
i

! , 
i
! , 

i
! ) involve rate constants, whose values 

are intrinsic properties of the reacting species. While these parameters clearly contribute 

to the quantitative properties of the module, more tangible design opportunities are 

offered by two other dimensionless groups. The first (
s

! ) represents the amount of 

phosphatase relative to kinase at each stage of the cascade. The second dimensionless 

group (
s

! ) compares the expression level of an upstream kinase to the amount of its 

target at each stage. Thus, the values of these parameters are dictated by the expression 

levels of kinases and phosphatases, which are particularly attractive from a design 

perspective, since protein expression levels are readily adjustable in experimental 

systems using established techniques involving RNA interference, antisense RNA or 

mammalian expression vectors. Therefore, these two dimensionless groups are the focus 

of developing a redesign strategy. 

 

4.2 Sustained input and steady-state features 

 Most mathematical treatments of the MAP kinase cascade utilize a step function 

for module input, which was initially employed here as well. Upstream components such 

as Ras, whose active form serves as input, may be expressed at levels as high as 5
10  
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copies per cell (Scheele et al., 1995). Therefore, non-zero values for the fraction of input 

species in its active state ( *
I ) may range between 05

1010 !
! . The module output is given 

by the fraction of Erk in its active state )( *
Erk . 

 

 

Figure II-2. Temporal profile of module output in response to a step input: the 
effect of varying the relative amount of phosphatase versus kinase. 

Module was stimulated with a step input ( 0.5*
10=

!
I ), and the fraction of Erk in its 

active state was tracked over time. Simulation was performed for different relative 
amounts of phosphatases compared to kinases ( 0.52

1010= !
!

s
" ), while holding the 

ratio of upstream to downstream components fixed ( 1=
s

! ). Constitutive presence 
of phosphatases does not confer adaptation to a sustained input but affects level of 
steady-state output. 

 

In the absence of negative feedback, no adaptation is observed in module output 

(Figure II-2), or among any of the upstream kinases (data not shown). Because signal 

adaptation does not occur, the steady-state behavior of this module was examined. For 
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this cascade, the steady-state fraction of Erk in its active state (module output) displays 

sigmoidal dependence on non-zero input amplitude ( *
I ) as shown in Figure II-3. This 

sigmoidal dependence has been shown to acquire steeper transition from minimal to 

maximal output, yielding switch-like behavior when kinase activation involves a two-

step, distributive mechanism (Huang and Ferrell, 1996). Here, we consider three other 

properties—potency, range, and gain—which are crucial measures of this module's 

ability to propagate signal. 

 

 

Figure II-3. Module dose-response to changes in the relative amount of 
phosphatase versus kinase.  
The steady-state level of output was computed for different, non-zero input 
amplitudes for 1=

s
! . For intermediate ratios of phosphatase to kinase expression 

level ( 1
10=

!

s
" ), module output is a sigmoidal function of input amplitude. 

However, if kinases dramatically outnumber phosphatases or vice versa, module 
becomes insensitive to changes in input. In one extreme ( 0!

s
" ), module output 

is always maximal, even for minimal input; and, in the other extreme, module 
output is severely attenuated and unable to respond to even complete activation of 
input species. 
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4.2-1 Potency 

 Potency is a measure of how much input is required to elicit efficient module 

response. In experimental terms, stimulus potency is inversely related to the 
50

EC , which 

is the effective concentration of stimulus (typically, a ligand) required to attain half-

maximal response (e.g., cell proliferation). By direct analogy, the potency of input to the 

MAPK module is *

50
1/I , where *

50
I  is the input amplitude which promotes medium level 

of output. Module configurations that yield low values for *

50
I  confer high potency to 

input as they enable low levels of input to efficiently propagate signal. We analyzed the 

dependence of input potency on module design, particularly focusing on components of 

the cascade which are most readily tunable experimentally. 

 

The relative expression level of phosphatases to that of kinases (
s

!=/KP
ss

) at 

each stage s  dramatically affects input potency. This is most clearly revealed in Figure 

II-3 by the rightward shift in the “dose-response” curves as 
s

!  is increased. In 

performing these simulations, the value of 
s

!  was assumed to be equal for each stage s , 

largely due to the lack of experimental data that would suggest otherwise and in part to 

remain consistent with previous treatments of the MAP kinase module (Huang and 

Ferrell, 1996). For high 
s

!  values, more phophatases are present to deactivate kinases, 

thereby increasing the threshold amount of input required to elicit module response. 

Values for potency were calculated from dose-response curves, and its dependence on 
s

!  

is portrayed in Figure II-4. Consistent with the dose-response curves, input potency is a 
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monotonically decreasing function of 
s

! , with asymptotic upper and lower limits for low 

and high 
s

!  values, respectively. 

 

 

Figure II-4. Input potency. 
Aspects of the module dose-response (Figure II-3) may be tuned by altering 
module configuration. The potency of the input is inversely related to the amount 
of input ( *

50
I ) required to attain average module output. For fixed (

s
! ), an increase 

in the relative amount of phosphatases (
s

! ) reduces input potency, since more 
input is required to elicit half-maximal response. This trend is preserved for all 

0.5
10=

!

s
" ( !"! ), 0

10  (L ), 0.5
10  ( !! ), 1

10  (! ). For fixed 
s

! , increasing the 
amount of upstream kinase relative to downstream target increases input potency. 

 

In addition to phosphatase activity, signal generation at each stage of the cascade 

is determined by competing upstream activators. The net effect on module behavior may 

be evaluated by considering the 
s

!  value in balance with the expression level of 
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upstream activators relative to its downstream target (
s

!=/KK
s1s" ). For fixed 

s
! , input 

potency is enhanced for higher relative expression levels of upstream activator (Figure 

II-4). For 
ss

!" > , upstream activation outweighs deactivation at each stage, enabling 

high module output even for low input. 

 

4.2-2 Range of output 

 A second important attribute of the MAPK module is the range of output 

produced in response to a spectrum of non-zero input. This range is defined as the 

difference in output caused by full stimulation (i.e., all input species are active) versus 

minimal, non-zero input:  

 

! 

range = Erkss
*[ ]

max input
" Erkss

*[ ]
min input

 (20) 

While model results depict output as a continuous function of input, discrete numbers of 

active Erk molecules serve as physiological module output. Thus, a module whose range 

of output is large would possess more intermediate values of output with which to convey 

“higher-grain” information to the next module. 

 

Module range demonstrates biphasic dependence on 
s

!  as shown in Figure II-5. 

For low 
s

!  values, relatively few phosphatases are present to impede kinase activation. 

In this case, even minimal non-zero input activates all available kinases, precluding 

higher output in response to further increments in input. Meanwhile, at high 
s

! , intense 

phosphatase activity does not permit signal generation even at maximal stimulation, 

yielding no difference in output magnitude for low versus high input. Only at an optimal 
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intermediate 
s

!  value, balanced phosphatase and upstream kinase activity enable a large 

range of output to changes in input stimulation. This balance is affected not only by the 

dimensionless parameter 
s

! , but also by the expression level of upstream activators 

relative to their downstream targets. Since upstream activation is enhanced for higher 
s

!  

values, greater amount of phosphatases relative to kinases is required to balance 

activation. Thus, the 
s

!  value needed to optimize module range increases for higher 
s

!  

(Figure II-5). 

 

 
Figure II-5. Dynamic range of module output. 
The dynamic range of output is the difference in module output in response to 
maximum input versus minimum, non-zero input. This range is a biphasic function 
of the ratio of phosphatase to kinase expression level (

s
! ) for 0.5

10=
!

s
" ( !"! ), 

0
10  (L ), 0.5

10  ( !! ), 1
10  (! ). Thus, maximum range of output is achieved at an 

optimum 
s

! . An increase in the relative amount of upstream to downstream 
kinases shifts this optimum 

s
!  value. 
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4.2-3 Signal amplification 

 While high-range modules “sense” low versus high input by producing 

maximally disparate output for these two extremes of stimulation, signal amplification 

quantifies the ability of the module to receive a certain amount of input and respond by 

generating even greater amount of output. Kinase cascades have been implicated as an 

optimal configuration to achieve such amplification (Pearson et al., 2001). In fact, 

amplification has been suggested to require greater amount of downstream kinase than 

upstream activator (i.e., 1<
s

! ). Thus, signal transfer from Raf to Mek has been 

identified as an ideal point for amplification (Pearson et al., 2001) because Mek levels 

typically far exceed those of Raf (Ferrell, 1996). However, Mek and Erk are expressed 

typically at equimolar levels (Ferrell, 1996), suggesting that amplification may not be the 

chief purpose of this part of the cascade (Pearson et al., 2001). 

 

We examined rigorously the dependence of signal amplification on relative 

expression level of upstream and downstream kinases (
s

! ) and on the relative amount of 

phosphatases (
s

! ). The gain (! ) in signal strength from input to output was quantified 

by the ratio of number of active Erk at steady-state to the level of input:  

 !!
"

#
$$
%

&
!!
"

#
$$
%

&
'

T

T

*

*

I

Erk
=

I

Erk
ss  (21) 

where *

ss
Erk  and *

I  are the fraction of each enzyme in their active state at steady-state 

and 
T

Erk  and 
T
I  are the total amount of each protein per cell. Thus, the module performs 

as an amplifier if 1>!  and as an attenuator if 1<! . 
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 Figure II-6. Signal amplification versus attenuation. 

For a given amount of input ( 0.5*
10=

!
I ), the signal gain (! ) is quantified as the 

ratio of number of active Erk species at steady-state to the number of active input 
species. The horizontal line (| | |) demarcates regimes yielding signal amplification 
( 1>! ) versus attenuation ( 1<! ). Even if downstream kinases outnumber 
upstream activators ( !"!

! (10= 0.5

s
# )), signal attenuation occurs for high relative 

expression of phosphatases. Conversely, at low 
s

! , amplification may occur even 
for equimolar expression of upstream and downstream kinases ( 0

10=
s

!  (L )). If 
downstream kinases are outnumbered by upstream activators ( 0.5

10=
s

!  ( !! ), 1
10  

(! )), the MAPK module serves only as an attenuator, regardless of phosphatase 
expression levels. Taken together, the module may operate as a signal amplifier or 
attenuator. 

 

The results from the model demonstrate that the kinase module may operate as 

both an amplifier and attenuator ( Figure II-6). At high values of 
s

! , the cascade always 

attenuates signal, even if downstream kinases outnumber upstream activators. Under 

these conditions, deactivators considerably outnumber activators, and signal production 

at each stage is strongly inhibited. In turn, low levels of kinase activation at each stage 
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reduces the driving force for activation in the next stage, thereby diminishing signal 

strength across the cascade. Hence, even if downstream kinases outnumber upstream 

activators, amplification is not assured. 

 

In the other extreme, as 0!
s

" , there is no restraint on kinase activation, and all 

available enzymes in each stage of the cascade are activated. The fraction of enzymes 

activated at each stage asymptotes to one (i.e., 1
*
!

ss
Erk ), and signal gain across the 

module approaches a value dictated solely by the relative expression levels of kinases and 

input magnitude:  

 !!
"

#
$$
%

&
!!
"

#
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%

&
!!
"

#
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%
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'
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I

Raf1
=

I

Erk
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II
s

)
 (22) 

In the case of equimolar expression level ( 1=
s

! ), the gain asymptotes to *
1/I . Thus, 

even for equimolar expression level of kinases, amplification is guaranteed provided all 

input species are not in their active state (i.e., 1<
*
I ). 

 

4.2-4 Transient input and module dynamics 

The module input represents upstream molecule(s) such as active Ras, which 

governs Raf activation. In many experimental systems, this upstream component 

undergoes transient activation and is better represented by a pulse, rather than a step 

input. To examine module performance to a transient input, a pulse input with lifetime !  

and amplitude 
o
I  as follows was utilized:  

 
  

! 

I
*
=

I
o
, 0 " # < $

0, # % $

& 
' 
( 

 (23) 
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The pulse input is represented by instantaneous activation and deactivation. Furthermore, 

!  is chosen as the time required for the system to reach pseudo-steady state upon 

receiving input 
o
I . Thus, system response to loss of input may be analyzed independent 

of system response to receiving input. 

 

Upon instantaneous input decay, the fraction of Erk in its active state also decays 

back to basal level as shown in Figure II-7 for fixed 
s

!  and 
s

! . Signal decay requires 

constitutive expression of phosphatases, since reducing the relative amount of these 

deactivators by decreasing 
s

!  extends signal duration (Figure II-7, compare solid lines). 

Notably, signal decay is also retarded if more upstream kinases are present relative to 

downstream targets. Thus, a two-fold increase in 
s

!  significantly extends signal lifetime 

(compare solid and dotted lines). 
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Figure II-7. Temporal profile of module output following instantaneous loss of 
input. 
Upon removal of input at time ! , the module output decays to a basal level in a 
two-phase process, involving an initial time-lag during which output does not 
change dramatically, followed by an active decay phase. For fixed 1=

s
! , reducing 

the amount of constitutive phosphatases relative to kinases ( 1.25
10=

!

s
" ) 

significantly delays output decay. Thus, instantaneous loss of input enables 
complete adaptation of module output, provided constitutive phosphatases are 
expressed. In addition, even for a decay-permissive level of 0.5

10=
!

s
" , doubling 

the ratio of upstream to downstream kinase expression extends the lifetime of 
module output ( !! ). 

 

Although a reduction in 
s

!  or an increase in 
s

!  elevates output lifetime, these 

parameter changes also increase the level of output from which decay occurs. To 

determine whether the rate of signal decay is truly affected or whether extended signal 

lifetime is a byproduct of starting from a higher output, the temporal decay profiles were 

recast in a semilog plot (Figure II-8). Beyond a time-lag and during the decay phase, 

( )*log Erk  decreases linearly with time, consistent with a decay rate that is first-order 
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with respect to fraction of Erk in its active state ( *
Erk ). Importantly, the slope of this 

output decay, which is the apparent decay rate constant, is directly affected by changes in 

s
!  and 

s
! , showing that extended lifetime is not simply a byproduct of starting from a 

higher output signal. 

 

 
Figure II-8. Output decay in semi-log format. 
The decay curves from Figure II-7 are shown on a semilog plot. During the active 
decay phase, )(log *

Erk  decreases linearly with time, indicating a first-order 
process with respect to active Erk. Moreover, both 

s
!  and 

s
!  determine the slope 

of this linear relationship—the apparent rate constant. 

 

To better understand the relationship between decay rates of input and output, the 

instantaneous input decay was replaced with an exponential decay characterized by a 

half-life, input

1/2
! . In response, the half-life of module output was calculated for different 

values of 
s

!  and 
s

! . Consistent with above results, increasing 
s

!  or decreasing 
s

!  
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reduces the half-life of module output (Figure II-9). However, this half-life is bounded by 

a lower limit, which approaches the half-life of the decaying input, emphasizing that this 

form of adaptation is fully dependent on loss of input. 

 

 

Figure II-9. Half-life of Erk signal in response to an exponential decay in 
input. 

Input amplitude ( *
I ) was reduced exponentially with an arbitrary, non-zero half-

life, 100=
1/2

input! . The time for module output to decay to 50% of its initial level was 
calculated for various 

s
!  and 

s
!  values. While this half-life of active Erk may be 

reduced, its lower bound is set by the half-life of input decay. 

! 

"
s
=10

#0.5  (| | |), 
0.25

10
!  ( !"! ), 0

10  (L ), 0.25
10  ( !! ), 0.5

10  (! ).  

 

4.3 Resistance to activation 

It is evident that the dimensionless parameters 
s

!  and 
s

!  have opposing effects 

on both steady-state properties and signal dynamics (refer to Figure II-4, Figure II-5,  

Figure II-6, and Figure II-9). These two ratios capture the competing effects that 
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phosphatases and upstream activators exert on kinase activity at each stage of the 

cascade. To determine if a single parameter accurately integrates these opposing effects, 

we defined a combined parameter as follows:  

 ./=)/KK)/(/KP(= s1sss sss
!"#$  (24) 

This parameter represents the expression level of phosphatase (
s
P ) relative to the total 

amount of upstream kinase (
1s

K ! ), offering a net measure of resistance to signal 

activation at each stage of the cascade. The present treatment maintains that all stages 

have the same resistance, allowing overall module resistance to be equated to resistance 

at each stage. 

 

To determine if this metric of resistance accurately predicts module behavior, the 

dependence of signal half-life on 
s

!  was examined. The half-life of output in response to 

an exponential decay in input was presented for independent variations in 
s

!  and 
s

!  in 

Figure II-9. These data collapse into a single dependence on resistance to activation 

(Figure II-10), indicating that effects of changing 
s

!  and 
s

!  may be predicted by the 

correlating parameter, 
s

! . As resistance to activation increases, module output is more 

easily diminished, thereby reducing the half-life of signal. In fact, the predictive utility of 

this metric of resistance is robust. Thus, for values of the rate constant-embedded 

dimensionless groups (
i

! , 
i
! , 

i
! ) that span a range of two orders of magnitude, the 

resistance quantitatively predicts signal half-life in response to changes in 
s

!  and 
s

!  (see 

Appendix). 
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Figure II-10. The dependence of half-life of Erk signal on the resistance to 
activation for wide range of perturbations in 

s
!  and 

s
! . 

The half-life of module output depicted in Figure II-9 for 21
1010= !

!

s
"  and 

  

! 

"
s
=10

#0.5
($), 10#0.25(%), 100(!), 100.25(&), 100.5(') have been plotted as a 

function of module resistance, 
sss

!" /=# . A single relationship is revealed 
between half-life of active Erk and resistance, encompassing all changes in 

s
!  and 

s
! . 

 

Additionally, the resistance to activation accurately predicts steady-state features 

such as module range and input potency. As shown in Figure II-11, at low resistance, 

even the smallest input produces maximum output, limiting module range. Conversely, 

high resistance to deactivation impedes signal production even at maximum input. Only 

at an intermediate resistance, the opposing effects of upstream activators and 

phosphatases are balanced to yield maximum range of module output. However, at a 
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resistance ( 1
10

!
"#

s
) that is optimal for output range, the input potency is reduced by 

approximately 1.5 orders of magnitude (Figure II-12). 

 

Figure II-11. The dependence of dynamic range of module output on 
resistance to activation for wide range of perturbations in 

s
!  and 

s
! . 

Output range, which was depicted in Figure II-5 for 22
1010= !

!

s
"  and 

  

! 

"
s
=10

#0.5
($), 100(%), 100.5(!), 101(&), shows a single, biphasic relationship to 

resistance to activation. Thus, maximum range may be obtained by adjusting either 
s

!  or 
s

!  to net a resistance 1
10

!
"#

s
 (dotted line). The solid black line shows the 

analytic solution of the range for a three stage cascade. 
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Figure II-12. The dependence of input potency on resistance to activation for 
wide range of perturbations in 

s
!  and 

s
! . 

Input potency, which was depicted in Figure II-4 for 22
1010= !

!

s
"  and 

  

! 

"
s
=10

#0.5
($), 100(%), 100.5(!), 101(&), shows a single, monotonically decreasing 

relationship to resistance to activation. At an intermediate resistance that optimizes 
module range (dotted line), input potency is at least one order of magnitude below 
its maximum. The solid black line shows the analytic solution of the potency for a 
three stage cascade. 

 

4.4 Relaxation of resistance parameters 

 The previous results were subject to the constraint that a single resistance 

! 

"
s( ) 

was uniformily applied to all stages of the MAP kinase module. We relaxed this 

constraint to allow unequal stage resistances 

! 

"
1
,"

2
,"

3( ) . To describe the behavior of the 

MAP kinase cascade with variable stage resistances, we first focused analytically on the 

performance of a single stage in isolation. (For consistent nomenclature, we used Raf 

activation in isolation from the rest of the cascade to illustrate our derivation of single 
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stage resistance.) Previous work by Goldbeter and Koshland appropriately described the 

steady-state behavior of such a single stage system (Goldbeter and Koshland, 1981). To 

arrive at their solution, the authors made two key assumptions. First, they neglected the 

contribution of 

! 

I
*
"Raf{ }and 

! 

P
Rf
"Raf

*{ } to the species balance of the substrate, Raf. 

Second, they assumed that the converter enzymes, I* and PRf, operate in the first order 

regime, or that 

 

! 

Raf
T

<<
k",1

+ k
cat,1

k+,1

 and Raf
T

<<
k",4

+ k
cat,4

k+,4

 (25) 

The following analytical expression describes the steady-state activation of the modified 

substrate 

! 

Raf
ss

*( )as a function of the rate constants and the total concentrations of the 

model components, where we have recast the equation using our dimensionless groups: 

s
! , 

s
! , 

i
! , 

i
!  and 

i
! . 

 

! 

Rafss* =
1

1+"
1

KM ,1

KM ,4
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' 
( 

,  where KM ,i =
)

i
1+ *i( )
+ i , s

 and "s =
- s

, s

 (26) 

Note that the single stage resistance, ω1, falls cleanly out of the above equation, as 

suggested from our prior computational results. Generalizing this result to the second and 

third stages of the cascade, we obtain the following equations: 

 

! 

Mekss* =
1

1+"
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1
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Now, to reconstruct an n-stage cascade using the above equations, it must further be 

assumed that there are no upstream interactions, i.e., the parameters and potential 

behavior of stage s + 1 does not influence the behavior of stage s. Then, the above 

equation can be iteratively substituted into itself to obtain a steady-state dose-response 

expression for any n-stage cascade. Following are the first three iterations: 
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The above dose-response curves can now be used to quantitatively predict any 

steady-state property of the cascade, including the dynamic range and potency. The 

dynamic range can be obtained in a straightforward manner by substituting Equation 30 

or 31 into Equation 20. Below are the analytic equations for the range of a 2-stage and a 

3-stage cascade: 
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Equation 33 precisely recapitulates the results from our numerical simulations for the 

same values of πs and κs (Figure II-11). Using Equation 32 for a 2-stage cascade, we 

computed the dynamic range where ω1 and ω2 vary independently of each other (Figure 

II-13). We chose to show this result for a 2-stage cascade so that the results could be 

displayed graphically. The model predicted that the dynamic range will depend on both 

ω1 and ω2 and that there is a region in the ω1 ,ω2 plane for which the range is biologically 

significant (i.e., where the range is near 1). 

 

 Likewise, the potency can be described by an analytic expression derived from 

Equations 30 and 31. Given a certain dynamic range determined by Imin and Imax, the 

potency is equal to the 1/I* that gives half-maximal response within the dynamic range; 

the potency is therefore a function of Imin, Imax, ωs, and KM,i. The potency has been derived 

for a 2-stage and a 3-stage cascade as follows: 
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Equation 35 is plotted in Figure II-12, and accurately recapitulates the results from our 

numerical simulations. To characterize the variation of the potency with single stage 

resistance, we plotted Equation 34 as a function of both ω1 and ω2 (Figure II-14). As 
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anticipated, the potency is maximized when both ω1 and ω2 are small. Comparing both 

the range and the potency for a 2-stage cascade, we observe that both properties cannot 

be simultaneously optimized by altering the resistance vector, (ω1,ω2). Rather, a balance 

must be achieved that permits an appropriately large dynamic range to communicate with 

downstream modules, while having an adequate potency to sense the input. 

 

Figure II-13. Dynamic range as a function of single stage resistances. 
The analytic solution to the dynamic range for a 2-stage cascade (Equation 32) is 
plotted as a function of independent resistances, ω1 and ω2. The color intensity 
indicates the value of the range. 
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Figure II-14. Potency as a function of single stage resistances. 
The analytic solution to the input postency for a 2-stage cascade (Equation 34) is 
plotted as a function of independent resistances, ω1 and ω2. The color intensity 
indicates the value of the potency. 
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5.   Discussion 

 The MAP kinase module is a recurring mode of signal transduction utilized in 

natural systems to regulate cell proliferation, differentiation, migration and gene 

expression (Lewis et al., 1998; Pearson et al., 2001). Therefore, re-engineering this 

module's quantitative signaling properties would offer powerful means to control a range 

of cell behaviors. Two important issues emerge when developing strategies to re-engineer 

signaling networks. First, the quantitative features most attractive to redesign must be 

identified. Second, an understanding as to how these features depend on parts of the 

circuit that are most amenable to manipulation in experimental systems must be 

developed. The computational analysis presented here delineates how features of the 

MAP kinase module such as signal amplification, range of output and signal lifetime 

depend on experimentally adjustable components—kinase and phosphatase expression 

level. Moreover, it is illustrated that the effect of perturbing the expression level of these 

constituents on the MAP kinase circuit may be accurately predicted through a parameter 

that gauges resistance to signal activation. 

 

Signal amplification has been viewed classically as a chief function of kinase 

cascades, especially under conditions where downstream target outnumbers upstream 

kinase as in the case of Raf-Mek signal exchange (Pearson et al., 2001). Model analysis 

suggests that this sufficiency criteria for amplification represents only a limiting 

condition in which the amount of kinases greatly exceed phosphatases. In this scenario, 

even the smallest, non-zero input triggers complete activation of all kinases in the 

cascade. Thus, output is assured to be greater than input, since the downstream 
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component is expressed at higher level. However, phosphatases such as HePTP, PP1 and 

PP2A, which deactivate module kinases, are expressed constitutively in many cell 

systems (Keyse, 2000; Saxena and Mustelin, 2000; Tamura et al., 2002). In their 

presence, the model predicts that even modules with greater downstream components 

than upstream activators may perform as attenuators. This is consistent with 

measurements in both yeast and mammalian cells in which signal gain is often orders-of-

magnitude lower than that predicted by knowledge of relative kinase expression level 

alone (Ferrell, 1996). Therefore, the important parameter is not only the relative amount 

of upstream to downstream factors (
s

! ), but also the amount of phosphatase relative to 

kinase (
s

! ) at each stage s  of the cascade. 

 

Integrating the contributions from these two parameters, the resistance to signal 

activation at each stage (
s

! ) effectively gauges module capacity to transduce signal. 

Large values for 
s

!  represent greater resistance to signal activation, impeding module 

response to input. One gauge of input effectiveness is its potency, which measures the 

amount of input required to induce half-maximal response. A single, monotonically 

decreasing function describes the dependence of input potency on resistance to signal 

activation, despite independently varying the ratio of upstream to downstream kinase 

amount or relative level of phosphatases and kinases. At low resistance, efficient output 

is produced even for small input values, thereby conferring high potency to the input. 

 

This result would suggest that a module design with kinases and relatively 

minimal phosphatases would offer the strongest response to input. However, while input 
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potency may be enhanced by reducing resistance to activation, there is a design trade-off 

involving another feature—the range of output with which the module communicates to 

potential downstream effectors. A discrete number of active Erk molecules serve as 

module output. If output is a graded function of input amount, the range represents 

intermediate amounts of active MAP kinase with which the module may relay higher-

grain information to downstream targets. Alternatively, the MAP kinase cascade may 

function as a switch, toggling between an on- and off-state (Huang and Ferrell, 1996). In 

this case, maximum range is desirable, since it dictates the ease with which downstream 

effectors resolve between on- and off-states. Unlike input potency, module range is a 

biphasic function of resistance to activation. At low and high resistances, module output 

is either too easily stimulated to maximum or too difficult to activate beyond near-zero 

response, respectively. To maximize range, an intermediate resistance to activation is 

required, but at the cost of input potency. Importantly, the resistance to signal activation 

offers predictive value in assessing this design trade-off between enhancing 

communication with input (input potency) versus downstream effectors (range). 

 

In addition to steady-state features, module resistance to activation serves as a 

predictive tool for redesigning signal dynamics. Since transient MAP kinase signals elicit 

different cell behaviors than sustained signals (Marshall, 1995; Roulston et al., 1998), 

tuning signal lifetime has direct implications for engineering cell behavior. Model 

analysis indicates two regimes of control over signal lifetime. In the first regime, 

resistance to activation is high, ensuring rapid signal decay. In this case, input and output 

decay with similar kinetics, and further increasing resistance will not reduce signal 
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lifetime. This prediction of input-dictated control of signal lifetime is consistent with 

regulatory schemes employed in natural systems. In PC12 cells, EGF transiently activates 

Erk and promotes proliferation, while NGF-mediated sustained Erk activation leads to 

differentiation (Marshall, 1995). Underlying this difference, EGF drives Erk activation 

via an unstable protein complex including Crk, C3G and Rap1, while NGF-mediated 

input to the Erk module involves a stable form of the same complex (Kao et al., 2001). 

Hence, regulating input stability has been proposed to mediate differences in module 

output dynamics. Model predictions would further suggest an important role for 

constitutive phosphatase activity in such systems, since module resistance to signal 

activation is required for transient input to produce transient output. 

 

The second regime of control over dynamics occurs at low or intermediate 

resistances at which input decays more rapidly than output. In this case, the time-scale of 

MAP kinase signal decay will be sensitive to an increase in module resistance to 

activation. Similar to other signaling systems in which signal adapts despite continued 

presence of input (Alon et al., 1999; Barkai and Leibler, 1997; Yi et al., 2000), decay of 

this module's output in response to a transient input is a robust property, but the time to 

achieve complete decay is not. In fact, this flexibility is likely exploited by natural 

systems, in which external stimuli not only activate kinases, but also alter phosphatase 

expression and/or their enzymatic activity (Keyse, 2000; Saxena and Mustelin, 2000; 

Tamura et al., 2002). Model results indicate that such changes would modify the 

resistance to signal propagation, altering signal lifetime based on environmental context. 

Since choice of cell behavior has been linked to MAP kinase signal dynamics, this offers 
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an adaptable platform to produce quantitatively distinct signals with disparate functional 

outcomes using a single signaling module. Such flexibility is consistent with the 

pleiotropic effects that individual MAP kinases exert on cell function. Furthermore, 

similar phosphatase-mediated flexibility has been reported in a larger scale network, 

which includes pathways extrinsic to the MAP kinase module involving Erk-mediated 

negative and positive feedback (Asthagiri and Lauffenburger, 2001; Bhalla et al., 2002). 

 

In summary, this work delineates features of the MAP kinase module that are 

attractive targets for engineering design. Moreover, it is proposed that these features may 

be tuned in a predictable fashion by considering a single metric—the resistance to 

activation. Future work will focus not only on implementing these design strategies in 

experimental systems, but also to exploit the modular character of our model, which 

focuses on mechanisms intrinsic to the MAP kinase cascade. Such modular models are an 

important first-step in a hierarchical strategy to represent large signal networks through 

interconnected modules in a manner analogous to the construction of a circuit board of 

interconnected integrated chips (Asthagiri and Lauffenburger, 2000). To be effective, 

hierarchical models require that the mechanistic, detailed description of individual 

modules be substituted with computationally less intensive, yet quantitative, “operating 

rules.” This computational work offers such a description for the MAP kinase module by 

reducing the combined contributions of kinases and phosphatases into a single metric, 

which gauges resistance to signal activation and accurately predicts several quantitative 

module features. Interconnecting such analog rules for information processing, along 

with Boolean operations characteristic of other biochemical networks (Arkin and Ross, 



58 

 

1994), may help to form a quantitative basis for model reduction of large signaling 

networks.  
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6.   Appendix 

The resistance to activation accurately predicts signal half-life over a wide range 

of values for 
s

!  and 
s

!  (see Figure II-10). Here, we examined the robustness of this 

predictive capability to changes in the dimensionless groups that involve rate constants, 

namely 
i

! , 
i
! , 

i
! . Sensitivity to each parameter was performed by varying its value over 

two orders of magnitude around its reference value (see Table II–1). 

 

 

Figure II-15. Sensitivity analysis of the ability of module resistance to predict 
half-life due to changes in 

s
!  and 

s
!  for perturbations in 

i
! . 

The value of 
i
!  was varied among 0.1 (green), 1 (red) and 10 (black). The 

parameters 
s

!  and 
s

!  were varied over the same range as in Figure II-10, i.e., 
21

1010= !
!

s
"  and 

  

! 

"
s
=10

#0.5
($), 10#0.25(%), 100(!), 100.25(&), 100.5(') . 
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As expected, for fixed 
s

!  and 
s

! , decreasing 
i
!  changes the half-life of output 

signal (Figure II-15). Notably, for each value of 
i
!  (0.1 , 1 and 10  with each grouped by 

color), module resistance accurately predicts half-life for wide perturbations in the 

potential design variables—
s

!  and 
s

! . Similar robustness in the ability of module 

resistance to predict signal half-life for changes in 
s

!  and 
s

!  is observed for 

perturbations in 
i
!  and 

i
!  (Figure II-16 and Figure II-17, respectively).  

 

 

Figure II-16. Sensitivity analysis of the ability of module resistance to predict 
half-life due to changes in 

s
!  and 

s
!  for perturbations in 

i
! . 

The value of 
i
!  was varied among 0.01 (green), 0.1 (red) and 1 (black). The 

parameters 
s

!  and 
s

!  were varied over the same range as in Figure II-10, i.e., 
21

1010= !
!

s
"  and 

  

! 

"
s
=10

#0.5
($), 10#0.25(%), 100(!), 100.25(&), 100.5(') . 
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Figure II-17. Sensitivity analysis of the ability of module resistance to predict 
half-life due to changes in 

s
!  and 

s
!  for perturbations in 

i
! . 

The value of 
i

!  was varied among 0.1 (green), 1 (red) and 10 (black). The 
parameters 

s
!  and 

s
!  were varied over the same range as in Figure II-10, i.e., 

21
1010= !

!

s
"  and 

  

! 

"
s
=10

#0.5
($), 10#0.25(%), 100(!), 100.25(&), 100.5(') . 
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CHAPTER III.   QUANTITATIVE EFFECT OF SCAFFOLD 

ABUNDANCE ON SIGNAL PROPAGATION 

1.   Abstract 

 Protein scaffolds bring together multiple components of a signaling pathway, 

thereby promoting signal propagation along a common physical “backbone.” Scaffolds 

play a prominent role in natural signaling pathways and are emerging as a promising 

platform for synthetic circuits. To better understand how scaffolding quantitatively 

affects signal transmission, we conducted an in vivo experimental sensitivity analysis of 

the yeast mating pathway to a broad range of perturbations in Ste5 abundance. Our 

results demonstrate that the expression level of Ste5 significantly affects several 

quantitative aspects of signal propagation, including signal throughput, pathway 

ultrasensitivity and baseline leakage. Some of these effects, such as changes in pathway 

responsiveness to pheromone stimulation, impact the ultimate physiological response of 

yeast cells. In contrast, other effects, such as the baseline leakage in MAP kinase 

signaling at higher expression levels of Ste5, remain buffered and do not propagate 

downstream. Our quantitative measurements reveal performance tradeoffs in scaffold-

based modules and help to define engineering challenges for implementing molecular 

scaffolds in synthetic regulatory versus metabolic pathways. 
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2.   Introduction 

Protein scaffolds bind concomitantly to multiple components of a signaling 

pathway, thereby organizing signal transmission onto a common physical backbone 

(Bhattacharyya et al., 2006b). Scaffold-based modules are broadly used to propagate 

signals that regulate cell cycle, proliferation, differentiation and motility in species 

ranging from yeast to human (Pawson and Scott, 1997). Scaffolds are also emerging as a 

promising platform for engineering synthetic signaling modules. Molecular redesign of 

scaffolds has been used to alter the repertoire of scaffold binding partners, thereby 

redirecting signal flow (Park et al., 2003) and altering signal dynamics (Bashor et al., 

2008). 

 

In addition to the molecular design of the scaffold, the quantitative performance 

of scaffold-based modules will depend on the expression level of the scaffold and its 

binding partners. Computational models have been used to examine how the expression 

levels of module constituents may contribute to signal throughput (Levchenko et al., 

2000). These models predict that scaffolds may not always promote signal propagation. 

When scaffold concentration exceeds an optimal level, enzymes and substrates are 

predicted to bind to distinct scaffolds rather than onto a single backbone, thereby 

inhibiting signal transmission via combinatorial inhibition. 
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Figure III-1. The Ste5 scaffold and the pheromone MAP kinase pathway in S. 
cerevisiae. 
Ste5 has independent binding sites for Ste4, Ste11, Ste7 and the MAP kinase, Fus3. 
Another MAP kinase, Kss1 (not depicted for clarity), also binds Ste5, albeit with 
lower affinity than Fus3, and is also activated by Ste7. Upon pheromone 
stimulation, Ste5 facilitates signal transmission from Ste4 to Fus3/Kss1. Active 
Fus3 and Kss1 trigger the transcription of FUS1, cell cycle arrest, and ultimately 
mating. 

 

These and other model predictions, however, are based on idealized mathematical 

representations of scaffold-based signaling. In contrast, scaffold-mediated signaling in 

vivo is often far more intricate as exemplified for the prototypical scaffold Ste5 in yeast 

cells (Figure III-1). Some of the binding partners of Ste5 (e.g., Ste7 and Fus3) dock with 

each other independent of the scaffold (Bardwell et al., 1996). This scaffold-independent 

interaction may compete with scaffold-mediated signaling, rendering scaffold-based 

signaling ‘brittle’ to variations in the expression levels of critical components (Ferrell 

2000). Furthermore, dimerization of Ste5 and other scaffolds is a critical step in signal 

transmission (Yablonski et al., 1996) and may contribute to apparent cooperativity 
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(Ferrell 2000). In addition, Ste5 translocates between different subcellular compartments 

(Pryciak and Huntress, 1998; van Drogen et al., 2001), is regulated by Fus3-mediated 

negative feedback (Bhattacharyya et al., 2006a) and binds competitively to multiple 

proteins (Fus3 and Kss1) with different affinities (Kusari et al., 2004). This complex 

array of mechanisms conceals precisely how real scaffolds such as Ste5 quantitatively 

contribute to signal transmission in vivo. 

 

To better understand the quantitative contribution of the Ste5 scaffold to signal 

transmission, we conducted an in vivo experimental sensitivity analysis of the mating 

pathway to a broad range of perturbations in Ste5 abundance. Our results demonstrate 

that perturbations in scaffold abundance have significant effects on several quantitative 

aspects of signal propagation, including signal throughput, baseline drift and pathway 

ultrasensitivity.  
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3.   Results and Discussion 

3.1 Modulation of scaffold expression level 

To better understand the quantitative effect of scaffold abundance on pheromone-

mediated MAP kinase signaling, we engineered a panel of yeast strains that express Ste5 

at different levels. Starting with a ste5∆ null parent strain, we introduced a C-terminal, 

myc-tagged version of STE5 under the regulation of various constitutive promoters 

(Mumberg et al., 1995) and measured the relative expression level of Ste5 in the different 

strains by a quantitative immunoblot procedure (see Materials and Methods and Figure 

III-8 in Supplementary Data). Ste5 expression in this panel of yeast strains spanned 

nearly two orders of magnitude (Figure III-2). The highest level of expression was 50-

fold greater than that supported by the wild-type STE5 promoter. 

Figure III-2. Modulating 
the expression level of the 
scaffold Ste5. 
Myc-tagged Ste5 was 
expressed behind an array of 
constitutive promoters 
(pCYC, pADH, pTEF and 
pGPD), including the wild-
type STE5 promoter 
(pSTE5). Vectors were 
transformed into a ste5∆ 
yeast strain, and the relative 
expression levels of Ste5 
were measured by 
quantitative immunoblot 
with standard curve. Error 
bars denote standard error 
(n=3). 
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3.2 Effect of scaffold on signal throughput and pathway ultrasensitivity 

To quantify the sensitivity of the mating pathway to Ste5 abundance, we 

measured the mating transcriptional response over a broad range of α-factor 

concentrations in our panel of yeast strains. Variations in scaffold abundance had a 

significant effect on the transcriptional output of the mating pathway (Figure III-3). At 

every dose of the α-factor stimulus, the output was biphasic with respect to the level of 

Ste5, revealing that an optimum level of Ste5 scaffold is needed to maximize signal 

throughput. This biphasic relationship is consistent with model predictions (Levchenko et 

al., 2000) and with previous studies of mammalian scaffolds JIP and KSR (Ferrell, 2000; 

Levchenko et al., 2000). Past studies involving Ste5 overexpression reported only signal 

augmentation (Kranz et al., 1994) (Choi et al., 1994; Kranz et al., 1994). Our data shows, 

however, that this may have been a limitation in the range of Ste5 overexpression 

explored in those studies rather than a fundamental difference between Ste5 and 

mammalian scaffolds.  

 

(Section 3.2 continues after Figure III-3.) 
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Figure III-3. Sensitivity analysis of mating pathway response to perturbation 
in scaffold abundance. 
Yeast cells expressing different levels of Ste5 were induced with α-factor for 2.5 h. 
The pFUS1-GFP reporter response was measured by flow cytometry. The relative 
mean GFP fluorescence is shown for the various Ste5 expression levels and α-
factor doses. Two different views of the surface plot are shown. 
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In addition to the magnitude of pathway response, Ste5 abundance has a 

significant effect on the responsiveness of the mating pathway. Fitting the Hill equation 

to the dose-response curves revealed that both the Hill coefficient (nH) and the 

pheromone dose at which half-maximal response is achieved (EC50α, a widely used 

biological metric that is inversely related to stimulus potency) are significantly affected 

by Ste5 expression level (See Supplementary Data, Figure III-9, and Table III–3). At the 

wild-type level of Ste5, approximately a greater than 100-fold change in pheromone 

concentration was required to shift from 10% to 90% of maximal response (nH = 0.93); in 

contrast, at the optimum dose of Ste5, a 25-fold change in pheromone concentration was 

sufficient to achieve an equivalent shift in reporter output (nH = 1.4). This enhanced 

cooperativity did not involve a shift from graded to all-or-none response at the single-cell 

level (Figure III-9). Rather, at the optimum scaffold expression level, the transcriptional 

output in individual cells was more responsive to changes in pheromone concentration. In 

addition to a steeper response to pheromone dose, the EC50α shifted from 100 ng/mL to 

50 ng/mL when Ste5 expression is increased from its wild-type level to its optimum. 

 

These measurements reveal that maximum signal throughput, apparent 

cooperativity and α-factor potency occur at approximately the same optimum level of 

Ste5. To test whether these significant changes in the transcriptional response translate to 

the ultimate biological response, we assessed the mating response of yeast cells using the 

halo assay. Here, the pheromone is supplied from a central source and induces cell cycle 

arrest up to a radius beyond which the pheromone concentration is too low for cells to 

respond. Since the EC50α of the transcriptional response is sensitive to Ste5 level, we 
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tested whether the radius of the halo exhibits a similar dependence on scaffold expression 

level. As Ste5 expression was increased from its wild-type level, the size of the mating 

halo increased until reaching a maximum at an optimal dose of Ste5 (Figure III-4). 

Increasing Ste5 expression level beyond this optimum reduced the size of the mating 

halo. The optimum level of Ste5 that maximizes the halo radius precisely correlates with 

the optimum Ste5 level for transcriptional response. 

 

 

Figure III-4. Perturbation of scaffold abundance quantitatively alters 
phenotypic response. 
The mating halo assay was performed in cells expressing different levels of Ste5. 
Results from a single representative out of two independent trials are shown. 

 

3.3 Closer examination of the Ste5 module  

Transcriptional response and cell-cycle arrest are several steps downstream of the 

direct MAP kinase outputs of the Ste5 scaffold. To confirm that the effect of Ste5 

perturbations on the mating pathway truly emanates from the direct outputs of the Ste5 

module, we measured the phosphorylation of the mating MAP kinases, Fus3 and Kss1, 

by quantitative Western blotting. At the saturating dose of 2 µg/mL α-factor, the levels of 

both phospho-Fus3 and phospho-Kss1 exhibit a biphasic dependence on Ste5 abundance 

(Figure III-5). Furthermore, the biphasic dependence of MAP kinase signaling on 
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scaffold abundance closely matches the trend in the transcriptional output (Figure III-6).  

 

 

Figure III-5. Phospho-MAPK response to perturbation in Ste5 expression. 
Yeast cells were induced with α-factor or left unstimulated for 15 minutes and 
phospho-Fus3 and phospho-Kss1 were analyzed by immunoblot. 

 

Figure III-6. Quantitative measurements of phospho-MAP kinase and pFUS1-
GFP responses. 
The levels of the phospho-MAP kinases were normalized by their respective total 
protein expression. Error bars denote standard error (n=3). The asterisks indicate 
the p-value between the marked data point and the maximum data point for a given 
curve: *, p < 0.01 and **, p < 0.05 (Student’s t test). 
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These measurements also revealed that both phospho-Fus3 and phospho-Kss1 

exhibit a similar biphasic dependence on Ste5 abundance, suggesting that a common 

upstream factor, such as Ste7, may be the limiting component. To test this hypothesis, we 

overexpressed HA-tagged Ste7 in our panel of yeast strains that express Ste5 at different 

levels (Figure III-7). In parallel, we constructed a control panel of yeast strains that 

carries an empty control vector. At low scaffold abundance, overexpression of Ste7 did 

not appreciably alter the mating reporter response relative to control cells carrying the 

empty vector (Figure III-7). However, at higher scaffold concentrations, overexpression 

of Ste7 significantly increased the reporter response and eliminated the downturn in 

signal throughput.  

 

These results demonstrate a scaffold-limited and Ste7-limited regime of signaling. 

When the scaffold is the limiting factor to signal throughput (for scaffold doses below the 

optimum), increasing the expression of Ste7 had no effect on signal throughput. 

However, past the optimum dose of scaffold, signal throughput was limited by Ste7. 

Overexpression of Ste7 eliminated the biphasic dependence of signal throughput on 

scaffold amount, at least within the range of Ste5 expression explored. We reason that the 

optimum Ste5 dose has shifted to a level higher than that captured by our panel of yeast 

strains. These results demonstrate quantitatively that the abundance of scaffold and its 

binding partners together shape the biphasic dependence of signal throughput and 

determine the optimum dose of scaffold. 
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Figure III-7. Scaffold-limited and Ste7-limited regimes of signaling. 
 (A) Yeast strains expressing different levels of Ste5 were transformed with either 
an empty vector control or a vector encoding HA-tagged Ste7 downstream of an 
ADH promoter. The expression of Ste5myc and Ste7HA were confirmed by 
immunoblot. (B) Yeast overexpressing Ste7 or not were stimulated with α-factor 
for 2.5 h, and the pFUS1-GFP reporter response was quantified by flow cytometry. 
Error bars denote standard error (n=4). The asterisks indicate the p-value between 
the marked data points: *, p < 0.01 (Student’s t test).  



79 

 

3.4 Sensitivity of signal quality to scaffold abundance 

Our data demonstrate that the optimum dose of Ste5 provides a number of 

improvements to signal transmission and raises the question of whether there are 

tradeoffs in other metrics of pathway performance. Scaffolds play an important role in 

maintaining the fidelity of stimulus-response relationships between pathways that use a 

common pool of signaling intermediates. We tested whether changes in Ste5 expression 

level affect cross-activation between two closely related pathways, the pheromone and 

the high-osmolarity MAP kinases pathways (see Supplementary Data and Figure III-10). 

Pheromone stimulation activated only the mating MAP kinases and did not stimulate 

phosphorylation of Hog1, the high-osmolarity MAP kinase. Meanwhile, stimulation with 

sorbitol appropriately activated Hog1 with no cross-activation into the pheromone 

pathway. Thus, across nearly 50-fold change in Ste5 expression level, signal fidelity is 

maintained. 

 

Another important metric of the performance of signaling modules is the signal-

to-noise ratio. High-quality signal transmission involves maintaining a low baseline 

signal in the absence of stimulation, while responding with a strong signal when the 

stimulus is present. To investigate the effect of increased scaffold abundance on baseline 

signaling, we examined the phosphorylation of Fus3 and Kss1 in the absence of 

pheromone. Our measurements show that increasing Ste5 expression elevates the basal 

activities of Fus3 and Kss1 (Figure III-5). In fact, the baseline level of phosphorylated 

Fus3/Kss1 among cells expressing high levels of scaffold was equal to the pheromone-

induced response in cells expressing wild-type levels of Ste5. Interestingly, this 
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significant baseline leakage in Fus3/Kss1 signaling is not propagated to the downstream 

transcriptional response. The baseline pFUS1-GFP response exhibited little change across 

a 50-fold change in Ste5 expression (Figure III-6). Thus, although baseline activation of 

the immediate outputs of the Ste5 module is compromised, the downstream 

transcriptional mating response is buffered and maintains a normal baseline level at all 

expression levels of Ste5. 

 

3.5 Potential implications for natural and synthetic scaffold-based modules 

Our results reveal that the wild-type expression level of Ste5 is not set for 

optimum throughput and responsiveness (Figure III-3) and suggest potential reasons for 

this sub-optimal configuration. The most straightforward explanation is that operating at 

half-maximal throughput permits regulatory flexibility to tune up or down module 

performance. Indeed, our data show that such modulation of throughput would have 

quantitative effects on the ultimate biological response. Furthermore, operating in the 

Ste5-limited regime permits the tuning of pathway performance solely by tuning altering 

Ste5 expression level and makes the module less sensitive to perturbations in other 

module components. Finally, our measurements suggest that there may be a penalty for 

operating at the optimum level of Ste5. Baseline activation of Fus3/Kss1 significantly 

increases; while this baseline leakage does not affect the quality of the mating response, 

other cellular activities regulated by these kinases may be adversely affected. 

 

 Molecular scaffolds offer a promising platform for engineering synthetic 

regulatory and metabolic circuits. Our results suggest that baseline leakage may be a 
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potential design constraint for scaffold-based synthetic regulatory circuits, an issue that 

the natural mating pathway has circumvented. Baseline leakage, however, is not a critical 

drawback for metabolic scaffold-based pathway, since by definition, as these pathways 

require an input molecule on which molecular transformations would be carried out. In 

addition to baseline performance, our data suggests that shifting to an optimal dose of 

scaffold provides only a 2-3 fold improve in signal throughput. In regulatory circuits, 

such quantitative changes have important implications for downstream response as we 

have demonstrated for pheromone-mediated cell cycle arrest. In addition, it has recently 

been demonstrated that even a mild change in the strength of Fus3 signaling has 

significant qualitative effects on the phenotypic response to pheromone stimulation (Hao 

et al., 2008). In other biological contexts, small differences in signals lead to drastic 

switch-like responses in cell decisions (Ferrell, 1996). Thus, scaffold-mediated 

contributions to signal flux could play a significant role in synthetic circuits. However, in 

metabolic circuits, improving product yield by 2-3 fold may not provide significant 

process advantages. Thus, our results suggest both promising opportunities and potential 

engineering challenges for the utilization of scaffolds in regulatory versus metabolic 

synthetic circuits. By quantitatively delineating these tradeoffs, our results help to define 

the engineering challenges that must be addressed to effectively implement scaffolds in 

synthetic circuits. 
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4.   Materials and Methods 

4.1 Strains 

 The strains used in this study are listed in Table III–1 and were kindly provided 

by Elaine Elion of Harvard University and by Wendell Lim of UCSF. 

Table III–1. Yeast strains used in this study. 

Strain Description 
CB0111 W303 MATa, ste5::KanR, bar1::NatR, far1Δ, mfa2::pFus1-GFP, his3, trp1, 

leu2, ura3 
EY17752 W303 MATa, ste5::TRP1, bar1Δ, his3, trp1, leu2, ura3, ade2, can1 
 
1 Strain kindly provided by Wendell Lim at UCSF (Bhattacharyya et al., 2006a). 
2 Strain kindly provided by Elaine Elion at Harvard (Flotho et al., 2004). 
 

4.2 Plasmid constructs 

 The plasmids used in this study are listed in Table III–2. Vectors containing the 

STE5 allele, the STE7 allele, the 13Myc and 3HA epitope tags, and the 

ADH/CYC1/GPD/TEF promoters that were kindly provided by Elaine Elion (Harvard 

University), Christina Smolke (Caltech), Ray Deshaies (Caltech) and David Chan 

(Caltech), respectively. The STE5 allele was sub-cloned by PCR from plasmid pSKM12 

(Table III–2) and was ligated into the base shuttle vector pRS416 (low-copy CEN/ARS, 

URA3). The STE7 allele was sub-cloned from plasmid pVS10 (Table III–2) and was 

ligated into the base shuttle vector pRS415 (low-copy CEN/ARS, LEU2). The 13Myc 

and 3HA epitope tags were subcloned from plasmids pFA6a-13Myc-His3MX6 and 

pFA6a-3HA-His3MX6 (Table III–2), respectively, and were fused to the C-terminus of 

the gene of interest in the base shuttle vectors. The various constitutive promoters were 
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sub-cloned from the following vectors: p416ADH, p416CYC1, p416GPD, and p416TEF 

(Table III–2). The native STE5 promoter was cloned from W303 genomic DNA by PCR, 

encompassing a sequence 800 bp upstream to the start codon. All promoters were 

inserted into the base shuttle vector immediately upstream of the start codon of the gene 

of interest.  

 

Table III–2. Plasmids used in this study. 

Name Parent Vector Promoter1 Description 
pSC6-G pRS416 GPD Empty vector 
pSC7-A pRS416 ADH STE5-13Myc2 
pSC7-C pRS416 CYC1 STE5-13Myc 
pSC7-G pRS416 GPD STE5-13Myc 
pSC7-T pRS416 TEF STE5-13Myc 
pSC7-P pRS416 STE5 STE5-13Myc 
pSC10-G pRS415 GPD Empty vector 
pSC11-A pRS415 ADH STE7-3HA3 
1 All promoters listed (except the native STE5 promoter) are from (Mumberg et al., 
1995). 
2 The STE5 allele is from pSKM12 (Flotho et al., 2004). The 13Myc epitope tag is from 
pFA6a-13Myc-His3MX6 (Longtine et al., 1998). 
3 The STE7 allele is from pVS10 (van Drogen et al., 2001). The 3HA epitope tag from 
pFA6a-3HA-His3MX6 (Longtine et al., 1998). 
 

4.3 Western blot 

4.3-1 Cell growth and lysis 

  Yeast cells grown on selective media at mid-log phase growth (OD ~ 1.0, 1.3e7 

cells/mL) were induced with 1.2µM α-factor or 1M sorbitol and incubated for 15 minutes 

at 30oC. TCA was added to 8mL cells at a final concentration of 20%, and incubated on 

ice for 5 minutes. Cells were then collected and washed 3x with 1mL Tris-HCl pH = 8.0 

by centrifugation to ensure good solubility of protein. SDS-urea buffer [50µL water and 
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100µL of 125 mM Tris-HCl pH = 7.5, 8M urea, 4% (wt g/vol mL) SDS, 2% (vol/vol) β-

mercaptoethanol, 0.02% (wt g/vol mL) bromophenol blue] was added with ~50µL acid-

washed glass beads (425-600µm). Cells were homogenized using Fast Prep (Bio101 

Savant) at speed 6.5 for 45 seconds, and then whole cell lysate was incubated at 42oC for 

15 minutes to promote protein solubulization. After centrifugation for 15 minutes at max 

speed in a tabletop centrifuge, 50µL lysate was recovered and diluted by SDS-loading 

buffer [300µL of 50mM Tris-HCl pH = 6.8, 12% (vol/vol) glycerol, 2% (wt g/vol mL) 

SDS, 1% DTT, 0.01% (wt g/vol mL) bromophenol blue]. 

 

4.3-2 SDS-PAGE – quantitative Western blots only 

 To obtain quantitative data, many modifications to the standard Western blot 

protocol were made. To validate the linear comparison of samples within a gel, a standard 

curve consisting of ~7 data points was included with each gel as an internal control. To 

minimize variability of quantification, samples to be compared in a given gel were loaded 

in quadruplicate. Figure III-8 displays a typical quantitative Western blot for Ste5myc 

measurement. This approach requires the concomitant analysis of multiple samples on a 

single gel; thus, all quantitative gels were run using a wide-gel apparatus (TV-200YK 

from Topac) that accommodated 30 lanes in a single gel. 

 

 The dynamic range of the Western blot protocol is limited. To successfully detect 

all samples within a common dynamic range (as defined by the standard curve), samples 

were diluted as required in whole cell lysate of equivalent protein concentration but 

lacking the antigenic protein of interest. (Finding the proper dilutions for each blot was 
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accomplished through an iterative procedure.) We loaded lanes, whenever possible, with 

an equivalent lysate volume and protein concentration. This was done to mitigate 

pipetting error during gel loading, and to prevent horizontal band dispersion during 

electrophoresis (this effect complicates the box-drawing step of quantitation). 

 

4.3-3 Immuno-blotting 

 Blots were transferred to nitrocellulose (Biorad) and were blocked for 1 hour in 

3% milk TBST solution. Primary antibody incubation was conducted in blocking buffer 

overnight at 4oC. Primary antibodies and dilutions used in this study were as follows: 

anti-myc for detection of Ste5myc, 1:10,000 (9e10 Covance); anti-Cdc28 for equal 

loading control, 1:10,000 (sc-53 Santa Cruz Biotechnologies); anti-phospho-p44/42 

MAPK for activity of both Fus3 and Kss1, 1:1,000 (9101 Cell Signaling Technology); 

anti-Fus3 for total Fus3, 1:1,000 (sc-6773 Santa Cruz Biotechnologies); anti-Kss1for total 

Kss1, 1:500 (sc-28547 Santa Cruz Biotechnologies); anti-HA for detection of Ste7HA, 

1:10,000 (MMS-101R Covance); and anti-phospho-p38 MAPK for phospho-Hog1, 

1:1,000 (9211 Cell Signaling Technology). HRP-conjugated secondary antibodies 

(Biorad) were used at dilution 1:10,000. Blots were treated with Supersignal West Pico or 

Femto substrate (Pierce) and images were recorded using the Versa-Doc 3000 imager 

(Biorad).  
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4.3-4 Analysis – quantitative Western blots only 

 Signal intensities were quantified using the Volume tool in Quantity1 software. 

For each blot, equivalently sized, rectangular boxes were drawn around each band. A 

global background measurement was taken and was subtracted from all band intensities. 

 

 For each blot, a standard curve was constructed via linear regression. The signal 

intensities for experimental samples were averaged and then interpolated using the 

standard curve (Figure III-8). The interpolated values were then adjusted for the 

differential volumes used during loading by dividing by the respective volume loaded. 

The output of this calculation yields the final data from a single quantitative Western 

blot. 

  

 Data from anti-myc Ste5, anti-phospho-Fus3, and anti-phospho-Kss1 blots were 

subsequently normalized by the following equal loading controls: total Cdc28, total Fus3, 

and total Kss1, respectively. Signal intensities for the equal loading controls were 

determined through the same quantitative procedure described above.  

 

4.4 Flow cytometry 

 Yeast cells grown on selective media at mid-log phase growth (OD ~ 0.1-1.0) 

were induced with 1.2µM α-factor or 1M sorbitol and incubated for 2.5 hours at 30oC. 

One mL ice cold TE buffer was added to 0.5mL cells. Cells were spun at 2000rcf in a 

tabletop centrifuge and were resuspended in 1mL cold TE buffer. Cells were briefly 
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vortexed to break up cell clumps, and Fus1-GFP was detected using the Cell Lab Quanta 

SC flow cytometer from Beckman Coulter. 

   

 Data was analyzed as described previously with the following modifications 

(Bhattacharyya et al., 2006a). Electronic volume, a rough measurement of cell size, was 

used instead of forward scatter. Cells were first gated on a side scatter versus electronic 

volume plot, and then cells were gated on a GFP versus side scatter plot to quantify 

fluorescence. 

 

4.5 Halo assays for α-factor sensitivity 

 Halo assays were performed as previously described except that assays were 

performed on normal selective media with neutral pH (Sprague, 1991). 
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6.   Supplementary Data 

6.1 Quantitative Western blot analysis 

 

 
Figure III-8. Quantitative Western blot of Ste5myc abundance. 
(A) Lysates of yeast expressing varying levels of Ste5myc were loaded in 
quadruplicate along with a standard curve in a single gel. Samples were 
differentially loaded by the volume indicated in order that all signals fall within the 
dynamic range of the standard curve. All lanes were loaded with a minimum of 15 
µL total lysate using a filler lysate that lacked the antigenic protein of interest. 
Using Quantity1 software, boxes were drawn around the bands to obtain signal 
intensities (not shown).  (B) Interpolation of quantitative Ste5 data from standard 
curve. The standard curve corresponding to the blot in part A was plotted and a 
linear fit was determined by regression. Mean signal intensities for the five yeast 
strains expressing varying amounts of Ste5 are displayed on the y-axis. The signal 
intensities were used to interpolate a corresponding volume of lysate from the 
standard curve. The interpolated values are indicated on the x-axis.  
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6.2 Dose-response properties as a function of Ste5 abundance 

 For each expression level of Ste5, the dose-response data displayed in Figure III-3 

and Figure III-9 were fit to the Hill equation of the following form: 

! 

y " y
min

= y
max

#
x
nH

EC50$
nH + x

nH
 

where y is the predicted pFUS1-GFP response and x is the α-factor dose. The parameters 

determined by non-linear regression were ymin (the pFUS1-GFP fluorescence 

corresponding to 0 µg/mL pheromone), ymax (the pFUS1-GFP fluorescence 

corresponding to 2 µg/mL), EC50α (the dose of α-factor that elicits half-maximal 

response), and nH (the Hill coefficient). Hill coefficients, EC90α/EC10α (computed as 

811/nH) and EC50α values are listed in Table III–3.  

 

Table III–3. Quantitative characteristics of dose-response profiles. 

Promoter of Ste5 nH EC90α/EC10α EC50α (ng/mL) 
STE5 0.93 110 97 
CYC 1.2 40 67 
ADH 1.4 26 48 
TEF 1.3 30 43 
GPD 1.1 46 60 
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Figure III-9. Dose-response curves of pFUS1-GFP as a function of Ste5 
abundance. 
 (A) Dose-response curves fit to Hill equation. Open circles are pFUS1-GFP data 
points and solid lines represent the fit to the Hill equation. Error bars on the data 
points denote standard error (n=3). See Supplementary text for more details.  (B) 
Yeast cells expressing Ste5 from an ADH promoter were induced with α-factor for 
2.5 h. The pFUS1-GFP reporter response was measured by flow cytometry. 
Histograms of GFP fluorescence are shown for various α-factor doses. 

 



92 

 

6.3 Signal fidelity is robust to perturbation in Ste5 expression 

 Signal crosstalk between the pheromone and high-osmolarity pathways is 

minimized in part through the use of two distinct scaffolds (Ste5 versus Pbs2, 

respectively). In addition, this scaffold-mediated fidelity is reinforced by mutual 

inhibition of pathway output (Figure III-10) (Bardwell, 2006; Bardwell et al., 2007; Hall 

et al., 1996; McClean et al., 2007; O'Rourke and Herskowitz, 1998). While mutual 

inhibition sharpens cell commitment to the proper response in the presence of a stimulus, 

our results raise the possibility that the baseline activation of Fus3/Kss1 in the absence of 

pheromone may inappropriately hamper the responsiveness of the high-osmolarity 

pathway. 

 

 To determine whether the basal activities of Fus3/Kss1 impede the high-

osmolarity pathway, we measured sorbitol-mediated phosphorylation of Hog1, the high-

osmolarity MAP kinase, in cells expressing different levels of Ste5. Our data show that 

the Hog1 signaling remains robust for all expression levels of Ste5 (Figure III-10, 

sorbitol). Thus, basal activation of Fus3/Kss1 does not inhibit the high-osmolarity 

pathway. Furthermore, this data shows that elevating Ste5 expression does not deplete the 

cellular pool of Ste11, allowing this upstream factor to remain available for the high-

osmolarity response pathway. In fact, modulating the Ste5 expression level does not 

induce any inappropriate crosstalk between the pheromone and high osmolarity pathway: 

sorbitol treatment failed to activate pFUS1-GFP reporter above baseline levels and 

appropriately triggered Hog1 phosphorylation (Figure III-10). Meanwhile, pheromone 

stimulation did not activate Hog1, but did appropriately stimulate Fus3 and Kss1 
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activation (Figure III-10). Thus, across nearly 50-fold change in Ste5 expression level, 

signal fidelity is maintained. 

 

Figure III-10. Signal fidelity is robust to perturbations in Ste5 abundance. 
(A) The fidelity of input-output response may be compromised by the presence of 
excess Ste5. Ste11 is a common component of the high-osmolarity pathway (right) 
and the mating pathway (left). Inappropriate exchange of Ste11 may cause high-
osmolarity to trigger mating signals, or vice versa. Mutual inhibitory mechanisms 
between the two 
pathways prevent co-
activation due to 
upstream leakiness.  
(B) Baseline and 
induction of MAP 
kinase signaling. Yeast 
expressing varying 
levels of Ste5 were left 
unstimulated or 
stimulated with 
sorbitol or α-factor for 
15 minutes. The 
phosphorylation of 
Hog1, Kss1, and Fus3 
were monitored by 
Western blot. Blots are 
indicative of two 
independent trials.  (C) 
Baseline and induction 
of the mating 
transcriptional reporter. 
Yeast expressing 
varying levels of Ste5 
were left unstimulated 
(gray) or stimulated 
with sorbitol (black) or 
α-factor (green) for 2.5 
hours. The pFUS1-
GFP reporter response 
was measured by flow 
cytometry. Error bars 
denote standard error 
(n=3). 
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CHAPTER IV.   FUTURE WORK 

 In this study, we elucidated how the expression level of network constituents—

kinases, phosphatases, and scaffolds—affects the quantitative performance of the MAP 

kinase module. In Chapter II, we presented a model that focuses on the three stages of the 

cascade and established a simple metric—the resistance to activation—to quantitatively 

gauge module performance. In Chapter III, our experimental results of the effect of 

scaffold abundance on the mating MAPK response revealed that many module properties 

quantitatively depend on scaffold abundance, including pathway ultrasensitivity, 

maximum signal throughput, and baseline leakage. These findings provide new 

quantitative insights and lay a foundation for intriguing future directions that are outlined 

below. 

 

1.   Experimental sensitivity analysis of scaffold perturbation in the HOG 

pathway 

 Through the systematic variation of Ste5 expression, we demonstrated that 

various signaling properties of the mating MAP kinase pathway, such as pathway 

ultrasensitivity, maximum signal throughput, and baseline leakage, all varied biphasically 

with respect to scaffold abundance. However, the quantitative role of Ste5 in the mating 

pathway may not be representative of scaffolds in general. It would be intriguing to use 

the experimental platform that we have developed to quantify the role of other scaffolds 

in signal propagation.  
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In yeast, scaffold-mediated MAP kinase signaling plays a critical role in both the 

mating and the HOG pathways (Elion, 2001; Gustin et al., 1998; Hohmann, 2002). These 

two pathways control very different phenotypic responses: the mating pathway induces 

the cell to grow chemotropically in the direction of the pheromone gradient and 

ultimately facilitates cell fusion, while the HOG pathway monitors and responds to 

pressure changes in the cell’s osmolar environment. Given that these MAP kinase 

pathways govern such diverse responses, these pathways offer a compelling context to 

compare and contrast the quantitative role of scaffolds in signal propagation. Such studies 

would begin to address how general the quantitative relationship between scaffold 

abundance and MAP kinase signal response may be. 

 

 This new study centered on the osmolarity pathway would involve systematically 

varying the HOG scaffold, Pbs2, using the same vector-based expression system that was 

described in Chapter III. Wild-type yeast cells have two signaling pathways that regulate 

the response to high osmolarity (Hohmann, 2002). To properly study the HOG MAP 

kinase pathway in isolation, an ssk2Δ ssk22Δ strain that ablates the non-MAP kinase 

signaling must first be obtained (Park et al., 2003). Then, the osmolarity pathway output 

can be assessed by quantifying the level of phospho-Hog1 via Western blot. However, 

this method is time consuming and low-throughput. Therefore, as a supplement to 

phospho-Hog1 detection, it may be effective to use a Hog1-reporter level readout such as 

pSTL1-RFP (McClean et al., 2007). 

 

  



99 

 

2.   The effect of scaffold abundance on signal dynamics in the MAP 

kinase mating pathway 

 Scaffold abundance may not only affect steady-state throughput of signal 

activation, but may also be a key factor in determining its duration. Recently, Monte 

Carlo simulations of scaffold-based MAP kinase signaling predicted that scaffolds may 

influence signal dynamics by broadening the distribution of time scales for kinase 

activation (Locasale and Chakraborty, 2008). The model predicted that an optimal 

scaffold concentration would maximize signal duration. 

 

 The dependence of signal duration on scaffold abundance can be tested using our 

panel of yeast strains that express different levels of Ste5. The pheromone-induced 

response can be monitored by Western blot of the phospho-MAPKs. Once the most 

appropriate time points have been selected, the duration of the MAP kinase signal as a 

function of Ste5 abundance can be quantified. The physiological time scale for mating is 

approximately four hours and is consistent with the duration in phospho-MAPK signals 

that has been reported (Sabbagh et al., 2001). In our yeast strains that express Ste5 at 

wild-type levels, preliminary results indicate that the activation of the mating MAPKs, 

Fus3 and Kss1, persists for two hours with peak activation at 15 minutes (data not 

shown).  

 

 Recently, an experimental protocol was reported that uses the pFUS1-GFP 

transcriptional response to measure the signaling dynamics of the mating pathway 

(Bashor et al., 2008). While Western blot detection of phospho-MAP kinase signals is 
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straightforward, monitoring pathway output by FACS analysis of the pFUS1-GFP 

transcriptional response would permit more rapid, higher throughput quantitation of the 

MAP kinase pathway. Ultimately, this procedure would provide the easiest platform by 

which to generate high resolution time-course data of MAP kinase signal activation. 

 

3.   Extension of resistance metric to a scaffold-based MAP kinase cascade 

 The MAP kinase model presented in Chapter II defines a metric, the resistance to 

activation, which predicts salient features of module performance. The resistance 

captures the opposing contributions of pathway activators (kinases) and deactivators 

(phosphatases) that represent the players in this network. A meaningful extension of this 

model would be to incorporate the effect of scaffolding and to develop a new resistance 

metric that can predict module performance in the context of a scaffold. 

 To construct the model, we would generate a system of ODE’s similar to our 

previous model. Restriction of the new model to 2-stages would reduce the number of 

additional scaffold species; a 2-stage cascade would introduce 9 new molecular species, 

while a 3-stage cascade would introduce 27. By non-dimensionalization of model 

variables, groups containing the total expression of the kinases, phosphatases, and 

scaffold can be scrutinized.  
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4.   Investigation of MAP kinase design properties that result from scaffold 

dimerization  

 A prominent feature of scaffolds is its ability to bind concomitantly to multiple 

components of a signaling pathway, localizing them onto a single molecular backbone. 

The close proximity of scaffold-bound kinases facilitates signal transfer, although the 

precise mechanism of signal propagation is not well understood. Most representations of 

scaffolds tacitly assume a monomeric, cis-phosphorylation mechanism, whereby the 

signaling kinases bound to the same scaffold activate one another (Figure IV-1). 

However, an often-overlooked alternative mechanism involves dimerization. Scaffold 

dimerization has been demonstrated by ample experimental evidence for Ste5 and JIP 

(Inouye et al., 1997; Yablonski et al., 1996; Yasuda et al., 1999). In a genetics study, two 

mutants alleles of Ste5, one unable to bind Ste11 and the other unable to bind Ste7, 

display interallelic complementation (Inouye et al., 1997). While each mutant Ste5 allele 

alone was unable to promote mating, when co-expressed the mating phenotype was 

restored. Furthermore, in a pull-down assay of co-expressed myc-tagged Ste5 and GST-

tagged Ste5, detection of GST-tagged Ste5 was possible after immunoprecipitation of the 

myc-tagged Ste5 (Yablonski et al., 1996). Thus, the differentially tagged versions of Ste5 

can dimerize in vivo.  

 

 Dimerization may challenge basic assumptions about how scaffolds influence the 

quantitative properties of MAP kinase signaling networks. For example, scaffolds are 

thought to attenuate the ultrasensitivity of the MAP kinase response by promoting a 

processive rather than distributive mode of kinase activation (Levchenko et al., 2000). 
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However, our experimental evidence presented in Chapter III shows that shifting Ste5 to 

its optimal scaffold abundance increases the ultrasensitivity of the MAP kinase response. 

Interestingly, if signal activation were to require the dimerization of assembled scaffolds, 

then scaffolding would generate an ultrasensitive response (Ferrell, 2000).  

 

 An investigation of scaffold dimerization would provide an extension of the 

mechanistic insights that scaffolds confer to the quantitative performance of the MAP 

kinase cascade. To our knowledge, no scaffold model to date has reported on the effect of 

dimerization on pathway performance.  

 

4.1 Robustness to perturbation in scaffold abundance 

 In Chapter III, we demonstrated that MAP kinase signal propagation depends 

biphasically on scaffold abundance. Though perturbation of scaffold abundance 

quantitatively altered MAP kinase signaling properties and phenotypic response, changes 

in signal throughput were surprisingly robust. Across a 50-fold change in Ste5 expression 

level the MAP kinase response varied by a maximum of 2.5-fold. This result was 

unexpected given that most models predict signal output to be “brittle” with respect to 

scaffold concentration (Burack and Shaw, 2000; Ferrell, 2000; Levchenko et al., 2000). 

 

 Scaffold models that assume a cis-phosphorylation mechanism do not intuitively 

predict robustness to variation in scaffold abundance (Burack and Shaw, 2000). 

Combinatorial inhibition dictates that as scaffold abundance increases, incomplete 

scaffold complexes will compete with one another for binding partners and inhibit 
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signaling. Scaffold dimerization raises the possibility that signal propagation may occur 

via trans-phosphorylation events between the kinases of two distinct scaffolds (Dard and 

Peter, 2006). Interestingly, a trans-phosphorylation scaffold model allows a mechanism 

by which incomplete scaffold-complexes can dimerize and permit signal propagation 

(Figure IV-1). A new modeling study directed at exploring the role of trans-

phosphorylation in scaffold-mediated networks might address the discrepancy in our 

understanding of scaffolds. 

 

 

Figure IV-1. Scaffold dimerization permits signal activation for incompletely 
bound complexes via trans-phosphorylation. 
When in low abundance relative to their binding partners, scaffolds are fully 
assembled. Signal activation can proceed for both the case of cis-acting monomer 
and trans-acting dimer complexes. However, when in high abundance relative to 
their binding partners, scaffolds are only partially assembled. While signal 
activation is inhibited via the cis-phosphorylation mechanism, the trans-
phosphorylation mechanism provides a route for partially-assembled complexes to 
transmit signal.  
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 The new model can use the framework of the Levchenko-Sternberg model, and 

simply add the trans-phosphorylation mechanism (Levchenko et al., 2000). Dimerization 

of a two-membered scaffold would introduce 27 dimeric scaffold species in addition to 

the nine monomeric scaffold species. The omission of off-scaffold mechanisms of signal 

activation would simplify model construction and analysis. To parse the effect of the 

trans-phosphorylation mechanism on the sensitivity to scaffold abundance, a reference 

model of cis-acting scaffolds (that can also dimerize) would be used for comparison. 

 

4.2 Dimerization may augment the scaffold’s contribution to signal fidelity 

 As discussed previously, scaffolds play an important role in signal specificity (see 

Chapter I-5). However, an overabundance of scaffold may compromise its ability to 

maintain signal fidelity. Using the yeast mating pathway as an example (Figure IV-2), an 

overabundance of Ste5 may promote leakage of the mating signal into the adjacent HOG 

pathway by activating too large a pool of Ste11, a signaling kinase shared by both 

pathways. Active and unbound Ste11 could then associate with Pbs2 and elicit a HOG 

response. Conversely, overabundant Ste5 may increase the sensitivity of the mating 

pathway to activation by leaky signals (Flatauer et al., 2005). Activation of the HOG 

pathway will lead to Ste11 activation, but an overabundant Ste5 may “soak up” any 

active and unbound Ste11, thereby activating the mating response.  
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Figure IV-2. A shared signaling intermediate can facilitate signal leakage. 
The mating and the HOG MAP kinase pathways in yeast have distinct inputs 
(pheromone and sorbitol, respectively) and distinct outputs (Fus3 and Hog1, 
respectively). However, they share a common signaling intermediate, Ste11. In 
each pathway, scaffolding helps maintain signal fidelity. 

 

 However, our experimental results show that neither of these scenarios is entirely 

accurate. In our sensitivity analysis of MAP kinase response to perturbation in Ste5 

abundance, pheromone stimulation activated only the mating MAP kinases and did not 

stimulate phosphorylation of Hog1. Meanwhile, stimulation with sorbitol appropriately 

activated Hog1 with no cross-activation into the pheromone pathway. Thus, across nearly 

50-fold change in Ste5 expression level, signal fidelity is maintained (See Chapter 

III.6.3). 

 

 Previous models have assumed that scaffolds may insulate kinases from 

deactivation by sterically hindering the access of phosphatases (Levchenko, 2000). In a 

similar fashion, if dissociation from the dimer-complex is precluded, dimerization may 

effectively sequester a shared signaling intermediate, thereby preventing leakage (Figure 
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IV-3). Thus, in addition to binding multiple signaling components, dimerization may be 

another mechanism by which scaffolds promote signal fidelity.  

  

 

Figure IV-3. Model schematic of scaffold dimerization with signal crosstalk. 
The mating and the HOG MAP kinase pathways in yeast have distinct inputs 
(pheromone and sorbitol, respectively) and distinct outputs (Fus3 and Hog1, 
respectively). However, they share a common signaling intermediate, Ste11. In 
each pathway, scaffolding helps maintain signal fidelity.  (A) No Scaffold 
Dimerization. The E1 kinase can bind to either scaffold. When active E1 
dissociates from one scaffold, it can re-associate with another, possibly of an 
adjacent signaling pathway, thereby facilitating signal leakage.  (B) Scaffold 
Dimerization Protects E1 from Dissociation. When scaffolds dimerize, they form a 
complex that remains signaling competent. However, when dimerized, scaffold-
bound components, including E1, cannot dissociate. Thus, scaffold dimerization 
may serve as a mechanism to sequester a common signaling intermediate and 
prevent undesirable signal crosstalk. 
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 The effect of dimerization on signal fidelity can be investigated with an ODE 

model that represents the mass action kinetics of two scaffolds that homodimerize. To 

distinguish pathway inputs and outputs while permitting a shared signaling intermediate, 

a three-membered scaffold will be required. In order to monitor the effect of 

dimerization, a metric to assess the signal fidelity of the two distinct pathways will be 

required. The following definitions for signal fidelity may suffice (Komarova et al., 

2005): 

! 

Sx =
Xout /Xin

Yout /Yin
 and Sy =

Yout /Yin

Xout /Yin
 

The variables Xin and Yin represent pre-assigned inputs, while Xout and Yout represent the 

terminal outputs for the two pathways. Note that X and Y are versatile representations of 

the signals, and can manifest as steady-state values or time-integral values of the signals 

(for dynamic responses).  
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