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Introduction

While the size of circuits implemented on single VLSI chips has increased year to year, tools
and abstractions for managing the complexity of these systems have not been developed
at an equal pace. We propose a framework for developing provably correct digital systems
from an abstract specification through a series of semantics preserving transformations.

Specification => Concurrent Program => Operator Set = VLSI Chip

The system designer translates the system specification into a concurrent program in a
high-level language with a simple semantics. It is in this form, and not the final form of the
digital circuit, that the designer proves the system is an implementation of the specification.
In this first transformation step, the designer may apply the tools of concurrent program
development and verification.

The concurrent program is then transformed into a semantically equivalent self-timed
circuit. Alain Martin[5,7] describes a general framework for performing these transforma-
tion. In this thesis, we describe a way of automating the compilation procedure.

The final task is the realization of the operator sets in a computing medium such as a
VLSI chip. One approach is to implement each operator as a CMOS standard cell and use
placement and routing techniques to position and interconnect the cells.

In this thesis, we are only concerned with automatically transforming concurrent pro-
grams into self-timed operator sets. The body of this thesis is divided into five logical
sections:

e We define a concurrent programming language, a variant of CSP that includes syntax
for interconnecting any number of sequential processes.

e We show how to systematically break up large processes into more manageable units
based on the basic constructs of the language.

We implement each basic construct as a collection of self-timed operators.

We provide refinements to implement processes of arbitrary size by fixed-size con-
structs.

We discuss optimization strategies to improve these circuits.



Chapter 1

The Programming Language

We chose to develop a new language for specifying concurrent programs. Our language
is based on CSP[3] with the probe[8]. A few new constructs have been added to facilitate
efficient implementation in VLSI. The new constructs reduce the number of explicit variables
needed in some programs by introducing more control structures. The language is described
in a bottom-up manner by incrementally extending BNF descriptions of the syntax as the
new constructs are introduced. A complete description of the language syntax is given
later in the chapter. The low level entities used as terminals in the BNF descriptions are
tokens corresponding to punctuation symbols, names and integers. All punctuation symbols
appear in the BNF as strings surrounded by single quotes. The tokens NAME and INT
denote terminal symbols for names and integers.

1.1 Sequential Constructs

The sequential parts of our language differ from CSP in only a few ways. We allow only
boolean valued variables. Assignments to true or false are denoted by the raising (z1) or
lowering (z]) of a variable. The selection statement has been extended to allow repetition
in a subset of cases. Syntactically, a ‘*’ is appended to the end of the guarded command
if after the guarded command is executed, the selection statement is to be repeated. For
example, the guarded structure

o;[Gy — S1;#|G2 — S3); 8

has the following operational semantics: After the completion of the arbitrary program part
«, both G and G are evaluated. If G is true, the command Sy is executed and the flow of
control is returned to the beginning of the guarded structure. If G is true, the command S,
is executed but the flow of control continues with 8. If both G and G are false, the program
waits until G; V G2 becomes true. In the case where both G; and G3 are true, we may
define the semantics in two ways. The programmer may choose the interpretation which is
most efficient or convenient for a particular program by using different syntactic symbols



(seq process) := {(decl)} (sequence)

(decl) ::= ({variable decl)

(variable decl) ::= boolean (boolean spec) {*,’(boolean spec)}

(boolean spec) ::= NAME [‘=’ (true | false)]

(sequence) ::= (statement) {*;’(statement)}

(statement) ::= skip | (assignment) | (guarded structure)

(assignment) ::= NAME (‘| ‘|’ | “:=(expr))

(guarded structure) == (‘[’| ‘*[’) ({guarded command set)]’ |
“[(sequence)’]’ | {[{expr)]’

(guarded command set) ::= (guarded command) { (‘|’| ‘]’) (guarded command)}

(guarded command) ::= {(expr)‘—’(sequence) [*;*+’]

{(expr) ::= {conjunct) {“v’(conjunct)}

(conjunct) ::= (literal) {‘A’(literal)}

(literal) ::= [‘~’] (primary)

(primary) ::= true | false | NAME | ‘(*(expr)‘)’

Figure 1.1: Sequential Constructs

as separators between the guarded commands. By using the ‘|’ (read thickbar) separator,
the programmer specifies that an arbitrary but mutually exclusive choice is made between
the commands S; and S;. If the programmer chooses the ‘|’ (read thinbar) separator, he
specifies that no choice will ever need to be made, that is, at most one guard will be true
each time the selection statement is executed.

The semantics of a selection statement with the
of a selection statement with the ‘]’ separator.

‘|’ separator may be defined in terms
[Go e Ozol .o -]Gn—l _— Otn_l]
is semantically equivalent to

[Go — ag]...[|Gn-1 — an-1] V G; AG; — abort |
i#]
If more than one guard is true when the guards are evaluated, the abort statement may

be reached, and thus no post-condition of the selection statement may be guaranteed.
We introduce the following abbreviations:

e [G —- skip ] may be written more concisely as [G]. We call this construct a wast.
e Infinite repetition, [true — §;*| may be rewritten as =[S].
e The iteration construct,

*[Go — aoﬂ .o ~|]Gn—1 — an—l]



is an abbreviation for
) n—-1
[Go — ag;#]...[Gn-1 — an_1;%[~ \/ Gi — skip]
i=0
All occurences of ‘|’ may be replaced by the ‘|’.
e The assignment statement v := F is an abbreviation for

[E— vT|-E — vl]]

1.2 Procedures

(decl) ::= (procedure decl)

(procedure decl) ::= procedure NA ME(sequence)
(statement) ::= (procedure call)

(procedure call) ::= NAME

Figure 1.2: Procedure Syntax

Procedures provide a means of sharing code in a sequential process. Procedure declarations
of a process are mixed together with port and variable declarations. Statements in the
procedure body may reference the ports and variables of the parent process. We specify
procedure calls by referencing the procedure’s name. Recursion is not allowed.

1.3 Concurrency

A collection of processes will operate concurrently if defined together in a parallel compo-
sition statement. A process is either a single sequential process or a (nested) collection of
sequential processes. '

Synchronization between two processes is accomplished by zero-slack communication
actions across communication channels denoted by pairs of named ports. For any given
channel, one process may determine whether the other process is waiting on this commu-
nication by evaluating a boolean condition called a probe. These probes may be used in
arbitrary boolean expressions. Only one of the two processes connected by a channel may
use the probe. The port which initiates the communication is called active. The other port,
which may use the probe, is-called passive. The decision of which port is active and which
port is passive must be made at compile time. In our language, the programmer explicitly
declares a channel as an active-passive pair of ports.

Concurrently operating processes may not share variables. However, processes may
share data by sending values from a small finite set during a synchronization. As an example,



{process) ::= (seq process) | /(’(process) {*||’(process)} ‘)’ {{channel decl)}

(statement) ::= (communication)

(communication) ::= NAME [‘{"INT*)’] [*["{response} {‘|’(response)} ]’ |
NAME‘VNAME | NAME*\(expr)

(response) ::= INT‘—’(sequence)

(primary) := NAME [‘(CINT‘)’]

{channel decl) ::= channel (channel spec) {*,’(channel spec)}

(channel spec) ::= ‘(" NAME‘,NAME‘)’

(decl) ::= (port decl)

(port decl) ::= (passive | active) (port spec) {*,"(port spec)}

{port spec) ::= NAME [‘’INT*INT*)’ | ‘?’ | *V]

Figure 1.3: Concurrency Constructs

consider a pair of processes with an interconnecting channel. One process cyclicly sends
the values 0,1, 2 across the channel (L, R) to a second process. The second process cyclicly
performs a read communication and based on the value received executes the code segments
a, B or 4. We may code such a process pair by

(active L(3,1)

*[L(0); L(1); L(2)]
||passive R(1, 3)

#HR:[0— afl — Bj2 — 1]
)Jchannel (L, R)

We note now that the language construct R : [.. ] is not a selection statement. It denotes
a communication action from the port R. Alternate executions occur based on the value
received by the communication. In this example, the port L sends a value to port R. We
specify the set of values that may be sent from L by a single integer, in this case 3, short
for the set of values {0, 1,2}.‘ We use 1 to represent the set of values {0} that may be sent
from R to L. Note that the value set {0} consists of a single value and thus no data is
transferred from R to L during the synchronization. When a port is declared, both its send
and receive sets are specified. Its name and its active or passive nature are also included
in the declaration. There need be no association between the direction of information flow
and the active or passive nature of the port. The port declarations passive L(3,1) and
active R(1, 3) are also perfectly valid.

As a natural generalization of the communication construct, data may be sent in both
directions during a synchronization. When declaring a channel, one may specify both
multiple input values as well as multiple output values. Also, the probe is generalized to
test which value the other process is sending before actually performing the communication
action. All communications will be defined in terms of this general form.



{cL=CA0<Li<m}L(z): [0—{cL=C+1A5=0}mx
l—{cL=C+1Aj=1}

In—-1—{cL=C+1Aj=n—1}a,1

] .
{cR=CA0<Lj<n}R(j): [0— {cR=C+1Ai=0}p

1 —{cR=C+1Ai=1}p

Im—1-—{cR=C+1Ai=m—1}8p-1

]

Figure 1.4: Hoare Triple Semantics of the General Communication Action

We give a more formal semantics of the general communication action by introducing
the ghost variables ¢X and qX attached to the communication port X. The integer valued
variable ¢ X represents the number of completed communication action through the port X.
The boolean qX states whether X is ready but not able to finish a communication action.
The standard zero slack axioms apply|[4].

-qLV-qR
cL=cR

A Hoare triple semantics of the data transmission mechanism is given in Figure 1.4. The
communications L and R are performed by separate sequential processes. Information is
exchanged during the communication. One of m values is transmitted from port L to port
R. Simultaneously, one of n values is sent from R to L. The synchronization axioms require
the communication action to complete simultaneously. After the exchange has completed,
the control flow of each process continues with different sequences of commands based on
the values received during the communication. The passive-active distinction is only needed
when the probe is used. Let L be a passive port. Then, we define the meaning of the probes
L(0),...,L(n—1) of L as
L(k) = (QR Ak = j)
(@R Ak = j) = OL(k)
The diamond is a formalism borrowed from temporal logic, meaning eventually the predicate

following the diamond will hold. In this case, if R is suspended and k = j, the probe L(k)
will eventually hold.

Various abbreviations apply to the communication syntax. Consider the L action in
Figure 1.4.

e L(z) means L(¢) : [0 — skip] and is only applicable if L has only one input value.



o If L has only one output value, the abbreviation

L:[al-—-—»ﬂ1|...lan-——>ﬂn]

means
L(0) : [a1 — Bu|...|an — Ba]

L combines the two previous abbreviations.

L means (Z(0) v ...V I(n — 1)).

In port declarations, L? and L! are short for L(1,2) and L(2,1), respectively.

L7z abbreviates L: [0 — z| |1 — z1]

L\E abbreviates [E — L(1)|~E — L(0)]

1.4 Definition and Instantiation

{program) ::= {(process def)} (program def)

(program def) ::= (process) program NAME [{port list)]
(process def) ::= (process) process NAME(port list)
(process) ::= {process inst)

(process inst) ::= instance NAME (port list)

(port list) ::= ‘" NAME {‘’NAME} ‘)’

Figure 1.5: Definition and Instantiation Constructs

A completely specified concurrent program consists of a set of processes and a list of ports to
connect with the environment. The (program) nonterminal provides the necessary syntax.
The ports connected to the environment are parameters to the program definition.

As an aid to the programmer for constructing large sets of processes, we allow processes
to be separately defined and assigned a name. These definitions are placed before the
program specification.” All ports and variables not internal to the definition must be declared
as parameters. No variables or ports may be inherited from the surrounding scope when
these code segments are instantiated.

We illustrate the instantiation mechanism with a complete example (see Figure 1.6), a
ring of four processes which insures mutually exclusive access to a single resource([7]. The
process ring is created by instantiating three priv0 processes and one privl process. The
L and R ports are connected via channels to form a ring of four elements. The four ports
U0,U1,U2,U3 connect to the environment.



passiveU, L
active R
boolean b = false
procedure P [b — skip |-b — R]
#[[U — P;b1;U '
[L— P;bl;L
I

process privO(U, L, R)

passiveU, L
active R
boolean b = true
procedure P [b — skip |-b — R]
*[[U — P;b1;U
[L— P;bl;L
I

process privl(U, L, R)

passiveU0,U1,U2,U3,L0, L1, L2,L3

active RO, R1, R2, R3

(instance priv1 (U0, LO, RO)

||linstance privO(U1, L1, R1)

instance priv0(U2, L2, R2)

|linstance privO(U3, L3, R3)

)Jchannel (L0, R3), (L1, RO), (L2, R1), (L3, R2)
programring(U0,U1,U2,U3)

Figure 1.6: Program for Mutual Exclusion Ring



1.6 Grammar Rules

Figure 1.7 displays a complete BNF description of the context-free syntax of our language.
A few context-sensitive rules need to be added.

o All names must -be declared before they are used.

e Each channel declaration must name one active and one passive port. The number of
input symbols of each port must match the number of output symbols of the other.

e Only variable names may be used on the left hand side of an assignment statement.

¢ Port names must be used in communication actions. Furthermore, the integer symbols
must fall within the range declared.

e When instantiating processes or statements, the number and types of parameters must
match the number and types in the definition.

e Recursive procedure calls are not allowed.
e Only passive ports may be named in probes.
e The separators ‘|’ and ‘|’ may not be used in the same selection or repetition statement.

e The repetition abbreviation may not be used if any of the guarded sequences use the
trailing ‘¢’ construct.

1.6 New Constructs

Our language extends CSP in a number of ways. Most of the new constructs were added
to reduce the number of explicit variables need to code common programs.

Repetitive selection — The following simple repetition is more difficult to code without
the trailing ‘+’ construct:

[ X — e XY — Y.
Without this control construct, an explicit variable must be added, as in:
b — [X — o XY — Y5085

Such iteration constructs are common in concurrent programs using the probe.

Branching Communication — The selection-like statement as a part of the communica-
tion action was introduced to provide a means of changing the flow of control after a read
without the explicit use of a variable. For example, the code segment:

o X [0 — apll — ay);...



(program) ::= {(process def)} (program def)
(program def) ::= (process) program NAME [(port list)]
(process def) ::= (process) process NAME(port list)
(port list) = ‘CNAME { NAME} )
(process) ::= (process inst) | (seq process) |

‘(*(process) {*||’(process)} ©)’ {(channel decl)}
(process inst) ::= instance NAME‘(’NAME {‘’NAME}) ‘)’
(seq process) ::= {{decl)} (sequence)
(channel decl) ::= channel (channel spec) {*,’(channel spec)}
(channel spec) ::= ‘(’(NAME)‘,’(NAME)*)’
(decl) := ({port decl) | {procedure decl) | (variable decl))
(port decl) ::= ( passive | active) (port spec) {*,’(port spec)}
(port spec) ::= NAME [ (‘CINTINTY | ‘7’| 1) ]
(procedure decl) ::= procedure NAME((sequence)
(variable decl) ::= boolean (boolean spec) {*,’(boolean spec)}
(boolean spec) ::= NAME [‘="(false | true)]
(sequence) ::= (statement) {*;’(statement)}
(statement) ::= skip | (assignment) | (guarded structure) |

{(communication) | (procedure call)
(assignment) ::= NAME (‘1’| |’ | “="(expr))
(procedure call) ::= NAME
(guarded structure) == (‘['| “¢[") (guarded command set)]’ |
‘+[’(sequence)]’ | ‘[’(expr)]’

(guarded command set) ::= (guarded command) { (‘|’| ‘|’) (guarded command)}
(guarded command) ::= {expr)‘—’(sequence} [;*’
(expr) ::= (conjunct) {*v’(conjunct)}
(conjunct) ::= (literal) {*A’(literal)}
(literal) ::= [‘=’] (primary)
(primary) ::= true | false | NAME | NAME [‘CINT‘)] | ‘(*{expr)‘)’
{(communication) ::= NAME [‘(CINT¢)’] [**['(response) {‘|’(response)} ‘]|
(response) ::= INT‘—’{sequence)

Figure 1.7: BNF Description of the Programming Language
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requires an explicit variable without this construct. We must use the explicit variable x:
o X5 [ — aplz — o4);. ..

Different Selection Semantics — The distinction between the two different types of
selection semantics is necessary on efficiency grounds. Extra circuitry is required to imple-
ment the mutually exclusive choice of the ‘]’ construct. It is needed in some programs, but
when the programmer can prove exclusion of the guards, the arbitration circuitry may be
avoided. We have considered allowing the compiler to decide when this optimization can
be applied, but then the dynamic nature of the computation can not be considered. There
would always be some programs for which mutual exclusion is not detected. We force the
programmer to make this optimization decision.

Definitions — The definition facility is a2 compromise between nothing at all and a full-
fledged language for constructing process connection graphs. Circuits for each definitions
may be separately compiled and connected with the circuit for the main program at the
operator level, allowing a concise operator description of programs which generate circuits
with regular structures.



Chapter 2

Decomposition

Our goal is to produce a translation procedure that transforms an arbitrary program of the
language introduced in the last chapter into a self-timed circuit. The method we demon-
strate faithfully applies the low level techniques described in [7,5]. However, we choose to
do most of the work at a higher level by first decomposing each process into a collection
of smaller, more easily compiled processes. We use the syntax of the original program to
guide the decomposition.

To ease discussion of the translation procedure, we somewhat arbitrarily divide it into
several stages. In the actual compiler, more than one stage might be performed in the samec
pass through the source code.

Stage 1. Each process definition is compiled separately. All syntactic abbreviations
are expanded to their most general forms. The resulting expanded form is a syntactically
correct process definition.

Stage 2. New sub-processes are created to implement assignments to variables and
procedures. All assignments to a particular variable in the original process are transformed
into communications with a new sub-process designed explicitly to assign values to the
variable. Procedure calls are transformed into communications with the new sub-process
implementing the procedure body. '

Stage 3. We decompose each sequential process into a collection of simple sub-processes, -
each sub-process implementing a basic construct of the language. Each simple sub-process
is associated with a nonterminal (statement) of the source language.

Stage 4. Further non-syntax-directed decompositions are performed. One decomposition
transforms the nonterminal (sequence) into a collection of simple sequencing sub-processes.
Exclusive guard sets are transformed into simple sub-processes corresponding to conjunc-
tions of possibly negated variables and probes. Sub-processes that continually poll the
values of variables and probes are used as implementations of non-exclusive guard sets.

The resulting collection of processes and sub-processes semantically equivalent to the
original program may now be implemented as a self-timed circuit. In the next chapter,
we develop methods of implementing channels, as well as rules for compiling each of the
remaining sub-processes into a self-timed circuit.

12
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passiveU(1,1), L(1,1)

active R(1,1)

boolean b = false

procedure P

[6 — skip |-b — R(0) : [0 — skip]]

[true — [T(0) —» P;31;U(0) : [0 — skip]
[Z(0) — P;b|; L(0) : [0 — skip]
Ji#]

process priv0(U, L, R)

Figure 2.1: Expanded Process priv0

2.1 Abbreviations

All abbreviations are replaced by their implementation in the general form of the construct.
In particular, waits, infinite repetitions, iterations and assignments are replaced by the
general forms involving only the selection construct with the optional tailing ‘4#’. (see
Page 3) Abbreviated communication actions are replaced by full communication actions
by filling in both the output value sent and alternate execution paths based on the input
received. All the abbreviations described on Page 6 are performed. The expansion of
these abbreviations seemingly introduces inefficiencies because the most general construct
is potentially more difficult to implement than the simplier constructs. In Chapter 5, we
will define optimization procedures that remove the inefficiencies introduced here. The early
expansion of abbreviations eases the discussion of the decompositions without compromising
the quality, i.e. the performance in both space and time, of the implementation.

The code of the ring program (Figure 1.6) expands to the code shown in Figure 2.1 after
these transformations are performed. Notice that the abbreviations for infinite repetition,
communication, and probes have been expanded to their general forms.

2.2 Decomposition and Sub-Processes

When implementing a complex process, one may wish to divide the process code into pieces
and compile the pieces separately. Process decomposition[5| provides a method of structur-
ing the division of process code. A process may be decomposed by moving a statement or
sequence of statements from the original process to a new concurrently executing process.
Synchronization between the main process and the newly created sub-processis performed
by a communication action over a new channel connecting the process and sub-process. For
instance, the program part

a; By
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may be decomposed into a sub-process implementing f#, an interconnecting channel, and
the original program part with 8 replaced by an active communication.

(passive D #[[D — B; D]]||active D' «; D';v)channel (D', D)

By the structure of this decomposition, no command in the sub-process will execute concur-
rently with a command in the original process. This fundamental safety property is always
obeyed by the decompositions that follow. We allow the process and sub-process created
by process decomposition to share variables and channel ports. The language syntax is
extended for the description of the decomposition to allow variables and ports to be shared
between processes. This is done by adding the BNF rule:

(process) ::= {(decl)} (process)

The channel introduced by process decomposition may be implemented more simply
than the general communication actions because the signaling protocol of this channel may
be interleaved (reshuffled) with other communications. We leave the syntax describing
communications on these channels in the abbreviated form as a way of distinguishing them
from the general communications specified in the original program.

We apply process decomposition to the assignment of variables. All assignments to a
particular boolean variable are performed by a single sub-process owning the variable. For
example, the sequence of statements

AN AN A

is decomposed by introducing a simple register sub-process and two channels. Each assign-
ment to a variable is replaced by an active communication to this server process.

(passiveC, D

*[[C — z1;C[D — z|; D]]
||lactive C', D'

Clia; D" B C
)Jchannel (C',C), (D', D)

Procedures are implemented by directly applying the process decomposition. The proce-
dure body is made into a sub-process and is surrounded by a probed passive communication
action. Each procedure call becomes a simple active communication.

We apply these decompositions to the process priv0 of our ring example in Figure 2.2.
A sub-process for the variable b and a sub-process for the procedure P are created during
this decomposition.

2.3 Syntactic Decomposition

The crux of our implementation strategy is a decomposition of each concurrent program
based on its parse tree. As the parser recognizes larger constructs, these larger constructs
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passiveU(1,1), L(1,1)
active R(1,1)
boolean b = false
(passive P
*[[P — [b — skip |-b — R(0) : [0 — skip [|; P]]
||passive D, E
*[[D — b1; DIE — b|; E]]
||active P!, D', E'
[true — [U(0) — P'; D';U(0) : [0 — skip]
[Z(0) — P'; E'; L(0) : [0 — skip]
Ji #]
)channel (P, P), (D', D), (E', E)
process priv0(U, L, R)

Figure 2.2: Register and Procedure Decomposition of priv0

are divided up, using process decomposition, into sub-processes which implement only a
single construct. The splitting is repeated on all the generated sub-processes until the
only remaining sub-process forms are those corresponding to a basic statements of the
language, as shown in Figure 2.3. Expressions are not sub-divided until the next phase of
the decomposition. In this figure, the port names C} and C; represent active and passive
ends of synchronization channels. The 7; represent arbitrary boolean expressions and «
represents an arbitrary variable.

Continuing on with our example, syntactic decomposition of the process priv0 yields the
collection of sub-processes shown in Figure 2.4. The first sub-process requires no further
decomposition. The next sub-process (¥[[P — ..]]) is decomposed into sub-processes
for the following statements: the guarded structure with b and —b in the guards and the
communication on R. For brevity, we do not show the expansion of the skip statements
into separate sub-processes. The main body of the process is called by a single active
communication action G'. Further decomposition yields a sub-process for infinite repetition
(guarded by G), one for selection between two boolean expressions (H), two for sequencing
three active communications (Ko and K1) and two for performing passive communications

(Jo and J4).

2.4 Non-Syntactic Decompositions

2.4.1 Sequencing Sub-process
For simplicity and compatibility with other compilations, we decompose the sub-process

#[[D — 83 555+ -3 Sp—1; D]
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{process)  (Co||Ci|...[|ICp-1)

(sequence)  *[[C — C};CY;...;C,_y; €|

(statement) #[[C — skip;C]]

(statement) *[[C; — z1;C1|Co — z|;Co]|
(statement) *[[C — [yo — Ch;#|...|7p-1 — Ch_q;*

(statement) #[[C — [yo — C§;#]...[7e-1 — Ch_q5#
(statement) *[[C — A(}):[0 — C}|...]n—1— C!_,];C]]

Figure 2.3 Resulting Process Forms After Syntactic Decomposition

into a number of simple sub-processes of the form
*[[C — 857" C]

These simple sub-processes may be connected together in a variety of ways as we shall see
in Chapter 5. For now, we assume a simple linear chain defined inductively by:

(passive C

#[[C — ;... 8, _1;C]]
|lactive C’

*[[D — 5§;C"; D]]
)channel (C!,C)

2.4.2 Control Sub-Process

The repetition and selection sub-process is also decomposed before compilation. The sub-
process,:

#[[D — [vo — So;#] ... Ive — Skl .. }; D]

which is equivalent to
*[[D — [vo — Sl...Ive — Si; DI ]]]
is split into two sub-processes with a wide interconnecting communication channel.

(active P'(1,n)
¥[[D — P': [0 — S}]|...|k — S}; D]..]]]
||passive P(n,1) .
[[PAvyo — P(0)]...[PA~a-1— P(n—1)]]
Jchannel (P', P)



passive U(1,1), L(1,1)
active R(1,1)
boolean b = false
(passive P
(passive T
([T — R(0) : [0 — skip];T7]
|lactive T
#[[P — [b — skip |-b — T"]; P]]
)channel (T, T)
||passive D, E
*[[D — b1; D|E — b; E]]
||active P!, D', E'
(passive H
(passive Ko
(passive Jy
*[[Jo — U(0) : [0 — skip]; Jo]]
||active J§
#[[Ko — P'; D'; J§; Ko
)Jchannel (J§, Jo)
||passive K
(passive J;
(T2 — L(0) : [0 — skip ; J1]
||lactive J|
+[[K1 — P B J}; K|
)channel (J3, J1)
||lactive K}, K}
[ —> [U(0) — KJT(0) — K1J; H]]
)channel (K, Ko), (K, K1)
|lactive H'
(passive G
#([G — [true — H';#];G]]
|lactive G!
GI
)channel (G',G)
)channel (H', H)
)channel (P, P), (D', D), (E', E)
process privO(U, L, R)

Figure 2.4: Syntactic Decomposition of the priv0 process
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This decomposition allows the guard sub-process to completely evaluate the guards before
the computation continues, providing a nice separation of concerns between evaluation and
program flow. None of the actions S may effect guard evaluation because their activities
are sequenced. However, in some cases this separation introduces an unneeded state in the
program flow. In Chapter 5, we discuss way of removing the inefficiencies introduced in this
step.

This same decomposition is performed on the sub-processes with ‘|’ separators. We now
further decompose the guard set sub-processes. There are two types of decompositions, one
for each type of separator.

2.4.3 Exclusive Guards

In the mutually exclusive guard set -

*[@ A7 — QO)]...[@ A a1 — Q(n — 1)]]

we know no two guards @ A «; are true at the same time. We may split this sub-process
into n sub-processes of the very simple structure

«[[@ A% — Q)]

Each sub-process is then further decomposed independently. This technique is not a legal
decomposition if the guards are not mutually exclusive. In the case of non-exclusive guards,
this decomposition yields several sub-processes that may run concurrently, violating the
fundamental safety requirement.

Let F be the boolean expression represented by the syntax Q@ A~;. If we expand F into
sum of products form, F = \/;?":01 fi, we may expand the sub-process to have more guards,
but each of a simple conjunctive form. We may now use the sub-process

«[[fo— Q@) ... [fm-1 — Q)]

as an implementation of the above sub-process. However, if we want to repeat the decom-
position into sub-processes with a single guard, we must insure mutual exclusion among
the f;. We give a simple algorithm for transforming a boolean expression F into a form
suitable for implementation by this method.

Algorithm: Disjoint Disjunctive Form

Let F = V. f; where each f; € C is a conjunction of literals.
while 3(f;, f; : C : fi A fj is satisfiable)

remove f; from C

add each term of the disjunctive expansion of f; A - f; to C

If we use the sum of products form produced from this algorithm, all mutually exclusive
guard sets may be decomposed into collections of sub-processes of this form:

*[QAToA .. ATt AT A .. A =Tpg — Q)]
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2.4.4 Non-exclusive Guards

The decomposition technique described for exclusive guards suffers from several inadequa-
cies. The resulting guards, while being simple conjuncts, are still of arbitrary size. Further-
more, the total size of the sub-processes implementing the guard set may be exponential in
the number of variables named in the guard set. We may avoid these problems by evaluating
the guards sequentially.

We consider, for the time being, guard set sub-processes with only variables. Probes
will be added later as a natural extension. The guards 4o,71,-..,Yn—1 of the sub-process

*[@ — o — QO)] .- [¥n-1— Q(n — 1)]]

are evaluated cyclically. This type of busy waiting may be implemented by

+[[Q@ — v — Q(0)
|=v0 —[n — Q1)
I—!’h —_— ... [‘7,,,_.1 — Q(n - 1)
|7Yn-1 — skip

I ] ]

If a guard evaluates to true, the communication on @ is performed and the sub-process waits
again for the probe of Q. The guards are reevaluated in order if all the guards evaluate to
false since Q still holds.

This guard sub-process may be decomposed syntactically in the same manner as any
other process, creating a new sub-process for each guard «; of the form:

*[[Vi — [y — Vi(Q) |~ — Vi(0)]]]
and a control sub-process of the form:

q@—Vift— Qo)
o — V{:[1 — Q1)
00— ...Vl {1 —Qn-1)
|0 — skip

J ] ] ]

These sub-processes communicate through the n channels
active V/(1,2) passive V;(2,1) ... channel (V},V;)

We do not create sub-processes for evaluating both «; and —y;. Instead, we evaluate
one to either true or false. If 4; is a simple variable z, the sub-process is

#[V— g — V(1)]~z — VO)l]
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If 4; is the negation of another expression §, we perform the decomposition

(passive U (2,1)

#[U — [§ — U(1)]~6 — U(0)]]
||active U'(1,2)

H{V— U0 — vt — VOl
)channel (U, U)

If 7; is the conjunction of two expressions 6y and §;, we use the following decomposition:

(passive Up(2,1)
#[[Up — [8o — Up(1)|=60 — Up(0)]]]
||passi\EU1(2, 1)
*[[U1 — [61 — Ui(1)]|-61 — U1(0)]]]
|lactive Uj(1,2),U{(1,2)
#[V —Uy:[0—V(O0)1—U}:[0 — V()1 — V@)
)channel (U}, Uy), (U}, U1)

By De Morgan’s rule, disjunction is similar to conjunction.

By allowing probes in expressions, we can no longer be assured that the sequential
evaluation of the expressions will result in a possible instantaneous evaluation of the ex-
pressions. For example, the expressions =X A X might evaluate to true if the probe’s value
changes between the first and second evaluation of the probe. We add extra circuitry to
prevent this inconsistency. If any of the guards of the original guard set contain probes, we
create a stable copy of the probe’s value before evaluating any of the guards. Each probe
is evaluated and a stable copy is assigned to a variable each time though the busy-waiting
loop. This insures the probe’s value is identical everywhere it is referenced in the guard set.
Such an extreme procedure is not always required. We may save the extra variable used to
store the stable value if the probe’s value is used only once in the guarded command set.
In either case, it is sufficient to use the sub-process

HV — X —v)l-X — Vo)l

to evaluate a probe.

2.5 Example

We illustrate some of the non-syntactic decompositions in of the priv0 process in Figure 2.5
The sub-process *[[P — .. ] is further decomposed into control and guard sub-processes.
The guard sub-processes are created using the techniques for decomposing exclusive guard
sets. The sub-process with the true expression is compiled similarly, except the control
process forms an infinite repetition. The sub-process *[[H — .. .]] is split into sub-processes
using the technique for non-exclusive guard sets. The guard process busy—waits to arbitrate
between the probes of U0 and L0. The other decompositions performed in this phase but
not shown in the figure are the division of the sub-processes which sequence three actions
into two sub-processes each sequencing two actions.
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*[[P — [b — skip |-b — T'|; P]| >
(passive B(2,1)
*[[BAb— B(0)]] || [[BA-b— B(1)]
|lactive B'(1,2)
#[[P — B': [0 — skip |1 — T']; P]]
)channel (B', B)

([E — [T(0) — KHT(0) — K1} E]}>
(passive Ap(2,1)
(o A T(0) — Ao(1)[ o A~T(0) —> Ao(0)]
|[passive A1(2,1)
*([41 A L(0) — A1(1)[ 41 A=L(0) — A1(0)]]
|[passiveC(2,1) active A)(1,2),A4)(1,2)
*[[C — A} : [1 — C(0)|0 — A : [1 — C(1)]0 — skip ]]]]
|lactive C'(1,2)
*[[H — C': [0 — Kj|1 — K{J; H]|
)chanmel (C', C), (45, Ao), (41, 41)

¥[[G@ — [true — H';+];G]| >
(passive D(2,1)
#[[DA true — D(1)]] || #[[false — D(0)]]
|lactive D'(1,2)
#[[G — D' : [1 — H'|0 — G]]]
Jchannel (D', D)

Figure 2.5: Decomposition of the guards in the priv0 process



Chapter 3

Compilations

We have decomposed the original program into sub-processes which are now small enough
to compile easily using the method described in [5,7). We begin the description of the
compilations by a brief review of this method and how it is applied to our problem.

3.1 Synopsis

The compilation method consists of a sequence of step-wise refinements. Each process
is transformed through a series of semantically equivalent yet increasingly more concrete
forms until an implementable circuit results. In the first transformation, communications
are replaced by explicit four-phase handshaking. We call the resulting intermediate form
the handshaking expansion of the original process. In the next transformation, all explicit
sequencing in the handshaking expansion is removed and the computation is represented by
a set of simple guarded commands called a production rule set. By virtue of the way the set is
constructed, certain invariant conditions hold for production rule sets, and thus they may be
implemented in a race— and hazard-free manner as a collection of interconnected self-timed
operators. The resulting operator sets may be used as a specification for a standard-cell
implementation in VLSI. We now discuss each stage of the compilation procedure in more
detail.

3.1.1 Handshaking Expansions

The semantics of CSP requires that both processes involved in a communication complete
the communication simultaneously. While we can not enforce “true” simultaneity in an
asynchronous environment, it is possible define the simultaneous completion of a commu-
nication action in a consistent and implementable manner (see [5]). Consider the following
implementation of a communication from the active port X to the passive port Y. Each
port is implemented by an input variable (denoted by zi for the port X) and an output
variable (z0). A channel introduces a causal dependency between the output and input’
variables of the connected ports. The variables yi and x: are delayed copies of zo and yo,

22
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respectively. The CSP communication

oz, X;
Qy; Y;

Bz
By

where the a’s and f’s represent arbitrary commands is replaced by the four-phase hand-
shaking expansion

az; zoT;

[zi]; z0;

[_'xi]; Bz
By

With this implementation, just as with the CSP communication, the events 8, and §, can
occur in either order, but neither 8, nor g, can occur before o, or ay.

The four-phase protocol performs four one-sided synchronizations (denoted by the ver-
tical bars) between the processes. Only the first two or the last two are strictly necessary
for a synchronization. However, the others are used to reset the values of the handshaking
variables allowing an identical implementation of each subsequent communication. In some
cases, we may separate the synchronizations by moving part of the handshaking expansion
to an earlier or a later point in the sequence. In general, this transformation, named reshuf-
fling, may introduce deadlock. However, when applied to channels introduced by process
decomposition, no deadlock is introduced and a very efficient implementation results. The
handshaking expansion for a channel introduced by process decomposition

[yi]; yo1; [-yil; yol;

o; B;v B *[[ydl; B yoT; il yoll | s moT; [zl 2o l; [-ai];
may be reshuffled in three ways:
*[[y3l; (B, yoT; [~wil)i yoll || s zoT; [mi]; wol; [~ai]; v
*[[y3]; B; yoT; [Fwil; yoll || @; moT; [=i]; (zol; [~2i],7)
*[lyi]; yot; [~wil; B; yoll || (e, zoT; [i]); 2o s [-adl; v
The notation S, T represents an arbitrary interleaving of the actions in the sequences $ and

T. (The ¢, operator binds less tightly than the ‘;’ operator.) Of these reshufflings, the first
will be used most often in our compilations.

3.1.2 Production Rule Sets

A handshaking expansion is transformed into a set of production rules each of the form
G — S where G is an arbitrary boolean expression and $ is a simple assignment of true
or false to a variable. A production rule set and its environment must obey the stability
and ezclusiveness conditions. The stability condition states that for each production rule,
if the guard G becomes true, it must remain true until the assignment S is performed. The
exclusiveness condition states that no two production rules with the same output variable
may simultaneously assign opposite values. The conditions may be used as the definition
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Figure 3.1: Production Rule Sets for Operators

of race— and hazard—free circuits. With this restriction, we may now define an execution
of a production rule set as the sequence of states starting at some initial state and where
each subsequent state differs from the previous state by the execution of one production rule
firing. A production rule set implements a handshaking expansion if each possible execution
corresponds to a sequence of actions allowed by the handshaking expansion. In order to
enforce this correspondence, state variables may need to be introduced into the handshaking
expansion, and guards may need to be added or strengthed to certain assignments.

3.1.3 Operator Sets

Operator sets are constructed by grouping together production rules with the same output
variable and matching these rules with the definition of an operator. Variables may be
arbitrarily inverted to facilitate the matching procedure. For our compilations, only the
operators in Figure 3.1 are required. All references to an identical variable name must be
implemented with the identical variable value. We call the implementation of this rule an
isochronic fork.

3.1.4 Extensions for Non-stable and Non-exclusive Program Constructs

Production rule sets do not allow non-stable nor non-exclusive rules. However, the non-
deterministic nature of the programming language introduces intrinsically non-stable or
non-exclusive constructs. We introduce in Figure 3.2 two primitive processes which allow
the implementation of non-determinacy. These primitive processes can not be represented
in production rule set form, yet they both have practical implementations in VLSI. The
primitive processes may still be interconnected with circuits constructed from production
rules at the operator set level. (Isochronic forks may be required.)
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z > > u
; *([gAz — ul;[-gl;ul . > s
(0,2,9)8(u,0)= 1 leAy— vTi[glvl y > > v
e — ut;[-z)ul
(z,9)me(u,v)= 1 v — of;[ulivl ’ >'] > v
Yy > —> v

Figure 3.2: Primitive Process Definitions

3.1.5 Application to Our Problem

Decisions need to be made at each stage of the translation procedure. Since a major design
goal is to produce efficient circuits which are constructed from a very limited set of operator
types, we choose a compilation style which follows these heuristics

o We reshuffle communications when possible to result in implementations with the
least number of state holding elements.

o When state variables are required, we introduce one for each state in the original
program.

o We symmetrize production rules when possible to create symmetric combinational
operators, such as the AND, OR, and wire operators.

o If state holding elements are required, we symmetrize the production rules to form C
elements.

Such a compilation style can not always be applied top-down, that is by the blind application
of rules at each stage of the compilation procedure. Some backtrackingis required. However,
the interaction between the compilation stages is justifiable in our case because the processes
we wish to compile are small in size. '

3.2 Communication Channels

We use a four phase handshaking protocol to implement the general communication action.
For channels which send data as well as synchronization information, we use more than the
minimum two wires. Consider the channel declaration

passive L(m,n) active R(n,m) ... channel (L, R)

Such a channel is implemented by m + n unidirectional wires using a unary encoding of
the data. The n send wires of R correspond to the n receive wires of L. The active port
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R initiates a communication action and thus these wires point from R to L. One of n
values may be sent from R to L during the communication by raising exactly one of these
wires. The m receive wires of R and the m send wires of L are also connected and similarly
transmit one of m values from L to R. This communication channel may be described by

the operator set: .
(l(i)o)w(r(z')i) (0< z'.< m)
(r()oyw((5)i) (0<j<n)

Notice the notation used to name the wires of a channel. In the wire name I(¢)o, the root
| represents the port name, the suffix o represents this wire is an output of the port and
the parameter in parenthesis represents which value corresponds to this wire. A suffix 1
signifies a wire as an input to a port. We allow the parameter in parenthesis to be a free
running variable in order to concisely specify constructs of arbitrary size. Since there can
be no ambiguity between a parameter and a suffix, we may without confusion use ¢ as a
free running variable.

Using handshaking expansion notation[5], the general passive communication action (see
Figure 1.4) may be written as ’

[1(0)s — I(3)o1; [-1(0)];1(5)ol; cxo] . . . [I(n — 1)i —> I(i)ot; [~I(n — 1)d];1(¢)o |; apn—1]
and the general active communication as
r(7)o1;[r(0)i — r(s)ol; [-r(0)i; o] . .. ]r(m — 1)i — r(5)o; [=r(m — 1)i]; am—i]

(The parameters ¢ and j represent the output values of the communication on ports L and
R respectively.)

3.3 Probe and Variable Values

The value of the probe L(k) is implemented as the value on the single wire I(k)i. The
values of boolean variables are also implemented as the value on a single wire. These values
must be distributed to all the implementations of the sub-processes that use these probes
and variables. We refer to these positions in the circuit as usage points. Some technique
is needed to insure that, after one of these values changes, every point in the circuit that
references it receives the same value before execution is allowed to continue. For now, we
assume the usage points are connected together by isockronic forks. The value of a probe or
variable is defined to be the same at all usage points. In Chapter 4, we will discuss various
implementations of these isochronic forks.

3.4 Compilations of Syntactic Forms

Each of the sub-processes created in the last chapter is now compiled into self-timed circuit.
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3.4.1 Parallel Composition

Circuits are intrinsically concurrent entities. A collection of simple active communications
may be implemented by separate circuits which perform single active communications after
a global variable g becomes true:

[g]; coT; [ei]; co; [—ei]

The value of g signifies whether the entire computation is going or reseting. We do not
want an infinite repetition of communications, so a state variable is introduced into the
handshaking expansion to distinguish when the communication has finished:

[-z A g]; coT;[ed]; 2 1; [2]; col; [ed]

The resulting operator set is
(¢f, true )C(z)
(9, ) A(co)

When g is false, co is false and every sequential process is inactive. All state variables of the
system may be reset at this time. In particular, x is set to the initial value false . Raising
g starts every sequential process simultaneously.

3.4.2 Skip Statement
The skip statement has a very simple implementation. The process
+[[D —> skip; D]
is equivalent to infinitely repeating the communication action D.
#[D] = «([di]; doT; [-di];do ]
The wire operator (d:)w(do) implements this handshaking expansion.
3.4.3 Assignment Statement
We must implement the sub-process
*([D — z1; D|F — z; F]]
Transforming into handshaking expansion form, we get
*[[di — z1;[2];dol; [-di];dol [fi — zl;[-a]; fol;[-fi]; fol]]

The derivation of the resulting production rule set, operator set and resulting circuit shown
in figure 3.3 is straight—forward and given in [5]. We initialize the C element to the initializer
declared in the program.
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X
di — z] A
dinz +—— dot > )
—di —s do] - }do
fi — x| .
fin-z — fof
=f1 — fol
(di,~f1)C(=)
(di, .'E)/\(dO) fO
(fi,—z)\(fo) fi>

Figure 3.3: Compilation of Assignment Statement

3.4.4 Sequen;ing Sub-process
Recall the definition of the sequencing process:
+([D — 5;T; D]

In the handshaking expansion for this process

*([di]; sot; [s1]; s0l; [-si; tat; [ti];to|; [-ti]; dot; [di];do ]
the sequence doT;[-di] may be reshuffled with the S communication

*[[di]; s01; [s1]; do1; [-di]; s0]; [-si]; tot; [td]; 2o ; [-ti]; do |]
Introducing a single state variable z,

*([di]; s0T; [si]; 2 1; [z]; doT; [di]; so | ; [-si]; toT; [ti]; 2 | ; [-a]; tol; [ti]; do ]

we may now expand the handshaking expansion into a production rule set and equivalent
operator set (see figure 3.4).

We will use circuits similar to this in the implementation of guarded structures. We
define the implementation of

#([D — skip; T; D]|
to be a new operator named a D element.
(di, do)D(to,ti) = (di,~t:)C(z)

(z,t)V(do)
(—~di, z) A(to)
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80 S1
ds — sof A Y
stA-tE — zT :
TVt — do? '
~di —  so) f
—stAz  +— tof !
tiA—s +— z| "
~zVs +— lo] ;
~tiA-z —— dol 5
(di)w(so)
(81, ~ti)C(z)
(z,t)V(do)
(—st, z)A(to)

di do
Figure 3.4: Compilation of Sequencing Process

3.4.5 Control Sub-process
By transforming the control process,
*[m—*P : [0———> Sol]k—)Sk,D]]]]
into a handshaking expansion, we get:
*[[di]; poT; [p(0)i — pol;[-p(0)i]; s(0)oT;[s(0)d]; s(0)oL; [~s(0)d]

[p(k)i — pol; [~p(k)i]; s(k)oT; [s(k)il; s(k)o; [~s(k)i]; doT; [~di]; do) -

]
As in the sequencing case, we may reshuffle the middle two actions of each D handshake
to directly after the arrow and introduce a new state variable for each path. In general we
may not reshuffle the communication P with the communication S. Delaying the comple-
tion of P until after the initiation of a command which influences the guard set process

connected to P potentially causes instability in the guard set process. The values of the
state variables persist after the communication with P. We use these values to selected the
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-u(0)A...A-u(k—1) — v]
~u(k)A...A-u(n—-1) — do|

v Adi — pol
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z(i) v s(?)i — u()) T

u(3) — vt

v — pol

-p(i)inz(i) +— s(i)of

s(@)in-p(i)i — a(i)]
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u(5) — dof

&  — pol

p(i)iAe() — s(i)ot

s(@in-pli)i — ()l

~a()Vp()i > s(i)ol

s()in—a(i) — uli)l |

Figure 3.5: Production Rule Set for the Control Process

proper command sequence to execute.

*[[di];poT; [p(0)i —  =(0)1;[z(0)]; poL; [-p(0)d]; 5(0)o T; [s(0)d];
2(0) 4; [~=(0)]; 5(0)o; [-s(0)]

ip(k)i — z(k) 1; [z(k)]; d(k)o1;[~di]; po |; [-p(k)i]; s(K)o 1; [s(K)e];
z(k) |; [-z(k)]; s(k)o |; [-s(k)d]; d(k)o |

!
!

The production rule set for this handshaking expansion is shown in Figure 8.5. Making use
of the previously defined D elements, we get the simple operator set

(u(0),..., u(k — 1)) V(v)
(u(k), - .., u(n — 1)) V(do)
(di, =v) A(po)

(p(2)s, u(2))D(s(1)0, s(1)1) (0<i<k)
(p()i, u(5))D(s(s)0,5(s)) (k<j<n)



31

3(0)o¢‘ Ys(O)z
D
0)i > -
(0 8(1)0,1‘ Ys(l)i
. g :
do €— p(1)i > 1
8(2)0,1\ y s(2)¢
D
(2): > L
? s(3)o,t\ Y s(3)s
D
p3)i > e

Figure 3.6: Circuit for Control Sub-process (k = 2,n = 4)

An example circuit is shown in Figure 3.6.

3.4.6 Communication Actions
We start the compilation of communication actions by considering the special case of only
one usage per process. :
Simple Active
The simple active communication
#[[D — A(j) : [0 — So|...|Jn — 1 — S,_1]; D]]

may be implemented with a specific instance of the control process in the last section. In
this case, no branch repeats, yielding the following operator set:

(di)w(a(s)o) '
()i, u(2))D(s(5)o,s()i)  (0<i<n)
(u(O), (EEY) u(n - 1))V(d0)

Figure 3.7 shows an example circuit.
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a(2)i>— 1

Figure 3.7: Circuit for Active Communication (n = 3,5 = 0)

Simple Passive

The simple passive communication sub-process
#[[D — P(i) :[...|]7 — S;|..]; D]
has the non-reshuffled handshaking expansion:

*[[dd]; [

ip(j)i — p(i)oT; [-p(5)i]; p(d)ol;
s(7)oT; [s(5)i]; s(5)od; [~s ()]

i; doT;[—di];do]
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u(0)V...Vuim-1) — p(i)ot
w0 A...A-u(m—-1) — p(i)o]
v(0)V...vv(m—1) — dof
w)A...A-w(m—-1) — do]

di A p(5)i — u(f)T )
w(DA-s() — ()1

it =

—di A —plg)s —  ul7 .
~u() Az() — s(ot [ CSI<m
s()i A—u(f)  — =)l

e vuld) — s(i)ol

~s(i)i A-a(i) — ()] |

Figure 3.8: Production Rule Set for the Passive Communication

Again, we reshuffle the middle actions of D and introduce auxiliary variables.
ulll

di Ap(j)i — u(3)T; [u(s)]; _
p(9)oT, (z(5) 1; [2(]; v(5) 1; [v(F)]; do1);
[~di A —p(5)i];
u(7) §; [~u()];
p()ol, (s(3)oT;[s()il; () 4; [~=(5)];
s(5)ol; [=s(5)i]; v(5) |; [-v(4)]; dot)

i

The production rule expansion shown in Figure 3.8 produces this symmetrized operator set.

(d, p(3)i)C(u(4)) o
(uu),vu))D(ﬁ(j)o,s(j)z')} (O=i<m)
(4(0),..., u(m — D)V(p()o)

(v(0),...,v(m— 1)) V(do)

It is worthwhile to note that the C elements in these passive communication circuits provide
the sole means of synchronizing the concurrent activities of the system. An example circuit
is shown in Figure 3.9.
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D
p(0)¢ >—@ : > I >
s(1)o 4\ Y s(1)s
N
D
p(1)i >——@ >— | >
s(2)o Y s(2)¢
N
D
p(2)i >————@ T T >
di >—

do <

Figure 3.9: Circuit for Passive Communication (n = 3,7 = 0)
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Multiple Usages of Passive Ports

Since communications on a particular channel may be performed in several different sub-
processes, we must produce a means sharing the use of these channel among the various
sub-processes.

We expand the simple passive communication to allow several sub-processes to respond
and complete a communication on the same port. We use a “passive to multiple active
port” converter with no buffering capacity to implement this expansion. Let P be the
single passive port and Ag, Aj,...,Ax—1 be the k active ports of the converter. The active
ports pair up with the passive ports of sub-processes. When one of the input wires of
the passive port is raised, the corresponding output wire is raised in each of the k active
ports. Because no two sub-processes operate concurrently, only one of the active ports
A(#) will respond to the communication by raising an input wire a(¢)(5)¢. (Notice the use
of double parameters to name the wires of the multiple active ports.) The converter will
then raise the corresponding output wire of the passive port p(5)o, resulting in the lowering
of the initiating input wire of P and then the lowering of the corresponding output wires
of each of the k active ports. We assume until a refinement is given in Chapter 4 that
the corresponding output wires of the active ports are connected via isochronic forks. The
communication action then continues when the single input wire a(7)(7)i lowers and finally
completes with the lowering of output wire p(7)o. We may use the operator set

p(0i=a() (@0 (0<i<k0<L<n)
(a(0)(5)i, a(1)(5)s, .- ., alk — 1)(5)i) V(p(5)0)  (0<j < m)

to implement this passive to multiple active converter. The = operator allows two different
names to represent the same variable. An example circuit is shown in Figure 3.10.

Multiple Usages of Active Ports

In the case of several sub-processes calling a single active port, we use a multiple passive port
to single active port converter called a merger. Let Py, Py,. .., Py_; represent the k passive
ports and A the single active port of the converter. The passive ports of the converter
are paired with the active ports of the sub-processes. A ¢communication through an active
port of a sub-process is transparently converted into a communication on the active port A.
The converter must store which passive port initiated the communication in order to direct
the acknowledgement of the communication back to its source. The following operator set
specifies an implementation of such a converter:

(p(Q)(3)i 2 (W)Y .0k~ D(@}) V(a(i)o) (0 < m)
(p() ()6, ()Y, -, () (m — Vi) V(u())  (0<i< k)
(u(D), e(})C()(G)0)  (0<i< k0L ] <n)

The double parameters specify port number and value number, respectively. An example
circuit is shown in Figure 3.11.
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p(0)i > > a(0)(0)o
p(1)i > > a(0)(1)o
p(2)i > > a(0)(2)o
< a(0)(0)i
< a(0)(1)i
> 4(1)(0)o
#(0)o > a(1)(1)o
> a((lg((Z))o
< a(1)(0):
pl)e < a(1)(1)i
Figure 3.10: Passive k — (m, n) Expansion Circuit (k = 2,m=2,n=23)
P(0)(0)i >
p(0)(1)i>

p(0)(2)i > Q

) a(0)o
<o
p(0)(1)o -
p(1)(0)i >
p(1)(1)i>
p(1)(2)i> i
p(l)(())oé—-——-@ < a(0):

p(l)(l)o% < o(1)i

Figure 3.11: Active k — (m, n) Merger Circuit (k=2,m =3,n=2)
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8.4.7 Exclusive Guards

The sub-process
[ @AZoA ... AZp_y A=TE A ... A =Zpy — Q(i)]]
may be implemented simply with an n + 1 input AND gate.
(48,20, - -, Tk—1,Tk, - - ., 72n-1) [\ (a(:)0)

3.4.8 Non-exclusive Guards

The sub-process
Q@ — [z — Q(1)|-z — Q(0)]]

may be implemented with two 2 input AND gates. If probes are used, we need to implement
the process

*[@ — [X(k) — @)[-X(k) — Q(0)]]
By expanding this process to its handshaking expansion,
*[[gi Az (k)i — q(1)oT; [~gi];q(1)o]
lgi A —a(k)i — ¢(0)oT;[—gi]; 9(0)0)

I

we see that it matches the synchronizer process defined earlier if we use the instantiation
(g7, z(k)i, —z(k)i)S(g1o0, g00)

The and, or, negation, and busy-waiting sub-processes all have trivial implementations
after reshuffling. Both the and and the or sub-processes are implemented with a single OR
gate. The negation sub-process merely interchanges two wires. We use the busy-waiting
sub-process as an example of the reshufflings performed on these sub-processes. Consider
the simple sub-process :

*[@ — U:[0 —V:[0— skip|1 — Q(1)] [t — Q(O)]]]
In handshaking expansion form,

*[lge]; uoT; [u(0)d — wol; [-u(0)];vot;
[0(0)i —> vo l; [w(0)i]
lv(1)i — vol; [-v(1)i];9(1)o1; [~gi]; g(1)o]

|u(1)d — uol; [-u(0):]; ¢(0)o1; [~gi]; g(0)o )
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The U and Q communications may be reshuffled together arbitrarily because they are both
communications introduced by process decomposition.

[ [¢gé);uol; [u(0)i — vot; [v(0)§ — uol;[-u(0)i];vol;[—v(0)]

[v(1)i — g(1)oT; [~gi];uol;
+ [Fu(0)i];vol; [=v(1)il; g(1)old

]
[u(1)i — ¢(0)oT;[~qi]; uol; [-u(0)d]; ¢(1)o |
The resulting operator set is
(g2, ~v(0)¢) A(uo)
(u(0)i)w(vo)

(u(1)i)w(g(0)o)
(v(1)iyw(g(1)o)

3.5 Example

Figure 3.18 shows the compiled circuit corresponding to the priv0 example.
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z(22,a:£/1) z(0) Y

T :)—->q(1)o
gi> - gi >
—ﬁD—}qo q(0)o

Figure 3.12: Exclusive Conjunction Figure 3.13: Simple Variable
z
Y x

qi > S ['73 >—l: e0 E n.____.! £ v(o)o
v I
y —> 4(0)o
——¢

Figure 3.14: Simple Probe Figure 3.15: Conjunction
- >q(0)o

> 0 | \ 7 L g0 ! m---e

e,  r-=--- I ! : '
vi i_____: > ! o v(1)o l____r->-|_: gl i———>q(1)o

5 l ">’U(0)0 :____,'_+

Figure 3.16: Disjunction Figure 3.17: Busy Evaluation



40

AN

oy
v

1\!\!
71

A

I'r=p
=y

A
A Y

Figure 3.18: Complete Circuit for priv0 Process



Chapter 4

Isochronic Forks

In the previous chapter, we implemented the use of probes and variables at different points
throughout the circuit by postulating the existence of an isochronic fork which distributes
the value of a probe or variable to all usage points instantaneously. This isochronicity
assumption of a fork is valid if the usage points are close together. However, locality of
usage points can not be guaranteed unless some bound is placed on the size of the sequential
processes from which the circuits are generated. We place no 'such bound on the sequential
processes defined in our source language. In this chapter, we discuss methods of realizing
large isochronic forks as well as alternate methods of implementing certain constructs of
the language in order to avoid the need for large isochronic forks.

4.1 Electrical Solution

We may implement isochronic forks local to a single chip by connecting the usage points
together with a low resistance interconnect, typically either metall or metal2. With present
technologies, the delay in changing the potential of a usage point two chip widths away from
its source is still significantly less than the delay in an ordinary operator as long as these
long wires are driven with optimally sized inverter horns. However, in future technologies,
interconnect delays will become more significant. and the isochronic fork assumption may
be invalid [1]. Fortunately, arbitrary-size isochronic forks are not intrinsically necessary for
our compilation strategy. We may algorithmically reduce each large isochronic fork into an
isochronic fork between two usage points.

4.2 Algorithmic Solution

The isochronic forks produced by the compilation methodology are local to a single sequen-
tial process. We modify each sequential process so that when it changes a (circuit) variable
which must isochronically fork to several usage points, it suspends until all usage points
have received the change. Only after the process detects that the variable’s new value has

41
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(z)w(A)
(A)w(B)
(B)w(C)
(C)w(D) ,
(D)w(2)

8

Figure 4.1: Distribution and Detection Using a Linear Ordering

reached all usage points can execution resume. We split the description of how to modify
our existing implementation into two parts:

e We describe how to distribute a variable’s value to all usage points in such a way
that we can detect when all points have reach their new values. Furthermore, we use
isochronic forks with only two outputs in this implementation.

e We describe the changes needed to the previous implementations of the language con-
structs to suspend the process until the fork has completed distributing the variable’s
value.

4.2.1 Variable Distribution and Completion Detection

We detect that a variable’s value has been distributed to all usage points by observing
the value of a new circuit variable called a completion signal. Assume we must distribute
the circuit variable z to the usage points A, B,C and D. If we introduce the completion
signal £ and connect z to A, A to B, B to C, C to D and D to £ with wire operators, we
can be assured that when £ changes, the change has already propagated through all the
intermediate usage points. In so doing, we have reduced the large isochronic fork to several
binary isochronic forks. Thus, we may use the circuit shown in Figure 4.1 to distribute and
detect distribution of an isochronic fork.

Instead of linearly ordering the usage points, we may send separate wires to each point
and construct the completion signal using a tree of C operators. (see Figure 4.2) The output
of such a tree changes when all its inputs have changed and may be used in exactly the
same fashion as the completion signal of the above linear ordering.

4.2.2 Process Suspension

The previous implementations of the active channel merger, the passive channel expansion,
the passive communication and the assignment constructs are sources of isochronic forks
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(=)w(4)
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(z)w(D)
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(D)w(zp)
(24,28)C(24B)
(£¢,£p)C(2cp)
(4B, %cp)C(%)

o

YYYY:

Figurev 4.2: Concurrent Distribution and Detection

between (potentially) more than two usage points. We modify these implementation to wait
for the completion signals of the forked variables.

The k—way isochronic forks needed in a k-way active channel merger may be reduced to
2-way isochronic forks by using trees of 2-way active channel mergers. The remaining large
isochronic forks (only if the number of input values is greater than one) are eliminated by
the circuit shown in Figure 4.3. The M block in the circuit merges together m one—output
and one-input value channels. This block may be implemented without large isochronic
forks. The completion signals for the forks p(0)(+)i and p(1)(*): must change before an
output value changes.

Passive communications and passive channel expansions are modified as shown in Fig-
ures 4.5 and 4.4. The completion signals for the input variables must change before the
flow of control is transfered to the next statement. The synchronization is introduced before
the calls to the statements S;, ensuring the correct value of the input variables inside the
implementations of these statements.

The modified assignment implementation (see Figure 4.6) uses the completion signal
instead of the variable value to detect when the assignment has finished.
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Figure 4.3: Modified 2 — (3,2) Active Merger
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Figure 4.5: Modified 2 — (2, 3) Passive Expansion
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Figure 4.6: Modified Assignment




Chapter 5
Circuit Optimization

The circuits generated by the techniques of the last chapters are functionally correct but
some inefficiencies have been introduced by the generality of the procedure. The composing
rule for each language construct is strong enough to avoid interaction between arbitrary
commands. Better circuits may be synthesized if these interactions are considered in more
detail. In particular, when commands do not interact, a more simple implementation of the
language construct may be used. We consider some of the important special cases.

5.1 Removing D-elements

The most useful optimization is the removal of unnecessary D-elements. The removal of
sequencing operators corresponds directly to reshuffling the handshaking sequences of the
adjacent commands. Replacing the operator (si,so)D(to,t:) with the two wire operators
(s8)w(to) and (ts)w(so) intertwines the handshaking expansion of the passive communica-
tion S and the active communication T yielding:

[s];toT; [ti]; s01; [si]; tol; [—ti]; s0

We may remove D-elements in cases where the above reshuffling does not destroy the original
semantics of the program.

In the general case of the control structure process, D-elements are required between
each guard and the sequence of statements that follows it. The D-element may be removed if
the sequence of statements does not change the value of any guard in the guarded command
set. A trivial example is a guard followed by the single statement skip. The statement
skip can not change the value of any guard. Assignments are also easy to characterize. If
a simple assignment to the variable z immediately follows a guard, the D-element may be
removed if the assignment to z does not change any guard.

47
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~zAdi +— sof
di A st — zt
-~dive +— so]
z A st — tof
e —  dot
~diA—-si — x|
stV gz — to]
—ti s do]
(==, di) A(s0)

(di, s3)C(z)

(s, z)A(to)
(ti)w(do)

di do

. Figure 5.1: Another Sequencing Circuit

5.2 Sequencing Operators

By reshuffling the sequencing process
*[[D — S;T; D]]
in a different way than in the last chapter (Page 28)
*[[dd]; soT; [s1]; s0]; [msi]; toT; [td]; do; [di]; to |; [-ti];do ]

we get a different circuit made of wires and a so-called Q operator (Figure 5.1). We call
the operators D and Q sequencing operators. Sequencing may be performed by arbitrary
trees of sequencing operators, not just the linear chains described in Chapter 2. (The Q
operator may not be used to replace the D operator in the control and communication
sub-processes.) By manipulation of these sequencing trees, smaller implementations of the
control flow are possible. Sequencing operators may be factored through active channel
mergers if the sequencing operators are of the same kind and never active at the same time.
If an action is common to the last action of two or more selection branches, the active
merge process may be replaced by a simple OR gate. We do not need a full merger process
because regardless of which branch initiated the action, control will continue with the same
action.

5.3 Passive Channels

The special form _
+[D — ;D]
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Figure 5.2: Comparison of Passive Communication Implementations

where S does not call the communication D, may be implemented simply as a pair of wires.
This implementation is superior to the standard implementation requiring one C, one D
and one A element (Figure 5.42). A user programmed passive communication may be im-
plemented with wires if the compiler is able to prove that the passive communication is
only performed as the very last action of an continuing repetition. Such passive commu-
nications do not introduce concurrency. This implementation involves a reshuffling of the
handshaking expansion:

*[[di]; so1; [s1]; so]; [-si]; doT; [-di]; do |]
The middle action and wait of the D handshaking protocol are moved forward.
*[|di]; s0T; [s7]; doT; [—di]; 80 ; [si]; do ]

The process commits to finishing the D communication before S is finished. The commu-

nication S must not start a separate communication on port D. Otherwise, the two D

communications would have non-exclusive access to the same channel. The reshuffling can

only be performed if the communications on the active port connected to D are not reshuf-

fled. In the method presented here, we never reshuffle user specified active communications.
The control structures of the more complicated guarded command

#[[DAGg — So; D|...|DAGp1 — Sp-y; D]

where the G; are conjunctions of possibly negated variables, may also be implemented .
directly as wires as long as D is not called in any of the S;. To reshuffle the even more
general form with different passive probes,

- %[[DAGo — S; D|[EA Gy — T; E]]
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the communication T' must not raise the probe of D and S must not raise the probe of E.
Optimizations also exist for repetitive structures with guards the conjunct of positive
probes. For instance,
*[[DAF — 8; D; T; F||
may be reshuffied to

*[[di A fi]; soT;[s1];dotT, fol;
[—di A = fi]; s0|;[-si]; dol, (toT;[ti]; 2o |; [t]); fol
]

This reshuffling has a simple implementation (Figure 5.3)

(ds, f4)C(s0)
(st)w(do)
(st, fo)D(to,ti)

5.4 Special Circuits for Arbitration

In special cases, efficient arbitration circuits may be used to implement non-exclusive guards.

Both
passiveU,L activeS,T

#[[U — S; UL — T; L]]
process arbiter(U, L, S, T)
and
passive Q(2,1) o
H@QAT — Q(O)QAL — Q(1]]]
process enabled_arb(Q)

may be implemented without busy waiting. In the first case we use the arbiter from [6].

(ui,ld)me(u,l)
(v, —1tf) A(s0)
(I, ~s)A(to)
(st)w(uo)
(tyw(lo)

The me operator is a primitive process which implements the handshaking expansion
(ui, vi)me(uo, vo) = *[[ui — uoT;[-ui];uo] [vi — voT;[—wi];vel]]

as long as the four-phase protocol is obeyed on ui, uo and vi,vo.
The second case, after handshaking expansion, is an instantiation of the synchronizer
primitive process
(g3, 2i,10)S(q(1) 0, 4(0)o)
When the enable signal g7 is raised, this element behaves like a standard mutual exclusion
operator. However, when ¢1 is low, both outputs remain low.
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Figure 5.3: Reshuffled Circuit for Mul-

tiple Passive Communications Figure 5.4: Non-busy-waiting Arbiter

5.5 Example

We apply these optimizations to the priv0 circuit produced in the last chapter. The arbiter
process is used instead of the busy-waiting implementation of the guard set in the main
process. The redundant D operators sequencing skip statements are also removed. The
communication R does not effect the guards b and —b and thus the sequencing operators
corresponding to the arrows in theé procedure may be removed. No statements in the
procedure influence the guards of the main process and thus no sequencing element is
needed to implement the arrows of that selection statement either. The sole sequencing
remaining separates the procedure call from assignment to the variable b. By manipulating
the sequencing tree for both paths through the main selection statement, a sequencing
operator may be factor though the merger for the procedure call. After these optimizations,
only one sequencing element remains. The resulting circuit is shown in Figure 5.5. This
circuit corresponds exactly to the best circuit produced by hand compilation.
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Conclusion

We have produced a working automatic compiler that implements a subset of the translation
techniques described in this thesis. This compiler closely follows the structure of standard
source-to-machine code compilers, in particular the Prolog implementations described in
[10,11]. While it is beyond the scope of this thesis to describe the compiler in detail, we
will make claims about its performance, and thus make claims about the quality of the
circuits produced by the compilation technique as a whole. While many criteria make up
the quality of a circuit, we will restrict our attention to the size of the resulting circuit,
defined in terms of the number of gates or the number of transistors needed to implement
it. )

The circuits produced by the compiler are slightly larger than those produced by di-
rectly applying Martin’s method. The compiler does not introduce state variables between
arbitrary actions in the handshaking expansion of the process, nor does it always introduce
the minimal number of these variables. The compiler is handicapped in this sense. How-
ever, the optimal introduction of state variables is a hard problem and solutions to it will
be tractable only for small programs. The compiler produces good solutions, yet they are
not always optimal.

We claim the solutions are good because we can prove that a circuit produced by the
compiler is no larger than a constant times the size of its corresponding input description.
The proof follows from that fact that each program is decomposed into a number of sub-
processes proportional to the number of constructs in the program, and each resulting
sub-process has a constant sized implementation. (For this statement to be true, we may
not use the exclusive guard set technique described in Section 2.4.3 because of the possible
exponential blow-up when representing an arbitrary boolean function in disjunctive normal
form. However, the non-exclusive guard set technique of Section 2.4.4 may be used in its
place.) We can not expect a better asymptotic growth rate for our compiler.

We have compared several medium sized designs produced by hand at Caltech with
designs produced by the compiler.

e 3z + 1 Engine (Tony Lee)
e Systolic Multiplier (Pieter Hazewindus)

o Bit-serial Routing Automata (Steve Burns)
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e Lazy Stack (Alain Martin and Steve Burns)
¢ Ring of Mutual Exclusion (Alain Martin and Andy Fyfe)

The results vary: the compiled designs being no more than three times as large as the hand
designs and in some cases smaller than the hand designs. The variability is due mostly to
difficulties in specifying efficiently the algorithms used in the hand designs in our source
language.

In summary, the compilation procedure described in this thesis represents a complete,
systematic method for translating an arbitrary concurrent program into a self-timed circuit.
Furthermore, the circuits produced are of high quality. The size of a constructed circuit
is no larger than a constant times the size of the input specification. Also, the translation
mechanism mimics that used in standard source code to machine code compilers, and thus
compiler theory can be applied to construct a working translator.
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