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CHAPTER II.   RESISTANCE TO SIGNAL ACTIVATION GOVERNS 

DESIGN FEATURES OF THE MAP KINASE SIGNALING MODULE 

1.   Abstract 

Given its broad influence over numerous cell functions, redesigning the mitogen-

activated protein (MAP) kinase signaling module would offer powerful means to 

engineer cell behavior. Early challenges include identifying quantitative module features 

most relevant to biological function and developing simple design rules to predictably 

modify these features. This modeling study delineates how features such as signal 

amplification, input potency and dynamic range of output may be tuned by manipulating 

chief module components. Importantly, the model construction identifies a metric of 

resistance to signal activation that quantitatively predicts module features and design 

trade-offs for broad perturbations in kinase and phosphatase expression. Its predictive 

utility extends to dynamic properties such as signal lifetime, which often dictates MAP 

kinase effect on cell function. Taken together, we propose that predictably altering MAP 

kinase signaling by tuning resistance is not only a feasible engineering strategy, but also 

one exploited by natural systems to allow each MAP kinase to exert pleiotropic effects in 

a context-dependent manner. External stimuli not only activate kinases, but also alter 

phosphatase expression and activity, thereby reconfiguring a single module for 

quantitatively distinct modes of signaling such as transient versus sustained dynamics, 

each with unique effects on cell function. 

Stephen Chapman and Anand R. Asthagiri, Bioengineering and Biotechnology, © John 
Wiley & Sons, Inc, 2004.  Reprinted with permission from Wiley-Liss, Inc. a subsidiary 
of Wiley & Sons, Inc. 
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2.   Introduction 

The MAP kinase family of serine/threonine protein kinases are found among 

species ranging from S. pombe to H. sapiens (Lewis et al., 1998; Pearson et al., 2001). In 

mammals, MAP kinases have been implicated in regulating cell migration, apoptosis, 

proliferation and differentiation. Because of its broad influence, establishing strategies to 

redesign MAP kinase signaling would offer powerful means to engineer cell behavior. 

Recently, conceptual understanding of how MAP kinase pathways utilize scaffolds to 

maintain fidelity of stimulus-response relationships was elegantly exploited to engineer 

an artificial scaffold that converts yeast cell response to ! -factor from the natural mating 

response to an osmolarity-stress response (Park et al., 2003). Notably, the growing 

emphasis to transform conceptual description of signaling mechanisms into quantitative, 

dynamical models (Endy and Brent, 2001) would further expand the design space to 

include the possibility of quantitatively tuning information flow through signaling 

networks. This work focuses on early challenges to such quantitative redesign of the 

ubiquitous MAP kinase signaling module. 

 

Most MAP kinases signal through a well-preserved mechanism, involving serial 

activation of a cascade of enzymes (Figure II-1). The wide recurrence of this cascade 

structure has garnered its label as a ‘signaling module’ and has raised interest in the 

inherent utility of its design. Classically, these cascades have been viewed as signal 

amplifiers (Pearson et al., 2001). Each active enzyme at the top of the cascade ( *

1
E ) 

activates several targets (
2
E ); and each of those activated target enzymes *

2E( ) would, in 
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turn, activate its own group of targets 3E( ). Hence, magnitude amplification has been 

conjectured as a canonical function for enzyme cascades. 

 

 

Figure II-1. Model schematic. 

The MAP kinase module consists of a cascade of three kinases (
i
E ) and their 

counterpart phosphatases (
i
P ) as illustrated on the left. On the right, an example 

cascade is depicted: the Erk subfamily of MAP kinases is activated via the Raf-
Mek-Erk cascade. An input initiates the cascade by activating the topmost kinase, 
while the module output is the number of active MAP kinase, in this case Erk. At 
each stage s , phosphatases catalyze the deactivation of kinases. More generally, at 
stage s  an activated, upstream kinase (

1s
K ! ) converts its substrate (

s
K ) from an 

inactive to active form. Meanwhile, phosphatases at each stage (
s
P ) deactivate the 

kinase. Although not depicted, each enzyme(E)-substrate(S) reaction involves the 
formation of an SE!  complex: 

! 

E +S"E#S$E + P . 

 

Computational models offer a framework to examine such issues in a rigorous 

manner (Tyson et al., 2001). Inferring specific insight into the MAP kinase module from 

models of large-scale signaling networks is thwarted by the inclusion of numerous 
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mechanisms external to the cascade (Schoeberl et al., 2002). A complementary approach 

focuses on the module, typically represented by a cascade of three kinases 

counterbalanced by constitutive deactivation enzymes (phosphatases) at each level of the 

cascade (Ferrell, 1996). Such models and congruent experimental work in Xenopus 

oocyte extracts have demonstrated that mechanisms such as distributive, two-step kinase 

activation confers ultrasensitivity at each step of the cascade (Huang and Ferrell, 1996). 

Moreover, cascade structure helps to accumulate this ultrasensitivity from each stage, so 

that module output reveals switch-like, steady-state responses to changes in stimulus 

concentration (Brown et al., 1997; Ferrell, 1997). In addition, aforementioned scaffolding 

mechanisms have been analyzed using a similar modular approach, revealing that an 

optimal, intermediate scaffold concentration may be required for maximal signal 

(Levchenko et al., 2000). 

 

In addition to delineating signaling properties conferred by cascade structure and 

its internal mechanisms, computational analysis is necessary to develop strategies to re-

engineer this module toward novel performance objectives. In fact, the first challenge is 

to identify quantitatively the design objectives themselves, with focus on enhancing 

biological efficacy or altering the information content of this cascade. Here, we delineate 

how such design goals may be defined in terms of quantitative features of the module, 

including the threshold amount of input required to trigger the MAP kinase switch. Since 

signaling via the Erk subfamily of MAP kinases is required for proliferation (Pages et al., 

1993), redesigning the Erk module to respond to lower input levels may improve cell 

sensitivity to a mitogenic factor. Such hyper-responsive, re-engineered cells may help to 
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reduce costs associated with growth factors necessary for ex vivo repopulation of tissue 

engineering scaffolds. Alternatively, in instances where the MAP kinase of interest, such 

as JNK, drives apoptosis or programmed cell death (Davis, 2000), it may be desirable to 

reduce its sensitivity to environmental stresses, with possible implications for cell culture 

maintenance in bioprocess applications. 

 

Ultimately, even modules with altered sensitivity to stimulus must effectively 

communicate with downstream targets to elicit cellular response. In some instances, 

MAP kinase modules perform as a switch, shifting between on- and off-states (Huang 

and Ferrell, 1996). In order for this switch to impart disparate cellular responses, 

downstream effectors must clearly distinguish between on- and off-states. Thus, the 

module must communicate with output intensity of adequate dynamic range. 

 

Finally, in addition to optimizing module communication with upstream input and 

downstream targets, it is desirable to tune the information content of the module itself. 

This information is often embedded in signal dynamics as in the case of Erk and JNK, 

whose transient activation has been linked to proliferation and survival, respectively, 

while sustained activation yields differentiation and apoptosis, respectively (Kao et al., 

2001; Marshall, 1995; Roulston et al., 1998). Thus, tuning signal lifetime would offer 

control over cell fate, with direct implications for rationally designing therapeutic 

strategies that seek to revert pathological cell behavior. Of particular relevance are those 

disease states, such as cancer, in which aberrant MAP kinase signaling plays a 

significant, mechanistic role in leading to hyperproliferation and de-differentiation 
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(Lewis et al., 1998). This work delineates how these features—responsiveness to 

stimulus, range of output, and signal lifetime—and other quantitative attributes of the 

MAP kinase module may be re-engineered by manipulating experimentally-accessible 

system variables. 

 

Importantly, a second challenge is to guide redesign of these quantitative features 

of information flow with a priori knowledge of potential consequences caused by 

specific manipulations. Our model construction identifies a metric of resistance to signal 

activation, which serves as such a predictive tool. Thus, the resistance effectively predicts 

both steady-state and dynamic features of the module for broad perturbations in kinase 

and phosphatase expression levels. Notably, these system variables are manipulable using 

established techniques, such as RNA interference, antisense RNA or exogenous 

overexpression from mammalian expression vectors, making the proposed redesign 

strategies practically feasible. Taken together, we propose that predictably altering MAP 

kinase signaling by tuning resistance is not only a practical engineering strategy, but also 

one exploited by natural systems to allow each MAP kinase to exert pleiotropic effects on 

cell behavior. 
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3.   Model Development - Schematic and Equations 

A first-level representation of the MAP kinase module involves three kinases in 

series, each activated by its predecessor. A schematic of such a cascade is shown in 

Figure II-1 for the Erk subfamily of MAP kinases. At each stage ( s ), there are two 

reactions ( 3,= +ssi ), one catalyzed by the upstream activator, and the other by the 

counteracting phosphatase. A representative pair ( 2,5=i ) of reaction mechanisms for the 

second stage is given below:  

 

! 

Raf
*

+Mek"{Raf
*
#Mek}$Raf

*
+Mek

*  (1) 

 

! 

PRf + Raf
*
"{PRf#Raf

*
}$ PRf + Raf  (2) 

where enzyme-substrate complexes are denoted by }SE{ ! . For Reaction 1, the association 

of *
Raf  and Mek  is governed by the second-order rate constant ,2k+ , while the first-

order rate constant for dissociation of the complex is given by ,2k! . Finally, the rate of 

product formation from this enzyme-substrate complex is dictated by the constant cat,2k . 

In general, the rate constants of each enzyme-substrate reaction i  is given by 

! 

k+,i, i,k! , 

and icat,k  where 61= !i . 

 

Taking into account the free ( I ), active ( *
I ) and Raf-associated ( RafI

*
! ) forms of 

the input species, there are 17 components of the module. The amount of each of these 

components per cell were normalized by the total amount of each kinase and each 

phosphatase present in the system. Normalized, non-dimensional quantities are shown in 

italics to distinguish them from their dimensional counterparts: 
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 (3) 

Among the 17 non-dimensional variables, the fraction of input species in the 

active state ( *
I ) is provided as the driving function for the module. The values of the 

remaining 16 unknown dimensionless variables are determined partly by the following 

seven mass balances:  

 }{=1 RafIII **
!++  (4) 

 }{}{}{=1 11

*

Rf

*** RafPMekRafRafIRafRaf !+!+!++ "#  (5) 

 }{}{}{=1 22

*

Mk

*** MekPErkMekMekRafMekMek !+!+!++ "#  (6) 

 }{}{=1 33

*

Ek

**
ErkPErkMekErkErk !+!++ "#  (7) 

 }{=1 *

RfRf RafPP !+  (8) 

 }{=1 *

MkMk
MekPP !+  (9) 
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 }{=1 *

EkEk
ErkPP !+  (10) 

In conjunction with above, the following nine differential equations fully specify the 

behavior of the module:  
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Appearing in Equations 4-19 are five classes of dimensionless parameters: 
s

! , 
s

! , 
i

! , 

i
!  and 

i
! . Their form, significance and range of values are summarized in Table II–1. 

Simulations were performed using Matlab v. 6.1 and the ode23s and fsolve subroutines. 

 
Table II–1. Five classes of dimensionless parameters specify module attributes. 

Dimensionless 
Group Significance Symbol Range of Values 

! 

P
s
/K

s
 amount of phosphatase  

relative to kinase at stage s s
!  0.01-100 

s1s
/KK !  amount of upstream kinase relative to 

kinase at stage s s
!  0.3-3 

i,Ti, /kIk !+  proportional to affinity for  
each enzyme-substrate pair i i

!  0.1-10* 

i,icat, /kk !  
efficiency with which each E.S 

complex i will form product versus 
dissociate in a non-productive fashion 

i
!  0.01-1* 

icat,cat,1/kk  

characteristic time for product 
formation from each E.S complex i  
relative to characteristic time for 
product formation from 

! 

I
*
"Raf{ }  

i
!  0.1-10* 

*Typical values for 
i

! , 
i
! , 

i
!  were 0.6 , 0.2  and 1, respectively (Asthagiri and 

Lauffenburger, 2001; Ferrell, 1996; Levchenko et al., 2000). For sensitivity analysis (see 
Appendix), these values were varied over two orders-of-magnitude near their typical 
value as indicated. 
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4.   Results 

4.1 Model construction identifies most tangible design opportunities 

 Our model construction by dimensional analysis and further parameter grouping 

reveals five classes of dimensionless parameters, which govern module behavior (Table 

II–1). Three of these parameter classes (
i

! , 
i
! , 

i
! ) involve rate constants, whose values 

are intrinsic properties of the reacting species. While these parameters clearly contribute 

to the quantitative properties of the module, more tangible design opportunities are 

offered by two other dimensionless groups. The first (
s

! ) represents the amount of 

phosphatase relative to kinase at each stage of the cascade. The second dimensionless 

group (
s

! ) compares the expression level of an upstream kinase to the amount of its 

target at each stage. Thus, the values of these parameters are dictated by the expression 

levels of kinases and phosphatases, which are particularly attractive from a design 

perspective, since protein expression levels are readily adjustable in experimental 

systems using established techniques involving RNA interference, antisense RNA or 

mammalian expression vectors. Therefore, these two dimensionless groups are the focus 

of developing a redesign strategy. 

 

4.2 Sustained input and steady-state features 

 Most mathematical treatments of the MAP kinase cascade utilize a step function 

for module input, which was initially employed here as well. Upstream components such 

as Ras, whose active form serves as input, may be expressed at levels as high as 5
10  
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copies per cell (Scheele et al., 1995). Therefore, non-zero values for the fraction of input 

species in its active state ( *
I ) may range between 05

1010 !
! . The module output is given 

by the fraction of Erk in its active state )( *
Erk . 

 

 

Figure II-2. Temporal profile of module output in response to a step input: the 
effect of varying the relative amount of phosphatase versus kinase. 

Module was stimulated with a step input ( 0.5*
10=

!
I ), and the fraction of Erk in its 

active state was tracked over time. Simulation was performed for different relative 
amounts of phosphatases compared to kinases ( 0.52

1010= !
!

s
" ), while holding the 

ratio of upstream to downstream components fixed ( 1=
s

! ). Constitutive presence 
of phosphatases does not confer adaptation to a sustained input but affects level of 
steady-state output. 

 

In the absence of negative feedback, no adaptation is observed in module output 

(Figure II-2), or among any of the upstream kinases (data not shown). Because signal 

adaptation does not occur, the steady-state behavior of this module was examined. For 
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this cascade, the steady-state fraction of Erk in its active state (module output) displays 

sigmoidal dependence on non-zero input amplitude ( *
I ) as shown in Figure II-3. This 

sigmoidal dependence has been shown to acquire steeper transition from minimal to 

maximal output, yielding switch-like behavior when kinase activation involves a two-

step, distributive mechanism (Huang and Ferrell, 1996). Here, we consider three other 

properties—potency, range, and gain—which are crucial measures of this module's 

ability to propagate signal. 

 

 

Figure II-3. Module dose-response to changes in the relative amount of 
phosphatase versus kinase.  
The steady-state level of output was computed for different, non-zero input 
amplitudes for 1=

s
! . For intermediate ratios of phosphatase to kinase expression 

level ( 1
10=

!

s
" ), module output is a sigmoidal function of input amplitude. 

However, if kinases dramatically outnumber phosphatases or vice versa, module 
becomes insensitive to changes in input. In one extreme ( 0!

s
" ), module output 

is always maximal, even for minimal input; and, in the other extreme, module 
output is severely attenuated and unable to respond to even complete activation of 
input species. 
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4.2-1 Potency 

 Potency is a measure of how much input is required to elicit efficient module 

response. In experimental terms, stimulus potency is inversely related to the 
50

EC , which 

is the effective concentration of stimulus (typically, a ligand) required to attain half-

maximal response (e.g., cell proliferation). By direct analogy, the potency of input to the 

MAPK module is *

50
1/I , where *

50
I  is the input amplitude which promotes medium level 

of output. Module configurations that yield low values for *

50
I  confer high potency to 

input as they enable low levels of input to efficiently propagate signal. We analyzed the 

dependence of input potency on module design, particularly focusing on components of 

the cascade which are most readily tunable experimentally. 

 

The relative expression level of phosphatases to that of kinases (
s

!=/KP
ss

) at 

each stage s  dramatically affects input potency. This is most clearly revealed in Figure 

II-3 by the rightward shift in the “dose-response” curves as 
s

!  is increased. In 

performing these simulations, the value of 
s

!  was assumed to be equal for each stage s , 

largely due to the lack of experimental data that would suggest otherwise and in part to 

remain consistent with previous treatments of the MAP kinase module (Huang and 

Ferrell, 1996). For high 
s

!  values, more phophatases are present to deactivate kinases, 

thereby increasing the threshold amount of input required to elicit module response. 

Values for potency were calculated from dose-response curves, and its dependence on 
s

!  

is portrayed in Figure II-4. Consistent with the dose-response curves, input potency is a 
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monotonically decreasing function of 
s

! , with asymptotic upper and lower limits for low 

and high 
s

!  values, respectively. 

 

 

Figure II-4. Input potency. 
Aspects of the module dose-response (Figure II-3) may be tuned by altering 
module configuration. The potency of the input is inversely related to the amount 
of input ( *

50
I ) required to attain average module output. For fixed (

s
! ), an increase 

in the relative amount of phosphatases (
s

! ) reduces input potency, since more 
input is required to elicit half-maximal response. This trend is preserved for all 

0.5
10=

!

s
" ( !"! ), 0

10  (L ), 0.5
10  ( !! ), 1

10  (! ). For fixed 
s

! , increasing the 
amount of upstream kinase relative to downstream target increases input potency. 

 

In addition to phosphatase activity, signal generation at each stage of the cascade 

is determined by competing upstream activators. The net effect on module behavior may 

be evaluated by considering the 
s

!  value in balance with the expression level of 
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upstream activators relative to its downstream target (
s

!=/KK
s1s" ). For fixed 

s
! , input 

potency is enhanced for higher relative expression levels of upstream activator (Figure 

II-4). For 
ss

!" > , upstream activation outweighs deactivation at each stage, enabling 

high module output even for low input. 

 

4.2-2 Range of output 

 A second important attribute of the MAPK module is the range of output 

produced in response to a spectrum of non-zero input. This range is defined as the 

difference in output caused by full stimulation (i.e., all input species are active) versus 

minimal, non-zero input:  

 

! 

range = Erkss
*[ ]

max input
" Erkss

*[ ]
min input

 (20) 

While model results depict output as a continuous function of input, discrete numbers of 

active Erk molecules serve as physiological module output. Thus, a module whose range 

of output is large would possess more intermediate values of output with which to convey 

“higher-grain” information to the next module. 

 

Module range demonstrates biphasic dependence on 
s

!  as shown in Figure II-5. 

For low 
s

!  values, relatively few phosphatases are present to impede kinase activation. 

In this case, even minimal non-zero input activates all available kinases, precluding 

higher output in response to further increments in input. Meanwhile, at high 
s

! , intense 

phosphatase activity does not permit signal generation even at maximal stimulation, 

yielding no difference in output magnitude for low versus high input. Only at an optimal 
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intermediate 
s

!  value, balanced phosphatase and upstream kinase activity enable a large 

range of output to changes in input stimulation. This balance is affected not only by the 

dimensionless parameter 
s

! , but also by the expression level of upstream activators 

relative to their downstream targets. Since upstream activation is enhanced for higher 
s

!  

values, greater amount of phosphatases relative to kinases is required to balance 

activation. Thus, the 
s

!  value needed to optimize module range increases for higher 
s

!  

(Figure II-5). 

 

 
Figure II-5. Dynamic range of module output. 
The dynamic range of output is the difference in module output in response to 
maximum input versus minimum, non-zero input. This range is a biphasic function 
of the ratio of phosphatase to kinase expression level (

s
! ) for 0.5

10=
!

s
" ( !"! ), 

0
10  (L ), 0.5

10  ( !! ), 1
10  (! ). Thus, maximum range of output is achieved at an 

optimum 
s

! . An increase in the relative amount of upstream to downstream 
kinases shifts this optimum 

s
!  value. 
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4.2-3 Signal amplification 

 While high-range modules “sense” low versus high input by producing 

maximally disparate output for these two extremes of stimulation, signal amplification 

quantifies the ability of the module to receive a certain amount of input and respond by 

generating even greater amount of output. Kinase cascades have been implicated as an 

optimal configuration to achieve such amplification (Pearson et al., 2001). In fact, 

amplification has been suggested to require greater amount of downstream kinase than 

upstream activator (i.e., 1<
s

! ). Thus, signal transfer from Raf to Mek has been 

identified as an ideal point for amplification (Pearson et al., 2001) because Mek levels 

typically far exceed those of Raf (Ferrell, 1996). However, Mek and Erk are expressed 

typically at equimolar levels (Ferrell, 1996), suggesting that amplification may not be the 

chief purpose of this part of the cascade (Pearson et al., 2001). 

 

We examined rigorously the dependence of signal amplification on relative 

expression level of upstream and downstream kinases (
s

! ) and on the relative amount of 

phosphatases (
s

! ). The gain (! ) in signal strength from input to output was quantified 

by the ratio of number of active Erk at steady-state to the level of input:  

 !!
"

#
$$
%

&
!!
"

#
$$
%

&
'

T

T

*

*

I

Erk
=

I

Erk
ss  (21) 

where *

ss
Erk  and *

I  are the fraction of each enzyme in their active state at steady-state 

and 
T

Erk  and 
T
I  are the total amount of each protein per cell. Thus, the module performs 

as an amplifier if 1>!  and as an attenuator if 1<! . 
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 Figure II-6. Signal amplification versus attenuation. 

For a given amount of input ( 0.5*
10=

!
I ), the signal gain (! ) is quantified as the 

ratio of number of active Erk species at steady-state to the number of active input 
species. The horizontal line (| | |) demarcates regimes yielding signal amplification 
( 1>! ) versus attenuation ( 1<! ). Even if downstream kinases outnumber 
upstream activators ( !"!

! (10= 0.5

s
# )), signal attenuation occurs for high relative 

expression of phosphatases. Conversely, at low 
s

! , amplification may occur even 
for equimolar expression of upstream and downstream kinases ( 0

10=
s

!  (L )). If 
downstream kinases are outnumbered by upstream activators ( 0.5

10=
s

!  ( !! ), 1
10  

(! )), the MAPK module serves only as an attenuator, regardless of phosphatase 
expression levels. Taken together, the module may operate as a signal amplifier or 
attenuator. 

 

The results from the model demonstrate that the kinase module may operate as 

both an amplifier and attenuator ( Figure II-6). At high values of 
s

! , the cascade always 

attenuates signal, even if downstream kinases outnumber upstream activators. Under 

these conditions, deactivators considerably outnumber activators, and signal production 

at each stage is strongly inhibited. In turn, low levels of kinase activation at each stage 
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reduces the driving force for activation in the next stage, thereby diminishing signal 

strength across the cascade. Hence, even if downstream kinases outnumber upstream 

activators, amplification is not assured. 

 

In the other extreme, as 0!
s

" , there is no restraint on kinase activation, and all 

available enzymes in each stage of the cascade are activated. The fraction of enzymes 

activated at each stage asymptotes to one (i.e., 1
*
!

ss
Erk ), and signal gain across the 

module approaches a value dictated solely by the relative expression levels of kinases and 

input magnitude:  

 !!
"
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 (22) 

In the case of equimolar expression level ( 1=
s

! ), the gain asymptotes to *
1/I . Thus, 

even for equimolar expression level of kinases, amplification is guaranteed provided all 

input species are not in their active state (i.e., 1<
*
I ). 

 

4.2-4 Transient input and module dynamics 

The module input represents upstream molecule(s) such as active Ras, which 

governs Raf activation. In many experimental systems, this upstream component 

undergoes transient activation and is better represented by a pulse, rather than a step 

input. To examine module performance to a transient input, a pulse input with lifetime !  

and amplitude 
o
I  as follows was utilized:  

 
  

! 

I
*
=

I
o
, 0 " # < $

0, # % $

& 
' 
( 

 (23) 
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The pulse input is represented by instantaneous activation and deactivation. Furthermore, 

!  is chosen as the time required for the system to reach pseudo-steady state upon 

receiving input 
o
I . Thus, system response to loss of input may be analyzed independent 

of system response to receiving input. 

 

Upon instantaneous input decay, the fraction of Erk in its active state also decays 

back to basal level as shown in Figure II-7 for fixed 
s

!  and 
s

! . Signal decay requires 

constitutive expression of phosphatases, since reducing the relative amount of these 

deactivators by decreasing 
s

!  extends signal duration (Figure II-7, compare solid lines). 

Notably, signal decay is also retarded if more upstream kinases are present relative to 

downstream targets. Thus, a two-fold increase in 
s

!  significantly extends signal lifetime 

(compare solid and dotted lines). 
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Figure II-7. Temporal profile of module output following instantaneous loss of 
input. 
Upon removal of input at time ! , the module output decays to a basal level in a 
two-phase process, involving an initial time-lag during which output does not 
change dramatically, followed by an active decay phase. For fixed 1=

s
! , reducing 

the amount of constitutive phosphatases relative to kinases ( 1.25
10=

!

s
" ) 

significantly delays output decay. Thus, instantaneous loss of input enables 
complete adaptation of module output, provided constitutive phosphatases are 
expressed. In addition, even for a decay-permissive level of 0.5

10=
!

s
" , doubling 

the ratio of upstream to downstream kinase expression extends the lifetime of 
module output ( !! ). 

 

Although a reduction in 
s

!  or an increase in 
s

!  elevates output lifetime, these 

parameter changes also increase the level of output from which decay occurs. To 

determine whether the rate of signal decay is truly affected or whether extended signal 

lifetime is a byproduct of starting from a higher output, the temporal decay profiles were 

recast in a semilog plot (Figure II-8). Beyond a time-lag and during the decay phase, 

( )*log Erk  decreases linearly with time, consistent with a decay rate that is first-order 
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with respect to fraction of Erk in its active state ( *
Erk ). Importantly, the slope of this 

output decay, which is the apparent decay rate constant, is directly affected by changes in 

s
!  and 

s
! , showing that extended lifetime is not simply a byproduct of starting from a 

higher output signal. 

 

 
Figure II-8. Output decay in semi-log format. 
The decay curves from Figure II-7 are shown on a semilog plot. During the active 
decay phase, )(log *

Erk  decreases linearly with time, indicating a first-order 
process with respect to active Erk. Moreover, both 

s
!  and 

s
!  determine the slope 

of this linear relationship—the apparent rate constant. 

 

To better understand the relationship between decay rates of input and output, the 

instantaneous input decay was replaced with an exponential decay characterized by a 

half-life, input

1/2
! . In response, the half-life of module output was calculated for different 

values of 
s

!  and 
s

! . Consistent with above results, increasing 
s

!  or decreasing 
s

!  
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reduces the half-life of module output (Figure II-9). However, this half-life is bounded by 

a lower limit, which approaches the half-life of the decaying input, emphasizing that this 

form of adaptation is fully dependent on loss of input. 

 

 

Figure II-9. Half-life of Erk signal in response to an exponential decay in 
input. 

Input amplitude ( *
I ) was reduced exponentially with an arbitrary, non-zero half-

life, 100=
1/2

input! . The time for module output to decay to 50% of its initial level was 
calculated for various 

s
!  and 

s
!  values. While this half-life of active Erk may be 

reduced, its lower bound is set by the half-life of input decay. 

! 

"
s
=10

#0.5  (| | |), 
0.25

10
!  ( !"! ), 0

10  (L ), 0.25
10  ( !! ), 0.5

10  (! ).  

 

4.3 Resistance to activation 

It is evident that the dimensionless parameters 
s

!  and 
s

!  have opposing effects 

on both steady-state properties and signal dynamics (refer to Figure II-4, Figure II-5,  

Figure II-6, and Figure II-9). These two ratios capture the competing effects that 
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phosphatases and upstream activators exert on kinase activity at each stage of the 

cascade. To determine if a single parameter accurately integrates these opposing effects, 

we defined a combined parameter as follows:  

 ./=)/KK)/(/KP(= s1sss sss
!"#$  (24) 

This parameter represents the expression level of phosphatase (
s
P ) relative to the total 

amount of upstream kinase (
1s

K ! ), offering a net measure of resistance to signal 

activation at each stage of the cascade. The present treatment maintains that all stages 

have the same resistance, allowing overall module resistance to be equated to resistance 

at each stage. 

 

To determine if this metric of resistance accurately predicts module behavior, the 

dependence of signal half-life on 
s

!  was examined. The half-life of output in response to 

an exponential decay in input was presented for independent variations in 
s

!  and 
s

!  in 

Figure II-9. These data collapse into a single dependence on resistance to activation 

(Figure II-10), indicating that effects of changing 
s

!  and 
s

!  may be predicted by the 

correlating parameter, 
s

! . As resistance to activation increases, module output is more 

easily diminished, thereby reducing the half-life of signal. In fact, the predictive utility of 

this metric of resistance is robust. Thus, for values of the rate constant-embedded 

dimensionless groups (
i

! , 
i
! , 

i
! ) that span a range of two orders of magnitude, the 

resistance quantitatively predicts signal half-life in response to changes in 
s

!  and 
s

!  (see 

Appendix). 
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Figure II-10. The dependence of half-life of Erk signal on the resistance to 
activation for wide range of perturbations in 

s
!  and 

s
! . 

The half-life of module output depicted in Figure II-9 for 21
1010= !

!

s
"  and 

  

! 

"
s
=10

#0.5
($), 10#0.25(%), 100(!), 100.25(&), 100.5(') have been plotted as a 

function of module resistance, 
sss

!" /=# . A single relationship is revealed 
between half-life of active Erk and resistance, encompassing all changes in 

s
!  and 

s
! . 

 

Additionally, the resistance to activation accurately predicts steady-state features 

such as module range and input potency. As shown in Figure II-11, at low resistance, 

even the smallest input produces maximum output, limiting module range. Conversely, 

high resistance to deactivation impedes signal production even at maximum input. Only 

at an intermediate resistance, the opposing effects of upstream activators and 

phosphatases are balanced to yield maximum range of module output. However, at a 
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resistance ( 1
10

!
"#

s
) that is optimal for output range, the input potency is reduced by 

approximately 1.5 orders of magnitude (Figure II-12). 

 

Figure II-11. The dependence of dynamic range of module output on 
resistance to activation for wide range of perturbations in 

s
!  and 

s
! . 

Output range, which was depicted in Figure II-5 for 22
1010= !

!

s
"  and 

  

! 

"
s
=10

#0.5
($), 100(%), 100.5(!), 101(&), shows a single, biphasic relationship to 

resistance to activation. Thus, maximum range may be obtained by adjusting either 
s

!  or 
s

!  to net a resistance 1
10

!
"#

s
 (dotted line). The solid black line shows the 

analytic solution of the range for a three stage cascade. 
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Figure II-12. The dependence of input potency on resistance to activation for 
wide range of perturbations in 

s
!  and 

s
! . 

Input potency, which was depicted in Figure II-4 for 22
1010= !

!

s
"  and 

  

! 

"
s
=10

#0.5
($), 100(%), 100.5(!), 101(&), shows a single, monotonically decreasing 

relationship to resistance to activation. At an intermediate resistance that optimizes 
module range (dotted line), input potency is at least one order of magnitude below 
its maximum. The solid black line shows the analytic solution of the potency for a 
three stage cascade. 

 

4.4 Relaxation of resistance parameters 

 The previous results were subject to the constraint that a single resistance 

! 

"
s( ) 

was uniformily applied to all stages of the MAP kinase module. We relaxed this 

constraint to allow unequal stage resistances 

! 

"
1
,"

2
,"

3( ) . To describe the behavior of the 

MAP kinase cascade with variable stage resistances, we first focused analytically on the 

performance of a single stage in isolation. (For consistent nomenclature, we used Raf 

activation in isolation from the rest of the cascade to illustrate our derivation of single 
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stage resistance.) Previous work by Goldbeter and Koshland appropriately described the 

steady-state behavior of such a single stage system (Goldbeter and Koshland, 1981). To 

arrive at their solution, the authors made two key assumptions. First, they neglected the 

contribution of 

! 

I
*
"Raf{ }and 

! 

P
Rf
"Raf

*{ } to the species balance of the substrate, Raf. 

Second, they assumed that the converter enzymes, I* and PRf, operate in the first order 

regime, or that 

 

! 

Raf
T

<<
k",1

+ k
cat,1

k+,1

 and Raf
T

<<
k",4

+ k
cat,4

k+,4

 (25) 

The following analytical expression describes the steady-state activation of the modified 

substrate 

! 

Raf
ss

*( )as a function of the rate constants and the total concentrations of the 

model components, where we have recast the equation using our dimensionless groups: 

s
! , 

s
! , 

i
! , 

i
!  and 

i
! . 
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+ i , s
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- s

, s

 (26) 

Note that the single stage resistance, ω1, falls cleanly out of the above equation, as 

suggested from our prior computational results. Generalizing this result to the second and 

third stages of the cascade, we obtain the following equations: 
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Now, to reconstruct an n-stage cascade using the above equations, it must further be 

assumed that there are no upstream interactions, i.e., the parameters and potential 

behavior of stage s + 1 does not influence the behavior of stage s. Then, the above 

equation can be iteratively substituted into itself to obtain a steady-state dose-response 

expression for any n-stage cascade. Following are the first three iterations: 
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The above dose-response curves can now be used to quantitatively predict any 

steady-state property of the cascade, including the dynamic range and potency. The 

dynamic range can be obtained in a straightforward manner by substituting Equation 30 

or 31 into Equation 20. Below are the analytic equations for the range of a 2-stage and a 

3-stage cascade: 
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Equation 33 precisely recapitulates the results from our numerical simulations for the 

same values of πs and κs (Figure II-11). Using Equation 32 for a 2-stage cascade, we 

computed the dynamic range where ω1 and ω2 vary independently of each other (Figure 

II-13). We chose to show this result for a 2-stage cascade so that the results could be 

displayed graphically. The model predicted that the dynamic range will depend on both 

ω1 and ω2 and that there is a region in the ω1 ,ω2 plane for which the range is biologically 

significant (i.e., where the range is near 1). 

 

 Likewise, the potency can be described by an analytic expression derived from 

Equations 30 and 31. Given a certain dynamic range determined by Imin and Imax, the 

potency is equal to the 1/I* that gives half-maximal response within the dynamic range; 

the potency is therefore a function of Imin, Imax, ωs, and KM,i. The potency has been derived 

for a 2-stage and a 3-stage cascade as follows: 

! 

potencys= 2 =
1

2

1

Imax
+
1

Imin

" 

# 
$ 

% 

& 
' 

1+(2

KM ,2

KM ,5

1+(1
KM ,1

KM ,4

2

Imax + Imin

" 

# 
$ 

% 

& 
' 

" 

# 
$ 

% 

& 
' 

" 

# 
$ $ 

% 

& 
' ' 

1+(2

KM ,2

KM ,5

1+(1
KM ,1

KM ,4

1

2

1

Imax
+
1

Imin

" 

# 
$ 

% 

& 
' 

" 

# 
$ 

% 

& 
' 

" 

# 
$ $ 

% 

& 
' ' 

 (34) 

! 

potencys= 3 =
1

2

1

Imax
+
1

Imin

" 

# 
$ 

% 

& 
' 

1+(3

KM ,3

KM ,6

1+(2

KM ,2

KM ,5

1+(1
KM ,1

KM ,4

2

Imax + Imin

" 

# 
$ 

% 

& 
' 

" 

# 
$ 

% 

& 
' 

" 

# 
$ $ 

% 

& 
' ' 

" 

# 
$ 
$ 

% 

& 
' 
' 

1+(3

KM ,3

KM ,6

1+(2

KM ,2

KM ,5

1+(1
KM ,1

KM ,4

1

2

1

Imax
+
1

Imin

" 

# 
$ 

% 

& 
' 

" 

# 
$ 

% 

& 
' 

" 

# 
$ $ 

% 

& 
' ' 

" 

# 
$ 
$ 

% 

& 
' 
' 

 (35) 

Equation 35 is plotted in Figure II-12, and accurately recapitulates the results from our 

numerical simulations. To characterize the variation of the potency with single stage 

resistance, we plotted Equation 34 as a function of both ω1 and ω2 (Figure II-14). As 



51 

 

anticipated, the potency is maximized when both ω1 and ω2 are small. Comparing both 

the range and the potency for a 2-stage cascade, we observe that both properties cannot 

be simultaneously optimized by altering the resistance vector, (ω1,ω2). Rather, a balance 

must be achieved that permits an appropriately large dynamic range to communicate with 

downstream modules, while having an adequate potency to sense the input. 

 

Figure II-13. Dynamic range as a function of single stage resistances. 
The analytic solution to the dynamic range for a 2-stage cascade (Equation 32) is 
plotted as a function of independent resistances, ω1 and ω2. The color intensity 
indicates the value of the range. 

 



52 

 

 
Figure II-14. Potency as a function of single stage resistances. 
The analytic solution to the input postency for a 2-stage cascade (Equation 34) is 
plotted as a function of independent resistances, ω1 and ω2. The color intensity 
indicates the value of the potency. 
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5.   Discussion 

 The MAP kinase module is a recurring mode of signal transduction utilized in 

natural systems to regulate cell proliferation, differentiation, migration and gene 

expression (Lewis et al., 1998; Pearson et al., 2001). Therefore, re-engineering this 

module's quantitative signaling properties would offer powerful means to control a range 

of cell behaviors. Two important issues emerge when developing strategies to re-engineer 

signaling networks. First, the quantitative features most attractive to redesign must be 

identified. Second, an understanding as to how these features depend on parts of the 

circuit that are most amenable to manipulation in experimental systems must be 

developed. The computational analysis presented here delineates how features of the 

MAP kinase module such as signal amplification, range of output and signal lifetime 

depend on experimentally adjustable components—kinase and phosphatase expression 

level. Moreover, it is illustrated that the effect of perturbing the expression level of these 

constituents on the MAP kinase circuit may be accurately predicted through a parameter 

that gauges resistance to signal activation. 

 

Signal amplification has been viewed classically as a chief function of kinase 

cascades, especially under conditions where downstream target outnumbers upstream 

kinase as in the case of Raf-Mek signal exchange (Pearson et al., 2001). Model analysis 

suggests that this sufficiency criteria for amplification represents only a limiting 

condition in which the amount of kinases greatly exceed phosphatases. In this scenario, 

even the smallest, non-zero input triggers complete activation of all kinases in the 

cascade. Thus, output is assured to be greater than input, since the downstream 
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component is expressed at higher level. However, phosphatases such as HePTP, PP1 and 

PP2A, which deactivate module kinases, are expressed constitutively in many cell 

systems (Keyse, 2000; Saxena and Mustelin, 2000; Tamura et al., 2002). In their 

presence, the model predicts that even modules with greater downstream components 

than upstream activators may perform as attenuators. This is consistent with 

measurements in both yeast and mammalian cells in which signal gain is often orders-of-

magnitude lower than that predicted by knowledge of relative kinase expression level 

alone (Ferrell, 1996). Therefore, the important parameter is not only the relative amount 

of upstream to downstream factors (
s

! ), but also the amount of phosphatase relative to 

kinase (
s

! ) at each stage s  of the cascade. 

 

Integrating the contributions from these two parameters, the resistance to signal 

activation at each stage (
s

! ) effectively gauges module capacity to transduce signal. 

Large values for 
s

!  represent greater resistance to signal activation, impeding module 

response to input. One gauge of input effectiveness is its potency, which measures the 

amount of input required to induce half-maximal response. A single, monotonically 

decreasing function describes the dependence of input potency on resistance to signal 

activation, despite independently varying the ratio of upstream to downstream kinase 

amount or relative level of phosphatases and kinases. At low resistance, efficient output 

is produced even for small input values, thereby conferring high potency to the input. 

 

This result would suggest that a module design with kinases and relatively 

minimal phosphatases would offer the strongest response to input. However, while input 
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potency may be enhanced by reducing resistance to activation, there is a design trade-off 

involving another feature—the range of output with which the module communicates to 

potential downstream effectors. A discrete number of active Erk molecules serve as 

module output. If output is a graded function of input amount, the range represents 

intermediate amounts of active MAP kinase with which the module may relay higher-

grain information to downstream targets. Alternatively, the MAP kinase cascade may 

function as a switch, toggling between an on- and off-state (Huang and Ferrell, 1996). In 

this case, maximum range is desirable, since it dictates the ease with which downstream 

effectors resolve between on- and off-states. Unlike input potency, module range is a 

biphasic function of resistance to activation. At low and high resistances, module output 

is either too easily stimulated to maximum or too difficult to activate beyond near-zero 

response, respectively. To maximize range, an intermediate resistance to activation is 

required, but at the cost of input potency. Importantly, the resistance to signal activation 

offers predictive value in assessing this design trade-off between enhancing 

communication with input (input potency) versus downstream effectors (range). 

 

In addition to steady-state features, module resistance to activation serves as a 

predictive tool for redesigning signal dynamics. Since transient MAP kinase signals elicit 

different cell behaviors than sustained signals (Marshall, 1995; Roulston et al., 1998), 

tuning signal lifetime has direct implications for engineering cell behavior. Model 

analysis indicates two regimes of control over signal lifetime. In the first regime, 

resistance to activation is high, ensuring rapid signal decay. In this case, input and output 

decay with similar kinetics, and further increasing resistance will not reduce signal 
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lifetime. This prediction of input-dictated control of signal lifetime is consistent with 

regulatory schemes employed in natural systems. In PC12 cells, EGF transiently activates 

Erk and promotes proliferation, while NGF-mediated sustained Erk activation leads to 

differentiation (Marshall, 1995). Underlying this difference, EGF drives Erk activation 

via an unstable protein complex including Crk, C3G and Rap1, while NGF-mediated 

input to the Erk module involves a stable form of the same complex (Kao et al., 2001). 

Hence, regulating input stability has been proposed to mediate differences in module 

output dynamics. Model predictions would further suggest an important role for 

constitutive phosphatase activity in such systems, since module resistance to signal 

activation is required for transient input to produce transient output. 

 

The second regime of control over dynamics occurs at low or intermediate 

resistances at which input decays more rapidly than output. In this case, the time-scale of 

MAP kinase signal decay will be sensitive to an increase in module resistance to 

activation. Similar to other signaling systems in which signal adapts despite continued 

presence of input (Alon et al., 1999; Barkai and Leibler, 1997; Yi et al., 2000), decay of 

this module's output in response to a transient input is a robust property, but the time to 

achieve complete decay is not. In fact, this flexibility is likely exploited by natural 

systems, in which external stimuli not only activate kinases, but also alter phosphatase 

expression and/or their enzymatic activity (Keyse, 2000; Saxena and Mustelin, 2000; 

Tamura et al., 2002). Model results indicate that such changes would modify the 

resistance to signal propagation, altering signal lifetime based on environmental context. 

Since choice of cell behavior has been linked to MAP kinase signal dynamics, this offers 
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an adaptable platform to produce quantitatively distinct signals with disparate functional 

outcomes using a single signaling module. Such flexibility is consistent with the 

pleiotropic effects that individual MAP kinases exert on cell function. Furthermore, 

similar phosphatase-mediated flexibility has been reported in a larger scale network, 

which includes pathways extrinsic to the MAP kinase module involving Erk-mediated 

negative and positive feedback (Asthagiri and Lauffenburger, 2001; Bhalla et al., 2002). 

 

In summary, this work delineates features of the MAP kinase module that are 

attractive targets for engineering design. Moreover, it is proposed that these features may 

be tuned in a predictable fashion by considering a single metric—the resistance to 

activation. Future work will focus not only on implementing these design strategies in 

experimental systems, but also to exploit the modular character of our model, which 

focuses on mechanisms intrinsic to the MAP kinase cascade. Such modular models are an 

important first-step in a hierarchical strategy to represent large signal networks through 

interconnected modules in a manner analogous to the construction of a circuit board of 

interconnected integrated chips (Asthagiri and Lauffenburger, 2000). To be effective, 

hierarchical models require that the mechanistic, detailed description of individual 

modules be substituted with computationally less intensive, yet quantitative, “operating 

rules.” This computational work offers such a description for the MAP kinase module by 

reducing the combined contributions of kinases and phosphatases into a single metric, 

which gauges resistance to signal activation and accurately predicts several quantitative 

module features. Interconnecting such analog rules for information processing, along 

with Boolean operations characteristic of other biochemical networks (Arkin and Ross, 
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1994), may help to form a quantitative basis for model reduction of large signaling 

networks.  
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6.   Appendix 

The resistance to activation accurately predicts signal half-life over a wide range 

of values for 
s

!  and 
s

!  (see Figure II-10). Here, we examined the robustness of this 

predictive capability to changes in the dimensionless groups that involve rate constants, 

namely 
i

! , 
i
! , 

i
! . Sensitivity to each parameter was performed by varying its value over 

two orders of magnitude around its reference value (see Table II–1). 

 

 

Figure II-15. Sensitivity analysis of the ability of module resistance to predict 
half-life due to changes in 

s
!  and 

s
!  for perturbations in 

i
! . 

The value of 
i
!  was varied among 0.1 (green), 1 (red) and 10 (black). The 

parameters 
s

!  and 
s

!  were varied over the same range as in Figure II-10, i.e., 
21

1010= !
!

s
"  and 

  

! 

"
s
=10

#0.5
($), 10#0.25(%), 100(!), 100.25(&), 100.5(') . 
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As expected, for fixed 
s

!  and 
s

! , decreasing 
i
!  changes the half-life of output 

signal (Figure II-15). Notably, for each value of 
i
!  (0.1 , 1 and 10  with each grouped by 

color), module resistance accurately predicts half-life for wide perturbations in the 

potential design variables—
s

!  and 
s

! . Similar robustness in the ability of module 

resistance to predict signal half-life for changes in 
s

!  and 
s

!  is observed for 

perturbations in 
i
!  and 

i
!  (Figure II-16 and Figure II-17, respectively).  

 

 

Figure II-16. Sensitivity analysis of the ability of module resistance to predict 
half-life due to changes in 

s
!  and 

s
!  for perturbations in 

i
! . 

The value of 
i
!  was varied among 0.01 (green), 0.1 (red) and 1 (black). The 

parameters 
s

!  and 
s

!  were varied over the same range as in Figure II-10, i.e., 
21

1010= !
!

s
"  and 

  

! 

"
s
=10

#0.5
($), 10#0.25(%), 100(!), 100.25(&), 100.5(') . 
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Figure II-17. Sensitivity analysis of the ability of module resistance to predict 
half-life due to changes in 

s
!  and 

s
!  for perturbations in 

i
! . 

The value of 
i

!  was varied among 0.1 (green), 1 (red) and 10 (black). The 
parameters 

s
!  and 

s
!  were varied over the same range as in Figure II-10, i.e., 

21
1010= !

!

s
"  and 

  

! 

"
s
=10

#0.5
($), 10#0.25(%), 100(!), 100.25(&), 100.5(') . 
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