
Distributed Linear Algebra on Networks of Workstations

Thesis by

Peter Carlin
Advisor� K� Mani Chandy

In Partial Ful�llment of the Requirements

for the Degree of

Master of Science

California Institute of Technology

Computer Science Department

Pasadena� California ����	

July �
� ����

Caltech CS�TR������

Abstract

This thesis describes the development of a portion of a distributed linear algebra library for use

on networks of workstations� The library was designed with special consideration towards three char�

acteristics of networks of workstations� small numbers of processes� availability of multithreading�

and high communication latency� Two aspects of the library are highlighted� First� modi�cations to

message passing primitives to permit their use in a multithreaded environment� Second� modi�ca�

tions to basic linear algebra algorithms to improve their performance on networks of workstations�

A model of distributed linear algebra on networks of workstations is developed� and used to predict

the performance of the modi�ed algorithms� These predictions are compared to experimental results

on several networks of workstations�

Acknowledgments

I am indebted primarily to K� Mani Chandy� Carl Kesselman and Eric Van de Velde for guidance�

support and inspiration�

The distributed linear algebra library described in this thesis was jointly developed with Tom

Zavisca� We were able to work so well together because of his perseverance and sense of humor�

I would like to thank all those who have contributed to the development of CC��� This includes

the entire Compositional Systems group at Caltech� as well as many people at Argonne� In particular�

I would like to thank John Garnett� Tal Lancaster� James Patton and Mei�Hui Su for their assistance

in using the current implementations of CC���

I would like to thank RajitManohar� Paul Sivilotti� and John Thornley for discussion� suggestions

and proofreading�

This research was supported in part by NSF CCR����			
� I wish to thank Microsoft� Green

Hills� the Barry Goldwater Foundation and Caltech for supporting my education�

i

Contents

� Introduction �

��� Linear Algebra and Networks of Workstations �

��� Coping with Workstation Diversity �

��� Organization �

� Performance Parameters �

��� Measured Parameters �

� Multithreaded Message Passing �

��� MRMW Channel with Postable Receives �

� Algorithms �

��� Introduction �

��� Matrix Matrix Product �

��� Dense Matrix Vector Product �	

��� Sparse Diagonal Matrix Vector Product ��

� Conclusion ��

ii

List of Figures

��� Multiple Reader� Multiple Writer Channel �

��� Matrix Multiplication� Cannon�s algorithm �	

��
 Matrix Multiplication� Communication Hiding Algorithm � � � � � � � � � � � � � � � �

��� Matrix Multiplication� Theoretical Performance on Setup I � � � � � � � � � � � � � � ��

��� Matrix Multiplication� Theoretical Performance� Problem Size per Process � � � � � ��

��� Matrix Multiplication� Experimental Performance on Setup I for P�
 � � � � � � � � ��

��
 Matrix Multiplication� Experimental Performance on Setup I for P�� � � � � � � � � �

��� Matrix Vector Product� Standard Algorithm ��

��� Matrix Vector Product� Communication Hiding Algorithm � � � � � � � � � � � � � � � ��

��� Matrix Vector Product� Ideal Execution Trace of Communication Hiding Algorithm ��

���	 Matrix Vector Product� Theoretical Performance on Setup I � � � � � � � � � � � � � �
�

���� Matrix Vector Product� Theoretical Performance on Setup II � � � � � � � � � � � � �
�

���
 Matrix Vector Product� Theoretical Scaling on Setup I for Q�
 � � � � � � � � � � � �

���� Matrix Vector Product� Experimental Performance on Setup I for Q�
 � � � � � � �

���� Matrix Vector Product� Experimental Performance on Setup I for Q�
 � � � � � � �
�

���� Matrix Vector Product� Experimental Performance on Setup II � � � � � � � � � � � �
�

���
 Matrix Vector Product� Experimental Scaling on Setup I for Q�
 � � � � � � � � � �
�

���� SDMV� Shift Algorithm �
�

���� SDMV� High Diagonal Algorithm �

���� SDMV� Communication Hiding Algorithm �
�

��
	 SDMV� Theoretical Performance Shift vs HighD on Setup I� D�� � � � � � � � � � � �
�

��
� SDMV� Theoretical Performance HighD vs CH on Setup I� D�� � � � � � � � � � � � �	

��

 SDMV� Experimental Performance Shift vs HighD on Setup I � � � � � � � � � � � � � �	

��
� SDMV Experimental Performance� HighD vs CH on Setup I for Q���D�� � � � � � ��

��
� SDMV Experimental Performance� Shift vs CH on Setup I for Q���D�� � � � � � � �

iii

iv

Chapter �

Introduction

��� Linear Algebra and Networks of Workstations

Linear algebra computations form an important part of computing� They are traditionally performed
using expensive machines like vector supercomputers or multicomputers� For computations which
require the raw performance available only on these machines� there is no alternative�

Many linear algebra computations do not require such expensive resources� Networks of work�
stations �NsW� are wide�spread and relatively inexpensive� Perhaps they can be utilized to perform
such less demanding computations at much lower cost�

Previous work by Bjorstad� Coughran and Grosse ��	 is encouraging� They choose a network
of HP workstations connected by FDDI over a Cray Y�MP for modeling semiconductor devices by
domain decomposition�

To further investigate the applicability of NsW for doing linear algebra� I have� in conjunction
with Tom Zavisca� developed a distributed linear algebra library �named DLA� for NsW� Three
important characteristics of NsW considered in designing DLA were

Communication� Communication is slow relative to computation� both in latency and throughput�
Furthermore� shared channel communication protocols like Ethernet and FDDI predominate�
This degrades communication performance even further� as simultaneous communications are
serialized�

Scale� Networks of workstations can be combined into computations involving at most tens of
processors�

Multithreading� The operating system support for multithreading is well developed� This cre�
ates the potential for hiding communication by performing computation in parallel with the
communication�

This thesis highlights two aspects of DLA developed on account of the above characteristics

� Modi�cations to message passing primitives to allow multithreaded processes to use them�

� Modi�cations to standard linear algebra algorithms to improve performance on NsW�

�

��� Coping with Workstation Diversity

Workstations are available in a diverse combination of hardware� operating systems� and intercon�
nection networks� In designing DLA� six steps were taken to reduce the costs of coping with this
diversity�

CC��� The library is written in Compositional C�� �CC���� a parallel programming language
developed at Caltech 	
�	��� CC�� de
nes semantics for the creation and control of both single
and multiple address space concurrency�

CC�� provides abstraction and portability across the architectures on which it is imple�
mented� The cost is performance degradation over direct implementation in the underlying
communication and thread libraries� A detailed knowledge of CC�� is not needed to read
this thesis� Where used� the syntax is explained�

Process Structure� Workstations can be programmed in a panoply of styles and virtual topologies�
The N dimensional process mesh topology and SPMD programming style common to most
linear algebra algorithms is selected�

Architecture Independence� Rather than develop algorithms for a speci
c network of worksta�
tions �NW� and over�optimize for one particular scenario� the algorithms were developed based
on a small set of performance parameters� These parameters represent properties of the op�
erating system and hardware important to the algorithms� A suite of CC�� programs was
written to extract these from a given NW�

Heterogeneity� Although a NW can be composed of multiple types of workstations� here only
NsW composed of identical processors are considered�

Uniprocessor Workstations� Multiprocessor workstations are becoming widely available� but
here attention is restricted to uniprocessor workstations�

Thread Scheduling� Preemptive scheduling is useful for real�time applications� however it carries
overhead and is unnecessary for linear algebra computations� Here attention is restricted to
round�robin scheduling with thread switches only on suspension�

��� Organization

The remainder of this thesis is organized as follows� Chapter
 presents the performance parameters
used in developing the new algorithms� Chapter � presents the modi
cations made to the basic
message passing system to allow for multithreaded processes� Chapter �� the focus� details modi
�
cations to basic linear algebra algorithms to increase their performance on NsW� Their performance
relative to the standard algorithms is modeled for speci
c NsW using the parameters extracted in
Chapter
� The algorithms are implemented in DLA and their relative performance measured and
compared to the theoretical predictions�

Chapter �

Performance Parameters

This chapter presents the parameters used to model linear algebra algorithm performance on NsW�
These parameters represent those aspects of the workstations� operating systems and interconnection
networks important to linear algebra algorithms�

Time Arithmetic Operation � �a While the underlying linear algebra computation� matrix vec�
tor product for instance� remains constant� algorithms might di�er in the amount of copying
of received results� zeroing of temporaries and other attendant work� Therefore� a measure of
the cost of an arithmetic operation is needed�

�a is the cost of a double precision arithmetic operation� All arithmetic operations are consid�
ered identical� This parameter takes into account the pointer arithmetic and memory deref�
erencing associated with a �oating point operation� All other parameters will be expressed in
units of �a�

Communication� Asynchronous � �ca�L�C� The most important di�erence between algorithms
will be in their communication structures� Communication can be synchronous or asyn�
chronous� In a synchronous communication� neither the send nor the corresponding receive
complete until both have been started� In an asynchronous communication� the receive can
not complete until after the send has been initiated� but the send may complete before the
corresponding receive is initiated� Here only asynchronous communication is considered� The
time needed for communication is in�uenced by the length of the message and the network
load� The network load is composed of a background load� due to machines not taking part in
the computation� and load caused by the computation� Here the background load is assumed
constant during the computations being compared�

�ca�L�C� is then the time needed to asynchronously send a message as a function of L� the
length of the message� and C� the number of such messages being sent simultaneously across the
whole computation� The relationship between C and �ca varies considerably across systems�
but in all cases �ca increases monotonically with C� �ca also increases monotonically with L�
�ca is decomposed into �cab 	 �caf �

Communication� Asynchronous Begin � �cab�L�C� A potentially useful consequence of
multithreading is the ability to hide communication latency� With the appropriate hard�
ware and software� some workstations can complete a communication and perform com�
putation in parallel� Usually the outgoing message must be copied out of its original
location in memory before control is returned to the processor for more computation�
If this were not done� modi
cation of that location during the computation might non�
deterministically change the message�

�

�cab�L�C� represents the time necessary to begin a communication� After �cab� the pro�
cessor is available for computation and the memory sent can be altered� but the message
has not yet reached the receiving process�

Communication� Asynchronous Finish � �caf �L�C� is the time needed to �nish an asyn�
chronous communication after �cab�L�C� is complete� including the time required for
processing the message in the receiving process�

Overhead from Multithreading � �par�N ���parfor �N � Multithreading means multiple threads
of control are created� Although we have constrained ourselves to uniprocessor workstations�
meaning only one thread can be executing at a time� multithreading is still useful� One thread
may be suspended pending completion of a communication action� leaving another able to
perform computation�

The CC�� constructs for creation of multiple threads are par and parfor� �par and �parfor
represent the overhead of creating and managing multiple threads as a function of N � the
number of threads created�

Constraining Thread Interleaving � �sync� �atomic The possible interleaving of created threads
must often be constrained to preserve determinacy in the result of the computation� The
mechanisms in CC�� through which this is done are sync and atomic� A sync is a single�
assignment variable� used for synchronization between threads on the same process� while
atomic enforces mutual exclusion in access to C�� objects�

�sync and �atomic represent the overhead associated with performing these synchronizations�

��� Measured Parameters

A suite of CC�� programs was developed to measure these parameters� This suite is described in
detail in �	
� The table summarizes the parameters on the following NsW� where all parameters are
normalized in units of �a for that particular NsW�

Setup I SPARCstation iPCs running SUNOS ��
��� communicating via an Ethernet

Setup II RS����s running AIX ���� communicating via an Ethernet

Parameter Setup I Setup II
�ca�L�C� �����������C���������C��L ������C � �
�C�L
�cab�L�C� ������	�L ���� �
��L
�caf �L�C�
	���������C��

	����C��L ��	���C � ��
�C�
���L
�par�N � �	���
�����N�
� �����
�	���N�
�

�parfor�N � �����
����N �����
����N
�sync ��	 ���
�atomic
�� �
�

�

Chapter �

Multithreaded Message Passing

This chapter describes the communication structure designed for DLA to allow communication
between multithreaded SPMD processes on NsW� A DLA computation consists of a user�speci�ed
process duplicated across a run�time created N �dimensional virtual process mesh� This mesh is
mapped to a user�speci�ed network of workstations�

Each process is a CC�� procedure� in which multiple threads may be created� This poses the
challenge of creating communication primitives which can be accessed by multiple threads with�
out introducing non�determinism� A multiple�reader�multiple�writer �MRMW	 channel object was
created to solve this problem� To improve communication performance� postable receives were im�
plemented as well�

��� MRMW Channel with Postable Receives

Single�reader�single�writer asynchronous channels in CC�� have been described in
��� Our MRMW
channel adds message tags to allow a receiver to select from a particular sender� and appropriate
use of atomicity to allow multiple receivers to use the channel
simultaneously��

The receiving end of each channel belongs to a single process� It is a multiple�receiver channel
because multiple threads may be reading from the receiving end� Many processes� and many threads
inside a process can have access to a sending end of a channel� messages are merged in a non�
deterministic but fair manner�

Each message is tagged with the process from which it came� Thus� a receiver may request a
message from a particular process� but not from a particular thread inside that process� Similarly�
all send actions occur to the receiving processes� but not to a particular thread inside that process�

There are three types of receive actions� Receive� PReceive and Post Receive� All receive
actions specify a process from which the message is desired� The �rst message in the queue from
that process� or the next message to arrive if none is currently present� is returned� All messages
are removed from the queue after a receive action has taken place� and memory management of
the messages themselves is the responsibility of the channel user� The receive actions di�er in how
copying the incoming message is handled� and whether the receive is blocking or not�

A Receive action returns when the requested message has arrived� thus blocking if no message
is present� It returns a pointer to the message� which the receiver is responsible for deleting�

A PReceive action is also blocking� but speci�es a location� msg dest� to which the message
should be copied� If the PReceive occurs before the message is queued� the incoming message will

�

be placed directly in msg dest� without an intermediate copy� If the PReceive occurs after the
message has been queued� the incoming message is copied to that location�

A Post Receive has the same behavior with respect to copying as PReceive� but is non�blocking�
Post Receive returns a pointer to a sync integer which will be de�ned after the message has been
copied to the speci�ed location�

It is important to note that the intermediate copies being discussed are from the memory space
the CC�� program sees� A high�level language programmer has no control over copies created
below their control� Minimizing the number of copies on send and receive sides is the best way to
limit message latency� Imposing additional latency at the CC�� level is not acceptable if avoidable�
as is the case here�

The class interface for the DLA communication object is shown below�

global class CommProcess �

public�

Channel� Incoming�channels�

void ASend�int direction� int destination� Message	 input
�

Message� Receive�in direction� int source
�

void PReceive�int direction� int source� Message� msg�dest
�

sync int� Post�Receive�int direction� int source� Message� msg�dest
�

CommProcess�Configuration config
�

�CommProcess�
�

��

Each process contains a channel from every other process whose location in the process grid di�ers in
only one index� i�e� its Cantor space neighbors� To reduce the overhead associated with the channels�
all the channels from processes in the same dimension of the process grid are grouped together into
one Channel object� Thus� all communication functions take additional direction arguments to
determine which channel should be used�

An individual Channel object is shown in Figure 	�
� It stores the incoming messages in two
lists� a list of unclaimed messages which have arrived �msg list� and a list of pending requests
for which messages have not arrived �wait list�� sync pointers are used to implement blocking
receives� requests for a message that have not arrived will suspend on a sync variable until that
message arrives� atomic functions are used to prevent multiple receivers from traversing the lists
simultaneously�

wait_head

wait_tail

msg_head

msg_tail
Pending ReceivesUnclaimed Messages

next

tag
sync pointer (defined)

LVector (message)

sync pointer (undefined)

tag?

Figure ���� Multiple Reader� Multiple Writer Channel

�

Chapter �

Algorithms

��� Introduction

This chapter presents modi�cations which improve the performance of three basic linear algebra

algorithms on NsW� The modi�cations cope with the high communication costs and take advantage

of multithreading and the small number of processors present on NsW�

Algorithms for matrix multiplication� dense matrix vector product and sparse diagonal matrix

vector product on NsW are developed� Execution time and memory use are used to judge perfor�

mance� For each algorithm� the parameters measured in Chapter � are used to theoretically compare

the developed and standard algorithms for speci�c NsW� A comparison is made of these theoretical

predictions to the measured performance of the algorithms as implemented in DLA on those NsW�

The algorithms discussed are fundamental to linear algebra� Because the actual computation is

not being modi�ed� only incremental increases in performance over the standard algorithms can be

expected� The small increases in performance achieved will be multiplied by the many times these

routines are used�

Some notes about the presentation of the algorithms and the notation used to describe them are

necessary�

Timings� All theoretical timings are in units of �a� the time required for execution of one double

precision arithmetic operation�

Performance Graphs� The modi�ed and basic algorithms are primarily compared by graphing

the di�erence in execution time as a fraction of the total execution time� This both eliminates

constant overheads not modeled in the theoretical analysis of the algorithms� and highlights

the important aspects of the comparison�

A drawback is that it does not show how performance for either algorithm compares to that

on a single processor� Therefore� supplemental graphs comparing distributed performance to

sequential performance are included� This serves to demonstrate that modi�cation a�ects

domains which both need improvement and are of su	cient size to be computationally useful�

Another drawback is that examining the di�erence in execution times ampli�es noise in ex�

perimental data� and potentially obscures o�setting errors in the models�

Program Duplication� All program fragments are implicitly duplicated across all processes in

the process mesh� By convention� P �Q refer to the number of process rows and columns

respectively� while p and q refer to the local process row and column number�

Program Notation� Program fragments are given in CC��� with the added data types� opera�
tions and communication primitives de�ned by DLA and enumerated below�

Data Types� The following DLA data types are used�

Vector�Size�Orientation� A vector of size Size distributed across Orientation �ROW or
COL	� Although the same declaration is made in each process� the local variable contains
only the local part of the vector� as de�ned by the data distribution� The local size will
then be Size�P or Size�Q depending on Orientation�

Matrix�SizeP�SizeQ� A matrix with global rows SizeP and global columns SizeQ� Like
V ector� only the local part of the matrix �size SizeP�P � SizeQ�Q	 is stored in each
process�

LVector�Size� A local vector with Size entries�

Operations� Local operations on DLA data types are expressed in shorthand� For instance� if A is
a matrix� and X�Y are vectors� Y��A�X performs the matrix vector product on local portions
of A and X and adds the result to the local portion of vector Y �

Communication Primitives� The following DLA communication primitives are used�

ASend�dir�pid�lv v or m� Asynchronous send� Send local vector lv� or local portion of
vector v� or matrix m to process pid in direction dir� dir can be ROW or COL�

lv or v or m�Receive�dir�pid� Blocking receive� Store the �rst unclaimed message� or
next incoming �if none currently present	 message from process pid in direction dir in
local vector lv� local portion of vector v or matrix m�

Recursive double�dir�v or lv� In�place recursive double of local vector lv or local portion
of vector v� with processes whose id is identical except for di
erences in the dir index�

Shift�car�m� Send local portion of matrix m in cardinal compass direction car� receive re�
placement piece from direction opposite car� Edge processes wraparound�

Shift�v�amount� Shift local portion of vector v amount indices� also with wraparound�

Linear Distributions For ease of explanation� all data distributions are linear and assumed to be
load balanced�

��� Matrix Matrix Product

Indicative of its wide use� matrix multiplication is a much discussed procedure� Much e
ort has
gone into developing sequential algorithms of order Nx� � � x � �� Most parallelization e
orts have
been directed at the
trivial� N� mesh algorithm to multiply a M �M matrix �B	 with a M �M
matrix �C	 on a P � P process grid to produce a M �M matrix �A	� In this section� a variant of
the mesh algorithm is developed which mitigates the high cost of communication on NsW�

Standard Mesh Algorithm

The basic distributed mesh solution on a P �P process grid is given by Cannon�s algorithm ��� and
illustrated for P � � in Figure ���� The initial con�guration of the matrices is not a trivial decom�
position� In process row i matrix B is shifted left by i processes� while in process column j matrix
C is shifted up by j processes� This con�guration requires O�P 	 communications to setup from a
block decomposition� The mesh algorithm leaves the matrices back in the initial con�guration� and
thus this cost can be amortized over repeated multiplications� This initial con�guration is common
to both algorithms analyzed here� and is thus not considered in the comparative performance�

�

Step 1:a+=1R,b+=2V,c+=4T,d+=3S Step 3:a+=2T,b+=1S,c+=3R,d+=4V

a+=1R b+=2V

d+=3Sc+=4T

1 R 2 V

4 T 3 S

a+=2T b+=1S

c+=3R d+=4V

2 T

3 R

S1

4 V

Initial Configuration

Step2: shift left(1,2,3,4), shift up(R,S,T,V)

1 2

3 4

B

a b

c d T

R S

V

A C

+=
a+=1R+2T,b+=1S+2V,c+=3R+4T,d+=3S+4V

Matrix Multiplication

Figure ���� Matrix Multiplication� Cannon�s algorithm

The computational part of Cannon�s algorithm proceeds with a local matrix�matrix product on
each process� followed by all processes shifting matrixB to the left and matrixC up� This is repeated
P times�

Matrix A�M�M�� Matrix B�M�M�� Matrix C�M�M��

for �n���n�P�n		�

A	�B�C�

Shift�WEST�B� �� Shift�NORTH�C��

The Execution time is�

�mm� 	 P
compute� Shift�West
 � Shift�North
�

�mm� 	 P

�
�M�

P �
� �ca

�
MN

P �
� �P �

��

Cannon�s algorithm requires memory to store matrices A�B and C and one temporary matrix
used during each shift operation�

MEMmm� 	 �
M�

P �

Communication Hiding

Cannon�s algorithm requires each process to wait for each shift operation to complete before begin�
ning computation of the next local product� An algorithm which can compute while waiting for a
shift operation would perform better on a NW�

��

Furthermore� communications in both ROW and COL directions are occurring simultaneously�

On an architecture with dedicated communication channels from each process to neighboring pro�

cesses� this is possible� However� on a network such as Ethernet or FDDI where all processes share

a channel� these communications will be serialized�

To hide the communication� the local portions of matrices B and C are each decomposed into

two portions� Bf � Bs and Cf � Cs� The local portion of matrix A is decomposed into four portions�

Aff �Afs�Asf �Ass� as follows�

Bf Rows � � r � M

�P
of B�

Bs Rows M
�P

� r � M

P
of B�

Cf Columns � � c � M

�P
of C�

Cs Columns M
�P

� c � M

P
of C�

A� Columns � � c � M

�P
of Rows � � r � M

�P
of A�

Asf Columns � � c � M

�P
of Rows M

�P
� r � M

P
of A�

Afs Columns M
�P

� c � M

P
of Rows � � r � M

�P
of A�

Ass Columns M
�P

� c � M

P
of Rows M

�P
� r � M

P
of A�

A� � B �C is then Aff� � Bf �Cf � Afs� � Bf �Cs� Asf� � Bs�Cf and Ass� � Bs�Cs�

The computation of each decomposed portion of A can now occur concurrently with a shift of one

of the four portions of matrices B and C�

This approach is illustrated in Figure 	�
 for P �
� Each process must perform twice as many

communication actions as before� and the algorithm requires the ability to use column as well as

row oriented matrices� However� each communication is only half as large� and can now be done

in parallel with computation� Furthermore� only half as many messages are being transmitted

simultaneously�

To derive the algorithm� �rst consider the four steps per iteration�

Matrix A�M�M�� Matrix B�M�M�� Matrix C�M�M��

for �n���n�P�n		�

par
 Ass	�Bs�Cs� Shift�WEST�Bf�� �

par
 Asf	�Bs�Cf� Shift�NORTH�Cs�� �

par
 Afs	�Bf�Cs� Shift�NORTH�Cf�� �

par
 Aff	�Bf�Cf� Shift�WEST�Bs�� �

�

The CC�� semantics of a par are that the block terminates when all statements in the block

terminate� and that statements in the block are executed in parallel in a weakly fair interleaved

manner� Now assign indices to the matrix portions� checking whether each pair of indices match�

Each iteration begins with the ith piece of each portion of the matrix in the local process�

Matrix A�M�M�� Matrix B�M�M�� Matrix C�M�M��

for �n���n�P�n		�

par
Ass	�Bs�i��Cs�i��
ASend�WEST�Bf�i��� Bf�i	
��Receive�EAST����

par
Asf	�Bs�i��Cf�i��
ASend�NORTH�Cs�i��� Cs�i	
��Receive�SOUTH����

par
Afs	�Bf�i	
��Cs�i	
��
ASend�NORTH�Cf�i��� Cf�i	
��Receive�SOUTH����

par
Aff	�Bf�i	
��Cf�i	
��
ASend�WEST�Bs�i��� Bs�i	
��Receive�EAST����

�

Finally� factor the loop so the matrices return to their starting positions�

��

asf
aff afs

ass

csf
cff cfs

css

bsf
bff bfs

bss

dsf
dff dfs

dss

4s
4f Tf

Ts 3s
3f Sf

Ss

Rf
Rs Vs

Vf

4s
3f Tf

Rs 3s
4f Sf

Vs

Rf
Ts Ss

Vf

+=

1f
1s

2f
2s

4f
4s

3f
3s

Tf
Ts

Rf
Rs

Vf
Vs

Sf
Ss

1s 2s
2f

ass+=1s*Rs bss+=2s*Vs

css+=4s*Ts dss+=3s*Ss

1f

1: Shift(West,1f,2f,3f,4f) || Ass+=Bs*Cs

asf+=1s*Rf bsf+=2s*Vf

csf+=4s*Tf dsf+=3s*Sf

1s 2s
1f2f Rf

Rs Vs
Vf

Sf
Ss3s

4fTf
Ts4s

3f

cfs+=3f*Rs dfs+=4f*Vs

afs+=2f*Ts bfs+=1f*Ss

2f 1f
1s 2s

Tf

Rf

Sf

Vf

2s 1s

3s 4s

1f 2f

4f 3f

Rs

Ts

Vs

Ss

afs+=1f*Rs

cfs+=4f*Ts

bfs+=2f*Vs

dfs+=3f*Ss

Rs

Ts

Vs

Ss
Tf

Rf

Sf

Vf

2s 1s

3s 4s

1f 2f

4f 3f

asf+=2s*Tf

csf+=3s*Rf dsf+=4s*Vf

bsf+=1s*Sf

2f 1f

Rs

Ts

3f 4f
Vs

Ss
Tf

Rf

Sf

Vf

2s 1s

3s 4s

ass+=2s*Ts

css+=3s*Rs

bss+=1s*Ss

dss+=4s*Vs

2: Shift(North,Rs,Ss,Ts,Vs) || Asf+=Bs*Cf

3: Shift(North,Rf,Sf,Tf,Vf) || Afs+=Bf*Cs

2f 1f
1s 2s

Rs

Ts

4s
3f

3s
4f

Vs

Ss
Tf

Rf

Sf

Vf

aff+=2f*Tf

cff+=3f*Rf

bff+=1f*Sf

dff+=4f*Vf

2s 1s

3s 4s

1f 2f

4f 3f

Rs

Ts

Vs

Ss

Rf

Tf

Vf

Sf

aff+=1f*Rf bff+=2f*Vf

cff+=4f*Tf dff+=3f*Sf

4: Shift(West,1s,2s,3s,4s) || Aff+=Bf*Cf

5: Shift(West,1f,2f,3f,4f) || Ass+=Bs*Cs

6: Shift(North,Rs,Ss,Ts,Vs) || Asf+=Bs*Cf

7: Shift(North,Rf,Sf,Tf,Vf) || Afs+=Bf*Cs

8: Shift(West,1s,2s,3s,4s) || Aff+=Bf*Cf

Initial Configuration

Figure ���� Matrix Multiplication� Communication Hiding Algorithm

��

Matrix A�M�M�� Matrix B�M�M�� Matrix C�M�M��

par �Ass��Bs	Cs� �ASend�WEST�Bf�� Bf�Receive�EAST��

par �Asf��Bs	Cf� �ASend�NORTH�Cs�� Cs�Receive�SOUTH��

for �n���n��P
���n��� �

par �Afs��Bf	Cs� �ASend�NORTH�Cf�� Cf�Receive�SOUTH��

par �Aff��Bf	Cf� �ASend�WEST�Bs�� Bs�Receive�EAST��

par �Ass��Bs	Cs� �ASend�WEST�Bf�� Bf�Receive�EAST��

par �Asf��Bs	Cf� �ASend�NORTH�Cs�� Cs�Receive�SOUTH��

par �Afs��Bf	Cs� �ASend�NORTH�Cf�� Cf�Receive�SOUTH��

par �Aff��Bf	Cf� �ASend�WEST�Bs�� Bs�Receive�EAST��

The execution time of this algorithm is�

�mm� � �P �compute k shift�

The parallel execution of compute and shift introduces the overhead of a par of size �� Two
threads are created	 one to handle shift and one to handle compute� In order to overlap the
communication and computation	 however	 the communication needs to start
rst� In CC�� the
par does not specify which thread executes
rst� this issue of controlling thread interleaving is seen
in all algorithms presented here�

Assuming the communication thread executes
rst	 �cab

�
M

�

�P� � P
�

�
is required to initiate the

communication	 after which time the computation can begin execution� When the computation

completes	 if the remaining communication
�caf
�
M

�

�P� � P
�

�
� has completed	 the Receive can com�

plete� otherwise the remaining communication must be awaited� The execution time of �mm� is
thus�

�mm� � �P

�
�par
�� � �cab

�
M�

�P �
� P �

�
�

M�

�P �
max

�
�� �caf

�
M�

�P �
� P �

�
�

M�

�P �

��

This algorithm uses less temporary memory than Cannon�s	 since only half a matrix is commu�
nicated on each shift�

MEMmm� � ��� �
M�

P �

Theoretical Performance Comparison

The di�erence in execution time between Cannon�s and the communication hiding algorithm is�

�mm� � �mm� � P

�
�ca

�
M�

P �
� �P �

��
�

�P

�
�par
�� � �cab

�
M�

�P �
� P �

�
�max

�
�� �caf

�
M�

�P �
� P �

�
�

M�

�P �

��

The potential bene
t of communication hiding comes at the overhead of more communications
P vs
�P �� For constant P 	 this will result in performance degradation for small M � until communication
startup costs become negligible compared to message transmission times� Performance improves
as max��� �caf � compute� goes to �� reaching a peak before the communication �growing at M��
becomes negligible compared to the computation �growing at M��� The di�erence in performance�
as a percentage of total execution time� then tails o� at �

M
�

�	

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 100 200 300 400 500 600 700 800

(
m
m
1
-
m
m
2
)
/
m
m
1

Problem Size (M)

(mm1-mm2)/mm1 vs. Problem Size

P=2

P=3

Figure ���� Matrix Multiplication� Theoretical Performance on Setup I

Figure ��� shows mm��mm� as a fraction of mm� for P � �� � using the parameters measured
in Chapter � for Setup I�

As P increases	 the memory size at which maximumperformance improvement occurs increases�
This is seen in Figure ���	 where
mm� � mm���mm� is plotted versus M

P
	 again using Setup I

parameters� Since MEMmm� � ���M
�

P� 	 a
M

P
of �

 means ��MB of memory per process� The

upper bound on the P for which signi�cant performance improvement can be achieved is determined
by the maximum allowable memory size per process�

Experimental Performance Comparison

The algorithms described above were implemented in DLA� Figures ��� and ��� show the measured
mm� � mm� as a fraction of mm� on Setup I for P � � and P � �� The maximum performance
improvement is slightly less in magnitude and at di�erent problem sizes than predicted	 for both
P � � and P � �� The decay after the peak is also faster than predicted�

This discrepancy might be caused by an inaccurate equation for network performance under
heavy load� As the background load increases	 the maximum performance improvement is shifted
up and right
to larger problem sizes�� The e�ects of a perturbation in background load between
that present when �ca
L�C� is measured and that seen by the algorithm are magni�ed by the large
load matrix multiplication itself generates�

NsW are not usually isolated for the purpose of ensuring maximum computing power� An
algorithm which is less a�ected by network load is therefore preferable� If network load increases	
mm� might hide the increased communication cost behind computation	 depending on M � mm�
will always su�er degradation�

��

-0.4

-0.2

0

0.2

0.4

0.6

0 200 400 600 800 1000

(
m
m
1
-
m
m
2
)
/
m
m
1

M/P

(mm1-mm2)/mm1 vs. M/P

P=2

P=4

P=8 P=10

Figure ���� Matrix Multiplication� Theoretical Performance� Problem Size per Process

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 100 200 300 400 500 600

(
m
m
1
-
m
m
2
)
/
m
m
1

Problem Size (M)

(mm1-mm2)/mm1 vs. Problem Size

P=2 theory

P=2 actual

Figure ���� Matrix Multiplication� Experimental Performance on Setup I for P��

��

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 100 200 300 400 500 600

(
m
m
1
-
m
m
2
)
/
m
m
1

Problem Size (M)

(mm1-mm2)/mm1 vs. Problem Size

P=3 theory

P=3 actual

Figure ���� Matrix Multiplication� Experimental Performance on Setup I for P��

��� Dense Matrix Vector Product

Standard Algorithm

In the standard algorithm for matrix vector product �	
� illustrated in Figure ���� theM by N matrix
A is distributed over a P � Q process grid� while the N by
 input vector X is column distributed
across the same process grid�

Each process �rst executes a local matrix vector product and then performs a recursive double
with processes in its row� The resultant M by
 output vector Y is then row distributed� A program
which implements this algorithm is�

Vector Y�M�� Matrix A�M�N�� Vector X�N�� LVector T�M�P��

T�A�X�

T�RecursiveDouble�COL�T��

Y	�T�

The execution time of this algorithm is�

�mv�D � �compute
 � �recursive double
 � �accumulate

�mv�D �

�
M

P
�

�MN

PQ

�
�

�
�ca

�
M

P
�Q

�
log�Q

�
�

�
M

P

�

This algorithm requires memory for storage of the matrix A� vectors X and Y � and the temporary
vector T � The recursive double can be done in�place using vector T and does not require any added

�

+=Y1 Y2

A11 A12

A22A21

A11 A12

A22A21

T1=A11*X1

T1

T2=A12*X2

T2

T3 T4

T3=A21*X1 T4=A22*X2

Y1

Y2

Y1

Y2

X1 X2

X2X1

X1 X2

X1 X2

Y1=T1+T2

Y2=T3+T4

A12A11

A21 A22 X2

X1

Figure ���� Matrix Vector Product� Standard Algorithm

memory� The total memory needed per process is�

MEMmv�D �
MN

PQ
�
N

Q
�

�M

Q

Recursive doubling is a communication requiring synchronization after each step� On each pro	
cess
 the next step of the recursive doubling procedure can not be initiated until the previous one
has completed� Thus
 the ability to overlap communication with computation can not be exploited�

Communication Hiding Algorithm

An algorithm which creates more communication
 but allows that communication to be possibly
hidden by computation is now developed� This algorithm is illustrated in Figure ���
 where the
matrix A is distributed over a � �Q process grid
 so that each process receives a M by N

Q
portion

of A� Both X and Y are distributed column wise�

Let yij be the partial result vector formed by AijXj � Multiplication of the local matrix and input
vector on process q results in process q containing �v � v�
��P � � �� yvq� Process q must accumulate
PQ��

j�� yqj for the result to be column distributed� Each process must thus send partial results to all
other processes�

Such a broadcast operation involves �Q���Q communications
 while the recursive double in the
standard algorithm requires Q� log�Q� For Q � �
 this will result in more communication� However

because calculation of yvq is independent of the calculation of y�v���q
 the communication of yvq to
process v can be performed in parallel with the computation of y�v���q�

This can be expressed as follows
 where q is the local process identi�er�

Vector Y�M�� Matrix A�M�N�� Vector X�N�� LVector T�M�Q��

parfor �int reldest���reldest	�Q
���reldest

� �

int j��q
reldest��Q� int src��q
Q
reldest��Q�

�� reldest is destination relative to q for this partial product

��

A2

A4

X2

T2

Y2

STEP 1 STEP 2 STEP 3

Y2+=A22*X2

A11

A21

X1

T3

T2=A12*X2

A12

A22

X2

T2

A11

A21

X1

T3

Y1+=A11*X1
Y1

A11

A21

X1

T2

Y1
Y1+=T2

T3
A12

A22

X2

Y2
Y2+=T3

T3=A21*X1

Figure ���� Matrix Vector Product� Communication Hiding Algorithm

�� j is absolute destination for this partial product

�� src is absolute source for received partial product

T�Aqj�X�

if �j��q�

Y�Add�to�T��

else 	

ASend �COL
j
T��

Y�Add�to�Receive�COL
src���

�

�

Each iteration of the parfor block exchanges AjqXq for AqjXj� The semantics of parfor in CC��

indicate that the Q iterations of the block body will execute in parallel� On a uniprocessor each
iteration will be handled by one thread� The possible interleavings of the iterations must be con�
strained such that at most one iteration is accumulating portions of the result into vector Y at any
one time� The atomic function Add to�LVector� is used to guarantee this� as in CC�� at most
one thread can be accessing an object through one of that object	s atomic member functions at any
one time�

Ideally� each local product will be computed and the send initiated� then that iteration will wait
for the corresponding receive to arrive while another iteration computes the next local product�
As soon as the receive arrives� the appropriate iteration will accumulate it into the result vector�
preventing the unprocessed receive message bu
ers from accumulating� Figure ��� shows this ideal
interleaving of the iterations for one process when Q �
�

Like par� parfor does not specify the interleaving of the various instances of the loop body� All
threads might compute Aqj �X� then relinquish control� This would result in Q temporary bu
ers�
each of size M

Q
being created� and the communication only taking place after all computation was

complete� More likely in a non�preemptive environment� a thread may not be returned control as
soon as the receive arrives� leading to memory pileup�

Assuming the ideal execution pro�le is achieved� the execution time is�

�mv�D � �thread overheads� � �computation� � �communication� � �accumulate�

��

C1 SS1 FS1 R

C2 SS2 FS2 R

C3 SS3 FS3 R

C4 SS4 FS4 R

C0

R=Receive
Cx=Compute for x
SSx=Start Send to x
FSx=Finish Send to x

Receives processed immediately to minimize pileup

LEGEND

Iteration#1

Iteration#2

Iteration#3

Iteration#4

Iteration#5 Local product computed last

Figure ���� Matrix Vector Product� Ideal Execution Trace of Communication Hiding Algorithm

�mv�D � ��parfor �Q	
Q � �atomic�

�
�MN

Q

M

�

�
�Q�
	�cab

�
M

Q
�Q

�

 �Q�
	max

�
�� �caf

�
M

Q
�Q

�
�

�MN

Q�

��

�
Q
M

Q

�

This algorithm requires memory for storage of the matrix A� vectors X and Y � and the temporary
vectors T � In the best case� only two temporary vectors exist at any time �one for sending� one for
receiving	� However� both received and computed bu�ers may accumulate up to the size of the input
vector� The memory needed per process is thus�

BEST CASE MEMmv�D �
MN

Q

N

Q

�M

Q

WORST CASE MEMmv�D �
MN

Q

N

Q

M

Q

 �M

Theoretical Performance Comparison

The developed NW algorithm executes on a
 by Q process mesh whereas the standard algorithm
executes on a P byQ process mesh� IfQ �
 then the standard algorithm requires no communication�
If P �
 then it requires log�Q communication� What P �Q should be used when comparing mv�D
to mv
D�

These algorithms are basic linear algebra routines� used as part of more complex solvers� In such
a situation� the process grid is often constrained for the maximum bene�t to the complex solver�

�

Here the performance for a � by Q mesh is analyzed� Assuming M�N � the di�erence in execution
time between mv�D and mv�D is�

mv�D �mv�D � �ca

�
M

P
�Q

�
log�Q� �parfor 	Q
�Q � �atomic �

	Q � �
�cab

�
M

Q
�Q

�
� 	Q � �
max

�
�� �caf

�
M

Q
�Q

�
�

�MN

Q�

�

The cost of hiding the communication is the replacement of a recursive double with a broadcast�
meaning mv�D will not be preferable for large Q� To be worthwhile� assuming the completion of
the communication is hidden by computation and M is large enough to make thread overheads
negligible�

log�Q�ca

�
M

Q
�Q

�
� 	Q� �
�cab

�
M

Q
�Q

�

log�Q�caf

�
M

Q
�Q

�
� 		log�Q
� Q� �
�cab

�
M

Q
�Q

�

Both mv�D and mv�D perform Q communications at each step� and will thus exhibit the same
degradation in communication performance due to network saturation� The e�ects of the degraded
communication will be mitigated in the mv�D algorithm� however� as the communication cost is
partially hidden by computation�

Figures ���� and ���� show the theoretical di�erence mv�D � mv�D as a fraction of mv�D on
Setups I and II� In these comparisons M � N �

Both architectures exhibit initial performance degradation� as there is virtually no computation
to hide the increased communication� As more computation becomes available with which to hide the
communication� performance improves� The improvement reaches a maximum� and then decreases
at �

N
� as the communication becomes negligible compared to the computation for coarse grain sizes�

Figure ���� shows the theoretical di�erence in scaling of mv�D and mv�D on Setup I for Q �
�
The most performance improvement occurs in the transition region between communication startup
dominated 	low scaling
 and computation dominated 	high scaling
 areas� The memory size per
process is reasonable in this region 	�MB at M � ����
� meaning for this NsW mv�D is predicted
to be extremely applicable�

As seen in Figure ����� as Q is increased� the expected performance improvement occurs for larger
M � It also occurs at larger M

Q
� although this increase is slower� For larger Q than displayed here�

the maximum performance improvement decreases� There is a Q above which the improvement is
too coarse grained to be realizable in the available memory� For the NW in Setup I� supposing a
realistic limit for the matrix under multiplication of ��MB per node� this occurs above Q � ���

The performance improvement is inversely proportional to network throughput� so networks
with more background load will exhibit increased improvement� If new network technologies� such
as ATM� are able to improve faster than processor speeds� then the improvements achieved by mv�D
will be reduced�

Experimental Performance Comparison

The algorithms described above were implemented in DLA� Figures ����� ����� and ���� show the
measured di�erence mv�D � mv�D as a fraction of mv�D on Setups I and II� The results have
the form and approximate magnitude of that predicted� In Setup II the performance is better than
expected� whereas in Setup I it is worse� particularly for Q � ��

Figure ���
 shows the scaling of mv�D versus that of mv�D for Q �
 on Setup I� The di�erence

��

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 500 1000 1500 2000 2500

(
m
v
2
D
-
m
v
1
D
)
/
m
v
2
D

Problem Size

(mv2D-mv1D)/mv2D vs. Problem Size

Q=2 Q=4 Q=6

Figure ����� Matrix Vector Product� Theoretical Performance on Setup I

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 200 400 600 800 1000 1200

(
m
v
2
D
-
m
v
1
D
)
/
m
v
2
D

Problem Size

(mv2D-mv1D)/mv2D vs. Problem Size

Q=2

Figure ����� Matrix Vector Product� Theoretical Performance on Setup II

��

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

S
c
a
l
e

F
a
c
t
o
r

Problem Size

Scaling vs. Problem Size

mv2D

mv1D

Figure ����� Matrix Vector Product� Theoretical Scaling on Setup I for Q��

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 200 400 600 800 1000 1200

(
m
v
2
D
-
m
v
1
D
)
/
m
v
2
D

Problem Size

(mv2D-mv1D)/mv2D vs. Problem Size

Q=2 actual

Q=2 theory

Figure ���	� Matrix Vector Product� Experimental Performance on Setup I for Q��

��

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 500 1000 1500 2000 2500 3000

(
m
v
2
D
-
m
v
1
D
)
/
m
v
2
D

Problem Size

(mv2D-mv1D)/mv2D vs. Problem Size

Q=6 actual

Q=6 theory

Figure ����� Matrix Vector Product� Experimental Performance on Setup I for Q��

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 200 400 600 800 1000 1200

(
m
v
2
D
-
m
v
1
D
)
/
m
v
2
D

Problem Size

(mv2D-mv1D)/mv2D vs. Problem Size

Q=2 actual

Q=2 theory

Figure ����� Matrix Vector Product� Experimental Performance on Setup II

	

in scaling is slightly better than expected� Problem sizes larger than those shown are not tractable
on Q � � due to memory limitations� therefore a scaling comparison is not meaningful�

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

S
c
a
l
e

F
a
c
t
o
r

Problem Size

Scaling vs. Problem Size

mv2D

mv1D

Figure ����� Matrix Vector Product� Experimental Scaling on Setup I for Q��

��� Sparse Diagonal Matrix Vector Product

Sparse Diagonal Matrix Vector Multiplication 	SDMV
 multiplies a M � N matrix 	A
� with �ll
only along D diagonals� by a N by � vector 	X
� producing a M by � result vector 	Y
� Sparse
matrices can have very low �ll� thus the overhead associated with complex matrix representations
are often worthwhile� Here the diagonal form introduced in �
� is used� The matrix is represented
as an array of diagonals�

class SDMatrix �

public�

int grows�gcols� �� Global Size
int cols� �� Local Size
int ndiags� �� Number of Diagonals
Type�� diags� �� Array of size ndiags� each of an array of size cols�
int� diag�nums� �� Array of size ndiags� gives diagonal number of diags�k�

	�

Multicomputer Shift Algorithm

On a � � Q process grid� where the diagonals� input and output vectors are distributed across the
process columns� SDMV is commonly implemented via the vector shift operation� as given in �
��

Vector Y
M�� SDMatrix
M�N�� Vector X
N��

��

Shift�Y�A�diag�nums���	

for �int d��
d�A�ndiags
d

	 �

Y
�A�diags�d��X

if �d���A�ndiags��		 Shift�Y�A�grows�A�diag�nums�d�	

else Shift�Y�A�diag�nums�d
���A�diag�nums�d�	

�

This algorithm is illustrated in Figure ���� for a simple example�

Y Y Y

SHIFT(Y,4)
Y+=D0*X

Y+=D4*X

X X X
Matrix A

D4

D0

D8

SHIFT(Y,1)
Y+=D8*X

SHIFT(Y,4)

Figure ����� SDMV� Shift Algorithm

D shift operations are performed� during each of which no computation can be performed� If the
diagonal number of the ith diagonal is labeled dn�i	� then the execution time is�

�Shift

�ND

Q
� �ca�dn�
	� Q	 �

D��X
i��

��ca �dn�i� � dn�i � ��� Q�� � �ca�M � dn�D�� Q�

In this analysis the diagonals are assumed to be evenly spaced through the matrix� meaning each
shift is of length M

D
� The execution time is then�

�Shift �
	ND

Q
�D�ca

�
M

D
�Q

�

The memory use is the distributed matrix� the distributed result vector� the distributed input
vector� and an extra distributed vector� The extra distributed vector is used with the result vector
as a wraparound bu
er to implement shift without copying the unshifted portion of the vector�

MEMShift �
ND

Q
�
N

Q
�

	M

Q

	�

High Diagonal Algorithm

Rather than Shift the result vector after each diagonal has been multiplied by the local part of X�
the product of the local portions of all diagonals and X can be accumulated into a bu�er of size
M � A portion of this bu�er is then sent to each process� This results in Q � � communications
instead of D� For most applications� D is between � and ��� and de	nitely bounded by ��� On
a multicomputer� with Q in the hundreds� this change results in performance degradation� On a
network of workstations� however� with Q in the same order of magnitude as D� a signi	cant amount
of communication time can be saved�

The product of a diagonal numbered d
from the main diagonal� and the local portion of X
accumulates the result in positions d to d�N

Q
� where positions greater than N wraparound� Positions

iM
Q

to
�i���M
Q

belong to the portion of the result vector local to process
q � i� mod Q�

The algorithm can be implemented as follows

Vector Y�M�� SDMatrix�M�N�� Vector X�N�� LVector T�N��

T���

for �int d���d�NUM	DIAGS�d

� �

�T
d�
�A�d
�X�

�

Y
�T����N�Q
�

for �dest���dest�Q�dest

� �

Send�COL��q
dest��Q�T�dest�N�Q���dest
���N�Q
��

Y
�Receive�COL��q
Q�dest��Q��

�

This algorithm is illustrated in Figure ���� on the toy example used previously�

T(0..2)+=D0*X
T(4..7)+=D4*X

SEND((q+1)%Q,T(4..6)) SEND((q+2)%Q,T(6..8))Y+=T(0..2)

T(8,0..1)+=D8*X

T(0..8)=0

Y+=RECEIVE((q+2)%Q)
Y+=RECEIVE((q+1)%Q)

Figure ����
 SDMV
 High Diagonal Algorithm

��

The execution time is the actual matrix computation �with added zeroing� plus �Q � �� com�
munications and the time needed to accumulate the received results� Each communication is of size
M
Q
�

�HighD �
�ND

Q
	M 	 �Q� ���ca

�
M

Q
�Q

�
	M

The memory use is the distributed matrix
 the distributed result vector
 the distributed input
vector and a temporary vector the size of the full result vector�

MEMHighD �
ND

Q
	
M

Q
	

N

Q
	M

The non�scalable memory use of the full input vector clearly needs to be avoided�

Communication Hiding

All the diagonals which partly or fully contribute to the result destined for process q from process p
can be accumulated together into a bu�er of size M

Q
� This bu�er can be sent to q and then reused

to compute the result destined for process q 	 ��

Furthermore
 since the computation of the bu�er for process q and process q	� are independent

the computation of a new bu�er can be done concurrently with the communication of the previous
bu�er� Thus
 Q � � sends of time �ca in the previous algorithm are replaced with Q � � sends of
time �cab�

The cost is overhead in thread management
 any unhidden communication
 and time required to
determine which sections of which diagonals should be multiplied with the input vector the produce
the result destined for a given process� This is represented by the function compute for in the code
below� This overhead is linearly proportional to the number of diagonals
 and is thus negligible for
realistic problem sizes�

Vector Y�M�� SDMatrix�M�N�� Vector X�N�� LVector T�N�Q��

parfor �int reldest���reldest	�Q
���reldest

� �

int j��q
reldest��Q� int src��q
Q
reldest��Q�

�� reldest is destination relative to q for this partial product

�� j is absolute destination for this partial product

�� src is absolute source for received partial product

T�compute�for�A�X�reldest�Q��

if �j��q�

Y�Add�to�T��

else �

ASend �COL�j�T��

Y�Add�to�Receive�COL�src���

�

�

In addition
 the function Add to
 which accumulates into the vector Y
 must be atomic so as to
make the result deterministic� this imposes additional overhead�

The execution of this algorithm on one process for the example worked previously is shown in
Figure
���

The execution time is�

�CH � �zero	 compute� 	 Parfor 	 �accumulate� 	 ��Q� �� � communication�

��

ASEND(1,T)

COMPUTE_FOR(2)

ASEND(2,T)

COMPUTE_FOR(SELF)||

||

Y+=RECEIVE(1)

Y+=RECEIVE(2)

Y+=T

COMPUTE_FOR(1)
T(0..2)=0
T(1..2)+=D4(0..1)*X(0..1)

T(0..2)=0
T(0)+=D4(2)*X(2)
T(2)+=D8(0)*X(0)

T(0..1)+=D8(1..2)*X(1..2)
T(0..2)+=D0(0..2)*X(0..2)

T(0..2)=0

Figure ����� SDMV� Communication Hiding Algorithm

�CH �

�
M �

	ND

Q

�
� �parfor
Q� �

�
Q

�
�atomic �

M

Q

��
�

�

Q� ���cab

�
M

Q
�Q

�
�
Q� ��max

�
�� �caf

�
M

Q
�Q

�
�

	ND

Q�

��
�

The risk of using a parfor in CC�� is that the interleaving of created threads cannot be speci
ed�
Each thread might create the temporary bu�er and then be switched out� This would result in the
same non�scalable memory of size M on each process� Furthermore� the receives may arrive before
they are requested� potentially piling up in another M memory� Thus� the memory usage of the
communication hiding algorithm is�

BEST CASE MEMCH �
ND

Q
�

	M

Q
�
N

Q

WORST CASE MEMCH �
ND

Q
�
M

Q
�
N

Q
�M

Theoretical Performance Comparison

The di�erence in execution time between Shift and HighD is�

�Shift � �HighD � D�ca

�
M

D
�Q

�
�
Q � ���ca

�
M

Q
�Q

�
� 	M

For extremely smallM � communication startup dominates the length dependent� communication
term� therefore the di�erence will be proportional to D �Q� ��

As communication startup becomes negligible� �ca
L�Q� � aL� where a is network throughput�

Then the di�erence will approach aDM
D
� a
Q � ��M

Q
� 	M � or aM

�
�

Q
�

�

a

�
� As Q increases� the

	�

di�erence will decrease� eventually becoming negative for Q � a

�
�

Figure ���� shows the theoretical di�erence Shift �HighD as a fraction of Shift for several Q�
using the performance parameters for Setup I obtained in Chapter ��

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10000 20000 30000 40000 50000 60000

(
S
h
i
f
t
-
H
i
g
h
D
)
/
S
h
i
f
t

Problem Size

(Shift-HighD)/Shift vs. Problem Size

Q=3

Q=4

Q=5

Figure ����� SDMV� Theoretical Performance Shift vs HighD on Setup I� D	

The di�erence in execution time between HighD and CH is�

�HighD � �CH 	 �Q� �

�
�caf

�
M

Q
�Q

�
�max

�
�� �caf

�
M

Q
�Q

�
�

�ND

Q�

��
� �parfor �Q

CH is preferable toHighD� both because it saves memory and because� once the overhead associated
with parfor is negligible compared to the communication needed� the execution time is shorter�

Once the maximumpossible communication hiding has been reached� the di�erence in execution

time rises linearly with M � as it is �Q � �
�caf
�
M
Q

�
� SDMV also grows linearly with M � thus the

di�erence in execution time will be a constant fraction of the total time� This constant will decrease
with Q� as demonstrated in Figure ����� which shows HighD�CH as a fraction of HighD on Setup
I for several Q�

Experimental Performance Comparison

The algorithms described above were implemented in DLA� Figure ���� shows the measured Shift�
HighD as a fraction of Shift on Setup I� Performance for Q 	 � is worse than expected� For both
Q 	 � and Q 	 �� the performance of HighD appears to degrade with increasing M � rather than
approaching a constant� This is most likely due to the non�scalable memory use in HighD�

Figure ���� shows the measured HighD � CH as a fraction of HighD using Setup I� for Q 	
��D 	
� The form of the results are as expected� but the constant approached as M increases is a
factor of two higher than expected� In addition� the data is quite noisy�

��

-0.1

-0.05

0

0.05

0.1

0.15

0 10000 20000 30000 40000 50000 60000

(
H
i
g
h
D
-
C
H
)
/
H
i
g
h
D

Problem Size

(HighD-CH)/HighD vs. Problem Size

Q=3

Q=4

Q=5

Figure ����� SDMV� Theoretical Performance HighD vs CH on Setup I� D�	

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10000 20000 30000 40000 50000 60000

(
S
h
i
f
t
-
H
i
g
h
D
)
/
S
h
i
f
t

Problem Size

(Shift-HighD)/Shift vs. Problem Size

Q=3 actual

Q=3 theory

Q=5 actual

Q=5 theory

Figure ����� SDMV� Experimental Performance Shift vs HighD on Setup I

�

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

(
H
i
g
h
D
-
C
H
)
/
H
i
g
h
D

Problem Size

(HighD-CH)/HighD vs. Problem Size

Q=5 actual

Q=5 theory

Figure ����� SDMV Experimental Performance� HighD vs CH on Setup I for Q��	D�

The constant performance improvement for large M is important	 as SDMV is a linear com�

putation� Since the required communication also grows linearly with M 	 performing SDMV in a

distributed environment is only viable to enable computation for M too large for the memory of

a single processor� Since the HighD algorithm uses as much memory on each process as is used

sequentially on a single processor	 the HighD algorithms is realistically unusable�

The CH algorithm is valuable	 however� Figure ���� shows the measured Shift � CH as a

fraction of Shift on Setup I for Q � �	 using problem sizes too large for Q � ��

��

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

50000 100000 150000 200000 250000 300000 350000 400000

(
S
h
i
f
t
-
C
H
)
/
S
h
i
f
t

Problem Size

(Shift-CH)/Shift vs. Problem Size

Q=5 actual

Q=5 theory

Figure ����� SDMV Experimental Performance� Shift vs CH on Setup I for Q���D�	

�

Chapter �

Conclusion

The algorithmic modi�cations developed improve performance of basic linear algebra routines on
NsW� The performance model predicts in what situations improvementwill occur� and approximately
what their magnitudes will be� Exact prediction of execution times would require a considerably
more complex model�

Therefore� this thesis takes a step towards e�ectively utilizing NsW for concurrent computation�
it provides a performance model for regular process grid topology� SPMD style distributed linear
algebra programs on multithreaded� homogeneous� uniprocessor NsW� With this performance model�
and the attendant suite� a user can measure the parameters of interest� and select the appropriate
algorithm for a particular NW�

To fully exploit the diversity of NsW� restrictions on process topologies� programming style and
heterogeneity need to be relaxed� Details of thread interleavings need to be better hidden from
consideration of the higher level linear algebra programmer�

The algorithmic modi�cations developed will be used only if the performance gains are worth the
complexity involved in achieving them� Added complexity in basic linear algebra routines reduces
the complexity that can be dealt with at higher levels� NsW will be used for linear algebra only
if their price�performance potential can be achieved without signi�cant investment in dealing with
the complexity caused by workstation diversity�

��

Bibliography

��� Petter E� Bjorstad� W�M� Coughran� Jr� and Eric Grosse� Parallel Domain Decomposition Ap�

plied to Coupled Transport Equations� �th Domain Decomposition Conference� Penn State� Oct�
���

�	� Peter Carlin� Carl Kesselman� and K� Mani Chandy� The Compositional C�� Langugage Def�

inition� CS
TR
�	
�	� California Institute of Technology� �����

��� Peter Carlin and Tom Zavisca� DLA� A Distributed Linear Algebra Library for CC��� Internal
Note

��� Peter Carlin and Paul A�G� Sivilotti� A Tutorial for CC��� CS
TR
��
�	� California Institute
of Technology� �����

�
� Peter Carlin� A CC�� Performance Suite� Internal Note

��� Vipin Kumar �et al��� Introduction to parallel computing � design and analysis of algorithms�
Benjamin�Cummings Publishing Co� �����

��� Paul A�G� Sivilotti� A Veri�ed Integration of Imperative Parallel Programming Paradigms in

an Object Oriented Language� CS
TR
��
	�� California Institute of Technology� �����

��� C�A� Thekkath and H�M� Levy� Limits to Low�Latency Communication on High Speed Networks�
ACM Transactions on Computer Systems� Vol ��� Number 	� ����� pp ���
	���

��� Eric F� Van de Velde� Concurrent Scienti�c Computing� Springer
Verlag� �����

���� D�W� Walker� Message Passing Interface� Parallel Computing� Vol 	�� Number �� �����

���� B�W� Abeysundara� and A�E� Kamal� High�Speed Local Area Networks and their Performance

� A Survey� ACM Computing Surveys� Vol 	�� Number 	� pp 		�
	�� �����

��

