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1. Introduction 

Implementations of functional programming languages can be classified according 
to whether they apply eager-evaluation or lazy-evaluation. Eager-evaluation gives 
rise to strict semantics while lazy-evaluation gives rise to non-strict semantics. 
In this paper we define the syntax of a simple functional programming language, 
and specify strict and non-strict denotational semantics for that language. These 
semantics are specified by giving axioms for the domains and semantic functions 
involved. The axioms for the two different semantics are very similar, differing only 
in the specification of cons. However, this small difference results in the domains for 
the two semantics being quite different. Giving axioms, rather than just postulating 
particular domains and semantic functions, makes more explicit the similiarities of 
the strict and the non-strict semantics. We give a model of the axioms of the non­
strict semantics in order to show their consistency, and show that any two such 
models are isomorphic. 

It is important that a proposed semantics for a p:i:ogranuning language does not 
make unrealistic demands on implementations of that language. To demonstrate 
that our non-strict semantics allow straightforward implementation, we present the 
kernel of an i11Lerprder, aml give a <letaile<l ~ketch of a proof that this interpreter 
satisfies the non-strict semantics given by our axioms. 

A formal semantics should also provide tools for proving properties of pro­
grams. Our semantics provide simple and powerful proof techniques that can be 
applied equally well to programs with strict and non-strict semantics. These proof 
techniques do not require the notion of admissible predicates [6]. We give example 
correctness proofs for programs under both semantics. 

An explanation of some of our notation and terminology is needed. The symbol 
o is used to designate (functional order) function composition, so that (f o g)(x) = 
J(g(x)). A relation!;;; is a partial order relative to an equivalence relation= if it is 
reflexive (x ~ x ), antisymmetric (x ~ y and y ~ x implies x = y), and transitive 
( x !;;; y and y !;;; z implies x !;;; z). 

A sequence of objects xo ~ x1 ~ x2 ~ ... is called a chain. When we let {xi} 
be a chain, it is implicit that Xi exists for every integer i 2:: 0 and that Xi !;;; Xi+l· We 
frequently have need for the least upper bound of a chain, which we write LJi:o Xi. 

The least upper bound is defined such that for all y 

00 

Vi[xi !;;; y] ~ LJ Xi ~ y. 
i=O 

It is clear from this definition that if the least upper bound exists it is unique. 

A function f of arity r is monotonic if J(xi,x2, ... ,xr) ~ J(yi,y2, ... ,yr) 
whenever Xi !;;; Yi for all i between 1 and r. A function f of arity r is continuous if 
it is monotonic and 

00 

LJ J(x1,j, x2,j, ... , Xr,j) = J(xi, x2, ... , Xr ), 

j=O 
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where for all i between 1 and r the chain { Xi,j} has Xi as its least upper bound. 

2. Syntax 

In this section we describe the syntax of a simple functional programming language, 
L. The abstract syntax for terms in L is given by 

E ::= v J i J true J false J <> I £ I 
Ei: E2 I hd(E1) I tl(E1) I if Ei then E2 else E3 I atom(E1) I nil(E1) I 
E1 + E2 I E1 - E2 I E1 x E2 I E1 mod E2 I E1 = E2 I E1 s; E2 I 
f(E1, ... ,Er)· 

The terms given by the first line of disjunctions are base terms. In these disjunctions 
we use v to designate that a term can be one of a countably infinite number of object 
variables, and we use i to designate that a term can be the decimal notation for an 
integer. The base terms true and false designate truth values. The base terms \i 
and£ will be explained later, for now it suffices to say that they correspond to an 
empty list and an erroneous computation, respectively. The base terms designating 
truth values or integers are said to be atomic base terms since they are used to 
represent the atoms in the domain D. We could easily extend L to include more 
atomic base terms, we use the current set because it is the smallest set sufficient for 
the example correctness proofs in Sections 8 and 9. 

The second and third lines of disjunctions give the function symbols of L. The 
infix function symbol ":" is referred to as cons. For notational convenience, cons 

associates to the right. Terms formed using only base terms and function symbols 
are called simple terms. Terms can also be formed using one of a countably infinite 
number of function variables, such as in the fourth line of disjunctions. If E is a 
term of the form g(Ei, ... , Er), where g is a function symbol or a function variable, 
then g is the root of E. Whenever we refer to a variable without specifying whether 
it is an object variable or a function variable, it is always an object variable. Thus, 
a variable-free term is a term that contains no object variables, but may contain 
function variables. A variable-free simple term contains neither object variables nor 
function variables. 

The notation E[v1, ... , vk] is used to designate a term that has its variables 
among v1, ... , vk. The term E[E1, ... , Ek] is formed from E[v1, ... , vk] by replacing 
each instance of Vi by Ei for i between 1 and k. Let E' and E" be terms. If there 
exists a term E[v] that contains at least one instance of v such that E' is identical 
to E[E"], then E" is a subterm of E'. Notice that any term is a subterm of itself 
by this definition. 

A program Pin L consists of a sequence of declarations, followed by a variable­
frcc term called the value term of P, written Ep. Declarations are of the form 

f(v1, ... ,vr) {= E[vi, ... ,vr], 

where f is a function variable, r 2 0 and the Vi are variables. Any function variable 
mentioned in a program must be declared exactly once. Any instances of a function 
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variable f, including that on the left side of the declaration off, must have the 
same arity. Restricting programs to this simple form avoids issues of scoping and 
"first-class" functions. Notice that function variables may be declared to have an 
arity of zero, we will not write parentheses following an instance of such a function 
variable. 

3. Strict and Non-Strict Se1nantics 

In this section we describe strict and non-strict semantics for the functional pro­
gramming language L. The semantics are described by giving a set of axioms for 
each: S for strict and C for non-strict. Some of these axioms will be in the form 
of definitions, but whether or not an axiom is in the form of a definition does not 
concern us, so in either case it is simply called an axiom. The axioms are numbered 
in sequence, and unless otherwise noted, each axiom belongs to both S and £. 

The semantic function P maps programs to their denotations in the domain 
D. The axioms also refer to an auxiliary semantic function D, which takes two 
arguments, a variable-free term and an environment, and returns an element of D. 
An environment rJ is a finite partial function from function variables to functions 
over D, or, more precisely, an environment is an element of 

00 

F~ Ucnn ~n), 
n=O 

where F is the set of function variables and (Dn ~ D) is the set of functions over 
D of arity n. The application of D to a variable-free term E and an environment 
'r/ is written 'D[E]ry. We use emphatic brackets whenever a function is applied to a 
term or a program in L. 

Environments are used to represent the effects of declarations in a program. 
If a set of declarations results in an environment ry, then V[E]ry is the denotation 
of the variable-free term E in the presence of these declarations. Notice that we 
have not placed any restriction on what kind of total function over D each ry(f) 
can be. In particular, we have not required that that each ry(f) be a continuous 
function. We could have assumed without loss of generality that ry(f) is always a 
continuous function, but it is instructive to actually prove that there would be no 
loss of generality (see the discussion following Axiom 15). 

The vCLlue of P[P] is 'D[Ep]r1 where rJ is an environment derived from the 
declarations of P. Formalizing this requires specifying V, and also specifying how 
environments depend on declarations. We begin by stating properties required of 
the semantic function D. The first is a property of D, the codomain of D. Let 
the set of atoms A be the union of the set of non-negative integers and the set of 
boolean values {true,false}. Let A be the bijection from atomic base terms to the 
corresponding elements of A. 

Axiom 1. (Semantic Classes) The objects of Dare divided into two disjoint sets, 
the unconstructed objects and the constructed objects. The unconstructed objects 
are JP, eD, \ID and the members of the set of atoms A. 
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To specify 1J, it is helpful to extend it to be defined over generalized terms. 
The set of generalized base terms is the set of base terms together with the elements 
of D. The formation of generalized terms from generalized base terms is the same 
as the formation of (non-generalized) terms. We assume that the set of terms and 
the domain ']) are such that any generalized term can be formed in exactly one way. 
If E is some (non-generalized) term, we sometimes emphasize this by refering to E 
as a. prngrn.m. term. 

We specify 'D by induction on the structure of variable-free generalized terms. 
We begin with variable-free generalized base terms. 

Axiom 2. (Base Terms) If E is a variable-free generalized base term, then for 
any environment rJ 

if E = e; 
if E O; 
if E is an atomic base term; 
if E is an object in D. 

We often simply write ..L, e and 0 for JP, £D and OD. Next we must specify']) for 
non-base variable-free generalized terms. This requires the following two axioms. 

Axiom 3. (Function Symbols) Let g be a function symbol of arity r. There 
exists a function g1) (the interpretation of g with respect to 'D) from nr to D such 
that 

D[g(Ei, ... , Ek)]rJ = g'D(D[E1]77, ... , D[Ek]rJ) 

if k =rand each of the D[Ei]rJ is defined. Otherwise, D[g(E1, ... ,Ek)]rJ is unde­
fined. 

Axiom 4. (Function Variables) Let f be a function variable. Then 

D[f(E1, ... , Ek)]rJ = rJ(J)('D[E1]77, ... , D[Ek]rJ) 

if each of the 'D[Ei]rJ is defined, 7] is defined on f, and rJ(J) is a function of arity k. 
Otherwise, D[f(E1, ... , Ek)]rJ is undefined. 

If rJ is an environment, then a generalized term E is meaningful in rJ if and 
only if D[E]77 is defined. Let S be a set of environments. We define a binary 
relation =s on generalized tenns such that E1 =s E2 (E1 ciml E2 are equivalent 
relative to S) if and only if D[Ei]77 = D[E2]77 for all environments rJ in S. We 
usually abbreviate the assertion Ei =s E2 by writing Ei = E2 ( Ei and E2 are 
equivalent). With this notation, unless otherwise noted, it is understood that the 
set S is the set of all environments. Notice that if x and y are elements of D (and 
are, therefore, generalized terms), then x = y if and only if x = y. We will often 
write x y instead of x y to emphasize that objects x and y in D can be viewed 
as generalized terms. 

To complete the specification of D, we must specify g'D for each function symbol 
g. We first specify the interpretation of the function symbol cons. The following 
axiom is the only axiom that differs between Sand C. 
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Axiom 5 of S. (cons) For all x and yin D, 

j_ if x = 1-; 
£ if x = £; 
1- if x ~ £ and y = 1-; 
£ if x ~ 1- and y = £; 
£ if x ~ 1- and y is an atom; 
a constructed object otherwise. 

Axiom 5 of£. (cons) For all x and yin D, the generalized term x: y is equivalent 
to a constructed object. 

In both S and C, Axiom 5 does not completely determine the interpretation 
of cons, since specifying that x: y is a constructed object does not specify which 
constructed object it is. This is remedied by the Constructability Axiom. 

Axiom 6. (Constructability) For all constructed objects z, there exist unique x 
and y such that z = x: y. 

The interpretation of cons required by Axioms 5 and 6 of Sis consistent with 
the behavior of standard list processing languages that use eager-evaluation. The 
choice of Axiom 5 of ,C was influenced by implementation issues that are discussed 
near the end of Section 7. 

The semantics of cons given by the above axioms can be described using more 
conventional methods than those used here. However, axiomatizing cons in the 
above way allows the fundemental differences between the strict and the non-strict 
semantics to be isolated in one axiom. This makes the similiarities between the two 
semantics more clear. 

Clearly cons is a non-strict function in both S and £. Why is only the semantics 
given by ,C called non-strict? A function h of arity r is non-strict if there exists Xi 

for 1 :::; i :::; r such that for some k 

otherwise h is strict. The function h is trivially non-strict if for any such {Xi} and 
k 

h(x1, ... 'Xk-1' Xk, Xk+l, Xr) h(x1, ... 'Xk-1, 1-, Xk+1, Xr ), 

otherwise h is non-trivially non-strict. We call a semantics non-strict if an<l only 
there is a function symbol whose interpretation in that semantics is a non-trivially 
non-strict function. Thus ,C is a non-strict semantics because the interpretation of 
con.s iu C is uou-trivially non-strict. We shall see that in S all function symbols 
have either strict or trivially non-strict functions as interpretations, so S is a strict 
semantics. 

The following six axioms specify the interpretations of the remaining function 
symbols in L. 
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Axiom 7. (hd and tl) For all z in D, if x: y is equivalent to a constructed object, 
then 

hd(z) = U if z = ..l; if z ..l; 
if z O or z = £; 
if z is an atom; 

if z = 0 or z = e; 
if z is an atom; 

if z = x: y; if z = x; y. 

Axiom 8. (Conditional) For all x, y, and z in D, 

if" then y else z = { r if x = l_; 

if x =true; 
if x =false; 
otherwise. 

Axiom 9. (atom and nil predicates) For all x in D, 

atom( x) = { et..l 
rue 

false 

if x = ..l; 
if x = £; 
if x is an atom; 
otherwise; 

nil(x) {Le 
false 

if x = ..l; 
if x = £; 
if x = o; 
otherwise. 

Axiom 10. (+, -, and x) For all x and yin D, if* designates either+,-, or 
x, then 

X*Y={~ X*Y 
£ 

if x = ..l; 
if x is an integer and y = ..l; 
if x and y are integers; 
otherwise. 

Axiom 11. (mod) For all x and yin D, 

{ 

..l if x = ..l; 
d _ ..l if x is an integer and y = ..l; 

x mo y = . . 
x mod y 1f x and y are mtegers and y > O; 
£ otherwise. 

Axiom 12. ( = and ~) For all x and yin D, if* designates either= or ~' then 

{ 

J_ if x = _i; 
_ ..l if x is an integer and y = ..l; 

x * Y = ·f d · x * y 1 x an y are mtegers; 
£ otherwise. 

In Axioms 10 and 12 the symbols -, x, =, and ~ have different meanings 
depending on whether they are on the left or right side of the =:. On the left side 
they are symbols in L, on the right side they designate the standard function or 
predicate over the integers. 

We have now completed the specification of 1) (relative to D), and can prove 
the following basic theorems. 

6 



Theorem 3-1. Let E be a variable-free generalized term and rt an environment. 
Then E is meaningful in 'fl if and only if 17 is defined on every function variable f 
in E, and ry(f) has the same arity as each instance off in E. 

Proof: The proof is by induction on the structure of E. Recall that Eis meaningful 
in rt if and only if 'D[E]rt is defined. By Axiom 2, the theorem clearly holds when 
Eis a generalized base term. The induction step follows from Axioms 3 and 4. D 

Theorem 3-2. Let F be a set of function variables, and let 17 and 17' be envi­
ronments such that rJ(f) = rJ'(f) for every function variable f not in F. Let E be 
a variable-free generalized term meaningful in rt that does not mention any of the 
function variables in F. Then E is meaningful in r/ and 'D[E]ry = 'D[E]ry'. 

Proof: The proof is by induction on the structure of E. The theorem clearly holds 
when E is a base term. If E has a function symbol gas its root, then 

'D[g(E1, ... , Er )]rt = gv('D[Ei]ry, ... , 'D[Er ]17) 

= gv('D[E1]11', ... , 'D[Er]11') 
= 'D[g(E1, ... , Er )]171 

If E has a function variable f not in Fas its root, then 

'D[f(Ei, ... , Er )]17 = 17(f)('D[E1]17, ... , 'D[Er ]17) 
= rJ(/)('D[E1]r/, ... , 'D[Er]'f/1

) 

= rJ'(f)('D[E1]rt', ... , 'D[Er]rt') 

= 'D[f(Ei, ... , Er )]111 

Axiom 3 

ind. hyp. 

Axiom 3. 

Axiom 4 
ind. hyp. 

given 

Axiom 4. D 

Theorem 3-3 states a property that is a consequence of the extending of 'D to 
generalized terms. This property will be used in many of the proofs that follow, 
and is the primary reason for introducing generalized terms. 

Theorem 3-3. Let 17 be an environment. Let E[vi, ... , vk] be a generalized 
term, and let Ei, . .. , E~ be variable-free generalized terms such that E[EL ... , EU 
is meaningful in 17. Then 

'D[E[EL ... , E/.]]11 = 'D[E['D[Eary, ... , 'D[EU11]]17. 

Proof: The proof is by induction on the structure of E. The base case follows since 
'D[x]17 x for any x in D. To prove the induction step, we assume, without loss of 
generality, that E[v1, ... , vn] is of the form 

where g is a function symbol or a function variable. If the root of E is a function 
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symbol g, then 

V[E[Ei, ... , Ek]]11 
= 1'[g(E1[Ei, ... , EJJ, ... , Er[Ei, ... , EkJ)]17 
= g1'(1'[E1[Ei, ... , Ek]]17, ... , 1'[Er[Ei, ... , Ek]]17) 
= gv(1'[E1[V[Ei]17, ... , 1'[Ek]17]]17, · · ·, 

V[Er[V[E1]17, ... , V[Ek]17]]17) 
= 1'[g(E1[1'[Ei]11, ... , 1'[Ek]17], ... , 

Er[1'[Ei]17, ... , 1'[Ek]17])]17 
= V[E[V[Ei]11, ... , V[Ek]17]]17 

If the root of E is a function variable f, then 

1'[E[Ei, ... , EJ.]]17 
= V[f(E1[Ei, ... , E1], ... , Er[Ei, ... , E1])]11 

77(f)(1'[E1 [Ei, ... , Ek]]ry, ... , 'D[Er [Ei, ... , E1]]77) 
= 17(f)('D[E1['D[E~]77, ... , 'D[Ek]77]]17, ... , 

'D[Er[V[Ei]77, ... , 'D[E1]11]]11) 
'D[f(E1['D[Ei]·11, ... , '.D[Ek]17], ... , 

Er[V[Ei]77, ... , V[E/J77])]77 
'D[E['D[EU11, . .. , 'D[EJ.]77]]77 

given 

Axiom 3 

ind. hyp. 

Axiom 3 

given. 

given 

Axiom 4 

ind. hyp. 

Axiom 4 

given. D 

To complete the specification of our semantics, we must specify how environ­
ments depend on declarations. The first step in this is to require a partial order b 
over D, the information ordering over D. 

Axiom 13. (~) 
a) For all x, x bx. (reflexivity) 

b) For all x and y, if x ~ y and y ~ x, then x = y. (antisymmetry) 
c) For all x, y, and z, if x ~ y and y ~ z, then x b z. (transitivity) 

d) If x or y is an unconstructed object, then x ~ y if and only if x = ..l or 
x = y. 

e) If x and y are cornitructed objects, then :z; !;;;; y if and only if hd(x) [;; hd(y) 
and tl(x) ~ tl(y). 

Parts (a) through ( c) of the above axiom are the properties that !;;;;; must have 
to be a partial order. These properties must be axiomatized explicitly because they 
do not follow from ( d) and ( e ). 

We also use the symbol ~ for a partial order over the set of functions over D, 
and also for a partial order over environments. If f and g are functions of different 
arity, then f IZ; g. If fnnctions f and [J have arity r, then f ~ g if and only if 

f(x1,x2, ... ,xr) ~ g(x1,x2, ... ,xr) 
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for all x1, x2, ..• , Xr in D. If T/1 and T/2 are environments with identical domains, then 
'f/l !; rJ2 if m(J) !; rJ2(J) for all function variables f for which the two environments 
are defined. Otherwise, 'f/l [l T/2. 

Let S be a set of environments. We define a binary relation !;s on generalized 
terms such that E1 Gs E2 if and only if D[E1]TJ G D[E2]1J for all environments 
rJ in S. Thus, Gs is a partial ordering relative to =s for any set of environments 
S. We usually abbreviate the assertion Ei !;s Ez by writing Ei !; Ez. With this 
notation, unless otherwise noted, it is understood that the set S is the set of all 
environments. 

The existence of the information ordering allows us to state the following re­
quirement on the domain D. 

Axiom 14. (Closure) For all chains {xj} of objects in D, there exists an object 
x such that 

00 

X = LJ Xj• 

j=O 

For the remainder of this section we shall assume, without loss of generality, 
that any program P has n declarations of the form 

for 1 :::; k:::; n. We write Fp for the set of function variables {fk j 1:::; k:::; n}. We 
also write Ep for the value term of P. 

An environment rJ is called a fixed point of the declarations of P if 

for all k between 1 and n and all objects xi, .. . , Xrk, and if ry(J) is undefined for 
all f not in Fp. We would like the environment produced by the declarations of P 
to be a fixed point of those declarations. This is the intuitive meaning we have in 
mind when we write declarations for a program. There may be many environments 
with this property, we choose the least such. If 17 is a fixed point of the declarations 
of P and 1J G 1J1 for any r/ that is also a fixed point of the declarations of P, then 
rJ is the lea.st fixed point of the declarations of P. 

We prove in Theorem 3-12 that for any program P, the least fixed point of the 
declarations of P exists. The following theorems and definitions arc preliminary 
results necessary for the proof of Theorem 3-12. The reader may skip to after 
Theorem 3-12 if not interested in its proof. 

The first definition needed is of the function Np that has as its domain and 
codomain the set of environments defined only on Fp, and is such that 
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Np( rt )(fk) = ..\xi, ... , Xrk :.D[Rk[xi, ... , Xrk]]ry 

for all k between 1 and n, where the Xi range over D. The usefulness of this function 
in shown in the next theorem. 

Theorem 3-4. For any program P, an environment 'fl is a fixed point of Np if 
and only if it is a fixed point of the declarations of P. 

Proof: Clearly fixed points of the declarations of P and the fixed points of Np 
both have Fp as their domain. To prove the forward implication, assume that rt is 
a fixed point of Np. Then, for all k between 1 and n, 

'.D[fk(E1,. · ·, Erk)]TJ TJ(fk)('.D[E1]17, ... , '.D[ErdrJ) 
Np(17)(fk)('.D[E1]rt, ... , V[Erk]11) 

= V[Rk[V[E1]11, ... , V[Er.1J11Jilrt 
'.D[Rk[Ei, ... , Erk]]rJ 

Axiom 4 

given 
def. of Np 

Theorem 3-3. 

Therefore, T/ i8 al8o a fixed poiut of the declarations of P. To prove the reverse 
implication, assume that rJ is a fixed point of the declarations of P. Then for all k 
between 1 and n, 

Np( rJ)(fk)( X1,. · ·, Xrk) = V[Rk[x1, · ·., Xrk]]rJ 

= V[fk(x1, · · ·, Xrk)]rJ 
= rJ(fk )(Xi, ... 'Xrk) 

Therefore, 'fl is also a fixed point of Np. O 

def. of Np 

given 

Axiom 4. 

An environment r} is an environment of monotonic functions if for all f for 
which ry(f) is defined, ry(f) is a monotonic function. An environment of continuou/3 
functions is similarly defined. 

Theorem 3-5. Let rJ be an environment and E[v1, ... , vn] be a generalized term 
such that E[x1, ... , xn] is meaningful in rt for all Xi in D. Consider the function 

If rJ is an environment of monotonic functions, then p is monotonic. If rt is an 
environment of continuous functions, then p is continuous. 

Proof: The proof is by induction on the structure of E. The theorem clearly holds 
when E is a base term, since in that case p is either a constant function or a 
projection function. 

To prove the induction step, we will assume that gv is a continuous function 
for every function symbol g. We will come back to this assumption later in the 
proof. We also assume, without loss of generality, that E[vi, ... , vn] is of the form 
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where g is a function symbol or a function variable. To prove the first implication, 
let '1] be an environment of monotonic functions, and let x1, ... , Xn and y1, ... , Yn 
be elements of D such that Xk ~ Yk for each k. If the root of E[vi, ... , vn] is a 
function symbol g, then 

p(xi, ... , Xn) 
= 'D[g(E1[x1, ... , Xn], ... , Er[Xi, ... , Xn])]ry 

= g1'(D[E1 [x1, ... , Xn]]1], ... , D[Er[xi, ... , Xn]]rJ) 
i:;; gv(D[E1[Yi, ... , Yn]]'fJ, .. ·, D[Er[Y1, · · ·, Yn]]rJ) 

= 'D[g(E1[y1, · · ·, Yn], · · ·, Er[Y1, · · · 'Yn])]r;i 
=p(y1, ... ,yn) 

If the root of E[v1, ... , vn] is a function variable f, then 

p(x1, ... , Xn) 
= 'D[f(E1[x1, ... , Xn], ... , Er[Xi, ... , Xn])]ry 

= 17(f)('D[E1[x1, ... , Xn]]rJ, ... , 'D[Er[xi, ... , Xn]]rJ) 
~ '1J(f)('D[E1[y1, ... , Yn]]'fJ, ... , 'D[Er[Y1, ... , Yn]]'fJ) 

= 'D[f(E1[y1, ... , Yn], ... , Er[YI, ... , Yn])]17 

= p(y1, · · ·, Yn) 

given 

Axiom 3 

ind. hyp. and 

mon. of gv 
Axiom 3 

given. 

given 

Axiom 4 

ind. hyp. and 

mon. of 'fJCf) 
Axiom 3 

given. 

To prove the second implication, let 17 be an environment of continuous func­
tions, and for each k between 1 and n let {xk,j} be a chain with Xk as its least upper 
bound. If the root of E[vi, ... , vn] is a function symbol g, then 

p(x1, ... , Xn) 

= 'D[g(E1[x1, ... , Xn], ... , Er[xi, ... , Xn])]rJ 
= gv('D[E1 [x1, ... , Xn]]17, ... , 'D[Er [xi, .. ·, Xn]]ry) 
= gV(LJ~o 'D[E1[x1,j, ... ,xn,j]]17, ... , 

LJ~o 'D[Er[x1,j, ... , Xn,j]]rJ) 

LJj:0 gv(D[E1[x1,j, ... , Xn,j]]rJ, ... , 

D[Er[x1,j, ... , Xn,j]]rJ) 
= LJJ:o 'D[g(E1 [x1,j, ... , Xn,j], ... , Er[x1,j, ... , Xn,j])]r1 

LJ~o p(x1,j, ... , Xn,j) 

11 

given 

Axiom 3 

ind. hyp. 

cont. of gv 

Axiom 3 

given. 



If the root of E[v1, ... , vn] is a function variable f, then 

p(x1, ... , Xn) 
= 'D[f(E1 [xi, ... , Xn], ... , Er[xi, ... , Xn])]ry 
= ry(f)('D[E1[x1, ... , Xn]]f], ... , 'D[Er[x1, ... , Xn]]rJ) 
= 77(f)(LJf=o 'D[E1[x1,j, ... , Xn,j]]1], ... , 

LJf=o 'D[Er[x1,3, ... , xn,j]]1J) 

= LJf=o 11(f)('D[E1[x1,j, ... ,xn,j]]1], ... , 

'D[Er[X1,j, ... , Xn,j]]'I']) 

= LJf=o 'D[f(E1 [x1,j, ... , Xn,j], ... , Er[x1,j, ... , Xn,j])]11 

= LJf=o P( Xl,j, .. . , Xn,j) 

given 

Axiom 4 

ind. hyp. 

cont. of r,(f) 

Axiom 4 

given. 

To complete the proof, we must justify our assumption that each g'D is a con­
tinuous function. We will prove this for the function symbol cons, the remaining 
function symbols are left as an exercise for the reader. 

For the proof that cons is monotonic in S let x c; x' and y c; y1 be elements of 
D. We must show that x: y C: x 1

: y 1
• This clearly holds when x: y = .L If x: y = £ 

(either because x = e, or because x ";/: .l and y is an atom or £), then x' : y1 is also 
equivalent to e. In the final case x : y is equivalent to a constructed object, and, 
therefore, so is x 1 

: y'. Thus, x : y ~ x' : y' by Axiom 13. 

The proof that cons is monotonic in .C is much easier. Since x: y and x': y' are 
always equivalent to constructed objects, it follows from Axiom 13 that x :y c; x': y1

• 

For the proof that cons is continuous in S let {xk} and {yk} be chains with 
least upper bounds of x and y, respectively. Also, let Zk = Xk: Yk for all k. Notice 
that by the monotonicity of cons, {zk} is a chain as well. Let z be its least upper 
bound. We must show that z = x : y. If x : y = .l (either because x = .l or because 
y = .l and x ";/: £), then Zk = .l for each k, so z = .l. If x: y = £ (either because 
x = e or because x ";/: .l and y is an atom or £), then there exists a k such that 
Zk = £, so z = £. In the final case x: y is a constructed object. In this case, there 
exists a k such that Zk is a constructed object, therefore, z is a constructed object. 
We show that z = x: y by showing that 

x: y C: z' ~ Vk[zk C: z'] 

for all z'. This condition clearly holds when z' is an unconstructed object since both 
sides of the if and only if are false. If z1 is a constructed object then 

x: y c; z' ~ (LJk:o xk): (LJk°=o Yk) c; z' def. of x and y 

~ LJk°=o Xk ~ hd(z') /\ LJk°=o Yk ~ tl(z') Axiom 13 
~ Vk[xk c; hd(z')] /\. Vk[yk c; tl(z')] def. of LJ 
~ Vk[xk C: hd(z') /\. Yk C: tl(z')] prop. of V 
~ Vk[zk c; z'] Axiom 13. 

The proof that cons is continuous in .C is very similar to the proof that cons is 
continuous in S when cons returns a constructed object. We leave it as an exercise 
for the reader. D 
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Theorem 3-6. Let E be a variable-free generalized term. The restriction of 

,\17. 'D[ E]11 

to environments of continuous functions in which E is meaningful is a continuous 
function. 

Proof: We first prove that the function is monotonic by induction on the structure 
of E. The base case holds trivially since constant functions are monotonic. To prove 
the induction step, let 17 ~ 171 be environments of continuous functions in which E 
is meaningful. If E has a function symbol g as its root, then 

'.D[g( Ei' ... 'Er )]17 '.D[g( '.D[E1]r,1, ... ''.D[ Er ]11) ]17 
~ '.D[g('.D[E1]r/, ... , '.D[Er ]r/)]rJ 

= '.D[g('.D[E1]rJ', ... , '.D[Er ]11')]171 

= '.D[g(E1, ... , Er )]111 

If E has a function variable f as its root, then 

'.D[f(E1, ... , Er )]11 77(f)('.D[E1]rJ, ... , '.D[Er ]11) 
~ 77(f)('.D[E1]rJ', ... , 'D[Er]77') 

~ 771(f)('.D[E1]771
, ••• , '.D[Er ]77') 

D[f(E1, ... , Er )]77' 

Theorem 3-3 

ind. hyp. and 

Theorem 3-5 

Theorem 3-2 

Theorem 3-3. 

Axiom 4 

ind. hyp. and 

monotonicity of 17(!) 

77 ~ 771 

Axiom 4. 

To prove continuity, let { 'Y}j} be a chain of environments of continuous functions 
in which E is meaningful. Let 17 be the least upper bound of {17j}. We know by 
Theorem 3-1 and the definition of~ on environments that 17 is an environment of 
continuous functions in which E is meaningful. The proof is by induction on the 
structure of E. The base case holds trivially since constant functions are continuous. 
If E has a function symbol g as its root, then 

LJ~o '.D[g(E1, ... , Er )]rJj 
= LJi=o '.D[g('.D[Ei]ryj, ... , '.D[Er ]1Jj)]rJj Theorem 3-3 

= lJi=o '.D[g('.D[E1]rJj, ... , '.D[Er ]rJj)]rJ Theorem 3-2 

= D[g(LJj:0 D[E1]rJj, ... , LJj:0 D[Er ]rJj)]17 Theorem 3-5 
= '.D[g('.D[E1]17, ... , '.D[Er]rJ)]17 ind. hyp. 
= D[g( E1, ... , Er)] 17 Theorem 3-3. 

If E has a function variable f as its root, then 

LJi=o '.D[f(Ei, ... , Er )]rJj 

= LJi=o 1]j(j)('.D[E1]1Jj, ... , '.D[Er]17j) 

= LJ~o LJ'.f =o 17j(f )( '.D[ Ei]1Jj', ... , '.D[ Er ]rJj') 

= LJ~o 17j(f)(LJ'.f=o '.D[E1]1Jj1 , • • ·, LJ'.f=o '.D[Er ]77j') 
= LJ~o 17j(f)('.D[EI]17, . .. , '.D[Er ]rJ) 
= ry(f)(D[E1]17, ... , D[Er ]77) 

'.D[f(E1, ... , Er )]11 

13 

Axiom 4 

mon. of 'f/j (f) 

cont. of rJj(f) 

ind. hyp. 

prop. of~ 

Axiom 4. O 



Theorem 3-7. Let E be a generalized term and let 17 ~ 171 be environments 
in which E is meaningful. If rJ is an environment of monotonic functions, then 
D[ E] 17 ~ D[ E]1J'. 

Proof: Recall the proof of monotonicity of ,\17.'D[E]q in the first paragraph of 
the proof of Theorem 3-6. Notice that this proof only depends on rJ being an 
environment of monotonic functions. In particular, it does not depend on 17' being 
an environment of continuous, or even monotonic, functions. O 

Theorem 3-8. For any program P, the function formed by restricting Np to 
environments of continuous functions defined only on Fp is a continuous function. 

Proof: We will first show that Np is a monotonic function when suitably restricted. 
Let 17 G 171 be environments of continuous functions defined only on Fp. Then, 

Np(ry)(fk)(x1, ... ,Xrk) = 'D[Rk[xi, ... ,Xrk]]rJ 
G D[Rk[xi, ... , Xrk]]r/ 

= Np(r/)(fk)(x1,. · ·, Xrk) 

So Np(17) G Np(171
), as needed. 

def. of Np 
Theorem 3-6 

def. of Np. 

To prove continuity, let { 'r/j} be a chain of environments of continuous functions 
defined only on Fp. Let rJ be the least upper bound of {'r!j}. Then, 

Np( 17)(fk)( xi, ... , Xrk) = 'D[Rk[X1, ... , Xrk]]17 

= LJ~o V[Rk[x1, ... , Xrk]]rJj 

= LJ~o Np('flj)(fk)(x1, ... , Xrk) 

def. of Np 

Theorem 3-6 

def. of Np. D 

Theorem 3-9. Let P be a program, and let ry G ry1 be environments defined only 
on Fp. If rJ is an environment of monotonic functions, then Np(ry) G Np(rJ'). 

Proof: Recall the proof of monotonicity of Np in the first paragraph of the proof 
of Theorem 3-8. Notice that if the reference to Theorem 3-6 is changed to reference 
Theorem 3-7, then this proof depends only on rJ being an environment of mono­
tonic functions. In particular, it does not depend on 17' being an environment of 
continuous, or even monotonic, functions. D 

For any program P, define the environment 'rJf to be undefined for any function 
variable not declared in Fp, and such that 

'f]f (fk) ,\x1, ... , Xrk·J_ 

for any k between 1 and n, where n is the number of declarations in P. For all 
non-negative integers j define 

'r/J+1 = NP( 'r!J)· 

Theorem 3-10. For any program P, any non-negative integer j, and any func­
tion variable fk in Fp, the function 11](fk) is continuous. 
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Proof: The proof is by induction on j. The function rtf (fk) is constant and, 
therefore, continuous. To prove the induction step, notice that 

17J+1Uk) = Np(rJJ)(fk) def. of ru+i 

def. of Np. = Ax1, ... , Xr.1:.'D[Rk[xi, ... , Xr ]]rlj 

Therefore, r1f+i (/k) is continuous by the induction hypothesis and Theorem 3-5. D 

Theorem 3-11. For any program P, the set {11J} forms a chain. 

Proof: We prove by induction on j that 17f ~ 17J+1 for all j. The base case ryf ~ ryf 
holds since ryf is the least environment with domain Fp. To prove the induction 
step, we must show that rJJ+i ~ 17J+2 given the induction hypothesis 'r/j ~ T/j+l· But 
this follows easily from Theorems 3-8 and 3-10. D 

Since {77f} is a chain for all programs P, we can define 17P to be its least 
upper bound. The least upper bound of a chain of continuous functions is itself a 
continuous function, so 17P is an environment of continuous functions. 

Theorem 3-12. 
equal to ryP. 

For any program P, the least fixed point of Np exists and is 

Corollary. For any program P, the least fixed point of the declarations of P 
exists and is equal to 17P. 

Proof: The corollary follows immediately from Theorem 3-4. The first step of the 
proof of the theorem is to show that 17P is a fixed point of Np. This follows since, 

Theorem 3-8 

def. of 77J+i 

def. of 17P. 

To prove that 17P is the least fixed point, let 171 be an arbitrary fixed point of Np. 
Then, 17f ~ 171

• Also, if 17.f ~ 171
, then 7JJ+i ~ ry1 by Theorem 3-9. Therefore, 

T/P ~ ry'. D 

The environment rl, which by the previous corollary is the least fixed point of 
the declarations of the program P, is called the value environment of P. An environ­
ment ry is called a value environment if it is the value environment of some program. 
The value environment of a program P plays an important role in determining the 
denotation of P, as specified in the following axiom. 

Axiom 15. (Program Denotation) If Pis a program, then P[P] = 'D[EP]ryP, 
where EP is the value term of P, and 17P is the value environment of P. 
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Since the denotation of any program P is defined without any reference to 
environments that are not environments of continuous functions, we could have 
assumed without loss of generality that all environments are of continuous functions. 
Such an assumption would simply be a matter of convenience, we have shown that 
it is not necessary for any of the required proofs. 

Theorem 3-13. If P1 and P2 are two programs such that any declaration in P1 
is included in P2, then ryP1(f) = 'f/P2(f) for any function variable f in pPi. 

Proof: It is sufficient to show that ryj1(f) ryf2(f) for any f in pPi and any 
non-negative integer j. This is done using induction on j. The base case of j = 0 
follows easily from the definition of ryf for any program P. To prove the induction 
step, remember that 

and 
ryf~ 1 (fk) = Axi, ... , Xrk:D[Rk[x1, ... , Xrk]]11f2 , 

where f k is in FP1 and 

fk( v1, ... , Vrk) {= Rk[v1, ... , Vrk] 

is a declaration in P1• It follows from the induction hypothesis and Theorem 3-2 
that ryf-i.1(fk) = 11n1(ik) for all fk in pPi. D 

There remains one more axiom to be included in Sand C. This axiom involves 
the notions of finite objects and infinite objects. To formalize these notions, we need 
the following definitions. We write hd and tl to refer both to function symbols, and 
to the interpretations of those function symbols. 

The set of extraction functions is the smallest set of functions from D to D that 
is closed under composition and contains the identity function, and the functions 
hd and tl. The rank of an extraction function is defined inductively as follows: the 
rank of the identity function is O; and if the rank of e is n, then the rank of hd o e 
and tl o e is n + 1. If for every non-negative integer n there exists an extraction 
function e of rank n such that e(z) is a constructed object, then z is an infinite 
object, other-wise it is a finite object. The rank of au uucomitructed object i:s 0. If z 
is a finite constructed object, and n is the largest integer such that there exists an 
extraction function e of rank n with e(z) being a constructed object, then the rank 
of z is n + 1. 

If tln(z) is a constructed object for every non-negative integer n, then z is an 
object of infinite length, otherwise it is an object of finite length. The inclusive length 
of an unconstructed object is 1. If z is a constructed object of finite length, and n is 
the largest integer such that tzn ( z) is a constructed object, then the inclusive length 
of z is n + 1. If z is an object of finite length with an inclusive length of n + 1, then 
the exclusive length of z is n. We will see that the informal notion of the length of 
a constructed object may mean either the inclusive length or the exclusive length. 
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The hd-rank of an extraction function is defined inductively as follows: the 
hd-rank of tzk is 0 for all non-negative integers k; and if the hd-rank of e is n, 
then the hd-rank of tlk o hd o e is n + 1 for all non-negative integers k. If for every 
non-negative integer n there exists an extraction function e with hd-rank n such 
that e(z) is a constructed object, then z is an object of infinite depth, otherwise it 
is an object of finite depth. The depth of an unconstructed object is 0. If z is a 
constructed object of finite depth, and n is the largest integer such that there exists 
an extraction function e of hd-rank n with e(z) being a constructed object, then 
the depth of z is n + 1. 

Clearly an object x is an infinite object if and only if it is an object of infinite 
depth or there exists an extraction function e (possibly the identity function) such 
that e(x) is a object of infinite length. 

A function over D is said to be finiteness preserving if it maps finite objects 
to finite objects. An environment T/ is said to be finiteness preserving if 17(!) is a 
finiteness preserving function for all function variables f for which TJCf) is defined. 

Theorem 3-14. If Pis a program and j is a non-negative integer, then 'V[Ep]1JJ 
is a finite object. 

Corollary. P[P] is the least upper bound of a chain of finite objects. 

Proof: The corollary follows from Theorem 3-6, Axiom 15, and the definition of 
ryP. Let 1J be a finiteness preserving environment and let E be a generalized term 
that is meaningful in TJ. Also assume that any subterm E' of E that is an object 
in D is finite. Clearly E has this property if it is a program term, since a program 
term has no subterms that are objects in D. We will show by induction on the 
structure of E that 'V[E]ry is a finite object. If E is a base term, then 'V[E]17 is 
clearly finite, given our assumptions about E. If the root of Eis a function symbol 
g, then 'V[E]ry is a finite object by the induction hypothesis, since g'D is finiteness 
preserving for any function symbol g. Similar reasoning applies if the root of E is 
a function variable, since 17 is finiteness preserving. 

It now suffices to show that T/J is finiteness preserving for non-negative j. This 
is done by induction on j. For the base case, 11[ is clearly finiteness preserving since 
11[(fk) is finiteness preserving for any fk in Fp. To prove the induction step, recall 
that 

TJJ+1Uk) =>.xi, ... ,Xr1.:·'.D[Rk[x1, ... ,xrk]]TJ]. 

Combining the induction hypothesis and the result from the previous paragraph 
shows that TJJ+I (fk) is a finiteness preserving function for all fk in Fp. Therefore, 

TJJ+I is finiteness preserving. D 

The above theorem shows that the denotation of any program is equal to the 
least upper bound of some chain of finite objects. Since we are only interested 
in objects that are the denotation of some program, we may include the following 
axiom in Sand C. 
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Axiom 16. (Finitely Approximable) For any object x there exists a chain {xj} 
of finite objects such that 

00 

X = LJ Xj. 

j=O 

This completes the axiomization of the strict and non-strict semantics of L. 
We complete this section with some useful results true in both S and £. 

For any program P define the total function </> p that has as its domain and 
codomain the set of terms meaningful in rt, and is such that 

ef>p[E] = { Rk[Ei, ... , Erk] if E = fk[E1, ... , Erk]; 
E otherwise. 

If E has a function variable as its root, then</> p[E] is the result of applying the copy 
rule to E. Also define the total function .Pp with the same domain and codomain 
such that 

.p [E] _ { ef>p[g(<l?p[E1], ... , <l?p[Er])] if E = g(E1, ... , Er); 
P - E if E is a base term; 

where g is a function symbol or a function variable. The term <I? p[E] is the result 
of applying the copy rule to every function variable instance in E. 

An environment T/J can be thought of as an approximation to the value envi­

ronment TJP; the larger j is, the better the approximation. Thus, 'D[Ep]TJJ can be 
thought of as an approximation to the denotation of a program P. The followinffi 
theorem shows that the denotation of P is better approximated by 'D[<l?p[E]]77j 
than by 'D[E]77f. This result will be used when we discuss the correctness of the 
implementation of L given in Section 7. 

Theorem 3-15. For any program P, variable-free term E, and non-negative 
integer j, 

Corollary. 

'D[<Pp[E]]77f = 'D[E]TJJ+1· 

'D[<Pp[E]]r/ = 'D[E]17P. 

Proof: The proof is by induction on the structure of E. Theorem clearly holds 
when Eis a base term, since in that case cf? p[E] = E. If the root of Eis a function 
symbol g, then 

'D[<P p[g(E1, ... , Er )]]TJf 
= V[ef>p[g( <P p[£1], ... , <l>p[Er])]]77f 

= 'D[g( <I? p[E1], ... , <l?p[Er ])]77J 

= D[g(D[.;J?p[E1]]77f,. ·., D[<l?p[Er]]77f)]11f 

'D[g('D[E1]1JJ+1' · · ·, 'D[Er ]11f+1)]rJJ 

= D[g(D[E1]17J+1, ... , D[Er]77J+1)]rJJ+1 

= 'D[g(E1, ... , Er )]1Jj+l 
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def. of cf? p 

def. of ef>p 

Theorem 3-3 

ind. hyp. 

Theorem 3-2 

Theorem 3-3. 



If the root of E is a function variable f not in Fp then the induction step clearly 
goes through. If the root of Eis a function variable fin Fp, then 

'.D[<l?p[fk(E1, ... , Er)]]11.f 

= '.D[<fop[fk( <l? p[E1], ... , <l? p[Er ])]]11.f 

= '.D[Rk[<l?p[E1], ... , <l?p[Er]]]17J 

= '.D[Rk['.D[<l?p[E1]]11f, .. ·, '.D[<l?p[Er ]]11f]]11f 

= '.D[Rk['.D[E1hf+1' ... ''.D[Er ]11f+1rn11f 

= r1]+1 (fk)('.D[E1]17J+1' · · ·, '.D[Er ]1JJ+1) 
= '.D[fk(E1, ... , Er )]17J+i 

def. of <l?p 

def. of <fop 

Theorem 3-3 

ind. hyp. 

def. of 17J+l 
Axiom 4. D 

In a programming language with strict semantics, objects constructed with 
cons are typically called lists. However, in C it is possible to construct objects such 
as 1: 1 that would not be considered lists. We must formally define which objects 
we call lists. The only unconstructed object that is a list is 0 (the empty list). A 
constructed object x is a list if and only if for all extraction functions e such that 
e(x) is a constructed object we have that, if tl(e(x)) is unconstructed then it is O, 
and if hd(e(x)) is unconstructed then it is an atom or¢-. 

Theorem 3-16. If x is a constructed object, then x is a list if and only if tl( x) 
is a list and hd ( x) is an atom or a list. 

Prnof: To prove the forward implication, assume x is a list. If tl(x) is uncon­
structed, then it must be O and is, therefore, a list. If tl(x) is constructed, then for 
all extraction functions e such that e( tl( x)) is a constructed object we have that, if 
tl(e(tl(x))) is unconstructed then it is 0, and if hd(e(tl(x))) is unconstructed then 
it is an atom or¢-. Therefore, tl(x) is a list. A similar argument shows that hd(x) 
is an atom or a list. 

To prove the reverse implication, assume tl ( x) is a list and hd ( x) is an atom or 
a list. Then, we claim, for all extraction functions e such that e( x) is a constructed 
object we have that, if tl(e(x)) is unconstructed then it is 0, and if hd(e(x)) is 
unconstructed then it is an atom or ¢-. This claim can be verified by considering 
three cases depending on whether e is the identity function, or is of the form e1 o tl 
or e1 o hd. Therefore, x is a list. D 

Intuitively, the length of the constructed object 1 : 1 is 2, while the length of 
the list 1 : 0 is 1. To match this intuition, the length of an object x is its exclwsive 
length if x is a list. Otherwise, the length of x is its inclusive length. 

We will also be using the notion of a canonical term. All base terms are 
canonical terms. A non-base term Ei : Ez is a canonical term if and only if Ei 
and Ez are canonical terms, and Ei : Ez is equivalent to some constructed object. 
Intuitively, a canonical term is a term that is fully reduced or simplified. Notice 
that a canonical term is necessarily a simple term, so its denotation is independent 
of environment. An object x of D is a canonical object if and only if it is equivalent 

19 



to some canonical term. Thus, a canonical object is an object that is equivalent to 
some fully reduced term. It is clear that any canonical object is a finite object. We 
also have the following result. 

Theorem 3-1 7. If E and E' are distinct canonical terms, then E tf; E'. 

Proof: The proof is by induction of the maximum of the ranks of the two objects 
denoted by E and E 1

• If either E or E 1 denote an unconstructed object, then the 
theorem clearly holds. If E and E' both denote constructed objects, then there exist 
canonical terms Ei, Ez, Ef, and E~ such that E = Ei : Ez and E' = E~ : E~. By 
the induction hypothesis, either E1 tf; Ei, or E2 tf; E~, or both. Therefore, E tf; E'. 
D 

Two important facts follow from this theorem. The first is that any two diis­
tinct canonical terms denote distinct objects. The second is that any two distinct 
canonical objects are not comparable. 

4. Some Properties of S 

The axiomizations S and C differ only in Axiom 5, the specification of cons. How­
ever, this difference leads to several significant differences in the properties of S 
and C. In this section we prove several properties of S, which can be compared to 
the properties of C discussed in the following section. Unless otherwise noted, the 
statements made in this section apply only to S. 

One of the most important differences between our strict and non-strict se­
mantics is that non-strict semantics allows for infinite objects while strict semantics 
does not. We prove in Theorem 4-2 that in S all objects are finite. That proof 
requires the following theorem. 

Theorem 4-1. If x and y are finite objects, then 

x ~ y {::==? (x = ..l V x = y). 

Proof: The reverse implication follows directly, we need only show the forward 
implication. The forward implication also follows directly in the cases where either 
x or y is an unconstructed object. So, all that remains is the case where x and y are 
both finite constructed objects, which we can prove by induction on the maximum 
of the ranks of x and y. 

x [;;;; y ::::;. h d ( x) [;;;; h d ( y) /\ tl ( x) [;;;; tl ( y) 
;:;:}- (hd(x) ~ ..l V hd(x) ~ hd(y))/\ 

( tl ( x) = ..l v tl ( x) = tl ( y)) 
::::;. hd(x) = hd(y) /\ tl(x) = tl(y) 
::::;. hd(x): tl(x) hd(y): tl(y) 
::::>x:=y 

prop. of[;;;; 

ind. hyp. 

see below 

substitution 

prop. of hd and tl. 

The third step is justified since if x is a constructed object, then hd(x) '¢. ..l and 
tl(x) '¢. .L D 
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Theorem 4-2. All objects are finite objects. 

Corollary. If x and y are arbitrary objects, then 

x !;;;; y ¢;:;:::;::;. (x = J_ V x = y). 

Proof: The corollary follows immediately from Theorem 4-1. To prove the theo­
rem, consider an arbitrary object x. By the Approximability Axiom there exists a 
chain {xj} of finite objects such that x is the least upper bound of Xj. If x = J_ 

then x is a finite object. If x ¥:- J_ then there exists an n such that Xn ¥:- _!_. Since 
{xj} is a chain, it follows that Xn !;:;;; Xm for all m such that n ~ m. So Xn = Xm for 
all such m by Theorem 4-1, since all the Xj are finite objects. Therefore x = Xn, so 
x is finite. D 

The corollary to Theorem 4-2 states that the domain D is a fiat domain. We 
will see that in .C the partial ordering over D has a much more complicated structure. 

Any strict semantics for lists should have the property that all constructed 
objects are lists. We prove that S has this property in the following theorem. 

Theorem 4-3. Every constructed object is a list. 

Proof: Consider an arbitrary object x. The theorem may be proved using induction 
on the rank of x since all objects are finite. If the rank of x is O, then x is not a 
constructed object, so the theorem holds trivially. 

For the induction step, assume the rank of x is greater than 0. Since x is a 
constructed object, tl(x) must be a constructed object or 0, and hd(x) must be 
an atom, a constructed object, or O. Therefore, by the induction hypothesis, tl(x) 
must be a list and hd(x) must be an atom or a list. Therefore, by Theorem 3-16, x 
is a list. D 

In order to prove useful properties of programs, it is necessary to be able show 
whether or not two given lists are equal. The normal method for doing this is to 
prove that each of the corresponding items in the two lists are equal. The following 
theorem makes available a more general proof method. 

Theorem 4-4. If x and y are objects, then x !;;;; y if and only if e(x) !;:;;; e(y) 
for every extraction function e such that either e(x) is unconstructed or e(y) is 
unconstructed. 

Proof: The forward implication is true since all extraction functions are monotonic. 
The proof of the reverse implication is by induction on the rank of x. If x is 
an unconstructed object, then it follows trivially that x !;:;;; y. Consider the case 
in which x is a constructed object. In this case y is a constructed object since 
e(x) !;:;;; e(y) for all extraction functions such that e(y) is unconstructed. By the 
induction hypothesis, hd(x) ~ hd(y) and tl(x) ~ tl(y). Therefore, x ~ y. D 

The intuitive interpretation of the following theorem is that every object other 
than J_ is equivalent to some fully reduced term. 
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Theorem 4-5. Every object other than 1- is a canonical object. 

Proof: Consider an arbitrary object z distinct from 1-. The proof is by induction 
on the rank of z. If z is an unconstructed object then it is clearly a canonical 
object. If z is a constructed object, then there exist x and y distinct from ..L such 
that z = x : y. By the induction hypothesis, there exist canonical terms E and E' 
such that x = E and y = E'. Therefore, z is a canonical object since z = E: E' 
and E : E' is a canonical term. D 

The above results show that S has many of the properties our intuition would 
expect for a strict semantics of list. In Section 8 we show that these properties are 
sufficient to prove the correctness of several example programs. 

5. Some Properties of£ 

In this section we prove several properties of£, which can be compared to the prop 
erties of S discussed in the previous section. Unless otherwise noted, the statements 
made in this section apply only to C. 

Let P be a program that includes the declaration 

ones -¢:: 1 : ones 

(we omit parenthesis rather than write ones() since the function variable ones is 
declared to be of arity zero). Consider the denotation of the term ones in the 
value environment of P. Notice that the denotation is independent of any other 
declarations in P by Theorem 3-13. In the future we will simply refer to this object 
as ones and the declaration above will be implicit. The object ones is important 
because, as is proven in the following theorem, it is a simple example of an infinite 
list. 

Theorem 5-1. The object ones is a list of infinite length. 

Proof: Clearly, ones is a constructed object. Also, tl( ones) = ones. It follows by 
induction that tlk (ones) = ones for all non-negative integers k. Therefore, ones is 
an object of infinite length. 

To see that ones is a list, notice that any extraction function e such that 
e( ones) is constructed is of the form tl'11

; this is because tln( ones) = ones and 
hd(tln(ones)) = 1. For any e of this form, tl(e(ones)) is a constructed object (the 
infinite object ones), and hd(e(ones)) is an atom (the atom 1). Therefore, ones is 
a list. D 

It is not immediately clear that the ordering ~ is completely determined by 
the axioms of C. It is clearly determined for finite objects in D since we can prove 
by induction over their structure whether or not two finite objects are comparable. 
But such structural induction does not apply to infinite objects, so we most prove 
by other means that ~ is completely determined. This is done with the following 
two theorems. 
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Theorem 5-2. If x is a finite object and y is the least upper bound of a chain 
{y;}, then 

x ~ y ~ :lj(x ~ Y;). 

Proof: The reverse implication is clear by the definition of the least upper bound. 
To prove the forward implication, assume x ~ y. We prove by induction on the 
rank of x that 3j(x ~ Yj). 

The proof of the base case has two cases depending on whether or not x is 
equivalent to J... The x = l. case is trivial. If x is an unconstructed object other 
than J.., then x :::::::: y, which implies that y as an unconstructed object other than J... 
Thus, there exists a j such that y = Yj, which implies that x Yj· 

For the induction step, assume that x is a constructed object, which implies that 
y is a constructed object. Therefore, there exists a k such that Yk is a constructed 
object. By the induction hypothesis there exists a jo ~ k and a ji ~ k such that 
hd(x) ~ hd(yj0 ) and tl(x) !;; tl(yj1 ). Let j be the maximum of jo and ji. Then, 

x = hd ( x) : tl ( x) 

~ hd(Y.i): tl(yi) 

Yi 

prop. of hd and tl 

prop. of j 
prop. of hd and tl. D 

Theorem 5-3. Let {xj} and {y;} be chains with least upper bounds of x and y, 
respectively. If all of the x j are finite, then 

Proof: The theorem follows from the following logical equivalences: 

x !;; y ~ Vj(Xj !;; y) 

~ Vj:lk(x; !;; Yk) 

def. of LJ 
Theorem 5-2. D 

Let x and y be arbitrary objects. By the finite approximation axiom there are 
chains of finite objects that have x and y as their least upper bounds. Thus, by 
Theorem 5-3, the assertion x !;; y is true if and only if a statement involving only 
comparisions of finite objects is true. Therefore, since !;; is completely determined 
for finite objects, ~ is completely determined for all objects. 

Theorem 4-4 is a useful theorem for doing correctness proofs of programs with 
semantics given by S. A similar theorem holds for C as well. 

Theorem 5--1. If x and y are objects, then x [;;;; y if and only if e(x) !;; e(y) 
for every extraction function e such that either e( x) is unconstructed or e(y) is 
unconstructed. 

Proof: The forward implication is true since all extraction functions are monotonic. 
If x is a finite object, then the proof of the reverse implication is by induction on 
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the rank of x just as in the proof of Theorem 4-4. Notice that this proof does not 
require that y be finite. 

To prove the theorem for infinite x, let {xj} be a chain of finite objects with 
x as its least upper bound. Consider an arhitra.ry xi· Also, consider the set F 
of all extraction functions e such that either e(xj) is unconstructed or e(y) is un­
constructed. It can be shown that e(xj) b e(y) for all e in F by considering the 
following three cases. 

If e(y) is nnconstructed then e(x) b e(y), which implies e(xj) b e(y). If e(xj) 
and e(x) are unconstructed, then e(x) b e(y); which again implies e(xj) b e(y). 
If e( x j) is unconstructed and e( x) is constructed then e( x j) = l., which implies 
e(xj) b e(y). 

Thus, x j b y since x j is finite and we have already shown that the theorem 
holds for finite x. Since x j was chosen arbitrarily, it follows that x b y by the 
definition of least upper bound. D 

We have seen that the semantics given by£ allow the construction of objects 
such as 1 : 1 that are not lists. These semantics also allow the construction of 
another class of unusual objects, some of which arc lists: the unproductive objects. 
The completely unproductive list is the list x such that e( x) is a constructed object 
for all extraction functions e. There is only one such list since if x and y are such 
that e(x) and e(y) are constructed for all extraction functions e, then x = y by two 
applications of Theorem 5-4. An object xis unproductive if e(x) is the completely 
unproductive list for some extraction function e. 

In Theorem 4-5 we saw that in S, every object other than ..l is equivalent to 
some fully reduced term. In £ there are many objects other than ..l that are not 
equivalent to some fully reduced term, as shown in the following theorem. 

Theorem 5-5. An object x is canonical if and only if it is finite and e(x) '¢. ..l 
for all extraction function e. 

Proof: If x is infinite, then both sides of the if and only if are false, so the theorem 
holds in this case. The proof of the theorem for finite x is by induction on the rank 
of x. The theorem holds if x is unconstructed since there is a base term equivalent 
to x if and only if x '¢. l., and all base terms are canonical terms. 

If x is constructed, then by the induction hypothesis the theorem holds for 
hd ( x) and tl ( x). It is then simple to verify that the theorem holds for x by seperately 
checking the forward and reverse implications. D 

Theorem 5-6. If y is a canonical object, then there exists only a finite number 
of distinct x such that x b y. 

Proof: The proof is by induction on the rank of y. If y is unconstructed then 
x = ..l and x = y are the only x such that x b y. If y is constructed, then by the 
induction hypothesis there is only a finite number m of x such that x b hd(y) and 
only a finite number n of x such that x b tl(y ). Therefore, there is only a finite 
number, namely m x n + 1, of x such that x by. D 

24 



In both S and £., an object x is canonical if and only there exists no y '¢. x such 
that x [;;;; y, and there exists only a finite number of distinct y such that y [;;;; x. This 
could be used as an alternative definition of canonical objects. 

6. A Model of .C 

In this section we prove that there exists of a model of .C, and that any two models 
of£., are isomorphic. Defining a model of £ requires giving a domain D with partial 
ordering [;;;; D, and defining semantic functions '.D and P, that together satisfy the 
axioms given in Section 3. We do not give a complete specification of a model, but 
only specify a part of a model sufficient to demonstrate that a complete model exists 
(see [2] for an inverse limit construction of a domain of infinite lists, though this 
domain does not satisfy .C). Specifically, we define a domain D with partial ordering 
[;;;; D, and also partially specify a semantic function '.D (by giving interpretations for 
the function symbols cons, hd and tl), that satisfy the axioms of£., listed below. 

Axiom 1. (Semantic Classes) The objects of Dare divided into two disjoint sets, 
the unconstructed objects and the constructed objects. The unconstructed objects 
are J?, eD, <:;P and the members of the set of atoms A. 

Axiom 2. (Base Terms) If Eis a variable-free generalized base term, then for 
any environment 7J 

{

ED 
¢P 

'.D[E]7J = ~[E] 

if E £; 
if E = O; 
if E is an atomic base term; 
if E is an object in D. 

Axiom 3. (Function Symbols) Let g be a function symbol of arity r. There 
exists a function gv (the interpretation of g with respect to '.D) from nr to D such 
that 

'.D[g(E1, ... , Ek)]'IJ = gv('.D[E1]7J, ... , '.D[Ek]'IJ) 

if k = r and each of the '.D[Ei]'IJ is defined. Otherwise, '.D[g(Ei, ... , Ek)]'IJ is unde­
fined. 

Axiom 5 of£. (cons) For all x and y in D, the generalized term x: y is equivalent 
to a constructed object. 

Axiom 6. (Constructability) For all constructed objects z, there exist unique x 
and y such that z = x: y. 

Axiom 7. (hd and tl) For all z in D, if x: y is equivalent to a constructed object, 
then 

hd(z) 

if z = .l; 
if z = O or z = E; 
if z is an atom; 
if z = x: y; 
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Axiom 13. (!;;;;) 

a) For all x, x !;;;; x. (reflexivity) 

b) For all x and y, if x !;;;; y and y !;;;; x, then x = y. (antisymmetry) 

c) For all x, y, and z, if x !;; y and y !;; z, then x !;; z. (transitivity) 

d) If x or y is an unconstructed object, then x !;; y if and only if x = ..L or 
x = y. 

e) If x and y are constructed objects, then x !;;;; y if and only if hd(x) !;; hd(y) 
and tl ( x) !;; tl ( y). 

Axiom 14. (Closure) For all chains {xj} of objects in D, there exists an object 
x such that 

00 

X = LJ Xj. 

j=O 

Axiom 16. (Finitely Approximable) For any object x there exists a chain { x j} 
of finite objects such that 

00 

X = LJ Xj. 

j=O 

The remaining axioms of C in Section 3 are all in the form of definitions. 
Therefore, if our proposed partially specified model does in fact satisfy the axioms 
listed above, then it can be extended (by completing the definitions of 'D and P) 
in exactly one way to satisfy all the remaining axioms of £. Thus, our partially 
specified model is sufficient to demonstrate the existence of a model of£. 

Let A be the set of atoms, i.e., the integers together with the two truth values. 
Define the set 

M =Au {..LM, OM £M,')'}. 

Thus, M contains elements corresponding to each unconstructed object in the do­
main D, and also contains an additional element')', the purpose of which will become 
clear. We define a partial ordering i;M over M such that 

(u i;M v) ~ (u = ..L1'1 ) V (u = v). 

We can use trees with nodes labeled by elements of M to represent finite objects, 
as in Figure 1. Such trees are called full binary trees because each node has either 
zero or two children. We call a full binary tree complete if all the leaf nodes are 
the same distance from the root, where the distance of a uu<le from the root is the 
number of edges in the path from the root to that node. We can transform trees 
such as that in Figure 1 into complete binary trees by adding nodes as in Figure 
2. Nodes added as children of a node labeled with ..LM are also labeled with ..LM, 
children of nodes labeled with anything but ..LM or I' are labeled with eM. No leaf 
node is ever labeled with')', so that case need not be considered. 

The tree in Figure 2 was formed by adding the minimum number of nodes 
necessary to form a complete binary tree. It is possible to add more nodes and still 
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Figure 1: Full binary tree representation of (..L: £): O. 

Figure 2: Complete binary tree representation of (..L: e): O. 

27 



Figure 3: Another complete binary tree representation of ( J_ : £) : <). 

Figure 4: Infinite complete binary tree representation of (..L: t:): <). 
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Figure 5: Infinite complete binary tree representation of ones. 

Figure 6: Infinite complete binary tree represented by (u)~=i· 
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form a complete binary tree that represents the same finite object, as in Figure 3. 
In fact, one could imagine forming an infinite complete binary tree in this way, as 
in Figure 4. Thus, the tree in Figure 4 is an example of an infinite tree used to 
represent a finite object. Such infinite trees can also be used to represent infinite 
objects as in Figure 5. 

Such a tree can in turn be represented by an infinite sequence of elements of 
M, i.e., by elements of the set 

U = { (un);;,o=l I Vn[un EM]}. 

We require that elements of such a sequence correspond to the nodes of an infinite 
complete binary tree as shown in Figure 6. We will see that this correspondence 
simplifies defining the interpretation of cons. 

If a particular tree corresponds to the sequence {un)~=l' then the left and right 
child of Un are Un+p(n) and Un+2p(n)' respectively, where 

p(n) = 2Llou2(n)J. 

If (un);;o=l corresponds to a complete binary tree formed as informally described 
earlier, then Q.L((un);;,o=1) and Qe((un);;,o=1) hold, where Q.L((un)~1 ) is defined as 

Vn[(un = J_M) =? ((un+p(n) = J_M)A (un+2p(n) .l_M))], 

and Qe((un);;_o=1) is defined as 

Vn[((un # J_M) A (un =f. 'Y)) =? ((un+p(n) = £M) A (un+2p(n) = £M))]. 

This motivates defining the domain D of our model of C by 

D = {x Ix EU A Q.L(x) A Qe(x)}. 

The partial ordering over M is extended to form the partial ordering ~ D over D 
such that 

(un);;,o=l ~D (un)~=l ~ Vn[un ~M Vn]-

An object x = (un)~=l is defined to be a constructed object if u1 =/,otherwise it 
is an unconstructed object. 

Next we define functions C : D x D 1--+ D and '}-{, T : D 1--+ D that serve as the 
interpretations of cons, hd and tl, respectively. The function C is given by 

where 

C( (un)~=l' (vn)~=l) = (wn);;_o=1' 

W -{:n n- ~ 

Vn-1 
;r 

if n = 1; 
if n > 1 and n is even; 
if n > 1 and n is odd. 

The functions 1-{ and Tare given by 

1-i({un);;,o=l) = (u2n)~=1' 
T( (un);;,o=l) = (u2n+1);;,o=l · 

Clearly the above definitions make sense if they are viewed as defining functions 
over U, but it is a more difficult task to prove that these definitions make sense for 
functions over D. This task is carried out in the proof of the following theorem. 
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Theorem 6-1. The functions C, 'H, and Tare well-defined 

Proof: Let (un)~=l and (vn)~=l be elements of D. This implies that Q.L((un)~=1 ), 
Qe((un)~=1 ), Q.L((vn)~=1 ), and Qe((vn)~=1 ) hold. Let (wn)~=l be defined in terms 
of (un)~=l and (vn}~=l as in the definition of C. We must show that the follow­
ing propositions hold: Q.L( (wn)~1 ), Qe( (wn)~=1 ), Q.L( (u2n)~=1), Qe( (u2n)~=1), 
QJ..( (u2n+1)~=1 ), and Qe( (u2n+i)~=1 ). We will actually prove only those proposi­
tions concerning Q l.., the proofs fur Q e are analogous. 

To prove QJ..( (wn)~=1 ) we must consider three cases corresponding to the cases 
in the definition of Wn. The n = 1 case is trivial since w1 = 'Y· If n > 1 and n is 
even, then 

Wn = J_ =? U-lJ- = J_ 

=? ( U-l}+p(-l}) = j_) /\ ( U-l}+2p(~) = _l_) 

=? (un+~(n) = _l_) /\ (un+2f(n) = j_) 

=? ( Wn+p(n) = j_) /\ ( Wn+2p(n) = j_) 

If n > 1 and n is odd, then 

Wn = J_ =? Vn-1 = J_ -z 
'* (v9+P(9) = _l_) /\ (v9+2P(9) = _l_) 

=? ( Vn+p(n-1)-1 = _l_) /\ ( Vn+2p(n-1)-1 = j_) 
2 2 

--? ( Vn+p~n)-1 - ..L) /\ ( Vn+2p~n)-1 = ..L) 

=? ( Wn+p(n) = _l_) /\ ( Wn+2p(n) = _l_) 

The proposition Q l.. ( ( Uzn) ~=l) follows from 

u2n = J_ =? ( Uzn+p(2n) = _l_) /\ ( Uzn+2p(2n) = _l_) 
=? ( Uz(n+p(n)) = _l_) A ( Uz(n+2p(n)) = _l_) 

Finally, the proposition Q l.. ( ( u2n+i) ~=l) follows from 

def. of Wn 

Q_t_( (un)~=l) 

prop. of p 

def. of Wn. 

def. of Wn 

Ql..( ( vn)~=l) 

prop. of p 

prop. of p 

def. of Wn. 

QJ..( ( Un}~=l) 
prop. of p. 

U2n+I = J_ =? ( Uzn+l+p(2n+l) = _l_) /\ ( Uzn+1+2p(2n+l) = _l_) 
'* ( Uzn+I+p(Zn) = _l_) /\ ( Uzn+I+2p(2n) = _l_) 

Ql..( (un)~=l) 
prop. of p 

prop. of p. D =? ( Uz(n+p(n))+l _l_) /\ ( Uz(n+2p(n))+l = _l_) 

We have now completed enough of our partial specification of a model of .C 
to begin demonstrating that the model satisfies the axioms of .C listed at the be­
ginning of this section. Axiom 1 requires that D contain two semantic classes, the 
constructed objects and the unconstructed objects. We have already specified that 
an object x (un}~=l is a constructed object if u1 = "(, otherwise it is an uncon­
structed object. The axiom also specifies the class of unconstructed objects to be 
JP, £D, <)°, and the members of the set of atoms A. We define each of these to 
be the domain element (un)~=l where, respectively, ii1 = J_M, u1 = £M, u1 = <)M, 
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and u1 =a for some a in A. Notice that these define a unique (un)~=l in each case 
since the propositions Q.L((un)~=l) and Qe((un)~=1 ) hold. 

Axioms 2 and 3 give properties of the semantic function 'D in terms of the 
interpretations g1J of each function Ryrnbol fl in .L. It is clear that for any set of 
interpretations there exists a 'D that satisfies Axioms 2 and 3. We require that C, Ti 
and T be the interpretations of the function symbols cons, hd and tl, respectively. 
Axiom 5 requires that x: y be equivalent to a constructed object for any x and y 

in D. This clearly bolds in our model by the definition of C. 

Our model satisfies Axiom 6 since if z constructed object in D, then x = Ti( z) 
and y = T(z) are the only objects such that z = C(x, y). This fact is also used 
to verify that Ti and T satisfy Axiom 7. It is also easy to verify that ~D satisfies 
Axiom 13. 

To verify that our model satisfies Axiom 14, first notice that any chain of 
elements of NI bas a least upper bound in M. 1rhis fact, together with the following 
theorem, shows that Axiom 14 is satisfied. 

Theorem 6-2. For any chain { (uk,n)~1 } in D, 

Proof: The theorem is proved by showing that the following chain of logical equiv­
alences holds for arbitrary (vn)~=l in D, 

Vk[{uk,n)~=l ~ {vn)~=l] {:=::} VkVn[uk,n ~ Vn] Def. of ~D 
00 

{:=::} Vn [ LJ Uk,n ~ Vn] Def. of LJ 
k=O 

00 00 

{:=::} ( LJ Uk,n Jn=l ~ (vn)~=l Def. of ~D. D 
k=O 

The last axiom to verify is Axiom 16. The following theorem demonstrates 
that our model satisfies this axiom. 

Theorem 6-3. 
such that 

For all x in D there exists a chain {xiJ of finite elements of D 

00 

X = LJ Xk· 

k=O 

Proof: We will construct the {xk} for an arbitrary x = (un)~=l· Let each Xk = 
(uk,n)~1 , where the uk,n are defined as follows. If n < 2k+l then uk,n = Un. The 
remaining uk,n are given by 

Uk,n+p(n) = Uk,n+2p(n) = { t 
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where 2k :=:;; n. It is easy to verify that each Xk is a object in D. Also, each Xk is 
finite since there is only a finite number of different n such that uk,n = 'Y for a given 
k. 

To show that the Xk form a chain, we must show that uk,n r;;M uk+l,n for each 
non-negative k and positive n. This is done by induction on n. The base case of 
n < 2k+l clearly holds since both uk,n and Uk+l,n are equal to Un. If n 2:: 2k+l 

then either Uk,n = J_ or Uk,n e. If Uk,n = J_ then clearly Uk,n r;;M Uk+l,n· For 
uk,n = e, notice that there exists an n' < n such that either n' + p( n') n or 
n1+2p(n') = n. It must be the case that Uk,n' =f. .Land Uk,n' =f. 'Y· By the induction 
hypothesis, this implies that Uk+l,n' f= .L and Uk+l,n' f= 'Y· Therefore, Uk+l,n = e 
and so Uk n = Uk+I n· 

' ' 
To see that x is the least upper bound of the xk, notice that for all n there 

exists a ko such that uk,n =Un for all k 2:: ko. Thus, 

00 

Un LJ Uk,n 

k=O 

for all n. Therefore, the desired result follows from Theorem 6-2. D 

We have shown that there is at least one model of£. In the remainder of this 
section we show that, up to isomorphism, there is exactly one model of £. Let 
(D, 'D) and (D', 'D') each be an ordered pair of a domain and a semantic function 
that satisfy those axioms of C listed at the beginning of this section. As discussed 
earlier, each such pair can be extended in exactly one way to form a model of C. The 
resulting models are isomorphic if and only if ( D, D) and ( D', D') are isomorphic. 
Therefore, we can show that any two models of C are isomorphic by showing that 
(D, 'D) and (D', D') are isomorphic. 

Let ho be a function from finite object,s in D to D' as follows. If a is an atom, 
then ho( a)= a. Also, ho(J.?) = J!>', and similarly for OD and eD. We define ho for 
finite constructed objects x :v y by induction on their rank, 

ho(x :1J y) = ho(x) :V' ho(y). 

The function ho has several important propertieR. Tt is easy to verify that x 
is constructed if and only if ho( x) is constructed. If x is finite, then so is ho( x ). 
Also, for any finite x' in D', there exists a finite x in D such that ho(x) = x1

• It 
can also be shown, by induction on the rank of finite x and yin D, that x r;;D y if 
and only if ho(x) ~D' ho(y), so ho is monotonic. It follows that x = y if and only if 
ho(x) = ho(y). 

Let {xk} and {yk} be chains of finite objects in D with least upper bounds of 
x and y, respectively. Then { ho(xk)} and {ho(Yk)} are chains of finite objects in 
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D'. Let x' and y1 be the least upper bounds of these chains. Then, 

x !;Dy ¢:==} (u~O Xj) (LJ~o Yk) given 

~ Vj3k[x j !;D Yk] Theorem 5-3 

Vj3k[ho(xj) !;D' ho(Yk)] prop. of ho 

¢:==} (LJ~oho(xj)) bD' (LJ~oho(Yk)) Theorem 5-3 

¢:==} x' ~D' y' given. 

It follows that x = y if and only if x 1 = y1
• Therefore, it makes sense to define a 

function h from D to D' such that 
00 

h(LJk°=o xk) = lJ ho(xk) 
k=O 

for any chain {xk} of finite objects in D. By Axiom 16, his defined on all elements 
of D. Since x y if and only if x' bD' y1 above, it follows that h is monotonic 
and one-to-one. It is also easy to verify that h(x) = h0(x) for all finite x in D. 

Theorem 6-4. The function his an isomorphism from (D, T>) to (D', T>'). 

Corollary. Any two models of C are isomorphic. 

Proof: The corollary follows from the discussion in the first paragraph following 
Theorem 6-3. The first step in showing that his an isomorphism is showing that it 
is a continuous bijection. Proving that h is a bijection requires showing that for all 
x' in D' there exists an x in D such that h( x) = x', since we have already shown 
that his one-to-one. Let x' be an object in D'. There exists a chain {xk} of finite 
objects in D' with x 1 as its least upper bound. It is a property of ho that there 
exists a chain {xk} of finite objects in D such that ho(xk) = x~ for each k. Let x 
be the least upper bound of {xk}. Then, h(x) = x'. Therefore, his a bijection. 

To prove that h is continuous, let {yk} be chain of objects in D with a least 
upper bound of y. Then {h(yk)} is a chain of objects in D'. Let y 1 be the least 
upper bound of this chain. We must show that h(y) = y1

• Since his monotonic, we 
know that h(yk) !; h(y) for each k. Therefore, y1 !; h(y). To show that h(y) !; y', 
let {xk} be chain of finite objects in D that also has y as its least upper bound. 
Then {h(xk)} is a chain of objects in D1

• Let x1 be the least upper bound of this 
chain. Since each of the xk is finite, we know that h(xk) = ho(xk)· Therefore, 
h(y) = x 1

, 60 we need only Bhow that x 1 !; y1
• Thi6 follows from 

(LJ~o Xj) = (ur=o Yk) * Vj3k[xj bn Yk] Theorem 5-3 

* Vj3k[h(xj) bD' h(yk)] mon. of h 

* (U~o h(xj)) bn' (ur-o h(Yk)) Theorem 5-3 

* X
1 bD' y1 given. 
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Therefore, h is continuous. 

Next we must show that h preserves the classes specified within domains: ..L, 
£, <>, atoms, and constructed objects. This property is clear for h applied to finite 
objects x, since in that case h( x) ho( x ). Thus, we need only show that if x is an 
infinite object, then h( x) is a constructed object. Any chain { x j} of finite objects 
that has x as its least upper bound must contain some object, call it Xk, that is a 
constructed object. Thus, h(x) is the least upper bound of a chain that contains 
the constructed object ho(xk)· Therefore, h(x) is a constructed object. 

Next we must verify that h(x :'Dy)= h(x) :'D' h(y) for all x and yin D. Let 
{xk} and {yk} be chains of finite objects in D with least upper bounds of x and y, 
repectively. Then, 

'D uoo 'D uoo h(x: y) = h(( k=O Xk): ( k=O Yk)) 

= h(LJ%°=o(Xk :'D Yk)) 

= LJ%°=o ho(xk :'D Yk) 

LJ~0 (ho(xk) :'D' ho(Yk)) 

= (LJ~o ho(xk)) :'D' (LJ%°=o ho(Yk)) 

= h(LJ%°=o Xk) :'D' h(LJ~o Yk) 

= h(x) :'D' h(y) 

given 

cont. of :'D 

def. of h 

def. of ho 

cont. of : 'D' 

def. of h 

given. 

Finally, we must verify that h(hd'D(x )) = hd'D' (h(x )) and that h(tl'D(x )) = 
av' ( h( x)) for all x in D. First we consider the case for hd. The desired property is 
easy to verify for unconstructed objects. For constructed objects, 

h(hd'D(x :'Dy))= h(x) 

= hd'D
1

(h(x) :'D' h(y)) 

= hd'D' (h(x :'Dy)) 

The case for tl is completely analogous. O 

Axiom 7 

Axiom 7 

prop. of h. 

This completes the proof that there is exactly on model of C, up to isomor­
phism. Using the notation of [1], the domain of this model can be described (up to 
isomorphism) by the recursive domain equation 

D (Atoms U {£, <>, ..L}) EB (D Xl_ D). 

Thus, the semantics given by C correspond to the implementation-oriented seman­
tics given in [4]. 

The axioms of S also determine exactly one model, up to isomorphism. The 
proof of this is straightforward and will not be given here. 
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7. An Interpreter with Non-Strict Semantics 

In this section we present an interpreter for the functional programming language 
L that has its semantics given by the axioms of C. We also give a detailed sketch 
of a proof of the correctness of this interpreter. 

The interpreter is written in a procedural languge based on Dijkstra's guarded 
commands [3]. We extend this procedural language with the addition of function 
calls. The proofs in this section are not based on a formal semantics of this proce­
dural language, but instead appeal to the reader's intuition concerning the meaning 
of procedural programs. However, the proofs are given in enough detail that it 
should be straightforward to formalize them to any desired degree. See [7] for proof 
techniques that can be applied to recursive procedures and functions in this lan­
guage. Also, see [8] for techniques that do not require functions to be rewritten as 
procedures. 

Any issues related to the run-time environment provided by the interpreter are 
beyond the scope of this paper. We i:;imply implement a function Eval such that 
when Eval(E) terminates it returns a canonical (see Section 3) term equivalent to 
E. The function Eval makes use of the function EvalCons. When EvalCons(E) 
terminates, it returns a term E' that is either a base term or a term that has cons 
as its root. It does no further processing on the proper subterms of E'. 

The term that the interpreter should return depep.ds on the declarations in 
the program being evaluated. Thus, Eval and EvalCons implicitly depend on the 
declarations of the program. Throughout this section we assume that Eval is being 
called on a program term that is meaningful in the value env1ronmfmt of some 
program P that has n declarations of the form 

where k is between 1 and n. Whenever we use the symbols = and ~ as abbreviations 
for =s and ~s in this section, it is understood that S is the singleton set consisting 
of r/, the value environment of P. We write E = E' to assert that E and E' are 
identical terms. 

In order to represent terms in our procedural language, we add three new data 
types. The first two of these data types are scalar types that would be declared by 

TermType - [ERROR, NIL, BOOL, INT] 

RootType =[CONS, HD, TL,FUNCVAR,PLUS,MINUS, TIMES, 

MOD, EQUALP, LTEQP, ATOMP, NILP] 

in PASCAL. The scalars of type TermType correspond to the different kinds of 
base terms in L. The scalars of type RootType correspond to the different roots a 
non-base term in L can have. The third data type is called term. Rather than give 
the details of the structure of the type term, we assume the existence of predefined 
functions that provide abstract operations on this data type. Informal semantics 
of each of these predefined functions is given in Table 7-1. This table shows the 
result of a call to each function, given that the arguments to the functions satisfy 
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Function Restrictions Result 

IsBase(E: term): Boolean none true if E is a base term, 
false otherwise 

Root(E: term) : Root Type non-base term scalar corresponding 
to the root of E 

TypeOJ(E: term): TermType base term scalar corresponding 
to the type of E 

BoolValue(E: term): Boolean bool. base term bool. value equiv. to E 

Int Value( E : term) : Integer int. base term int. value equiv. to E 

Subterm( n : Integer; E = g( Ei, ... , Er) En 
E: term): term 1:::; n:::; r 

ConsTerm(E1,E2: term): term none Ei: Ez 

ErrorTerm: term none £ 

ApplyCopyRule(E: term): term E = fk(E1, ... , Erk) Rk[E1, ... , Erk] 

BoolTerm(b : Boolean) : term none base term equiv. to b 

Int Term( n: Integer) : term none base term equiv. ton 

Table 7-1. Predefined functions used in Eval and EvalCons. 

the restrictions in the second column. Notice that the function ApplyCopyRule 
depends implicitly on the declarations of P. 

Clearly any call to Eval or to EvalCons that terminates makes only a finite 
number of recursive function calls. In particular, only a finite number of recursive 
function calls to Eval or EvalCons are made. Thus, we can use induction on the 
number of recursive calls to Eval or EvalCons in order to prove properties of termi­
nating computations. The following two theorems prove important properties Eval 
and EvalCons using this method. 

Theorem 7-1. If Eis a variable-free term and EvalCons(E) terminates, then 

1) EvalCons(E) E, and 

2) EvalCons(E) is a variable-free term that either is a base term or has cons as 
its root. 

Proof: Since EvalCons(E) is assumed to terminate, we can prove the theorem by 
induction on the number of recursive calls to EvalCons. In the base case there are 
no recursive calls to EvalCons, which implies that E is a base term or has cons as 
its root. It follows that EvalCons(E) = E, so the theorem holds in the base case. 

For the induction step, assume the number of recursive calls to EvalCons is 
greater than zero. This implies that E is a non-base term with a root other than 
cons. The proof of the induction step is by case analysis on the possible roots of E. 
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1) Function Eval(value E: term): term; 
2) var E': term; 
3) begin 
4) E' := EvalCons(E); 

5) if IsBase(E') -----+result:= E' 
6) ~ -iisBase(E') -----+ {Root(E') = CONS} 
7) result:= ConsTerm(Eval(Subterm(l, E')), Eval(Subterm(2, E'))) 
8) fi 
9) end 

1) Function EvalCons(value E: term): term; 
2) var n: Integer; b: Boolean; E 1

, E": term; 
3) begin 
4) if IsBase(E) -----+result := E 
5) ~ -iisBase(E) -----+ 
6) if Root(E) CONS result := E 
7) 0 Root(E) in [HD, TL] -----+ 
8) E' := EvalCons(S·ubterm(l, E)); 
9) if IsBase(E1

) -----+result:= ErrorTerm 
10) ~ -iisBase(E') -----+ {Root(E1

) = CONS} 
11) if Root(E) =HD -----+ E" := Subterm(l, E') 
12) ~ Root(E) = TL-----+ E" := Subterm(2, E') 
13) fi; 
14) result := EvalCons(E11

) 

15) fi 
16) ~ Root(E) =IF -----+ 
17) E' := EvalGons(Subterm(l, E)); 
18) if IsBase(E') -----+ 
19) if TypeOJ(E') = BOOL-----+ 
20) if BoolValue(E') -----+ E 11 := Subterm(2, E) 
21) 0 -,BoolValue(E') -----+ E" := Subterm(3, E) 
22) fi; 
23) result := EvalCon:;(E11

) 

24) 0 TypeOf(E') =/:- BOOL-----+ result:= ErrorTerm 
25) fi 
26) 0 -iisBase(E') -----+result:= ErrorTerm 
27) fi 
28) ~ Root(E) = FUNCVAR -
29) result:= EvalGons(ApplyCopyRule(E)) 
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30) 

31) 

32) 

33) 

34) 
35) 

36) 

37) 
38) 

39) 

40) 
41) 
42) 
43) 
44) 

45) 
46) 

47) 
48) 
49) 

50) 
51) 
52) 
53) 
54) 

55) 

56) 

57) 
58) 
59) 

60) 

61) 

62) 

63) 
64) 

65) 

66) 

67) 

68) 

0 Root(E) in [PLUS, MINUS, TIMES, MOD, EQUALP, LTEQP] -
E' := EvalCons(Subterm(l, E)); 

if IsBase(E') -
if Type Of ( E') = INT -

E" := EvalCons(Subterm(2, E)); 

if IsBase(E") -
if TypeOJ(E") =INT -

if Root(E) in [PLUS, MINUS, TIMES] -
if Root(E) = PL US -

n := IntValue(E') + IntValue(E") 

0 Root(E) = MINUS -
n := IntValue(E') - IntValue(E") 

0 Root(E) TIMES 
n := IntVal?Le(E') x IntVafoP.(E") 

fi; 
result:= IntTerm(n) 

0 Root(E) =MOD -
n := IntValue(E"); 
if n ::; 0 --t result := ErrorTerm 

an>O--t 

fi 

n := IntValue(E') mod n; 
result := Int Term( n) 

a Root(E) in [EQUALP, LTEQP]--+ 
if Root( E) = EQ U ALP -

fi 

b := (IntValue(E') = IntValue(E")) 

0 Root(E) = LTEQP -
b := (IntValue(E') :::; Int Value(E")) 

fi; 
result:= BoolTerm(b) 

a TypeOJ(E") =fa INT --t result:= ErrorTerm 

fi 
0 -iisBase(E") - result:= ErrorTerm 
fi 

a TypeOJ(E') -/=INT - result:= ErrorTerm 
fi 

a -iJsBase(E')--+ result:= ErrorTerm 

fi 
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69) ~ Root(E) in [ATOMP, NILP]--+ 
70) E' := EvalCons(Subterm(l, E)); 
71) if IsBase(E1

) 

72) if TypeOf(E') =ERROR ~~~}result:= ErrorTerm 

73) ~ TypeOf(E') =/:- ERROR--+ 
74) if Root(E) = ATOMP --+ 

75) b := Type0f(E1
) in [INT, BOOL] 

76) ~ Root(E) = NILP--+ 
77) b := Type0f(E1

) = NIL 
78) fi; 
79) result := BoolTerm(b) 
80) fi 
81) ~ •IsBase(E')--+ result:= BoolTerm(false) 
82) fi 
83) fi 
84) fi 
85) end 

If the function symbol hd is the root of E, then by the induction hypothesis 
E' is set to a term that is either a base term or has cons as its root. The induction 
hypothesis also implies that E = hd(E'). If E' is a base term, then E := e and 
EvalCons(E) = £, so the theorem holds. Otherwise the induction hypothesis gives 
the desired result since hd(E') = Subterm(l, E 1

) when cons is the root of E 1
• If tl 

is the root of E, then the proof is completely analogous. 

If E is of the form if Ei then E2 else Ea, then E 1 is set to a term that is 
equivalent to E 1 . If E 1 is not a boolean base term, then EvalCons(E) = e, which 
satisfies the theorem. If E 1 = true then E = Subterm(2, E). If E 1 = false then 
E = Subterm(3, E). So it follows from the induction hypothesis that the theorem 
holds in these cases as well. 

If the root of E is a function variable, then the desired result follows easily 
from the induction hypothesis, since ApplyCopyRule(E) = E. 

The remaining cases are left as an exercise for the reader. D 

Theorem 1-2. If Eis a variable-free term and Eval(E) terminates, then 

1) Eval(E) E, and 

2) Eval(E) is a canonical term. 

Proof: Since EvalCons(E) is assumed to terminate, we can prove the theorem by 
induction on the number of recursive calls to E·val. In the base case there are no 
recursive calls to Eval, which implies that E 1 is set to a base term. It follows from 
Theorem 7-1 that E' = E, so the theorem holds in the base case. 

For the induction step, assume the number of recursive calls to Eval is g;reater 
than zero. This implies that E' is set to a term that has cons as its root. Therefore, 
Eval(Subterm(l, E 1

)) is equivalent to hd(E) and is a canonical term. The analogous 
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statement is also true of Eval(Subterm(2, E')). Therefore, Eval(E) is equivalent to 
E and is a canonical term. D 

The next several theorems are used in the proof of Theorem 7-7, which states 
that EvalCons(E) terminates if and only in E '¢=. .L We start by proving that 
EvalCons(E) terminates for a smaller class of E. 

Theorem 7-3. If Eis a variable-free term such that V[E]'IJB -:f:. ..L, then 

1) EvalCons(E) terminates, and 

2) if EvalCons(E) is not a ba::;e term, the11 it i::; a ::;uLLerm of E. 

Corollary. If E is a variable-free term such that E "¥= ..L, then there exists a 
non-negative integer n such that EvalCons( .;pn(E)) terminates. 

Proof: First we show that the corollary follows from the theorem. Let E be a 
variable-free term not equivalent to ..L. It follows from Theorem 3-15 that 

for all non-negative integern n. Therefore, there exists a noil-negative n ::mch that 
'.D[<I>n[E]]17f "# ..L. 

To prove the theorem, let E be a variable-free term such that '.D[E]'IJf -:f:. ..L. 
The proof is by induction on the structure of E. The base case is trivial since 
EvalCons(E) obviously terminates and is equal to E when Eis a base term. 

The incl11d1on Rtep lR prowm by case analysis on each of the possible roots of 
E. If cons is the root of E, then again EvalCons(E) obviously terminates and is 
equal toE. 

Let E be of the form hd(E1). Clearly '.D[E1]rycf -:f:. ..L, so, by the induction 
hypothesis the statement E' := EvalCons(Subterm(l, E)) terminates and sets E' 
to a term that is equivalent to Ei. If E 1 is a base term, then clearly EvalCons(E) 
terminates and is a base term. Otherwise, the root of E 1 is cons, so by the induction 
hypothesis, E' is a subterm of E. Thus, E" is set to a term that is equivalent to E, 
and is also a subterm of E. Therefore, the desired result follows from the induction 
hypothesis since EvalCons(E) is computed by computing EvalCons(E"). The proof 
is completely analogous when tl is the root of E. 

Let E be of the form if Ei then E2 else E3. As in the hd case, E' is set 
to a term that is equivalent to Ei. If E' is not a boolean base term, then clearly 
EvalCons(E) terminates and is a base term. Otherwise, E" is set to a term that is 
equivalent to E, and is also a subterm of E. Therefore, the desired result follows 
from the induction hypothesis just as in the hd case. 

If the root of E is a function variable, then clearly V[E]'IJ[ ..L, which con-
tradicts the assumptions of the theorem. 

The remaining cases are left as an exercise for the reader. D 

The corollary of the previous theorem is an important result for proving that 
EvalCons(E) terminates if and only if E "¥= ..L. This result follows from the corollary 
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if we show (as we do in Theorem 7-6) that EvalCons(E) terminates if and only if 
EvalCons( <I>[E]) terminates. For this proof we define a total function W. The 
domain of W is the set of extraction functions. The codomain of W is the set 
of partial functions from variable-free terms to variable-free terms. Applied to 
the identity extraction function W returns the identity function from variable-free 
terms to variable-free terms. If e is an extraction function and E is a variable-free 
term such that EvalCons(W(e)(E)) terminates and returns a non-base term (which, 
therefore, has cons as its root), then 

w(hd o e)(E) = Subterm(l,EvalCons(w(e)(E))) 
and 

w(tl o e)(E) Subterm(2,EvalCons(W(e)(E))), 

otherwise \J!(hd o e)(E) and \J!(tl o e)(E) are undefined. Thus, if e is an extraction 
function over the domain D, then W ( e) is the corresponding "extraction" function 
over terms. 

We say E ,...., g when E := E' and for all e such that w(e)(E) and w(e)(E') 
are defined, EvalCons(W(e)(E)) terminates if and only if EvalCons(w(e)(E')) ter­
minates. This relation is clearly reflexive and symmetric. It also has the property 
that if E,...., E', then for all extraction functions e, w(e)(E) is defined if and only 
if W ( e) ( E') is defined. It follows then that ,...., is transitive, and is, therefore, an 
equivalence relation. 

We call R[v1, ... , vr] a unifying term for E and E' when there exist terms Ei, 
Ei for 1 $is r such that E = R[Ei, ... ,Er], E' = R[E~, ... ,E;], and Ei,....., Ei for 
1 $ i S r. We say E ;:::;;J E 1 when there exists a unify~ng term for E and E 1

• Notice 
that E ~ E' implies E = E'. Clearly ~ is reflexive and symmetric. It will become 
clear that it is also transitive only when we prove (in Theorem 7-5) that E ,....., E' if 
and only if E ~ E'. 

There are several facts about ,...., and ~ that we will use. If E ,....., E' then 
E ~ E 1

• If E,...., E' and EvalCons(E) terminates, then EvalCons(E') terminates and 
EvalCons(E),...., EvalCons(E'). If E and E' have a base unifying term, then E,...., E'. 
If E and E' have a non-base unifying term, then Subterm(n,E) ~ Subterm(n,E1

) 

for any n for which both Subterm( n, E) and Subterm( n, E') are defined. It is 
more difficult to show that if E ~ E' and E and E' have cons as their root, 
then Subterm(l, E) ~ Subterm(l, E') and Subterm(2, E) ~ Subterm(2, E'). This is 
clearly true when E and E' have a non-base unifying term. Otherwise, E,...., E' which 
implies Subterm(l, E) ,...., Subterm(l, E') and Subterm(2, E) ,....., Subterm(2, E'). An­
other important property of ~ is stated in the following theorem. 

Theorem 7-4. If E1 and Ez are variable-free terms such that Ei ~ Ez, then 

1) EvalCons(E1) terminates if an only if EvalCons(E2) terminates, and 
2) if both EvalCons(E1) and EvalCons(E2) terminate, then 

EvalCons(E1) ~ EvalCons(Ez). 

Proof: We consider three (overlapping) cases: either Ei1alCons(E1) terminates, or 
EvalCons(E2) terminates, or both EvalCons(E1) and EvalCons(E2) fail to termi­
nate. The theorem holds trivially in the third case. By symmetry, we need only 
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consider the first of the remaining two cases. The proof of this case is by induc­
tion on the number of recursive calls to EvalCons made during the computation of 
EvalCons(E1). Since Ei ~ Ez, there exists a unifying term R[v1, ... , vr]· 

For the base case of the induction, the number of recursive calls to EvalCons 
is zero. In this case, Ei is either a base term, or has cons as its root. Therefore, 
R[v1, ... , Vr] is either a base term, or has cons as its root. If R[v1, ... , Vr] is a base 
term, then Ei ,.._, E2. If R[v1, ... , vr] has cons as its root then both EvalCons(E1) 
and EvalCons(E2) terminate leaving EvalCons(E1) E1 and EvalCons(E2) = Ez. 

For the induction step, the number of recursive calls to EvalCons is greater 
than zero. lf ii[ vi, ... , Vr] is a base term, then again E1 "' Ez. Otherwise, we 
will consider cases depending on the root of R[v1, ... , Vr ]. Notice that we need 
not consider the case of the root being cons since we assumed that the number of 
recursive calls to EvalCons is greater than zero. 

If the root is hd, then Subterm(l, Ei) ~ Subterm(l, Ez). It follows from the 
induction hypothesis that EvalCon.q(Subterm.(1, R2)) terminates, and that 

EvalCons( Subterm(l, E1)) ~ EvalCons(Subterm(l, E2)). 

Let E~ = EvalCons(Subterm(l, E1)) and let E~ = EvalCons(Subterm(l, E2)). If 
one these terms is a base term, then they both are. In that case EvalCons(E1) and 
EvalCons(E2 ) both terminate, and are equal toe. Otherwise, both terms have cons 
as their root, so Subterm(l, Ei) ~ Subterm(l, ED and the theorem follows from the 
induction hypothesis. The proof is completely analogous when tl is the root. 

If the root of R[v1, ... , vr] is if, then Subterm(l, Ei) ~ Subterm(l, Ez). It 
follows from the induction hypothesis that EvalCons(Subterm(l, E 2 )) terminates. 
If EvalCons(E1) is a boolean base term, then so is EvalCons(Ez). Both terms 
will have the same boolean value, and for either boolean value the theorem follows 
from the induction hypothesis. Otherwise EvalCons(E1) and EvalCons(E2) both 
terminate, and are equal to£. 

If the root of R[vi, ... , vr] is a function variable, then ApplyCopyRule(E1) ~ 
ApplyCopyRule(Ez). Therefore, the theorem follows from the induction hypothesis. 

The remaining cases are left as an exercise for the reader. D 

Theorem 7-5. If E and E' are variable-free terms, then E ~ E' if and only if 
E"' E'. 

Proof: The reverse implication has already been discussed. To prove the forward 
implication, assume that E and E 1 are variable-free terms such that E :::.;; E 1

• We 
must show that for all extraction functions e such that w(e)(E) and w(e)(E') are 
defined, EvalCons(\J!(e)(E)) terminates if and only if EvalCons(\J!(e)(E')) termi­
nates. By Theorem 7-4 it is sufficient to show that '11( e )( E) R:::: '11( e )( E') for all such 
e. The proof is by induction on the rank of e. If e is the identity function, then 
w(e) is also the identity function, so w(e)(E) ~ w(e)(E'). 

If w(hdoe )(E) and \JI( hdoe )(E') are defined, then so are w( e )(E) and w( e )(E'). 
Also, EvalCons(w(e)(E)) and EvalCons(w(e)(E')) terminate, and both of these 
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terms have cons as their root. By the induction hypothesis, 'W(e)(E) R:J 'W(e)(E'). 
Thus, 

EvalCons('W(e)(E)) R:J EvalCons('W(e)(E')) 

by Theorem 7-4. Therefore, 'W(hd o e)(E) R:: w(hd o e)(E'). 

The proof for tl o e is completely analogous. O 

We introduced the relations ,...., and R:J strictly for the purpose of proving the 
following theorem. 

Theorem 7-6. If Eis a variable-free term, then <I>[E],...., E. 

Corollary. If Eis a variable-free term, then EvalCons(E) terminates if and only 
if EvalCons( <I>[E]) terminates. 

Proof: The corollary follows immediately from the definition of rv. The proof of the 
theorem is by induction on the structure of E. If Eis a base term, then cI.i[E] = E. 
If E has a function symbol as its root, it follows from the induction hypothesis that 
<P[E] R:J E, so <P[E],...., E by Theorem 7-5. 

Otherwise E is of the form fk(E1, ... , Erk). By the induction hypothesis, 

fk(E1, ... , Erk) R:J fk(<P[E1], ... , <P[Erk]). 

The execution of EvalCons(fk( <P[E1], ... , <P[Erk])) is essentially identical to the 
execution of Ev al Cons ( <P [ E]) since 

ApplyCopyRule(fk( <I>[E1], ... , <I>[Erk])) = <P[E]. 

Thus, fk(<I>[E1], ... , <I>[Erk]),...., <I>[E]. Therefore, <I>[E],...., Eby Theorem 7-5 and 
the transitivity of,....,_ D 

Theorem 7-7. If Eis a variable-free term, then EvalCons(E) terminates if and 
only if E 't J_, 

Proof: The forward implication follows from Theorem 7-1 since there is no base 
term that is equivalent to J_, The reverse implication follows from the corollaries of 
Theorems 7-3 and 7-6. D 

Now that we have shown under what conditions EvalCons terminates, it is 
straightforward to show under what conditions Eval terminates. 

Theorem 7-8. If Eis a variable-free term, then Eval(E) terminates if and only 
if E is equivalent to some canonical term. 

Proof: The forward implication follows from Theorem 7-2. The reverse implication 
is proven by induction on the structure of canonical terms. D 

We axiomatized cons in C so that x : y is (equivalent to) a constructed object 
for all x and y. This requires some justification. When choosing the axioms for 
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cons there are sixteen special cases to consider. These cases are listed below, where 
a is an atom and z is either O or a constructed object. 

1) J_: J_ 5) £:_.L 9) a: l. 13) z: J_ 

2) _L:£ 6) £:£ 10) a:£ 14) z :£ 
3) J_: a 7) £:a 11) a:a 15) z:a 

4) J_: z 8) E:z 12) a:z 16) z:z 

When discussing these cases we will often make use of the fact that if x i; y and x 
is a constructed object, then y is a constructed object. 

Any conventional semantics for cons requires that a: z and z: z be constructed 
objects. This implies that J_ : z, a : _L, and z : J_ are either equivalent to J_ or are 
constructed objects. In the strict semantics all of these are equivalent to _L. For the 
non-strict semantics we chose to axiomatize cons so that all of these are constructed 
objects. This is the standard choice for non-strict semantics. It follows from the 
monotonicity of cons and the fact noted above that cases 4, and 8 thru 16, are all 
constructed objects. 

The remaining cases depend on whether we require that the semantics be imple­
mentable by a serial interpreter, or whether we allow the interpreter to be parallel. 
A serial interpreter evaluates a term E by evaluating some subterm, and then de­
pending on the result it may evaluate more imbterllli3. If the evaluation of the chosen 
subterm of E does not terminate, then the evaluation of E does not terminate. A 
parallel interpreter may do simultaneous evaluations of two or more subterrns of E, 
simultaneous in the sense that the evaluation of E may terminate even if one or 
more of the evaluations of a subterm does not terminate. 

The interpreter we have described in this section is serial. We intentionally 
designed the semantics to make this possible. Let us consider how this restricts 
the semantics of cons, given the restrictions on cases 4, and 8 thru 16, discussed 
above. Let Ebe a non-base term with cons as its root. When determining whether 
Eis a constructed object, a serial interperter may evaluate no subterrns, or it may 
evaluate the left subterm first, or it may evaluate the right subterm first. The part of 
our interpreter that determines whether Eis a constructed object is the procedure 
EvalCons. The call EvalCons(E) returns a term with cons as its root if and only 
if E is a constructed object. In doing this, EvalCons evaluates no subterrns, this 
clearly requires that x : y be a constructed object for all x and y. 

Suppose the interpreter evaluates the left subterm of E first. Let E' be a 
variable-free term. The term E' : O is equivalent to a constructed object because of 
the restrictions discussed above. Thus, the interpreter must terminate and return 
O when applied to tl(E': O ). Therefore, the interpreter must apply an algorithm to 
the left subterm that terminates on all terms. This algorithm must return the same 
result when applied to any two terms that are equivalent. This algorithm must also 
be Turing computable. The only algorithms that satisfy all these requirements are 
constant, they produce the same output regardless of input. This implies that this 
interpreter can only implement semantics for which x : y is a constructed object 
for all x and y. Similar reasoning applies if the interpreter first evaluates the right 
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subterm. Therefore, our requirement that the semantics be implementable by a 
serial interpreter forces us to axiomatize cons such that x: y is a constructed object 

·for all x and y. This explains why we axiomatized cons in .t:, as we did. 

8. Example correctness proofs in S 

In this section we will show two examples of how properties of programs can be 
proven in S. The statements made in this section apply only to S. Whenever we 
use the symbols = and ~ as abbreviations for =s and ~s in this section, it is 
understood that S is the set of all value environments of programs that include the 
declarations being considered. 

The two function declarations we will be considering are 

conc(x, y) -¢:: if nil(x) then y 

else hd(x): conc(tl(x),y) 

rev(x) -¢:: if nil(x) then O 
else conc(rev(tl(x)), hd(x): O). 

Theorem 8-1. If z1 and z2 are lists of length ni and nz, respectively, then 
conc(z1, z2) = z, where z is the list of length ni + n2 such that 

hd(tlk(z)) = { hd(tlk(z1)) if 0:::; k < n1; 
hd(tzk-n1 (z2)) if ni :5 k < ni + n2. 

Proof: Before considering the proof, notice that we know z is completely deter­
mined because of Theorem 4-4. The proof of the theorem is by induction on the 
length of z1. In the base case, z1 is a list of length zero, so z1 = O. The theorem 
holds in this case since 

cone( O, z2) = if nil( 0) then z2 def. of cone 
else hd(O): conc(tl(O),z2) 

prop. of nil and if. 

For the induction step, consider the list x: z1 where x is an atom or a list. Then, 

conc(x: z1, z2) = if nil(x: z1) then z2 
else hd(x: z1): cone( tl(x: z1), z2) 

= hd(x: z1): conc(tl(x: z1),z2) 
= x: conc(z1,z2) 
= x:z 

def. of cone 

prop. of nil and if 
prop. of hd and tl 
ind. hyp. 

Thus, conc(x : z1, z2) is a list of length n1+n2+1. So we need only show that 

hd(tlk(conc(x: z1,z2))) 

= hd ( tl k ( x : z)) previously shown 

_ { hd(tlk(x: z1)) 0:5k<ni+1 = k 1 def. of z. D 
hd(tl -ni- (z2)) ni + 1 :5 k < ni + n2+1 
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Theorem 8~2. If z is a list of length n, then rev(z) = z1 where z 1 is the list of 
length n such that 

for 0 S k < n. 

Proof: The proof is by induction on the length of z. In the base case, z is a list of 
length zero, so z ¢'. The theorem holds in this case since 

rev( 0) = if nil( O) then O def. of rev 

else cone( rev( tl( O) ), hd( 0): O) 
prop. of nil and if 

For the induction step, consider the list x: z where x is an atom or a list. Then, 

rev(x: z) = if nil(x: z) then O 
else conc(rev(tl(x: z)),hd(x: z): O) 

= conc(rev(tl(x: z)), hd(x: z): O) 
= conc(rev(z),x: O) 
= conc(z', x: 0) 

def. of rev 

prop. of nil and if 
prop. of hd and tl 

ind. hyp. 

Thus, rev( x : z) is a list of length n + 1. So we need only show that 

hd(tlk(rev(x: z))) = hd(tlk(conc(z1
, x: O ))) 

= { hd(tlk(z')) 0 S k < n 
x k=n 

= { xhd(tln-k-l(z)) 0 S k < n 
k=n 

= hd(tzn-k(x: z)) 

9. Example correctness proofs in .C 

previously shown 

Theorem 8-1 

def. of z' 

prop. of cons and tl. D 

In this section we will show examples of how properties of programs can be proven 
in £. The statements made in this section apply only to £. As in the previous 
section, whenever we use the symbols= and~ as abbreviations for =s and ~sin 
this section, it is underntood that S is the set of all value euvirunmeuLs of programs 
that include the declarations being considered. 

Consider the functions cone and rev as declared in the previous section. The 
theorems proved in that section for S also are true for £, and the proofs are iden­
tical. This is an example of how our proof techniques can be applied equally well 
to programs with strict and non-strict semantics. The results of the previous sec­
tion completely specify the behavior of cone and rev on lists of finite length. The 
following theorem specifies the behavior of rev on objects of infinite length. 
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Theorem 9-1. If xis an object of infinite length, then rev(x) = J_, 

Proof: Let f be the function defined by 

f( ) = { rev ( x) if x is of finite length; 
x - J_ if x is of infinite length. 

We will show that f is a fixed point of the declaration of rev. Since rev is the least 
fixed point of its declaration, this implies that rev [;;; f. Therefore, if x is an object 
of infinite length, then rev( x) [;;; 1-, which implies that rev( x) = 1-. 

To show that f is a fixed point of the declaration of rev, we must show that 

f(x) = ifnil(x)thenO 
else conc(f(tl(x)),hd(x): 0), 

for all objects x. The proof has two cases depending on whether x is an object of 
finite length. In both cases we use the fact tl( x) is of finite length if and only if x 
is of finite length. 

If x is of finite length, then 

f(x) = rev(x) 
if nil( x) then<> 

else conc(rev(tl(x)), hd(x): <>) 
_ if nil( x) then<> 

else conc(J(tl(x)),hd(x): ¢) 

If x is an object of infinite length, then 

r.h.s.(*) = conc(f(tl(x)), hd(x): <>) 
= conc(1-, hd(x): <>) 
= if nil(1-) then hd(x): <> 

else hd(1-): cone( tl(1-), hd(x): <>) 

=1-

= J(x) 

Consider the function from declared by 

_from(n)-{:::: n: from(n + 1). 

def. off 
def. of rev 

def. off. 

prop. of nil and if 

def. off 
def. of cone 

prop. of nil and if 

def. off. D 

Theorem 9-2. If n is an integer, then hd(tlk(from(n))) = n + k for all non­
negative integers k. 

Proof: The proof is by induction on k. If k = 0, then 

hd(tl0(from(n))) = hd(n: from(n + 1)) def. of from 

=:n prop. of cons and hd. 
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The induction step holds since 

hd(tlk(from(n))) = hd(tlk(n: from(n + 1))) 

= hd(tzk-1(from(n + 1))) 

=n+k 

def. of from 

The next function we will be considering is 

filtcr(n,z) ~ if(hd(z) mod n) = 0 

then filter( n, tl(z)) 

prop. of cons and tl 
ind. hyp. D 

else hd(z): filter(n, tl(z)). 

Let p be a positive integer. Let xo, xi, ... , Xk, ..• be a strictly increasing se­
quence of integers such that for any ko there exists k ~ ko so that ( x k mod p) i 0. 

Let xci be the smallest element of {xj I j ~ O} not divisible by p. For any non­
negative integer k let xk+l be the smallest element of { x j I j ~ 0 /\ x j > xk} not 
divisible by p. Let z and z' be the objects of infinite length such that hd( tlk(z )) = xk 
and hd( tlk(z')) = xk for all k ~ 0. Let lL1 = -1 and <Xk be such that xk = Xa 11 for 
all k ~ 0. 

Theorem 9-3. For aki p, and z as defined above, if <Xk-l < j :::; ak then 

filter(p, tlj ( z)) = hd ( tlO/"' ( z)) : filter(p, tlO/k+l ( z) ). 

Proof: First we show that 

filter (p, tli ( z)) = filter(p, tlak ( z)) 

by induction on the difference between ak and j. This equivalence is trivially true 
for j = ak. If O'.k-1 < j < ak, then 

filter(p,tlj(z)) = if(hd(tlj(z)) modp) = 0 

then filter(p, tl( tlj ( z))) 

def. of filter 

else hd(tli(z)): filter(p, tl(tli(z))) 

= filter(p, t1i+1(z)) prop_ of z and if 

ind. hyp. = filter(p, tlak ( z)) 

The theorem follows since 
filter (p, tla k ( z)) 

= if(hd(tla11 (z)) modp) = 0 
then filter(p, tl ( tlo:k ( z))) 
else hd( tla11 (z )) : filter(p, tl( tlak(z))) 

= hd(tla11 (z)): filter(p, tlak+1(z)) 

def. of filter 

prop. of z and if. D 

Theorem 9-4. For p, z, and z1 as defined above, filter(p, z) = z'. 
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Proof: We show that if k ;:::: 0 and n ;:::: 0, then 

hd(tlk(filter(p, tZC¥n-1 +1(z)))) = X~+n 
by i11duction on k. The theorem follows from this since a_1 = -1. The base case 
holds since 

hd ( tl0 (filter(p, tzan-1+1 ( z)))) 

= hd(hd(tzcxn(z)): filter(p, tzan+1(z))) 

= hd(tzan(z)) 

The induction step holds since 

hd ( tzk (filter(p, tzan-1 +l ( z)))) 

= hd(tlk(hd(tzcxn(z)): filter(p, tzan+1(z)))) 

hd(tzk-1(.filter(p, tlcxn+1(z)))) 
I 

xk+n 

Thm. 9-3 

prop. of cons and hd 
def. of z 

def. of DLk· 

Thm. 9-3 

prop. of cons and tl 
ind. hyp. D 

Using from and filter, we can define a function that generates the prime num­
bers. This function is based on an example in [5] which is attributed to P. Quaren­
don. 

sieve(l) {= hd(l): sieve(filter(hd(l), tl(l))) 
primes {= sieve(from(2)). 

We shall prove that primes is the list of prime numbers by showing that 
hd( tlk(primes )) =Pk for all k ;:::: 0, where Pk is the kth prime number. 

Theorem 9-5. hd(tlk(primes)) =Pk 

Proof: Inductively define Xn,k for all non-negative integers n and k, as follows. 
Let xo,k = k + 2 for all non-negative integers k. For every non-negative integer 
n, let Xn+l,O be the smallest element of {xn,j I j ;:::: O} not divisible by Xn,O· For 
every pair of non-negative integers n and k, let Xn+1,k+1 be the smallest element 
of {xn,j I j ;:::: 0 /\ Xn,j > Xn+1,k} not divisible by Xn,O· Elementary number theory 
shows that Pn = Xn,o for all non-negative integers n. For all n ;:::: 0, let Zn be the list 
such that hd( tlk(zn)) = Xn,k for all k ~ 0. 

By Theorem 9-4, filter(xn,o, Zn) = Zn+l for all non-negative integers n. Also, 
notice that 

filter(hd(zn), Zn) = if (hd(zn) mod hd(zn)) = 0 

then filter(hd(zn), tl(zn)) 
else hd(zn): filter(hd(zn), tl(zn)) 

filter(hd(zn), tl(zn)) 
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Now we are ready to show by induction on k that 

hd(tlk(sieve(zn))) = Pn+k· 

The base case holds since 

hd( tl0
( sieve( Zn))) 

= hd(hd(zn); sieve(filter(hd(zn), tl(zn))) 

hd(zn) 

Xn,O 

Pn 

The induction step holds since 

hd ( tlk( sieve(zn))) 

= hd ( tzk( hd( zn) ; sieve(filter( hd( zn), tl( zn)) )) ) 

= hd(tzk-l(sieve(filter(hd(zn), tl(zn))))) 

::::: hd( tzk-1(.~ie1rn(filter( hd (zn), zn)))) 

hd( tzk-l( sieve(filter( Xn,o, Zn)))) 

:= hd(tlk-1(sieve(zn+1))) 

=Pn+k 

The theorem follows easily from this resnlt. s1n~e 

def, of sieve 

prop. of cons and hd 

def. of Zn 
previously shown. 

def. of sieve 

prop. of cons and tl 

previously shown 

def. of Zn 

Thm. 9-4 

ind. hyp. 

hd ( tlk(primes)) = hd( tlk( sieve(from(2)))) 

= hd(tlk(sieve(zo))) 

def. of primes 

=Pk 

10. Conclusions 

Thm. 9-2 and def. of zo 

previously shown. D 

We have given strict and non-strict semantics for a simple functional program­
ming language. These semantics were specified by giving axioms for the domains and 
semantic functions involved. These semantics provide powerful and uniform meth­
ods for proving the correctness of programs in both the strict and the non-strict 
cases. The axioms for both semantics have exactly one model, up to isomorphism. 
We have also described an interpreter that satisfies the non-strict semantics. 

The primary conclusion to be drawn from this work is that strict and non-strict 
semantics for lists are not as different as they might at first seem. The axiomatiza­
tions we have given for the two semantics differ only slightly in form, and the proof 
techniques we have demonstrated for the two semantics are quite similar. If we 
had given the semantics be positing a different domain for each case and defining 
interpretation functions over those domains, (the more conventional approach) then 
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many of the similarities between the strict and the non-strict semantics would have 
been obscured. Of course, there are differences, the existence of infinite objects in 
non-strict semantics perhaps being the most significant. But recognizing the simi­
larities between strict and non-strict semantics makes it easier to fully exploit their 
differences. 
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