Hierarchy of Graph Isomorphism Testing

Wen-Chi Chen

Computer Science
California Institute of Technology

5140: TR :84

Hierarchy of Graph Isomorphism Testing

by
Wen-Chi Chen

5140:TR:84

Department of Computer Science
California Institute of Technology
Pasadena, California

Submitted to the Computer Science Department in Partial Fulfillment cf the
Requirements for the Degree of Master of Science.

The research was sponsored in part by the Silicon Structure Project and in
part by IBM Corporation.

Table of Contents

1. Introduction

2. Graph Invariants and Vertex Invariants

. Graph Coding and Isomorphism Testing

[

4. A Fast GITest Algorithm

wn

. Graph Transform and GITest Hiérarchy
6. Conclusion

References

1. Introduction

As of late, Graph isomorphism algorithms are of great interest in VLSI circuit
design. However, their usefulness is not limited to this particular topic. For ex-
ample, they are used almost exclusively in all Artificial Intelligence applications
where a matching problem between graphs and relational structures must be
solved. Similar kinds of mai:ching problems appear in pattern recognition|[Ts79],
scene analysis [Am73] and fingerprint checking [Me83]. In Structural Chemistry,
this problem shows connection with the classification of chemical compounds
[Ra74] and manipulation of a large number of chemical structures when used
in a chemical information retrieval system [Su64]. In VLSI, the resulis from
isomorphism testing assist debugging when a specified circuit is compared with

a circuit extracted from a lower intermediate form.

The definition of graph isomorphism is as follows: Graph G(V,E) is a graph with
vertex set V and edge set E. A graph G1(V1, E1) is said to be isomorphic to
another graph G2(V2,E2) if there is a one to one mapping X from V1 to V2 and
\ preserves the adjacency relationship between E1 and E2, namely, if and only
if (x,y) belongs to E1, (A(x), A(y)) belongs to E2. The dilemma of deciding if
two given graphs are isomorphic to each other is called the graph isomorphism
problem. This problem has received so much attention in the last decade that
it is now sometimes referred to as the “graph isomorphism disease” [Rc77] since

it has been so infectious in both the theoretical and practical computer science

literature.

Recent theoretical attention of graph isomorphism emergss mainly from the
study of NP-complete (nondeterministic polynomial) problems [Ga79]. A prob-
lem becomes a “decision problem” when it has only two possible solutions, (yes

or no), and is said to be in the NP class if it can be solved in polynomial time

-1 -

using a nondeterministic Turing machine. Similarly, a problem is defined to
be in the P class if and only if it can be solved in polynomial time using a
deterministic Turing machine. We call a problem NP-complete if it is one of
the hardest problems in NP. Since every problem in NP can be transformed to
completeness in polynomial time, An NP-complete problem is not in the P class

unless all the NP problems are in P.

The study of NP is of particular interest to computer scientists since they
occre quite frequently in practical problems. More than a thousand commonly
encountered problems from mathematics, computer science and operations re-
search have been shown to be NP-complete. Consequently, it appears that P

and NP provide a natural hierarchy for classifying computational complexity.

We still do not know whether or not P and NP are equal. While it is generally
believed that they are not equal, it has yet to be proven. The question of
whether or not P is equal to NP has become one of the most challenging
unsolved problems in computer science and mathematics. And although 2 great

deal of research have been put into this subject, there has yet been no major

breakthrough.

To circumvent this seeming quagmire of difficulty, one can alternatively ex-
amine the existence of NPI, an intermediate class of problems between P and
NP-complete. I it can be shown that NPI exists, P and NP cannot be the
same. Conversely, if P is not equal to NP, then the set NPI is not empty.
(This follows from a more general result proved by Ladner [La75].) There are
several major candidates which are in NP, but it is still unknown whether
they reside in P, NP-complete or neither. Graph isomorphism is currently the
most distinguished open problem for the NPI search. If a particular problem is

of similar complexity to graph isomorphism, some researchers dub it as being

-9 _

“isomorphism complete”.

Several subproblems of graph isomorphism testing have been proved to be in
the P class. A simple example of this is restricting a graph to be a rooted
tree. Isomorphism of a rooted tree can be solved in linear time in the number
of the vertices of the tree [CB81]. A general tree isomorphism can be easily
rooted since a tree has at most two centers and these centers can be identified
in linear time. If there is only one center, it can be labeled as the root. If there
are two centers, we check both possibilities. Hence a general tree isomorphism
problem turns out to be linear too. Some other interesting subproblems of
graph isomorphism are also linear such as: isomorphism of planar , interval,
and outplanar graphs. [HW74],[LB79],[BIM79].

For more complicated subproblems, some significant subcases have recently been
shown to be solvable in polynomial time: graphs embeddable in the projective
plane [Li80]; graphs embeddable in a surface of genus bounded by k [Mi80];
graphs with bounded degrees[L.u80|, and graphs with bounded eigenvalue mul-
tiplicity [BGM82].

In addition, there are many other interesting extensions of the isomorphism
problem. For example both ‘subgraph isomorphism’ and ‘largest common sub-
graph’ involve generalizing graph isomorphism in a way which allows more
freedom in mapping one graph to another. On the other hand, isomorphism
with restrictions can also generalize the original problem. They restrict tke
mapping from the initial graph to the target graph without intersecting with
the attached set. Both kinds of generalizations give NP-complete problems.

Indeed, graph isomorphism is along the boundary of P and NP-complete.

There are also some other problems along this border. A problem is isomorphism

-8 -

complete if it is polynomial transformable to the graph isomorphism problem.
Almost all the known isomorphism complete problems are closely related to
the isomorphism problem, such as: isomorphism of directed graphs; regular
graphs; bipartite graphs; labeled graphs; line graphs; and chordal graphs zlong
with isomorphism of semigroups and finite automata [Mi79,RC77]. The graph
automorphism partitioning problem is also isomorphism complete. All of the

above results can be proved by using graph transformations.

Graph isomorphism testing is a common problem to many fields. Although
there are many nice theoretical results about this problem, most of them are
not quite practically useful for general applications. Hence, a lot of heuristic
algorithms have been proposed. In this paper we present two new heuristic
graph isomorphism algorithms, GITestA and GITestB, as well as an isomorphism
testing hierarchy. GITestA and GITestB are very powerful and can be used to
test most graph isomorphism problems occuring in practical cases. GITestB
is especially useful since its capability is similar to currently available general
graph isomorphism testing algorithms. Also its time and space complexity is
much lower. Using the isomorphism testing hierarchy, any graph isomorphism

problem can be solved while maintaining an almost optimal average complexity.

In the remainer of this section, basic terminologies and definitions are given
for easy reference. Since graph invariants are often used in heuristic graph
isomorphism z;.lgorithms, a set of vertex invariants a2nd their characteristics
are discussed in section 2. These vertex invariants are used to form a graph
invariant which is the basis of our graph isomorphism algorithms. In section 3,
 this algorithm is presented as well 2s analyzed. Several observations about this
older 2lgorithm are shown in section 4, when 2 new algorithm is proposed. It has
similar power and much improved time as well 2s space complexity. Directed

graph isomorphism testing are also described.

e

Strongly regular graphs and BIBD graphs will be introduced in section 5. Unfortunately,
some of them are immune to our isomorphism testing algorithms. However,
graph transforms can be used to make these graphs more receptive to testing.
A hierarchy of graph isomorphism testing algorithms with a graph transform
with our algorithms embedded is infroduced. Finally, in section 6, we remark

on our approach, and discuss ideas for further improvements.

1.2. terminology and definitions

Throughout this report, G(V,E)} will refer to a graph G with vertex set V (of
cardinality n) and edge set E (of cardinality m). A graph is said to be directed
when its edges have orientation, i.e., (u,v) is not the same as (v,u) in general.
Unless otherwise stated, all graphs are assumed to be undirected and without

loop, that is, no edge joining a vertex to itself.

G1(V1,E1) is a subgraph of G(V,E) if and only if V1 is a subset of V, El is a
subset of both E and V1 X V1. G(V,E) is a complete graph if and only if E=V
X V. A graph G(V,E) is called bipartite if there are two vertex sets V1 and V2
such that V1 |J V2=V, V1[) V2 = @, and any edge (u,v) of E belongs either
to V1 X V2 or V2 X V1 which are the same for undirected graph.

Two vertexes u and v are called neighbors if there is an edge (u,v) or (v,u) . A
vertex V is of degree r if it has r neighbors. A graph is called a regular graph
if its vertexes are 2ll of the same degres. K, denotes a regular graph with n

vertices while K, , denotes a bipartite graph when the vertices of V1 and V2

are of the same degree p and q respectively.

A path is a sequence of vertices vy, v2, ..., vn where (v;, 2541} and 1 < i< n-—1

is an edge. The distance d(u,v) between two vertices u and v in G is defined 23

-5 -

the length of the shortest path joining u and v. The shortest u-v path is often
called a geodesic. The vertex diameter vd(v) is the longest geodesic out from v.

The diameter of a graph itself is the largest vertex diameter of its vertices.

A graph G(V,E) is a complement of another graph G2(V2,E2) if V2=V and E
U E2= V X V. A vertex v is at distance d from another vertex u if there is a
path from V to U with length d. The adjacency matrix A of G(V,E) is an n by
n 0, 1 matrix with entry (u,v) to be 1 if and only if (u,v) belongs to E. A graph
is connected if every pair of points are joined by a path. A maximal connected

subgraph of G is called a connected component or simply a component of G.

2. Graph Invariants and Vertex Invariants

A greph inverient (or g-inverient) \ is a unary function mapping from the set
of all graphs § to a certain set R such that any two isomorphic graphs Gl,
G2 € § must have the same images, i.e., A\(G1) = A(G2). The image of a
g-invariant is called a g-invericnt velue. Given a g-invariant A, two graphs are
\-distinguishable if they have different images under the mapping), otherwise
they are A-similar. Throughout this paper, two graphs are called distinguishable
or similar instead of being called A-distinguishable or A-similar whenever the
g-invariant X is clearly referred. A g-invariant A is complefe if any two graphs

are either isomorphic or \- distinguishable. Otherwise it is incomplete.

Most graph isomorphism algorithms are based on g-invariants. Commonly used
g-invariants are: ¥(G), the number of vertices in G; E{G), the number of edges
in G; total-degree(G), the sum of the degrees of the vertices in G; and degree-
sequence(G), the ascending sequence of the degrees of the vertices in G. An
adjacency matrix A is not a g-invariant. However, the determinant |A-¢1| , where
I is an identity matrix of dimension V(G), does not depend on how G is labelled.
Therefore, it is a g-invariant. Consequently, the characteristic polynomial of A
as well as the spectrum (the set of eigenvalues) of G are also g-invariants. All
of the above g-invariants have been shown to be incomplete, namely, there are

graphs, nonisomorphic yet similar under these g-invariants.

There are indeed some complete g-invariants. For example, an wpper fricngle

number S of an m by n, 0,1 matrix A is defined as,

m—1n—1

S = Z ZAi,j2im+j

f==0 j==0

where A;; is the matrix element at ith row and jth column.

If one were to simultaneously permute the rows and columns of the adjacency
matrix of a graph G, the mezimum adjecency meiriz of G could be obtained.
(It is the one with the largest upper triangle mumber.) The next theorem will
demonstrate that the maximum-adjacency-matrix-function M, (the function
that assigns to G the upper triangle number of its maximum-adjacency-matrix),
is a complete g-invariant.

Unfortunately, given a graph G, there is no known polynomial algorithm to get

this g-invariant M(G).

Theorem 2.1: Maximum-adjacency-matrix-function M(G) is a complete g-invariant.
Proof:

A simple proof can be shown based on the fact that there is a one to one
relationship between a graph and an image of M(G). First we prove that M(G)
is a g-invariant.

Assume G is isomorphic to G'. A and A’ are the adjacency matrices of G and
G’ respectively. M=»M(G) and M'=M(G’). By the definition of graph isomor-
phism, there exists permutation matrix P such that A= P X A’ X P?, where
P! is the transpose matrix of P. Moreover there is a permutation matrix @
such that M(G) = @ X A X Q. Therefore, M(G) = Q X P X A’ X P*
X Q' = R X R!, where R = P X Q, is a permutation matrix. So M(G') >
M(G) by the definition of maximum adjacency matrix. Similarly, we can prove

M(G) > M(G’). Hence , M(G) = M(G') and M(G) is a g-invariant.

Next we prove that M(G) is complete.
If M(G) = M(G'). Since M(G) is also a symmetric 0,1 matrix with all the

diagonal elements being zero, M(G) is an adjacency matrix of a certain graph.

-8 -

Let H be the graph associated with M(G). Thus, H is isomorphic to G because
there is a permutation matrix P such that M(G) =P X A X P'. Similarly, H
is isomorphic to G’. Therefore G is isomorphic to G’ and M(G) is a complete

g-invariant. @

A vertez inveriznt or v-inverient v is a binary function mapping from a set of
2-tuples (G,v), here G is a graph and v is a vertex of G, to a certain set P,
such that vertices of the same automorphism partition of G will have the same
images under the mapping v. The image of a v-invariant is called a v-invericnt
vclue. Definitions of simsler and déistinguishable vertices as well as complete v-
invariants are analogous to those of g-invariants. Examples of v-invariants
include degree(G,v): the degree of v in G, triangle(G,v): the number of triangles

in G containing v.

In this paper, four classes of v-invariants, v1, v2, vs and vy, will be used in test-
ing graph isomorphism. A k-leger graph LG*(V*,EF) of the vertex v of graph
G(V,E) is a subgraph of G such that V* is the set of vertices k-distance away
from v and E' is the intersection of E and V* X V*. Let LG*(V*, G*) be the
k-layer graph of v in G, LG**}(V**!, and let G**!) be the k + 1-layer graph
of v in G. The definitions of these v-invariants are given below:

v5(G,v) : total degree of V¥, namely, the sum of the degress of the

vertices in VF;

v5(G,v) : the number of edges between LG* and LG**!, i.é.,
the size of the set E [] V¥ x V&+1,

v%(G,v) : the number of vertices in the (k+1)-layer graph of v.

-9 -

v%(G,v) : the number of connected components in G*.

Example 2.1: In figure 2.1, there are two automorphism groups in graph G.
Vertices 1,2,3,4 belong to the same group. They all have vertex diameter 2 and
the same v values listed as follows.
vi=14vi=4vi=3rvi=211=813=0,1=0,1i=1;

Vertex 5,6,7,8 belong to another group with vertex diameter 4 and their v values

are:

Figure 1.

Theorem 2.2: For all k, %, v%, v% and v% are vertex invariants.

- 10 -

Proof:

Let vertex u and v be of the same automorphism partition in a graph G(V,E).
Assume k is an arbitrary constant. By relabelling the vertices of G, we can get
a graph G'(V',E’) isomorphic to G and a vertex v/ isomorphic to v. Therefore
v’ is also isomorphic to u.

Sofor1 <i<<4,rf(Gu)=viG,V)=riGv) 0O

Theorem 2.3: If py, p2,...., pn are v-invariants, and »(G,v) is defined to be a
sequence, (p1(G,v), p2(G,v), ... , p»(G,v)). Then v is also a v-invariant.

Proof:

Let u and v be of the same automorphism partition of graph G(V,E).

Thus, for 1 < i < n, p:i(G,u) = pi(G,v).

Therefore (p1(G,v), p2(G,V), ... ,pa(G,V)) = (p1(G,u), p2(G0), ... ,p,(G,u)),

hence it is a v-invariant.
Corollary: For any k,v* = (v%, v, v%, v%) is a v-invariant.

Let a v-invariant v be formed by a sequence of v-invariants pj, p2,...,pn. ¥ I8
considered to be redundant if for any graph G, there exist two vertices u and v
such that u and v are v-distinguishable . They are then distinguishable under
another v-invariant formed by a sequence of a proper subset of { py,...., Pn-}
Theorem 2.4: v = (1, V2, V3, v4) is not redundant, where »; = (v}, v3, ..., v™)
and m is the vertex diameter of v in G.
Proof:

Assume v is redundant, then there exists a v; of v that is

redundant, 1 < i < 4.

Let v1 = (v2,v3,r4). In figure 2.1,

- 11 -

v1(G,u) = (8,6,2,4,2,2,0,0,1) = v1{(G,v).
However, v1(G,u) = (21,20,6) 5% »1(G,v) = (19,22,6).
Therefore »; is not redundant.

Let v2 = (v1,v3,v4). In figure 2.2.

v2(G,u) = (21,7,2,26,3,2,10,0,1) = »2((G,v).
However, v»(G,u) = (8,6,0) 3% r2(G,v) = (10,4,0).
Therefore v, is not redundant.

Let v3 = (v1,22,v4). In figure 2.3.

v3(G,u) = (19,8,2,24,4,2,10,0,1) = v3{(G,v).
However, v3(G,u) = (8,3,0) # v3(G,v) = (7,4,0).
Therefore v3 is not redundant.

Let v4 = (v1,v2,v3). In figure 2.4.

v4(G,u) = (19,8,8,24,4,4,10,0,0) = v4((G,v).
However, v4(G,u) = (2,3,1) # v4(G,v) = (2,2,2).
Therefore v, is not redundant.

Since none of 1, vz, Vs, Vs is redundant, v is not redundant. §

— 19 —

T

A

Figure 2.

\"
\'

2.4

V-invariants are often used for testing graph automorphism which is closely

related to the problem of testing graph isomorphism. Unfortunately, they are

- 18 -

not readily available for testing graph isomorphism. In general, putting the
v-invariant values in a sequence will not give a g-invariant since it depends on
how a graph is labelled. However, v-invariants in an 2scending sequence are one
of the few exceptions. For a graph G with vertex v, vs,...,9, and a y-invariant
v, an ascending sequence of v-invariant v is a sequence of v-invariant values

v(v1), v(vz), ..., v(vs) sorted in ascending order.

Theorem 2.5:An ascending sequence of a v-invariant is a g-invariant.

proof:

Let v be a vertex invariants. Graph G(Vi, E1) is isomorphic to graph G'(V2, Ez).
|Vi| = | V2| = n. vertex u, us, ...y € Vi, U1,02,...,¥n € V2, 20d if ¢ < j, then
v(G,u:) < v(G,v;), ¥(G,ui) < v(G,uy).

Hence, g-invariant I{G) = (¥(G, u1), ¥(G, t2), ..., ¥(G, u5)) and

I(G) = (v(G, 1), (G, v2),...¥(G, v5)). Assume I(G) 7% I(G'). Thus there
exist some mismatch between I(G) and J(G'). Let k be the smallest number
i such that »(G,u:) 5% v(G',v;). Without loss of generality, assume »(G,us)
< v(G',u;). Since G is isomorphic to G/, there is a smallest j < k such that
v(G,ux) = v(G,v;) = v(G,u;). Consequently, there are (k —) vertices in G
with v-invariants equal to »{G,u;), at the same time there are fewer vertices
in G’ with v-invariants equal to this value. This violates that G and G’ are

isomorphic. Therefore, this ascending sequence is a g-invariant. §

-1} -

3 Graph Coding and Isomorphism Testing

For a vertex v in graph G, let »(G,v) = (degree(v),v?, v?, ..., v™), where degree(v)

ks as defined in section 2, and m is the vertex diameter

is the degree of v, v
VD(G,v). Thus, »{G,v) is also a v-invariant due to theorem 2.3. From theorem
2.5, we can then form a g-invariant I by a sorted sequence of ¥(G,v) which are
sorted in an lexicographically ascending order. I and »(G,v) are used in our

graph isomorphism testing algorithm.

Example 3.1: For graph G in fig. 3, its v-invariants are:
v(G,01): (22,9, 5,2 24,3, 1, 1,3,0,0, 1)
v(G,v2): (21, 9,6, 1,254, 1,2 4,0,0, 1)
»(G,vs): (28, 10, 5, 1, 20, 0, O, 1)

v(G,ve): (25, 12, 6, 2, 24, 0, 0, 1)

»(G,us): (20, 10, 5, 1, 22, 6, 2, 2, 8 0, 0, 1)
v(G,ve): (21, 12, 5, 3, 24, 4, 1, 1, 4, 0, 0, 1)
v(G,v7): (27, 11, 5, 1, 21, 0, O, 1)

v(Gvs): (21, 9,6, 1,26, 3,1, 1, 3, 0,0, 1)
v(G,vo): (23, 12, 6, 2, 26, 0, 0, 1)

v(G,v10): (15, 8, 6, 1, 27, 7, 2,2, 9,0, 0, 1)
v(Gon): (17, 9, 6, 2, 29, 4, 1, 1, 4, 0, 0, 1)
v(Guz): (14, 11, 7, 3, 33, 4, 1, 1, 4, 0, 0, 1)

The g-invariant J(G) is: (3, v(G,v12), 3, ¥(G,v10), 4 ,#(G,v11), 4, ¥(G,v5), 4,

U(G,Uz), 4; V(G1”8)7
5, ¥(G,vs), 5, ¥(G,v1), 5, ¥(G,vs), 5, ¥(G,v4), 8, ¥(G,v7), 6, (G,v3))

- 15 -

ALGORITHM GITestA:
INPUT: Two graphs G1{V1,E1) and G2(V2,E2), their vertex adjacency
list.
OUTPUT: Partitions P1 of V1 and P2 of V2. Two vertices of a graph
are in the same partition if they have same v-invariants
and similar connections. Also, an answer either YES,
when G1 and G2 are isomorphic to each other; NO,
when they are not; or SIMILAR when GITestA can not iell.
GIA1l: Craph coding and vertex partitioning
Use algorithm GC and VCA to get v-invariants, g-invariants and
partition vertices by their v-invariants.
GIA2: Comparing codes
Compare g-invariants of both graphs and the v-invariants as well
ag size of each partition, if they fail to match, answer NO
and terminate.

GIA3: Refining partitions

- 16 -

Refine the partitions obtained in GIA2 by the connections of
each vertex. Check if the refining of these two graphs are
the same or not. Answer NO and terminate if they are not
the same.

GIA4: Matching graphs
Try to match graph G1 and G2. If there were some partitions
containing more than one vertex, a random match of a pair
of vertices (u,v) will be selected with u from G and v from

the corresponding partition in G2.

ALGORITHM VCA (Vertex Coding A):
INPUT: vertex adjacency list of graph G(V,E) and a vertex v in V.
OUTPUT: vertex code »(G,v).

VC1: »(1) + degree(v);
i~ 2

vC2: ‘current layer set’ C «— 0@;
‘pext layer set N’ — @;

‘scanned set’ S +— O;

VC3: ‘layer number’ k +~ 0;
VC4: mark(v) « 1;
c—{v}k
N « { v’s neighbors }
S « C;
VC5: while N not empty do
vCé: begin
k «~ k+1;

- 11 -

YCT7:

YC8:
VC9:

VCi10:

YC11:

YC12:
YCi13:
YCl14:

VC15:
VC1i6:
VC17:
VCi8:
VC19:
VC20:
VC21:

vi + 0
Vi~ o
V§<—0;
A
C «~N;
N « &;
s—slJg¢

for vertex v in C do mark(v) < 0;

while there is a vertex u in C and mark({u}=0 do

begin
C’' « {u}
while there is a vertex u in C’ and mark{u)=90 do
begin
mark(u) «~ 1;
V% — vh+degree(u);
N « ﬁeighbors(u) N (v - s)
C' — C' |J (neighbors(u) [} {unmarked
vertices in S});
v — V5 + |N'|;
N« NU N;
end
vi — v+ 1
end
v§ — IN|;
v(i) —

v(i + 1) — vk
v(i + 2) ~ vk

v(i + 3) — vk

- 18 -

vVC22: i+— 1+ 4
VC23: end.

Algorithm GC gets the g-invariant for the input graph and partitions the
vertices of the input graph according to their v-invariants. The lexicographical
sorting at step GC8 using the algorithm 3.2 is from [AHU74]. Let l; be the
length of Ali]=(a:1, ai2, ..., 8i1;), and let lnoz be the largest of the li’s. Each

component of Alf] is in the range of 0 to |E|.

ALGORITHM GC (Graph Coding and Vertex Partition):
INPUT:vertex adjacency list of a graph G(V,E).
OUTPUT: g-invariant JI(G,V).

GC1: clear array A, pointer k « 0;

GC2: while V is not empty do

begin
GC2: get a vertex v from V;
GC3: k «~ k+1;
GC4: A(k) +~ (G, v) by employing algorithm VCA;
GC5: end; N
GC6: (lexicographically sort A in ascending sequence.)

clear queue Q.

for =0 to |E|-1 do clear bucket Bl[j];
for l=Imaz step -1 to 1 do

begin

- 19 -

concatenate C[l] to the beginning of Q;
(Cll] consists of all elements A[s] of length 1)
while Q not empty do
begin
let Afi] be the first element in Q;
move Ali] from Q to Bla;};
end;
for each j on NONEMPTY]{] do
(NONEMPTY]] lists buckets which are occupied at pass i)
begin
concatenate B[j] to the end of Q;
clear B[j];
end;
end;
GCT: i+~ 1
while Q not empty do
begin
let PARJi] be the first element in Q;
if i=1 then
begin
N(i) « 1;
i« i+1;
end else
begin »
it PAR[i]=PAR[i-1] then N(i) «— N(i)+1;
else
begin
i~ i+1;
N(i) « 1;

- 90 -

end;
end;
end;
TOTAL « i-1;
(for vertices with same v-invariants, merge them into a partition.

TOTAL is the total number of partitions and p(i) is the number

of elements in partition i.)

ALGORITHM CC (Comparing Codes)
INPUT: two g-invariants J(G;) and I(G:), and partitions
| P,=(PAR1[1],PAR1[2),...PAR1[TOTAL,]);
P,=(PAR2[1],PAR2(2],...,PAR2[TOTAL]);
Ni1(j) is the number of elements in partition j of graph Gi,
| N2(j) is the number of elements in partition j of graph Go..
TOTAL,; is the number of partitions of Gi,
TOTAL; is the number of partitions of Go.
OUTPUT: NO: if they are not the same.
YES: if they are the same.
CC1: if TOTAL; 3¢ TOTAL, then answer NO and terminate;
(G1 is not isomorphic to G2)
CcC2: for i —~ 1 to TOTAL; do begin

CC3: if PAR1(i) 3¢ PAR2(i) or N1(i) ¢ N2(i) then
CC4: answer NO and terminate;

CCb: end;

CCs: answer YES.

- 921 -

The next algorithm, RP(refining partitions), is a modification of an algorithm
proposed by Hopcroft|Ho71] for minimizing states in a finite machine. Kubo,
et. al.[Ku79)] has applied this algorithm for automorphism partitions and here

we modify it to serve our graph isomorphism testing.

ALGORITHM RP (Refining Partitions):

INPUT: two graphs G1(V1,E1),G2(V2,E2) represented by their vertex
adjacency list Al(v;) and A2(vz) for all v; in G1 and
vz in G2, and initial partitions P1, P2.
P1={PAR1[1],PAR1[2],...,PAR1[TOTAL,]}.
P2={PAR2[1],PAR2[2],...,PAR2[TOTAL:}}.

OUTPUT: Refining partition P1 and P2 according to Al and A2. After
each refining step, check if G1 and G2 have the same refining.
If not, they are not isomorphic, answer NO and terminate.
Otherwise, refine these partitions 2s much as possible.

RP1: t1 +— TOTALjy;
t2 «— TOTAL,;
put P1 in waiting list W1=(WAIT1[1],WAIT1[2],..., WAIT1[t1]);
put P2 in waiting list W2=(WAIT2[1], WAIT2[2],..., WAIT2[t1]);

RP2: while W1 is not empty do

begin
RP3: get and delete the first vertex set WAIT1[1] from W1;
get and delete the first vertex set WAITZ2[1] from W2;
RP4: N1 « neighbors of WAIT1[1];
RP5: N2 « neighbors of WAIT2[1];
RP6: for each vertex u in N1 do

- 99 _

adj(u) < the number of u’s neighbors in WAIT1[1];

for each vertex u in N2 do
adj(u) < the number of u’s neighbors in WAIT2[1];

RPT: for each j such that WAIT1[j] [} N1 5% @ do
begin
RPS: clear all the buckets B1]i];
RPY: for each u € WAIT1[j] do
begin

if adj(u)%0 then put u in bucket Bl[adj(u)]
else put u in B1[0};

end;
RP10: clear all the buckets B2[i];
RP11: for each u € WAIT2[j] do
begin

if adj{u)>40 then put u in bucket B2[adj(u)]
else put u in B2[0];
end;
RP12: LARGEST « 1;
LSIZE « |B1[1]};
for i=1 to |V1] do
begin
if |B1[i]| # [B2[i]| then
G1 not isomorphic to G2, terminate;
it |B1[i]] > LSIZE then
begin
LARGEST + i;
LSIZE « |B1[i]];
end;

end;

- 98 _

RP13: WAIT1[j] ~ B1|LARGEST];
clear B1[LARGEST];
WAIT2]j] — B2[LARGEST];
clear B2[LARGEST];
for i=1 to |[V1] do
begin

if [B1[i]| # O then
begin
t1 «— t1+1;
WAIT1[t1] ~ Bi]i];
end;
end;
for i=1' to [V2| do

begin
if [B2[i]] # 0 then
begin
t2 « t2+1;
WAIT1[t2] «— B2[i];
end;
end;
RP14: end;

RP15: end;

AIGORITHM MG (Matching Graphs):
INPUT: partitions V', V?2,...V? of G and corresponding partition

-2} -

UL U?, ... U? of G2.

OUTPUT: YES: if matching succeeded.
NO: if matching failed and p=n.
SIMILAR: if matching failed and p £ n.

MG1: while there are vertices not matched do begin

MG2: i— 1
q+— P
MG3: if U* and V* are single element partitions, match the

corresponding vertices contained in them else begin
MG4: randomly select and match a vertex v from V* and

a vertex u from U?;

MG5: refine partition U* to U? as much as possible
by separating u from U’;

MG6: refine partition V* to V9 as much as possible
by separating v from V*;

MGT: modify g;

MGS: end;

MG9: end

MG10: check the match of G1 and G2 according to the connections of
each vertex. If this checking succeeded then answer YES else if

p=n then answer SIMILAR else answer NO;

Next we analyze the above algorithms.
Theorem 3.1: Algorithm VCA output the v-invariant v(,G,v) for vertex v of

graph G with time complexity O(|E|) and space complexity O(|V]).
Proof: ‘

- 95 _

We prove VCA output the correct #(G,v) by induction on the layer number k.
First, we will prove that for any k at step VC5, a)C contains all the vertices of
the current layer, b)N contains all the vertices of the next layer and ¢)S contains
all the vertices of current and upper layers. For k=0, C contains vertex v,
which is the only vertex at layer 0. N contains all the neighbors of v, namely,
the vertices of layer 1, and P contains only vertex v since there is no upper
layer of layer 0. If for k=n the induction hypothesis is correct at VC5. At step
VC7 N is assigned to C, and P is set to be the union of C and P. C and P will
not be changéd until it reaches VC5 again. Hence, for k=n+1, both C and P
contain correct members. Upon reaching step VC7, we will clear N. At step
VC20, N is the union of N of each vertex in C. Step VC8 guarantees that every
vertex in C will go through the loop from VC10 to VC18 since it can only be
marked at step VC11. VC14 expands set C’, (the connected subgraph of C), and
makes sure each vertex in C can go through the loop only once by limiting the
expansion of C’. Now every vertex in C will go through the inner loop exactly
once and generate its next layer neighbor N’, so finally at step VC20 we will

have a correct next layer set N. The induction is therefore complete.

Now we will prove that for all k at step VC20, we will have the correct v values.
Since at VC5 we have correct values of C, N and S, we will also have correct
values of C and S at VC7. We mentioned in the previous paragraph that every
vertex in C will go through the loop frorh VC11 to VC 17 exactly once. So
at step VC20, % is the total degrees of the vertices of C. v at step VC18
counts how many C’ there are for current C. (C’ is the connected subgraph of
C.) N’ is the number of edges from each vertex u in C to N and v% is the sum
of them. Finally, % gives the size of set N, i.e., the number of vertices in N.

Consequently, VCA gives the correct v-invariant »(G,v).

Step VC1 to VC4 will take only constant time. For the loop from VC5 to VC23,

- 926 —

every vertex in G will pass through only once. This is also true for the inner
loop VC10 to VC17 due to the fact that every vertex will be marked exactly
once. At step VC13 and VC14 we need to check the neighbors of each vertex,
so for the whole loop we need to check |E| times VCA now has time complexity
O(|E|). The total space needed to store the » values is of the order of the vertex

diameter of v.

Algorithm GC (graph coding) employs VCA for every vertex in G and sorts
these v-invariants in ascending order. The total time for getting v-invariants is
O(|V| X |E|) The average vertex-diameters of G is of order O{|V]) and the total
length of I(G) is of order Of|V|®). The range of v¥ is also of order Oo([V]?).
The lexicographic sort of these v-invariants would require O(|V]|?) following the
result of Theorem 3.2 of Aho, Hopcroft and Ullman [Ah74]. Therefore, the time
complexity for GC is O(|V| X |E|). The space requirement for GC is O(|V]?).

Algorithm CC (comparing codes) will take O(|V]) steps since the number of par-
titions is of order O(|V|). Algorithm RP (Refining Partitions) is a modification
of the algorithm proposed by Hopcroft and used by Kubo et. al. By the proof
of Hopcroft and Kubo etf. al., this algorithm will generate correct partitions
in O([E|log|V]). Finally, the algorithm MG(matching graphs) is also of time
complexity O(|E|log|V|) since it needs to check the connections of every vertex

in G. .

From theorem 3.1 and previous analysis, GITestA generates g-invariants for two
graphs, partitions them by the v-invariants, refines the partitions according to
the connections of each vertex, and compares the results to decide if they are
isomorphic. The time complexity of GITestA is O(|[V|X| E|) and the spaze
complexity is O(JV]?).

- o

xample 3.2 For graph G1,G2 and G3 in figure 4.2. their g-invariants are listed

as follows:

I(G1):(4,16,86,2,1,8,0,0,1,4,16,6,2,1,8,0,0,1,4,16,6,2 1, 80,0, 1,
4,16,6,2,1,8,0,0,1, 4,16,6,2,1,8,0,0,1,4,16,6, 2,1, 8,0, 0, 1, 4, 16,
6,21,8,00,1)

I(G2)=I(G1).

I(G3)=(4,16,6,2,1,8,0,0,1,4,16,6,2,1,8,0,0,1, 4, 16,6, 2, 1, 80, 0,
1,4,16,6,2,1,8,0,0,1, 4,16,8,2,2,8,00,2,4,16,8, 228,00 24,
16, 8,2, 2,8,0,0, 2)

In fact, GITestA generates (7, 4, 16, 6, 2, 1, 8, 0, 0, 1) for graph G1 and G2,
and generates (4, 4,16,6,2,1,8,0,0, 1, 3, 4, 16, 8, 2, 2, 8, 0, 0, 2) for graph
G3. G1 is isomorphic to G2 and each of them has an automorphism partition
with 7 elements. G3 has two automorphism partitions, one with 3 elements and

another with four elements. G3 is not isomorphic to G1 or G2.

Gl G2 . G3

Figure 4.

Primitive graph isomorphism testing algorithms use only degree-sequences as

— 928 _

the graph invariants. Corneil and Gotlieb [Co70] employ further partitioning to
classify the vertices of a graph in O(|V|?). Schmidt and Druffel [Sc76] partition
the vertices according to the distance characteristic matrix of a graph also
in O(]V]®). Any two graphs distinguishable by the previous algorithms can
be differentiated by GITestA in O(]V| X |E|). Independently, Bhat [B:k80]
developed an algorithm using fixed length code of the same complexity of
GITestl. However, GITestA can tell the difference between the two strongly
regular (16,6,2,2) graphs, even though they are similar in Bhat’s fixed length
code algorithm. They zre also similar in Bhat’s refined fixed length code

algorithm which is of higher complexity than O(|V|?).

While we haven’t found any two non-strongly-regular or non-BIBD graphs that
are similar to GITest1, there are many strongly regular and BIBD'graphs which
are resistant to it. Example graphs are BIBD(10,4,2) graphs and strongly regular
(25,12,5,6) graphs which will be discussed in section 5. .

- 99 —

4. A Fast GITest Algorithm

There are linear graph isomorphism testing algorithms for several‘ special classes
of graphs such as trees [Ah74|, planar graphs [Ho74], maximum outplanar
graphs [Be79], and interval graphs [Co81]. For use on general graphs, most
practical graph isomorphism testing algorithms are based on heuristics. Kubo,
Shirakawa, and Ozaki [Ku79] developed a fast GITest algorithm based on Hopcroft's
partition algorithm [Ho71]. For a graph G(V,E), their algorithm is of time com-
plexity O(|E|log|V|). This algorithm is among the fastest GlItest algorithms cur-
rently in use for general graphs. However, the initial partition in this algorithm
is only based on the degree of each vertex. Therefore, it cannot distinguish
between any two regular graphs of the same degree such as the ones in figure
5. Moreover, it also has problems in telling the difference between two graphs
with many vertices of the same degree which is unfortunate since these kind of

graphs occur quite frequently in practical applications.

Except for some strongly regular graphs and BIBD graphs, which are not very
common for isomorphism testing, we have not found any two graphs which are
not distinguishable by GITestA. Unfortunately, the time complexity O(|V|X
|E|) and space complexity O(|V|?) make it unsuitable for testing isomorphism

of graphs with many vertices.

Observation 1: The bottleneck of GITestA is graph coding and partition GC.

In GC, it takes O(|V|?) steps to do the lexicographic sort and it takes O(|V|?)
registers to store all the v-invariants. A hashing scheme would reduce the space
requirement to O(|V]) and speed up the sorting to O{|Vl]log [V]). GC4 is modified
to be:

- 80 -

GC4: G(k):= Hash(¥(G, v),|V]);

Additionally, instead of using lexicographic sort in GCS, a quick sort or heap

sort will be used. A simple hashing algorithm is shown below:

ALGORITHM HA(hashing):

INPUT: a string of numbers »(G, v):(al,a2,...,an) and |V| of G.

OUTPUT: a hashed number h in the range of 1 to k X |V| where k
is an arbitrary constant.

HA1: a:=al + a2 + ... + an;

HA2: h:=mod(a, 2 X [V]) + 1;

The advantages of using hashing in GITestA is:

1. save space, (this is the major advantage,) and reduce space réquirement
from O(|V|?) to O([V]). |

2. save sort time from O(|V]?) to O(|V]).

3. easy implementation, since we don't have to worry about hashing

collision.

However, even using hashing in GITestA, the time complexity is still O{|V]|X
|E|) since the time complexity of VC is O(|E|).

Observation 2: most vertices distinguishable by v(G, v) are also distinguishable

by (degree(v),#!(G,v)).
Observation 3: in graph G(V,E), if a vertex v is connected to all the other vertices

- 81 -

in G then v's connection would not provide any information to distinguish its

neighbors.

Instead of using v, a new vertex invariant v(G,v) will be used for vertex coding.
Let LGY(V?, E*) be the 1-layer graph of a vertex v in G, and Let LG%(V?, E?)
be the 2-layer graph of a vertex v in G. k is a small constant, and V’ is the set
of vertices in V'* whose degree is no larger than k. LG'(V',E') is a subgraph of
LG* where E' is the intersection of V! X V' and E*. Five v-invariants vy, vs,
Us, U4, and vup 2re used in our new algorithm, GITestB, and their definitions

are as follows:

v1(G,v) : degree of v;

v2(G,v) : if degree of v > k, then set this to be 0, otherwise
set it to be total degree of V!, namely, the

sum of the degrees of the vertices in V?;

vs : if degree of v > k, then set this to be 0, otherwise
set it to be the number of edges from LG’ to the
2-layer graph of v, LG*(V? E?), i.e., the size
of the set E ;

vy ¢ if degree of v > k, then set this to be 0, otherwise
set it to be the number of vertices adjacent to

V' in the 2-layer graph of v.

vs : if degree of v > k, then set this to be 0, otherwise

set it to be the number of connected components in LG'.

-89 —

Vertex invariant v(G,v) is defined to be (v, ve, vs, Uy, Us) and graph invariant
I is a lexicographically ascending sequence of v(G,v). We modify VCA to be
VCB to get a vertex invariant v(G,v). GITestB and VCB are shown below.

ALGORITHM GITestB:
INPUT: Two graphs; G1(V1,E1) and G2(V2,E2), and their vertex adjacency

list.
OUTPUT: Partitions P1 of V1 and P2 of V2. Two vertices of a graph
are in the same partition if they have same v-invariants
and similar connections. Answer either YES,
when G1 and G2 are isomorphic to each other; N Ol,
when they are not; or STMILAR when GITestB cannot tell.
GIB1: graph coding and vertex partitioning ‘
Use algorithm GC and VCB to get v-invariants, g-invariants and
partition vertices by their v-invariants.
GIB2: comparing codes
Compare g-invariants of both graphs and the v-invariants as well
as size of each partition, if they fail to match, answer NO
and terminate. Use algorithm CC in GITestA.
GIB3: refining partitions
Refine the partitions obtained in GIB2 by the comnections of
each vertex. Check if the refining of these two graphs are
the same or not. Answer NO and terminate if they are not
the same. Use algorithm RP in GITestA.
GIB4: Matching graphs
Try to match graph G1 and G2. If there were some partitions

containing more than one vertex, a random match of a pair

_ 88 _

of vertices (u,v) will be selected with u from G and v from

the corresponding partition in G2. Use algorithm MG in
GITestA. '

ALGORITHM VCB (Vertex Coding B): _

INPUT: vertex adjacency list of graph G(V,E), a vertex » in V and
a constant k.

OUTPUT: vertex code y(G,v).

VB1: clear array v.
VB2 u(l) «— degree(v);
u(2) « 0
u(3) « 0;
u(4) « 0;
u(5) — ©;
VB3: If degree(v) > k then return;
VB4: put v in ‘scanned set’ §;
put v's neighbors in ‘current layer set’ C;
‘next layer set’ N — O;
VB5: for all the vertices v in C do mark(v) — 0;
VB6: while there is a vertex u in C such that mark(u}=0 do

begin
VBT7: C’ «— {u}; (C' is a connected component)
YBS&: clear D, subset of C with vertices of degree > k;
VB9: while there is a vertex u in C’ such that mark(u}=0 do
begin
VB10: v(2) +— v(2)+degree(u);

-84 -

mark(u) «~ 1;

VB11: if (degree(u) > k) then put u in D
else begin

VB12: N’ «— neighbors(u) [} (V - § - C);

VB13: C' + ¢’ U (neighbors(u) [} {unmarked

vertices € (C-D)});

VB14: v(3) +~ u(3)+|N'|;

VB15: N+~ N N;

VBi1S: end;

VBI17: end ;

VB18: u(5) «~ v(5)+1;

VB19: end;

VB20: u(4) « |NJ;

Theorem 4.1: Assume vertex v of graph G(V,E) is of degree d and N is the set
of v's neighbors. A vertex u in N is also in D, (a subset of N), if degree of u
is less than k, where k is a small constant. Assume that the total degree of
vertices in D is t. Algorithm VCB will output the v-invariant v(G,v) for vertex
v of graph G with time complexity O(t) and constant space complexity O(t).
Proof: '

First we prove the correctness of algorithm VCB.

At step VB2 v, is assigned the correct value degree(v). If v, is larger than k
then we also get correct values for vs,us,vs, and vs;. VCB will terminate 2t
step VB3.

Otherwise, since any vertex that is u adjacent to vertex v is put into C at

VB4 and mark(u) is set to 0 at VB5, u will be put into C’ at VB7 or VB13.

- 85 —

Hence, degree(u) will be added to vz at VB10. Because we also mark u at VB10,
degree(u) will be added to vz exactly once. Therefore we will have correct value
of vg. For each vertex u in C, (with degree(u) no larger than k),A at VB12 N’ is
valued the set of vertices in the next layer. In other words, |N’| is the number
of edges from u to the next layer graph. At VB15 N is set to be the union of N
for all the vertices in C. Therefore at VB12 and VB20, we get correct values for
vs,v4. In current layer set C, if two vertices u and v are in the same component,
they will be put in the same C’ at VB13. At VB18 we count how many such C’
we have in C and that is the number of strong components in the current layer
graph. Hence vu; is the correct value.

Next we prove for the complexity of VCB.

For space complexity, the main cost is the temporary storage for S, C, N etc.,
N being the biggest set among them. The size of N is at most t when no two
vertices in C have common neighbors in the next layer set N. Therefore, the
space complexity is of O(t). ‘

For time complexity, the main loop is from VB6 to VB19, and the most costly
time step is VB12 and VB13. To calculate VB12 and VB13 for a vertex u,
information about u’s neighbors is required. u has at most k neighbors and
we need only concern ourselves with those neighbors of degree less than k.
Therefore the time complexity is of the order of the total degrees of these

vertices, namely, O(t). B

Because the O(t) space requirement for VCB is only temporary storage and can
be reused for all the vertices in V , to get v-invariants for all the vertices in
V would actually require space O(|V|+t) which is of linear order of the input.
If a vertex has degree d and d < k, then it will be scanned at most d? times.
The summation of all the d* over V would be smaller than k* X |V|, and the
algorithm GC would take O(k® X |V|). Therefore, GITestB would have time
complexity O(|E|log [V|+ k® X |V]) since algorithm RP is of complexity O(|E|log

— 86 —

g2

The choice of k may be dependent on the input graph. For practical applica-
tions, almost 2ll the graphs we are concerned with are very sparse, namely,
|Elis of the order of |V]. Therefore we may set k= [|E|/ |V]] and the time
complexity of GITestB would be O(|E[® / [V|+ |E|log |V]).

GITestB works very well in testing graphs distinguishable to GITestA. However,
by using some graph transform we can contrive graphs which are distinguishable
to GITestA but not GITestB. Given a graph G, a k-subdivision graph of G
§*¥(@), k > 0, is transformed from k by placing k new vertices on each edge of
G.In fig.5, G1’ and G2’ are the 1-subdivision graphs of G1 and G2 respectively.
G1 and G2 are distinguishable to both GITestA and GITestB. él’ and G2’ are
only distinguishable to GITestA.

- 87 —

Figure 5.

Example 4.1 In figure 5,

Both GITestA a2nd GITestB partition graph G1 and G2 as follows:
Partitions of G1:((1,2,3,4,5,6,7,8))
Partitions of G2:((1),(2),(3),(4),(5),(6),(7),(8))

So both of them lead to the conclusion that G1 is not isomorphic to G2.

~ 88 —

For graph G1/, both GITestA and GITestB generates the following
partition:((1,2,3,4,5,5,7,8),(9,10,11,12,13,14,15,16,17,18,18,20))
For graph G2/, GITestB generates the same g-invariants and
partitions as for G1’; it cannot distinguish G2’ from GY'.
GITestA Generates a different g-invariant and partition for G2’
((), (2, (3) (4), (3), (6), (7), (8), (9), (10),(12), (12),

(13), (14), (15), (16), (17), (18), (19), (20))
It determines that G2' is not isomorphic to G1'.

GITestB may be extended to include v-invariants »?(G,v) for the 2-layer graphs.
In this way G1’ and G2 can be distinguished by this new v-'mvarié.nt. However,
by using graph G1, G2 and the k-subdivision graph transform, we can show
that there are always some graphs distinguishable to GITestA but ﬁot to the

v-invariants (v,...,v*) extension of GITestB.

Both GITestA and GITestB can be easily extended to test isomorphism of
directed graphs. A straightforward approach would be to simply use the out-
ward edges to define forward k — Zagergmphs and the inward edges to define

backward k — layergraphs. All the vertex invariants will be defined similarly.

- 89 —

5. Graph Transform and GlITest Hierarchy

A graph G(V,E) with |V|= n is a strongly regular (SR) graph if there exist three

numbers k,\, and g such that G satisfies the following conditions:
1. G is of degree k, 0 > k > n-1; namely, every vertex in G is of degree k.

2. Given any two distinct adjacent vertices u and v, the number of vertices

adjacent to both u and v is A.

3. Given any two distinct adjacent vertices u and v, the number of vertices

adjacent to both u and v is a.

The four integers (n,k,),) are called parameters of a SR graphs.

Example 5.1 Two non-isomorphic SR graphs of parameters

(16,6,2,2) and their adjacency lists are shown below.

G1(V1,E1)

vertex neighbors
1 2 3 4 5 6 7
2 1 3 4 8 9 10
3 1 2 4 11 12 13
4 1 2 3 14 16 18
5 1 6 7 8 11 14
6 1 5 7 12 15
7 1 5 6 10 13 16
8 2 5 9 10 11 14

- 40 -

9 2 6 8 10 12 15
10 2 7 8 9 13 16
11 3 5 8 12 13 14
12 3 6 9 11 13 15
13 3 7 10 11 12 186
14 4 5 11 15 16
15 4 6 9 12 14 16
16 4 7 10 13 14 15
G2(V2,E2)
vertex neighbors
1 2 3 4 5 6 7
2 1 3 4 8 9 10
3 1 2 5 8 11 12
4 1 2 6 9 13 14
5 1 3 7 11 13 15
6 1 4 7 12 14 16
7 1 5 6 10 15 16
8 2 3 10 12 14 15
9 2 4 10 11 13 18
10 2 7 8 9 15 16
11 3 5 ¢ 12 13 18
12 3 6 8 11 14 16
13 4 5 9 11 14 15
14 4 6 8 12 13 15
15 5 7 8 10 13 14
16 6 7 9 10 11 12

While G1 and G2 can be identified to be isomorphic by both GITestA and

-1 -

GITestB, there is no other published graph isomorphism testing algorithm of

time complexity less than C([V]*) that can distinguish their nonisomorphism.

To generalize the concept of SR graphs, Mathon proposed an idea about k-
regular graphs which is based on the k-adjacency partition (as defined in his
paper [Ma78]). By definition, a k-level regular graph is m-level regular for any
m,1 < m < k. A graph G is a 1-level regular graph if and only if it is an SR
graph while a SR graph may also be a k-level regular graph for some k > 1.

A (b,v,r,k,\)- Balanced Incomplete Block Design (BIBD) is an arrangement of
v objects into b blocks so that:

1. each object appears in exactly r blocks;

2. each block contains exactly k objects, where k < v;

3. each pair of distinct objects appear together in exactly A blocks.

The parameters v,b,r,k,\ are not independent. It is very easy to show that vr
= bk, and r(k-1) = A(v-1). There are several other similar equations about

BIBD parameters that can be found in combinatorics [Ry63]. A symmetriczal
BIBD is 2 BIBD withb=v and r = k.

A graph G is said to be a BIBD graph if it is a bipartite graph with two vertex
subset V1 and V2 so that:

1. |V1] = v, each vertex in V1 corresponding to an object in 2 BIBD and V1

corresponding to the set of objects.

- 42 -

2. |V2| = b, each vertex in V2 corresponding to a block in a BIBD and V2

corresponding to the set of blocks.

3. a vertex u in V1 is adjacent to a vertex in V2 if and only if the corresponding

object of u is contained in the corresponding block of v.

Example 5.2 Two BIBD graphs G1 and G2 are shown below. They are not

isomorphic, but they are of the same parameters (10,15,6,4,2).

G1(V1,E1), V1 = V10 |J VIB where V10 corresponds to the set of objects
and V1B corresponds to the set of blocks.

VIO = 1,2, 3,4, 5,6, 7 8,9, 10, |

ViB = 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

The following is the adjacency list for vertices in V1O.

vertex neighbors

1 11 12 13 14 15 16
1 12 17 18 19 20
11 13 17 21 22 23
11 14 18 21 24 25
12 13 19 22 24 25
12 15 20 21 23 24
13 18 18 20 23 25
14 15 17 19 23 25
14 16 17 20 22 24
15 16 18 19 21 22

© 00 I D O W W N

ot
o

G2(V2,E?), V2 = V20 |J V2B where V20 corresponds to the set of objects
and V2B corresponds to the set of blocks.

— 8 -

V20 = 1,2 3,4, 5, 6 7, 8,9, 10,
VB 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

The following is the adjacency list for vertices in V20:

I

vertex neighbors
1 11 12 13 14 15 16
2 11 12 17 18 19 20
3 11 13 17 21 22 23
4 11 14 18 21 24 25
b 12 13 19 22 24 25
6 12 156 20 21 23 24
7 13 16 18 20 23 25
8 14 15 17 19 23 25
9 14 16 19 20 21 22

15 16 17 18 21 22

sy
o

SR graphs and BIBD graphs are the most difficult graphs for isomorphism tesi-
ing. Many graphs of these two classes are indistinguishable to both GITestA and
GITestB. In the previous section, we showed that there exist graph transforms
which make graphs more difficult to be distinguished. However, there are also

graph transforms which make graphs more distinguishable.

A graph transform is called an invariant graph transform if it transforms a pai

of isomorphic graphs to another pair of isomorphic graphs. Complement grach
transform, which transforms a graph G to its complement G/, is an example of
an invariant graph transform. The k-subdivision transform mentioned in the
previous section is another example of invariant graph transform. We are only

interested in invariant graph transform for testing graph isomorphism.

Fowler et al. developed a k-superline graph transform [FHGS83] which is an

invariant graph transform. A k-line graph L*(G) is defined as:

1. L’(G)=aG.
2. L}{G)=L(G), the lire graph of G.
3. L¥(G)=L}(L*~(Q)).

k-superline graph transform S$*(G) is a superimposition of the graphs L%(G),...,
and L*(G). If graph G(V,E) has m vertices and n edges, S(G) will have {(m+n)

vertices and {n+(1 /2)(2‘.6‘, (d;)z) where d; is degree of vertex i. An example

of superline graphs are in figure 8. S*(G) is used in our isomorphism testing

hierarchy with lower level contains algorithms of lower complexity.

of 0

b }

Figure 8.

ALGORITHM H

— 45 -

INPUT: Two graphs G1(V1,E1l) and G2(V2,E2), and their vertex adjacency

list.

OUTPUT: YES if G1 and G2 are isomorphic, otherwise NO.

H1: GITestB(G1,G2).

H2: terminate if answer is either YES or NO.

H3: delete all the distinguishable vertices in G1 and G2.

H4: apply 1-superline transform to G1 and G2.

H5: GITestA{G1,G2), the initial partitioning is based on both
the previous partition from lower hierarchy and the new
v-invariants.

H6: go to H2.

After a 1-superline transform of a graph G(V,E), the new graph S'(G) has
O(|E|) vertices and O(|E|®) edges in the worst case. And in the worst case ,
a 2-superline transformed graph S$*(G) has O(|E|®) vertices and O(|E|*) edges.
However, this only happens in very rare cases such as transforming a complete
graph (which is incidentally very easy to test for isomorphism at step H1). And
since all the distinguishable vertices are deleted at step H3, the transformed

graph will be of much lower order than the worst case.

Most graphs can be tested in H1. Level 2 strongly regular graphs and BIBD
graphs may require two superline transforms. We have not found any pair of
graphs takes more than two superline transforms. A 3-level strongly regular
graphs may require up to three transforms. The only known non-transitive

3-level SR graphs, (found by Mathon), has 139,300 vertices [MaT78].

However, there is a major problem with Algorithm H, and it is that superline

- 46 -

transforms will not guarantee this algorithm to terminate. Therefore we need

to set a limit L for the level of superline transform. The algorithm H is modified

as follows:

ALGORITHM HA:
INPUT: Two graphs G1(V1,E1) and G2(V2,E2), and their vertex adjacency

list.
OUTPUT: YES if G1 and G2 are isomorphic, otherwise NO.
- HAL: GITestB(G1,G2);
k « 0
HA2: terminate if answer is either YES or NO.
HA3: delete all the distinguishable vertices in G1 and G2.
k + k+1;
HA4: apply 1-superline transform to G1 and G2.
HAS5: GITestA(G1,G2), the initial partitioning is based on both
the previous partition from lower hierarchy and the new

v-invariants.

HA6: if k < L go to H2.

HAT7: while there is unmatched partition do
begin

HAS: find the smallest partition in G1 and G2 and match these two

group of vertices.

HAS: applying algorithm RP in GITest to refine partition.

end

-3 -

HA10: check if match is correct, if so answer YES and terminate
else check if there is any possible match,
if not, answer NO and terminate

else backtrack and go to step HAT.

HA7 to HA11 are backfracking steps and in the worst case they may take O(n!)
steps. Next we will show that on average, Algorithm HA will only take O(|E| X
log|V|) steps. We prove this by using a lemma of Babai, Erdos and Selkow
[BES80]. Lemma 6.1 is a direct result of Theorem 1.2 in [BES80]. Algorithm
BES is listed in their paper without 2 name and it is called BES here for easy

reference.

Lemma 6.1 The probability that a random graph on n vertices belongs to
the class K specified by BES, is greater than 1-°1/1/n
(for sufficiently large n). -

Algorithm BES:

INPUT: a graph X having n vertices.

OUTPUT: a canonical labeling for graph X if it is in class K else just
specify it is not in class K.

" BES1 compute r==[3 log n/log 2J;

BES2 compute the degree of each vertex of X

BES3 order the vertices by degree, call them v(1), v(2),...,v(n),

-43___

denote by d(i) the degree of v(i) and d(i)>d(j) if i<j;

BES4 if d{i)=d(i+1) for some i, 1<i<r, set X £ K

and terminate.

BES5 compute

r

) = Y oli)2

f=1

(i=r+1,...,n); where a(i,j})=1 if v(i) and v(j) are adjacent,

otherwise a(i,j)=0;

BES6 order vertices v(r+1),...,v(n) according to their f-values:
w(r+1),...,w(n) where f(w(r+1)) > ... > f(w(n));

BES7 if f(w(i))=f(w(i+1)) for some i, r+1<i<n-1,
set X ¢ K, terminate.

BES8 Label v(i) by i for i=1,..,r and w(i) by i for i=r+1,...,n
This labeling will be called canonical, set X € K. terminate.

Next we prove every graph in K can be identified by GITestB.

Theorem 6.2 Any two graphs in K can be distinguished by GITestB.
Proof:

— 49 -

Let G1(VL1,E1) and G2(V2,E2) both be in K. Vertices ul,u2,...,un are in V1 and
vertices v1,v2,...,vn are in V2. From step BES3 and BES4, we know that in G1
each of those r vertices with largest degree has 2 unique degree different from
any other vertex in G1. The same case also happens in G2. Hence, they will kave
different v-invariant values of v; in GITestB. The remaining (n-r) vertices are
connected differently to the first r vertices, so they will mainly be distinguished
by the v-invariant vs. In some cases, vz may fzil even if two vertices connect
differently to other vertices, since the total degree of their neighbors might be
the same. In these cases, algorithm RP can help us out because those r vertices
have already been uniquely identified and the other vertices are connected to

them differently. E

From lemma 6.1 and theorem 6.2, we know that almost all graphs can be tested
by using GITestB. Therefore, the average complexity of algorithm H is the same

as GITestB.

- 50 —

8. Conclusion

In this report, several graph isomorphism testing algorithms are proposed and
analyzed. Vertex invariants and graph invariants are used to do the initial
partitioning of the vertices of a graph. Characteristics of these invariants are
-also analyzed. Algorithm GITestA is based on these invariants and we have
not found any graph, except for SR graphs and BIBD graphs, to be immune
from its test. Algorithm GITestB is almost as powerful as GITestA and it has
much improved time and space complexity. It is the most efficient algorithm

for testing isomorphism of non-SR and non-BIBD graphs.

Graph transforms are used to make SR and BIBD graphs easier to test. A
hierarchy of graph isomorphism testing algorithms is propcsed such that it is
able to test isomorphism of difficult graphs while keeping the complexity 2s
low as possible. A probabilistic analysis similar to the one proposed by Babali,
Erdos and Selkow [BES80] shows this hierarchy to be of average time complexity
,O(|E| log |V]), which is almost linear. Moreover, these algorithms can be easily

modified to be used in a parallel machine.

There is not much theoretical analysis done on the the heuristic algorithms yet,

so further research on this subject would be very useful. Graph transforms are
very powerful in general, and further study on this topic may be profitable in

solving the general graph isomorphism problem.

— 51 —

References

[ABB73] Ambler, A.P., Barrow, H.G., Brown, C.N., Burstall, R.M., and
Popplestone, R.J., “A Versatile Computer-Controlled Assembly System”,

Artificial Intelligence Conference 1973.

[AHU74] Aho, A.V., Hopcroft, J.E. and Ullman, J.D., “The Design and Analysis
of Computer Algorithms”, Addison-Wesley, 1974.

[Ba80] Babai, L., “On the Complexity of Canonical Labeling of Strongly
‘Regular Graphs”, SIAM J. Comput. Vol.9, No.1, February, 1980.

[BES80] BabaiL., Erdos, P. and Selkow S.M., “Random Graph Isomorphism”,
SIAM J. Comput. Vol. 9, No.3, August 1980.

[Bh80] Bhat, K.V., “Refined Vertex Codes and Vertex Partitioning
Methodology for Graph Isomorphism Testing” IEEE Trans on System,
Man, and Cybernetics, Vol. SMC-10, No. 10, October 1980.

| [BIM79] Beyer, T., Jones, W. and Mitchell 8., “Linear Algorithms for Isomorphism

of Maximal Outplanar Graphs”, JACM, Vol.26, No.4 October 1979,
pp.603-610.

[BGM82]Babai, L.,Grigoryev, D.Y., and Mount, D.M., “Isomorphism of Graphs
with Bounded Eigenvalue Multiplicity” Proceedings 14th annual ACIM
Symposium on Theory of Computing, 1982, pp.310-324.

[BP80] Balasubramanian, K., and Parthsarathy, k.R., “In Search of a Complete
Graph Invariant for Graphs”, Lecture Notes in Mathematics No.885,
S.B. Rao Ed. Combinatorics and Graph Theory Proceedings, Caleutta
1980, pp.42-59.

[CB81] Colbourn, C.J. and Booth, K.S., “Linear Time Automorphism Algorithms

[CG70]

[CKS80]

for Trees, Interval Graphs, and Planar Graphs”, SIAM J. Comput.,
Vol.10, No.1, February, 1981.

Corneil, D.G. and Gotlieb, C.C., “An Efficient Algorithm for Graph
Isomorphism”, JACM Vol. 17, No. 1, January 1970, pp.51-64.

Corneil, D.G. and Kirkpatrick D.G., “A Theoretical Analysis of Various
Heuristics for the Graph Isomorphism Problem”, SIAM J. Computing,
Vol. 9, No. 2, May, 1980.

[FHGS83] Fowler, G., Haralick, R., Gray, F.G., Feustel, C. and Grinstead, C.,

[FM80]

[Ga79]

[GJ79]

[Grs2]

[H269]

[Hofi]

“Efficient Graph Automorphism by Vertex Partitioning”, Artificial
Intelligence 21(1983) pp.245-269.

Filotti, I.S. and Mayer, J.N., “A Polynomial-time Algorithm for
Determining the Isomorphism of Graphs of Fixed Genus” Proceedings

12th annual ACM Symposium on Theory of Computing, 1680, pp.236-
243.

Gati, G., “Further Annotated Bibliography on the Isomorphism Disease”,
J. of Graph Theory, Vol. 3,1979, pp.95-109.

Garey, M.R. and Johnson, D.S., “Computer and Intractability: A guide

to The theory of NP-completeness”, Freeman, San Francisco, 1979.

Grigoryev D.Y., “Two Reductions of Graph Isomorphisms on Polynomials”,

Journal of Soviet Mathematics, Vol.20, No.4, Nov.,1982, pp.2296-2238.
Harary F., “Graph Theory”, Addison-Wesley, 1969.

Hoffmann, C.H., “Testing Isomorphism of Cone Graphs”, Proceedings
12th annual ACM Symposium on Theory of Computing, 1880, pp.244-
251.

[HW74] Hopcroft, J. and Wong, J., “A Linear Algorithm for Isomorphism of

Planar Graphs”, Proceedmgs 6th annual ACM Symposium on Theory
of Computing, 1974, pp. 172-184.

[KSO80] Kubo, N., Shirakawa, I., and Ozaki, H., “A Fast Algorithm for Testing

[LB79]

[Lus1]

[Ligo)]

[Lusoj

[Ma78]

[Me83]

[Mi78]

[Mi79]

[Migo]

Graph Isomorphism”, International Symposium on Circuits and Systems

(ISCAS), pp.641-644, 1982.

Leuker G. and Booth K., “A Linear Time Algorithm for Deciding
Interval Graph Isomorphism” , JACM 28, 1979, pp.183-195.

Lubiw, A., “Some NP-Complete Problems Similar to Graph Isomorphism”,

SIAM J. Computing, Vol.10, No.1, February, 1981.

Lichtenstein, D., “Isomorphism for Graphs Embeddable on the Projective
Plane”, Proceedings 12th annual ACM Symposium on Theory of Computing,
1980, pp.218-224.

Luks; E.M., “Isomorphism of Graphs of Bounded Valence Can Be
Tested in Polynomial Time”, Proceedings 12th annual ACM Symposium
on Theory of Computing, 1980, pp.42-49

Mathon, R., “Sample Graphs for Graph Isomorphsim Testing”, Proc.,
gth S-E Conf. Combinatorics, Graph Theory, and Computing, 1978,
pp-499-517.

Megdal B.B. “VLSI Computational Structures zpplied to Fingerprint
Image Analysis” Technical Report 5015, Cal Tech, 1983.

Miller, G.L., “On the n'®?» Isomorphism Technique”, Proceedings 10th
annual ACM Symposium on Theory of Computing, 1978, pp.51-58.

Miller, G.L., “Graph Isomorphism, General Remarks” Journal of Computer

and System Science, Vol. 18, No. 2, April, 1979, pp.128-141

Miller, G.L., “Isomorphism Testing for Graphs of Bounded Genus”

[RC77]

[Ry63]

[SD76]

[Susb]

[Ta72]

Proceedings 12th annual ACM Symposium on Theory of Computing,
1980, pp.225-235.

Read, R.C. and Corneil, D.G., “The Graph Isomorphism Disease”
Journal of Graph Theory, Vol.1, 1877, pp.339-363.

Ryser, H.J., “Combinatorial Mathematics” Carus Math. Monographs

No. 14, New York: Math. Ass. Amer., 1983. -

Schmidt, D.C., and Druffel, L.E., “A Fast Backtracking Algorithm
to Test Directed Graphs for Isomorphism Using Distance Matrices”,
Journel of the ACM, Vol.23, No.3(Jul.,1976), pp.433-445.

Sussenguth, E.H. Jr., “A Graph-Theoretic Algorithm for Matching
Chemical Structures” J. Chemical Documentation, Vol. 5, pp. 36-44,

1965.

Tarjan R., “Depth-First Search and Linear Graph Agorithms” STAM
J. Comput., Vol. 1, No. 2, June 1972.

Acknowledgments

Special thanks to my advisor, Randy Bryant, for his continued guidance and

support on this research.

I would also like to thank Chao-lin Chiang, Tzu-mu Lin, and Bill Athas for their
help and suggestions and my officemate Mike Newton who provides solutions
whenever I got any question with Unix. Andy Matsuda did the painful job
of reading my draft and smoothing it out. His patience and help are déeply

appreciated.

