Production Rule Verification for
Quasi-Delay-Insensitive Circuits

James N. Cook

Department of Computer Science
California Institute of Technology
Pasadena, California

In Partial Fulfillment of the Requirements
for the Degree of Master of Science

June 11, 1993

Dedicated to Jerry, Ellen,
and especially Emily.

Copyright (¢) James Cook, 1993

1 Introduction

Circuit designs have become extremely complex. The need to manage this complex-
ity has led to the development of new automated circuit design methods. Currently
these methods lean toward silicon compilation, the automated transformation of a
high level circuit description into a transistor-level, implementable design. A par-
ticularly interesting class of circuits for automatic generation are delay-insensitive
circuits. Delay-insensitive circuits are designed to operate correctly with any arbi-
trary but finite delay in wires or in operators [14]. Delay-insensitive circuits must
be asynchronous, since the use of a clock would bound the range of delays possi-
ble for correct operation. The property of delay-insensitivity has several desirable
consequences for automated design [3, 10]:

e Facilitated layout. A delay-insensitive design will function correctly after
arbitrary changes to the lengths of its wires.

¢ Elimination of global clock signals. This eliminates difficulties in dis-
tributing the clock signal simultaneously to all parts of the circuit.

e Inherently modular designs. Any component of a delay-insensitive design
can be replaced by another logically equivalent component, even if the new
component has different delays.

e Speed optimization. Transistors can be arbitrarily resized without concern
for the correctness of the circuit.

e Increased robustness. Delay-insensitive designs are less sensitive than
other designs with respect to manufacturing process variations, operating
temperatures, source voltages, etc.

Of course, the above advantages come at some cost. Elimination of the global
clock signal requires that subcircuits must generate completion signals to indicate
that they are done with their computation. This requires additional wiring and
increases the complexity of the subcircuits. In addition, the concurrent nature of
computation in such circuits can be more difficult to analyze than computation in
clocked circuits.

The concurrent nature of delay-insensitive circuit design can make them extremely
difficult to debug. Although many errors show up as shorts or hazards during
simulation, there is no guarantee that they will appear. Simulations are performed
by assigning delays to various components of the circuit; it is possible that these
assigned delays will mask such an error. Errors undetected in simulation will cause

a circuit design to lose its delay-insensitivity—the circuit’s correctness becomes
dependent on the actual delays being similar to those assumed in the simulation.

Fortunately these types of errors can be detected in high-level descriptions of a
circuit design. Circuits can be conveniently expressed as lists of production rules,
a notation developed by Alain Martin at the California Institute of Technology
[8, 10]. Lists of production rules can be guaranteed to be free of shorts and hazards
by examining them for two properties called stability and noninterference. Delay-
insensitive circuits must have these properties for all possible sets of component
delays. While it is possible to manually verify sets of production rules for these
properties, such manual verification is error prone and becomes unwieldy for all
but the smallest circuits.

In this document, we present an automated method for the verification of delay-
insensitive circuits expressed as production rules. We begin with a description
of Martin’s design method and specification of the production rule notation. We
precisely define stability and noninterference and relate them to delay-insensitivity.
We give sequential and parallel algorithms for performing verification. We provide
several examples of the verification method and describe our implementation of
the algorithms. We conclude with a summary of this work.

2 Production Rules

Alain Martin’s research group at the California Institute of Technology (Cal-
tech) has developed a synthesis method and a set of design tools for quasi-delay-
insensitive circuits. The class of completely delay-insensitive circuits has been
proven to be quite limited [9]; quasi-delay-insensitive circuits are delay-insensitive
under the assumption of isochronic forks and allow the design of a larger class of
circuits. Under the isochronic fork assumption, some of the gate outputs that are
connected to multiple gate inputs are labeled isochronic—these outputs are as-
sumed to arrive at all the connected inputs simultaneously (see [8, 10] for details).
Quasi-delay-insensitive circuits are a superset of speed-independent circuits; speed-
independent circuits can be considered as quasi-delay-insensitive circuits where all
wires are labeled isochronic [2]. In this document we exclusively consider quasi-
delay-insensitive circuits, despite the use of the phrase delay-insensitive to refer to
them.

The synthesis method works as follows. The designer begins by writing a pro-
gram describing the circuit’s behavior; this program has the form of a collection of
concurrently executing sequential processes that communicate over one-way data
channels. The notation used for these programs is called CSP (Communicating
Sequential Processes) and is based on C.A.R. Hoare’s original notation [4]. The
CSP program is next transformed into a handshaking expansion by reducing it
to an equivalent set of processes where all communication actions have been re-
placed with manipulations of shared variables. This handshaking expansion is then
transformed into a set of production rules, in which all explicit sequencing has been
removed. Production rules are the lowest level program description in the design
method; they can be easily simulated and can be automatically implemented in
CMOS. They are also sufficiently general to be useful in specitfying VLSI circuits
outside the context of this design method.

In the production rule notation a circuit is described in terms of its variables and
the conditions under which transitions on these variables occur. Each production
rule has the form G — S, where G is a boolean expression on the circuit’s variables
and S is a simple assignment (e.g., zT and z| correspond to z := true and z :=
false). G is called the guard of the production rule. Multiple production rules
with identical guards are often written with a single guard and several simple
assignments. G — zT,y], 2T is an abbreviated formof G — T, G — y|, G — =zT.
A production rule fires (executes its assignment) some time after its guard evaluates
to true. If the firing of a production rule does not change any circuit variable’s
value, then the firing is called vacuous. If a firing does change some variable, the
firing is called effective.

Production rules describe both combinatorial and state-holding gates. Figure 1

shows the production rules and transistor implementations of a NAND gate and an
inverting Muller C-element. Note that the staticizer used to hold the C-element’s
state is not explicitly described in the production rules. This is due to the semantics
of production rule firing: each firing is equivalent to an assignment to a variable.
Thus the variable should hold its value until some other production rule fires and
a different assignment takes place.

—aV-b — ¢ d AN e — fl
alb — ¢l —“dN-e — f7
a__ | : c
b%

Vdd
a—o—o‘ d
b o

e

GND GND

Figure 1: Implementation of NAND gate and inverting C-element.

There are two properties that production rule sets must satisfy; these properties
are termed stability and noninterference. Stability is defined as follows:

A production rule G — S is stable if every time G becomes true it
remains true until the assignment S is completed.

Noninterference only relates to complementary production rules, that is, production
rules of the form G1 — 2T and G2 — z| for some z. Noninterference is defined
as follows:

Two complementary production rules GI — 2T and G2 — z| are
noninterfering if and only if =(G1 A (G2) holds invariantly.

We call a set of production rules stable and noninterfering if each individual pro-
duction rule is stable and all complementary production rules are noninterfering

[10].

Informally, the stability and noninterference requirements for production rules fol-
low directly from their implementation in CMOS. Figure 2 gives the implementa-
tion of two complementary production rules that will illustrate these requirements.

-a — d]
bANe — dT

Vdd

GND

Figure 2: Production rule implementation.

The stability and noninterference requirements now become clear. If production
rule —ma — d| is unstable then @ may become false momentarily and quickly return
to true. Thus the conducting path from Vdd to d’ may not remain conducting
sufficiently long for node d to be set high, which could assign an indeterminate
value to d. Furthermore, if these two production rules are interfering then —a and
b A ¢ might become simultaneously true, resulting in a short from Vdd to GND
that could also assign an indeterminate value to d.

Although simulation can be used to check for instability and interference, it is not
guaranteed to find all such problems. Take, for example, a production rule set
containing the following production rules:

(1) a — b7
(2) b — al
(3) anb —

Assume that the simulator approximates physical delays by assigning to each pro-
duction rule a delay between the time it will be enabled and when it will fire.
(The delay could be based, for example, on the sizes and fanouts of the gates that
would implement the circuit.) Let the delays for (1), (2), and (3) be 10, 30, and
20 time units respectively. Then whenever the simulator finds a true the following
sequence will occur:

00 @ becomes true

10 (1) fires and b becomes true
30 (3) fires and ¢ becomes true
40 (2) fires and a becomes false

Thus the simulator will find that whenever a A b becomes true, it remains true until
¢ completes. Unfortunately this is not true in general—if the delay associated with
(2) was changed from 30 time units to 10 then @ would become false before (3) would
be able to fire. Thus production rule (3) would be unstable and the circuit could
fail. This circuit is therefore not delay-insensitive; changing component delays
can change its behavior. To detect this sort of error more exhaustive verification
methods than simple simulation are required.

3 Verification Method

We begin with the single assumption we require for verification. We require only
that the production rule set be closed before we can check for stability and nonin-
terference.

A set of production rules is closed if and only if for every variable other
than Reset used in a production rule’s guard there exists a production
rule describing an assignment to that variable.

The assumption of closure is necessary because we intend to verify our production
rule set with method similar to simulation. We need to have production rules for
each variable that will change, including the circuit’s inputs from the environment.
Note that exact specification of the environment with production rules is not always
possible; for example, synchronization and arbitration cannot be expressed in terms
of production rules. See Appendix A for information about how environment
specification is done in practice.

3.1 Sequential Algorithm

Assume a closed production rule set P with variables 1, xa, ..., ©,.

A circuit state is a vector with one element per circuit variable. Each vector
element can have the value 0 or 1.! For example, S[k] is the value of z; in state S.

A production rule is a two-tuple consisting of a boolean expression and an assign-
ment. We define several functions on states and production rules.

For production rule p, trans(p) is the simple assignment (transition) that will be
performed by that production rule. For example, trans(—az; A ae V 2y — ;7T) =

$4T.

For production rule p and state S, enb(p,S) is true if and only if the boolean
expression of p evaluates to true (i.e., p is enabled) when its variables are assigned
the values in S.

For production rule p and state S, eff(p,S) is true if and only if enb(p,S) A
((trans(p) = o T A S[k] =0) V (trans(p) = 2] A S[k] =1)). Thus, eff(p,5) is
true if and only if if production rule p can cause the circuit to change state when
in state 5. We call such production rules effectively enabled in S.

If the circuit’s reset logic is also being tested, vector elements can also have the value U for

undefined.

For production rule p and state S, result(p,S) is defined as follows:

e trans(p) = z;T A enb(p, S) implies result(p, S) = (..., S[k— 1], 1, S[k + 1], ...).
e trans(p) = z;| A enb(p,S) implies result(p, S) = (..., S[k — 1],0,S[k + 1], ...).
e —enb(p, S) implies result(p,S) = S.

For example, result(z; — 2T, (1,0)) = (1,1), but result(z; — 2T, (0,0)) =
(0,0).

let R = {Sinit} and let M = {}
while R # {} do
remove state S from R
let £ ={pé€ P |enb(p,S)}
let £'={pe E|eff(p,5)}
if Ip,q € E,1 <k < n such that trans(p) = #;T and trans(q) = 2| then
report interference between p and ¢ in state S
for each p € £ do
let 5" = result(p,)
if 3¢ € E’ such that —enb(g, S’) then

report ¢ unstable

if S” ¢ M then
let R=RU{S"}
end for
let M =M U{S} (mark S)
end while

Figure 3: Sequential verification algorithm.

Figure 3 gives the sequential verification algorithm in terms of the above functions
and set operations. The algorithm searches all states that can be reached by
production rule firings beginning in initial state S;,;. During this search, if the
algorithm finds a state in which two complementary production rules are both
enabled, it reports an interference problem. If it finds a transition between states
that disables an enabled production rule before it can fire, it reports an instability.

R and M are sets of circuit states. All states in R remain to be examined. M
is a set of “marked” states which the algorithm has already examined. S and 5’
are states. £ and B’ are sets of production rules, with all production rules in £
enabled in S and all production rules in £’ effectively enabled in S. S;,; is the
circuit’s initial state. P is a set containing all the circuit’s production rules.

Claim: This algorithm finds all instabilities and interferences in production rule
set P over variables x, ..., x,.

Proof: Define a directed graph G as follows. Let each vertex of the graph be one
of the 2" possible circuit states. Let there be an edge from vertex = to vertex y
if there exists a production rule p such that result(p,z) = y. Note that G may
contain cycles. Let all vertices be initially unmarked. We claim that all vertices
reachable from the vertex corresponding to state S;,;; will eventually be marked.

First we prove that the algorithm terminates. Since there are a finite number
of production rules the inner for loop must terminate. Consider the set R U M.
States are never removed from this set—if a state is removed from R it is eventually
added to M. Initially S;n;; € M. Furthermore, each S’ added to R is not in M (i.e.
RN M =0), due to the test in the if statement. Thus each iteration of the while
loop moves one state from R to M. Since the number of possible reachable states
on n variables is finite, |[RU M| is finite. Therefore R will eventually become empty
and the while loop will eventually terminate. Thus the algorithm terminates.

Suppose there exists some state reachable from S;,;; that is unmarked upon ter-
mination. Then there must exist some nonempty subset U of unmarked states
reachable from S;,;;. The first statement of the algorithm places S;,;; into R, so
the while loop will execute at least once and 5;,;; will be marked. Since S;,; is
initially marked and all states in U are reachable from S;,;;, there must exist at
least one marked vertex in GG connected to an unmarked vertex. In the algorithm,
before a state is marked, all states immediately reachable from it are added to R.
Additionally, each S removed from R is eventually marked. Since the algorithm
only terminates when R is empty, there can be no such marked vertex connected
to an unmarked vertex. Thus all reachable vertices are eventually marked, so all
reachable states are eventually visited.

Assume that two production rules p; and p; are interfering. By the definition of
interference, there exists some reachable circuit state 7' such that enb(p;, T') A
enb(p,, T'). Since all reachable states are marked, state 7' must be marked by the
algorithm. Before T' is marked, however, set £ will contain both p; and p,, and
the interference between p; and py; will be reported.

Assume that some production rule ¢ is unstable. Then, by the definition of stability
there exists production rule p and reachable state 7" such that eff(p,T') A eff(¢,T')
A —enb(q,result(p,T)). Since all reachable states are marked, 7" will be marked
by this algorithm. Before T' is marked, however, set E’ will contain both p and q.
Thus S” will eventually become result(p,T') and the instability will be reported.
O

3.2 NP-Hardness

The need to check all circuit states reachable from S;,,;; makes the time-complexity
of the above algorithm exponential in the number of circuit variables. It is un-
likely that this time-complexity can be substantially improved, as both instability
and interference checking are NP-hard. (We will later discuss how to efficiently
implement this algorithm.)

Problem: Given a set P of production rules, an initial state S;,;;, and two com-
plementary production rules p; and p; in P, decide if p; and p; are interfering
(simultaneously enabled in a state reachable from the initial state under some set
of delays for production rule firings).

Theorem: Interference checking is NP-hard.

Proof: To prove that interference checking is NP-hard, we reduce the satisfiability
problem (SAT) to it. Let E be an instance of SAT—a boolean expression in

conjunctive normal form—over variables z1, ..., z;. Construct production rule set
P over variables xq,...,x; and ¢ as:

true — x;T,..., 17

true — €]

E — €]

Let the initial state .S;,;; be the state in which all variables in P are false. We claim
that £ is satisfiable if and only if there exists interference between true — e| and
E — eT. If E is satisfiable, there exists some assignment to zy,...,z; such that
E evaluates to true. Let x;,...,z; be the true variables in this assignment. There
exists a set of delays in which true — ;T through true — ;7T all have shorter
delays than true — ;4,7 through true — ;7. Thus the circuit can reach a state in
which 4, ..., z; are true and zj4, ..., 2; are false. In this state both true — ¢| and
E — €7 will be enabled, so there will be interference between these two production
rules.

Conversely, if there exists interference between true — €| and £ — €T, then there
exists some state in which £ — €7 is enabled, which implies that E can evaluate
to true. Construction of the above production rule set can be done in polynomial
time. Thus satisfiability reduces to interference detection and the reduction can
be done in polynomial time. Therefore interference detection is NP-hard. O

Problem: Given aset P of production rules, an initial state S;,;;, and a production
rule p, decide if p is unstable. (p is unstable if and only if there exist states S and
S, reachable from S;,;; such that p is effectively enabled in 57, disabled in 53, and
the firing of some production rule moves the circuit from S; to S;.

10

Theorem: Instability checking is NP-hard.

Proof: To prove that instability checking is NP-hard, we reduce the satisfiability

problem to it. Let £ be an instance of SAT over variables zy,...,z;. Construct
production rule set P over x1,...,x; and e, [as:

true — ;T T,..., 17

E — €]

e — [

Let initial state S;,;; be the state in which all variables in P are false. We claim
that F is satisfiable if and only if production rule —e — f7 is unstable. If E is
satisfiable, there exists some assignment to 1, ...,) such that E evaluates to true.
Let 4, ...,2; be the true variables in this assignment. There exists a set of delays
in which the delay for £ — €7 is less than some constant 1), and the delays for
true — ;1 through true — ;7 are at least D time units shorter than the delays
for true — x4, T through true — 2T and —e — f71. Thus the circuit can reach a
state in which x4, ..., z; are true, %4, ..., 2} are false, and —e — f7 is effectively
enabled but has not yet fired. In this state both £ — €] and —e — fT will be
enabled; this state corresponds to S;. Production rule £ — €T will then fire,

disabling —e — fT. Thus —e — fT is unstable.

Conversely, if e — fT is unstable, then there exists some state in which e is true.
Since F — e is the only production rule encoding a transition on e and the initial
state has all variables false, £ must have evaluated to true and therefore be sat-
isfiable. Construction of the above production rule set can be done in polynomial
time. Thus satisfiability reduces to instability detection and the reduction can be
done in polynomial time. Therefore instability detection is NP-hard. O

3.3 Parallel Algorithm

The problem of circuit state space searching appears suitable for parallel solution,
since there are potentially many states to search and each state can be examined
independently. This problem is not merely a tree search, however, because the
state graph may contain cycles. When new states to check are discovered, they
must be tested for membership in the set of states already examined to prevent
checking states more than once. This membership check complicates the parallel
algorithm. We now describe a parallel adaptation of the above algorithm for the
message-passing model of computation.

The basic idea for the parallel algorithm is to distribute the sets R and M over
several processes. Each process will have local sets R; and M; such that the union

11

of all R; forms R and the union of all M; forms M. The way in which these sets
are distributed will greatly affect the efficiency of this algorithm.

Distributing the set R is trivial. Whenever a new state is generated it can be sent
to an arbitrary process for checking—checking a state for stability and interference
requires only the state itself and a description of the circuit’s production rules. We
require that each process has access to a copy of the production rule set being

checked.?

Distributing the set M is more difficult. We cannot arbitrarily assign states to
processes, as each process needs to check states for membership in the global set
M. Thus we are forced to take a somewhat atypical approach to parallelization:
rather than directly mapping work onto processes, we instead map the state space.
The goal of this mapping is to have each process be “responsible” for some subset of
the state space. Each process ¢ will maintain in M; a record of previously checked
states for subset 2. It will use R; to store a set of states remaining to be checked; all
states in R; will also belong to subset :. We therefore need to develop a mapping
from states to processes that can be used to generate these subsets.

Our state space to process mapping needs to be reasonably uniform for the parallel
computation to be efficient. By uniform we mean that the number of states stored
in each M; should be roughly equal. If any one process is responsible for a large
number of states then the speed of the computation will be limited by the speed
with which that process can decide membership and generate successor states.
Furthermore, the space required to store all reachable states may be much larger
than the storage space available for a single process; if the state space is unevenly
divided then some processes may run out of storage.

One important consideration in choosing such a mapping is that we desire the
circuit’s reachable states to map uniformly onto the processes. This is more diffi-
cult than mapping all possible states onto processes, since we have little a prior:
knowledge of which states will be reachable.

Fortunately, there is a way to perform this mapping: we use techniques developed
for hashing. Since a state is a list of boolean values, we represent it with a sequence
of bits, which we can consider as either a string of 8 bit characters or as a large
integer. We can then use existing hash functions on these strings or integers to
perform the mapping. Thus, for any state S, hash(S) is the number of the process
responsible for that state.

We can utilize our hash function to distribute both R and M. Whenever we
generate a new state S’ to be examined, we send it to process hash(S’). That

2This is not an unreasonable requirement, since both the number of production rules and
the size of their representations tend to be small. For example, the control circuitry for an
asynchronous microprocessor required less than two hundred production rules to describe.

12

process can then check if S’ has been previously examined by examining its local
M; set and, if not, adding it to its local R; set for future examination. This method
is particularly efficient because it does not require processes to query each other
about states belonging to M. Each state is sent directly to the process responsible
for it and no response message is required.

Each process ¢ runs the following program:
let R, = {} and let M; = {}
repeat
while message pending do
receive state T’
if T'¢ M; then
let R=RU{T}
end while
remove state S from R;
let £ ={pé€ P |enb(p,S)}
let £'={pe E|eff(p,5)}
if Ip,q € E,1 <k < n such that trans(p) = #;T and trans(q) = ;| then
report interference between p and ¢ in state S
for each p € £’ do
let 5" = result(p,)
if 3¢ € F’ such that —enb(gq, S’) then
report ¢ unstable
let d = hash(5’)
if d=1¢and S’ & M; then
let RZ = RZ U {S/}
else if d # ¢ then
send S’ to process d
end while
let M; = M; U S (mark S)

end repeat

The algorithm is initiated by sending S, to process hash(S;n:).

Figure 4: Parallel verification algorithm.

Figure 4 gives the parallel verification algorithm. This algorithm is almost iden-
tical to the sequential one; the only difference is that whenever a new state S’ is
generated it is not necessarily added to the local R;. Instead it may be sent to
some other process as dictated by the hash function’s mapping. As mentioned
above, this also takes care of the distributed M membership check.

13

An important consideration in message-passing parallel algorithms is the locality
of communication. If messages are sent arbitrarily between processes then the
algorithm will be less efficient than if we can somehow guarantee that processes
will only send to processes on “nearby” computing nodes. This increased effi-
ciency stems from two sources: first, shorter physical communication distances
decrease the time required to transport the message, and second, the message
passing network may be able to carry more messages simultaneously. Of course,
this optimization will be dependent on the architecture of the multicomputer used
to run the algorithm: the physical wires between processors determine which are
neighbors and which are not. For multicomputers that use a hypercube architec-
ture, such as C. L. Seitz’s Cosmic Cube [13], we can select a hash function that
will cause most communications to be from a process to one of its neighbors.

The ability to localize communication in this manner stems from a crucial re-
alization about production rule simulation: When we fire an effectively enabled
production rule, exactly one bit of the state changes. This follows directly from
the definition of effective. All states S’ that are generated by the above algorithm
will differ from S in exactly one bit. Furthermore, neighboring processors in a
hypercube have IDs that differ in exactly one bit. Our goal is therefore to find
a hash function which, in addition to uniformly distributing our reachable circuit
states, maps states which differ in exactly one bit to processors with IDs that dif-
fer in as few bits as possible. In practice, uniformity can be traded for locality of
communication. We give several hash functions with different locality /uniformity
ratios.

One deficiency of this method is that it only produces local communication on
hypercube architectures. However, the problem of mapping hypercubes onto other
architectures has been studied by other researchers [1, 6, 7], and will not be dis-
cussed here.

3.3.1 String Hashing

Substantial amounts of research has been spent looking for simple hash functions
that generate uniform distributions from string inputs. One such hash function,
described by Pearson [12], has the benefits of being string-based and quick to
compute even on small microprocessors. The function is computed as follows:

h := 0;

for i in 1..length(state) loop
h := Table[h XOR stateli] 1;

end loop;

return h MOD process_count;

14

4 =100 5=101

0=000 1=001
6 =110 7=111
2=010 3=011

Figure 5: Processor IDs in a hypercube architecture.

15

(As given, this hash function only works for up to 256 processes. In [12] Pearson
describes ways of extending it to larger values.) Table contains the numbers 0-255
in random order. We use each character of String to store 8 bits of state infor-
mation. This hash function was found to produce the most uniform distribution
of states to processes of any hash function tried. Unfortunately, this hash function
does not guarantee any sort of locality, and in our tests produced uniform, random
communication distances.

3.3.2 XOR Folding

Another approach we tried was to design a function specifically to generate local
communications. One way of doing so is the following: Given 2" processes, break
the state bits into w separate n-bit words. Exclusive-or these words together, and
return this value as the value of the hash function. This can be done as follows:

h :=0
mask := (1 LEFT_SHIFT n) - 1;
for 1 in 1..w loop
h := h XOR (state AND mask);
state := state RIGHT_SHIFT n;
end loop
return h;

N -

The exclusive-or operator has the property that for @ XOR b = ¢, if @’ differs from
a in exactly one bit, then ¢’ XOR b = ¢/, with ¢ differing from ¢ in exactly one
bit. Thus this hash function has the property that states differing in exactly one
bit will generate hash values that differ in exactly one bit. All communications in
the hypercube are therefore guaranteed to be with neighbors. Unfortunately, this
hash function does not distribute states as uniformly as the Pearson’s method.

3.3.3 Prime Hashing

There is a third choice for a hash function. We can treat our state as a large integer
and hash it with the method suggested in Knuth [5].

return (state MOD prime) MOD process_count;

Since the state may contain a large number of bits the modulo operations must
be implemented as multiprecision calculations, but this can be easily done by

16

Pearson XOR Prime

SD | avg dist SD | avg dist SD | avg dist
Test Case 1 3.04 2.11 6.85 1] 4.04 1.35
(avg 12 states/process)
Test Case 2 10.37 2.01 | 25.24 1| 48.85 1.44
(avg 148 states/process)
Test Case 3 39.28 2.04 | 149.24 1192.25 1.71
(avg 2400 states/process)
Test Case 4 24.55 2.07 | 3291 1| 14.68 1.93
(avg 450 states/process)

Table 1: Uniformity and communication distance in a 16-node hypercube (average
internode distance = 2.13). For each example the standard deviation of the size of
M; is given, as is the average message distance. Test cases are cells from a parallel
to serial converter and a cache controller.

utilizing the property (a - 2¥ + b) mod p = ((((2* mod p) - (¢ mod p)) mod p) +
(b mod p)) mod p. Thus the modulo computation can be performed with w-bit
words for any positive w. This hash function distributes states more uniformly
than XOR folding and often produces shorter message distances than Pearson’s
method. This is due to the fact that changes in the low order bits in state are
often, although not always, reflected in changes in the low order bits of the hash
function result. Of course, this hash method depends on the ordering of the bits
in the state, but on average it performs well.

Table 1 gives some data on the relative efficiency of the above schemes. In general,
Pearson’s hash function appears to be most useful for systems with limited memory
(where uniform distribution of states is extremely important) or communication
architectures where message locality is relatively unimportant. XOR folding seems
most useful for hypercubes, where the relative inefficiency of the distribution is
offset by the communication locality. Prime hashing seems to cover most systems
in between.

17

18

4 Examples

We begin with a simple example illustrating the verification of a correct production
rule set. The following set of production rules describes a simple oscillating circuit.

(1) a — b7
(2) a —
(3) bAc — al
(4) —a — b
(5) —a —
(6) =bA—-c — af

The variables in this circuit will transition as follows: first aT, followed by both 67
and ¢T in any order, followed by a|, followed by 6| and ¢| in any order. Let us
step through the sequential verification algorithm for this circuit.

For any circuit that does not have explicit reset production rules (i.e., rules in-
volving a variable named “Reset”) we assume that its initial state has all variables
low. We write states as vectors; for example, (0,1, 0) corresponds to the state with
a low, b high, and ¢ low. Our initial state is therefore (0,0,0). We place (0,0,0)
into set R and begin the first while loop.

We choose and remove the state (0,0,0) from R. Production rules (4), (5) and (6)
have true guards in this state and are therefore enabled. We let £ = {(4), (5), (6)}.
In this state, b is already low and ¢ is already low, so production rules (4) and
(5) are vacuous. Thus we let £ = {(6)}. There is no pair of production rules
in £ that calls for up and down transitions on the same variable, so there is no
interference in this state. We enter the for loop and choose (6) in £’. Firing (6) in
state (0,0,0) will lead to (1,0,0), so we set S = (1,0,0). All production rules in
E’ are still enabled in S, thus there is no instability in the transition from (0,0, 0)
to (1,0,0). S” is not in R or M, so it is added to R. We then exit the for loop,
add S to M and continue.

The diagram in Figure 6 shows the reachable state graph that will be explored by
this algorithm. In no state is there a pair of production rules in £ that call for up
and down transitions on the same variable (e.g., (1) and (4) are never both in F£).
This implies that in no reachable state are two such production rules enabled, and
the production rule set is therefore noninterfering.

Also note that for every state, each production rule in £’ is contained in £ for the
neighboring state. This implies that if a production rule becomes enabled and is
effective, then it will not be disabled until after firing. Thus the production rule
set is stable as well. O

19

000 — = 100 2 111 011 (10000}
5465,6 E%li,zée\ o1 / E":léz'g E 34’455\ 1o /

E 12 E: 4,5

E:1 E:4

Figure 6: State graph explored by verification algorithm.

Let us now examine an incorrect production rule set. The following production
rule set contains an unstable production rule.

(1) a — b7
(2) b — al
(3) —a — b}
(4) =6 — al
(5) anb —

We begin, as above, with the initial state (0,0,0) in set R. In this state production
rules (3) and (4) are enabled and are placed into E. These two are obviously
noninterfering, and we let £’ be the effective production rules in . Thus £’ =
{(4)}. The result of (4) in (0,0,0) is (1,0,0) so we add this state to R and (0,0,0)
to M.

In state (1,0,0) production rules (1) and (4) are enabled and noninterfering. Only
(1) is effective, and the result of (1) in (1,0,0) is (1,1,0). We add this state to R,
add (1,0,0) to M and continue.

In state (1,1,0) production rules (1), (2), and (4) are enabled and noninterfering.
Of these (2) and (4) are effective, so they are placed into E’. The result of (2) in
(1,1,0) is (0,1,0). However, in (0,1,0) production rule (4) is disabled. Thus it
is possible for (4) to become effectively enabled and then disabled without firing.
Since (4) is in F’, the algorithm reports (4) as unstable, and therefore detects this
problem.

20

5 Implementation

5.1 Efficiency Issues

As shown above, both stability and noninterference checking are NP-hard prob-
lems. Since the verification algorithm searches all reachable states for a set of
production rules, it can be very slow (run time exponential in the number of
circuit variables) in the worst case. In practice, however, circuits reach only a
tiny fraction of their state space. Furthermore, there are several implementation
“tricks” that can speed the run time of this algorithm.

The first and most important implementation issue is the choice of data structures
for R and M. As the algorithm is written we will need to perform insertion,
deletion, retrieval, and membership (for union) operations on R and insertion and
membership on M. The membership operation must be particularly efficient, as
membership in M is tested for every S’, and membership in R is tested in the
union (let R = RU {S5'}) for those S' not in M. Fortunately, we can avoid many
of these membership tests by implementing the sets R and R U M instead of R
and M. Since each S we remove from R is eventually added to M, we need not
remove states from R U M. Furthermore, the final if statement requires only one
membership check—if the state S’ is not in R U M it is added to both R and
RU M. Thus we never need to check for membership in R and we can implement
it efficiently with a FIFO queue. We will frequently check for membershipin RUM,
however, so we implement it with a hash table. All set operations can therefore be
performed in O(1) time on average.

The choice of data structure for the production rule set is also important. One
good way to do this (due to Steve Burns) is to build an expression tree for each
production rule’s guard, include the transition at the root of the tree, and include
only one copy of each variable in the forest of production rules. Thus each variable
has a list of uplinks leading to expressions involving it and a list of downlinks
leading to all transitions on it. Sets of enabled production rules can be stored
as lists of pointers into this data structure. Expressions can be evaluated by
associating a value with each node. When a production rule is fired, the expressions
affected by the firing can be updated by traversing the uplinks of the variable to
which the production rule assigned.

It is also not necessary to implement both £ and E’. If only E is implemented,
the function result can return a flag if an ineffective production rule is passed
to it. The check for instability can be performed while updating the production
rule data structure—if a transition was effectively enabled and the update routine
disables it then instability can be reported.

21

aNb — ¢

expressions involving ¢

b7
c
N
other production
rulesfor c

()
7N

a b
42 B AN
production production
rulesfor a rulesfor b

Figure 7: Proposed production rule structure.

22

Test Case Variables | States | Time (sec)
P 26 190 <1
S 23 2363 1.90
REG 18 9881 8.25
HALFCACHE 49 7176 10.02
SERIAL2 40 | 37590 41.40

Table 2: Run times for prlint on several test cases. P and S are highly sequential
subcircuits in a parallel-serial converter. REG is a collection of register processes.

HALFCACHE is a collection of cache controller subcircuits. SERIAL2 is a full
serial-parallel converter. All times are for a SPARCstation IPX.

5.2 prlint Implementation

The CAST (Caltech Asynchronous Synthesis Tools) design tool package developed
at the California Institute of Technology contains several programs that deal with
production rules. One of these, prsim, is a fast and memory efficient production
rule simulator. It can be used for high level simulation of large circuits described
with production rules. Another suite of programs, bubble, cellgen, and Vgladys,
transform a production rule description of a circuit into a CMOS implementation.
Thus production rules can be used for description and testing of existing circuit
designs as well as synthesis of new circuits. In either case, however, the production
rules must be stable and noninterfering if they are to describe a correct circuit.

We have implemented the above sequential algorithm in a program called prlint
which will be incorporated into the CAST design tool package. This program
performs simple consistency checks on input production rule sets, then applies the
algorithm to verify stability and interference.

The inner loop of prlint is given in Figure 8. We use a FIFO queue to store the
states remaining to be checked and a hash table for those checked previously. The
“prs” data structure contains a description of the production rule set being verified.
Since applying a state to the production rule set and recomputing all the guards
requires a substantial amount of computation, we use “fire_pr” and “undo_fire_pr”
to make local changes to the data structure. With this method prlint checks
approximately 1000 circuit states per second on a SPARCstation TPX.

Figure 9 shows sample output when prlint is run on the second example from the
previous section. The initial warnings are generated by a simple syntax checker
built into prlint; all following output is generated by the verification algorithm.

23

void simple_check(struct Prs prs, StateVector initial)
{ .

int 1;

int enabledcount;

int result;

StateVector state, stateprime;

PRPtr enabled MAX_ENABLED];

struct Fifox remaining;

struct Hashtablex checked;

remaining = create_Fifo();

checked = createHashtable();

put_Fifo(remaining, initial);

fast AddHashtable(checked, initial);
while (NULL # (state = get_Fifo(remaining))) {

apply _state(prs, state);
enabledcount = build_enabled_list(prs, enabled);

(void) check_interference(prs, enabled, enabledcount);
for (i = 0; i < enabledcount; i++) {
result = fire_pr(prs, enabled|[i]); /* fire PR and check stability */

if (result # VACUOUS && result # EXCLUDED) {
stateprime = new_state_vector(prs);
retrieve_state(prs, stateprime);
undo_fire_pr(prs, enabled|[i]);
if (NULL == associateHashtable(checked, stateprime)) {
fast AddHashtable(checked, stateprime);
put_Fifo(remaining, stateprime);
Vi)
) e/

b fxforx/
b /xwhilex/

} /xsimple_checkx /

Figure 8: Inner loop of sequential algorithm implementation.

24

C:\>prlint -printprs -printstates sample.prs

[Production Rules:]
a -> b+

“a -> b-

b& a -> c+

b -> a-

“b -> a+

Warning: Variable '"c" has only one type of tramsition
Warning: Variable '"c" is set, but not used

Warning: "Reset' variable not found.

Warning: (assuming all variables initialize to false)

Check Vars: b c a

[Run circuit...]
Checking: 000
Checking: 001
Checking: 101
Error: Unstable production rule:
b & a->c+

Checking: 111
Checking: 100
Checking: 110
Checking: 010
Checking: 011

[Statistics:]
Production rules: 5
Variables: 3

States Visited: 8
Possible States: 8

Figure 9: Sample prlint output.

25

prlint supports several command line options that provide more information
about the circuit as it is simulated. These are documented in the on-line man-
ual page.

26

6 Conclusions

We have presented a method for the verification of quasi-delay-insensitive circuit
designs. This verification requires that circuits be expressed in terms of production
rules, which we have presented as a means to describe delay-insensitive circuits.
Given this production rule description, we carry out a search of the circuit’s reach-
able states and check for stability and interference errors, which correspond to
possible shorts and hazards. We have shown how this search can be performed
both sequentially and concurrently and have implemented both algorithms. We
have given examples of the search method and have described our implementation
of an automated verification tool.

We hope that this verification method and its implementation will be used not
only to check circuits generated by Martin’s synthesis method, but also as a way
to verify the delay-insensitivity of other circuit designs.

27

28

A Channel Declarations

In Martin’s synthesis method, parts of a circuit exchange information via commu-
nication channels. These channels are implemented as sets of wires that exchange
data in a four-phase protocol. For example, consider two circuits that need to
synchronize their operation. This can be done by performing a communication
between the circuits that exchanges no data. Such communications can be imple-
mented as follows:

Circuit A Circuit B

Communication on this channel takes place as follows: When circuit A becomes
ready to synchronize it raises wire r. When circuit B becomes ready to synchronize
it waits for r to become high, then raises a in acknowledgment. A then lowers r
and B lowers a. The part of the communication performed by circuit A is called
the active part and the part performed by circuit B is called the passive part.
Assume, then, that we only have production rules describing circuit A. In order to
close the production rule set, we must specify the behavior of this channel. This
can be done with the following production rules:

r — al
-r = al

In general, however, all behaviors of channels leading to a circuit’s environment
cannot be described solely with production rules. For example, consider a circuit
with a one-bit input channel connected to the environment. Such a circuit would
be implemented as follows:

do

Environment Circuit
: dt

df

Communication on this channel could be either passive or active. In a passive com-
munication, the circuit would wait for either dt or df to be set by the environment.

29

Once it received this information it would raise d, in acknowledgment. Then the
environment would lower both dt and df, after which the circuit would lower d,.
In an active communication, however, the circuit would initiate the communication
by raising d, as a request. The environment would respond by raising either dt
or df, which would be acknowledged by the circuit lowering d,. The environment
would complete the communication by lowering dt and df.

The problem with describing this circuit’s behavior in production rules is that
there is no mechanism for raising only one of two data wires. Assume we are
describing a passive communication. If we use the following production rules for
the environment, then both data wires will become high.

-d, — dt],df]
d, — dt],df]

It is also not possible to disable one of the first two production rules after the other
has fired. Attempting this solution leads to the following production rules:

(1) —d, A—df — dit
(2) —dyA—dt — dff
(3) do — dt],df]

The problem with this production rule set is that it contains an instability. When
all variables are false, production rules (1) and (2) are enabled. However, the firing
of (1) disables (2) and vice versa, leading to an instability.

We have devised a notation called port declarations that compactly describes both
synchronization and data channels. This notation is convenient for closing produc-
tion rule sets, and is accepted as input in prlint. The syntax for these declarations
is based on that of channel declarations in the CAST program prif [11]; these dec-
larations can be copied into files that will be used with prlint.

The syntax for a port declaration is as follows:
(port type) port ((input list) ; (output list))

A port type is one of active or passive. An input list is a comma separated list
of variables representing the wires in the channel that are inputs to the circuit we
are describing. An output list is a comma separated list of variables representing
the output wires in this channel. During verification, at most one of the variables
in the input list will be true at once. Further, it is an error for the circuit to set
more than one output variable true simultaneously. Thus, a port declaration for
the above passive communication would be:

30

passive port (dt, df; do)

Port declarations can be thought of as macros that expand to lists of production
rules (possibly involving an error flag) and lists of variables that need to be kept
mutually exclusive. The above example would expand to:

d, — dt],df]
—d, — dtT,df7
excl(dt, df)

Thus the verifier will check states reached by firing dtT and also by firing df T, but
will be prevented from checking states reached by firing both dtT and dfT by the
“excl” statement. In prlint these mutual exclusion statements are handled by the
“fire_pr” function called from the main checking loop. As can be seen in Figure 8
this function returns “EXCLUDED” if a production rule is prevented from firing
by such a statement.

If instead we were describing an active communication we would use the following
port declaration:

active port (dt, df; do)

which would correspond to the following production rules

d, — dtT,df7
-d, — dt],df]
excl(dt, df)

Note that this example has essentially the same functionality as the one above—the
circuit receives a single bit input from the environment. The change from passive
to active requires the circuit to raise d, before the environment responds; this is
reflected in the reversal of the direction of the dt and df transitions.

co

Environment Circuit

cf

For a final example, let us consider an active communication where a circuit sends
a data bit to the environment. Again, the port declaration for this channel is
simple:

31

active port (ci; ct, cf)

This port declaration corresponds to the following production rules:

et N—ef — ¢l
ctVcef — ¢
ct A cf — error]

In this case the environment waits for one of ¢t, ¢f to become true before acknowl-
edging with ¢;T. If possible we would like to ensure that the input circuit does
not raise both ¢t and ¢f; this would be a violation of the dual rail communication
protocol. This is accomplished with the ¢t A ¢f — error pseudo-production rule.
This production rule is treated by prlint like any other, but if the variable error
becomes true then a special error is generated.

As shown above, port declarations give a compact description of communication
between a circuit and its environment. Although most useful for specifying data
channels, they may also be used to describe the synchronization channels previ-
ously mentioned. Furthermore, port declarations generalize easily to an arbitrary
number of inputs and outputs. We have found the notation convenient for closing
sets of production rules for use with prlint and believe that they present a useful
extension to the production rule notation.

32

References

(1]

2]

3]

[4]

[5]

[10]

[11]

[12]

[13]

Shahid H. Bokhari. On the mapping problem. I[EEE Tran. Computers,
30(3):207-213, March 1981.

Steven M. Burns. Performance Analysis and Optimization of Asynchronous
Circuits. PhD thesis, California Institute of Technology, 1991.

David L. Dill and Edmund M. Clarke. Automatic verification of asynchronous
circuits using temporal logic. In Henry Fuchs, editor, 1985 Chapel Hill Con-
ference on VLSI, pages 127-143. Computer Science Press, 1985.

C.A.R. Hoare. Communicating sequential processes. Communications of the

ACM, 21(8):666—677, August 1978.

Donald E. Knuth. The Art of Computer Programming: Searching and Sorting,
volume 3. Addison-Wesley, 1981. Section 6.4.

Ten-Hwang Lai and Alan P. Sprague. Placement of the processors of a hyper-
cube. IEEE Tran. Computers, 40(6):714-722, June 1991.

F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes. Morgan Kautmann Publishers, 1992. Sections 3.2
and 3.3.

Alain J. Martin. Compiling communicating processes into delay-insensitive

VLSI circuits. Distributed Computing, 1(4):226-234, 1986.

Alain J. Martin. The limitations to delay-insensitivity in asynchronous cir-
cuits. In William J. Dally, editor, Sizth MIT Conference on Advanced Research
in VLSI, pages 263-278. MIT Press, 1990.

Alain J. Martin. Programming in VLSI: From communicating processes to
delay-insensitive circuits. In C. A. R. Hoare, editor, Developments in Concur-
rency and Communication. Addison-Wesley, 1990. UT Year of Programming
Institute on Concurrent Programming.

Alain J. Martin et al. CAD tools for VLSI design. Report CS-TR-93-09,
California Institute of Technology, 1993.

Peter K. Pearson. Fast hashing of variable-length text strings. Communica-

tions of the ACM, 33(6):677-680, June 1990.

Charles L. Seitz. The Cosmic Cube. Communications of the ACM, 28(1):22—-
33, January 1985.

33

[14] Jan L. A. van de Snepscheut. Trace Theory and VLSI Design, volume 200 of
Lecture Notes in Computer Science. Springer-Verlag, 1985.

34

