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Chapter 1

Introduction

1.1 Motivation

As the size of a computation increases, so in general do the opportunities to perform parts
of the computation concurrently (in parallel). A multicomputer [3] is one of the computer
architectures designed to exploit this concurrency. A multicomputer consists of a number
of programmable computers, called nodes, each with an instruction-interpreting processor
and private memory. In addition, each node can support multiple processes that share the
resources of the physical node. The available memory of the node is partitioned between
processes so that each is provided with a private address space. Processes communicate
exclusively by message passing.

Within the realm of multicomputing, programs and machines are classified according
to their grain size. For programs, this informal concept is based on the size of the parts
of the computation that are performed in parallel. Programs of a larger grain size divide
the computation between execution units, or processes, that contain a larger amount of
the state of the computation. One metric for evaluating the grain size of a program is the
frequency of message-passing operations performed by a process relative to other internal
operations. Processes containing more state require information from other processes less
frequently, and thus engage in less message passing. When message passing does occur
in these processes, messages used to convey the required information are of a length
commensurate with the grain size.

Medium-grain programs are composed of processes that perform on the order of hun-
dreds to thousands of instructions between communication actions. Messages passed
between processes typically contain tens to hundreds of data items. Fine-grain programs
consist of processes that execute tens to hundreds of instructions between message-
passing operations. The messages present in these programs are quite small, usually
only a few data items.



Machines designed to execute medium-grain programs efficiently, appropriately called
medium-grain multicomputers, were pioneered in the early 1980s [14], and have become
an established class of concurrent computer architectures. These machines typically
support megabytes of memory per node, and, in current technology, may have hundreds
of nodes. Message-passing costs are generally high in these machines, with several tens to
hundreds of instructions being executed in the time necessary to send a single message.
Given the infrequency of message passing in medium-grain programs, these costs are not
a limiting factor in computation.

Machines optimized for fine-grain computations are still in the developmental stage.
A first prototype of the Caltech Mosaic, scheduled for completion in 1989, likely will
be the first operational large-scale fine-grain multicomputer. Fine-grain machines will
have essentially the same structure as medium-grain ones, yet may be composed of tens
of thousands of nodes, each having several tens of kilobytes of memory. Fine-grain
and medium-grain multicomputers both will have about the same aggegrate amount of
memory. The fine-grain machine can apply more computing power to a computation
by partitioning the total storage into smaller units. Since message passing occurs fre-
quently in fine-grain computations, achieving acceptable performance requires that these
message-passing costs be much lower than those in the medium-grain variety. The re-
quired decrease in message latency will be achieved through a combination of machine
organization and improved routing mechanisms [3].

The advantage of the fine-grain multicomputer lies in its ability to exploit nearly all
the realizable concurrency in any application. The task to be performed is divided into
as many useful subtasks as possible. The fine-grain machine then performs as many tasks
as it can concurrently. The task as a whole is thus completed as quickly as possible.

While programming models and techniques for medium-grain machines are well un-
derstood, practical programming techniques for the fine-grain machines have only re-
cently begun to develop. Does the constraint of small granularity require new program-
ming models and paradigms? What programming constructs are essential to the efficient
expression of fine-grain concurrent computation? Clearly these are not questions to be
answered purely from a theoretical perspective. Useful paradigms must be observed
through analysis of solutions to a variety of problems. Similarly, the set of syntactic
constructs can be evaluated only through use in application programs.

This thesis is an investigation of these areas through the use of a fine-grain program-
ming system that is already available — the Cantor programming system. Cantor was
developed by W.C. Athas [1,2] as a tool to explore issues in fine-grain programming.
Advances in compiler technology and in program flow analysis provide valuable tools for
developing fine-grain programs. The Cantor system currently consists of a compiler for
Cantor code, a sequential interpreter, and various program-profiling mechanisms. Can-
tor has also been ported to a variety of concurrent machines, including the Intel iPSC/1,
the Cosmic Cube, and the Sequent. '



The approach to this thesis experiment has been to write Cantor programs that will
perform a variety of tasks, and then to study those programs. Looking for similarities and
differences in a wide range of application programs yields insight into the fundamentals
of fine-grain programming. Study of the programs has also influenced the definition of
the Cantor language. This thesis reports upon the results of this series of programming
experiments.

Thesis flow is as follows:

o The remainder of this chapter describes the essentials of the Cantor programming

language and model.

e Chapter 2 describes the implications of the programming experiments on the defi-
nition of the Cantor language. Based on the results of program writing, constructs
were added to facilitate programming while extraneous features were deleted.

e Chapter 3 contains five of the more interesting programming experiments con-
ducted for this thesis. The operation of each program is explained and important
features are noted.

e Chapter 4 concludes with observations about fine-grain programming using Cantor.
The assumptions made in the programming model are evaluated and future work
is discussed.

1.2 Cantor

Cantor, or the Caltech Actor Notation, is based on the Actor model of computation.
The textual representation of a Cantor program is composed of a set of definitions, each
of which serves as a template for creating objects whose behavior is specified by those def-
initions. Computation performed by an object is message-driven; ie, the object remains
inactive until a message arrives for it. In essential Cantor [1], objects are constrained
to receive messages in the order in which they arrive; all messages sent are guaranteed
of eventual delivery. An object can preserve information between message receipts via a
set of persistent variables.

The response of the object to a message must be finite, and may include zero or more
of each of the following actions:

o the sending of messages

e the creation of new objects
e the modification of internal variables

After the object has responded to the message as prescribed in the object definition, it
must prepare itself to either receive another message or self-destruct.



The first two actions listed above correspond to the Actor primitives, send and new.
Whereas most programming methods rely on shared variables and recursion, Cantor is
an experiment in learning to program efficiently with the send and new primitives.

An illustrative example of a Cantor program computes the factorial function:

fac() ::
[ (n:int, requester : ref)
if (n < 2) then
send (1) to requester
else
send (n—1, self) to fac()
[ (result : int)
send (n#result) to requester

]

il

]

| (console : ref)
send (6, console) to fac()
[ (result: int)
send (result) to console
J

]

The fac object definition defines the behavior of the objects that actually compute
the factorial function. Each fac object has no persistent variables (denoted by ()), but
rather receives the value of the factorial it is to compute in a message. It also receives a
reference to the object to which it will send the result. Objects must possess the reference
value of an object in order to send a message to that object.

The body of the object definition implements a type of recursion. If the base step
has been reached (n < 2), a reply is sent to the requester. Otherwise, another level of
recursion is implemented by instantiating a new fac object and sending to it n-1 and
reference to this object, self.

Upon completion of this statement, the object can do no more useful work on the
problem until the reply from the recursive step has been received. This reply message
is received via a nested message description, delimited by a pair of matched square brack-
ets ([ ]). This description specifies the object’s response to the next message received.
If a new message description is reached and the message queue is empty, the object is
suspended until a message is received. In the factorial example, the new message de-
scription specifies that a message containing an integer, result, will next be received. The
message description does not enforce this discretion, however; the program’s dynamics
alone dictate the message protocols. In the factorial example, when the reply from the
recursion result, is received, the object sends the product to its requester.
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The second object definition in the program is called the main object. When a Cantor
program begins execution, the main object is the only object in existence. The rest of the
object graph must be constructed explicitly. The console reference provides the program
with output capability.






Chapter 2

Cantor Version 2.2

For a full exposition of Cantor 2.0 (essential Cantor), the reader is referred to the Cantor
User Report 2.0 [1). As a result of numerous programming experiments, in particular
those reported in this thesis, a new version, Cantor 2.2, is currently being implemented
and documented. The Cantor programs in the following chapters were generally written
initially in Cantor 2.0, but were then rewritten in Cantor 2.2. For reference, Figure 2.1
depicts the BNF for Cantor 2.2. In addition, the major changes in the new version will
be discussed in the remainder of this chapter.

The Cantor programming notation was originally developed with only a simple and
essential set of fine-grain programming constructs. Cantor 2.0 [1] provided the pro-
grammer with constructs to send and receive messages, to create new objects, and to
modify the internal state of objects. The restriction to finite behavior within objects was
enforced by providing no mechanism that could produce infinite behavior. No data struc-
tures were built into the language. Instead, all data structures had to be constructed
by the programmer using the computing resources of objects and messages. Objects
could process messages only in the order received, and were not able to hold unwanted
messages in the message queue. The goal of this “minimalist” approach to language de-
sign was to start with the bare programming essentials, and then determine the desired
higher-level constructs by writing and evaluating programs.

Using this sparse set of constructs, we began to write programs to solve a variety
of application problems, including the problems in this thesis. As the library of Can-
tor programs grew, so did our understanding of Cantor’s capabilities and limitations.
While Cantor 2.0 was Turing-complete and mathematically elegant, the expression of
some very important higher-level constructs was cumbersome and unsatisfactory. In
addition, we determined that some language features had been included based on un-
founded predictions of their utility in application programming. Consequently, Cantor
2.2 contains conservative additions to the constructs available in Cantor 2.0, as well as



(program)
(definition)

(object definition)
(function definition)

(description)
(body)
(sequence)
(case)

(case entry)
(statement)

(i)
(let)

{call)

(send)
(assign)
(assign expr)
(control)
(name list)
(declaration)

(data type)
(expression)
(expri)
(expr2)
{expr3)
(expr4)
(primitive)

e O o O O N

(definition)* (description)

(object definition) | (function definition)
(name) (persistent list) : : (description)
(name) (parameter list) { =} (description)
(=[] L) (body) ]

(sequence) | (case) | (statement)™
(message list) (statement)*

case ( (name) : (data type) ) of (case entry)t
(selector) : (sequence)

(ify | (let) | (call) | (send) | (assign) | (control) |

(description)

if (expression) then (statement)® { else (statement)™ } fi
let (name) { (range) } = ((assign expr) | vector (range) of
(type))

call (name) (list)

send (list) to (expression)

(name) (index) = (assign expr)

(expression) ( (newline) | ; )

exit | repeat | return ( (expr) )

O | € (declaration) { , (declaration) }* )

(name) { [ (range) } 1 { . (name) { [ (range) 1} }* :
(data type)

int | real | bool | sym | ref

(exprI) { (or | xor ) {expr1) }*

(expr2) { and (expr2) }*

(exprd) { (=] <> | <[ >] <= | >=) (oxprd) }*
(xprd) { (+ - ) {oxprd) }"

(primitive) { ( % | / | mod ) (primitive) }*

(name) { (range) } | (selector) | (reference) | (real) |
abs (primitive) | not (primitive) | ( {expression) )



(selector) = (symbol) | (integer) | (boolean)

(index) = [ (expr) | (range) ]

(range) => (expr) .. (expr)

(reference) = self | nil | (object name) (list)

(List) = () | ( (expression) { , (expression) }* )
(persistent listy —> (name list)

(parameter listy —> (name list)

(message listy = (name list)

(symbol) => " (char)* "

(logical) = true | false

Figure 2.1: BNF for Cantor 2.2

changes in some language features. These modifications are discussed in the remainder
of this chapter.

2.1 Control Mechanisms

2.1.1 Internal Iteration

In the Cantor programming model outlined in Chapter 1, objects must respond to a
message with a finite number of actions. After responding, an object must prepare to
receive another message or must self-destruct. The motivation for this requirement stems
from the need to assure eventual message consumption. If an object exhibits infinite
internal behavior, then the eventuality of message consumption would be violated for
any message queued for that object.

To prevent infinite behavior within an object, Cantor 2.0 did not support any form
of internal iteration. To iterate, an object sent itself a message, thus ensuring that
all messages in the queue would be processed eventually. During our programming
experiments, this requirement proved to be an unnecessary complication. The following
program fragment is an example in Cantor 2.2 of iteration used within a definition:
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*[ (x: int)

Code to process x values

i=1

[ if (i < fanout) then
send (output) to input|i]
i=i+1
repeat

fi

]
]

A message containing x is received and processed. Next, internal iteration is used to
send a message containing output to each reference value in the vector input (see section
2.3). When the loop terminates, another x value can be received and the loop repeated.

The next fragment is the expression of the same activity in Cantor 2.0:

*[ (tag: sym, x: int)
Code to process x values
send (“iter”, 1) to self
*[ case (tag: sym) of
“iter” : (i: int)
send (output) to inputi]
if (i < fanout) then
send (“iter”, i+1) to self
else
exit
fi
“input”; (x: int)
Code to buffer x values

]

Code to process buffered x values

]

This fragment illustrates the implementation of this procedure without using internal
iteration. When an input message is received, the object begins iteration by sending
itself a message. While iter messages are being received and iteration is not complete,
the object executes the body of the loop and then sends itself another iter message.
However, if an input message is received during the iteration, the programmer may need
to defer processing of the input message until the iteration is complete. Buffering and
processing deferred messages is a non-trivial task that can greatly complicate a Cantor
program. While internal iteration is obviously not a necessity for Cantor, it is clearer
and more concise than iteration by message passing.

Using Cantor 2.0, an object cannot exhibit infinite internal behavior because it cannot
iterate internally. However, it may engage in infinite external iteration by sending itself

10



messages. This scenario presents the same difficulty as infinite internal iteration, but at
a lower level of abstraction. Eventually, the input queue of the object will overflow with
messages, thus violating the assurance of eventual message consumption. In the final
analysis, the programmer is charged with the responsibility of ensuring that objects that
iterate forever (either internally or externally) are not created.

2.1.2 Basic Blocks

Internal iteration is achieved by the addition of a new control mechanism in Cantor 2.2.
In Cantor 2.0, program blocks consisted only of message blocks. To execute (or repeat,
or exit) a given program block, the object had first to first receive a message. Program
blocks that do not include a message receipt, ie, basic blocks, are the actual mechanism
for internal iteration. ’

v

Basic blocks are also useful when objects are initially created. In Cantor 2.0, an object
has to receive a message before it can perform any computation. In Cantor 2.2, an object
can begin computation by using basic-block constructs to set up private variables, send
start-up messages, and perform other initialization activities.

2.2 Functional Abstraction

Since Cantor 2.0 includes only the most essential constructs, incorporation of functional
abstraction into Cantor was deferred to later versions. Rather than use functions, the
programmer wrote object definitions with characteristics that were similar to functions.
A function call could be emulated by establishing a protocol of message tags between the
“calling” and “called” object. This approach was awkward and violated the abstractive
principles associated with functions. In Cantor 2.2, invoking a function is conventional,
as illustrated in this program fragment that invokes a function min, which returns the
minimum of two parameters: '
*[ (x, y: int)
minval = min(x, y)
Code using minval

]

Analogous behavior is achieved in Cantor 2.0 with the following program segment.
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#[ (x, ¥ : int)
send (gelf) to min(x, y)
*[ case (tag: sym) of
“min” : (returnval: int)
minval = returnval
exit
“input” : (x, y : int)
Code to buffer additional pairs
received before the min message

]

Code using minval
Code to process buffered (x.y) pairs

]

Each program fragment receives a pair of integers, x and y, and then assigns the
minimum of those values to minval. The first fragment, written in Cantor 2.2, uses a
call to a user-defined function min. Execution of the object will not continue until the
function min has returned a value that is then assigned to minval.

The second fragment illustrates the Cantor 2.0 expression of this procedure. When
an input message is received, a function call is emulated by sending the values x and
y to a new object, min. This object computes the minimum of the values and replies
with a min message containing the result. Before this min message is received, however,
additional pairs of x,y values may be received. These values will probably need to be
buffered and then processed after the min message is received. The complexity that
was introduced into the program by the lack of functional abstraction convinced us to
incorporate functions in Cantor 2.2.

Cantor 2.2 supports two types of user-defined functions (described in the following
subsections). Function definitions of either type are constructed in the same manner as
object definitions. It is important to note that functions, like objects, can engage in message-
passing operations. Function definitions differ from object definitions in that they usually
use a return statement to return a value to the invoking object or function. If side-effects
are the motivation for invocation, the return statement can be omitted or the return value
can be discarded by using a call statement to invoke the function. (Similarly, using a call
statement to instantiate an object discards the new object’s reference value.)

2.2.1 Functions

The fundamental function abstraction in Cantor is referred to as a function. In the
program text, function definitions do not have a token (such as :: for objects) separating
the function name from the definition. For example,

min(x, y : int)

12



[ if (x < y) then return (x)
else return (y) fi

To allow freedom in implementation, including in-line expansion, subroutine call, or
remote function (described below), recursive function definitions are not permitted.

A function, upon invocation, executes its definition and then returns a value (or a
list of values) to the creating object or function. A function does not possess a unique
reference value; it assumes the reference value of the creating object. Within the function,
any message-passing operations are conducted using the message queue of the invoking
object. When the invoking object receives the return value, it regains control of its
message queue and resumes execution.

Functions simplify the programmer’s task by allowing him to create clearer, more
succinct, object definitions. Function definitions are also easier to recycle in future
programs than are object definitions. Libraries of user-defined functions eliminate the
need for additional operators in language. ’

2.2.2 Remote Functions

From our program-writing experiments, we detected the need for another type of func-
tion, namely the equivalent of a remote procedure-call mechanism [15]. Using functions,
the object can initiate activities that perform any message-passing operations directly
on the object’s message queue and then wait for these activities to complete. Frequently,
however, the programmer would like to create activities that perform message-passing
operations on a private message queue. This capability is provided by a second type of
function, a remote function. In this application, invocation of a remote function suspends
the execution of the invoking object until the reply from the function is received. Pro-
cessing of messages that precede the reply is deferred. Remote function definitions are
declared by using an = token to separate the function name and definition.

For example, a distributed queue of objects with multiple consumers, as in Figure 2.2,
is difficult to manipulate in Cantor 2.0. Consider the following scenario: The queue mas-
ter object, QM, receives put and get operations that it should perform on the distributed
queue. Assume that a get message is received. The QM sends the get message to the
head of queue. Upon receiving the get message, the head queue element object sends the
enqueued value to the requesting object. It then must advance the head of the queue
by sending its next link to the QM before terminating. If there is arbitrary delay on
the delivery of this update message and consumers are not tightly constrained, an un-
bounded number of new get messages may be received before the update message. Since
there is no discretion over message receives, the QM must explicitly queue those new get
requests until the new head of the queue is received. One can see that requiring a new
unbounded queue to manipulate a queue will continue recursively; the same problem will

13
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environment

Figure 2.2: Distributed-queue data structure

occur when the queue of get messages is processed.

Since unbounded queues will eventually exhaust the physical resources of any ma-
chine, the underlying machine runtime systems must possess mechanisms to handlé them.
Additionally requiring the programmer to explicitly handle the above scenario is not nec-
essary and is not acceptable in application programming. A remote function allows the
programmer to initiate the get operation and suspend execution until the new head of the
queue has been received. The function coordinating the operations on the distributed
queue possesses its own reference value and, thus, can conduct message-passing opera-
tions privately; additional get messages queued for the QM do not affect the message
passing of the function. When the function returns a value, via a special reply message,
the QM detects and processes that message before it accepts any new get messages. The
QM then resumes normal execution. The problem of handling the unbounded number of
get messages is then pushed to a lower level of programming, namely that of the custom
object/function level (Section 2.4).

A call to an remote function results in the creation of a custom function and an
instance of the invoked function definition. The invoked function will possess a unique
reference value and a private message queue. The invoked function executes its code and
eventually sends a reply message to the invoking object. The custom function manipu-
lates the message queue of the invoking object by examining each message received and
replacing it in order in the queue if it is not the reply. When the reply is received, it is
immediately sent to the invoking object. The message queue, which now contains mes-
sages that physically preceded or followed the reply, is returned to the invoking object.
The custom function in this case then is a function that exercises system-level discretion
over an object’s message queue.

A remote function should be considered an experimental construct in Cantor 2.2.
The manner in which limited message discretion should be provided to the programmer -

14



is an issue that has not been fully explored. Remote functions are one type of mechanism
for providing this capability. Other methods include using a special custom function to
instantiate an object and then halt the creating object until a reply message has been
received from the new object. This mechanism permits discretion over messages sent by
‘objects and by functions. This approach, as well as remote functions, will be evaluated
in future experimentation with Cantor.

2.3 Vectors

Cantor 2.0 provided no mechanisms for representing data structures internally to an ob-
ject. All data structures were created by the programmer using the computing resources
of objects and messages. Without preconceived notions about which data structures
would be most appropriate in a general-purpose concurrent programming language, anal-
ysis of programming experiments was used to make that determination. In most appli-
cation programs, array-type data structures were needed, but the nature of the Cantor
2.0 expression of these structures made them awkward to manipulate. Consequently,
Cantor 2.2 supports the use of one-dimensional arrays, or vectors.

As an illustration, consider the program fragments discussed in section 2.1.1. The
first fragment refers to a vector input that contains reference values to some other objects.
The array was either defined within the object by

let input = vector 1..fanout of ref,

or received as part of the contents of a message,

(..., input[1..fanout] : ref, ...).

Without a vector construct, the reference values contained in input would have to be
explicitly named, or represented using a chain of objects. Especially with the internal
iteration feature, the ability to maintain and manipulate data internally is an important
convenience. These data structures are encouraged to be small, however, because the
machine model dictates that each object must be small enough to fit on one node.

One of the most interesting aspects of Cantor vectors is that dynamically-sized vectors
can be sent and received in message-passing operations. Given the dynamic nature of
Cantor computations, restricting all vector sizes at compile-time would make vectors less
useful. In many applications, the size of vectors should grow or shrink as those vectors
are passed between objects. Dynamically-sized vectors provide the programmer with the
flexibility of sending vectors of exactly the required size in messages.

As usual, a programming convenience translates into an implementation problem.
The fine-grain machine model implies that runtime systems for such machines will also
be fine-grained. Managing dynamically-allocated vectors on-the-fly is non-trivial and
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may require too much computing time and /or available memory. Further investigation
of this question is planned using the Mosaic runtime system.

If manipulating vectors at runtime proves to be infeasible, an alternative that repre-
sents vectors as custom objects (section 2.4) will be investigated. In this scheme, custom
vector objects would be used to represent each vector in the user program. User operations
on a vector are translated by the compiler to remote functions that communicate with
the appropriate vector object. For example,

parent = input[i]

would be compiled into a remote function call that sends the index i to the reference
value of input and then assigns the reply value to parent. Since a reply is not required,
write operations on vectors could be compiled as remote functions invoked with the call
statement.

The advantage of this approach is that the runtime system no longer deals with the
exception of vectors, and especially of dynamic vectors. All vectors (and subvectors) are
represented by reference values, thus minimizing the storage required to represent the
vector inside the object and in any messages. A key disadvantage is that, since variables
within an object are local data, whenever the object sends a message containing a vector,
a new vector object must be created to represent the vector in the receiving object. We
expect that additional advantages and disadvantages will become apparent as this idea
is further explored.

2.4 Custom Objects and Custom Functions

One of the most powerful additions to Cantor is the custom object/function facility,
which was first suggested in [2, page 16] and is currently being implemented and doc-
umented. Custom objects are externally compiled objects that interface with a Cantor
computation via the established message-passing system. Although the behavior of these
objects conforms externally to Cantor object specifications, internally they may be writ-
ten in another programming language (C, Fortran, assembly, etc.) and perform tasks.
not conveniently expressible in Cantor. For example, a custom object to perform I/O is
currently being developed.

Most importantly, custom objects enable the programmer to optimize computations
for a target machine without sacrificing aspects of the Cantor programming model.
For example, a Cantor program that contains a “tree-master” object, an object that
manipulates a distributed tree, would execute on any machine that supports Cantor.
If, however, the target machine were a Tree machine, optimized for expressing and
handling tree data structures, a custom object could replace the “tree-master” object.
The custom object could exploit the special properties of the target machine, tailoring
the representation and handling of the tree data structure to the machine model. The
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custom object would communicate with the same message-passing protocols as the “tree-
master,” yet it would perform operations on the tree more efficiently on the given target
machine. Custom objects thus allow the programmer to integrate program segments
developed with different levels of machine abstraction. -

Libraries of custom objects, written in Cantor or in other languages, will likely in-
clude objects to manage meshes, trees, and other aggregate data structures. Providing
these objects as tools to the programmer could drastically increase program efficiency,
since these objects would typically exhibit improved performance due to specialization.
Development of this library is one of the most important areas of ongoing Cantor re-
search.

2.5 Static vs. Dynamic Typing

One negative result of the Cantor programming experiments was the use of dynamic
typing. Since message passing is late-binding, the ability to dynamically type message
contents was initially thought to be useful. In practice, however, this facility was al-
most exclusively used in the coercion between integers and real numbers. Naturally, this
particular application should not be the focus of polymorphic typing since storage class
sizes for integer and reals differ widely in target machines. Since dynamic typing was
rarely used and required a significant amount of hardware and /or runtime support, Can-
tor 2.2 supports only static typing of variables. This issue may be re-examined in later
experiments, particularly if application programming suggests the need for polymorphic
functions.
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Chapter 3

Cantor Programs

In this chapter, five Cantor programs are presented and discussed in detail. These
particular programs were selected for their individual characteristics that explore the
application span of fine-grain programming. Programs whose object graphs are con-
structed recursively using small objects have a straightforward mapping to the fine-grain
computational model; however, relatively few algorithms can be formulated in this man-
ner. How efficiently can other, more representative, classes of computations be expressed
using the fine-grain model? A goal of this thesis is to provide evidence that fine-grain pro-
gramming can be applied successfully to solving problems that do not exhibit recursive
object graphs and message patterns. This evidence consists of examples of programming
solutions to problems that require arbitrary object graphs and message traffic. Graph
algorithms comprise an important class of problems that require these complicated be-
haviors.

The majority of the programs presented in this chapter are solutions to graph prob-
lems. Concurrent algorithms to solve each problem are developed and then expressed in
Cantor. That so many of the coded algorithms are elegant, often maximally concurrent,
solutions of the problem for arbitrary graph instances is most encouraging. For each
of the following programs, the graph problem and the concurrent algorithms are first
explained. The Cantor implementation of the algorithm is presented and key program
features are noted.

3.1 Shortest-Path Algorithms

One of the most studied graph problems is the shortest-path problem. In a directed
graph G = (V,E), where V is the set of vertices and E is the set of edges, each edge
(v:,v5) € E has an associated cost, or weight, w;;. The elementary shortest-path problem
involves discerning the distance of a vertex from a distinguished source vertex, which is
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the minimum of the summed weights along each path from the source to the destination
vertex. Some more involved shortest-path problems include finding the distances from
a source vertex to each of the other vertices in the graph (Single Point Shortest Path,
or SPSP), and finding the distances from each vertex to every other vertex (All Points
Shortest Path, or APSP). These shortest-path problems and other related computations
occur naturally in many application areas, including computer-aided design, simulation,
and nearly all types of routing.

Since efficient solution of this problem is frequently required, much research has been
focused on shortest-path solutions. In 1959, Dijkstra developed an algorithm [8] that
remains the definitive sequential solution to the SPSP problem. In this algorithm, a
vertex of the graph is said to be visited when a path from the source to that vertex has
been established. A vertex has been expanded when new paths to each successor vertex
(a vertex to which an outgoing edge is directed) are found by appending the path to the
vertex being expanded with the edge connecting the successor vertex. Vertices of the
graph that have been visited but not yet expanded are kept in a list of increasing distance
from the source. The source vertex begins computation by visiting its successor vertices,
and inserting them in order into the list. Next, the first vertex in the list is expanded and
then deleted from the list. This process of modifying the list by adding visited vertices
and removing expanded vertices continues until the list is empty. When computation
terminates, each vertex has computed its distance from the source. The strength of
Dijkstra’s algorithm lies in its economy of effort. No redundant work is performed in
the computation. Using a sequential computational model, the SPSP problem cannot
be solved more efficiently.

Given Dijkstra’s optimal algorithm for sequential computers, performance improve-
ments in SPSP solutions can only be achieved by a concurrent formulation. Chandy
and Misra [5] have modified Dijkstra’s algorithm to exploit the potential concurrency in
the expansion of vertices. Rather than expanding a single successor vertex, all successor
vertices are expanded in a single step. Unlike the sequential version, Chandy and Misra’s
algorithm will, with high probability, perform redundant work, expanding vertices re-
peatedly. For this reason, the algorithm exhibits exponential time complexity for certain
pathological graphs [6]. For the vast majority of graphs, however, the algorithm is simple
and elegant, and achieves a high degree of concurrency. Details of the algorithm and its
implementation in Cantor are presented in Section 1.1.1.

For the APSP problem, the Floyd-Warshall [9,17] algorithm remains the best se-
quential solution. Incremental construction of paths is used to find the shortest path
between any pair of vertices, v; and v;, represented by the i5** entry in an |V| x |V|
matrix. In the k*# step of the algorithm, shortest paths through vertices numbered less
than or equal to k are found for all pairs of vertices. After O(|V'|) steps, the ¢* row of
the matrix contains the distance of all vertices from vertex i. Thus, this algorithm has
time complexity O(|V|?), and space complexity O(|V|2).
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For each value of k, computation for each pair of vertices is independent of that
of other pairs. This available concurrency has been exploited in the Parallel Floyd-
Warshall algorithm [10]. In this formulation, shortest paths for all pairs of vertices are
computed concurrently for each value of k. The mechanism that controls the computation
distinguishes various implementations of the Parallel Floyd-Warshall algorithm. One of
the most interesting of these implementations is van de Snepscheut’s processor-array
formulation [16]. This stategy for managing the phases of computation is explained in
section 1.1.2, and the Cantor version is presented.

3.1.1 Chandy-Misra SPSP Algorithm

The algorithm presented by Chandy and Misra in [5] assumes the computational model
of a network of communicating processes, where each process p; represents a vertex v;;
and two processors, p; and p;, are neighbors, je, they are able to communicate directly,
if and only if an edge exists between them. In addition, only p; contains information
about the weight w;; on each of its outgoing edges. Requiring this minimal knowledge
of the network connectivity enables the algorithm to behave correctly even if the edge
relation is dynamically changing. It appears that the robustness of algorithm in this
respect is obtained only at the cost of having loose synchronization of vertex expansion,
which is the cause of the worst-case exponential time complexity. For more synchronized
algorithms, such as Dally’s SPSP solution [6], more data about the network must be
provided at each vertex.

It should be noted that the Chandy-Misra algorithm solves the SPSP problem even
in the presence of negative cycles, ie, cycles of vertices whose summed path length is
negative. Two phases of computation are then required: one phase to compute the
lengths of the paths, and another phase to halt the computation and notify vertices
reachable from a negative cycle that they are indeed infinite. For simplicity, in this
implementation, the presence of negative weight cycles in the graph is not allowed.
Consequently, only the first phase of computation is required. A brief outline of this
phase follows. :

Computation is initiated by the source sending a length message to each of its suc-
cessor vertices. These length messages consist of the length of the shortest path to the
successor computed thus far and the identity of the predecessor node that sent the mes-
sage. Each vertex, upon receiving a length message, checks the path length value against
the minimum path length received previously. If the new one is less, the vertex records
the new length as the smallest received, records the sending node as its predecessor in
the shortest path, and then sends a length message containing its own identity and the
new length plus w;; along each of the edges to its successor nodes. Thus, the length
messages propagate through the graph, updating the shortest-path information as.they
proceed. When all length messages have been observed, each vertex has computed its
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Figure 3.1: Example graph used in Chandy-Misra SPSP program

distance from the source and its predecessor in the path to the source.

As presented, the algorithm will solve the shortest-path problem, but will not an-
nounce termination. Instead of layering termination detection on top of the computation,
Chandy and Misra utilize the diffusing nature of the computation, viz, the length mes-
sages, to incorporate the termination-detection schema of Dijkstra and Scholten [7] into
the algorithm. Each length message sent to a successor node is eventually acknowledged,
signifying that all vertices reachable from the successor have observed the message. Each
vertex maintains a count of the number of unacknowledged length messages that have
been sent to successor nodes. The rules of acknowledgement are simple:

e if a length message is received that contains a length that is not the new minimum

length, then the message is acknowledged immediately.

¢ if the number of unacknowledged length messages is zero, an acknowledgement is
sent to the predecessor in the shortest path to the source.
Thus, when the count of the source vertex is zero, all length messages have been observed
and the computation has terminated.

The Cantor implementation of the Chandy-Misra algorithm is shown in Appendix
Al

The example graph used in the computation is shown in Figure 3.1.

The main object of the program begins by instantiating each of the vertices in the
graph as a vertex object. After vectors have been loaded with the edge and weight
information for dispatch, the main object begins creating a stack of join objects, with
itself as the bottom reference in the stack. Each reference in the stack is associated with
the add edge message that informs a vertex of the existence of an outgoing edge. When the
vertex has received the message, it sends an empty message, (), to the join object. When
the join object has received two empty messages, one from the vertex object and one
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from its predecessor in the stack that signifies that the predecessor has been “popped,”
the object “pops” itself from the stack by sending an empty message to its successor
in the stack and then expiring. The main object begins the “popping” by sending an
empty message to the original top of the stack. Thus, when the main object receives an
empty message, all add edge messages have been received, denoting that other phases
of computation can now safely be started. This paradigm of a synchronization stack is
vitally important to fine-grain programming. Distributing the receipt of acknowledges
over many nodes provides valuable concurrency while at the same time minimizing the
amount of state that must be maintained in the constituent objects. Each of the programs
in the remainder of this chapter at some point will utilize a variant of this fundamental
synchronization mechanism. '

Another LIFO data structure is used to represent the set of outgoing edges from a
vertex. Initially, the vertex has no outgoing edges and, thus, has a stack consisting of a
nil_edge object. The use of this object will be demonstrated in a moment. With receipt of
each add edge message, an edge object is created and “pushed” onto the stack of outgoing
edges. Thus when the first length message is received, the set of edges has already been
constructed. ‘

The vertex object responds to length messages exactly as described in the description
of the algorithm given above. The termination-detection part of the algorithm, however,
has been changed to better fit the fine-grain model. Instead of having the vertex receive
and count acknowledgements for each of the length messages it sends, another join syn-
chronization structure is used, in this case, a tree. As the length messages are sent to the
successors, each edge object creates a join object to receive the acknowledgement of that
message and the reply from lower levels of the tree. The newly created join object will
reply to a current leaf of the tree, parent, and then become the new leaf. The nil_edge
object, upon receiving a length message, acknowledges immediately, and, thus, begins
collapsing the tree. When the root of tree, the main object, receives an empty message,
the computation has halted. .

The implementation of this algorithm highlights some of the special programming
techniques suggested by the fine-grain programming model. With object creation equal
in cost to message passing, and with optimized communication of short messages, dis-
tributed synchronization structures, such as the stack and the tree, are not expensive to
create, while their usefulness is clear. Using the stack to signal the main object that the
next phase of computation can proceed simplifies the code within the object. Distribut-
ing the termination detection using the synchronization tree enables the vertex object to
concentrate on processing length messages, a job that certainly has a higher priority than
counting acknowledgements. More applications of these structures will be seen in the
programs in the remainder of this chapter.
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3.1.2 Van de Snepscheut’s Distributed Warshall Algorithm

In addition to the SPSP problem, the Chandy-Misra algorithm can be applied to solve
the APSP problem. Each vertex in the graph behaves as a source vertex, initiating a
length message phase to apprise the other vertices of their distance from this source vertex.
When termination of the |V'| SPSP problems is detected, each vertex has computed its
distance from every other vertex in the graph.

By design, the Chandy-Misra algorithm is most efficient when the graph of interest
exhibits relatively sparse connectivity. For graphs with richer edge connectivity, the
Parallel Floyd-Warshall algorithm is frequently more effective. This algorithm achieves
O(|V|) time complexity using O(|V'|%) processors, one processor to compute the shortest
path between each pair of vertices. The requirement of such a large number of processors
to achieve a linear-time solution is certainly a disadvantage of this algorithm, yet does not
render it useless. For richly connected graphs, the Parallel Floyd- Warshall algorithm still
achieves significant speedup over the sequential version if fewer than O(|V'|%) processors
are available.

Regardless of the number of physical processors, |V'|2 processes are used in the Parallel
Floyd-Warshall algorithm to compute the shortest paths. These processes are logically
arranged in a V| X |V| mesh. The ¢5** process is responsible for computing the length
of the shortest path, or the distance, from vertex i to vertex j. In the first step of the
algorithm, the £j** distance value is set to W;;, where W is a weight matrix containing
the initial distance between the processes, defined as the smallest weight on an edge
between them, or oo, if no edge connects the processes. Since the presence of negative
cycles is not allowed, elements on the diagonal of the weight matrix have distance 0.

As in the sequential version, step k of the O(|V|) required steps computes the length
of the shortest path between vertices / and j that passes through an intermediate vertex
numbered less than or equal to k for all jj vertex pairs. Let d;; be the length of the
shortest path from process i to process j computed thus far. For process ij, this length
value, d;;, is obtained by taking the minimum of the values of d;; and dix + dj; that
were computed during the previous iterations. Thus, after O(|V|) steps, process ij has
computed the shortest path from vertex / to vertex j that passes through zero or more
intermediate vertices.

Van de Snepscheut’s algorithm [16] is a processor-array implementation of the Par-
allel Floyd-Warshall algorithm. Logically, the processors, or more generally, processes,
operate in synchrony: Each step consists of receiving zero or more messages, performing
local computation, and sending zero or more messages to neighboring processes (at most
one per neighbor per step). The algorithm performed is the same as that described
immediately above. However, a clever timing strategy by van de Snepscheut yields an
elegant implementation.
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Figure 3.2: Message-passing protocols in Warshall APSP

For the kt? step of the computation, process jj assigns
dij = min(dij, di + dij).

To perform this operation, however, process ij must contain the previous step distance
values from processes ik and kj. Since in general the processes are not in direct communi-
cation, these values must be transmitted through the mesh of processes. A well-designed
solution would have the d;; and di; values arrive simultaneously to process j so that
storage of values within the process is not required. Van de Snepscheut employs the
synchrony of a processor array to achieve this result.

If processes with indices ik, [j, and kj are three corners of a rectangle within the
mesh, the fourth corner is represented by process kk (Figure 3.2). For the k** step of
computation, process kk sends initiate messages to its four neighbors in the k** row and
column. A process that receives the initiate message via a row sends its distance value
out along its column, and vice versa. Thus, distance values from processes ik-and kj are
sent towards process j. Since the values have an equal distance to travel and since the
processor array ensures the same rate of progress, the distance messages arrive at process
if simultaneously. Of course, the initiate message is not exclusively directed at producing
data for a single process. The initiate message sent by process kk as it travels through
the k** column and the k** row prompts d;; and dp;, respectively, to be sent toward
processor ij.

Even more concurrency becomes available with the realization that phases of com-
putation can be pipelined within the mesh. A start message is propagated through the
mesh; when it is received by elements on the diagonal, it initiates phases of computation.
For all elements, a single phase of computation is marked by receipt of two val messages.
According to van de Snepscheut, successive phases of computation must be separated by
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at least three time steps. This requirement is satisfied by routing the start message from
process kk to process (k+1)(k+1) via an intermediate process (eg, k(k+1)).

Thus, it is the synchronous nature of the processor array that makes possible this
elegant solution. Our asynchronous model permits few assumptions about the relative
timing of events in the algorithm. In the solution above, only one message can be
transported over a connection during a time step. The fine-grain multicomputer model
assumes infinite buffering between processes. Given the dissimilarity of models, the use
of Cantor to implement van de Snepscheut’s algorithm underlines some assumptions
made in the programming model.

The Cantor implementation of the algorithm is presented in Appendix A.2.

As mentioned in the introduction to Cantor programming, a computation begins
with the execution the main object, which is, at that point, the only object in existence.
From the main object, the object graph required in the computation can be constructed
either explicitly in the program or by employing the custom object facility discussed in
Chapter 2. In the program above, the mesh of cell objects that emulate a processor array
is created explicitly to illustrate a technique for object graph assembly. If a custom
object were to be used, the call to the setup function and nearly half of the cell object
definition would be eliminated.

Assembly of the object graph begins when the setup function creates |V| cell objects,
each representing the first element in a row of the mesh. Each cell object then creates
another in the same row until the mesh is completed. The last cell object in each row
replies to a branch of a synchronization tree, composed of sync objects, that responds to
the main object when all [V'|? objects have been created.

Since the function of the cell object array is to simulate the behavior of a processor
array, each object must be able to communicate with its four neighbors in the mesh. The
reference values of neighboring objects to the west and east are computed during mesh
creation, but the reference values of the north and south neighbors must be obtained
explicitly. This is accomplished using a “stitching” message pattern (cf. Figure 3.3). Cell
objects located on all rows (except the last one) receive up messages containing reference
to the cell object in the same column in the next row, its south neighbor. In response
to this message, the cell object sends a down message, which contains its own reference
and a reference to its east neighbor, to the south cell object. Receiving a down message
prompts a cell object to send an up message to the northeast cell reference. When all
the up and down messages have been observed, each cell object possesses the references of
its neighbors in the mesh. The objects in the last column of the mesh again respond to
sync objects to signal termination of the computation phase. The setup function returns
a vector containing the reference values of the first object in each row of the mesh to the
main object.

As mentioned in the general discussion of the algorithm, the synchrony of the pro-
cessor array supplies timing information that is used to simplify the code executed by
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Figure 3.3: Establishing reference connectivity in a mesh using a “stitching” message
pattern

a process in the mesh. Due to the asynchronous nature of the programming model,
additional constraints must be added to the Cantor program to ensure correct behavior.

For instance, the start message cannot simply be routed to sufficiently separate suc-
cessive phases of computation. Delay in message delivery between a pair of objects
potentially could cause a start message to be received before the object has completed
the previous phase of computation. The successive phases of computation then interfere
and incorrect results may be calculated. For proper operation, cell kk must have received
k-1 pairs of val messages before initiating the k** phase. Consequently, in the Cantor
program, an internal variable phase, initially 1, is incremented for each pair of val mes-
sages received. When phase is equal to k, cell kk starts a new phase by sending itself a
start message.

Another aspect of the algorithm that is underconstrained in an asynchronous envi-
ronment concerns the init messages. For cell ij, £ < 7, an init message is received traveling
east along the i*# row; later another is received traveling north along the j* column.
Cell ij below the diagonal of the mesh, ¢ > j, receives init messages in the reverse or-
der, traveling in the south and west directions, respectively. In the original formulation,
the synchrony of the processor array ensures that, before receiving either of the two
init messages, cell jj above the diagonal will have processed the i-I previous phases of
computation. Cells if below the diagonal will have already processed j-1 pairs of val mes-
sages. In the asynchronous version, delays between cells could allow init messages to be
received prematurely. If these messages are processed immediately, incorrect values of
length might be sent to other cells in the mesh. So, when an init message is received by
cell jj, if phase < ¢ < j or phase < j < 1, the init message is not processed immediately.
The direction of the message is preserved in initdir. When the proper number of pairs of
val messages has been received, the init message is re-transmitted. '
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The constraints on start and init messages that were applied in the Cantor program
solve the problem of skew of computation phases in the mesh. However, handling of
val messages requires additional constraints because of the Cantor assumptions about
buffering between objects. In the Cantor programming model, a potentially infinite
number of messages may be in transit between objects in direct communication, ie, one
possessing a reference to another. In the Cantor program, as many as N (where N is |V|)
val messages may be in transit between cells. In addition, val messages traveling toward a
cell from another direction may be arbitrarily delayed. Thus, a cell may have to examine
and store as many as N val messages received consecutively along a row or column before
a matching val message is received along a column or row, respectively. The premature
val messages must be stored in a FIFO data structure, in this case, a queue of qelement
objects.

When a val message is received, if one has already been received traveling in that
direction (either along the row or column), the new one is made the “tail” of the ap-
propriate queue, either ROW or COLUMN. Note that only two queues are necessary to
store val messages from the four directions because of the constraints on the start mes-
sages. All val messages traveling along one of the directions of the row or column will
be received and processed before subsequent phases of computation prompt val messages
traveling in other direction of the row or column.

If the newly received val message is the first to be received from that direction, then
the other queue must be checked for previously received val messages. If val messages
have been received along the other direction, the pair of val messages is processed. A
shorter path has been found if the sum of the distance values contained in the messages
is less than the current length. The value of length is modified accordingly. In any case,
the two val messages are then propagated in their original direction of travel so they can
be used to compute paths for other cells in the mesh. Since the other queue may contain
additional val messages that have been received, the head of that queue is accessed and
advanced using the function capability of Cantor 2.2.

Termination of computation is detected by the main object counting the number of
val messages it receives from cell 11. Since that cell is the last to compute a length value on
the N** phase, and since it does not compute a length value on the first phase, processing
terminates when the number of val messages received by main is N-1.

This program illustrates that the synchrony of a processor array can be successfully
emulated in Cantor. The timing information available in the processor array is replaced
by adding local constraints to the behavior of the individual parts of the mesh. Using
the message-order-preservation property and queues maintained by the receiving process,
the strict message protocols of the channels in the processor array are relaxed.

The property of message-order preservation between objects in direct communication
was used implicitly throughout the program. Current versions support preservation of
message order between objects in direct communication. This assumption is not unrea-
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sonable given the current fine-grain machine model. In the model, oblivious, dimension-
order routing between physical nodes is provided over FIFO channels. Message-order
preservation is thus a by-product. In future machine models, however, adaptive routing
will probably be used, which has the potential of destroying message order. In most
programs, preservation of message order will not be a critical concern. However, for
implementation of structures, such as processor arrays, that “pump” data in a systolic
fashion through some network, message order is an important issue. Having each individ-
ual object handle the manipulation of incoming messages to restore order hardly seems
a fine-grain solution. More likely, future Cantor systems will, in addition to “shipping”
messages where arrival order is unimportant, provide a facility for sending messages to
a destination with order preserved. ’

3.2 Quickhull

Since the advent of concurrent programming in the early 1980s, some types of algo-
rithms have traditionally proved more amenable to concurrent execution than others.
One important such class contains divide-and-conquer algorithms. The reasons for the
efficient mapping of these algorithms onto concurrent machines are clear: Concurrent
activities are defined at a coarse grain level by the algorithm; those activities, in gen-
eral, do not need to communicate. Although Cantor is based on a fine-grain model
of computation, thus encouraging frequent communication via message passing, divide-
and-conquer algorithms are implemented in Cantor cleanly and efficiently. This study
of concurrent programming in Cantor would not be complete without an example of the
divide-and-conquer strategy.

The Cantor program discussed in this section finds the convex hull of a set of points.
Briefly stated, the convex hull of a set of points is the smallest convex polygon that
surrounds all the points. The convex hull thus defines the natural boundary of a point
set. Clearly, members of the original point set make up the vertices of the convex polygon
that defines the hull. '

Since the convex hull of a set of points is useful in a variety of important application
areas, several efficient algorithms have been developed to compute it. One interesting
algorithm is the QUICKHULL algorithm [13]. Convex hull algorithms historically have
been inspired by sorting techniques due to the similar nature of the problems. In the
case of QUICKHULL, the sorting strategy of QUICKSORT [11] is adapted to the convex
hull problem. Rather than a set of numbers being recursively partitioned into subsets of
the sorted list, the set of points is recursively partitioned into subsets, each containing
the vertices of part of the desired convex polygon.

The original set of points is divided into two subsets (Figure 3.4), $; and S3, by
the line /r which connects the points with the smallest and largest abscissa. Each step
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Figure 3.4: Example graph for Quickhull algorithm

of the algorithm performs the following procedure: From the points in S, a point 4 is
determined such that the triangle (#/) has maximum area over all other triangles (pi)
where p € S1. If there are multiple points that satisfy this criterion, then the leftmost
of those points is selected, je, #, such that /(hlr) is maximized. A key observation is that
the point A then must belong to the convex hull. Next, two lines are constructed: Lj,
from / to h, and Ly, from h to r. Each point in S; is then tested relative to these two
lines. Each point must lie either on or to the left of L1, to the right of both L; and L,
or on or to the left of L. If the point is in the interior of the triangle (/hr), ie, to the
right of both L; and Lj, then clearly it cannot lie on the convex hull. The points on or
to the left of L; form a point set, Sy,1, just as the points on or to the left of Ly form a
point set, S1 2. These sets are then passed to the next level of recursion.

Just as in the QUICKSORT algorithm, the time complexity of the QUICKHULL
algorithm is dependent upon the relative sizes of the partitions at each level of recursion.
If, at each level, the point set S; is divided into two subsets of size at most a constant
fraction of the size of S;, then QUICKHULL has time complexity O(XN log N). Just as
in QUICKSORT, however, for the worst-case partitioning, QUICKHULL demonstrates
O(N?) time complexity. (For a full discussion of the QUICKHULL algorithm, see [13].)

The Cantor implementation of the QUICKHULL algorithm is presented in Appendix
A3.

In designing the Cantor solution to the convex hull problem, the key decisions con-
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cerned the representations of the point set and the convex polygon. Using a vector to
represent the point set would make the step of dividing the set trivial. As usual, how-
ever, the disadvantage of this approach is that for reasonably large point sets, use of a
vector to represent that set does not qualify as a fine-grain solution. For large amounts
of data, using a chain of objects is the preferred solution. For the representation of the
convex polygon, a vector containing vertices of the polygon is used. Although another
chain of objects should be used to represent this list of vertices, a vector was chosen for
simplicity.

The main object begins the computation by initializing two vectors, pointsx and pointsy,
to represent the x and y coordinates, respectively, of the members of the point set. The
chain of objects representing these points is then created tail-first. At the tail of the
chain is a nilpoint object. This object’s function is to initiate a new phase of computation
after the latest phase has been completed by all objects in the chain. The other objects
in the chain are created using the pointsx and pointsy vectors. Note that since the chain
represents a set of points, the order of points in the chain is unimportant.

Once the chain has been created, the point with the smallest abscissa in the point
set, I, is determined using the indexmin function. In the QUICKHULL algorithm de-
scribed above, the initial step begins with the point set already divided into two subsets
about the line I, where r is the point with the largest abscissa. Rather than imple-
ment this special case step, /r is initially defined as the vertical line passing through /
The point r is then defined as some point that is distance ¢ from / along this line. The
QUICKHULL computation is initiated by a call to a quickhull object. The Cantor call
statement instantiates an object (or function) and then discards the reference value (or
return value). _

The quickhull object sends a message containing the coordinates of / and r, and the
initial zero index and coordinates of h to its list of points to determine the actual point
h defined above. The reply from the chain of objects is either an edge message or an
h message. The edge message denotes that the set of points represented by the object
chain defines an edge of the desired convex polygon. The quickhull object responds to this
message by sending a vector containing its left value, the leftmost point lying on that
edge, to replier, an object that collects and concatenates polygonal chains. An h message,
containing the index and coordinates of the point h, causes the quickhull object to initiate
another level of recursion. A collector object is created to collect and concatenate the
polygonal chains that will be computed by the subsequent steps of the QUICKHULL
algorithm. As the current set of points must be divided into two subsets as described in
the general discussion of the algorithm, left and right lists consisting of nilpoint objects
are created. An h message containing reference to these two lists is sent to the chain
of objects so that each member of that chain will be added to the proper list (if any).
When the reply from the list of objects is received, the enclosed references to the chains
of objects representing points to the left of /6 and to the left of hr, respectively, are used
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to call new quickhull objects. Since a collector object has been created to rendezvous with
the reply from recursion, the quickhull object then self-destructs.

The operation of the collector object, as mentioned before, is to collect and concatenate
polygonal chains. Since each recursive step of the QUICKHULL algorithm divides a set
of points into two subsets, the collector object will receive two rendezvous messages, each
containing a vector representing the vertices of that chain. The messages also contain a
tag to indicate that the chain is either the first or the last part of the composite polygonal
chain. That composite chain is then sent to the parent of the collector object.

Since only the individual members of the object chain contain information about
points in the point set, the point object definition performs the arithmetic computation
related to determining the convex hull. Upon receiving a message containing the current
indices and coordinates of 4, /, and r, the point object checks the point represented by index
against the current value of 4. As outlined in the general discussion of the algorithm,
the point 4 is chosen to be the vertex that maximizes the pair (area A(/hr), L(Ihr)). If
the point index, chosen as the point A, produces a higher value for this pair than does
the current value of h, then h is assigned the value of index and the values for pairs
corresponding to the remaining points in the set are compared to the values for point
index.

It is important to note that the actual values of area A(/r) and /(lhr) are not required,
only that some metric defines the same ordering of the points. In the point definition,
the value returned by the function cross is used as the metric for the area of A(/hr). This
substitution is justified by the fact that the area of the triangle is maximized for the point
(or points) farthest away from the line /. The unsigned cross product of the lines /4 and
Ir produces the value of the height of the triangle (/hr) multiplied by the magnitude of /.
Since the line /ris constant for each point set, the absolute value of the value returned by
the function cross, ie the unnormalized cross product, is an acceptable metric for the area
of A(/hr). Similarly, the metric for the /(/hr) is obtained by dividing the unsigned cross
product of /h and /r by the magnitude of /h. This value actually represents the sine of the
angle between /h and /r multiplied by the magnitude of /. Since the angles between these
lines will always be less than «, the sine of the angle multiplied by a positive constant
will suffice as the metric for Z(/hr).

If the point object determines that the values of the functions cross and angle for the
point index exceed the metric values maxcross and maxangle for the current value of h,
it replaces the value and metric values of h with those of index. The current value and
metric values of h are then sent to the next point object in the chain.

This process continues until each point object in the chain has compared its point
index against the current value of h. Thus, when the message containing h reaches the
nilpoint object, h has been determined. If h is zero, indicating that no point in the point
set lies off the line /r, then an edge of the convex polygon has been identified, so the edge
message is sent to the quickhull object requester; otherwise, the point set represented by the
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chain must be divided as described in the discussion of the algorithm. The nilpoint object
sends a h message to the quickhull object requester to initiate this phase. Upon receiving
this h message, each point object in the chain calls the function outside to determine if
the point index lies to the left of /4 or of hr.

The function outside simply returns the sign of the cross product of the line connecting
(ax,bx) and (x,y) and the line connecting (ax,ay) and (bx,by). If that sign is negative, then
the point (x,y) lies outside, or to the left, of the line connecting (ax,ay) and (bx,by).

So, in the point object definition, if the point index lies outside the line /A, the point.
object adds itself to the left list of points. Likewise, if the point lies outside Ar, the object
is added to the right list. Since the chain of objects represents a set of points, the fact
that the order of the points in the newly created lists is reversed from the current order
is unimportant. The h message is then sent to the next object in the chain.

When the original point set has been completely divided into chains representing
edges of the convex polygon, the collector tree will complete the concatenation of lists
of vertices representing those edges and eventually reply to the main object. The main
object then prints the vertices of the convex polygon in order of traversal.

In addition to the implementation of the divide-and-conquer strategy, this program
exhibits several important characteristics of fine-grain programming: First of all, the
representation and manipulation of a set using objects rather than an internal data
structure, such as a vector, are critical fine-grain programming techniques. Although
the specification of the behavior of the object structure is more complicated than that of
a vector, the distributed structure will scale to the size of the fine-grain machine, while
the size of internal structures would likely be severely limited.

Another reason this program was selected for inclusion in the study lies in its use
of functions. This program exemplifies a major purpose of the addition of functional
abstraction to Cantor. Without functional abstraction, in-line code would be used to
perform the operations of cross, outside, angle, and indexmin. As object definitions become
longer and more complicated, this type of code replication becomes less acceptable. Func-
tional abstraction was included in Cantor 2.2 in part to enable the programmer to define
functions to simplify object definition code. It should be noted that object instantiation,
not functions, are used to implement the recursion of the QUICKHULL algorithm. The
use of recursive functions cannot be reconciled with the fine-grain programming model.

3.3 Enumeration of Paraffins
The study of organic chemistry was one of the first application areas of graph theory. In
1874, Cayley [4] used tree theory to enumerate saturated hydrocarbons. Hydrocarbons,

as implied by the name, are constructed from carbon atoms, which have valence 4, and
hydrogen atoms, which have valence 1. In a saturated hydrocarbon, all bond positions
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are occupied. Saturated hydrocarbons, or paraffins, share the empirical formula C, Hoy12.

As n, the number of carbon atoms, increases, the number of paraffin isomers (distinct
molecules with the same formula) increases dramatically. Since the four bond positions of
a carbon atom are indistinguishable, enumerating paraffin isomers only entails counting
structures that are not reflections or rotations of other structures. Paraffins with five
or fewer carbon atoms are shown in Figure 3.5. While enumerating paraffin isomers for
a given n through combinatorial analysis would be an interesting exercise, enumeration
by generating a list of the isomers proves to be a challenging fine-grain programming
experiment.

Two approaches can be taken to this enumeration problem: Either generate all struc-
tures that represent paraffins, and by testing for isomorphism, eliminate duplicate struc-
tures; or, generate only those structures that are unique representations of paraffins.
As testing for graph isomorphism in all the possible structures would be quite time-
consuming, the second approach is preferable. The key difficulty in the second approach
lies in the need for a canonical representation for each molecule. One such representation
can be found by employing graph theory to solve an equivalent problem.

To represent each paraffin molecule, Cayley used a tree with 3n + 2 points, where
each point has degree 1 or 4. However, since all the bond positions are occupied, the
structure of the carbon atoms completely specifies the structure of the molecule. Thus,
a tree representing the carbon atoms suffices. This tree representing the carbon atoms is
an unrooted, or free, tree. Enumerating paraffin isomers of n carbon atoms is therefore
equivalent to enumerating free trees of n vertices with degree less than or equal to 4. Of
course, the difficulty in enumerating the free trees lies again in the lack of a canonical
representation.

According to Knuth’s discussion of free trees [12], it is possible to select any vertex
X of a free tree and, by assigning directions to edges in a unique way, make vertex X the
root of a rooted, or oriented, tree. Let k be the number of subtrees of the root X. Let s;
be the number of vertices in the *# subtree, where 1 < ¢ < k. So for a given number of
vertices, n, k < 4 and

s1+s83+s3tsg=n—1 (3.1)

The weight of vertex X is defined as the maximum value of some s;. A vertex of the free
tree that has minimum weight is the centroid of the tree. Knuth proves that if vertex X
is the only centroid of the tree, then

8; < 81+ 82+ 83+ 84 — 85, (3.2)
where 1 < j < k. Knuth also proves that there are at most two centroids in a free tree, and if

two centroids exist, they are adjacent. A free tree with two centroids has an even number of
vertices, and the weight of each centroid is n/2.
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Figure 3.5: Carbon atom structure of some paraffin molecules
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For the single centroid case, a rooted tree with at most 4 subtrees represents a free
tree if and only if those subtrees satisfy equation 3.2. However, not all rooted trees
satisfying that equation are distinct. For example, a rooted tree with s; =2 and s3 =1
is isomorphic to another rooted tree with 8; = 1 and s; = 2. Adding the condition

81 >89 > 83> 8y (3.3)

ensures that a rooted tree represents a unique set of free trees.

Note that the four-tuple (s1,82,83,84) represents more than one free tree if any
8; > 2. Each of the subtrees of vertex X are rooted trees containing s; vertices that do
not necessarily satisfy equations 3.2 and 3.3. For s; > 2, there is more than one such
rooted tree of s; vertices. The total number of ways to combine non-isomorphically the
rooted trees of size 81, 82,83 and 84 is the number of free trees represented by the tree
rooted at vertex X.

For the double centroid case, a rooted tree is unique if it is composed of two rooted
trees, each containing n/2 vertices, that are combined in non-isomorphic ways. That
is, if there are p rooted trees of size n/2, these subtrees can be combined in 3p(p + 1)
non-isomorphic ways, producing that number of distinct free trees of size n.

From this discussion, we derive an algorithm for generating all free trees of n vertices.

First, generate all four-tuples (sj, s, 83,84) that satisfy 3.2 and 3.3. Each of these
tuples represents a set of unique free trees of size n with single centroids. In addition, if
n is even, investigate bicentroid cases by non-isomorphically combining rooted trees of
size n/2.

Since 0 < 8 < n/2 for all four-tuples generated above, all rooted trees with m
vertices, 1 < m < n/2, will be required to generate the free trees. To generate rooted
trees of size m, generate all three-tuples (t1,¢s,t3), where 0 < t; <m — 1 and

t1+ia+ts=m-—1 (3.4)

Combine non-isomorphically the sets of rooted trees corresponding to the value of each
t;. v

The concurrency available in this algorithm is not trivial, as it would have been in
the first approach to the problem, which generated all structures corresponding to free
trees and then tested for isomorphism. In this formulation, completion of generation of
rooted trees of size m requires completion of generation of rooted trees of up to m/2
vertices. Concurrency is obtained by having each tuple (either s; or ¢;) be computed
independently of other tuples corresponding to trees of size m. When the four (three)
lists of rooted trees corresponding to s; (t;) are completed, those trees can be immediately
combined non-isomorphically. Thus, as n and the number of paraffin isomers increases,
there is more opportunity to perform parts of the computation concurrently.

The Cantor program implementing this algorithm is shown and discussed in Appendix
A4
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The main object begins the generation of paraffin isomers of size N by instantiating
a rooted object to generate rooted trees of size 1. These rooted trees will be used in
generating rooted and free trees of size greater than 1. If N = 1, a free object is created
to generate free trees of size 1.

The index of a rooted object is the number of vertices in the rooted trees it will
generate. The index thus corresponds to m in the general discussion of the algorithm.
A newly created rooted object with indez < N/2 creates another rooted object that will
compute the rooted trees of size index + 1. A rooted object with index equal to N/2
creates a free object to combine rooted trees to form the free trees of size N.

The chain containing rooted objects and the free object is thus created sequentially.
When a rooted object is created, a list of reference values of rooted objects with lower
index values is sent to the new end of the rooted object chain. Reference values to rooted
objects with lower Index values are required because rooted objects computing trees of
size m will need to request the lists of trees of size up to m/2.

The chain containing the rooted objects and the free object is not required to be
complete before each object can begin to generate trees. After a rooted object has created
the next object in the chain, it generates a set of tuple objects, one for each tuple (¢1, ¢2, t3)
satisfying equation 3.4. The tuple objects are connected in a ring with the rooted object.
The first tuple has a next reference to the rooted object. Other tuples have a next reference
to the previously created tuple. After creating all the tuples, the rooted object begins
accumulating the trees that correspond to each tuple by sending a solutions message
around the ring of tuples. When a tuple has finished generating the trees corresponding
to its three-tuple (¢1,%s,13), and has received a solutions message, the list of rooted trees
satisfying the three-tuple is added to the rooted-trees list received from other tuples in the
ring. Thus, when the rooted object receives a solutions message, the generation of trees of
size m has terminated. Since rooted objects operate concurrently, request messages from
other rooted objects may be received before a solutions message. These requests are queued
via a LIFO of stackelement objects. When the solutions message is received, the requests
represented by the stackelements are satisfied. Subsequently received request messages are
satisfied immediately by the rooted object.

The synchronization mechanism of the ring, which is a derivative of the termination-
detection scheme of the Chandy-Misra SPSP program, is used extensively in this program
to collect information upon completion of some set of concurrent tasks. This paradigm
is also used throughout the program that is the remainder of this chapter.

The behavior of the free object is essentially the same as that of a rooted object.
Again, the objects generating lists of trees are organized in a ring. If N is even, the
first object created in the ring is a tuple object that generates the bicentroid free trees
by combining pairwise rooted trees of size N/2. Additional tuple objects are created for
every four-tuple (81, 82, 83,84) that satisfies equations 3.2 and 3.3. In this case, the ring
responds to the main object rather than to the free object because when the objects in this
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ring terminate processing, the generation of free trees of size N has been completed, and
so the main object should be notified of termination. The free object begins accumulating
a list of the free trees by sending a solutions message to the ring.

All lists of trees, either free or rooted, are represented by linked lists of tree objects.
These objects represent trees by containing reference values of other tree objects that
represent the subtrees of size i, j, k, and . Thus, these reference values are, in effect,
pointers to particular subtrees. This approach to storing the generated trees minimizes
the amount of memory required to represent the total set of generated trees. The details
of tree-object operation will be described later.

The persistent variables of a tuple object include i, j, k, and I, which are respectively
the number of vertices in each of the subtrees of the trees to be generated by the object.
The tuple object must collect and combine the rooted trees of sizes i, j, k, and I. For
this reason, the reference values of the rooted objects that generate those trees are also
contained in the persistent variable list.

Another ring structure is used to gather and combine the lists of subtrees. The first
object created in the ring is a product object; this will respond to the tuple object. The
tuple object then creates a child object for each of the four variables to request and collect
the lists of subtrees from the rooted objects. The tuple object sends a solutions message
to the ring to begin accumulation of the lists. When the list of trees corresponding to
the tuple i, j, k, and | is compiled, the product object then responds to the tuple with a
reply message containing a reference to the head of the list of trees. When both the reply
and the solutions messages have been received, the two contained lists of tree objects are
concatenated and the tuple object sends the combined list of trees to the next tuple in the
ring.

A child object requests the list of subtrees from a particular rooted object. The rooted
object will respond with a reply message containing the number of trees of size subtree and
the reference value of the head of the list of tree objects representing the trees. Since the
child objects in the ring are created by the tuple object in |-k-j-i order, when the solutions
message is received, the child assigns the reference value of the received list of tree objects
to its place in the vector Refs.

When collection of the lists of subtrees has been accomplished, the vector Refs will
be sent to the product object, the first object created in the ring. This object instigates
the combination of the lists of subtrees to produce a new list of trees that will be sent
to the creator tuple object. If the Refs vector contains only nil references, a list consisting
of a tree object, (representing a tree of zero vertices) and an endlist object is sent to the
tuple object; otherwise, if non-empty lists are to be combined, a product message is sent
to head of the list of tree objects representing rooted trees of size m.

The combination of lists of tree objects is probably the most complicated part of the
algorithm. If the lists were always distinct, a distributed Cartesian product of the lists
would suffice. Instead, the same list of tree objects may represent each of the subtrees
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to be combined. Applying the Cartesian product operation to non-distinct lists would
produce isomorphic trees.

The algorithm to combine the possibly non-distinct lists follows: Let S1, S2, S3, and
84 be the four lists of trees of size s1, 2, 83, and 8,4, as described in the general discussion
of the algorithm. For rooted trees, S1, Ss, and S3 represent subtrees of size ¢;, {2, and
ts, while Sy represents a subtree of zero vertices.

If the non-empty S; lists are distinct, the Cartesian product of the lists is performed.
For non-empty lists, each element of Ss is combined pairwise with every element of Sy.
Each element of S; is combined with every such pair to produce triples. Each element
of 51 is then combined with every triple to create the desired four-tuple unique trees.
Naturally, if some S; list is empty, fewer lists will be combined so fewer elements will be
required to represent a tree.

If some of the S; lists are not distinct, the above procedure must be modified. For
Ss = Sy, the first element of the list is combined with every element, including itself, in
the list to form pairs. The second element of the list is combined with every element in
the list except the first element. In general, each element of the list is combined pairwise
with elements occurring equal to or later in the list than itself. Let this process be
called the expansion of an element of the list. If S; = S3 = S, triples are formed by
combining each element of the list with pairs containing elements of the list occurring
equal to or later in the list than that element. A similar operation produces four-tuples
that represent unique trees if Sy = S; = S3 = 5.

In the Cantor version of this algorithm, the first element of Sy is sent a product
message. This message contains references to the lists to be combined in the vector
Refs, and begins the expansion of the receiving tree object. This tree object, after some
processing that will be described below, sends a product message to the first element
in S2 and waits for a reply message containing the list of combinations of elements in
the remaining lists. The tree object in S2, upon receiving a product message, begins its
own expansion by passing the product message to S3, and waiting for a reply message.
This process continues until the first element in the last non-empty list receives a product
message.

As part of the product message, a tree object receives the vector replier, containing
the reference values for the destinations of reply messages; the vector head, containing
reference values of the first elements of the lists being combined; depth, the index of the
list being accessed; num, the number of unique trees already generated for the parent
tuple object; and list and tail, respectively, the head and tail of the list of trees generated
thus far. Also included in the product message is a vector containing the reference values
of elements currently being expanded and whether or not bicentroid trees are being
generated.

Upon receiving a product message, a tree object assigns its own reference value to the
depth*® cell of Refs and begins the combination of lists of higher depth. If the reference
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value of this tree object is also the reference value of the element: to be expanded in the
(depth+1) list, then the lists are clearly not distinct. Rather than send multiple product
messages to itself, the tree object expands itself by incrementing the depth and assigning
its self value to one element of the vector replier. This operation is performed as many
times as there are instances of the non-distinct list.

If the tree object receiving the product message is an element in the last non-empty
list being combined, ie, Refs[depth]4-1 = nil, a new tree object is created to represent the
unique tree made up of the subtrees represented by Refs[1..4]. The new tree object is
added to the list of trees already generated corresponding to the original tuple. The
product message is then sent to the next element in the list so that Refs[1..depth-1] can be
combined with other elements of the list.

When a product message reaches the end of a list, the endlist object for that list sends
the accumulated list of trees to the element in the (depth-1) list that was expanded with
the product message. Upon receiving the reply message containing that list, the expanded
tree object sends a new- product message to the next element in the list at that level, thus
beginning expansion of the rest of that list. ’

When a product message reaches the endlist object of the first list to be combined,
combination of the lists has been achieved, and a list of the tree objects representing the
unique trees is then sent to replier[1], the tuple object.

Although the algorithm used here to combine lists is sequential, many combining
operations that uses the same lists may be occurring concurrently. Since the state of
the combination is completely contained in the product and reply messages, pipelining of
combination operations is trivial. A concurrent algorithm to combine the lists was in-
vestigated, but handling the resulting fragmentation of the list of generated trees proved
to be quite a messy operation. For simplicity, the sequential version is presented here.

The complication of combining the lists of tree objects can be immediately resolved,
however, for small N. If a vector is used to represent the set of tree objects, the combining
of the lists can be performed within the product object. Of course, this way of combining
the lists is much faster than the distributed version; however, as N grows, the size of the
required vectors increases quite dramatically. For N = 12, the size of the vectors must
be greater than 350. For N = 15, the vectors must contain more than 4000 reference
values. Clearly for any but the smallest N, using vectors to represent the lists of trees
is not a fine-grain solution to the problem. By using a distributed list of objects to
represent the lists, the program’s operation is limited only by the number and size of
objects that can be created.

A table of the number of paraffin isomers for N up to 16 is shown in Figure 3.6.

Developing a solution for enumerating paraffins is perhaps the most challenging prob-
lem studied in this thesis. As the concurrency available in the problem was non-trivial, a
fine-grain formulation of a solution was critical. Selection and manipulation of the data
structures representing lists of trees was an integral part of that formulation. Future
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N|1|2|3|4}5(6|7| 8] 9(10] 11| 12| 13 14 15 16
Pl1|(1{1]|2({3|5|9|18 35| 75| 159 | 355 | 802 | 1858 | 4347 | 10359

" Figure 3.6: Number of Paraffins P of N Carbon Atoms

work on the problem includes extensive profiling of the concurrency in this solution to
further evaluate the programming techniques that were employed.

3.4 Checkmate Analyzer

As part of the quest for devices that can best human opponents in games of skill, chess-
playing computers have received much attention. In general, the chess-playing programs
select moves from a set of possible moves by using tree look-ahead. A tree is maintained
with the root as the current configuration of the board. At the next level, a vertex
represents the state of the board if some candidate move were to be taken. The number
of levels available in the tree defines the number of moves the program can “look-ahead.”
Operating on the premise that the opponent always makes the best move, the program
chooses its own moves by evaluating the deepest levels of the subtrees emanating from the
vertices representing the possible moves. Since a high degree of concurrency is available
for generating and scoring the subtrees, and since the amount of state required by each
vertex is relatively small, a multicomputer is a logical choice as a target machine for
chess-playing programs.

A Cantor program that exploits the available concurrency in chess-playing is planned,
but is well beyond the scope of this thesis. As a first step in investigating programming
techniques that would facilitate a fine-grain solution to playing chess, a Cantor program
is developed and presented here to detect whether or not checkmate has occurred. Given
a legal board configuration and an indication of the side whose turn it is, the Cantor
program analyzes the situation and outputs whether or not the king is in check, and
provides a list of moves that would remove the check on the king. If no such moves exist,
checkmate is reported. :

As in most non-trivial fine-grain programming experiments, achieving high perfor-
mance requires a fine-grain algorithm. Formulating the algorithm at some coarse-grain
level of concurrency and then attempting to exact fine-grain performance is not gen-
erally successful. In the case of the checkmate analyzer, several design decisions were
predicated upon knowledge of fine-grain programming paradigms and techniques.

The first of these decisions concerned the representation of the configuration of pieces
on the playing board. Both piece-oriented and board-oriented approaches were consid-
ered. In the piece-oriented approach, objects representing the playing pieces are the chief
computing agents, and each keeps track of its piece’s current position on the board. In
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the board-oriented approach, objects representing each square of the playing board keep
track of the current resident status of that square, whether empty or occupied by one of
the 32 playing pieces. _

In comparing these two approaches, one notices that the first approach requires
half the number of objects as the second one. However, when target machines support
potentially hundreds of thousands of concurrent objects, the advantage of saving 32
objects is negligible. In this case, the choice between the approaches illustrates one of the
important lessons of fine-grain programming. In the piece-oriented approach, the number
of objects is fewer, but the amount of communication between objects is greatly increased.
With no global knowledge about the configuration, the object representing a piece must
in essence broadcast information to all other piece objects. In a board-oriented approach,
objects representing squares possess local information about the squares around them.
So, in this case, minimizing the number of created objects would increase communication
overhead and decrease useful concurrent activity. For this reason, the board-oriented
approach was selected and implemented.

Another design decision focused on the methods of communication between playing
pieces. For instance, how does one determine if the king piece is in check? If playing
pieces communicate by comparing their coordinates, then communication between all
playing pieces is potentially required. The number of extraneous messages in this scenario
makes this approach unattractive. Another approach would be to have playing pieces
attempt to “hit” the king piece with messages that traverse the same path to the king as
the piece would. For example, a object containing a bishop piece would send messages
along diagonal squares, perhaps encountering the king piece. The disadvantage of this
approach is that all opposing pieces could potentially check the king piece. Is it necessary
to have all those pieces send messages in an attempt to hit the king piece?

The chosen approach to communication between playing pieces is a derivative of the
one presented immediately above. Rather than having opposing playing pieces send
messages attempting to hit the king piece, the object representing the square with the

king piece sends a message for each opposing piece in the possible directions of attack

by that piece. For example, the king piece square object sends a message seeking the
opposing king’s bishop along all diagonal directions. If the king’s bishop is hit by one of
these messages, then the king piece is in check. The primary advantage of this approach
over the other two is in the relative economy of message traffic. While sending many short
messages is not a disadvantage in fine-grain programming, sending extraneous messages
is rarely justifiable.

The implemented algorithm for analyzing the playing board configuration follows:
Sixty-four objects are created to represent the squares of the board. Each individual
square can communicate directly with each of the eight neighboring objects (including
the four diagonal neighbors). The configuration of playing pieces is then mapped onto
the object grid. The object representing the king piece of the color whose turn it is is
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identified. Hereafter, the objects in the algorithm are identified by the playing piece they
contain or as empty squares.

The king then begins to send messages to determine whether or not it is in check by
opposing pieces. Concurrently, the king begins to investigate possible moves by the king
to one of the surrounding eight squares. The standard rules of movement of the king
are observed. When these two parallel activities are completed, the king is aware of its
attackers (if any) and the feasibility of its moves to escape check.

If only one opposing piece is attacking the king, then the possibility exists for that
piece to be either captured or blocked; these possibilities are explored concurrently. The
attacking piece sends out messages to determine if it can be captured. If the attacking
piece is a “line-of-sight” piece (a queen, bishop, or rook), then the empty squares be-
tween the king and the attacking piece send messages to determine whether they can be
captured by a piece friendly to the king; at the completion of these two parallel activities,
the king is aware of possible moves by friendly pieces to remove check.

However some of these moves may be invalid. For instance, a move to capture or
block the attacker may expose the king to another attacker, leaving the king still in check.
To identify the valid moves, a new board of objects is created for each of the potential
blocking or capturing moves. The configuration of playing pieces on each of the boards
corresponds to the configuration of the original board after each of the potential moves
has been taken. Concurrently, each of these boards is analyzed to determine if the king
remains in check. For each of the boards in which the king is not in check, a blocking or
capturing move is reported.

The output of the checkmate analyzer consists first of the status of the king, ie,
whether or not the king is in check. If the king is not in check, it is clear that checkmate
has not occurred; if the king is in check, then a list of moves for the king piece to escape
check is reported. A list of valid moves to block or capture an attacking piece is also
reported. If the king is in check and no moves can be found to escape or remove check,
checkmate is reported.

The Cantor checkmate analyzer is presented in Appendix A.5.

The first part of the computation involves the set-up of the board configuration to
be analyzed. As in previous examples, external input capabilities are not employed. The
board configuration to be tested is explicitly loaded in the row and col vectors. The index
into the vectors is determined by the color of the piece and by its original position on
the playing board, eg, king’s knight. For the purpose of printing the configuration of
pieces with the final output, identifying names for the playing pieces are loaded into the
vector piecename. The configuration is then printed.

The stategy discussed previously for analyzing the board configuration uses a mesh
of objects that represent the squares of the playing board. A call to a buildboard object
establishes that mesh of objects.

Two synchronization chains are used to ensure that phases of the construction do not
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become skewed. The childlist chain, composed of child objects, accumulates the reference
values of the first square object in each of the eight rows. The synclist chain, composed of
sync objects, detects when the all objects in the mesh have reached some synchronization
point in the computation. After the buildboard object instantiates each of the objects in
these lists, it begins instantiation of the mesh objects by assigning each element of the
rows vector to a connectsquare object.

The function of the connectsquare objects is an example of the use of a temporary
object structure to construct a more permanent object graph. The primary advantage of
this approach is to minimize the amount of code within the permanent graph object by
factoring that code into temporary objects. The primary disadvantage is that the total
amount code is increased due to the added overhead of managing the state of both types
of objects. In this case, each element of the mesh of connectsquare objects creates a square
object and constructs a vector containing the reference values of all eight neighboring
square objects.

The method to establish this reference connectivity is the “stitching” method dis-
cussed in Section 3.1.2 with the addition of diagonal reference connection. When the
buildboard object is notified by the synclist that all connectsquare and square objects in the
mesh have been created, it begins the linking phase by sending up messages to the first
element of each connectsquare row. These up messages carry the reference values of the
connectsquare and square objects in the same column as the receiver in the next row, Je,
to the south. When the up message is received by a connectsquare object, the included
reference values are preserved in the array dir and a down message is sent to the connect-
square reference just received. Down messages include reference values to connectsquare
and square objects to the north, northeast, and northwest of the receiving object. These
messages prompt the sending of more up messages and of diag messages. Diag messages
are sent to northwest neighbors to establish diagonal connectivity.

Based on its coordinates in the mesh, a connectsquare object determines which of the
three types of messages it will receive. When the required messages have been received,
objects on the edges of the mesh create nilsquare objects to act as the perimeter of the
mesh. The completed dir vector is sent to the associated square object. If that square of
the playing board contains the king piece of the side whose turn it is, the reference of the
square piece and the reference values of the neighboring squares are sent to the buildboard
object. The connectsquare structure then self-destructs after synchronizing through the
synclist. After receiving the king piece reference values, the buildboard object sends those
values to the main object and then self-destructs.

The actual analysis of the board configuration begins when the main object receives
the reference values of the king piece square and of the neighboring squares. At this
point, the main object initiates a search for playing pieces that are attacking the king
piece, Je, to detect if the king piece is in check. This search is instigated by a call to a
notmoveking object. This object also manages the investigation of blocking or capturing
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moves to remove the king from check. Concurrently, a moveking object evaluates the
king’s neighboring squares as possible moves by the king piece to escape check.

The moveking object actually serves only to create a synchronization chain of eight
collectmoves objects. Each of these objects will rendezvous with a reply message from the
neighboring square in one direction. The neighboring squares, upon receiving a check?
message, investigate the possible attackers of that square. The reply message from the
neighboring square contains the identity of the playing piece currently occupying the
square, and the identity, reference values, and direction of pieces that could attack that
square. The collectmoves chain constructs a list containing directions from the king square
of squares that are safe from attack and do not contain a playing piece, or that have a
playing piece that can be captured by the king. The chain of collectmoves objects returns
a vector containing these directions to the main object in a moveking message.

Meanwhile, the notmoveking object waits to receive the report of attackers on the king
square. If there are no attacking pieces, then the king is not in check and a notmoveking
message is sent to the main object. If there are multiple attacking pieces, then no blocking
or capturing move will remove check, so messages are sent to the main object signifying
that no blocking or capturing moves exist. If, however, there is only one attacker, that
attacker potentially can be blocked or captured. If the attacking piece is a “line-of-sight”
piece, eg, a queen, rook, or bishop, then a blockpiece object is called to investigate possible
blocking moves; otherwise, the main object is notified that there are no blocking moves.
Capturing moves are investigated by instantiation of a capturepiece object. The specific
operation of these two objects will be discussed later.

As described in the general discussion of the algorithm, a square object seeking to
determine if that board square can be captured by the opponent’s pieces sends messages
to neighboring squares seeking specific pieces. When a check? message is received by
a square object, a checksquare object is created to manage this process. The checksquare
object begins by creating a checkpiece object for each playing piece of the opponent’s
color. These sixteen objects are arranged in a synchronization chain to accumulate the
replies of the inquiries to other squares on the board.

The role of the checkpiece object is to rendezvous with the replies from inquiries seeking
a particular piece that have been sent in all directions of motion, and then to forward that
information to other checkpiece objects in the chain. As the reader may suspect, another
synchronization chain is used to accumulate the replies from all possible directions of
motion of the particular playing piece. Each element of this chain is a missile object that
is responsible for sending hit? messages in the given direction of motion in an attempt
to find a particular attacking piece. When the reply from this inquiry is received, its
information about the potential attacker is assimilated and sent to the rest of the chain
in a hit message.

When a square object receives a hit? message, it first determines if the playing piece
being sought is a knight. As the motion of a knight piece is exceptional, the messages
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seeking that piece are also exceptional. Only one hit? message is sent by the checkpiece
object in each of the four diagonal directions. The receiving square object detects that
the message has been sent along a diagonal and then sends hit? messages out in direc-
tions that carry the messages to squares that could contain attacking knight pieces. For
instance, if the hit? message is received traveling in the northeast direction, then the
two new messages should be send out in north and east directions. If the piece being
sought is not a knight, and the square object does not contain a playing piece, then if
the piece being sought is a “line-of-sight” piece, it sends the hit? message out along the
original direction. Otherwise, the square object replies as to whether or not it contains
the sought playing piece.

In summary, square objects respond to missile objects with hit? messages containing
information about attacking playing pieces. Missile objects assimilate information about
the direction of attack of a particular type of piece. This information is sent in a hit
message to a checkpiece object that is responsible for seeking a particular playing piece.
The information from all checkpiece objects is collected and then sent to the object that
called the checksquare object.

The capturepiece object uses this process to determine if the lone attacking piece can be
captured by pieces friendly to the king piece. A check? message is sent to the square object
that contains the attacking piece, with the color of attacking pieces reversed. Thus, if
the white king is being analyzed for checkmate and a single black piece has the king is
check, then the check? message seeks white pieces to capture the black attacker. If any
capturing pieces are found, then a collectconfig object is created to test the potential board
configurations that would result from that capturing move being taken. As mentioned
in the general discussion of the algorithm, some of these moves to remove check from the
king may expose the king piece to other attackers. Naturally, these collectconfig objects
are arranged in a chain that will eventually respond to the main object.

The blockpiece object sends a block? message along the direction of motion of the
attacking “line-of-sight” piece. Each of the square objects between the king and the
attacker responds to the block? message by creating a collectblocks object to collect the
reply from the checksquare object it calls to determine if that square can be captured
by a friendly piece. The block? message is then continued in its original direction of
motion. When the block? message reaches the square containing the attacking piece,
that square object replies to the chain of collectblocks objects, beginning the collapsing of
that chain. Eventually, this list replies to the blockpiece object with a list of potential
blocking moves. As in the case of capturing moves, some of these blocking moves may
be invalid. Again, a collectconfig object chain is created to test and collect each of the
potential board configurations.

The collectconfig object tests the board configuration using a checkconfig object. The
checkconfig object uses the buildboard object to create a mesh of objects representing the
playing board configuration. When the reply is received from the object mesh, a check?
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message is sent to the square object containing the king piece to determine if the king
piece is still in check. The result of this inquiry, once received, is sent to the parent
collectconfig object in a reply message. Upon receiving this reply message, the collectconfig
object assimilates the result of that inquiry into the list of blocking or capturing moves
(depending upon the type of moves this chain of collectconfig objects is collecting). When
the chain collapses, it responds to the main objects with a list of blocking or capturing
moves. ’

The main object in total receives a moveking message and either a notmoveking message
or else a block message and a capture message. When one of these sets of messages has
arrived, the following information is reported: whether the king is in check, and, if it is
in check, lists of moves by the king piece to escape check and moves by friendly pieces
to capture or block an attacking piece.

This program to analyze chess board configurations is the largest Cantor program
written thus far. Its contribution to the Cantor library is that it non-trivially uses
programming techniques that were developed in smaller, less-involved programs. For
example, a technique called code factoring is used extensively in this program to reduce
the complexity of an object’s codée. Without using discretionary receipt of messages,
an object’s code must provide a response for each potential type of message that could
be received. Without code factoring, the potential number of messages could be quite
large, thus requiring a large case statement to specify the object’s response. Many times,
however, the response of a particular object to a message can be factored into another
object. For instance, in the square object code, receipt of a check? message triggers the
initiation of an inquiry concerning the status of that board square. If the reply from this
inquiry were to come back to the square object, the case statement that is the majority
of that object’s code would be even larger. Likewise, the reply from the block? inquiry
would increase the size of the case statement. A simple, but powerful, technique is to
create a new object specifically to handle the rendezvous with the reply from the inquiry.
In the case of the block? inquiry, a synchronization chain of collectblocks exists for this
purpose. Throughout this and the other programs, this technique is used to minimize the
increase in complexity of object definitions introduced by the lack of message discretion.
This technique also yields potentially better performance as the number of messages in
a single object’s message queue is reduced and the number of objects that can execute
concurrently is increased. The synchronization structures that have been presented are
examples of the usefulness of the code-factoring technique.

This program also illustrates the use of temporary object structures in the generation
of permanent object structures. The original intent for using such ephemeral structures
was to separate the concerns of creating an object structure versus performing the actual
computation. Although this goal is an important one, the practicality of using tempo-
rary object structures to achieve it is unproven. Most often, use of temporary object
structures adds significantly to the size and complexity of the object definitions for the
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temporary and permanent objects. In future work, alternative methods for establish-
ing a computation graph, including methods that free the programmer from explicitly
constructing highly regular object graphs, will be examined.

48



Chapter 4

Conclusions

The approach to this thesis experiment was outlined in Chapter 1. By writing Cantor
programs to perform a variety of tasks, and then studying those programs, we gain insight
into the fundamentals of fine-grain programming. Some of the interesting programs
written as part of this experiment have been presented and discussed in Chapter 2. To
conclude, we answer the question, “What did we learn from these programming experiments?”

4.1 About Cantor

These programming experiments were in part designed to provide evidence, either sup-
porting or refuting, for assumptions that were present in the original Cantor program-
ming model. Most of these assumptions were determined to be well-founded and con-
ducive to efficient fine-grain programming. A few were found to be unnecessary, while
others either were not supported or were refuted by the analysis of programs.

4.1.1 The Programming Model

The Cantor model defines objects as message-driven computing agents. A Cantor object
cannot modify the global state of a computation without first receiving a message. While
this requirement was motivated by runtime and program analysis issues, programming
with “reactive” objects was usually intuitive to the programmer. The convenience and
generality of the reactive programming approach was a positive result of the program-
ming experiments.

We were also encouraged by the degree of concurrency we immediately achieved
using Cantor. Since the Cantor programming model follows closely the object model of
computation [1], Cantor computations are inherently concurrent. Specifically, objects do
not share variables, and they communicate only via message passing, thus allowing them
to be executed independently, /e, concurrently. Since message-passing operations must be
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explicitly expressed in Cantor, the programmer is more likely to recognize unnecessary
dependencies. By minimizing the message and object dependencies, and maximizing
_ the number of useful computing objects, the programmer can exploit the amount of
concurrency available in his application. Consequently, this programming model has
been very useful in expressing fine-grain concurrency.

As discussed in Section 2.2, the original Cantor programming model supported no
mechanism for discretionary receipt of messages. Originally, it was believed that the
unbounded queue problem introduced by the use of message discretion could be avoided
at the level of language implementation. Any unbounded queues then occurred at the
program level and thus were the programmer’s responsibility. Unfortunately, the un-
bounded queue problem surfaced during the implementation of object creation. When
a future has been assigned to represent a new object, but the object has not yet been
instantiated, messages sent to the new object must be queued. Discretion between or-
dinary messages and the initiating message must be exercised. Given this exception,
message discretion in the form of functional abstraction as described in Section 2.2 was
a natural extension of the programming model.

One assumption in the programming model that has not been conclusively sup-
ported or refuted is the preservation of message order between pairs of communicating
objects. In some example programs, particularly programs with systolic message proto-
cols, message-order preservation is a useful programming tool for minimizing program
complexity and maximizing concurrency. In many other programs, the lack of message-
order preservation would not seriously affect the program design or performance. Ex-
periments are planned to investigate this issue further, including more program writing
and examination of related implementation details.

4.1.2 The Programming Language

Another focus of the analysis of the programming experiments was the evaluation of
Cantor as a programming language. Since its beginning, the design of Cantor was
motivated by the desire for efficiency in compilation and execution. As a result of this
emphasis, Cantor 2.0 was a minimal notation in which abstractive power was routinely
sacrificed for efficiency. This series of programming experiments was designed to identify
aspects of the language that could be modified to provide more abstractive power without
sacrificing efficiency. '

After analyzing the programs, we made conservative additions and deletions to the
Cantor language definition. The additions include one-dimensional vectors, new control
mechanisms, function abstraction, and custom objects/functions. These modifications
substantially enhance the programmer’s abstractive power while not seriously affecting
efficiency. Features removed from the language include dynamic typing of variables,
which has been replaced by static typing and compiler type inferencing. Full description
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of these Cantor modifications can be found in Chapter 2.

Since the application programs written in Cantor are quite varied in nature, analysis
of these programs significantly influenced the development of all phases of the Cantor
programming system. The Cantor compiler has evolved to be an optimizing compiler
that translates Cantor into an intermediate format, while minimizing the state and
complexity of objects. The Cantor code generator performs program-flow analysis on
intermediate code, seeking to minimize the required amount of runtime support. Natu-
rally, these two minimizations are critical for efficient execution of Cantor programs on
fine-grain machines. The Cantor interpreters, and the preliminary runtime systems, have
been developed as software prototypes of runtime systems for fine-grain machines. We
continue to use these tools to experiment with schemes for object creation and placement,
custom object interface, and computation debugging and profiling.

4.2 About Fine-Grain Programming

Perhaps the most important goal of this thesis was to examine the nature of fine-grain
programming. Using Cantor as a experimental tool, we have written enough programs
in a fine-grain style to draw some conclusions. In addition to the programs presented in
this thesis, Cantor applications that have been written include: fast-Fourier transform,
a Mandelbrot generator, the game of Life, R-C chain-circuit simulation, digital logic
simulation, a Collatz sieve, and the enumeration of spanning trees. Although formula-
tions for Cantor programs are myriad, we have detected three general paradigms for the
development of fine-grain programs.

First, functional program specifications can be mapped directly into message-driven
programs. Simply using Cantor functions to represent each function invocation would
not be efficient. However, representing each function call as a message send-and-receive
sequence is typically an efficient fine-grain solution. The transformation of the functional
program is straightforward: The receive of each sequence and the code that follows
the receive is factored into a new object, and the rendezvous with the reply message
is directed to the mew object. The splitting and factoring operations can be readily
automated and are repeatedly applied until all calls are eliminated. The factorial program
in [2, page 13] is an example of this type of transformation.

The second paradigm is mapping specifications into message-driven programs. This
approach is particularly applicable for problems from combinatorics. The strategy is to
split the solution into three phases: enumeration of the possible solution set, concurrent
evaluation of the potential solutions, and accumulation of the correct solutions. The
solution to the N-queens problem illustrates this technique [2, pages 39-40]. The problem
is specified as:

1. A solution is a vector q of integers q[1...N];
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2.¢i=1...N:qftf]€1...N;

8. 1<i<j< N:qfi] #q[j] and j— i # | qls] - q[s] |.
From rule 2, the size of the initial set of possible solutions is N . From rule 3, the size
of the initial set of possible solutions is reduced to N!. Thus, one simple solution is to
generate all N! permutations, and then apply the test in rule 3. A further refinement
is to combine the generation of permutations with the test of rule 3, so that once a
partial permutation is determined to be wrong, all permutations that have the partial
permutation as a prefix are immediately discarded. The concurrency in programs of this
type is usually achieved by a breadth- or depth-first search of some tree structure.

The third paradigm is the object program as a “logical apparatus.” Simulation of
physical systems fits this paradigm in which each Cantor object is a simulation object.
Most of the programs in this thesis fall into this category. For instance, the checkmate
analyzer constructs a mesh of objects to represent the squares of the chessboard. Also,
the Chandy-Misra SPSP program uses objects to represent the graph being analyzed.

With the exception of simulation, this third paradigm is the least characterized, yet
it is also the most interesting. The amount of concurrency available in the program is
very dependent on the object apparatus that is constructed and manipulated. While
object creation is usually tightly-controlled, the message-passing patterns in programs
of this type are typically non-trivial and not homogenous throughout the object struc-
ture. In spite of this complication, we have generally been encouraged by the success of
programming experiments that were developed using this paradigm. Apparently, being
able to reason about the apparatus as a whole enables Cantor programmers to formulate
elegant solutions to some complicated problems.

4.3 Future Work

This iteration of program-writing has proved very fruitful in the evaluation and improve-
ment of Cantor and in the development of understanding about the nature of fine-grain
programming. Consequently, we are planning to continue our programming experiments,
including some large application programs. In these programs, we intend to concentrate
on evaluating the specifications of Cantor functions and custom objects/functions.

More work needs to be done concerning the low-level implementation of Cantor.
Various schemes to solve Cantor-implementation problems, like fast object creation and
efficient vector representation, will be investigated using the Mosaic runtime system.
More work is also needed to develop a better programming environment for Cantor,
including facilities for program profiling, simulation, and debugging.

Our experiments have shown that Cantor is a convenient, powerful notation for
expressing concurrency in computation. We have identified and implemented a set of
primitive constructs that are sufficient for the construction of efficient programs. Future
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work will likely include development of a set of higher-level constructs that are compiled
to Cantor objects or functions. This particular avenue of research is pursued with the
goal of developing an efficient high-level specification of concurrent behavior.
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Appendix A

Program Listings

A.1 Chandy-Misra SPSP

join(parent : ref) ::
[ f)
send () to parent
]
]

nil_edge() ::

#| (tag: sym, length : int, parent : ref)
send () to parent

]

edge(head : ref, weight : int, tail : ref) ::
#[ (tag: sym, length : int, parent : ref)
let j = join(parent)
send (tag, length+weight, j) to head
send (tag, length, j) to tail

]

vertex(label : sym, console : ref) ::
[ let listhead = nil edge()
[ case (cmd : sym) of
“add edge” : (vj: ref, weight : int, sender : ref)
listhead = edge(vj, weight, listhead)
send () to sender
repeat
“length” : (length : int, pred : ref)
send (“length”, length, pred) to listhead
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#[ (tag : sym, new.length : int, new_pred : ref)

if new_length < length then

length = new_length

pred = new._pred

send (“length”, length, pred) to listhead
else

send () to new_pred
fi

]
]
]

[ (console : ref)
let a = vertex(“A”, console)
let b = vertex(“B”, console)
let ¢ = vertex(“C”, console)
let d = vertex{“D”, console)
let e = vertex(“E”, console)
let f = vertex(“F”, console)
let num_edges = 9
let vi = vector 1..9 of ref
let vj = vector 1..9 of ref
let weight = vector 1..9 of int

vi[l] = a; vj[1] = b; weight[1] = 2
vi[2] = a; vj[2] = ¢; weight[2]=1
vi[3] = b; vj[3] = d; weight[3] =1
vi[4] = b; vj[4] = e; weight[4] = 2
vi[5] = ¢; vj[5] = d; weight[5] = 3
vi[6] = ¢; vj[6] = e; weight[6] = 2
vi[7] = d; vj[7] = f; weight[7] =3
vi[8] = e; vj[8] = f; weight[8] = 2
vi[9] = f; vj[9] = a; weight[9] =1
leti=1

let listhead = self
[ if (i < num_edges) then
listhead = join(listhead)
send (“add edge”, vj[i], weight[i], listhead) to vili]
i=i+1
repeat
fi

]
send () to listhead
[

send (“length”, 0, self) to a

]
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[ 0
]
|

A.2 Warshall APSP

let NORTH= 1
let EAST =2
let SOUTH= 3
let WEST =4
let UP =1
let DOWN = 2
let N =4
let INF = 256
let EVEN =2
letODD =1

put(value, direction : int, tail: ref) =
[ let newtail = gelement(value, direction, nil)
send (“add”, newtail, self) to tail

[ 0
]

return (newtail)

]

Value(head : ref) =
[ send (“value”, self) to head
[ (value: int)
return (value)
]

]

Dir(head : ref) =
[ send (“dir”, self) to head
[ (direction : int)
return (direction)
]

]

get(head : ref) =
| send (“next”, self) to head
[ (newhead : ref)
return (newhead)
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|
|

qelement(value, direction : int, next : ref) :
%[ case (tag: sym) of
“value” : (requester : ref)
send (value) to requester
“add” : (newnext, requester : ref)
next = newnext
send () to requester
“dir” : (requester : ref)
send (direction) to requester
“next” : (requester : ref)
send (next) to requester

]

v sync(parent : ref) ::
*| (tag : sym)
[ (tag: sym)
send (tag) to parent
]
]

cell{row, col, length : int, main : ref) ::
[ let dir = vector 1.4 of ref
dir)l NORTH] = nil; dir[EAST] = nil; dirf[SOUTH]| = nil; dirfWEST]| = nil
[ (direction : int, creator, replier : ref, valcol..N]: int)
dir[direction] = creator
if (col < N) then
dir[EAST] = cell(row, col+1, val[col+1], main)
send (WEST, self, replier, val{col+1..N]) to dir[EAST]
else
send (“sync”) to replier
fi
let rcvmsg = vector 1..2 of bool
rcvmsg[UP] = false; rcvmsg[DOWN] = false
let msg_vect = rcvmsg
msg_vect[UP] = (row <> N)
msg.vect{ DOWN] = (row <> 1)
[ | case (tag: sym) of
“down” : (n : ref, ne: ref)
' revmsg[DOWN] = true
dir[NORTH] =n
send (“up”, dir/EAST]) to ne
up”  : (s : ref)
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revmsg[UP] = true

dir[SOUTH] = s

send (“down”, self, dir[EAST]) to dir[SOUTH]

] .

if (rcvmsg = msg_vect) then
exit

fi

]
if (col = N) then
send (“sync”) to replier

let phase =1
let initdir = 0
let revd = vector ODD..EVEN of bool
rcvd[ODD] = false; revd[EVEN] = false
let Direction = vector ODD..EVEN of int
let val = vector ODD..EVEN of int
let tail = vector ODD..EVEN of ref
tail|ODD] = gelement (0, 0, nil); tail|EVEN] = gelement(0, 0, nil)
let head = tail
%[ case (tag: sym) of
“start” : ()
send (“nit”, NORTH) to dirf[ NORTH]
send (“init”, EAST) to dir[EAST]
send (“init”, SOUTH) to dir[SOUTH]
send (“init”, WEST) to dirf WEST]
“init” : (direction : int)
if (phase < row < col) or (phase < col < row) then
initdir = direction
else
send (“init”, direction) to dir[direction]
if ((direction mod 2) = 0) then
send (“val’, NORTH, length) to dir[NORTH]
send (“val”, SOUTH, length) to dirf[SOUTH]
else
send (“val”, EAST, length) to dir[EAST)
send (“val”, WEST, length) to dirWEST)
fi
fi
“val” : (direction : int, value: int)
let indexl = EVEN
let index2 = ODD
if ((direction mod 2) <> 0) then
index1 = ODD
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index2 = EVEN
fi
if (rcvd[index1]) then
taillindex1] = put(value, direction, taillindex1]) -
else
revd[index1] = true
val[index1] = value
Direction[index1] = direction
if (rcvd[index2]) then
if ((val[1]+val[2]) < length) then
length = val[1]+val[2]
fi
send (“val”, Direction[1], val[1]) to dir[Direction[1]]
send (“val”, Direction|[2], val[2]) to dir[Direction[2]]
phase = phase+1
if (row = col = phase) then
send (“start”) to self
else
if ((initdir = NORTH) and (phase = row)) or ((initdir = SOUTH) and (phase = col)) then
send (“init”, initdir) to self
fi
fi
Direction[index2] = Dir(head[index2])
if (Direction[index2] <> 0} then
val[index2] = Value(head|index2])
head|index2] = get(head[index2])
rcvd|index2] = true
else
rcvd[index2] = false
fi
revdfindexl] = false

]
]

[ (comsole : ref)
let rows = vector 1.N of ref
let w = vector 1..N*N of int
w[l] = 0; w[2] = 1; w[3] = INF; w[4] = 100
w[5] = 30; w[6] = 0; w[7] = 2; w[8] =7
w[9] = 8; w[10] = 50; w[11] = 0; w[12] =3
w(13] = 4; w[14] = INF; w[15] = 40; w[16] =0
leti=1
let synclist = self
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let requester = self

[ if (i £ N) then
synclist = sync(synclist)
rows[i] = cell(i, 1, w[(i—1)*N+1], self)
send (WEST, requester, synclist, w[(i—1)*N+1..i*N]) to rowsli]
requester = nil
i= i+1; repeat

fi

send (“sync”) to synclist

][ (tag : sym)

i=1

[ if (i < N) then
send (“up”, rows[i+1]) to rowsi
i= i+1; repeat

fi

]

send (“sync”) to synclist
][ (tag : sym)

send (“start”) to rows[1]
let phase =1
%[ case (tag: sym) of
“val” : (direction : int, value : int)

phase = phase+1

if (phase = N) then
exit

fi

A.3 Quickhull

let NUMPOINTS= 16
let EPSILON = 0.10

cross(x, y, ax, ay, bx, by : real)
| let dx = bx—ax
let dy = by—ay
return (dy*(x—ax)—dx«(y—ay))

]
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outside(x, y, ax, ay, bx, by : real)
[ return (cross(x, y, ax, ay, bx, by) < 0.00)

]

angle(x, y, ax, ay, cross : real)
[ let hypo = (x—ax)*(x—ax)+(y—ay)*(y—ay)
if (hypo = 0.00) then
return (0.00)
else

return (cross/hypo)
fi

]

indexmin(points[1..NUMPOINTS] : real)
[ leti=2
let index = 1
[ if (i < NUMPOINTS) then
if (points[i] < points[index]) then
index = i
fi
i= i+1; repeat

fi

return (index)

nilpoint() ::
(h: int, leftx, lefty, rightx, righty, hx, hy, maxcross, maxangle : real, requester : ref)
if (h = 0) then
send (“edge”) to requester
else
send (“h”, h, hx, hy) to requester
i
[ (tag: sym, hx, hy, leftx, lefty, rightx, righty : real, leftlist, rightlist : ref )
send (leftlist, rightlist) to requester
]

l

point(index : int, x, y : real, next : ref) ::
#[ (h: int, leftx, lefty, rightx, righty, hx, hy, maxcross, maxangle : real, requester : ref)
let pointcross = abscross(x, y, leftx, lefty, rightx, righty)
let pointangle = angle(x, y, leftx, lefty, pointcross)
if (pointcross > maxcross) or ((pointcross = maxcross) and (pointangle > maxangle)) then
send (index, leftx, lefty, rightx, righty, %, y, pointcross, pointangle, requester) to next
else :
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send (h, leftx, lefty, rightx, righty, hx, hy, maxcross, maxangle, requester) to next
fi
let new_next = next
[ (tag: sym, hx, hy, leftx, lefty, rightx, righty : real, leftlist, rightlist : ref)
if (outside(x, y, leftx, lefty, hx, hy)) then
new._next = leftlist
leftlist = self
else
if (outside(x, y, hx, hy, rightx, righty)) then
new_next = rightlist
rightlist = self
8
fi
send (“h”, hx, hy, leftx, lefty, rightx, righty, leftlist, rightlist) to next
next = new._next
]
|

collector(tag : sym , parent : ref) ::
[ (tagl: sym, numl, vil[l.numl]: int)
[ (tag2: sym, num2, vi2[l.num2]: int)
let vertices = vector 1. NUMPOINTS of int
if (tagl = “first”) then
vertices[1..num1] = vil
verticesnum1+1..numl+num2| = vi2
else
vertices[1l..num2] = vi2
vertices[num2+1..numl+num2 = vil
fi
send (tag, numl+num?2, vertices[l..numl+num?2]) to parent

]
|

quickhull(tag : sym, left, right : int, leftx, lefty, rightx, righty : real, listhead, replier : ref) :
[ send (0, leftx, lefty, rightx, righty, 0.00, 0.00, 0.00, 0.00, self) to listhead
[ case (tag: sym) of
“edge” : ()
let vertices = vector 1..1 of int
vertices[1] = left
send (tag, 1, vertices) to replier
“h> :(h:int, hx, hy: real)
let newreplier = collector(tag, replier)
let leftlist = nilpoint()
let rightlist = nilpoint()
send (“h”, hx, hy, leftx, lefty, rightx, righty, leftlist, rightlist) to listhead
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[ (leftlist, rightlist : ref)
call quickhull(“first”, left, h, leftx, lefty, hx, hy,
leftlist, newreplier)
call quickhull(“last”, h, right, hx, hy, rightx,
righty, rightlist, newreplier)

]
]

[ (console : ref)
let pointsx = vector 1. NUMPOINTS of real
let pointsy = vector 1. NUMPOINTS of real
pointsx[1] = —1.00 ; pointsy[1] = 0.50
pointsx[2] = —2.50 ; pointsy[2] = 0.50
pointsx[3] = —0.50 ; pointsy[3] = 1.50
pointsx[4] = —0.50 ; pointsy[4] = 2.50
pointsx[5] = —1.50 ; pointsy[5] = 2.00
pointsx[6] = 1.00 ; pointsy[6] = 1.00
pointsx|[7] = 1.00 ; pointsy[7] = 2.90
pointsx[8] = 2.50 ; pointsy[8] = 2.90
pointsx[9] = 5.00 ; pointsy[9] = 1.00
pointsx[10] = 0.50 ; pointsy[10] = —0.50
pointsx[11] = 0.50 ; pointsy[11] = —2.00
pointsx[12] = 8.00 ; pointsy[12] = —1.00
pointsx[13] = —0.50 ; pointsy[13] = —1.50
pointsx[14] = —1.50 ; pointsy|[14] = —1.50
pointsx[15] = 4.00 ; pointsy[15] = 0.00
pointsx[16] = —2.50 ; pointsy[16] = 0.50
let list = nilpoint()
leti=1
[ if (i < NUMPOINTS) then
list = point(i, pointsxl[i], pointsyli], list)
1= i+1; repeat
i
]
let left = indexmin(pointsx[1..NUMPOINTS])
call quickhull(“first”, left, left, pointsx[left], pointsy|left],
. pointsx[left], pointsy|left)|—EPSILON, list, self)
[ (tag: sym, num : int, vertices[l..num]: int)
i=1
[ if (i £ num) then
send (vertices[i]) to console
i = i+1; repeat
fi
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send (vertices[1]) to console

]
]

A.4 Paraffin Isomers

let N= 10

stackelement(requester, next : ref) ::

[ (number : int, list : ref)
send (“reply”, number, list} to requester
send (number, list) to next

]

endlist() ::

*[ case (tag:
“product” :

l

tree(tuple[1..4] :
*[ case (tag:

“product”

sym) of
(replier[1..4] : ref, head[1..4] : ref, depth, num : int, Refs[1..5]: ref,
Index[1.4] : int, list, tail : ref, bicentroid : bool)
Refs[depth] = head[depth]
send (“reply”, replier, head, depth—1, num, Refs, Index,
list, tail, bicentroid) to replier[depth]

int, pointers[l..4], next : ref, bicentroid, Tail : bool) ::
sym ) of

: (replier[1..4] : ref, head[l..4] : ref, depth, num : int, Refs[1..5]: ref,

Index[1.4] : int, list, tail : ref, Bicentroid : bool)
Refs[depth] = self
[ if (Refs|depth+1] = self) then
depth = depth+1
replier[depth] = self
repeat
fi

if (Refs[depth+1] = nil) then

list = tree(Index, Refs[l..4], list, Bicentroid, num = 0)

if (num = 0) then

tail = list
fi
send (tag, replier, head, depth, num+1, Réfs, Index,
list, tail, Bicentroid) to next

else

replier[depth+1] = self
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]

send (tag, replier, head, depth+1, num, Refs, Index,
list, tail, Bicentroid) to Refs[depth+1]
fi
“reply”  : (replier[1..4] : ref, head[l..4] : ref, depth, num: int, Refs[1..5]: ref,
Index[1..4] : int, list, tail : ref, Bicentroid : bool)
if not Tail then
let i = depth+1
[ if (i < 4) then
if (Index[depth] = Indexli]) then
Refs[i] = next
i
i= i+1; repeat
fi
]
fi
send (“product”, replier, head, depth, num, Refs, Index,
list, tail, Bicentroid) to next

“next” : (Next, requester : ref)
next = Next
Tail = false
send () to requester
“print”  : (comsole : ref)

if bicentroid then
send (self, N, tuple, “left”, pointers[1], “right”, pointers[2]} to console
else
send (self, tuple[1]+tuple[2]+tuple[3[+tuple[4]+1, tuple, pointers) to console
fi
send (tag, console) to next
send (tag, console) to pointers|1]
send (tag, console) to pointers|2]
send (tag, console) to pointers|3]
send (tag, console) to pointers[4]
%[ (tag : sym, console : ref)

child(subtree : int, Ref, next : ref) ::

send (“request”, self) to Ref
let replyrcvd = false
let solsrcvd = false
let Refs = vector 1..5 of ref
let list = mil
let index = 0
[ [ case (tag: sym) of
“solutions” : (Index : int, refs[1..5] : ref)
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]

replyrevd = true
index = Index
Refs = refs
“reply”  : (Number : int, List : ref)
golsrcvd = true
list = List

if not (replyrcvd andsolsrcvd) then
repeat
fi

Refs[index] = list
send (“solutions”, index+1, Refs) to next

product(requester : ref, Index[1..4] : int, bicentroid : bool) ::

[

]

(tag : sym, index : int, Refs[1..5] : ref)
let replier = vector 1..4 of ref
let head = Refs[1..4]
if (Refs[1] = nil) then

replier[1] = nil

let list = endlist()

let tail = tree(Index, Refs[1..4], list, bicentroid, true)

send (“reply”, replier, head, 1, 1, Refs, Index, tail, tail, bicentroid) to requester
else

replier(1] = requester

send (“product”, replier, head, 1, 0, Refs, Index, endlist(), nil, bicentroid) to Refs[1]
fi

tuple(i, j, k, 1 : int, iref, jref, kref, Iref : ref, next : ref, bicentroid : bool) ::

[

let Index = vector 1..4 of int
let Refs = vector 1..5 of ref
Index[1] = i; Index[2] = j; Index[3] = k; Index[4] =1
Refs[1] = iref; Refs[2] = jref; Refs[3] = kref; Refs[4] = Iref; Refs[5] = mil
let listhead = product(self, Index, bicentroid) :
let I=4
[ if (I> 0) then

if (Index[I] <> 0) then

listhead = child(Index[I], Refs[l], listhead)
fi
I =I-1; repeat
fi

send (“solutions”, 1, Refs) to listhead
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let replyrevd = false
let solsrcvd = false
let number =0
let totalnum = 0
let list = nil
let sublist = nil
let tail = nil
[ [ case (tag: sym) of
“solutions” : (Number : int, List : ref)
solsrcvd = true
totalnum = Number
list = List
“reply”  : (replier[1..4] : ref, head[l 4] : ref, Depth, Number : int,
Dummyl[l .5] : ref, Dummyz[l 4]:
List : ref, Tail : ref, Bool : bool)
replyrecvd = true
number = Number
sublist = List
tail = Tail

if not (replyrcvd andsolsrcvd) then
repeat
fi

if (list <> nil) then
send (“next”, list, self) to tail
[ 0
]
fi
send (“solutions”, totalnum-+number, sublist) to next

]

rooted() ::
[ (index : int, subtrees[0..(N+1)/2] : ref, main : ref)
subtrees|index] = self
if (index < (N)/2) then
send (index-+1, subtrees[0..(N+1)/2], main) to rooted()
else
send (subtrees[0..(N-+1)/2], main) to free()

let listhead = self

let i = index—1

[ if (i > index/3) then
let j=1
[ if (j > 0) then

68



let k =j
[ if (k > 0) then
if (i+j+k = index—1) then
listhead = tuple(i, j, k, O, subtrees[i], subtrees[j], subtrees[k],
nil, listhead, false)
fi
k = k—1; repeat
fi
]
j = j—1; repeat
fi
] .
i=i—1; repeat
fi

send (“solutions”, 0, nil) to listhead
let finished = false
let stack = mnil
let list = nil
let number = 0
*| case (tag: sym) of
“solutions” : (Number : int, List : ref)
number = Number
list = List
finished = true
send (number, list) to stack
“request” : (requester : ref)
if notfinished then
stack = stackelement(requester, stack)
else
send (“reply”, number, list) to requester

fi

]
]

free() ::
[ (subtrees[0..(N+1)/2], main : ref)
let listhead = main
if (N mod 2 = 0} then
listhead = tuple(N/2, N/2, 0, 0, subtrees[N/2], subtrees[N/2|, nil, =nil,
listhead, true)

fi
leti=N/2
[ if (i > N/4) then

let j= N—-i
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[ if (j > 0) then
let k = N—i—j
[ if (k > 0) then
let 1 = N-i—j—k
[ if (1> 0) then
if (i < j+k+1) and (i+j+k+l= N—1) and (i > j > k > I} then
listhead = tuple(i, j, k, 1, subtrees[i], subtrees[j],
subtrees[k], subtrees[l], listhead, false)
fi
1= 1-1; repeat
fi

k = k—1; repeat
fi
]
j = j—1; repeat
ﬁ .
|-
i= i—1; repeat
fi
]

send (“solutions”, 0, nil) to listhead

[ (console : ref)
let nilvect = vector 0..(N+1)/2 of ref
nilvect[0] = nil
if (N > 1) then
send (1, nilvect, self) to rooted()
else
send (nilvect, self) to free()
fi
[ (tag: sym, number : int, list : ref)
send (“There are”, number, “paraffin isomers of”, N, “nodes.”) to console
I
]

A.5 Checkmate Analyzer

let NUMPIECES= 16
let NUMDIR =38
let NUMROWS =38
let WHITE =1
let BLACK = -1
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let UP

let DOWN
let DIAG

let N

let NE

let E

let SE

let S

let SW

let W

let NW

let EMPTY
let QKNIGHT
let QROOK
let QBISHOP
let KKNIGHT
let KROOK
let KBISHOP
let KING

let QUEEN
let PAWN1
let PAWN2
let PAWN3
let PAWN4
let PAWNS
let PAWNG
let PAWNY
let PAWNS
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nilsquare() ::
let empty = vector 0..1 of int
let nilvect = vector 0..1 of ref
empty[1] = 0
nilvect[1] = nil
%] case (tag: sym) of
“check?” : (requester : ref, whitesturn : bool)
send (“reply”, EMPTY, 1, empty, nilvect, empty) to requester
“hit?” : (requester, sender : ref, chesspiece : int, direction : int, plus : bool)
send (“reply”, false, nil) to requester
]
]

square(row, col, piece : int) ::

[ (dir[N.NW]|: ref)
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#{ case (tag: sym) of
“check?” : (requester : ref, whitesturn : bool)
let checker = checksquare(requester, dir, piece, whitesturn, false)
“hit?”  : (requester, sender : ref, chesspiece : int, direction : int, plus : bool)
if (( abschesspiece = QKNIGHT) or ( abschesspiece = KKNIGHT))
and (sender = requester) then
if plus then
send (“hit?”, requester, self, chesspiece, (direction mod
NUMDIR)+1, false) to dir[direction mod NUMDIR+1]
else
send (“hit?”, requester, self, chesspiece, (direction mod
NUMDIR)+1, false) to dir[direction—1]
fi
else
if (piece = EMPTY) and (( abschesspiece = QUEEN) or
( abs chesspiece = QROOK) or ( abschesspiece = KROOK) or
( abs chesspiece = QBISHOP) or ( abschesspiece = KBISHOP)) then
send (“hit?”, requester, self, chesspiece, direction, false)
to dir[direction]
else
send (“reply”, piece = chesspiece, self) to requester
fi
fi
“block?” : (requester : ref, attacker: ref, direction : int, whitesturn : bool)
if (attacker = self) then
let empty = vector 0..0 of int
send (“block”, 0, empty, empty, empty) to requester
else
let collector = collectblocks(requester, row, col)
let checker = checksquare(collector, dir, piece,
not whitesturn, true)
send (“block?”, collector, attacker, direction, whitesturn) to dir[direction]

fi

]
]

checksquare(requester : ref, neighbors|N..NW] : ref, piece : int, whitesturn : bool, block : bool) ::
[ let num = WHITE

if whitesturn then

num = BLACK

i

let King = checkpiece(requester, piece, neighbors, KING*num, N, NW, 1, false)

let Queen = checkpiece(King, piece, neighbors, QUEEN#*num, N, NW, 1, false)

let KKnight = checkpiece(Queen, piece, neighbors, KKNIGHT*num, NE, NW, 2, true)

let QKnight = checkpiece(KKnight, piece, neighbors, QKNIGHT*num, NE, NW, 2, true)
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]

let KRook = checkpiece(QKnight, piece, neighbors, KROOK*num, N, NW, 2, false)
let QRook = checkpiece(KRook, piece, neighbors, QROOK#num, N, NW, 2, false)
let KBishop = checkpiece(QRook, piece, neighbors, KBISHOP*num, NE, NW, 2, false)
let QBishop = checkpiece(KBishop, piece, neighbors, QBISHOP*num, NE, NW, 2, false)
let start = NE; letend = NW; letincr = 6
if whitesturn then

start = SE; end = SW; incr = 2

if block then

start = N; end = N; incr =1

fi
else
if block then
start = S; end = S; incr = 1
fi

fi

let Pawnl = checkpiece(QBishop, piece, neighbors, PAWN1lxnum, start, end, incr, false)
let Pawn2 = checkpiece(Pawnl, piece, neighbors, PAWN2#num, start, end, incr, false)
let Pawn3 = checkpiece(Pawn2, piece, neighbors, PAWN3+num, start, end, incr, false)
let Pawnd = checkpiece(Pawn3, piece, neighbors, PAWN4#num, start, end, incr, false)
let Pawnb = checkpiece(Pawn4, piece, neighbors, PAWN5#*num, start, end, incr, false)
let Pawné = checkpiece(Pawn5, piece, neighbors, PAWNG#num, start, end, incr, false)
let Pawn7 = checkpiece(Pawn6, piece, neighbors, PAWN7#num, start, end, incr, false)
let Pawn8 = checkpiece(Pawn7, piece, neighbors, PAWN8#num, start, end, incr, false)
let empty = vector 0..0 of int

let nilvect = vector 0..0 of ref

send (“reply”, piece, 0, empty, nilvect, empty) to Pawn8

checkpiece(requester : ref, piece : int, neighbors|N..NW]| : ref, chesspiece : int,

start, end, increment : int, knight : bool) =
let i = start
let current = self
[ if (i < end) then
current = missile{current, neighbors[i], i, chesspiece, true)
if knight then )
current = missile(current, neighbors[i], i, chesspiece, false)

fi
i = i+increment
repeat

fi

|

let empty = vector 0..0 of int

let nilvect = vector 0..0 of ref
send (“hit”, false, nil, 0) to current
let hit = false
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let hitref = mil
let hitdir = 0
let hitrcvd = false
let numtrouble = 0
let troublepiece = vector 0. NUMPIECES of int
let troubleref = vector 0. NUMPIECES of ref
let troubledir = vector 0. NUMPIECES of int
let replyrcvd = false
#[ | case (tag: sym) of
“reply” : (plece int, Numtrouble : int, Troublepiece[0..Numtrouble]| : int,
Troubleref[0. Numtrouble] ref,
Troubledir[0..Numtrouble| : int)
replyrcvd = true
numtrouble = Numtrouble
troublepiece[0..numtrouble] = Troublepiece[0..Numtrouble]
troubleref[0..numtrouble] = Troubleref[0..Numtrouble]
troubledir[0..numtrouble] = Troubledir[0..Numtrouble]
“hit” : (Hit : bool, Hitref : ref, Hitdir : int)
hitrcvd = true
hit = Hit; hitref = Hitref; hitdir = Hitdir
|
if (replyrcvd andhitrevd) then
exit
fi

|
if (hit) then
numtrouble = numtrouble+1
troublepiece[numtrouble] = chesspiece
troubleref{numtrouble] = hitref
troubledir[numtrouble] = hitdir
fi
send (“reply”, piece, numtrouble, troublepiece[0..numtrouble], troubleref[0..numtrouble],
troubledir{0..numtrouble]) to requester
]

missile(requester : ref, neighbor : ref, direction : int, piece : int, knight : bool) ::
[ send (“hit?”, self, self, piece, direction, knight) to neighbor

let trouble = false

let troubleref = nil

let hit = false

let hitref = nil

let hitdir =0

let hitrevd = false

let replyrcvd = false

¥ | case (tag: sym) of
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“reply” : (Trouble : bool, Troubleref : ref)
replyrcvd = true
trouble = Trouble; troubleref = Troubleref
“hit” : (Hit : bool, Hitref : ref, Hitdir : int)
hitrevd = true
hit = Hit; hitref = Hitref; hitdir = Hitdir

if (replyrcvd andhitrcvd) then
exit
fi

let Ref = nil
let Dir=0
if (trouble) then

Ref = troubleref; Dir = direction
else

if (hit) then

Ref = hitref; Dir = hitdir

fi
f .
send (“hit”, trouble or hit, Ref, Dir) to requester

]

connectsquare(row, col : int, requester : ref, Row|[-NUMPIECES..NUMPIECES],
Col|-NUMPIECES..NUMPIECES)] : int, whitesturn : bool) ::
[ let dir = vector N..NW of ref
dir{N] = nil; dir[NE] = nil; dir[E] = nil; dir[SE] = nil
dir(S] = nil; dir[SW| = nil; dir[W] = nil; dirf[]NW] = nil
let i = —-NUMPIECES '
let piece =0
[ if (i < NUMPIECES) then
if (Row][i] = row) and (Colli] = col) then
piece =1
8 .
i= i14+1; repeat
fi

let child = square(row, col, piece)
[ (direction : int, creator : ref, element : ref)
dir[direction] = element
send (“ref”, child) to creator
if (col < NUMROWS) then
let eastconnect = connectsquare(row, col+1, requester, Row, Col, whitesturn)
send (W, self, child) to eastconnect
[ (tag: sym, tmp : ref)
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fi

]

dlr[E] = tmp

if (col = NUMROWS) then
send (“ack”) to requester

let rcvmsg = vector UP..DIAG of bool

rcvmsg[UP] = false; rcvisg[DOWN] = false; revmsg[DIAG] = false
let msgvect = revmsg

msgvect[UP] = (row < NUMROWS)

msgvect[DOWN] = (row > 1)

msgvect[DIAG] = (row < NUMROWS) and (col < NUMROWS)

+|

case (tag : sym) of

“down” : (ne : ref, nw: ref, n : ref, netemp : ref, nwtemp : ref)

up

“diag”

rcvmsg[DOWN] = true

dir[N] = n; dir|[NE] = ne; dirf]NW] = nw

send (“up”, child, dir[E], eastconnect) to netemp
send (“diag”, child) to nwtemp

: (sw: ref, s : ref, sconnect : ref)

rcvmsg[UP] = true
dir[SW] = sw; dir[S] =s
send (“down”, dir[E], dirf[W], child, eastconnect, creator) to sconnect

: (se : ref)

rcvmsg[DIAG] = true
dir[SE] = se

if (rcvmsg = msgvect) then

fi

i=1

[ if (i < NUMDIR) then

if (dirfi] = nil) or (dir[i] = requester) then

fi

dir[i] = nilsquare()

1= i+1; repeat

fi

send (dir) to child
if ( abspiece = KING) and (whitesturn = (piece > 0)) then

send (“king”, child, dir) to requester

exit

]
if (col = NUMROWS—1) then

send (“ack”) to requester

fi
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]
|

buildboard(requester : ref, row|~-NUMPIECES..NUMPIECES],
col[-NUMPIECES..NUMPIECES)] : int, whitesturn : bool) ::
[ let rows = vector 1..NUMROWS of ref
let children = rows
leti=1
letj=0
let kingrevd = false
let king = nil
let neighbors = vector N..NW of ref
[ if (i < NUMROWS) then
rows[i] = connectsquare(i, 1, self, row, col, whitesturn)
send (W, self, self) to rowsl[i
*[ case (tag: sym) of
“ref” : (tmp : ref)
children(i] = tmp
exit
“ack”: ()
i=j+1
]
i= i+1; repeat
fi

]
[ if j < NUMROWS) then

[ (tag: sym)
j=j+1
]

repeat
fi

]
i=1
[ if (i < NUMROWS) then
send (“up”, nil, children[i+1], rows[i+1]) to rows]i]
1= i+1; repeat
fi

i=0
[ [ case (tag: sym) of
“king” : (King, Neighbors[N.NW]: ref)
king = King
neighbors = Neighbors
kingrevd = true
“ack” : ()

7



]

i=it+1

if (i < NUMROWS) or notkingrcvd then
repeat

fi
]

send (king, neighbors) to requester

checkconfig(requester : ref, row|[-NUMPIECES..NUMPIECES],

[

]

col[-NUMPIECES..NUMPIECES] : int, whitesturn : bool) ::
let board = buildboard(self, row, col, whitesturn)
[ (king : ref, neighbors|N..NW]: ref)
send (“check?”, self, whitesturn) to king
[ (tag: sym, piece: int, numtrouble : int, troublepiece[0..numtrouble]: int,
troubleref[0..numtrouble| : ref, troubledir[0..numtrouble] : int)
send (“reply”, numtrouble = 0) to requester

]
|

collectconfig(requester : ref, row[-NUMPIECES.. NUMPIECES], col[-NUMPIECES..

[

NUMPIECES] : int, piece, Row, Col : int, whitesturn : bool) ::

let checker = checkconfig(self, row, col, whitesturn)

let replyrcvd = false

let blockrcvd = false

let block = false

let numblockers = 0

let blockers = vector 0. NUMPIECES of int

let destrow = blockers

let destcol = blockers

let command = “”

[ [ case (tag: sym) of

“capture” : (Numblockers : int, Blockers[0..Numblockers] : int, -
Destrow|[0..Numblockers], Destcol[0..Numblockers] : int)
blockrcvd = true
command = tag
numblockers = Numblockers
blockers[0..numblockers] = Blockers|0..Numblockers]
destrow|0..numblockers] = Destrow[0..Numblockers]
destcol[0..numblockers] = Destcol[0..Numblockers]
“reply” : (Block : bool)
replyrcvd = true
block = Block
- “block” : (Numblockers : int, Blockers(0..Numblockers] : int,
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Destrow[0..Numblockers], Destcol[0..Numblockers] : int)
blockrcvd = true
command = tag
numblockers = Numblockers
blockers[0..numblockers] = Blockers[0..Numblockers]
destrow[0..numblockers] = Destrow[0..Numblockers]
destcol[0..numblockers] = Destcol[0..Numblockers]

if (blockrcvd andreplyrcvd) then
exit
fi

]
if (block) then
numblockers = numblockers+1
blockers[numblockers] = piece
destrow[numblockers] = Row
destcol[numblockers] = Col
i
send (command, numblockers, blockers[0..numblockers], destrow|[0..numblockers],
destcol[0..numblockers]) to requester
] :

collectblocks(requester : ref, row, col: int) ::
[ Iet blockrevd = false
let replyrcvd = false
let numtrouble = 0
let troublepiece = vector 0.NUMPIECES of int
let troubleref = vector 0..NUMPIECES of ref
let troubledir = vector 0. NUMPIECES of int
let numblockers = 0
let blockpiece = vector 0..NUMPIECES of int
let destrow = vector 0..NUMPIECES of int
let destcol = vector 0. NUMPIECES of int
| if not (replyrcvd and blockrevd) then
[ case (tag: sym) of
“reply” : (Piece : int, Numtrouble : int, Troublepiece[0..Numtrouble] : int,
Troubleref[0..Numtrouble] : ref,
Troubledir[0..Numtrouble| : int)
replyrcvd = true
numtrouble = Numtrouble
troublepiece[0..numtrouble] = Troublepiece|0..Numtrouble]
troubleref[0..numtrouble] = Troubleref[0..Numtrouble]
troubledir[0..numtrouble] = Troubledir[0..Numtrouble|
“block” : (Numblockers : int, Blockpiece[0..Numblockers] : int,
Destrow[0..Numblockers|, Destcol{0..Numblockers] : int)
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blockrevd = true
numblockers = Numblockers
blockpiece[0..numblockers] = Blockpiece[0..Numblockers]
destrow[0..numblockers] = Destrow|0..Numblockers|
destcol[0..numblockers| = Destcol[0..Numblockers]

I

repeat

il

if (numtrouble > 0) then
blockpiece[numblockers+ 1..numblockers+numtrouble] = troublepiece[1..numtrouble]
let i = numblockers+1
[ if (i £ (numblockers+numtrouble)) then
destrow[i] = row
desteol[i] = col
i =1+1; repeat
fi
]

numblockers = numblockers+numtrouble
fi
send (“block”, numblockers, blockpiece[0..numblockers], destrow|0..numblockers],
destcol[0..numblockers]) to requester
]

blockpiece(requester : ref, attackdir : ref, row[-NUMPIECES..NUMPIECES], col|-NUMPIECES..
NUMPIECES] : int, piece : int, pieceref : ref, piecedir : int, whitesturn : bool) ::
[ send (“block?”, self, pieceref, piecedir, whitesturn) to attackdir
leti=1
let empty = vector 0..0 of int
[ (tag: sym, numblockers, blockpiece[0..numblockers|, destrow[0..numblockers],
destcol[0..numblockers] : int)
if (numblockers > 0) then
let current = requester

leti=1
let Row = vector —-NUMPIECES..NUMPIECES of int
let Col = Row

[ if (i < numblockers) then
let Row = row
let Col = col
Row/{blockpiece[i]| = destrowli]
Col[blockpiece[i]] = destcolli]
current = collectconfig(current, Row, Col, blockpiece[i], destrow]i],
destcol[i] = whitesturn)
i=i+1; repeat

fi .
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send (“block”, 0, empty, empty, empty) to current
else

send (“block”, 0, empty, empty, empty) to requester
i

]
]

capturepiece(requester : ref, row[-NUMPIECES..NUMPIECES]|, col|-NUMPIECES..
NUMPIECES] : int, attacker : int, attackref: ref, whitesturn : bool) ::
[ send (“check?”, self, mnotwhitesturn) to attackref
[ (tag: sym, piece : int, numtrouble : int, troublepiece[0..numtrouble] : int,
troubleref[0..numtrouble] : ref, troubledir[0..numtrouble| : int)
let empty = vector 0..0 of int , '
if (numtrouble > 0) then
let current = requester
leti=1
let Row = vector —NUMPIECES..NUMPIECES of int
let Col = Row
[ if (i < numtrouble) then
let Row = row
let Col = col
Row|troublepieceli]] = row/[attacker]
Coltroublepieceli]] = col[attacker]
Row][attacker] = 0
Col[attacker] = 0
current = collectconfig(current, Row, Col, troublepieceli], row|attacker],
: col|attacker| = whitesturn)
i=i+1; repeat
fi
]
send (“capture”, 0, empty, empty, empty) to current
else
send (“capture”, 0, empty, empty, empty) to requester

fi

]
]

notmoveking(requester, king, neighbors[N..NW] : ref, whitesturn : bool,
row[-NUMPIECES..NUMPIECES), col-NUMPIECES..NUMPIECES] : int) ::
[ (tag: sym, piece : int, numtrouble : int, troublepiece[0..numtrouble| : int,
troubleref[0..numtrouble] : ref, troubledir[0..numtrouble] : int)
let empty = vector 0..0 of int
if (numtrouble = 0) then
send (“notmoveking”) to requester
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else
if (numtrouble > 1) then
send (“block”, 0, empty, empty, empty) to requester
send (“capture”, 0, empty, empty, empty) to requester
else
if ( abstroublepiece[l] = QROOK) or ( abstroublepiece[l] = KROOK) or
( abstroublepiece[1] = QBISHOP) or ( abstroublepiece[l] = KBISHOP) or
( abstroublepiece[1] = QUEEN) then
let block = blockpiece(requester, neighbors|troubledir[1]], row, col,
troublepiece[1] = troubleref{1], troubledir[1], whitesturn)
else
send (“block”, 0, empty, empty, empty) to requester
fi
let capture = capturepiece(requester, row, col, troublepiece[l],
troubleref[1] = whitesturn)
fi
fi

]

collectmoves(requester, neighbor : ref, index : int, whitesturn : bool) ::
[ let replyrcvd = false
let movercvd = false
let numtrouble = 0
let troublepiece = vector 0..NUMPIECES of int
let troubleref = vector 0. NUMPIECES of ref
let troubledir = vector 0..NUMPIECES of int
let nummoves = 0
let direction = vector 0. NUMPIECES of int
let piece =0
[ if not (replyrcvd and movercvd) then
[ case (tag: sym) of . ,
“moveking” : (Nummoves : int, Direction|[0..Nummoves]: int)
movercvd = true
nummoves = Nummoves
direction[0..nummoves] = Direction[0..Nummoves]
“reply” : (Piece : int, Numtrouble : int, Troublepiece[0..Numtrouble] : int,
Troubleref[0..Numtrouble] : ref,
Troubledir[0..Numtrouble] : int)
replyrcvd = true
piece = Piece
numtrouble = Numtrouble
troublepiece[0..numtrouble] = Troublepiece[0..Numtrouble]
troubleref{0..numtrouble] = Troubleref[0..Numtrouble]
troubledir[0..numtrouble] = Troubledir[0..Numtrouble]
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repeat

fi

if (numtrouble = 0) and ((piece = EMPTY) or ((piece < 0) = whitesturn)) then
nummoves = nummoves+1
direction[nummoves] = index

fi

send (“moveking”, nummoves, direction[0..nummoves]) to requester

]

moveking(requester, neighbors[N..NW]: ref, whitesturn : bool, kingrow, kingcol : int) ::
| leti=1
let current = requester
[ if (i < NUMDIR) then
current = collectmoves(current, neighbors|i], i, whitesturn)
send (“check?”, current, whitesturn) to neighborsli]
i= i+1; repeat
fi
]
let empty = vector 0..0 of int
send (“moveking”, 0, empty) to current

]

[ (console : ref)
let whitesturn = true
let row = vector —NUMPIECES..NUMPIECES of int

leti=1
[ if (i < NUMPIECES) then
row[i] =0

i= i+1; repeat
il

]

~ let col = row v
row[WHITE+KING| = 1; col| WHITE+KING| = 6
row|WHITE+QROOK] = 2; col| WHITE+QROOK] = 4
row[WHITE+KROOK] = 8; col| WHITE+*KROOK]| = 1
row|WHITE+QBISHOP] = 1; col[ WHITE+*QBISHOP] = 4
row|[WHITE«PAWN1| = 2; col| WHITE+PAWN1|= 7
row|WHITE«PAWN2] = 4; col| WHITE+PAWN2] = 2
row|WHITE+QKNIGHT| = 3; col| WHITE+QKNIGHT] = 4
row|WHITE+KKNIGHT]| = 5; col WHITE+KKNIGHT] = 5
row[BLACK+KING] = 8; col[BLACK+KING| = 8
row[BLACK*QUEEN] = 4; col[BLACK*QUEEN]| = 6
row[BLACK*KROOK] = 1; col BLACK+*+KROOK] =1
row|[BLACK*KBISHOP| = 4; col BLACK+*KBISHOP| = 8
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row[BLACK*PAWN1] = 2; col[BLACK+PAWN1] = 8
let piecename = vector —-NUMPIECES..NUMPIECES of sym
piecename[EMPTY] = “_*
piecename[QKNIGHT| = “wN”
piecename|KKNIGHT] = “wN”
piecename[QROOK] = “wR”
piecename[KROOK] = “wR”
piecename[QBISHOP] = “wB”
piecename[KBISHOP] = “wB”
piecename[QUEEN] = “wQ”
piecename[KING| = “wK”
piecename[PAWN1] = “wP”
piecename[PAWN2] = “wP”
piecename[PAWN3] = “wP”
piecename[PAWN4| = “wP”
piecename[PAWNS5| = “wP”
piecename[PAWNG] = “wP”
piecename[PAWNT] = “wP”
piecename[PAWNS] = “wP”
piecename[-QKNIGHT] = “bN”
piecename[—KKNIGHT| = “bN”?
piecename[—QROOK] = “bR”
piecename[—KROOK] = “bR”
piecename[—QBISHOP] = “bB”
piecename[—KBISHOP| = “bB”
piecename[-QUEEN] = “bQ”
piecename[—KING] = “bK”
piecename[—PAWN1]
piecename|[—PAWN?2]
piecename[—PAWN3| = “bP”
piecename|—PAWN4| = “bP”
piecename[—PAWN5| = “bP”
piecename[—PAWNGS| = “bP”
piecename[-PAWNY7] = “bP”?
piecename[—PAWNS| = “bP”
let boardrow = vector 1. NUMROWS of sym
i= NUMROWS
[ if (i > 0) then
let j = 1
[ if (j < NUMROWS) then
boardrow[j] = piecename[EMPTY]
let k = -NUMPIECES
if (k < NUMPIECES) then
if (row[k] = i) and (col[k] = j) then
boardrow][j] = piecenamelk|
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else
k = k+1; repeat
fi
fi
]
j = j+1; repeat
fi

send (boardrow) to console
send () to console
send () to console
i=i—1; repeat
fi
] ’ »
let start = buildboard(self, row, col, whitesturn)
[ (king : ref, neighbors[N..NW]: ref)
let color = BLACK
if whitesturn then
color = WHITE
fi
let move = moveking(self, neighbors, whitesturn,
row|color*KING] = col|color*KING])
send (“check?”, notmoveking(self, king, neighbors, whitesturn, row, col), whitesturn) to king
let numrcvd = 0
let status = “king in check”
let reply = “checkmate”
let nummoves = 0
let direction = vector 0..NUMPIECES of int
let numblockers = 0
let blockers = vector 0. NUMPIECES of int
let bdestrow = blockers
let bdestcol = blockers
let numcapturers = 0
let capturers = vector 0..NUMPIECES of int
let cdestrow = capturers
let cdestcol = capturers
[ if (numrcvd < 3) then

[ case (tag: sym) of

“notmoveking” : ()
numrcvd = numrcvd+2
reply = “not checkmate”
status = “king not in check”

“moveking”  : (Nummoves, Direction[0..Nummoves] : int)
numrcvd = numrcvd+1
nummoves = Nummoves
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direction[0..nummoves] = Direction[0..Nummoves]
“block” : (Numblockers, Blockers|0..Numblockers],
Destrow[0..Numblockers],
Destcol[0..Numblockers] : int)
numrcvd = numrcvd+1
numblockers = Numblockers
blockers[0..numblockers| = Blockers[0..Numblockers]
bdestrow[0..numblockers] = Destrow[0..Numblockers]
bdestcol[0..numblockers] = Destcol[0..Numblockers]
“capture” : (Numcapturers, Capturers[0..Numcapturers],
Destrow[0..Numcapturers],
Destcol[0..Numcapturers| : int)
numrcvd = numrcvd+1
numcapturers = Numcapturers
capturers[0..numcapturers| = Capturers[0..Numcapturers]
cdestrow[0..numcapturers| = Destrow[0..Numcapturers]
cdestcol[0..numcapturers| = Destcol[0..Numcapturers]

]

repeat
f
]
let dirrow = vector 1..NUMDIR of int
let dircol = vector 1.NUMDIR of int
dirrow|N] = —1; dirrow|NE] = —1; dirrow[E] = 0; dirrow[SE] = 1
dirrow(S] = 1; dirrow[SW] = 1; dirrow|W] = 0; dirrow[NW] = —1
dircol[N] = 0; dircol[NE] = 1; dircol[E] = 1; dircol[SE] = 1
dircol[S] = 0; dircol[SW] = —1; dircol|W]| = —1; dircol[NW] = —1
let file = vector 1. NUMROWS of sym
file[1] = “a”; file[2] = “b”; file[3] = “c”; file[4] = “d”
file[5] = “e”; file[6] = “f”; file[7] = “g”; file[8] = “h”
send (status) to console
send () to console
if (status = “king in check”) then
if (nummoves > 0) then
send (“Move king to escape check”) to console
reply = “not checkmate”
i=1
[ if (i < nummoves) then
send (piecename|color*KING], file[col{color+KING]+dircol[direction]i]]],
row|[color*KING]+dirrow[direction[i]]) to console
1= i+1; repeat
fi
]
else
send (“King cannot be moved to avoid check”) to console
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fi

fi
send () to console

if (numblockers > 0) then

send (“Block attacking piece”) to console -
reply = “not checkmate”
i=1
[ if (i < numblockers) then
send (piecename[blockers[i]], file[bdestcol[i]], bdestrow][i]) to console
i= i+1; repeat
fi
]
else
send (“Attacking piece(s) cannot be blocked”} to console
fi ‘ .
send () to console
if (numcapturers > 0) then
send (“Capture attacking piece”) to console
reply = “not checkmate”
i=1
[ if (i < numcapturers) then
send (piecename|capturersli]], “:”, file[cdestcol[i]], cdestrow]i]) to console
i=it+1; repeat
fi
I
else
send (“Attacking piece(s) cannot be captured”) to console
fi
send () to console

send (reply) to console
send () to console
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