A VLS| Combinator Reduction Engine

by
William. C. Athas, Jr.
in Partial Fulfillment of the Requirements for the
Degree of Master of Science

8 June 1983

The research described in this document was sponsored by the Defense Advanced Research
Projects Agency, ARPA Order number 3771, and monitored by the Office of Naval Research
under contract number NOOO14-79-C-0597.

Caltech Computer Science Department Document Number: 5086:TR:83

Table of Contents

1 Introduction
2 Alternative Computation Models
3 Combinator Computation Model
4 Combinator Evaluation for a Single Path Reduction Engine - The REDEX
Simulator
6 Foundations for a Concurrent Reduction Engine
6 The CRE-1 Simulator
7 Speculation on a VLSI Implementation
8 Conclusions and Future Work
Acknowledgements
|. REDEX LISP BNF
1. Simple CSP Rule Set
I1l. REDEX Reduction Rules in Graphical Form
IV. BNI" Description of CRE-1 LISP Language
V. CSP Firing Rules for CRE-1 Combinator Tree Cells

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

List of Figures
Sorting Element Using Linear Array of Computing Elements
Berkling Hierarchy of Computation
Algebraic Reduction of Quadratic Formula
Completely Worked Example of the SQR Function
LISP versus Turner Data Structures for the SQR function
(X+3) * (X+5) Function
Combinator Tree for Infinite Integer List
Factorial Function Using Modified Combinator Tree
Block Diagram for CRE-1 Machine

Figure 10: Computation Hierarchy Inciuding CRE-1 Machine

1 Introduction

The design of concurrent architectures for high performance computing engines has
been speculated upon for more than twenty years [8]. Such systems can now readily be
realized with VLS| technology if the two following guidelines are adhered to. First of all,
locality in communcation must be preserved since it is intrinsic to the physics of integrated
clrcuits. Secondly, since VLSI is a replication technology, this aspect of the technology can
be exploited to reproduce homogeneous parts. Based on these two guidelines, a class of
machines has been defined as "Ensemble Architectures" [16]. They are characterized by

the regular interconnection of a single computing element replicated many times over.

Architecture experiments are currently underway at Caltech to investigate this class
of machines. The machines are primarily differentiated by interconnect strategy and

granularity of concurrency. Listed in order of increasing granularity they are:
1. Cosmic Cube - Boolean N-Cube , 128K bytes per processor. [11]

2. Mosaic Mesh - Torus, 1 to 4K bytes per processor.
3. Mosaic Tree - Binary tree, 1 to 4 K bytes per processor. [2]
4. Super Mesh - Torus, Single Instruction Multipie Data Path

As would be expected, if an algorithm can be partitioned so that it maps directly onto the
topology of any of these machines, then the finer grain machine will perform more efficiently.
However, as the granularity becomes finer, deriving an effective partition is more difficult, if

not impossible. This trade-off results in a dichotomy between generality and performance.

An example of this dichotomy is illustrated with the problem of sorting a set of
integers into ascending order. Choosing a filne graln concurrency implementation where
computation and storage are embedded in the same structure yields the linear array of Figure
1. Each cell can compare its internal value to that of its neighbor and swap if necessary.
This type of array is referred to as "systolic" [9] since data is "pumped" through the
different cells. The worst case configuration is when the largest element is in a[1] and/or

the smallest in a[n]. For this configuration n swaps are necessary where n is the number of

cells in the array. Therefore this implementation is very efficient at sorting but

unfortunately, can do nothing more than sort integers, so it is very problem specific.

1 I ——-alll—> | | ———al2]l——> ... ~——aln-11-> | |
| alll | <—-al2l-—- | al2] | <«—al3l-w ... <--alnl---- | alnl 1
| | —=-swap---> | | ——=8UWEBP~==> ¢0. ———SHAP-—=> |]

Figure 1: Sorting Element Using Linear Array of Computing Elements

The question arises now as to whether the above dichotomy is absolute, that Is, as
the granularity of concurrency becomes finer, efficlency increases while generality
decreases. The combinator reduction engine described in this paper is an attempt to
sidestep the dichotomy by defining an automaton based on simple, primitive cells. The celis
can store only a small number of variables and their autonomous sequencing is governed by a
small controller. The controllers are homogeneous throughout the machine, but each

controlier has a programmable action code which is not necessarily the same for all the cells.

Such an approach has been taken before. A very crude example is content
addressable storage or the more general Content Addressable Parallel Processors [5]. What
is unique about the combinator reduction engine is that cellular behavior is governed by a
control structure based on combinators. This approach provides an interesting theoretical
basis for the computing instead of an approach where control structures are based on ad hoc
methods to achieve Turing computability. Before delving any deeper into the mechanics of

the engine, it is necessary to discuss the underlying computation model of the engine.

2 Alternative Computation Models

One way to organize the different computation models is through Klaus Berkling's
computational hierarchy [1] shown in Figure 2. The hierarchy starts with an abstract notion
of computation and represents it in several ways. The Cosmic Cube , Mosaic Mesh, and
Super Mesh all rely on the Turing Machine representation since they are ensembles of Von

Neuman processors. In the SKIM machine [17] and the REDEX simulator in Section 4,

combinators are also interpreted by a Von Neuman machine. There has also been a
combinator evaluator designed explicitly for stack machines [14]. Llikewise, LISP, the de

facto computer language for the)\ calculus, is interpreted on a Von Neuman or stack machine.

The fundamental characteristics of the Von Neuman machine model are a single control
sequencer and a global address space. These two features resuit in a single focus of
attention for a computation, yet the attention can shift to or access any information in the
data space. Thus programming notations based on this model, indirectly on the Turing
machine, rigorously enforce a single instruction stream yet have a disrespect for localizing
access to storage. Additional semantics can be embedded in these languages to create and
synchronize concurrent activity, an example is Hoare's Communicating Sequential
Processes [7] (CSP). Using this paradigm, as the granularity of concurrency becomes finer,
the storage space decreases, and the number of processors increases. If this programming
model is taken to the extreme, then the processors devolve to state machines, and at the
same time, there is a very large number of them. Whether programmers are able to
effectively program a large number of state machines interconnected in a regular fashion
remains to be discovered. Object oriented programming [10] or Actor type [6] languages
may be feasible for this type of ensemble architecture providing the granularity of

concurrency is sufficiently coarse.

Choosing the X calculus for a programming notation under the guise of a LISP-like
syntax could yield a different result when the granularity is taken to the extreme. Since the
programming notation is based on & computational representation rather than an
implementation, changing the implementation could yield results independent of the language.
For example, both combinators and the X\ calculus have the property of reduction, that is, a
given functional expression when supplied with an argument can be rewritten in another
form, hopefully simpler. This process continues until the expression converges on some

steady state result. An example of this process is the the evaluation of arithmetic

computation abstract concept

|
___________________ o e e e e e m mm e e e e -
| representations

Ve ———— -
| I |
v v v
Turing Machine Combinators A Calculus
I
________ | o s s e e e e e e e e e e e e e - . —— - - -
— Ve -— implementations
] |
v v
Yon Neuman computer Stack computers
|
v

N-address space

Figure 2: Berkling Hierarchy of Computation

expressions comprised entirely of constants. The rewrite rules for reduction are embedded

in the precedence of the arithmetic operations. Figure 3 shows the reduction of the

quadratic equation (2+3)*(2+5).
(2 +3) « (2 +5)

/\ — /\ --> 35

Figure 3: Algebraic Reduction of Quadratic Formula

One might attempt to interpret the A\ calculus directly, however the problems to be
resolved are formidable. For example, using a LISP-like notation where everything can be
represented In binary tree suggests that a tree architecture could be developed for direct
execution. If the granularity of concurrency is made coarse, then the system is actually an
ensemble of Von Neuman machines that interpret LISP expressions. If concurrency is at the

same granularity as the combinator reduction engine, then many formidable issues have to be

resolved:
1. Representation of data structures

2. Modeling of recursion
3. Generation of environments for variables

4. Functional application

6. Functional compasition
It is difficult if not impossible to find a direct correspondence between the)\ calculus and
solutions to these problems in a VLS| implementation. Without such a correspondence, ad hoc

'heuristic' techniques must be used to resolve them.

An alternate equivalent representation for the A calculus is the combinator notation

developed by Shonfinkel and brought to the attention of the Computer Science community by
David Turner [18]. Direct interpretation of combinators looks promising for the following

reasons:
1. Combinators are a variable free notation.

2. No overhead for function composition.
8. No overhead for lazy evaluation.
4, Combinator code can be self-optimizing.

The following is a combinator expression with optimization for a recursive Fibonacci function:

(S (S (B COND (LEQ 1)) 1) (S (B PLUS (B FIB (C MINUS 1)))
(B FIB (C MINUS 2))))

Hopefully no one would want to program in such a notation, but the following LISP-like

function is acceptable.

(FIB (X) (COND ((= X 0) 0)
(=X1)1) :
((> X 1) (PLUS (FIB (MINUS X 2) (MINUS X 1)))

)

Through a process of functional abstraction, the combinator exbression can be derived from

the LISP expression. How this is done will be explained in the following section on the

execution model for combinator evaluation.

3 Combinator Computation Nodel

Turner's paper [18] is the standard source on the use of combinators as an
implementation technique for applicative languages and the reader is encouraged to read it.
Nevertheless, a brief review of how combinators are used for computing is provided here to

present them from a slightly different aspect.

Translation of A calculus expressions to combinator expressions relies on the inverse
operation of functional application being functional abstraction. By abstracting variables from
a symbolic expression one at a time, a variable free notation for the function can be derived.
In the process of abstraction, information as to where the variable is located in the
expression is lost. The information must therefore be kept outside of the abstracted
expression in the form of the combinator symbol. The abstraction process can be stated

completely using the three following simple recursive rules:

[x] (E1 E2) ==> 8 ([x] E1) ([x] E2)
[x] ¥y ==>Ky
[x] x ==>1
The meaning of [x] is to abstract variable x from the expression immediately to its right.

After an expression has been translated into combinators, functional application is used to

evaluate the expression. The rules for application are the following:

Sfgx ==>f(x (gx))

Kax ==>a

I x ==> X
Once a A expression has been translated into a combinator expression, the combinators give
directions as to how the arguments applied to the combinator expressions are to be
Jockeyed into the correct position for evaluation. As an example, consider the function in
Figure 3 which computes the square of an integer number. From the example it is clear that
the evaluation of combinator expressions is a reduction process. Furthermore, it is worth

noticing that in step 2, the size of the expression increased. From the notation of Curry [4],

the S combinator is often referred to as the formalizing combinator, K the elementary

cancellator and | the elementary identificator. It is interesting to note that | is equivalent to

function (sqr (x) (times x x))

[x] (times x x) ==> § ([x] times x) ([x] x)
[x] (times x) ==> 8 ([x] times) ([x] x)
[x] (x) ==> |

[x] (times) ==> (K times)

sar (x) = S (S (K times)) |

S (S (Ktimes) 1)) 5==> (S (Ktimes)15)(15)) step1
==)> ((K times 5) (1 5)) (1 5) step2

=> (times 5 5) step 3

=> 25 step 4

Figure 4: Completely Worked Example of the SQR Function
SKK. From an informational standpoint, the S combinator duplicates information in the system,

K destroys information, and | is the identity.

Even though only two combinators are needed for universal computing, it is clear from
this example that combinator expressions can become arbitrarily large. As a matter of fact,
in the REDEX and CRE-1 simulators, the compilers must do optimization while compiling else
the intermediate expressions exceed the avallable storage space of the LISP systems. An

example of this explosion is the following simple function to compute Fibonacci numbers:

(S (S (S (K COND) (S (S (K LEQ) (K 1)) D) I) (S (S (K PLUS)
(SKY)(S(SKMINUS) D (KINN (S(KY)
(S (S (K MINUS) 1) (K 2))))

The optimizations that can be applied to a combinator expression are taken directly

from Turner's paper:

S (KE1) (KE2) ==> K (E1 E2)

S(KE1)I ==> E1

S(KE1)E2 ==> B E1 E2 if no earlier rule applies
SE1 (KE2) ==> C E1 E2 if no earlier rule applies

Using Curry's notation, B is the elementary compositor and C the elementary permutator.

Their application result in the following:

Bfgx==>f(gx)
Cfgx==>f(xg)

Applying these optimizations to the simple Sqr function:

S (S (K times) 1) | ==> S times |

The Fib function optimized was shown previously.

It is interesting that in the abstraction process, expressions are recursively
subdivided into smaller expressions until they converge to atomic expressions and then are
either tagged with K or I. In this subdivision process, the expressions are subdivided by
putting the entire expression except for the last subexpression in E1 and the last
subexpression in E2. It would seem more appropriate to try to more evenly divide the
expression so that a balanced tree would result. Unfortunately this is not the case, since

application is always done by placing the argument next to the tail of the combinator

expression. Argument evaluation propagates from right to left. Thus translation must be done

in the same direction as application.

In order to have a programming language, the combinators have to be enhanced with a
set of primitive operators to execute the standard repertoire of binary arithmetic operations,

plus a conditional to provide some type of dynamically alterable control flow. The essential

additional primitives are:

COND xy z ==> if x then y else 2
TIMES Xy ==>x*y

DIV xy ==>x/vy

PLUS xy ==>x+y

MINUS Xy ==>Xx-y

PR xy CONS x y
x {like CARin LISP }

HDPRxy ==>
TLPRxy ==>y {like CDRinLISP}

UfPRxy ==>fxy
YT ==>fYf

The U primitive is for converting N-ary functions into monadic ones. N-ary functions
represent a problem since the translator is capable only of abstracting a single variable from
an expression. Functions must either be monadic or the function has to be converted into a

monadic form. This task can be done through a process called "Currying" where application

of a function to a variable produces a new function. Currying is implicit to the abstraction
process and is implemented by abstracting a variable while treating the other variables in the
expression as constants. Naturally this operation requires the resulting combinator
expression to have a special tag, the U combinator, in front to indicate that -"Uncurryin“

must be done during application. The process continues until all the variables have been

abstracted from the function.

During application, when the U combinator is encountered, the argument is expected
to be a PR construct. The U causecs the PR to be broken down into its left and right parts and
then applied to the expression. Unfortunately, the process of functionally abstracting one

variable at a time causes the size of the combinator expression to grow as a polynomial of

the number of variables in the source expression.

The Y primitive is the fixed point that maps the combinator expression back onto

itself. It is also the graphical primitive which introduces cycles into the tree expressions,

thus recursion.

4 Combinator Evaluation for a Single Path Reduction Engine - The REDEX
Simulator

Before attempting a concurrent evaluator for a combinator system, a single path
reduction engine was simulated to gain some initial experience with what could be expected
from the direct execution of combinator expressions. The REDEX' simulator is a single path
reduction engine since it simulates the evaluation of only one point in the combinator tree for
any discrete time step. The system is composed of a compiler written in LISP and a simulator
written in Pascal. The compiler accepts a pure LISP-like language whose syntax is given in

Appendix 1. Compilation consists of the input of a source symbolic function, which is then

1The name REDEX comes from the \ calculus where the redex of an expression is replaced with its contractum
during reduction.

10

separated into the function name, the arguments, and the body of the function. The list of
arguments are sequentially abstracted out of the body of the function from left to right and
the resulting expression is appropriately tagged with U primitives. Abstraction is done on a
single variable basis and consists of translation using the three recursive rules immediately

followed by optimization using the four optimization rules.

The output of the compiler is input to a parser written in Pascal. The parser
generates parse trees that are compatible with Turner's trees. As shown in Figure 5, the
LISP binary trees and the trees used in the combinator evaluator are not the same. The

reason for this difference is the way the trees are evaluated.

(S TIMES I)
/\ S
S \ /' \

/\ /N
/7 \ TIMES 1

TIMES \
A
1 NIL

Figure 5: LISP versus Turner Data Structures for the SGR function

Once a function is stored in the simulator, it may be evaluated by applying an
argument to it. Evaluation is done interactively by typing the function name followed by the
argument it is to be applied to. If the function is n-ary, then the argument must be in a PRed
form, for example f(x,y,z) would be entered f (pr x (pr y z)). Once a function and an
argument have been entered, the simulator creates a new storage cell and binds the function

to the left side, the argument to the right side, and then passes the new tree to the

evaluator.

The evaluation sequence for traversing this new tree is very important. One evaluation
scheme, called normal order graph reduction, achieves lazy evaluation; the other, called

applicative order, is equivalent to conventional inner most to outer evaluation of functions.

11

The simulator uses normal order evaluation, which is done as follows: The current pointer to
the subexpression of the tree traverses the left subtrees saving pointers to the right along
the way. When it reaches the bottom, it reduces whatever combinator it found, then backs
up the required number of links and continues. The reduction rules are shown graphically in
Appendix 1ll. Since combinator trees serve as templates for the reduction sequence, it is
crucial never to destroy the original template. A dynamic storage management policy is then

mandatory, and as a result, a garbage collector.

A major issue during the implementation of this simulator was proper detection of the
end of reduction. There is no stop primitive and functions that generate infinite recursions
will never yield a combinator graph that is constant from one iteration to the next. The
solution used was to reduce on a basis of need to print. The third phase of the simulator is a
pretty printer routine to format the output of the combinator tree. The pretty printer

therefore controls the evaluator. For example, consider the following function INF that

generates an infinite list of integers:

LISP: (INF (X) (PR X (PLUS X 1)))

REDEX: INF (S PR (B Y (PLUS 1)))

Evaluation of this function on the first invocation of INF 1 yields the result:

PR 1 (BINF 2)

If the user requests to print the HD of this function, the simulator will return 1. If the user

asks for the HD (TL (INF 1)), the system will compute:

HD (TL (INF 1))

HD (TL (PR 1 (PR 2 (INF 3))))

HD (PR 2 (INF 3))

2
Thus evaluation is done solely on a need to print. The combinator graph has the subtle
property that it embeds both data and control all in the same tree structure. It is also

interesting that since evaluation is driven by the need to print, and evaluation is nothing

more than application, it is conceivable to have a system where the abstraction process is

12

done on the need to evaluate, thus:

printing ==> evaluation ==> application ==> compilation ==> abstraction
If the compiler could compile itself, which could readily be done, then entire functional
-expressions need not be completely abstracted , but rather parts of the expression would

be abstracted based on the need to compute.

5 Foundations for a Concurrent Reduction Engine

The REDEX simulator provided the framework for what can reasonably be expected
from combinator tree expressions. The chief desirable qualities of the combinator
expressions for direct execution are that they are a variable free notation and that they can
be reduced using lazy evaluation. Lazy evaluation is important since it allows the embedding
of both data and control in the same physical structure. The main obstacles to overcome
are: (1) How to model the dynamic evolution of the reduction on a fixed machine; (2) How to

represent large dynamic data structures and (3) How to implement recursion.

The representation of data structures is important for it will determine the physical
implementation of the machine's structure. It is desirable to make the cells of the combinator
reduction engine functionally compatible, if not interchangeable, with the cells of the data
structures. This design decision permits the two different types of cells to interact on an
atomic level of concurrency. Therefore, the interconnect structure of the combinator

reduction engine is a fixed depth binary tree.

in the REDEX simulator, the reduction of the combinator expression was accomplished
by following the reduction rules which generated new subexpressions whenever necessary.
For a fixed tree machine this is not possible since tree growth is limited to two dimensions.
Tree expansion in a third dimension could be possible if an arbitrarily large stack was
incorporated into each node of the machine. Whereas reduction could be éonducted in this
fashion, it is not desirable for two reasons. First of all, the large stacks do not allow the

machine to be constructed of small cellular parts since the stacks will require a considerable

13

amount of space. Secondly, the stacks will not grow uniformly across the entire machine,

thus it would be likely to run out of stack space at one node while having unused stack

space at another.

An alternate solution is to treat all of the nodes in the combinator tree as self-timed
cells where arguments are allowed to enter the tree only through the root node. A self-timed
environment is desirable since the tree can be arbitrarily large with many small reductions
being performed concurrently In different parts of the tree. Furthermore, the interaction

between neighboring cells conforms naturally to a request/acknowledge protocol.

The execution model is to associate a combinator or primitive tag with each node
where the tag determines the behavior of the cell during reduction. Using this configuration,
application is accomplished by sending the argument to a cell as opposed to application by
juxtapositioning. Since it is not possible to transmit data structures between neighboring
cells in the tree, arguments must be represented by packets that are typed as either pointer
or atomic. An atomic packet can be operated on directly, whereas a pointer packet provides

a level of indirection through to the main store.

An example of how application is actually implemented may be helpful. Consider the
simple function which computes the quadratic function of (x+3)*(x+5) applied to 2 . The
rules for application are from Appendix Il. These rules plus the ones of Appendix V are

expressed in a notation based on CSP primitives . The function in graphical form for the

quadratic is shown below.

S
/ \
/ N\
B \
/ N\ \
TIMES PLUS PLUS
/ /
3 5

Figure 6: (X+3) * (X+5) Function

Starting with the S combinator the 2 argument is supplied to the B combinator and the PLUS

14

primitive in the right subtree. PLUS returns a 7 which is sent to the left subtree. Meanwhile
the B primitive delivered the 2 to the PLUS 8, which then returns 5. Now both & and 7 are

sent to TIMES which computes 35 and returns this result to the root.

Lazy evaluation now plays a very important role with primitive operators such as PR,
which is now the "do what | am" primitive. To see why this is so, consider the INF function
described previously. This function is shown in the graphical expression of Figure 7. The
result of evaluating this cell is an acknowledge in the self-timed system sense. Once the
acknowledge is received at the root, the pretly printer that interrogates the tree must then
send a request for either the HD or the TL of this cell. Thus the PR node serves a dual

purpose, it joins data structures and is a data structure.

INF (SPR (B Y (PLUS 1))

| mem=5 §
| / \
| PR B
[P — / \
PLUS
/
1

Figure 7: Combinator Tree for Infinite Integer List

The HD and TL operators must also be able to operate on the data structure that is in
the main store. This data structure must be described in terms of the PR operator so it'is in
fact also a combinator tree. Furthermore, it could also be a implemented as a fixed binary

tree! If it were another fixed tree, the composition of the expression tree with the argument

tree would then form a single tree again.

Since all requests to the main store and from the pretty printer must be channelled
through the root node, a bandwidth problem would develop. This is unavoidable however,
since the devices that interact with combinator tree are fundamentally sequential access.

The function of the root node and the rest of the tree is to diffuse and converge

computation into and out of this sequential stream at an exponential rate.

156

The major problem now with implementing a fixed binary tree for combinator evaluation
is the modeling of the Y combinator. This combinator is the fixed point and introduces a cycle
into the tree. The cycle can be avoided by supplying an offset for the Y combinator that
indicates the number of tree levels that have to be traversed backward before execution
can continue downward again. Previously only result packets were allowed to travel up the

tree. Therefore a new type must be introduced to allow recursion arguments to work their

way back up the tree.

At this point the semantics of the REDEX simulator parse trees become very tedious.
As an example, consider the binary COND operator in Appendix Ill. The COND cell must have
influence on the two tree levels above. Clearly this is not an efficient use of locality and it
makes the firing rules of the cells much more difficult. The problem with COND is that it is a
ternary function in a binary tree. To alleviate this problem, COND can be replaced with two
new primitives, J and G. J is the 'join' primitive and it distributes the packet it receives to its
left and right subtrees. It expects only one subtree to return a result or recursion packet
and from the other subtree it expects an acknowledge packet. The G primitives are always
on the tree level directly below a J primitive. G is the 'guard' primitive and it sends the
argument received from above to the left subtree first. If the left subtree returns true then

It dispatches the packet to the right subtree, else it sends an acknowledge to the cell

above.

The compiler for the CRE-1 simulator recognizes these primitives. Aside from
simplifying the firing rules for the cells, they introduce concurrency by allowing many guards
to be evaluated at once. Naturally, if the guards are not mutually exclusive, nondeterministic
results will occur. An example of the use of these guards is shown in Figure 8. The factorial
example has been avoided until now since it is so overused in the functional programming
community, however here it demonstrates a subtlety about the combinator trees. By playing

the packet game on the tree in Figure 8, an application sequence can be derived that

16

requires no additional storage of packets in the tree but produces the correct resuilt.

(FAC (X) (COND ((EQ X 0) 1)
((NEQ X 0) (TIMES (FAC (MINUS X 1))))

)
)
FAC (J (G (EQ 0) (K 1)) (G (NEQ 0) (S TIMES (B (Y 4) (C MINUS 1)))))
J
/ \
/7 \
/7 A\
G G
/ \ / \
EQ K NEO \

/7 S
g 1 8 /\
TIMES B
/7 \
Y \
/ c
4 /\
MINUS 1

Figure 8: Factorial Function Using Modified Combinator Tree

This is an important observation since it illustrates "the relationship between
combinator trees, state machines and A expressions. The combinator tree does have a
unique state during a computation since each combinator and primitive has a set of
Intermediate applications through which it progresses. By taking a snapshot of the tree and
examining the applicative state of each cell, the unique state of the machine can be

determined. This state is equivalent to some reduced expression of the original combinator

expression template.

This example presents a paradox since combinator trees are clearly program schemas
but they are also equivalent to A expressions. A expressions however, cannot be
represented by program schemas [15] and require a pushdown automata for implementation.
The paradox is resolved by noticing that the recursion in the factorial function is "linear

recursion" [3]. Algorithms exist to translate linear recursion directly into an iterative form.

17

This iterative form can be executed on the combinator tree by modifying the behavior of the

cells to execute special rules.

Linear recursion is identified by having only one recursive call in a function. An
alternate graphical method for determining linear recursion in a combinator tree is the
following: the different combinatqrs and primitives either duplicate, destroy or maintain the
number of packets in the tree. Obviously if there are no cycles in the tree, then the number
of producible packets is bounded. In the factorial example, there is a cycle but it is located
so that the number of packets in the circuit remain constant. For example, the 8 combinator
receives one packet but produces two, the TIMES primitive receives two packets and
produces one. The reader can confirm that the other primitives and combinators in the circuit
keep the packet count constant. If the number of packets in the circuit can be shown to be

bounded, then the recursion present is linear.

An example of a tree recursive function is the Fibonacci function presented
previously. The Fibonacci function is not a good example however since there is a functional
dependence between the two recursions. This functional dependence can be used to

directly produce an iterative form.

Since non-linear recursion can generate an unbounded number of packets in the tree,
either each cell has to be a pushdown automata or non-linear recursive arguments must exit
the combinator tree and be temporarily saved in an auxiliary store. The initial solution was to
adopt the wasteful policy of providing each node in the tree with its own local stack. These
large stacks are undesirable since they do not scale well in VLS|, plus they limit the
machine's performance at the node level. If a fixed binary tree was not used for the

implementation, the local stack problem could be alleviated in many ways.

For example, if the combinator tree was mapped onto a toroidal mesh [13], a
practically infinite combinator tree could be interpreted. The local store on each of the

processing elements in the torus would be used for combinator and primitive codes and for

18

the stack. Cycles in the graph caused by the Y primitive could either be resolved by
backtracking up the tree or by allowing circuits in the mesh. This same approach would also
work for the Cosmic Cube which has the additional feature that the concurrent combinator

evaluator could be readily implemented. Clearly as the concurrency becomes coarser, the

combinator trees become easier to implement.

6 The CRE-1 Simulator

To evaluate the trade-offs of the different recursion schemes for the binary fixed
tree, the construction of a second simulator was undertaken. Denoted CRE-1 for Combinator
Reduction Engine-1, the simulator was designed explicitly for a fine grain fixed binary
combinator tree. The compiler was written in LISP and its BNF description is given in
Appendix V. This compiler is the same as the REDEX compiler but has been enhanced to

compile the J and G primitives.

The simulator is written in Mainsail and uses a recursively defined data structure to
mode! the behavior of the combinator cells. The reduction rules of Appendix |l were modified
so that application was done by transmitting arguments to the cells in the combinator tree.
The interesting aspect of the simulator is how it handles recursion. The combinator tree is
fixed after the functional expression is read in and stored in the parse tree. This fixed part
will be referred to as the template. After a recursion is encountered, new cells are
dynamically allocated to store the current values of the cell and provide space for the
recursion values. The net effect is to stack values using a linked list structure. The depth of

the stack is dynamic but limited by the number of reachable unused cells on the periphery of

the template.

When the fixed point is encountered, the packet is tagged as type recursive, the
offset is loaded , and the packet then travels upward through the tree. At each branch cell
the packet offset is decremented as was described previously. When a cell receives a

recursive packet from a sub-tree, it keeps track of the direction of the recursive call it has

19

received by pushing the direction onto a two bit wide stack. Two bits are necessary to
encode the directions of left, right and up. It is also the pushdown automata that transforms
the combinator tree from a program schema into an executable representation of the

combinator expression.

This information is sufficient to unravel the recursion of all the combinators, but
problems develop with the J and S cells. As was mentioned previously, the combinators and
primitives either duplicate, maintain, or remove packets in the tree. J and S duplicate
packets, and if their subtrees are concurrently evaluated, thcrc is the possibility that both
will return with recursion requests. This condition occurs in the Fibonacci function with the S
combinator, and as a result, the subtrees must be evaluated sequentially. Sequential
transversal of the subtrees is still not sufficient since if one subtree returns with a
recursion request, the original argument destined for both subtrees has to be safely stored
somewhere. It cannot remain in the branch cell since these cells cannot save packets, only
direction bits. The solution is to send the argument to the non-evaluated subtree. The
packet is typed as data and will travel down the subtree until it reaches a leaf of the
template. Although the argument is typed as data, the packet has a non-zero offset so the
packet is stored and retyped as recursion. It now travels back up the tree, saving the path

so that the recursion will unravel correctly when a packet of type unravel is received.

The rules of Appendix V will compute both the factorial and Fibonacci functions but
have not been used with symbolic or N-ary functions yet. Since the execution steps for the
different cells become very tedious, a stack convention was adopted to simplify the actions.
On each new invocation of a cell, a sequence of directions bits are looked up and then
pushed onto the cell's bit stack. These control bits will determine the initial response of the
cell. As recursion is encountered the bit stack will grow until the packet offset reaches zero.
Only the J and S cells detect zero packet offsets, after which they change the packet type

from recursion to data and send it back down the tree. J also monitors result packets and if

20

the stack is not empty, it will retype them as unravel and send them back down the tree.

The recursion model in this approach is feasible since dynamic allocation of new cells
occurs only at the periphery of the template. This property of periphery nesting is provable
since the abstraction process always appends the combinator tag to the head of the
combinator expression under formation. In the parsing phase, this cell is always put at a
branch in the tree. Packets are always stored directly below primitives which are on the leaf
nodes of the template. When both leaf nodes contain packets, the cell is in a fireable state.
The guestion now Iis, what hap}:ena when the tree is exhbausted? This problem can be
delayed by creating two linked lists from the template leaf, an elegant trick since it conforms
to the loading stage of the machine that is described in the next section and it also fills out
the unused portion of the fixed tree with recursion values. Nevertheless, there is the
possibility that the tree will still be exhausted. The simplest solution is to design special
feaves for the physical tree which are large sequentlal buffers for the linked lists. Thus only
the template for the combinator function need be stored in the fixed tree, the intermediate

results can be either dispatched to the main store or kept in the linear buffers at the leaf

nodes.

7 Speculation on a VLS! Implementation

A primary concern of this thesis has been whether a realizable combinator reduction
engine could be constructed at all with no immediate inhibitions to efficiency issues.
Efficiency measurements must wait until a complete, robust CRE-1 simulator is available. The
scalability and physical design of the cells of the machine however, can be discussed.
Scalability has been a primary concern since this project is explicitly targeted for VLSI. In
reviewing the necessary components per cell, the following is required for a hardware

implementation:
1. Arithmetic Logic Unit

2. Controller (Probably microcoded)
3. 2 bit wide stack

21

4. 8 bidirectional serial interfaces
6. Register to hold packet
6. Register to hold cell code

7. Register to hold value of cell
Serial interfaces are proposed since the bit length of the packets may be arbitrarily long. It
Is reasonable to presume that many branch cells could be packaged upon a single chip
carrier. Using a 40 pin package and serial 1/0, a four level tree could be fabricated per chip.
A block diagram of the functional layout for the branch cells is shown in Figure 8. The

microcoded controller would be based on the same execution rules of Appendix V.

The microcoded controller must also have the capability to load itself with a
combinator tree upon initialization. This is crucial since this mechanism must also be used for
storing values during recursion. The easiest loading method is to define a new packet type
called load. Each time a cell receives a load packet, it alternates moving the old cell code
between the left and right subtrees and saves the new code. Whether it sends to the left or
right is not important providing the entire tree can be initialized to the same direction. This
scheme is compatible with the recursion model for filling out the unused branches of the
physical tree. However, an unfortunate aspect of this implementation model is the two bit
wide stack. Unlike the method for stacking arguments, directions must be saved at the

branch cells, thus limiting the performance of the machine at the cellular level instead of at

the ensemble level.

8 Conclusions and Future Work

The purpose of this paper has been to propose a cellular architecture for averting the
problems associated with Von Neuman computing machines as the granularity of concurrency
becomes finer. The path taken by the CRE-1 machine to circumnavigate these problems is
shown in Figure 10. The implementation projected in the previous section shows promise for
a successful machine. The most interesting results are the elegant scheme for handling

recursion and the lazy evaluation property. Both of these characteristics are a resuilt of the

22

Figure 9: Block Diagram for CRE-1 Machine

pg!‘c,r\'é: C&“

AN
Serial Pof'g

N

<

N

\
Serol Port

lett
Sovbtree

e
Serial Port

RIS ht
Subtree

§%
VAR
1
Mt'(_robodﬂo‘
Contmller
N N
[focket Code| [Cell Code]

S

23

use of combinators. The major drawbacks are the need for local two bit wide stacks, and the

suppression of concurrency for programs that have tree recursion.

computation abstract concept

eV e
| | i
v v v
Tur ing Machine Combinators <-—-—-——-~ A Calculus
| I
________ S S
Yo | implementations
I | I
v v A
Von Neuman computer Stack Combinator
| computers Reduction
\J Engine

N-address space

Figure 10: Computation Hierarchy Including CRE-1 Machine

A major question left to be answered is given that the combinators are an equivalent
representation for the A calculus, are there others which are even better suited for a
hardware implementation? An ideal solution would be a set of primitives that would not need
to store internal state at the branches. The necessary state would be encoded in how data
was forced onto the leaves during recursion. This data driven scheme would greatly

increase the computing power per silicon device area by using simpler firing rules and the

eliminating of the direction stacks.

Work to be completed now is to bring the entire CRE~1 simulator system together.
One version of the simulator does linear recursion correctly and another recursion by tree
expansion, but the two have not been coalesced into one. The current storage manager
needs to be enhanced to allow the combinator tree to fully manipulate the data structures in
the main store. The firing rules of Appendix V also need to be completely transferred to the

simulator so that simulation is driven by said rules and not by procedure invocation in

24

Mainsail. Once these technical problems are resolved and the simulator is stable enough so
that a compiler written in the CRE-1 LISP notation can compile itself, performance evaluation
will be under taken. This thesis has provided a framework for the implementation of a

concurrent combinator reduction engine, the results of the performance evaluation will

determine whether an experimental VLS! engine should be constructed.

Acknowledgements
1 would like to extend my deepest appreciation to Chuck Seitz for his encouragement,
endless patience, and support in my research of these computing engines. | am also

indebted to Alain Martin for the use of his programming notation in describing the behavior of

the CRE-1 cells.

| would also like to thank Dudiey lrish and Bob Pendleton for their enthusiasm and
continuing interest in the CRE-1 machine. Finally, | would like to thank Al Davis for his

guidance and assistance during my undergraduate curriculum.

25

i. REDEX LISP BNF
BNF notation for REDEX LISP

<fn> ::= ({fnname> ({varlist>) <{object>)
<fnname> ::= {symbol>
<varlist> ::= <atom> | <atom> <varlist> | {}
<object> ::= <expr> | <atom>
Lexpr> ::= (COND <testd (ohject) <(ohjectd) |
(PR <object> <object>) |
(TIMES <object> <objectd) |
(DIV <object> <object>) |
(PLUS <object> <object>) |
(MINUS <object> <object>) | <fnname>

Ctest> = (EQ <object> <object>) |
(NEQ <object> <object>) |
(LT <object> <object>) |
(GT <object> <object>) | '
(LE <object> <object>) |
(GE <object> <object>) | <bool>

<atomd> ::= <symbol> | <number> | <bool>

<bool> u=NIL|T

<symbol> ::= {char> <subsym>

<subsym> ::= {char> <subsym> | <number> <subsym> | {}

<char> u=A|B|C]..|X]|Y]Z

<numberd> ::= - <digit> <subnum> | <digit> <subnum>
<subnum> = <digit> <subnum> | {}

<digit> ==0]1]2]..]9

{} denotes empty string

26

il. Simple CSP Rule Set
Simple rules for computing combinator function in Figure 6. Rules are expressed in

CSP-like syntax which is explained in Appendix V

S: A U?x;
(Lix // Rix);
R?x;
Lix;
L?x;
Utx

J

B: [U?x;
Lix; L?x;
Rix; R?x;
Ulx

]

PLUS , TIMES: *[U?x:
[qR> 0 --> R?y;
x.val := x.val OP y.val;
xX.type := RESULT

| gL > 0 --> L?y;
x.val := x.val OP y.val;
X.type ;= RESULT

| 9R = qL -=> Lix;
x.type := ACK
L

Ulx

]

27

Hll. REDEX Reduction Rules in Graphical Form

S: /\
/ \
/ »
/\
/ g ==
/\
/ N\
S f
I: /\
/ \ ==>
I x
K: /\
/ \
/N % ==>
/ N\
K y
B: /\
/ \
/N x ==>
/ \
/\ g
/ N\
B f
C: /\
/ N\
/\ %
/ \ ==>
/\ g
/ N\
c f

AN

/ N\

TIMES, DIV , PLUS , MINUS, EQ , NEQ:

/\
/ N\
/\ u ==>
/ \
oP X

x OP y

PR:

HD:

TL:

=m=D>

/\

28

/\

\

29

COND:
/\
/ \
/N x VAN
/ g /\ ==> true then / N\
/\ ==> / \ f X
/ f b x
\ /\
/7 \ ==> false then / \
COND b g x
Y:
/\ /\
/ N\ ==> /7 \
Y f A f

30

iV. BNF Description of CRE-1 LISP Language
BNF notation for CRE-1 LISP

<D ::= (Kfnname> (<varlist>) <object>)
£{fnnamed> ::= {symbol>
Cvarlist> ::= <atom> | <atom> <varlist> | {}
<object> ::= <expr> | <atom>
<expr> = (COND <guardset>)
(PR <object> <object>) |
(TIMES <object> <object>) |
(DIV <object> <objectd) |
(PLUS <object> <objectd) |
(MINUS <object> <object>)

<guardset> ::= <guard> | <guard> {guardset>
Cguard)> ::= (Ktestd> <objectd)

(test> = (EQ <object> <object>) |
(NEQ <object> <object>) |
(LT <object> <object>) |
(GT <objectd> <object>) |
(LE <objectd> <objectd) |
(GE <object> <object>) | <bool>

Catomd> = {symbol> | <humberd | <bool>

<bool> :=NIL|T

{symbol> ::= {char> {subsym>

<subsym)> ::= <char> <subsym> | <number> <subsym> | {}

<char>d u=A|B|C]|..|X]Y]|Z

<number> ::= - <digit> <subnum> | <digit> <subnum>
<subnum)> ::= <digit> <subnum> | {}

digit> #=0]1}2]..]19

{} denotes empty string

31

V. CSP Firing Rules for CRE~-1 Combinator Tree Cells
The following syntax was developed by Alain Martin [12] based on Hoare's CSP
semantics except for the following differences:

1. The label preceding the input and output commands are channel names.
2. gX Is the number of packets waiting on channel X.

3. // denotes concurrency.

The letters R,L, and U refer to the directions of right, left and up respectively, that
are pushed onto the direction stack. Certain combinators and primitives like B are broken
down into separate cases depending on whether they apply one argument or two.

{ makestk(cell) pushes the following sequences onto the bit stack

B1: RLU B2 : RLULU
C : LRLU S : LRLU
J: LRU G : Liftrue RUelseU
Ki: LU I« L
CONST : U Y : LRU
OP1: RU OP2: LURU

I: *[U?x; [x.type = DATA -->
[x.offset > 0 --> pop(dir);
[dir =L --> Lix; push(R);
| dir = R =-> R!x; push(L)
15
x.type := RECURS
| x.offset = 0 --> x.type := RESULT

1
| x.type = UNRAVEL --> pop(dir);
[dir=L-->R?x;
| dir = R ==> L?x

]

U!X;

5

K: *[U?x; [x.type = DATA -->
[x.offset > 0 --> R!x;
x.type := RECURS

| x.offset = 0 --> LIx;
x.type := RESULT;
L?x
]
| x.type = UNRAVEL --> R7x;

Ux;

E

32

J: X[U?x;
[x.type = DATA --> .
makestk(cell); { load directions onto stack }
pop(dir); { get first direction }

y = X; { save arg }

dir!x; dir?x;
[x.type = RECURS -->
dir1 := tos;
push(dir)
dirtly; dir1?y;
x.offset := x.offset - 1;
[x.offset = 0 --> x.type := DATA]

| x.type <> RECURS -->

pop(dir);

[x.type = ACK --> dirty; dir?x J;

[x.type = RECURS -->
x.offset := x.offset - 1;
push(dir);
[x.offset = 0 --> x.type := DATA]

| x.type <> RECURS --> pop(dir)

iE

[x.type = UNRAVEL --> pop(dir);
[dir <> U =~> dirlx; dir?x;
pop(dir);
I;

I
[x.offset = 0 A x.type = RECURS --> x.type := DATA
| x.offset > 0 A x.type = RECURS --> U!x;
| x.type = RESULTA qS> O --> pop(dir);
x.type := UNRAVEL;
dirlx; dir?x
| x.type = RESULTA qS =0 --> Ulx
]
]

33

G: *[U?x;
[x.type = DATA -->
maktree(cell);
x.type = DATA;
y 1= X;
pop(dir);
dirtx; dir?x;
[x.type = RECURS --> x.offset := x.offset - 1]
| x.type <> RECURS -->
pop(dir);
[x.wval --> dirly ; dir?x
| NOT x.val --> x.type := ACK;

pop(dir)
[x.typc = RECURS --> x.offset := x.offset - 1
push(dir);
| x.type <> RECURS --> pop(dir)

]

| x.type = UNRAVEL --> pop(dir);
[dir <> U -=> dir!x; dir?x;
pop{dir);
]

1
Ulx

]

Y: *[U?x;
[x.type = DATA -->
[x.offset=0-->

L?y;
x.offset := y.val;
x.type := Rlx;

| x.offset > 0 --> { we are caught up in another recursion }
Rix;
x.type := RECURS

]

| x.type = UNRAVEL -->
gR > 0 --> R?x;
x.type := RECURS;
L7y
x.offset := y.val

34

S: *[U?x;
[x.type = DATA -->
makestk(cell); { load directions onto stack }
pop(dir); { get first direction }
y = X; { save arg }

dirix; dir?x;
[x.type = RECURS -->
dir1 := tos;
push(dir)
dir1ly; dir1?y;
x.offset := x.offset - 1;

| x.type <> RECURS -->
pop(dir);
dirly; dir?x;
[x.type = RECURS -->
X.offset := x.offset - 1;
push(dir);
| x.type <> RECURS -->
pop(dir)
dirix; dir?x;
[x.type = RECURS -->
x.offset := x.offset - 1;
push(dir)

| x.type = UNRAVEL ~--> pop(dir);
[dir <> U --> dirlx; dir?x;
pop(dir);
I

Ulx;

356

B: X[U7x;
[x.type=DATAV

(x.type = RECURS A x.offset = 0) -->
maktree(cell);
x.type = DATA;
pop(dir);
*[dir <> UA x.type <> RECURS --> dirlx; dir?x;

pop(dir);

]
[x.type = RECURS ~--> x.offset := x.offset - 1];

| x.type = UNRAVEL --> pop(dir);
[dir <> U --> dirtx; dir?x;
pop(dir);
]

1

Ulx

]

C: *[U?x;
[x.type=DATAV
(x.type = RECURS A x.offset = 0) -->
maktree(cell);
X.type = DATA;

pop(dir);
"[dir <> U A x.type <> RECURS -=> dirlx; dir?x;

pop(dir);
[x.type = RECURS --> x.offset := x.offset - 1];
| x.type = UNRAVEL --> pop(dir);

[dir <> U -=> dirlx; dir?x;
pop(dir);
]

3

Uix

36

{ PLUS , MINUS , TIMES , DIV, EQ, NEQ, GT, LT, GE,LE }

OP: *[U?x;
[x.type = DATA -->
[x.offset=0 -->
[qL=0A4 --> Lix;
gR=0 push(L);
x.type := ACK;

|aL>0A
gR=0 =~->L7%y;
X:=XOPy;
x.type := RESULT;
[aS > 0 --> pop(dir)]

|gL>0A
gR >0
-=> pop(dir);
dir?y;
]
| x.offset > 0 --> x.type := RECURS;
pop(dir);

[dir =L --> Rix;
push(dir);
push(R);

| dir = L ==> L!x;
push(dir);
push(L);

j 7

]
| x.type = UNRAVEL -->
pop(dir);
*[dir <> U =-> dirlx; dir?x;
pop(dir);
I
I
Ulx;
]

CONST: *x[U?x; Ulc] { where c is the constant }

(1]

(2]

[al

[4]

[6]

[6]

[7]

[e]

[e]

37

References

Klaus Berkling.
Computer Science Seminar at Caltech.
Talk given by Berkling at Caltech.

Sally A. Browning.
The Tree Machine.
Technical Report 37590:TR:80, California institute of Technology, 1980.

Ashok K. Chandra.
Efficient Compilationof Linear Recursive Programs.
In Confererence Record of the IEEE 14th Switching and Automata Theory Conference.

Institute of Electrical Engineeers, 1973.

Haskell B. Curry, Robery Feys.
Combinatory Logic.
North-Holland Publishing Company, Amsterdam, 1968.

Caxton C. Foster.
Content Addressable Parallel Processors.
Van Nostram Reinhold, New York, 1976.

Carl Hewitt.

The Apiary Network Architecture for Knowledge Systems.

In Conference Record of the 1980 LISP Conference. 1980 LISP Conference,
Cambridge, Mass. 02139, August, 1980.

C.A.R. Hoare.
Communicating Sequential Processes.
Communications of the A.C.M. 21(8), 1978.

J. Holland.
A Universal Computer Capable of Executing An Arbitrary Number of Sub-Programs

Simuitaneously.
In Proceedings of the 1959 Joint Computer Conference. Massachusetts Institute of

Technology, 1959.

H.T. Kung. .
Let's Design Algorithms for VLS| Systems.
in Caltech Conference on VLSI. California Institute of Technology, January, 1979.

[10]

[11]

[12]

[18]

[14]

[16]

[16e]

[17]

[18]

xxxviii

C.R. Lang, Jr.

The Extension of Object-Oriented Languages to a Homogeneous, Concurrent
Architecture.

Technical Report 4014:TR:82, California Insitute of Technology, 1982.

Bart N. Locanthi.
The Homogeneous Machine.
Technical Report 3760:TR:80, California Institute of Technology, 1880.

Martin, A.J.
A Distributed Implementation Method for Parallel Programming.
Internation Federation of Information Processing , 1980.

Martin, AJ.
The Torus: An Exercise in Constructing a Processing Surface.
In Second Caltech Conference on VLSI. California Institute of Technology, 1981.

Steven S. Muchnick, Neil D. Jones.

A Fixed-Program Machine for Combinator Expression Evaluation.

In 7982 ACM Symposium on LISP and Functional Programming. Association for
Computing Machinery, August, 1982.

Michael S. Paterson, Carl E. Hewitt.

Comparitive Schematology.

In Record of the Project MAC Conference on Concurrent Systems and Parallel
Computation. Association for Computing Machinery, Cambridge, Mass., June,
1970.

Charles Lewis Seitz.
Ensemble Architectures for VLS| - A Survey and Taxonomy.
In MIT Conference on Advance Research in VLSI. Massachusetts Institute of

Technology, January, 1982.

Philip C. Treleaven, David R. Brownbridge, Richard P. Hopkins.
Data-Driven and Demand-Driven Computer Architectures.
Computing Surveys 14(1), 1982,

David A. Turner. »
A New Implementation Technique for Applicative Languages.
Software-Practices and Experience 9, 1979.

