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C h a p t e r 1  

INTRODUCTION TO THERMAL CONDUCTIVITY 

This chapter aims to review the fundamental heat transport theory in bulk materials. 

 

The general approach to calculate the lattice thermal conductivity is to solve the Boltzmann 

transport equation under the relaxation time approximation, while the scattering cross 

section is calculated by perturbation theory [1,2].  

  
κ i =

1
2π( )3

υk,n ⋅ i( )2∫
n
∑ τ k,nCph k,n( )dk . (1.1) 

The summation is over all the phonon modes n .  i  is a unit vector along a principle crystal 

axis and the temperature gradient.  k  is the wave vector. Cph  is the specific heat per 

phonon mode for frequency ω .  υk,n  is the phonon velocity for the n th mode at wave 

vector  k . The specific heat (vide infra) is written as  

 

Cph =
2ω 2

kBT
2

exp ω / kBT( )
exp ω / kBT( ) −1⎡⎣ ⎤⎦

2 . (1.2)  

In case of isotropic  υk ,  

 
κ =

4π
3

1
2π( )3

υk,n
2∫

n
∑ τ k,nCph k,n( )g k,n( )dk . (1.3) 

 g k,n( )  is the phonon density-of-states and can be written as  g k,n( )dk = ω 2 /υ 3( )dω  in 

Debye’s limit (i.e.,  ω = υk ). Thus, 
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κ =
1
3
1
2π 2

τω ,n

υω ,n

Cph ω ,n( )ω 2 dω
0

ω0,n

∫
n
∑ . (1.4) 

ω0,n  is the maximum frequency for the n -th phonon branch. 

According to equation 1.1-1.4, accurate descriptions of the phonon band diagram and the 

scattering mechanisms are critical for reliable prediction and calculation of the thermal 

conductivity. This chapter will review the expressions for the specific heat and the 

scattering rates. Several important lattice thermal conductivity models and their applicable 

conditions are also discussed. In addition, methodologies for modeling the phonon band 

diagram will be briefly described. 

 

Specific Heat CV  [2,3] 

Thermodynamically, the volume specific heat is defined as  

CV = (∂U
∂T
)V . (1.5) 

Lattice vibrations are generally simplified as harmonic oscillators. In this model, every 

vibration energy level is spaced by the Planck energy  ω , with the zero-point energy 

 

1
2
ω . ω  is the vibration frequency of the mode. For phonons, the population distribution 

is described by the Bose-Einstein distribution,   Dn,k (ω ,T ) = exp(ωn,k / kBT ) −1⎡⎣ ⎤⎦
−1

. 

 Dn,k (ω ,T )  is called the occupation number, or, in the context of lattice dynamics, the 

phonon number. Thus, the total energy of the phonons in a particular branch is then given 

as 
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Un,k (ω ,T ) = ωn,k

1
2
+ Dn,k (ω ,T )

⎡
⎣⎢

⎤
⎦⎥

. (1.6) 

Note that the phonon number depends on temperature and the vibration frequency. The 

total internal energy of the crystal is the summation of U(ω ,T )  over all the phonon branch 

and wave vectors, 
 

Un,k (ω ,T )
n,k
∑ . Taking the temperature derivative of 

 
Un,k

n,k
∑ , we obtain 

the specific heat as 

  
CV =

2ωn,k
2

kBT
2

exp ωn,k / kBT( )
exp ωn,k / kBT( ) −1⎡⎣ ⎤⎦

2
n,k
∑ . (1.7) 

In Einstein’s model proposed in 1907, every atom is oscillating independently at a same 

frequency, ωE .  The internal energy of the system is then given as 

 
U = 3NωE D(ωE ,T ) +

1
2

⎛
⎝⎜

⎞
⎠⎟
= 3N ωE

exp(ωE / kT ) −1
+ 3N ωE

2
 . (1.8) 

N  is the number of atoms. From equation 1.8, the specific heat could be derived as 

 

CV =
∂U
∂T

= 3Nk ωE

kT
⎛
⎝⎜

⎞
⎠⎟
2 exp(ωE

kT
)

exp(ωE

kT
) −1⎛

⎝⎜
⎞
⎠⎟
2 . (1.9) 

In the low temperature limit, T → 0  

 CV , ph ≈ e
−ωE /kT . (1.10) 

In this model, the specific heat drops exponentially as temperature goes to absolute zero. 

However, such fast decay does not fit well to the experimental results, which demonstrate 

that the specific heat decreases with T 3  dependence rather than the activation process-like 

decay. 
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As in equation 1.6, the internal energy of the crystal lattice is a function of phonon 

frequency. It is thus convenient to re-write equations 1.6 and 1.7 as integrals of the phonon 

frequencies: 

 
U = ω 1

2
+ D(ω ,T )⎡

⎣⎢
⎤
⎦⎥
g(ω )dω∫ . (1.11) 

 
CV , ph =

∂
∂T

ωD(ω ,T )g(ω )dω∫ . (1.12) 

g(ω )  is defined as the density-of-states. As such, the number of phonon modes within ω  

and ω + dω  is g(ω )dω . For a 3-dimensional isotropic crystal,  

g(ω )dω =
d 3k∫
Δ3k

=
d 3k∫

(2π / a)3
. (1.13) 

a  is the lattice constant of the crystal. Further mathematical deduction yields that  

g(ω )dω =
a3

2π 2

k2

dω / dk
dω . (1.14) 

In the Debye model, rather than treating the phonons as individual random oscillators, the 

atoms vibrate collectively in a wave-like fashion. The phonon branch is assumed to be non-

dispersive (i.e., ω = υk ). Thus,  

g(ω ) = a3ω 2 / 2π 2υ 3 . (1.15) 

The linear dispersion is applicable to acoustic phonons at low frequencies. The Debye 

model fails to predict the specific heat for high-frequency phonons, as the dispersion at 

high frequencies deviate from linearity. Approximating the first Brillouin zone by a sphere 

with the same volume, we can now calculate the specific heat of the lattice vibrations (two 

transverse modes and one longitudinal mode) in Debye’s model by integrating equation 

1.11,  
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U =
3a3

2π 2υ 3 ω 2 ω

exp(ω
kT
) −1

dω
0

ωD

∫ = 9NkT (T
θ
)3 dx x3

ex −10

xD

∫ . (1.16) 

N  is the number of atoms in the first BZ; θ  is the Debye temperature of the material 

(
 
θ =
ωD

kB
=
υg

k
6π 2N3 ). ωD  is the vibration frequency at the Debye temperature. 

 xD ≡ ωD / kT . In equation 1.16, the 
 

1
2
ωg(ω )dω∫  term is omitted for simplicity, as our 

goal here is to find the expression for specific heat. Taking the temperature derivative of  

equation 1.16, we find: 

 

CV , ph =
1

2π 2υ 3

2ω 4

kBT
2

0

ωD

∫
exp ω / kBT( )

exp ω / kBT( ) −1⎡⎣ ⎤⎦
2 dω = 9Nk T

θ
⎛
⎝⎜

⎞
⎠⎟
3 x4e4

ex −1( )2
dx

0

xD

∫ . 

Debye’s model predicts a T 3  dependency of thermal conductivity when T → 0 . 

CV , ph =
12π 4

5
Nk(T

θ
)3 ∝T 3 . (1.17) 

In the high-temperature limit, defined as  ω  kBT , 
 
1
2
+ Dn,k (ω ,T )approaches  kBT / ω , 

thus,  Un,k (ω ,T ) ≈ kBT . As a result, all the phonon modes have the same energy as kBT  at 

the high-temperature limit. Since the number of normal modes equals the number of degree 

of freedom 3N (N: number of atoms), 
 

Un,k
n,k
∑ ≈ 3NkBT , CV , ph ≈ 3NkB  at high 

temperatures. This is the Dulong-Petit law, which empirically states that at high 

temperatures all the specific heat saturates to a constant independent of the material.  
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Phonon Relaxation Time τ  

The phonon relaxation time is a collective parameter governed by various phonon 

scattering processes. It is highly dependent on the material systems, and the dominant 

mechanisms in most cases are the isotope/impurity scattering, the boundary scattering, the 

Umklapp process, and the three-phonon normal process. Matthiessen’s rule proposes that 

the resistivity of a system with distinct scattering mechanisms is the sum of the individual 

resistivities alone [2]. Thus,  

1
τ
=

1
τ ii

∑ . (1.18) 

In cases when τ  is wave vector  k  dependent, the conductivity is proportional to some 

average τ . Thus, Matthiessen’s rule is modified as 

1
τ
=

1
τ ii

∑ . (1.19) 

Developing the expressions for the relaxation times is non-trivial, especially for the three-

phonon processes. In the following paragraphs, we discuss the scattering time expressions 

for the various processes in some commonly seen models. Due to the fact that many of the 

relaxation processes are dependent on the phonon frequencies, as well as the characteristics 

of the dispersions of the phonon branches, some fundamental assumptions are applied in 

the scattering time expressions in each model that limit the validity of the expressions to 

certain phonons at particular temperature ranges. 
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Lattice Thermal Conductivity Models 

The behavior of the lattice thermal conductivity is qualitatively described by the early work 

of Debye and Peierls: (1) the lattice thermal conductivity at very low temperatures depends 

strongly on the size and shape of the crystal (long phonon mean-free-path) and increases 

with the specific heat (T 3  dependence) as temperature goes up. (2) The lattice thermal 

conductivity starts to decline as the temperature reaches high enough (~ 0.1θD ), when the 

Umklapp processes start being dominate. (3) At the peak of the thermal conductivity, its 

value is sensitive to crystal imperfection such as impurities, isotopes, and defects. 

Following Debye and Peierls’ work, several models have been proposed to better describe 

the thermal conductivity characteristics: 

 

1. The Klemens Model [4] 

In the Klemens model, the thermal conductivity for different scattering mechanisms are 

calculated separately and the total thermal conductivity in this model is given as 

1
κ
= κ i

−1
i∑ . (1.20) 

In the Klemens model the phonon-point defect (defects with mass difference such as 

isotopes, impurities, etc.) scattering is given as 

 
1
τ I , j

=
π
6
V 'Γg(ω )ω 2 =

V 'Γ
4πυ j

3ω
4 . (1.21) 

Γ =
(ciMi )

2 − ciMi
i
∑⎛⎝⎜

⎞
⎠⎟

2

i
∑

ciMi
i
∑⎛⎝⎜

⎞
⎠⎟

2 . (1.22) 
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τ I , j  is the phonon-impurity relaxation time of the j  phonon branch; V '  is the atomic 

volume; Γ  is the so-called mass-fluctuation phonon scattering parameter. ci  and Mi  

denote the concentration and the mass of the point defects (e.g., isotopes or the impurities). 

In  equation 1.20, the Debye model phonon density-of-state (equation 1.15) is assumed. 

Under such assumption, the expression fails for the zone edge high frequency phonons as 

the dispersion curve turns convex-up, rendering a higher density-of-state. 

Note that the point-defect scattering is strongly dependent on the phonon frequency, group 

velocity, and impurity content. The τ −1 ∝ω 4  relation is similar to the Rayleigh scattering 

in photons. It has been experimentally confirmed that the impurity level has a large effect 

on the thermal conductivity. For example, the highly enriched 70Ge (99.99%) sample has 

maximum thermal conductivity 14 times higher than the 70/76Ge sample (43% of 70Ge; 48% 

of 76Ge; 9% others) [1]. 

 

2. The Callaway model [5] 

In 1959 Joseph Callaway developed a model to calculate the lattice thermal conductivity 

valid at low temperatures (2.5K to 100K). In Callaway’s model, an isotropic Debye-like 

phonon spectrum is assumed, i.e., no distinction between longitudinal and transverse 

phonons and the phonon branches are non-dispersive. The scattering mechanisms 

considered in this model are: 
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a. Isotope/point impurity scattering  

In Callaway’s model, the isotope scattering takes the form proposed by Klemens 

(i.e., τ I
−1 = Aω 4 ). A  is a fitting parameter which depends on the mass-fluctuation 

phonon scattering parameter and the phonon velocity as in the Klemens model. 

Assumptions and validity: (I) Debye-like phonon spectrum and the Debye’s 

description of the density-of-states. Therefore, this expression applies to low 

temperature region where Debye’s model is valid. (II) An averaged phonon 

velocity for longitudinal and transverse branches.  

b. Boundary scattering 

τ B
−1 = υB / L0 ; υB  is the average speed of sound. L0  is the characteristic length of 

the sample.  

Assumptions and validity: (I) Since no specularity factor is incorporated, the 

Callaway model assumes that the scattering at the surface boundary is purely 

diffusive. (II) Again, the speed of sound is the averaged phonon velocity for 

longitudinal and transverse branches. 

c. Three-phonon normal process  

τ N
−1 = B2T

3ω 2  B2  is a fitting parameter which depends on the Gruneisen constant 

and the phonon velocity. The expression was derived by Herring [6] for 

longitudinal phonon scattering under momentum conservation conditions at low 

temperatures. 

Assumptions and validity: Low-temperature longitudinal phonons. 
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d. Umklapp process  

τU
−1 = B1T

3ω 2  B1  is a fitting parameter which contains the exponential temperature 

factor exp −θ / bT( )  as suggested by Peierl, the phonon velocity, the Gruneisen 

constant, and the Debye temeperature. 

Assumptions and validity: The Umklapp process expression in Callaway’s 

model is neither a high-temperature nor a low-temperature assumption; thus, 

the model fails to describe the Umklapp process, limiting the model to the low-

temperature region where the Umklapp process is negligible.  

The overall relaxation time is 

τ = υBL0
−1 + B1T

3ω 2 + Aω 4 + B2T
3ω 2( )−1 . (1.23) 

The thermal conductivity can thus be expressed as [7] 

 

κ =
1

2π 2υB

2ω 4kBT
−2

υBL0
−1 + B1 + B2( )T 3ω 2 + Aω 4

exp(ω / kBT )
exp ω / kBT( ) −1⎡⎣ ⎤⎦

2 dω
0

ωD

∫ . (1.24) 

The three-phonon normal process is incorporated in equation 1.24; such treatment assumes 

the normal process as a resistive scattering process. However, the three-phonon normal 

process does not contribute to thermal resistance, since the phonon momentum is conserved. 

Thus, in the original Callaway’s model, an additional correction term was introduced to 

counteract errors by treating the normal process as entirely resistive. The correction term is 

usually neglected because it is found to be small in most cases, where the normal process 

relaxation time is much longer than the resistive process [5].  

The Callaway’s model assumes a non-dispersive phonon spectrum with no distinction in 

the phonon modes. Therefore, the model fails to explain the thermal conductivity of 
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materials with highly dispersive phonon spectrums at high temperatures such as 

germanium and silicon. Moreover, the relaxation time expressions for the three-phonon 

normal and Umklapp processes are over-simplified from reality. Thus the model predicts 

the thermal conductivity behavior well only at low temperatures ( ≤ 0.1θD ) where the 

Debye-like phonon spectrum is a good approximation and only the isotope/impurity 

scattering and boundary scattering are important. 

 

3. The Holland model [2] 

Distinct from the Klemens and the Callaway models, the analysis of lattice thermal 

conductivity in Holland’s model explicitly considers the contribution by both the transverse 

and longitudinal phonons.  

a. Isotope scattering 

τ I
−1 = Aω 4  

b. Boundary scattering 

τ B
−1 = υB / FL0  

The speed of sound is defined as the average phonon velocity 

υB
−1 = 1 / 3( ) 2υT

−1 +υL
−1( ) . T , L  represents the transverse and longitudinal acoustic 

phonons respectively. F  is the specularity parameter introduced for partially 

diffusive boundary scattering. 

The expressions of isotope scattering and boundary scattering in the Holland model are 

essentially the same as those in the Callaway model, except that the boundary scattering is 

not fully diffusive in the Holland model. 
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The Holland model attempts to capture the high-temperature (T > 0.1θD ) characteristic of 

the thermal conductivity behavior. Therefore, the expressions for the three-phonon normal 

and Umklapp processes are modified from the Callaway model.   

c. Three-phonon normal process 

τ N ,T
−1 = BTωT

4  for 0 ≤ω <ω1  

τ N ,L
−1 = BLω

2T 3  for 0 ≤ω ≤ω 3  

These relaxation time expressions were derived by Herring [6] for low- temperature 

longitudinal and transverse acoustic phonons. Note that in the Callaway model, 

only the longitudinal acoustic phonon is considered in the normal process. 

Although these expressions are derived for low-temperature acoustic phonons, it is 

sufficient for fitting the thermal conductivities, since at high temperatures the 

normal process becomes negligible.  

d. Umklapp scattering 

τU ,T
−1 =

BU ,Tω
2

sinh x( )  for ω1 ≤ω ≤ω2  

τU ,T
−1 = 0  for ω <ω1  

In the Holland model, the Umklapp process is absent at ω ≤ω1  (or θ ≤ θ1 ) and 

only the transverse modes are considered. 

Combining the scattering mechanisms, one gets 

τT
−1 = υB / FL + Aω 4 + τU ,T

−1  

τ L
−1 = υb / FL + Aω 4 + BLω

2T 3 . 
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As stated earlier, the Holland model takes into account the contribution of thermal 

conductivity from both the transverse and longitudinal phonons [2]: 

κ =κT +κ L  

κ =
2
3

CTT
3x4ex (ex −1)−2dx

τT
−1

0

θT /T

∫ +
1
3

CLT
3x4ex (ex −1)−2dx

τ L
−1

0

θL /T

∫ . 

The thermal conductivity can be further written as 

κ =
2
3

C1T
3x4ex (ex −1)−2dx

υB / FL + Am4x4T 4 + BN ,TmxT
5 +

0

θ1 /T

∫
2
3

C2T
3x4ex (ex −1)−2dx

υB / FL + Am4x4T 4 +
BU ,Tm

2x2T 2

sinh x( )

+
θ1 /T

θ2 /T

∫

1
3

CLT
3x4ex (ex −1)−2dx

υB / FL + Am4x4T 4 + BN ,Lm
2x2T 5

0

θL /T

∫

 

i = T ,L ;  x = ω / kBT ;  θi = kBω i /  ;  Ci = kB / 2π
2υi( ) kB / ( )3 . 

Assumption: In the Holland model, the transverse acoustic phonon is assumed to have 

three constant velocities depending on the phonon frequency range - i.e., the 

transverse phonon has a constant velocity at low frequencies ω <ω1 , and the velocity 

decreases abruptly and remains constant between ω1  and ω2 . For phonons with 

frequencies above ω2  the phonon velocity is zero. 

 

In summary, the Holland model considers the contribution of thermal conductivity both 

from the longitudinal and the transverse phonons. It also applies two averaged phonon 

group velocities to crudely describe the phonon dispersions. Distinct from the Callaway 

model, the Holland model uses different expressions for the relaxation mechanisms. 

Overall speaking, the Holland model captures the thermal conductivity characteristics 

better than the Callaway model at higher temperatures.  
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Following Callaway and Holland, there have been several modifications to the thermal 

conductivity model. These modifications are aimed to better capture the temperature 

dependence over a broader range. Basically, the focus of the later work has been primarily 

on achieving a better description in the phonon dispersions rather than developing new 

thermal conductivity models.  
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