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Abstract

Liveness and safeness are two key properties Petri nets should have when they
are used to model asynchronous systems. The analysis of liveness and safeness for
general Petri nets, though shown to be decidable by Mayr [1981], is still computa-
tionally expensive (Lipton [1976]). In this paper an hierarchical approach is taken:
a class of Petri nets is recursively defined starting with simple, live and safe struc-
tures, becoming progressively more complex using net transformations designed to
preserve liveness and safeness.

Using simple net transformations, nice nets, which are live and safe, are defined.
Their behavior is too restrictive for modeling non-trivial systems, so the mutual
ezclusion and the repetition constructs are added to get p-p-nets. Since the use of
mutual exclusions can cause deadlock, and the use of repetitions can cause loss of
safeness, restrictions for their use are given. Using u-p-nets as the building blocks,
hierarchical nets are defined. When the mutual exclusion and repetition constructs
are allowed between hierarchical nets, distributed hierarchical nets are obtained.
Examples of distributed hierarchical nets used to solve synchronization problems
are given.

General net transformations not preserving liveness or safeness, and a notion

of duality are presented, and their effect on Petri net behavior is considered.
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Introduction

Petri Nets and Concurrency

Petri nets are abstract mathematical objects used to model the flow of informa-
tion and control in concurrent systems. Since they were first defined by C. A. Petri
in his 1962 Ph.D. dissertation, much research has been done and a considerable
body of knowledge has been accumulated. Peterson’s [1981] new text introduces
a wide range of theory and application of Petri nets and includes an amazingly
comprehensive annotated bibliography.

Petri nets can be used to model complex concurrent systems by suitably inter-
preting the transitions and places as, for example, events and conditions (Holt and

Commoner [1970}). The system’s behavior can then be analyzed by simulating the
net and observing the flow of tokens.

Two important properties one would like a system to have are liveness and
safeness. The analysis of liveness and safeness for general Petri nets, though shown
to be decidable by Mayr [1981], who proved the decidability of the equivalent

reachability problem, is computationally hard, requiring exponential space (Lipton
[1976]).

In order to simplify the analysis, various subclasses of Petri nets have been
defined by restricting the types of interconnections. For example, state machines
and marked graphs are Petri nets whose liveness and safeness properties are easily
decidable, but they have been found to be too restrictive. Hack [1972] proposed free
choice nets, which include both of the former and can model relatively complex sys-
tems, but the analysis of liveness and safeness for this class is already combinatorial

because all possible subnets of certain types must be checked.
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An Hierarchical Approach

State machines, marked graphs and free choice nets are essentially syntactic
restrictions of general Petri nets. They specify locally allowable configurations of
transitions, arcs, and places. Since the behavior of a net can be drastically affected
by local change, knowing the behavior of a part of a net does not help in determining
the behavior of the whole.

In this paper an hierarchical approach is explored. Beginning with a class of
Petri nets that are easily shown to be live and safe, progressively more complex nets
are generated using previously gr-nerated nets and net transformations to ultimately
get distributed hierarchical nets. By applying net transformations that could cause
loss of liveness or safeness — the mutual ezclusion and the repetition constructs —
to one level of the hierarchy at a time, the analysis for liveness and safeness can
also be restricted to one level at a time. Necessary and sufficient criteria are given
for the safe use of mutual exclusion and repetition constructs. In a similar work,
Valette [1979] in his “Analysis of Petri Nets hy Stepwise Refinement” generates a
class of live and safe Petri nets very similar to structured nets defined in this paper,
but since he does not allow non-liveness and safeness preserving transformations,
the kinds of behavior that can be modeled by his nets are severely restricted.

Comparison with Path Expressions

The hierarchical approach to concurrency using Petri nets suggests a work
by Lauer and Campbell [1975] on “Formal Semantics of a Class of High-Level
Primitives for Coordinating Concurrent Processes” where they present a language
for generating systems of concurrent processes called path ezpressions.

Path expressions specify the ordering of events and synchronizations between
events, and the semantics is given by providing a simple Petri net for each language
construct and a net transformation for each composition construct. They define a
hierarchy of paths based on the kinds of interactions between events:

Elementary Paths (E-paths): Each letter (event) occurs uniquely and there is

choice.



Repeat Paths (R-paths): An E-path where repetition of letters is allowed.

Disjoint Paths (D-paths): A set of R-paths where each letter occurs in at most
one R-path. Therefore, D-paths allow concurrency, but no interaction between
different paths.

General Paths ( G-paths): D-paths with letters occurring in more than one path.
Interaction is by synchronizing letters named the same.

The corresponding Petri nets that are generated are called E-nets, R-nets, etc.
The letters become transitions and synchronization is done by the identification of
the corresponding transitions in the net.

A set of paths is used to specify a system of coordinating processes. To deter-
mine its behavior, the corresponding Petri net is analyzed. Since paths are sets
of looping sequences of events where the same named transitions are synchronized,
very general behaviors are producible, but their analysis is difficult. Certain restric-
tions are conjectured to exist that makes each class of paths live and safe, but it
is not clear what these restrictions are. The heart of the problem is that arbitrary
identification of transitions can cause deadlock because it is not easy to tell whether
two paths are consistent. Concurrency is not explicitly given, but appears as the
result of multiple loops.

In distributed hierarchical nets, concurrency and syochronization are intro-
duced either through explicit production rules that preserve liveness and safeness
(like the parallel begin end constructs), or by the use of special constructs (mutual
exclusion and repetition) with suitable restrictions to ensure that the net is well
behaved.

As an example of their notation and method of analysis, Lauer and Campbell
present the Smokers Problem along with two solutions: a concurrent and a sequential
one. The solutions consist of sets of paths, each path representing an agent giving
out the different resources or one of the three smokers. To analyze the solutions,
the corresponding Petri nets are examined. Each process is pretty simple by itself,
but the composite net contains as many loops as the number of processes and is
quite complex. So, part of the task in the analysis is to simplify the nets using
certain operations that preserve the behavior.

These two solutions are presented in this paper using distributed hierarchical
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nets and are shown to be live and safe because they satisfy the restrictions on
their use. After simplification, the path expression solutions are very close to
the distributed hierarchical nets solutions. The sequential solution uses a global
scheduler while the concurrent version utilizes three-way synchronizations.

An Overview

For sake of completeness, an informal introduction to Petri nets using pictures
and examples of applications is presented. Liveness and safeness and other notions
pecessary for this paper are introduced. Those already familiar with the rudiments
of Petri nets may safely skip over it.

In Chapter 2, the first level of our hierarchy, nice nets, are defined using simple

net transformations, and are shown to be live and safe.

A more homogeneous unit of Petri net structure, based on the notion of a
process that has a beginning, finite computation, and an end, is introduced in
Chapter 3, and structured nete are defined using process transformations that are
based on the well known sequential, parallel, choice and loop constructs. Structured
nets are shown to be live and safe.

Chapter 4 describes the mutual ezclusion consiruct, which can be thought of
as loosely coupled communication between parallel processes, and the repetition
construct, which allows parallel processes to activate the same transition. Nets
with both mutual exclusion and repetition constructs are called uép-nets. Since the
addition of mutual exclusion can cause deadlock, and repetition construct can make
nets not safe, necessary and sufficient conditions for p-p-nets to be live and safe are
needed.

By recursively substituting processes with u-p-nets, hierarchical nets, and, by
allowing mutual exclusion and repetition between processes of different hierarchical
nets, distributed hierarchical nets are obtained. Applications of distributed hierar-
chical nets in the solution of the smokers and the dining philosophers problem are
given.

In Chapter 5, general net transformations not preserving liveness or safeness
and a notion of duality are presented, and their effect on Petri net behavior is
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considered. Certain symmetries that arise from the general net transformations are
considered, and their effect on Petri net behavior is explored.

Thoughts on the use of Petri nets in the design and verification of concurrent
programs, and consideration of how hierarchical nets relate to concurrent computa-

tion in general, are contained in the concluding Chapter 6.



Chapter 1

Petri Nets

This is an informal introduction to Petri nets designed to acquaint the reader
with the necessary concepts in an intuitive a way as possible. Examples are given
of different types of applications.

Intuitive Petri Nets

Petri nets are usually represented as graphs with two kinds of nodes (see Figure
1-1). One kind is drawn as small circles while the other as short lines. The circles
are called places (p1,p2,ps and py) and the lines are called transitions (¢;,%; and

t3). Directed arcs — drawn as arrows — link one kind of node with another.

W

&

Figure 1-1. A Petri Net.

The graph represents the static structure of a Petri net. The dynamic behavior
of the Petri net comes about by moving tokens — represented as small dots —
around on the Petri net graph (see Figure 1-2) according to rules that will be
described below. Tokens reside only in the places (p2,ps). A Petri net with tokens
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is said to be marked; and the particular distribution of tokens among the places is
known as a marking.

wR

L‘S
Figure 1-2. A Marked Petri Net.

A transition may have places that have arcs leading to it; these places will be
called the tnput places of the transition. Similarly, the places that have arcs coming
from the transition will be called the output places of that transition. For example,
in Figure 1-2, the input places of transition 3 are ps and ps, and the output place
is Pi.

When each of the input places of a transition has at least one token in it, the
transition is enabled. Once a transition is enabled, it can fire by removing a token
from each of its input places and adding a token into each of its output places.
Firing oceurs instantaneously.

In general, if a place has more than one arc to a transition, the number of
tokens in the place must equal the number of arcs in order to enable the transition.
When the transition fires, as many tokens as there are arcs are removed from each
input place and as many tokens as there are arcs are added to each output place.

In Figure 1-2, transition {3 is enabled; so {3 can fire by removing a token from
each of the input places p» and pa, and adding one token to p1, the output place.
The result is Figure 1-3, where now t; is enabled. When {; fires, the result is Figure
1-4. Firings can continue until no transition is enabled. In this example, ¢; can fire
forever, adding tokens into p; and po, which allows &2 to fire, gradually filling p4

with many tokens. Once £3 has fired and used up the token in p3, it can never fire
again.
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Figure 1-3. Figure 1-2 after ¢3 fires.

wo

Figure 1-4. Figure 1-3 after ¢; fires.

Interpretation and Modeling

Petri nets were defined to model the flow of information in a system. The tokens
moving through a net can be thought of as, for example, the flow of information
that merges and diverges as they enable and fire transitions in an asynchronous
manner. Another general way of looking at DPetri nets is to think of the places
as conditions that are satisfied if they have tokens, and the firing of transitions
as events occurring (Holt and Commoner [1970]). For computer programmers the
most natural way might be to think of the tokens as representing the flow of control
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through a program. The presence of more than one token means that the program
is running in parallel.

Examples.

Figure 1-5. A one bit adder.

Figure 1-5 is a model of a one bit adder with carry. Each of the two inputs
has two places (ag, a1 and by, b;) which represent the value zero or one, depending
on which place has a token. One of the transitions £go, to1, t10, Oor £31 will fire,
depending on which places have tokens, and place tokens into the appropriate sum
and carry places. If this Petri net were to be a part of a larger system, then new
structures can be added to ensure that tokens do not appear in both the zero and
one places at the same time, and also that new inputs do not arrive until the outputs
have been defined.

Figure 1-6 represents in Petri net form Dijkstra’s [1968] classic dining philoso-
phers problem requiring mutual exclusion. The place e; represents the proposition
“philosopher ¢ is eating,” while the place p; means “philosopher ¢ is thinking.”
Between each philosopher is a chopstick. Clearly, one needs two chopsticks in order
to eat, so each philosopher must obtain two, one from his right and one from his
left. However, two neighboring philosophers cannot be allowed to grab the same
chopstick at the same time, so mutual exclusion is necessary. Presence of a token
in place ¢; means that the chopstick is available.

9



Figure 1-6. Dining philosophers.

In this solution to the problem, a philosopher cannot grab only one chopstick,
it’s either both or none, thereby avoiding any deadlock. Figure 1-6 shows philosopher
8 eating while the rest are thinking.

Liveness and Safeness

Once a Petri net is given that models a system, there are couple of general
properties that one would like to know. The first is whether from an initial marking
every transition can be fired infinitely often. This property is known as lfveness.
The second is whether every place will have at most one token at all times. This
property is called safeness. Figures 1-7 and 1-8 show examples of small live and
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safe Petri nets.

Formally, let A be a Petri net with P the set of places and T the set of
transitions. Let M be the set of markings of A where a marking v is a function
from P to the non-negative integers. Marking 1, is immediately reachable from
marking v4 if there is a transition ¢, enabled in vy, such that firing it produces
the new marking 5. A marking is reachable from another if there is a sequence of
zero or more transitions and markings where each is immediately reachable from
the previous one. Note that a marking may be reachable by different sequences of
transitions. Let R(A,1y) denote the set of all markings reachable from v in the
Petri net A.

The Petri net A with initial marking vg is live if for every transition ¢ and every
marking v in B(A, 1), there exists another marking v, in R(A, v;) ( reachable from
v1 ) such that ¢ is enabled in vo. The Petri net A with initial marking vy is safe if

for every marking v in R(A, 1) the value of v never exceeds one.

Liveness is concerned about whether the desirable goals can be reached, while
safeness ensures that no contradictory states are reached. For example, if an
operating system was modeled using Petri nets, liveness would guarantee that the
operating system will continue doing its job, while safeness would say, for example,

that it would not be assigning the same printer to two people at the same time.

Subclasses of Petri Nets

For general Petri nets, determining whether the net is live and safe is not
easy because of the asynchronous movement of the tokens in the net. In order to
simplify the analysis, various subclasses of Petri nets have been defined that impose

restrictions in the way the places and transitions are connected.
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Figure 1-7. A State Machine.

Figure 1-8. A Marked Graph.

For example, if each transition has at most one incoming and one outgoing
arc, then the subclass is called state machines. State machines model choices but
not concurrency, and the complete characterizations for liveness and safeness are
known: Since no transition has more than one outgoing arc, the number of tokens
cannot increase, it is safe; if every place is reachable from every other and there is
at least one token in the net, it is live. Figure 1-7 is an example of a live and safe
state machine.

As a dual to state machines, if each place has at most one incoming and one
outgoing arc, then the subclass is called marked graphs. In a way that is dual to state
machines, marked graphs exhibit concurrent behavior but are totally deterministic.

12



Liveness and safeness have also been completely characterized for marked graphs.
K every transition is in a loop, and every loop has one token on it, then it is live
and safe. Figure 1-8 shows a live and safe marked graph.

Decision Problems

Marked graphs and state machines have high decision power, but they are
quite restrictive in their modeling ability. Increasing the modeling power results in
harder decision procedures. Hack [1972] has defined a subclass of Petri nets free-
chotce nets that contains both the marked graphs and the state machines. A Petri
net is a free-choice net if every arc is either a unique outgoing arc of a place or a
unique incoming arc into a transition (Figure 1-9). In this way there is choice and
concurrency, but once a transition has been enabled it can not be disabled by the
firing of another. The necessary and sufficient conditions for liveness and safeness
of free choice nets are given in Hack’s paper.

Figure 1-9. A Free-Choice Net.
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Chapter 2

Nice Nets

To manage the design of complex entities, structured programming tells us to
begin with simple building blocks and gradually build up using a few well defined
composition rules. Nice nets are obtained from a trivially live and safe Petri net by

applying rules corresponding to the sequential, parallel, choice, and loop constructs.

Liveness and Safeness Preserving Transformations

Consider the kinds of transformations that can be done to a Petri net so that
the properties of liveness and safeness are preserved.

A place could be transformed into two places linked by a new transition (Figure
2-1). Likewise a transition can be made two with a place in between (Figure 2-2).
These two transformations correspond to the transformation of one statement into
two statements ( § becomes S;;S2 ) in regular programming.

Figure 2-1. Place Refinement.
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Figure 2-2. Transition Refinement.

Another transformation would be to split the place between two transitions so
that they are connected in parallel to the original transitions (Figure 2-3). This
creates extra tokens, but it is done in a very structured manner so that safeness is
not lost. This models the parbegin-parend of some programming languages.

L &
A
= 00
4 t2

Figure 2-3. Place Splitting.

If a transition between its input and output places is split, then a structure with
non-deterministic choice results where the token can fire one or the other transition
(Figure 2-4). This corresponds Lo the if~then-else construct of programming
languages. A cyclic loop can be put where there is a place to produce the equivalent
of a while-loop (Figure 2-5). These transformations will be shown to preserve
liveness and safeness.
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Figure 2-4. Transition Splitting.
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Figure 2-5. Place Loop.

Net Transformations

Notation. — will be used to represent the arcs connecting the places and
transitions. So, p—t¢ will mean that p is an input place of ¢ and ¢ is an output
transition of p. If P denotes a set of places, then P—¢ will mean that every member
of P is an input place of ¢. ef will denote the set of input places of ¢, and te set
of output places of t. Likewise, ep and pe will denote the sets of input and output
transitions of p. A Petri net can be represented completely as a set of arcs between
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transitions and places. In general, there may be multiple arcs between a place and
a transition, in which case a multiset (or a bag) of arcs is used. A multiset is like a

set but it allows multiple occurrences of an element.

A—z—B will mean that A = ez and B = ze, for z either a place or a
transition. If X is a set of places (or transitions), then A—X — B would mean that
A is the set of input transitions (or places) for each element of X, and likewise for
B. {a}—t—{b} will be written a—t—b.

Once the structure of a Petri net is given, the marking can be defined as a
function v : P + N, where P is the set of places and N = {0,1,2,...}, the set of

natural numbers. Only the places with non-zero markings need to be mentioned.

Example. The Pelri net of Figure 1-2 can be represented as:

{p1—t1—{p1,p2 }, p2—toa—ps,{p2,p3 }=t3—p1 } and v(pe) = 1,v(ps) = 1.

In the definition below, new places and transitions will be created. Every new
name will be distinct from all other names already occurring in the net. \ will
denote set difference, and = will mean: replace the node or subnet on the left with

the new structure on the right.

Definition. A net transformation is one of the following:

Transition Refinement (TR): t = ¢; —+p—{, and make of; = of and tye = te.
Place Refinement (PR): p = p; —t—p; and make ep; = ep and pye = pe.
Transition Splitting (TS): p1 —t—ps = p1—{t1,12,...,t, }—p2 where n > 1.
Place Splitting (PS): t;—p—t; = t; —{p1,p2,...,pn }—t2 Where n > 1.

Place Loop (PL): p = {pi—ti—ps,p2—t2—py} and make op; U epy \
{tl,tg} = ep and pie Upgl \ {t1,t2 } = pe.

Definition. The Petri net { p; —¢; —p2, po—ta—p; } with a token in p; (Figure
2-8) is clearly live and safe. Call this a live loop.

17



Figure 2-6. A live loop.

Definition. Petri nets obtained from a live loop by finite number of applica-
tions of thc net transformations TR, PR, TS, PS, and PL will be called nice
nets.

Proposition. Nice nets are subclasses of free-choice nets.

Sketch of proof: It is impossible to produce a nice net with an arc that is
both a multiple output of a place and a multiple input to a transition. [

Liveness and Safeness of Nice Nets

Liveness is defined for transitions and safeness for places, but to facilitate the
proofs below we extend these notions.

Definition. A place will be called live if every input transition to it is live. A
transition will be called safe if every input place to it is safe and the set of input
places cannot be marked when any of the output places are marked.

Theorem. The net transformations TR, PR, TS, PS, and PL preserve

liveness and safeness.

Proof: The idea is that a live and safe Petri net remains live and safe after an
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application of a net transformation on a place or a transition.

(2) Transition Refinement (TR): ot,
ot ¢

‘%f = P
Lo €

oy

If transition ¢ is live, then since of = ot;, t; is live and this makes £5 live too.
Since the net is assumed safe, the two sets of places, et and te, cannot be marked
simultaneously. Which means that ¢ cannot be enabled until te is empty of tokens.
So, in the transformed net, after ¢; fires and puts a token in p, £; cannot be enabled
again until after {; has fired and ;e = te is empty. This shows that p is safe.

(b) Place Refinement (PR):

o?,

P F

P = ¢
pe P
P’O

Since p is live and safe, this implies that py is, and since {p; } = ot, ¢ is live. ¢
live implies that po is live. To show that p, is safe, observe that p safe means that
op will not fire until pe = pye have fired, so p; will not receive a token until poe
have fired.

(¢) Transition Splitting (TS): If ¢ is live, then clearly ¢;,1s,...,t, are all live.
Safeness is not affected since no extra tokens can be generated.

(d) Place Splitting (PS): If p is safe, then py,p2,...,p, will also be safe, since
t; will not fire while there is a token in p. Trivially, if p is live, then py,pe,...,pn
are also live, maintaining the liveness of 5.

(e) Place Loop (PL):

oy *h tl
P ;:? F F2
F‘ P'o -él



Since p is live and safe, only one of the transitions in ep will fire until the
token in p has been used up by firing another transition in pe. Since py,t;,ps,t2
are strongly connected, they are all live. Since no new tokens will enter the loop

until one has been used up in firing a transition in pe, it is still safe. [
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Chapter 3

Structured Nets

In the usual interpretation of Petri nets, the places and transitions are con-
sidered individually. The net transformations defined in the previous section also
took individual places and transitions and replaced them with small Petri net struc-
tures. In this chapter a more homogeneous unit, called a process, that consists of a
transition, place, and another transition will be introduced. The motivation behind
this structure is that of a program block which has a begin, finite computation,

and an end.

Using the notion of a process, process transformations are defined. These
correspond to the structured programming constructs with parallelism added. The
class of Petri nets obtainable from a process under finite number of application
of process transformations will be called structured nets. Liveness and safeness of
structured nets is proved.

Processes

Definition. A process is a Petri net with the structure ¢;—p—t,. t; is called
the input and ¢, is called the output, and p is the place of the process. By convention
on the notation introduced earlier, p has unique input and output transitions. A
process is marked or busy if its place is marked. When the input transition fires, the

process starts or is activated, and when the output transition fires, it terminates.

Notation. Let a, b, ¢, ... denote processes. If a = t; —p—ts, then a™ = 14,
a— = tg, and ao = p, will be the three selector functions that pick out the input,
output and place of the process a, respectively. v(a) = 1 will mean v(aoc) = 1.
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Process Transformations

Process transformations will be defined to take a process and produce two or
more sequential processes, two or more parallel processes, a choice of two or more
processes or a multiple loop of processes. )

The identification function, ~, which takes two tramsitions or two places and
identifies them and makes them one, will be used to paste together different Petri
net structures. All the inputs and outputs of the arguments will be inherited by
the new transition or place.

Deflnition. Given a set of processes by, bs,...,bn, a composite structure is one
of following:
Sequence: o(by, ba,...,b,) is a Petri net structure with

bl-— ~ b;,bg_ ~ 63—, . -;bn——l— ~ bn—-—; and

G(b;,bg,...,bn)— = br,ﬂ(bl,bg,...,bn)_ = b,_.

Parallel: x(by,bs,...,b,) is a Petri net structure with
w(by,ba,...,bp)” = b7 ~ .- ~ b, and

W(bl,bz,...,bn)_ = bl.. e an_.

Choice: ¢(b1, b2, ..., by) is a Petri net structure with two new places p; and ps,
and two new transitions ¢(b;,be,...,b,)” and ¢(by,be,...,b,)—, such that

¢(61)b21 R 1bn)—"+p1_+{ bl_) . ')b;z— }’ and

{bl—) e ;bn— }_*p2'_+¢(b1:62) .. ';bn)-—*

Loop: A(b1,b2,...,b,) is a Petri net structure with one new place p and two
new transitions \(by, ba,...,b,)" and \(by, b2,...,b,)—, such that

{\(by,b2,...,b,)",b1—,...,bp— }—p, and

P—"{ )\(blxb2:- n) bl ye _-}'
22



Definition. If a and by,by,...,b, are processes, a process transformation
replaces a with x(b;,b,...,b,,) where x is one of o, 7, ¢ or X\, such that

a” ~ x(by,bs,...,b,)", and a_ ~ x(b1,bs,...,b,)—
and ao is removed.

Notation. a = x(b1,b2,...,b,) will denote process transformation x.

Qa
a
b
o(a,b) #(a, b) ¢(a,b) A(a, b)
Figure 3-1. Composite Structures of two Processes

o ™ A

Figure 3-2. Examples of Process Transformations.
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Lemma. Given a live and safe Petri net containing processes, process trans-

formations o, m, ¢, and )\ preserve liveness and safeness.

Sketch of proof: The proof is by showing that each process transformation
is a composite of net transformations introduced before. ¢ is obtained by applying
PR to ao or TR to a transition and then PR or TR to the new places or transitions
created. m is obtained by applying PS to ao. For ¢, first apply PR to ao, then apply
TS to the newly created transition, and finally apply TR to the two new transitions.
A is obtained by applying PL to ac n times. So, since these transformations
are compositions of net transformations, they automatically preserve liveness and
safeness. [

Liveness and Safeness of Structured Nets

Nice ncts were defined as the class of nets obtainable from the live loop under

finitely many applications of net transformations. Similarly,

Definition. A structured process is a Petri net obtained from a process by

finitely many applieations of process transformations.

A structured process with unique input and output is made into a structured
net by augmenting it with a single marked place.

Notation. Let z,y,2,...,21,29,... denote structured processes. z~ and z_
will denote, respectively, the input and output of the structured process z.

Definition. A structured process z with an extra place p with p—z—, z_—p,
and v(p) = 1, will be called augmented, and will be denoted (O)z. An augmented
structured process will be called a structured net. Structured nets will also be
denoted by z,z;,.... For a given structured process, its augmented counterpart will
be called its associated net. Note: Since a live loop consists of two processes joined
in a loop, a structured net is the equivalent of applying the process transformations
to the unmarked half of a live loop.
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Deflnition. A structured process will be called live and safe if and only if
its associated net is live and safe. The notions of liveness and safeness of nets is
defined with respect to the initial marking. For structured nets the tnitsal marking

is defined to be when only the augmented place has one token.

Theorem. Structured nets are live and safe.

Proof: Process transformations preserve liveness and safeness. A structured

net can be obtained from a live loop by applying process transformations to one

half of the loop. Therefore structured nets are live and safe. [

The process transformations gave us a top down approach to structured nets.

We can equally have a bottom up recursive definition.

Definition. (Recursive definition for structured nets)
(a) A process is a structured process.

(b) If z,,22,...,%n arc structurcd processes, then so arc o(zy,22,...,%n),
7(z1,%2,...,%n), (21, %2,...,2%,), and N\(z1, 22,...,2,), where o, 7, ¢ and
X\ are the composite structures defined above, but instead of processes,
structured processes occur as parameters. Note that the arguments may
be permuted in all but o.

This definition allows us to denote a structured process as a functional com-

position of the four operators o, 7, ¢ and X.

Notation. We write x(z;,22,...,2,), for n > 1, to denote the fact that

z{,%2,...,%, are components of a x-construct, where x is one of o, 7, ¢ and X.
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Example.

| Y

U
v X
A

3
Figure 3-3. ©o(n(a(a,b), ¢), ¢(d, M7(e, [), (g, h))), 1)

Definition. A net substitution, written [z/aly, is the operation of replacing
the process a with the structured process z in the structured process or net y. This
means that the input of z is identified with the input of a and the output of z is
identified with the output of a, and ao is removed. For example,

[o(a, n(b, c), d)/e] (g, $(e, ) = =(g, p(o(a, x(b, c), @), f)).

Concurrency Relation

Definition. Let a and b be structured processes. a is a sub-component of b,
written a C b, if either a =bora C cand b = x(...,¢,...) for some structured
process ¢ and structure x.

Definition. Two processes a and b in a structured net are concurrent or in a
concurrency relation, written a || b, if there is a marking reachable from the initial
marking in which both of the processes are marked. The concurrency relation is
symmetric and reflexive. The complement of the concurrency relation is the order

relation.
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Definition. Two structured processes are concurrent or in a concurrency
relation if every process of one is concurrent with every process of the other. The
same symbol (||) will be used as for processes. A set of processes is called concurrent
if every process in it is concurrent with every other. Similarly for concurrent sets

of structured processes.

Lemma. Let a, b be two processes in a structured net. a || b if and only if
there exist ¢ and d such that a C ¢ and b C d and ={c, d).

Proof: (&) Assume n(c,d) and a C ¢ and b C d for some ¢ and d. By
definition of & the two structured processes ¢ and d can be simultaneously marked.
Since structured processes are live and safe, a and b can be marked simultaneously
after n(c,d)” fires. (=) Assume a || b. This mcans that the two processes a and b can
be marked simultaneously. The only process transformation that creates multiple
tokens is 7. Assume that @ and b do not have an enclosing x construct. Then,
since they are part of a strucutred net, there is a smallest construct that encloses
them which is not x. Since all the other construets do not produce multiple tokens,
a and b cannot be concurrent. So, a and b are sub-components of some ¢ and d,

respectively, with #{c,d). U

These notions of concurrency and concurrent sets for structured processes will
be needed in subsequent chapters.
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Chapter 4

Hierarchical Nets

The class of behaviors that structured nets can model is quite restrictive. They
allow parallelism but not interaction between the parallel processes. In this chapter
two forms of interaction between parallel processes, the mutual exclusion and the
repetition, are introduced.

Mutual exclusion is usually thought of as the sharing of a common resource
with the constraint that the two processes cannot both be using the resource at the
same time. Since messages can be left in the common resource, mutual exclusion
can be thought of as a loosely coupled form of communication. Mutual exclusion
resembles a message box; synchronization resembles a telephone conversation.

Repetition allows different processes to cause a common event. When using
Petri nets to represent program behavior, the common transition can be thought
of as the same communication channel that is being used at different points in a
program.

Iierarchical nets are obtained when both the mutual exclusion and repetition
are allowed between processes of a structured net. Since the use of mutual exclusions
and repetitions can cause deadlock and unsafeness, the main result of this chapter
are the necessary and sufficient conditions for their use to preserve liveness and

safeness.

Mutual Exclusion Construct

The mutual exclusion construct is a Petri net structure that forces the places
of a number of processes to be mutually exclusive about when they can be marked.
If a marked place is interpreted as meaning the use of a resource then only one of
the processes can read the resource at any one time.

Definition. The mutual ezclusion construct between n processes a,, aq, ..., a,,
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written p(a1,a2,...,8y,), is 2 new place p with one token and structure
{a1—,02—,...,85- }—p—{a7,a3,...,a, }.

The a;’s are the components of the mutual exclusion u(as,as,...,a,). Note that
the order of the processes is immaterial. When one of the component processes
becomes marked and the place p = po becomes unmarked, the mutual exclusion is
buey, otherwise, it is free or available.

Figure 4-1. A mutual exclusion construct pu(a, b).

Lemma. An n-ary mutual exclusion construct can be modeled using ('2') binary

mutual exclusion constructs.

Proof: p(ai,aq,...,a,) means that whenever one of the processes is busy,
none of the others are. If the processes are nodes and mutual exclusion between
them is represented as arcs, then the n-ary mutual exclusion can be represented as
a complete graph with n nodes and ('2') arcs (see Figure 4-2). So (g) binary mutual
exclusions are needed. []

This Lemma shows we can restrict our discussion to binary mutual exclusions
without loss of generality.
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Figure 4-2. Simulation of an n-ary u using ('2‘) binary p’s (for n = 4)

Notation. Let m,m;, ms,... denote mutual exclusions. m~ and m_ , called
the input and output of the mutual exclusion, will denote the set of inputs and

outputs of the component processes, respectively. The new place introduced in a

mutual exclusion will be denoted by mo.

Definition. Let m; = p(ay, a3) and me = pu(by, bs). my directly precedes m,
written m;mo, if g, = b;-' for some ¢ or 5. Note that this allows the possibility
that each precedes the other (for example, if a;— = b and by = a3).

Mz

Figure 4-3. myms. my |—*m2 and mg}-m;.

Using the directly precedes relationship, a pre-order precedes is defined, written
I to be the transitive closure of directly precedes: If m;}—ms and mol—mg then,

my I':mg.
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Deadlock

Deadlock is a state where a set of processes are all blocked because they
are all waiting for some resource which the others have and will not give up.
Since p-structured nets allow communication between parallel processes, deadlock

is possible.

Definition. A set of mutual exclusions is said to be deadlocked or is in a state
of deadlock if they are all busy and no transition in any of the outputs of the mutual
exclusions is firable. A p-structured net has danger of deadlock if it has a set of

mutual exclusions with a reachable deadlocked marking.

Arbitrary application of the mutual exclusion construct to a structured net
can easily cause deadlock. Some deadlocks can occur because of the way the
mutual exclusion was applied, others can occur due to the interaction of several

mutual exclusions. In this section certain restrictions necessary to prevent obvious
deadlocks are considered.

Definition. A mutual exclusion construct is pathological if applying it creates
danger of deadlock. Mutual exclusions that are not pathological are called normal.

Lemma. Let a and b be processes of a structured net. The mutual exclusion
u(a, b) is pathological if one of the following conditions hold:

(a)a™ =b"
(b) a_ =b_
(c)a—=0b"

(d) x(a,c) and b C c.

Proof:

For (a) and (b) (see Figure 4-4 (a) and (b)): If a= = b, then the mutual
exclusion cannot be entered because there are two arcs from po to a™ but only one
token in po. If a— = b—, then the mutual exclusion cannot be left because to enable
the output of the mutual exclusion the places in the two processes must be marked,

but by the mutual exclusion construct only one of them is marked.
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(a) (b)

Figure 4-4. Pathological mutual exclusions.

For (c) (see Figure 4-4 (c)): If a= == b_ then this transition cannot be fired
since the two input places bo and po must each have tokens, but this cannot happen.

For {d) (see Figure 4-5 (a) and (b)): To enter process a, the mutual exclusion
becomes busy. Within the structured process ¢, there will be deadlock when process
b wants to enter the mutual exclusion because it is already busy. a cannot leave the
mutual exclusion until all the inputs to the output transition are marked, but this
cannot happen until all the internal processes of ¢ are terminated. Figure 4-5 (a)

is an example of a deadlock causing structure, while (b) has danger of deadlock.

(a) (b)

Figure 4-5. More pathological mutual exclusions.

Let us call the pathological mutual exclusions in the previous Lemma, type (a),
(b), (¢), and (d), respectively.

Lemma. All pathological mutual exclusions are of type (a), (b), (c), or (d).
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Proof: Since structured nets are live and safe, the introduction of the mutual
exclusion with the place mo is the cause of the deadlock, so only the inputs and out-
puts of the mutual exclusion need be considered. Let m = u(a, b) be a pathological
mutual exclusion. Then there is a marking where none of the inputs or outputs of
the mutual exclusion are firable. There are two possible cases: mo is either marked

or unmarked.

Case (1) If mo is marked, then it means that both of the input transitions a~
and b~ are blocked. The only way these transitions can be blocked is because there
are more than one arc from mo to each of them but mo has only one token. Since
there are only two arcs from mo, this situation can arise only when the two inputs

are the same. This is pathological mutual exclusion of type (a).

Case (2) If mo is empty, then one of the two component processes, say a, is busy
and its output transition a_ is blocked. This implies that there is an empty input
place, p, with p—a_. If this place belongs to the mutual exclusion, then we have
type (c). If this place belongs to the olther process, b, then we have type (b). If this
place belongs to a process ¢ which is not a component of the mutual exclusion, then
¢ is blocked because it follows b. This implies that b is blocked while not having

any common transitions with a, so it must be in a x relation to the busy process,
giving us case (d). [

Structured Nets with Mutual Exclusion

Definition. The class of Petri nets obtained by allowing structured processes
to have normal mutual exclusion constructs will be called p-structured processes.

p-structured nets are obtained when the p-structured processes are augmented . A
p-structured process is lfve and safe if its associated net is live and safe.

Notation. p-structured nets will be denoted as a pair {z(a4, az,...,a,), M)
where z is a structured net and M is the set of mutual exclusions. For example,

(w(o(a, ), 0(c, d)), { (b, c) }).
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Figure 4-6. A p-loop.

The pathological u’s cause deadlock by virtue of their being applied incorrectly.
Another way for the mutual exclusions to cause deadlock is by mutual interaction
at a global level. In Figure 4-6, there is a structured net (On(o(a,b), o(c, d)) with
mutual exclusions u(a,d) and u(b, ¢). Deadlock occurs when processes @ and ¢ are
busy. This comes about because the two mutual exclusions both precede the other
and the two structured process are concurrent. This configuration of p’s will be

called a deadly p-loop.

Deflnition. A set of mutual exclusions { m;,mg,...,my } is called a p-loop if
mi;—m;4+1 for 1 < 1 < n and m,}—m;. By transitivity of - mim; for all i. A
p-loop is said to be deadly if all the p’s can be busy at a marking.

Theorem. A p-structured net is live and safe if it has no deadly u-loops.

Proof: The safeness is not affected by the mutual exclusion construct since it
does not add tokens to any place in the net except the place in the mutual exclusion.
So we must demonstrate that liveness is preserved. ;

(&) Clearly, if a p-structured net has a deadly p-loop then we can reach a
marking in which they are all busy aﬁd since it is a loop, none of the output

transitions can fire, so it is not live.

(=) Assume there are no deadly p-loops but the net is not live, i.e. there is
a marking in which some process is blocked. Since structured nets are live, the
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process ¢ must be a part of a mutual exclusion p(a, b) that is not startable, i.e. the
input to the process is not enabled. This means that b is busy. Ordinarily, b will
become free unless its output transition is blocked. Because of the previous Lemma,
this can happen only if there is a process ¢ such that o(b,¢) and ¢ is in a mutual
cxclusion with another process which is busy. At each stage we have a process which
is blocked by another which is in mutual exclusion with another. Since our nets are
finite, this must stop at a finite number of mutual exclusions, yet the configuration

must remain at an impasse, which implies the existence of the deadly p-loop. [

Lemma. A p-loop is deadly if and only if the component structured processes

are all concurrent.

Proof: A p-loop of n mutual exclusion constructs requires n o structured
processes. So in order for all of the mutual exclusions to be busy, all the structured

processes must be concurrent. [

Knowing that deadly p-loops are the cause of deadlocks in u-structured nets, is
it possible to recursively define a class of Petri nets which has mutual exclusion but
is live and safe? Unfortunately, no. Deadlocks are global phenomenon and recursive
definitions cannot distinguish between a single occurrence of a mutual exclusion and
a deadly p-loop.

However, testing for deadly p-loops is not hard. An outline of an algorithm
for determining deadly p-loops is given below. Let us call a structured net that
consists of a pair of processes where the input of one is the output of the other, a
sequential pair.

An algorithm (for determining deadly p-loops):

First, determine if there are any loops by constructing a directed graph where
the nodes are the mutual exclusion constructs and the arcs represent the directly
precedes relation on mutual exclusions. Next, test the graph for any cycles by
scanning through the nodes and making a tree of nodes reachable from a start node
checking for repetitions.

Second, if there are cycles, determine whether the loops are deadly by testing

whether the sequential pairs are concurrent. This is done by checking whether they
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occur as substructures of a m-construct.

Repetition Construct

Definition. The repetition construct between n processes ay,as,...,ay,, writ-
ten p(ay,as,...,a,) is a Petri net structure with two new places and a transition

with the following structure:

{ al—x az_: LRS! a; }—'pl_’t—*p2_’{ a1— 02—, ...,0pn— }
The new transition ¢ will be called the shared transition (of the repetition construct).

When one of the component processes start, the shared transition becomes

enabled to fire, and it must fire before the output of the process can fire. Figure

4- 7 is an example of the repetition construet for two processes.

Figure 4-7. Repetition construct for two processes.

Lemma. The repetition construct preserves liveness, but not safeness.

Proof: (Not safe) If two or more of the component processes are concurrent,
then the place p; of the construct can be marked simultaneously, so the net is not

safe. (Live) Assume that each of the component processes are live, then after the
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firing of the input of a process the shared transition will be enabled, and after it
fires, the output of the process will be enabled. [

Definition. Structured processes with the repetition construct will be called
p-structured processes. Augmented p-structured processes will be called p-structured

ncts.

Theorem. A p-structured net is live and safe if and only if the processes in
each repetition construct are pairwise not concurrent.

Proof: Since they cannot be marked simultaneously, the shared places cannot
be unsafely marked. Liveness is not affected by the construct. [

Liveness and Safeness of Hierarchical Nets

In p-structured nets and p-structured nets, the mutual exclusion and repetition
constructs were applied only between processes. The two constructs are mutually
independent in their effect on the nets, so that can be simultaneous applied without
introducing extra complications.

Definition. With simultaneous application of mutual exclusion and repetition
construct between processes in a structured processes, u-p-processes are obtained.
Augmented p-p-processes will be called pu-p-nets.

With the characterization for liveness of u-structured nets and safeness for
p-structured nets given, the u-p-processes can be used as building blocks to form
hierarchical nets. The construction has the same flavor as for structured nets.

Definition. A hierarchical process is either

(a) a live and safe p-p-process, or

(b) a hierarchical process with a process replaced by another hierarchical process,
i.e. a net substitution [h;/a]lhe where a is a process and hy and hy are

hierarchical processes with no process names in common.

Definition. A hierarchical netis an augmented hierarchical process. h, hy, ho, ...,
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will denote hierarchical processes, and H, Hy, ..., will denote hierarchical nets.

Ha

_J

Figure 4-8. Example of a net transformation [hy/a]H>.

Theorem. Hierarchical nets are live and safe.

Proof: The proof is by induction on the construction of a hierarchical net.

(a) If the hierarchical net is an augmented p-p-process, then, since the p-p-net
is assumed live and safe, it is too.

(b) Otherwise, assume that the hierarchical net is the result of a net substitu-
tion, [h1/a]H2, where a is a process in Hp. By induction hypothesis h; and Hp are
both live and safe. The net substitution replaces process a with hy by identifying
the input and output of @ with that of the input and output of h;. Since h; is
assumed live and safe, the output of h; will eventually fire after the input has fired,
and so the whole net is live and safe. [

Hierarchical nets provide us with a way of synthesizing complex structures
made of processes and mutual exclusions and repetitions. By restricting the use of
the mutual exclusion and repetition constructs to one level at a time, in a p-p-net,
hierarchical nets are easily shown live and safe. We can go one step further in this
hierarchy and allow mutual exclusion and repetition constructs to be applied to

processes in different hierarchical nets.

Definition. A distributed hierarchical net is either
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(a) a set of hierarchical nets where the mutual exclusion and repetition con-
structs are allowed between processes of the different nets, or

{(b) a distributed hierarchical net where a process is replaced by a hierarchical
process.

Notation. Distributed hierarchical nets are represented as an ordered pair

({Hlx s :Hn }1 { ”'(pltql)y sy ”’(pm:qm.): P(a]_, bl): seey p(ab bl) })

where the processes in each u or p construct are from different hierarchical nets .

Theorem. Distributed hierarchical nets are live and safe if the set of mutual

exclusions does not contain deadly p-loops and the repetition constructs are not

formed between concurrent processes.

Proof*: Since the different hierarchical nets can be viewed as concurrent processes
the proof is identical to the liveness and safeness proof of u-p-nets. (I

Due to the way distributed hierarchical nets are constructed, there are certain
structures that cannot be obtained. Figure 4-8 gives couple of Petri nets that are
not obtainable by hierarchical nets construction.

Figure 4-8. Petri nets not generatable as distributed hierarchical nets.
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Examples of Applications
1. The Dining Chinese Philosophers

The problem. (Dijkstra [1968]) A group of Chinese philosophers are sitting
around a round table. Each has a bowl in front of him. Between two adjacent bowls
there is a chopstick. So there are only as many chopsticks as there are philosophers.
A large bowl of food is at the center of the table. Our philosophers do one of two
things: they either think, or they eat. Thinking can be done without any material
aids, but eating requires the use of a pair of chopsticks. So, before a philosopher
can eat, he must pick up the two chopsticks on each side of his bowl.

The Dining Chinese Philosophers problem was solved by the Petri net of Figure
1-6. The solution assumes that each philosopher can simultaneously pick up both
his left and right chopsticks. This three-way synchronization may be considered
to be begging the issue since it pushes the problem back one level to that of
constructing multi-way synchronizations from simpler cnes.

If only two-way synchronizations are assumed, then one solution would be
Figure 4-10. Each philosopher picks up his right chopstick, then his left. Obviously,
this solution can deadlock. The liveness and safeness condition of distributed
hierarchical nets would exclude this solution because there is a deadly u-loop.

Ci .\(" 'pz q -Fn

4 2 n

Figure 4-10. Dining Chinese Philosophers solution
using only 2-way synchronizations.
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By removing the deadly p-loop a live and safe solution is obtained in Figure
4-11. Here one of the philosophers is left handed and picks up his left chopstick
before his right.

)

OQI

Figure 4-11. A live and safe solution.

Now, some may consider this solution inelegant because of lack of symmetry.
The solution of Figure 4-12 is more symmetrical where all the even numbered
philosophers pick up their left chopsticks first. Given only two-way synchronizations

and no global mutual exclusion asymmetry is inevitable.

fa

% 3
Figure 4-12. A more symmetric solution.

The standard solutions using the P and V operations essentially simulates

three-way synchronizations using one global critical section.
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2. The Smokers Problem

The problem. (Patil [1971]) Three ingredients, paper, tobacco, and matches,
are required to make a cigarette and smoke it. There are three smokers around a
table each already possessing different one of the three ingredients. On the table
two of the three ingredients will be placed. The smoker with the necessary third
ingredienl may take the ingredients from the table and smoke. The others may not
interfere. No new ingredients will be placed on the table until the previous ones
have been consumed.

The Petri net solutions to the smokers problem presented by Campbell and
Lauer [1975] are recast into distributed hierarchical nets solutions.

The sequential solution looks like Figure 4-13. Essentially, the solution uses a
scheduler that keeps track of the ingredients and then allows the right smoker to
go ahead. The places p; inside a p-construct indicate the appearance of paper, etc.
The places p; in a p-construct means that the smoker with the paper can smoke.

P<PUT‘-JP3> F(E)Fi}
p (4 ,t2,t5) P(t0 &)
P (m, , M2, mS)f(;l‘,,;i)

Figure 4-13. Sequential solution to the smokers problem.

The concurrent version looks like Figure 4-13. After the pruning is done to
the path expression solution, it closely resembles Figure 4-13.
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Figure 4-13. Concurrent solution.

|

These two solutions are live and safe since they satisfy the requirements on the
use of mutual exclusion and repetition constructs.

The use of three-way synchronization makes the concurrent solution quite
trivial, and so the question arises of what primitives we will allow in our various
solutions to distributed synchronization problems. For these considerations, hierar-

chical nets seem to be a useful tool.
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Chapter 5

General Net Transformations

In this chapter, more general types of transformations are considered which do
not necessarily preserve liveness or safeness. We formally define these transforma-
tions, give examples of when they are not nicely behaved, and then explore their use
by formulating suitable restrictions on their applications. These transformations
have a certain symmetry which affects the behavior suggesting certain notions of
duality.

Transformations on Transitions

General Transition Refinement (GTR). Counsider Figure 5-1 where the

transition t is refined but the inputs and outputs are split between the two new
transitions.

f 14

Figure 5-1. {g1,q2}2t={gs, 01} = {@—~ti—{gs,p}, {p, @2 }ot2—>qs }
In general we can have:

A—t—B = {Al—-—btl—-)Bl,AQ—btz—)Bg }
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where A; UAs = AU {p}, pisin Ag, and 4; and A; are disjoint, and B; U By =
BU {p}, pisin By, and By and B; are disjoint, and neither A; nor B; are empty.

Proposition. General transition refinement preserves liveness, but not safe-

ness.

Proof: If the original net is live, then each input place of ¢ will be filled with
a token. Then in the resulting net, the two new transitions will also be enabled, so
the new net is also live. To show that the transformation does not preserve safeness,
see Figure 5-2, where p is no longer safe after transition ¢ is refined, although the
original net is clearly live and safe. []

F¢

Figure 5-2. An example of GTR which does not preserve safeness.

General Transition Splitting (GTS). In the transition splitting transfor-
mation, p; —+t—pe = p1—{t1,t2 }—p2, the transition has unique input and output
places. In general, the transition can have multiple inputs and outputs (see Figure
5-3).
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% 1 T %

Figure 5-3. {p1,p2 }=t—{a1,0:} = {{p1,p2 }=ti={q1, 2 },p1—=t2—q }

General transition splitting distributes the input and output places among the
new transitions:
ot—t—rte = {of; ;10 0t —tr 1z }

where ot; | of; = ot and £y® U {28 = te and neither of; nor e¢; can be empty.
Proposition. General transition splitting preserves safeness, but not liveness.

Proof: Safeness is preserved since the new transition which is created does not
add any extra tokens into the net. Liveness is not preserved as can be seen from
Figure 5-4 where the firing of £, will cause deadlock. [

Figure 5—4. General transition splitting with danger of deadlock.
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Transition Merge (TM) - Synchronization. This is one of the fundamen-
tal operations that is used to compose smaller Petri nets into larger ones by joining
identifying two transitions as one with the resulting transition having all the inputs
and outputs of the components:

{ oty ot; 0, 0istr—tg0 } = of; U sly—i—ije Uiye.

HHe =

Figure 5-5. Synchronization.

Proposition. Synchronization preserves safeness, but not liveness.

Proof: No new tokens are produced, therefore safeness is preserved. To see

how liveness is not preserved see the example in Figure 5-6. U

Figure 5-6. Synchronization has danger of deadlock.
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Definition. Two transitions are said to be independent, if when one is enabled,
it is possible to reach a marking where the other is also enabled without the firing

of the first enabled transition. In general, testing for independence is hard.

Proposition. Synchronization preserves liveness if applied between inde-
pendent transitions.

Proof: Clear from definition of independent transitions. [

Figure 5-7. Synchronization of two independent transitions.

Transition Division (TD). The opposite of synchronization is to divide one
transition into two, dividing the input and output arcs between them, making sure
that each has at least one input arc:

ot—t—te = {0t 1, —t1e, oty >t —ice }

where ot = of; U o2 and te = {;8 U t2e and none of the sets of inputs or outputs
are empty.
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Figure 5-8. Transition division.

Proposition. Transition division preserves liveness, but not safeness.

Proof: Clearly if the original transition was live, then the resulting transitions
are also. To see that safeness is not preserved, see the following example in Figure
5-9. The place p was safe, but after separating ¢ into ¢; and #; it is not. U

{

Pa

Figure 5-9. An unsafe transition division.

Transformations on Places

Same types of transformations can be defined on the places.
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General Place Refinement (GPR). Analogous to the general refinement
for transitions, the inputs and outputs can be split between the two new places.

Figure 5-10. General place refinement with two inputs and outputs.
In general we can have:
A—p—B = { Ay —p1—B1,As—p2— By }

where A; UAp = AU {t}, pisin Ag, and A; and A; are disjoint, and B; U Bs =
B U {t}, pisin By, and B; and Bz are disjoint, and neither A; nor Bz are empty.

Proposition. General place refinement preserves safeness, but not liveness.
3

Proof: Since the new transition does not add any new tokens to the net, it
preserves safeness. It does not preserve liveness, as can be seen in Figure 5-11 where
t is no longer live after p is refined. [l
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Figure 5-11. General place refinement does not preserve liveness.

General Place Splitting (GPS). The place, which is being split, can have
multiple input and output transitions:

ep—p—+pe = {op-»p——rpt, t—bq—bS}

where t € ep and s € pe.

<, Z, -é, T,

5 5 S Sz
Figure 5-12. An example of general place splitting.

Proposition. General place splitting preserves liveness, but not safeness.

Proof: If all the input transitions are live, then all the output transitions are
also live. After the splitting of the place, the transition 8 requires two places to be
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marked to fire. Suppose the firing of another transition in pe disables 8. Since the
net was assumed live and safe before the transformation, the transition ¢ must be
live, so that s is also live. The place g that is introduced is now unsafe because it

accumulates as many tokens as the number of times ¢ fires but not s. See Figure
5-13. U

(o) > (2 @

& T

Figure 5-13. After the firing of s; and iz, g is not safe.

Place Merge (PM). Two places are merged into one so that the new place
has the combined input and output of the two:

{ ep1—p1—p1e,ep2—pa—pae } = (epy U ep2)—p—(p1e U pae).

Figure 5-14. Place merge.
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Proposition. Place merge preserves liveness, but not safeness.

Proof: Clearly, it cannot introduce danger of deadlock. However, if we merge

two places that can be simultaneously marked, then the new place is no longer safe.

O

Figure 5-15. Merge of places does not preserve safeness.

Proposition. Place merge preserves liveness and safeness if it is applied to
two places which can never be simultaneously marked.

Proof: Obvious. [

Place Separation (PS). Oune place can be made into many places and the
inputs and outputs divided between them. Without loss of generality, we define the
place separation producing two places:

sp—p—pe = {ep; —p; —p1e, eps—po—poe }

where ep = ep; U epy and pe = pje U pye:
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Figure 5-16. An example of place separation.

Proposition. Place separation preserves safeness, but not liveness.

Proof: No tokens are introduced that does not already exit in the net. Liveness

is not preserved, as can be seen in Figure 5-8.

Figure 5-17. Place separation does not preserve liveness.

Symmetric Aspects of Net Transformations

The net transformations fall into two main classes. The first class consists
of the transformations which do not add new arcs to the net: the merges and
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divisions of places and transitions (PM, TM, PD, TD). The second class of
transformations add new arcs: the splittings and the refinements (GPS, GTS,
GPR, GTR). In each of the net transformations, one of safeness or liveness is not
preserved. Transformations PM, TD, GPS and GTR do not preserve safeness,
while TM, PD, GTS and GPR do not preserve liveness.

To see the symmetry, a notion of duality for Petri nets is needed.

Definition. The dual of a Petri net is another net with the same structure, but

with the places and the transitions interchanged. Duality is a symmetric relation.

Since the net transformations are transformations of Petri nets into other Petri

nets, each net transformation has a corresponding dual net transformation. For
example, PM is the dual of TM, and PD is the dual of TD, since those are obtained
when the places and transitions are interchanged.

Definition. A characterislic of a net transformation is either the property
“not safeness preserving” or its dual, “not liveness preserving.”

If n denotes a net transformation, then let n' be its dual. Also, if z denotes a
characteristic, then 2’ is its dual. Let ¢(n, z) be the sentence “net transformation
n is z.” For example, if n is GTR. and z is “not safeness preserving” then ¢(n, 2)

means “General transition refinement is not safeness preserving.”
Theorem. ¢(n, z) implies ¢(n', 2).
Proof: By collecting the results of all the previous propositions. [

Since the net transformations are made up of two components, whether they act
on places or transitions and some operation, let us represent a net transformation
by n(z,y), where z can be either “place” or “transition” and y can be one of the
four operations: “merge,” “division,” “splitting,” or “refinement.” So if z is “place”

and y is “splitting,” then n(z,y) denotes the net transformation GPS.

Definition. Let merging (M) be the dual of division (D), and splitting (S) the
dual of refinement (R).
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Define 9(z,y,2) to mean “the net transformation n(z, y) is 2.”
Theorem. ¥(z,y,z) implies ¥(z',y,2') and ¥(z,y, /) and 9(z', ¢, 2).

Proof: Again by inspection of the characteristics of each net transformation.

For the net transformations in the first class, as far as the characteristics
are concerned, the merging of two places has the same effect as the division of a
transition into two and the merging of two transitions the same effect as the division
of a place.

The net transformations of the second class can be viewed as introductions of
places (GPS, GTR) or introductions of transitions (GTS, GPR). Introductions

of places do not preserve safeness while introductions of transitions do not preserve
liveness. ‘

Notions of duality have been around, but not much has been done because it
was not clear what to do about the tokens in places when the places where changed
to transitions. The net transformations introduced in this chapter suggest a way
of reasoning about duality without the need for explicit markings, and still say

something about the behavior of Petri nets.
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Chapter 6

Conclusions

Petri Nets as Design Tool

Although Petri nets provide only a small number of primitives with which to
model systems, by suitable abstraction, any level of a finite system can be modeled.
Since the firings of transitions are the only actions possible, not all activities can
be modeled easily, and some require complex Petri net structures.

To use Petri nets for more complex computations, some researchers have inter-
preted the transitions as representing assignment statements. The net represents
the flow of control and its topology, but hides the flow and spatial location of data
by assuming it is independent of the net.

In concurrent computation, the distinction between data and control is un-
desirable. Concurrent computation has spatial as well as temporal components, and
by interpreting the transitions as functions controlling the flow of information —
both data and control — the topological aspects of a computation become clearer.
For an operation to happen, all the necessary data must be available, and this
requires that arcs link the different parts of a net.

The mutual exclusion construct is a good example of the actual communica-
tions that are required to implement mutual exclusion. Mutual exclusion between
spatially distant processes is costly, and simulating synchronization “primitives”
may require lots of communications. The topology of the Petri net also tells us
what the topology of a physical implementation must be. If the Petri net is not
planar, then any implementation won’t be either.

The transitions and places of a Petri net are too small as units in the design
process. In this work, the unit of action was defined as a process, and the control
structures (mutual exclusion and repetition constructs) and net transformations
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were defined in terms of it. The characterization for the safe use of the mutual

exclusion construct would have been very complex without this higher level view.

The hierarchical approach to Petri nets gives the designer a formalism that
combines the control structures of regular programming notations and the topologi-
cal information to reason about concurrency. It is not meant to represent a complete
programming language dealing with values of computations.

Not all control structures can be modeled using Petri nets without fundamental
modifications. For example, the busy waiting, where one process tests a condition
repeatedly until the condition becomes true, and then executes an action, cannot
be modeled. In the Petri net version, even after the condition becomes true, there
is nothing to force the net to execute that action.

Petri Nets and Verification

Once a system has been modeled as a Petri net, the task of verifying remains.
For general questions like liveness, safeness, and reachability, procedures exist so
that they can be done automatically. Hierarchical nets have been defined to make
testing for liveness and safeness easy, so that verification can be concentrated on
the more specific behaviors of a system.

Proving a given property of a net will usually require simulating the net, which
is quite hard for general nets, but hierarchical nets have structural information that
can be utilized. The processes at different levels of abstraction all begin and end
at unique transitions. The parallel construct can be separately considered from the
mutual exclusion and repetition constructs that are added later.

Because Petri nets are usually considered graphically, they are hard to manipu-
late (by hand). What would be nice is a symbolic or an algebraic notation with rules
for forming and transforming Petri nets and their behavior. The transformations
presented in this work may be a part of such a framework. A work done along these
lines is by Kotov [1978] on “An Algebra for Parallelism Based on Petri Nets.” In
his paper, however, the main operator is that of identifying of transitions or places
named the same, so that it is difficult to have any sort of hierarchy.

Before we can have a nice formalism for Petri nets, not only restrictions but
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also more structured approaches are needed. The spatial nature of Petri nets is the
main cause of the difficulty. As yet, we do not have a very clear understanding of

how to manipulate general graphical structures.

Issues in Concurrent Computation

The essential feature of concurrent computation is that different computing
elements are distributed in space and must communicate with each other to perform
a computation. Communication requires synchronization of two or more processes.
In hierarchical nets, synchronizations are done two different ways. The n-construct
provides the structured synchronization where multiple processes are created and
merged. The mutual exclusion and repeﬁition constructs impose synchronizations
among arbitrary processes, some of whom are concurrent with each other.

Concurrency manifests itself in two distinct forms. The first, which I call
“parallelism,” is when the processes are part of an enclosing process, as in the
parallel construct. The second, “independence,” is when the processes are totally
unrelated except for special control structures like mutual exclusion that are im-
posed.

Applying multiple mutual exclusions to a process has the effect of making multi-
way synchronizations. As we saw in the Dining Philosophers problem, by having
each philosopher in mutual exclusion with both his left and right neighbors, we are
using three-way synchronization, and the solution is obvious. The graphical repre-
sentation of Petri nets together with explicit structures that embody the notions
of mutual exclusion and repetition help clarify what is happening in distributed
synchronization problems.

Crucial in the design of large systems is the ability to compose smaller parts
to make a bigger part. The primary method of composition in hierarchical nets has
been the identification of transitions — the calling and returning of subprocesses.
The mutual exclusion and repetition constructs have been used to link different
hierarchical nets, but the resulting net remains very loosely coupled. There remain
many other possibilities that may offer insight into concurrent systems: buffered

communication channels, one way flow of information, identification of places etc.
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The general questions of manipulation and composition of structured objects
exhibiting dynamic behavior remain for future work.
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