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Abstract

This thesis presents and solves two dynamic problems. The first problem comes from online display

advertising. In display advertising, a publisher displays an ad for an advertiser when a targeted

user visits a webpage related to the advertiser’s products or services. However, the publisher cannot

control the supply of display opportunities, and hence the actual supply of ads that it can sell is

stochastic. I consider the problem of optimal ad delivery, where the advertiser demands a certain

number of impressions to be displayed over a certain time horizon. Time is divided into periods,

and in the beginning of each period the publisher chooses a fraction of the still unrealized supply

to allocate towards fulfilling the publisher’s demand. The goal is to be able to fulfill the demand

at the end of the horizon with minimal costs incurred from penalties associated with shortage or

overdelivery of impressions. For a special case of this problem I describe an optimal policy that is

very easy to implement. The general version of the problem is more computationally demanding,

but I describe policies that are both implementable and arbitrarily close to the optimal solution.

In the second part of the thesis, I develop a framework in which a principal can exploit myopic

social learning in a population of agents in order to implement social or selfish outcomes that would

not be possible under the traditional fully-rational agent model. Learning in this framework takes

a simple form of imitation, or replicator dynamics, a class of learning dynamics that often leads the

population to converge to a Nash equilibrium of the underlying game. To illustrate the approach,

I give a wide class of games for which the principal can obtain strictly better outcomes than the

corresponding Nash solution and show how such outcomes can be implemented. The framework is

general enough to accommodate many scenarios, and powerful enough to generate predictions that

agree with empirically-observed behavior. The last part of the thesis considers two more learning
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models, best response and fictitious play, and derives the principal’s optimal policies theoretically

and computationally for the same class of games considered in the social learning model.
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Chapter 1

Introduction

This thesis studies optimization problems in dynamically changing environments. Unlike static

optimization problems, where all the relevant information for solving the problem is available to

the decision maker in advance, dynamic problems present a myriad of difficulties that arise for a

multitude of reasons. Uncertainty about the state of the world presents one such difficulty: the state

that the environment is in may be revealed in stages instead of all at once. This requires the decision

maker to continuously change their actions in order to respond to a variety of possible scenarios.

The complexity of dealing with and responding optimally to such contingencies can be very high,

often making it infeasible for the decision maker to develop fully-contingent plans.

Another source of difficulty arises from interacting repeatedly with an opponent. Such interac-

tions require the players to think ahead about the future in order to decide on their best course of

action, again taking into account the possibly huge joint action space when charting out their plan.

In contrast to static problems, solving a dynamic problem requires the decision maker to not just

optimize for today, but to think about how current decisions affect future payoffs. A decision that is

optimal for today’s problem may not be ideal when one takes the future into account. This tension

between short and long-term objectives usually adds to the difficulty of problems that take place in

a dynamic setting.

A more optimistic view of dynamic problems is that they provide the decision maker (or the

players, in case of a game) with an opportunity to learn about their environment and consequently

improve the decisions they make. This is particularly important, not to mention realistic, in environ-
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ments that agents find themselves in with no prior experience. The standard approach to decision

making in economics assumes that rational agents will always make optimal decisions regardless

of the situation they find themselves in or whether they have played the game before. In reality,

many games are played repeatedly and it would be expected that agents would behave differently as

they become more familiar with the game and with their opponents. In that sense, thinking about

dynamic problems becomes not a mere technical curiosity, but a more accurate depiction of various

situations that arise daily when agents interact amongst themselves or with their environment.

The thesis examines the preceding issues in the context of two dynamic problems. The first

problem comes from the field of online advertising. In this problem, the decision maker is optimizing

against an uncertain environment and has to deal with the aforementioned array of difficulties that

comes along in such environments. The second problem involves a decision maker, or a principal,

who is interacting with a crowd of learning agents in the context of a repeated game. In both

problems, my main concern is deriving and understanding the structure of the optimal policies

that the principal should use to maximize his payoff. Various related questions are answered as

an extension of the main results that address finding the optimal policies: How do these policies

compare to other policies that may be less computationally burdensome but only approximate the

optimal solution? How does thinking about agents as learning, evolving entities instead of fully

rational computing machines change how the principal should play the game? Are there situations

that are better described by these models than the standard economics model?

The following is a description of the problems addressed in this thesis, as well as a summary of

the results and contribution.

1.1 Display Advertising

In the first chapter I consider an optimization problem that comes up in the field of online display

advertising (Ghosh, McAfee, Papineni, and Vassilvitskii 2009). In online display advertising, a

publisher targets a specific audience by displaying ads on content web pages. A display opportunity

occurs when a member of the target audience visits a webpage that the publisher can post an ad
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on. Because the publisher has little control over internet traffic, the supply of display opportunities

is stochastic. I consider the problem of optimal ad delivery, where an advertiser requests a number

of ads to be displayed by the publisher over a certain time horizon. Time is discrete and divided

into periods. In the beginning of each period the publisher chooses fractions of the still unrealized

supply to allocate towards fulfilling the advertisers’ demands. If the publisher fails to deliver the

agreed-upon demand at the end of the horizon, it is charged a penalty per each undelivered ad. At

the same time, if the publisher supplies more ads than required then there is also a penalty associated

with overdelivery. Possible reasons for the existence of such a penalty are given in the next chapter.

The goal is to be able to fulfill the demand at the end of the horizon with minimum costs incurred

from penalties associated with shortage or overdelivery of ads as well as advertiser-specific delivery

constraints.

This is an example of a dynamic problem where the main source of difficulty comes from uncer-

tainty (of the supply). If supply in each period was certain, then the problem would be trivial: the

publisher just assigns fractions of the supply in each period until demand is fulfilled, with no risk of

running over at any point. The problem becomes trickier when supply is uncertain as there are too

many contingencies to plan for and the computational burden becomes too high.

1.1.1 Contribution

There are two main contributions in this chapter:

• The first is isolating a special case of the display advertising problem and fully characterizing

the optimal policy, in terms of both its structure and how it can be computed. The optimal

policy in this case has a surprisingly simple structure — characterized by a vector of positive

numbers, one for each period— that can be efficiently computed and used on the fly at any

point in the problem to determine the optimal fraction of supply to assign, regardless of the

path that the problem has taken prior to that point.

• When the general case is considered, the problem becomes more difficult to solve optimally, as

an algorithm that deals with all possible scenarios will require time that is pseudopolynomial
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in the input size (Garey and Johnson (1979)). This means that the complexity of solving the

problem directly depends on some of the values in the input (so that for example, a problem

where the demand is 1000 is considerably more difficult to solve than one where the demand is

100). To get around this problem, I design a complexity/cost trade-off scheme that allows the

publisher to get as close as it wants to the optimal solution at the expense of a more complex

problem to solve. Thus a publisher who is looking for a quick solution and doesn’t mind an

extra bit of expense can approximate the problem more roughly (and incur more cost) than a

publisher who is willing to wait for the solution of a more complex problem.

1.1.2 Methodology

The techniques used in this chapter rely on finite horizon dynamic programming. One can show that

the cost-to-go/value function is always convex in the state and decision variables. For the special

case of the problem, this reduces to finding a solution to a series of disjoint convex minimization

problems, which can be done efficiently and allows for nice closed-form solutions for the optimal

policy.

While convexity is maintained in the general case, there are no closed-form descriptions of the

value function. Instead, the value function has to be constructed for all possible states in each time

period. Since the number of states in each period is directly tied to the input of the problem, this

makes the problem quite difficult, as the publisher may have to deal with a very large number of

states. The approach I take relies on geometric rounding: The state space is divided, or partitioned

into regions. Each region is represented by one element from that region. The challenge is doing

this representation without breaking down the convexity of the (now approximate) value function

so that the minimization problems associated with each period can still be solved efficiently. As the

publisher requires more accurate solutions, the state space is divided more finely, allowing for more

detail in computing the approximate value function, but at the expense of a larger state space.
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1.2 Exploiting Myopic Learning

The second chapter shifts focus from the straightforward dynamic optimization under uncertainty

problem to a more game-theoretic setting. In this chapter, I consider a repeated interaction between a

principal and a population of learning agents. The learning model considered is that of the replicator

dynamics, where agents copy the strategies of their more successful counterparts. I analyze a game,

called the Cheat-Audit game, which is a variation on asymmetric matching pennies. The game is

played by the principal on one side and the population on the other, and the goal is for the principal

to manipulate the learning dynamics to control or limit the fraction of agents taking an action that

the principal considers harmful. As I discuss in the chapter, there are a variety of applications of

the model, most notable is the one on illegal (music) file sharing.

The driving question behind the work in this part of the thesis is whether it is possible to obtain

results that improve on the standard model of decision making in economics when some kind of

learning is incorporated into the agents’ behavior, so that agents do not immediately respond to

changes in the environment, but instead there is some lag between when a certain action is taken

and the time most of the population starts responding optimally to this action.

This dynamic aspects of this problem are different from those in the first chapter. There is

no uncertainty here as I consider an infinite population of agents and state transitions take place

with probability one. The principal’s actions reverberates through the population through social

learning, which takes some time to happen, and the main difficulty comes from the tension between

optimizing for the current period and optimizing for the future.

1.2.1 Contribution

There are three main contributions in this part of the thesis

• I show that by understanding the dynamics of the population and taking the future into

account, the principal can sometimes obtain a higher payoff than that of the Nash equilibrium

while exerting less effort than what the Nash solution requires. This is a constructive result,
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meaning that I do not just show that it is possible for the principal to obtain better payoffs,

but I give a detailed description of how he should play the game to guarantee such payoffs.

• I provide practical examples that show that the standard way in which the game is played,

with everyone being fully rational, is not always a good description of reality, and that the

learning model I use is able to provide a better explanation of such examples.

• On the conceptual front, I argue that imperfect decision making in a population —as exempli-

fied by learning— can in some cases be considered a resource that most system planners fail

to utilize.

1.2.2 Methodology

This part of the thesis uses methods from optimal control theory. I derive the optimal policy for the

principal via the use of Hamiltonian and variational calculus techniques. These techniques provide

necessary but not sufficient conditions that an optimal policy should fulfill. I prove the existence of

an optimal policy and use the necessary conditions to show that the policy derived is unique.

When considering the case for a myopic population and a myopic principal, the equations of

motion that describe the evolution of each party’s actions constitute a dynamical system that has

a unique non-hyperbolic equilibrium. I solve the dynamical system by examining the Hartman-

Grobman linearization of the Jacobian of that system near the equilibrium.

1.3 Best Response and Fictitious Play

The last part of the thesis extends the work on learning to Best Response and Fictitious Play models,

while still considering the same Cheat-Audit game. In contrast with the chapter on replicator

dynamics, I consider a discrete time setting. When agents use best response, they act as if the

principal’s action in the most recent period of play is the same action that he will take in the current

period, and they best respond to that action. Under fictitious play, the agents respond to the average

of the principal’s play over time. This implies the possibility of manipulation, since the principal
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can conceal temporary deviations from his course of play in the overall average of past play, leading

to potential gains in payoff.

The question is indeed whether one can obtain similar results to the ones obtained under the

replicator dynamics model. The answer turns out to be mixed: while it is indeed possible in most

situations to improve on the Nash solution, the resulting policies are very sensitive to parameter

values, such that very slight differences in value can lead to a complete change in policy.

1.3.1 Contribution

The contributions in this chapter are both theoretical and computational:

• On the theory side, I characterize the optimal policy for the principal when agents are using

best response. I show that depending on the parameters of the problem, the policy either

alternates between periods of auditing and not auditing, or audits at a constant low rate. In

either case, the principal can always do better than the Nash solution.

• I computationally find the optimal policy when agents are learning according to fictitious play,

and show that there is a strong resemblance to the best response optimal policies. In particular,

one candidate for the optimal policy is a threshold strategy, where the principal only audits

the entire population when the history of auditing becomes weak (as in, according to history,

there has not been too much recent audit activity). Whether the principal can perform better

than the Nash solution depends on the parameters of the problem. In particular, the cost in

the Nash solution does not depend on the Nash audit rate whereas in fictitious play it plays a

major role in determining the optimal policy and its cost.

1.3.2 Methodology

The theoretical methods used in this chapter come from infinite horizon dynamic programming,

where a candidate policy is examined for optimality by checking for profitable deviations or lack

thereof. The conditions for which a policy is optimal come from restrictions placed on some of the

parameters so that no profitable deviations exist.
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The computational part solves a finite version of the dynamic program and approaches the infinite

horizon case for a relatively low number of periods. The dynamic program is solved via MATLAB

and the code is provided in the appendix.
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Chapter 2

Optimal Delivery in Display
Advertising

2.1 Introduction

Display advertising has become one of the most profitable areas of online services, responsible for

approximately $24 billion in business (Ghosh, McAfee, Papineni, and Vassilvitskii 2009). Unlike

sponsored search, where textual ads are displayed along the results of a keyword search, display

advertising targets specific audiences by showing graphical banner ads on regular content pages.

Targeting can be specific by focusing on certain demographics, so that for example, an ad is only

shown to people from a certain age group living in a particular geographic location. Typically,

display advertising is handled through direct contracts between the publisher and the advertiser.

These contracts are characterized by the publisher committing to the delivery of a pre-specified

number of ads to the target audience during a certain time period. Because the supply of display

opportunities is uncertain, it is possible that the publisher is unable to fully meet the advertiser’s

demand, in which case the advertiser is compensated via a penalty (per undelivered impression,

for example). Additionally, overdelivering, or providing an advertiser with more impressions than

their requested demand can be costly for a variety of reasons.1 The tension between the shortage

and overdelivery costs in addition to the stochasticity of the supply is what makes the publisher’s

1For example, there may be an opportunity cost associated with giving the ad away instead of selling it to another
advertiser. It is also possible that the advertiser’s infrastructure can only handle so many visits from people who see
the ad and click on it before that infrastructure breaks down, and so a cap is placed on the number of ads that the
advertiser wants displayed during a period of time.
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problem difficult. The basic question I deal with in this chapter is the following: Given an advertiser’s

demand, a finite planning horizon, and a time-variable supply distribution, how should the publisher

dynamically choose fractions2 of the still unrealized supply in each period so that the total expected

cost is minimized under the various penalties?

As in other forms of online advertising, ads are assigned to advertisers through the use of auctions.

Because of the intricacies and complexities of these auctions and the overhead required by the

advertisers to handle them, many advertisers simply opt to let the publisher manage their campaigns

and do their bidding on their behalf. As in Feige, Immorlica, Mirrokni, and Nazerzadeh (2008), the

advertiser indicates a maximum price that it is willing to pay per impression, and the publisher uses

this constraint when bidding on impressions for the advertiser. With the volume of traffic generated

over the internet, these auctions take place at an extremely fast rate. It would thus be inefficient, if

not completely impossible, to adjust the advertiser’s bid after every single auction. Therefore, the

advertiser’s bid, placed by the publisher, remains effective for a certain period of time until it is

re-adjusted for the next time period. By having a constant bid placed over all the auctions taking

place in a time period, one can expect to win a fraction of these auctions. I will make use of this

correspondence between bids and fractions in my formulation by thinking of the decision variables

as fractions of the uncertain supply instead of bid values for each time period. This has been the

standard approach in recent work on the problem (e.g., Boutilier, Parkes, Sandholm, and Walsh

(2008) and Ghosh, McAfee, Papineni, and Vassilvitskii (2009)). Like these papers, I think of the

supply of ads as a ’channel’ with an uncertain capacity. However, unlike the area of literature that

focuses on selecting the optimal set of contracts to maximize revenue in such a setting (for example,

Babaioff, Hartline, and Kleinberg (2008), Constantin, Feldman, Muthukrishnan, and Pál (2008),

and Feige, Immorlica, Mirrokni, and Nazerzadeh (2008)), I take the contract as input and focus on

how to optimally fulfill the demand under supply uncertainty. I assume that the only control that a

publisher exerts over the supply is to decide on a fraction of the channel to allocate towards fulfilling

an advertiser’s demand before the actual supply is realized for that period. Instead of formulating

2The reason our decision variables are fractions of the supply will be clear shortly.
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the problem as that of profit maximization —by fulfilling as much as possible of the demand for the

negotiated price per impression— I think of it as a cost minimization problem, where one tries to

minimize the number of ads not served (equivalent to lost revenue in the maximization model) in

addition to the overdelivery penalty discussed earlier. The main question I am interested in here is

similar to some of the questions asked in Boutilier, Parkes, Sandholm, and Walsh (2008). There, the

authors aimed to give a very general, all-encompassing framework to the problem at the expense of

giving solutions that provide no performance guarantees. In contrast to their work, I focus on the

specific problem described above and I am able to completely characterize the optimal policy under

reasonable assumptions. I also show that while we cannot obtain such a solution for the general

case, we can get arbitrarily close to the optimal solution.

Our understanding of online advertising has evolved from looking at the problem as a sequence

of seemingly unrelated single-round auctions to become more of a carefully planned campaign that

admits more expressive requests from the advertiser’s side. For example, as noted earlier, advertisers

can be very specific in defining their target groups. In addition, there can be other side constraints

or terms added to the publisher’s contract. As an example, a contract can specify that, in addition

to requiring a certain number of impressions to be delivered over a period of thirty days, the delivery

should also be spread as evenly as possible, so that if the demand is, say, 300,000 impressions, then

the advertiser would ideally prefer to display 10,000 impressions every day for the duration of the

contract. This way the advertiser gets a more steady exposure instead of a possible burst in delivery

followed by no advertising that the earlier setting allows (for example, by delivering all ads on the

first day and then doing nothing for the rest of the planning horizon). One can easily imagine many

ways in which the advertiser can amend their contract to include constraints like the above example.

I will give a sufficient condition under which the methods in this chapter extend to more expressive

contracts.

There is a strong connection between the problems in this chapter and problems from the the-

ory of stochastic inventory control. The literature in this area is vast, with a standard model of

stochastic demand (see Zipkin (2000)) but scattered and problem-specific models for random yield
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and stochastic supply (Yano and Lee (1995)). Until recently, the focus of this literature has been

on identifying the structure of the optimal policies for these problems without much regard to the

feasibility of actually computing such policies. Most of these policies were based on dynamic pro-

gramming formulations and solving the dynamic program was costly and in many cases impossible.

Later work was successful in finding approximate policies that either do not rely on dynamic pro-

gramming, for example, Levi, Pal, Roundy, and Shmoys (2007) or that exploit the structure of the

dynamic program to provide near-optimal solutions without the computational burden (Halman,

Klabjan, Mostagir, Orlin, and Simchi-Levi (2009)).

The rest of the chapter is organized as follows. Section 2.2 gives a formal definition of the

problem, while Section 2.3 derives the optimal policy for a special but important case. Section 2.4

derives an approximation scheme for the general case. Section 2.5 shows how to extend the solution

to the case with multiple advertisers as well as extensions to more expressive contracts. Section 2.6

concludes the chapter and suggests possible extensions to the results obtained herein.

2.2 Model and Notation

I will highlight some of the methods used throughout the chapter by focusing on the single-advertiser

case for most of this section, and so I present the model for this case first. The extension to multiple

advertisers is given in Section 2.5. First, consider the demand side of the problem. An advertiser

requests a number of ads that it would like displayed over a certain time horizon. Time is discrete

and is divided into periods, with the planning horizon consisting of T periods. The advertiser wishes

to have a total of D impressions delivered over the entire horizon. Later on I will discuss the case

when the advertiser can also specify additional requirements, like even spacing of impressions over

time, etc.

The supply is stochastic and time-variable. In each time period t, t = 1, ..., T , the publisher gets

a random number Xt of display opportunities that are related to the advertiser’s target group. Here,

Xt is a random variable that is distributed according to a known distribution Ft(x), with density

ft(x). We assume that the supply distributions across periods are independent, but not necessarily
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identically distributed. In each period t and before Xt is realized, the publisher decides on a fraction

αt, 0 ≤ αt ≤ 1, to be taken out from the random supply Xt in order to fulfill part of the demand

D. As discussed earlier, this fraction is equivalent to selecting a bid that ultimately awards the

advertiser a fraction of the supply at the end of the period. At the end of the planning horizon, the

publisher incurs a penalty per undelivered impression, denoted by p1. There is also a penalty per

overdelivered impression, which can be thought of as the cost of giving away an impression for free

instead of selling it. We will denote this penalty by p2. At time T = 0, the expected cost over the

planning horizon can be expressed by the following loss function

L(D,α) = E

p1

(
D −

T∑
t=1

αtXt

)+

+ p2

(
T∑
t=1

αtXt −D

)+
 ,

where (y − a)+ = max (y − a, 0). The publisher’s problem is to select the fractions α1, ..., αT such

that L(D,α) is minimized. Put differently, the publisher wants to find a policy whereby given the

number of remaining impressions at the beginning of period t, it sets the fraction αt such that the

optimal expected cost is achieved, assuming that optimal decisions will be made in periods t+1, ..., T .

Note that, perhaps contrary to one’s initial intuition, a greedy policy that assigns high fractions to

the advertiser in earlier periods is not necessarily optimal since the supply distributions are time

variant. In fact, we can show that the following result is true of any myopic policy (which includes

the class of all greedy policies).

Proposition 2.2.1. Any myopic policy for the single-advertiser ad delivery problem can perform

arbitrarily badly compared to the optimal solution.

A myopic policy by definition does not take the future into account and tries to provide a solution

as if the current period is the last or only period in the problem. The following simple example shows

that the preceding statement is true.

Example 2.2.2. An advertiser has a demand of 40 ads, to be delivered over two periods. The cost

of overdelivery is 1 and the shortage cost is 3. In the first period, the supply of ads is a Bernoulli

random variable, taking a value of either 50 or 100 with equal probability. The supply in the second
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period is again a Bernoulli random variable, taking the value 50 with probability ε and 100 with

probability 1− ε. Denote by α1 and α2 the fraction of supply assigned to the advertiser in periods 1

and 2, respectively, and let the cost of the myopic policy be Costmyopic and the cost of the optimal

policy be Costopt. Any myopic policy will set α1 > 0 as it tries to fulfill some of the demand in

period 1, and therefore incurs positive expected cost. In fact, for this example a myopic policy that

tries to optimally balance overdelivery and shortage costs in the first period sets α1 = 0.8 and incurs

an expected cost of 20 in the first period alone. This can be checked as the optimal solution to the

following problem

min
α1

E[α1X1 − 40]+ + 3E[40− α1X1]+,

which is what the myopic policy tries to solve. As ε goes to zero however, an optimal solution can

set α∗1 = 0 and α∗2 = 0.4, and the optimal cost approaches zero, making
Costmyopic
Costopt

→∞.

Obviously, as soon as overdelivery occurs in one period and the associated costs are incurred,

there is no reason to assign any future supply to the advertiser. One can think of fulfilling the

demand over multiple periods as an opportunity to avoid overdelivery in any one particular period

by spreading the delivery over the entire horizon.

Unsurprisingly, the sequential nature of the problem lends itself to a dynamic programming

framework. Let the state variable at time t be dt, the number of remaining impressions to be

displayed over the rest of the planning horizon. The sequence of events in period t is as follows. dt is

observed and the fraction αt is set to some value. The supply Xt is then realized and the yield αtXt

goes towards fulfilling part or all of the advertiser’s demand. The state variable for the next period,

dt+1, is set equal to (dt − αtXt)
+. I will denote by gt(dt) the optimal expected cost-to-go function;

that is, gt(dt) is the optimal expected cost at time t when there are dt remaining impressions, and

assuming that optimal decisions will be made in periods t through T .
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2.3 Single Advertiser

I start the analysis by focusing on the case of a single advertiser. It is worth noting that in addition

to the benefits of illustrating the structure of the solution in a simplified context, this case is also

of relevant practical interest. In the multiple-advertisers case, the advertisers’ problems are linked

through the constraint that the sum of the fractions of supply assigned to them is at most one.

Since in some scenarios it is not uncommon for the publisher to have more supply than the aggregate

demand, this constraint becomes non-binding, and the problem can be decoupled into separate single

advertiser problems. Taking this view further, I formalize the preceding point in the assumption

that follows. Let the optimal fraction in period t, t = 1, ..., T be denoted by α∗t and consider:

Assumption 2.3.1. In the optimal solution to the single advertiser delivery problem, α∗t < 1 for

all t.

As mentioned, one can easily think of scenarios where this assumption would be valid. Indeed,

there will be specific target groups and/or various criteria for which it is probably never the case that

the publisher assigns all the display opportunities it gets to a single advertiser, since the advertiser’s

demand is considerably smaller than the available supply, and hence the optimal fraction of ads

assigned to that advertiser will always be strictly less than one (as a trivial example, think of

an advertiser that wants to display ads to males in the age bracket of 20 to 40 — a very large

target audience). On the other hand, one can construct examples where the optimal solution gives

the advertiser every single display opportunity that the publisher gets. This may happen if the

advertiser is interested in a very unique set of target demographics, such that the supply of the

display opportunities for the specified criteria is scarce and barely enough to fulfill the demand.

Another possibility is that the cost per undelivered impression is very high compared to the per-

impression overdelivery cost, resulting in a very conservative policy that aims to avoid shortage by

setting α to its maximum possible value. For the purposes of this section though, and assuming

that the above assumption holds, I can derive a simple closed form for the optimal policy that is

summarized in the following theorem.
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Theorem 2.3.2. Let dt be the number of remaining impressions at the beginning of period t. There

exist nonnegative numbers k1, k2, ..., kT , such that in the ad delivery problem, the optimal policy in

period t is to set α∗t = dt/kt. Furthermore, computing the values kt for t = 1, ...T can be done

efficiently in an offline (i.e., before the first period begins) manner.

Proof. I start by solving a single-period problem and then extend the solution to its multi-period

counterpart. Consider a single-period problem with demand D and random supply X. A fraction

α∗ is chosen before X is realized such that α∗ is the solution to the following problem

L(D,α) = min
α
E[p1(D − αX)+ + p2(αX −D)+]. (2.1)

This expectation can also be written as

L(D,α) = p1

∫ D/α

0

(D − αx) dF (x) + p2

∫ ∞
D/α

(αx−D) dF (x), (2.2)

which can be verified to be a convex function of α. The first derivative of (2.2) with respect to α is

dL(D,α)

dα
= −p1

∫ D/α

0

xf(x)dx+ p2

∫ ∞
D/α

xf(x)dx. (2.3)

Because x is a nonnegative random variable, the integral
∫ b
a
xf(x)dx is equal to the integral

∫ b
a

(1− F (x))dx.

The second derivative, again with respect to α, is then equal to

dL2(D,α)

dα2
=
p1D

α2

∫ D/α

0

xf(x)dx+
p2D

α2

∫ ∞
D/α

xf(x)dx.

This expression is greater than zero for any nontrivial specification of the problem (i.e., a specification

with p1 > 0, p2 > 0, D > 0, and a distribution F (x) that does not put all the weight on zero). Hence

the function is convex in α and the first-order condition for minimization obtained from setting (2.3)
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equal to zero tells us that α∗, the fraction for which the expectation in (2.1) is minimized, satisfies

α∗ = sup
α

{∫D/α
0

1− F (x)dx∫∞
D/α

1− F (x)dx

}
≥ p2

p1

where the inequality, instead of equality, accounts for discrete distributions. Recalling that the

integral
∫ b
a

(1− F (x))dx for a nonnegative random variable X gives the expectation of X over the

interval (a, b), the optimality condition can be interpreted as finding the fraction α∗ that divides the

support of X into two intervals, [0, D/α∗] and (D/α∗,∞), such that the ratio of the contribution

of these two intervals to the expectation of X is equal to the ratio p2/p1. In the case of a discrete

distribution, D/α∗ would be the first point in the support of X that makes this ratio equal to or

bigger than p2/p1. If no such point exists, then α∗ is set to its maximum value of one, a possibility

that I will ignore when I move to the multi-period version under Assumption 2.3.1.

It is not difficult to see that, for values p1 and p2 and a certain distribution F (x), there is only

one point in the domain of X, call it k, that would satisfy this ratio condition, i.e., there is a unique

value k that solves

k = inf
z

{ ∫ z
0
xf(x)dx∫∞

z
xf(x)dx

}
≥ p2

p1
. (2.4)

Furthermore, computing this point k requires only knowledge of p1, p2, and F (x) — it is independent

of D and α. This implies that one can pre-compute k before D is known and before the problem

commences (i.e., the publisher can compute k offline before the period begins). This value is then

used along with the input D to compute α∗ = D/k. Thus the optimal solution to the one period

problem can be written as

α∗ =


D/k, 0 ≤ D/k < 1;

1, D/k ≥ 1.

(2.5)

Using Assumption 2.3.1, I write the optimal cost-to-go function as a function of the demand D,

substituting the value of α∗ from (2.5) into (2.2)

g(D) = p1

∫ k

0

d(1− x

k
) dF (x) + p2

∫ ∞
k

d(
x

k
− 1) dF (x).
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Note that in this expression, the only variable is d, by rewriting as

g(D) = d

(
p1

∫ k

0

(1− x

k
) dF (x) + p2

∫ ∞
k

(
x

k
− 1) dF (x)

)

we can see that g(D) is a linear function of the form g(d) = uD, where u is a nonnegative constant

that is equal to p1

∫ k
0

(1− x
k ) dF (x) + p2

∫∞
k

(xk − 1) dF (x).

Having solved the single-period problem, I extend the solution to its multi-period counterpart.

Denote the remaining impressions at the beginning of period T by dT . Since the problem in period

T is identical to the single-period problem I just solved, I can find the values kT and uT and write

gT (dT ) = uT dT . Then, moving backwards in time to period T −1 and writing the optimal cost-to-go

function for that period, I get

gT−1(dT−1) = min
αT−1

E[p2(αT−1XT−1 − dT−1)+

+gT (dT−1 − αT−1XT−1)+].

Substituting for gT (dT ) by uT dT , this expression becomes

gT−1(dT−1) = min
αT−1

E[p2(αT−1XT−1 − dT−1)+

+uT (dT−1 − αT−1XT−1)+]

which is of the same form as (2.1), with p1 replaced by uT . I can then solve for the optimal α∗T−1 in

the exact same way as before, by finding kT−1. The optimal policy in period T −1 is then similar to

that of a single-period problem: if the number of remaining impressions at the beginning of period

T − 1 is dT−1, then the optimal solution is to set α∗T−1 to dT−1/kT−1 and the optimal cost-to-go in

that period can be written as gT−1(dT−1) = uT−1dT−1. Inductively, we deduce that there are values

kT−2, ..., k1 which can all be computed in the same way as in the single-period problem, with the

optimal policy in any period given as in the statement of the theorem. Thus the problem reduces

to solving a sequence of T single-period problems. Again, since the values kt and ut depend only on
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p1 p2, and F (xt), they can be computed offline.

It remains to show that kt and ut can be computed efficiently. Indeed, finding kt amounts to

solving an equation in a single variable in the continuous case and is only slightly more difficult than

calculating the expectation of a random variable in the discrete case. For the latter, assume that the

maximum number of values the random variable Xt can take is m, and that the probability of Xt = x

is given by p(x), then finding kt involves nothing more than performing binary search on those m

values, where at each step of the search the current value mi is taken as a candidate for kt and

the summation
∑mi
i=0 xip(xi) is evaluated and divided by E(x) −

∑mi
i=0 xip(xi) and then compared

to p2
p1

. A straightforward, naive implementation of this method will take time O(m logm), which is

already fast enough for all practical purposes. Computing ut takes O(m) time and is dominated by

the time it takes to find kt. Repeating the entire procedure for each period, the overall running time

is O(Tm logm).

This result makes intuitive sense, and reinforces the discussion after Assumption 2.3.1. For the

one-period problem, as k increases with increasing p2 or decreasing p1, α∗ decreases in order to try

and protect against overdelivery, which becomes a more Hcostly penalty. Similarly, imagine that p1

is very high compared to p2, then k takes on smaller values, pushing α∗ towards one in order to

protect against the high cost of underdelivery even when D is not very large.

As an illustration, here is how k can be computed for some well-known distributions.

Uniform: Let X ∼ U [0, 1000] and p2/p1 = 0.5, then the publisher needs to find k that solves

∫ k
0

x
1000dx∫∞

k
x

1000dx
= 0.5

and k is equal to 577.35. Assume that the ratio p2/p1 increases. This indicates that the overdelivery

cost increases relative to the shortage cost, in which case one would expect that the publisher will

set a lower α to protect against overdelivery. This equates to having higher values for k, which is

indeed the case. Let p2/p1 be equal to 1.5, then k = 774.597. The opposite is of course true when

p2/p1 decreases. If one sets p2/p1 equal to 1/3, then k = 447.214.
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Exponential: Let X ∼ exp[λ], λ = 0.001, and p2/p1 = 0.5, then the publisher needs to find k that

solves ∫ k
0
xλe−λxdx∫∞

k
xλe−λxdx

= 0.5

The value of k that solves this equation with the above parameters is k = 1188.834. Like the previous

example, increasing the ratio p2/p1 increases k and decreasing it decreases k. The parameter λ is

of paramount importance of course. If λ is high, indicating that display opportunities (which are

proportional to 1
λ ) are few and far between, then k is also very low, implying that α will either be

very high or will have to be set equal to 1.

The multi-period solution gives a nice insight into the structure of the problem. The constant

ut for period t can be written as

ut = ut+1

∫ kt

0

(1− xt
kt

)dF (xt) + p2

∫ ∞
kt

(
xt
kt
− 1)dF (xt)

where uT+1 = p1. From this expression, and depending on the parameters and the distributions in

the problem, ut may or may not be larger than ut+1. One can interpret ut as the cost of waiting

to fulfill an impression in the next period instead of the current period. Sometimes it can be costly

to wait, if for example the supply distributions in future periods are not high enough to satisfy the

demand, and so ut is high. Conversely, if it is early in the horizon and future supply distributions

look good, then ut can be low, as it is unlikely that the publisher will be penalized for waiting, and

there is little reason to risk overdelivering. Consider the case where supply is IID across periods.

Intuitively, one expects that the longer the horizon becomes, the less αt is for low values of t (i.e.

earlier in the horizon). The reason is that there is no reason to risk overdelivery by setting αt high

early on when the horizon is still long as every period has the same supply distribution. This is clear

from the following example.

Example 2.3.3. Consider a 3-period problem where X ∼ U [0, 100] in every period, p1 = 3, and

p2 = 1. Starting from the last period and solving for k3, one gets k3 = 50. Evaluating the constant
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u3

u3 = p1

∫ k

0

(1− x

k
) dF (x) + p2

∫ ∞
k

(
x

k
− 1) dF (x)

= 3

∫ 50

0

1− x
50

100
+ 1

∫ 100

50

x
50 − 1

100

= 1.

Using this value for u3 and solving the problem again for period 2, one gets k2 = 71.7107, from

which u2 = 0.4142. Moving to the first period, k1 = 84.08. Thus as we go earlier in the horizon, kt

increases. However, because dt+1 ≤ dt, it is not necessarily the case that αt < αt+1. Depending on

the demand and the realization of Xt, αt may or may not be less than ατ for τ > t.

A myopic policy for this example would set kt = 50 for all t. This means that a myopic policy

is inclined to deliver more impressions early on in the horizon compared to the optimal policy, and

hence runs a higher risk of overdelivering.

Given that the solution can be computed knowing only the costs p1 and p2 and the demand

distributions, the publisher can use this information about the optimal cost to adjust and negotiate

the penalties p1 and p2 so that the resulting contract has minimum possible cost given the demands

and requirements of the advertiser.

2.4 Single Advertiser — General Case

When Assumption 2.3.1 is violated, the policy in Theorem 2.3.2 is no longer optimal. The reason

for this is that the dependence of the optimal cost-to-go on d is not linear but convex, indicating

that one needs to evaluate gt for all values of dt to successfully apply backwards induction. When

this is the case, the problem has a pseudopolynomial time algorithm with a running time O(TD).

The direct dependence on D makes the problem intractable. However, one can still develop an

ε-approximation scheme for the problem. This means that for any given ε, we can find a solution

that is within ε from the optimal solution and that requires time polynomial in the input size and
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1/ε to compute. In this section, I prove the following result:

Theorem 2.4.1. The optimal ad delivery problems admits an ε-approximation that can be efficiently

computed.

Consider the general case of the problem when the optimal fraction α∗t , t = 1, ..., T , can take on

its maximum value of one. As I will show, this slight change will unfortunately have a strong effect

on the complexity of the problem, making it significantly more difficult than the case discussed in

the previous section. I start with the following proposition:

Proposition 2.4.2. The function gt(dt) is convex for all t.

Proof. I prove the proposition by induction. Consider period T , which is equivalent to a single-period

problem, as the base case. The optimal α∗T in this last period is still given by (2.5). If dT < kT ,

then the optimal expected cost is convex (in fact, linear) in dT as shown earlier. If dT ≥ kT then

α∗T = 1, and the optimal expected cost is given by

hT (dT ) = p1

∫ dT

0

(dT − xT )dF (xT ) + p2

∫ ∞
dT

(xT − dT )dF (xT ),

which is easily verified to be convex in dT . This means that gT (dT ) consists of two parts: a linear

function for dt < kt and a convex function for dT ≥ kT . For gT (dT ) to be convex over its entire

domain, the slope should be increasing at the break point kt. To show that this is the case consider

the unconstrained problem, where α∗ can take on any value regardless of whether dT < kT or not,

then gT (dT ) = uT dT is a lower bound on the optimal value of gT (dT ) for all values of dT . This

means that for any value dT > kT the graph of the constrained solution can only lie on or above the

line uT dT , which implies a nondecreasing slope at kT . Another way to see this is to note that the

function max{uT dT , hT (dT )} for values of dT ≥ kT is convex (the maximum of linear and convex

functions), and is always equal to hT (dT ). It follows that the overall optimal cost function gT (dT )

is convex on its domain.
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For the induction step, assume gt+1(dt+1) is convex and write gt(dt) = minαt vt(dt), where

vt(dt) =

{
p2

∫ ∞
dt/αt

(αtxt − dt)dF (xt) +

∫ dt/αt

0

gt+1(dt − αtxt)dF (xt)

}
.

The first part is convex in αt and the second is convex by the induction hypothesis and the fact

that integration preserves convexity on a monotonically increasing convex function. Thus vt(dt) is

convex in αt and can be efficiently minimized. Let the minimizer be α∗t and write

gt(dt) = p2

∫ ∞
dt/α∗t

(α∗txt − dt)dF (xt) +

∫ dt/α
∗
t

0

gt+1(dt − α∗txt)dF (xt).

Again, the first part of this expression is a convex function in dt, while the second part is convex

under the induction hypothesis. This finishes the proof of the proposition.

Solving this problem is equivalent to computing the optimal expected cost at the beginning

of the planning horizon when we still have all the demand left to fulfill, i.e., solving the problem

is essentially the same as computing g1(D). As mentioned, the slight change in allowing α∗ to

be equal to one has a considerable effect on the complexity of the problem. The special case I

handled in Section 2.3 involved successively solving a sequence of single-period problems where any

two consecutive periods t and t + 1 are linked together only through a constant ut+1 that is easily

computed. In the general case however, and because gt(dt) is a convex rather than a linear function

of dt for all t, we may have to compute gt+1(dt+1) for every value of dt+1 in order to be able to

compute gt(dt). This means that we may have to compute gt+1 for every value up to potentially the

total demand D. This makes the running time of the problem pseudo-polynomial in the input size,

i.e., the complexity of the problem depends directly on the input data instead of its encoding size

—which in this case is logD— and the solution exhibits exponential running time behavior (Garey

and Johnson (1979)).

To try and alleviate this problem, I will construct a Fully Polynomial Time Approximation

Scheme (FPTAS). A minimization problem has an FPTAS if for every ε > 0 and for every instance

I of the problem, the algorithm takes time polynomial in the logarithm of the data and in 1/ε, and
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produces a solution A(I) such that A(I) ≤ (1 + ε)Opt(I),where Opt(I) is the optimal solution to

I. The FPTAS I construct for this problem relies on geometric rounding techniques and relies on

the fact that the cost-to-go function is monotonic or consists of a bounded number of monotonic

functions. Our goal will be to evaluate each gt at only a subset of values of dt such that the

cardinality of this subset is bounded by a polynomial in the input size, as well as the inverse of the

accuracy parameter ε. The loss of accuracy is a result of ignoring information by focusing only on

a subset of values. The following definitions will be helpful.

Definition 2.4.3. (δ-approximation function) Let δ > 1 and let f : D → R+ be a function. We say

that f̂ : D → R is a δ-approximation of f if for all d ∈ D we have f(d) ≤ f̂(d) ≤ δf(d).

Definition 2.4.4. (δ-approximation set) Let δ > 1 and let f : [L,U ]→ R+ be a monotone function.

A δ-approximation set of f is an ordered set S = {i1 < ... < ir} of integers satisfying

1. L,U ∈ S ⊆ {L, ...U};

2. for each j = 1 to r − 1, if ij+1 > ij + 1, then
f(ij)
δ ≤ f(ij+1) ≤ δf(ij).

Let f : [L,U ] → R+ be a monotonically increasing function with maximum value fmax. Let

tf be the time it takes to evaluate f . A δ-approximation set of f can be computed in time

O(tf logδ f
max log (U − L)) by performing binary search on [L,U ]. A δ-approximation function

is constructed from a δ-approximation set using the following definition.

Definition 2.4.5. Let δ > 1 and let f : [L,U ] → R+ be a monotonically increasing function.

Let S be a δ-approximation of f . A function f̂ defined as follows is called the approximation of

f corresponding to S: For any x such that L ≤ x ≤ U and successive elements ik, ik+1 ∈ S with

ik < x ≤ ik+1, we set f̂(x) = f(ik+1).

I now proceed with approximating the problem. Consider the last period. As I have shown,

calculating the value kT for that period is not difficult, but I need to calculate the value of gT (dT )

for each value of dT whenever dT > kT . Depending on the distribution and the costs p1 and p2, kT

might be quite low, and I would have to calculate dT for a number of values that is effectively on the
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order of the total demand D. This motivates us to use the previous definitions to limit our attention

to only a subset of values of dT , namely, the δ-approximation set of gT (dT ). Because gT (dT ) is a

convex, monotonically increasing function, I can indeed construct a δ-approximation set for it and

then use Definition 2.4.5 to construct ĝT (dT ), a δ-approximation function of gT (dT ). The following

lemma follows immediately from Definition 2.4.3.

Lemma 2.4.6. For any value of dT in the domain of the last period, gT (dT ) ≤ ĝT (dT ) ≤ δgT (dT ).

Now that I have an approximation of the value function in the last period, I can move backwards

in time to approximate gT−1(dT−1). I will drop the subscript t when I talk about the demand from

now on, using gT−1(d) instead of gT−1(dT−1). One problem is that gT (d) is used to calculate gT−1(d)

and we have no access to gT (d), but instead have its approximation ĝT (d). One can intuitively see

that using ĝT (d) in place of gT (d) while evaluating gT−1(d) will result in an error in the value

of gT−1(d), and as we repeat the process and approximate gT−1(d) and use its approximation to

calculate gT−2(d), the error gets worse. This is to be expected, as we are using an approximate

function as part of another function we are approximating, so the error gets compounded. Before

examining this, I write the minimization problem for a fixed d in the penultimate period, namely

how to find α∗T−1 that solves

gT−1(d) = min
αT−1

E
[
p2 (αT−1xT−1 − d)

+
+ gT (d− αT−1xT−1)+

]
. (2.6)

Because the second term in the expectation is not available, I use its approximation, ĝT (d), instead.

We are then looking for the value of αT−1 that minimizes

p2

∫ ∞
d

αT−1

(αT−1xT−1 − d)dF (xT−1) +

∫ d
αT−1

0

ĝT (d− αT−1xT−1)dF (xT−1). (2.7)

Because of the ĝT term, this function is not necessarily continuous. I will define ḡT as the

piecewise linear extension of ĝT , so that ḡT is both continuous and convex. The piecewise linear

extension of a function f on a subset S = [a, b], where a and b are integers, is the continuous function

obtained by making f linear between successive values of S. Convexity of ḡT follows from the fact
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that the points in ĝT come from the convex function gT . I then use ḡT in place of ĝT in (2.7) above

to define

ǧT−1(d) = min
αT−1

E
[
p2 (αT−1xT−1 − d)

+
+ ḡT (d− αT−1xT−1)+

]
. (2.8)

This is a convex minimization problem that can be solved efficiently and whose minimizer I will

denote by α̂T−1. I would like to understand how the solution produced by α̂T−1 on ǧT−1(d) compares

to the solution produced by the optimal α∗T−1 on the original problem of minimizing gT−1(d). The

relationship is summarized in the following simple lemma.

Lemma 2.4.7. For any 0 ≤ d ≤ D, we have ǧT−1(d) ≤ δgT−1(d).

Proof. From Lemma 2.4.6 and Definition 2.4.5, we know that for any value of d in [a, b], where a and b

are in the δ-approximation set of gT , we have ĝT (d) = ĝT (b) ≤ δgT (d). Since ḡT is linear between any

two consecutive points in the δ-approximation set (like a and b here), the relationship ḡT (d) ≤ ĝT (b)

holds, and therefore ḡT (d) ≤ δgT (d). Comparing equations (2.6) and (2.8), we see that the first

term in both expectations is the same, and for any value of αT−1 we have ḡT (d − αT−1xT−1) ≤

δgT (d − αT−1xT−1) as shown. Consider α∗T−1 as a solution to (2.8). By the preceding discussion,

the value produced by this solution is such that ǧT−1(d) ≤ δgT−1(d). It follows that there exists a

minimizer α̂ such that the relationship given in the statement of the lemma holds.

I have thus shown that for a fixed value of d, we can find a solution to the penultimate period

that is not more than a multiplicative error of δ away from the optimal solution for this value of d in

that period. I then proceed to find ĝT−1(d), the delta approximation function of ǧT−1(d), as before.

Notice that as we do so, we accumulate more errors since ĝT−1(d) ≤ δǧT−1(d) by Definition 2.4.3,

and hence ĝT−1(d) ≤ δ2gT−1(d) by Lemma 2.4.7. The whole process is repeated for each of the time

periods T − 2, ..., 1. The following lemma generalizes Lemma 2.4.7 and summarizes the relationship

between ĝt(d) and gt(d) for all t.

Lemma 2.4.8. In period t, t = 1, ..., T , we have ĝt(d) ≤ δT+1−tgt(d).

Proof. I prove the lemma by induction on t. From Corollary 2.4.6, we know that the result holds

for the base case t = T . The proof for period t is similar to the arguments I considered for
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period T − 1. Assume inductively that the relationship holds for period t+ 1 and consider ǧt(d) =

minαt E
[
p2 (αtxt − d)

+
+ ḡt+1(d)− αtxt)+

]
. The first term in this expectation is the same as that

in the problem of minimizing gt(d), and by the induction hypothesis ĝt+1(d) ≤ δT−tgt+1(d) and

hence ḡt+1(d) ≤ ĝt+1(d) ≤ δT−tgt+1(d). Therefore by the same arguments as in Lemma 2.4.7, there

exists a minimizer for ǧt(d) such that ǧt(d) ≤ δT−tgt(d). Calculating the δ-approximation function

ĝt(d) for ǧt(d) and using Definition 2.4.3, we have ĝt(d) ≤ δǧt(d) ≤ δδT−tgt(d) = δT+1−tgt(d).

With Lemma 2.4.8 in place, I can give the main result of this section.

Theorem 2.4.9. For any ε ∈ (0, 1], the ad delivery problem admits an FPTAS by setting δ = 1+ ε
2T .

That is, we can find ĝ1(D) such that g1(D) ≤ ĝ1(D) ≤ (1 + ε)g1(D) by using this value of δ to

approximate gt, t = 1, ..., T .

Proof. From Lemma 2.4.8, we have ĝ1(D) ≤ δT g1(D). Setting δ equal to the value in the statement

of the theorem we have ĝ1(D) ≤ (1 + ε
2T )T g1(D). Because 1 + ε

2T = 1 + ε/2
T , we can use the

inequality (1 + x
n )n ≤ 1 + 2x which holds for every x ∈ [0, 1] to get ĝ1(D) ≤ (1 + ε)g1(D). It

remains to show that the time taken by the algorithm is polynomial in the input size. Consider one

iteration of the algorithm and let the largest value produced by the algorithm at any stage be B.

Because we know that the values produced by the algorithm are at most δT away from the values

produced by the optimal algorithm, the upper bound B is polynomial in the size of the problem

and in δ (or, equivalently, 1/ε). Evaluating ḡt takes time tg and finding a δ-approximation set S

takes time O(tg logδ B logD). Because 0 < ε ≤ 1, we know δ < 2, and using the relationship given

in the statement of the theorem, I can rewrite the time it takes to compute a δ-approximation set

as O(tg
T
ε logB logD). Finding a convex extension for ĝt is linear in the size of S, and is dominated

by the time it takes to compute the δ-approximation set. Repeating these steps for each period,

the overall running time is given by O(tg
T 2

ε logB logD), which is polynomial in the input size, the

number of periods, and 1/ε, as desired.

Notice that, because of the way the approximation works, there is a tendency to overdeliver

impressions, but not by much. This happens because, by (2.4.5), for any value of demand d ∈ [a, b]
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at the beginning of a period where a and b are in the δ-approximation set of the value function in

that period, the algorithm operates as if the remaining number of impressions is b ≥ d. Nevertheless,

we are assured that in doing so the extra expected cost at the end of the horizon will not be more

than a multiplicative factor of ε away from the optimal solution.

2.5 Extensions

2.5.1 Multiple Advertisers

I will slightly revise the structure of the costs before I extend the results to multiple advertisers.

Throughout the preceding discussion, I have interpreted the penalty p2 as the opportunity cost of

giving away an impression for free instead of selling it to another advertiser. When I consider the

multiple advertisers case under this interpretation, there is no reason to keep the overdelivery costs,

since the case where advertiser i is allocated more impressions than their demand only impacts

the solution if this overdelivery results in shortage for other advertisers, and hence the penalty p2

can be implicitly incorporated into the shortage costs of advertisers other than i. I will discuss

the case when the advertiser also wishes to not receive extra impressions over their demand in the

next subsection. For this section, I assume that there are m advertisers and that advertiser i’s

shortage cost is given by pi. The decision vector in period t is αt = (αt1, ..., α
t
m), where αti is the

fraction assigned to advertiser i in period t. The problem then is the same as before: the publisher

is interested in choosing αt, t = 1, ..., T in order to minimize the shortage costs at the end of the

horizon. One difference is that all cost is evaluated at the last period, since there is no longer an

overdelivery cost in any one period. Formally, I solve L(d, α), where d is the vector of demands,

and

L(d, α) = minαt E
[∑

i pi (di −
∑
t α

t
ix
t)

+
]

s.t.
∑
i α

t
i ≤ 1 t = 1, ..., T

0 ≤ αti ≤ 1 t = 1, ..., T. i = 1, ...,m

I assume that the constraints
∑
i α

t
i ≤ 1 are binding. This is without loss of generality, since
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one can introduce a dummy advertiser that gets assigned any leftover impressions in a period if the

constraint has some slack. Furthermore, if it is the case in the optimal solution that
∑
i α
∗t
i < 1 for

all t, then the problem can simply be decoupled into m separate problems that are then solved as

in the previous section. Starting again from the one-period problem, one can verify convexity in α

as in the single-advertiser case. The constraints are linear in α1, ..., αm and the Hessian matrix of

the objective is positive definite.

Under the binding constraints assumption, advertiser m is assigned a fraction 1 −
∑
i 6=m αi, so

that setting the fractions for all but the last advertiser automatically determines the fraction that

the last advertiser gets. Rewriting the single-period objective in the form of (2.2), I get

L(d, α) = p1

∫ d1/α1

0

(d1 − α1x) dF (x) + ...

+pm

∫ dm
1−

∑
i6=m αi

0

(dm − (1−
∑
i 6=m

αi)x) dF (x). (2.9)

Notice that when minimizing (2.9), I end up with a system of m− 1 equations, corresponding to

the m − 1 decision variables α1, ...αm−1. Since each equation is the partial derivative of (2.9) with

respect to one of the variables, it has exactly two terms: the derivative of the integral that contains

that variable as well as the derivative of the last integral, which is expressed in terms of the first

m− 1 variables. Specifically, the derivative of (2.9) with respect to αi is given by

dL(d, α)

dαi
= −pi

∫ di/αi

0

xf(x) + pm

∫ di
1−

∑
i6=mαi

0

xf(x).

Note that in particular, the second term is common to all equations. Writing this out for all the

m − 1 variables and equating each derivative to zero to obtain the conditions for minimization, I

find that for any two advertisers i and j, the following holds at the optimal solution

pi

∫ di/αi

0

xf(x) = pj

∫ dj/αj

0

xf(x). (2.10)

Like before, we will let ki = di
αi

. The optimal solution to the problem then involves finding
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k1, ..., km−1 such that Condition (2.10) is satisfied for all i and j. In addition, since determining

ki, i = 1, ...,m − 1 determines αi, i = 1, ...,m − 1, it also determines αm through the relation

αm = 1−
∑
i 6=m αi. The resulting αm should satisfy Condition (2.10). Without loss of generality, let

the costs pi be arranged such that p1 ≥ p2 ≥ ... ≥ pm. If we follow the approach from the previous

section, we can try to find values of ki such that the following holds for all i and j

∫ ki
0
xf(x)∫ kj

0
xf(x)

=
pj
pi
. (2.11)

A set of values for ki, i = 1, ...m that solves (2.11) and leads to a vector α with
∑
i αi = 1 gives

a solution to the problem. From (2.11) and the fact that X is a nonnegative random variable, one

can see that advertisers with low index have lower k values. The immediate implication is that these

advertisers get more share of the supply if the demands of all advertisers are the same or comparable

(since low k values correspond to high values for α when the demands are the same). This agrees

with intuition and suggests that the optimal single-period policy has a greedy flavor, allocating more

shares to those advertisers that have higher penalties. In fact, it is possible that advertisers with

high indices (low pi) get assigned zero impressions, since the only way the condition is satisfied is

if their corresponding values of ki are set to infinity. Of course, since the conditions above also

depend on di, it is not always the case that high-index advertisers receive fewer impressions — the

important thing is that the optimality conditions are satisfied.

When one considers the multiple-period problem, applying the same policy in a myopic fashion

turns out to again be suboptimal. Consider the following example:

Example 2.5.1. Assume there are two advertisers with demands d1 = 30 and d2 = 60 and p1 = 20,

p2 = 1. There are two periods, with X1 in the first period being distributed uniformly over [0, 100] and

in the second-period an almost degenerate distribution on 30, so that Pr(X2 = 30) = 1−ε. A myopic

policy assigns α1
1 = 1 and α1

2 = 0. Thus whatever happens in the first period, the second advertiser

will get at most 30 impressions, and the cost is bounded below by 30p2 = 30. Consider a policy that

instead sets α1
1 = 0, α1

2 = 1, α2
1 = 1, and α2

2 = 0, so that it fulfills all of the first advertiser’s demand
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in the second period and gives all the yield from the first period to the second advertiser, then this

policy only incurs the cost of the unfulfilled impressions that the second advertiser does not get. Thus

as ε→ 0, the cost is given by ∫ 60

0

60− α1
2x1

100
dx = 18,

which is less than the cost of the myopic policy.

2.5.2 Additional Delivery Constraints

Let us return to the single-advertiser case. So far, the publisher’s problem has been of the form

min
0≤αt≤1

∑
t

h(dt, Ft(x), αt)

with h(d, F (x), α) taking the form of the function in (2.1). I want to consider allowing the advertiser

to have more input into the structure of the delivery process, specifically, the advertiser can choose

a function l(dt, Ft(x), αt) such that the publisher’s objective becomes

min
0≤αt≤1

∑
t

h(dt, Ft(x), αt) + l(dt, Ft(x), αt).

I illustrate this in the context of the discussion at the beginning of this chapter, where in addition to

the guaranteed delivery requirement, the advertiser would like its ads to be evenly spaced over time.

An advertiser with total demand D over a horizon of length T can then choose l(dt, Ft(x), αt) =

q|αtxt−D
T |, so that there is a penalty q associated with delivering more or less than D/T impressions

in each period (of course, the advertiser can specify any other value than D/T , or different values for

different periods). For simplicity, let us roll the costs p1 and p2 into a single cost p. The publisher’s

problem then becomes

min
0≤αt≤1

E

[
p

∣∣∣∣∣D −
T∑
t=1

αtXt

∣∣∣∣∣+ q

∣∣∣∣∣
T∑
t=1

αtXt −
D

T

∣∣∣∣∣
]
.

This problem closely follows the framework outlined above, both for the special case under Assump-
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tion 2.3.1 and the general case (depending on the relationship between p and q, it may be necessary

to set α equal to 1 in some scenarios). Just to illustrate, under Assumption 2.3.1 the optimal α in

a single-period problem satisfies

α∗ = sup
α

∫∞
Dα
T
xf(x)dx−

∫ Dα
T

0
xf(x)dx∫ D

α

0
xf(x)dx−

∫∞
D
α
xf(x)dx

.

As one can tell from this expression, the criteria for optimality looks more complex as one adds more

requirements. Nevertheless, the structure of the solution (finding intervals that divide the domain

of the distribution in a certain way) remains the same. It turns out that a sufficient condition to

add more expressiveness while maintaining the general flavor of the solution is the requirement that

l(dt, Ft(x), αt) be convex, which makes the publisher’s overall objective convex in αt and dt. If

l(dt, Ft(x), αt) is chosen such that, for example, there is a bonus paid to the publisher once a certain

target z < D is fulfilled, then the objective displays a kink and convexity is destroyed. In such

scenario, the methods outlined in this chapter may fail to be optimal.

2.6 Discussion

This chapter provides optimal policies to some variants of the guaranteed delivery problem in display

advertising. I have shown that when the advertiser’s demand is low compared to the overall supply,

the problem can be solved to optimality and the optimal policy has a nice and simple characterization.

Because the publisher is able to calculate its expected cost as a function of the demand D and costs

p1 and p2, it can use this information in deciding on prices to charge the advertiser for service,

as well as negotiate the shortage penalty p1. For the general case, the dynamic program becomes

computationally difficult to solve and I provide an approximation scheme that gives a trade-off

between the complexity of the problem and the quality of solution produced.

The case for multiple advertisers maintains the same spirit of the solution, namely, dividing

the support of the distribution into intervals from which the optimal fractions can be calculated.

Figuring out the fractions for the single-period multiple-advertisers case is not as straightforward
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as the single-advertiser one. If instead of the modification we introduced in the multiple-advertiser

scenario we had each advertiser still maintain under- and overdelivery penalties then a myopic policy

is no longer optimal and the problem becomes quite difficult even to approximate.

There are many variations on the theme of this problem. I have discussed a sufficient condition

under which the methods presented here extend to more expressive contracts, namely, the convexity

of the publisher’s objective function. It would be interesting to identify the correspondence between

bids and fractions: we know what fraction the publisher should set in the optimal solution to the

problem, but in reality, and as mentioned in the introduction, the publisher places a bid in an auction

for a period of time, not a fraction. The interaction between maximum prices that advertisers are

willing to pay per impression and the bids placed by the publisher affects the fractions that the

advertiser can select and therefore the structure of the optimal delivery policies. It would therefore

be instructive to understand how the two separate processes of selecting optimal contracts and

fulfilling these contracts interact, so that instead of designing each in isolation one can develop a

more integrated approach that accounts for the issues addressed by each.
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Chapter 3

Exploiting Myopic Learning

3.1 Introduction

Repeated interactions between a principal and a population of agents are at the core of many fun-

damental models in economics, business, and politics. Most of these models consider the interaction

between the principal and the agents in isolation, without accounting for the interactions amongst

the agents themselves and how these interactions shape their decisions through social learning. At

the same time, social learning research has witnessed a large boom, prompted in large part by the

mounting evidence of its importance to business success, forming political opinions, and the spread

of information and trends. The overwhelming majority of theoretical results in this area assume a

population that learns in accordance with Bayes’ rule. While these results are interesting in their

own right and provide a useful benchmark, they disregard the voluminous amount of experimental

evidence that suggests that people do not in fact seem to act in a Bayesian fashion.1 This highlights

the need for a) developing non-Bayesian learning models that have the power to predict actual

observed behavior and b) understanding how such models can be manipulated by a principal to

maximize gains. In this chapter, I address both of these points in the context of a simple behavioral

learning model.

The learning model I employ is that of replicator dynamics (Borgers and Sarin (1997)). This

class of learning dynamics was developed in an attempt to understand how a population arrives at a

1For example, see Tversky and Kahneman (1974), Tversky and Kahneman (1981), Camerer (1987), Griffin and
Tversky (1992), and the surveys in Rabin (1998) and Camerer (1995).
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steady state of a dynamical system, and was further pursued in economics as an explanation of how

agents arrive at a Nash equilibrium. Under this model, a large pool of agents plays a game repeatedly.

After each round of the game, agents are paired together randomly to compare and contrast payoffs.

If agent i is paired with agent j and agent j has obtained a better payoff than i in the last round of

the game, then i switches to j’s strategy in the next round with a probability that is proportional to

the difference in payoffs between the two. This way the proportion of strategies that are performing

better than average grows in the population as the share of poorly-performing strategies shrink,

and more often than not these dynamics lead to a Nash equilibrium of the underlying game.2 What

makes replicator dynamics particularly appealing is that it is a simple form of learning dynamic that

nicely straddles the line between behavioral and rational models. On one hand, agents update their

strategies in a myopic fashion based on simple comparisons with how their peers are doing, but on the

other hand this seemingly simple behavior can and does lead to fully rational equilibrium outcomes.

Another behavioral aspect captured by the model is the tendency of human decision makers to fall

into habit as a result of the aversion to try new strategies if one is unaware of others for whom these

strategies have performed well. Even in the case of meeting others with more successful strategies,

the switching is only probabilistic. This underlies the fact that agents do not instantaneously react

to their environment, and that switching to a new strategy is not always costless.

The central idea developed in this chapter is that a principal can exert an important indirect

influence on agents’ decisions by exploiting their learning dynamics. I focus on games where the

principal’s and the population’s interests are diametrically opposed, though as I discuss later, the

methods readily extend to a variety of other settings. I will give a formal definition of the class of

games I consider in Section 3.2.1, but an informal description follows. There is a population where

each member makes a choice from two pure actions. For simplicity, one can think about these actions

as whether to cheat or to be honest. There are a multitude of examples that fall under this setting:

agents can decide whether to misreport their income or not, break the speed limit, accept a bribe, or

put low effort into their work, etc. The principal’s action against each member of the population is

2See, for example, Bomze (1986), Fischer and Vocking (2004), Fischer, Racke, and Vocking (2006), and the survey
in Fudenberg and Levine (1998).



36

either to audit the agent at a cost, or to ignore the agent and run the risk of incurring a higher cost

if the agent is cheating.3 Agents are interested in maximizing their payoffs, while the principal tries

to minimize the costs from auditing and cheating. The game is repeated indefinitely. The principal’s

move in each round consists of choosing a fraction of the population to audit. As I will show, under

traditional rationality assumptions this game has a unique Nash equilibrium where the agents cheat

with some fixed probability and the principal audits the same fraction of the population in each

round. The question is whether the principal can improve on the Nash outcome if the population

learns according to replicator dynamics.

The primary contribution of this chapter is twofold. On the conceptual front, I argue that

imperfect decision making in a population —in its various formats— can in some cases be considered

a resource that most system planners fail to utilize. The second contribution is methodological, where

this abstract idea is implemented in the context of naive social learning. The main results of the

chapter can be summarized as follows:

1. If the principal is myopic, reacting to the actions of the population without taking the future

into account, then the interactions between the principal and the population leads to outcomes

with a cyclical nature. As I discuss, such cycles are widely observed in the real world. This

suggests that the learning model I consider captures essential elements of how people actually

behave, and that the approach advanced in this chapter not only provides a prescription

for optimizing systems with a social learning component, but is also able to make positive

predictions about how some existing systems actually operate.

2. By understanding the dynamics of the population and taking the future into account, the

principal can obtain a higher payoff than that of the Nash equilibrium while doing strictly less

auditing than what the Nash solution requires. I provide a real-world example that shows that

such optimal policies are possibly already implemented in practice in certain contexts.

This chapter is related to several strands of literature on (behavioral) mechanism design and

3One can think of non-policing scenarios that have a similar structure. For example, the agent can be a consumer
faced with a choice of buying a product or not and the principal is a firm that decides whether to produce a low
quality product or a high quality product at an extra cost. A firm prefers that consumers buy the low quality product
so that it saves on production costs, and the consumer derives more value from buying a high quality product.
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social learning. Whether requiring an agent to update its information in a Bayesian fashion or to

have perfect look-ahead and recall, standard economic theory endows the traditional rational agent

with a set of abilities seldom found in human decision makers, and all the classic mechanism design

results have been derived under that framework. There is however a recent stream of literature that

studies agents under more realistic assumptions in order to match theoretical results with observed

behavior. For example, Crawford and Iriberri (2007) argue that bidders who behave in accordance

with the empirically plausible level-k models (Stahl et al. (1994) and Stahl and Wilson (1995)) can

explain overbidding and the winner’s curse in auctions. Crawford, Kugler, Neeman, and Pauzner

(2009) give examples where it is possible under that model to obtain more revenue than what

is feasible under full rationality (Myerson (1981)). Earlier this decade, Nisan and Ronen (2001)

launched the field of algorithmic mechanism design, an area that continues to thrive on questions

of how the computational limits of decision makers affect their incentives as well as the outcomes

obtained under the traditional agent models. In the same spirit as these works, the agents I consider

here are not fully rational, as their behavior is one of simple imitation. In addition, they base their

decisions only on their most recent experience, paying no attention to their past history playing the

game.

This chapter also contributes to the recent work on social learning. The literature in this area

has focused on when social learning can lead a society of agents to converge to the true value of

an underlying state of the world, the so-called ’wisdom of the crowds’ effect. By letting the size of

the population become very large, Acemoglu, Dahleh, Lobel, and Ozdaglar (2008) and Acemoglu,

Bimpikis, and Ozdaglar (2009) derive limit results on the conditions under which a society can

uncover the true state of the world. Because the society is assumed to be Bayesian, these models

suffer from the criticisms laid out in the opening paragraph, namely that human agents seem to be

unable to perform complicated belief updating procedures. Furthermore, unlike the model I study

here, these models do not make predictions that can be corroborated by empirical observations.

Understanding how a Bayesian society can be manipulated by a principal is a topic that has not yet

been tackled in the social learning literature, though Kamenica and Gentzkow (2009) show how one
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can manipulate Bayesian agents, albeit outside of a social learning setting. The critical departure

in this chapter is the focus on both behavioral social learning and how it can be taken advantage of

by a principal.

Finally, repeated games and reputation building is a topic with an extensive body of work in

the economics literature. The main results in this area are folk theorems that show what outcomes

can be obtained if a game is repeated indefinitely. The traditional approach to proving such results

relies on retaliation and punishment among players, a method that fails in a setting with a large

population, since the identity of a deviator cannot be detected (Fudenberg and Maskin (1986)).

Indeed, as alluded to earlier, for the class of games I consider here the unique equilibrium of the

repeated game is the same as the one-shot version and no better outcomes can be implemented

under the rational model.

The rest of the chapter is organized as follows. Section 4.2 presents the class of games that I

will focus on for the rest of the chapter. Section 3.3 discusses the case of a myopic population and

a myopic principal. Section 3.4 derives the optimal policies when the principal is forward-looking

and Section 3.5 discusses how these policies improve over the rational population case. Section

3.6 provides some empirical examples that support the predictions of the model. Section 3.7 gives

other applications for the methods used in the chapter. Section 3.8 quantifies how the degree of

sophistication of the population impacts the principal, and Section 3.9 concludes the chapter.

3.2 Model

I start by applying the ideas in the previous section to a class of 2×2 games that a large population

repeatedly plays against a principal. In each round of the game an agent has one of two choices,

a ’safe’ choice with a low payoff, and a ’risky’ choice with a higher payoff. For example, in a tax-

auditing situation the safe choice would be to report honestly, whereas cheating is a choice that can

provide a higher payoff if the agent is not audited by the principal. The principal on the other hand

faces a choice between a costly and a costless action when it comes to dealing with each agent. In

the taxation scenario, the costly action would be to audit an agent, and the costless action would
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Figure 3.1: The Cheat-Audit Game

be to ignore that agent. Of course, it might be the case that auditing leads to catching a cheating

agent, in which case the principal obtains a higher payoff than if he had chosen the costless action.

By the same token, not auditing an honest agent is a better action for the principal, since auditing

in this case expends auditing resources with no useful returns and — depending on how one sets up

the model — can also incur a social cost in the form of the disutility or inconvenience that honest

agents suffer because of auditing.

3.2.1 The Cheat-Audit Game

The example above is part of a large class of games that I call Cheat-Audit games. The payoffs

of these game are as shown in Figure 3.1, with the principal being the column player. Each agent

is considered a row player and has the row player’s payoffs. The actions available to an agent

is to either be honest (action H) or cheat (action C). The principal either audits (action A) or

ignores (action I) each agent. An agent’s payoffs satisfy 0 < v1 ≤ v2 < v3. To conserve notation,

I will assume that v1 = v2, so that an agent is indifferent to auditing as long as he is honest.

This assumption has no impact on any of the structural results I obtain. An agent is interested in

maximizing his payoff, while the principal is interested in minimizing his cost, where the costs satisfy

0 < c1 < c2 < c3. There is thus an implicit constraint on the principal’s resources, since auditing

without catching a cheating agent (outcome (H,A)) is more costly than auditing a cheating agent

(outcome (C,A)). The principal’s preferred outcome is (H, I), where no auditing cost is incurred
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and no crime is committed, and the payoff to this outcome is normalized to zero. Similarly, an

agent’s least preferred outcome is (C,A), and is also normalized to zero. Notice that the principal’s

least preferred outcome, (C, I), is also the agent’s most preferred one.

Because of the large population assumption, the principal’s action consists of choosing a fraction

0 ≤ α ≤ 1 of the population to which he will apply action A. I will call this fraction the audit rate.

The upper bound on α does not have to be equal to 1, but can instead be set to ᾱ to indicate that

it is not possible to audit the whole population. That the principal’s action consists of choosing

a fraction to audit implicitly assumes anonymity of the agents in the population. In particular,

the principal reacts to the distribution of play produced by the population, not the action of each

individual.4 I formalize this in the following assumption.

Assumption 3.2.1. (Anonymity) All members of the population in the Cheat-Audit game look the

same to the principal.

The diametric opposition of the principal’s and agents’ interests implies that the game has no

pure strategy equilibria, as indeed can be checked from Figure 3.1 and the relationship between

the various payoffs. In fact, similar to a game of matching pennies, the single-stage game possesses

only a unique equilibrium in mixed strategies. Let the equilibrium audit rate and the fraction of C

players in the fully rational setting be given by αN and xN , respectively. With the assumption that

v1 = v2, it is straightforward to verify that

αN =
v3 − v2

v3
; (3.1)

xN =
c2

c3 + c2 − c1
.

As mentioned, I consider an infinitely repeated setting where at each moment in time the game in

Figure 3.1 is played. Discrete time and how it affects the results I obtain is discussed in Section

3.6. I will let the state of the system at time t be the fraction of the population taking action C

4One can think of scenarios where the identity of the player can be useful in the punishment phase, but not the
detection phase. For example, police does not observe the license plate of a vehicle and then decide whether or not
to apply a radar gun. The fact that a speeder is a repeat offender only comes into play after having been caught and
does not affect the probability of being detected.
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at that time, and will denote this fraction by x(t). The principal’s choice of audit rate at time t is

denoted by α(t). The large population assumption together with anonymity immediately imply the

following result.

Proposition 3.2.2. The infinitely repeated Cheat-Audit game has a unique equilibrium in mixed

strategies. This equilibrium is the same as that of the stage game.

Proof. See Appendix.

The reason why Proposition 3.2.2 is true is that, because each agent is a negligible part of the

continuum, any individual action has no effect on the distribution of play and thus no bearing on

the future treatment of that agent.

Given a state x(t), audit rate α(t), and denoting the payoff to the principal at time t by

g(x(t), α(t)), the cost to the principal at time t is given by

g(x(t), α(t)) = c1α(t)x(t) + c2α(t)(1− x(t)) + c3(1− α(t))x(t)

= (c1 − c2 − c3)α(t)x(t) + c2α(t) + c3x(t), (3.2)

where the terms in the first equation in (3.2) correspond to the costs discussed above. The first term

is the cost associated with catching offending agents, the second term represents the cost of auditing

honest agents, and the last term is the cost of ignoring agents who were in fact playing action C.

3.2.2 Learning Dynamics

The learning dynamics work as follows. After each round of the game, members of the population

are randomly matched to compare strategies and payoffs. Since agents only switch strategies if

they meet someone who is playing a different strategy from their own, switching can only happen

if the share of the different strategies in the population is initially positive, otherwise everyone will

continue to play the same strategy forever. The following assumption is therefore essential.
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Assumption 3.2.3. At the beginning of the horizon each strategy is played by a positive share in

the population, i.e., 0 < x(0) < 1.

Under this model, there are only two possible scenarios that can lead to switching strategies:

an agent who obtained the outcome (C,A) considers changing his strategy if he meets an agent

who played H. Similarly, an agent who played H considers changing his strategy to C if he meets

an agent who obtained the outcome (C, I). The probabilities with which these changes in strategy

occur depend on the differences in payoffs between agents, as well as a transmission factor k > 0.

One can think of k as a ’speed of transmission’: the willingness of an agent to change their strategy

when they meet someone with a better experience. Without loss of generality, I will assume that

an agent who obtains payoff u switches to the strategy of an agent who obtained payoff v with

probability max{0, v−uv }. From Figure 3.1, the probability of switching in the first scenario is simply

min{k v1−0
v1

= k, 1}. The probability of switching in the second scenario is given by min{k v3−v1v3
, 1}. It

is important to stress that the way these probabilities are defined does not affect any structural results

I obtain. Any scheme where the switching probabilities are proportional to the payoff differences, so

that the share of strategies that perform better grows in the population, essentially leads to the same

results. I will make the derivations less cumbersome and more general by assuming that switching in

the first scenario happens with probability p and in the second scenario with probability q, and later

substitute for p and q with the quantities above. Utilizing this notation, the fraction of switchers

from C to H at any moment t is equal to the fraction of C players who were audited, α(t)x(t),

multiplied by the probability of meeting an H player, which is 1 − x(t), times the probability of

switching p. Likewise, the fraction of switchers from H to C is equal to the fraction of H players,

1 − x(t), who meet C players that were not audited, which is x(t)(1 − α(t)), multiplied by the

probability q. I can then write the dynamics of the system as a function of x(t) and α(t)

ẋ(t) = f(x(t), α(t)) = q(1− α(t))x(t)(1− x(t))− pα(t)x(t)(1− x(t))

= x(t)(1− x(t))(q − α(t)(q + p)). (3.3)
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3.3 Myopic Principal

Before discussing the optimal policy for the principal, I consider the following question: what happens

if the principal is myopic? Although there is strong reason to believe that the principal is more

sophisticated than the population, there are many scenarios that encourage a short-sighted principal.

A politician can pander to an electorate in the hopes of obtaining an immediate reward, or a corporate

manager can make decisions with the goal of improving short-term gains as a response to pressure

from investors. I will analyze such situations in this section by assuming that the principal learns in

a myopic fashion and does this by adjusting his strategy after each round of the game in a similar

manner to the population. This necessitates an assumption similar to Assumption 3.2.3.

Assumption 3.3.1. At the beginning of the horizon the princpal assigns positive weights to each

strategy, i.e., 0 < α(0) < 1.

Like the previous section, the cost of action α is c1αx+c2α(1−x), while the cost to (1−α) is equal

to the cost of those cheating agents who went away undetected, and is equal to c3(1 − α)x. After

each round, the principal observes the costs from both actions H and I and adjusts the proportion

by which they are played in the next round according to how well they did in the current round.

Of course, the principal has no way of knowing whether the members of the population who were

not audited were cheating or not. This is easily overcome by the large population assumption, since

the fraction of the population that the principal audits identifies the fraction of cheaters in the

population with probability one, and this fraction can then be used to estimate the costs incurred

from not auditing.

It turns out that when the principal is also myopic, the system oscillates: periods of high cheating

activity induce periods of intense monitoring activity by the principal. This high-intensity auditing

in turn drives the population to periods with little or no cheating activity and consequently, leads

the principal to perform less auditing. This pattern continues indefinitely in a cyclic fashion. The

unique Nash equilibrium of (3.1) is an unstable equilibrium, or center, of this dynamical system.

This means that even if the system starts at equilibrium, any small perturbation will send it into
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oscillation. The following result gives a more precise description of the nature of interaction between

the principal and the population under this setup.

Theorem 3.3.2. The fluctuations of the population of C players and the audit rate of the principal

are periodic. The period depends on the values of the problem as well as the initial conditions. The

unique mixed equilibrium of (3.1) is a center of the dynamical system induced by the repeated play

of the Cheat-Audit game.

Proof. See Appendix.

Informally, the equations with which the fraction of C players and the audit rate evolve describe

a dynamical system with a unique non-hyperbolic equilibrium. This equilibrium corresponds to the

Nash equilibrium in (3.1), and — because the system has only two eigenvalues on the imaginary

axis— is also a center of the system. This means that small perturbations push the system away

from equilibrium. Being a center also implies that the path of any solution to the dynamical system

is a closed orbit around the center. Thus, the system revisits each point in its evolution periodically.

Figure 3.2 displays a phase portrait of the system, with the fraction of C players on the x-axis

and the audit rate on the y-axis. The closed orbit represents a solution that satisfies that following

system

α(t)(1− α(t))[(c3 + c2 − c1)x(t)− c2) (3.4)

and

x(t)(1− x(t))[(v2 − v3 − v1)α(t) + v3 − v2] (3.5)

As Theorem 3.3.2 implies, the principal’s audit peaks trail the peaks of the fraction of cheaters

in the population, leading to a cyclical nature in both the audit activity as well as the size of the

population of C players. Suppose, as in the figure, that the system starts from a point in the interior

of the unit square with low cheating and auditing activities, then the lack of policing encourages

the population to cheat, since agents learn that cheating is the action that provides a higher payoff.

As the number of cheaters increases, the principal starts to ramp up the auditing activity, leading
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to extreme auditing of the population that eventually drives the majority to play H again, and the

cycle repeats. As I discuss in Section 3.6, this cyclical nature can be observed in various real-world

phenomena that correspond to the Cheat-Audit game.

3.3.1 Average Cheating and Audit Rates

It is natural to ask how the scenario analyzed above differs from the rational case. It turns out

that if the game is played long enough, then the players’ actions, averaged over time, are equal to

the corresponding values in the fully rational setting. This accentuates the early discussion about

replicator dynamics: even though they are following very simple rules, both the principal and the

agents are able to approximate the behavior of their rational counterparts. In particular, the fraction

of C players and the principal’s audit rate over any period are the same as those obtained in the

mixed equilibrium solution given by (3.1). The following result formalizes this fact.

Theorem 3.3.3. The average audit rate of the principal and the average fraction of cheaters over

any period are the same as the corresponding Nash equilibrium values.

Proof. See Appendix.

Having shown that the outcome of the game between the myopic principal and the population is

close to the fully rational outcome, I proceed to show how a forward-looking principal can improve

on the results of the fully rational setting.

3.4 Forward-Looking Principal

A forward looking principal differs from the myopic principal of the last section in taking the future

into account, so that instead of reacting to the latest round of the game, the principal optimizes over

the (infinite) horizon of the problem. In the following I define the principal’s objective and derive

the optimal policy that achieves it.
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Figure 3.2: Phase Portrait of Cheating and Auditing Activity

3.4.1 Objective

The principal’s problem is the following: Given the different values in Figure 3.1 and the learning

dynamics, the principal is interested in minimizing the long-run discounted cost. This long-run cost

is the discounted sum of all costs accrued from playing the game over time. Recall that the payoff

at time t is given by (3.2) and the equation of motion of the population by (3.3). The principal’s

problem can then be written as

min
α(t)

∫∞
0
e−rt((c1 − c2 − c3)α(t)x(t) + c2α(t) + c3x(t))dt (3.6)

s.t. ẋ(t) = x(t)(1− x(t))(q − α(t)(q + p))

0 ≤ α(t) ≤ 1

where r > 0 is a discount factor. Thus the principal’s problem involves finding the function α∗(t)

that solves (3.6). Like any dynamic problem, the difficulty facing the principal is that current

decisions affect not only the immediate cost but also future costs through the dependence of the
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rate of change of x(t) on α(t).

3.4.2 Optimal Policy

3.4.2.1 Single Round

Before trying to find the optimal solution to (3.6), I first develop an intuition by considering the

solution when the game is played only once. The stage game cost described by (3.2) can be factored

and rewritten as

g(x, α) = c3x+ α(c2 + (c1 − c2 − c3)x)

and is obviously a linear function in α. This implies that depending on the value of x, α takes the

values of either 0 or 1 in the optimal solution. Specifically, the optimal solution to the single-period

problem is given by

α∗ =


0, x < c2

c2+c3−c1 ;

1, x ≥ c2
c2+c3−c1 .

(3.7)

which is well defined because of the relationship stipulated on the costs. Thus, assuming that x is

known, the optimal solution to a single-period problem takes the form of a threshold rule: if the

fraction of C players is low enough, it does not pay to audit anybody since the cost of auditing

honest agents outweighs the gains from catching C players. Conversely, when the concentration of

C players is above a certain level, then it is always better to audit indiscriminately since the costs

incurred in auditing H players are more than made up for by catching every single C player in the

population. It is easy to see that the optimal cost g∗(x) is a concave function of x:

g∗(x) =


c3x, x < c2

c2+c3−c1 ;

c2 + (c1 − c2)x, x ≥ c2
c2+c3−c1 .

(3.8)

As I will show later, part of the single-period solution, where a crackdown occurs if the fraction

of C players is above a certain threshold and nothing is done otherwise, is somewhat retained in

the solution to the general problem. The nature of the optimal cost implies that, from a strictly
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policing viewpoint, the principal may prefer a higher ratio of cheaters in the population to a lower

one, since it increases the rate of successful audits and incurs a lower overall cost than scenarios

where resources are expended without additional benefit.

3.4.2.2 General Policy

I will derive the optimal policy for (3.6) by formulating the Hamiltonian function for the system and

using the Euler-Lagrange equation. I assume that the principal knows x(0), the initial state of the

system. This is without loss of generality, since if that was not the case then the large population

assumption together with the law of large numbers and the fact that state transitions happen with

probability one ensure that the principal can initially determine the state of the system by auditing

a random sample of the population. The current value Hamiltonian function for the problem maps

triplets (x, α, λ) ∈ [0, 1]× [0, 1]×R to real numbers and is given by

H(x, α, λ) = g(x, α) + λf(x, α)

= c3x+ α(c2 + (c1 − c2 − c3)x) + λx(1− x)(q − α(q + p))

= c3x+ λqx(1− x) + α(c2 + (c1 − c2 − c3)x− λ(p+ q)x(1− x)) (3.9)

where λ is a co-state variable that represents a price attached to the change induced in x through

the decision α. Of course, like the state x and the control α, λ itself is also a function of time,

but the power of the Hamiltonian approach is that it essentially reduces the general problem to

a single-period one. The following lemma utilizes the Hamiltonian to provide necessary, but not

sufficient, conditions on the optimal control trajectory.

Lemma 3.4.1. The optimal control for Problem (3.6) is a bang-bang solution, where

α∗(t) =


0, λ(t) < c2+(c1−c2−c3)x(t)

(p+q)x(t)(1−x(t)) ;

1, λ(t) > c2+(c1−c2−c3)x(t)
(p+q)x(t)(1−x(t)) ;

[0, 1] , λ(t) = c2+(c1−c2−c3)x(t)
(p+q)x(t)(1−x(t)) .

(3.10)
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Proof. See Appendix.

Lemma 3.4.1 implies that the optimal control function, α∗(t), takes values on its boundaries.

Except for the third case where the co-state variable is exactly equal to the R.H.S, the optimal

control either audits the whole population or does nothing.5 This provides some information about

the structure of the optimal policy, but not enough to completely characterize it. To do this, I will

reformulate (3.6) as a calculus of variations problem. From (3.3), I can express α(t) as

α(t) =
1

p+ q

(
p− ẋ(t)

x(t)(1− x(t))

)
. (3.11)

Substituting this into the objective, the problem becomes

min
x(t)

∫ ∞
0

e−rtg

(
x(t),

1

p+ q

(
p− ẋ(t)

x(t)(1− x(t))

))
dt

= min
x(t)

∫ ∞
0

e−rt

c3x(t) +
(c2 + (c1 − c2 − c3)x(t))

(
p− ẋ(t)

(1−x(t))x(t)

)
p+ q

 dt. (3.12)

The solution to (3.12) provides another necessary condition on the optimal state trajectory. Specifi-

cally, the following lemma shows that there is a constant for which the integral in (3.12) is stationary,

i.e., the function that minimizes (3.12) is time-independent.

Lemma 3.4.2. Let x∗(t) be the minimizer to (3.12), then x∗(t) = C, where C is a constant that

depends on the parameters of the problem and is equal to

(c2 − c1)p− c3q + (c1 − c2 − c3)r +
√

4c2((c2 − c1)p− c3q)r + ((c1 − c2)p+ c3q + (c1r − c2 − c3)r)2

2((c2 − c1)p− c3q)
.

(3.13)

Proof. See Appendix.

The necessary conditions I have obtained so far are enough to fully characterize the optimal

policy.

5As I show in the proof of Theorem 3.4.3, the third case happens only for precisely a single pair (x∗(t), α∗(t)) in
the optimal solution.
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Theorem 3.4.3. There is a value x̄ such that the optimal policy audits everybody whenever x(t) > x̄

and does nothing when x(t) < x̄. If x(t) = x̄ then the optimal policy sets α∗(t) = q
p+q and the system

stays in this state indefinitely.

Theorem 3.4.3 indicates that, depending on a threshold value, the optimal solution either audits

indiscriminately or does nothing. If the system hits the value |barx, then the system audits at a

constant rate. The structure of the optimal policy then is quite different from the myopic principal

case, where the principal’s strategy oscillates continuously. As I discuss in Section 3.6, the optimal

policy can oscillate too, as a result of considering the model in discrete time.

3.5 Comparison With The Nash Equilibrium

How does the solution for the class of games considered here fare under the forward-looking principal

in comparison to the fully rational Nash equilibrium outcome? I have already discussed in Section

3.2.1 and in Theorem 3.2.2 that the (fully rational) repeated game possesses a unique equilibrium in

mixed strategies, given by (3.1). As I have shown in Theorem 3.3.2, this equilibrium is also a center

of the repeated behavioral game. This means that, under the replicator assumption, there exists a

strategy such that if the game is played long enough, the fraction with which each action is played

is the same as the corresponding fraction in the Nash equilibrium, i.e., the principal can implement

the Nash outcome in the behavioral setting, if he so desires. However, the optimal solution that I

obtained in Section 3.4 is not the Nash equilibrium, indicating that the Nash solution is dominated

by the policy in Theorem 3.4.3. Furthermore, as I show below, as soon as the game reaches steady

state, the optimal policy involves less auditing than the Nash solution. Because of this, the Nash

solution never coincides with the policy in Theorem 3.4.3, so that the optimal solution always gives

a strictly better outcome for the principal while at the same time reducing the amount of auditing

required.

Beyond the audit rate, It is also instructive to look at how the fraction of C players compares

under the behavioral and the rational settings. The following theorem summarizes the results that



51

a principal can obtain when facing a behavioral population. The principal is able to both perform

less auditing and, if concerned enough about the future, keep the fraction of C players close to zero.

Theorem 3.5.1. The steady-state audit rate in the behavioral setting is strictly less than the Nash

audit rate. Let r > 0 be a discount factor, then limr→0 x̄ = 0, i.e., as the principal cares more about

the future, the fraction of C players is driven close to zero. This contrasts with the Nash fraction of

C players xN , which is insensitive to the effect of discounting.

Proof. See Appendix.

This result highlights the stark difference between the behavioral and rational settings. Discounting

has no bearing on the outcome in the rational case since, as Theorem 3.2.2 shows, the principal cannot

influence the future actions of the population. Furthermore, from Theorem 3.3.3, the outcomes in

the behavioral setting are close to the Nash solution when the principal responds myopically. By

taking the future into account however, the principal is able to obtain outcomes that were not

possible under these other scenarios. As I discuss in the next section, the results in Theorems 3.3.2

and 3.4.3 are widely observed in practice.

3.6 Examples

Eeckhout, Persico, and Todd (2010) define crackdowns as intermittent periods of high-intensity mon-

itoring. Crackdown cycles occur when these periods are interwoven with periods of lax enforcement.

There is a wealth of examples of this phenomenon. Di Tella and Schargrodsky (2003) study crack-

downs on corruption in hospitals in Buenos Aires, Lui (1986) describes crackdowns on corruption in

China, the Recording Industry Association of America (RIAA) utilizes crackdowns to combat illegal

file sharing, and police in Belgium intermittently crack down on speeders. I discuss some of these

examples and show how they relate to the results of the previous sections.

The paramount example of crackdown cycles is the Chinese government’s methods for controlling

corruption and dissidence. Lui (1986) describes three major crackdowns in China over the period

from 1950 to 1982. The first campaign, known as the san fan, started in 1950 and lasted for two
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years, ending in June of 1952. The campaign was characterized by a highly intensive effort that

managed to reduce crime from 500,000 cases in 1950 to an average of 290,000 cases over the following

15 years. The san fan was not just characterized by severe punishments, but also by extremely high

auditing activity, and during the crackdown period crime steadily declined to very low rates. As the

cycle in Figure 3.2 predicts, the post-crackdown period was characterized by low crime rates and low

monitoring activity, and has nowadays come to be known as ’the golden age of honesty’ in China6,

where as Lui puts it, ’the Chinese government did not spend any significant amount of resources

on auditing’. Eventually though, corruption started to increase again, and the government cracked

down on both corruption and dissidence in the middle of the 1960s. The pattern was then repeated

as the decrease in monitoring after the second crackdown led to a rise in corruption levels, which by

1979 were getting out of control. This led to a third crackdown that started in 1982 and lasted for

more than three years.

A more recent example is how the RIAA and the Motion Picture Association of America (MPAA)

fight online piracy and illegal file sharing. Figure 3.3 shows copyright infringement lawsuits in the

United States over the period 1993–2009.7 The beginning of the millennium witnessed a huge

increase in the number of file sharers, where platforms like Napster had a record 26 million users

at one point. The percentage of internet users who were also illegal file sharers continued to grow,

hitting a high of 29% of all US internet users.8 As one can see in the figure, the RIAA responded

with a severe crackdown that started around 2004 and lasted for five years. During the crackdown,

the amount of infringement lawsuits tripled. Most of these lawsuits targeted anonymous, ’John Doe’

defendants. The crackdowns resulted in a drop in the percentage of file sharers from 29% to 14%,

with the number stabilizing somewhere around 18%.9 In 2008, the RIAA announced that it has

stopped its mass-lawsuit practice but that it will continue to sue users at a lesser rate. Although

in 2010 it is early to tell, this pattern bears a striking resemblance to the policy in Theorem 3.4.3,

where a severe crackdown brings the fraction of offenders down to a certain level, after which auditing

6Lui (1986)
7Source: Administrative Office Of The Courts
8Source: PEW Internet and American Life Project Data Memo
9However, the amount of copyrighted material shared online continues to grow.
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Figure 3.3: US Copyright Infringement Cases 1993-2009

continues at a lower rate. Of course, there are many factors that go into a campaign like the one

launched by the RIAA, including publicity of, and backlash against, the lawsuits, but the overall

agreement of the pattern with the results obtained in this chapter suggests that the core driving

factors are captured by the model.

The analysis in this chapter focused on a continuous time framework. In reality, many of the

games that fit the model take place in discrete time, or require resources that are infeasible to

implement forever as the optimal solution requires. In both of these scenarios, the level of x(t)

inadvertently increases above x̄, and hence the optimal solution cracks down on the population by

setting α∗ to its maximum possible value in an attempt to bring x(t) down to its optimal value.

Because of the discreteness, the crackdowns always bring the value of x(t) below x̄, hence leading

to periods of low activity on the principal’s part. The whole cycle is then repeated as x(t) increases

above the threshold again. Eeckhout, Persico, and Todd (2010) empirically observe crackdowns

by the police on speeders in Belgium. They give a static model with a rational agent population

and show that under some assumptions a crackdown can be part of the optimal strategy of the

police. While they note the periodicity of the crackdowns, their static model is unable to provide an

explanation for this phenomenon. Additionally, through anecdotal evidence and conversations with

the police, they mention that crackdowns are planned as early as a month in advance. Both of these
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observations are explained by the model in this chapter. The recurrence of the crackdowns takes

place as the police tries to bring the fraction of speeders to an optimal level, and since the evolution

of the population of speeders can be determined from the current state and future controls of the

system, the time at which such a crackdown would be necessary can be determined in advance as

well.

3.7 Other Applications

3.7.1 Equilibrium Selection and Technology Adoption

The framework I use in this chapter can also be used as a device for equilibrium selection. The

fact that a game may possess multiple equilibria makes it more difficult to design mechanisms that

select for a particular equilibrium with certain desired outcomes. Balcan, Blum, and Mansour (2009)

consider the problem of moving a population from one equilibrium to another one with more socially

desirable properties. Their framework uses public advertisement as a means to influence decisions

in the rational agent population, and they analyze the effectiveness of this method even when only

a small fraction of the population follows the advertisement. In many cases, the proposed method

fails to move the population between equilibria. For coordination games like the one in Figure 3.4,

I show how a principal can steer the population towards an equilibrium that is worse for them but

is beneficial for the principal.

As an example, assume a firm wants to replace an old technology with a new one (for example,

a new version of a mobile device operating system). The firm prefers that users switch to the

new technology since they would have to update their devices as well as have the capability to

run improved and more expensive services, resulting in more revenue for the firm. The population,

however, has no strong inclination to make the switch as long as the existing platform is supported.

Because the firm has limited resources, it can only split its support over the existing and the

new versions of the technology, generating ill-will amongst consumers who are not receiving proper

support and perhaps risking that these consumers abandon the product or service altogether.
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Figure 3.4: Coordination Game

The situation described above is depicted in the coordination game in Figure 3.4, with the

principal being the column player. Assume a1 < a2 and b1 > b2, so that the principal’s preferred

outcome is (T, L), while the population prefers outcome (B,R). Similar to the setup in Section 4.2,

I denote the fraction with which the principal plays action L at time t by α(t), while the fraction

of the population playing L is denoted by x(t). One can interpret α as the fraction of the firm’s

resources that it devotes to sustaining techology L and 1 − x(t) as the fraction sticking with the

old technology. By Assumption 3.2.3, the share of the population playing either strategy at the

beginning of the horizon is positive. This corresponds to the fact that the new technology has early

adopters. The question then is whether the principal can facilitate the migration of the population

towards an equilibrium that is more desirable for him, which in Figure 3.4 corresponds to equilibrium

(T, L).

As before, I will first consider the outcome of this interaction when the principal adopts a myopic

approach. For scenarios like the one discussed above, it is reasonable to expect that the system starts

somewhere close to the (B,R) equilibrium, where most of the population has still not adopted the

new technology and the firm still offers extensive support for the old technology. Under this setting,

a myopic principal cannot move the population near equilibrium (T, L). In fact, the following result

shows that a myopic principal gets stuck at the (B,R) equilibrium forever.

Theorem 3.7.1. If the system starts in an interior state where x(0) > b1
b1+b2

and α(0) > a2
a1+a2

, then

myopic learning on both the population and the principal sides converges to the (B,R) equilibrium
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of the game in Figure 3.4.

Proof. See Appendix.

Thus a myopic principal’s outcome crucially depends on the starting point of the system. This is a

direct result of the reactionary nature of this type of principal: if the population deems the target

equilibrium as undesirable, then the firm will not risk alienating its customers by trying to move

them to that equilibrium.

Can a forward-looking principal do better? Using the same terminology from Section 4.2 to

formulate the dynamic problem, the principal’s payoff at time t is g(x(t), α(t)) = α(t)(1 − x(t)) +

(1− α(t))x(t). Like (3.6), the principal wants to solve

min
α(t)

∫∞
0
e−rt(α(t)(1− x(t)) + (1− α(t))x(t))dt (3.14)

s.t. ẋ(t) = x(t)(1− x(t))
(
(1− α(t))a2 − α(t)a1

)
0 ≤ α(t) ≤ 1.

If this game is played only once, then the principal’s optimal α is given by a cut-off strategy

similar to the one period solution in (3.7), where

α∗ =


0, x < b1

b1+b2
;

1, x ≥ b1
b1+b2

.

(3.15)

In the same way as in Lemma 3.4.1 and Theorem 3.4.3, Problem (3.14) has a unique optimal

solution. The next result shows that this solution coincides with the equilibrium (T, L) when the

discount factor is high enough.

Theorem 3.7.2. Under Assumption 3.2.3 and as r → 0, a forward-looking principal has a strategy

that converges to the (T, L) equilibrium of the coordination game in Figure 3.4.

Proof. See Appendix.

As I show in the proof of the theorem, the principal’s optimal strategy essentially offers no support
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for the old product, leading the population to migrate towards using the new one.10 As the principal

cares more about the future, it is willing to sustain some ’transitory costs’, the costs that it incurs

as a result of unsatisfied customers, in order to accumulate later gains. In this sense the optimal

policy is similar to the policy in the Cheat-Audit game: crackdown on the population in the optimal

strategy incurs costs from auditing H players, or not auditing anyone incurs costs from letting C

players go undetected. These costs are, again, justified by the later gains to the principal.

3.8 Robustness

In contrast with classical economic theory, I have concerned myself with an agent population that

is completely behavioral, and I compared my findings under different models of the principal to the

predictions of the classical model. Under the behavioral mode, I have shown that the principal can

implement more favorable outcomes than under the rational one. It is reasonable to expect that

a more accurate model of the population lies in between these two extremes. How robust are the

results to a population that consists of both rational and behavioral agents? As one would expect,

the payoffs that a principal can sustain decrease as the population becomes more sophisticated. This

section formalizes this fact in the context of Cheat-Audit games.

I assume that there are two types of agents in the population, a rational type, exemplified by the

classical rational agent, and a behavioral type that acts in the same way as the agents I have so far

considered in this chapter. Formally, let the fraction of rational agents be given by ρ, and let the state

of the system at time t, x(t) denote the number of C players in the behavioral population only. The

population dynamics operate in a similar fashion as before, except that the rational population makes

its choices in a strategic fashion as opposed to the more myopic approach of the behavioral types.

The rational population is aware of its size and of the existence of the behavioral population, whereas

10In reality, a firm is unlikely to stop support for an old product as soon as a newer version is released. However,
it is not uncommon that the company substitutes lack of support with making the older product less functional. As
an example, When Apple released the iPhone 4 and its accompanying OS, it effectively rendered the older 3G model
slow and frustrating to use. Since newer applications required an upgrade to the new OS, a customer was faced with
either decreasing the pool of applications that he can choose from, or upgrading to the new OS and experiencing the
sluggish performance. Official Apple support was nonexistent for either scenario. This immediately decreased the
utility of the old model.
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the behavioral population is oblivious to that distinction. The principal knows the distribution of

the population as well as the information that each population has about its environment. Under

this setting, Theorem 3.2.2 still applies to the behavior of the rational population: the rational

agents still optimize for the current period only. The reasoning is the same as in the proof of that

theorem. A rational agent will best reply to the principal’s action in this period because that agent’s

action has no consequences for the future, given the agent’s size relative to the population and the

anonymity assumption. With that in mind, I examine the best reply dynamics of the rational agents

for the one-shot version of this game.

3.8.1 Single-Round

The probability with which rational agents cheat depends on the principal’s action α, which in turn

depends on x and ρ. The following result summarizes how these agents behave in that setting.

Proposition 3.8.1. Let ρ be the fraction of the rational population, x be the fraction of the behavioral

population playing action C, and pc be the probability with which a member of the rational population

plays C. The optimal pc, as a function of x is described by

p∗c(x) =


0, x > xN ;

1, x+ ρ < xN ;

xN−x
ρ , x+ ρ ≥ xN .

(3.16)

where xN is as given in (3.1).

Proof. See Appendix.

The reason the rational agents behave in this manner can be inferred from the principal’s optimal

strategy in Section 3.4.2.1. When the population is purely behavioral, he uses a threshold rule to

audit or not. If x(t) is known to both the principal and the rational population, then the rational

players know that if the total fraction of C players, given by the sum of the fraction of behavioral and

rational players playing C, is less than the threshold then the principal’s optimal action will be to



59

not audit. Conversely, when the total is over the threshold the principal audits everyone. Similarly,

the principal adjusts its action, taking the reasoning of the rational population into account. This

means that the only optimal strategy for the situation when the potential total number of C players

is over the threshold is for both the principal and the rational players to play a strategy that makes

the other indifferent. Since the principal is indifferent exactly at the threshold value, the rational

population mixes with a probability that pushes the expected total number of C players to that

value, and the principal mixes with a strategy that encourages the population to mix at that rate.

3.8.2 Multi-Round

Assume now that the members of the rational population, when meeting members of the behavioral

population, do not lie about their experience. The fraction of the behavioral population then changes

as before, except that behavioral agents meet other behavioral agents as well as rational agents.

Because the rational population is able to figure out the principal’s optimal strategy, their action at

time t is a function of the principal’s action, so that I can write the probability in Lemma 3.8.1 as

p∗c(α(t)) Formally, the rate of change ẋ(t) is given by

ẋ(t) = (1− x(t)− ρ)(x(t) + p∗c(α(t))ρ)(1− α(t))q − α(t)x(t)(1− x(t) + (1− p∗c(α(t)))ρ)p (3.17)

where q and p are as before. The first term is the fraction of honest agents that switch to cheating

when they meet cheating agents, whether rational or behavioral, who have not been audited. If α(t)

is such that p∗c(α(t)) = 0 then the term reduces to the case we dealt with in Section 3.4.2.2. Similarly,

the second term describes the fraction of those agents who were cheating and got caught and later

meet honest agents, where again it does not matter whether the honest agents were behavioral or

not.
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The principal’s problem then becomes

min
α(t)

∫ ∞
0

e−rt(c1 − c2 − c3)α(t)(x(t) + p∗c(α(t))ρ) + c2α(t) + c3(x(t) + p∗c(α(t))ρ) dt

s.t. ẋ(t) = (1− x(t)− ρ)(x(t) + p∗c(α(t))ρ)(1− α(t))q − α(t)x(t)(1− x(t) + (1− p∗c(α(t)))ρ)p.

(3.18)

Writing the Hamiltonian for this problem,

H(x, α, λ) = g(x, α) + λf(x, α)

= (c1 − c2 − c3)α(x+ p∗c(α)ρ) + c2α+ c3(x+ p∗c(α)ρ)

+ λ

(
(1− x− ρ)(x+ p∗c(α)ρ)(1− α)q − αx(1− x+ (1− p∗c(α))ρ)p

)
.

(3.19)

This is a more difficult problem than the one in (3.6). The difficulty comes from the fact that the

Hamiltonian is no longer a linear function of α. In fact, the Hamiltonian function is not continuous

anymore, since small changes in α near the stage Nash equilibrium value αN can trigger p∗c to take

extreme values as in Lemma 3.8.1. Because of this, I will concern myself with more qualitative than

quantitative issues when it comes to the optimal policy for this scenario. In particular, I show in

Proposition 3.8.2 that if ρ < xN , then the principal can audit strictly less than αN while keeping

the fraction of C players the same as in the Nash solution. Proposition 3.8.3 shows that the whole

population does not have to be rational in order for the principal to audit with a rate that is at least

αN ; it suffices for the fraction of rational agents ρ to be more than xN for that to happen. This

implies that, as expected, the behavior of the principal is monotonic in ρ, with the auditing activity

increasing as ρ increases.

Proposition 3.8.2. Let α∗(t) denote the principal’s optimal audit rate. If ρ < xN , then α(t)∗ < αN .

Proof. See Appendix.

Proposition 3.8.3. If ρ > xN , then α(t)∗ ≥ αN .

Proof. See Appendix.
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3.9 Discussion

This chapter presents a behavioral social learning model based on replicator dynamics. In this

model, agents play a game repeatedly and switch between strategies based on which strategies are

performing better in the population. I show that this model provides positive predictions of many

observed phenomena in the real world, like the existence of police crackdowns and the cyclical

nature of anti-corruption campaigns. In addition to the predictive power of the model, it provides

a framework for a forward-looking principal to implement outcomes that are not possible under

traditional rationality assumptions. The basic idea is that the principal can indirectly influence

decisions in the population by manipulating the payoffs associated with certain actions over time.

In the context of Cheat-Audit games, the principal is able to do better than the corresponding

Nash equilibrium of these games and able to do so with less auditing effort. In coordination games,

I show how the principal can manipulate the population and influence them to migrate from one

equilibrium towards another, more desirable one.

The application areas of the methods developed in this chapter are vast. Advertising is one

potential application where periods of heavy and costly advertising activity are followed by periods

with relatively little advertising. During these latter periods, the effects from the initial advertising

campaign continue to reverberate through the population, essentially providing free advertising until

the effect dies down, at which time the advertiser starts the cycle again. A different example is traffic

regulation through periodic closures of specific roads or periodic toll increases. Such changes force

drivers to modify their driving habits. Later, when these roads are re-opened or tolls are reduced

again, drivers take a while to adjust back to the initial equilibrium, as can be seen in Fischer and

Vocking (2004). This lag in adjustment can be exploited to try and balance traffic over the available

routes. On the other hand, there are games that are not prone to the framework presented in this

chapter. For example, The Prisoner’s Dilemma is one game where a principal does not have any

strategy that would generate a higher payoff against a myopic population as compared to a rational

population, since social learning will always lead the population to defect against the principal. It

will thus be instructive to further understand the general features that determine when one can
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exploit learning in a population.

Finally, the results in this chapter show the promise of behavioral models as descriptive tools

of reality and frameworks for optimization. Exploring other behavioral trends and understanding

their explanatory powers and how they can be manipulated would be the natural next step in this

line of research. There already exist established models of bounded-memory agents (for example,

Young (1993)) that can be used as a foundation for work similar to the one in this chapter. More

recent models of behavioral qualities like thinking aversion (Ortoleva (2008)) can also be utilized as

a starting point for designing behavioral mechanisms that exploit computational complexity in order

to steer agents to choose alternatives that are easier to compute. Ultimately, while a unified theory

of behavior seems unlikely or at least unattainable in the immediate future, the insights gained from

studying various behavioral effects in isolation will undoubtedly contribute to a better understanding

of their relative importance within such a theory and to the process of human decision making in

general.
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Chapter 4

Best Response and Fictitious Play
Learning

4.1 Introduction

The previous chapter focused on the social learning aspects of decision making through employing

a model based on replicator dynamics. This model endowed the agents with no strategic abilities,

instead, agents mechanically copied strategies that seemed more successful. This chapter considers

another kind of learning that departs from the replicator idea and equips the agents with some

limited ability for strategic reasoning. I also consider a discrete time model as opposed to the

continuous time framework of the previous chapter. The main setting is still the same: agents play

the Cheat-Audit game against a principal, but learn in a different manner.

The learning model I consider in this chapter is based on Fictitious Play (Brown (1951)), where

agents adapt their strategies based on all or a truncated portion of history and how the game was

played in the past. Each period, agents observe a function of history and choose their actions

accordingly, after which they exit the system and are replaced by another batch of agents in the

next round. The assumption that agents are replaced each round allows us to avoid worrying about

repeated interaction concerns. I address a similar question to the one asked in the previous chapter,

namely, how should the principal play the game given the learning dynamics? I provide analytical

and computational answers to this question. I first examine a version of the problem where agents

adjust their actions based on play in the previous round only, and provide the optimal policies for
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this case. I then show computationally that policies with a similar structure are also optimal —in

a computational sense— for the case when agents look further back into the past.

Like prior results, some of the work presented here has direct implications on the understanding

of conventions: if a game has been played in a certain way for a long period of time, is it possible

for a principal to change how newer generations play it? The main difference between the inquiries

presented here and results like Young (1993) is that I do not focus on whether a game converges to

an equilibrium, but rather on whether it is possible to direct play in a way that is more beneficial

to a principal, who can either be a selfish or a benevolent (social) planner.

4.2 Model

Consider a long-lived principal that repeatedly plays the Cheat-Audit game against short-lived

agents. In each period, a large number of agents play the game for exactly one period and then exit

the system forever. Agents therefore are only interested in maximizing their own payoffs during this

one period, and they choose their actions based on some function of how the game was played in the

past. I will start with a limiting case of fictitious play, where agents best respond to the immediate

past, taking only the last period of play into account. In round t, the principal decides the audit

rate αt and the game is played. The principal then adjusts αt+1 based on how the agents respond

and the strategy that he is implementing.

4.2.1 Learning Dynamics

A strategy profile at time t is denoted by σt, where σt = (xt, αt), xt and αt are the fraction of C

players and the audit rate in period t, respectively. History at the beginning of period t is denoted

by ht = g(σt−k+1, ..., σt−1) and is a function of how the game was played in the past k out of t− 1

periods, with the possibility that k = t−1 so that all past periods are taken into account. Players use

the information in ht to decide on their choice of action in period t, giving rise to the action profile

σt = (xt, αt). Because I will only consider learning on the side of the agents and not the principal,

I will use ht to refer to how the principal played the game in the past, so that ht = g(α1, ..., αt−1).
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Agents utilize a rule a(ht) that prescribes how they should play when faced with a certain history.

Similarly, the principal’s strategy is given by b(ht). If one thinks about a(ht) as the probability with

which an agent plays action C when facing history ht, then σt = (xt, αt) = (a(ht), b(ht)) describes

the aggregate action of the population and the action of the principal, respectively, at time t. The

successor to state ht, ht+1, is produced at the end of period t via a transition function f(σt, ht).

The function f depends on the learning model under consideration. The following are examples of

ht for the two learning models that I consider in this chapter.

Best response: In best response, agents look at the action played in the last period and best

respond to it. Here, ht is simply equal to αt.

Fictitious play: In fictitious play, each player keeps a running average of how his opponent

played the game in all past periods. This information is recorded in ht, so that ht = g(α1, ..., αt−1) =

∑t−1
i=1 αi
t−1 , where the function g simply averages its arguments. The players then best respond in period

t+ 1 to this running average.

4.3 Analysis

Before starting the analysis, I present a few useful and straightforward results that will help in

comparing the performance of different strategies later on in the chapter. The following is a simple

calculation of the cost of repeatedly playing the Cheat-Audit game in a fully rational setting.

Proposition 4.3.1. The cost to the principal from playing the Cheat-Audit game in a fully rational

setting is equal to 1
1−δ

c2c3
c3+c2−c1 , where 0 < δ < 1 is a discount factor.

Proof. The unique Nash equilibrium strategy profile, σN , is given by σN = (xN , αN ) = ( c2
c3+c2−c1 ,

v3−v2
v1

).

The per-stage cost is given by (c1 − c2 + c3)αx + c2α + c3x, which translates to c2c3
c3+c2−c1 at σN .

Assuming a discount factor of δ and summing this quantity over the entire horizon, one gets∑∞
t=0 δ

t c2c3
c3+c2−c1 = 1

1−δ
c2c3

c3+c2−c1 .

Because each agent plays the game only once, they are necessarily strategically myopic, opti-

mizing only for the period they play in without taking future play into account. Additionally, the
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learning models considered here do not allow agents to speculate on the strategic abilities of the

principal; agents simply assume that the principal audits with a certain rate that they try to ap-

proximate via history, and then best respond to. Let a(ht) denote the probability with which an

agent plays action C as a function of ht, then we have the following simple observation about the

learning rule for fictitious play

Observation 4.3.2. In the beginning of period t, an agent facing history ht plays action C with

probability a(ht), where

a(ht) =


1, ht < αN ;

0, ht > αN ;

y, ht = αN .

(4.1)

Simply stated, if an agent believes that the audit rate is low enough such that cheating is

profitable when compared to the risk of being audited, then he will play C. The opposite is true

when the audit rate is thought to be high enough to not make playing C an attractive option. If the

approximation of the audit rate is exactly equal to the Nash audit rate then the agent is indifferent

between the two actions, in which case I assume he just plays C with some probability y.

In the following I will examine two strategies. The first is called a threshold strategy, which

only audits when history hits a certain threshold. The second is called the over-audit strategy: Play

αN + ε in every period, so that xt = 0 for all t. This strategy has a cost-per-stage of c2(αN + ε), for

a total cost of 1
1−δ c2(αN + ε). The reason for choosing these two strategies is the following intuition.

In the threshold strategy, as long as the running history is less than the Nash equilibrium audit

rate, then the principal can obtain his most preferred payoff by not auditing and also having the

population not cheating. When history finally crosses a threshold, the principal audits and the cycle

starts again. One possibility that would make this strategy not optimal is if the Nash audit rate

or the cost c2 of auditing an honest agent is very low, so that the principal can keep the cheating

population at 0 forever by always auditing slightly above the Nash and not incurring a high enough

cost from auditing honest agents.
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4.3.1 Best Response

I consider best response dynamics as a special case of fictitious play when agents do not take into

account the whole history but instead only use the last period of play as a guide to how to play

in the current period according to (4.1). This way, the principal’s decision in period t affects his

payoffs in t and t+ 1 only. I will analyze this case by writing the dynamic program for the infinite

horizon version of the problem. The optimal policy will be derived through a sequence of lemmas,

and the following definitions and assumptions will prove useful in the derivations of this section.

Definition 4.3.3. A threshold strategy αth is given by

αth =


1, ht < αN or ht = αN and y > xN ;

0, ht > αN or ht = αN and y < xN .

(4.2)

The abundance of parameters in the problem and the way these parameters interact with each

other makes it difficult to identify a policy that is optimal with no restrictions on the values of these

parameters or how they relate to one other. Because of this, the analysis I provide is divided into

several sections, addressing the possible scenarios that arise in the different regions of the parameter

space. For a large part of this space, I will show that the strategy in Definition 4.2 is optimal.

Sometimes no optimal strategy exists for the principal. I will isolate these cases and show when

they arise based on the values of the problem. Let us start with an assumption on the discount

factor δ.

Assumption 4.3.4. The discount factor δ satisfies δ < c2αN
c1−c2αN , where αN is the Nash audit rate.

The Nash audit rate αN has a strong effect on how the game should be played. The following

assumption will be useful in dissecting that effect. The optimal policy is significantly different when

the assumption is satisfied than when it is not.

Assumption 4.3.5. The Nash audit rate αN satisfies αN > c1
2c2

.

I will use the standard infinite horizon dynamic programming terminology in analyzing the game.

Since in the best response case history in period t + 1 is simply the action that was taken by the
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principal in period t, I can use Observation 4.3.2 to slightly abuse notation and think about the

state as xt, since ht = αt−1 and αt−1 maps to exactly one value of xt. Dropping the time subscript,

a state x can have only one of three possible values, 0, 1, or y, and the transition function f(ht, σt)

simplifies to f(α) where

f(α) =


1, α < αN ;

0, α > αN ;

y, α = αN .

(4.3)

We can now write the optimal value function v(x) as v(x) = u(x, α) + δv(f(α)), where u(x, α)

is the one-period cost when the state is x and the action is α and 0 ≤ δ < 1 is a discount factor.

Let vth(x) indicate the payoff from following the threshold strategy αth when the state is x, so

that vth(x) = uth(x) + vth(f(αth)). Under the assumptions above and using the one-step deviation

principle, I will show that the strategy αth is optimal. Similar to the previous chapter, the one-

period cost function is given by u(x, α) = (c1− c2− c3)αx+ c2α+ c3x. Therefore, using the strategy

in Definition 4.3.3 to determine the value of α, we can write uth(x) as

uth(x) =



0, x = 0;

c1, x = 1;

c3y, x = y and y < xN ;

(c1 − c2)y + c2, x = y and y > xN .

(4.4)

The next lemma orders vth(x) based on the values of x.

Lemma 4.3.6. Let y > xN , then vth(0) < vth(1) < vth(y).

Proof. Using Equation (4.2), we can write vth(0) as

vth(0) = uth(0) + δvth(1)

and

vth(1) = uth(1) + δvth(0)
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and, by using (4.4)

vth(0) =
uth(0) + δuth(1)

1− δ2
=
δuth(1)

1− δ2
=

δc1
1− δ2

(4.5)

and

vth(1) =
uth(1) + δuth(0)

1− δ2
=
uth(1)

1− δ2
=

c1
1− δ2

. (4.6)

Since 0 < δ < 1, it follows that vth(0) < vth(1).

Now write vth(y)

vth(y) = uth(y) + δvth(0) = (c1 − c2)y + c2 + δvth(0). (4.7)

Consider the inequality

δ

1 + δ
<

(c1 − c2)y + c2
c1

which is always true since the RHS is bounded below by 1 as 0 < c1 < c2 and y ∈ [0, 1] and the LHS

is bounded above by 1. Manipulating this inequality, we have

δc1
1 + δ

< (c1 − c2)y + c2

. Multiplying the LHS by 1−δ
1−δ , using 1− δ2 = (1− δ)(1 + δ) and rearranging:

δc1
1− δ2

<
(c1 − c2)y + c2

1− δ
.

From (4.5), the LHS is equal to vth(0) and

vth(0)(1− δ) < (c1 − c2)y + c2.

Finally, rearranging the above, we get

vth(0) < (c1 − c2)y + c2 + δvth(0).
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The RHS of the above is the same as (4.7), giving

vth(0) < vth(y).

Noting that the difference between vth(0) and vth(1) is a factor of δ, we start from the inequality

δ2

1+δ <
(c1−c2)y+c2

c1
, which is always true, as the LHS is bounded above by 1

2 , and progress in the

same manner as above to yield vth(1) < vth(y).

The next step is to rank the same quantities when y < xN .

Lemma 4.3.7. Let y < xN , then vth(0) < vth(1) and vth(0) < vth(y).

Proof. From the proof of Lemma 4.3.6, vth(0) < vth(1) regardless of the value of y. Writing vth(y)

for the case when y < xN , the threshold strategy sets αth = 0 and we have

vth(y) = u(y) + δvth(1) = c3y + δ
c1

1− δ2

= c3y + δvth(0)

> vth(0).

(4.8)

Proposition 4.3.8. Let one or both of Assumptions 4.3.4 and 4.3.5 hold, then the threshold strategy

is the optimal strategy for the principal when agents are playing according to best response.

Proof. I will prove the result by showing that one-step deviations from the threshold strategy under

the assumption(s) in the statement of the proposition do not lead to reductions in the cost. For this

to be the case we have to examine deviations in the three possible states, x = 1, x = 0, and x = y.

Notice that the threshold strategy never leads to state y, so checking deviations in that state is only

to cover the scenario when the system starts in state y.
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Case 1: x = 1: The principal’s problem when x = 1 is

min
α
u(1, α) + δvth(f(α))

= min
α

(c1 − c2 − c3)α+ c2α+ c3 + δvth(f(α)). (4.9)

The threshold strategy sets αth = 1 in this case, giving

c1 + δvth(0). (4.10)

Consider setting α = ᾱ where αN < ᾱ < 1. By (4.3), the transition resulting from this setting is

to state 0, then (4.9) becomes

(c1 − c2 − c3)ᾱ+ c2ᾱ+ c3 + δvth(0).

The first part of this expression is a linear function of α that is minimized by setting α = 1, as

in (4.10). The second part, δvth(0) is the same in (4.10) and in the expression above, hence any

deviation that sets α ∈ (αN , 1) cannot improve the cost.

Now consider setting α = α where 0 ≤ α < αN . Using (4.3), Equation (4.9) becomes

(c1 − c2 − c3)α+ c2α+ c3 + δvth(1).

The same reasoning as above applies: the first part is a linear function in α that is minimized as

in (4.10). The second part in the above expression is δvth(1), which by Lemmas 4.3.6 and 4.3.7

has higher cost when compared to δvth(0), and therefore a deviation that sets α ∈ [0, αN ) is not

cost-reducing.

Finally, consider the case when setting α = αN in (4.9), then we have

(c1 − c2 − c3)αN + c2αN + c3 + δvth(y).
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Under Assumption 4.3.5, Lemmas 4.3.6 and 4.3.7 apply and hence vth(y) > v(0). Using the same

reasoning as above it is straightforward to show that the expression above has higher cost than

(4.10). This concludes the analysis for the x = 1 case.

Case 2: x = 0: The principal’s problem is

min
α
u(0, α) + δvth(f(α))

= min
α
c2α+ δvth(f(α)). (4.11)

The threshold strategy sets αth = 0 in this case, giving

δvth(1). (4.12)

Proceeding as before, consider a strategy that sets α = α where 0 < α < αN . From (4.3), this

strategy has cost equal to

c2α+ δvth(1) (4.13)

which is clearly higher than (4.12). Now let α = ᾱ where ᾱ > αN , then (4.11) becomes

c2ᾱ+ δvth(0). (4.14)

This is bigger than (4.12) when

ᾱ >
δ(vth(1)− vth(0))

c2
=
δc1(1− δ)
c2(1− δ2)

=
δc1

c2(1 + δ)
.

Taking this inequality with the fact that α > αN , we get that the threshold policy is still optimal

when

δc1
c2(1 + δ)

< αN (4.15)

since if that was not the case then an improvement in cost can be obtained by setting α to some value
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in (αN , ᾱ). For the inequality in (4.15) to hold with the constraints that 0 < c1 < c2, 0 ≤ αN ≤ 1,

and 0 < δ < 1, one of the following conditions must be met: Either αN > c1
2c2

, or δ < αNc2
c1−αNc2 ,

which is true under the assumptions in the statement of the proposition.

Finally consider the case α = αN , in which case the cost becomes

c2αN + δvth(y). (4.16)

Compare this quantity with (4.14). There is an ᾱ > αN for which (4.14) is always smaller than

(4.16). Because by Lemmas 4.3.6 and 4.3.7, vth(0) < vth(y), we can choose ᾱ = αN + ε where

0 < ε < vth(y)−vth(0)
c2

, i.e., setting α in the region α > αN dominates setting α = αN . But we have

already shown that the threshold strategy dominates setting α > αN , and hence the cost of (4.16)

cannot improve on (4.12) and the threshold strategy is still optimal.

To finish the proof, we turn to the remaining possible value of x.

Case 3: x = y: Assume y > xN , the principal’s problem is

min
α
u(y, α) + δvth(f(α))

= min
α

(c1 − c2 − c3)αy + c2α+ c3y + δvth(f(α)). (4.17)

The threshold strategy sets αth = 1 in this case, giving

c2 + (c1 − c2)y + δvth(0). (4.18)

Consider setting α = ᾱ where ᾱ > αN . This gives

(c1 − c2 − c3)ᾱy + c2ᾱ+ c3y + δvth(0).

Since the first part of (4.18) is optimal solution to u(y, α) and the second part of the above expression,

vth(0), is the same as (4.18), ᾱ is not cost-improving.
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Next, turn to the case where α = α where 0 < α < αN . This is obviously not cost improving

since (4.17) becomes

(c1 − c2 − c3)αy + c2α+ c3y + δvth(1)

and both the first component has higher cost than (4.18) and the second has vth(1) > vth(0).

When α = αN , the case is similar to setting α > αN but with vth(1) replaced by vth(y) to give

a total cost of

(c1 − c2 − c3)αNy + c2αN + c3y + δvth(y),

which is again higher than (4.18).

When y < xN , the cost for the threshold strategy, which sets α = 0 is

c3y + δvth(1). (4.19)

Any strategy that sets 0 < α < αN cannot improve on the cost of (4.19). The cost for α is given by

(c1 − c2 − c3)αy + c2α+ c3y + δvth(1)

since the linear part of the principal’s problem is minimized by setting α = 0 and the second part

in (4.19) is the same as in the expression directly above.

Consider ᾱ > αN , then the cost is

(c1 − c2 − c3)ᾱy + c2ᾱ+ c3y + δvth(0)

which is bigger than (4.19) when

ᾱ >
δ(vth(1)− vth(0))

(c1 − c2 − c3)y + c2
=

δc1(1− δ)
((c1 − c2 − c3)y + c2)(1− δ2)

=
δc1

((c1 − c2 − c3)y + c2)(1 + δ)

which approaches (4.15) as y → 0. The case when α = αN is treated in the same manner as in the
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proof of the similar case when x = 0. Because it is always possible to find an ε such that α = α+ ε

dominates α = αN , and because α = α+ ε itself is dominated by α = 0 in this scenario, α = αN is

dominated by α = 0.

What happens when Assumption 4.3.4 is violated? To answer this question I first give the

following definition

Definition 4.3.9. An over-audit strategy αoa is given by

αoa =


1, ht < αN or ht = αN and y > xN ;

αN + ε, ht > αN or ht = αN and y < xN .

(4.20)

Note that as soon as ht > αN , αoa is equal to c2 +ε forever. Consider now the proof of optimality

for the threshold strategy, for the case when x = 1 no assumptions on any of the parameters were

needed: it is always optimal to set α = 1 when x = 1. For the cases when x = 0 we had to use the

assumption on δ and/or αN because otherwise choosing α equal to any value in the interval between

αN and δc1
c2(1+δ) reduces the cost from the threshold strategy. It is exactly under these conditions

where the over-audit strategy dominates the threshold strategy. However, the over-audit strategy is

not optimal. In fact, no optimal strategy exists in this case, since one can always reduce the cost by

choosing a smaller ε. As ε→ 0, the cost approaches c2αN
1−δ .

The following result formalizes the preceding discussion.

Proposition 4.3.10. When neither Assumption 4.3.4 or 4.3.5 hold, the over-audit strategy is un-

dominated by any other strategy.

The proof of the proposition is similar to the proof of Proposition 4.3.8. Let voa(x) denote the

payoff from following the over-audit strategy when the state is x. Before beginning the proof, I rank

voa(0) and voa(1).

Lemma 4.3.11. For the over-audit strategy, voa(0) < voa(1).

Proof. First write voa(0)

voa(0) = c2α
oa + δvoa(0) (4.21)
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where αoa = αN + xe. Write voa(1) as

voa(1) = c1 + δvoa(0). (4.22)

From (4.21), voa(0) = c2α
oa

1−δ , which is what I have found before by summing the cost over the

entire horizon. I can now rewrite (4.22) as

voa(1) = c1 + δ
c2α

oa

1− δ
.

This is bigger than (4.21) when

c1 + δ
c2α

oa

1− δ
>
c2α

oa

1− δ

which happens when αoa < c1
c2

. Since c1
c2
> c1

2c2
and αN < c1

2c2
, we have αN < c1

c2
. Since one can

always find ε > 0 such that αoa = αN + ε < c1
c2

, the lemma is proved.

Now I prove Proposition 4.3.10.

Proof. Using the one-step deviation principle as before:

Case 1: x = 1: voa(1) is given by (4.22). Consider 0 ≤ α < αN , this gives

(c1 − c2 − c3)α+ c2α+ c3 + δvoa(1)

which is higher than (4.22) since the linear part is minimized at α = 1 and voa(1) > voa(0). Consider

ᾱ > αN , then the cost becomes

(c1 − c2 − c3)ᾱ+ c2ᾱ+ c3 + δvoa(1)

which is minimized at α = 1, hence voa(1) is undominated.

Case 2: x = 0: voa(0) is given by (4.21) and is equal to c2α
oa

1−δ . Consider setting 0 ≤ α < αN ;
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this gives

c2α+ δvoa(1).

Since the linear part of this equation is minimized at α = 0, I will focus on this case, since any

α < αN will have higher cost. When α = 0, the cost is simply δvoa(1). This is higher than voa(0)

when

δ >
voa(0)

voa(1)
=

voa(0)

c1 + δvoa(0)
. (4.23)

Replacing voa(0) with c2α
oa

1−δ and solving the inequality for δ after noting that 0 < c1 < c2 and

0 ≤ αoa ≤ 1, I find that (4.23) is satisfied when 0 < αoa < c1
2c2

and δ > c2α
oa

c1−c2αoa , which are the

conditions ruled out by Assumptions 4.3.4 and 4.3.5. Since the statement of the proposition assumes

that neither holds, the conditions for (4.23) are satisfied.

Finally, what happens when we set α to ᾱ > αN in state x = 0? The cost is given by

c2ᾱ+ δvoa(0).

This is only higher than (4.21) when ᾱ > αoa, but one can set ᾱ to be less than αoa while still

being higher than αN . This means that, while the over-audit strategy is not dominated by another

strategy, it also does not provide an optimal solution, since the principal can always reduce the

amount of auditing while still being above the αN threshold.

4.4 Simulation

This section carries forward the ideas presented so far through simulation and numerical experiments.

I will first check the theoretical results obtained above with a simulation of the Cheat-Audit game

when agents are playing according to best response. The code for all simulations can be found in the

appendix. To simplify the discussion, I assume that the first period, where there is no history yet,

starts with no cheating activity and full auditing activity. We can of course think about and simulate
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Figure 4.1: Best Response with c1 = 1, c2 = 3, c3 = 10, and αN = 0.25

scenarios other than this one. For example, assume that agents start by playing y when no history

is available and that y > xN . The optimal solution according to the simulations then still takes the

same form (for example, cycles) and retains the same long-run properties (for example, convergence

of the number of periods where auditing happens to the Nash audit rate in fictitious play), but the

periods on which certain values, like α = 1 and x = 1, differ depend on the assumptions about the

first period.

Consider the following set of parameters: c1 = 1, c2 = 3, c3 = 10, and αN = 0.25 (the costs

imply that the Nash rate for cheating is also equal to 0.25). Proposition 4.3.8 tells us that no matter

what δ is, the optimal policy for these parameters is the threshold strategy. The reason is that αN

satisfies Assumption 4.3.5 and hence Proposition 4.3.8 applies. Figure 4.1 shows the optimal policy

for a 30-period run. Note of course that the simulation is an approximation of the optimal policy,

since it runs for a finite horizon (a fixed number of rounds). The auditing action, given by the red

lines, coincides with the cheating activity, given by the green lines (because of this the red lines do

not appear in the figure). ht is given by the blue lines. Notice how both xt and αt are set to 1 when
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Figure 4.2: Best response with c1 = 1, c2 = 3, c3 = 10, δ = 0.93, and αN = 0.15

ht = 0 and vice versa, as the theory implies.

I now satisfy the condition on αN by setting it equal to a value in [0, c12c2
) = [0, 1/6). Suppose

αN = 0.15, then δ < c2αN
c1−c2αN = 0.8182 implies that the threshold strategy is still optimal, as indeed

it is. Setting δ above the threshold, the simulation indicates that the over-audit strategy is the

optimal solution, as seen in Figure 4.2. Since the code searches for an optimal α in increments of

0.01, the optimal α selected is the first increment after the value of αN , in this case α = 0.16, just

like the over-audit strategy predicts. Of course, this is the optimal solution when α is restricted to

take values in this discrete domain, but in theory we can still reduce α further —but still above

αN = 0.15— and obtain less cost. In the figure, xt = 0 for all t, and hence does not appear in the

figure.

How do the results change if agents, instead of learning only from the most recent period, take

into account all of history, as in the standard fictitious play model? The transition function f(σt, ht)

in this case is given by f(αt, ht) = tht+αt
t+1 , which indicates that actions taken by the principal late

in the game have relatively little impact on history and subsequently on how agents will play. One
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Figure 4.3: Fictitious play with c1 = 1, c2 = 3, c3 = 10, y = 0.1, δ = 0.6, and αN = 0.25

can think of this as the agents sticking to a certain convention if the game has been played for a

long period of time. This means that a principal who decides at some point farther down the game

that it would like to influence or change how the agents play has a difficult road ahead.

Performing the same experiment with the parameters from Figure 4.1 but with agents taking all

past history into account, we get Figure 4.3.

Again, the green and red lines coincide, which leads to the first observation about this figure,

which is that the cheating pattern follows the auditing pattern, so that there is a synchronization

between cheating and auditing: periods where no auditing is happening are also periods where no

or little cheating is taking place. When an audit happens, it is in a period where there is enough

cheating to render the audit useful. The second observation is that the auditing behavior is cyclical

and the period of the cycle is equal to the Nash audit rate. Because the problem takes place in a

discrete time setting, the period of the cycle approximates αN , so that the fraction of periods with

α = 1 approaches αN as t→∞. This is the outcome that one would get when following the strategy

in Definition 4.2, since if this strategy is followed from the beginning of the game, then each period
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Figure 4.4: Fictitious Play with c1 = 1, c2 = 3, c3 = 10, y = 0.4, δ = 0.6, and αN = 0.25

with α = 1 sustains an average of 1
αN
− 1 periods with α = 0 before ht returns to a value that

is higher than αN , at which point the strategy sets α = 1 again and the pattern is repeated. As

t → ∞, ht → αN . As can be seen in the figure, even for a run of only 30 periods, we can see ht

starting to converge to the Nash audit rate.

One main difference between the threshold strategy under fictitious play and best response is

that under fictitious play there is a chance that ht = αN , where in best response ht was always

either 0 or 1. Consequently, the value of y does not matter on the path of the optimal solution in

best response, since the system is never in state y as long as 0 < αN < 1. In contrast, fictitious

play has periods where the system is in state y and, depending on the value of y, the principal acts

differently. Figure 4.3 and Figure 4.4 illustrate this point. All the parameters are set exactly the

same except in the first figure y = 0.1 < xN and in the second y = 0.4 > xN . If we look at the curve

of cheating activity in the first figure, there is a wedge whenever the period number is a multiple

of 4. This is because on these periods, and given the value of αN = 0.25, ht is exactly equal to

αN . Because the value of y is low, the principal can afford to let some cheating happen without
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Figure 4.5: Fictitious Play with c1 = 1, c2 = 3, c3 = 10, y = 0.4, δ = 0.6, and αN = 0.068

auditing. But since having ht = αN and αt = 0 means that in period t+ 1 ht < αN , both cheating

and auditing take on their highest values in the following period, leading to cheating and auditing

activities in periods 4t+ 1, t = 1, ....

Compare this to the case when y = 0.4 > xN . Here, the amount of cheating is high enough

to warrant auditing from the principal, who sets α = 1 in periods 4t, t = 1, ... to coincide with

those periods where 40% of the population is cheating. Thus in each cycle the principal audits all

C players but also audits H players, for a cost of 0.4c1 + 0.6c2 = 2.2. In the first scenario, with

y = 0.1, the principal incurs a cost of 0.1c3 + δc1 = 0.1c3 + 0.6c1 = 1.6.

Keeping the parameters of the problem fixed and just changing αN to 0.15 as we did in the

best response case, fictitious play still cycles using the threshold strategy, i.e., the behavior is not

identical to the Best Response case. Moreover, cycling is the only behavior observed regardless of

the discount factor, indicating that this may be analogous to the first simulation above where the

threshold strategy was optimal regardless of discounting. Dropping αN to just below 0.07 and δ to

anything over 0.28, we get the over-audit strategy, as in Figure 4.5. This implies that the mechanism
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by which fictitious play works might be similar to the best response case, with the difference being

the expressions for the cut-off value for the different parameters.

Another way to obtain the over-audit strategy in fictitious play without changing αN from the

value above (0.15) is to change the values of c1 and c2 so that they are sufficiently close to each

other. In the example above, keeping c2 the same and increasing c1 to be between 1.83 and less

than 3, or decreasing c2 to be higher than c1 but less than 1.7, achieves the same result. This is

not unexpected, since the threshold strategy alternates between periods of cost 0 and c1 and the

over-audit strategy has cost c2(αN + ε) per period. As the Nash audit rate αN and/or the cost c2

associated with the over-audit strategy decreases and the discount factor is high enough, it becomes

profitable to over-audit.

4.5 Comparison with Nash Equilibrium

Like the previous chapter, I point out some differences between the standard model of behavior and

when agents learn according to the learning model described here.

Recall from Proposition 4.3.1 that the cost to the principal of playing the game in a fully rational

setting is equal to 1
1−δ

c2c3
c3+c2−c1 . Comparing this with the payoff from the threshold strategy in the

best response case and assuming we start at the state x = 1, α = 1, the cost is given by c1
δ

1−δ2 ,

which, when the constraint 0 < c1 < c2 < c3 is taken into account, is always less than 1
1−δ

c2c3
c3+c2−c1 .

However, when we compare the Nash payoff with the threshold strategy in the fictitious play case,

the result of the comparison depends on the value of αN . This is something that does not come into

play in the Nash case since the payoff does not depend on αN . Consequently, whether the principal

is able to perform better in the fictitious play case depends on the value of αN . If αN is less than

1
2 then the threshold strategy will perform better than the Nash equilibrium. This is because the

strategy will do less auditing than in the best response case, which already has less cost than the

Nash. When αN > 1
2 , then whether the threshold strategy performs better than the Nash or not

depends on the parameters of the problem. For example, if αN is close to 1, then the threshold

strategy will perform better than the Nash if c2 ≥ c21 +
√
c41 − c31.
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4.6 Discussion

This chapter approached the problem presented in the last chapter from a different angle. The

environment is assumed to be discrete and the agents, while still far from intelligent, have an added

degree of sophistication — they try and think about how the principal is playing, even if they think

of him as a stationary opponent. I examined the two extremes of strategies that depend on past

play. The first is one when agents only react to what happened in the most recent period, and the

second is when they take all past history into account.

I analytically showed that in the best response case, the principal always does better than the

Nash solution and his preferred strategy is one of two: either to alternate periods of full auditing

and periods of no auditing so that they induce and match cheating activity, or to constantly audit

at a rate that is slightly higher than the Nash audit rate, thereby ensuring no cheating activity at

the price of auditing a few honest agents. The latter strategy is selected by the principal when two

things are in place: the Nash audit rate is quite low, leading to a not-so-significant portion of the

population being bothered by the audit, and the discount factor is high enough, making the losses

from auditing H players worth it in the long run.

While I do not derive the principal’s optimal strategies for fictitious play, simulations suggest

that the two strategies I examined in the best response case continue to be computationally optimal

in a variety of settings under the fictitious play model. When αN < 1
2 , fictitious play does not have

to do as much auditing as best response. This is not surprising as fictitious play seems to converge

very quickly to αN . It is also more sensitive to how the value of y is set, as can be seen in Figures

4.3 and 4.3. The same rationale for why the over-audit strategy is undominated seems to apply to

fictitious play though, where again low levels of the Nash audit rate αN and/or low values of c2

suggest that it might be worth it to audit a few unfortunate H players in order to be able to acquire

long-term gains.
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Chapter 5

Conclusion

This thesis examined a variety of dynamic optimization problems in various settings and through the

applications of different techniques. In some cases the dynamics of a problem can lead to difficulties

in computing optimal policies and an overall loss of value for the principal, as was the case in the

display advertising problem, where a one-shot, single-period version of the problem is much easier to

solve than its multi-period counterpart. Conversely, dynamics allowed more interesting options for

a principal when dealing with a learning population, where, depending on the learning mechanism

used, the principal is able to extract higher payoffs in a game setting.

In the first part of the thesis, I showed how a publisher can deal with an uncertain supply

situation in a display advertising problem in order to optimally fulfill a contract. The difficulties in

this problem were mostly computational: the state space is simply too large to solve the problem.

This is usually the biggest barrier in the face of optimal solution to dynamic problems. I showed

that a special case of the problem admits a simple solution, and provided an approximation to the

general case that allows the publisher to get around the computational difficulty.

The second and third parts of the thesis deal with a principal that wants to exploit learning in

a population of agents to his advantage. The second chapter considers the case when agents learn

according to replicator dynamics, and derives the principal’s optimal policy under this model. The

third chapter answers a similar question when agents play according to other learning models like

best response and fictitious play.

There are several ways in which the work in this thesis can be extended. While the questions in
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each of these chapters can be extended in their own right, it is most interesting to combine some of

the ideas presented in this thesis. For example:

• The formulation of the ad delivery problem was very much influenced by problems of logistics

and inventory management. There is not a lot of work that has been carried out at the market-

ing/operations interface (Karmarkar (1996)), but there are a lot of interesting questions. Most

questions in inventory management problems revolve around fulfilling uncertain demand, but

little or no work has been done to examine the effect of advertising on these policies. How can

a firm manipulate social learning models through advertising in order to shape demand while

also making capacity and pricing decisions? Can we characterize these joint inventory-pricing-

advertising policies? How can one allocate budget optimally over the different dimensions?

And how do the resulting policies change under various social learning models?

• The questions above consider a monopolist. What happens when firms compete and consumers

learn? How do the policies change? And what do the equilibria of these games look like? What

are the implications to standard industrial organization questions like entry barriers and price

and product differentiation?

• In terms of computability, it seems reasonable to assume that complex integrated systems like

the one in the second point above would not be amenable to the development of optimal and

efficiently computable policies. For example, even when demand only depends on price, finding

the optimal policies is computationally intractable.1. Are there policies that are both simple

to implement and guarantee a solution that is close to optimal?

• How much does consumer rationality cost a firm? So far, Bayesian and behavioral learning

agents have been considered in isolation. As I have shown in this thesis, it can benefit the

principal when the population is behavioral, but how does this change when a fraction of

the population is Bayesian? Can we quantify the losses to the firm —if any— as the degree

of sophistication of the population increases? How does this affect the optimal policies for

1See Coordinating inventory control and pricing strategies with random demand and fixed ordering cost Chen and
Simchi-Levi (2004).
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problems where the population is either behavioral or rational? More interestingly, can we

identify cases where the principal’s payoffs depend on the fraction of the rational population

in a non-monotonic fashion?

• The previous questions are all motivated by real-world business problems and concerns that

a firm faces. One abstract question is understanding how advertising affects learning in a

population and what learning models are more prone to be influenced by it. What are the

best ways to implement public service campaigns that aim to increase social welfare through

increasing awareness in a population?

Another related line of work is how to play a game against agents who are prone to making

mistakes. In particular, can a principal exert some influence on the decisions made by a population

through ways other than learning? One possible answer to this question mixes decision theory

with the theory of computation. For example, can a firm combine economic models of thinking

aversion2 with computational complexity theory to provide a formal model of satisficing?3 Recent

experimental evidence in Caplin, Dean, and Martin (Forthcoming) suggests that subjects indeed

satisfice when choosing from complex menus. How can such a model be used to design menus and

choice sets that encourage certain biases that lead to maximizing a principal’s objectives?

The two lines of inquiry in this thesis, dynamic problems and learning mechanisms, as well as

areas in which both intersect, provide an exciting venue for research in the immediate future. With

some of the classic work in economics already being ported into a dynamic format (e.g., Athey and

Segal (2007) and Pavan, Segal, and Toikka (2009) for work on dynamic mechanism design), it is

imperative that the learning aspects of these problems are infused into their dynamic analysis to

provide an integrated framework that better describes questions in decision making and mechanism

design, as well as questions in fields that rely on methods from these areas, like marketing and

operations.

2For example, The Price of Flexibility: Towards a Theory of Thinking Aversion. Ortoleva (2008).
3See A Behavioral Model of Rational Choice. Simon (1955). Satisficing is when agents are unable to pick the

optimal choice from a set and instead settle for something that is good enough.
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Appendix A

Proofs of Chapter 3

Proof of Proposition 3.2.2

Proof. Assumption 3.2.1 implies that the principal can only respond to the distribution of play in

the population. Because each agent is a negligible part of the continuum, any individual action has

no effect on the distribution of play and thus no bearing on the future treatment of that agent, i.e.,

the continuation payoff for any agent is unaffected by its action in the current round. Hence it is

optimal for an agent to play C if E[C|α(t)] > E[H|α(t)], which is always the case when α(t) < αN .

The opposite is true when α(t) > αN . Similarly, the principal plays A if E[A|x(t)] > E[I|x(t)|, which

happens when x(t) > xN . The principal thus plays αN to make the agents indifferent between their

two actions. The agents in turn best reply by mixing between C and H with probability xN . The

situation is identical each time the game is played and the result follows.

Proof of Theorem 3.3.2

Proof. Let the fraction of cheaters be denoted by x(t) and denote the principal’s audit rate by α(t).

The rates with which the C population and the audit rate evolve follow the values in Figure 3.1 and
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are given by

α̇(t) = α(t)
[
− (c1x(t) + c2(1− x(t)))− (c3(1− α(t))x(t) + c1α(t)x(t) + c2α(t)(1− x(t)))

]
= α(t)(1− α(t))[(c3 + c2 − c1)x(t)− c2) (A.1)

ẋ(t) = x(t)
[
v3(1− α(t))− (v1α(t)(1− x(t)) + v2(1− α(t))(1− x(t)) + v3(1− α(t))x(t))

]
= x(t)(1− x(t))[(v2 − v3 − v1)α(t) + v3 − v2]. (A.2)

Because of Assumptions 3.2.3 and 3.3.1, there are no equilibria on the boundary of the system

described by (A.1) and (A.2). Instead, there is unique interior equilibrium which is obtained when

ẋ(t) = 0 and α̇(t) = 0. At this equilibrium the pair (x, α) is equal to ( v3−v2
v3+v1−v2 ,

c2
c3+c2−c1 ), the same

values for the Nash equilibrium of the repeated game in (3.1) (recall that there I have assumed

that v1 = v2). The Hartman-Grobman linearization near the equilibrium gives the Jacobian of this

system of equations evaluated at the equilibrium,

J =

 0 v1(v3−v2)
(v3+v1−v2)2 (c3 + c2 − c1)

c2(c3−c1)
(c3+c2−c1)2 (v2 − v3 − v1) 0


.

Note that because of the structure and the relationship between the costs, particularly because

c3 > c1 and v3 > v2, the entry at the top right is always positive while that on the bottom left is

always negative. In particular, this system has a pair of pure imaginary eigenvalues, implying that

the equilibrium is non-hyperbolic and is in fact a center of the dynamical system described by (A.1)

and (A.2) (Perko (2001)).

Dropping the time argument in the following to reduce clutter, I can write the dependence of α

on x as:

dα

dx
=

α(1− α)[(c3 + c2 − c1)x− c2)

x(1− x)[(v2 − v3 − v1)α+ v3 − v2]
.
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This gives

((v2 − v3 − v1)α+ v3 − v2)

α(1− α)
dα− ((c3 + c2 − c1)x− c2)

x(1− x)
dx = 0.

Integrating and using B(x, α) to describe the solution to (A.1) and (A.2),

B(x, α) = (v2 − v3 − v1) ln(1− α) + (v3 − v2) ln
α

1− α
− (c3 + c2 − c1) ln(1− x)− c2 ln

x

1− x
.

Rearranging terms and exponentiating, I end up with

B(x, α) = αv3−v2(1− α)2(v2−v3)−v1x−c2(1− x)c1−c3 . (A.3)

Now let (x, α) be a solution to the system (A.1) and (A.2). Then the rate of change of B(x, α) with

respect to time is given by

Ḃ(x, α) = ẋ
∂

∂x
B(x, α) + α̇

∂

∂α
B(x, α).

Claim A.0.1. Ḃ(x, α) = 0 for any solution (x(t), α(t)) to (A.1) and (A.2).

Proof. See below.

Claim A.0.1 implies that the orbits described by (A.3) are closed and correspond to constant levels

of B(x, α), since their time derivative is zero. The Nash equilibrium of the game is a center of these

orbits and of the dynamical system (A.1) and (A.2).

Proof of Claim A.0.1

Proof. I need to show that Ḃ(x, α) = ẋ ∂
∂xB(x, α) + α̇ ∂

∂αB(x, α) = 0, where

B(x, α) = αv3−v2(1− α)2(v2−v3)−v1x−c2(1− x)c1−c3 .
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To reduce notation, I note that all the costs in the problem are constants that do not affect the

derivatives with respect to x or α. I will employ the following shorthand notation: a = c2, b =

c3− c1, c = v3− v2, and s = 2(v2− v3). Substituting for these quantities and differentiating B(x, α)

with respect to x provides

∂

∂x
(αc(1− α)sxa(1− x)−b) = c(1− x)−bx−a(1− α)sαc−1 − s(1− x)−bx−a(1− α)s−1αc. (A.4)

Similarly, the partial derivative ∂
∂αB(x, α) is given by

∂

∂α
(αc(1− α)sxa(1− x)−b) = (1− x)−b−1x−a−1(a(−1 + x) + bx)(1− α)sαc. (A.5)

Using (A.1), (A.2), (A.4), and (A.5) in Ḃ(x, α)

Ḃ(x, α) = (a− (a+ b)x)(1− α)α
(
c(1− x)−bx−a(1− α)sα−1+c − s(1− x)−bx−a(1− α)−1+sαc

)
+ (1− x)x(c− (c+ s)α)

(
−a(1− x)−bx−1−a(1− α)sαc + b(1− x)−1−bx−a(1− α)sαc

)
= 0.

Proof of Theorem 3.3.3

Proof. Consider a period of length T . We can rewrite (A.1) as

α̇(t)

α(t)(1− α(t))
= ((c1 − c3 − c2)x(t) + c2)∫ T

0

α̇(t)

α(t)(1− α(t))
dt =

∫ T

0

((c1 − c3 − c2)x(t) + c2)dt

ln
α(t)

1− α(t)

∣∣∣∣t=T
t=0

= c2T − (c1 − c3 − c2)

∫ T

0

x(t)dt.
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Noting that α(0) = α(T ), we get

0 = c2T − (c1 − c3 − c2)

∫ T

0

x(t)dt

c2
c3 − c2 − c1

=
1

T

∫ T

0

x(t)dt.

Thus the average fraction of cheaters over any period is equal to that in (3.1). The same reasoning

is used to show that

v3 − v2

v3 + v2 − v1
=

1

T

∫ T

0

α(t)dt,

which, given the assumption that v1 = v2, is again equal to the audit rate in (3.1).

Proof of Lemma 3.4.1

Proof. A bang-bang solution implies that α(t) takes on extremal values in its domain until the

solution trajectory reaches a final state. I will denote by α∗(t) and x∗(t) the optimal control and

state trajectories. By the minimum principle, it must hold at each moment in time that

α∗(t) = arg min
0≤α≤1

H(x∗(t), α, λ(t))

= arg min
0≤α≤1

c3x+ λqx(1− x) + α(c2 + (c1 − c2 − c3)x− λ(p+ q)x(1− x))

Similar to the single-period problem, the Hamiltonian is a linear function in α. Minimizing the

Hamiltonian w.r.t α, I find that the optimal control trajectory, α∗(t) satisfies

α∗(t) =


0, λ(t) < c2+(c1−c2−c3)x(t)

(p+q)x(t)(1−x(t)) ;

1, λ(t) > c2+(c1−c2−c3)x(t)
(p+q)x(t)(1−x(t)) ;

[0, 1] , λ(t) = c2+(c1−c2−c3)x(t)
(p+q)x(t)(1−x(t)) .

(A.6)

Thus α assumes values at the boundary except when λ(t) = c2+(c1−c2−c3)x(t)
(p+q)x(t)(1−x(t)) , in which case α

disappears from the Hamiltonian and can be set to any value in its domain. However, as I show
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shortly, on the optimal control and state trajectories this case cannot happen except for precisely a

single pair (α∗, x∗).

Proof of Lemma 3.4.2

Proof. Denoting the function inside the integral in (3.12) by L(t, x, ẋ), the Euler-Lagrange equation

gives another necessary condition that the optimal x∗(t), if it exists, satisfies. Writing down the

equation,

0 =
∂L

∂x
− ∂

∂t

∂L

∂ẋ

= e−rt
(
c3 +

1

p+ q
(c2 + (c1 − c2 − c3)x(t))

(
ẋ(t)

(1− x(t))x(t)2
− ẋ(t)

(1− x(t))2x(t)

))

+ e−rt

 (c1 − c2 − c3)
(
p− ẋ(t)

(1−x(t))x(t)

)
p+ q


− e−rt

(
r(−1 + x(t))x(t)(−c2 + (−c1 + c2 + c3)x(t)) +

(
c2 − 2c2x(t) + (−c1 + c2 + c3)x(t)2

)
ẋ(t)

)
((p+ q)(−1 + x(t))2x(t)2)

.

After some algebra and simplifying the above, I get

e−rt
(
(c2r − (c1 + c2)(p− r) + c3(q + r))x(t) + ((c1 − c2)p+ c3q)x(t)2

)
(p+ q)(x(t)− 1)x(t)

= 0

which is a quadratic function in x(t). Solving that equation and enforcing the constraint that

0 ≤ x(t) ≤ 1, I obtain the solution

x∗(t) =
(c2 − c1)p− c3q + (c1 − c2 − c3)r +

√
4c2((c2 − c1)p− c3q)r + ((c1 − c2)p+ c3q + (c1r − c2 − c3)r)2

2((c2 − c1)p− c3q)

which is time-independent and a function of the parameters of the problem.
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Proof of Theorem 3.4.3

Proof. I show that the policy in the statement of the theorem is optimal by showing that an optimal

policy exists and that only the policy given in the statement of the theorem satisfies the necessary

conditions for an optimum. That an optimal policy exists follows from the boundedness of the cost

per stage, g(x(t), α(t)), and the continuity of the functions g and f on the compact sets x(t) and

α(t). The boundedness of the per-stage cost together with the presence of the discount factor r

ensures that the value of the optimal solution is <∞.

From Lemma 3.4.2, a necessary condition for the optimal path x∗(t) to minimize (3.12) (and

consequently (3.6)), is that x∗(t) is a constant, which I will denote by x̄, where x̄ is as given in the

proof of Lemma 3.4.2. This implies that as soon as x∗(t) = x̄ there should be no further changes in

the system, so that ẋ∗(t) is equal to zero. Given the system dynamics in (3.3), this occurs if

f(x∗(t), α∗(t)) = 0

x∗(t)(1− x∗(t))(q − α∗(t)(q + p)) = 0.

Using Assumption 3.2.3, x̄ cannot have a value on the boundary, and hence the only solution to the

above equation is α∗(t) = q
p+q . This implies, from (A.6), that λ(t) = c2+(c1−c2−c3)x̄

(p+q)x̄(1−x̄) . The R.H.S of

this is a constant, and hence λ̇(t) = 0 and the system remains in the state (x̄, q
q+p ) forever.

Now consider any trajectory that sets α(t) 6= 1 when x∗(t) > x̄. By Lemma 3.4.1, if x∗(t) 6= x̄

and α(t) 6= 1 then α(t) = 0, in which case ẋ(t) > 0 and x(t + δ) > x(t) for δ small enough. Let

t+δ = t1 > t, x(t1) > x̄ and α(t1) = 0, then for t2 > t1, x(t2) > x(t1), i.e., the system moves farther

from x̄. However, because of Lemma 3.4.2, an optimal trajectory must eventually move towards x̄.

Since the system is continuous, the trajectory going from x(t2) to x̄ has to pass through x(t1) again,

at which point the system returns to the same state it was in at time t1, but with the additional

cost accrued between times t1 and t2 added to the total cost. This indicates that such a scenario

cannot be optimal, and that it would have been cheaper to set α(t1) = 1. The reverse argument

applies in the case of x(t) < x̄.
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Proof of Theorem 3.5.1

Proof. Denote the audit rate in the behavioral setting by αB . From Theorem 3.4.3, αB is given by

q
p+q . Replacing p and q by their values from Section 4.2.1, I find that the audit rate αB is given by

αB =
v3−v1
v3

1 + v3−v1
v3

(A.7)

which is always strictly less than the Nash audit rate in (3.1). Now consider the situation as r → 0.

In the fully rational setting this does not affect the outcome, and the principal and the population

keep playing the strategies prescribed by (3.1) forever. Under the behavioral setting however, letting

r → 0 has a drastic effect on the cutoff value x̄. From Equation (3.13) in Lemma 3.4.2,

lim
r→0

x̄ =
(c2 − c1)p− c3q + (c1 − c2 − c3)r +

√
4c2((c2 − c1)p− c3q)r + ((c1 − c2)p+ c3q + (c1r − c2 − c3)r)2

2((c2 − c1)p− c3q)

Substituting for p and q, and taking the limit,

lim
r→0

x̄ =
c1 − c2 + c3(−v2+v3)

v3
−
√(

c1 − c2 + c3(−v2+v3)
v3

)2

2
(
c1 − c2 + c3(−v2+v3)

v3

) = 0.

which concludes the proof.

Proof of Theorem 3.7.1

Proof. In an attempt to reduce notation, I will assume that the system evolves such that the share

of a strategy that is performing better than average grows. Any quantitative derivation leads to the

same qualitative results as long as agents switch to better strategies with some positive probability.
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The system is then described by the following equations:

ẋ(t) = x(t)(1− x(t))
(
(1− α(t))a2 − α(t)a1

)
(A.8)

α̇(t) = α(t)(1− α(t))
(
(1− x(t))b1 − x(t)b2

)
. (A.9)

Let x(0) = b1+ε
b1+b2

, for any ε ∈ (0, b2), then from (A.9),

α̇(t) = α(t)(1− α(t))

(
(b2 − ε)b1
b1 + b2

− (b1 + ε)b2
b1 + b2

)
= −ε(b1 + b2)α(t)(1− α(t))

< 0.

Similarly, one can show that ẋ(t) > 0 when α(0) fulfills the condition in the statement of the theorem.

This implies that x(δ) > x(0) for any δ > 0, and hence α̇(t) at t = δ continues to be negative while

ẋ(t) continues to be greater than zero and x(t) keeps increasing, leading to limt→∞ (x(t), α(t)) →

(1, 0). Thus the principal shifts almost all of the weight to the R strategy while more and more

agents play action B, and the system converges to the equilibrium (B,R), as in the statement of

the theorem.

Proof of Theorem 3.7.2

Proof. Using (A.9), one can write α(t) as

α(t) =
ẋ(t)− a2x(t) + a2x

2(t)

(a1 + a2)(x(t) + x2(t)− x(t)
.

The principal’s problem becomes

min
x(t)

∫ ∞
0

e−rt

a2b1(1− x(t)) + a1b2x(t) + (b1−(b1+b2)x(t))ẋ(t)
(1−x(t))x(t)

a1 + a2

dt (A.10)
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where r > 0 is a discount factor as before. Using the Euler-Lagrange equation to solve (A.10) leads

to the following condition that should be satisfied by the optimal x(t)

e−rt (−b1r + (a1b2e
rt − a2b1)x(t))

(a1 + a2)x(t)
= 0. (A.11)

Denoting the optimal x(t) by x∗(t), we get

x∗(t) =
b1r

a1b2ert − a2b1
. (A.12)

Then,

lim
r→0

x∗(t) = lim
r→0

b1r

a1b2ert − a2b1
= 0. (A.13)

Thus as the discount factor gets higher (by having r approach zero), the system converges to a

state where no one plays B,1 and the principal’s optimal action is to set α(t) = 1 indefinitely.

Proof of Proposition 3.8.1

Proof. The proof follows Section 3.4.2.1. Let the threshold in the statement of that theorem be

given by xN , and let the fraction of the behavioral population playing C be x. When x + ρ > xN ,

the principal’s payoff is maximized by setting α = 1. Thus p∗c = 0 in this case, since no rational

player would want to cheat as they will get audited with certainty. Similarly, when ρ < xn − x,

the principal’s optimal action is given by (3.7), and α = 0, leading to p∗c = 1. Finally, when the

value of p∗c decides whether x + p∗cρ > xN or x + p∗cρ < xN , i.e., the situation is such that the

fraction of cheaters in the rational population determines which side of xN the total number of

C players falls on, the rational agents maximize their utility by playing C with a probability that

makes the principal indifferent between auditing and ignoring. If p∗c >
xN−x
ρ , then the principal’s

optimal action is α = 1; conversely, if p∗c <
xN−x
ρ then the principal sets α = 0, and the agents

could increase p∗c slightly and do better. It follows that the equilibrium value for p∗c is the one that

1Of course, it would require infinite time for x(t) to reach zero.
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makes E[C|x+ p∗cρ, α] = E[H|x+ p∗cρ, α], which happens exactly when p∗c is as in the statement of

the theorem, and the principal then plays the audit rate αN that makes E[A|x, p∗c ] = E[I|x, p∗c ].

Proof of Proposition 3.8.2

Proof. It is sufficient to show that there exists a solution —not necessarily optimal— where α(t) <

αN and x(t) + p∗cρ < xN . One such solution exists when the whole rational population plays C, i.e.,

p∗c = 1. The equation of motion of the behavioral population becomes

ẋ(t) = x(t)(v3(1− α(t))− ((x(t) + ρ)v3(1− α(t)) + (1− x(t))v1)). (A.14)

Replacing x(t) by xN − ρ, the value of α(t) that stabilizes the total population of C players at xN ,

denoted by ᾱ, can be found from (A.14), where

ᾱ =
v3 − v1 + v1(xN − ρ)− v3(xN − ρ)− v3ρ

v3(1− xN )
. (A.15)

Obviously, ᾱ < αN or else p∗c < 1 (by Lemma 3.8.1), in which case the construction above fails. To

verify that it is indeed the case, replace xN by its value from (3.1) and subtract the Nash audit rate

αN from (A.15), leading to

ᾱ− αN =
(c3 + c2 − c1)v1ρ

(c1 − c3)v3
(A.16)

which is less than zero (as c3 > c1). Therefore, there exists a solution that gives the same fraction

of cheaters as the Nash solution but audits at a value that is less than the Nash rate.

Proof of Proposition 3.8.3

Proof. This follows immediately from Lemma 3.8.1. Assume that at some point in time α∗(t) < αN ,

then p∗c(α(t)) = 1. Of course, if x(t) > 0, x(t) + ρ increases, and α∗(t) increases. Even if the

principal drives x(t) to zero, he would still be playing a fully rational game against a fraction ρ of
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the population, and any α(t) < αN is suboptimal by Theorem 3.2.2. It follows that α∗(t) ≥ αN and

the rational population plays as in Lemma 3.8.1.
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Appendix B

Code for Simulations

This appendix contains the MATLAB code necessary to run the simulations in Chapter 3 of this

thesis. Working with a dynamic program, the state space has to be discretized. The first file,

gridproj.m, is used throughout the code to project any values onto a discrete grid over which the

state space is defined.

function [index]=gridproj(grid,point)

gridlength=length(grid);

gridl=1;

gridM=gridlength;

gridm=floor((gridl+gridM)/2);

if point>grid(gridlength-1)

if 1-point<point-grid(gridlength-1)

index=gridlength;

else

index=gridlength-1;

end

elseif point<grid(2)

if point<grid(2)-point
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index=1;

else

index=2;

end

else

while not(grid(gridm)<=point && point < grid(gridm+1))

if point<grid(gridm)

gridM=gridm;

else

gridl=gridm;

end

gridm=floor((gridl+gridM)/2);

end

if point-grid(gridm)<grid(gridm+1)-point

index=gridm;

else

index=gridm+1;

end

end

The next function, Bellman2.m, solves the Bellman equation for a variety of learning mechanisms.

Best response, fictitious play, truncated fictitious play, and weighted fictitious play are all included

in the code.

function [Jvecout,polout]=Bellman2(grid,kappa,Jvec,C1,C2,C3,alpha_nash,y,t,T)

Jvecout=zeros(size(Jvec));

polout=zeros(size(Jvec));

threshold=alpha_nash;
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k = 3;

for i=1:length(Jvec)

h=grid(i);

tempmin=10^10;

tempalpha=-1;

if h > threshold

x=0;

elseif h < threshold

x=1;

else

x=y;

end

for alpha=grid

nexth=(h*(T-t)+alpha)/(T-t+1);

% nexth=alpha; %BR

% nexth=(h*(k-1)+alpha)/k; % limited memory of k periods

% nexth=(lambda * h*(T-t)+(1-lambda)*alpha)/(T-t+1);

nextj=gridproj(grid,nexth);

tempcost= x*C3+alpha*x*(C1-C2-C3)+alpha*C2+kappa*Jvec(nextj);

if tempcost<tempmin

tempmin=tempcost;

tempalpha=alpha;

end

end

Jvecout(i)=tempmin;
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polout(i)=tempalpha;

end

Next, script.m is the script file that contains the values for the parameters. It calls the main

function, Bellman2.m and draws the graphs based on the outcome of the algorithm. The discount

factor is called kappa, not delta, as in that part of the thesis.

steps=100;

grid=0:1/steps:1; % grid from 0 to 1 with distance 1/steps

gridl=length(grid);

C1=1;

C2=3;

C3=10;

alpha_nash=0.25;

y=0.1;

kappa=0.6;

lambda=0.5;

Jvec=zeros(gridl,1);

% Jvec=zeros(gridl,gridl); %fictitious

T=30;

for t=1:T

t

% [Jvec,pol]=Bellman2(grid,kappa,Jvec,C1,C2,C3,y); %BR

[Jvec,pol]=Bellman2(grid,kappa,Jvec,C1,C2,C3,alpha_nash,y,t,T); %fictitous

% [Jvec,pol]=Bellman2(grid,kappa,lambda,Jvec,C1,C2,C3,alpha_nash,y,t,T); %fictitous with exponential weight

% [Jvec,pol]=Bellman(grid,kappa,Jvec,C1,C2,C3,p,q);

% [Jvec,pol]=Bellman(grid,kappa,Jvec,C1,C2,C3);
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end

k=3;

Htrajectories=zeros(gridl,T);

trajectories=zeros(gridl,T);

Xtrajectories=zeros(gridl,T);%

threshold = alpha_nash;

delta_threshold = alpha_nash*(C2+y*(C1-C2-C3))/(C1-alpha_nash*(C2+y*(C1-C2-C3)));

delta_th_2= alpha_nash * C2/(C1-alpha_nash*C2);

nash_cheating=C2/(C3+C2-C1);

for i=1:gridl

h=grid(i);

% x=grid(i);

trajectories(i,1)=pol(i);

Htrajectories(i,1)=h;

% Xtrajectories(i,1)=x;

alpha=pol(i);

for t=2:T

h=(h*(t-1)+alpha)/t;

% h=alpha; %BR

% h=(h*(k-1)+alpha)/k; %limited memory of k periods

% h=(lambda * h*(T-t)+(1-lambda)*alpha)/(T-t+1); %discounted past

if h > threshold

x=0;

elseif h < threshold

x=1;

else
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x=y;

end

index=gridproj(grid,h);

alpha=pol(index);

trajectories(i,t)=alpha;

Htrajectories(i,t)=h;

Xtrajectories(i,t)=x;

end

end

plot(Htrajectories(1,:))

hold on;

plot(trajectories(1,:),’r’)

hold on;

plot(Xtrajectories(1,:),’g’)

% string=’’;

%

% for k=1:20

% data1=k;

% data2=trajectories(56,k);

% string=[string,’(’];

% string=[string,num2str(data1)];

% string=[string,’,’];

% string=[string,num2str(data2)];

% string=[string,’) --’];

% end
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%

% string=’’;

%

% for k=1:20

% data1=k;

% data2=Xtrajectories(56,k);

% string=[string,’(’];

% string=[string,num2str(data1)];

% string=[string,’,’];

% string=[string,num2str(data2)];

% string=[string,’) --’];

% end

% for k=1:100

% data1=k;

% data2=Jvec(k);

% string=[string,’(’];

% string=[string,num2str(data1)];

% string=[string,’,’];

% string=[string,num2str(data2)];

% string=[string,’) --’];

% end

% string

Finally, I include the code that simulates replicator dynamics, even though no simulation was

included in this part of the thesis.

function [Jvecout,polout]=Bellman(grid,kappa,Jvec,C1,C2,C3,p,q,l,s)
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Jvecout=zeros(size(Jvec));

polout=zeros(size(Jvec));

for i=1:length(Jvec)

x=grid(i);

tempmin=10^10;

tempalpha=-1;

for alpha=grid

% nextx=x*(1+(1-x)*(1-2*alpha));

nextx=x*(1+(1-x)*(p-alpha*(q+p)));

% nextx=x*(1+(1-x)*(s*(1-alpha)^2-alpha*(p-q+alpha*(l-p+q))));

nextj=gridproj(grid,nextx);

tempcost= x*C3+alpha*x*(C1-C2-C3)+alpha*C2+kappa*Jvec(nextj);

if tempcost<tempmin

tempmin=tempcost;

tempalpha=alpha;

end

end

Jvecout(i)=tempmin;

polout(i)=tempalpha;

end
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