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Introduction

Arithmetic based on the residue number system is attractive because addition
and multiplication are performed on each digit independently [Ga59]. It is a
“concurrent” arithmetic. There are many important issues in residue arithmetic.
Two such issues are the degree of concurrency and the code efficiency as functions
of range requirements. From an implementation standpoint, it is important to
find a good implementation of residue adders and multipliers for different ranges,
and to select a basis for a residue number system satisfying the specific range
requirement. Choosing a configuration that fully explores the potential of the
residue number system at various stages of the technology is one of the major

concerns of this paper.

There are many alternatives for the implementation of a residue multiplier.
Different designs are often evaluated in terms of two factors: cost and speed.
Traditionally, the cost is evaluated by the number of IC components used. In
VLSI, silicon area is more relevant. The signal delay in VLST circuits is no longer
determined by the number of gates in a path. Wire delays need to be included
in realistic delay models. In [Ch83a], a model is developed to estimate the delay
of MOS storage structures such as PLA and ROM. The details of this model is

contained in the second part of this report.

This report is organized as follows: In part 1, the residue number system is
introduced first. Then, several different designs of a multiplier based on the
residue number system are presented and analyzed. Finally, base selection
algorithms with respect to minimum delay or minimum area are presented. In
part 2, “Distributed RC Delay Line Model and MOS PLA Timing Estimation”,

a VLSI computation model for storage structures-is developed in detail.
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Part 1. Residue Arithmetic and VLSI

1. Introduction

1.1 Weighted Number Systems

The decimal number system and the binary number system are weighted number
systems. A number system is said to be weighted il there exists a set of weights
w¢'s such that, for any number z, z can be expressed in the form z = 2‘. a; w;,
where the a;’s are a set of permissible digits. If the values for w;'s are successive
powers of the same number, then the number system has a fixed base or fixed
radiz, e.g., base 10 for the decimal number system, base 2 for the binary number

system.

The fixed base number system has the following important advantages:

¢ Relative-magnitude comparison of two numbers can be mechanized easily.
e The logic required for performing arithmetic is essentially identical for all
digits.

e Overflow detection is easily mechanized.

The attributes which lead to these advantages impose a limitation on the speed
with which many arithmetic operations can be performed. In both the binary and
the decimal number system, truly parallel arithmetic operations, i.e., processing
all digits concurrently, is not possible because of carry propagation. For all
arithmelic operalions in such number systems, each digit of the result is a
function of all digits of equal or lower significance. This characteristic imposes a

fundamental limitation on the speed of arithmetic in weighted number systems.
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In order to achieve high-speed computation, other number system that allows

concurrent arithmetic is needed. Such a number system is the residue number

system.

1.2 The Residue Number System

In the residue number system [Ga59|, a number is represented by several residue
digits. The arithmetic operations addition, subtraction and multiplication are
inherently carry-free, i.e., each digit of the result is a function of only one digit
from each of the operands. In particular, for the case of multiplication, the need
for partial products is eliminated. This local property allows a high degree of

concurrency.

The residue number system is not a weighted number system, however, and does
not have many of the advantages listed above for such systems. Operations
such as division, magnitude comparison and overflow detection are difficult in
2 residue number system. Several attempts have been made to find efficient
algorithms to solve these problems [Ba69], [Ki73|, [Ba80]. However, due to the
inherent non-local properties in these operations [$z67], no efficient algorithms
with complexity comparable to addition and multiplication have been found.
The complexity of these operations has prevented the residue number system

from use in general purpose computers.

Howecver, there is a large class of digital signal processing and pattern recognition
problems in which addition and multiplication dominates [Je77], [Je79], [Ts79],
[Hu81], [Fo82]. In those applications, the residue arithmetic is compelitive with
binary arithmetic. In [Je77], a residue number system is used to implement a

64th order bandpass FIR filter. In [Ts79], a hardware implementation of a FI'T
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based on the résidue number system is proposed. In [Fo82], a VLSI architecture
for pattern recognition using residue arithmetic is described. Other applications
can be found in [Je79] and [Hu81]. In these applications, the required range is
typically small (10 to 24 bits) and the individual residue adders and multipliers
are implemented by table look-up. The size of the tables ranges from 1K to 5K
bits and commercial high-speed ROM’s are used to realize the tables. In the
references above, the cost is measured in terms of IC components used and the

performance comparisons are based on particular cases.

In the era of VLSI technology, hundreds of thousands of devices can be integrated
on one chip. Therefore, the need for a new criteria to evaluate different VLSI
designs is evident. Area is a measurement that corresponds to counting IC

components.

In residue arithmetic, the table look-up scheme is one design alternative of many.
Two factors make the table look-up scheme unfavorable. First, the table size
grows exponentially with the number of inputs. For a large range requirement,
the table size will soon become too large. Second, the MOS PLA or ROM that
implements a table contains long poly wires. The wire delay does not scale well as
feature sizes scale down. Hierarchically organized tables or storages as described
in [Me80] can be used to reduce the delay to logarithmic in the table size, instead
of proportional to its size. In this report, the effect of these two factors - increased
range requirement and reduced feature size - on different design alternatives is

analyzed in detail.

In the next section, the Chinese Remainder Theorem and some basic concepts
of a residue number system are introduced. Two important issues, the “degree
of concurrency” and the “code efficiency,” are discussed. In section 3, several

implementations of residue adders and multipliers are discussed. Based on
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VLSI computation models, the cost functions with respect to time and area are
calculated and the relative competent range of each implementation is analyzed
in section 4. In section 5, optimal base selection algorithms with respect to time

and area are presented.



2. Residue Arithmetic and the Chinese Remainder Theorem

2.1 Congruence rclations; Modulo operations and the Chinese

Remainder Problem

Consider three integers A, a and b. If there exists another integer £ such that

A= a+bt, then A, a and b satisfy the congruence relation
A= a(modbd)

which is read, A is congruent to @ modulo b. « is called the residue and b is the

modulus of the number A. For convenience, A (mod b) is sometimes abbreviated
as |Als.

The problem of computing solutions to systems of simultaneous congruence

relations, such as

z=1mod5b
z=0mod7
z=4mod8

was studied by Chinese mathematicians as far back as the first century A.D. In
deference to this historical background, we call the problem of solving a system
of n congruence relations

% = rr mod my (6=0,...,n—1)

the Chinese Remainder Problem.



It is readily verified that £ = 196 is a solution to the above problem. The general
algorithm for computing solutions to Chinese Remainder Problems is based on

the Chinese Remainder Theorem [$267], [Ah74].

2.2 Concurrent Computations in the Residue Number System

Let {m; | ged(mi,m;) = 1, foré £ 7, i,§ = 1,.,p} be a set of pairwise
relatively prime numbers and R = Hf=1 m; be the range of the set. According
to the Chinese Remainder Theorem, any number X in the range [0, R-1] can be
represented uniquely by a set of residues (zy,...,z,), where z; = X modm;
is called the restdue digit with respect to modulus m; and the p-tuple (zy,..., z,)
is a residue code of the number X. The set {my,...,my} is called the base of
the residue number system. Table 1 shows the residue number representation

corresponding to the integers 0 to 29 with respect to moduli 2, 3, 5.

A number represented in residue code can be converted to binary code according

to the formula [Sz87] :

p
X = Ty - ‘J - mod R
I =i,
=1
- R 1 - —
where mj=— and |-——|=a + (Mj-a)=1modR
mj m;




Integers Residue Digits Integers Residue Digits
Moduli Moduli

2 3 b 2 3 b
0 0 0 0 15 1 0 0
1 1 1 1 16 0 1 1
2 0 2 2 17 1 2 2
3 1 0 3 18 0 0 3
4 0 1 4 19 1 1 4
b 1 2 0 20 0 2 0
6 0 0 1 21 1 0 1
7 1 1 2 22 0 1 2
8 0 2 3 23 1 2 3
9 1 0 4 24 0 0 4
10 0 1 0 25 1 1 0
11 1 2 1 26 0 2 1
13 0 0 2 27 1 0 2
13 1 1 3 28 0 1 3
14 0 2 4 29 1 2 4

Table 1. Residue representation of the numbers 0 to 29 for moduli 2,35

Example: Conversion of a residue number by use of the Chinese Remainder

Theorem.

For moduli m; = 13, ms = 11, ms = 7, and m4 = 9, find the number whose
residue representation is {4,2,4,7}.

Solution

4
R=Hm,-=13X11><7X9=9009

=1



=10
13

my

[Malmy = [11 X 7 X 9|33 = |693]15 = 4 then

=9
11

-

mz

|melm, =183 X 7 X 9|11 = 81911 =5 then
|mis|ms = |18 X 11 X 9]z = [1287|; = 6 then [-1—] =8
msaiy

=5

~ 1
|fie|me = |13 X 11 X T|o = [1001]o — 2 then !m—,
. 4

|#]s00s = [693 X |10 X 4], + 819 X |9 X 2|11 + 1287 X |8 X 4|7 + 1001 X |5 X 7|g] 4000
= 693 X 14819 X 7+ 1287 X 3+ 1001 X 8| ;400

= |18295lgoog = 277

Let X and Y have residue codes (z1,...,zp) and (yi,...,¥p) respectively and

X,Y,X +Y,X Y €[0, R-1]. Then [Ga59]
) X +Y|m; = |2: + Yilm; and |X - Y|m; = i - yilm,

It follows that
(IX + Ylml’ seey IX + YIMP ) = (I‘r'l + yllm].’ sory pr + yplmp)

(I-X : Y[m,,...,lX : Ylmp)=”zl . lelmuu-:lyp : .Up[m-p)



Example: Addition in the residue number system
For the moduli 4,3,5 and 11 add z = 102 < {2,0,2,3} and y = 211 «
{3,1,1,2}.

Solution:

" Moduli: 4 3 5 11

102 12, 0, 2, 3]
+211 ¢ +{3, 1, 1, 2}

[313lus0 = 318 e——— {1, 1, 3, 5] |

Example: Multiplication in the residue number system
For the moduli 4,3,5 and 11 multiply 2 = 256 « {1,1,0,3} and y=21 «
{1,10,1,10}. '

Solution: .

Moduli: 4 3 5 11
25— {1, 1, 0, 3}
X21 &¥——— {1, 0, 1, 10}
{525{6s0 = 525 «— {1, 0, O, 8}

The examples above show that addition and multiplication of two numbers can
be carried out on each digit independently. When these operations are performed
in each residue digit concurrently, the overall speed is often limited by the residue
digit with” respect to the largest modulus. For a given range R, if the moduli
are properly chosen such that the maximum modulus is as small as possible
then the maximum speed-up can be achieved. However, the maximum modulus
for a given range can not be arbitrarily small since each pair of moduli must

be relatively prime numbers. Indeed, there is an analytic relation between the

-10 -



required range and the maximum modulus. This relation indicates the inherent

degree of concurrency in the residue number system.

2.3 Degree of Concurrency and Code Efficiency in the Residue
Number System

Consider a residue number system with base {mi,...,m;} and range R =
P

=1

Let M; be the number of bits required to encode the i-th residue digit and Ny, be

m;. Each residue digit is typically encoded in the binary number system.

the number of bits required for a direct binary encoding of the largest number

in the range [0, R-1], i.e.,, Mj = [logm;], N, = [log R}, where log = log,,.

Denote M = max{M;} the number of bits required to encode the largest moduli
‘and N, = Eip M; the toﬁal number of bits reqﬁired to encode the entire residue
code. The quantity 7 = N /M is the ratio between the number of bits needed
in the binary number system and the number of bits for the largest modulus in a
binary encoded residue number system. We define it as the degree of concurrency
of the residue number system. Another quantity  — N /Nr is the ratio of the
total number of bits required to encode numbers with equal range in a binary
number system and a residue system. We define it as the code efficiency of the

residue number system.

Table 2 lists several bases for some ranges and the accompanying values of
M, Np, Nr, 7 and 5. Note that all moduli are of the form p*, where p is
prime. Moduli are listed in order of increasing p. The reason for choosing these

particular bases will be clear later.

From table 2, it is easily seen that the degree of concurrency (7) is monotoni-
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moduli M [ Ny | Nr v log Ny, /M 7
8,3,5,7 3 | 10 |12 | 3.33 111 0.91
16,9,5,7,11,13 4 | 20 |22 | 5.00 1.08 0.91
32,27,25,7,11,13,17,19,23,29,31 5 48 51 9.60 1.12 0.94
64,27,25,49,11,13, ... ,63,59,61 6 90 97 15.00 1.08 0.93
128,81,125,49, ... ,107,109,113 | 7 | 184 | 196 | 26.29 1.08 | 0.94
2566,243,125,49, ... ,239,241,251 8 363 | 386 | 45.37 1.06 0.94

Table 2. Degree of concurrency (7) and code efficiency ()

cally increasing with the range. Indeed (logN,)/M approaches 1 as the range
increases. This follows from the fundamental theorem of arithmetic. A proof
is given below. The significance of this property is that instead of N,-bit arith-
metic, log Nj,-bit binary arithmetic suffices. However, O(Nb /log Nb) such units

are required instead of one Ny -bit unit.

Since each residue digit is binary encoded, only m; out of 2Mi available codes
are used. There is some redundancy in the residue code. Therefore the code
efficiency is always less than 1. However, table 2 shows that the code efficiency is
greater than 0.9 for ranges of interest and it can further be proved that Ny, /Nr —

lasNb—roo.

That the property O(M)=O(log Nb) follows from the fundamental theorem of

arithmetic will now be shown.

Definition 1. {m,...,m,} is a feasible base for a range R if any two elements in
{m.,...,my} arerelatively prime and the product of all elements in {m,...,mp}

is greater or equal to R, i.e., ged(mi,m;) = 1 for ¢ 5 j, i,7 = 1,.,p and

P
f=1

the base.

m; > R. Denote the largest modulus in {m1,...,mp} as the norm of
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For example, {3,5,7,11} is a feasible base for the range R=1000, but not a
feasible base for the range R=1200, since 3 X 56 X 7 X 11 = 1155 < 1200. The
norm of this base is 11.  {6,7,9,11} is not a feasible base for any range since

6 and 9 are not relative primes.

Definition 2. Let 2 be the norm of a feasible base {m,,...,m,} . Then this base
is also an optimal base if for any other set {n1,...,ng | ged(ns, n;) =1, for i #

i 4i=1,.,q and n; < 2, Vi }, [[]_ n; <I[}_, m..

Definition 2 means that if a base is constructed with the restriction that its norm
is less than z, then the range has an upper bound R, which is achieved by the
optimal base. The upper bound R is a function of z, i.e., R=R(z). The following

lemma gives the construction of an optimal base and the characteristic of R(z).

Lemma 1. (Construction of an Optimal Base) For any z > 2, the set of

moduli {pf’ | pi + dth prime, H<z< p?"“} forms an optimal base with

range R= R(z) = HVPI.C‘.<zp?; where k; = llloog:;J’

Proof:
(1) {p¥} is a feasible base since pi’s are relatively prime for different §

2) Let {mi,...,mp} be the given base and {ni,...,nys} be another feasible
P g

base. By the fundamental theorem of arithmetic [Ha79], there exist a unique

prime ezpansion for the range of the base {mi,...,mp} , and for the range of

the base {ni,...,ny} .

H m; = H Pf' (1)

=1 i=1
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and

H nj = H i (2)

i=1 i=1

where p; is the ¢th prime number.

Assume n; < max {m;} for all 1 < j < g, then for every term py # 1in
eq(2), p¥ < some n; < max {m;} < z. The first < holds because each p
divides exactly one n; (otherwise, elements in {ni,...,n,} are not relatively

prime.) The second and third < hold due to the assumptions. Compare eq(1)
with eq(2) term by term. In eq(2) p; < =z, while in eq(1) p¥* < 2 < pFi*?,
hence I; < k; for all i. Therefore H;’=1 n; < H:.’=lm,-.

logx

Lemma 2. log(R(z)) = log H pE“’g wil is of order z.

Vpii<a
Proof: see [Ha79] pp. 341.

Theorem Lel N}, be the number of bits required for a direct binary encoding
of numbers in the range [0, R-1] and M be the number of bits required for binary
encoding of the maximum possible digit in a residue representation of the same
numbers. Then M=O(long) provided that the base is an optimal base with
range > R.

— 14 -



Proof:

Let M = pz[R(z) > R] where g is the minimalization operator. Then the
optimal base with norm M achieves range > R. By the definition of M,
R(M—=1) <R £ R(M), ie., logR(M —1) < logR < log R(M). By Lemmas
1 and 2, O(M)=0(logR). Since M=[log M] and Ny, = [logR], it follows that
M=0(log Ny ).
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3. Implementations of Residue Arithmetic

The concurrent property of the residue number system provides a method to
achieve high-speed computation. However, addition and multiplication of each
digit is more complex than in the binary number system in that it is performed
modulo the set of integers, mi,..,m;. For moduli of the form 2", 2" + 1 or
2"—1, the modulo operation is essentially for free and implementations of residue
arithmetic is simple [Et82], [Ta82]. However, if the selection of moduli is limited
to the form 2°,2" + 1 or 2" — 1, (“easy” base) the degree of concurrency will
be reduced since t'hc available choices of moduli arc fewer and the maximum
modulus is larger, see Table 3. In fact the code efficiency is slightly higher for
the easy base, but the number of bits needed for the maximum base rapidly

becomes significantly larger.

Performing the modulo operation by a restoring or nonrestoring division algo-
rithm is very time consuming and should be avoided. Finding a good algorithm
for the modulo operations therefore becomes an essential part of realizing an
efficient residue arithmetic system. We will now discuss a few alternatives for

the implementation of multiplication modulo arbitrary (but fixed) integers.

Addition and multiplication modulo the integers m;, mo, .., m, are traditionally
implemented by table look-up [Je77], [Hu81], [Ba82], [Fo82]. The table look-up
scheme provides many advantages: it is programmable and easy to design; it has
a very regular structure and can be made very dense. Since the table size grows
exponentially with the number of inputs, it is almost impossible to implement
a 10-bit by 10-bit adder or multiplier in the binary number system (22° ~1M
bits!). However it is possible to decompose a large number, say 18 bits, into
several 3 or 4-bit residue digits (see Table 2) so that the table size can be kept

small when implementing residue adders or multipliers in each residue digit.
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optimal base easy base

Np, | Norm | M | Nr 5 7 Np| Norm M| Nr| 7 n
10 8 3 (12 333 | 0.1 ¢ 8 3! 11 [3.00 | 0.81
20 16 4 |22 | 500 | 091 20 32 5| 22 [4.00 |0.91

48 32 5 | b1 | 9.60 | 0.94] 54 1024 |10 56 |5.40 |[0.96
90 64 |6 | 97 |156.50| 0.93] 95 16384 |15 96 [6.33 | 0.99
184 | 128 |7 |196|26.29| 0.94 | 180 | 4194304 |22 |181 | 8.18 | 0.99

Table 3. The norms, degree of concurrency, and code efficiency

for an optimal base and an easy base

With residue encoding of the operand, they can be decomposed into O(Nb [ log Nb)
residue digits. Each digit i3 encoded by at most O(long) bits. If the table
look-up scheme is used to implement a two-operand adder or multiplier in
the binary number system, the table size is O(N,D -22Nb)=O(Nb . 4Nb) bits.
On the other hand, if the adder or multiplier is implemented for residue en-
coded operands, then each table is of size O(log N}, - 221°8 Ne)}=0(log N}, - Np?)
bits and the total size is O((Ny/logNs) - logNy - Nu?)=0(N»*). The ad-
vantage of the residue number system is clear since the table size in the bi-
nary number system grows exponentially, while in the residue number sys-

tem it grows at a polynomial (cubic) rate.

The table look-up scheme without partitioning has some drawbacks, however.
First, O(Nb"’) is still too big for a large range requirement. Second, a large
storage contains long wircs unless hierarchically organized. The wire delay does
not decrease with reduced feature size and eventually becomes a performance
limiting factor. A hierarchical slorage as described in [Me80] has an access

time that grows logarithmically with the storage size. A few alternatives to the
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table look-up method will be discussed in the following subsections. The time-
space complexity of each design is analyzed. For the time complexity of storage

structures the model derived in the second half of this report is used.

3.1 A Residue Adder

Residue addition z; = (z; + y;)mod m;, where 0 < =z, < m;—1, can be

computed as

{:Bi+yi ifzi+y < mq
Z =
' T+ Y —my if z; +yi > m;y

One M;-bit adder can be used to compute z; + y; while another computes
z;+y:—m;. The carry bit generated from the second adder indicates whether or
- not z; +y; is greater than m;. A multiplexor controlled by the carry bit selects
the correct output, see Figure 1. In this implementation, 2M; 1-bit adders and

M; multiplexors are needed.

Zi+ yi
i - et g M
&4
% Tyt Y —-mi U e
ity —myg
L ]|
CARRY

Figure 1. An implementation of residue addition
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8.2 Residue Multipliers

Three different methods to implement multipliers for one residue digit have been

evaluated:

1. pure table look-up

2. combinations of tables and adders

3. arrays of adders

8.2.1 Pure Table Look-up

A table for a one-digit residue multiplier has two M;-bit inputs, i,- and y;, and
produces one M;-bit output, 2: = (z;-y:) mod m, see Figure 2. The total number
of bits in one table is M;2*™ == M;4™!. For O(N,/log N} ) digits, the total table
size is Y Mi4™i =~ Np*® bits.

Zq
Zi
i TABLE .
———-————-1

Figure 2. Table look-up residue multiplier

- 19 -



3.2.2.a A Quarter Square Residue Multiplier [Da65

Figure 3 shows another type of residue multiplier. It realizes the identity:

2
125 - Yilm, = (= + u:) (zi —y:)
H i|lm; 4 — 4
Lt i lm;
The “modular quarter square” %ﬁ is implemented by table look-up. There
m;

are two tables for each residue digit. Each table has M;2Mit! = oM;2Mi bits.
For O(N;a /log Nb) digits, the total table size = ) 2- 2M; 2™ ~v (Np/logNy) -
(4logNy) - 26N = 2N3 bits. Note that the table size is O(N?) compared
to O(Nﬁ’) if a single table is used. On the other hand, one M;-bit binary
adder/subtractor and one M;-bit residue subtractor are needed for each residue
digit. The total number of 1-bit adder/subtractors is of order O(N,).

3.2.2.b An Index Transform Residue Multiplier

One familiar method of multiplication is “ log transform — addition — antilog
transform ” [Ki71]. Similarly, residue multiplication can be performed by
“ index transform — residue addition — reverse index transform ”. The index

transform IND, is defined by [Sz67]:
IND,C =bmodP « r’= Cmod P, P prime

For m; a prime number, an implementation of a residue multiplier based on the

equation :

— IND, z;4+IND ., y;)mod (m;—1
'zl' ‘yilmi —_— Ir( r¥s r ﬁ) ( 3 ) m;
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Zi+ yi
|
mg
i — Wi
— ||
m;

Figure 3. A quarter square residue multiplier

3
nasam—
ADD/
SUB
i
s
z;
~—»1 IND,
Vi
—»1 IND,

!

{

|+I m;—1

IND?
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Figure 4. An index transform residue multiplier
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is shown in Figure 4.

The index and reverse index transform is implemented by tables. For each
residue digit, there are two tables for the index transform and one for the reverse
index transform. In each table, both the input and the output have M; bits.
The table size is 3M;2™: bits. For O(Nb/long) digits, the total table size is
/2 (Np/logNp) - 3log Np2'°8 b = 3N, There are M; 1-bit adder/subtractors
in one digit. The total number of 1-bit adders is O(Nr).

3.2.3 An Array Multiplier

A residue array multiplier is composed of two parts: (1) a binary array multiplier
and (2) a converter performing the modulo evaluation of the product. The binary
multiplier has a delay of O(Mi) and an area of O(Miz). The complexity of the

conversion part can be made equal to that of the binary multiplier by employing

carry save adders [Hw79).

Let A be the 2M; bit product, m; be the M; bit modulus, and z; the M; bit
output number, z; = Amod m;. To compute z;, the distributive property of the

modulo operation over addition is used:

(agMi_l 22Mi_1 + ...+ (lMi2Mi + an; -1 2Mi—1 -+ ...a02°) mod m; =

=(02Mi—1 (22Mi—1 mod mi) + ... + GMi(zMi mod mi) -+ (aMi_l 2Mi_l + ...+ 6020) )

The M; highest order bits asm,—1, aam;—2, -.., asy; can be used to control
whether or not the M;-bit constants (2™~ mod m;), (22™~2 mod m;), ..., (2*™i mod

m;) shall be added to the M; lowest order bits, Figure 5.

- 99 _



The conversion part consists of M; stages of M;-bit adders. Each adder stage
needs O(Mi) time with the carry propagating from one bit to the next. The total
delay is O(Miz). However, if the carry for each bit is fed into the next stage
only O(Mi) time is needed. An additional stage is needed to convert M; + 2 bit

numbers into M; bit residue numbers.

For one residue array multiplier, the area is O(Miz). The total area of O(Nb /log Nb)
residue digits is = O((Nb/ log Ny) - (log Nb)z) =O(Nb log Nb).

In the binary to residue conversion part, a Booth (or Booth-like) algorithm can
be used to reduce the number of adder stages by pairing the high-order control
bits. For instance, bit i, and j+1 as well as the carry bit generated from the last

conversion stage can be used to decide which of the 8 constants to be added.

J j+1 carry constant to be added
0 0 0 0mod m;
0 0 1 2Mi mod my
0 1 0 21 mod m;
0 1 1 29+ 4 2Mimod my
1 0 0 29 mod my
1 0 1 2 + 2Mi mod my
1 1 0 2 + 29! mod my
1 1 1 2 4+ 27+ 4 oMimod my

However, in each stage a few constants need to be stored. It is a trade-off as to
how many bits should be grouped in one stage. As a rule of thumb, the number

of constants in each level of the adder should not exceed 8, therefore no more

than 2 bits are to be grouped in this scheme.
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Figure 5. A residue array multiplier
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8.3 Summary of Area Complexities of Different Multiplier Schemes

Some features of the four residue multiplier designs discussed above are sum-
marized in Table 4. From this table it is clear that the quarter square approach
is of limited ihterest, and that each of the other approaches may be superior to
the rest depending on the value of M;. To determine performance characteristics
as well as more precise area requirements, and their dependence on feature sizes,

some sample designs were made in nMOS.

Table(bits) | 1-bit Bin. Adder | 1-bii Res. Adder
TABLE M;4Mi 0 0
QUARTER SQUARE 4M;2M M M;
INDEX TRANSFORM | 3M;2M 0 M;
ARRAY 0 2M? | 0

Table(bits) | 1-bit Bin. Adder | 1-bit Res. Adder
TABLE N3 0 0
QUARTER SQUARE 4N, 2 N, N
INDEX TRANSFORM 3N?2 0 N:
ARRAY 0 2N} log Ny 0

Table 4. Some features of residue multipliers

for one residue digit (top) and the whole system (bottom)
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4. Residue Multipliers in nMOS

4.1 Delay and Area Estimates

In the last section, different schemes for implementing residue multipliers and
their relative complexities were discussed in terms of order statistics. For most
applications, more accurate performance evaluations are necessary. Since different

residue multipliers are composed of tables, adders, or a combination of both

tables and adders, the total delay time and chip area can be calculated by

adding the delay and area of the basic building components - tables and adders.

In general, tables are implemented by PLAs. In [Tr83], an equation is derived
to calculate the chip area of MOS PLAs in terms of the number of inputs,
minterms and outputs. To estimate the delay of a MOS PLA, a model based on
an extension of the r-model [Me80] is developed in the second part of this report.
The worst case delay is expressed in terms of the number of inputs, minterms,

and outputs (see eq. 12 in Part II).

The delay time and the chip area of various adders may differ significantly due
to the great diversity of designs. For a reasonable trade-off between delay time
and chip area, most adders are in the area range 3000\? ~ 5000\% and with
a delay of 407 ~ 607. To first order a one-bit adder has area = 4000A% and
delay= 507.

We have derived a method to calculate the delay and area of tables and adders.
Therefore the delay time and chip area of different residue multipliers is easily
obtained since the size of the basic building block in a residue multiplicr is

known. Figure 6 and 7 contain delay estimates for residue multiplier designs in
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4pm and 0.5pm nMOS.

The delays are computed in a manner illustrated by the following examples taken
from Figure 6. We calculate the delays in three different 5 X 5 residue multipliers

as specified in the third row.
1. Table look-up multiplier:

The table is implemented by a PLA with 10 inputs and 5 outputs. There are
as many as 2'° = 1024 product terms (rows) in the AND-plane. On the other
hand, the OR-plane has only 5 columns. The large number of product terms
implies a long wire delay. In order to minimize this delay, the bit pattern can
be reorganized so that the PLA has relatively balanced AND- and OR-plane
(see part 2, section 4, subsection “How to improve the performance” item 2).
In this particular 10-input 5-output PLA, if 6 bits are used for the inputs to
the AND-plane, then the number of product terms is reduced to 64. However,
the OR-plane will generate 80 outputs. Only 5 out of these 80 outputs are
selected in a multiplexor which uses the remaining 4 input bits as control bits
(2* = 16 = 80/5). In this configuration, the actual number of inputs, product
terms and outputs used in the delay equation {eq.12 part II) are I=6, P=64,
O==80 respectively. Using the values of I, P, and O in the delay equation gives
the delay =~ 9237

2. Index Transform Multiplier

The delay in a 5 X 5 index transform residue multiplier is composed of the
delays in the INDEX transform table, the mod (m; — 1) residue adder and the
INVERSE transform table. The INDEX and INVERSE INDEX transform tables
are implemented by PLA’s with 5 inputs and 5 outputs. To make the table
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square like, the actual number of inputs is 4, the number of product terms is 16
and the number of outputs is 10. Using the values I=4, P=16 and O=10 in
the delay equation gives a table delay of ~ 1597 The critical path in the 5-bit
residue adder consists of 6 1-bit adders. This is a delay of = 6 X 507 = 300r.
The total delay is = 159 X 2 + 300 =~ 6187.

3. Array Multiplier

The signal in a critical path propagates through 4 X 5 = 20 adders. Therefore
the delay is & 20 X 507 = 10007.

As is apparent from the figures, table look-up does not scale well if the storage is
unstructured. The delay decreases only slightly. When measured in 7 it increases
significantly. The index transform approach employs much smaller tables. The
delay measured in 7 increases only slightly for M < 8 bits, i.e., the delay is
reduced almost to the same extent as the switching speed of the devices while
the feature sizes are reduced. The areas, see Figure 8, expressed in terms of A2

[Me80] is to first order independent of the feature size.
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Figure 8. Delay in residue multipliers for 4pm n}MOS
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4.2 Performance Comparison between Residue Arithmetic
and Binary Arithmetic

Figure 9 shows the relative speeds of multiplying two Ny-bit numbers in the
residue number system (delay="T;) and the binary number system (delay="Ty).
T; is taken to be the minimum delay of the three alternative designs investigated,
i.e., table look-up, index transform, and array multiplier with conversion. The
values for T, are obtained from Figure 6. T}, is obtained by assuming that a
binary array multiplier is used. An N, XNy array multiplier has a delay time
Tp=2N}, X (1-bit adder delay).

For M>7 the array scheme is the most effective way to implement a residue
multiplier. The speed-up ratio T,/T, between residue arithmetic and binary
arithmetic ie of O(Nb/long). In a residue array muliiplier, the binary to
residue conversion part and the binary multiplication part have the same delay.
Therefore, Tp/Trr= 7/2. For a rclatively small range R, the actual speed-
up ratio is better than /2. The fact that the speed-up is better than the
asympbotic ratio for a small range is due to the use of different implementation
techniques. Table look-up is efficient for a small range. For a large range residue
multiplication as well as binary multiplication make use of array multipliers.
Roughly speaking, the speed for multiplication in the residue number system is
about 5 to 10 times higher than the speed in the binary number system for a

moderate range.
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Figure 9. Comparison between residue and binary arithmetic

- 88 —



4.3 Chip Characteristics

A parameterized residue array multiplier has been designed. The multiplier
performs M; X M; bit residue multiplication with respect to modulus m;. The
design is composed of two parts: a M; X M; binary multiplier that produces a
2M; bit result, and a binary to residue converter which converts a 2M; bit binary
number to a M; bit residue number (with respect to the modulus m;). Both parts

are composed of arrays of adders.

A Binary Multiplier with Carry Save Adders

The binary multiplier is composed of arrays of carry save adders. In a multiplier
which consists of carry save adders, there are two critical paths: the carry chain
and the sum chain, Figure 10. The speed of generating the sum bit should be
asg fast as the speed of generating the carry bit. A Manchester carry chain as
presented in [Me80] enhances the speed of carry bit generation at the expense of

the speed of sum bit generation.

Tigure 11 shows the logic diagram of a nMOS carry save adder. The layout is in
Figure 12. Circuit simulation results indicate that the delay for generating sum
bits and the carry bit are about the same (8 ~2 10 ns for 4 gm technology), see

Figure 13.
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Binary to Residue Conversion Using Multiplexed Adders

The binary to residue conversion part is composed of M; stages of adders. In

each stage, one of the four constants 0, 2’ mod my, 2™ mod m;, 2’ + 2™ mod my

is added to the partial sum, where j indicates the stage number from M; to
2M; — 1 (see figure 5). Which constant should be added is determined by two
control bits. One is the j-th bit of the number generated by the binary array
multiplier. The other is the carry bit generated by the previous stage & adder.
Notice that the constants and the partial sums (not including the carry bit) are

all M;-bit numbers.

The basic cell in the conversion part is a multiplexed adder. It has two inputs
and four control signals: The two inputs, Sin 2and Ci,, come from the adder in
the previous stage. The two control signals that determines which one of the

four constants should be added, are decoded into the control signals m;,mz,ms

T

) e frmereereareser -
———— [ ———
L B e e

S r———— .
Jroeesm——

C / S Ci S

m; = teri 'a—--h- Baumenaens o
mg parameterized| _ I——
ms ———> adder > T
R ' — E—

Figure 14. The multiplexed adder
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The multiplexed adder can also be considered as a 3-input full adder. Two of
the inputs are 8;, and C;,. The third input is a function of the control signals.
If m; is 1 then the third input is always 0. If mg is 1 then the third input may
be either 0 or 1, depending on the constant 2 mod m;, as is the case when mj is

1 or my is 1. Therefore there are 8 different combinations:

control signal the third input bit
m;=1 00000000
mz=1 0006001111
mz=1 00110011
my==1 01010101

The third input bit pattern can be used to parameterize the multiplexed adder
cells. The parameterized adder cell is composed of two parts: a two-input half
adder and a multiplexor. The half adder takes inputs S;, and C;i,, and generates
four outputs co, 8o, ¢1 and 8;. ¢ and 8o are the carry bit and sum bit generated
as if the third input is 0. ¢j and 8; are the carry bit and sum bit generated as
if the third bit is 1. '

Cin Sin|co 8 ¢ 81

- O Q

T -
I-‘QC-O
-]
-
-0 O

It can be easily verified that co=AND(Ciy,Si1), ¢1=OR(Ciy,Sin), 50=KOR(Cis,Sin)
and 91=XNOR(Cin,Sin).

The multiplexor takes cg, 8o, ¢1, 81 as inputs and uses four control signals

mj,mg,m3 and my to determine whether the output is {ce,s0) or (c1,51).
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For example, if the third input bit pattern is (0101), then the multiplexor will

perform the following function:

if (m1,mz,m3,m4)=(1,0,0,0) then Cout=MAJI(Cin,Sis,0)=co
Sout=X0R(Cin,Sin,0)=so

if (m1,mz,m3,m4)==(0,1,0,0) then Cout=MAJI(Cin,Sin,1)=cy1
Sout=XOR(Cin,Sin,1)=S]_

if (ml,m2,m3,m4)=(0,0,1,0) then Cout=MAJ(Cin,Sin,0)=C0
Sout=XOR(Cin,Sln,0)=so

if (ml,mg,m3,m4)=(0,0,0,1) then Cout =MAJ(Cin,Sin,1)=Cl
Souz=X0R(CimSiml)=31

(MALJ is the majority function and XOR is the exclusive-or function)
Express Cout and Sout as boolean functions:

/ ! Vi ! 7 i ! I / L
Soww=mims'ms' m4'so+m; mems'my's;+mi'me'mamy’se+mi'me'ms’mys;

C out=m1m2'm3’m4lco+m1'm2m3’m4'c1+m1'm2'm3m4'co+m1’m2’m3’m4c1
Figure 15 shows the logic diagram of the (0101) multiplexed adder. The layout

is in Figure 16. The multiplexor parts of the 8 different parameterized cells are

shown in Figure 17.
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Figure 16. The logic diagram of a (0101) multiplexed adder
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The layout of the whole chip is generated by a program written in Earl code
[Ki82]. The cells are parameterized so that the program can generate the layout
for different moduli. Figure 18 shows the metal layer of the layout of an 8-bit
residue array multiplier. A 4-bit version of the multiplier requires an area of
300 X 700\2, and an 8-bit version 540 X 1200\2.

Simulations indicate that carry and sum bit generation requires 8ns~10ns. The
critical path in each M;-bit residue multiplier goes through 4M; adders. Therefdre,
the total delay is 32M; to 40M; ns, and hence about 250~320 ns for an 8-
bit multiplier.

The performance of the design can be improved in several ways. For instaice,

the sample design does not have any form of pipelining. Optimizing the residue

array multiplier design should make it competitive for smaller values of M;.
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5. Base Selection and Design Cost

The cost of a VLSI design is affected by many factors such as chip area, speed,
layout regularity and ease of design. There are some frade-offs between these
factors to minimize the design cost. In residue arithmetic, total design cost
depends on the individual cost of each digit. Therefore base selection is impor-~
tant for the total cost. This section contains two heuristic algorithms for base

selection with respect to minimum delay, or minimum area.

" Problem 1:
Given a cost function T(n) (delay) and range requirement R ([logR] = Ny, bits),
find a base S={m;,...,m;,} such that log(Hi"=1m;)2 Np, and max{T(m;)} is

minimized.

- Algorithm 1:
BEGIN
find ny such that T(n,) is minimum, set § + {n,}
WHILE (range of S)< N, DO
BEGIN { add/substitute the next modulus }
For all k£ not examined,
Sk — SU{k}—{n | n; €S,gcd(k,ny) # 1}
ARy =(range of Sx)— (range of S),
Select Sy such that AR > 0 and T(%) minimum.

o I S A o

If there are more than one such Sy,
select the one whose ARy is maximum.
9. Set S +— 8
10. END
11. END
12. S is the base wanted
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In algorithm 1, the base S starts with a modulus with overall minimum cost (line
2) and then searches for the next larger modulus until the range requirement is
met (line 3 to line 10). The next modulus selected must (1) be relatively prime
with respect to other moduli already in § (line 5), and (2) have the smallest cost

among all possible candidates (line 8).

Problem 2:
Given the cost function A(n) (area) and the range requirement R (N}, = [logR]
bit), find a base § ={m;,...,m;,} such that log([[}_, m:i)> Ny, and Y, A(m)

is minimized.

Algorithm 2:
BEGIN
find n, such that A{n) is minimum at n,, set 8 « {n;}
WHILE (range of )< R DO
BEGIN { add/substitute the next modulus }

1

2

3

4

5. for all k¥ not examined
6 Sk« SU{k}—{n; | n; €8,gcd{k,nj) #1}

7 ARy =(range of Sx)— (range of S),

8 AAy =(total area of §y) — (total area of §)

9 select Si such that —2%: is minimum and set S «— 8
10. END

11. END

12. 8§ is the base wanted
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In algorithm 2, ag in algorithm 1, the base selection starts with finding a modulus
with overall minimum cost {line 2) and then searches for the next modulus
until the range requirement is met (line 3 to line 10). The requirements for the
next modulus selected are somewhat different from thosc;, in algorithm 1. The
relatively prime requirement is still the same. The second requirement is sharply
different, it becomes: a selected number should have minimum %f%—f among all
candidates. The reason for this criterion is due to the fact that the chip area

is additive. To make a minimal total area, the area incremental rate should be

kept as small as possible.

The purpose of the following examples are to illustrate the construction of an
optimal base with respect to minimnm delay and minimum area respectively.
The cost functions for delay and area used in these examples are obtained from
Figure 6 and Figure 8. It should be noted that a modulo of the form 2* has
lower time and area cost than other moduli for every implementation scheme
studied. In an array implementation no conversion is necessary. In a table
implementation the PLA will have fewer product terms after a Boolean function

minimization is carried out.

A modulo 2% — 1 or 2 + 1 multiplier has lower time and area cost when
implemented by arrays. The modulo computation does not require a large
conversion section. However, in a table look-up scheme no reduction in table
size is possible. It should be noticed though, that a modulo of the form 2% — 1
makes more efficient use of the storage, since a k-bit wide table suffice, whereas

modulo 25 4 1 requires k+1 bits.

In the example of the base selection algorithm that follows it should be noticed
that the range is small enough that table look-up is the optimum way of im-

plementing the residue multiplier. The moduli réquire less than 6-bits for their
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binary encoding. Hence, moduli in the interval between moduli of the form
2* require about equal time and area. However, 2 modulo 257(2% + 1) residue
multiplier require less area than a modulo 259 residue multiplier, since such a
multiplier would be implemented as an array multiplier and the latter modulus

would require a conversion stage.

EXAMPLE 1. Assume that the required range R=3 X 10'° (N}, = 34.8 bits).

The goal is to find a base with range >R and the smallest delay time. Assume

the delay time function T(n) of the first few numbers have the values listed

below.
n T(n)

2 20

3 63

4 50
5~7 173

8 90
g~15 396
16 1856
17~31 618
32 330
33~63 858
84 570
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Algorithm 1 gives the following result:

Action Base {8) Range(bit) Cost (Time)
(1) s« {2} {2} 1 20
(2) s—sU{4} — {2} {4} 2 50
(3) S—Ss|J{3} {4,3} 3.58 63
(4) s—sUU{8} — {4} {8,3} 4.58 90
(6) S—SUU{7} {8,3,7} 7.39 173
(6) S—S|J{s} {8,3,7,5} 9.71 173
(1) s—sU{16} — {8} {16,3,7,5} 10.71 185
(8) s+slU{32} — {16} {32,3,7,5} 11.71 330
(9) s—s\U{13} {82,2,7,5,13} 15.41 206
(10) S+—s|J{11} {32,3,7,5,13,11} 18.87 396
(12) S—sU{s} - {3} {32,9,7,5,13,11} 20.46 396
(13) s+s|J{64} — {32} | {64,9,7,5,13,11} 21.46 570
(14) s—s|J{31} {64,9,7,5,13,11,31} 26.41 818
(15) s—slJ{29} {64,9,7,5,13,11,31,29} - 31.27 618
(18) S—slJ{27} — {9} {64,27,7,5,13,11, 31, 28} 32.85 618
{64,27,7,25,13,11, 31, 28} 35.18 618

(17) 8—sU{25} — {5}

Let us consider action (7). The base § after action (6) is {8,3,7,5}. The numbers
already considered are 2,3,4,5,7,8. So,the next candidates are 6,9,10,11,12,13,-
14,15,16,17...... Composite numbers such as 6,10,12,14,15 are of little interest

because once these numbers are selected the resulting range will decrease, i.e.,
AR < 0. The possible candidates left are 9,11,13,16,17, ... . According to the
delay function given, T(16)< T(9)= T(11}= T(13)< ... . Hence, T(18) is the
smallest among all candidates. Therefore the next action is $—S{J{16} — {8}.
In action (B), T(5)=T(7) but 7 has larger AR. Therefore 7 is selected. In action

(9), 13 is selected instead of 11 for the same reason.
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EXAMPLE 2. Assume that the required range R=6 X 10'° (N}, = 35.8 bits).

The goal is to find a base with range >R and the smallest total area. Assume

the area function A(n) of the first few numbers have the values listed below.

n A(n)

2 10

3 26

4 20

5~7 45

8 35
9~15 147

16 80
17~31 282
32 160
33~63 407
64 320

Algorithm 2 gives the following result:

{16,7,3,5,13, 11, 31, 29, 23, 18}

Action Base (S) AA/AR | Range(bit) | Area
(1) S+ {2} {2} 10.0 1.0 10

(2) s—SU{4} - {2} | {4} 10.0 2.0 20

(3) s—s{J{8} - {4} | {8} 15.0 3.0 35

(4) s—sUU{3} {8,3} 15.8 4.8 60

(5) s<SUU{7} {8,7,3} 16.0 8.7 105
(6) s—s{U{s} {8,7,3,5} 19.4 9.7 150
(7) S—sUU{13} {8,7,3,5,13} 39.7 13.4 297
(8) s—s|J{11} {8,7,3,5,13,11} 42.5 16.9 444
(9) S+s|J{16} {16,7,3,5,13,11} 45.0 17.9 489
(10) S—s|J{31} {18,7,3,5,13,11,31} 56.9 22.8 771
(11) S<slJ{29} {186,7,3,5,13,11, 31, 29} 58.0 27.7 1053
(12) s—sU{z3} | {16,7,3,5,13,11, 31,29, 23} 62.3 32.2 1335
(13) S—s{J{1¢} 66.4 36.5 1617
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As is shown in the above examples, both algorithms (1) and (2) are very efficient
since only a small number of next candidates need to be tested. Indeed, it is only
necessary to test numbers of the form p* (p: prime) provided that the functions

A(n) and T{n) satisfy the following relations:

T(nin2) > max{T(n1), T(n2)} and A(nin:) > A{n:) + A(ns)

The relations above imply that the cost of an arithmetic unit for a residue digit
with a composite modulus nyng is greater than the total cost of an arithmetic
unit with moduli n, and n;, respectively. Since the cost functions Afn) and
T(n) derived in section 4.1 satisfy the above relations, it is only necessary to
* gearch the numbers 2, 3, 4(2%), 5, 7, 8(2%), 9(3%), 11, 13, 18(2%), 17, 19, ... (not

necessarily in this sequence) until the range requirement is met.

Allea and time are certainly not the only two factors that affect the design cost.
Sometimes several moduli requiring the same number of bits are selected such
that a regular layout for each digit can be made. For example: (16,15,13,11)
for a 15 bit range and (32,31,29,27,25) for a 24 bit range. On the other hand,
some designers choose moduli of the forms 2" —1, 28, 21 + 1 [Ta82] for simple

implementation schemes and ease of binary & residue conversions.
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6. Conclusion

The residue arithmetic is a “concurrent” arithmetic. Two important indices “the
degree of concurrency” and “the code efficiency” have been defined and analyzed.
The analysis shows that the degree of concurrency in a residue number system
is of order O(Nb/long), where N} is the number of bits required for binary
encoding. The code efficiencies in most application ranges are between 0.91 and

0.94.

Al the current state of the technology, implementations based on table look-up
are preferred with respect to both performance and area for a range that can be
encoded with 18 bits. If a larger range is needed, both index transform designs
and array designs have smaller area requirements and delays. The array design
is preferable with respect to area, and also with respect to delay if the range
requires a large number of bits. However, if the array design is optimized it
can be operated at a clock rate that is comparable to or less than that of the
index transform approach. At feature sizes of 0.5pm , table look-up designs are

preferred only for ranges of up to 9 bits.

In comparing with computer arithmetic based on the binary number system it
shall be noticed that our residue array multiplier is of the same complexity as
a binary array multiplier. The estimated speed-up ratio is about 7 to 10 for a
large application range (ranges from 2'° to 2!°°). For the range greater than

2199 the speed-up ratio is asymptotically proportional to N}, /logNy,.
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Part 2. A Distributed RC Delay Line Model and
MOS8 PLA Timing Estimation

1. Introduction

The resistance and capacitance of wires in MOS technology affect the propaga-
tion delay of signals along wires. The wire delay in state-of-the-art MOS circuits
is often of the same order of magnitude as the charge transit time of transistors.
The wire delay does not scale well with the technology [Me80]. Uniform scaling of
circuit geometry without any change in doping levels results in constant delay for
wires whose length is reduced by the scaling factor. For a wire of constant length
the delay increases [Bi81]. If the wire is very long, the increase is proportional
to the square of the scaling factor [Se79). In table 1, some typical nMOS circuit

parameters are listed and the effect of these parameters on the delays in a nMOS

circuit is shown.

To estimate the delay in digital MOS circuits, transient analysis of a circuit that
contains distributed RC lines is important. In [Pe81], a computationally simple
method to estimate the delay of nodes in an RC tree network is presented. This
paper develops a delay model for wires with uniformly distributed resistance
and capacitance. The delay estimates are more accurate than those obtained in

[Pe81] and can be applied to estimate the delay of MOS storage circuits such as
PLA or ROM.

In the next section, a MOS wire is modeled as a two-port network. The dis-
tributed resistance and capacitance are approximated by lumped resistors and
capacitors. A simple equation for estimating the delay of a wire with uniformly

distributed resistance and capacitance is derived. The wire is assumed to be
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A = 2pm A = 0.5pm
Resistance |Relative length| Resistance |Relative length
(/0 of equal R (22/0) of equal R
Transistor 10% 1 10* 1
Diffusion 100 100 800 12.6
Poly 25 400 200 50
Metal 0.03 3 X 10° 0.24 4 X 10*
Capacitance | Relative area | Capacitance | Relative area
(10~*pF/pm®)| of equal C |(10™* pF/pm?)| of equal C
Gate 5.0 1 40 1
Diffusion 1.2 4 10 4
Poly 0.5 10 4 10
Metal 0.33 16 2.7 15

Table 1. The parasitic parameters as feature size scales down

driven by a voltage source having an internal resistance. The delay in a static

nMOS PLA is estimated in section 3. The effect of reduced feature sizes is also

analyzed.
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2. The Distributed RC Delay Line Model

Wires in MOS circuits are often modeled as transmission lines as shown in Figure
1 [Se79], [Bi81]. Signal propagation across the wire is described by the one-

dimensional diffusion equation:

V(z,t) _ 0°V(z,t)
e = 3 (1)

where V(z,t) is the voltage along the wire, (¢) time, (z) the spatial coordinate,

and r, ¢ the resistance and the capacitance per unit length, respectively.

D —— I(z, t) '.dx
+ —AA AN Al _—— AN -
V{z,t) == = cdz —— - -
e X ""— dz -’—l

Figure 1. A wire modeled as a transmission line

The solution of this diffusion equation is complex and it is unreasonable to
golve it for every element in a VLSI circuit. However, with uniformly dis-
tributed resistance and capacitance along the wire, simple approximate solutions
of good accuracy can be found. In the following such a wire is referred to as
a URC element [Gh68], [Pen81]. It is represented by the symbol ¢ %w: »
and has total resistance R and total capacitance C, R = rL and C = cL,

where L is the wire length. Equation (1) is the classical equation for an indue-
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tance free transmission line with no conductance to ground. Its transmission

. ey s - cosh’ ZsinhT
matrix (T-matrix) in the Laplace domain is: , where

Z7!sinhT"  coshT

sC
tion constant and Z as the wave impedance [De72],[Gh68].

I'=+vsRC, and Z = V L3 I'/L is often referred to as the wave propaga-

Let Vi(s),Vo(8),Ii{(s),15(s) be the Laplace transforms of the input voltage, output

voltage, input current and output current respectively, Figure 2. Then

{V.-(s)] _ { coshT Z sinh r] [Vo(s)] @

Ii(s) Z~' sinhT"  coshT JL1,(8)

Ii(s) R I(e)
+ —NVVVN— +
Vi(s) c Vo(s)

Figure 2. A URC element modeled as a twe-port retwork

The first order Il-equivalent circuit of a URC element has a transmission im-
pedance of R and shunt elements equal to C /2. This is easily realized by a

Taylor series expansion of eq(2)
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+ high order terms

(3)

coshD Z sinh I‘] [1 + 0.58RC R
Z7lsinhI" coshT sC 1+ 0.58RC

The corresponding II network is shown in Figure 3.

R

>
1 p 14 0.58RC R

cle = /2 T - Matrix —
/ T sC 1+ 0.5sRC |
- ' i,

1

Figure 3. A lumpeq approximation of a URC element

A URC Element Driven by a Voltage Source with Internal Resistance

In VLSI circuit wires are driven by transistors that often may have significant
internal resistance (Rs) compared to the wire resistance (R). It is clear that the
accuracy of the first order approximation increases with the ratio Rs /R. We

will now study the accuracy of the first order approximation in some detail.

A URC element with total resistance R and total capacitance C driven by a
voltage source having source resistance Rg is shown in Figure 4. The source
resistance can be considered as the equivalent channel resistance of the driving

transistor.
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at ' —
E=0" " L) r l(e)=0

Vs e ‘;'(6) — é‘ ’ Va(G)

Figure 4. A URC element driven by a voltage source

with source resistance Rs

The two-port network equation is

[V;(a)] =[1 RSH coshT Zsinhl‘][Vo(S)] "

Ii(s) 0 1JiZ"'sinhT" coshT [l1(s)

With open output and the input driven by a unit step voltage, i.e, I,{8) =0
and V;(s) = 1/s,

1
" s(coshT + Z—! Rg sinhT')

Va(s) (5)

The time domain representation of the step response can be obtained by an

inverse Laplace transform:

1
8(coshT + Z—! Rg sinhT)

Volt) = L' (8)

However, there is no simple closed form for this transform. Using the first order

approximation of the URC element, from (3} and (4)
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-y 1
Vo{t)= L {8(1 + 5(Rs + 0.5R)C) ]

This is the familiar response of a first order ordinary differential equation with
time constant 7 = (Rs +0.6R)C. The accuracy of this first order approximation
by comparing with a numerical inverse of eq(8) is now evaluated. Some results

~ [Im82] for different ratios of Rs /R are plotied in Figure 5. The time-axis is
normalized by (Rs + 0.5R)C, i.e., a = t/(Rs + 0.5R)C

1.0
v(t) 1—e
T 08 |
I Ve
0.6 |
0.4 |
o2} Rs/R— 0
N t = (Rs + 0.56R)C
/ —_—a

02 04 06 08 310 12 14 16 18 20

Figure b. The unit step voltage response of the circuit in Figure 4
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Rs[R Vola = 1)
00 0.63213
10 0.63210
2 0.63180
1 0.63127
0.5 0.63044
0.1 0.62930
0 0.62922

Table 2. Unit step responses of the circuit in Figure 4

For R = 0, i.e., Rs /R = o0, the URC element is simply a pure capacitor and
the lumped model is an accurate model of the URC element. The unit step

response is an exponential function with time constant r = RsC.

For Rs = 0, the response is that of the URC element alone. The accuracy of the

first order approximation decreases monotonically as Rs /R — 0. Let V,(t) be |
the output voltage response of the circuit for a given ratio of Rs /R and V;(¢) the
response for a smaller ratio. In the beginning (t = 0%), V3(¢) is rising slower than
Va(t) and Vu(f) > Vi(t). As time proceeds, the rising rate of V4(t) is approaching
the rising rate of V;{f) and eventually exceeds that rate. From Figure 5 and
" Table 2, it is observed that the curves for different ratios Rs /R cross at about (1,
0.63). The curves indeed intersect each other within a very small neighborhood
of (1+0.01, 0.63). Hence we conclude that the time constant of the first order
approximation is a very accurate approximation of the time a URC element
driven by a voltage source with internal resistance reaches level 1 — 1 of its final

level. For all values of Rs /R the relative error is less than 1%.

The curves in Figure 4 are bounded by the two extreme cases: Rs /R — co and

Rs/R — 0. The unit step responses of these two cases are given in {7) and (8)
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respectively, [Ka62].

Vo) =1—et" (7)

4 _ex (2n—1)%x2t
VOB =1+=3 (-1 (®)

n==1

4
7 —

While ¢ < 0.997 the upper bound is V' *°(t) and the lower bound is V°(f) and
for ¢ > 1.017 the upper bound is V°(f) and the lower bound is V*°(¢). The
bounds given by (7) and (8) are considerably tighter than those given in [Pe81]

as is indicated in Figure 6.

1.0
V()

T 08 f

08 (7
bounds in [pe8i]
04 |
0z L (8)
' t = (Rs + 0.5R)C
/ —=a

0.0 iV AN—— S ——

0.2 04 06 08 10 12 14 18 18 20

Figure 6. Bounds {7), (8) and by [Pe81] for unit step responses
of the circuit in Figure 4 (Rs /R = 1)
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A URC Element Driven by a Voltage Source with Source Resistance

and Source Capacitance

A URC element with total resistance R and total capacitance C driven by a
voltage source with source resistance Rs and source capacitance Cs is shown in

Figure 7.

T — —_ Vo
v W(si— P T )
®

Figure 7. A URC element driven by a voltage source

with source resistance Rs and source capacitance Cg

An approximation of the output voltages can again be obfained from a first
order approximation of the URC element. The unit step responses depend only
on two parameters: k, = Rs/R and k. = Cs/C. However, over a large range
of resistance and capacitance values, the unit step responses are bounded in a
way similar to those shown in Figure 5 and Figure 6. Table 3 gives the unit step
responses at time ¢ = RsCs + (Rs + 0.5R)C, the time constant of the first

order approximation, for different ratios &, and k..

Again, we conclude that the time constant of the first order approximation is

a very accurate approximation of the time constant of the circuit in Figure 7
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reaches 1 — ¢ of its final value.

Hence, as is the case for a one-dimensional array of lumped circuits, the time
constant for a composite circuit is to first order equal to the sum of the time
constants of the circuit constituting the array. Next, a delay model for a nMOS
PLA will be developed.

ke~ 0.1 0.2 0.5 1 2 b 10
0.1 0.629 0.629 0.627 0.823 0.615 0.607 0.615
0.2 | 0629 | 0.629 | 0.626 | 0.621 | 0.616 | 0.620 | 0.630
05 | 0.630 | 0.630 | 0.628 | 0.623 | 0.626 | 0.630 | 0.631
1.0 | 0.631 | 0.631 | 0.630 | 0.630 | 0.631 | 0.632 | 0.632
2.0 | 0.632 | 0.632 | 0.632 | 0.632 | 0.632 | 0.632 | 0.632
5.0 0.632 0.632 0.632 0.632 0.632 | 0.632 0.632
10 | 0.632 | 0.632 | 0.632 | 0.632 | 0.632 | 0.632 | 0.632

Table 3. Unit step responses of the circuit in Figure 7

at t = RsCs + (Rs + 0.5R)C
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3. MOS PLA Delay Estimation

Cherry, [Ch79] has given a formula for the delay of a nMOS PLA. However, the
wire delay is ignored in Cherry’s model. A formula that takes the wire delay into
account is developed below. The wires in the PLA are modeled as URC elements.
Consider a typical‘nMOS PLA as shown in Figure 8. The path thal passes the
peints a,b,c,d,f,g is a critical path. Its equivalent circuit is also shown in Figure

8.

The poly wire starting at point b that runs in parallel with the wire ¢d has
resistance R; and capacitance C;. The poly wire between point ¢ and & has
rgsistance Rs and capacitance Co. The metal wire connecting ¢ and e has
capacitance C3. Its resistance can be ignored. The poly wire befween d and
/ has resistance R4 and capacitance Cy. The metal wire connecting f and g has
capacitance Cs. The output loading capacitance is Cous. Let Rt be the channel
resistance of a pull-down transistor. The pull-up to pull-down transistor ratio is

denoted k, and it is assumed to be 4 in the following calculations.

Using first order approximation of the URC elements, the signal delay from the
input @ to the output & for 0 — 1 and 1 — 0 transitions are given in Table 4.

Wire resistances and capacitances are assumed to be uniformly distributed.

The magnitudes of Ty_.; and Ty .o depend on the values of C4,C5,C3,C4,C5 and
Cout. As a rule of thumb, if the number of minterms is greater than twice

the number of outputs (i.e., the AND-plane dominates the OR-plane), then
To.....l >T1_,o. Otherwise, T1—+0 >To... 1.
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Figure 8. A critical path in a typical nMOS PLA

and its equivalent circuit
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Path Section Transition 0 — 1 Transition 1 — 0
a—+b R:Cy ER,Cy
b—d (ka + 0.5R2)Cz . (Re + 0.532)01
d—f kR:C3 + (kR: + 0.5R4)C4 R:Cs + (Rg -+ 0.5R4)C4
f—g kR:Cs R;Cs

Table 4. Delays for the PLA path shown in Figure 8

The delay from a to k for a 0 to 1 transition at point @ is estimated as follows:

Tow1 /= R:C1 +kR:C2 —— input buffer delay
+ 0.6R:C» —— AND-plane wire delay
+ kR¢(Cs+Cs)  —— AND-plane switching delay o)
+ 0.5R4Cy —— OR-plane wire delay
+ R:Cs ~—— OR-plane switching delay
+ ER:Cout —— output buffer delay

Ti—o can be computed in a similar way. Note that 0.6R2C: and 0.5R:C, are

wire delays due to the resistance of the poly wires.

Figure 9 shows the layout of a basic PLA cell. It is 7 X TA\2. The gates are
minimum-size (2\ X 2)\) and separated by 5\ poly wires. The width is 2\ for
both poly and diffusion wires. Metal wires are 3\ wide. The pull-up to pull-down

transistor ratio (k) is 4.
Let r, denote the sheet resistance of a poly wire (Q/0) and C, denote the

capacitance of a minimum gate (pF'/(2))*). The poly wire capacitance is ahout

1.C,/(2))? and the metal wire capacitance is about #C,/(2\).
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Figure 9. The layout of a basic PLA cell

The Worst Case Delay

Let P = number of minterms
I = number of inputs
O = number of outputs

fout== Cout/Cy = fan-out factor

Then the maximum value of C;’s and R;’s can be obtained under the assumption

that in every cell there is a gate present.



51
Cr=Cy—= ((1 +s- ﬁ) c,,) P = (L.25C,) P
3

2
C’——(l 5 1)0)0*— 25C,) O
o=((1+3- ) &) o =ascy)
3

7X 1 (10)
Cg=}f —— . — = ().
s (2 s 150,,) P = (0.35C,) P

Ry = (%rp) P = (3.5rp) P

Ri = (gr,,) 0 = (3.5r,) O

Substituting these values into (9) yields the longest delay,

Tom1 A3 (2.2 (;_p)(Pg + 0% +6.6P +281+5.00+4 fm)(Rf c,) (1)
t

The value of R:C; is the time constant for a minimum size transistor driving
a minimum gate. It is equal to the charge transit time (T) of a minimum size
- trangistor [Me80]. The values of r, and R; depend on the IC process technology.
At 4pm feature size, Ry is of the order 10*Q/0 and r, is in the range from 10 to

100 /0. Substituting r,==250/0 and R;=10*Q/0 into (11) yields
To—1 & (0.0055 (P*+0®)+6.8P +2.81+5.00+4 fou,)T (12)

Equation (12) gives the worst case delay of a static nMOS PLA in terms of the
number of inputs I, outputs O and minterms P. For a particular design, the

number of gates in each column and row is known.
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Deley Estimates for Personeglized PLAs

Let
__ max{ the number of gates each poly wire drives iu the AND plane}
p max{ the number of gales each poly wire drives in the OR plane }
2 ——
2:-0

(13)
Then the relations between the actual wire capacitance (C;') and resistance (R;’)

and the maximum wire capacitance and resistance are:

¢y’ <(1.25p1 P + 0.035(1 — p;) P) C; = (0.28 + 0.72p;)C}
C2' <(1.25p1 P + 0.035(1 — p1) P) C,; = (0.28 + 0.72p,)C>

Cs' =Cs
Cy <(1.25p; o+ 0.035(1 — p2) 0) C, = (0.28 + 0.72p5)C, (14)
Cs' =C;
Ry’ =R,
Ry =R,

where Cy, Ce, Cs, Cy, Cs, R2, Ry are the maximum wire resistances and capaci-

tances given in (10). The approximated delay is

Toi' & (0.0055((0.28 +0.72p1)P” + (0.28 + 0.72p2)0%)

+ 6.6(0.28 + 0.72p,)P + 2.8 + 5.0(0.28 + 0.72p2)O + 4fm)T

(15)
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The Eifiect of Sealing

The coefficients in {(12) and {15} are based on the resistance and capacitance
values typical at the current state of the technology (A = 2pm i.e., r,=250Q/0
and R;=10%Q/0). As feature sizes are reduced by a, the wire resistances/m
increase by a, while the channel resistance of a transistor essentially remains

constant. The capacitances/pm? increase by a [Me80], [Sa82]. To summarize:

z—zfa
Rg —*R«g

Cg e d C',/a

T —7T/a (16)

Ty, 2 Tpa
(#)- (%)
Equation (12) and (15) become -
To—r1 &3 (o.oosm(P2 +0®)+6.8P+28I+500+4 fm) T (17)
“and
Tot' & (o.oossa((o.zs +0.72p1)P” + (0.28 + 0.72p2)0%)

+ 6.6{0.28 + 0.72p,)P + 2.87 + 5.0(0.28 + 0.72p5)0 + 4fo,,f)T’

(18)
where T'=T/a
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The wire delay is comparable with the switching delay when

0.0055a P>~ 6.6 P — P =1181/a

(19)
0.0055¢ O*~ 500 — O = 909/a

At 0.5um feature size @ ~ 8 and equality holds at about 150 X 110 bits. Hence,

unless, e.g., the sheet resistance is reduced, the delay of large nMOS storage

structures (>10K bit) will essentially be proportional to the storage size (bits).

How to Improve the Performance

By inspecting the delay equations (17), (18), the delay introduced by a PLA can

be reduced in several ways :

1.

4.

Use super buffers or. a sequence of exponential horn-type drivers [Me80] to

reduce the switching delay 6.6P + 2.87 + 5.00.

Reorganize the bit patterns in order to minimize P2+ O® such that the wire

delay is equally divided between the AND-plane and the OR-plane.

Improve the process technology to reduce r,, and therefore the wirc delay.
(for example, the sheet resistance of silicide has only one tenth of that of

polysilicon.)

Limit the driving needs on each clock phase by pipelining the operations

(e.g., input buffer, AND-plane, OR-plane, output buffer).

Use hierarchical storage architectures as suggested in {Me80] Chapter 8.

-ng -



4. Conclusion

A first order linear approximation of the one dimensional diffusion equation used
to model wires in MOS technology is shown to render very accurate estimates
of the time constant for wires driven by a source having internal resistance and
capacitance. The first order approximation is used to derive estimates of delays
in a MOS PLA. The delay is computed in terms of inputs, outputs, and minterms.
The data used in section 3 is based on nMOS technology. However, the method is

general and can be applied. to estimate the delays of other classes of MOS storage

circuits in different technologies such as CMOS or different design strategies such
* a8 precharging. The effect of scaling technologies preserving aspect ratios and

doping levels, as suggested in [Me80], is calculated.

The delay equation can be used not only to estimate the speed of MOS PLA
circuits but also to provide the proper VLSI computation models for storage

structures.

In [Bi81], it is concluded that “the current MOS VLSI technology falls in the
domain of either the synchronous or the capacitive model and for projected

future technology may reach the boundary of the capacitive model region.”

In that work, propagation time is defined as the time required to transfer a
bit along a wire of length L. The conclusion i3 based on the assumption that
information change is transferred on metal wires. However, for information
storing and extraction, the signal is not only propagating along metal wires, but
also along poly wires because of layout considerations. For a large MOS storage
with flat structure {no hierarchy), the delay is essentially proportional to the
storage size (i.e. the square of the chip dimension). Hence, the diffusion model

is indeed the proper one in this case.
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