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Abstract

In the digital era that we live in, efficient coding of signals is an unquestionable need.
This thesis is about one of the most useful and popular technique of digital coding:
subband coding. Subband coding and its cousin wavelet-based coding are now the
preferred methods for not only speech, but also audio, image, and video signals. Sub-
band coding involves a linear part which is a filter bank, and a nonlinear part which
is usually a uniform scalar quantization of each of the subbands. Subband coders are
classified according to the type of filter bank used for its transform. This thesis is
mainly about orthonormal subband coding. The ability of an orthonormal filter bank
to decompose the signal into components that have a diverse set of signal energies is an
indicator of its efficiency for subband coding. Such a diversity in the set of the subband
energies is fully utilized by a process called bit allocation. The traditional results on
the optimality of a filter bank for given input statistics assume that the quantizers
operate at high bit rates.

This thesis presents optimality results under more general quantizer models without
assuming high bit rates. This is accomplished by revealing the relationship between
the problems of optimal orthonormal subband coding and principal component rep-
resentation of signals. The latter is done using what is called a principal component
filter bank (PCFB). A PCFB is one that compacts most of the energy of a signal into
smaller subsets of subbands. To date, there has not been significant theoretical devel-
opments in the field of optimal nonuniform subband coding, although the successful
techniques of wavelet-based coding are among the state of the art in practice. Such
techniques utilize a form of a nonuniform filter bank with a certain structure which
makes it efficient for its implementation. In this thesis, we provide optimality results
for the nonuniform orthonormal subband coding as well. As in the uniform case, the
principal component representation of signals continues to play the key role. We intro-

duce nonuniform PCFB’s and link them to the optimal subband coding problem. A
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PCFB, in particular, contains a filter that compacts most of the signal energy into one
single channel: energy compaction filter. The thesis goes into details of designing such
filters optimally. In particular, we propose an analytical method in the two-channel
case and a very efficient window method in the arbitrary A —channel case. Multistage
design of compaction filters has also been worked out.

Finally we extend the analysis of uniform scalar quantization to multiple dimen-
sions. We provide an exact statistical relationship between a lattice quantizer noise
and its input vector. We then extend the idea of dithering to the vector case. Dithering
is a means of statistically rendering the quantization noise independent of the input.
We address the optimal choice of a lattice for a given dimension and also optimal pre-

and post-filtering of a dithered lattice quantizer.
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Chapter 1

Introduction

Digital Signal Processing (DSP) has undoubtedly penetrated into the heart of modern
technology. Digital domain is not only the preferred domain for the storage and re-
trieval of a signal of any type, but it is also the preferred domain for its processing and
transmission. The transition between the analog domain and the digital domain is done
using analog-to-digital (A/D) and digital-to-analog (D/A) converters. An analog signal
z(t) is both continuous-time and continuous-amplitude signal, and it is converted into
a digital signal z(n) which is both discrete-time and discrete-amplitude. Time domain
conversion is through the process of sampling while the amplitude domain conversion
is done via quantization. The signals in this thesis are of digital type; however, on
many occasions they can be considered as discrete-time but continuous-amplitude.
Within DSP lies the world of multirate signal processing. Sampling and quanti-
zation of continuous signals lead to the notion of resolution in time and amplitude.
The higher the sampling frequency and the higher the number of quantization levels,
the better the resolution of the digital approximations of the original signals. The cost
is of course the increase in the volume of data that we have to deal with. Multirate
signal processing strives to keep that cost at reasonable levels by applying smart sig-
nal processing algorithms that involve alterations of sampling rates and the number of

quantization levels. A central topic in multirate signal processing is subband coding
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which involves filter banks and quantization of subband signals.

X(n) ——s=\ M t— y(n) X(n) —s=AM |— y(n)
y(n) = x(Mn) x(n/M), n=kM
4 )={ 0, otherwise

(a) (b)

Fig. 1.1: (a) Downsampling (b) Upsampling.

The term multirate originated in applications that involve sampling rate alterations
of signals. Essential to these applications are the operations of downsampling and
upsampling as shown in Fig. 1.1. In words, downsampling keeps every Ath sample
while upsampling inserts M — 1 zeros between consecutive samples.

A fundamental concept in any technical field is the concept of transformation.
Depending on the application, the original signal is transformed into a more convenient
domain, processed in that domain, and then transformed back into the original domain.
A transformation can also be viewed as decomposition into a basis and the inverse
transformation viewed as reconstruction using the transform coefficients. In traditional
digital signal processing, an example of a transformation is a linear time-invariant (LTT)
system (a filter) represented by its transfer function H(z) as in Fig. 1.2. The filter

produces an output sample for each input sample. A second example is the matrix

-1

x(n) H(z) — H(2) y(n)
filter inverse filter

Fig. 1.2: Traditional signal processing: an LTI system and its inverse.

transform of a vector signal as illustrated in Fig. 1.3. The transform produces an
output vector for each input vector.
In the world of multirate signal processing, the transformations are done by filter

banks as in Fig. 1.4. In the figure, the original signal z(n) is passed through A/ different



transform inverse transform

Fig. 1.3: Transformation of a vector signal.

n
(@ D) el
H,(@) F,(2)
H, (2) )1\ M {—> —= MM —(F.(2)
analysis filter bank synthesis filter bank

Fig. 1.4: Multirate signal processing: analysis and synthesis filter bank.

filters. We have an A{-fold increase in the number of signals, so we decimate each output
signal by M. Similarly, after processing of these M components, we upsample each
of them by M and pass them through filters before combining into the output signal
y(n) of the same sampling rate as the original signal. The set of filters that are used
to decompose the original signal into M channels is called the analysis filter bank,
and the set of filters that are used to recombine the processed channels is called the
synthesis filter bank.

A typical filter bank has a frequency response as shown in Fig. 1.5. Thus each of
the subband signals corresponds to a different portion of the frequency spectrum of
the input signal. Subband signals are time sequences on their own. Hence in a sense,
filter banks produce joint time and frequency representations of signals.

In most applications, it is desirable that the transformation be invertible. In Fig. 1.2



A amplitude

T ®
Fig. 1.5: Frequency response of a typical filter bank.

the inverse transformation of H(z) is simply the inverse LTI filter H~!(2) and it is an
easy task to design H(z) such that its inverse is well-behaved, that is, it is stable.
Similarly, in Fig. 1.3 the inverse transformation is simply A~! as long as the matrix
A is nonsingular. In Fig. 1.4, it is not a trivial matter to design a set of filters for
the synthesis filter bank that form the inverse of the analysis filter bank. Whenever
this happens, we say that the system has the perfect reconstruction (PR) property.
In Fig. 1.2, either the filter H(z) or its inverse H~!(z) has to be recursive (IIR). A
beautiful result in filter bank theory is that it is possible to have a PR system with
analysis and synthesis filter banks that both have nonrecursive (FIR) filters [Vai93].
A fundamental tool in filter bank theory is the concept of polyphase representation.
The idea is to represent the filter bank system by a multi-input-multi-output (MINO)
transfer function that operates on a vector signal. The vector signal is obtained by

blocking of the original scalar signal as shown in Fig. 1.6.

x(n)

x(n)

N
0]

<

S

Ol e
-

(a8)]
\_/

Fig. 1.6: Blocking of the scalar input.



X(n-)—-—NVl x(n) X(l‘l»@
Z —

—’LNYI . — —.> é _l(n)
Y s |2
—M —2)

Fig. 1.7: Unblocking of the vector input.

Once this fundamental connection is done, many of the questions in filter bank
theory can be brought into the realm of MIMO systems. It has been shown that the
analysis filter bank of Fig. 1.4 is equivalent to blocking followed by a MIMO system

as shown in Fig. 1.8. In a sense, sequential processing of the input by M filters is

Mo H(2) VMi— —AM F (2) _y(»n)
@) yM—~  —=fM (70
H,.,(2) ) M —> —=AM —(F.(2)

x(n) |2 [, L . | < | y(n)
15[, E(2) RZ)[er
— . : m
LCDJ_" J— —» ,—»é

Fig. 1.8: Polyphase representation of the analysis filter bank.

replaced by the parallel processing of the blocks of the input by a MIMO system. This
is more efficient in terms of implementation because all the processing is done at lower

sampling rates. Similarly, we have the equivalence shown in Fig. 1.8 for the synthesis
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filter bank, where the unblocking is the reverse of the blocking operation as shown in
Fig. 1.7. Comparing Fig. 1.2 and Fig. 1.4, we see that a filter bank can be viewed as
a natural extension of a classical filter. Comparison of Fig. 1.3 with Fig. 1.8 puts in
evidence the fact that a filter bank is also a natural extension of a matrix transform.
While for some applications it may prove more efficient to view the filter banks as
extensions of transforms, i.e., MIMO systems, there are many occasions where theyv
can-be best thought of as multiple filters operating at different portions of a single

frequency spectrum, e.g., as in spectral analyzers.

1.1 Classification of Filter Banks

Consider Fig. 1.4 again. Each of the M subband signals is decimated by the same
number M resulting in an average sampling rate that is the same as the input sampling
rate. Such a filter bank is called a uniform filter bank. Equivalently one can think
of using different decimation ratios for different channels while keeping the average
sampling rate the same. If n; denotes the decimation ratio for ith channel, then this can
be accomplished by having ! 1/n; = 1. Such a filter bank is called a nonuniform

filter bank. Fig. 1.9 shows frequency responses of a typical nonuniform filter bank.

The theory and design of nonuniform filter banks are relatively less developed than the

A amplitude

1 AN

T ®

Fig. 1.9: Frequency response of a typical nonuniform filter bank.

uniform counterparts. For the uniform case, the classification of filter banks can be
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done easily in terms of the equivalent MIMO systems E(z) and R(z) in their polyphase

representation.

1. Biorthogonal filter bank. A filter bank with perfect reconstruction (PR)

property. In terms of the polyphase representation, the MIMO systems should

satisfy:
R(z)E(z) =1 | (1.1)

In terms of the filter transfer functions, the equivalent condition is

Hi(2)F;(2)| ,, = 8(i = j) (12)

The reader should refer to Sec. 1.4 on notations to make sense of (1.2).

2. Orthonormal filter bank. A biorthogonal filter bank with further condition :
R(z) = E(2) (1.3)

In terms of filter transfer functions, we have equivalently
Fi(z) = () (1.4)

The notation ~ for matrix and scalar transfer functions is explained in Sec.
1.4. In the time domain, (1.4) is equivalent to f;(n) = hf(—n). Hence in the
orthonormal case, the synthesis filters can be determined from the analysis filters

by time reversal and complex conjugation.

3. Transform. We call the filter bank simply a transform if E(z) = Eg, a constant
matrix. In this case, the operation of the filter bank is simply a block by block
matrix transformation of the original signal. In terms of filters, a transform is

equivalent to a filter bank with filter orders < Af.
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4. FIR filter bank. A filter bank with FIR filters. In terms of the polvphase

representation, an analysis filter bank is FIR if
E(z) =Ey+Ez7 ... + Egz K (1.5)

In contrast to a transform, an FIR filter bank can be thought of as a lapped
transform. The current output vector is the summation of matrix transformations
of the current and K previous input blocks. Here K is called the order of the
MIMO system E(z). There is another significant notion, similar to, but different
from the order. It is the degree of the MIMO system E(z) which represents the

minimum number of delay elements required to implement it.

5. Ideal filter bank. A filter bank with no order constraints on the filters. The
polyphase transfer function E(e’“) can be arbitrarily set for each w. The filters
might be of infinite length and noncausal. The current output vector is the

summation of matrix transformations of all input blocks.

1.2 Filter Banks For Subband Coding

Subband coding (SBC) is perhaps the most important application of filter banks. Even
before the theory of filter banks was developed, SBC was innovated as an efficient
technique of encoding speech signals. Subband coding and its cousin wavelet-based
coding are now the preferred methods for not only speech, but also audio, image, and

video signals. We show in Fig. 1.10 a subband coding scheme using a uniform filter

x(n) ——=HE@)—=}M AM =E@D—>r=y(n)
variance

5 @) )y M—=QB>— M =@
— Qb

X

B@)=y M M —E@

Fig. 1.10: Subband coding scheme with a uniform filter bank.
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bank. The subband signals are quantized using different numbers of bits. The original
signal has a variance o2 and the subband signals have variances agi, 1=0,1,..., M 1.
Essential to a SBC scheme is the process of bit allocation. The success of subband
coding is highly dependent on the way the bit allocation is performed. An intuitive way
to accomplish this task is to assign more bits to the channels with higher energies as

illustrated in Fig. 1.11. In the extreme case, if after applying a PR filter bank, some of

psd of input
bo optimal bit allocation
bp > b > ... 2 by

Fig. 1.11: Bit allocation according to the subband variances.

the channels are identically zero, then those channels need not be assigned any bits at
all. The advantage of using a filter bank is then to be able to treat different portions of
the signal (in the frequency domain) differently, as opposed to the scalar quantization
where the same number of bits are assigned to every single sample. Of course, one can
adapt the number of bits in the time domain according to how much energy exists in
various periods of time. By using a filter bank, we can do such an adaptation for each
of the channels. In a sense, with subband coding, it is possible to take advantage of
the variations of the signal both in time and frequency domains. This is the underlying
fundamental reason for the success of recently introduced wavelet-based image coding
technique called the zero-tree coding [Sha93, SP96]. In this technique, the bits are
allocated in an adaptive fashion jointly in the space domain (equivalent to time domain)
and in the scale domain (analogous to frequency domain). The final destination for
audio visual signals is the human perception. Hence it makes sense to understand and
use the properties of the human ear and the human visual system (HVS). It turns out
that subband coding schemes are ideally suitable for taking the perceptual properties

Into account.
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Even though we choose the filter bank to have the perfect reconstruction property,
the subband quantizers introduce noise and lead to a distortion between the input z(n)
and the reconstructed output y(n). The type of distortion that we consider throughout

the thesis is the mean-squared error, that is,
£ = Elle(n) — y(m)) (1.6)

By the uniformity of the filter bank we have

AM-—1

b= Z b/ M (1.7)

Hence an optimal subband coder is the one that minimizes the distortion (1.6) for a
fixed average bit rate (1.7). Optimal subband coding involves both designing the filter
bank and doing the allocation of bits in an optimal fashion. In the special orthonormal
case, we have
M-1
o2= Y o2 /M (1.8)
i=0
In the further special case that the quantizers operate at high bit rates, the quantizer

noise variances are oz, = ¢2"%i¢2 and the minimum distortion for any filter bank is of

the form
M1 1M
E=c27® < 1T agi) (1.9)
i=0

If the assumption that the quantizers operate at high bit rate does not hold, then the
above expression for the distortion is not valid. In this thesis we will present results
pertaining to this arbitrary bit rate case. In order to show what has been known in
the area of optimal subband coding and what has been done in this thesis, we have
the summary chart shown in Fig. 1.12. In the chart we presented the solved cases with

dark lines. A brief history that goes along with the chart is given next.
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Fig. 1.12: Summary of the known and the new results in optimal subband coding.

1.2.1 A Brief History of Optimal Subband Coding

Theoretical results on the optimization of filter banks for subband coding have been
first obtained for the transform coding case. The first pioneering work is due Huang and
Shultheiss in 1963 [HS63]. They have shown in [HS63] that Karhunen-Loeve transform
(KLT) is the optimal transform coder under mild assumptions on the quantization
noise sources. In particular, they have shown the optimality of KLT even when the
high bit rate assumptions do not hold. Surprisingly, the extension of transform coding
to the nonuniform case has not even been considered! Of course, one has to define
first what a nonuniform transform is. Looking at the uniform transform case where
the equivalent filters have lengths less than M, one plausible definition of nonuniform
transform is that the equivalent filter for the ith channel has length less than n;, where

n; is the decimation ratio for that channel.
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Going back to the uniform case, optimal orthonormal filter banks of unconstrained
filters (ideal filter banks) have recently been constructed by Vaidyanathan [Vai98] under
the assumption that the quantizers operate at high bit rates. The theory of optimal
ideal biorthogonal filter banks under the high bit rate assumptions have also been
considered recently by Aas and Mullis [AM96].

In the nonuniform case, surprisingly there has not been significant theoretical de-
velopments. In contrast, many of the state of the art coding algorithms used in practice
utilize some form of nonuniform filter banks. A good example is the zero-tree coding,
a wavelet-based image coding technique as proposed by Shapiro in 1993 [Sha93] and
later improved by Said and Pearlman in 1996 [SP96]. The transform in this technique
is a dyadic tree structured filter bank which is a special form of a nonuniform filter
bank.

Going back again to the uniform case, we have just mentioned the theoretical
developments for the transform coding case and the ideal subband coding case. These
two can be considered as two extreme cases and the intermediate case would be the SBC
schemes with FIR filter banks. There had not been significant theoretical developments
in this case either. On the practical side, Malvar has invented algorithms to design
efficient filter banks which he called lapped orthonormal transforms (LOT) [Mal92].
He later extended these designs to the biorthogonal case (LBT) [Mal97].

1.3 Thesis Overview

1.3.1 Contributions in Optimal Subband Coding

One of the main contributions of the thesis is the discovery of the connection between
optimal orthonormal subband coding problem and the principal component represen-
tation of signals. Consider Fig. 1.13 where we show a filter bank with P of its subband
channels directly connected to the synthesis part, while the remaining channels are dis-
connected. In the synthesis part, the disconnected subband signals are replaced with

zeros. In this scheme the source of distortion between the input and the output is not
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Fig. 1.13: Pertaining to the introduction of principal component filter banks.

due to the quantizers but the fact that some of the subband signals are dropped. If
we keep only one channel, then we have only one analysis and synthesis filter pair to
consider. If we keep two channels, we have two pairs of filters, and so on. A principal
component filter bank (PCFB) is the one that minimizes the distortion between
the input and the output for any number of retained channels (See Chapter 2 for the
precise definition). For a given input statistics, principal component filter banks with
unconstrained filters are constructed by Tsatsanis and Giannakis [TG95]. It turns out
that this solution coincides with the solution of optimal orthonormal filter banks as
constructed in [Vai98] with the high bit rate assumptions on quantizers. In Chapter 2
of this thesis, we show that this is not just a mere coincidence and that the two prob-
lems are fundamentally connected to each other. In particular we show that PCFB’s
are optimal orthonormal filter banks for subband coding and that the optimality is
valid at arbitrary bit rates as well.

As we pointed out before, there has been no significant theoretical developments in
the nonuniform subband coding case. Chapter 2 of this thesis contains the first results
for this case. The chapter introduces the extension of principal component filter banks
to the nonuniform case. First, a fixed set of decimation ratios are assumed for the
construction of optimal nonuniform orthonormal filter banks, and then the question of
optimum set of decimation ratios for a fixed number of channels is addressed.

In Chapter 2, we also address the case of FIR orthonormal subband coding. The

fundamental connection between PCFB’s and optimal orthonormal filter banks con-



14
tinues to exist; however, there is the question of the existence of PCFB’s in the FIR
case. With FIR constraints, there are optimal sets of filter pairs that minimize the
reconstruction error in Fig. 1.13 for any number of retained channels. The problem is,
there is no single filter bank with FIR constraints that minimizes the reconstruction
error for all retained number of channels.

Although in the special transform coding case there is no advantage of using a
biorthogonal transform [Vai98], the situation is different for the general subband cod-
ing case. A construction of optimal uniform biorthogonal filter banks is advanced in
[AM96]. However, their proof of optimality seems not to be complete as we address
in [VK98a]. We show in [VK98a] that with a further assumption of uniqueness of the
solution, such a construction is indeed optimal. The formulation of the problem has a
certain symmetry in terms of the analysis and the synthesis filter banks, and it is this
symmetry that enables us to give a complete proof of optimality. The optimal solution
has two stages: the input signal is first passed through an optimal uniform orthonormal
filter bank (or a PCFB) and then each of the decorrelated channels are individually
filtered with the so-called half-whitening filters (see [VK98a] for details). We also pro-
vide in [VK98a] some theoretical bounds on the coding gain of a biorthogonal subband

coder.

1.3.2 Optimal FIR Compaction Filters

Although PCFB’s in FIR case do not always exist, it is still a good idea to design a
pair of filters (P = 1 in Fig. 1.13) to minimize the reconstruction error. In doing this
we somehow pack most of the energy into one single channel. One can then think of
completing this pair of filters to a filter bank. If we constrain the filter bank to be
orthonormal and keep its degree fixed, then completion to a filter bank turns out to
be a straightforward procedure that involves canonical factorization of the polyphase
vector corresponding to the compaction filter [MM98]. In the orthonormal case it
suffices to design the analysis filters only, as the synthesis filters are determined from

the analysis ones (see (1.4)). The major question is then how to design the first FIR
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filter in an optimal fashion. Such filters are called optimal FIR compaction filters
and are treated in detail in Chapter 3 of this thesis. The chapter gives a good overview
of the existing relevant work followed by new results and design strategies. Here are

the major contributions of this chapter:

1. Analytical method for the two-channel case. In the two-channel case, the
design of an FIR compaction filter has practical as well as theoretical significance.
The theoretical aspect lies in the fact that the second filter of a two-channel
orthonormal filter bank is determined from the first one by simple flipping and
sign changes in time domain [Vai93]. This fact has the exceptional implication
that the problems of optimal compaction filter and optimal orthonormal subband
coding are the same, even with the order constraints! Another implication is
that FIR PCFB’s do exist in the two-channel case as opposed to the arbitrary
M-channel case. Hence it would be a significant result if we could somehow be
able to determine optimal FIR compaction filters in an analytical fashion. For a
restricted class of input statistics, we derive such an analytical technique in Sec.

3.3.

2. Window Method. In A —channel case, there is no analytical technique that we
are aware of. An optimal M —channel FIR compaction filter can be completed to
an M —channel orthonormal filter bank, though it would not be the optimal one.
This is because of the fact that, in general, M —channel FIR PCFB’s do not exist.
Hence it is a loss of generality to design the first filter to be a compaction filter.
Since we cannot obtain an optimal FIR filter bank from an optimal compaction
filter, it would be good idea to trade off the efficiency of the design of a compaction
filter with its optimality. We have come up with such an efficient method, and
it is presented in detail in Sec. 3.4. The design technique which we called the

window method involves FFT and simple comparison.

3. Multistage designs. If the number of channels M is a composite number,
then it is possible to design compaction filters in multiple stages, each of which

involving the design of reduced size compaction filters. The effective order of
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the resulting compaction filters are much higher than the orders of individual
filters. One form of such a multistage design uses linear programming technique,
while another form uses any of the available design methods for compaction filters,
linear programming being only one of them. In Sec. 3.5 we also propose a method
to improve the linear programming technique itself for designing compaction

filters.

1.3.3 Lattice Quantization and Vector Dithering

As we have mentioned, quantization forms an essential part of digital signal processing,
in particular, multirate signal processing. The subband coding schemes utilize the sim-
plest types of quantizers, namely, uniform scalar quantizers. There are of course much
more efficient ways of quantizing, examples of which include Lloyd-Max quantizers, en-
tropy constrained vector quantizers, etc. Although the quantizers in the subbands are
primitive, effectively a subband coding scheme is like a sophisticated vector quantizer.
If the filter bank in a subband coding scheme is designed well, then as long as the sub-
band signals are quantized independently, the benefit of using sophisticated quantizers
for each channel is only marginal. In the recently developed coding algorithms like
zero-tree coding, the quantization is effectively a uniform scalar one with a dead-zone
(meaning the bin for the quantization level of zero is wider than the other uniform
bins). However, the allocation of bits is somewhat adaptive and the adaptation is done
jointly across the subbands and within the subbands.

Since uniform quantizers turn out to be very important components of practical
algorithms, we wanted to analyze their statistical behavior given the statistics of the
input. In the scalar case, it did not take us too much time to discover the wonderful
works of Schuchman [Sch64] and Sripad and Snyder [SS77]. While the former had the
analysis of so called dithered quantizers, the latter was about the analysis of scalar
uniform quantization itself. Dithering was an interesting technique that was invented
and used in image coding by Roberts [Rob62]. The idea is to add a pseudo random

sequence v to the quantizer input x and, if possible, subtract it in the reconstruction
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side. By such a simple technique, it is possible to render the quantization errore = r—2
independent of the input signal z. The practical implication of this is a superior
perceptual quality of quantized signals. In a sense, the resolution of quantized signals
is increased perceptually without using extra quantization levels.

If the pseudo random sequence is not subtracted in the reconstruction side for some
reason, then we have what is called a nonsubtractive dithering scheme. Although the
probability density function (pdf) of a pseudo random sequence v does not play a role
in the subtractive case, it does so in the nonsubtractive case, as the quantization error
depends on it. The investigation of the optimal pdf that minimizes the error was our
first research project. The optimal pdf turned out to be a triangular distribution. The
width of the support of the pdfis the same as twice the quantization step size. We then
realized that nonsubtractive dithering with such an optimal dither pdf was already in
use in the audio industry.

In Chapter 4, we extend the analysis of uniform scalar quantization and dithering
to multiple dimensions: lattice quantization and vector dithering. In the chapter, we
demonstrate the perceptual advantages of vector dithering, and propose techniques to
design suitable pseudo random vector sequences. It turns out that lattice quantization
error is dependent on the choice of lattice and there are optimal lattices that give
minimum quantization error when combined with subtractive dithering. Here is a brief

summary of the results of this chapter:

1. Lattice Quantization Analysis. We derive the statistical relationship between
the lattice quantization noise and the quantizer input. The mathematical tool
used is the extension of that used in the scalar case: Fourier series in multiple

dimensions.

2. Subtractive Dithering. We introduce the notion of subtractive vector dither-
ing and derive the necessary and sufficient conditions on the statistics of the
dither vector to render the lattice quantization noise independent of the quan-
tizer input. We then address the question of the best selection of the lattice that

minimizes the reconstruction error. We give a necessary condition on the best
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lattice. We also give efficient techniques to design suitable dither vectors.

3. Nonsubtractive Dithering. We examine the case of nonsubtractive vector
dithering. We give necessary conditions for the second moment of the lattice
quantization noise to be independent of the quantizer input statistics. We address

the design of the dither vector that minimizes the reconstruction error.

4. Optimal pre- and post-filtering of lattice quantizers. The last section
of the thesis deals with the question of optimal pre- and post-filtering of lattice
quantizers. The filters are of MIMO type, and hence can be associated with
filter banks. We clarify the relationship between this problem and the optimal
biorthogonal subband coding problem. The main difference lies in the fact that,
in the biorthogonal subband coding problem, one has scalar quantizers indepen-
dently operating in the subbands. In contrast, in the pre- and post-filtering of
lattice quantizers, the quantization of subbands is done jointly and there is no no-
tion of bit allocation. It turns out, however, that if in the biorthogonal subband
coding problem, equal number of bits are assigned to each of the subbands, then
the two problems become mathematically equivalent to each other and therefore

has the same solution.

1.4 Notations and Terminology

1. The notation X (z) denotes the z—transform of 2*(—n) where * stands for com-
plex conjugation. If z(n) is real, then X(z) = X(z7!). Notice that X(z) =
X*(1/z*), and the FT of z*(—n) is X*(¢’*). In the matrix case, we have
X(2) = X'(1/2z*). The notation f in return means transpose and conjugate,

that is Xf = (XT)*.

2. The notation X (z)[;as denotes the z—transform of the downsampled sequence

z(Mn).

3. The notation ¢(n) refers to an impulse sequence that is zero at all times except
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the origin at which it is 1. That is, 6(0) = 1, and é6(n) =0, n # 0.
4. Nyquist(M) property. A sequence z(n) is said to be Nyquist(M) if z(Mn) =
§(n) or equivalently X (z)|;ar = 1. This can be rewritten in the form [Vai93]:
M-1
S X(WH =M (1.10)

k=0

where W = ¢=J27/M
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Chapter 2

Optimum Orthonormal Subband Coding

Optimization of filter banks for subband coding (SBC) of signals has been an active
area of research [AM96, AL91, MM98, Vai98, VK98a]. Subband coding involves a

linear transform part and a nonlinear quantization part as shown in Fig. 2.1. Block

x(n) (K@ v )=y (n)
varl;gce H.2) *M Q. by TM %
X e .
e MGt

Fig. 2.1: Subband coding scheme with a uniform filter bank.

transform coding, overlapped transform coding, and wavelet-based coding are special
forms of subband coding.

In this chapter we mainly deal with the optimization of orthonormal filter banks
for subband coding. We first cover the uniform case and then present some of the first
results for the nonuniform case. In the uniform case, optimal orthonormal filter banks
with unconstrained filters are constructed in [Vai98] under the assumption that the
quantizers operate at high bit rates. We show in this chapter that this construction

continues to be optimal even in the case where the quantizers cannot be assumed to
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have high bit rates. To do this, we first connect the problem of optimal orthonormal
subband coding to that of principal component representation of signals. The latter
is done via the so called principal component filter banks (PCFB). When the filter
orders are unconstrained (ideal filter banks), PCFB’s can always be constructed, and
we show that they are optimal for orthonormal subband coding for all bit rates. In the
FIR casé, however, we present examples which show that the existence of PCFB’s is
not always guaranteed. Optimization of FIR filter banks for subband coding currently
relies on nonlinear numerical optimization techniques. If one is willing to sacrifice
optimality, then there are efficient ways of designing FIR filter banks. One such example
is described in [MM98]. The technique utilizes the design of compaction filters and we
will explain it in some detail at several points in this and the next chapter. The term
principal component filter bank as used in [XB98] is not the same as the one we define
in this chapter. What is meant by an FIR PCFB in [XB98] is actually an optimal
FIR orthonormal filter bank that maximizes the coding gain under the high bit rate
assumptions.

We then consider the problem of optimal nonuniform orthonormal subband coding.
We extend the problem of principal component representation of signals to the nonuni-
form case. In contrast to the uniform case where there is single PCFB for a given input
statistics, there are more than one nonuniform PCFB’s, one for each ordering of the
set of decimation ratios. However, we show that one of these PCFB’s is optimal for
nonuniform subband coding. We then address the question of optimal selection of the
set of decimation ratios for a given number of channels. In the nonuniform case we are
not concerned with order constraints, so the filters will be ideal.

The results of this chapter have been presented at various conferences [KV98a,
KV98c, KV98b]. Our contributions in the biorthogonal subband coding case can be
found in [VK98b, VK98a).
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2.1 Uniform Case

Consider Fig. 2.1 again, where we show a subband coding scheme with a uniform filter

bank as its transform part. Fig. 2.2 shows the polyphase representation for the analysis

z(n)
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Fig. 2.2: Polyphase representation of the analysis part.
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part [Vai93]. An orthonormal filter bank is one with a paraunitary E(z) which means
that E(e’*) is unitary for each w. In the special block transform coding case, we have
E(z) = Ey, a constant matrix, and orthonormality is the same as E( being unitary. In
this case, the optimal orthogonal transform matrix is well known to be the Karhunen-
Loeve transform. To show the optimality of KLT, one usually resorts to a quantization
model that is valid only at high bit rates. However, a classic work by Huang and
Schultheiss [HS63] contains a proof that KLT is optimal even if the quantizers cannot
be assumed to have high bit rates. Inspired by this pioneering work, we provide a
very simple proof of optimality of orthonormal filter banks under a general quantizer
noise model without assuming high bit rates. Our simplified point of view enables
us to state a very strong result that principal component filter banks are optimal for
subband coding for all bit rates and bit allocation strategies.

We have been able to show that the problems of optimal representation of signals
‘using principal component analysis and optimal orthonormal subband coding are fun-
damentally the same. It should be noted, however, that in general, biorthogonal filter
banks perform better than orthonormal filter banks in subband coding [VK98a]. The
only exception to this is the case of block transform coding where the KLT is orthonor-
mal and no other biorthogonal transform can result in a better coding performance

[Vai9g).
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2.1.1 Review of High Bit Rate Case

Let o2 be the original signal variance, o7 be the subband variances and o, be the
quantization noise variances in the subbands. If we assume that the quantizers operate
at high bit rates, then one can model them by a simple relationship:
2 —2b; 2
0, =270, (2.1)
where b; is the number of bits at which the quantizer in jth channel is operating. If

the total bit budget is b bits per pixel, then we have

M-1
b= > bj/M (2.2)
=0

Coding gain of a SBC scheme is defined to be the ratio of the quantization error when
the input is quantized directly and the reconstruction error of the SBC scheme using
the same bit budget b. In the high bit rate case, since we have analytical expressions for
quantizer variances as in (2.1), we can optimally allocate the bits among the channels

and finally obtain the following formula for coding gain [JN84]:

02

Gcodin - 1— = (23)
= T of)
We have o2 = ;‘i};l agj /M by orthonormality of the filter bank. Hence the coding

gain in the high bit rate case is the ratio of arithmetic and geometric means of subband
variances. In the transform coding case, by a well known inequality in linear algebra,
this is maximized if and only if the transform is the KLT which diagonalizes the
autocorrelation matrix of the input.

Block transform coding with E(z) = Eq corresponds to subband coding with filters
having orders less than the number of channels. Recently optimal orthonormal filter
banks for subband coding with ideal filters have been constructed in [Vai98]. The
construction is proven to be optimal under the assumption that the quantizers operate

at high bit rates and therefore the coding gain expression (2.3) is valid. The optimal
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paraunitary polyphase matrix E(e’¥) is shown to have two properties [Vai98):

1. It diagonalizes the power spectrum matrix of the input vector at each frequency

(total decorrelation).

2. Its rows at each frequency are ordered in such a way that the corresponding diagonal

elements are ordered as well (spectral majorization).

Loosely speaking, optimal E(e’*) for a given w is the Karhunen-Loeve transform matrix
corresponding to the input power spectrum matrix evaluated at the frequency w. In
the biorthogonal case, it is shown in [VK98a] that the above orthonormal solution
can be improved by further processing of subband signals. This final stage consists of

half-whitening of uncorrelated subband signals.

2.1.2 Arbitrary Bit Rate Case

A characterizing property of an orthonormal transform is that it preserves the total en-
ergy of its input. Hence orthonormal transforms are also referred as lossless transforms.
This is the major property we use to prove the optimality of an orthonormal filter bank
for subband coding at arbitrary bit rates. Consider Fig. 2.1 again. Let o2, Ugj, and O'gj
be variances of the original input, subband signals, and the quantization noise signals
as defined before. Let £ denote the reconstruction error of this subband coding scheme.

Then, by the orthonormality of the transform, we have:

M-1

E= Y o5 /M (2.4)

j=0
A filter bank is said to be optimum for subband coding if the reconstruction error £ is
minimized for a given bit budget, b bits per input sample as in (2.2). At high bit rates,
optimality is the same as maximization of the expression in (2.3). In general, however,

(2.3) does not represent the objective.



A More General Quantizer Model

We will model all the quantizers in Fig. 2.1 by a single quantization function f(.) such
that
ol = f(bj)ol. (2.5)

The important benefit of this model is that we do not assume high bit rates. How-
ever, we do assume that all the channels have the same quantizer function f(.), which
in general need not be true. In general, the quantizer functions f;(.) depend on the
statistics of the jth channel signal, which in turn depend on the linear transformation.
If, however, the original input signal is Gaussian, then regardless of which transform
is used, the subband channels are all Gaussian as well, and hence can be modeled by
a single quantizer function f(.). We do not assume that the noise signals are white
or uncorrelated with each other. The traditional high bit rate quantizer model can
now be considered as a special case of our model with f(b;) = ¢27%. With our quan-
tizer model, using the relations (2.4) and (2.5) the reconstruction error of the subband
coding scheme is

M1

E=73 flbjaZ /M (2.6)
=0

2.1.3 Principal Component Filter Banks (PCFB)

Let us consider for a moment a different but a closely related problem that deals with

multiresolution representation of signals. Consider Fig. 2.3. If we keep the first P < A/

Fig. 2.3: Pertaining to the discussion of principal component filter banks.



26
of the subband signals without quantizing, and if we drop the other subbands, there
will be a corresponding reconstruction error. Intuitively, the minimization of this error
is the same as putting most of the signal information into the first P channels. If
there is a single filter bank that minimizes this error for each P = 1,..., M, we call
it a principal component filter bank. It provides us an optimal multiresolution
representation of the signal as P increases from 1 to Al. For P = M, the reconstruction
error is zero if the filter bank is perfect reconstruction (that is, biorthogonal). It turns
out that, if we allow ideal filters, there always exists a principal component filter bank
[TG95] for any given input process, and it is orthonormal. Furthermore, it is the same
filter bank as the optimal orthonormal filter bank for subband coding as derived in
[Vai98] under high bit rate quantizer models. Is this a coincidence? The relationship
between the two problems are clarified in the next section under our more general

modeling of quantizers.

2.1.4 Optimality of PCFB’s Under Arbitrary Bit Rates

Consider Fig. 2.3 again where the first P < M of the subbands are kept. If the filter

bank is orthonormal, then the reconstruction error is the sum of variances of dropped
subbands, that is:

Mol

E= ]; og, /M (2.7)

Notice the similarity between (2.6) and (2.7). The latter can be seen as a special

case of the former when f(b;) =0, j = 0,..., P — 1 (infinite precision) and f(b;) =

1, j = P,...,M — 1 (zero bit assignment). By the lossless property, the sum of all

subband variances is constant as noted before. Hence the error in (2.7) is minimized if

f:‘ol aﬁj /M is maximized. A principal component filter bank as defined in the previous

section maximizes the partial sum Z;D:—()l agj /M for each P. We are now ready to state

and prove our main result:

Theorem 1. With a general quantizer model described in Sec. 2.1.2, a principal com-
ponent filter bank, if it exists, minimizes the reconstruction error of an orthonormal

subband coder for all bit budgets and bit allocation strategies. &
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Proof. Without loss of generality assume that f(by) < ... < f(bar—1). By simple

algebra, we can write the error in (2.6) as

M-1 j-1 M-1
E=> (flbj—1) — f(b;)) D 0% /M + f(bar-1) Y 02, /M (28
= i=0 i=0

By assumption, f(bj—;) — f(b;) < 0. The last term is fixed and equal to f(by_1)02.
Hence € is minimized if the partial sums Y77, o2 are maximized for each j. This is

the case if the filter bank is a principal component filter bank (PCFB). |

Remarks.

1. Notice that optimal bit allocation did not enter the discussion. A PCFB mini-
mizes £ for any bit allocation, in particular, for the optimal bit allocation. There
are many interesting results on the optimum allocation of bits. We refer to the
authorative work [SG88]| for a general treatment of the topic. As long as we can
model the quantizers with one underlying quantization function, the optimization
of the orthonormal filter bank is decoupled from the optimization of bit allocation
in subbands. FEven if the bit allocation is not optimal, a PCFB continues to be

optimal.

2. From the definition, the subband variances of a PCFB are in decreasing order:
o3, > 0% > ...> 02 . This is because, if this is not true, then one can get a
new filter bank by reordering the filters such that the variances are ordered. The
new filter bank will have a higher sum Zf:_ol agj for at least one P contradicting

that the original filter bank was a PCFB.

2, 202 >...>02  ofaPCFB, onecan do

3. Given the set of ordered variances ¢ o a1

optimal bit allocation using the quantizer function f(.). Let 67,7 =0,...,M —1
denote this optimum allocation. If the inequalities between subband variances are
then we must have f(bf) < ... < f(b3,_,).

strict, i.e., 02 > 02 >...> 02 |
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To see this, assume f(b7_;) > f(b}) for some i. Then by interchanging b7_, and
bf, we see that the total error £ = Zj-‘igl (b;)azj /M is reduced while maintain-
ing the total bit budget, contradicting the optimality of the bit allocation. If,
however, for any i, 02 _ = o2, then one can interchange the bits to guarantee

f(br_)) < f(b}) without affecting the total error.

4. As an artificial special case, let P < M be fixed and let f(b;) =0, 7 =0,..., P—1,
~and f(b;) =1, j=P,...,M — 1. Then we have to maximize Zfz"ol Uzj for that
P. If we repeat the process for each P = 1,...,M — 1, and if there exists one

single solution for all of them, then the solution is a PCFB!

5. As another special case, consider f(b;) = ¢, a constant, for all j. This corre-
sponds to equal bit allocation strategy. In this case we have £ = ¢ o2, which is
independent of the transformation. Hence, orthonormal filter banks do not vield

any coding advantage if equal bit allocation strategy is used.

6. Finally consider the case f(by) < f(b1) < ... < f(by—1). In this case, all
f(bj_1) — f(b;) < 0, and therefore the partial sums ¥7-; o2 must be maximized
for all 7. Hence a PCFB, if exists, is not only sufficient but also necessary for

optimality.

Underlying Mathematical Theory

The result that we have just presented is yet another application of a topic in applied
mathematics called majorization [MO79]. A set of M numbers a;, j=0,...,M —1

is said to majorize another set of A/ numbers b;, 7 =0,...,M — 1, if

P-1

P-1
Zajz bj, P:L]\{, (29)
j=0 0

j:

with equality if P = M. We see that a PCFB is the one that produces a set of subband
variances that majorizes sets of subband variances obtained by all other orthonormal

filter banks. In the special high bit rate case, the proof that a PCFB is optimal follows
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directly from the fact that
M-1 M-1

H a; S H bj (210)
3=0 3=0
whenever the inequalities in (2.9) hold with equality if P = M [HJ85]. There are many
other applications of majorization. The interested reader is referred to [MO79] for a

beautiful treatment of the subject and to [SS94] for more recent applications.

2.2 Uniform FIR Case

The result developed in the previous section asserts that for a given input, whenever
one orthonormal filter bank produces a set of subband variances that majorizes sets of
subband variances of all other orthonormal filter banks, it is optimal for orthonormal
subband coding for that input under all bit rates and bit allocation strategies. Ve
have not yet put any constraints on the filters. Now, we can think of a class of
orthonormal filter banks that is characterized by practical constraints such as finite
filter lengths. The simplest case is the block transforming case we have considered
at the beginning. In this case, the autocorrelation matrices of subband and original
input signals are related via a unitary matrix. It is a well known fact in linear algebra
that the eigenvalues of an autocorrelation matrix majorizes its diagonal elements. This
gives us the simplified proof that KLT is optimal among the class of block transforms.
This is because, with KLT, eigenvalues become the subband variances. As before, the
optimality is independent of the bit rates involved and bit allocation strategies.

So, in the two extreme cases where (1) filters can be ideal and (2) filters are con-
strained to be of the same length as the number of channels, we know that a PCFB
exists and therefore optimal for orthonormal subband coding. What happens in the
intermediate case where the filter lengths are finite but larger than the number of
channels? This case turns out to be very difficult to analyze as confirmed by several
researchers [MM98, Uns93a, XB98] who devised numerical techniques for suboptimal
solutions. One approach for a suboptimal solution is to design an optimal energy com-

paction filter [KV98e] that pushes most of the signal energy into the first channel, and
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then complete the filter bank in some optimal fashion [MM98]. Although this technique
was claimed to find optimal solution in [MM98], we show in this section that this is
not the case. The reason for its suboptimality is that it is a loss of generality to design
the first filter to be a compaction filter, as there may not even exist a PCFB! Another
important approach is to develop structures that are efficient to implement [Mal92]
while hopefully not being too much away from the optimal solution. At present, there
is no robust algorithm that converges to an optimal FIR orthonormal filter bank. A
good strategy for large filter lengths is to try to approximate the optimal ideal filter
banks.

The difficulty in FIR case starts with the exact definition of the class of filter banks
in which an optimal solution is searched for. There are two equally plausible choices:
those with a finite degree and those with a finite order. Consider the subband coding
scheme in Fig. 2.1 and the polyphase representation of its analysis part in Fig. 2.2.

Assume

E(z) =) E,z™" (2.11)

Here E,’s are M x M constant matrices with Ex # 0. The order of E(z) is said to
be K. Note that filter lengths can be as high as M(K + 1). The notion of degree
is different from the notion of order and it is defined to be the minimum number of
delay elements to implement the MIMO system E(z). If u denotes degree, then in
general, ¢ > K. Notice that this ambiguity does not arise in block transform and ideal
filters cases. In the former, both degree and order are zero, while in the latter they are

infinite or undefined. The orthonormality of the filter bank is equivalent to
E'(e™)E(e’) =1, Vw (2.12)

In this case E(z) is also said to be paraunitary and it is well known that E(z) can be

factored as [Vai93]

E(z) = UV, (2)Vy(z) ... V,(2) (2.13)
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where U is unitary,
V. (2) :I—vnvl—i-z_lvnv:fl, n=1,..., 4, (2.14)

and v,’s have unit norm, i.e., viv, = 1. (see Fig. 2.4). Conversely any E(z) of the

x(n) w(n)

[V (2) ey 0 0 0 mpV1(2) jmpp| U |

Fig. 2.4: Householder factorization of E(z).

x(n w(n)

=W (2 o 0 mpWi(2)

Fig. 2.5: Householder factorization of ef(z).

form (2.13) is FIR orthonormal of degree 1 as long as U is unitary and v,’s have unit

norm.

If we are interested in only one filter, say Hy(z) of the filter bank as in the case
of compaction problem, we need to consider only the corresponding row e} (z) of E(z)
whose elements are the polyphase components of Hy(z). Let v be the degree of eg(z).

Then similar to (2.13) we can write

el (2) = wiW(2)Wy(2)... W,(2) (2.15)

where W, (2) =1 —-w,wl + 27 'w,w! n=1,...,v, and the vectors w,, n =0,...,v

have unit norm [Vai93] (See Fig. 2.5).

2.2.1 On Uniqueness of the Factorizations

The factorization of M x M polyphase matrix E(z) of a given degree p is in general
not unique and K < p. The factorization of e}(z) of degree v is on the other hand
unique. The order of e}(z) is equal to its degree v [Vai93]. This implies the following:

wiw, 1 #0,n=0,...,v—-1
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Fact 1. If in the factorization of E(z) in (2.13), the vectors v, turn out to be such
that viv, 1 #0,n=1,...,u—1, then we have K = y and the factorization is unique.
Otherwise, K < p and the factorization is not unique.

Proof. From (2.13), we can write the highest possible coefficient
E, = Uvivivov]...v,v] (2.16)

Since v} v,41 # 0, and since U is nonsingular, we conclude that E, # 0 and therefore
K = p. The ith row of E(z) is e} (z) = ulV1(2)Va(2) ... V,(2). There exists at least
one index 7, say ¢ = 0, such that ugvl # 0 (otherwise U has to be singular). Hence the
degree of e}(z) is . This implies that V,(z)’s are unique. Since U = E(1) is unique,
we conclude that the factorization (2.13) is indeed unique. If on the other hand we

have viv,,; = 0 for some n, then it can be shown that
Eo=(I-vivD)I-vav])...(I-v,vh) (2.17)

has rank less than A/ — 1. This implies that the rank reduction [Vai93] can start with
more than one possible vector v,, implying that the factorization is not unique. n
Now, returning to E(z) of degree u and its first row eé(z) of degree v, assume that
p# = v. Then by the uniqueness of the representation (2.15) it follows that V,(z) =
W, (z), n=1,...,u, and wy = uy where ug is the first row of U. Therefore, all the
other filters H;(2),i =1,..., M —1 can be determined by the remaining M — 1 rows of
the unitary matrix U. This leads to the following design algorithm for signal-adapted

FIR orthonormal filter banks originally proposed by Moulin et al. [MM98]:
1. Design the first filter Hy(z) to be a compaction filter [KV98e].

2. Factorize the polyphase vector e}(z) of Hy(z) as
el(z) = WiW,(2)Wy(2)... W,(2) (2.18)

Let Vo(2) =W, (2), n=1,..., .
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3. Choose U to be the KLT for its input vector. The first row of the KLT is necessarily
W(T). If it is not, one can increase the compaction gain, violating the optimal

compaction property of Hy(z).

The authors of [MM98] use the argument that if one designs a principal component
filter bank (PCFB), then it maximizes the coding gain. The first filter of a PCFB has
to be a compaction filter. Hence the above algorithm should be optimum. They as-
sume implicitly that a PCFB exists. If the ideal filters are allowed, then a PCFB does
exist and it maximizes the coding gain [TG95, Vai98]. Similarly, if the filter orders are
less than the number of channels, then the KLT achieves the maximum coding gain
and it is a PCFB. We show later in this section that in the intermediate case, there
does not always exist a PCFB. Hence the above algorithm is in general suboptimum.
Nevertheless, as we show by some examples in Sec. 2.2.4, the suboptimality is not
significant for practical signals. Since the design of FIR compaction filters is well stud-
ied [KV98e, Mou95, TV98] and there exist very efficient algorithms like the window
method that we describe in Chapter 3, we see that the above method is very efficient

for the design of signal-adapted FIR orthonormal filter banks.

2.2.2 FIR Coding and Compaction Problems

Since we assume that z(n) is WSS, the vector process x(n) that is the input of E(z)
in Fig. 2.2 is WSS with power spectral density (psd) matrix Syy(e’*). Using the fact
that E(z) is FIR paraunitary, with high-bit rate assumptions on the quantization noise
sources, and with optimal bit allocation, the reconstruction error is £ = ¢2-%¢!/M
where [Vai9g]

M-1 M~-1 dw

o=1ot=11 [ [Bl ()8 ule)B(e)] S

2.1
i ( 9)

Here o2 is the variance of the ith subband. Let O, denote the class of 3/ x A FIR

orthonormal polyphase matrices with degree less than or equal to . The coding
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problem with the high bit rate assumptions is the following:

M-1 - ; ‘ _ A dw
] Jw Jw jw hotndl
i 1 [ (B8 me)] 7 (220}

The energy compaction problem, on the other hand, is concerned with making one of
the subband variances of an orthonormal filter bank as large as possible. If the original
signal is WSS, then the compaction gain is defined as Geomp = max; (02 )/02. Let Q,
denote the class of 1 x M FIR orthonormal polyphase vectors of degree less than or

equal to 4. The compaction problem is the following:

T . . . dw
Ty jw jw jw

ey (e?¥)Sxx(e?¥)eq(e??) — 2.21

Jmax [ el(e)Su(@)en() 5 (2.21)
Considering Fig. 2.4, the objectives can be written as
M-1 .

i [T [VRw (U7 (coding) (2.22)
‘r,n%xungw(O)uo (compaction) (2.23)

where Ryw(0) is the autocorrelation matrix of w(n). In the coding problem, U has
to be the KLT for w(n) and in the compaction problem ug has to be the unit-norm
eigenvector of Ryw(0) corresponding to the maximum eigenvalue. Let )\;’s be the
eigenvalues of Ry (0). Hence one can rewrite the problems as:

M-1

min II A (coding), maxmax A; (compaction) (2.24)

=0

Hence both problems are parameterized by p unit-norm vectors of length M. The
total number of free parameters is therefore (A — 1). If 4 = 0, there is nothing to
optimize. In this case E(z) = Ey = U is the KLT for the input vector x(n) in the
coding problem and u(T) is the first row of the KLT in the compaction problem. The
matrix U diagonalizes Rxx(0), the M x M autocorrelation matrix of the input. The

solution for the case where the filter orders are unconstrained has recently been estab-
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lished. We will refer tothls c:isé ras 1= 00, althoﬁgh threrdegrrrée is féfrﬁéﬂy undefh;ed
because the filters are not causal. The optimum solution E(e’*) that maximizes the
coding gain, diagonalizes Sy, (e’“) at each frequency. This in particular implies the
diagonalization of the autocorrelation matrix Ry (0) (which was both necessary and
sufficient condition for the transform coding case). Diagonalization of the psd matrix
at each frequency, however, is not sufficient for E(¢’*) to maximize the coding gain
[Vai98]. There should be an additional ordering of the eigenvalues of the psd matrix at
each frequency (spectral majorization) [Vai98]. If z(n) is WSS, then these eigenvalues
are Sy (/@2 /M)) i = 0,..., M — 1. For the two-channel case and for a restricted
class of input psd, we show in Chapter 3 that if u is the degree of the optimum FIR
filter bank, then S,x(e’*) should be decorrelated and majorized only at [z/2] discrete

frequencies. In Chapter 3 we show how to find those frequencies.

2.2.3 Existence of FIR PCFB’s: A Counter Example

Let the input process be AR(1) with the correlation coefficient of p = 0.9. Let the
number of channels be M = 3 and 4 = K = 1. Assume that the filter orders are
less than or equal to V = 4. Note that these are the smallest numbers for which we
can expect to have a counter example. This is because the coding and compaction
problems are the same if either M =2 or N < M [KV98e]. Now, since the maximum
filter order is 4, we can write v; = [cos(a) sin(a) 0]F. Hence the two problems can be
formulated by one single parameter . Hence we can plot the coding and compaction
gains versus o as in Fig. 2.6 where we kept the range of o from 0 to 7/2. This is
because the plots are symmetric with respect to both 0 and 7/2. From the plot we
see that the two problems have different answers. The value of o that maximizes the
coding gain is Qeeging = 0.15077 whereas acomp = 0.1695m maximizes the compaction
gain. For these choices of @, the coding gains are Geoging = 3.2176 and Gpging = 3.2052
respectively, and the compaction gains are Geomp = 2.7672 and Gomp = 2.7682. Now
we can conclude the following fact:

Fact 2. In general, there does not exist an FIR A —channel PCFB for finite nonzero
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- coding gain, —.— compaction gain

0 0.1 0.2 0.3 0.4 0.5

o/

Fig. 2.6: Coding and compaction gains versus the parameter a. The two plots have
maxima at different values of a.

degree p.
Proof. Assume on the contrary that there always exists a PCFB EP(z) of degree
0 < pt < oo. Then for all E(z) € O,, Y24 02 is maximized by E?(z), for each P =
1,..., M. This implies two things: o2 is maximized by EP(z) (optimum compaction
gain), and [1)Z5" 02 is minimized by E?(z) (optimum coding gain). The first one is by
definition (P = 0), while the second one is due Theorem 1. So, if a PCFB exists, it
solves both optimization problems. Since we have the above counter example as well as
other examples in Sec. 2.2.4 that show that there is no single filter bank that achieves
both the maximum compaction and coding gains, we conclude that a PCFB of a given
degree does not always exist. [
JIn the above example, among the class of orthonormal filter banks with 4 = 1 and
the maximum filter order N = 4, there does not exist a PCFB. If it existed, then it
would have achieved both the maximum compaction and coding gains. From the plot
in Fig. 2.6, we see that there is no value of a for which both gains are maximized.
We have just shown that an FIR PCFB of a given degree u does not always exist.
The following example shows that an FIR PCFB of a given order K does not always

exist either. These results help us understand why it is difficult to find analytical
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solutions for optimal M —channel uniform FIR orthonormal filter banks.

Example 1. Let M =3, and K =1 (LOT case). If a PCFB exists, then it solves the
following two problems: maximize o2 , and maximize o2 + 02 . The second problem is
the same as the minimization problem: minimize 032. This is because, by orthonormal-
ity, 02, + 02, + 02, = 302. Both two problems can be seen as the problem of designing
optimal FIR compaction filters [KV98e, TV98]. We have used the numerical technique
developed in [TV98] which is guaranteéd to converge to optimal solutions. The solu-
tion to the maximization problem consists of a set of filter coefficients for the first filter
Hy(z). These correspond to all possible spectral factors of a single magnitude-squared
response. Similarly, the minimization of 052 leads to a set of coefficients for the third
filter Hy(z). If it turns out that no combination of filters from the two sets of solutions
can possibly belong to a single orthonormal filter bank, then this is a proof that a
PCFB of order K = 1 does not exist. We next show that this is the case. We can
uniquely factorize the polyphase vector of each solution Hy(z) into Householder factors:
e} (z) = ujVi(z)Va(2). Similarly for each H,(z) we have e}(z) = u}W;(z)Ws(z). The
Householder factors are in the form V(z) = I — vvi + 27 vvl so that V(1) = I. Hence
e}(1) = u} and e}(1) = u}. If there was a single orthonormal filter bank, we would
have had ugug = 0 for at least one combination of solutions. For an AR(1) process
with p = 0.9 we have explicitly found that this was not the case. Hence we conclude

that, for this example, there does not exist a PCFB of order K = 1.

2.2.4 Efficiency of the Suboptimum Design

In Sec. 2.2.1, we have outlined an algorithm proposed by Moulin et al. [MM98] to
design signal-adapted FIR orthonormal filter banks. In the algorithm, the first filter
of the filter bank is constrained to be an optimum compaction filter. In the previous
section we have shown an example where this constraint resulted in loss of coding
gain. Another issue with this algorithm is the fact that the optimum compaction filter
Hy(z) is not uniquely determined from its magnitude square (or the product filter)

|Ho(e’“)|?. Since the latter can be spectrally factorized in many ways, we see that one



38
spectral factor may give better coding gain than the others although they all have the
same compaction gain. This indeed turns out to be the case as we show in Example
3. In that example, we show also that even if one uses the compaction filter that has
the best phase response (best spectral factor of |Hy(e’“)[?), one can still increase the
coding gain by brute-force optimization of the filter bank. We want to remark that the
coding gain loss due to constraining the first filter to be optimum compaction filter is
not significant for most of the practical signals we have considered. Below are some
examples that confirm this observation.
Example 2. Let us consider the counter example of the previous section. Let the
input be MA(1) instead of AR(1) with arbitrary correlation. Then one can verify by
explicitly plotting the coding and compaction gains versus the parameter o that both
achieve the maximum at the same value of . This means that the best coding gain is
achieved by designing a compaction filter first. This determines v; and the first row
of U. The best filter bank that maximizes the coding gain is then obtained by using
the KLT for the output of Vi(z). In the previous section, the difference in the coding
gains was very small; for this example it is identically zero.
Example 3. Let the input be MA(1) with 7(0) = 1 and (1) = 0.3. Let A = 3
and g = 5 so that the maximum filter order, N < 17. The best compaction gain
is Geomp = 1.4920 achieved by the best compaction filter magnitude response. There
are eight possible phase responses for Hy(e/*) that yield the same magnitude response
|Ho(e¥)|? (assuming real coefficients). Among them there is one filter that achieves the
maximum coding gain of Gioging = 1.0944. The minimum phase filter has the coding
gain of Gepaing = 1.0653 which is worse. By brute-force optimization, one can find a
filter bank that has the coding gain of Goging = 1.0951. This has a compaction gain of
G eomp = 1.4910, slightly worse than the optimum. Hence this is an example where the
phase response of the compaction filter Hy(e’*) does affect the coding gain and even
with a best phase, the coding gain is not the maximum achievable. On the other hand
the numerical differences are not significant at all.
Example 4. Let the input be an AR(12) process. Let M = 8 and the degree u = 5

so that the maximum filter order N < 47. This is the example where we obtained
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the most discrepancy between the two solutions. The coding gain for the suboptimum
method of Moulin et al. is Geoging = 5.3948. By brute-force optimization of vectors
v,, we find that we can achieve a coding gain of Geoging = 5.9642. The previous
solution has the maximum compaction gain Geomp = 5.9190 while the latter solution

has G omp = 5.0228.

2.2.5 The Two-channel Case

In the special two-channel case, a PCFB is the one that maximizes ago. Hence an

FIR PCFB can always be constructed by designing the first filter to be an optimal
FIR compaction filter. The second filter is determined from the first. Hence, in the
two-channel case, an FIR PCFB always exists for any input and it is optimal for
orthonormal subband coding for all bit rates and bit allocation strategies. Furthermore,
they can be analytically constructed for some special class of input signals as we show

in Chapter 3.

2.3 Nonuniform Case

In the implementation of wavelet-based coders, one uses a dyadic tree-structured filter

- H,(2) | §2
H(2) |y2
- : e
-HI(Z) 2
V2
(a)

T w18
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(b)

Fig. 2.7: (a) A three level wavelet decomposition, (b) equivalent nonuniform filter bank.
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bank. This is equivalent to a nonuniform filter bank with decimation ratios that are
powers of two. As an example, a three level wavelet decomposition is equivalent to
a nonuniform filter bank with decimation ratios {8, 8,4, 2} as illustrated in Fig. 2.7.
More generally, there are wavelet-packet based coders which incorporate arbitrary tree-

structured filter banks, an example of which is shown in Fig. 2.8a. For simplicity, we

—

(a) (b)
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(c)
Fig. 2.8: (a) A wavelet packet decomposition, (b) the corresponding tree-structured
filter bank, (c) nonuniform filter bank equivalent to (a).

e

used plain lines in this figure to represent branching of the tree structure. Each line
represents a filter and downsampling by two as in Fig. 2.7. Wavelet packets can be con-
sidered as pruned versions of full tree-structured filter banks. The full tree-structured
filter bank corresponding to the wavelet packet in Fig. 2.8a is shown in Fig. 2.8b. Also
shown in Fig. 2.8¢ is a 5—channel nonuniform filter bank equivalent to the wavelet
packet in Fig. 2.8a. By fixing the filters Hy(z) and H;(z), there have been impor-
tant developments to numerically design the optimal pruning of full tree-structured
filter banks in the rate distortion sense [RVH96, Wic94]. Numerical optimization of
filters Hy(z) and H;(z) in such schemes has only recently been considered in [PMRI7].
Theoretical optimization of filters together with such structures does not seem to be
feasible.

One step to relax the optimization problem is to use different filter pairs for different
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branches. Another stép rrrlrirgrht be to use different numbers of channels (othér than f\\b)
at different branches. In the extreme case, one can consider a nonuniform filter bank
without any structure. Obviously, by doing this, one can obtain a nonuniform coder
that achieves a better objective than wavelet or wavelet-packet based coders because
the latter form special subclasses of the former. The price to pay is the lack of structure
and therefore less efficient implementation of signal transformation. In this paper,
we consider the theoretical optimization of orthonormal nonuniform filter banks for
subband coding. Hence we impose the restriction that the filter bank is orthonormal,
but we do not impose any constraints on the filters. In theory, biorthogonal systems can
achieve better coding performance than orthonormal systems as in the special uniform
case [VK98a]. However, we believe that solving the orthonormal case is a necessary
first step for solving the biorthogonal case. In practice, the filters in wavelet and
wavelet-packet based coding are designed to be biorthogonal, but they are made close

to being orthonormal by careful scaling. Consider Fig. 2.9, where we show a subband

>
O
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Fig. 2.9: Subband coding scheme with a nonuniform filter bank.

coding scheme with a nonuniform filter bank as its transform part. Given a number of

channels A, we can have different decimation ratios n; for different channels. If

Z — =1 (2.25)

this corresponds to a maximally decimated system. Such a set will be called an admissi-
ble set. For every admissible set of decimation ratios, one can construct an orthonormal

filter bank with perfect reconstruction property if we allow the filters to be ideal. If
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we restrict ourselves to realizable filters, this is not the case and it is an open problem
to find the class of admissible sets of decimation ratios that lead to realizable filters
[DV94]. We will not be concerned about this issue in this chapter.

Let o2 be the original signal variance, o2 be the subband variances and . be the
quantization noise variances in the subbands in Fig. 2.9. As in the uniform case, if
we assume that the quantizers operate at high bit rates, then one can model them by
a simple relationship: 03]_ = c27%; agj, where b; is the number of bits at which the
quantizer in jth channel is operating. If the total bit budget is b bits per sample, then

we have

b= Z 'l (2.26)

Similar to the uniform case, by optimal bit allocation we have the following expression

for coding gain [SV93]:
o
G oding = z 2.27
" o 20

We have o2 = j-‘igl agj/nj by the orthonormality of the filter bank. Hence the coding
gain in the high bit rate case is the ratio of generalized arithmetic and geometric
means of subband variances. In the uniform case where n; = M, for all j, this reduces
to the ratio of conventional arithmetic and geometric means and it is maximized by
the Karhunen Loeve transform in the block transform case [HS63] and by optimal
orthonormal filter banks as constructed in [Vai98] in the subband coding case with

ideal filters.

2.3.1 Formulation for Arbitrary Bit Rates

If we do not assume that the quantizers operate at high bit rates, we can still formulate
the nonuniform orthonormal subband coding problem as follows: consider Fig. 2.9
again. Let o2, agj, and agj be variances of the original input, subband signals, and the

quantization noise signals as defined before. Let £ denote the reconstruction error of
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this subband coding scheme. Then, by the orthonormality of the transform, we have:

M-1 02

E=Y X (2.28)

j=0 T
A filter bank is said to be optimum for subband coding if the reconstruction error £ is
minimized for a given total bit budget b as in (2.26). Only at high bit rates, optimality

is the same as maximization of the coding gain expression in (2.27).

A General Quantizer Model

As in Sec. 2.1.2, we will model all the quantizers in Fig. 2.9 by a single quantization

function f(.) such that
oy, = f(b;)as, (2.29)

So, as in the uniform case, we do not assume high bit rates but we do assume
that all the channels have the same quantizer function f(.). See the comments in Sec.

2.1.2. With this model, the reconstruction error of the subband coding scheme is

M-l o2
£=Y fo)22 (2.30)
j=0 iy

2.3.2 Nonuniform Principal Component Filter Banks

Consider the problem of representation of signals by a subset of an M —channel nonuni-
form orthonormal filter bank: in Fig. 2.10, if we keep P of the subband signals without
quantizing, and drop the other subbands, what is the filter bank that minimizes the
reconstruction error? By the orthonormality of the transform, we can write

M 52
E=Y 2 (2.31)
j=P

J
n;

Again by the orthonormality, this is minimized if ;3:—01 aij/nj is maximized. A filter

bank that maximizes the partial sum f;ol Jgj/nj for each P is called a nonuniform

principal component filter bank. This is directly analogous to the definition of
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Fig. 2.10: Pertaining to the discussion of nonuniform principal component filter banks.

principal component filter banks in the uniform case. Notice, however, that a different
ordering of the same set of decimation ratios in the nonuniform case results in a different
PCFB. Hence the definition of a nonuniform PCFB should be made with respect to a
particular ordering of an admissible set of decimation ratios:

Definition. A nonuniform orthonormal filter bank with a set of decimation ratios
{n;,7=0,..., M —1} is said to be a PCFB for the permutation {j;,i = 0,...,M —1};
if among the class of nonuniform orthonormal filter banks that has the same set of

decimation ratios, it maximizes the partial sum

P-1 ag.
y 4 (2.32)
i=0 "L

for each P =1,..., M. Here agj_ is the variance of the subband signal corresponding

to the decimation ratio n;;.

2.3.3 Optimality Results for Nonuniform SBC

In the uniform case, we have shown in Sec. 2.1.4 that PCFB’s are optimal orthonormal
filter banks for all bit rates and bit allocation strategies. In the nonuniform case, the
relationship between PCFB’s and optimal orthonormal filter banks is not as strong due
to the dependence of PCFB’s on the ordering of decimation ratios. We start with the

following observation:

Theorem 2. Consider a nonuniform orthonormal SBC with a set of decimation ra-
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tios {n;,j = 0,...,M — 1} and with a fixed corresponding bit allocation scheme:
{b;,7 = 0,...,M —1}. Let {j;,i = 0,...,M — 1} be the permutation such that
f(bj) < ... < f(bjy_,). Then a principal component filter bank for the permutation

{js»i =0,..., M —1} minimizes the total reconstruction error £ of this SBC scheme. $

Proof. We can write the total error as:

M-1 02 M-1 gg
£ = Y i)=Y fb) 2
j=0 J i=0 Ji

M-1 i-1g2 M-1 g2

= (f(bji—l) - f(bjl)) Z ‘]l + f(bjj\l—l) Z '“

i=1 1=0 " =0 "

(2.33)

The last term is equal to f(bj,,_,)o2 which is constant. The numbers f(b;,_,) — f(b;,)
are nonpositive and fixed. Therefore, £ is minimized if each of the partial sums
. aﬁjl /n;, is maximized. A PCFB for the permutation {j;,¢ = 0,..., M —1} achieves

this by definition. [ ]

Comments. Such a PCFB is optimum for a subband coding scheme with a particular
class of bit allocation strategies: namely those that satisfy f(b;) < ... < f(bj,,_,). In
contrast to the uniform case, we do not know, in advance, which ordering corresponds

to optimal bit allocation. However, we have the following result:

Theorem 3. The optimal nonuniform orthonormal filter bank for subband coding
with a given admissible set of decimation ratios {n;,j = 0,..., M — 1} is one of at

most M! PCFB’s corresponding to all permutations of {0,..., M — 1}. &

Proof. Let b],7 =0,...,M — 1 be the optimal bit allocation. Without loss of gener-
ality, assume that f(b}) < ... < f(b5,,_,) for some permutation {j;,i = 0,..., M —1}.
By Theorem 2, a PCFB for the permutation {j;,;i = 0,..., A — 1} minimizes & for

all such bit allocations. Hence a PCFB for this permutation is optimum for subband
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coding with optimal bit allocation. This completes the proof. [

Comments. As we stated before, for a given average bit rate b, we do not know
the permutation of the optimal bit allocation and therefore we do not know which of
the M! PCFB’s is optimum. But, given a quantizer function f(.), one can enumerate
minimum reconstruction errors of PCFB’s corresponding to all permutations and select
the best one. The optimum permutation may depend on both the quantizer function
and the total bit budget.

For M = 2, there is only one admissible set of decimation ratios with one permu-
tation, namely {2,2}. Hence, there is only one PCFB which is uniform and therefore
as proven in Sec. 2.1.4, it is optimum for subband coding for all bit rates and bit

allocation strategies. For M = 3, we have the following illustrative example.

Example 5. For an input with a power spectral density (psd) as shown in Fig. 2.11
we want to design a 3—channel optimum nonuniform orthonormal filter bank with
decimation ratios {6,3,2}. There are 3! = 6 different PCFB’s, one corresponding
to each permutation. Details of construction of nonuniform PCFB’s can be found in
[KV98d]. For example, Fig. 2.11 shows three PCFB’s corresponding to the permuta-
tions {6,3,2},{6,2,3} and {3,6,2} respectively. Assume high bit rate assumptions
hold so that the reconstruction error after the optimal bit allocation is of the form:

(0%, )1 (02, ) (0, ) (2:34)

J1 Ty Zj3

Ignoring the constant factor ¢2=2 for simplicity, the reconstruction error for the per-
mutation {6,3,2} is £z = (1£¢)"/3d"/2. Applying the same procedure for all permu-

tations, we obtain:

1+¢
5632 — (———)I/Bdl/Q,

2
l+e+d

5623 = (—3“)1/2511/3’
l1+c¢

5362 = (—)1/3d1/2:56327

2
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Fig. 2.11: Top: An input power spectral density. Bottom: PCFB’s for the permutations
{6,3,2},{6,2,3} and {3,6,2} respectively.

1+¢ 1+ 2d

5326 — ( : )1/3( 3 )1/2d1/6’
l4+c+d

Eap3 = (—3——)1/2d1/3=56237

l+c+d

1+d
Eno = (g

2

)1/3d1/6

(2.35)

As an example, let ¢ = 1/2 and d = 1/4. Then g3 = €369 is the minimum. Hence a
PCFB corresponding to permutation {6,3,2} or {3,6,2} is the optimum nonuniform
orthonormal filter bank for this example.

Until this point, we have considered optimality of a nonuniform filter bank with a
fixed set of decimation ratios. For a fixed number of channels M, one can expand the
class of nonuniform orthonormal filter banks to that with all possible admissible sets
of decimation ratios. An optimum filter bank among such a class will be referred to as

optimum M —channel nonuniform orthonormal filter bank.
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Corollary to Theorem 3. The optimum M —channel nonuniform orthonormal fil-
ter bank for subband coding is one of finitely many PCFB’s corresponding to all

admissible sets of M decimation ratios with all possible permutations.

Proof. We know that for a fixed set of decimation ratios, one PCFB corresponding to
a particular permutation is optimum. Let us enumerate all admissible sets of decima-
tion ratios and find the particular permutation for each set that minimizes the total
reconstruction error. Clearly one of them has to have the minimum £. The only thing
that remains to be shown is the finiteness of the number of admissible sets of decima-
tion ratios for a fixed number of channels M. This is done in Appendix A where we
present an explicit recursive formula for the maximum possible decimation ratio m;

in all admissible sets for a given number of channels M. [

Example 6. Let M = 3 and consider the input power spectrum shown in Fig. 2.12,

where {a;,7 =0,...,11} is a decreasing set of positive numbers.
Apsd
a,
= a,
) . a
. a,
>
21

Fig. 2.12: Input power spectral density for Example 6.

From Appendix A, the maximum possible decimation ratio is ms = 6 and it
is easy to verify that there are three admissible sets of decimation ratios, namely
{3,3,3},{4,4,2}, and {6, 3,2}. For the set {3, 3,3} there is only one PCFB, while for
{4,4,2} there are 3 PCFB’s, and for {6, 3,2} there are 6 PCFB’s. Let nj,,nj,,n;, be a

particular permutation for a particular set of decimation ratios. Let the high bit rate
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assumptions hold so that the reconstruction error is as in (2.34). Let p;, = 12/n;,,i =

0,1,2. Then ignoring the constant factor, the reconstruction error of the PCFB for the

permutation {jo, j1,j2} is of the form:

1 Pjg—1 Pj1-1 Pjp-1 1/12
(—. Z ai)pjo(f Z aijH)Pn(_._ Z aP:‘o+Ph+i)pJ2
Djo i=o Dji =0 j2 =0

Depending on the rate of decrease of rnumbers a;, the optimum set of decimation
ratios and the optimum permutation change. Let a and ¢ be positive numbers such
that a; > 0 in the foregoing expressions. If a; = a — ci, linearly decreasing, then
we find that the PCFB for the ordered set {2, 3,6} is optimum. If a; = a (i +b)7¢,
polynomially decreasing, then we find that the PCFB for the ordered set {6,3,2} is
optimum. Finally, if a; = a™, exponentially decreasing, then we find that the uniform
PCFB corresponding to {3,3,3} is optimum. In [KV98d] we present results on the
optimum permutation of decimation ratios depending on the rate of decrease of the
input psd. On the practical side, most of the natural images have psd that have a
polynomial type of decrease, and the wavelet-based coders use a tree-structured filter
bank which is close to a PCFB for the permutation that is in decreasing order. For
example, a 3-level wavelet-based coding typically uses a filter bank that is close to a
PCFB for the ordered set {8, 8,4, 2}.
APPENDIX

Proof that there are finitely many admissible sets for a given number of
channels. An admissible set satisfies Zj-‘igl 1/n; = 1. Let my denote the maximum
possible value that a decimation ratio in an admissible set can have. If we show that
mas is finite, then we are done. We show that this is the case by explicitly showing
that

my = mM_l(mM_l + 1), M=23... (236)

with m; = 1. For M =1, there is nothing to prove and for M = 2 we have only one
set {2,2} and therefore my = 2. For M > 3, the first M — 1 decimation ratios should

be chosen to be as small as possible to maximize my;. Similarly for A/ — 1, the first
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M — 2 decimation ratios should be as small as possible. Assume for M — 1, we have
found such a set, denote it by Sps_1. The largest element of Sp;_; is mpr_1. For M, we
must have M — 2 elements of Sy;—; excluding my;_; and instead of mps_; we should

have next larger number which is mps—; + 1. Now we have the following identity:

-1 1 1
T + =1 (2.37)
mar-1 my-1+1  mp
From this, the relation (2.36) follows. |

Remark. From the above argument it also follows that for an arbitrary number of
channels M, the set of decimation ratios that contain mys is Sy = {mq + 1,mg +

1,....mp_1+ l,m]w}.
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Chapter 3

Theory and Design of Optimum FIR

Compaction Filters

3.1 Motivation

Consider the M —channel uniform orthonormal (or paraunitary) subband coder shown

in Fig. 3.1. In terms of the filters we can express the orthonormality as [Vai93]

x(n) ——=({H,@) AM F=(R@)—=r=y(n)
variance
& H,(z) TM Fi(2)
X : :
Aur(2) AM —(F@)

Fig. 3.1: M—channel uniform subband coder. Orthonormality implies F;(e/*) =
H?(e?¥), and |H;(e’*)|? is Nyquist(M).

H(e)H} (e)] = 8(i - J) (3.1)
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This in particular implies that each filter satisfies the Nyquist(M) property (see Sec.
3.1.1 for notations and terminology):

=1 (3.2)

(pdw) |2
Hi(e)P),,, =

If we assume that the quantizers operate at high bit rates, then from Sec. 2.1.1, with

the optimal bit allocation, the coding gain is [JN84]:

2

o
Gcoding = T = (33)
(5" o2, ) 1M
where 02, is the variance at the output of H;(2), and 02 = ¥X5" 02 /M by the or-

thonormality.

When some of the subband variances turn out to be smaller than a certain threshold,
the corresponding channels should be dropped. In this case, the coding gain expression
(3.3) is not applicable, and the total error is the sum of the quantization error and
the error due to dropping. This is the case when high bit-rate assumption on the
quantization noise sources is not satisfied.

In the high bit rate case, the optimum orthonormal filter bank that maximizes
(3.3) is well-known for the case where filter orders are constrained to be less than Af.
This is the famous Karhunen-Loeve transform coder (KLT) and it diagonalizes the
M x M autocorrelation matrix of the input. The solution for the case where the
filter orders are unconstrained (ideal SBC) has also been mentioned in some detail
in Chapter 2. The polyphase matrix [Vai93] of the solution diagonalizes the psd
matrix in the frequency domain. This in particular implies the diagonalization of
the autocorrelation matrix (which was both necessary and sufficient condition for the
transform coding case). Diagonalization of the psd matrix at each frequency however, is
not sufficient for the unconstrained filter bank to be optimum [Vai98]. There should be

an additional ordering of the eigenvalues of the psd matrix at each frequency (spectral
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majorization) [Vai98]. At a frequency w, these eigenvalues are
{Sea (/@) k=0,... M -1} (3.4)

where S;;(€’?) is the input psd.

For the arbitrary bit case, in Chapter 2, we have connected the problem of optimum
uniform orthonormal subband coder to that of principal component representation of
signals. At this point, the reader should review the results of Chapter 2 pertaining
to the definition of PCFB’s and their optimality for subband coding under arbitrary
bit rates (not just high bit rates). If we think of the collection of the set of subband
variances obtainable by a certain class of orthonormal filter banks, then the PCFB has
the set of variances that majorizes every other set in the collection. The KLT and
the optimal ideal orthonormal filter banks that maximizes the coding gain (3.3) are
PCFB’s in their corresponding classes. Therefore they are optimal for subband coding
under arbitrary bit rates and bit allocation strategies (see Chapter 2).

A PCFB as defined in Chapter 2 maximizes the partial sums Z}D:—Ol agj /M for each
P =1,...,M. In particular, the first filter Hy(z) of a PCFB has the largest output
variance compared to all the other filters that satisfy the Nyquist(M) property

[Ho(@)P) ,, =1 (3.5)
Such a filter is called an optimal compaction filter and it is the subject of this chapter to
investigate its analysis and design. Of course, if there are any constraints on the class
of filter banks, the first filter has to be such that it can be completed to an orthonormal
filter bank in that class. For example, if the filter bank is order constrained, then the
first filter has to be order constrained accordingly.

Although in the transform coding case and the ideal case a PCFB does exist, in
the intermediate case (i.e., finite order filter banks), unfortunately the existence of
such a filter bank is not always guaranteed. The reader is referred to Chapter 2 for

examples where no FIR PCFB of a given order or degree exists for a particular input
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psd. However, if it exists, then designing an optimum FIR compaction filter Hy(e’*)
is the first step of finding such a filter bank. In that case, Moulin et al. [MAKP96]
uses a result due to Vaidyanathan el al. [VNDS89] to optimally complete the filter
bank. This is based on the fact that, if one filter Hy(e/*) in an FIR orthonormal filter
bank of a given degree is known, then the number of freedoms available for the design
of the remaining filters is limited. This remaining freedom can in fact be captured
with a simple constant unitary matrix U. Essentially the last M — 1 rows of U are
free and should be chosen to maximize the coding gain. The optimum U is the KLT
corresponding to its input vector which is determined by the first filter Hy(z) and
the original input z(n). As we will see, the optimality of a compaction filter depends
only on its magnitude-squared frequency response. Hence, for an optimum magnitude-
squared frequency response, one has the choice of selecting a particular spectral factor.
It turns out that this choice affects the coding gain (see Chapter 2 for examples), and
one has to choose the best spectral factor.

For the two-channel case, the existence of a PCFB is assured even if the filters are
order-constrained. To see this, note that a two-channel PCFB maximizes only o2 .
By orthonormality, the sum o2 + 02 is constant. Once one order-constrained filter
that maximizes o2  is found, all that remains is to find another filter such that the two
filters form an orthonormal filter bank. It is very well known that the second filter is
determined from the first filter by simple flipping and sign changes (see (3.39)). Hence
in the two channel case, designing an optimal FIR compaction filter is the same as
designing an optimal FIR orthonormal filter bank for subband coding. By the results
of Chapter 2, the optimality of this filter bank is independent of the bit rates involved.

In the high-bit rate case, the coding gain expression becomes

o? o2
Gcodiny = = = = (36)
\/02 o? \/020(203 —02)

Zo Iy



In this case we can write

(3.7)

Glooting = 1
\/Gcomp(2 - Gcomp)

where Geomp = ago/az is the compaction gain defined more precisely in Sec. 3.2.

In this chapter, we focus on the design of an optimum FIR compaction filter when
the order is such that M < N < oo. As we discussed, for M = 2, this is equivalent to
the design of optimum orthonormal filter banks for subband coding, and with trivial
extensions, to the design of optimal wavelet generating filters. For arbitrary A/, the
design in [MMO98] can be used to obtain a good orthonormal filter bank using the
compaction filter. The usefulness of signal-adapted designs in image coding with the

mean-squared error as the criterion is demonstrated in [DMS92, TZ92, TDK95].

Other Applications of Compaction Filters

In view of principal component analysis, in addition to subband coding and data com-
pression, other immediate applications of compaction filters are signal modeling and
model reduction, low-resolution data representation (multimedia databases), and clas-
sification. Two other interesting applications of compaction filters are adaptive echo
cancellation [JLW96] and time-varying system identification [TG93]. Consider the
design of zero intersymbol-interference (ISI) transmitter and receiver filters for data
transmission over bandlimited communication channels. Let H(e’*) and F(e/*) be
the transmitter and receiver filters respectively. To maximize SNR in the presence of
additive white noise, matched filters should be used, that is F(e/*) = H*(e/*). With
this, the zero ISI property becomes |H (&) |2|¢M = 1 which is nothing but Nyquist(A[)
property! Such optimally designed filters are used, for example, in voiceband data

modem applications [CU82].
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3.1.1 Notations and Terminology

1. The notations X (z), X(2)|;ar, and the Nyquist(7) property are defined in Sec.
1.4.

2. The notation z;(n) stands for a periodic sequence with periodicity L. If there is
a reference to a finite sequence z(n) as well, then it is to be understood that z,(n) is
the periodical expansion of z(n), i.e., zp(n) = 32 __ z(n + Li). The Fourier series

coefficients (FSC) of zp(n) is denoted by Xy(k). For L a multiple of A, a periodic

sequence xr(n) is said to be Nyquist(M) if

zp(Mn) = dg(n) 2 Y 8(n + Ki) (3.8)
where K = L/M.
3. Positive definite sequences. Let a sequence {z(n),n =0,..., N} be given and

let P be the Hermitian Toeplitz matrix whose first row is [2(0) z(1) ... z(N)]. The se-
quence {z(n)} is called positive definite if P is positive definite. Let [a(0) a(1) ... a(N)]T
denote an eigenvector corresponding to the maximum eigenvalue of P. Then the fil-
ter A(z) = 2N ja(n)z™" is called a maximal eigenfilter of P. The definitions for

negative definite sequences and minimal eigenfilters are analogous.

3.1.2 New Results and Outline of the Chapter

In Sec. 3.2, we formulate the optimum FIR energy compaction problem and present
a brief review of existing work. The remaining sections contain new results: In Sec.
3.3, we give an extension of the technique in [ADM95] for the analytical solution of
the FIR energy compaction problem in the two-channel case. This is equivalent to the
problem of optimal two-channel orthonormal filter bank that maximizes the coding
gain and with a trivial extension (constraining some zeros at w = ), to the optimum
wavelet generating filter problem. The method involves Levinson recursion and two
spectral factorizations of half the filter order. We will see that the analytical method

is related to the well-known line-spectral theory in signal processing society [RM87].
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We develop a new technique called the window method for the design of FIR
compaction filters for the A —channel case (Sec. 3.4). The window method has the
advantage that no optimization tools or iterative numerical techniques are necessary.
The solution is generated in a finite number of elementary steps, the crucial step being
a simple comparison operation on a finite frequency grid.

We discuss some drawbacks of the LP method and propose some improvements
(Sec. 3.4). We also consider the design and implementation of compaction filters in
multiple stages (Sec. 3.5). Similar to the case of IFIR filters in filter design practice
[NCYM84, Vai93], this is very efficient both in the design stage and in implementation.
MATLAB programs can be found at our webpage [htt] for the algorithms described in
this chapter.

The three techniques (the analytical method, the window method, and the LP
method) are complementary rather than competing with each other. For the two-
channel case, the analytical method should be the choice whenever it is successful. If
it is not or if M > 2, for high filter orders the window method should be preferred. If
the filter orders are low, then linear programming should also be considered, though
sometimes the window method performs as good as LP even for low filter orders (see
Example 12).

The results of this chapter have been published in a special issue of a journal

[KV98e] and at various conferences [KV97a, KV97b, KV96al.

3.2 The FIR Energy Compaction Problem

An FIR filter H(z) of order N will be called a valid compaction filter for the pair
(M, N) if |[H(e’*)|? is Nyquist(M) that is, IH(ej“’)|21M[ = 1. Let G(e?*) = |H(e/*) ]2
We will call G(z) the product filter corresponding to H(z). Conversely, G(z) is the
product filter of a valid compaction filter for the pair (M, N) if it is of symmetric

order N, that is G(z) = =, g(n)2™" and satisfies the following two conditions:

g(Mn) = 6(n) (Nyquist(M) condition) and G(e’*) > 0 (nonnegativity) (3.9)
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z(n)— H(2) —>*M—> y(n)

Fig. 3.2: M —channel compaction filter. |H (e’%)|? is Nyquist(M).

Now consider Fig. 3.2 where H(z) is applied to a zero-mean WSS input z(n) with
psd S,(€’*), and the output is decimated by M. The optimum FIR compaction
problem is to find a valid compaction filter H(z) for the pair (M, N) such that the
variance o7 of y(n) is maximized. Since decimation of a WSS process does not alter

its variance, we have

m . - dw ™ , L dw
2 _ Jwy|2 Jjw — Jw Jw
02 = [ IHE)Sul@) 5 = [ Ge)Su(e) 5 (3.10)

We define the compaction gain as

Q

2T G(E)Sa(e)

% _ 311
2T S E (3.11)

Geomp(M,N) =

The aim therefore is to maximize the compaction gain under the constraints (3.9).

Two Extreme Special Cases

Let us consider the two special cases: (a) the case where N < M and (b) the ideal
case, N = oo. In the first case, the condition g(Mn) = §(n) is the same as g(0) = 1.
This is equivalent to saying that H(e’*) has unit energy. Let h be (IV + 1) x 1 vector
formed by h(n) and let R,; be the (N + 1) x (N + 1) autocorrelation matrix of z(n).
Then the problem is to maximize h'R,;h subject to the condition hth = 1. By
Rayleigh’s principle [HJ85], the optimum h is the maximal eigenvector of R,,. In
other words, H(z) is the maximal eigenfilter of R,,. Let the maximum eigenvalue of
R., be denoted by /\maz{r(n)};v, where 7(n) is the input autocorrelation sequence.
Then the optimum compaction gain is /\maz{r(n)}év/ag. The second case has the
following solution [TG95, Uns93a, Vai96]: if we write H(z) in polyphase form [Vai93],
H(z) = Tplyt 27" Ex(2M) and if S, (/) denotes the M x M psd matrix of z(n), then
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for each w, o , .
e(e’) = [Eo(e) ... Exr—1 (€)' (3.12)

is the maximal eigenvector of S;;(¢’*). Equivalently for each w € [0,2%), let

S,z (€7@ Hi03)) be the maximum of the set
{Spa(e?@HH)), i =0,1,..., M -1} (3.13)

Then H(e/@+03)) = /M and H(e/“+ %)) = 0 for i # i,. Note that the eigenval-
ues of S;z(e/%) are {Syo(e?@H3)), i = 0,1,...,M — 1}. Let Gigear(M) denote the

corresponding compaction gain. We can write

dw , ,

Gideat(M) = M [ Suale?) 5=/ (3.14)

where  is the passband of H(e?¥).

In the Nth order FIR compaction problem, we do not have the flexibility of assign-
ing values to H(e’*) independently for each w. This is because H(e/*) is determined
by its N +1 frequency samples. For N > A/, the problem is not an eigenfilter problem
either, as the condition g(Mn) = §(n) implies more than the simple unit-energy con-
dition. In Sec. 3.4 we will introduce a suboptimal method called the window method.
Interestingly enough, the method involves two stages that can be associated with the
above special cases. While the method is suboptimal, it produces compaction gains

very close to the optimum ones especially for high filter orders.

Upper Bounds on the Compaction Gain

We have the following bounds for the compaction gain:

Gopt (M, N) < Amaa{r(m)} . Gop(M,N) < Giaear(M), and  Gop(M,N) < M
(3.15)
For the first inequality, let & be an integer such that kM > N. From the first special

AY
case above we have G, (kM,N) = /\maz{r(n)}o . Since Nyquist(A) property implies



60
Nyquist(kM) property, Gopt(M,N) < Gope(kM,N). The second inequality follows
because Gopt(M,N) < Gopu(M,N + 1). For the last inequality, first observe that
G(e’*) < M. Hence,

ol = _7; G(efW)SM(efW)g—: <M _7; Sm(ej“)‘;—: = Mo? (3.16)
The equality holds if and only if G(e’*) = M for all w for which S,,(e’*) # 0. If
Szz(e7¥) is not line-spectral, this requires G(e’*) to be identically zero for some region
of frequency which is impossible since the order is assumed to be finite. Hence for a
process that is not line-spectral, the last inequality is strict. That is, G (M, N) < M.
For M = 2, we will derive another upper bound for G,p:(2, N) in Sec. 3.3.2 (see (3.31))

for a class of random processes. Whenever the analytical method of Sec. 3.3 succeeds,

this bound is in fact achieved.

3.2.1 Previous Work

Here is a brief review of the existing methods for FIR compaction filter design:

1. Lattice Parameterization. Two-channel real-coefficient orthonormal filter banks
can be completely parameterized by a lattice structure [Vai93]. Each stage in the
lattice has an angle parameter 6;. The objective function, however, is highly
nonlinear function of these angles. Delsarte et al. [DMS92] propose an itera-
tive algorithm called the ring algorithm to optimize the lattice stage by stage.
Taubman and Zakhor [TZ92] propose an algorithm aimed at finding a globally op-
timum solution for small filter orders. They extend the results to two-dimensional

nonseparable filters as well.

2. Quadratically Constrained Optimization. One can formulate the problem in
terms of the compaction filter impulse response h(n): maximize hfR ,h subject
to hfA’h = §(i), ¢ =0,...,K, where A is an appropriately chosen singular
matrix, and A® = I. Here R, is the input autocorrelation matrix, and h is

the vector of filter coeflicients. The authors in [CLA91, Van92] use Lagrangian
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techniques to solve the problem for the two-channel case and for small filter
orders. Chevillat and Ungerboeck [CU82| provide an iterative projected gradient

algorithm for the M —channel case and for moderate filter orders.

3. Eigenfilter Method. In [VNDS89], the authors design one filter of an A/ —channel
orthonormal filter bank using the so-called eigenfilter method. The objective in
their design is to have a good frequency response. However, one can modify the
technique to incorporate the input statistics. This can be done by using the psd
S:z(€7%) as a weighting function in the optimization. The paper also discusses
how to design a good orthonormal filter bank using the remaining degrees of
freedom. In [MAKP96] Moulin et al. show how to use this idea for the statistical

optimization of orthonormal filter banks.

4. Linear programming. The objective is a linear function of the impulse response
g(n) of G(e’*) = |H(e’*)|?. The Nyquist(M) property can be trivially achieved.
However, we need to impose G(e*) > 0 for all w. This can be written as a
linear inequality for each w in terms of g(n). Hence the problem is a linear
programming (LP) problem with infinitely many inequality constraints, hence
the name semi-infinite programming (SIP). Although we used LP independently
to design compaction filters at the early stages of this project, it was first proposed

and examined in depth by Moulin et al. [Mou95, MAKP96, MAKP97].

5. Analytical methods. Aas et al. [ADM95] worked on a closely related problem for
the two-channel case. They have constructed a Nyquist(2) real filter H (/%) that
maximizes the baseband energy f:/ri? |H(e?*)|?%2. Based on the fundamentals
of Gaussian quadrature, the authors were able to obtain an analytical method
to identify the unit-circle zeros of H(z) which uniquely determine it. In this
chapter, this method will be referred to as analytical method. In Sec. 3.3 we
present extensions of the analytical method. While the original method primarily
addresses conventional half-band filter design, we will show how to adapt the idea
for the case of FIR compaction filter design for a given input psd. Interestingly

enough, we shall show that the analytical method is related to the well-known
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line-spectral theory in signal processing society [RM87]. An analytical expression
for the compaction gain for N = 3 is presented in [UO95]. See also [SdS96] for
N =3.

The major disadvantage of the first three methods is that they are iterative and there is
a possibility of reaching a locally optimum solution. Nonlinearity of the objective is very
severe in the first technique. A milestone in the design approaches is the formulation
of the problem in terms of the product filter. This is done in the last two methods
above. In this chapter, we also design the product filters. A spectral factorization
step is necessary to find the compaction filter coefficients in contrast to the first three
methods. In a newly developed technique, Tugan and Vaidyanathan [TV98] uses state
space theory to cast the problem into a semi definite programming problem. The
formulation is such that the spectral factorization is automatically achieved within the

algorithm.

3.3 Analytical Method

In this section we consider the special case of two channels (A = 2) and assume that the
input z(n) is real so that the compaction filter coefficients h(n) can be assumed to be
real. For this two-channel case we will show that the optimal product filter G(e/*) can
sometimes be obtained using an analytical method instead of going through a numerical
optimization procedure. We will also present a number of examples which demonstrate
the usefulness of the method. Also presented are examples where the analytical method
can be shown to fail. As in [ADM95], one can modify the algorithms of this section
to constrain the filters to have specified number of zeros at w = 7 to generate optimal
wavelets.

The analytical method is motivated by the fact that, under some conditions to be
explained, the objective function (3.10) can be conveniently expressed as a summation
over a finite number of frequencies determined by the psd S,,(e’*). The summation
involves the samples of a modified polyphase component of G(e’*). This will allow us to

optimize the modified polyphase component, and hence G(z), essentially by inspection.



63
Using these observations, we come up with an algorithm that determines the unit-circle
zeros of the compaction filter. Using the Nyquist(2) condition, this in turn determines
the filter itself.

The inspiration for our work in this section comes from the recent contribution
by Aas et al. [ADM95] where the Gaussian quadrature technique is cleverly used to
address the problem of maximizing the baseband energy of half-band filters. Our work
in this section differs in a number of respects. First we do not use Gaussian quadrature,
but take advantage of an elegant representation for positive definite sequences which
results from the theory of line-spectral processes. Second, we take into account the
knowledge of the input psd in the optimization process. We give the analytical solutions
for some practically important classes of random processes.

Let us represent the product filter G(z) = S g(n)z~" in the traditional polyphase
form [Vai93] for M = 2: G(z) = Ey(2?) + 271 E1(2?). By the Nyquist(2) property we
have Ey(z) = 1. For the real coeflicient case we have g(n) = g(—n), and it follows that
the coefficients of the FIR filter E)(2) have the symmetry demonstrated in Fig. 3.3.

g(=1) g(1)

9(=5) T 93
[} g(_3) 9(3) q

9=7) 9(7)

-4 -3-2-101 2 3

Fig. 3.3: Coefficients of the polyphase component E;(z) of the product filter G(z).
Because of the symmetry g(n) = g(—n), we have E;(—1) = 0.

This implies, in particular, that Fy(z) = 0 for z = —1. By factoring the zero at
z = —1, we can write F1(z) = (1+2)G1(z) where G1(z) has symmetric real coefficients.

Hence we can write
G(z) =1+ (z+271)G1(2%), ie, G(&/)=1+2coswG(e’™) (3.17)

Since Nyquist condition and nonnegativity of G(e’*) together imply 0 < G(e/¥) < 2,
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the modified polyphase component G;(e’*) is bounded as follows:

1 ; 1

—— e <G ——— —p<w<T 3.18
2cos(w/2) = (7)< 2 cos(w/2) (3.18)
Notice that G(z) and Gi(z) can be determined from each other uniquely. We shall
express the output variance 05 in terms of G;(e’*) so that we can see how to optimize

the coeflicients of G1(z). For this, write the input psd in the traditional polyphase

form as S;z(2) = So(2%) + 271 S1(2?). Then o7 can be simplified into the form

o2 =r(0)+ " Gl(ej“’)\le(ej“’)d—w (3.19)

y - 27

where U, (z) = (1 4+ 271)5)(2) or equivalently
Uy (€7) = cos(w/2) (Sex(€7%/?) = Suq(e774/2)) (3.20)

Using Parseval’s relation the objective can be written as

(N-1)/2

oy =r(0)+ > q(n)s(n) (3.21)
n=—(N-1)/2
where ¢,(n) is the inverse transform of ¥,(z) which is produced below explicitly for

convenience.

¥2(0) = 2r(1), (1) =r(1) +r(3), ..., %(-jyz;l) =r(N=2)+r(N), (3.22)

and ¥z(n) = ¥z(—n). Our aim is to maximize the second term in (3.21) for fixed
Yz(n) (i.e., fixed input) by choosing g;(n) under the constraint (3.18) and the usual
filter-order constraint. Under the assumption that the input-dependent sequence v, (n)
is positive or negative definite (see Sec. 3.1.1 for definition), we will show how this
can be done analytically. The significance of this assumption on ,(n) is explained in
Sec. 3.3.3. We will need the representation theorem of the next section for positive

definite sequences.
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3.3.1 Representation of Positive Definite Sequences

Theorem 1. Given a positive definite sequence of m+1 complex numbers {¢(n), n =

0,...,m}, there exists a representation of the form
m .
o(n) = Z age? ™ n=20,...,m (3.23)
k=0
where ay, > 0, k= 0,...,m, and w;’s are all distinct. &

Comments. Note that this is different from the Caratheodory representation theorem
which is the basis for the Pisarenko method [Pis73] for identifying sinusoidal signals
under noise: given {¢,, n =1,...,m} there exists a representation of the form ¢, =
ST ane?t n=1,...,m, where a,’s are nonnegative. The frequencies w,’s are the
angles of the unit magnitude roots of the minimal eigenpolynomial of a matrix Q. The
matrix Q is (m+1) x (m+1) Hermitian Toeplitz with the first row [¢g ¢; . .. @] where
®o = Y_jeq 0y is the positive number that makes the matrix singular. Here, the number
of distinct frequencies depends on the multiplicity of the minimum eigenvalue of the so
obtained matrix. If the multiplicity is 1, there are m distinct frequencies. If we start
with a positive definite sequence ¢,, n = 0,...m, then Caratheodory representation

takes the form:

On = (o — i ag)o(n) + i € " n=0,...,m (3.24)
k=1

k=1

This is obviously not the same as (3.23) and is not suitable for our purposes. Al-
though Theorem 1 turns out to be well-known in the literature [AK62], we include our
own proof below for two reasons: i) it is elegant and uses the theory of line-spectral
processes, and ii) it reveals us the algorithmic steps of the analytical method.

Proof of Theorem 1. Let P be the (m + 1) x (m + 1) Hermitian Toeplitz matrix
whose first row is ' = [¢(0) ¢(1)...¢(m)]. Consider the extension of P into a singu-
lar (m + 2) x (m + 2) Hermitian Toeplitz matrix P such that its (m + 1) x (m + 1)

principal submatrix is P. This extension is merely augmenting an extra element
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¢(m + 1) to the end of & and forming the corresponding Hermitian Toeplitz ma-
trix. The number ¢(m + 1) is chosen to make P singular. This can always be done
because of the following reason: for the positive definite matrix P, one can run the
well-known Levinson recursion procedure [RM87] to obtain the optimal mth order
predictor polynomial A,,(z). If one now considers the following continuation of the
recursion P,(z) = Am(z) + cz~ ™D A, (2) with |¢| = 1, then this corresponds to the
singular predictor polynomial of a random process with singular autocorrelation matrix
P. The result now follows from a well established fact [RM87] which states that a WSS
process is line spectral with exactly m + 1 lines if and only if its (m + 1) x (m + 1)
autocorrelation matrix is nonsingular and (m + 2) x (m + 2) autocorrelation matrix
is singular. Applying this result to a process with autocorrelation matrix P, we get
(3.23). ]
Remarks. It is clear that P.(z) defined in the above proof is also the minimal
cigenfilter of P. The zeros of P,(z) are all on the unit circle and distinct. Let
{e?¥, k = 0,...,m} be these zeros. The distinct frequencies {wy,k = 0,...,m}
are referred to as the line-spectral frequencies and «y is the power at the frequency
wg. The representation (3.23) is not unique because of the nonuniqueness of the unit
magnitude constant ¢ in the proof.

Real Case. For real z(n), the predictor polynomial 4,,(z) and the constant ¢ are real.
Hence we have two cases: ¢ = £1. The case ¢ = 1 leads to a symmetric polynomial
P, (z), while the case ¢ = —1 leads to an antisymmetric polynomial P_;(z). It is a well-
known fact that the distinct unit-circle zeros of these two polynomials are interleaved.
For simplicity assume that m is odd. Then P_;(z) has both of the zeros z = 1 and
z = —1 and P;(z) has none of them. Using P;(z), we have the following representation

for a real positive definite sequence ¢(n):

(m-1)/2
o(n) = Z Brcoswin, n=20,...,m (3.25)
k=0
where 8 > 0, £ =0,...,(m —1)/2, and w;’s are all distinct and 0 < wy, < 7, k =

0,...,(m~1)/2.
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3.3.2 Derivation of the Analytical Method

Assume for simplicity (N — 1)/2 is odd and assume {¢z(n), n=0,...,(N —1)/2} is

positive definite. Applying the real form of the representation we have

(N-3)/4 N-—1

Ye(n)= Y Brcoswyn, n=0,...,—5— (3.26)
k=0

The objective (3.21) can therefore be written as

(N=3)/4  (N=D/2 (V-3)/4 |
ol=r0)+ Y. B Y. g@coswn=r0)+ > BGi(e™*) (327)
k=0 n=—(N—1)/2 k=0

From (3.18), the output variance (3.27) is maximized if

JWrY — 1 — N —
Gi(e )_2cos(wk/2)’ E=0,...,(N-23)/4 (3.28)

This implies G(e7“¥/?) = 2, and by Nyquist(2) property
G(e?o/Dy =0, k=0,...,(N—3)/4 (3.29)

Notice that these zeros are all located in the region (7/2,7). Since 0 < G(e/¥) < 2,
the derivatives of G(e’*) should vanish at the above frequencies. Hence we should have
G'(e?+/?) =0, k=0,...,(N —3)/4. In view of (3.17), this in turn implies

G () = sin(wy/2)

= Teot(wyy PO (N3 (3.30)

From the two sets of constraints (3.28) and (3.30), G1(z) is determined uniquely. To see
this, note that G1(e?*) = g1(0) + 2 25{7__;”/2 gi1(n)coswn is a polynomial in z = cosw
of degree (N — 1)/2. Since wy's are all distinct and 0 < w; < m, the constraints
(3.28) and (3.30) translate into a similar set of constraints for G,(z) and G'(z) and
by simple Hermite interpolation [Dav75, page 28] G;(z) is determined uniquely. The
corresponding solution G(e’*) is necessarily nonnegative in the frequency region [r/2, 7|

(Appendix). If it is nonnegative in the region [0, 7/2) as well, then it is the optimum
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compaction filter with the corresponding compaction gain

chfio—@/‘l B

2 cos(wy /2)
3.31

Gopt(27 N) =1+

If, however, G(e’*) turns out to be negative at some frequencies in [0, 7/2), then it is
not a valid solution and the above RHS is only an upper-bound for G,y (2, N). Assume
that G(e’“) obtained by the method is indeed nonnegative. Then it is the unique
solution! To see this, assume there is another optimal product filter K(z). Assume
K (z) is its modified polyphase component. Then, there exists a frequency w; among
the line-spectral frequencies such that Kj(e/“*) < m Hence the summation
(3.27) for K;(e’) is necessarily less than that for G, (e’*), resulting in contradiction.

Notice finally that H(z), which is an arbitrary spectral factor of the unique solution

G(z), is not unique.

Completion of the Optimal G(z)

Consider the following factorization of G(z):
G(z) = Go(2)G4(2) (3.32)

where Go(z) contains the unit-circle zeros determined by the above procedure. From

(3.29) we have

Go(z) = [[ (2 + 2cos(wg/2) + z71)? (3.33)

k=0
Using the Nyquist(2) property, it is possible to determine G1(z) and hence G(z). For
this, let go(n) and §;(n) be the impulse responses of Gy(z) and G (z) respectively. The
product (3.32) in z—domain is equivalent to the convolution in time domain. Using

the convolution matrix and taking into account the symmetries, we get

g=Ag; (3.34)
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where the vectors g, §; have the components
gn =9(2n), Gin=g1(n), n=0,...,(N —1)/2 (3.35)

and A is obtained from the impulse response go(n). From the Nyquist(2) property, it
is clear that g = [1 0 ...0]T. Hence g, is the first column of the matrix A~1. To see
that A is invertible, it suffices to show that a unique solution to g; exists for a given

go(n). For this, write the Nyquist(2) condition for G(z):

Go(2)G1(2) + Go(—2)G(=2) = 2 (3.36)

The zeros of Gy(z) lie on the left half of the unit-circle. Hence the zeros of Go(=2) lie
on the right half of the unit-circle. This implies that Gy(z) and Gg(—2) are coprime.
It is now easy to show that a unique solution to Gl(z) of symmetric degree less than
or equal to (N —1)/2 exists [ADM95]. Actually, this is an efficient way of determining
G1(2) (see [ADMY5] for details).

Efficient Determination of Gy(z)

We will show that we can obtain Go(z) from the singular predictor polynomial Pj(z)

without having to find its roots. For this, let us write P,(z) explicitly:

N-3 N-3
. 1 ‘ _ ~ 7
Pz)=de 5 II (z = &) (2 — e77%%) = gz "% I (z—2cosw, + 271 (3.37)
k=0 k=0

Now, consider the upsampled polynomial P;(22). This can be written in the form
Pi(2*) = £Py(2)Py(—2), where Py(2) is a polynomial in 2~! of order 4 with all its

zeros in the left half plane. To be explicit:

N-3

Py(z) = P ﬁ (z + 2cos(wy/2) + 27 1) (3.38)
k=0
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Hence from (3.33) it follows that Go(z) = ZLFPOQ(,Z). Therefore, given the singular
predictor polynomial Pj(z), one can apply a continuous-time spectral factorization
algorithm [Bau55] to P,(z%) to obtain Py(z) and therefore Go(z). Since G(z) can be

determined from Gy(z), we observe that there is no need to find the roots of P (z)!

Spectral Factorization

To find the compaction filter H(z), we need to spectrally factorize G(z). It is clear
that we can write H(z) as
H(z) = Ho(2)H,(2)
where Hy(z) and Hy(z) are the spectral factors of Gy(z) and G,(z) respectively. We
can deduce Hy(z) immediately: Ho(z) = Py(z). Hence all we need to do is to determine
H,(z) which is of order ]—V—2_—1 This can be done by a discrete-time spectral factorization
of G1(z) [Ngu92]. Although the phase of the compaction filter is immaterial for the
compaction gain, it is important in the design of an optimal orthonormal filter bank for
subband coding as we saw in Sec. 2.2.4. For some applications like image coding, linear-
phase property might be important. Although it is not possible to have linear-phase
compaction filter in the two-channel case [Vai93], one can achieve close-to-linear-phase
response by a careful grouping of the roots of Gl(z).
The case where % 1s even can be treated in a very similar manner. In this case,
we use the singular polynomial P_;(z) corresponding to ¢ = —1 and one of the line-
spectral frequencies is 0, that is, z = 1 is a root of P_;(z). The resulting product

filter G(e’*) continues to be nonnegative in [7/2,7]. We skip the details and give the

summary of the algorithm for both cases.

Summary of the Analytical Method

Given the autocorrelation sequence r(n), n = 0,..., N, where N is odd, let m =
(V' —1)/2. First obtain the sequence ¥,(n), n = 0,...,m using the relations (3.22).

If this sequence is positive definite, then

Step 1. Calculate A,,(z), the optimum predictor polynomial of order m, correspond-
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ing to the sequence ¢;(n) and obtain P.(z) from P.(z) = A, (2)+cz ™D 4, (271),

where ¢ =1 if m is odd, and ¢ = —1 otherwise.

Step 2. Obtain the spectral factor, Py(z) of P.(2?) using a continuous time spectral

factorization algorithm and determine Gy(z) = 2™V P2(z).

Step 3. Calculate G(z) using (3.34) or (3.36) and find its spectral factor H,(z). The
optimum compaction filter is H(z) = Py(z) H(z).

See our webpage [htt] for a MATLAB program that implements the algorithm.

Decorrelation in Optimal Subband Coding

Let us form a two-channel orthonormal filter bank by letting the first filter be the
optimal FIR compaction filter H(z) designed above and by having the second filter as
[Vai93)

F(2) = 2 VH(-2) (3.39)
Let Szq, (2) be the cross spectral density of the subband signals after decimation. Then

we have

Spoz, (2) = [SM(Z)H(z)F(z)LQ (3.40)
= ["Su(2H()H(-2)],
= [zNSm(Z)Pc(Zz)Hl(Z)Hl(_z)]u
= [ZNSM(Z)G1 (Z)LQ C(z)
Hence we have
Sa:ozx (ejw}c) = O’ k= O’ SRR (341)

where wy’s are the line-spectral frequencies (see Remarks after Theorem 1). This is the

form of decorrelation that takes place in optimal subband coding with FIR filters.
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Case Where vy,(n) is Negative Definite

From our developments for the positive definite case, and using the sequence —1,(n),
it can be proven that the optimum compaction filter is H(z) = H(—z) where H(z)
is the optimum compaction filter for the positive definite sequence 1, (n) = —,(n).
However, it is easier to see this directly by looking at the objective in time domain:
o2 =r(0) +2¥,_, g(n)r(n). First note that ¢,(n) corresponds to the autocorrelation
sequence 7(n) = —r(n), n # 0. Let g(n) and §(n) be the product filter coefficients for
H(z) and H(z) respectively. The objective is then to maximize SN —g(n)f(n). This
has the solution —g(n) = g(n), n # 0. Hence we have G(z) = G(—z2) and therefore
H(z) = H(-=2).

Example 1: AR(1) process. Let the input process be AR(1) with the autocorre-
lation sequence r(n) = p*, 0 < p < 1. This is also called Markov-1 process and is
a good model for many of the practical signals including images and speech signals
[Jai89]. Let the compaction filter order be N = 3. Then, m = 1 which is odd. We
have ¢,(0) = 2p and ¥, (1) = p(1 + p*). The Hermitian Toeplitz matrix corresponding
to {¢z(n), n=0,1} is

P=p (3.42)

2 1+ p?
1+ p? 2

which is positive definite. Hence we can apply the analytical method:

Step 1. Running the Levinson recursion, we have: A;(z) = 1 — %“ﬁz_l and using

c=1(mis odd) we have: Pi(z) =1— (1 + p*)z~! + 272,

Step 2. By straightforward calculation Py(z) = 1+ 3+ p227! + 272 and Gy(z) =

(z+V3+p7+271)2

Step 3. Using the Nyquist(2) constraint we find

& (z) = —m(z 23+ 242 (3.43)

It is readily verified that Gy (e7*) > 0, Vw for all values of p. The spectral factor
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of G1(z) turns out to be

W(a +b27h) (3.44)

where

a:\/\/3+p2+\/2—+—p2 and b:—\/\/3+p2—\/2+p2 (3.43)

Step 4. The optimum compaction filter is

H(z) = Py(2)Hi(2)

= m <a + (b4 ay/3+p2)z7" + (a+ b3+ p?)z7 2 + bz_3>
0
(3.46)

The product filter is

1

G(z) = m(—f +324+ )2 +23+ 232+ 32+ pY)2t =278 (3.47)

If -1 < p < 0, then the optimum compaction filter is H(—z). The optimum com-

paction gain for both cases is

2|pl
Gopt(2,3) =1 + —— A48
pt( ) + 3+p2 (3 )

See Table 3.1 for the numerical values of the filter coefficients and the compaction gains
for various values of p. We have found that the analytical method is successful for any
filter order N for AR(1) processes.

Example 2: MA(1) process. Let N =3,7(0)=1, r(1)=p>0,and r(n) =0, n >
1. The sequence 1;(n) is therefore ¢, (0) = 2p, ¥.(1) = p.

2 1
1 2} (3.49)

P=p
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p=0.1

window method

n | analytical method linear programming

0 0.5494144350 0.6940928372 0.5839818982

1 0.7789293967 0.7136056607 0.7658293099

2 0.2470689810 0.0680132766 0.2140666953

3 -0.1742690225 | -0.0661535225 -0.1632362113

compaction gain 1.1153 1.1078 1.1151
p=20.5

window method

n | analytical method linear programming

0 0.5308991349 0.6817974052 0.5693221037

1 0.7963487023 0.7258587819 0.7821354608

2 0.2411149862 0.0663296736 0.2047520302

3 -0.1607433241 -0.0623033026 -0.1490404954

compaction gain 1.5547 1.5283 1.5537
p =079

analytical method

window method

linear programming

W N = ol

0.4938994371
0.8279263239
0.2281902949
-0.1361269173

0.6550553981
0.7510864372
0.0620169861
-0.0540877314

0.5605331011
0.8017336546
0.1699982390
-0.1188544843

compaction gain

1.9222

1.9118

1.9207

Table 3.1: The optimum compaction filter coefficients h(n) and the corresponding
compaction gains for AR(1) process with p = 0.1,0.5, and 0.9. Here filter order is

N = 3 and the number of channels is M = 2.

which is positive definite. Hence applying the algorithm, we find:

Al(Z) =
Py(z) =

1
1—=z74

=1
9 c=5h

P(z)=1—-2"1 4272

1+2cos(m/6)z7t + 272 =14+ +3271 4 272

(z+V3+ 2712

Gl(Z) = \1/‘5

—~—(z=2V3+4 271

3759 2V 4+ V2~ VB - Va2

(3.50)
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and the compaction filter is

H(z) = 3727120/ V3+ V3 + (V3 + V6 — V3 — v2)2!
+(WVB+ V2= V3= vB)2% - V3 — v3:9)

The product filter is

V34 V8 L VB VB (3.52)

Gl2) =-13 3 3 18

If p < 0, then the optimal filter is H(—z). The optimum compaction gain for both

cases is

Gon(2.3) = 1+ |y (3.53)

Example 3: MA(1) process, arbitrary order N. Following the steps of the algo-

rithm, we have

P)=1—z1 422 4 (-1)F~%F (3.54)
If =L is odd, then the zeros of P;(z) are
e W = (2k —1) k=1, (N+1)/4 (3.55)
¥ ]v_+—3’ M 3

Therefore, the roots of Py(z), hence the unit-circle zeros of the optimum compaction

filter H(z), are

T N+1

k=1,..., —— 3.56
N +3’ T g (3.56)

eI Q=7 — (2k —1)

Similarly, if ﬂ;—l is even, the unit-circle zeros of the optimum compaction filter H(z)

are
. N -1

% Q=g 2%k f=1,.. 57

T, e , k=T N3 Ty (3.57)

The rest of the procedure involves spectral factorization and it is not easy to see what
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H,(z) will be in closed form. However, we note that the algorithm successfully finds the
optimum compaction filter for any order N. Table 3.2 shows the compaction filters and
the corresponding compaction gains for various filter orders. The optimum compaction
filter for p < 0 is H(~z). Note that the filters do not depend on the value of p but

only on the sign. The optimum compaction gains, on the other hand, depend on p.

n N=3 N=9 N=15 N=21

0| 0.5502267080 | 0.3472380509 | 0.2619442448 | 0.2135948251

1| 0.7781380728 | 0.7212669193 | 0.6444985282 | 0.5837095513

2 0.2473212614 | 0.5313628729 | 0.6197371546 | 0.6522949264

31 -0.1748825411 | -0.0301418144 | 0.1178983343 | 0.2237822545

4 -0.2357012104 | -0.2498547909 | -0.2185003959

o} 0.0008621669 | -0.1127984531 | -0.1849242462

6 0.1250275869 | 0.1367316336 | 0.1009864921

7 -0.0141611881 | 0.0800586128 | 0.1357184335

8 -0.0608205190 | -0.0879123348 | -0.0574793351

9 0.0292806975 | -0.0512638394 | -0.0996883819

10 0.0616834351 | 0.0386787054

11 0.0272577935 | 0.0732876341

12 -0.0441106561 | -0.0298852666

13 -0.0065141401 | -0.0529392251

14 0.0275486991 | 0.0255464898

15 -0.0111966480 | 0.0362662187

16 -0.0230508869

17 -0.0216340483

18 0.0206081274

19 0.0077883397

20 -0.0156868986

21 0.0057402527
p=20.1 1.1155 1.1244 1.1260 1.1266
comp. p= 0.3 1.3464 1.3732 1.3781 1.3798
gains p = 0.5 1.5774 1.6220 1.6301 1.6330

L

Table 3.2: Compaction filter coefficients and corresponding gains for MA(1) processes,
for M = 2.

Example 4: KLT. If N = 1, then the algorithm yields H(z) = %(1 +2z71ifr(1) > 0
and H(-2z) = (1 —27") if r(1) < 0. Notice that these correspond to the two-channel

transform coder which is known to be fixed. The corresponding compaction gain is
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Gopt(2,1) =1+ L:—(%)M. It is also true that the above filters and the corresponding

compaction gains are optimal for any psd and for any number of channels M. Hence

POl s (3.58)

Gopt(A'I, 1) = 1 + T(O) 3 =

If 7(m) is maximum of all 7(n) where n is not a multiple of M, then one can achieve
the compaction gain of 1 + i%(%ﬂ by using the filter %(1 +2z7™) if r(m) > 0 and the
filter %(1 —z7™)if r(m) < 0.

Case Where 1,(n) is Semidefinite.

Assume that 1,(n) is positive semidefinite. Then there exists an integer P < (N —1)/2
such that {¢;(n), n =0,1,..., P} is positive definite and {¢,(n), n =0,1,.., P + 1}
is only positive semidefinite. Then we can replace (N — 1)/2 in the above arguments
with P and write the objective (3.27) in terms of P + 1 corresponding line-spectral
frequencies. This enables us to determine a product filter of symmetric order 2P +1 <
N. 1If this resulting filter is nonnegative, then we have found the unique minimum
symmetric order product filter that is optimum among the filters of symmetric order
less than or equal to N! The case where ¢,(n) is negative semidefinite is similar; the
details are omitted.

Example 5: Case where ¢,(n) is positive semidefinite. Let N = 3, r(0) = 1 and
r(1) =7(3) = p > 0. Then, ¢;(0) = ¥.(1) = 2p. The associated Toeplitz matrix is

11
P=2 L J (3.59)

which is positive semidefinite and singular. The number P is 0 in this case and the
objective (3.27) is 1 + 2pG1(e?°). By letting G;(e?°) = 1, the product filter G(2) of
symmetric order 1 can easily be seen to be %z + 1+ %z‘l, and it is readily verified
that G(e?) > 0. In fact, this is the KLT solution with the compaction filter H(z) =
%(1 + z71). The corresponding optimum compaction gain is 1 + p. No 3rd order

solution can achieve better gain than this.
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3.3.3 Characterization of Processes for Which the Analytical

Method is Applicable for all V.

For the analytical method to be applicable for all N, the sequence ,(n) has to be
positive or negative definite for all N. The sequence ,(n) is positive definite for all
N, if and only if ¥ (e’*) is not a line-spectrum and ¥,(e’) > 0. Using (3.20), this is

true if and only if S;,(e’) is not a line-spectrum and
See(€7%) > Spe (™)) w € [0,7/2] (3.60)

We will say that the process is ‘low-pass’ if its psd satisfies the above condition. A
nonincreasing psd is an example of this. However, a psd may not be nonincreasing but
may still be low-pass. In the ideal case, the optimum compaction filter for that type
of process is the ideal half-band low-pass filter [DMS92, TG95, Uns93b]. For the case
where ¢;(n) is negative definite for all N, the preceding is replaced with Szz(e7¥) <
Suz(e?™9)), w € [0,7/2]. This type of process will be called ‘high-pass’ since the ideal
half-band high-pass filter is optimum for such a process. Notice that for the algorithm
to be applicable for a particular N, it is only necessary that ¢, (n), n =0,...,(N—1)/2
is positive or negative definite. For a small order N, this corresponds to a much broader

class than that of low-pass and high-pass processes.

Cases Where the Algorithm Fails

Assume that the process is such that the sequence {yz(n), n =0,...,(N —1)/2} is
positive definite and therefore the algorithm is applicable for the filter order N. As-
sume, however, that one of the line-spectral frequencies wy, is close to 7. The algorithm
will require €/("=¢/2) to be a zero of G(z). Hence G(e’*) will have a zero close to /2.
But this may be impossible if the order N is low. To see this, note that G(ed™/?) =1
from the Nyquist(2) property and therefore requiring G(e?*) to have a zero close to
the frequency 7/2 is the same as requiring a narrow transition band for G(e’¥) which

is impossible if the order is not sufficiently high. One can, however, increase the filter
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order to overcome the problem.
Example 6. Let N = 3, and r(n) = coswin, w; € [0,7/2). Hence ¥,(0) =
2 coswy, ¥z(1) = cos 3wy + coswi, and ¥, (n) is positive definite. Using the algorithm,

we find Go(z) = (2 + 2cosw; + z~1)? from which it follows that

- 1

Gi(z) = (z —4cosw; +z71) (3.61)

16 cos3 w,

This has single unit-circle zeros if w, € (7/3,7/2) and therefore G (e’*) is not non-
negative. Hence the algorithm fails if the impulse is within 7/6 neighborhood of 7/2.
We have designed optimum compaction filters for the above autocorrelation sequence
using LP for various values of w;. We have observed that the optimum compaction
filters agree with the above analytical solution if wy € (0,7/3]. For the complementary
case of wy € (7/3,7/2) where the analytical method fails for N = 3, LP yields the
solution G(z) = —32°+1— 1273, regardless of the ezact value of w;. The factors Go(2)

and G1(z) of G(z) are

Go(z) = (2 +2cos(n/3) +271)° and Cu(2) = 16 COS‘%’(W/3)

(z —4cos(m/3) +z7h)

(3.62)
This is the same as the previous solution except that w; in the previous solution is
replaced with a constant value equal to 7/3.

As another example, let us fix w; = 27/5 > 7/3, and find the optimal FIR com-
paction filter of order 5. The corresponding product filter is G(z) = %z5 + 1+ %z“f’
and the compaction gain is G,,:(2,5) = 2 which is the largest possible gain for A = 2!
Since the process is line-spectral, this is not surprising. The important point here is
that while the algorithm is not successful for the filter order 3, it is successful for a
higher order 5.

Example 7: Case where the process is multiband. Finally we will consider an
example in which the input is not low-pass or high-pass but rather it is of multiband
nature. Let r(0) = 1,7(1) = ,7(2) = 0, and r(3) = —1. The sequence ,(n) is

positive definite for N = 3 so that the algorithm is applicable. There is more than
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one way to extrapolate this sequence and find the corresponding psd. For example,
one can consider MA(3), AR(3), or line-spectra(4). In all three cases, we have verified
that the psd is neither low-pass nor high-pass. Rather it is of multi-band nature.
Applying the algorithm steps we have Go(z) = (z + % + 2712 from which it follows
that G1(z) = —v/2(z — v/2 + z71). This has single unit-circle zeros! Hence G1(e7) is
not nonnegative and therefore G(e/*) = Gy(e/*)G, (/) is not nonnegative either. The

algorithm halts because G, (e/*) cannot be spectrally factorized.

3.4 Window Method

In this section we will describe a new method to design FIR compaction filters. The
method is applicable for arbitrary filter order N, arbitrary number of channels Af,
and for any given psd (including complex and multiband spectra). The technique is
quite simple while the resulting compaction gains are very close to the optimum ones
especially for high filter orders.

A common practice in filter design is to approximate ideal filter responses by win-
dowing their impulse responses. Consider the ideal compaction filter design: for each

w € [0,21/M), let Sy (e’“+i0%)) be the maximum of the set

{Suu(€1@HED) i =0,... M ~1} (3.63)
Then
Hy(e/@t03)) = /A and Hi(@“ T =0 for iy (3.64)

Let h;i(n) be the impulse response of H;(e’*), and consider
h(n) = w(n)h;(n) (3.65)

for a given finite length window w(n). Let H(e?*) be the FT of h(n). Then G(e*) =
|H (e’%)[? is no longer Nyquist(M). Instead of windowing hi(n), let us try to window

the coefficients of the product filter: g(n) = w(n)g:(n). Here g;(n) is the impulse
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response of G;(e’¥) = |H;(e’)|>. Then G(e?*) is Nyquist(M) but it may no longer -
be nonnegative. The nonnegativity can also be assured by constraining the FT of
w(n) to be nonnegative. A compaction filter can then be successfully obtained by
spectrally factorizing G(e’“). This can be considered as the approximation of the ideal
compaction filter response.

In this section we extend this idea to design compaction filters that perform better
than the above ad hoc windowing of ideal compaction filters. We will replace g;(n)
with a periodic sequence fr(n) which will be determined by applying the ideal design
algorithm at L uniform DFT frequencies. If L = oo, then we have f;(n) = g;(n), and
the above ad hoc method results as a special case. It turns out that the experimentally

optimum value of L for the best compaction gain is L = A/[2N/M] (see Sec. 3.4.2).

3.4.1 Derivation of the Window Method

To formalize the above ideas, let us write the product filter coefficients g(n) in the form

g(n) = w(n)fr(n), (3.66)

where w(n) has the same length as g(n), namely 2N + 1 and fr(n) is a periodic
sequence with period L = KM > 2N for some K (see Fig. 3.4). Let W(e/) be

f(n) 1IN w(n)
| 1,{’1”??‘” Ll
0 In 1 I L

Fig. 3.4: Decomposition of g(n) as w(n)f.(n) where W(e/*) > 0 and Fy (k) > 0.

the FT of w(n) and F7(k) be the Fourier series coefficients (FSC) of f;(n), that is
Fr(k) = X52g fr(n)WEr, Wi = e 727/L. The first period of Fy(k) is just the DFT of

the first period of f;(n). We have the following observation:
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Lemma 1. Consider (3.66). If (i) w(0) = 1, (ii) W(e/*) > 0, (ili) Fr(k) > 0, (iv)
fr(n) is Nyquist(M), then G(z) is the product filter of a valid compaction filter. That
is, g(Mn) = §(n) and G(e¥) > 0.

Proof. It is readily verified that G(e?*) = + S£=5 Fi(k)W (e~ T¥). Since Fp(k) > 0
and W(e/*) > 0, it follows that G(e/*) > 0. If fL(n) is Nyquist(M) then so is g(n)
because g(Mn) = w(Mn)fL(Mn) = é(n). |

Assume the conditions of the lemma hold so that G(z) is the product filter of a valid
compaction filter. If w(n) and L is fixed, what is the best f;(n) that maximizes the
compaction gain? To answer the question first note:
Lemma 2. A periodic sequence fr(n) with period L = KM is Nyquist(M), that is,
fo(Mn) = 6k (n), if and only if its FSC Fr (k) satisfy the following:
M-1
S Fu(k+iK)=M, k=0,... K-1 (3.67)
1=0
Proof. Let us find the FSC Yg(k), of the decimated sequence yx(n) = fr(AMn):
(k) = KLY fL(Mn)WEr. This can be written as

] M-1K- Kol
=23 Z L+ iK)— Z i (3.68)

i=0 j=0 K5
Using + S X' Wi = §x(m) we have Y (k) = & M5! Fr(k+iK). The FSC of
0x(n) are all 1. Hence f (Mn) = 6x(n) if and only if L S M 1 Fy(k+4K) =1, Vk =
0,..., K —1. [ |

To obtain the best fz(n), let #(n) = w*(n)r(n) and let S, (k) be the FSC of its periodic
expansion 71(n). For simplicity assume that L > 2N. The objective (3.10) becomes

1Ll

o) = 2::0 fr(n)ss Z Fr(k (3.69)

Both Fp(k) and S (k) are real. Now to incorporate the Nyquist(}M) constraint, we
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write the preceding as

1 K=1M-
- Z Z (k +iK)Sp(k +iK) (3.70)
k=0 i=0

h

For a fixed k, let S, (k + i0K) be the maximum of the set
{S,(k+iK), i=0,...,M—1} (3.71)

Then by (3.67), and noting that Fy (k) > 0, the objective (3.70) is maximized if we
assign

Fu(k+igK)=M, and Frlk+4K)=0,1=1,...,M—1. (3.72)

Repeating the process for each k£ = 0,..., K — 1, the FSC of the best f.(n) is deter-

mined. The procedure is illustrated in Fig. 3.5. The sequence fr(n) is just the inverse

o I.. ﬂT ZLTT...

012 L=3K
M

w1 ]
012 * 2K L=3K

Fig. 3.5: The procedure to find Fy(k): S.(0) is maximum among {S. (1K)}, hence
Fr(0) = M, FL(IK) = 0,1 # 0. S,(1+ K) is maximum among {S;(1 +iK)}, hence
Fr(l+K)=M, FL(1+ 1K) =0,l# 1, and so on.

DFT of Fy(k):
1 L-1

ZFL YWk (3.73)

Summary of the Window Algorithm

Assume a window w(n) of the same length as g(n) with nonnegative FT has been

chosen. Let L = KM > 2N. Then the algorithm steps are
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Step 1. Calculate Sy (k), the L-point DFT of the conjugate-symmetric sequence 7(n) =

w*(n)r(n) (same as the FSC of the periodical expansion 71(n) of 7#(n)).

Step 2. For each £ = 0,..., K — 1, determine the index ¢y for which 5’,;(/6 + oK) is
maximum, and assign Fp(k+ioK) =M and Fr(k+¢4K)=0,1=1,...,M —1.

Step 3. Calculate fr(n) by the inverse DFT. We need only to determine fr(n) for
n=1,...,N.

Step 4. Form the product filter g(n) = w(n)fr(n) and spectrally factorize it to find
H(z).

Real Case. If the input is real, the above algorithm can be modified to produce
real-coefficient compaction filters. Consider the set {S.(k + iK), i=0,...,M -1}
for each k¥ = 0,..., K — 1. Since SL(k) = S‘L(L — k) if the process is real, this set
is equivalent to {Sp(L —k —iK) = Sy (K —k+ KM —1—-14)), i =0,...,M —1}.
Hence in the comparison, we need to consider only £ =0,..., P where P = % if K is
even, and P = 52;1 if it is odd. Let S’L(k + igK) be the maximum of this set for each
k =0,...,P. We need to be careful in the assignments. The symmetric frequencies
may end up in the same set and we cannot assign different values to them. There are

two cases to consider:
i) the index L — k — ipK is among the set {k +iK, i =0,..., M — 1},
ii) it is not.

The first case happens if and only if 2k mod K = 0. This happens if k = 0 or k = 12—<

We assign Fp(k+ioK) = FL(L —k—igK) = 2 if b+ iy K # Loand Fr(k+iyK) = M
if k4K = % In the second case, we assign Fp(k + oK) = F (L —k — oK) = M if
k+ioK #0and FL(k+iK) = M if k4K = 0. In either case, we set the remaining
values in the set {F1(k + M)} to zeros. This will maximize the objective (3.70), and

fr(n) calculated by the inverse DFT is the best sequence and it is real.
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Summary of the Window Algorithm for the Real Case

Assume a real symmetric window w(n) of order NV, with nonnegative F'T is given. Let
L = KM > 2N as before. Let P be as explained above. Then Step 2 of the previous
algorithm should be replaced by the following two steps:

Step 2.1. For each k = 0,..., P, determine the index iy for which S’L(k + oK) is

maximum.

Step 2.2. If k + oK =0 or k + it K = %, then set Fr(k + igK) = M, elseif £ =0
or k = _21{, then set F(k +i,K) = F(L — k — {(K) = %, else, set F(k+ oK) =
F(L — k—1iyK) = M. Set the remaining to zeros.

Optimization of the Window

The algorithm produces very good compaction gains especially when the filter order is
high as we shall demonstrate shortly. However, one can get better compaction gains
by optimizing the window w(n). Consider the representation (3.66) again and let w(n)
and fr(n) satisfy the conditions of Lemma 1. If we fix f;(n), what is the best window

w(n)? The objective (3.10) can be written as

LN . o AW
13: Sez(67°)W (%) — (3.74)

(o)
- 2T

where W (e/*) is the FT of w(n) and Sy, (e7%) is the FT of f*(n)r(n) where f(n) is one
period of fz(n) centered at n = 0. Let W (e?¥) = |A(e/*)|?, where A(z) = SN_ a(n)z™"
is the spectral factor of W(z). The only constraint on A(e’*) is that it has to have

unit energy in view of

w(0) = / Al 2L g (3.75)

-7 2w N
Let P be the (N +1) x (N+1) Hermitian Toeplitz matrix corresponding to the sequence
N
{fz(n)r(n)}o . Then, by Rayleigh’s principle [HJ85], (3.74) is maximized if A(z) is the

maximal eigenfilter of P. The corresponding compaction gain is

2 (3.76)

x

Amas {1 (n)r(n)}

0



86

Corollary. A lower bound on the compaction gain. Let f.(n) be any Nyquist(1/)

sequence with nonnegative FSC. Assume L > N. Then,

N

Gopt(M, N) 2 Amaz{ f7()r(n) } (3.77)

To see this note that g(n) = w(n)fr(n) achieves that bound by choosing w(n) as the
optimum window for the sequence fi(n). If we replace fr(n) by a positive definite
Nyquist(M) sequence f(n) of order N, the inequality continues to be valid because
w(n)f(n) is still a product filter of a valid compaction filter. To see this, note that
the sequence f(n) can be extended to an infinite sequence (e.g., using autoregressive
extrapolation) such that its FT is nonnegative. Hence the product w(n)f(n) has
nonnegative FT. The Nyquist(M) property of the product follows from that of f(n).
We have described how to optimize w(n) given fi(n), and vice versa. It is reasonable
to expect that one can iterate and obtain better compaction gains at each stage. We
have observed that this is not the case. We started with a triangular window and
found that fr(n) did not change after the re-optimization of the window. Notice that
the use of an initial window is not necessary if one is willing to optimize the window
after finding fr(n). However, in most of the design examples we considered, using an
initial window with nonnegative FT (in particular, the triangular window) and then
re-optimizing the window resulted in better compaction gains. A MATLAB program
that implements the window method can be found at our webpage [htt]. Here is a
simple example to illustrate how the window method works:
Example 8: MA(1) process. Let N =5, M =4, r(0) = 1, r(1) = p, and
r(n) =0, n > 1. Assume the process is real so that r(—n) = r(n). Let the window be

triangular, i.e.,

1-B n=0,£1, ..., 45
w(n) = (3.78)
0, elsewhere.
The FSC Sy (k) of #(n) in step 1 are
. oy 5) 2n
Su(k) = S(e)| . =1+=Zpcos=—k, k=0,...,.L-1. (3.79)
w=Tk 3 L
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Now, assume L = 12 > 10, so that K = 3 and P = 1. So.we have the followihg sets to

consider in step 2:

which are evaluated below respectively:

5 5 5v/3 5 5v/3 5
p1,1-2p 1 1+ 2 p1—-Sp1—"2L"5 1+ Zp). 3.81
{1+3nL1=-2p1} {1+ —=p1-cp, 5t gr) (3.81)

First assume p > 0. The maximum of the first set is 57(0) and the maximum of the

second set is S (1). Hence applying step 3 of the algorithm, we have
{Fu(k), k=0,...,L —1} = {4,4,0,0,0,0,0,0,0,0,0, 4} (3.82)

Taking the inverse DFT of F7(k), we calculate in step 4:

1+v3 21 1-+3
=0,...,N} ={1 - = .
{fL(n)7n s ) } { 3 3 737350’ 3 } (3 83)
Hence the product filter g(n) = w(n)f,(n) has been found, and
1—-+3 1 4 5(1 +/3)
G — 5 -3 .2
(2) 1(8 z\/j; 57 +92 +———18 z—l\-/l-
51+v3) , 4, 1, 1-V3
+——18 z +9z +62 + 13 z
(3.84)

Next consider the case p < 0. Referring to (3.81), S,(6) in the first set and Sp(7) in

the second set is maximum. Hence,

{Fr(k), k=0,...,L —1} ={0,0,0,0,0,4,4,4,0,0,0,0} (3.85)

which is equal to Fy(k — 6) where Fy (k) is the previous solution. Hence f,(n) =
(—1)"fL(n) and therefore G(2) = G(—z). By spectrally factorizing the product filter,
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an optimum compaction filter is obtained. The compaction gain is

5(1
1+ iﬁ;—‘@m ~ 1+ 1.5178|p| (3.86)

Let us find the improvement we can get by optimizing the window when we fix f;(n).
Since 02 = r(0) = 1, the compaction gain is the maximum eigenvalue of the 6 x 6 sym-
metric Toeplitz matrix with the first row [1 fL(1) p 0 0 0 0] which is 1+ 1.8019f.(1)]p|.
Using fL(1) given in (3.83), the improved compaction gain is 1 + 1.6410|p|. With
this optimum window fixed, one can verify that f;(n) in (3.83) is still the optimum

sequence.

3.4.2 Choice of the Periodicity L

The window method will produce compaction filters as long as L is a multiple of A/ and
is greater than N. This choice of L will ensure that fz(n) is Nyquist(M). The smallest
such period is L = M[N/M] and the largest is L = co. The choice L = M[N/A[] leads
to an additional symmetry in f;(n) and according to our experience, the corresponding
compaction gains are not good. If we use L = oo, then we get the ideal solution for
fr(n): fr(n) = gi(n). The corresponding compaction filter obtained after windowing is
not optimal either. If L is chosen to be the smallest multiple of A such that L > 2N,
then we obtain very good compaction gains. This choice can be compactly written as
L=M[2N/M]

If M = 2, then this choice reduces to L = 2N. In Example 8, we increased L from 12
to 16 and found that the compaction gain decreased! When we used the ideal filter for
fr(n) which corresponds to L = oo, the compaction gain was better than that of the
case L = 16 but worse than that of the case L = 12.

Example 9: Dependence on L. We have designed compaction filters using the win-
dow method for an AR(5) process whose psd is shown in Fig. 3.6. We have chosen this
psd because it is multiband, and the capturing of the signal energy can be illustrated
clearly. The number of channels is M = 2. We considered the filter orders N = 1,3, 5,

and N = 31. For each order N, we increased L from 2N to 100 in steps of 2. The
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AR(5) process, M = 2, psd and optimum filter of order 65

2 : - . . ' e~ L DR
K \C \: : ‘ ; o :
— - Ny . : PP - : :
0 b [l . . . = . =Ny [ — . —

10k l‘ ........ ; S L L
b mmputpsd )R
o 8 ‘-“ — LP solution - i
é Bl ,‘ ........................ — ... .. ,Jl ..............................
g Foy 5 l
5 4F frrm e PR SO D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
frequency, 1 corresponds to pi

Fig. 3.6: The psd of an AR(5) process, and the magnitude square of an optimal com-
paction filter for N = 65 and M = 2, designed by LP. The parameter L is 512 and a

triangular window is used.

resulting compaction gains are plotted in Fig. 3.7. From the plot, we see that the best

2_ ...... ....... . ......... : R
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L =2N:2:100

Fig. 3.7: Compaction gain vs. periodicity L.

compaction gain is for L = 2N.

3.5 Linear Programming Method and Multistage

Designs

The use of linear programming (LP) method in compaction filter design was proposed

by Moulin et al. [MAKP97]. We briefly review the method and propose some im-

provements. Assume that the input process z(n) is real. The output variance is
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02 =7(0) +2X,_; g(n)r(n). Let gq and rq be the vectors formed by deleting every
Mth coefficients of g(n) and r(n) for n = 1,...N. Then the objective can be writ-

ten as o2 = 7(0) + 2rq” gq. This incorporates the Nyquist(A{) condition but not the

nonnegativity constraint in (3.9). Let
ca(w) £ [cos(w) cos(2w) ... cos((M — 1)w) cos((M + 1)w) ... cos(Nw)]T (3.87)
Then G(e?*) = 1 + 2cq”(w)gq. Hence the problem is equivalent to:
maximize rq”gq subject to cq”(w)gq > —0.5, Yw € [0, 7] (3.88)

This type of problem is typically classified as semi-infinite linear programming (SIP)
[MAKP97] because there are infinitely many inequality constraints on finitely many
variables. By discretizing the frequency, one reduces this to a well known standard LP
problem.

Drawbacks of the Technique. No matter how dense the frequency grid is, LP
guarantees the nonnegativity of G(e*) only on this grid. Hence one has to modify the
solution to have G(e’*) > 0, Vw. One can numerically determine the unit-circle zeros
of G(e’¥) and merge the pairs of zeros that are close to each other. Yet another way
is to “lift” G(e’¥) by increasing g(0) relative to other coefficients. Since 9(0) has to be
1, in effect we scale g(n) for n # 0 by a constant ¢ < 1. This can also be considered
as windowing with w(n) = ¢,n # 0, and w(0) = 1. In the next section we propose
another windowing technique to modify G(e’¥). The advantage of this is to avoid
having to locate any zeros or the minimum of G(e?*). The nonnegativity of G(e/) is
guaranteed by that of W (e’*) as in Sec. 3.4.1. If the filter order N and the number
of discrete frequencies L are small, using an optimum window performs better than
the other techniques. In principal, as L — oo, the LP solution approaches the optimal
solution. However, as stated in [MAKP97], there will be numerical problems if L is
too high. Another drawback of LP is that the complexity is prohibitively high for high

filter orders. We should note here that the window method that we proposed in Sec.
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3.4 does not have this problem. The window method is very fast even with very high

filter orders and the resulting filters are very close to the optimal ones.

3.5.1 Windowing of the Linear Programming Solution

Let L uniform frequencies {wy = %’rk, k=0,...,L—1} be used in LP and let g, (n) be
the periodical expansion of the resulting product filter. Assume that L > 2N. Linear
programming assures that G(e’*) is nonnegative at the frequencies {w;}. Hence the

FSC G (k) of gr(n) are nonnegative. Now consider the product

9(n) = w(n)gr(n) (3.89)

where w(n) is a symmetric window of order K < L—N (length 2K +1) with nonnegative
FT (see Fig. 3.8), then from Sec. 3.4.1 we conclude that G(e’) > 0, Vw. The

1
g.(n) ,/’/ \\\ w(n)
I ™l
0 IN K L-NI L

Fig. 3.8: Windowing of the linear programming solution.

Nyquist(M) property of g(n) is assured by that of g (n). In contrast to the window
method, here we can have K > N. This is because the LP solution has already
the desired order. For maximum compaction gain, the symmetric order of w(n) is
chosen to be maximum, namely K = L — N — 1. Note that when L = 2N, we have
gr(N) = 2g(N). One can use a fixed window like a triangular window as depicted in
the figure and get a satisfactory compaction gain. However, one can always optimize
the window as in Sec. 3.4.1. If L is very large, optimization should be avoided as the
performance loss becomes negligible. The loss can be quantified as follows: Assuming

o7 =1, when a fixed window is used the compaction gain is

Gy, =1+2g’t (3.90)
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where g and © are the vectors formed by the sequences gr(n) and w(n)r(n), n =
0,...,N. If, for example, a triangular window of symmetric order K = L — N — 1 is
used, we have w(n) = 1— 2%, n =0,..., N. When the optimum window is used, the

compaction gain is

N

Go = /\maz{gL(n)r(n)} (391)

0

Hence the loss is
]\Y

Go = Goy = Anae{gr(n)r(n)} —2g"¢ -1 (3.92)
As L — oo, w(n)r(n) — r(n) and gz(n) — gope(n). Hence Gy, — Ggp. Since
Gy < Gy < Gopy, we see that G, = Gope as well. Hence G, — G, — 0 as L — .
Example 10. Let the input psd be as in Fig. 3.6 and let N = 65 and M = 2. In
the same figure, we plot the magnitude square |H(e7*)|* of the compaction filter H(z)
designed by LP. The number of frequencies used in the design process was L = 512.
We have used triangular window of symmetric order K = L — N — 1 = 446 and found
that the resulting compaction gain is G, ~ 1.8698. If we optimize the window the
compaction gain becomes G, ~ 1.8744. Hence the loss is G, — G, ~ 0.0046. One can

verify that the compaction gain of the ideal (L = oc) filter is Gjgeq ~ 1.8754.

3.5.2 Multistage FIR (IFIR) Compaction Filter Design

Let M = MyM; and consider Fig. 3.9(a). This can be redrawn as in Fig. 3.9(b).
The equivalent filter is H(z) = Ho(z)H;(2*°). We will first impose the Nyquist(1/)
condition only on |H(e/*)[2. Later we will impose Nyquist conditions on individual
filters that guarantee the Nyquist(M) property of |H(e?)[2. We will describe the
details of how to find H;(z) for a fixed Hy(z) and vice versa, in an iterative manner.

Let Go(e’¥) = |Ho(e™)?, Gi(e?¥) = |Hy(e™)]?, and G(e/) = |H(e))? with
impulse responses go(n), gi1(n), and g(n) respectively. Denote the orders of Hy(z),
Hi(z), and H(z) by Ny, Ny, and N respectively. Hence we have N = MyN, + Ng.
Define go = [90(0) go(1) ... go(Mo)]", &1 = [5:1(0) g1(1) ... g1(M)]7, and g =
[9(0) 9(1) ... g(N)]".
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z(n) — Hy(2) =¥ Myl— H,(2) |—=ly M;—> y(n)
(a)

z(n) —=| Hy(z) {—e H,(z"0) |—ly Mf—> y(n)
M= MOM1

(b)

Fig. 3.9: Multistage compaction filter design. (a) Basic configuration, (b) Equivalent
system.

Optimization of H,(z) for a given Hy(z). We have G(z) = Go(2)G1(2*°). Let G,
be the (2N +1) x (2MyN; +1) convolution matrix formed by go(n). Taking into account
the symmetries and the fact that G;(z*°) has nonzero components only for multiples of
My, we can write g = Aggy, where Ag is an (N +1) x (N; + 1) matrix that is obtained
from Gg. Now, the Nyquist(M) constraint requires that if we decimate g by M we
should get eg = [1 0 ... 0]". Let By denote the matrix that is obtained by taking
every Mth row of Ag. Then we should have Bog; = €. To force the nonnegativity

constraint on G;(e’*), let
co(w) 2 [1 2cos(w) 2cos(2w) ... 2cos(Nyw)]” (3.93)
Then the constraint G;(e’*) > 0 becomes
co’ (w)gr > 0, Yw € [0,7] (3.94)

Ifr=[r(0) 2r(1) ... 2r(N)]7, the objective is to maximize r’g = r” Aog;. Hence we
have reduced the problem to the following:
maximize ro’ gy,

subject to Bog1 = eg, and ¢o” (w)gy > 0, Yw € [0, 7],

where ro = Ag’r. Hence a standard linear programming algorithm can be applied,
once a set of frequencies is chosen for the inequality constraint.

Optimization of Hy(z) for a given H,(z). Similarly, one can reduce the problem of
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finding the best Hy(z) for a given H;(z) to the following linear programming problem:
maximize rngO,

subject to B1go = €, and ¢;7 (w)ge > 0, Yw € [0, 7],

where

c1(w) = [1 2cos(w) 2cos(2w) ... 2cos(Now)]* (3.93)

and r; = A;Tr. The (N + 1) x (Ny + 1) matrix A, is obtained from the (2N +1) x
(2Np + 1) convolution matrix formed by g;(n) by taking the symmetries into account
and the matrix B, is obtained by taking every AMth row of A;.

One can iterate between the above two optimization steps until there is no signifi-
cant change in the compaction gain. The initial choice of go(n) can significantly affect
the resulting compaction gain. According to our design experience, if go(n) is chosen
to be a triangular sequence, the compaction gain at the end of the iteration is very
good. The filters go(n) and g;(n) which result from the iteration should spectrally be
factorized to identify Hy(z) and H,(z). This step will be successful only if the solutions
are such that Go(e?*) > 0 and G1(e?*) > 0 for all w. If this is not the case, we can
force it by use of windowing on go(n) and g;(n) as described in Sec. 3.3.1 or by the
“lifting” technique. If this is done then the product filter Gy(2)G,(2*°) will not be
exactly Nyquist(}). In the next subsection we show how to overcome this problem.
Example 11. Let us design IFIR compaction filters for the pair (M, N) = (36, 65),
and for the input process whose psd was given in Fig. 3.6. Let My = 9 and M, = 4,
and let Ny = 11 so that N; = 6. The number of frequencies used in the designs
is L = 1024. Starting with a triangular sequence for go(n), the algorithm converges
in a few steps. We windowed the resulting solutions go(n) and g,(n) with triangular
windows of symmetric orders L — Ny —1 and L — N; — 1 respectively. The final product
filter was not exactly Nyquist(Af) because it was found that g(36) ~ —0.0018 # 0. The
final compaction gain was 5.1444. If we design a compaction filter of order 18 directly
(i.e., not using IFIR technique), the compaction gain is 4.4225. This corresponds
to a compaction filter with the same number of active multipliers, namely 19. If we

design a compaction filter of order 65 directly (66 active multipliers), then the resulting
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compaction gain is 7.2337.

A Particular IFIR Configuration

In Fig. 3.9, if Go(z) is Nyquist(My) and G1(z) is Nyquist(M), it can be verified that
G(z) given by Go(z)Gi(2M°) is Nyquist(M). Now, let us fix Hy(z) to be a valid
compaction filter for the pair (Ny, My). Referring to Fig. 3.10(a), the best H,(z) is
the optimum compaction filter for (N, M;), and for the input zo(n) which has the
psd Spzo(2) = (Go(z)SM(z)) " Similarly, if H;(z) is a fixed compaction filter for

z(n) —e Hy(2) —>+ M, Zo(1) > H (2) ——>+M1 = y(n)

(n) —» H (") 5 L H ) e Mo T 9()

(b)
Fig. 3.10: Special IFIR design configuration.

the pair (i, M), then we can redraw the configuration as in Fig. 3.10(b). The best
Hy(z) is the optimum compaction filter for (Np, Mp), and for the input z;(n) which
has the psd Sz,z,(2) = G1(2°)S;2(2). One can design the compaction filters Hy(z)
and H(z) iteratively using any of the known techniques. Hence, one can use the linear
programming technique as well as any other technique like the noniterative methods
to be mentioned in the next section.

Example 12. Let the setup be the same as in the previous example. We have
designed the compaction filters Hy(z) and Hy(z) iteratively using the standard linear
programming procedure as in Example 10. We have started with Hy(z) = 1. The
first compaction filter Hy(z) is therefore the optimal compaction filter for the pair
(Mo, No) = (9,11) for the original autocorrelation sequence. We have windowed the
final product filters as we did in Example 10 to guarantee the nonnegativity. The

resulting overall compaction gain is 4.9432. This is slightly smaller than the overall
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compaction gain 5.1444 in Example 10. However, the resulting overall filter here is

exactly Nyquist(M) unlike the case of Example 11.

3.6 Comparison of Methods

3.6.1 Connection Between the Linear Programming Method

and the Window Method

In both the LP and window methods, we use windows to assure the nonnegativity
of G(e/¥). Consider the equations (3.89) and (3.66). When L is a multiple of M, a
periodic sequence gz(n) in the linear programming method, and a periodic sequence
fr(n) in the window method are found such that they are Nyquist(A/) and their FSC
are all nonnegative. For L > 2N, the two problems are not the same because g, (n)
is order constrained while fr(n) is not. If, however, L = 2N, then the two problems
are exactly the same! If windowing is done in the same way in both methods, then we
see that the resulting compaction gains should be the same. Hence, one can view the
window method as an efficient and noniterative technique to solve an LP problem when
L =2N. If L is increased, we saw that the window method does not necessarily vield
better gains whereas this is the case for the LP method provided the window order is
increased as well. However, optimization of the window in LP becomes costly as the
order increases. If one uses a fixed triangular window (with highest possible order) in
LP, and if the windows are optimized in the window method, then window method is
very close and sometimes superior to LP as we demonstrate in the following example.
Example 13: Comparison of linear programming and window methods. Let
the input psd be as in Fig. 3.6. In Fig. 3.11(a) the compaction gains of both the LP
and the window method versus the filter order are plotted for M = 2. The number of
frequencies used in LP is L = 512 while the periodicity used in the window method
is L = 2N. The windows used in LP are triangular windows with symmetric order
L — N —1. In the window method, the autocorrelation sequence is first windowed by

a triangular window of symmetric order N to find fz(n) and then the window is re-



97

1.9L _______________
8
1.8} 1
c ' e/l
. — I —_—
8171, 86l
§ | . on gl S
E 1.6} -—lgeal compactloq gain =5
g I — linear programming g
Eqysl! —window method £ 4 ~KLT gain for M > N
© . ©3 — linear programming
—window method
1.4
2
1.3 1
20 40 60 20 40 60
filter order N number of channels M

Fig. 3.11: Comparison of the window and linear programming methods. The input
power spectrum is as shown in Fig. 3.6. (a) Compaction gain versus N, for M = 2, (b)
Compaction gain versus M, for N = 65.

optimized. From the figure we observe that if the order is high, one has slightly better
compaction gains using the window method. This implies that, if one optimizes the
window, there is no need to use large number of frequencies in LP! More importantly,
there is no need to use LP for high filter orders. However, it should be emphasized that
if the windows are optimized in LP, one can get slightly better compaction gains than
the window method. In Fig. 3.11(b), we show the plots of the compaction gains of the
two methods for various values of M for a fixed filter order of 65. We observe that the
window method performs very close to LP especially for low values of M. We show the
upper bounds on compaction gains in both plots. The upper bound in the first plot
is achieved by an ideal compaction filter and that in the second plot is achieved by a
maximal eigenfilter as discussed in Sec. 3.3.1.

Example 14. Let the input be AR(1) as in Example 1. For N = 3 and M = 2, we
have designed compaction filters using the window and LP methods. We present in
Table 3.1 the resulting filter coefficients and the corresponding compaction gains for
p =0.1,0.5, and 0.9. Also presented in the same table are the analytically optimum
coefficients (3.46), and the corresponding compaction gains (3.48). We see in this case

that the compaction gain of the window method is not too far from the optimal one and
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slightly worse than that of LP even for such a small order. The discrepancy between

the window and LP compaction gains is maximum when p = 0.5.

3.7 Concluding Remarks

We have presented new techniques for the design of optimum FIR compaction filters.
First we have proposed an analytical method in the two-channel case. The technique is
applicable for a rather restricted but practically important class of signals. The method
involves Levinson recursion and two spectral factorizations of half the filter order. As
examples we have produced analytical expressions for the compaction filter coefficients
for AR(1) and MA(1) processes. Next we have proposed a method called the window
method. It is applicable for any given spectra and for any given number of channels.
It is very efficient since it is noniterative and involves only comparison of some DFT
coefficients and windowing. We have given its relation to the LP method. As the filter
order becomes higher, the computational complexity of the LP method grows rapidly.
The window method on the other hand is very fast even when the filter orders are very
high. Furthermore, the suboptimality of the window method diminishes as the filter
order increases. Finally we have presented multistage design techniques that enable
the design of a compaction filter with a given order in multiple stages each involving
the design of a smaller order compaction filter.

We believe that the methods we presented in this chapter can be incorporated in
the design of optimal FIR orthonormal uniform and nonuniform subband coders. In
the two channel case, the optimum compaction filter already determines the optimum
filter bank. Hence the algorithms in this chapter can readily be used in applications
like wavelet-based image coding. In particular, it would be interesting to investigate
the performance of our filters in zero-tree coding and wavelet-package coding. For
such applications, we expect that the analytical method of Sec. 3.3.2 will be quite
useful. In the M —channel case, we mentioned one method [MM98] that efficiently
finds the rest of the filter bank optimally if the first filter is given. In speech and

audio coding applications, A/ —channel uniform filter banks are commonly used and
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the filters have high orders. We expect that the window method of Sec. 3.4 will be
very useful for such applications. Needless to say, there are many other important
applications of compaction filters, some of which are mentioned in the last paragraph
of the introduction of the chapter. Hence our design algorithms can directly be used
in such applications as well. All the algorithms described in this chapter can be found
at our webpage [htt].
APPENDIX

Proof of nonnegativity. We will show that G(e’) obtained by the procedure in
Sec. 3.3 is necessarily nonnegative in the region [7/2,7]. The Nyquist(2) property of

G(e?*) implies G'(e/%) = G'(e’("=+)). We therefore have

G' (/%) = G */D) =0, k=0,...,(N—3)/4 (3.96)
Now, by the mean value theorem in calculus, we also have

G'(e“/?) = G/ /D) =0, k=0,...,(N—-7)/4 (3.97)

for some @y € (wg,wi+1). Notice that since wy’s are all distinct and lie in the open
region (0,7), all of the above zeros are distinct. The total number of such zeros is
therefore N — 1. Since G(e/*) is a cosine polynomial of order N, G’(¢7%) is a sine

polynomial of order N and therefore it can be written in the form
G'(e’¥) = sinw T(cosw) (3.98)

where T'(z) is a polynomial of order N — 1. Excluding the zeros at 0 and 7, the total
number of zeros G'(e/*) can have in [0, 7] is N—1. Hence G'(e) cannot have any other
zero on the unit-circle. If G(z) has a zero at 7 — w, /2 with multiplicity greater than 2,
then G'(e’%) has at least double zero at that frequency implying that the total number
of its zeros is more than N — 1 which is a contradiction. If G(z) has a single zero in
the region (7/2,7) which is different from all wy’s, then, by applying the mean value

theorem once more, G'(¢’“) has to have another zero which is again a contradiction.
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Hence we have proved that G(e’*) has double zeros at
m—wi/2, k=0,...,(N—3)/4 (3.99)

and that it does not have any other unit-circle zeros in [r/2,7]. This in particular

implies G(e?*) > 0 for w € [7/2,7]. The proof for the case of even ~=L s similar; the

details are omitted. m
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Chapter 4

Lattice Quantization and Vector Dithering

Lattice vector quantizers have recently become attractive because they are simple to
implement and, in most cases, they constitute good alternatives to the computationally
more complex vector quantization algorithms like the LBG and ECVQ [GG92, CLG89].
The geometric regularity of lattices allow very fast quantization algorithms, and there
are already efficient algorithms for several well-known lattice structures [CS82, SGR84,
GS88, JG93, JGI5).

Dithering was first applied by Roberts [Rob62] to image coding. It was seen that
by adding an independent random variable called dither before the quantization and
subtracting after it, the perceptual quality of the image improves substantially. After
that pioneering idea, there has been considerable work on the theory and applications
of dithering. Dithered quantizers were theoretically analyzed by Schuchman [SchG4]
using the so called characteristic function method which uses the Fourier transform
of the input probability density function (pdf). An analysis of the undithered uni-
form quantization was provided by Sripad and Snyder [SS77], using a similar style.
More recently, Lipshitz et al. [LWV92] published an excellent survey on quantization
and dither. Gray and Stockham [GS93] gave new insightful proofs for the cases of
subtractive and nonsubtractive dithering.

In this chapter we consider the idea of dithering in lattice quantization. The idea has
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already been introduced by Ziv [Ziv85] as a means of universal quantization. Interesting
results on the rate distortion efficiency of dithered lattice quantizers have already been
obtained by Zamir and Feder [ZF92, ZF94, ZF95, ZF96], and by Linder and Zeger
[LZ94]. In this chapter our major concern is the analysis of the lattice quantization
error for dithered and undithered cases. The only overlap between our work and the
literature that we are aware of is Theorem 5. This was also reported by Zamir and
Feder as a small part of their recent paper [ZF95]. Even in our work, this result,
independently found by us, is only a minor ingredient.

In Sec. 4.1, we review some preliminaries and definitions pertaining to lattice quan-
tization. In Sec. 4.2, we provide exact analysis of the lattice quantization system. This
can be regarded as a multidimensional extension of the work in [SS77]. The main tool,
accordingly, is again Fourier series, but this time multidimensional. Since lattices are
uniform structures, there is inherent periodicity in the error statistics, which motivates
the use of multidimensional Fourier series. However, unlike in the one-dimensional
case, the choice of lattice is no longer unique and there exist optimum lattices in the
sense that they minimize the familiar dimensionless second moment [LZ94]. After giv-
ing the exact relationships between input and error probability densities, we consider
dithered, or so called randomized lattice quantization schemes. As in one-dimensional
case [LWV92], we investigate the possibility of rendering error statistics independent
from the input. Sec. 4.3 covers subtractive dithering where an appropriate random
vector is added before the quantizer and subtracted after it. In Sec. 4.4 nonsubtractive
dithering is examined. Sec. 4.5 is devoted to finding optimum linear time invariant

pre- and post-filters to be used in conjunction with dithered lattice quantizers.

Demonstration of the Perceptive Advantages of Vector-dithering in Image

Coding

For motivational purposes, we show in Fig. 4.1 a demonstration of the improvement of
perceptual quality in image compression achieved by the use of vector-dithered lattice
quantization. Fig. 4.1(a) shows the original 8 bit/pixel, 512 x 512 image of Lenna.

Fig. 4.1(b) shows the output of a lattice quantizer with dimension 24. Vectors are
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(b) (©

(d)

Fig. 4.1: Demonstration of the perceptual advantages of dithered lattice quantizers.
(a) Original image of Lenna, 512x512, 8 bits/pixel. (b) Output of lattice quantization
with dimension 24, bit rate = .4 bits/pixel. (c) Error of the lattice quantization. (d)
Output of the same lattice quantization with subtractive dithering, bit rate is about
the same. (e) Error of the dithered lattice quantization.
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formed by taking 4 x 6 blocks. The bit rate is about 0.4 bits/pixel. Fig. 4.1(c) shows
the quantization error. Fig. 4.1(d) shows the output of the same lattice quantizer
but with subtractive dithering. The bit rate is about the same. The corresponding
quantization error is shown in Fig. 4.1(e). It is clear that the lattice quantization error
in Fig. 4.1(c) is highly correlated with the input while the dithered quantization error
in Fig. 4.1(e) seems completely uncorrelated with the input and uniform. The output

of dithered lattice quantizer is perceptually more pleasant than that of undithered one.

Summary of the Main Results of the Chapter

1. In Sec. 4.2 we provide the necessary and sufficient condition for the quantization
error of an undithered lattice quantizer to be uniform in its quantization basic
cell. This is the so-called Nyquist-V condition, where V is the lattice generator
matrix. We provide examples and general classes of random vectors that satisfy
this condition (Sec. 4.2.1). We then examine the error statistics when the input

is arbitrary (Sec. 4.2.2).

2. We next consider subtractive vector dithering, and establish the necessary and
sufficient condition for the quantization error to be statistically independent of
the input, and be uniform in the quantization basic cell. A comparison of the di-
mensionless second moment of lattice quantizers [LZ94] is then given. A necessary
condition for a lattice quantizer to have minimum dimensionless second moment

(among all lattice quantizers of the same dimension) is established (Theorem 5).

3. For nonsubtractive vector dithering, first and second order moments of the quan-
tization error conditioned on the input vector are derived (Sec. 4.4). Necessary
and sufficient conditions for these moments to be independent of the input are
provided. Examples of nonsubtractive dither vectors satisfying the moment inde-
pendence conditions are given, and the dither that produces the minimum error

for a given lattice is distinguished (Theorem 7).

4. In Sec. 4.5 we consider the use of a linear pre-filter prior to the lattice quanti-

zation of a wide sense stationary (WSS) vector random process x(n). Under the
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assumption that the lattice quantizer satisfies certain mild conditions, we will
derive an expression for the best choice of pre-filter, as a function of the power
spectral density matrix of the input process. We will also clarify the similar-
ity and differences between this problem and the problem of designing optimal

biorthogonal subband coders.

The results of this chapter have been published in a journal paper [KV96b] and

some of the results are presented at a conference [KV95].

4.1 Preliminaries and Definitions

Let RY and ZP denote the D-dimensional Euclidean space of real numbers and the
D-dimensional space of integers respectively. Let V.=[v; vs ... vp]be a nonde-

generate lattice base in RP. The lattice is the set of vectors defined as
LV)={x:x=Vn, necZ?} (4.1)

Fig. 4.2 shows an example of a lattice in two dimensions. In lattice quantization, the

<
S

Fig. 4.2: Lattice example in 2 — D. The heavy dots are the points on the lattice.

codewords are the lattice points. The partition of the space for decision regions can
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be done in many ways. This partitioning can be uniform, i.e., each codeword may
have the same quantization cell called a basic cell (defined below) [Cox69]. From the
necessary conditions for distortion-minimal quantizers [GG92], the quantization cell
should be the so called Voronoi region [CS88] which is defined below. The resulting
uniform partition is also known as the nearest-neighbor partition. Note that, from
the same necessary conditions, codewords should be the centroids of the quantization
cells with respect to the given distortion measure and the input probability density
function. However, as in the uniform scalar quantization, one chooses lattice points as
reproduction points avoiding the knowledge of probability density function.

If overflow is avoided at all times, then we have a periodic structure for the quan-
tization error and the tools of the following analysis are applicable. In this chapter,
overflow is always assumed to be avoided. If one uses entropy coding [CS88] after the
quantization, or if the given density has finite support, the resulting bit rate will be
finite and by scaling the lattice one can tradeoff bit rate against distortion.
Definition 1. A basic cell of a lattice L(V): Let P be a region in R such that any
x € RP can be written as x = xo + Vn for a unique xo € P and n € Z°. Then P is
called a basic cell of the lattice £(V). It is also said to generate a tiling of RP with
respect to V. &
This definition does not imply that a basic cell is convex. In fact, one can partition a
convex basic cell into subregions, and then translate each of these subregions by some
distinct lattice vectors. The resulting nonconvex region is another basic cell.
Definition 2. The Voronoi region of a lattice point xo € L£(V) is the set of points
that are nearer (with respect to Euclidean distance) to that point than to any other

lattice point. That is,
VOR(xo) = {x: ||x —x¢|| < ||x = Vnl||, Vne Z”} (4.2)

¢
The Voronoi region of the lattice point 0, VOR(0), will be denoted by VOR(V) for
convenience. Fig. 4.3 shows the VOR(V) of the lattice given in Fig. 4.2.



Fig. 4.3: Voronoi regions for the lattice in Fig. 4.2. The shaded region is VOR(V).

The Euclidean distance, used in the definition, leads to the mean square error as a
distortion measure. In this chapter, our interest will be only in the mean square error.
Definition 3. The Symmetric Parallelpiped of a lattice point xg € £L(V) is defined as
[Vai93]: i
SPD(xp) = {x:x=x%xp+ Vu, VYuc [—-%, %) } (4.3)

¢

We will denote the Symmetric Parallelpiped region of the lattice point 0, SPD(0), by
SPD(V). Fig. 4.4 shows the SPD(V) of the lattice given in Fig. 4.2.

Fig. 4.4: SPD regions for the lattice in Fig. 4.2. The shaded region is SPD(V).

It can be verified that both VOR(V) and SPD(V) are basic cells of the lattice
L(V) as long as some modifications are done to the boundary points in order to satisfy
the uniqueness requirement in the definition of a basic cell. Furthermore, they are
symmetric with respect to the origin.

Definition 4. A lattice quantizer Q(Py, V) with the lattice £(V) and the quantization



108

basic cell Py is a nonlinear mapping from RP to £L(V) as given by the relation:
Q(x) =Vn (4.4)
where n is the unique vector satisfying
X =Xo+Vn, xg¢€P,. (4.5)

We will denote the quantizer with Py = VOR(V) by Q(VOR, V). O
Definition 5. The second moment matriz of a basic cell P of a lattice £L(V), denoted

by Gp(P,V), is the second moment of a random vector that is uniformly distributed

in P. That is,
1 T
= de. 4.6
Go(P,V) = o /p ce e (46)
If P=VOR(V), we will denote the second moment matrix by Gp(VOR, V). &
Definition 6. The characteristic function of a random vector with pdf fx(x) is defined
to be:

By (Q) = E[e/V%] = / Fx(x)eP ™ dx. (4.7)
&

Next we will define a Nyquist-V vector. We say a function f(§2) is Nyquist-A if
f(An) = ¢d(n),¥n € ZP, where c is a constant and 6(n) is Dirac delta function, which
is 1 when n = 0, and 0 otherwise.

Definition 7. A Nyquist-V random vector is a vector whose characteristic function is
Nyquist-U, that is @x (Un) = §(n), where U is the generating matrix of the reciprocal
lattice:

U=2rVT=[u u ... up] (4.8)

¢
Note that, by definition ®x(0) = 1. The space domain equivalent of the Nyquist

condition is:

;fx(X+Vn) = @ (4.9)
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Examples of Nyquist-V random vectors are given in Sec. 4.2. Whenever the matrix V
is clear from the context, we will just say Nyquist for both random vectors and their

characteristic functions.

4.2 Quantization Analysis

Define the error vector of a lattice quantizer, Q(Pp, V), as e = x — Q(x). From the
definition of the lattice quantizer, this error necessarily lies in Py. Each error vector
e € Py is produced by infinitely many input vectors of the form e+Vn, n € ZP (see

Fig. 4.5). Hence, the probability density function of error is:

(b)

Fig. 4.5: Error in lattice quantization. (a) An error vector e, and an input vector x
that produces it. (b) A different input vector producing the same error vector.

Zn fX(e + Vn)a ee PO;

0 elsewhere

fe(e) = { (4.10)

One can find the Fourier series expansion, fg(e), of fg(e) with respect to the lattice

generator matrix V and express it in the following form:

fe(e) = Jd_ei—Vl 3" &x(Un)e7e"Un (4.11)

The restriction of fg (e) to the basic cell Py is fe(e). For a brief summary of the

relation between multidimensional Fourier series and Fourier transform, see Appendix
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A. For further details of multidimensional Fourier series representation, the reader is
referred to [DM84].

Theorem 1. The quantization error of a lattice quantizer Q(Py, V) is uniform in Py,

that is .
v €€ Po;
fufe) = (4.12)
0 elsewhere
if and only if the input vector x is Nyquist-V, that is ®x(Un) = é(n). &

Proof. From the properties of Fourier series, we know that fg(e) in (4.11) is a con-
stant for all e if and only if the Fourier series coefficients &x(Un) = 0,Vn # 0. Thus

fe(e), the restriction of fg(e) to Py, is constant in Py if and only if ®x(Un) =§(n). m

If Po = VOR(V) and if the condition of the theorem is satisfied, then E[e] = 0 because
VOR(V) is symmetric with respect to the origin, and Elee?] = Gp(VOR, V), where
Gp(VOR,V) is defined as in (4.6).

4.2.1 Nyquist-V Random Vectors

The next theorem shows some general classes of Nyquist-V vectors:

Theorem 2. The following random vectors x are Nyquist-V and therefore have uni-
form quantization errors in the quantization basic cell Py when quantized by a lattice

quantizer Q(Py, V):
1. x is uniform in any basic cell P of the lattice L(V).

2. x is piecewise uniform in an arbitrary union of nonoverlapping basic cells of L(V),

that is
Ci, X € Pi,'
fx(x) = (4.13)

0  elsewhere

where ¢;’s are positive and ¥, ¢; = id;VI'

3. x is a sum of several independent random vectors, one of which is Nyquist-V.
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Proof.

1. Let Q(P,V) be a lattice quantizer with the basic cell Py = P. Then, Q(x) = 0,
and therefore e = x. Hence e is uniform in Py. By Theorem 1, x is Nyquist-V
and therefore it has a uniform quantization error in Py even if it is quantized

- with a lattice quantizer Q(Pg, V) with Py # P.

2. Writing the characteristic function explicitly, we have:

®x(Un) = /fx(X)ej"TU“dx
= Z/Pi Cz'eijU"dx (by nonoverlapping assumption)
= \(;etV[ > ¢é(n) (from part 1)
= 46(n). l
(4.14)

3. Let x = v + z, where v and z are independent. Then, ®x(Q) = &y (Q)D5z(Q).

Therefore,

®x(Un) = &y (Un)®z(Un) =6(n) if Pv(Un)=4(n) or ®z(Un) =4(n).
(4.15)
Hence, if one of v or z is Nyquist-V, then the sum is Nyquist-V as well. The

extension to arbitrary number of independent random vectors is obvious.

Example 1. If x is uniform in SPD(V) or VOR(V), then it is Nyquist-V because
both SPD(V) and VOR(V) are basic cells of the lattice L(V).
The importance of Theorem 1 rests on the fact that we can make any given input

vector satisfy the Nyquist condition by applying dither prior to quantization (Sec. 4.3).
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If the dither is Nyquist-V and independent of the input (which is quite easy to manage
as we will see), then from Theorem 2, part 3 the dithered random vector is Nyquist-V

as well.

4.2.2 Error Statistics When the Input is Arbitrary

What if the input vector is not Nyquist-V and we do not want to manipulate it by a
dither? In that case, we have the following theorem that states the expected value of

any function of the error vector e:

Theorem 3. Let e be the error vector of a lattice quantizer Q(P,, V). Let g(e) be an

arbitrary function of e. The expected value of g(e) is E[g(e)] = ¥, ca®x(Un) where

Cn = JdeiVl Jp, 9(€)e7¢" Unde. ¢
Proof.
E =
[9(e)] ., 9(e)
= /Pg fo (e +Vn)de (from (4.10))
0
= /P gle ldetVI Y ®x(Un)e7*"Vde (from (4.11))
0
- ld 7 s, ote)e e
0

¥ ox
- Sa

(4.16)

as claimed. Note that g(e) and therefore ¢, can be a vector or even a matrix. \We
assume that interchanging the infinite sum and the integral in the above proof is
permissible. [ |

Corollary 1: Error moments. For any random vector x, the first and second order
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moments of the quantization error e of a lattice quantizer Q(VOR, V) are:

Ele]= Y c,®x(Un), Elee’]=Gp(VOR,V)+ Y C,Px(Un) (4.17)
n#0 n#0

where

1
"~ |detV| Jvorw)

1
"~ |detV| Jvorw)

e e7¢"Unge, Ca eeTe e Unge, (4.18)

Cn

¢
Proof. Apply Theorem 3 with Py = VOR(V) to g(e) = e and g(e) = ee” respectively.
Because of the symmetry of VOR(V), ¢o = 0. Moreover, Cq is what we defined as
Gp(VOR, V) in (4.6). |
Note that if x is Nyquist-V, all the terms of the infinite summations in (4.17) vanish

in view of Theorem 1.

4.3 Subtractive Dithering

Let v be a random vector, statistically independent of the input vector x. Adding this
so called dither vector before the quantization and subtracting after it, we have the

subtractive-dithered lattice quantization, as depicted in Fig. 4.6.

A% A\'%

X > Q(Po, V) p X=Qx+v)-v

Fig. 4.6: Subtractively dithered lattice quantizer.

The error vector is e = x ~ (Q(x +Vv) —v) = x + v — Q(x + v). Notice that this
error is the same as the conventional quantization error for an input vector x +v. The
characteristic function of the sum x + v is $x(2)Pv () where dx(Q) and Oy ()

are the characteristic functions of x and v respectively. Hence x + v is Nyquist-V
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whenever v is Nyquist-V and from Theorem 1, it follows that the quantization error
is uniform in the quantization basic cell, Py. However, more is true as the following

theorem shows:

Theorem 4. In the subtractive quantization scheme of Fig. 4.6, the error vector e is
statistically independent of the input vector x and uniformly distributed in Py if and

only if the dither v is Nyquist-V, that is ®v(Un) = §(n), where U = 27 VT, &

Proof. Let u = x+v. The conditional density of u, conditioned on x, is fy x(u/x) =
fv(u —x) and the corresponding characteristic function is ®y,x(Q2) = Dy (Q)ed
Hence using (4.11), we can write the conditional density function of the error vector

as:

1 1
je Un _ d U jxTUn —]e TUn
fE/X(e/X) Id tVl ZQU/X Un)e |d€tV‘ Z V n)e

(4.19)

for e € Py and 0 elsewhere. One can think of this as the nonseparable discrete
Fourier transform of the sequence @v(Un)e_jeTU“, x being the transform domain
vector. Hence from the uniqueness of Fourier transform, this is independent of x if and
only if ®y(Un)e 7°"U = §(n) which is equivalent to ®v(Un) = §(n). |
If Py = VOR(V) and the condition of the theorem is satisfied, then Ele] = 0 and
Elee’] = Gp(VOR, V), where Gp(VOR, V) is defined as in (4.6).

4.3.1 Nyquist-V Dither Vectors: Examples and Generation

In Theorem 2, we provided some classes of random vectors that are Nyquist-V. Any
such vector will serve as a dither vector as long as it is independent of the input vector
x. In particular, as given in Example 1, we can use a dither vector that is uniform
in SPD(V) or VOR(V). The one that is uniform in SPD(V) is relatively simple to
generate and a method for generating such a dither is given next.

Generation of a Nyquist-V vector: We will show how to obtain a random vector

that is uniform in SPD(V) and therefore is Nyquist-V. First generate a set of D
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independent random variables 21, 29, .., zp each of which is uniform in {-1/2,1/2). Form

the vector z=[2; 2z ... zp ]T. The vector v = Vz is Nyquist-V because:
®v(Un) = By[e/" V"] = Egle™ V' U = Bge”™ " = §(n).  (4.20)

The procedure is illustrated in Fig. 4.7 for D = 2. Since the error vector of a lattice

Dither Generation
1. Generate z in [—%, %)D

|

2. Transform z by V: v = Vz.

Fig. 4.7: Generation of a Nyquist-V vector in 2 — D.

quantizer Q(Pg, V) can be made uniform in Py by applying a Nyquist dither, we will
give our attention to the moments of that error. All of the results stated below can
actually be viewed as the properties of the underlying lattice, but the reader should
keep in mind that they will become the properties of the quantization error if the input

is Nyquist, or if a Nyquist-dither is added to the input prior to quantization.

4.3.2 Performance Comparison of Lattice Quantizers

Note that Gp(Pg, V), the second moment of the error of a lattice quantizer Q(Py, V)
with Nyquist-V input, is a positive definite symmetric matrix. The total mean square

error of the quantizer is the trace of this matrix: E|le[|*] = Tr(Gp(Py, V)).
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Orthogonal lattices: An orthogonal lattice is a lattice whose generator matrix V

satisfies
VVT = |detV [P A, (4.21)

where A is a diagonal matrix with diagonal elements A; > 0. To preserve the determi-
nants of both sides of (4.21), we have [J2, \; = 1.

Notice that an orthogonal lattice quantizer with VOR(V) as its basic cell can
be considered as a collection of scalar uniform quantizers for each dimension with
possibly different step sizes. We note the following result on the second moment matrix,
Gp(VOR, V), of an orthogonal lattice quantizer Q(VOR,V):

Fact 1. If the lattice £(V) is orthogonal, that is VVT = |detV[*/PA, then

1
Gp(VOR,V) = E|detV12/DA. (4.22)

¢
See Appendix B for the proof. As a special case, if VV7 = [detV|*PI, then Gp(VOR, V) =
5|detV[*P1, and therefore $EJ||e|f’] = &|detV|*P. Taking this as a reference, we
can compare the performances of other lattice quantizers. We will normalize the to-
tal mean square error per dimension of any lattice quantizer Q(P,, V) by |detV|?/P,
giving a proper figure of merit for lattices of different volume and dimension D.
Definition 8. The dimensionless second moment of a lattice quantizer Q(Py, V),

denoted by 0% (Py, V), is defined as

1 1
2 . . — 2
7(PosV) = Grarmr Tr(Go(Po, V) = prmarm [ llelfde  (423)
where Gp(Po, V) is as in (4.6). &

The quantity 0% (P,, V) also comes out of high bit rate analysis of lattice quantizers
[LZ94, Ger79, LZ94]. It is proven in [LZ94] that for an undithered lattice quantizer,
as the unit volume, |detV| of a quantizer Q(Py, V) goes to 0, the normalized mean
square error approaches the limit 0% (Py, V). The name dimensionless second moment

is used in [LZ94].
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The following fact is on the performance of orthogonal lattice quantizers. At best,
they can perform as good as a collection of independent scalar quantizers with identical
step sizes. The reader is referred to Appendix B for the proof.
Fact 2. Let Q(Pp, V) be an orthogonal lattice quantizer; that is let the generator
matrix V satisfy (4.21). Then,

1
UD(PO;V) 2 Ea (424)
with equality if and only if VV” = |detV|¥PI and Py, = VOR(V). O

The following result is on the performance of lattice quantizers whose quantization
basic cells are SPD(V) rather than VOR(V). Note that this result is not a special
case of the previous one, where we assumed V was orthogonal. Here, there is no
assumption on V.

Fact 3. Given a lattice generator matrix V,

1

oh(SPD,V) > =

(4.25)

with equality if and only if VVT = |detV[*/P1. o
Proof. By making a change of variable as we did in the proof of Fact 1, it is easy to

see that Gp(SPD, V) = £VV”. Hence,

1 1
2 _ - T
05(SPD) = D!detvIQ/DTr(IQVV)

1
Z VT 1/D )
~  12|detV|?/P |det V'V (see below)

12
(4.26)

The inequality follows from the AM-GM inequality and the Hadamard inequality
[Vai93] as explained next. The diagonal elements of the positive definite matrix VV7
are positive. Hence, their arithmetic mean is greater than or equal to their geomet-

ric mean. And by the Hadamard inequality, the product of the diagonal elements is
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greater than or equal to the determinant of VVT. The former is an equality if and
only if the diagonal elements of VVT are the same and the latter is an equality if and
only if VV7 is diagonal. Hence, the result follows. [ |
As we noted before, for a given lattice £(V), the minimum dimensionless second mo-
ment is achieved by the basic cell VOR(V). One can ask the question: among all
the lattices in R?, what is the optimum lattice that will minimize the dimensionless
second moment 0% (VOR,V)? This question turns out to be theoretically very chal-
lenging. The answer is not known for arbitrary D and there is ﬁo proof of optimality
for dimensions higher than 3 (see for example, [GS88]).

Examples of optimum lattices. Here are some lattices that have minimum dimen-

sionless second moments:

Case where D = 1. The only lattice is the points of the form An,Vn € Z, A € R.
Any basic cell P has a total length of A. Obviously, the minimum dimensionless

second moment is achieved by VOR(A) = [-£, £) and its value is

o(VOR,A) = 1 4.27
! 12

Case where D = 2. The optimum lattice that minimizes 0% (VOR, V) is the one

whose VOR(V) is the regular hexagon [Ger79]. A generating matrix for this

3 3
V:(O £> (4.28)

The unit volume of the lattice is: |detV| = 32ﬁ By explicitly evaluating integrals,

lattice is

we have:

Elee’] = G3(VOR, V) = 25—41, (4.29)

where I is 2 x 2 identity matrix. The corresponding dimensionless second moment

is:
5 3V3 5

2V 2~ 0.08018754 4.30
36v/3 (430)
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Compare this to that of optimum one-dimensional lattice:

1
ol(VOR,A) = e 0.0833.. (4.31)

Case where D = 3. The optimum lattice is the body-centered cubic lattice, also

called the truncated octahedron as is proven by Barnes and Sloane [BS83]. This

lattice has

19
~ 0.0785433.. 4.32
1922 (4.32)

Case where D = oo. The limiting value of minimum o7, (VOR, V) is [LZ94],

o3 (VOR, V) =

lil)rri)igfa% = 2—715 ~ 0.058823... (4.33)
For a tabulation of lattices that have best known ¢} (VOR, V), see [LZ94].

After the observation in (4.29) that Go(VOR, V) is diagonal with equal elements,
these authors suspected that this might be true for any optimum lattice of arbitrary
dimension. This turns out to be indeed the case, as elaborated in the next theorem.
Assume the dimension D is given and we look at different lattices with the objective
of minimizing the dimensionless second moment ¢%(P,, V). Hence the quantization
basic cells are chosen to be VOR(V) for each lattice generator matrix V. We have the

following result:

Theorem 5. For a lattice quantizer Q(Py, V) to be optimum, that is, to have the
minimum dimensionless second moment 0%, (Py, V), it is necessary that Py = VOR(V),

and

Gp(VOR, V) =dI (4.34)

where ¢ = 0% (VOR, V)|detV|*P and 1 is the D x D identity matrix. %

Comment. Note that Gp(Py, V) is the second moment matrix of a vector e with

uniform pdf in Py. By Theorem 1, uniformity of the error in Py is equivalent to
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the Nyquist-V condition on the input vector x. This can be assured by adding an
independent Nyquist-V dither, as seen from Theorem 4.

During the preparation of this chapter, the authors noticed that this result has
appeared very recently in {ZF95] and a very similar proof has been provided in [ZF94].
Nevertheless, we provide our proof here for completeness and convenience.

Proof. As we noted before, for any given V, the minimum dimensionless second
moment is achieved by the quantization basic cell VOR(V). Hence we take Py =
VOR(V). Define a new random vector z = Q~'x for some nonsingular Q, and consider

Fig. 4.8. Since %X is on the lattice £L(V), the vector Z is on the lattice £L(Q™'V). We

2 5| Q L QP V) i S Y

N>

Fig. 4.8: Transformation of a lattice quantizer. Here, e = x — %X is uniform in VOR(V).
This can be assured by subtractive dithering. Hence, f = z — % is uniform in a basic
cell of the transformed lattice.

can therefore regard Fig. 4.8 as a lattice quantizer for the vector z, with the quantized
values on £(Q™'V). Define the quantization errors e = x — % and f = z — 2. Then
f = Q7'e. Since e is uniform in VOR(V), the error f is uniform in a basic cell, P of
L(Q~'V). Assuming that V is optimal for the dimension D , the dimensionless second

moments should satisfy

op(P,Q7'V) > 03 (VOR, V). (4.35)
Observe that E[ff"] = Q'E[ee”]Q~T. Let us choose Q such that QQ” = E[ee], so
E[ff"] = I. Substituting the expressions

i} E[f]? Eel?
a5(P,Q IV):Duetc[g—u[?/D’ and a%(VOR,V):———D‘dELi/'_’P]/D (4.36)

into (4.35), we can simplify it to

4e1QQT | > =Tr(QQY). (4.37)
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Let A; be the eigenvalues of the Hermitian matrix QQ7. Hence the determinant and
the trace above are, respectively, the product and the sum of these eigenvalues. So the
preceding equation is equivalent to ([T2; A;)/? > £ 52, A;. Since by construction
QQY is positive definite, A; > 0 for all . We can therefore apply the AM-GM inequal-
ity to conclude = =2, A; > (TT2; A)/P. The preceding two inequalities on {);} can
be simultaneously true if and only if ); is identical for all i. Since QQ” is Hermitian,
this proves that QQ? = M. So we have proved that E[ee’] = M. Combining this
with the definition of 0% (VOR, V), we obtain (4.34) indeed. n

4.4 Nonsubtractive Dithering

In subtractive dithering, one should regenerate the dither vector exactly at the re-
construction end. This is, in most cases, undesirable. The easiest remedy is not to
subtract the dither vector, and this results in the nonsubtractive dithering scheme.

Referring to Fig. 4.9, we define the error vector to be e = x — Q(x + v). The error is

X | s Q(Po, V) —_—— X=Q(x+ V)

Fig. 4.9: Nonsubtractively dithered lattice quantizer.

no longer a periodic function of the input and therefore we do not have a periodical
relationship between the error and the input pdf’s similar to (4.10) or (4.11). Hence, as
can be shown, the error cannot be rendered statistically independent from the input.
However, the moments of the error can be rendered independent from the input as will
be elaborated next. This result is the generalization of the well-known one-dimensional

nonsubtractive dithering result [LWV92], [GS93|. First we will give a lemma that will
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express the relevant moments in terms of gradients of a function of dither.

Let V and VV7 denote the first and second order gradient operators operating on

functions of D variables, wy,ws, ..,wp:

62
awiaw '

v=[Z ... 2 (v, = (4.38)
Let z be a random vector that is uniform in the quantization basic cell Py of the lattice
quantizer @Q(Py, V). Let fyv(v) and fz(z) be the pdf’s of v and z respectively. By

definition,
I—‘#Vl, Z € P(),

fz(z) = (4.39)
0 elsewhere

Lemma 1. The first and second moments of the error vector e of a nonsubtractively

dithered lattice quantizer @Q(Py, V) conditioned on the input vector x are:

Ele/x] = ZVH Un)e/* Un (4.40)
Elee” /x] = 12 Z VVTH(Un)e/* Un (4.41)
where,
- / h(x)e 7 ¥dx  h(e) = fv(e) * fz(—e) (4.42)
&

Remark. Note that the extension of the above result to higher moments is straightfor-
ward by defining the corresponding operators in an obvious way. However, our interest
will only be in the first and second order moments.

Proof. Since we do not subtract the dither after the quantizer, the reproduction points
are the lattice points of the form Vn. That is, Q(x+v) = Vn for some n € Z”. Hence,
the corresponding error vector is € = x — Vn. Note that, given x, this is a discrete

random vector. It has the probability mass function:

Pg/x(x—Vn) = Prob{Q(x+v)=Vn}
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= Prob{x+v=x9+Vn,xo € Py}

-/ fv(v)dv
Po(Vn—x)
(4.43)

where Po(Vn —x) denotes the translated region of Py by the vector Vn —x. Using the
artificial random vector z defined by the pdf in (4.39), one can express the preceding

as a convolution:

Pg/x(x —Vn) = |detV]| /fv(v)fz(v — Vn + x)dv (4.44)
Hence,
Pegjx(e) = |detV] / fu (V) fz(v + e)dv
= |detV| h(—e)
(4.43)
where
h(e) = fv(e) * fz(—e) (4.46)
Now, the first order moment of the error vector is:
Ele/x] = Y ePg/x(e)
= Y (x— Vn)|detV|h(—x + Vn)
= Z g(x+ Vn)
(4.47)

where g(x) is defined as |detV|xh(—x). The Fourier transform of g(x) is G(Q2) =
%|detV|VH(—Q), where H(Q) is the Fourier transform of h(e), that is

H(Q) = &y (—Q)®z(Q). (4.48)



124

By using the Fourier series representation (see Appendix A), one can write (4.47) as:
1 T

E = ——— 5 G(Un)e ™ " 4.49

e/ = iy X G(Une (1.49)

which reduces to (4.40). The derivation of (4.41) is through the same steps and is

omitted. ]

Using these results and noting the uniqueness property of Fourier series, the next

theorem follows:

Theorem 6. Consider the nonsubtractive quantization scheme of Fig. 4.9. Let H(£2)

be as in (4.48).

1. The first order moment of the error vector is independent of the input if and only
if VH(S2) is Nyquist-U, that is VH(Un) = ¢ é(n),

2. The second order moment matrix of the error vector is independent of the input if
and only if VVTH(Q) is Nyquist-U, that is VVT H(Un) = C §(n).

If the corresponding conditions are satisfied, then
Ele/x] = Ele] = E[z] — E[v], Elee”/x]= Elee’]|=E[(z~V)(z— V)] (4.50)

respectively, where z is uniform in Py and independent of v. &

Remark. If the conditions are satisfied with a symmetric basic cell Py, then Ele] =
—E|[v], and Elee”] = Gp(Py, V) + E[vv?], where Gp(Py, V) is defined as in (4.6). In
particular, if Py = VOR(V), then E[ee’] = Gp(VOR,V) + E[vvT].

Proof. The necessary and sufficient conditions follow from Lemma 1. If the corre-
sponding conditions are satisfied, then

E[e]z%VH(O), and E[eeT]:]-,liVVTH(O), (4.51)

respectively. Now, by (4.46), h(e) can be considered as the pdf of a random vector

v — z, where z is independent from v and uniform in P,. Hence, from the moment
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generating property of characteristic functions, we have

%VH(O) —Ejz—v], and invaH(O) — E[(z - v)(z - v)T). (4.52)

]
Example 2. Let v be any Nyquist-V random vector, that is, &y (Un) = §(n). Then
the condition for the first part of the theorem is satisfied. To see this:

VH(Q) = Oy (—Q)VI2(0) — 3z(Q) Vv (—0) (4.53)

Since @z itself is Nyquist and ®v is chosen to be so, VH is Nyquist as well. Hence
Ele/x] = Ele| = E[z]— Ev]. This is zero if (i) the dither is uniform in the quantization
basic cell or (ii) the dither is uniform in any symmetric basic cell and the quantization
basic cell is symmetric. The dither vector that is uniform in SPD(V) satisfies the
condition of the theorem and it produces zero-mean error if the quantization basic cell
is symmetric.

Example 3. Let v = z; + z5 where z; and z, are independent random vectors each of
which is Nyquist-V. Then the condition for the second part of the theorem is satisfied,

because:

VVITH(Q) = V(By(-Q)V 32(Q) - 0z(Q)V Py (—Q))
= Pyv(-R)VVIP2(Q) - Vv (-2)V 02(Q)
VO (VT Dy (~Q) + B5(Q)VVT Dy (—Q)

(4.54)

The first term is Nyquist because ®v, being the product of two Nyquist functions, is
Nyquist. From the previous example, V®y is also Nyquist and therefore second and

third terms are Nyquist. Since @z is given to be Nyquist, the last term is Nyquist too,
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making VV7 H Nyquist as desired. Hence,
Elee’ /x] = Elee’] = E[(z — v)(z — v)T]. (4.55)

If the quantization basic cell and the regions of supports of the random vectors z;
and z, are symmetric with respect to the origin, then Elee’] = E{zz’ + vvT]| =
E[zzT|+ E[z,27] + E[2z927]. Note that the dither in this example satisfies the condition
for the first part of the theorem as well, hence the first order moment is also independent
of the input. In particular, notice the following special cases:

Assume the quantization basic cell, Py, is symmetric with respect to the origin.

(i) if both z; and z, are uniform in SPD(V), then
Elee” /x] = Elee”] = Gp(Po, V) + éva (4.56)
(ii) if both z; and z, are uniform in Py, then
Elee’ /x] = E[ee’] = 3G p(Py, V) (4.57)

Assume we use a dither as in Example 3, which satisfies the first and second order
moment independence conditions. Among all such schemes, the minimum total mean
square error is achieved by using the lattice quantizer with Py, = VOR(V), and a
dither vector that is sum of two independent vectors that are uniform in VOR(V) as
in the second special case given above. The resulting total mean square error is three
times that of the subtractive dithered quantization and that is true for any dimension

D. Making use of Theorem 5 on optimum lattices, we have the following result:

Theorem 7. Let V be the generating matrix of the optimum lattice (i.e., the lat-
tice with minimum o%(VOR, V)). In subtractive dithering, the minimum total mean
square error is achieved by any dither that is Nyquist-V. In nonsubtractive dithering,
among all dithers as in Example 3, the minimum total mean square error is achieved by
the optimal lattice V, and by the dither that is the sum of two independent Nyquist-V

vectors each of which is uniform in VOR(V). The resulting second moment matrices
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are:
Elee’] = Gp(VOR, V) = 05 (VOR, V)|detV[*PT  (subtractive dithering) (4.58)

Elee’] = 3Gp(VOR, V) = 365 (VOR, V)|detV|¥P1  (nonsubtractive dithering)
(4.59)
O

Necessary and sufficient condition for total mean square error independence.
In Theorem 6, we gave the necessary and sufficient conditions for the first order moment
vector and the second order moment matrix of the error to be independent of the input.
One can desire to make the total mean square error, E[|le]|*], instead of the second
order matrix, F[eeT], independent of the input. The following corollary to Theorem 6
states the necessary and sufficient condition for this weaker requirement:

Corollary 1. In the nonsubtractive quantization scheme of Fig. 4.9, the total mean
square error is independent of the input vector, i.e., E[||e||*/x] = E]|le||’], if and only
if Tr(VVTH(Q) is Nyquist-U, that is Tr(VV?H(Un)) = d §(n). &
If the quantization basic cell is symmetric with respect to the origin and if the above
condition holds, then E[||e||*] = E[||z||"] + E[||v|]"] = Tr(Gp(Py, V)) + E[||v|"], where
z is defined as in (4.39) and is independent of v.

Proof. From (4.41) in Lemma 1,

Elle|?/x] = %zvaﬂwn)efx un)

1 X n
= —22 VVTH(Un))e*" Y

(4.60)

Hence, by the uniqueness of Fourier series, the necessary and sufficient condition fol-
lows. If the condition is satisfied, then E[|le]|’] = E%TT(VVTH(O)) =Tr(E[(z—v)(z—
v)T1), which leads to the result, since v and z are independent. |

Generation of the dither vector for nonsubtractive case: We need a random
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vector that is uniform in VOR(V) in the scheme of Example 3 to achieve minimum
mean square error. Here is a simple method to generate such a vector: Obtain a dither
vector z that is uniform in SPD(V) using the method given in Sec. 4.2.1. Quantize z
using the lattice quantizer Q(VOR, V). Take the dither vector v to be the quantiza-
tion error: v =z — Q(z). Then v is uniform in VOR(V) because of Theorem 1. More
generally, one can generate a uniform random vector in any basic cell P of the lattice
L(V) by replacing the quantizer with Q(P, V).

Remark. In subtractive dithering, any Nyquist-V dither produces an error that is
independent of the input and uniform in the quantization basic cell. Hence the resulting
mean square error is independent of the particular dither used. In nonsubtractive
dithering, on the other hand, the total mean square error depends on the dither as
well. In particular, the dither should be confined in as small volume as possible in

order to obtain the lowest total mean square error.

4.5 Optimum Pre- and Post-filtering For Lattice
Quantizers

In traditional scalar quantization schemes where a random process z(n) is uniformly
quantized, one assumes that the quantizer noise process e(n) is WSS, white and has
a power proportional to the input power. That is, e(n) has a power spectral density
See(€7¥) = co?. With these assumptions, one considers the possibility of improvement
of the noise level by pre-filtering the input process before quantization and post-filtering

it after the quantization with the inverse of the original filter (see Fig. 4.10). It is known

z(n) ‘ u(n) u(n) , z(n)
—_— F(er) T — Q e F—l(ejw) —— -

Fig. 4.10: Pre and post-filtering of a scalar process. Q denotes a uniform scalar quan-
tizer. The optimum choice of the filter is the half-whitening solution.
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[JN84] that the best pre-filter F(e’*) is given by

1

— (4.61)
Sz (e7¥)

F(e) =
and that the phase of F(e’*) is arbitrary. This is commonly referred as half-whitening
since the power spectral density of the output of F(e’) is y/Szz(e7%), which is flatter
than S;.(e’“) but not completely flat.

The assumptions that lead to the half-whitening solution are valid if the number of
levels of the uniform quantizer is very large. However, if one uses a dithered quantizer
with proper choice of dither, then the assumptions are not only valid but are precisely
true regardless of the bit rate. Hence the half-whitening filter is the optimum filter
for a dithered quantizer. After making this elementary observation, we now ask the
same question in the lattice vector quantization context: what is the optimum pre-
filter matrix F(e’*) that produces minimum total mean square error? In this section
we proceed to answer this question.

Dithering of WSS vector random processes. Let x(n) be a WSS vector process
with power spectral density matrix Sy, (e/%). Let v(n) be a vector process independent
of x(n). Assume we add the two processes together and then quantize the sum at each
time instant n with a lattice quantizer Q(VOR, V). After the quantization, we can
either subtract the original dither process resulting in subtractive dithering or we can
leave it as it is, resulting in nonsubtractive dithering. This is a generalization of Fig. 4.6
and Fig. 4.9, with all the vectors replaced by vector random processes. First consider
the subtractive case. It is not difficult to see that, if the dither process is chosen to be
iid and Nyquist-V, then the error process e(n) = x(n) + v(n) — Q(x(n) + v(n)) will
be independent of x(n) and iid, with uniform distribution in VOR(V). Next, for the
nonsubtractive case, if the dither process is chosen to be the sum of two independent
random process each of which is iid and uniform in VOR(V), then the second moment

of the error vector e will be independent of x(n). Assume that we are using the
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optimum lattice £(V) for the given dimension. Then from Theorem 7, we have

Ele(n)eT(n + k)] = 05(VOR, V)|detV|*’P5(k)I  (subtractive dithering) (4.62)

Ele(n)eT(n+ k)] = 365 (VOR, V)|detV[*P§(k)I  (nonsubtractive dithering)
©(4.63)
Pre-filtering of dithered lattice quantization. Assume we filter x(n) by F(z)

before quantization and by F~!(z) after the quantization as shown in Fig. 4.11. Let

x(n u(n a(n x(n)
L. F(e) L» Q(VOR, V)L F1(ev) _(’

Fig. 4.11: Pre and post-filtering of a vector process in conjunction with a dithered
lattice quantizer. The lattice £(V) is the optimum lattice for its dimension.

Sqq(€?*) be the power spectral density of the dithered-quantizer noise process q(n) =

u(n) — @(n). Then, by (4.62) and (4.63), it follows that
Sqq(e’?) = cI (4.64)

where ¢ depends only on lattice. To be precise, ¢ = 0% (VOR, V)|detV|?/P in subtrac-
tive case and ¢ = 30%(VOR, V)|detV|>/? in nonsubtractive case.

Assumption about the dependence of ¢ on the input variance. Dithering
analysis is valid only if the overflow is avoided. If the total bit rate is constrained to
be fixed, then obviously there should be a relation between the unit volume |detV|
of the lattice £(V) and the statistics of the input. If the bit rate is defined by the
logarithm of the total number of codewords, then the support of D-dimensional pdf of
the process cannot be infinite. If, on the other hand, the bit rate is defined to be the
entropy of the quantized process, then D-dimensional pdf can have infinite support as
in the cases of well-known distributions like Gaussian, Laplacian, etc. Without going
into the detailed discussion of the rate-distortion analysis of dithered quantizers, we

are going to assume that the constant ¢ in (4.64) is proportional to the total variance
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of the quantizer input, that is ¢ = do2. Hence (4.64) becomes:
Sqq(€’”) = doll (4.65)

where o2 is the total variance of u(n) in Fig. 4.11.

Theorem 8. In the scheme of Fig. 4.11, assuming the relation (4.65), the optimum

pre-filter matrix that minimizes the total mean square error is given by

F(e“) = [A(e/)] AU (e) (4.66)

where A(e’¥) is a diagonal matrix with positive elements, and U(e’*) is a paraunitary
matrix, i.e., Ut(e7)U(e/*) = I, Vw [Vai93]. The matrices U(e’*) and A(e’*) are related

to the power spectral density Sy, (e’*) of x(n) as
Syx(67%) = UT(Z*)A(e?)U (). (4.67)

The resulting total mean square error is

dw]Q

ot =d[[ Tr(A()?)

- 27

(4.68)

Proof. Let S;(e/) = U'(e/)[A(e?)]Y/2U (%), where U(e’”) and A(e’”) are as

defined in the theorem statement. Then, Syx(e/*) = S;(/%)S;1(e/¥). Now,

Ree(0) = Ele(n)e’ (n)] = _T; F-l(ej“)sqq(ef‘“)[F—l(ef“)]*%
= o olE e
(4.69)
2 2 T 1, ool jw GW
Ellel?] = do2Tr| Fl(e)[F(el)) ==

- 2T
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= aTr [ PSP F () S [T e e

- -7 277'

_ d/w TT(F(ejw)Sxx(ejw)FT(ejw))g_w/” T,,,(F_l(ejw)[F—l(ejw)]T)d_w

- T Jer 27

> d[/_: \/Tr(F(ejw)sxx(ejw)Ff(ejw))TT(F_l(ejw)[F_l(ejw)]f)%;]g
r——

= o[ Trsaen ]

= [ [" oA ]

(4.70)

The first inequality is Cauchy-Schwartz inequality for integrals and the equality holds

if and only if
Tr(F (') (e7)F1(e?)) = k' Tr(F~ () [F~1 (/)] for all w (4.71)

The second inequality is another Cauchy-Schwartz inequality, applied to the following

inner product space:

(A,B) = Tr( BTA), (see for example, [FIS79, p. 360])
ITr(BfA)|” < Tr(ATA)Tr(B'B) (4.72)

with equality if and only if A = kB. Letting A = F(¢/¥)S;(e/*) and B = [F~1(e?¥)]T,

we have the second inequality and therefore the equality holds if and only if
F(e?)S1(e?¥) = k [F71 ()] (4.73)

or equivalently,

[S1(e7)]7t = FT(ej“’)F(ej“’) (4.74)

where S;(e’) is the spectral factor of Syx(e/9), i.e., Sxx(e/) = S;(e/¥)S;"(e7¥). We

can choose k =1 as it will not affect the final result. So, F(e’*) should be a spectral
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factor of the inverse of the spectral factor of the positive definite matrix Sxx(e’*). Note
that (4.71) is satisfied automatically if F(e/*) is chosen as in (4.74). The filter defined
given by (4.66) satisfies (4.74) as can be verified by direct substitution. Hence it is
an optimal filter matrix with the resulting total mean-square error as in (4.68). When
the dimension is 1, the solution reduces to the well known half-whitening filter as in
(4.61). n

Comment. The solution (4.66) can be understood in the following way: The optimum

—> (e @) > —>F_l{eiw)9
—SEEIY 2 PR
x(n) =3t U (el®) . g . Ut @) —%(n)
. e}
Ty M Ty

Fig. 4.12: Optimum pre and post-filtering in lattice quantization. U(e¥) is the decor-
relator filter matrix and the filters Fy, Fb, ..., Fp are the half-whitening filters for their
inputs.

F(e’*) is the cascade of two systems. The first system, U(e’*), which is a paraunitary
filter bank, decorrelates the components of the vector process x(n) (assuming zero-
mean for simplicity). The second system, [A(e/*)]~"/*, is nothing but half-whitening
of each of the decorrelated components! See Fig. 4.12.

Pre-filtered lattice quantization of scalar WSS processes. Assume now that
the vector process x(n) is formed by blocking a WSS random process z(n) [Vai93] (see

Fig. 4.13). Then one way to diagonalize the power spectral density is to use a set of

x(n)
x(n) > \L D —>
-1
2 yD —>
z .

’ +/9¢1) —>

Fig. 4.13: The vector process x(n), obtained by blocking a scalar WSS process.
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ideal filters. Let {H;(e’*)} be a set of ideal filters that have nonoverlapping frequency
supports as shown in Fig. 4.14. Using these filters as in Fig. 4.15, it can be verified that

T 2T T 0)

D D

Fig. 4.14: A set of ideal filters to be used as the decorrelating paraunitary system.

the components after the decimation in Fig. 4.15 are uncorrelated. It is not difficult

f_)‘}{:(em)b“ D [>{rei > R e L e LR

e 1) [ —>lFole Jo[>{1 b lelﬂtgei“’)}—j

Fig. 4.15: The ideal filter bank of Fig. 4.14 is used as the decorrelating system.

Q(VORY)

to see that the set of half-whitening pre-filters after the ideal filter bank is equivalent
to one half-whitening pre-filter preceding the ideal filter bank. Similarly, the set of
corresponding post-filters followed by the ideal filter bank is equivalent to the ideal
filter bank followed by one post-filter corresponding to the unblocked output (Fig. 4.16).

This system can be redrawn as in Fig. 4.17 using the polyphase representation [Vai93].

x(n) —>{ F(el‘“)}—{Hl(ej“’)}—)H D }—>

Q(VORY)

Fig. 4.16: Half-whitening filters reduce to a single half-whitening filter.

By construction, the polyphase matrix E(e’?) is paraunitary. Let r(n) and u(n) be the
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> >
YA
N Z
E (/@) S Ef (ei9) . :
5 .
T g

Fig. 4.17: Redrawing the system in Fig. 4.16 using the polyphase decomposition of the
ideal filter bank.

input and output of the system E(e?“). It can be shown (Appendix C of [Vai93]) that
E[uT(nyu(n)] = E[rT(n)r(n)]. The quantity o2 in (4.65) is E[uf(n)u(n)] with the
assumption that the processes have zero mean. Hence o2 is unaffected by the choice
of E(e’“). So we can eliminate E(e’) and E'(e’*) and obtain the simplified form of

Fig. 4.18. We have proved:

x(n) —>{ F (¢ 19) y D A D F {ei®) > Xn)
-1 z
== S ‘b
-1 a4 Z
zZ . C>) :
-1 o 6 [ .
V4
I o]+

Fig. 4.18: The final simplified form of the system when the input is the blocked version
of a scalar WSS process.

Theorem 9. In the lattice quantization scheme of Fig. 4.11, if the input vector process
x(n) is obtained by blocking a WSS scalar process x(n), then the optimum pre-filter
F(e¥) is equivalent to the scalar half-whitening filter applied to the input z(n), as
depicted in Fig. 4.18. &

Relation to the optimum subband coding problem. In subband coding systems,
the channels are often quantized with one-dimensional uniform quantizers. Let u;(n)
be the ith subband signal and ¢;(n) the corresponding quantization noise. Since each
of the channels is quantized separately, the total bit rate is the sum of bit rates of each

channel. Let b; be the rate assigned to the channel i. In subband coding problems, the
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following is assumed:

2 _ 252 =
O, =€ 0,2 (4.75)

This assumption is justified when the bit rate is high and the overload effect is negligible
[GG92]. The same constant c is assumed for all channels, although in [GG92] it is shown
that ¢ depends on the source statistics. For the pre-filtered lattice quantization scheme -

we assumed (4.65). Since 02 = >p_, 02, this assumption implies

D

Yol =dy ol (4.76)

1=1 i=1

Compare this with (4.75) which is traditionally used in subband coding with separate

subband quantizers. (4.75) yields

o) = CED: 27 %ig2 (4.77)
i=1 i=1

Thus the set of quantizer noise variances {031_} is assumed to be related to the set of
quantizer input variances {02 } by (4.76) in the pre-filtered lattice quantizer, and by
(4.77) in the case of traditional subband coding. These two assumptions create signif-
icant difference in the formulation and solution of these two problems, which should
not, therefore, be compared. In particular, the line of reasoning which allowed us to
reduce Fig. 4.17 into the simpler form of Fig. 4.18 will not hold in the traditional sub-
band coding case. As mentioned earlier, the problem of optimizing the pre-filter under
the subband coding constraint (4.75) is equivalent to finding the best biorthogonal
subband coder for a given input and a fixed number of channels D. The biorthogonal

subband coding problem is treated in considerable detail in [VK98a].

4.6 Summary

In this chapter we provided the error analysis of dithered and undithered lattice quan-
tizers. In Sec. 4.2, we analyzed the lattice quantization system. In Sec. 4.3, we saw

that, for any input, we can make the quantization error independent from the input
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and uniform in the quantization basic cell. We provided some results on the moments
of the error and gave a necessary condition for a lattice to have minimum dimension-
less second moment. Sec. 4.4 covered nonsubtractive dithering of lattice quantization
and we saw that we can make the moments of the error vector independent from the
input. We gave one set of dither vectors that can be used in nonsubtractive dithering
to achieve the first and second order moment independence conditions. Among them,
we outlined how to choose a dither vector that results in minimum total mean square
error. We saw that this dither should be a sum of two independent random vectors,
each uniform in VOR(V), where V is the generator matrix of the optimum lattice for
its dimension. We emphasized that the requirement to make the total mean square
error independent from the input is weaker than the requirement to make the second
moment matrix independent from the input. We provided two methods of generating
Nyquist-V vectors, one for the dither that is uniform in SPD(V), the other for the
dither that is uniform in VOR(V). The former was sufficient for all purposes in sub-
tractive dithering and the latter was necessary to have minimum mean square error in
nonsubtractive dithering. Finally, using the results on optimum lattices from Sec. 4.3,
in Sec. 4.5, we addressed the problem of optimum linear pre-filtering of dithered lat-
tice quantizers. With the assumption that the sum of the variances of the noise vector
components is proportional to the sum of the variances of the input components, we
came up with a general solution. In the special case of blocking one-dimensional WSS
processes, we saw that our solution reduces to the scalar half-whitening filter.
APPENDIX A

The definitions of multidimensional Fourier transform, Fourier series and their in-

terrelations are summarized here in a way most suited to our notations. Details can

be found in many standard references, for example [DM84].

1. The M D Fourier transform of f(x) is defined as
F(Q) = /f(x)e_jQTxdx (4.78)

We see that the characteristic function (4.7) is therefore ®x(Q2) = F(—Q).
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2. f(x) is said to be periodic-V, if f(x+Vn) = f(x) for every x € RP andn € ZP.
Let P be a basic cell with respect to V, and let U be the matrix generating the

reciprocal lattice, that is, U = 27r'V~T. Then the Fourier series coefficients of

f(x) are given by
1 T
= —x Ukg 4.7
Ck et 1/Pf(x)e X (4.79)

and the Fourier series representation of f(x) is given by

fx)=> o’ Uk | (4.80)

3. Relation between Fourier series and Fourier transform. Let F(§2) be the FT of
f(x). Define the periodic-V function g(x) = Yy fx(x + Vk), and let {ck} be
its Fourier series as defined above. Then the Fourier series coefficients {ck} are

related to the samples of the Fourier transform, taken on the lattice generated

by U. More precisely,
1

Thus, the periodic function g(x) can be expanded as

1
9(x) = det V]

3 F(Uk)er*" Uk (4.82)
k

APPENDIX B
Proof of Fact 1.

1
Gp(VOR, V) = —— / g
ol ) |detV| Jvorv) ee de

1 T
= d
|detV| Jspp(v) ee ae

= v /[ eV
[-2:2)

1
= VvV’
12
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1
= —|detV]*PA
12

(4.83)
The reason for the second equality is that VOR(V) = SPD(V) for an orthogonal
lattice. The third equality follows by a change of variable & = V~le [
Proof of Fact 2.
05(Po, V) > 05(VOR,V) (by definition of VOR(V))
1
= VOR,V
DldetVP/DTT(GD( 0 ) ))
= 1—215TT(A) (by equation (4.21))
= A
95 Z
1 D
> D H)\ I/D (arithmetic-geometric mean inequality)
1
12
(4.84)

The first inequality can be viewed as an application of the necessary condition for

an optimal quantizer: the partition of the space for a given codeword should be the

Voronoi partition. It is not difficult to see that no other partitioning can give a better

error. Hence, equality holds if and only if Py = VOR(V). The other inequality is an

application of arithmetic-geometric mean inequality (abbreviated as AM-GM) [Vai93]

to the positive diagonal elements A;. Hence, the equality holds if and only if A; = ¢, Vi.

Finally, because of the definition of A in (4.21), [I2, A; = 1, implying ¢ = 1. Hence

the equality holds if and only if A = 1. [
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Chapter 5

Concluding Remarks and Future

Directions

The main theme of the thesis has been optimal subband coding. We have presented
results on the optimality of uniform and nonuniform orthonormal filter banks. We have
shown that the problems of optimal orthonormal subband coding and the principal
component representation of signals are fundamentally related to each other. Principal
component filter banks (PCFB) are those that pack most of the signal energy into any
number of retained channels. The special case where the packing is done into one single
channel corresponds to the problem of optimal energy compaction filters. We have seen
that when we consider the block transforming case, or the ideal subband coding case,
there always exist PCFB’s and they are optimal for subband coding. The optimality
is proven without assuming the traditional high resolution quantizer models. We have
extended the results to the nonuniform case, where we have seen that PCFB’s can be
defined for each of the ordering of the set of subband decimation ratios.

There are still many open problems in optimal subband coding as shown in the
review chart in Fig. 1.12. An interesting problem is to find the equivalent of KLT for
the nonuniform case. Another interesting problem would be the optimal nonuniform

biorthogonal subband coding. In the uniform case, except in the transform coding,
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there are advantages of using biorthogonal filter banks. A good review of the current
state of knowledge about optimal uniform biorthogonal subband coding can be found
in [VK98a].

In the practically interesting case of FIR filter banks, we have seen that the existence
of PCFB’s cannot be taken for granted as we have demonstrated examples on the
contrary. Currently, there is no simple design algorithm that is guaranteed to converge
to optimal FIR orthonormal filter banks. Suboptimal solutions do exist, however.
One such suboptimal design starts with designing an optimal compaction filter. The
completion to a filter bank is done via the canonical factorization of the polyphase
vector corresponding to the compaction filter.

We have then presented results on the design of optimal FIR compaction filters.
We have developed an analytical method for the special two-channel case. This is the
only case where the problems of coding and compaction coincide even with the order
constraints on the filters. An FIR PCFB for any input statistics does exist in this case.
The reason for such an exceptional result is the fact that one filter of a two-channel
orthonormal filter bank determines the other.

We then proposed a very efficient method for designing M —channel compaction
filters: window method. Although the method is suboptimal, it is very fast as it involves
FFT and simple comparison. As the filter order grows, the suboptimality becomes
negligible. 'We compared this technique with the recently introduced technique of
linear programming. The latter has the major disadvantage that the complexity grows
prohibitively as the filter order increases. We have also proposed multistage design
techniques for large order compaction filters. Such techniques result in compaction
filters of effective order much higher than the individual filters designed at each stage.

The final chapter has concentrated on the extension of the analysis of uniform
quantizers to multiple dimensions. We have provided an exact analysis of lattice quan-
tization noise. We then proposed vector dithering. As in the scalar case, we have
considered both the subtractive and nonsubtractive cases. While many of the results
are straightforward extension of those in the scalar case, there are some interesting

notions in the lattice quantization case that have no counterpart in the scalar case.
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One such notion is the selection of the lattice for a given dimension. Best lattices for
quantization turn out to be a classical problem for which no solutions are known except
for a few small dimensions. We have presented a necessary condition for a lattice to
be optimum. We finally have solved the problem of optimal pre- and post-filtering of

lattice quantizers.
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