
Reactive-Process Programming

and

Distributed Discrete-Event Simulation

Thesis by

Wen-King Su

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1990

(S ubmitted October 31, 1989)

11

© 1990

Wen-King Su

All rights Reserved

111

Acknowledgments

Many thanks

To my thesis advisor, Dr. Charles L. Seitz, whose care and dedication made it
all possible.

To my committee members, Dr. Charles L. Seitz, Dr. Mani Chandy,
Dr. Alain Martin, Dr. Drad Sturtevant, and Dr. Eric Van de Velde, for
their careful review and analysis of my research.

To our technical editor, Dian De Sha, who spent glorious days and nights
tracking and hunting the blunders and blemishes in my writing.

To our operations manager, Arlene DesJardins, who takes care of every little
day-to-day detail and makes the department feel like a nice big family.

To my peers, Bill Athas, Bill Dally, John Ngai, and Craig Steele, for their help
and advice.

To my junior co-workers, Nanette Boden, Charles Flaig, Glenn Lewis,
Mike Pertel, and Jakov Seizovic, for their feedback and support.

To our system managers, Don Speck, Chris Lee, and Joe Beckenbach, for
keeping our machines running smoothly.

To our guests from abroad, Sven Mattisson and Lena Peterson, for their
enthusiasm and friendship.

To my advisors at UC Davis, Dr. Wen C. Lin of EE/CS and
Dr. George E. Bruening of BioChem, for my enlightenments.

To my buddies from UC Davis, Glenn Saito and John Bakos, for their help in
my college years.

To my teachers and counselor at Casa Roble High School, Mr. Gomez,
Dr. Smithson, MT. Hoffman, Mr. Scalatta, Mr. Pickard, Mr. Hellen,
Mrs. Sproul, and Mrs. Cruzen, who worked to keep me involved in school.

To Xerox Corporation for supporting this work through a Xerox
special-opportunity fellowship.

To my parents, who endured many difficult times to bring me here and to
raise me in this land of opportunity.

And to Freedom and Liberty;
sacred to our very heart and soul, yet sadly denied to so many.

The research described in this thesis was sponsored in part by the Defense Advanced
Research Projects Agency, DARPA Order number 6202; and monitored by the Office
of Naval Research under contract number N00014-87-K-0745.

lV

A.bstract

The same forces that spurred the development of multicomputers - the demand for

better performance and economy - are driving the evolution of multicomputers in

the direction of more abundant and less expensive computing nodes- the direction

of fine-grain multicomputers. This evolution in multicomputer architecture derives

from advances in integrated circuit, packaging, and message-routing technologies,

and carries far-reaching implications in programming and applications. This thesis

pursues that trend with a balanced treatment of multicomputer programming and

applications. First, a reactive-process programming system - Reactive-C - is

investigated; then, a model application- discrete-event simulation -is developed;

finally, a number of logic-circui t simulators written in the Reacti ve-C notation are

evaluated.

One difficulty m multicomputer applications is the inefficiency of many dis­

tributed algorithms compared to their sequential counterparts. When better for­

mulations are developed, they often scale poorly with increasing numbers of nodes,

and their beneficial effects eventually vanish when many nodes are used. However,

rules for programming are quite different when nodes are plentiful and cheap: The

primary concern is to utilize all of the concurrency available in an application, rather

than to utilize all of the computing cycles available in a machine. We have shown in

our research that it is possible to extract the ma..x.imum concurrency of a simulation

subject, even one as difficult as a logic circuit, when one simulation element is as­

signed to each node. Despi te the initial inefficiency of a straightforward algorithm,

as the the number of nodes increases, the computation time decreases linearly until

there are only a few elements in each node. We conclude by suggesting a technique

to further increase the available concurrency when there are many more nodes than

simulation elements.

Contents

List of Figures

List of Program Listings

1 Introduction

1. 1 Motivation

1. 2 History

v

1. 3 Outline

2 Reactive-Process Programming

2.1 Definition of a Reactive Process

2. 2 Reactive-C Programming System

3 Reactive-Process Layers

3. 1 Simple Layers

3. 1. 1 The bottom layer (b-layer)

3 .1. 2 The length-carrying layer (1-layer)

3 . 1. 3 The non-blocking-receive layer (nb-layer)

3. 1. 4 Handler layering

3 . 2 Message Type

3. 3 Discretion on Receive

3. 3. 1 Discretion using b-layer functions

3.3.2 The RPC-discretion layer (r-layer)

3.3.3 The CSP-discretion layer (csp-layer)

3. 3. 4 A more general type-discretion layer (t-layer)

3. 4 Other Layers

3 . 4. 1 A flow-controlling layer (f -layer)

3.4.2 The CK primitives

3.4 . 3 The RK primitives (x-primitives)

lX

Xlll

1

1

2

5

7

7

9

18

18

18

22

24

26

28

30

30

34

37

39

40

40

42

44

vi

3. 5 Layering on Light- Weight Processes 45

4 Cosmic Environment

4 . 1 The Cosmic Environment Specification

4 . 2 Our Cosmic Environment Implementation

4. 2. 1 Structure of our CE implementation

4.2.2

4.2 . 3

4.2.4

4 . 2 . 5

4 . 2 . 6

Cosmic Environment exterior

Cosmic Environment processes

Program compilation

Spawning programs

Data representation and conversion

5 Model of Simulation

5 . 1 Mathematical Framework and Analysis

5. 1. 1 Systems and elements

5 . 2

5.3

5 . 1. 2 States and time

5. 1. 3 Knots and progress

5 . 1. 4 Rules of thumb - sufficient conditions for progress

5 . 1. 5 Non-existence of necessary and sufficient progress conditions

5. 1 . 5. 1 Simulation and Boolean satisfiability

5. 1 . 5. 2 Simulation and simultaneous equations

Operational Framework

5 . 2. 1 Breaking a simulation into smaller slices

5 . 2. 2 Slices and knots

5. 2. 3 Implementation considerations

The Generic Simulator Model and Its Derivatives

5.3 . 1 Message-driven simulation

5 . 3 . 2 Concurrent event-driven simulation

47

47

49

50

53

54

56

57

57

61

61

61

63

64

66

67

67

67

69

69

71

72

73

74

75

Vll

5.3.3 Sequential simulator 76

5.3 . 4 Concurrent backtracking simulators 78

5.3 . 5 Branch-and-bound simulators 79

5.3 . 6 Time-driven simulators 81

5.3 . 7 Summary 82

6 Logic-Circuit Simulator Experiments 84

6.1 Why Logic Circuits? 85

6.2 CMB-Variant Simulator 87

6.2.1 The element simulators 87

6.2.2 The simulator message system 94

6.2 . 3 The variants 97

6.2.4 Variant algorithms 99

6 .2 .5 Instrumentation 101

6.2.6 Experimental results 103

6 . 3 Sequential Simulator 107

6.3.1 Sequential simulator mechanism 107

6.3.2 Hazards in sequential simulators 110

6 . 3 . 3 Instrumentation 112

6 . 3 . 4 Big multiplier results 113

6.3.5 Small multiplier results 115

6 . 3.6 Circuit topology vs. activity level 118

6 . 3 . 7 Hybrid possibilities 120

7 Hybrid Simulators 122

7.1 Coordinated Sequential Simulator (Hy brid-1) 122

7 .1.1 The algorithm 122

7 . 1.2 Sorting with a different key 123

Vlll

7. 1. 3 The simulator mechanism

7 .1. 4 The simulator output

7. 1. 5 Expectation

7 . 1. 6 Experimental results

7. 2 Progressive Hybrid Simulator (IIybrid-2)

7. 2. 1 The mechanism

7. 2. 2 Experimental results

8 Additional Performance Results

8.1 2-D Clock Network

8. 1. 1 Description

8. 1 . 2 Sweep-mode results

8 . 1. 3 Real-mode results

8. 2 Tree-Ring Example

8. 2. 1 Description

8. 2. 2 Simulation results

8 . 3 FIFO Loop

8. 3. 1 Description

8. 3 . 2 Simulation results

9 Summary

9.1

9.2

9.3

Economy and Performance of a Multicomputer

Overhead and Latency

Fine-Grain Multicomputer Programming

9 .4 The Next Frontier

10 Bibliography

126

128

128

129

133

134

137

141

. 142

142

144

145

152

152

153

. 160

. 160

. 160

167

. 167

171

173

. 174

175

List of Figures

1. 1 Block diagram of a multicomputer

2.1 Possible behavior of a reactive process

2. 2 Representation of a process . . .

2. 3 Operation of a Reactive-C kernel

2. 4 Specification of the factorial process

2 . 5 The divide step

2 . 6 The combine step

lX

3.1 Mapping a binary tree to a multicomputer

3. 2 Process structure comparison . . .

3. 3 Structure of a 1-layer message buffer

3. 4 An example of a FIFO queue

3 . 5 Expansion steps in the merge-sort program

3. 6 Giving away a list for the third time (stack grows up)

3 . 7 Getting an out-of-sequence reply

3. 8 Structure of a channel in a channel-based CSP implementation

3. 9 Control flow for heavy-weight processes

3. 10 Control flow for light-weight processes

4. 1 Elements of a computation

4. 2 A process group

4 . 3 Partitioning into two parts

4. 4 A multicomputer shared by two users

4 . 5 Host message-system implementation

4 . 6 Cosmic Environment with unified resource management

5. 1 Representation of a system

5. 2 Representation of a system composed of elements

5. 3 Closing a system into a closed graph

1

8

9

10

12

13

14

21

21

22

28

30

33

33

38

45

45

47

50

50

51

52

52

61

61

62

5. 4 Arc source and destination

5. 5 Element inputs and outputs

5 . 6 Arcs ao-4 form a path of length 5

5. 7 Arcs a0 _ 4 form a circuit of length 5

5. 8 Example of a knot-containing system

X

5. 9 A circuit to evaluate satisfiability of a set of clauses

5. 10 Mapping equations into physical system

5. 11 Element-simulator operation for an element with a non-zero delay

5.12 Element-simulator operation for an element with a zero delay

5. 13 A system that contains all three types of slices

5. 14 Representation of an arc

5. 15 Replacing tape by messages

5. 16 Example of deadlock in an event-driven simulation

5. 17 Model of a sequential simulator

5. 18 A researcher submitting a grant

5. 19 Comparison between three simulators

5. 20 An example of a continuous system

6.1

6.2

6 . 3

6.4

6.5

6.6

6.7

6.8

A logic circuit whose behavior is different from its Boolean network

A number of circuit simulators and their relationship

Domain of the generic simulator model

Process structure and a simple example of connectivity

A sample circuit and a possible mapping to a multicomputer

Structure of a sweep-mode simulation

Structure of a real-mode simulation

Three phases of the oscillating multiplier

6. 9 A 1376-gate multiplier, sweep-mode

6. 10 A circuit containing a dynamic hazard condition

62

62

63

63

64

67

68

70

70

71

73

74

76

77

79

80

82

84

85

87

88

95

102

102

104

104

110

XI

6.11 A 1376-gate multiplier for 40J.LS on an iPSC/2 113

6.12 A 1376-gate multiplier for 40J.LS on an iPSC/1 114

6. 13 Combining the iPSC/2 and iPSC/1 graphs with sequential timing aligned . 115

6 . 14 A 1376-gate multiplier for 100J.Ls on a Symult 2010 . 116

6.15 A 116-gate multiplier for 100J.LS on an iPSC/1 117

6. 16 A 116-gate multiplier for 100J.LS on an iPSC/2 117

6. 17 A 116-gate multiplier for 400J.Ls on a Symult 2010 117

6. 18 Effect of increased latency on simulation performance 118

6.19 A 1376-gate multiplier for 100J.LS on a Symult 2010- fast oscillation . 119

6. 20 Modified Laffer Curve . 120

7. 1 An event that invalidates another event . 125

7.2 Layering in the hybrid-1 simulator . 126

7. 3 Expected performance of the hybrid-1 simulator 129

7. 4 A 1376-gate multiplier for 100J.tS on a Symult 2010 130

7. 5 A 1376-gate multiplier for 100J.Ls on a Symult 2010 with random placement 131

7. 6 A faster oscillating 1376-gate multiplier for 100J.LS on a Symult 2010 132

7. 7 A 1376-gate multiplier for 100J.LS on a Symult 2010 137

7 . 8 A 1376-gate multiplier for 100J.LS on a Symult 2010 with random placement 138

7. 9 A faster-oscillating 1376-gate multiplier for 100J.Ls on a Symult 2010 139

7. 10 A 116-gate multiplier for 400J.LS on a Symult 2010 140

8 . 1 A FIFO consisting of 4 units

8 . 2 A C-element FIFO consisting of 4 units

8 . 3 A 3 X 4 array of self-oscillating FIFO units

8. 4 Sweep-mode CMB-variant simulation of an 1841-gate clock network

8 . 5 An 1841-gate clock network for 50J.LS on a Symult 2010

8. 6 An 1841-gate clock network for 50J.Ls on a Symult 2010

8. 7 A 473-gate clock network for 200J.LS on a Symult 2010

. 142

143

143

. 144

. 146

. 148

. 149

xu

8.8 A 241-gate clock network for 200J.LS on a Symult 2010 150

8.9 A 65-gate clock network for 500J.Ls on a Symult 2010 151

8.10 A 12-unit tree ring 152

8.11 A 1-to-2 pulse-distributor circuit 153

8.12 A 1142-gate tree network for 50J.LS on a Symult 2010 155

8.13 A 1142-gate tree network for 50J.LS on a Symult 2010 156

8.14 An 857-gate tree network for 70J.LS on a Symult 2010 157

8.15 An 572-gate tree network for 100j.LS on a Symult 2010 158

8.16 An 287-gate tree network for 200J.Ls on a Symult 2010 159

8 . 17 Circuit for one latch 160

8 . 18 Sweep-mode CMB-variant simulation of an 1067-gate FIFO loop 161

8 . 19 An 1067-gate FIFO loop for 100J.LS on a Symult 2010 163

8 . 20 An 1067-gate FIFO loop for 100J.Ls on a Symult 2010 164

8 . 21 A 459-gate FIFO loop for 100J.Ls on a Symult 2010 165

8.22 A 155-gate FIFO loop for 200J.Ls on a Symult 2010 166

9 . 1 Two idealized multicomputer evolution paths 167

9.2 Multicomputer cost space 169

9.3 Intersection with A plane 169

9.4 Intersection with B-plane 170

9.5 Two idealized multicomputer evolution paths in the path space 171

xiv

6. 16 Sequential-simulator main loop as a light-weight process

6.17 A SEND_EVENT function that reduces glitches

7.1 Hybrid-1 main loop

7. 2 Hybrid-1 embedded message system

7. 3 Generic logic-gate handler for hybrid-2

7. 4 Hybrid-2 main loop

110

112

127

127

134

136

1

Chapter 1 Introduct ion

Section 1.1 Motivation

Advances in application s, programming methods. and computer a rchitC'ctures ar(> inext rica-

bly intertwined. Architectures and programming methods develop in rr>sponse to <iernands

from applications; t hey also give ri se to new application s . Simulation is an <~pp li cation

that contri butes to and benefits from the developme nt of faster and more economical corn-

puters . Discrete-event simulation can produce a broad var iety of interaction patterns and

timi ng relationships; it is. the refore, a model applicat. ion for the s tudy of multicompur-

ers and reactive-process programming. This research is a st ud.v of both reactive- process

programming and distributed discrete-event simul ation 011 multicomputers.

COMMU 1I CATIO N NETWORK

c1 c2 c3 Cv

l ______ _
y

)

N computing "nodes''

Figure 1.1 Block diagram of a multicomputer .

A multicomputer (Figure 1.1) is composed of a collection of node computers connected

to each other via a message-passing network. Multicompute rs can be divided into three

categories by t heir node size:

Category
Node :VI emory

N I Examples
Size per Node

Coarse-grain cabine t :::::64MB 4-64 Network of supercomputers

Medium-grain circuit- board :::::2MB 16- 4096 iPSC. NCUBE, Symult 2010

Fine-grain chip ::::: 161\:B 1024- 65536 Mosaic

Each node has its own private memory that is not directly accessible by other nodes . and

each node can contain multip le processes. Processes on d ifferent nodes run asynchronously;

2

processes within a single node are interlea\·ed to produce the same effect as if 1 hey were in

different nodes. Communication between processes is performed \·ia messa.ge passing.

Section 1.2 History

Simulation and programming have long influenced each other. Although one ran arguP that

every computation is. in fact, a simulation of some physical or abstract pron-'ss . the first

effort to provide a programming system for discrete-event simulation was the development of

Simu/a [6] , which was based on the Algol programming langu age. Discrete-event s imulation

operates on a system of components (p hysical processes) that interact by discrete art.ion~.

St rue! ured languages such as Algol permit the modular representation of these components .

. \ s such languages became available, discrete-event simul at ion techniques began to emerge

from t he tra.clitional event- list-oriented simulation techniques. Each Simula module contains

its O\Vn set of private data and procedures , and is , in effect, a process that interacts with

ot hers to perform a simulation.

Although it was initial ly conceived as a simulation language. Simula became a general­

purpose, object-oriented. multiple-process programming language. The ass imil ation of

object-oriented and multiple-process programming concepts led to the development of CSP

[8], Smalltalk [7], and other systems that are more closely identified with programming.

Although Smalltalk was created to make programming simple, its programming model also

gave it the potential for concurrent operation of its objects. CSP was created to study

and unify diverse distributed programming constructs by using concurrent processes and

synchronous messages. Smalltalk and Simula are both object-oriented s:v·sterns: CSP in ­

cludes the concept of independent, interacting processes without the distraction of such

object-oriented concepts as inheritance.

Multicomputer implementations for variants of Simula [9] and Small talk [11] were shown

to be feasible and useful. Occam [10], a CSP variant with static interprocess communication

graphs. provided a programming system for transputer-based multicomputers. Howen~r.

4

Time System. The idea was to save the state of a process whenever the process encounters

a synchronization point; then, instead of blockin):!, the process until the synchronization is

complete, to have the process select a possible outcome and continue to execute. vVhen

the synchronization is finally complete, if the outcome differs from the selected outcome,

the process and all those that it has since affected are rol/ed back, and process execution

restarts at the synchronization point .

Methods for reducing overhead were studied intensively because nodes in a medium­

grain multicomputer are few and expensive. However, as multicomputers evolve toward

their next incarnation - the fine-grain multicomputers - nodes become abundant and

cheap. With a myriacl of single-chip nodes, fine-grain multicomputers promise significantly

better cost- us.-performance ratios and total computing capacity than do the medium-grain

multicomputers. The Mosaic C, currently being developed at Caltech, is an example of

a fine-grain multicomputer. While each node of the Mosaic C contains a 16-bit CPU, a

message router, and only 16 Kbytes of RAM, the enti re Mosaic C will contain 16K nodes .

A number of fine-grain, reactive-process-based programming languages have been devel­

oped in anticipation of the fine-grain multicomputer. Among them is the Cantor notation,

which most strongly influenced the programming methods used in this research. (Can­

tor is being developed by W.C. Athas [15] using a model similar to the Actor notation

[1].) Reactive-process programming systems are similar to CSP, but impose additional con­

straints on the operation of the processes in order to simplify the operating systems of

the fine-grain multicomputers. Cantor also allows us to express programs in finely divided

objects that are distributed over many small nodes.

The inversion of the cost ratio between the processor and the memory forms a new set

of ground rules for multicomputer programming. The shifting focus has strong implications

for programming in general: The memory, rather than the processor, is now the scarce com­

modity. Programming techniques that buy speed by using a large number of idle memory

cells are no longer favorable, but ones that buy speed by using idle processors are. fnstead

of trying to have something useful happen in every available CPC cycle in the rnarhine.

application writers should now focus on extracting as much concurrency as possible from

the application.

[n this experiment. the concept of fine-grain, reactive-process programming influenced

si mulation. The overhead that prompted the development of optimistic approaches for

medium-grain multicomputers was recast in a more benign role. Having this overhead

merely required the use of a larger number of inexpensive processors in the multicomputer,

and did not reduce the amount of concurrency that could be extracted from the system being

s imulated. A programming system similar to Cantor was developed for this research, and

a number of conservative simulators suitable for fine-grain multicomputers were developed.

Section 1.3 Out li ne

Since this research is a study of both programming and simulation. this thesis is divided into

two major parts: Chapters 2 through 4 deal with programm ing, and Chapters 5 through 8

deal with simulation. The two parts are only loosely interdependent , and do not reflect the

extensive two-way influence that exists between simulation and programming. For example,

the lazy-e valuation model of simulation guided us in the design of the x-primitives, which

are the message-handling functions of our reactive-process programming system; and the

s upport mechanisms in the simulator were modeled after the mechanisms of the Reactive-C

programming system.

Chapter 2 introduces reactive-process programming and the Reartive-C implementation

of its basic mechanisms. Reactive-Cis merely the ordinary C programming language used

with a particular programming discipline. It is useful for exposing the simplicity of reactive­

process programming systems - a level of simplicity that is necessary for any programming

system for fine-grain multicomputers. It is not the best tool, however , for studying reactive­

process programming. Therefore, a slightly higher-level programming system is used in

Chapter 3 to demonstrate the generality and simplicity of reactive-process programming.

6

Chapter -1 describes the Cosmic Ern·ironment, a programming environment that embodiPs

the reacti\·c-process programming discipline.

The d iscussion of simulation begins in Chapter .5 with the model of simulation. The

subject s.vstem being simu lated is recursively defined to be a collection of interacting systems

or dements. and elements a re s imulated by a set of s imulators that interact by message­

passing. The condition for progress is discussed in detail, a generic simulator is described,

and the derivation of a variety of simulators is shown. Chapter 6 describes a direct im­

plementation of the generic simulator using the Reactive-C notation. Logic circuits are the

subject of choice. because they are diverse and because they expose properties of the simu­

lators b.v imposing few processing requirements of their own . The performance we observed

is shown to be that which was expected: The time required for a simulation decreases

linearly as the number of computing nodes increases . Comparing the performance to the

sequential simulator shO\vs that the overhead does not interfere with the ability to utilize

the concurrency available in the system . Chapter 7 introduces new simulators that do not

have an overhead when only one node is used. However , the speed increase is no longer

linear: Performance converges to that of the previous simulator as more nodes are used.

Although only one test circuit was used throughout these two chapters, additional results

on a few other circuits are presented in Chapter 8. The results are all similar, even though

the circuits being simulated are quite different .

Finally. Chapter 9 defends the rationale for simulation on fine-grain multicomputers.

and discusses some of its implications on programming and simulation.

7

Chapter 2 Reactive-Process Programming

Reactive-process progranlllling is a discipline in which processes are inactive until they are

triggered by inputs. When suitab le inputs are present, a process and its inputs \viii rear/

in a single atomic anion in which tlw inputs a re consumed. Reactive-process programs ca.n

be written in specifically· designed notations such as Cantor; they can also be written in

vanilla notations such as C. Although Cantor hides many rough edges to make programming

simpler, Cis perhaps better in exposing the mechanics of reactive-process programming. We

will use C for our discussion . and assume that readers are familiar with C.

A reactive-process program can be written as a simple combination of data structu re

and function. as a full-fledged heavy-weight process with its own process context, or as a

complex multi-tasking operati ng system. The diversity arises from a small and elegant set

of properties that allows reactive-process programming systems with very different capa­

bilities to be built on top of one another in a consistent manner. Since the tailoring of a

programming system to specific requirements is made simple, an application no longer has

to be twisted a round the system : instead . the system can be crafted to suit the intrinsic

needs of the application.

In this chapter, we will describe reactive-process programming in its simplest form; the

next chapter will be devoted to examples of building more-complex programming systems

on top of si m pier ones.

Section 2.1 Definition of a Reactive Process

A reactive process can be characterized by its two run-states:

Waiting: While a process is waitin g, it is completely inert. The process will remain

in the wa.i ting state as long as there is no message ready for it to receive;

otherwise. the process will be run, taking the earliest-arriving message as its

input.

8

R11nning: \Vhile a proce~s is running. it cannot receive an.v more messages. :\ proces:-.

can run for onl~' a finite period of time before it returns to the waiting sta te.

vVhile a process is running. it can:

a. modify its intemal s tate.

b. send messages.

c. instantiate other processes, or

d. self-destruct .

Message buffers remain attached to a process until they are expli cit ly released

by the process.

state

waj t run wait run wait

time

Figure 2.1 Possible behavior of a reactive process .

The reactive-process programming environment has these additional properties:

l. Processes do not exist until they are instantiated.

2. Processes persist until they self-dest ruct.

3. Each process has a unique procc!-,s ID.

-L Messages are ad dressed by the desti nation-procPSS ID .

. 5. Message order between any pair of processP~ is pr<"sen·ed.

b. Messages no t immediate ly consumed a.re queued.

1. Messages with a valid destination will c\·entually be delivered.

8. Message buffers are allocated by calling an allocate function.

9. Message buffers can be released by cal ling either a deallocate or a s<"nd function.

Sectio n 2.2 R eactive-C P rogramming System

Reactiv·e-C is a minimalist implementation of a reac ti ve-process programming environment

usi ng the C progra mming language. As shown in Figure 2.2. a process in Reactive-C is

represented by a. process struct ure that includes two pointers: a function pointer and a

data pointer. The fun ctio n pointer refe rences a C function. the current entry function of

the process . The entry functi on is cal led when a process is run.

entry ptr

data ptr current entry
function of
the process

process structure h

..... .----- set of functions
Figure 2.2 Representation of a process .

The data pointer references an arbitrary data st ructu re main tained by the process .

Both the data st ructure and the two pointers a re s tate variables of the process that owns

them, and the process can modify them at a ny time while it is running. When a process

starts to run , the triggering message and the process s tru cture are passed to t he entry

function as function arguments. A process ret urns to the waiting s tate by returning from

the ent ry function.

queue

message
~

~

10

o

8 8
getrnessage(); identify_process(rnesg); (*proc->entry)(proc,rnesg);

Figure 2.3 Operation of a Reactive-(kernel.

Listing 2.1 is a sample kernel loop o f the Reactive-C programming envi ronment. As

shown in Figure 2.:3 . the kernel re peated ly gets a message from the message queue, idenlifie:;

the rccei\·er. and calls the entry function of the receiving process.

1 kernel_loop()
2 {
3 char •rnesg;
4 PROC *proc;

6 while(1)
7 {
8 rnesg = getrnessage();
9 proc = identify_process(rnesg);

10 (*proc->entry)(proc,rnesg);
11 }
12 }

Listing 2.1 Kernel of Reactive-C programming environment.

Listing 2.2 contains an example of a reactive-process program that computes a factorial m

logarithmi c time on an arbitrarily large machine.

1 typedef struct { REF ID; int HI, LO; } FAC_DATA;

3 fac_1(proc,rnesg)
4 RC_PROC *proc; FAC_DATA *rnesg;
5 {
6 FAC_DATA *rnesg2;
7 int half;
8
9

10
11
12
13
14
15
16
17
18
19

if(rnesg->HI <= rnesg->LO)
{

rc_send(mesg->ID,rnesg);
rc_exitO;

} else
{

half (rnesg->HI + rnesg->L0)/2;

mesg2 (FAC_DATA *) rc_malloc(sizeof(FAC_DATA)) ;
rnesg2->ID = rc_rnyid();

mesg2->HI = mesg->HI;
mesg2->LO = half+1;
rc_spawn (fac_1 ,mesg2);

11

20
21
22
23
24
25
26
27
28
29
30
31
32
33

mesg2 = (FAC_DATA *) r c_malloc (sizeof(FAC_DATA));
mesg2->ID = rc_myid();

}
}

mesg2->HI = half;
mesg2->LO = mesg->LO;
rc_spawn(fac_1,mesg2);

proc->data
proc->entry

(char •) mesg;
fac_2;

35 fac_2(proc,mesg)
36 RC _PROC *proc; FAC_DATA •mesg;
37 {
38
39
40
41 }

((FAC_DATA *)(proc->data))->LO
rc_free(mesg);
proc->entry = fac_3;

43 fac_3(proc,mesg)
44 RC_PROC *proc; FAC_DATA •mesg;
45 {

mesg->LO;

46 ((FAC_DATA *)(proc->data))->LO •= mesg->LO;
47 rc_free(mesg);
48 rc_send(((FAC_DATA •)(proc->data))->ID , proc->data);
49 rc_exit();
50 }

Listing 2.2 Reactive-C factorial program.

The t.hree functions in Listing 2.2 (fac_l, fac_2, and fac_3) are in a suitable form for

entry function s because their a rguments are the process structure and the input message.

and because they are assured to return in finite time. However, they do not represent actual

processes; they are merely message-handling functions for processes that reference them by

their entry pointers .

Let a factorial process be a process that references any of the three functions. Initially.

a factorial process waits for a message whose structure is defined b.v the C data structure

called FAC_DATA. The message is called a FAC_DATA message.

typedef struct { REF ID; int LO, HI; } FAC_DATA;

ID: Data structure containing the caller's process ID.
LD: Low end of a number range.
HI: High end of a number range.

After receiving t he message (Figure 2.4), the factorial process computes the product

of all integers within the closed interval: [LD,HI]. The factorial process stores the product

12

Figure 2.4 Specification of the factorial process.

in the LD field of another FAC_DATA message, which is returned to the requester. Thus ,

sending a FAC_DATA message with a 1 in the LO field to the factorial process will cause the

the factorial of HI to be comput~>d.

To compute the factorial of a \·alue. the requesting process (caller) instantiates a new

process whose entry pointer contains the address of the fac_l function. We shall call this

new process the fac_1 process. The factorial is computed by a divide-and-conquer method

that iterates using the difference between HI and LD.

9 if(mesg->HI <= mesg->LO)

When the fac_1 process receives its first message. it compares the two ends of the

interval described in the message. [f HI equals LD , then there is only one integer m the

interval. If HI is 0 (therefore less than LO, which must be 1 at this point), then the factorial

of 0 is to be computed. In either case, the correct reply value is equal to the number already

contained in LO.

11
12

rc_send(mesg->ID ,mesg);
rc_exit ();

Therefore, when LD 2: HI , the message is bounced back to the caller, untouched. The

rc_send function called in line 11 causes the message buffer mesg to be sent to the process

whose ID is mesg->ID , which is, in this case, the ID of the caller. Since rc_send dissociates

the message buffer from the process, the process does not have to release it explicitly before

the process is terminated by calling the rc_exi t function.

13

fac_l fac_l

0
Figure 2.5 The di vide step.

16 half (mesg->HI + mesg->L0) /2;

If HI is greater tha.n LD. the fac_l process computes a. midpoint that divides the in-

terval into two sma.ller intervals. Two more fac_l processes are created to work on these

two intervals (Figure 2.5). These processes are called the siblings of this process, and an

initia.lization message is sent to each sibling as it is created.

18 mesg2 = (FAC_DATA *) rc_malloc(sizeof(FAC_DATA));

Message buffers are allocated by the rc_malloc ca.ll. The function rc_malloc has the

same semantics a.s the malloc function in C. Depending on the implementation, rc_malloc

can be identical to C malloc , can be built on top of C malloc , or can be an entirely different

allocator that gets spa.ce from a dedicated memory region.

19
20
21

mesg2->ID
mesg2->HI
mesg2->LO

rc_myid();
mesg->HI;

half+1;

After a message buffer ha.s been allocated, it is filled with da.ta to be sent to a sibl.ing.

Lines 19- 21 a.re for the sibling tha.t handles the upper half of the interval. The rc_myid

function returns the ID of the process. The process becomes the caller of its sibl ings a.fter

its ID has been stored and sent in the ID fields of the initia.lization messages. The fac_l

process will receive one reply from ea.ch of its siblings. When two replies are received. the

14

process multiplies the values contai ned in th ei r LO fie lds and returns tlw p rod uct to i ts own

caller .

22 rc_spawn(fac_1, mesg2);

Processes a re created with the rc_spawn func t ion call. At line 2:2. a nev,: process

s tru ctu re is created. t he entry pointer of the new process is initialized to referencP the

fun ction fac _ l (first parameter to the rc _spawn func t ion). and the message mesg2 (second

parameter to the rc_spawn) is sent to the new process as its first input message.

30
31

proc->data
proc->ent ry =

(char *) mesg;
fac_2;

Figure 2.6 T he combine s t ep .

The process must now return from the fac_l fu nction in order to wait for the replies

from its siblings (Figure 2.6). The process sends i ts reply using t he same message buffer

that it received , but to prevent losing the reference to that message buffer, it ass igns the

message buffer into the data pointer of its process structure . Furthermore . sin ce t he process

is now waiting for a reply message instead of a factorial request message, the entry pointer

is changed to referen ce the function that handles the firs t reply message. By s toring the

address of the fac _2 function into the ent r y field , the fac_l process becomes a fac_2

process. T h e process then returns from the fac_l function to indi cate that it is going back

to the waiting s tate .

15

35 fac_2(proc,mesg)
36 RC_PROC *proc; FAC_DATA •mesg;
37
38
39
40

{

41 }

((FAC_DATA •) (proc->data))->LO mesg->LO;
rc_free(mesg);
proc->entry = fac_3;

Tlte fac_2 process waits for the first reply message. When it arrives. its reply \·alue is

simp l.v copied into the LD field of the original message buffer, since the process nePds a value

from each reply before the product can be computed. The reply message buffer from the

sibling is no longer needed and is re leased by calling rc_free. The process then becomes a

fac_3 process.

46
47
48
49

((FAC_DATA •)(proc->data))->LO •= mesg->LO;
rc_free(mesg);
rc_send(((FAC_DATA •)(proc->data))->ID, proc->data);
rc_exit();

\\.hen the fac_3 process gets the second reply message, the returned value is multiplied

into the LD field of the original message buffer. The reply message buffer is also freed. The

original message buffer, now contai ning the product of the two reply values, is sent back to

the caller. Lastly. the process terminates by calling rc_exit.

Listing 2.3 is a sam ple program that calls the factorial program. It waits for an in-

put number. computes the factorial of the input number, prints the factorial, and then

terminates.

1 rc_main(proc,mesg)
2 RC_PROC *proc;
3 char •rnesg;
4 {
5 int hi;
6 FAC DATA •mesg2;

8 rc_free(rnesg);

10 printf("Enter number: "); scanf("%d" ,&hi);

12 rnesg2 = (FAC_DATA *) rc_malloc(sizeof(FAC_DATA));
13 mesg2->ID rc_myid();
14 rnesg2->HI = hi;
15 rnesg2->LO = 1;
16 rc_spawn(fac_l,mesg2);

18 proc->entry = main_reply;
19 }

16

21 main_reply (pr oc,mesg)
22 RC_PROC *proc; FAC_DATA •mesg;
23 {
24
25 }

printf("%d\ n" ,mesg->LO); rc_free (mesg); rc_exit () ;

Listing 2.3 Factorial main program

The basic Reactive-C primitive~ a re ~ummarized below:

char •rc_malloc(); :\ I locates a mPssage bu ffer.

rc _free (); Releases a message buffer.

rc _send (); Sends and releases a message buffer.

REF rc _myid(); Returns the ID of t.he calling process.

rc_spawn(); Instantiates a new process.

rc_exi t (); Termin a tes t he calling process.

Delibe rately omitted from the list is a function that receives a message. In Reactive-C, a

message is implicitly requested wh en a process is created or when a process returns from its

ent ry function. T he request is fulfilled when its cur rent entry function is called. The other

unusual aspect of the Reactive-C p rimi tives is t hat rc_spawn does not return the ID of the

new process; thus. the onl_v direct way for a parent p rocess to get the ID of the sibling is to

receive t he ID from a message sent by the sibling.

Reactive-Cis a minimalist reactive-process programming system . (The kernel code for

a s ingle-processor system is only 12-1 lines long.) Since the parent process can always send

its ID to the sibling during spawn. and since the sibling can always send its ID back to its

parent via a message. it is not necessary for t he spawn function in a minimalist system to

return an ID. The goal of React ive-C is to create a system that is minimal but that is not

necessarily easy on the programmer. However, a close relative of the Reactive-C turns out to

be well suited for writing event- dri ven s imulators. Another derivative, the R eactive J\ernel,

proves to be very use ful in imple ment ing the inner kernel and the handlers of mult icomputer

operating systems . Deta ils of the Reactive Kernel can be fo und in t he Master's thesis of

.J akov Seizovic [.5] .

17

Reactive-C is strongly influenced by the Cautor programming language, which is a

fme-grain reactive-process programming system in which process spawn1ng uses {uture8 to

immediately return the sibling ID. The properties and programming paradigms rela.ted

to fine-grain reactive-process programming a re ex plored in detail the Doctoral thesis of

\N.C. Athas [15].

In the next chapter. we will focus on the universality of reactive-process programming, a

property that is best illustrated using fu ll-fledged , coarse-grain reactive processes . Although

we will be leaving the Reactive-C environment fo r now, we should bear in mind that duality

exists between a Reactive-C process and its heavy-weight counterpart: What is applicable for

one is equally applicable for the other. Heavy-weight programs are used for the remainder

our discussion because they are simpler to describe.

Universality of a programming system requires the programming system to efficiently

support a large variety of other programming systems. Layering, or the implementation

of new functions on top of basic functions. is the principal means by which universality is

achieved.

18

Chapter 3 Reactive-Process Layers

In contrast to a. light-weight Reactive-C process, which has onl!· a. function and a data

structure, we can gene rally consider a heavy-weight process to be one that. although its

structu re is machine dependent, has its own code. data. stack . and thread of control. \Ye

can run heavy-weight reactive processes under the Reactive-C programming environment

with minimal overhead by us ing a dedicated, light-weight reactive process. called a handler.

In one possible arrangement, the data pointe r of a handler references a table containing

three segment pointers (for the code. data , and stack segments) and a context structure

(containing the frozen records of a suspended heavy-weight process). When a message is

received by a handler, the ent ry function for the handler performs a context switch to

resume the execution of the heavy-weight process. When the heavy-weight process calls a

receive function, it saves the process context. restores the system context, and returns to

the handler. The handler returns from its entry function to request a new message.

In this manner, the combination of the heavy-weight process and its handler appears to

the kernel as an ordinary Reactive-C process. The cost of supporting a heavy-weight process

under a handler, as opposed to supporti ng it under the kernel. is no more than one extra

level of function call. A handler for a heavy-weight process is an example of layering. A

handler that supports multiple heavy-weight processes is used in the Reactive Kernel node

operating system for running normal user processes.

Section 3-1 Simple Layers

3.1.1 The bottom layer (b- layer)

As we did for Reactive-C , we shall establish the grou ndwork for the discussion of universality

and layering with an example . Listing 3.1 contains a heavy-weight react ive-process program

that computes a factorial in the same manner as the Reactive-C example. We shall refer to

the programming system used in this example as t he bottom, or b-/ayer.

1 typedef struct { int pn, pp ; int HI, LO; } FAC_DATA;

3 main()

19

4 {
5 FAC_DATA *data;

7
8
9

11
12
13
14

16
17
18
19

21
22
2 3
2 4
25
26
2 7

29
30
31
32
33
34
35

37
38

{

39 }

41 {

FAC _DATA *mesg (FAC_DATA *) b_recvb() ;
FAC_DATA *mesg2;
int half, k;

if(mesg->HI <= mesg->LO)
{

b_send (mesg,mesg->pn ,mesg->pp) ;
exit (O);

} else
{

}

half
k

(mesg->HI + mesg- >L0) / 2;
mypid()•nnodes () + mynode () ;

mesg2 (FAC_DATA *) b_malloc(sizeof (FAC_DATA)) ;
mesg2->pn mynode () ;
mesg2->pp mypid () ;
mesg2->HI mesg->HI;
mesg2->LO half+l;
spawn("pfac" , (2*k+2) 'l.nnodes(), (2*k+2)/nnodes (), '" ') ;
b_send(mesg2, (2*k+2) 'l.nnodes (), (2*k+2) / nnodes ()) ;

mesg2 = (FAC_DATA *) b_malloc(sizeof(FAC_DATA));
mesg2->pn mynode() ;
mesg2- >pp mypid() ;
mesg2- >HI half;
mesg2->LO mesg->LO;
spawn("pfac", (2*k+1) 'l.nnodes(), (2•k+1) / nnodes () , "");
b_send(mesg2, (2*k+1) 'l.nnodes(), (2*k+1) / nnodes ());

data mesg;

FAC_DATA *mesg = (FAC_DATA *) b_recvb();

43 data->LO = mesg->LO;
44 b_free(mesg);
45 }

47

49
5 0
51
52
53
54 }

{

}

FAC_DATA *mesg = (FAC_DATA *) b_recvb();

data->LO •= mesg->LO;
b_free(mesg);
b_send(data,data->pn,data->pp);
exit(O);

Listing 3.1 Heavy-weight factorial program.

A comparison between the Reactive-C example and the b- layer example reveals nume r-

ous similarities. T he three ent ry-function candidates are replaced by th ree program blocks;

each block is headed by a line t hat waits for and receives a message:

20

7 { FAC_DATA *mesg = (FAC_DATA *) b_recvb();

Instead of messages being passed to it as function arguments, a b-layer process must

perform an explicit b_recvb caJl to get a message. The b_recvb call suspends the process

until il message arrives. The message is then returned to t he process by the b_recvb

function.

typedef struct { int pn, pp; int HI, LO; } FAC_DATA;

A b-layer process is identified by its node and pid pair rather than by just a REF value.

There is no reason why it should not use the same single-value representation that Reactive-

C uses, except that heavy-weight processes require better control over process placement

because they take up a great deal of memory. Thus, wherever ID was used, it is replaced

with the node and pid pair.

19 k mypid()*nnodes() + mynode();

26 spawn("pfac", (2*k+2)%nnodes(), (2*k+2)/nnodes(), 1111);

27 b_send(mesg2, (2*k+2)%nnodes(), (2*k+2)/nnodes()) ;

34 spawn("pfac", (2*k+l)'l.nnodes(), (2*k+l)/nnodes(), II II) ;

35 b_send(mesg2, (2*k+l)'l.nnodes(), (2*k+l)/nnodes()) ;

Listing 3.2 Program fragments for mapping a binary tree to a multicomputer .

Both b_send and spawn need node and pid as their arguments. In order to g1ve a

process better control over the placement of its siblings, a process is allowed to define the

node and pid of the new processes it creates. The three program fragments shown in Listing

3.2 map a tree structure onto a multicomputer such that if the tree is balanced, the number

of processes in any two nodes will differ by no more than 1.

As shown in Figure 3.1, the t ree is first mapped to a linear array such that a process with

an ID of (node ,pid) on a multicomputer with N nodes will have an index of k = pid*N

+ node. The two sibli ngs of the process will have an index of 2k+1 and 2k+2, respectively.

The list is than folded into the multicomputer using the '"!." and the " / " operators.

The function s rnypid, rnynode , and nnodes return the pid of the process, the node of

the process. and the number of nodes in the machine. The spawn function creates a process

node~

1---[1
~ 1---Q

21

~ k 2k + 1

I o lll 2 1 3 1 • 1---~---
2k + 2

Figure 3.1 Mappin g a binary t ree to a multicomputer .

whose program file name is specified in t he first argument , and whose ID is specified in the

second and third arguments. The program file in th is case is named pfac. The first process

to be spawned by the caller should have an ID of (0, 0).

light-weight

entry

data

next entry
fun ct ion
== fac_2

entry

data

heavy-weight

context switch
function

saved PC

saved SP

stack seg ptr

data seg ptr

code seg ptr

Figure 3.2 Process structure comparison.

next action

The equivalence between the light-weight and heavy-weight processes is most obvious

when the process structures of the two factorial processes a re compared at the time that they

are both waiting for their first reply message (Figure 3.2). The light-weight factorial process

retains its message buffer in the data pointer of its process structure; the heavy-weight

factorial process retains its message buffer in a pointer located on its program stack. The

light-weight factorial process specifies its next action with the ent ry pointer of its process

structure; the heavy-weight factorial process specifies its next action with the program

22

counter stored in its context structure.

The basic b-layer primitives can be summarized in the following list. The set is minimal,

given the decision that processes are allowed to directly control process placement.

char •b_ma11oc(); Allocates a message buffer.

b_free () ; Releases a message buffer.

char •b_recvb () ; Receives a message.

b_send (); Sends and releases a message buffer.

int mynode(); Returns the node of the cal ling process .

int mypid () ; Return s the pid of the calling process.

int nnodes(); Returns the number of nodes in the machine.

spawn(); Instantiates a new process.

exit(); Terminates the cal ling process.

3.1.2 The length-carrying layer (1-layer)

We shall introduce the general concept of layering by a very simple example. We will create

a new set of functions, the 1-layer functio ns, that are parallel to the b-layer functions with

the exception that 1-layer functions contain an additional function for accessing the length

of a message buffer. To store the length information, we will make each message buffer a

li ttle larger than it needs to be, and store the length information in the extra space.

r buffer address seen by b-layer programs

header I body

\....__ buffer address seen by 1-layer programs
Figure 3.3 Structure of a 1-layer message buffer .

That extra space is placed at the front of each message buffer and is called the header

of the message; the rest of the message is .called the body. We can hide the header by

having 1-laye r functions work only with pointers to the body of the message. As a result ,

the 1-layer functions become a super set of the b-layer functions.

1 typedef struct { int length; } HEADER;
2 #define BODY_OF(h) (h+sizeof(HEADER)) I • given header, find body • I
3 #define HEAD_OF(b) (b-sizeof(HEADER)) I• given body, find header • I

23

The HEADER structure shown above defines the content of the header for an 1- layer

message buffer. T he only field in this header is an integer that contains the length of the

message body. In order to allow all data types in the message body, headers shou ld normally

be padded to the ma.;..: imum data alignment requirement of the hardware. l n the interest of

simplicity. however. padding is neglected for our exam ples.

5 char *l_malloc(n)
6
7 {

int n · .
8 char *p ;

10 p = b_malloc (n + s i zeof (HEADER)) ;
11 ((HEADER *) p) - >length = n;
12 r eturn(BODY_OF (p));
13 }

15 char *l_recvb() { return (BODY_OF (b_recvb ())); }

The two fu nct ions t hat return message buffers - receive and allocate - call the cor-

responding b- layer functions to get message buffers. When one is obtained, the pointe r to

the body of the buffer is retumed by the fun ctions. In addition , the l_mallo c function

stores the buffer length into the message header before it returns . Similarly, a function that

takes a message buffer as input has to locate t he real begi nning of the message buffer before

passing it to the corresponding b-layer function.

17 l _free (p) char *p; { b_free (HEAD_OF(p)) ; }

19 l_send(p,node,pid)
20
21
22 {

char *p;
int node, pid ;

23 b_send(HEAD_OF(p) , node, pid) ;
24 }

26 l _length (p)
27
28
29
30

{

}

char *p;

return(((HEADER •) HEAD _OF(p)) - >length);

T his is the simplest a pplication of layering; it does not change the message propert ies

in any way. By adding more fields t o the header structure, we can just as easily include any

infor mation t hat we wo uld like to send along with a message, su ch as length of the message

buffer, message type, and sender node a.nd pi d.

24

3.1.3 T he non-blocking-receive layer (nb-layer)

.--\ process running in a reactive-process programming environment should not monopolize

the processor by running nonstop for long periods between receive calls. for if a process does

not call a receive function. other processes in the same node will not get a chance to run .

. -\ conventional multi-tasking operating system makes scheduling, fair b.v interrupting a

long-running process wi th a timer in order to wrest control away from a process . The same

thing can be done in a Reactive-C implementation of a heavy-weight programming system by

treating a timer-interrupt mechan ism - as a process resource. A process , therefore. includes

an interrupt mechani sm and an interrupt service routine. When a process is interrupted by

the timer. the interrupt servtce routine of the process calls a receive function to relinquish

control.

A timer-interrupt ts just one of the ways to make a process call a receive function

periodically. While a timer may st ill be needed as a backup mechanism to stop runaway

processes. the preferred method is to convert a non-reactive process into a reactive process

by having the process call a receive function periodically during extended computations.

AI though the messages received may not be needed right away, they can always be queued

by the process until they are needed.

It is better for the process to be de-scheduled at choice points in the program rather

than at arbitrary points selected by the timer. Choice points are places in a program where

much of the system resources used by the program, such as floating-point accelerators.

direct-memory-access units, and processor registers, are released by the process as a normal

part of the program execution. The amount of state information that needs to be saved

and restored when a program is stopped and restarted at a choice point is usually small

and can be reliably predicted during compile time.

Calling a receive function , either from a timer-interrupt handler or from a choice point,

presents a problem, however. A process that relinquishes control by calling a receive func­

tion will not be re-started until a message is ready for it. As a result, a node can sit

25

id le with runnable processes su:--pended becau se there are no messages queued for them.

Furthermore. if a suspended process does not receive an\· more messages. it will remain

suspended indefinitely.

vVh at we need is a receive function that does not block. This function can be imple-

mented by having the process send a uniquely identifiable message to itself just before it

calls a blocking recei \·e function. \Ve can create such messages by the same layeri ng mech-

anism tha t we used for message length. Let us prefix the new functions with nb_, and let

us invent a new receive function. nb_rec v. A call to nb_recv has the same effect as a call

to a normal receive fun ction. except that in cases where a normal receive function would

block. nb_recv returns a nu ll pointer. (A nb_recv call may still return a null pointer at

other times but it will a! ways cause the process to release control first.)

Below is a set of routines that implement the nb-layer functions. We wi ll list only those

funct ions that are different in form from the 1-layer functions. First of all, two private

varia bles are needed. The token_got variable indicates whether a uniquely identifiab le

token message has been previously allocated. The token_msg pointer cont ains the token

message if i t is allocated and if the process is cu rrently holding it; the pointer contains null

otherwi se.

1 typedef struct { int is_token; } HEADER;

3
4

static int token_got
static char *token_msg

6 char *nb_recv()
7 {
8 char *p;

o·
' o·
'

10 if(!token_got) { t oken _msg = l_malloc(O); t oken_got = 1; }

12 if(token_msg) { ((HEADER *)HEAD_OF(token_msg))->is_token = 1;
13 b_send(HEAD_OF(token_msg), mynode() , mypid());
14 t oken_msg = 0; }
15 p = b_recvb();
16 if (((HEADER *) p)->is_token) { token_msg p; return(NULL); }
17 return(BODY_OF(p));
18 }

The first thing that the non-blocking nb_recv does is to check for the exis tence of the

token message. If the token message has not bee~ allocated, the function allocates it. Next.

26

the function checks to see if it is rurr<>ntl.v holdine; tlw token message. If it is. the function

sends the token message to its<>lf. so that a. subsequent b_recvb caJI is guaranteed to return.

Lastly, it calls b_recvb to get a message. If the message obtained is a token message. the

token message is saved and null is returned. Otherwise. the 111essagP i:-- rPturned.

20 char •nb_recvb()
21 {
22 char *p;

24
25
26
27 }

p = b_recvb();
while(((HEADER •) p)->is_token) { token_rnsg
return(BODY_OF(p));

29 nb_send(p,node,pid)
30 char *p;
31 int node, pid;
32 {
33 ((HEADER •)HEAD_OF(p))->is_token 0;
34 b_send(HEAD_OF(p), node, pid);
35 }

p; p b_recvb(); }

The blocking nb _recvb waits for a non-token message and returns that message when

it is received. If a token message is received first, it is stored in token_msg and nb_recvb

continues to wait for the next message. The nb_send function clears the token flag in the

message header before sending the message because it can only send ordinary messages.

In o rder to improve efficiency. detection of token messages is ordinarily integrated into

the kernel so that the kernel can defer token messages until the input message queue is

otherwise empty. The primary effect is that processes with pending non-token messages are

favorably scheduled. The side effect is that processes have a reliable method of determining

whether the input queue of the node is empty. This special treatment of token messages

constitutes the basis for indefinite-lazy computation in distributed simulation. This will be

discussed in a later section.

3.1.4 Handle r layering

Running a heavy-weight process inside a handler is an example of layering. We can also run

a light-weight process inside a heavy-weight process, or a light-weight process inside another

light-weight process . When each handler process controls just one reactive process. the ID

27

of the handler is sufficient to uniquely ident ify the process . Wh en there may be more than

one process inside a handler. a secondary pid needs to be included in the message header

to dist inguish them. Examples o f handler layering are t he Reactive 1-.:ernel for heavy- weight

processes and simu lators fo r light-weight processes.

typedef struct { int pid2; } HEADER;

3 struct PROC ptab[MAX_PID2];

5 main_loop()
6 {
7 char *mesg;
8 PROC *proc;

10 while(1)
11 {
12 mesg = b_recvb();
13 proc = ptab + ((HEADER *)p)->pid2;
14 (*proc->entry)(proc,BODY_OF(mesg));
15 }
16 }

I * message header *I

I * process table *I

Shown above is the main loop of a heavy-weight process capable of handling more than

one light-weight p rocess . The message functions resemble the 1-layer functions, but with

the second pid. rather than t he message length, in t he message header . The heavy-weight

process repeatly calls b _recvb to get a message, finds the real destination process by the

pid2 field. and calls the entry function of the process. If this program fragment looks

familiar. it is because this is the main loop of the Reactive-C kernel. The Reactive-C kernel

is itself a reactive-process program.

Although the defini t ion of a react ive-process program is fixed as stated in the beginning

of Chapter 2, certain properties of t he programming system are implementation-dependent.

Handler layering provides a way of runni ng a programming system with a different set of

properties on top of anot he r programming system. For example, assume that we have a

programming system in which all messages to non-exist ing processes are thrown away. To

implement systems such as the Cantor run-t ime system , messages to non-existing processes

must be preserved . Suppose we were to support Cantor by running a Cantor handler under

·a reactive kernel. As far as the kernel is concerned. all messages will find their destination

processes. namely, the Ca ntor ha ndler processes. \Vhen t he handler gets a message. the

28

message is be:·ond the jurisdiction of the kernel: the handler can do any numb~r of things

with it. In particular. the handl~r can queue messages for Cantor process~s that have not

yet been created .

Section 3.2 Message Type

It is convenient in many computations for a process to respond differently to different types

of messages. In the factorial examples, there are three types of messages: the message

from the parent. the first message to arrive from the siblings, and the second message to

arrive from the siblings. These messages do not have to be distinguished by type because

they are identified by their order of arrival. In the Reactive-C example, different responses

to differen t messages are specified by storing different function pointers into the process

st ru cture after each message is received. In the b-layer version, the responses are specified

by the locations in the program where b_recvb is called.

head Figure 3.4 An example of a FIFO queue. tail

In the next example, however, it is necessary to distinguish messages by type. The

FIFO (first-in-fi rst-out queue) structure shown in Figure 3.4 can be constructed with the

chain of carrier processes described in Listing 3.3. The carrier processes are connected

into a singly linked list by the next_node and next_pid variables in each process. The

FIFO is accessed by a reference to the head carrier and a reference to the tail carrier.

When an item is to be added to the FIFO, the item is sent as a message to the tail of

the FIFO. The process at the tail of the FIFO spawns a new carrier for the new item and

returns the reference of the new carrier to the caller. When an item is to be retrieved

from the FIFO , a message is sent by the caller to the head of the FIFO. The process at

the head of the FIFO sends its item and the reference of the next carrier to the caller.

The process then removes itself from the FIFO. Message types are needed because the two

2!)

commands - .. new item·· and .. retrien' itPrn can arrive in any ord e r whPn a FIFO is

only one element long.

1 typedef struct { int type, value, node, pid; } REQ_MESG ;

3
4
5
6
7
8

10
11
12

14
15
16
17
18
19

21
22
23
24
25
26
27
28
29

31
32
33
34
35
36
37
38
39
40

main()
{

}

REQ_MESG *req;
int value;
int caller_node, caller_pid;
int next_node, next_pid;

while (1)
{

}

req = (REQ_MESG *) b_recvb();

switch(req->type)
{

}

case ADD_VALUE: spawn_anywhere("carrier",&next_node,&next_pid);
req->type = SET_VALUE;

case

case

b_send(req, next_node, next_pid);
break;

SET VALUE: value

GET VALUE:

next node
next_pid
caller_node
caller_pid
req->node
req->pid
b_send(req,
break;

req->value
caller node
caller_pid
req->node
req->pid
b_send(req,
exit(O);

req->value
INVALID_NODE;
INVALID PID
req->node
req->pid
mynode()
mypid ()

next_node, next_pid);

value
req->node;

= req->pid ;
next_node;
next_pid

next_node, next_pid);

listing 3.3 The carrier program for building FIFO.

When a carrier receives an ADD_ VALUE message. it spawns another carrier, and the

message is passed to the new carrier after its message type is set to SET_VALUE (16-19) .

The spa-wn_any-where function will spawn the specified process on some available node and

return the node and pid of the process in the next_node and the next_pid variables .

When a carrier receives a SET_ VALUE message. the process is the new tail process.

The value field of the message is copied into the value variable of the carrier. The next

30

reference of the carrier is initialized to a null ID. The ID of the carrier is writt e n into the

message. and the message is returned to the caller (2 1 "29). AftPr the message i» received

by the caller. the cal ler's tail reference is updated.

When a carrier receives a GET_ VALUE message, its value a nd its next-carrier reference

a re copied in to the message. The message is sent back to the cal le r and the process Pxits

(31-38).

Section 3.3 Discretion on Receive

Discretion on receive means allowing a process to select ce rtain messages to cons ume while

deferring other messages. The Reactive-C, the b-layer, and ot her simple layered va ri ants all

have the same message property in that they do not supply any mechanisms for discretion;

t heir processes have no choice but to take messages in the order they arrive. Di scretion ca.n,

however, be implemented inside a process.

3.3.1 Discretion using b-layer functions

An example in which disc retion is implemented in the program is a merge-sort program. in

which the list to be sorted is spli t recursively along the branches of a time-on-target tree

unti l every processing node in the machine is used. The machi ne should have a power-of-two

number of nodes to sup port this doubling approach.

Figure 3.5 Expansion steps in the merge-sort program.

At the beginning of the sort, the zeroth-gene ration process is created in a machine with

2n nodes, and a list of numbers to be sorted is sent to the process as a message. The

zeroth-generation process t hen proceeds to fill the machine with processes in a total of n

expansion steps. In the kth expansion step . every process in the machine creates a new

31

kth-generation process. giving half of its list to the new process aud keeping the o t h~>r half

for itself. After 11 steps . there will be 2n processes on the machine. each holding Ljrt h of

the original list.

The processes begin to sort their share of the list locally. \Vhen sort ing is complete.

the expansion steps are reversed to merge the fragmented li sts. In the kth merging ~tep (k

decreasing), each kth-generation process sends its list back to its parent in a repl_v message.

After n steps. only the zeroth-generation process remains. The list that it now holds is the

sorted version of the original list .

When the process structure is fully instantiated, each kth-generation process has a

sibling for every generation number from k+ 1 ton. Since the computation is asynchronous,

returning messages from the si blings may arrive in a different order from the order of the

merging steps. Since each process needs to consume reply messages from its s iblings in the

order of decreasing generation number, each sibling will need a different message type for

its reply message. a nd the process will selectively wait for a certain message in each merging

step.

The sorting program in Listing 3.4 first appeared in "Multicomputers: Message-Passing

Concurrent Computers" [2]. The first version of the program, which uses integer-based

types, was written by C.L. Seitz; the version appearing in Listing 3.4 and in the IEEE

paper was modified by the author to use pointer- based types.

1 typedef struct MESG MESG; I• Message header structure. •I
2 struct MESG { int pnode, ppid; I• Address of the parent process. •I
3 int tbase I• Base for time-on-target tree. •I
4 int len I• Number of elements in the vector.• /
5 MESG **type ;} I• Type field for filtering message . • /
6 #define BUF(v) ((double •)(v+l)) I• Data follows MESG immediately. • I

8 unsigned int this_node, this_pid, node_cnt;

10 main()
11 { MESG •v;

13 this node rnynode(); I• Node number of this process. •I
14 this_pid mypid (); I• Pid number of this process. •I
15 node_cnt nnodes(); I• number of nodes in this machine. •I

17 v = (MESG •) b_recvb(); I• Rec eive list from parent process.•/

18
19
20 }

if(v->len > 1) merge_sort(v);
b_send(v, v->pnode, v->ppid);

22 merge_sort(v)
23 MESG *v ;
24 { unsigned 11, 12, i, new_node;
25 MESG *v1, •v2, *v3;
26 double *d, *s, *b1, *b2;

32

I* Sort the list.
I* Send result back to parent.

28
29
30
31
32
33

11 = (
12 = (
v1

v->len + 1) I 2; I* Break the list into two lists.

v2
for(i
for(i

v->len) I 2;
(MESG *) b_malloc(sizeof(MESG)+sizeof(double)*l1);
(MESG *) b_malloc(sizeof(MESG)+sizeof(double)*l2);

v1->len 11, d BUF(v1), s = BUF(v); i--;) *d++ *s++;
= v2->len = 12, d = BUF(v2) ; i--;) •d++ *s++;

35 new_node = this_node - v->tbase; I* Next node to be used for *I

37

39
40
41
42
43
44
45
46

48

50

v1->tbase = v2->tbase = v->tbase << 1;

if(v1->len > 20 && new_node < node_cnt)
{

spawn("msort " ,new_node,this_pid , "");
v1->pnode this node
v1->ppid = this_pid
v1->type = &v1
b_send(v1,new_node,this_pid);
v1 = 0;

} else if(v1->len > 1) merge_sort(v1);

if(v2->len > 1) merge_sort(v2);

I* spawning a sibling.
I* New base for building
I* time-on-target tree.

*I
*I
*I

I• If list is too long and *I
I• if next node is valid *I
I* spawn a sibling •I
I* and send it a list. *I
I* The type field holds the *I
I* address of the msg ptr. *I
I* Msg ptr is set to null. •I

I• Sort if cannot split.

I* Sort the other list.

52 while(!v1) { v3 = (MESG *) b_recvb(); *v3->type = v3; }

54 for(b1 = BUF(v1), b2 = BUF(v2), d = BUF(v); 11 II 12; I* merge. *I
55 { while(ll && (112 I I (12 && *b1 <= *b2))) { 11--; *d++ *b1++; }
56 while(l2 && (111 II (11 && *b2 <= *b1))) { 12--; *d++ = *b2++;}
57 }
58 b_free(v1); b_free(v2);
59 }

Listing 3.4 The merge-sort program.

In each level of recursion where a. sibling is created (41), t he type field of the messa.ge

for the sibling is filled with the address of the automatic pointer variable, vl (44). These vl

pointers on the program stack are set to null before the merging phase (46), which begins

when the recursive merge_sort function starts to unwind. Since there is at most one sibling

·created in each level , the list sent to each sibling must contain an address that is different

from the others - the address of the vl pointer in effec t when the sibling is created.

33

L30 L41- L4.5

fr r$l srblmg

stack of parent process

send
-.v

<@[)
new stbling

first sibling

L46

Figure 3.6 Giving away a list for the third time (stack grows up) .

first s1bling

After the expansion phase, the program progresses to line 48 and .50, where the re-

maining numbers are sorted using a sequential merge-sort algorithm performed by the same

merge_sort function. During the merging phase, each sibling returns a. message of the type

it was assigned (19). A process selectively waits for the message for the current recursion

level by polling the vl pointer at that level; at the same time, the process repeatly requests

a. message and stores it into the pointer whose address is equal to its message type (52) .

Figure 3.7 Getting an out-of-sequence reply.

When the program reaches line 52, vl can take on one of the three possibilities:

1. vl is not null, because its li s t has not been given away;

2. v1 is null, because although its list has been given away, a reply has not been

received; or

3. vl is not null, because although its list has been given away, the reply was received

while the program was waiting for a different reply.

The distribution of work is accomplished by divide and conquer; the merge-sort example

can be used as a template for other divide-and-conquer applications. Assigning deferred

34

messages into holding pointers is sufficient for thi s application because no more than one

message for each type needs to be queued . vVhen more than one messa11,e of each type must

be deferred. the process has to store them in a more general list struct 11re.

3.3.2 T he RPC-discretion layer (r-layer)

While discretion is used in the merge-sort program, t he process sti ll takes messages in the

sa me o rder they a rrive. However. some programs can be made simpler by creating an

illus ion that messages are dispensed by the kernel in an order other than first come, first

sen ·e. Such effects can be achieved with layering as well.

The implementation of a remote procedure call (RPC) is one exam ple. Suppose we want

to make available a generic fil e operation , read, implemented by message exchange with a

file r.ontroller. a process responsible for maintaining a file. A prototype fun ct ion might look

like the one in Listing 3.5.

1 typedef struct { int
2 int

4 FSTRUCT file_ tab [20] ;

6 typedef struct { int
7 int
8 i nt
9 int

11 #define OP_READ 3

13 read(fd,buf,len)
14 int fd, len;
15 char *buf;
16 {
17
18

REQUEST *request;
char *reply;

fs node
fs_pid

operation;
my_node
my_pid
read_size;

I* Structure of one entry of
} FSTRUCT ; I* the process's file table.

I* The process's file table.

I* Format of request message
I* to be sent to the file
I* server proc ess to request

} REQUEST; I* f or a read operation.

I* Code read request.

20
2 1
22
23
24

request
request->operation
request->my_node
request->my_pid
request->read_size

(REQUEST *) b_malloc (s izeof(REQUEST)) ;
= OP_READ ;

mynode();
mypid ();
len

26 b_send((char *) request, file_tab[fd] . fs_node , file_tab[fd] . fs_pid);

28 reply= b _recvb();
29 bcopy(reply,buf,len) ;
30 b_free (reply);
31 return(len);
32 }

Listing 3.5 An incorrect implementation of the C read fu nction .

*I
*I

*I

*I
*I
*I
*I

*I

35

The file _ tab array contain!> the node and p id of all file-controller processes accessible

by this process. The read function sends a request to a file controller selected from file_ tab

using fd as the index. \tVhen the file controller finishes reading the requested amount of

data . the data is sent back in a message. The funct ion is shown to be \Vaiting for the reply

using the normal b _recvb function.

28 r eply= b_r ecvb ();

However. the b_recvb function IS not adequate because it may pick up the wrong

message if another message arrives before the reply message. A receive-discretion mechanism

must be used to ensure that only the reply message for the r ead function is returned. The

reply messages. called the RPC messages, must therefore be distinguishable from other

messages that the process uses. Furthermore, messages that arrive before the reply message

must be queued and released in a transparent way so t hat the requesting program cannot

distinguish a local r ead from a RPC read.

The r - primitives implement the new message properties by layering and by adding two

more functions: RPC send and RPC receive. The message header for this layer contains

a R PC flag and a chaining pointer. Since RPC calls do not interleave in a process, a

process can have no more than o ne outstanding reply message at any one time. Storing one

distinguished type in a Boolean variable is therefore sufficien t for positively identifying a

reply message. The def e r _h and def er_ t pointers are used to implement a queue for non-

RPC messages. The next pointer in the message header is used to chain deferred messages

into a linked ust for the queue.

1 t ypedef struct HEADER { i n t is_rpc;
2 s truct HEADER *next ; } HEADER;

4 #define BODY_OF (h) (h+sizeof (HEADER)) I • g i ven header, find body • I
5 #def i ne HEAD_OF (b) (b-sizeof (HEADER)) I • given body, f i nd header • I

7 HEADER •defer_h, •defer_t; I • queue f or holding non- r pc messages • I

The r _recvb function replaces the b_recvb function for receivi ng normal messages. Instead

of calling b_recvb immediately, it checks the queue for any deferred messages. If there are

36

deferred messages. a message is removed from the queue a nd returned. Otherwise. b_rec vb

is called.

9 char *r_recvb()
10 {
11 char *p;

13 if (defer_h) { p = (char *) defer_h;
14 defer_h = defer_h->next;
15 return(BODY_OF(p)); }

17 return(BODY_OF(b_recvb()));
18 }

The r _recvrpc function is a fun ction that waits for a reply message. It calls b_recvb

repeatly until a reply message is rereived. The RPC message is then returned. Meanwhile.

all non- RP C messages that bave ar rived are stored in the queue.

20 char *r_recvrpc()
21 {
22 char *p;

24 while(p = b _recvb())
25 {
26
27
28
29

if(((HEADER *)p)->is_rpc 1) return(BODY_OF(p));
if(defer_h) defer_t = defer t->next (HEADER *) p;

else defer_t = defer_h = (HEADER *) p;
((HEADER*) p)->next = 0;

30 }
31 }

The r _send function clea rs the RPC flag before sending t be message. The r _sendrpc

function sets the flag before sending the message.

33 r_send(p,node,pid)
34 char *p;
35 int node, pid;
36
37
38

{

39 }

((HEADER *)HEAD_OF(p)) -> is_rpc
b_send(HEAD_OF (p), node, pid);

41 r_sendrpc(p,node ,pid)
42 char *p;
43 int node, pid;
44 {
45
46
47 }

((HEADER *)HEAD_OF(p))->is_rpc
b_send(HEAD _OF(p), node, pid);

o· .

1;

If replies from the file cont roller a re sent using r _sendrpc , the read function can be correctly

defined as:

62 read(fd , buf , len)
63
64
65 {

int f d , len;
char •buf;

66 REQUEST •r equest;
67 char *reply;

69
70
71
72
7 3

r equest
request->operation
request->my _node
request->my_pid
request->read_size

37

(REQUEST*) r_malloc(sizeof (REQUEST)) ;
OP _READ ;
mynode();
mypid ();
len

75 r_send((char *) request, file_tab[fd] .fs_node , file_tab[fd] . fs_pid) ;

77 reply= r_recvrpc ();
78 bcopy(r eply,buf,len) ;
79 r_free(reply);
80 retur n(len) ;
81 }

Listing 3.6 A correct implementation of t he C read function.

The introduction of t he RP C message type makes it possible for sta ndard utili ty func-

tions to be im ple mented hy message passing: howe ver. the use of RP C and ot her discretio n

mechanisms in ut ility funct ions has t he potential effec t of diminishing the available concur-

rency in a program. For exam ple, the use of read in a program forces all non-RP C messages

to wait while read is being completed . regardless of whe ther some of t hese messages can be

consumed wi thout waiting for read t o complete .

3 .3.3 T he CSP -d iscret ion layer (csp- layer)

Layering can also be used to implement the CSP synchronization primitives . In Hoare's defi-

ni tion ofCSP , send and receive are performed by ?!expression a nd ? ?variable, respectively.

where Pis the process reference of the comm unication par tner . In later CSP variants, such

as OCCAM, send and receive are performed by C !expression and C?variable, respectively,

where C is t he cha nnel connecting t he sender and the receiver . Both send a nd receive

func tion s will block until the comm unication partner has completed t he complementary op-

eration on the same cha nnel. The send a nd the receive fun cti ons can be implemented with

a mu tual exchange of messages between t he two processes. We will show an implementation

of CSP with channels.

38

Figure 3.8 Structure of a channel in a channel-based CSP implementation.

Since messages associated with different channels may arrive in an order other than the

one in which CSP communication is to take place. messages must be tagged with a. type

field, and those that have arrived early must be deferred. Let us construct a channel using

two logi cal communication endpoints, one each in the sender and the receiver. If we identify

the endpoints in each process by a small array index . the connectivity of the channels can

be completely described by four ar rays in each process:

typedef struct { int type; int value; } CSP _MSG;

3 int other_end [MAX_CHAN] ;
4 int other_pid [MAX_ CHAN] ;
5 int other_node[MAX_CHAN];
6 CSP MSG *chan_queue[MAX_CHAN];

In each process, the entries other _node [j] and other _pid [j] identify the process at

t he other end of channel j. The entry other _end [j] is channel j 's identity at the other side

of the channel; ie, the channel j on this side and the channel other_ end [j] on the other

side both refer to the same channel. An unambiguous typing system can be constructed by

giving messages for channel j the type other_end[j]. The chan_queue array is an array

of pointers that hold s queued messages for channels . Since each channel can have no more

than one pending message, only one pointer for each channel is needed for buffering early

messages. The csp_send and the csp_recv functions can be written as:

8 csp_send(chan,expr)
9 int chan, expr;

10 {
11 CSP_MSG *sp = (CSP_MSG *) b_malloc(sizeof(CSP_MSG));

13 sp->value = expr ;
14 sp->type other_end[chan];
15 b_send(sp, other_node[chan], other_pid[chan]);

39

17 while (!chan_queue[chan]) { sp = (CSP _MSG •) b_recvb();
18 chan_queue[sp->type] = sp; }

20 b_free(chan_queue[chan]); chan_queue[chan] = 0;
21 }

23 csp_recv(chan,var)
24 int chan, •var;
25 {
26 CSP_MSG *sp = (CSP_MSG *) b_malloc(sizeof (CSP_MSG));

28 sp->type = other_end[chan];
29 b_send(sp, other_node[chan], other_pid[chan]);

31 while(!chan_queue[chan]) { sp = (CSP_MSG *) b_recvb();
32 chan_queue[sp->type] = sp; }
33 •var = sp->value;

35 b_free (chan_queue[chan]) ; chan_queue[chan] 0;
36 }

In both function s. a message buffer is allocated and sent to the other sidP oft he cha nne I.

The process then waits for a reciprocal message from the other side, if one has not already

arrived. The process frees that message, clears the message-queuing pointe r. a nd returns.

The only difference between the send and the receive functions is that in csp_send. thP

value to be sent is stored in the value field before the send. In csp _re cv. t.he value is

retrieved from the message received before it is freed.

A more elaborate implementation of a superset of CSP were created by A . .J. Martin [1 J

and Marcel van der Goot.

3.3.4 A more general type-discretion layer (t- layer)

When user-defined message types are needed in a program with type discretion , t he type

information can be encoded in the message body, and discretion can be handled by the

program itself, as in the merge_sort example. Alternatively, we can hide t he message type

in the message header, as in the t-layer example below.

In the t-layer. the program supplies a type for the message when it is sent with the

t_send function. The t_send function stores the message type into the header before

the send . In the receive function, the program specifies the type of message to wait for.

Messages of other types are queued if they arrive before a message of requested type is

received.

1

2

4
5
6
7
8
9

40

typedef struct HEADER { int type;
struct HEADER *next; } HEADER;

t_send(p,node,pid,type)
char *p;

{
int node, pid, type;

((HEADER *)HEAD_OF(p)) ->type type;
b_send (HEAD_OF(p), node, pid);

10 }

The two pointer a rrays. defer_h and defer_t , implement the queues. Th is queue

stru ctu re imposes a limit on the range of usable types, but a more general queue struc ture

can be used instead. The t_recvb fun ct ion takes a message type as an argument . It waits

for and pu ts messages in to the respective queue while the queue of the desired type remains

empty. vVhen t he queue is non-empty, a message is removed from the queue and retu rned

to the program.

12 HEADER *defer_h[MAX_TYPE], *defer_t[MAX_TYPE];

14 char *t_recvb(type)
15 int type;
16 {
17 char *p; int t;

19
20
21
22
23
24
25
26

while(1defer_h[type])
{

}

p = b_recvb();
t = ((HEADER *) p)->type;
if(defer_h[t]) defer_t[t]

else defer_t[t] =
((HEADER *) p)->next = 0;

28 p =(char*) defer_h[type];

defer_t[t]->next
defer_h[t]

29 defer_h[type] = defer_h[type]->next;
30 return(BODY_OF(p));
31 }

Section 3.4 Other Layers

3.4.1 A flow-controlling layer (£-layer)

(HEADER *) p;
(HEADER *) p ;

Layering can also be used to implement transparent flow control of messages. Suppose

we have an application where it is necessary to limit the number of unconsumed messages

produced by each process. We can introduce a layer in which an acknowledgment message

is sent for every message consumed, and have the send function block until the number of

messages sent is no more t ha n a preset value over the number of acknowledgments received.

·H

In t he following example . when mo re t han ten messages a re outstanding. the send

routine will call b_recvb to wai t. fo r messages. Sin ce b_recvb does no t dist ingui sh normal

messages from acknowledgment messages. we will use t he r-laye r mechanism to selectively

wai t fo r acknowledgment messages 111 the f-l ayer routines:

1 typedef struct { int node, pid, is_ack;
2 struct HEADER *next; } HEADER;

4 #define BODY_OF(h) (h+sizeof(HEADER)) I • given header, find body • /
5 #define HEAD_OF(b) (b-sizeof(HEADER)) I • given body, find header • I
6 #define COUNT_MAX 10

8
9

static int o_count;
HEADER •defer_h, *defer_t;

I * number of outstanding messages. • I
I • queue for holding normal messages.* /

Sin ce the receiver has to send a n acknowledgment t o the sende r, the £-layer message

header must contain t he ID of the of t he sending process in addition to t he next fi eld of

the r-layer header. The header mu st also contain the fl ag is_ack to different iate a norm al

message from a n acknowledgment message.

11 char *f_recvb()
12 {

13 HEADER *p, *q;

15
16
17
18

if(defer_h) { p = defer_h; defer_h = defer_h->next; }
else { while(l) { p =(HEADER*) b_recvb();

if(!p->is_ack) break;
o_count--; b_free(p); } }

20 q = (HEADER*) b_malloc(sizeof(HEADER));
21 q->is_ack = 1; b_send(q,p->node,p->pid);

23 return(BODY_OF(((char*)p)));
24 }

In the receive function, if there are any queued messages , one message is removed

from the queue. If the queue is empty, the function calls b_recvb repeatedly unt il a normaJ

message is received. In bot h cases , a n acknowledgment is sent to the sender and the message

ret urned to the caller. While waiting for a normal message , any acknowledgment messages

received cause the outstanding message counter to decrement.

26 char *f_send(p,node,pid)
27 char *Pi
28 int node, pid;
29
30

{

HEADER *q;

32
33
34
35
36
37
38

42

while(o_count >= COUNT_MAX)
{

q = (HEADER*) b_recvb();
if(q->is_ack) { o_count--; b_free(q);

else { if(defer_h) defer_t
else defer t

q->next = 0;
39 }

41 q =(HEADER*) HEAD_OF(p);
42 q->node mynode();
43 q->pid mypid ();
44 q->is_ack 0;

46 o_count++;
47 b_send((char *) q, node, pid);
48 }

defer_t->next
defer h

q;
q;

}

}

In the send function, as long as the counter value is larger than ten, b_recvb is called

to obtain a message. If t he message is a normal message, it is queued; if the message is an

acknowledgment message, the cou nter is decremented. If the outstanding message counter

is or has become less than COUNT _MAX, the outgoing message is sent and the outstanding

message counter is incremented.

If the communication graph is fixed (ie., channel-like connectivity), it is more efficient

to have a separate counter for each channel, and to send an acknowledgment for every

COUNT _MAX/2 messages in each channel. Each acknowledgment message represents the con-

sumption of COUNT_MAX/2 messages.

3.4.2 The CK primitives

The old CK (Cosmic Kernel) primitives , the original message primitives for the Cosmic Cube.

can also be built from the reactive primitives by layering. The primitives are defined around

a data structure called a message descriptor. (This is very si milar to the way in which t he

C standard I/0 functions are defined around the FILE structure.)

typedef struct{
short node;
short pid;
short type;
short seg;
char •buf;
unsigned short msglen;
unsigned short buflen;
short lock;

} MSGDESC;

43

We have treated messages al:i information carriers. Sending and receiving messages are

simil ar to memory alJocat ion operations in C. in that it is the ca rrier that is affected. The

transfer of information is merely a. sid e effect of moving t hese carrie rs. The CK primi tives,

on the othe r hand. t reat messages as information encoded in binary bit patterns and stored

in ar rays o f memory cells. Wh en a message is being sent , the system fetches the informa­

tion from a designated storage buffer; when a. message is received, the system writes the

information into a designated storage buffer.

Since the send an d receive requests are not always completed when the send and receive

funct ions ret urn. processes are allowed to run asynchronously while the transactions are

being completed. However, in order to avoid access confli cts in t he buffers, a lock variable

is used for each tran saction to indica te whether the transaction has completed . The buf

and lock variables in the MSGDESC structure are used to hold the buffer and the completion

lock.

\Vhen a message descriptor is used to send a message, the node and pid fields store the

ID of t he destination process. T he type and rnsglen fields store the message type and the

length o f the message. The buf pointer references a memory buffer where the message is

contained . \Vhen send is called, the call will return immediately, but the lock remains set

until the se nd operation is complete.

vV hen a. message descriptor is used to receive a message, the type field is set to the type

of the message to be received. The buf field is se t to reference the memory buffer where

the message body is to be stored . The buflen field contains t he size of the memory buffer.

When a receive function is called, the call will return immediately, but the lock remains

set until the receive operation is complete. When receive is complete, the node and pid

fi elds contain the ID of the sending node. The rnsglen field contains the actual length of the

message. Incoming messages that do not have matching receive requests waiting for them

will be queued.

typedef struct HEADER { int snode, spid;
int msglen;
int type;
struct HEADER *next; } HEADER;

Other functions in the CK primitives are described in detail in t.he CK programming guide

[·I]. In ma kin.e; the t ran sition from the CK primitives to the RK (R eactive I\ernel) primitives.

which we u:oc on our machines. a compatibility library was created for t he old CK programs

by layering . The message hea.cler for a CK layer would therefore contain the sender node and

pid. the message length. a.nd the message type. It would also contain a pointer for making

linked li s ts for di:-.cretionar.\· receiq~s . The details and the listings for the implementation

have been omitted for b revity.

3.4.3 T he RK prim it ives (x-primitives)

The RK primitives. o r x-primitivcs . can also be built from the b-layer functions by layering.

The RK primitive ::-.et includ es the following list of functions:

char *xmalloc(); ---> b_malloc () ;
char *xrecv(); ---> nb_recv();
char *xrecvb(); ---> b_recvb();
char *xrecvrpc (); ---> r_recvrpc();

xsend(); ---> b_send();
x s endrpc () ; - --> r _s endrpc () ;

xfree(); ---> b_free();
int xlength(); ---> l_length();

The xmalloc, xrecvb. xsend, a nd xfree functions are equivalent to the b_malloc,

b_recvb, b_send. and b_free functions. respectively. The xrecv function is equivalent

to the nb _recv function, the non-blocking receive. The xlength function is equivalent to

the l_length function, the function that returns message le ngth . The RPC functions are

si milarly equivalent to those of the r-layer functions.

The RK primitives can therefore be implemented using a combination of 1-layer, nb-

layer , and r-layer. However. in the actual implementation of the Reactive Kernel, all three

of the layers are incorporated into the basic kernel for greater efficiency.

T he x-primitives a nd associated functions will be discussed in the next section in con-

junction with the description of the Cosmic Environment, the generic multicomputer op-

45

e rating environment in which the x-primitives a re supported as the primary programming

system.

Section 3.5 Layering on Light- Weight Processes

Any la.ve rin g that applies to heavY -weight processes and that makes se nse in the context of

the light-weight procef:>ses can be applied to light-weight processes as welL If we represent

the kernel, handler. layer routines, r1ncl user program as four separate components, the chain

of control flow is shown in Figure :L9.

ret u m to kernel
to get message

call handler to
deliver message

context switch
back to handler
to get message

context
switcher

con text switch
to deliver
message

call layer function
to get message

return to deliver
message

Figure 3.9 Control flow for heavy- weight processes.

The control flow for light-weight processes, shown in Figure 3.10, is identical except for the

absence of the handler component.

return to kernel
to get message

return to layer
function to get
message

call handler to call user code to
deliver message deliver message

Figure 3 .10 Control flow fo r light-weight processes .

Although these two programming models are essentially interchangeable, light-weight

processes are more efficient in most machines because they avoid the context-switch cost.

However, programs composed of light-weight processes <~re more difficult to develop because

processes are not protected against each o th er in case of a pro(l,ramming e rror. The processe.

must. in practice, coexist in the sa me add res:-. space.

47

Chapter 4 Cosmic Environment

The Cosmic Environment. or CE. is a multicomputer programming speci fi cat ion that also

exists as an implementation on a number of multicomputers. Detai ls for usi ng CE can

be found in '·The C Programmer's Abbreviated Guide to Multicomputer Programming."[:3).

vVe will concentrate here on the reasoning behind the design of our implementation. but firs t

we will give a short definition of the Cosmic Environment Specification. The specification

covers the process model , the message system , and the library functions.

Section 4 .1 The Cosmic Enviro nment S p e cificatio n

The agents of a computation in CE are:

Processes: Each process is identified hy a unique process ID. which is

a (node , p i d) pair. Node identifies the multicomputer node

containing the process, and pid distinguishes one process from

another on the same multicomputer node.

Messages: Each message is tagged by the I D of its destination process.

message system

a message

a queue

sending

0 a process

Figure 4.1 Elements of a computation .

Message system: The message system accepts messages from the processes , routes

them according to thei r destination process ID, and delivers them

to their destination processes. Messages are queued enroute to

48

their destinations; message order between any pair of processes is

preserved.

In CE, a process can allocate and relea.5e message buffers, send and receive messages.

create other processes. and terminate itself. The functions available to a C program are:

char *xmalloc (n) Allocates and returns a message buffer
unsigned n;

sufficient for n bytes of data.

xfree (p) Releases a message buffer.
char *p;

char *xrecvb() Waits for and returns a message from the

message system.

char *xrecv () Returns a message from the message system

if one is available; returns a null pointer

otherwise.

xsend(p,node,pid) Frees the message buffer. p. from the call ing
char *p; int node, pid;

process, and sends the message buffer to the

process whose ID is (node, pid).

spawn(name ,node ,pid,option) Runs the program called name and assigns it
char *name, *Option; int node, pid;

the ID (node, pi d) .

int mynode () Returns the node number of the calling

process.

int mypid() Returns the pid number of the calling

process.

exit() : Terminates the calling process.

This specification is short and simple. When our emphasis is on the study of multi com-

puter programming, we do not need unnecessary features to distract us; what we do need is

a sys tem that does not inhibit creativity. CE preserves the value of our work by making it

easy to provide efficient implementations for its specification on many multicomputers that

are otherwise software-incompatible.

49

Our CE spec ification was designed with the following two rules in mind:

1. Programming systems should be portable.

2. Programming manuals are evil.

The first design rule regards the port ability of CE. A programming envi ronme nt is portable if

many types of machines can be made to su pport the programming environment. Portabi lity

is easy to achieve with CE because its fun ctions are easy to provide in most multicomp11tcrs

and multiprocessors . CE can be supported at the user-program level with a compatibility

library, or at the system level with a reactive kernel. The reactive kernel makes kernel

implementation or substitution simple because it does not require much support from the

ha rdware.

The second design rule regards programming manuals. Manuals are a necessary evil.

Therefore, whenever possible, CE has b12en made easy to explain in order to shor ten the

manuals. Besid es this obvious advantage for people who do not enjoy reading manuals , CE

has become simp le and intuitive because making it easy to explain has also made it easy to

use.

Having a sho rt programming manual is self-rewarding. In an evolving system where

old features are constantly being revised or dropped and new features are constantly being

added, keeping a large manual up-to-date is a non-trivial task for a small research group.

By keeping the manual simple, we not only make manual revision less laborious, but also

make system improvement easier, since we are not obliged to support any mis-features that

have not been previously documented . Our view is that t he less a user has to know in order

to efficiently complete the work, the better.

Section 4.2 Our Cosmic Environment Implementation

An implementation of the CE specification is a programming environment that embodies

the specification. Currently we have implementations that contain drivers for the Cosmic

Cube. the iPSC/1. the iPSC/2, the Symu/t 2010, and for the ghost cube - a set of network­

connected workstations treated as a single multicomputer. (For historical reasons, we retain

50

the use of the word "cube'' to mean a multicomputer even though not all multicomputers

are binary n-cubes.) Other implementations that use shared memory fo r message passing

exist for the Seq uent and for the Cray X-?viP.

4.2.1 Structure of our CE implementation

\Ve start with the process model. A process group contains a set of processes connected to

t he message system (Figure 4 .2). P rocesses communicate with each other by sending and

receiving messages, and they refer to each other by means of their process IDs.

Message System

a process

Figure 4.2 A process group .

In order for the set of p rocesses to communicate wi th the outside world , the logically

uniform message system is physical ly pa rtitioned into two parts: One resides in the multi­

compu ter and is called t he node message system; the other resides outside of the multi com­

puter and is called the host message system. The two par ts are connected by a message

gateway, and the separation is made transparent to the processes (Figure 4 .3). Processes

are then a llowed to run either on the hosts or on the nodes.

Figure 4.3 Partitioning into two parts.

Since our multicomputers are used in classes for student experiments, there are many

more users who need to use the multicomputers tha n there are available multicomputers.

But since most experiments req uire fewer nodes than a re available in a multicomputer. we

51

wa.nt to support several users simu ltaneously on the same multicomputer. Space sharing is

the s haring of a multicomputer by more than one user such t hat each user is given a separate

subset of nodes in a multicomputer. The programming environment \vithin each subset is

indistinguishable from one in which the user owns an entirely separate multicomputer having

the same number of nodes in the subset . Our message gateway must therefore interfac<' with

more than one host message system and pass messages to and from each user's nodes (Figu re

.:JA).

,
I
I
I

'

TCP / IP multicomputer network

__ _______ ,
'

Figure 4.4 A multicompute r shared by two users.

' I
I
I
I
I
I
I
I
I
I
I

In our implementation, the host system is built on top of the TCP / IP network. and

the host processes run on any network-connected host that uses the Berkeley UNIX socket

mechanism. The node system is built on top of the multicompu ter network, and may involve

either a replacement kernel in each node or a set of emulation routines for the CE functions.

In this particular implementation, the gateway is a single ifc process . and each host

message system is a single message- switcher process. The message switcher is the spoke of

the host message system. It is connected to each host process and to the ifc process via

TCP /IP stream sockets. Message-sending functions in a host process convert CE messages

into TCP /IP messages before sending them to the message switcher. Depending ou the

52

/ /
/

hardware
interface multicomputer

'---------Yv
multicomputer interface (ifc) process

internet TCP /IP stream socket connection

host system message switcher process

Figure 4.5 Host message-system implementation.

ID of the destination process. the message switcher will send a message either to another

host process or to the ifc process. The ifc process waits for messages from both the

multicomputer and the switchers. When it gets a message from a switcher, it converts the

message into a multicomputer message and sends it to a multicomputer node owned by the

user \vho owns the switcher.

When the ifc process gets a message from the multicomputer. the node ID of the sender

is used to determine the destination switcher process. The ifc process then converts the

message into a TCP/IP message and sends it to the switcher. When the switcher gets a

message from the ifc process, it sends the message to the destination host process. The

receive function in the host process then converts the message into a CE message to be

returned to the user program.

cube d::emon

Figure 4.6 Cosmic Environment with unified resource management.

Since we have several multicomputers. and since some of them are of the same t:vpe.

53

we centralize the a llocation of all multicomputers In a process called the cube dcemon.

When a multicomputer is requested by type. the rube dcemon tries to ass ign an a.vailable

multicomputer of the required type by searching the list of all multicomputers registered to

it. Thus. the user is not concerned with locat in g an available machine because it makes no

difference which one is assigned.

'vVe connect all ifc processes and switcher processes with the cube dcemon via TCP /IP

stream sockets. These sockets do not carry much traffic; t hey are merely tokens of partici-

paLion in CE for the switchers and the ifc processes.

4.2.2 Cosmic Environment exterior

Having been spoiled by the convenience of the Network File System (NFS) on workstations,

the first thing that we decided Lhat we did not want to know is where to go to access the

multicomputers. Like files in a NFS environment, CE is equally accessible from everywhere

in the same network. The cube dcemon resides on a known host in a network, and a

configuration file in each participating machine is initiauzed to contain the network address

of the cube da:>mon.

Every utility that accesses CE connects to the cube dcemon using the network address

found in the configuration file, making CE available and equally accessible from anywhere

within the same network. The most frequently used utility is the program called peek ,

which prints the status of CE:

CUBE DAEMON version 7.2, up 9 days 20 hours on host ganymede

{ } 3d cosmic cube, b:OOOO [venus fly trap] 2 . 3h
{ } 6d cosmic cube, b :OOOO [ceres TEST J 2.3h
{ sim mikep } 4d ipsc2 cube ' b:OOOO [saturn iPSC2 J 2 .1h
{group david } 7d ipse cube b:OOOO [titan :iPSC d7] 3.4h
{ } 28n s2010 b:OOOO [psyche :ginzu J 4 . 9d
{group apl } 4n s2010 b:OOOb [salieri :ginzu J 6 . 9h
{ } 48n s2010 b:OOOO [perseus : 52010 J 4 . 9d
{group sharon} 8n s2010 b:0007 [perseus :52010 J 29.2m
{group tony } 8n s2010 b:OOOc [mozart :52010 J 4.7h

The peek utility lists all available, occupied, and fragmented multicomputers. In the

display above. user tony and user sharon each occupy 8 nodes in a 64-node S2010 without

interfering with each other. Cs('r apl is using 4 nodes of a 3:2-node S2010. {"ser david is

using a 1:28-node iPSC/1. and user mikep is using a 16-node iPSC/:2.

To use a multicomputer, we must first allocate a multicomputer. \tVe specify the mul-

ticomputer type. and the cube dcrmon picks t he best allocation accord ing to an algorithm

specific to that type. To allocate a :3-node s2010. we can enter ···getcube 3n

peek will now show the following list:

CUBE DAEMON version 7.2, up 9 days 20 hours on host ganymede

{ } 3d cosmic cube, b:OOOO [venus fly trap]
{ } 6d cosmic cube, b:OOOO [ceres TEST J
{ sim mikep } 4d ipsc2 cube ' b:OOOO [saturn iPSC2 J
{group david } 7d ipse cube b:OOOO [titan :iPSC d7]
{ } 28n s2010 b:OOOO [psyche :ginzu J
{group apl } 4n s2010 b:OOOb [salieri :ginzu J
{ } 45n s2010 b:OOOO [perseus :52010 J
{group wen-king} 3n s2010 b:0007 [neptune :$2010 J
{group sharon } 8n s2010 b:0007 [perseus :52010 J
{group tony } 8n s2010 b:OOOc [mozart :52010 J

GROUP {group wen-king} TYPE reactive IDLE S.Os

(-1 -1)
(-1 -2)
(--- ---)

SERVER Os
FILE MGR Os

CUBEIFC 1s

Or
Or
1r

Oq
Oq
Oq

[neptune 18339] 3.0s
[neptune 18340] 3.0s
[perseus 4238] 7. Os

2.9h
2.9h
2. 1h
3.4h
4.9d
7.4h
4.9d

12.0s
29.2m
5.3h

s2010.'· A

In this example. the allocation algorithm carves out a 3-node subset from the multi-

compu ter shared b.v sharon and tony. instead of from the one used by apl. After the

allocation. any multicomputer programs that we run on the hosts or on the nodes become

part of our process group. The host processes will be connected to our switcher and the node

processes will be spawned on our nodes. Host processes are shown in the extended peek

display below the main list. In this example, a set of server programs wa.c; automatically

started and added to t he process group when getcube returned.

4.2.3 Cosmic Environment processes

While CE is not in use, the only active processes in t he hosts are the cube da=mon process

and the ifc processes. Each ifc process resides in a host containing an interface to a

multicomputer. and maintains a TCP / IP connection to the cube da=mon process. T he cube

da=mon keeps t rack of its set o f ifc connections; that a connection remains open is an

indication that the multicomputer attached to the ifc process is ready for use. An ifc

55

process passes the multicomputer status to t he cube da>mon via its TC'P/IP connection.

The cube da>mon process passes allocation and deallocation commands to the ifc process

via the same connection.

\\"hen a user requests a multicomputer by running the getcube program. the getcube

process connects to the cube da>mon a nd sends it a set of allocat ion requ irements. If the

requirements can be fulfilled. the requested multicomputer or a. partition of the multicom­

puter is marked as allocated in cube da>mon·s table. An allocation command is then sent to

the correspond ing ifc process . The ifc process initializes nodes allocated to the user and

then conn ects to the user's get cube process. The getcu be process then fades to background

to become the switcher process, givi ng the user the appearance that the getcube command

has terminated as a n indication that the allocation has completed.

A set of service processes is started by the getc ube process as it fades to background.

These processes are responsible for such mundane tasks as the details of process spa,vning,

file access, and printing of error messages. Additional host processes and utilities are run

by the user to perform computat ion .

Porting CE to another multicomputer involves the creation of a new plug-in node system

for the new multicomputer. We have a choice of implementing the CE node system on top

of the native node kernel or writing a new kernel that implements the CE node system.

The Cosmic Cube and the S2010 both have the CE node system a.c; their native system. We

replaced the iPSC/2 kernel with a custom kernel. On the iPSC/1 and on earlier vers ions of

the iPSC/2, the CE node system is layered on top of their native systems - the NX kernels.

When we layer a CE node system on top of the native node kernel, the ifc process

is linked with the native host library for t he multicomputer. and it interacts with the

multicomputer via the nati ve message functions. To the native system running underneath,

the ifc process appears to be just an ordinary host process of the native system. The

CE node system can operate within the confines of user-accessible functions of t he native

56

system because it has s impl e requirements: it does not need special capabi li ties from the

native system a nd it does not interferP with the functioning of the native system.

4 .2 .4 Program compilation

Different commercial multicomputers wi ll invaria bly provide dissimilar method s of compili ng,

programs for thei r multicomputers . The com piler options a re different; those with the same

na me may have diffe rent meanings to different compilers and some that are available to one

com piler may be missing for another compiler. The sequ ence of operations that the user has

to go through may be different , and the se t of end products may also be di fferent. However.

we recogni ze that only a. small set of the options is useful. and we can easily hide any

difference among the compile rs by the use of a. program that runs programs. B_v declaring

that on ly a limi ted set of commonly used compiler flags are supported . the compil ation

tools for all machines can be described in one table:

compiler

linkable-file suffix

runnable-file suffix

archiver

archive-file suffix

host

cch

.o

arh

.a

ghost cosmic iPSC/1

ccgh cccos ccipsc

.gh.o .086 .o286

.gh .cos .ipse

argh arcos aripsc

.gh.a .A86 .a286

iPSC/2 S2010

ccipsc2 ccs2010

.o386 .s2010. o

.ipsc2 .s2010

aripsc2 ars2010

.a386 .s2010.a

T he following sequence will compile the program myprogram. c for all of these machines.

and the runnable object code generated will be named myprogram, myprogram. gh. mypro-

gram. cos , myprogram. ipse. myprogram . ipsc2, a nd myprogram. s2010 , respectively.

'l. cch -o myprogram myprogram.c -leu be
'l. ccgh -o myprogram myprogram .c -leu be
'l. cccos -o myprogram myprogram.c -leu be
'l. ccipsc -o myprogram myprogram .c -lcube
'l. ccipsc2 -o myprogram myprogram.c -leu be
'l. ccs2010 -o myprogram myprogram.c - leu be

To illustrate the amount of complexity hiding that can be performed , actual compilation

for the iPSC/ 1 can be done only on t he controller box of the iPSC/ 1 - the In tel 286/310.

T he program ccipsc copies the source files to the 286/310 for compilat ion. and cop ies back

57

compiled object fi les when compilation is completed. It creates an illusion that com pilation

takes place where the ccipsc command is issued.

4.2.5 Spawning programs

Like compi lers. different multicomputers supply their own method of running a node pro­

gram . We can hide the differences by us ing programs t hat run other programs : but, unlike

t he compilers. we no longer have to differentiate one multicomputer from another by giving

them different names. While a compiler can be invoked by the user at any time. a program

loader can be invoked only when the use r has a n act ive process group.

We ca.n therefore elimi nate another level of complexity by hav ing the gener ic loader.

spawn, check t he type of the multicomputer being used and have it run the loader com­

mand specific to that multicomputer. Thus. to load the program generated in t he previous

example into any of the multicomputers, we can run " spawn rnyprogram, ., regardless of the

multicomputer we are using.

Utili ties such as the node-program compilers are called machine-specific utilities: util­

ities such as spawn are called machine-dependent utili ties; and utilities such as peek are

called machine-independent utili ties . The node system for each type of multicomputer.

t herefore, contain s the ifc process, the machine-specific utilities, the machin e-dependent

utili ties. a nd the compiler ubraries .

4.2.6 Data representation and conversiOn

We have tried to simplify CE and, at the same time, to hide the differences between different

multicomputers : but. i t is not always poss ible to do both. The difference in dat.a represen­

tation among processors o f different multicomputers and hosts is one that we cannot hide

in vanilla C . When two communicating processes ase run on two machin es having different

data representations, data in m essages sent from one process to another need to have their

representations converted before they can be used. We can always move the conversion

problem into the compiler. but we st ill have to decide how the problem is to be solved.

58

68020: 01000000 00001001 00100001 11111011 01010100 01000100 00101101 00011000
vax: 01001001 01000001 11 01 1010 0000111 1 00100001 10100010 11000010 01101000

80286: 00011000 00101101 01000100 01010100 11111011 00100001 00001001 01000000

Listing 4.1 Three representations of 7i in double-precision floating-point-number format .

Data-representation problems have been a subject of study e\·er since computers were

first connected by networks. The most common solution is to define an interchange data

representation. The sender converts data items in its outgoing messages from the sender's

representation to the interchange representation; the receiver converts data items in its

incoming messages from the interchange representation to the receiver's representation. A

set of conversion routines with the same name but having different functions on different

machines is provided to make programs portable. A program needs only to be capable of

converting its data to and from the interchange representation, rather than to and from all

possible rep resentations.

In the case of a multicomputer, however. message traffic is usually much higher and

message latency is usually much lower between the nodes than between the hosts. Having to

convert the data in ea.ch internode message to and from an interchange representation can

sjgnificantly reduce the performance of message-intensive applications unless the interchange

representation happens to be identical to the representation of the multicomputer.

Our solution is therefore to make the interchange representation adjustable: we define

the interchange representation for a process group to be the representation used by the

multicomputer of the process group . Node processes are not required to convert the data

in their messages, and, if they do. the functions that they call to perform the conversion

will have no effect. A host process is required to convert message data to the interchange

representation before it sends a message, and from the interchange representation after it

receives a message. Host processes already h ave a large per-message overhead, and they

can absorb the extra work of conver t ing the data.

The node programs never need any conversion routines, but host programs must carry

routines that convert data representations to and from those of all multicomputers that CE

supports. The conversion routines check the multicomputer type before deciding how data

59

is to be converted. Adding a new multicomputer to('£ ma.v require that host program~ be

recompiled if t he data fo rmat fo r the multicomputer is not already supported .

In order to prese rve the CE specificat ions, conversions a re done in place. because mes-

sage buffers are treated ljke memory buffers from malloc . Having to convert a message and

put the converted data in another buffer weakens the specifi cation. l n order to have such

conversion make sense, however. the location and the size of each data item in the messages

must be the same for all processes . However , different machines do have different sizes and

alignmen t rules for the same data type.

struct test { char AA[3];
short BB
long CC
int

68020: AAA*BBCCCCDDDD
vax: AAA*BB**CCCCDDDD

80286: AAA*BBCCCCDD

DD }

Listing 4.2 Three layouts of a structure , in order of increasing byte a ddress .

For data sizes, we made t he decision that in all the machines that we support data

items will have the following sizes, and a message should include only t he following data

types:

double-precision fl oating-point number 64 bits

single- precision floating-point number 32 bits

long integer 32 bits

short integer 16 bits

character 8 bits

For alignment, we add any necessary padding to force each data item to align on its

st rictest alignment boundary: A k-byte data type should be al igned on a k-byte boundary.

The bottom of a data structure should also be rounded out by padding it to the alignment

boundary of the largest data item in the structure. Whenever possible, a st ructure shou ld

be rearranged to minimize the amount of padd ing necessary.

60

\Vhen data items are al igned using these rules, t he location of each data item in a

message is the same for al l machines. i\ set of conversion routines can hE' used to 1w rform

in place conversion on t he items:

htocs(p,n) ctohs(p,n) Convert short integers.
htocl(p,n) c tohl(p,n) Convert long integers.
htocf (p,n) ctohf(p , n) Convert single-precision fl oating-point numbers.
htocd(p,n) ctohd(p,n) Convert double-precision floating-point numbers.

The htoc set o f functions con verts data from t he format used by the calling, precess

to the interchange format. The ctoh set of functions performs the reverse conversion.

Pa rameter p is a pointer to an item of the appropriate type and parameter n is the number

of consecutive data. items to be converted by the fu nctions. There is no conversion routine

for the cha r<~cter t~'pe bec<luse t he basic units of the messages are bytes and their correct

o rd ering is enforced by t he ifc process .

The data representat ion problem may require rethinking after machines with a 64-bi t

data bus become available . Data- type conversion is only an inconvenience. and it can always

be taken care of by writing a new compiler that inser ts code to do the conversion for 1he

use r. However. such is be.vond t he scope of this research.

Gl

Chapter 5 Model of Simulation

Section 5.1 Mathem atica l Framework and Analysis

5 .1.1 Systems and e lements

:\ s.1·stcm consists of a. s.1·s rem i>ody, a set of system inputs, <~nd a set of :;ystem outp11ts.

lt is a ·'black box·· whose only external connections are the inputs and outputs. In <1

representation of a simulator. each individual out put conveys an atomic property of the

simulated sys tem. A property is atomic if at any point during the simulation the simulator

contains all information about that property up to some simulated time, but none beyond

that s im ul ated t ime.

\
system input ~

System

Figure 5 .1 Representation of a system.

:\ system can be defined recursively as a collection of systems linked together by arcs:

each arc connects an output of its source system to an input of its destination system. and

each a rc represents the source system's direct influence on the destination system. The

recursion terminates with systems that are called el ements; the behavior of each element is

defined algorithmi cally to correspond to a model of some physical deYice or process .

an element

sys tem input

...... ______ ____ ___ _

Figure 5. 2 Representation of a system composed of elements .

If the hierarchy that is indu ced by t his recursive definition is flattened by expand ing

each sys tem recursively into its constituent systems an d elements, we obtain a sys tem that

62

is composed entirely of elenlPlll,.,. In order to simplify t he following ex position. we shal l.

without loss of generality, disc uss a ~ystem that is composed enti rely of elements.

In a composice system. each element input can be conn ected to no more than one

arc. whereas earh e lement output ran be connected to any number of arcs . The set of

s.vstem inputs is the set of unconnec ted element inputs ; \vhereas the set of sys tem outputs

can be any subset of the element outputs. Systems without any inputs are called closed

systems. In order to s implify the mathematical framework, we shall close each system with

an environment element , fe· that provides inputs to all unconnected system inputs and

accepts outputs from all unconnected s.\·stem outputs.

Figure 5.3 Closing a system into a closed graph .

The representation is now a graph that can be described as below:

E : The set of elements in a system.

A : The set of arcs in a system.

U: ::= EU {ee}

inp(e): The set of all arcs terminating at P .

out(e) : The set of all arcs originating from e.

src(a) : The source element of a.

dst(a) : The destination element of a.

Figure 5.4 Arc source and destination .

Figure 5.5 Element inputs and outputs.

path: A path of length n is a sequence of arcs, (ao . a 1, a2, ... , an- 1), such that

dst(a;) = sTc(rLt+ 1) for 0 :S i < n - 1.

63

Figure 5.6 Arcs ao-4 form a path of length 5

ao

Figure 5.7 Arcs ao_4 form a circuit of length 5.

circuit: A circuit of length n is a path of length n in which sTc(n0) = clsl(an-l).

5.1.2 States a nd time

The state of a system includes both its internal state an d the statP of its outputs. Let

Su(t0 • t 1) be the state description of the closed system between the time t0 and t1 , t0 :=:; t1 ,

and let SL(t0 .t 1) be the state description restricted to the subset or mt>mber, L. The s tatP

of the closed system can be written as a C<ntesian product of the envi ronment state and

the system state:

Similarly, the system state can be written as the Cartesian product of the element states:

A simulator is said to be progressive if it can compute the following function for any

valid input description, Sinp(E)(lo , tJ), which is a description of input state over a time

interval , and any valid initial state of the system, SE(lo,lo).

A simulator may be able to compute more state information for some of its outputs

than is specified above. For example, if the system can compute the following function for

some 8 2 0, the output o is said to have a delay of no less than 8 at time t 1.

64

If 8 is the largest value for the above to remain true. then 8 is the delay of the output oat

simulated time 11 . The delay of a s.vstem at simulated time 11 is defined to lw the sma llest

of all output delays of the s.vstem at t 1 . The definition of a progress ive si mulator precludes

the rossibili ty of negative delays.

5.1.3 Knots and progress

In this sect ion. we shall define a set of rules that allows us to recursively construct progre!'-

sive system simulators by connecti ng progressive element simulators in the same manner in

which the elements of the system are connected. \Ve shall call s uch a simulator a composite

simulator. In order to d iscuss progress, we make a minimal assumption that information

computed at an.v element simulator, e, will be avail<tble to all dst(oul(f)) . \\·e shall assume

for the moment that elements are deterministic; that is, Sinp(e)(t0 . 11) and S~(l0 .t0) com­

pletely determine Se(to, t 1) . Thus. in order to determine whether a si1nulator is progressive,

we need to consider only t he arc state, SA(to . t 1).

A simulator lacks progress if and only if there exists a combination of Sinp(£)(10 . t 1)

and .)'E(to.lo) s uch that the simulator fai ls to compute Sa(to.l 1) for some n EA. Let If.:

be t he time value, to :::; t1,· < t 1 , such that the s imulator can compute SA(Io. I,,.) but not

SA(to.tl). Let l\' ~A be the set of arcs such that the simulator can compute Sn{lo./1\·)

but not Sa(t0 , tl). The set l\" is called a knot in the simulation. The presence of a knot is

synon:>mous with a lack of progress.

Knot: Simulator can compute S~(to, tt-) for all a'/. A.

Simulator can compute only Sa(to . t,,·) for a U a E /\·.

NAND

System input s Composite sys tem

I I -----------------------------
Figure 5.8 Example of a knot-containing system .

65

An example of a. knot-containing, ~ystern is a zero-delay ~A ,\ D-gate wit h onf' of its

inputs con nected to its output. as shown in Figure .').8. Althou~h t he element simulator

for the NAND-gate may be progressive. the com posite simulator fo r this system ca nnot be.

For example. if the input to the system is the following:

for 0 :S: t < 1;
for 1 :S: t :S: 2.

t hen the composite s imulator can compute only the following for the arc a 2 :

for 0 :S: t < 1;
for 1 :S: t :S: 2.

The s imul ato r cannot compute S~L2 for 1 :S: t :S: 2 because a se lf-consistent s tate ass ignmen t

for a2 cann ot be found. The set o f a rcs {a2} is a knot.

Theorem .5.1: If a is an a rc of knot X . t hen the following condi tions hold :

a. inp(.q·c(a)) is not empty; ie, src(a) is not a source node in the directed

graph of elements.

b. The delay o f src(a) at t1,· is 0.

c . Some member of inp(sTC(a)) is also a membe r o f h· .

Proof:

a . If the set of arcs, inp(src(a)), is empty, then src(a) is a closed system.

A closed sys tem does not need any information from its environment in

o rder to compute its s tate - it is able to compute its outputs up to any

arbitrary t ime . Therefore. inp(src(a)) cannot be empty.

b. By the d efin ition of a knot, the simulator can compute up to tl\" for a ll arcs

in -inp(src(a)). If t he delay for src(a) is greater tha.n zero, the simulator

would be able to compute up to tt for a . Since it cannot, by definition,

the delay of src(a) must be zero.

c. If no m ember of inp(src(a)) is in /\·,then, by the definition of a knot,

the simula tor should be able to compu te up to tt for a ll members of

inp(src(a)). Furthermore. s ince delay cannot be negative, t he s imulator

66

should be abiP to compute up to tt- for a. Therefore . if a is in /,· . so mP

member of i11p(src(a)) must also be a member of /1·.

5 . 1 .4 Rules of thumb - s uffi c ie nt conditions for prog r ess

C'orol lary :).2: Every knot contains a circuit.

Proof: The re is a finite nu mbcr of arcs in a system. lf for every arc. n, E J,· there

is at least one arc. a1 E / \·,such that aj E inp(src(a,)). the n there mu::. t

be a ci rcuit in A·.

Corollary 5.:3: If the sys te m contains no circuit s, then the composite s imulator ts pro-

gress1 ve.

Proof: Since every knot must contai n a ci rcuit, a system that does not co ntain

any circui t s cannot have knots.

Corollar:· .5.4: If every e lement has a delay greater than 0, then the composi te simulator

is progressive.

Proof: Follows directly from Theorem 5.1. part b.

Corollary 5.5: lf in every circui t there is some element wi th non- zero delay, then t he

simulator is progressive.

Proof: From Corollary -5 .2, if /\" exists, it must contain a circuit. From Theorem

5.1, if s uch a circuit exists, al l the elements in it mu st have ze ro dela:·.

Therefore . if all circuits have at least one element with non-zero de lay.

then /,· can not exist.

Although the progress conditions stated in Coro llaries 5.3, 5.4, and 5.5 identify a set

of systems with progressive simulators, t hey do not identify, either by themselves or all

together, the set of a ll systems with progressive simulators. T hese are not minimal condi­

tions, because there are systems wi t h progressive simulators that do not satisfy a n.v oft he

67

three corollaries. The corollaries are useful as simple rules of thumb because there exists an

effective procedure for testing each of them.

5.1.5 N on-exis t e nce of necessary a nd s uffic ie nt p rogr ess conditions

5.1.5.1 S imulat io n a nd B oolean sat isfia bility

An algorithm that tests fo r a necessary and sufficient condition, if any such condition does

exist. must be NP-hard. Figure 5.9 shows a system that tests for the satisnability condition

in a set of Boolean clauses. The system contains a zero-delay NAND gate, a counter, a clock

source, and a network of zero-delay gates forming the clauses. A simulator for the system

is not progressive if and only if there exists a counter output such that all of the clauses

are true. If there is an algorithm that can determine whether a simulator for any system of

this form has progress , we can use it to determine whether any collection of clauses can all

be true at the same time. Since the latter operation (Boolean satisfiability [17]) is known

to be NP-complete, the algorithm must be NP-hard. Therefore, any generic algorithm that

tests for a necessary and sufficient condition must be NP-hard.

Figure 5.9 A ci rcuit to eva lua te satisfiabi lity of a set of clauses .

5.1.5 .2 Simulation and s imultaneous equations

Another way to demonstrate the futility of searching for a necessary and sufficient condition

is to examine the relationship between simulation and simultaneous equations. We define a

.progressive simulator to be one that can comp ute the following function for any valid input

description. Sinp(E)(to,ti), and any valid initial state: 5£(lo,lo).

68

Sinp(£)(to. I 1), Sj;(to. to)>--- S£(to . I,)

Let Hr be the mapping associated with a progressive simulator for the element e: we ran

express a composite s imulator as the following set of equations:

'ieEE S~(to.ti) = He(S'e(to.to), Sinp(e)(to , tJ))

Since S~(to. t1) describes S'out(e)(to, t 1), and since SA(to, t,) and S£(to. to) determine

S'£(t0 . t 1) . a composite simulator can also be expressed as the following set of equations:

'ia E A S'a(to,td = Ga(S'src(a)(to, to), Sinp(src(a))(to.td)

G~1 is Hsrc(a) restricted to the a rc a. These are simultaneous equations in the for m:

Vi: Xi= Fi(Xl· -'Y2, ... ,Xn)

Furthermore. any set of simultaneous equations can be t ra nsformed into a physical

system for which a composite simulator can be constructed. The set of all simulators a nd

the set of all simultaneous equations must be equivalent.

Figure 5.10 Mapping equations into physical system.

In any set of simultaneou s equ at ion s, only one of the t hree possibilities listed below can

exist.

l. The simultaneous equation s have no solution .

2. The simultaneous equations have exactly one solu tion.

3. The simulta neous equations have more than one solution.

Sin ce a s imulation is progressive if and only if its set of simultaneous eq uations has a

solution. any test for determining progress of a simulator can be used as a test for deter­

mining the existence of solutions for simul taneous equations, and vice versa. Since the test

for the latter has not been found. the tei>t for the former also has not been found. rh('

search for a necessary and ~ufficient condition is. therefore. both difficult and. so far . futile.

Sect ion 5.2 Operational Framework

.\!th o ugh an effective simu ltaneous-equat ion solver for the genera l case does not exist. the'

:-.i!llultaneou:,-equation representation brings us one step closer to an operational model.

lwrause effective procedures s uch as Gaussian elimination for ordinary linear equations

- exist for :-pecific c lasses of equations.

Tlw equations for a simulation arP generally difficult to analyze becaus~> its variable!> and

con:-tants dPscribe states o,·er the entire simulation interval. and the equations themselves

can be ;ubitrarily complex. \Ve ma.v be able to obtain a set of simpler equations. however. if

Wf' restrict the analysis to those simulations that s pan only a s ho rt interval. If the interval

of a s imulati on can be broken down into a finite number of smaller intervals such that

each interval can be computed by an effective procedure, we will have found an effective

procedure for the simulation.

5.2.1 Breaking a s imulation into smaller slices

.\n~· equation whose a1'sociated output has a delay 8. such that b 2: CJ. can be reduced to a

constant equation by restricting the simulation to an interval equal to CJ . Let L be the set of

output arcs with a non-zero delay at timet. Suppose Lis non-empty, let CJ be the smallest

non-zero delay. The state of all arcs between t and t + CJ are related by the following set of

simultaneous equations (justifications to follow shortly):

if a E L:
if a fl. L.

If equations uke these can be solved. simulation for a system can be performed by

dividing the simu lation interval into CJ-wide slices . and repeatly solving for SA(t.t + CJ).

computing SE(t, t + CJ). and advancing to timet+ CJ. Since the set of equations above covers

a slice of time. let us simply refer to it as a slice. The operation of a composite simulator

that advances one slice at a time can be described by the actions of its element simulators.

70

Figure .).11 depicts the sequencP of actions taken by the simu lator for element. f . whose

output arc. a. has a non-zero clela.\· of~- At the beginning of the slice t hat starts a t I (Figure

-5.ll(a)), the simulator ha s pro~ressed tot and has computed 5e(t,t). Since the delay for a

is b. S'r(l.l) contains the output state description: S~(t.t +b).

t+o t

~S. ()(t,t+o) <np E

(c ,)_ .:K--~<--..

Sa(t+o,t+o+6)

Figure 5.11 Element-si mulator operation for an element with a non-zero delay.

Since a is no larger than b. the equation for Sa does not depend on the state of other arcs,

and the simulator can output the state description, Sa(t.t +a), (Figure .'Ul(b)) without

any additional inputs. 1f the state description over the interval (t .t +a) can be computed

for every arc in the system . Sinp(e)U · t +a) will become available to e (Figure 5.ll(c)).

Since element simulators are assumed to be progressive, the simulator for e will compute

S'e(t.t +a) from Se(t.t) and .Sinp(e)(t.l +a) . and will be rea dy for the next slice (Figure

.S.ll(d)) .

(b)

I
I
I
I

t+o t

~ ~np(e) (t ,t+o)

' I
t '
I ,/

Figure 5.12 Element-simulator operation for an element with a zero delay.

If the delay is zero (Figure 5.12), the simulator fore does not contain any output state

description beyond the starting time of the slice (Figure 5.12(a)). The equation for Sa

depends on the state of other arcs, and the simulator is unable to produce Sa(t, t +a) until

it has received Sinp(e)(t, t +a) (Figure 5.12(b)). lf e is not a member of a zero-delay ci rcuit

71

(Corollary 5 .5). 5inp(c)(t.t+a) will e \·entu a ll .\· be available. \\"h en \ 1(1./+a) is computed .

the s imula tor will be reac:ly fo r t he next s lice.

A sli ce that does not conta in ze ro- delay circuits ca n be solved by simple variable sub-

stitution: a slice that contains ze ro-delay circuits (called a n obligatory sl ice) requires simul-

taneous eq uation solving . A syste m ha s a progressive s imulator if and on l.v if a sol u tion

exists for every slice of a system. If a slice has no solutions. t hen the slice contains a knot.

5.2 .2 S lice s a nd knots

For a system that contain s only deterministic e le ments. a non-obligatory sli ce a lways has

exact l.v one solution. An obligatory slice. however. can ha\·e three possible outcomes: no

solution . one solution. and multiple sol11t ions. All three of the outcomes can be found in

t he cross-coupled zero-delay XOR- NOR circuit in Figm e .') .13.

a3 a4
Figure 5.13 A system that contains a ll t h ree types of slices .

Sa
1
(t,t+a)

Sa
2

(t. t +a)

A function of the environment.

,\ fun ction of t he environment .

-, (S~1 (I. t + a) V Sa (I , t + a))
4 l

Whe n the inputs a 1 and a 2 are both 0 over the (I , t +a) in terval, t he set of simultaneous

eq ua tions for the circuit can be red uced to the set of t wo equations below, which has no

solution:

73

not require slice resolution . 111 order to allow for the development of a working s irnulator

model.

Section 5.3 The Generic Simulator Model and Its D e rivatives

Since it is suffic ient to synchronize the elements t hrough t heir inputs and outputs. s tri ct

s_vnchron iza.tion of all e lements on slice boundaries is unnecessary: elements should be al­

lowed to progress at their own pace as the ir input data becomes available. Furth ermore. if

{;for an element is larger than a, the element does not have to stop producing output at

t +a. because it already has compu ted 50 ut(e)(t,t +b) .

,--- Write head

Recorded region

Tape
Read head

Figure 5.14 Representation of an arc .

If we ignore the existence of obligatory slices, we can construct a generi c simulator

model using a set of multi-tape automata. We repl ace each a rc in the sys tem with a read

head, a write head, and a tape, such th a t:

l. As information is produced by the origin ator of the arc. the information and the sim­

ulation t ime are recorded along the length of tape as the write head advances. The

recorded time stri ctly increases.

2. The read head recovers the recorded information and the time from the ta.pe as it

advances.

3 . Both tape heads move 111 one direction only, but the read head will never move past

the write head.

Since information over periods of time is written onto the tape by its source element be­

fore being read from the tape by the destination element , element simulators a.re decoupled

74

in simulated time. The gap between a write head and a read head on the same tilpe i:; caiiPd

the slack. Since the element simulators are moved forward by consuming and producing

slack . this simulator model is called the slack -driven simulator model.

A slack-d ri ven simulator is not a complete simulator because the model does not include

a mechanism to solve simultaneous equations; when a system encounters an obligator_,. s lice

aJtd equation-solving is required. t he element simulators involved will stop. Tlwy a re blocked

while waiting for each other to produce more tape; this condition is called dear/Jock. \\·e

will describe, in brief. a few derivatives of the s lack-driven simulator, some of which are

more permissive and some more restrictive; thus. some a re more complete and some are less

complete than the slack-driven simulator.

5.3.1 Message-driven si mulation

A slack-driven simulator can be expressed as a set of concurrent message-passing processes

in which the processes a re the element simulators and the message streams are the tapes.

\IVhenever a stretch of tape is written by the slack-d riven s imulator. the inform ation on

the tape is sent in a message: whenever a st retch of tape is read , the information in a

received message is read. Since the slack is represented by messages queued in transit.

a message-passing impleme ntation of a slack-driven simulator is called a message-dri1'en

simulator.

simulator simulator

D
~~ J------?il --- ... __ -......... _ \.

--------:::::messages
Figure 5.15 Replacing tape by messages.

Since a message-driven simulator is an exact implementat ion of a slack-driven simulator.

the simulation will not make any further progress when equation -solving is required.

75

5.3 .2 Concurrent event-driven simulation

The slack-driven simulator satisfies eventual deliver.v because each stretch of tape written is

immediately available to the destination process. The message-driven simulator duplicates

that property by immediately packing and sending the outp ut information as a message.

oblivious to the value of the information content of the message. An event-driven simulation

is a modifted message-driven simulation in which message traffic is reduced by classifying

messages and by treating different types of messages differently.

yJessages are classified by whether they are needed at the receiving end. Messages that

are considered to be non-essential are held back with the objective of combining as many

non-essential messages as possible with the next essential message, and packagi ng them

all in a single entity. The total volume of messages in the simulation is reduced without

impeding the progress of the simulation. Whether a message is needed, however, depends

on the state of the simulation. and is often impossib le to determine on the basis of local

information alone.

In event-driven systems, however. messages containing state transitions are more likely

to be needed than those that do not; most event-d ri ven simulators make the classification

on that basis alone. Since the transitions are often called events, and since there is generally

one in each message for such a simulator, these simulators are called event-driven simulators.

\1essages containing no events are called null messages. Event-driven simulators were first

explored by Chandy, Misra, and Bryant [13. 12], though their derivation paths are different

from ours. This exposition illustrates that null messages are a consequence of applying a

more general model to a specific class of subjects, rather than a necessity when going from

a sequential simulator to a distributed simulator.

Culling null messages, as is true with many other methods for reducing message volume.

violates the rule of eventual delivery because the rules t hat decide whether a message is

needed at the receiving end can fai l. Without additional mechanisms to assure eventual

delivery of necessary null messages, deadlock may still occur. A ring of elements with

76

stable values for their cyclic outputs will fai l to produce progress becanse each e lement is

waiting for its preced ing element to prod uce a message, yet none \viii arrive if they send

on!~· messages containing transitions.

delay = :3
'
' ' I

,-, ,' Information wait ing to be sent

0 ,, conta ining: state = 0 from t = 3 to t = 6.

Can not send thi s information

because it does not contain any transitions .

Cannot produce more information

because it has not received a ny more information.

Figure 5.16 Example of deadlock in an event-driven simulation .

5 .3 .3 Sequent ia l s im ulator

..-\ sequential simulator is a. simple example of a backtracking simulator for event-driven

s:.'stems. If we describe it in the context of our model. a sequential simulator keeps a U of

its read heads aligned during the simulation . (All read heads a re ini tially a ligned at t = 0

at the start of the simulation.) Each write head records not only the output state derived

from t he element input. but also the expected output state, assuming that t he element wi ll

encou nter no fur t her input change.

If there a re curre ntly no state transitions recorded under the read heads, the sequen-

tial simulator is free to move the read heads forward without deli vering any of the state

descriptions to any elements . The state descrip tion on the port ion of the tapes covered

by the motion were produced on t he assumption that no transition has occurred over that

period, and the assumption was shown to be valid. When a transition is encountered, t he

ass umption by its destina tion e lement is shown to be false and the transition is delivered

to its destination element so that a new output can be compu ted. Since t he delay of an

element must not be negative, the tape already covered by the read heads will never have

to be revised.

In an implementation of the sequential simulator, the set of tapes is replaced by a

merged list of pe nding events. Each pending event represents an expected change in an

77

output of an element given that the inp11t state of the element remains unchan~ed. Items

in the list are sorted in an ascending order with respect to their time values.

The position of the read heads is kept in a s ingle variable called the global clock. :Vloving

the read head s forward is accomplished by storing increasingly larger values into the global

clock a.'i events are pul led from the list of pending events . The simulator repeat ecll.v sets the

global clock to the time of the earliest event in the list, pulls that event from the list. and

delivers it to t he destination element. All events in the list except the top-most event are

su bject to revi sion because the assumptions of the elements that posted them - that their

inputs will remain unchanged - may now be shown to be false. The event pulled from

the top of the li st will never need to be revised because the assumption of the element that

pos ted it is now shown to be correct. The sequence of events pulled from the list represents

the result of the simulation.

time 1-'--:_ - simulated tim.e
: -- sorted event bst

· I ·r destination element Icent i y
t s el

... -- -,
/

/

f._ _ ... - an event ent ry

e2

v-
\:: L/ some el ' ement simulators r'\t7

Figure 5.17 Model of a sequential simulator .

rG)
~ u:::e event list

Suppose an obligator y slice is encountered during the simulation. If the state under

the read heads forms a self-consistent state assignment for t he slice, then t here will be no

events scheduled to change that assignment. The simulator will pass over the slice without

detecti ng it. If the state assignment is not self-consistent, there will be events that change

the state assignment. As the result of delivering such events, more events may be scheduled

for the current simulation time because some destination elements may have a zero-delay.

78

[f the intermediate state a.ss i ~nments eventual ly lead to a consistent state assignment. the

pool of e\·ents under t he read head will become empty and the global clock will be allowed

to advance: if not, the s imulator will be stuck processing an endless stream of events having

the same en>nt time.

Since there is one event clelivery for every transition, a sequential simulator is also

labeled eveut-cl riven: however, unlike the concurrent event-driven simulator described pre­

viously. the sequential simu lator will never deadlock. The simulator is a complete simulator.

5.3.4 Concurrent backtracking simulators

!\1cssage-dri\·en simulators do not backtrack. because every piece of information that each

element simulator produces is cor rect. Backtracking s imulators produce speculative infor­

m<.llion that can be revised v.:hen assumptions fail. In a sequential event-driven s imulator.

the amount of hackt racking is limited by the alignment of the read heads. Since alignment is

cost ly and reduces concurrency. concurrent backtracking simulators do not align read heads.

The element simulators are allowed to produce outputs and to consume inputs according

to the ir own heuristics and assumptions. When those assumptions are shown to be wrong,

the.\· have to restart the simulation from the point where the computation went wrong by

backing up the write heads to discard erroneous information.

Wh en a write head needs to be moved back behind a read head , the destination element

of the read head has already consumed and may have produced its state and output based

on false inputs ; it too must be rolled ba.ck. In order to roll back to the time at which

the input becomes invalid, the element simulator has to store a sequence of past states in

addition to its current state.

Not all of the past state needs to be stored, however. In the Time Warp simulator of

David Jefferson [14], a behind-the-scenes mechanism called the global virtual time is used

to compute concu rrently the lower bound of time for which rollback may sti ll occur. The

global virtual time attempts to keep track of the minimum time of all events and elements

79

1n the simulat ion. An.v sav0ci sta te with ::t time ,·al ue less than t he global vi rtual time can

be di scarded. because no element will PV<'r roll back to ::tn earlier time.

The advantage of a backt racking simul ator is th<'lt whe n a processor of the machine is

otherwise idle, spare cycles ca n be used for spec ul<'ltive computing. Since this simulator mu st

keep a record of past states fort he element s , tlw concu rrent backtracking simulator t rades

off s pace for speed by us ing larger processing nodes th an would ot herwise be necessary.

Concurrent backtracking simulators a re comp lete simulators, and they hand le obliga­

tory slices the same way as do sequentia l simulators. When one is encountered, a nd if the

state ass ignment of the eleme nt s involved is a lready self-cons istent. t he simulator moves

ahead without detec tin g it. If the ~tate as~ignrnent is not self- consistent, some of the ele­

ments involved will be rolled back to the start ing t ime of the sli ce . and perhaps some more

a fter that. The flurry of rol!b<'lcks ends when a sP! f-con sis te nt state is achieved .

5.3.5 Bra nch-and-bound simula tors

If a backtracking simulator is likened to a depth-fi rst search, then its breadth-first eq uivalent

resembles a branch-and-bound simulat or. This is one that trades off space for speed by using

more processing nodes (rather than la rger nodes) than would otherwise be necessary.

Suppose an element sim ulator computes to a point where its output can take on one of

several states , depend ing on some inputs that have not yet arrived. Instead of producing a

speculative output as would a backtracking simulator, the element simulator will, in effect.

fork the simulation into a set of concurrent bran ches to fo llow each of the possibiliti es . In

each branch, when the decisive input has finally ar rived . should the input not match the

assumption for a branch, then the branch will be term.inated (bo und).

~-R-e-se-a-rc_h_e_r~~------)>~L~--A--ge_n_c_y_l--~--------)>~~L--A--ge_n_c_y_2 __ ~-----)>~
Figure 5.18 A researche r submitting a grant.

80

For comparison, s uppose that a re:>earch grant reque:-,t has to be approved in tandf'Ill

by two government agencies. TIH' lirst agency spends a long time classifying the grant into

one of three classes. A, B, or C. The second ag,Pncy spen d ::. a long time deciding whether

the grant will be accepted based on the classification and the available funding for each

class. A researcher su bmitting a grant ca n be represented by the system in Figure 5.18.

mes::,age driven ~imulator:

petition

backtracking s imulator:

inconsistency detected, roll back needed

branch-and-bound simulator:

assume A q

assume B

assume C q
Figure 5.19 Comparison between three simulators .

In a message-driven simulator, only one agency simulator can be active at any one time.

The time it takes to simulate the approval of the grant is equal to the sum of the time taken

in each agency, because the operation is sequential. In a. backtracking simulator, while the

simulator for the first agency is working, the second agency can choose and pursue one

81

but only one of the t hree possible o utcomes produ ced by the fir:-.t agency. In a branch ­

and-bound simulator. t hree copies of the simulation a re produc<'d. each pursuing one of the

three possibilities.

A branch-and-bound simulator is a lso a complete s imulator. If th ere a rc a ny no-solution

s lices. all branches will be te rminated and none will remain at th e end . If there are any

multi-solution slices, but no no-solution slices, more th an o ne set ofsinl\l lat ions will rematn

at the end, and each wi ll correspond to one possible outcome. If there a re onl.v single­

solution slices, then exac tly one set will remain. The simula tor \\·ill fail. howe\·er. if the

numbe r of solution s is unbounded. because the computing resource is bounded.

The branch-and-boun d simulator is th e o nly inte resti ng t.\.!H' of d istributed simulator

thal. so far as we know . is still to be ex plored. Efficient algorithms to fo rk an J termin ate

the simulator may prov ide hope fo r the si mulation of systems with \·e r!' little int rins ic

parallelism. and whose gr a in size is too small or whose behav ior too unpredictable for

rollback to be profitable.

5.3.6 T ime-driven simulators

Thus far, we have discussed simulators that resolve sli ces by trial -and-erro r (backtracki ng)

a nd by exploring all possi bilities (branch-and-bound). In both methods, each element s im­

ulator needs only local information for progress . Neither method is appropria te, however,

when the number of possibili t ies that must be explored is infinite. Exact simul a tio n of such

a sys tem may require solving simultaneous equations analytically. vVhen the equ ations can

be solved, they yield functions of time, reducing the simulation to a simple tas k of func­

tion evalu ation. When a n analytical solution is inappropriate or difficult to find. empiri cal

approximations must be used.

An example of such a system is an elect rica l circuit. In the system in Figure 5.20. the

voltage across a capacitor is the integral of the current through the capacitor; the current.

in turn. is a function of t he voltage ac ross the capacitor.

82

CAPe:
I +

vQ LOAD

I

A physical ,vstem ... and its logi cal representation

Figure 5.20 An example of a continuous system .

The eq nations: \1 = J I dt

1 = i(v)

In order to simul ate th is kind of system, we need to find a replacement system that is

discrete but that will either approximate t he behavior of the target system or converge to

the final state of the target system. The usual method of building a simulator for such a

system is to divide the sim ulation interval into a sequence of small slices. We then assume

that information exchange takes place only at the boundaries of these slices. and information

about the others can be accurately extrapolated between the boundaries.

For example. when integration of a continuous function is involved . discrete methods.

such as taking the Rjemann sum, can be used to approximate the in tegral of the function.

Although discrete integration is seldom exact, we can get increasingly better approximations

by reducing the size of the slices; when the size is reduced, the Riemann sum approaches

the integral. However, due to accumulated numerical errors. the simulation may eventually

diverge and produce an output that is valid only for a limited span of simulated t ime.

Simulators oft his type are caUed time-driven simulators because they a re moved forward

at one time slice per step. Simulators of this type are also complete.

5 .3.7 S umma ry

The slack-driven simulator is a generic simulator model that covers a large array of existing

and hypothetical s imulators. Simulators that perform computation on speculation. such as

the concurrent-rollback simulator, are called optimistic simulators. Simulators that produce

83

no output other than that implied by the input are called conservative simulators. We will

concentrate on the message-dri\·en simulator. which is a conservative simulator.

We a re particularly interested in the characteristics of the simulator itself, not those of a

s imulator plus any system it simulates. Thus. we have chosen the most revealing simulation

s ubject, devised a. series of conservative simulators, and reported in the following chapters

the results obtained.

84

Chapter 6 Logic- Circuit Simulator Experiments

A Boolean network is a network of Boolean logic gates connected s uch that each input is

driven from the output of another gate or from an input to the network. A logic circuit

is a Boolean network that includes a notion of t ime: Each logic element in the network is

assigned a positive value called the delay of the element. The input and output s tates of

the gates are time-variant . IfF is the Boolean function of a logic gate whose delay is 6.

then the input state, I. and output state, 0. are related by the equation:

O(t + 8) = F(J(t))

Thus . unlike a Boolean network, which has a static value that is computed by solving a

set of s imultaneous equations. a logic circuit can have time-dependent behaviors , such as

memory and oscillation. Simulation is a w<ty of computing the behavior of a logic circuit.

X

Figure 6.1 A logic circuit whose behavior is different from its Boolean network .

The Boolean network in Figure 6.1 can be described by the equation x = NOT(.r).

which does not have a solution . As a logic circuit, however, the network is an oscillator.

Although the input-output relationship of a logic circuit when it does reach a stable state is

consistent with the correspond ing Boolean network, our definition of a logic circuit simulator

is one that reproduces the behavior of a logic circuit rather than one that solves for a stable

state. The other definition is used by simulators such as MOSSIM [19]. which simulates

and verifies digital integrated circuits.

Most existing circuits found in computers and other digital systems belong to a class of

circuits called clocked logic circuits . Clocked logic circuits a re very well suited for the stable­

state-solving form of simulation . because they a re designed to reach a stable state during

each clock cycle, and because on ly the final state of a clock cycle is needed to determine

the future state. The exact sequence and timing of transitions that lead to a stable state

85

a re usually not important: onl.v the fin a l stable s tate of the ci rcui t is important. S uch

si mulators . however. wi ll not work very well fo r the unclocked. o r self-t imed. logic circu its.

Section 6.1 Why Logic Circuits?

\\'e st ud.v logic-circuit simulation because it st resses a distributed simulator. and is itself of

practical interest. It. is easy to cons truc t examples of logic circui ts with diverse behaviors .

st ru ct ural difficulties such as large fa n-in and fan-out , a nd highly non-uniform activity le\·els.

Simple logic ga tes exhibit responses in which an input event may or may not influence the

outputs, depending o n the in te rnal st ate of the ele ment and on t he states o f other inputs;

yet, the_v require very littl e computa tion to simulate their behavior. Thus, the performance

r0sults shown la ter in volve practically no computation other than the distributed simulat ion

it self. They a re. therefore. unclutte red s tudies of how well the simulator itself performs .

A number of related simulators, each supporting an a rray of different simulation modes ,

have been written during t he course of this study. These simulators run o n multicomputers,

such as the Cosmic Cube, Inte l iPSC, and Symult 2010. Since t hey a re written to run

under the Cosmic Environment. t hey can be compiled for a ll of these machines without

modification. The historical re lationship between these simula tors is shown in Figure 6.2 .

T he a rrows indicate predecessor-successor relationships.

CMB­

variant

sequentia l

~

X
~

pruned-

CMB-variant ~

coordin ated- _/17
sequential

progressive-
hybrid

Figure 6.2 A number of circuit simulators and their relationshi p.

Of the five simulators shown, results obtained on t hree of them - the CMB-variant. the

coordin ated- sequential. a nd t he progressive-hy brid simulators - are of inte rest. The se-

86

quential simulator and the pruncd-CMD-,·ariant are used for comparison only. The pruned­

CMB-variant simulator will not be discussed.

The CMB-variant simulator is a straightforward implementation of the generic simu­

lator in which the basic unit of information transfer is a block of state description over a

time interval. The CMB-variant simulator shows excellent speedup as the number of nodes

is increased, but, since it is totally oblivious to the content and effect of its information

carriers, much of the work it has to do can be eliminated when an event-driven system is

simulated on one node U!ing a sequential simulator. However, sequential simulators can­

not be readily distributed, and they cannot, in their original form, benefit from the use of

multicomputers.

The three succeeding simulators attempt to combine the advantages of sequential and

distributed simulators. The pruned-CUD-variant simulator is a CMB-variant simulator

with sequential simulation mechanisms added. The coordinated-sequential simulator is a

sequential simulator with CUB-variant mechanisms added. The progressive-hybrid simula­

tor is the final merger of the two. In the following sections, we will describe each of these

simulators in their chronological order.

87

Section 6 .2 CMB-Variant Simulator

The CMB-variant simulator for logic circuits is a proof of concept for the generic simulator

model described in Chapter .'). Sinn' t hi s is a demonstration of a gener ic modeL in o rde r

to cover the g reatest range of possible sil1lul ation subjects, special but useful properties

of logic circuit s ha\'e bee!l ignored in building this simulator. In par ti cular, the simulator

ignores the fact that logic circuits are event-driven systems. We will discuss such systems

in greater detail whe n we compare the res ult of th is simulator to ones that do make use of

t he event-driven properties .

logic ci rcui t systems - (' domain o f the generic simulators

------------~---

~
I

"-- domain of event-driven simulators
Figure 6.3 Domain of the generic simulator model.

The tape-writi ng and -read in g processes in the generic simulator model are replaced by

message-send ing and - rt"ceiv ing processes in the CM B-variant simulator. These are ligh t-

weight, reactive processes. and the simulator is a. reactive kernel for the reactive processes.

As in a usual reactive-process program, the distribution of the simulation task on a multi-

computer is accompli shed by partitioning the set o f reactive processes across a set of reactive

kernels that run on a multicomputer.

We will present a simplified description of the CMB-variant simulator; the actual im-

plementation contains extensive measurement se tups and programming short-cuts that are

inappropriate to report here. The simulator presented, however , is fun ctionally correct. ex-

presses the same principle as does the act ual implementation . and is easier to understand.

6.2.1 The element simulators

First of all, a reactive process is represented by two pointers: the entry-function poin ter and

the data pointer. The entry-function pointe r always contains the reference to the funct ion

that handles the next message for the process. but the data pointer can hold any private

data structu res needed by the process. For an element simulator, the private data may

88

include one data s tructure for each of tlte eleme nt· :, outputs .. \n output data struct11re

contains the references to all inputs to which it connects. Each input reference contains the

ID of the element that owns it and the index that ide ntifies the input within the element.

One output st ructure can contain 1110re than one reference. because an output ca n connect

to more than one input.

The private data may also include one input data structure for each of th e element ·s

inputs. Each input data structure contains the ID of the process and the identity of the

output to which it connects. Each input can and must connect to one output.

process A

entry

data

process B

entry

data

output reference

input reference
(._ . : output s tructure

lllput s tructure

Figure 6.4 Process struc ture and a simple example of connectivity.

We may need a variable-sized message format to describe a piece of tape recording,

because the information on the tape can be arbitrarily complex. In the interest of simplicity,

however, we choose to represent each tape recording with more than one simple. fixed-sized

message. We will call the structure a STATE_ FRAGMENT. We use the name fragment to

contrast it with the name event used in the study of traditional event-driven simulation

systems, and to convey the fact that every entity is a fragment of a continuum that can be

merged with adjacent entities and sl iced into arbitrarily many entities.

The essential fields of a fragment a re shown in Listing 6.1. When a fragment is received

by a process. the input_id field identifies the element input to receive the fragment. The

state and span fields describe the duration of a state at that input.

1
2
3
4
5
6

struct STATE_FRAGMENT
{

lnt
i nt
lnt

lnput_id;

STATE FRAGMENT

state;
span;

•next;
7 }

89

I* Index of the lnput at the dest element. • /
I* State contalned i n this fragment. • /
I• Duratlon of this fragment. • I
I • Pointer to make a linked llst of fragments.• /

listing 6.1 Structure of a FRAGMENT

\'\ .hen a. piece of tape is to be written by an element in the generic simulator model.

the correspondi ng process in the CM B-variant s imulator produces one fragment or a stream

of several fragments to carry the information recorded on the tape. vVhen a fragment has

arrived at its destination. the entry fun ction of the dest in ation proces~ is called to accept

the fragment. It is v.:orth noting that reactive-proces::. programm ing systems are themselves

ev<.'nt-driven sys tems whose inputs a re fragments . T hu s . the simulator is always an event-

driven system. even though the system it simulates may not be.

1 inverter_entry(pp,sb)
2 PROCESS *PP;
3 STATE_FRAGMENT •sb;
4 {
5 OUTPUT(pp,O, !sb->state,sb->span);
6 free_fragment(sb);
7 }

listing 6.2 An inverter in a CMB-variant simulator

Listing 6.2 contains a sample entry function for an inverter element. As in an ordinary

reactive process, the two parameters to its entry function are the process structu re a nd t he

in put message. When called, the entry function s imply outputs another fragment of the

same length , but with a complementary state ,·alue. The dela.v of the inverter is equal to

the d iffe rence between the amount of fragment s produced and thE' amount of fragments

consumed . Such differences are set up during initiali zation by producing one fragment for

each outp ut of every gate, such that each fragment has a span that equals the delay of its

output.

T he OUTPUT fun ction takes on four parame te rs. T he first two parameters are the process

structure and an index that identifies an output of the element. The function needs these

90

two parameter1-. 111 order to access the list of destination input references for th<> oulptlt

fragments. The next two parameters describe the state and the span of the fra{!;ment. In

this example . there is only one output for the inverter. and its output index is 0. The state

of the ttPw fragment is the complement of the state contained in sb->s1:ate and tllf' leng1 h

of the frap;ment is the same as sb->span.

Since an in\'erter has only one input. it does not have to check the input_id of t.lte

fragments it recei\·es, and it can immediately process any fragments it receive5 without

waiting for other fragments to arrive. For a gate with more than one input. however. it

usually has to differentiate the fragments it receives. Listing 6.:3 contains a ~ample entry

function for a two-input XOR-gate:

1
2
3
4
5

7

9

11
12

14

16
17

xor_entry(pp,sb)
PROCESS *pp;
STATE_FRAGMENT *sb;

{
int out_span, out_state;

QUEUE_FRAGMENT(pp,sb);

while(!Q_EMPTY(pp,O) && ' Q_EHPTY(pp,1))
{

out_state =
out_span

(Q_HEAD(pp,O)->state - Q_HEAD(pp,1)->state);
MIN(Q_HEAD(pp,O)->span Q_HEAD(pp,1)->span) ;

OUTPUT(pp,O,out_state,out_span);

TRIH_QUEUE(pp,O,out_span);
TRIH_QUEUE(pp,1,out_span);

18 }
19 }

Listing 6.3 An XOR-gate in a CMB-variant simulator.

In a two-input XDR-gate. both of the inputs must have at least one fragment present

before the gate can produce output fragments. The gate must therefore maintain a. fragment

queue for each of its input structures . When a fragment is received, the entry function can

check the queues before deciding whether the fragment needs to be queued; but. in the

interest of simplicity, the function always queues the fragment (7). The QUEUE_FRAGMENT

function puts the fragment sb into an input queue of pp according to sb->inpu1:_id.

!Jl

The Q_EMPTY function returns TRUE if the specified input queue for the procP~!:> pp i~

empty. While both que ues a re non-empty (9) . a length of fragnwnt i~ removed from Parh

queue to produce an output fragment. The state of the output fragment is equal to t he

exclusive-or o f the s tates of the fragments to be removed (11) . The length of the output

fragment (and of each fragment to be removed) equals the length of the shorter fragment

at t he head of the queues (1:2). The Q_HEAD fun ction returns a pointe r to t he first fragment

In the specified queue.

The outp ut of the exclusi\·e-or gate remains the same as long as both inputs remain

unchanged. The length of the shorter fragment is the length of t ime both inputs are known

to re main unchanged. When fragments a.re consumed , output is produced (14) . and a length

eq ua l to the length of the output fragment is trimmed from both queues (16,17).

The loop repeats until o ne o f the qu e ues becomes empty a nd the gate can no lo nger

produce any a dditional output fragments from its queues. The inverter and the XOR- gate are

simple because they are both strict: ie, they do not have any partial input-state assignment

such that the state of the outputs is not influenced by the state assignment of the remaining

inpu ts .

An OR-ga te. on the other hand, is non -strict: If any of the inputs is 1. its output will be

L, regardless of the state of its other inputs. An OR-gate can t he refore continue to produce

fragments in some situations where not all of its inputs are available. Listing 6.4 contains

a sample entry function for an· OR-gate :

1 or _entry(pp,sb)
2 PROCESS *pp;
3 STATE_FRAGMENT *sb;
4 {
5 int out_span, out_state;

7 QUEUE_FRAGMENT(pp,sb);

9 while(1)
10 {
11
12
13
14

if(!Q_EMPTY(pp,O) && (Q_HEAD(pp,O)->state --TRUE))
{

out state = TRUE;
out_span = Q_HEAD(pp,O)->span;

16

18
19
20
21

23

25
26
27
28

30

32
33
34
35 }
36 }

92

} else

if(!Q_EMPTY(pp,l) && (Q_HEAD (pp,l)->state --TRUE))
{

out state
out_ span

} else

TRUE;
Q_HEAD(pp,l)->span;

if(IQ_EMPTY(pp,O) && !Q_EMPTY(pp,l))
{

out_state = (Q_HEAD(pp,O) - >state
out_span = MIN (Q_HEAD(pp,O)->span

} else break;

TRIM_QUEUE(pp,O , out_span);
TRIM_QUEUE (pp,l, out _span);
OUTPUT(pp,O,out_state,out_span);

Q_HEAD(pp,1)->state);
Q_HEAD(pp,l)->span);

l isting 6.4 An OR-gate in a CMB-variant simulator .

When the process receives a fragment. it is added to the queue, as 1n the case of t he

XOR-gate. But , t hen, instead of checking both of the queues for fragments, the function

checks first for possible non -s trict input conditions. Lines 11- 16 check the input whose index

is 0; lines 18-23 check the input whose index is 1. If a fragment for an input is available

and its state is TRUE. then a non-strict input condition exists. The new output fragment

is specified to have a state value of TRUE and a span equal to the span of the fragment in

the queue. The function then continues to line 32 where fragments are trimmed from the

queues and an output fragment is produced. If no non-strict conditions have been detected,

the process will comp ute and produce fragments in the same manner as the XOR process

(26- 28) .

When a non-strict condition is detected on one input, the queues in both of the inputs

a re trimmed (32- 33) because the state of the other input does not matter. However, it is

possible that the queue for the other input is empty or does not contain enough fragments

to cover the a mount to be trimmed. In t his case, the t rimming extends to fragments that

have not yet arrived . The process must therefore record the deficit in curred and deduct it

from fragments that arrive later.

D3

1 typedef struct { int delay; I*
2 I DATA *inpq; I*
3 O_DATA *Outq; } ELEMENT; I*

Delay of the element.*/
One per gate input. *I
One per gate output. *I

5 typedef struct { STATE_FRAGMENT *qh;
6 STATE_FRAGMENT *qt;
7 int deficit; } I_DATA;

I*
I*
I*

Points to top. *I
Points to bottom. *I
Deficit of the queue*/

The details for the process are complete; we are ready to show the essential mechanis ms

that support the processes. The process structure contains an entry function: an array of

input data structures, one for each element input; and an array of output data structures,

one for f'ach e lement output. These data structures are set up during initialization. The

input structure co ntains the deficit count and a pair of queue pointers, one for the head of

the queue and one for the tail.

1 QUEUE_FRAGMENT(pp,sb)
2 PROCESS *pp;
3 STATE_FRAGMENT *sb;

{

5 I_DATA *Q;

7 Q = ((ELEMENT *)(pp->data))->inpq + sb->input_id;

9 if(Q->deficit)
{

11 if(sb->span <= Q->deficit) { Q->deficit -= sb->span
12 free_fragment(sb); return; }
13 else { sb->span Q->deficit;
14 Q->deficit 0; }

}

17 if(Q->qh)

19
20
21
22

25
26

}

{
if(sb->state -- Q->qt->state) { Q->qt->span += sb->span

free_fragment(sb); return; }
else { Q->qt = Q->qt->next = qt;

qt->next = 0; }
} else
{

}

Q->qh = Q->qt
sb->next = 0;

sb;

listing 6.5 CMB-variant QUEUE_FRAGMENT function .

The QUEUE_FRAGMENT function adds the fragment, sb, to the (sb->input_id) th input

queue of the process pp. It checks first for the deficit (9). If a deficit exists, the span of

the fragment is used to sat isfy the deficit; if the fragment is totally consumed (11-12). the

94

function returns. Otherwise. the balance i:, advanced to the next step. where fragment:-- <HP

added to the queue (11). ff there are already other fragments in the queue (11). and if

the last fragment has the same state as the new fragment (19) . the two are si mply merged

(19 20). Otherwise. the fragment is linked into the queue (21-2:2 . 25 - 26).

1 TRIM_FRAGMENT(pp,id,debit)
2 PROCESS *pp;
3
4
5 {
6
7

9

11

13
14
15
16
17
18

21
22 }

int
int

I_DATA

id;
debit;

*0;
STATE_FRAGMENT *sb;

Q = ((ELEMENT *)(pp->data))->inpq + id;

while(debit && Q->qh)
{

if(Q->qh->span > debit) { Q->qh->span -= debit;
debit 0; }

else { debit - Q->qh- >span;
sb Q->qh
Q->qh sb->next
free_fragment(sb) }

}

Q->deficit += debit;

Listing 6.6 CM 8-variant TRIM_ FRAGMENT function .

The TRIM_FRAGMENT function removes debit amount of fragments from the id-th input

queue of the process pp. As long as there are more fragments in the queue, the spans of

as many fragments as necessary, taken from the head of the queue, are used to satisfy the

debit. r\ny remaining debit is added to the deficit of the queue.

6.2.2 The simulator message system

The li st of references and indices for each output structure described above represe nts a

one-level tree. The root of the tree is the sending process and the leaves of the tree are

the receiving processes. T he job of the OUTPUT function is simple enough - it allocates a

fragment fo r each leaf process and sends it along the branch that leads to the process. In

such a simulator, however, gates with a large fan-out, such as a clock driver, ma.v have to

s0nd the same information to the same destination comput ing node ma ny times.

05

Because messages hetwPr>n computing nodes a re usually more expensive than messages

within the same computing node. WE:' reduce the internode messages b_,. organizing the t reP

a.s a. two- leve l tree. The in te rmediate tree nodes are a set of inpuL port processes, one for

each computing node tha t contain s a destination process. An output sends its fragment to

its input ports. and an input port duplicates and forwards the fragment to the destination

processes in it s O\\"n computing nodes.

,---------------, ,---------------,
' ' ' '
: a node : ' '

'

' ' l---------------' l------------- __ ,

[] output port m input port

Fig ure 6.5 A sample circuit and a possible mapping to a multicomputer .

:vlany mechanisms can be added to the output structure for a more more efficient

simulator. and such mechanisms account for the majority of the differences between the

act ual implementation and this description . Here we will present a simple OUTPUT fun ction

that converts fragments in to messages that are immediately sent.

1 typedef struct { int count; I• Number of siblings. •I
2 int •node; I• Dest process's node. •I
3 int *pid2; I* Dest process's pid2. *I
4 int •input_id; } O_DATA; I• Dest process's input •I

The output data structure contains the number of ports connected and a list of ref-

erences to those ports. A reference for a process in the simulator contains the node and

the pid of the destination simulator process. lt also contains a pid2, because the element

processes are embedded in the si mulator by reactive- handler layering. Only the node and

the pid2 need to be stored in the output structure , because in our implementation there is

only one simulator process for every node. and all of them have the same fixed pid. Listing

6.1 contains a sample OUTPUT function:

1 OUTPUT(pp,id, s tate,span)
2 PROCESS *pp;
3
4
5
6 {
7
8
9

int id;
int state;
int span;

int j;
O_DATA *op;
STATE_FRAGMENT *sb;

96

11 op = ((ELEMENT *)(pp->data))->outq + id;

13 for(j = 0; j < op->count; j++)
14 {
15
16
17
18
19
20
21 }

}

sb new_fragrnent()
sb->input_id op->input_id[j]
sb->state state
sb->span span ;
s_send(msg, op->node [j] ,op->pid2[j]);

Listing 6.7 CMB-variant OUTPUT function .

T he OUTPUT function allocates a fragme nt for each branch of the tree (15), initializes

it with the input index of the destination input (16), sets t he state and span (17- 18), and

sends the fragment (19). The s _send function is a layered message function that sends

the message to another process in the simulator. If a two-level tree st ructur e is used, each

fragment goes to an input por t process that is identical to the inverter process except that

the state is not inverted (a buffer process). The main function for the simulator is identical

to that of a reactive kernel:

1 struct { int
2 char

4
5

struct { int
char

(*entry)();
*data } PROCESS;

pid2
msg_body[]; } MESSAGE;

7 simulator_main_loop()
8 {
9 PROCESS *proc;

10 MESSAGE *mesg;

12 while(1)
13 {
14
15
16
17
18 }

}

mesg = (MESSAGE*) xrecvb();
proc = process_table + mesg->pid2;
(*proc->entry)(proc , mesg->msg_body);

Listing 6.8 CMB-variant main loop .

!)7

This is the end of our description of a simple. distributed sim ulator derived directl.v

from the generic simulator model. The description is complete except for the storage

allocation/de-allocation mechanisms. the initialization/termination mechanisms . and the

result-recording mechanisms.

6.2.3 The variants

Although this simulator exh ibits excellent performance for some cases. much can be done

to improve its performance for difficult cases. The number of actual messages. for example.

can be reduced in a logic circuit simulation by using a more elaborate OUTPUT function. In

particu lar, if message sending is deferred by putting fragments into output-holding queues,

the opportunity to merge multiple fragments into a single message increases. When two

successive fragments with the same state are put into the same holding queue, the two can

be merged into a fragment with a larger span, saving both space and handling time. Even

if they cannot merge, multiple fragments can be concatenated onto a single, longer message

to share the per-message overhead.

If sending is deferred forever, however, the simu lator will fail to make any progress.

Good efficiency can be achieved with a proper balance of message deferral and message

sending. Before we devised and evaluated a number of flow control methods, there were

two methods that represented the two extremes of possibilities: the two original CMB­

methods. (Hence, our methods are called variants .) In the deadlock-avoidance method, no

fragments are deferred and deadlock does not occur. In the deadlock-detection method. no

message is sent until the simulation runs into a deadlock, or unless the output-holding queue

contains an event. A deadlock-detection mechanism running concurrently in the simulator

message system detects the deadlock and forces deferred messages to be sent.

We generally call those methods that are more likely to send messages eager methods.

and those that are less likely to send messages lazy methods. Thus, the deadlock-avoidance

· method is at the eager end of the spectrum, and deadlock-detection method is at the lazy

end. To explore the middle ground, we needed to hold back messages by some criteria we

as

could select. but in order to prevent deadlock detection from dominating the timing. \\·e

needed a cheaper wa:-' of ensuring progress than by using standard deadlock detection.

When simulator processes defer sending output messages. they may c:-·clicaiJ_v deny

themselves input messages. leading to deadlock. Howeve r. deadlock implies that some node

has an <:>mpty input-message queue. Since the em ptiness of the queue is a local cond ition.

we make use of that condition to modify the behavior of the s imulator to prevent deadlock.

Our strategy is called indefinite-lazy message sending, and is implementPd by replacing the

xrecvb function in the s imulator·s main loop with a non-blocking xrecv.

1 simulator_main_loop()
2 {
3 PROCESS *proc;
4 MESSAGE *mesg;

6 while(1)
7 {
8 if(mesg = (MESSAGE *) xrecv())
9 {

10 proc = process_table + mesg->pid2;
11 (*proc->entry)(proc, mesg->msg_body);
12 } else
13 {
14 take_action_to_promote_progress();
15 }
16 }
17 }

Listing 6.9 CMB-variant indefinitely-lazy main loop.

The function xrecv returns a message for an element simulator if the node's input-

message queue is not empty. The simulator goes on to deliver the message as before if a

message is returned. While an element si mulator is consuming a message, it may either send

or withhold any output that the element simulator produces according to the heuristics in

effec t at the time.

If the node's input-message queue is empty, a null pointer is returned and deadlock is

a possibility. The simulator will take special actions to break potential deadlocks. Actions

can generally be classified into two types: For the source-driven type, the simulator selects

a deferred output to send as a message; for the demand-driven type, the simulator selects

99

a blocked element, and send s a demand message to its predecessor to reque:-,t that quetlf•d

outputs be sent. The end result is that deadlock is prevented.

6.2.4 Variant a lgorithms

\\"e ha\·e experimented with many CMB variants. Since many of them are closel.\· related.

and all of them show similar performance results, we will describe the opera! ion ancl report

the performance of just six variants (A-E) that are representative of the range of possibilities

that we have studied:

A Eager message sending: This is the deadlock-avoidance CMB simulator .

B Eager e\·enl.: Since successive fragments with the same state value can be merged into

one fragment , the eager-e\'ent variant detains aJl output fragments until a fragm ent

that cannot be merged with its predecessor ts produced. When xrecv ret urns a null

pointer , the detained fragment that extends to the earliest time is sent. This is called

an eager-event variant because state changes are called events in event-driven system s.

and because this simulator will eagerly send event-conveying fragments.

C Indefinite-lazy. single-dispensation: All output fragments produced by element simula­

tors are queued. Messages are sent only when xrecv returns a null pointer . The output

queue that extends to the earliest time is selected, and one fragment from that queue

is sent.

D Indefinite-lazy, multiple-event: This scheme is a variation on C, motivated by charac­

teristics of multicomputer message systems that make it economical to pack multiple

events into fewer messages. All output fragments produced by element simulators are

queued. When xrecv returns a null pointer, the output queue that extends to the

earliest time is selected to generate a message using all of the fragments in that queu e,

instead of just one.

E Demand-driven: Although we usually think of simulation as source-driven from inputs.

one can equally well organize the simulation as demand-driven from outputs. ln the pure

100

demand-driven form . a ll output fragments produced b.v clement sim ulators a re queued.

\tV hen xrecv retu rns a null pointer. the input port that lags furthest behind is picked

to select the destination for a demand message. t'pon receipt of a demand message, if

the o utput queue is not empty. the simu lator sends all fragments in the output queue:

if t he outp ut queue is em pty. the simulato r propagates t he demand message . For the

demand-driven variant. t he message header must also carry a type field to distinguish

a normal message from a demand message.

1
2
3

struct { int
int
char

pid2
type

msg _body[]; } MESSAGE;

5 simulator_main_loop()
6 {
7 PROCESS *proc;
8 MESSAGE *mesg;

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 }

while(l)
{

}

if(mesg = (MESSAGE *) xrecv())
{

if (mesg->type == DEMAND_TYPE)
{

handle_demand_message(mesg->msg_body);
} else
{

proc = process_table + mesg->pid2;
(*proc->entry)(proc, mesg->msg_body);

}
} else
{

take_action_to_promote_progress();
}

Listing 6.10 CMB-variant demand-driven main loop.

F Demand-driven . adaptive: Demand messages single out cri tical paths in a simulation.

In an adaptive form of demand-driven simulation . a t hreshold is associated with each

communication path. Outpu ts of elem ent simulators are queued only up to the thresh-

old; when the threshold is exceeded, the contents of the queue are sent as a message.

Demand messages operate as in E. but also cause the threshold to be decreased for

processes that get them . In the examples that we show. the threshold is halved. The

101

simulator is according!!· able to adapt its<>lf to the characteristics of the system bPing

simulated.

6.2.5 Instrumentat ion

Although execution time is o ne of the mos t natural bases of comparison between any two

programs that perform t he same function, and although it is used below to illu:,trate the per-

formance of our dist ributed s imulators on different commercial multicomputers. execution

time on these concurrent computers depends both on the algorithm and on the charac-

teristics of the particular computer. When we wish to isolate the characteristics of the

algorithm from those of the computer. we run our s imulator programs under the control of

a multicomputer s imulator (sweep mode). A close examination of the main routine of the

simulator reveals t hat it can be transformed with minimal modification into a light-weight

reactive-process program under yet another la.ver of the reactive kernel:

1 SIM_DATA •simulator_data;

3 simulator_main_loop(simp,mesg)
4 PROCESS •simp;
5 MESSAGE •mesg;
6 {
7 PROCESS *proc;

9

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 }

simulator data (SIM_DATA *)(simp->data) ;

if(mesg)
{

if(mesg->type == DEMAND_TYPE)
{

handle_demand_message (mesg->msg_body);
} else
{

}

proc = simulator_data->process_table + mesg->pid2;
(•proc->entry)(proc, mesg->msg_body);

} else
{

take_action_to_promote_progress() ;
}

Listing 6.11 CM 8-variant main loop as a light- weight process .

The process structure in t his reactive kernel is described by t he SIM_OATA structure in

the above listing. The structure contains a list of element sim ulator processes and any other

102

reactive kernel

Figure 6.6 Structu re of a sweep-mode si m ulation .

data s tructures private to this instance of the simulator.

m uJ ticorn pu tt>r
simulator

element
sim ula.tor

CMB-variant
simulator

S\\"eep-rnode simulation for an N-node multicomputer is accomplished with a reactive

kernel that runs N copies of the simulators as reactive processes. Execution time is then

measured in a unit called a sweep [2, 1.5], which corresponds here to a fixed time required

to call an element once. The time required for other operations, such as sending a message.

can be set to a particular number of sweeps . Normally, a message sent by one node in one

sweep is available in the destination node at the next sweep. However, to test the sensitivity

of the aJgorithms to message latency, we can also set the latency to larger values.

multicomputer network

Figure 6.7 Structu re of a rea l- mode sim ulation.

I

~
I

a computing
node

In the real-mode simulation , the simulator is linked with a reactive heavy-weight handler

103

and run directly on the multicomputer. There 1s one copy of the simulator proce"s in

each node. and each simulato r process runs a subset of the elements as embedded reartive

processes. Each node runs at its own pace. and execution time is measured with the host

compnter·s real-time clock.

6.2.6 Experimenta l results

Performance measurements have been made on a variety of logic networks, including those

that are representative of networks found in computers and VLSI chips, and those that

a re designed specifically to test or to st ress the simulator. Six different network types,

each in several sizes up to -1000 logic gates, have been the principal vehicles for these

experiments. The majorit~· of the logic gates have delays of between 1 and 80ns. with 20ns

being a typical value. Each simulation was run for a predetermined, simulated interval,

and a set of measurements, including the real elapse time, was recorded. A larger variation

in performancP was observed among networks with different characteristics than between

algorit hm variants.

The parallel multiplier is a good example of an ordinary logic network. The 14 xl4

array multiplier used in several experiments employs 1376 logi c gates to generate the 28-bit

product of two 14- bit binary inputs. The multiplier network contains only limited con­

cu rrency, and does not contain tight circuits that give the simulator artificial performance

advantages or troubles that depend on element distribution . It also contains moderately

high fan-out in the multiplier and multiplicand lines ; this puts pressure on the message

system. In all fairness, the distributed simulation of th is multiplier network is expected to

do neither too badly nor too well.

For the simulation, the most signifi cant bit of the product is connected back to the

multiplier input via an inverting delay. The delay is such that the multiplier reaches a

stable state before the multiplier input changes. The multiplicand input is set to a value

that causes the circuit to oscillate. The resulting activity level is quite low: The entire

circuit is idle 25% of the time. For the other 75% of time, there is a wavefront of activity

104

movmg dia12-on ally down tlw array. .\ fter the wavefront hits the bot tom-left corner. tile

multiplier input chang~>s and b roadcasts the change to 144 gates. A trace of the product

outputs shows t hat the simula tor a nd the ci rcuit are running correctly.

idle broadcast wave front

Figure 6.8 Three phases of the oscil lating multiplier .

The plot in Figure 6.9 po rtrays in a log-log format the sweep cou nt in the sweep-mode

versus t he number of nodes .. V, for the simulatio n of the 14x l 4 multiplier network under

all six CMB variants.

log2(swteJ>c)

20

18

17

16

15

14

13

12

11

10 1

9 I
0 2 3 4

sequential simulator

5 6 7 8 9 10 11
log2(nodes)

Figure 6.9 A 1376-gate multiplier , sweep-mode.

It is not usefu l to con tinue the plot beyond 211 nodes, since at this point t here are as

many nodes as simulated gates . Each horizontal divi s ion represents a factor of two in t he

105

number of nodes used: each \·enical di\·ision represents a factor of t\vo in sweep count or

time. The placement of elements in nodes for these trials is a s.\·stematic pattern that tends

to put related elements into the same node.

The first remarkabl~ characteristic of these performance mea~urements is that they ;ue

so similar across this class of variant algorithms. Algorithms A. £ . and F produce more

messages than 8, C, and D; but in the sweep mode. in which messages are free but element

invocations are expensive, there is little dirference between the variants. The performance

under sweep-mode execution exposes the intrinsic characteristics of 1 he algorithm. and is not

related to such multicomputer characteristics as the relationship between nod~ computing

time and message latency.

The performance is divided roughly into two regimes, the first regime being one of near­

linear speedup inN for the first 7-8 octaves. and the second regime being one of diminishing

returns in N as the computing time approaches an asymptot ic minimum value. In the

linear speedup regime. these simulators nearly halve the sweep count with each doubling of

resources until limiting effects a re reached. Load balance is assured by the weak law of large

numbers \vhen there are many elements per node. While each node has a sufficiently large

pool of work, node utilization remains high. The simulators approach asymptotic minimal

time as they exhaust the available concurrency in the system being simulated. The gradual

"knee" of the curve originates from progressively less-effective statistical load balancing as

the number of elements per node diminishes with larger N. The gross characteristics of these

curves are similar to those of other concurrent programs [2]. and are quite understandable

and predictable.

Like many other concu rrent algorithms, a more efficient sequential algorithm exists for

the C:vl B-variant simulator when applied to circuit simulation. The heavy horizontal line

represents the number of sweeps a sequential event-driven simulator requires for this same

simulation. We observe at log2 N =0 (1 node) that all of the CMB variants are somewhat

inefficient in comparison with the sequential event-driven simulator. We shall refer to this

106

extra work that the C~IB-variant simulator doe~ a<; the o 1·crhead of di s tributing the si m ­

ulation. We will discuss the sequent ial event-driven si mulat or and additional per formance

measurements in the next and &ubsequent sections.

107

Section 6.3 Sequential Simulator

At :V = l, the sequential simulator does better than do the CMB-\·ctriant simulators for two

reasons: The first is that logic circuits are e vent-driven systems in which the tinw it takes

for a sequen tial simulator to handle and process a fragment is zero if the fragment does

not convey an even t. (A fragment convey·s an event if its state differs from thP fragment

that precedes it. A message that carries an event-conveying fragment is an cvPnt message:

a message th at does not is a null message.) The second is that logic gates are si mpl e <1nd

the time it takes for an e lement simulator to process an event-conveyi ng fragment is almost

zero.

Since the message- handling times for nuU messages and event messages are identical in

the CMB-variant simulator, the ratio at N = 1 (N is num ber of nodes used) between the

time taken by the seq uential a nd th e CMB-variant ci r cuit simulators reflects the proportion

of event messages in a C~IB-variant circuit simulator. The cost of handl ing null messages

is the overhead of the CMB-variant simulator at N = 1.

6.3.1 Sequential simulator mechanism

Like the CMB-variant simulator. our seq uential simulator is also a reactive-process program

with embedded, light-weight , reactive processes. Each message in this simulator. called an

event, describes a state transition and includes t he following fields:

1 struct EVENT
2 {
3
4

int
int

input_id; I * Index of the input at the dest element. *I
time; I * Time of the transition. *I

5 }

Listing 6.12 Sequential-s imulator event structure.

The time field of an even t represents the time when a state change will occur at the

input (identified by the value of the input_id field) of t he process t hat receives t he event.

The function contained in Listing 6.13 can be used as a n entry function for an inverter gate.

1 inverter_entry(pp,ep)
2 PROCESS *pp;
3 EVENT *ep;
4 {

108

5 SEND_EVENT(pp, 0, ep->time);
6 free_event(ep);
7 }

listing 6.13 An inverter in sequential simulator.

When the simulator delivers a.n event to the inverter, the inverter will generate an

out put e\·ent with all e\·ent time that is pp->delay units larger. The SEND_EVENT function

takes three parameters: Like the OUTPUT function of the CMB-variant simulator. the first

two parameters are the process structure and the index that identifies an output of t hP

element; the third parameter is a time value whose sum with the element dela.y becomes

the time of the output event. Listing 6.14 contains a simple output routine for the sequential

simula tor:

1
2
3
4
5
6
7

8

SEND_EVENT(pp,id,time)
PROCESS *pp;

10
11

{

int id;
int time;

EVENT
O_DATA
int

*ep;
*op;
ot;

op
ot

((ELEMENT *) (pp->data))->outq
((ELEMENT *) (pp->data))->delay

13 for(j = 0; j < op->count; j++)
14 {
15
16
17

19
20
21 }

}

ep
ep->input_id
ep->time

new_event() ;
= op->input_id[j];

ot

ADD_EVENT(ep,op->pid2[j]);

+ id;
+ time;

l isting 6.14 The SEND_EVENT function in sequential simulator .

The routine allocates an event st ructure (15) for every input connected, fills in t he

receiver input index (16), fills in the time of the event (17), and inserts the event into the

event list (19). This routine is s tructurally similar to the OUTPUT routine of the CMB-variant

simulator. except that node numbers are not used to identify processes because alJ processes

reside in the same node. In order to reduce the number of events that must be sorted when

lOD

more than one input is connect<'d . Olltput·f'W'nt duplication 1n the actual implementation

is performed at the time of event del ive ry.

It is interesting that the entry fun ct ion for an XOR-gate is identical to that of an inverter.

Li s ting 6.15 contains the more com plex. OR-gate entry function.

1 or_OO(pp,ep) PROCESS *pp; EVENT *ep;
2 {

3 if(1 ep->input_id) { pp->entry or_01;
4 else { pp->entry or_10;
5 free_event(ep);
6 }

8 or _01 (pp, ep) PROCESS *pp; EVENT •ep;
9 {

10 if(!ep->input_id) { pp->entry = or_OO;
11 else { pp->entry or _11;
12 free_event(ep);
13 }

15 or_10(pp,ep) PROCESS *pp; EVENT *ep;
16 {

17 if(!ep->input_id) { pp->entry or_11;
18 else { pp->entry or_OO;
19 free_event(ep);
20 }

22 or_11(pp,ep) PROCESS *pp; EVENT •ep;
23 {
24
25
26
27 }

if(!ep->input_id) { pp->entry = or _10;
else { pp->entry or_01;

free_event(ep);

SEND_EVENT(pp,O,ep->time);
SEND_EVENT(pp,O,ep->time);

SEND_EVENT(pp,O,ep->time);

SEND_EVENT(pp,O,ep->time);

listing 6.15 An OR-gate in sequential simulator .

}
}

}
}

}
}

}
}

When both gate inputs are 0, the entry function is or_OO. When an event is received,

the event is distinguished by the input it affects. If the event is for the input whose index

is 0. the entry-function pointer is set to or_Ol, a nd a n output event is produced (2) . If

the event is for the other input, the entry function is set to or_lO and an output is also

produced (3). The actions for the other three entry functions are similar.

An e lement can compute its output state based only on a transition from one of its

inputs. because the transition carries the assurance that the other inputs of the element

have not changed. Such assurance can be provided in several ways. The most common

method is to keep the set of yet- to- be-delivered events (the pending e1·ents) sorted by time

llO

1-0 glitch or no glitch?

0

Figure 6.10 A circuit containing a dynamic hazard condition

in an en>nt list, and to deliver the event with the smallest time value first. Since element

dcla_,·s cannot be negative, an e,·ent cannot t rigger events with smaller time values. When

an event is delivered to an element. it is assu red that the other inputs of the element. and

indePd of all other elements. will remain unchanged up to the time of the event.

pid2 1
2

struct { int
c har rnsg_body [] ; } MESSAGE;

4 sirnulator_rnain_loop(simp,rnesg)
5 PROCESS •simp;
6 MESSAGE •rnesg ;
7 {
8 PROCESS *proc;

10
11
12 }

pr oc = (SIM_DATA •)(simp->data)->pr ocess_table + rnesg->pid2;
(•proc->entry)(proc, rnesg->rnsg_body);

Listing 6.16 Seque nt ial-simula tor main loop as a light-weight process .

The simulator main loop is similar to that of the C~1B-variant simulator: the message

sys tem. however, has a different property. The message system for the CM B-variant simu-

lator dispenses messages on a first -come, first-served basis; for the sequential simulator, the

message with the smallest time value is dispensed first.

6.3.2 Hazards in sequential simulators

Al though a sequential simulator will always produce a valid simulation result. it may not

a lways produce the same result as the CMB-variant simulator. Some input conditions in a

logic circuit may trigger more than one possible outcome, and a sequential simulator has

no consistent way of choosing one. For example, the OR-gate in Figure 6.10 can produce

either no transitions, or two transitions in response to two simul taneous input events. This

condition corresponds to a static hazard in the terminology of Boolean minimization.

111

Both of these responses rt.re correct because the tempora l relat ion between the two

input. events is beyond the capa bility of t he model to resolve : the one that is produced

depends on the order in which the two input events are consumed. Sin ce both input events

have thE' :-.a me t ime value, they can be taken from the list in eithe r order. If t he low-going

t ra11sition is take n first. two output t ransi tions will be produced; if the high-going transition

is taken first. no outpu t transitions will be produ ced. The CMB-vari ant simulator. however.

consistent l.v picks the response in which no ou tput t ran sitions a re produced .

Although both responses a re considered to be correct, the sequenti al simulator can com-

pa.re unfavorably with the CM B-variant simulator when there are too many extra events.

For the com pa ri son to be meaningful, we must devise a sequenti a l si mulato r that \viii con-

s istently ma ke the same choices as does t he CM B-varian t simul a tor. In a system in which

every e lement has a non-zero de lay, this can be accomplished by withdrawi ng the first of

the two o utput events when the second output event is to be produced. an d canceling both

('vents. Each output data struct ure must main tain a referen ce to the last unconsumed event

that it has produced. When another output event is to b e produced, if the previou s event

has 110t been consumed a nd if the two events have the same time value . then no events

are produced a nd the previous event is withdrawn. The following SEND_EVENT function

implements this mechanism.

1
2
3
4
5
6
7
8

SEND_EVENT(pp,id,tirne)
PROCESS *pp;
int id;
int time;

{
EVENT *ep;
O_DATA *op;
int ot;

op ((ELEMENT *) 10 (pp->data))->outq + id
ot ((ELEMENT *) 11 (pp->data))->delay + time;

13 for(j = 0; j < op->count; j++)
14 {
15
16
17
18

20

if(op->last _e[j] && (op->last_e[j]->time
{

DEL_EVENT(op->last_e[j]);
op->last_e[j] = 0;

} else

ot))

21
22
23
24
25

27
28
29 }
30 }

{

}

ep
ep->input_id
ep->time
op->last_e[j]

112

new_event()
op->input_id[j];
ot
ep

ADD_EVENT(ep,op->pid2[j]);

Listing 6.17 A SEND_EVENT function that reduces glitches .

Missing from Listing 6 . 1 "i is the part that places a back-reference pointer into each

event structure. The back-reference is used by the simulator to dissociate an event from its

output (by setting the corresponding last _e[j] to 0) when the event is delivered.

6.3.3 Instrumentation

The sequentia.l simulator also exists 1n two modes, sweep mode and real mode. Like the

CMB-variants. the sweep-mode simulator consumes one sweep for every element input de-

livery. In the real mode. the CMB-variant simu lator must poll the system's input message

queue once for ever~· null message or event message delivered; the sequential simulator is

also made to poll the same queue once for every event message delivered, even though this

is never necessary. Poll ing for messages consumes a significant amount of time in many

multicomputers but there is nothing inherently costly about the operation. It should be

possible in a future machine to poll the queue by checking only a single pre-defined memory

location that has been mapped into each process's memory space.

The resulting real-mode simulator runs at a speed of about -500f,Ls per event for our

examples on the iPSC/2 and t he Symult 2010, and at about 3000f,LS per event on ou r

iPSC/1. The polling time is about 170;.Ls for the Symult 2010 and 760f,LS for the iPSC/1.

The iPSC multicomputers were running Cosmic Environment in compatibility mode instead

of in the potentially more efficient native mode. The exact speed depends on the size of

the event list. The event list is implemented with a tree structure called the leftist tree

. [16). This data structure shows Olog(n) timing characteristics for inser tion and deletion

operations in even the most highly unbalanced cases. but it does not provide an easy way to

113

traverse the tree in a sorted orclt>r. Th0 lefti::;t tree is an excellent choice for the s imulators

because tree-traversal is not needed in a simulator.

6.3.4 Big multiplier results

The sweep-mode simulation results . shown in sect ion .5.2. indicate a 2-4 x overhead when

:V = 1; the real-mode resu lts generally show a 4-8x overhead. This is not unexpected

because the time required in the sweep mode to deliver a message to an element is assumed

to be the same in all s imulators; in reality. the CMB-variant simulator has to do more work

per message than does the sequential sim ulator.

We cannot. at this moment. reproduce the same sweep-mode performance comparisons

using real multicomputers . because we do not have access to any multicomputers with 21<

nodes. We do. however. have access to an assortment of multicomputers of various sizes and

vintages that we can use to explore various regions of the result graph. Figure 6.11 contains

the timing result for a simulation of the 1316-gate array multiplier from section .5.2. The

simulation is run for a duration of 40ps in simulated time under a 16-node iPSC/2.

10

6 E

5
0 1 2 3

sequential simulator

<\: ?
B

4 5 6 7
log2(nodes)

Figure 6.11 A 1376-gate multiplier for 40.us on an iPSC/2.

Aside from a larger overhead , the real-mode curves generally reflect the upper third

of the sweep-mode curves. One consistent characteristic for this and other simulations is

a relatively low overhead for the variant F results at N = 1. Variant A and F share the

property that messages can be sent 0ap;crly. while message sending in the other variants

must wait until a null poi 11ter IS returned h_\· a call to xrecv - e\·en if the messages are

to be sent from n simulator process to itself. Variant F has a lower overhead than variant

A because it makes eager onl_v those elements on crit ical paths. thus allowing messages on

uon-critical paths to merge. :\s the simulation becomes more distributed, however, more

elements become part of a critical path. and the advantage of variant F disappears.

vVhen N > \ variant A. E. and F fail as more of the eagerly-sent demand and null

messages become internode messages and overload the buffering capacity of the message

system. The other variants are ab le to cont inu e because many messages are eliminated by

being detained and merged with other messages.

10

9

8

G I

5
0 1

~-:- .

'~\:- -. _ sequential simulator

2 3 4 -5 6 7
log2(nodes)

Figure 6.12 A 1376-gate multiplier for 40f.ls on an iPSC/1.

Figure 6.12 contains the result of the same simulation on a 128-node iPSC/1. Due to an

excess of null messages, variant A and F fail for all N; due to a lack of memory, none of the

variants will run when N < 4, nor will the sequential simulator run at N = 1. (Our iPSC/1

has only one-half megabyte of memory per node, whereas the iPSC/2 has 4 megabytes per

node.) The sequential s imulator result is an est imate derived from a simulation of a smaller

circuit (to be described later).

lo~J2(8rconrf.,)

12 . '

8

-
I

6

0 2

115

se uentia.l simulator

3 5 6 I
log2(nodes)

Figure 6.13 Combining the iPSC/2 and iPSC/1 graphs with seq uential timing aligned.

The res ults th at we are able to obtain from the iPSC/1 simulation indicate a contin-

uation of the near-linear speedup until J\' > 64, when there are fewer than 22 elements in

each node. The total speedup obtained is 64 when the two sets of results are combined in

Figure 6.13.

A 64-node Symult 2010 multicomputer a.llows us to explore a large overlapping portion

of these two combined graphs. Since the S2010 nodes are much faster than the iPSC/1

nodes. the simulation interval has been scaled from 40Jl.S to 10011-s ; in order for the timing to

remain meaningful when N = 64 . Figure 6.14 matches Figure 6.13 closely, but every variant

is able to complete its simulation for every N on the S2010. Variant F resembles variant ..-1.

because as queuing limits vanish throughout the simulator , the simulator effectively becomes

a variant-A simulator. Variant F is a little worse than variant A because it s till must produce

demand messages in addition to any eagerly sent message. Var iant E, however; resembles

other variants.

6 .3 .5 S m a ll multiplie r r esults

Since we do not have a 2048-node multicomputer, it is necessary to experiment with smaller

116

12

11

10

9

uential simulator

6

.5 I

0 2 3 4

Figure 6.14 A 1376-gate multiplier for 100J..Ls on a Symult 2010.

ci rcui ts to observe the asymptotic effects predicted by the sweep-mode simulation for large

.V. Figure 6.1.5 contains th e results for the simulat ion of a 4 x 4 array-mul t iplier consist ing

of 116 logic gates. The iPSC/1 and iPSC/2 simulations were performed over a simulated

interval of 100J..LS . The S2010 simulation was performed over an interval of 400ps to preserve

accuracy when many nodes are used.

Not only is the reduction in slope more visible, differences between various modes are

also more apparent . There a re 1, 2. and 8 elements per node when all of the nodes in the

iPSC/ 1, S2010, and iPSC/ 2 , respectively. are in use.

Compared to the iPSC/1 curves, the S2010 curves show a steeper slope. a larger overall

speed up, and a closer match with the sweep- mode curves. The fl attening of the curves for

t he iPSC/1 is due to the effect of message latency. The average message latency for the

iPS C/1 when N = 64 is ~ 3000ps; this is comparable to the 3000J..Ls-per-event processing

time of the sequential simulator. The user-mode message latency for the S2010 is ~ 200ps;

t his is s maller than the 600ps-per-event processing t ime.

\Ve can obse rve the effect of latency by varying latency in the sweep-mode simulation.

lli

log2 (.,rrollds)

10
'··

9

8

-
I

6 B
0 1 2 3 4 5 6

Figure 6.15 A 116-gate multiplier for 100J.Ls on an iPSC/1

' ·

5

4
0 1 2

'",!"':~ ~

3 4 5

sequential
simulator

6

Figure 6.16 A 116-gate multiplier for 100J.Ls on an iPSC/2.

l og2 (seconds)

5
0 1 2 3 4 5 6 7

log2(nodes)

log2(nodes)

Figure 6.17 A 116-gate multiplier for 400J.Ls on a Symu lt 2010.

118

Figure 6.1 ' contains two plots. o ne for .\" = 2.')() and the other for .\' = 204 ' .. \ me»SCl,!!,l'

sent during a sweep is available to its df'stination in the fol lowing sw<>ep when latency is 0.

When latency is non-zero. th e m essage is delayed h~· an a mo unt equal to the latency. Wlwn

simu lation becomes dominated b.v latency. time increases linearly with latency.

I og2 (s !l'fl ps) , /1' = 2.56

15

14 I

11 ,.

LO

9
0 2 3 4

, ' E

.5

log2(swtcps) . A = 20-1

1 ,')

9
0 2 3

Figure 6.18 Effect of increased latency on simulation performance

.j log2(latency)

In all of t he results that we ha.ve shown. the sou rce-d riven variants. B. C. a nd D. are

the most ro bu s t variants, and they show a larger s peed up than the other variants when ,V

is large. The demand-driven variant E is hindered by a large message latency. An idling

process may be delayed for two message cycles - send a demand message. receive a norm al

message - before it can continue. When internode message la t e ncy is large . variant £

pe rforms poorly. Variant F does better because it becomes variant A when processes are

idle more frequently.

6.3.6 Circ uit topology vs. activity level

A C:VlB-variant circuit simulator must supply every element input with e nough fragments

to cover the entire simulation interval. Since its simulation time is only weakly dependent

o n the conten t of those fragments , it is more s trongly influenced by the s tatic characteri stics

of the ci rcuit connectivity, such as degree of fan -out. than by the cl ynamic characteristics

13

12

ll ~

10

9

8

7

6 I

0 2

119

3 4

F

A

":-, E
··~- - C'

·.-; D
8

5 6 I
log2(nodes)

Figure 6.19 A 1376-gate multiplier for 100J1s on a Symult 2010- fast oscillation .

of the circuit operation. such as number of events produ ced. A sequential simulator . on the

other hand. depends only on the number of events produced.

For example. if a circuit contains a cross-coupled latch , the delay of the gates in the

latch determines the number and the span of the fragments produced. and the number of

fragments produced determines the simulation time for the CMB-variant simulator. The

number of times the latch is used determines the number of events generated in the latch , and

the number of events generated determines the si mulation time for a sequential simulator.

We can expect the sequential simulator performance to change by a greater degree

compared to the CMB-variant simulator if we run the simulation using the same multiplier

circuit , but with a different activity level. Figure 6.19 is obtained by driving the arra_v

multiplier at an elevated oscillation frequency. Four times as many events are produced,

and the time taken by the sequential simulator has increased by a factor of 4. The time

taken by the CMB-variant simulators, however , has increased by only a factor of 2.

Since fragments are more likely to carry transitions. the possibility of consecutive frag-

me>nts merging into a single fragment is reduced. It becomes less profitable for the simu lator

120

to withhold messages. The time taken by variant A has increased b.v a factor of onl.v l..').

and variant A performs better than the other variants when ,V is not too large.

6 .3.7 H y brid possibili t ies

The C.\ !B-va.ri ant simulator implements an algorithm that distributes well. but. like many

other algorithms. there are sequential implementations that are more efficient than the

concu rrent implementation. However, the C'MB-variant simulator is unusual in that it is

an exact implementation of an algorithm that can be defined recursively - each element

simulator can also be a composite simulator. We can view the simulator process on each

nodt> as being a composite simulator that simulates the set of elements a.c;signed to that

node. \tVe refer to the set of elements. collectively, as a macro element. The ci rcuit simulator

becomes one whose eleme nts are not the logic gates but the macro clements; of these one

exists in each node.

log(time)

N = 1
Figure 6.20

CMB-variant

sequential

log(nodes)

Modified Laffer Curve .

hybrid

Since the elements in a macro element must reside in the same address space, and since

their operations must be in te rleaved , it is a tempting thought that there may be a wa:v to

introduce sequential simulator efficiency into the simulation of elements in a macro element.

Suppose such a hybrid simulator were to exist. When N = l , all logic gates would reside in

the same node; the simu lator would have th e same performance as a sequential simulator. If

121

N were large, there would be one lo~ir gate per node and the performance would converl-!;e

to the performance of CM B- variant simulator.

Figure 6.20 depicts a hypothetical performance plot of a hybrid simulator. a sequential

simulator, and a CMB-variant simulator. We will call this hybrid-simulator curve the

modified Laffer curve (in recognition of economist Arthur B. Laffer. who showed that ta.x

revenue is fixed on two ends on the plot of revenuers. tax rate). The quest for the algorithm

and for the control over the shape of the curve between these two end points guides the rest

of the experimental work. which will be di sc u s~f'd in the next chapter.

122

Chapter 7 H y b rid Simulators

Section 7.1 Coordinated Sequentia l Simulator (Hybrid-1)

One way to build a hybrid simulator is to use a modifi<>d sequential simulator for each

macro element. and to con nect the sequen tial simulators using a C:\1 D-variant simulator.

Since a CMD-variant sin1ulator provides coordination for a set of sequf'nt ial simulators.

this hybrid simulator is called the coordinated sequential simulator (designated hybrid-1).

'v\'hen J\' = 1. hybrid-! is identical to the sequential simulato r, as the modification does not

introduce extra work for the simulator when the macro element is a closed system .

A macro element is an open system if any of its element inputs connect to an element

output in another node. :\lacro-element connectivities are handled by the CMB-variant

simulator, and macro-element simulators must satisfy the requirements of the CMB-variant

simulator: Output state descriptions produced by each macro-element simulator are packed

into fragments and sent to the encircli ng CMB-variant simulator. The C\IID-variant simu­

lator distributes the fragments according to the connectivity of the macro elements. When

a macro-element simulator receives a fragment, events ext racted from the fragment are

entered into the event list.

7.1.1 T he a lgor it h m

Since asynchronous events can be injected by other macro-element simulators, event order

for a macro-element simulator cannot be guaranteed by the the repeated delivery of the

earliest event from the event list. The simulator may not be able to consume the event at

the top of the list because an event with a smaller time \'alue may yet a rri ve from another

macro element. To avoid a simulation error , we can employ a temporal marker in each

macro element to indicate the smallest time value for any future external events. As long

as the time of the first event in the event list is less than the marker time, the event can

be safely consumed. If t he event time will be greater than the marker time. the s imulator

must wait.

123

The encircling C\IB-variant simulator assures that the time of the next PvPnt on any

macro-eiC'ment input is greater than or equal to the time of the macro-elemC'nt input. ThP

tinw of a macro-element input is eq ual to the total span of fragment~ that have passed

through it. and is updated whenever a fragment is received for that input. The minimum

marro-elenH'nt input time is a convenient temporal marker.

Output fragments are produ ced by a macro-element simulator whenever additional

output descriptions are computed. Since elements are strictly synchronized in a sequential

::,imulator. the output of all elemen ts in a macro element are known up to the same simulated

time. Thus, the entire state of the macro element can be treated as an atomic property

(('haptcr .)).and all arcs with the same source and destination node:, can be merged into

one a rc.

In order to com pute the temporal marker, we store the input time of Pach macro-element

in put in a ~pec ial stopper event. The stopper is added to the event list along with the

other events. \\"hen a macro-element input receives a fragment. in addition to injecting new

events. it adds the span of the fragment to its stopper time. an d it repositions the s toppe r

in the evPnt list. As long as the event at the top of the event list is not a stopper, the

macro-element simulator is free to consume the event; when a stopper appears at the top

of the event list, the simulator is made to wai t for more inputs.

7 .1.2 Sorting with a differe nt key

A macro-element simulator derived from a conventional sequential s imulator has an effective

delay of zero because its event-consumption rules prevent the simulator from producing any

output description that has a time value larger than its own minimum input time. A circuit

of these mac ro-element simulators will deadlock unless a set of alternative consumption

rules is used to produce a positive delay.

"The event with the smallest simulated time will be delivered first" is merely a conve­

nient consumption rule that satisfies the following correctness conditions for a sequentia l

::.imul ator . \Vhen an event is delivered to an element:

124

l. The event \\·iII not nPcd to hP recalled. and

2. \o future ev<'nts for the Ple rnent will have a s maller event time.

\Ve otn sati sf.v both conditions and pro\·idc a non-zero delay by sorting events according to

the fo llowing ordered pair:

when' I, is the evc11t time. a nd rlm (the rn_delay) is the delay of a minimum-delay path

(the shortest path) between the destination element of the event and any macro-element

out put. :\lacro-element output-PvPnts therefore have a dm of 0. The first member of a ke.v

is the dominant member \vhen ke.vs are to be compared.

In tuitively. if input E'\'('nts for an element are ordered according to this key, they a re

ordered in leas \vel !, becau:;e dm is the same for all input events of the element. An event

whose des tination element has an rn_delay of elm can be deferred in the event list by rlm

amount of time relative to those events for the macro-element outputs because its effects

cannot propagate to the outputs before le + dm . The effective delay of a macro element is

therefore the minimum rn_delay of its macro-element inputs.

T heorem 7.1: An event produced by an e lement with a positive delay must have a key that

is larger then the key of the event that triggers it .

Proof: Let the delay of the element be o. the time of the input event be te. and the

rn_delay of the element be dm .

By the definition of e lement delay. any output event triggered by t his

input event must have a time value of at least l e +b. By the definition of

rn _delay. the destination element of the output event must have an rn_delay

of a least dm - o. Therefore, the first part of the key for the output event

must be no less than elm - 0 + te + o. or te + dm , which is equal to the first

part of the key for the input event .

125

The :,Pcond part of tile ke.v for the output event is le+h, which is greater

than the second part of the key of the input event. Therefore. the key of the

output event mu st be larger than the key of the input event.

Theorem /.2: Any event appearing at the top of the event list is valid.

Proof: . .\n 0vent must come eithe r from anot her elem ent in the same macro element

or from anot lH'r macro element. Events from other macro elements are

assumed to be correct because the macro-element simulators follow the rules

of a Ct\1 B-variant simulator.

m_delay =
delay =

Figure 7.1 An event that invalidates another event .

Tf the event is produced locally, let the event at the top of the list be

e1 , and let (At, Bt) be the key of that event . Let ev be the event that an

element consumes to invalidate e1, and let (Av, B v) be its key.

By the definition of a key, At- Bt is the m_delay of dst(et), and A v - Bv

is the m_delay of sTc(et) - Let 8 be the delay of src(et). By the definition of

m_delay , we have the inequality:

which we can rearrange into:

We also have (Bt- Bt,) 2 o, because the delay of src(et) is o; and (Av-At) 2

0, because et is the event at the top of the event list. The only solution to

the inequality above is (Av- A 1) = 0 and (Bt- B v) = b.

Since the key of et is no greater than the key of ev, it follows that b

must be zero and that the two events must have the same event time . Since

126

the ordering of the t\\·o events is be.vond the ability of the model to rPsolve.

it is correct to assume in thi s case thilt ~"ti s earlier in time. and is therefore

valid.

Suppose e1 is the event at the top of the event list , and let the first part of its ke.Y be

called the e\'ent-list rime. Since all macro-element output events haw' an m_delay of zero .

and since all new events have keys that are at least a.s large as the key of c1, the state of all

macro-element outputs is known up to the event- list time . The effective delay of a macro

element is therefore equal to the dela.v of the shortest path between any macro-element

input a.nd output.

7 .1.3 T he simulator mechanism

The sequential-simulator discussion in section 6.2 hints that complexities are being moved

into the message system of the reactive kernel (the kernel of the light-weight, reactive

element processes). When a reactive kernel needs an e\·ent, its message system provides the

event with the smallest time value of all events in the message system.

mul ticom pu ter message system

CMB-variant message system

sequential-simulator message system
sequential-simulator kernel
element processes

Figure 7.2 Layering in the hybrid-1 simulator .

In hybrid-1, the message system of a sequential simulator is sand\viched between the

message system of a CMB-variant simulator and the kernel of the sequential simulator.

When the kernel needs an event, its message system provides that event having the smallest

key. as long as that event is not a stopper. If it is, the message system wait~; for the stopper

to be relocated. ·when the message system of the CMB-variant simulator receives more

fragments , it moves the stoppers. The hybrid-1 simulator can therefore be constructed by

layering reactive kernels.

127

1 struct { int (•entry)();
2 char •data } PROCESS;

4 struct { int pid2
5 char msg_body[]; } MESSAGE;

7 SIM_DATA *simulator_data;

9 sequential_simulator_main_loop(simp,mesg)
10 PROCESS •simp;
11 MESSAGE •mesg;
12 {
13 PROCESS *proc;

15 simulator_data = (SIM_DATA •)(simp->data) ;

17 proc = simulator_data->process_table + mesg->pid2;
18 (•proc->entry)(proc, mesg->msg_body);
19 }

listing 7.1 Hybrid- ! main loop .

The kernel of the sequential-simulator main loop can be expressed as the light-weight ,

reactive-process program shown in Listing 7.1. It returns to its message system for more

events . The message-system layer for the sequential simulator (Listing 7.2) takes care of

sorting the events and getting external events from the message system of a CMB-variant

simulator. The message system of the sequential simulator is also a light-weight reactiYe

process:

1 PROCESS •seqsim; I* Sequential simulator process structure (only 1) •I

3 sequential_simulator_message_system(msys, sb)
4 PROCESS •msys;
5 STATE_FRAGMENT *sb;
6 {
7 break_state_fragment_into_events(msys,sb);
8 free_fragment(sb);

10 ~hile(top_of_list_event_is_not_stopper(msys))

11 {
12 (seqsim->entry)(seqsim,get_top_of_list_event(msys));
13 }
14 }

Listing 7.2 Hybrid-1 embedded message system .

It returns to the message system of the CMB-variant simulator for a fragment, which

it digests into individual events. After that, as long as the event with the smallest time is

. not a stopper , the message system will remove the event from the event list and deliver it

to the sequential-simulator kernel.

128

7 .1.4 The simulator output

Sending only the macro-element output events is not enough to satisfy the requirl'ments

for a CM B-variant simulator. Whenever the event-list time has increased. more is known

about the outputs. even if no output event has been produced. The ru le for eventual delivery

requires that null messages be generated.

Like the CMB-variant simulator , several variants of the hybrid-1 simulator have bec11

created, and they are characterized by how and when messages are sent. Eventual delivery

is also assured by the same indefinite-lazy evaluation mechanism (not shown in the listings

a.bovc). Three adjustable parameters are avai lable for the hybrid-1 simul ator:

Qveue-limiting: Messages are sent when an adjustable limit on the number of queued

output events is reached, or when null is returned by xrecv.

Demand-driven: Demand messages are sent after an adjustable delay, as measured by

t he number of successive nulls returned by xrecv while a macro-element

simulator is waiting for more inputs. Demand messages are sent to the

source nodes of the inputs whose stoppers are at the top of the event list.

Queued messages for that output addressed by the demand message are

sent when a demand message is received.

Eager-message: Each output has a prompter event that stores the sum of an adjustable

value and the simulated time of the last output action. When a prompter

event reaches the top of the event list, messages are sent for that output

and the prompter is resched uled.

7 .1.5 Expectation

Tight synchronization between elements in the same computing node greatly reduces the

volume of internode messages, especially null messages, by combining internode arcs having

common source and destination nodes into one single arc. Tight synchronizat ion , however.

can also reduce concurrency. When a simulator process is blocked beca use of a stopper

appearing at the top of the event list. elements that do not depend on the input of that

129

stopper are also prevented from 1naking !Jrogress. Concurrency is reduced becatt:,e this

forces different sub-circuits in the sa.nw node to progress at th e sanw rate. and ignores

non-s trict input conditions in which a.n element can still make progress when some of its

inputs are blocked.

log(time)

sequential

log(nodes)
Figure 7.3 Expected performance of the hybrid-1 simulator.

The purpose of this experiment is to const ruct a simulator that will do as little work as

possible at small N rather than be as efficient as the CMB-variant simulators at large N.

After all. we can already get CMB-variant- simulator performance by running a CMB-variant

simulator. We expect the simulator performance graph to start at N = 1 at sequential

simulator speed. 'vVe expect to see sub-linear speedup due to the lost concurren cy, load

imbalance , and extra work required to deal with the message system. We then expect the

performance to bottom out at a level above the CMB-variant simulator when N is large.

7 .1.6 Experimental results

Like the CMB-variant simulator and the sequential simulator, h,vbrid-1 is also written in

the form of a reactive program , making it suitable for sweep-mode simulation; however ,

a sweep-mode sim ulator has not been implemented. The real-mode simulator has been

implemented. and a 64-node Symult 2010 was used as the primary test vehicle. Although

simulation was performed using a multitude of simulation parameters , only a handful will

be shown because related variants produce similar results. The variants are:

130

----- Queue limit = l. 10 null xrecvs before demaud message.

Queue limit = .). :30 null xrecvs before demand message.

Queue limit = 20. Prompter delay = IOns.

-- --- - Prompter dela.y = :30ns.

Figur0 7.4 contains the s imulation resu lt of a. l!Jx 14 arra.v-multiplier running on a 6-1-

node S2010 for 10011-s simulated time. lt is s hown alone (left) and superimposed over the

Cl\lB-variant result (right).

hybrid-1 only

12

11

10

(j

.)

0 1 2 3 4 6 7
log2(nodes)

log2 (.seconds)

12

- ~-
'~ .

9

6

5 I
0 1

'-\:.:..
'·-"·
"~· . - ~~ .. -:.

2 3

Figure 7.4 A 1376-gate multiplier for 10011-s on a Symult 2010.

both

4 5 6
log2(nodes)

The general characteristic of these curves matches our expectation . In the multiplier

example, the extra work that the simulator has to do and the difficulty it has in subdividing

the multiplier for load balancing result in no speedup from N = 1 to 2. For larger N, the

curves show a slope of~ 1/2 until N = 32, where the curves level out. Between N = 32 and

64, the curves cross over those of the CMB-variant simulator. The demand-driven modes

perform consistently better than the queue-limiting modes. The eager-message modes per-

form well for small N, but they bend upward for large N due to an excess of null messages.

The more eager of the two curves bends upward sooner than the less-eager one.

131

Due to the combining of a rcs, hybrid-! cun·es are strong!~, influe nced by element dis-

tribution only when N is large. Figure / .. 5 contains res nlt~ o f simulation using randomized

element placement. Compared to Figure 1.4. the CM 8-variant curves are shifted upward

uniformly for all N , and the hybrid-1 curves are bent upward when N is large. The hybrid-!

curves show uttle change when N is small.

log2(s econds)

12 '

11

10

9 I

6

5
0 1 2

hybrid-1 only

3 4 5 6 7
log2 (nodes)

/og2(seconds)

12

11 k:.
10 1 .'\~'"-
9 I ,<:>.,_

·:-~.

8

7

6

.s
0 1 2 3

both

.s 6 7
log2(nodes)

Figure 7.5 A 1376-gat e mu ltiplier for 10011-s on a Symult 2010 with random placement.

Since one end of the hybrid-1 curves is pegged to the sequential simulator time, we can

also expect a larger change for the hybrid-1 simulator than for the CMB-variant simulator

when we increase the circuit activity level. Figure 7.6 contains the results of simulation using

the same multiplier circuit that is operated at a higher oscillation frequenc.v. The hybrid-1

curves are shifted upward by two octaves, whi le the CMB-variant curves are shifted only by

one octave. A high activity level is more favorable to the CMB-variant simulator because

fewer of the messages are null messages.

Results from the multiplier example in this chapter, and better results from other

circuits to be shown in Chapter 8, have confirmed that the hybrid- 1 simulator is working

and performing to our expectation . Our next step is to go beyond the limitations of the

1:3

I
12 I
1 r I

I

10 i .
~'·
I ---..~
I "'~ ·.

9 "'' -::_,,
,,,

132

hy brid -1 only

,,
R , ·:.-...

''::::..' :;_-~-~-~ ;;;· ,:~£':.!-
-
I

(j

0 2 3

'- --

4 5 6 7
log2(nodes)

12

11

10

9

8

7

6
0 1 2 3 4

both

', E
'·~·:.' c

·..:;: D
B

.) 6 7
log2(nodes)

Figure 7.6 A faster oscillating 1376-gate multiplier for 10011-s on a Symult 2010.

hybrid-1 s imulator to construct a new hybrid simulator that will converge to the CMB-

variant simulators when [\! is large.

133

Section 7.2 Progressive Hybrid Simulator (Hybrid-2)

The hybrid-1 simulator cannot achieve CMB-variant performance at large N because po­

tential concurrency is lost when non-strict conditions are ignored and elements in a macro

element are synchronized. Two separate mechanisms are used to recover the lost concur­

rency: first. when an input of an element becomes blocked. it must be allowed to continue

if it can still make progress (due to a non-strict input condition). Second, when some el­

ements are blocked, we must allow those that are not blocked to continue ahead of the

blocked elements.

When a stopper appears at the top of the event list. elements connected to the input

of the stopper may be blocked. Since hybrid-1 macro elements are simulated by sequential

simulators. when an element in a macro element becomes blocked. the entire macro element

is blocked. When an element becomes blocked in hybrid-2, the macro element is, in effect,

reorganized by moving the blocked element out of the macro element. More blocked elements

may result due to arcs leading from the blocked element to the new macro element. When

only unblocked elements remain. however, the macro-element simulator can continue to

make progress. When a blocked element has received more inputs and becomes unblocked,

it is put back into the macro element.

To take advantage of non-strict input conditions. stoppers in hybrid-1 are replaced by

blocker events in hybrid-2. A blocker appearing at the top of the event list does not cause

the simulator process to stop; instead, it is delivered like a normal event. For every blocker.

there is a matching anti-blocker; it has the same simulation time as the blocker and they

annihilate each other in the simulator. Macro-element inputs produce both blockers and

anti-blockers. Whereas the hybrid-1 simulator relocates the stopper as more state fragments

are received, the hybrid-2 simulator instead adds an anti-blocker with a time value equal to

the previous blocker, a.dds a ny events carried by the fragment, and adds a blocker with the

time equal to the new time of the hybrid-1 stopper.

134

When an element receives either a blocker. an anti-blocker. or a normal e w•nt. thP

element determines whether it is blocked. It is not blocked if a ll of its ill put s are unblocked

or if its remaining unblocked inputs contain a non-s tri ct input condition ; it is blocked

otherwise. When an unblocked element becomes blocked, it sends a blocker wit h a time

equal to the current inpu t event . vVhen a blocked elemen t becomes unblocked. it sends an

a nti -blocker with a time equal to the previous blocker.

I n a hybrid-2 simulator. when N is small. most of the element inputs are not blocked.

an d the simulation takes on t he characterist ics of a hy brid- 1 simulator. Wh en .\' is large.

many of the element inputs are blocked, a nd the simulat ion produces the efficiency of a

CMB-variant simulator. However. one clear disadvantage of hyb rid-2 . compared to hybrid-

1, is that internode a rc merging is no longer possible, and the simulator is potentially more

sensiti ve to ele ment placement .

7 .2.1 The mechanism

1 struct EVENT {
2
3

int e_type ;
int input_id;
int time; }

5
6
7

generic_gate(pp,ep)
PROCESS *pp;
EVENT *ep;

{

I • type of the event. • I
I * id of the element input. • I
I * time of the event. • I

9 if(ep->time < elernent_tirne(pp)) ep->time element_time(pp);

11 set_input_bits(pp,ep);
12 cornpute_state_and_blockage(pp);

14 if(was _blocked(pp) && !is_blocked(pp)) add_anti_blocker(pp,ep->time) ;
15 if(old_output (pp) '= new_output(pp)) add_output_event (pp,ep->time) ;
16 if(!was_blocked(pp) && is_blocked(pp)) add_blocker (pp,ep->time);

18
19
20 }

save_new_state(pp) ;
free _event(ep);

Listing 7.3 Generic logic-gate handler for hybrid-2.

A sample element entry func tion appears in Li sting 7.3. In addition to the usual input_ id

and time fields, the hybrid-2 event structure also contains an e_ type field to distinguish

among normal events. blockers. an d ant i-blocke rs . Since non-s tr ict input conditi ons <He

135

utilized. it is now possible for an element to receive events wit h a time value smaller than

the time of the element. These events are for inp uts that were previously blocked. but

the element was able to progress fu r ther because a non-st rict input condition was present.

These events do not contribute to the operation of the element, other than to determine

the current input state of t he ele ment. Therefore, when such an event is received. its event

time is simply set to the element time (9) before it is processed like other events.

Each element input con t ains a pair of vari a bles: One indicates the state. the other

indicates blockage. Each output con tains two pairs of variables, one for the old state and

blockage, and one for the new state and blockage. When a n event is received by the process,

the set_input_bits function is called to set or clear the affected bits in the input structure

of the element. The new output state and blockage are then com puted from the new input

state an d blockage (12). If the ele ment has become unblocked due to the event (14), an

an ti-blocker is sent. If the element has changed state (15), a normal event is sent. If the

element has become blocked (16), a blocker is sent. The ordering of lines 14-16 assures that

the event following a blocker is an anti-blocker.

T he sequential-simulator main loop, the kernel to t hese element p rocesses, tests the

blockage flag before and after an entry function is called; blocked elements are separated

from unblocked elements by t reating t hem differently. List ing 7.4 is the kernel written as a

heavy-weight reactive process :

1 sequential_simulator_main_l oop ()
2 {
3 MESSAGE *mesg;
4 PROCESS •proc ;

6 mesg = get_next_ event () ;
7 proc = process_table + mesg->pid2;

9 if(!blocked(proc))
10 {
11 (*proc- >entry) (proc, mesg->msg_body) ;

13 } else
14 {
15 i f (event _time (mesg) > element_time (proc))
16 {
17 queue_event (proc ,mesg) ;

19
20
21
22
23
24 }
25 }

} else
{

136

(*proc->entry)(proc, mesg->msg_body) ;
if(!blocked(proc)) move_queued_events_back_to_event_list(pp);

}

Listing 7.4 Hybrid-2 main loop

When an event is returned from the message system (which contains the event lis t),

the main loop identifies the receiver of the event (7) and checks its blockage flag (9). If the

element is not blocked, it is in the sequential-simulator domain and the event is delivered

to it as if it were in a normal sequential simulator (11).

If the element is blocked. the main loop checks its readiness to consume the event. The

event cannot be consumed if its time is larger than the time of the element. The element

lacks information about the future state of its blocked inputs necessary to consu me an event

that arrives at a future t ime. The event is queued for the element (17). If the event time

is less than or equal to the element time, the element has enough information to consume

the event, and the event is sent to the element (21) . If the element is now unblocked, its

queued events are moved back into the event list to be delivered again for the element .

Queued events cannot be delivered directly to the element when the element becomes

unblocked because they are ones that arrived while some inputs of the element were blocked.

There may be events for the blocked inputs that have yet to arrive and that need to be

delivered in the proper order (with respect to the queued events) when the element becomes

unblocked. Moving all queued events back into the event list is inefficient when the queue

is long and when moves have to be done frequently. The actual implementation of the

hybrid-2 si mulator contains an elaborate mechanism for minimizing wasted efforts, and

this accounts for the largest difference between the hybrid-2 presented here and the actual

implementation.

137

7.2.2 Experi mental results

Like the other simulators, hybrid -:2 is written in the form of a reactive-process program.

making it suitable for sweep-mode s imulation; but. as in the case of hybrid-1. a sweep-mode

simulator has not been crea.ted. Figure 1.1 contains the simulation results of a l4x 14 array-

multiplier running on a 6<1-node S2010 for 10011-s simulated time. It is shown alone (left)

and superimposed over both the Cf\IB-va.riant result and the hybrid-1 result (right).

----- Queue limit = 1. ---- ------- 10 null xrecvs before demand message.

log2(.seconds)

1:2

11

10

9

8

7

6

.')

4
0 1

Queue limit = 5. ---- 30 null xrecvs before demand message.

Queue limit = 20. - - - Prompter delay = 10ns.

2

--- Prompter delay = 30ns.

hybrid-2 on ly

3 4 -5 6 7
log2(nodes)

log2 (seconds)

12

11

10

9

8

7

6

5

4
0 1 2 3 4

Figure 7.7 A 1376-gate multiplier for 10011-s on a Symult 2010.

all3

5 6
log2(nodes)

The most noticeable difference between hybrid-1 and hybrid-2 curves in t his graph is

that whereas hybrid-1 curves level off at large N, hybrid-2 curves keep going down. Hybrid-2

curves start out very much like hybrid-1 curves because most of the elements in the hybrid-

2 simulators are running under the hybrid-1 mode. As more and more nodes are used in

138

the simulation. hybrid- 1 element simulators -,tart to b<'rome idle more frequently. and thPir

curves start to leve l off. In the hybrid-2 s imulator. instead of becoming idle . more oft lw

elements ente r the CM B-variant mode to provide additional speedu p over hybrid-1.

T he other remarkable aspect of hyb ri d-2 curves is that they are all very much alike

until that point where most of the hybrid-1 curves level off. It is after this transition point

that progress- promoting act ions begin to dominate, and a variety of different performance

res ults are produced, depending on the prop erties of t he progress-promoting action in use.

The hybrid-2 curves a ppear to converge toward the CM B-variant curves. but nothing

concl usive can be deduced from th is graph because a 64-node machine lacks sufficient nodes

to demonstrate this effect. The convergence is much more obviou s when elements are placed

randomly. Pl acement has a much stronger effect on the hybrid-2 simulator than it does on

the hybrid-1 simulator because random element placement greatly increases the number of

internode arcs for the hybrid-2 simula tor.

log2(seconds)

12

11

0 1 2

hybrid-2 only

3 4 .5 6 7
log2(nodes)

all 3
log2(seconds)

5

4
0 1 2 3 4 5 6

log2(nodes)

Figure 7.8 A 1376-gate mult ip lier for lOOps on a Symu lt 2010 with random placement

139

Figu re 1.8 shows the result of rand om element placement (same placemen t for all simu-

lations shown in this graph). The hybrid-2 curves converge immediately to the C~lB-variant

cun·es at N = 2. Reduction in internode null messages by bundling internode arcs allows

the hybrid -1 simulator to show a small speedup at small N.

Converge nce is also more evident \.,·hen we increase the c ircuit activ ity level. Figure 1.9

shows the results of simu lating the multiplier with enhanced activity level. Convergence

begins at a smaller N because the sequential-simulator time is now closer to the CMB-

variant time when N = l. The hybrid-2 curves start out closer to the CMB-va.riant curves.

and they converge to the CMB-varian t curves at N = 32.

I og2 (sec on cL~)
hybrid-2 only

12

7

6
0 1 2 3 4 5 6 7

log2 (nodes)

log2(seconds)

13

12

11

10

9

8

7

6
0 1 2 3

all 3

uentiaJ simulator

4

~D
B

.5 6 7
log2(nodes)

Figure 7.9 A fas ter-oscillating 1376-ga te multiplier for 100J.Ls on a Symult 2010 .

Although we do not have a large r machine for looking at cases where there are fewer

elements per node, we can reduce the number of elements per-node by using smaller test

circuits. We tes ted a 4 x4 array-multiplier that contains 116 gates. At N = 64, there are

no more than two gates in each node.

The C}J!B-va.riant curves diverge wildly; some of them do better than the hybrid -2

140

hybrid -:2 onl.v

10

9

8

~I _
7 ~"""--

6 1 ~
.')

0 5 6 7
log2(nodes)

log2(seconds)

10

9

8

7

6

5
0 1 2 3

Figure 7. 10 A 116-gate multiplier for 400ps on a Symult 2010

4

all :3

sequential
simulator

curves and some do worse. Overall, the hybrid-2 curves seem to follow the better CMB-

variant curves.

141

Chapter 8 Additional Performance Results

This chapter summarizes the simulation results of a few selected circuib that were used in

this research. They are generally presented in the following order:

I. Description of the circuits.

2. Sweep-mode s imulation results on an emulated multicomputer.

3. Real-mode simulation on a Symult 2010 with systematic element di stribution.

4. Real-mode simulation on a Symult 2010 with random element dist ribution.

5. A few sets of real-mode s imulation on smaller circuits of the same type.

Each se t of real-mode simulations conta ins results from running the CMB-variant simulator.

the hybrid- ! simulator, and the hy brid-2 simulator. Results from other multicomputers are

similar and are not shown.

142

Section 8.1 2-D Clock Network

8.1.1 Description

A clock network is an arbitrarily extensible array of logic gates that oscillates when properly

initiali zed. The frequency of the oscillation is determined by local characteristics, and

the phase at any node in the network is locked to the phase of the adjacent nodes. A

clock network can be used to provide synchronous communication for an arbitrarily large.

bounded-degree multicomputer network .

ack

data out

register

req

data out

Figure 8.1 A FIFO consisting of 4 units.

A clock network is a generalized self-timed FIFO circuit. As shown in Figure 8.1. a

FIFO is made of a number of FIFO units connected into a chain: a FIFO unit contains a

controller and a register. The registers in a FIFO are connected in a chain via their data

inputs and outputs; the controllers are connected via their request and acknowledge signals.

Each controller provides a clock signal to enable and disable the latches in its register. The

acknowledge and request signals allow the controllers to determine when the FIFO unit

immediately preceding it has data for it. and when the F IFO unit immediately following it

has taken the data from it.

Each FIFO · unit leads but is never more than a half cycle ahead of the following unit,

and lags but is never more than a half cycle behind the preceding unit. Thus, if registers

were computers and register-to-register links were communication channels, the data one

computer latches in at its kth clock tick is the data put out by the preceding computer at

143

req

Figure 8.2 A (-element FIFO consisting of 4 units .

that computer's kth clock tick. With a little extra delay. synchronous communication can

also take place in the reverse direction.

A simple FIFO control can be constructed using a C element and an inverter. A C

element is a state-storage device such that when al l of its inputs are high, the output

becomes high ; when all of its inputs are low , th e output becomes low; and the output

remains unchanged otherwise. In the FIFO shown in Figure 8.2, the output of a C element

is connected to an input of the C element in the following unit. The inverted output of a

C element is connected to an input of the C element in the preceding unit. The output of

the C element is also used as the clock to the register.

Figure 8.3 A 3 X 4 array of se lf-oscillating FIFO units .

1'-!..J

The FIFO structure can be extended to a higher dimension by cross-connecting a set

of FIFO controls with another set of FIFO rontrols . Figure ~:u contains a two-dimensional

arra~; of 12 FIFO units with the regi sters omitted. The edges are terminated in such a way

that the array will oscillate. This is essentially the same network that is used in the clock-

network simulation. except that each 4-input (" element is replaced by a 12-gate circuit.

The circuit in Figure 8.3 has 1.51 gates.

8.1.2 Sweep-mode results

l og2(sweeps)

21

20

19

18

17

16

15

14

13

12

11

10

9

8
0 1 2 3 .s 6 -

I 8 9 10 11
log2 (nodes)

Figure 8.4 Sweep-mode CMB-variant simulation of an 1841-gate clock network.

Figure 8.4 contains the sweep-mode results of an 8x 16 clock-network containing 1841 logic

gates. The speedup is linear until there are fewer than 4 elements in each node. The null

message overhead is a little larger than 8 at N = 1, and the crossover occurs between N = 8

and N = 16. Unlike the multiplier example we used in previous chapters. the clock network

shows a much greater difference between the most-ea.ger variant and the lazier variants. This

145

is typical of circuits with many tight loops. where unnecessary null me~sages can persist as

they travel around the loops. The lazier ,·ariants annihilate such null messages to achieve

an improved performance over the most-eager variant.

Al so. unlike the multiplier example, load balancing is s imple because a clock network

::. ho,vs a steady and uniform activity level at every part of the circuit. Although the CMB­

variant simulators are relatively insensitive to the effect of load balance and activity level,

the hybrid simulators are more favorably influenced, as we can see in Figure 8 .4.

8.1.3 Real-mode results

The performance at N = l and the linear speedup for most of the lazier CMB variants

fit the sweE'p-mode prediction well . The real-mode curves differ from the prediction in

that the eager CMB-variant curve is not uniformly worse over all N, and the curve for

the adaptive demand-driven variant worsens more rapidly than predicted. These two CMB

variants are not robust in circuits that contain many closed loops where null messages can

circulate. because the persistence of the null messages depends on run-time conditions such

as congestion and order of message arrival. As a consequence, the result of the simulation

can vary significantly from run to run, but when N is small. the behavior is more restricted,

and the prediction of the sweep-mode simulation prevails.

The hybrid-1 and hybrid-2 curves are similar to those of the multiplier circuit, except

these curves show a greater speedup due to better load balance for the clock network. Thus,

these curves are more similar to those of the multipli er with an enhanced activity level -

there is no significant initial penalty at N = 2. The activity level for this multiplier is more

uniform because a new wave of activities is injected into the multiplier before old ones have

com pleted. The hybrid- 1 curves flatten and bend upward between N = 16 and 32 , while

the h_ybrid-2 curves continue straight down as the)· close in toward the CMB-variant curves.

T he next set of graphs shows the effect of randomized element distribution. The CMB­

variant curves have shifted very little, but the hybrid-1 curves become much shallower, and

the hybrid-2 curves show the characteristic upward hump for random element distribution.

146

Real-mode results for a n 8x 16 network

log2 (.~econds) CMB-variant

!-I

(j

5

4
0 1 2 1 4 5 6 7

I og2 (nodes)

log2(seconds) hybrid-2

14

13

12

11

10

9

8

7

6 ~ .s

4
0 1 2 3 4 5 6 7

log2(nodes)

l og2 (seconds)

14

13

12

11

10

9

8

7

6

5

4

hybrid-1

----..-

0 1 2 3 4 5 6 7
log2(nodes)

log2(seconds) all 3

14

13

5

4
0 1 2 3 4 5 6 7

log2(nodes)

Figure 8.5 An 1841-gate clock network for 50!J.s on a Symult 2010 .

14i

Figures 8.-1 and 8 . .5 show the results in regions where there are many more logic l'lf'­

ments than nodes. The three additional SE>ts of simu lation results use progres!>ively smallf'r

clock circuits: the last one has, on average. one logic gate per node for X = (j..J. As t lw

number of gates is reduced, speedup achieved by the hybrid simulators is reduced because

the advantage that can be obtained from running sequential, macro-element simulators de­

creases. The CMB-variant simulators, which reflect the ratio of null messages and evf'nl

messages. show very little change relative to the sequential simulator.

The lazy CMB-variants are hardy and robust simu lators: They show good speednp

re lative to themselves al l the way clown to 1 element per node in a fashion consistent with

the sweep-mode prediction.

148

Real-mode results w ith r a ndom e le ment distri bution

log2(seconds) CM B-variant

14

13

6

5

4 I
0 1 2 3 4 5 6 7

l og2 (nodes)

log2(second.s)

14

hybrid-2

13

12

11

10

9

8

7

6

5

4
0 1 2 3 4 5 6 7

log2(nodes)

I og2 (seconds)

14

13

12

11

10

9

8

7

6

5

4

hybrid-1

0 1 2 3 4 5 6 7
log2(nodes)

log2(seconds) all 3

14

13

12

11

10

9

8

7

6

5

4
0 1 2 3 4 5 6 7

log2(nodes)

Figure 8.6 An 1841-gate c lock network for 50p.s on a Symult 2010.

6

5
0

149

R eal-mode results for a -l x 8 ne twork

2 3 4 5 6 7
loy2(nodes)

I om(s • conds)

[:3

hybrid-1

12

11

10

9

8

6

0

-:/
.j

2 3 4 5 6 7
log2(nodes)

I og2 (seconds) hybrid-2 l og2 (seconds) all 3

13 13 l
12 12

~.;.- ..- ' ' ' r ·-.:,
"~~ .. '

"Y. ' , '

11 11 '\.' '
~- ', '

··~ '

10 10 ~'l~~>'
~ ', .., '

9 9
. '

8 8

7 7

6 -~~ 6

5 5
0 1 2 3 4 .) 6 7 0 1 2 3 4 .s 6 -

I

log2(nodes) log2(nodes)

Figure 8.7 A 473-gate clock netwo rk fo r 200;_Ls on a Symult 2010.

150

R ea l-mode res ults fo r a -1 X 4 network

log2(seconds) CMB-variant

12

5
0 1 2 3 4 5 6 7

log2(nodes)

l og2 (seconds) hybrid-2

12

11

10

9

8

7

6

5
0 1 2 3 4 5 6 7

log2(nodes)

I og2 (sr..conds)

12 '

11

10

9

8

7

6

.s

---....
'··

' ... :~.::.::.' ..

hybrid - 1

0 1 2 3 4 5 6 7
log2(nodes)

l og2 (seconds)

12

all 3

10

9

8

7

6

5
0 1 2 3 4 5 6 7

l og2 (nodes)

Figure 8.8 A 24 1-ga t e clock network for 200p,s o n a Symu lt 2010.

151

Real-mode res ult s for a 2 X 2 network

log2(seconrl.s) hybrid -1

12

11

10

9

8

6
0 1 2 :3 4 .s 6 7

log2(nodes) log2 (nodes)

logz(seconds) hybrid-2 l og2 (seconds) all 3

12 12

11 11

10 10

9 9

8 8
..:::.....-------=--

7 ' ' 7

6 6
0 1 2 3 4 5 6 I 0 1 2 3 4 5 6 7

log2(nodes) log2(nodes)

Figure 8.9 A 65-gate clock network for 500J.Ls on a Symult 2010 .

Section 8.2 Tree-Ring Example

8.2.1 Descript ion

152

Unlike t he multiplier and the clock network. the tree-ring circuit has no identifia ble fun c­

tions; it is one of the circuits we in vented to tes t the simulator. It is made of a cycle of 1-to-8

pulse di stributors whose outputs a.re then summed together by a ring of 3-input OR-gates .

Each 1-to-8 pulse di stributor is composed of seven 1-to-2 distributors connected in a tree

structure . A test ci rcui t with 12 distributors appears in Figure 8.10:

Figure 8.10 A 12- unit tree ri ng .

Each 1- to-2 pulse dis tributor has one input and two outputs. Pulses a ppearing at the

153

distributor·s input are alternatively passed to one of its outputs. Thus. a l·to-8 distributor

spreads the pulses among its eight outputs. A l-to-:2 pulse di s tributor consists of a toggle

flip flop, made of 9 logic gates, and a 1-to-2 demultiplexor. made of 4 logic gatE's:

•

• •
Figure 8 .11 A 1-to-2 pulse-distributor circuit

8 .2.2 Simulat io n results

Sweep-mode simulation has not been done for this circuit. The graphs on the following

pages are for the simulation of a 12-unit circuit, using both systematic and random element

dist ribution; a 9-unit circuit; a 6-unit circuit; and, finally, a 3-unit circuit. Tree-ring circuits

have a lower activity level than the others examined here because only one of the eight

leaves in each unit can be active at any time. Accordingly, the CMB-variant curves show

an overhead of four to five octaves relative to the sequential simulation results. The CMB­

variant speedup is, otherwise, Linear with respect to itself.

The hybrid-2 curves are not as smooth as those of the other circuits because each

tree-ring circuit contains two sets of sub-circuits with very different properties (the pulse

distributor and the ring of OR- gates). Partitioning of the circuit over different-s ized multi ­

computers produces very different locality relations, which strongly affect the performance

of the hybrid simulators. The effect of locality can also be seen in the simulation with ran­

dom element distribution. While the hybrid-2 curves for the clock network merely worsen,

those for this circuit converge immediately to the CMB-variant curves at N = 2. The

C:vl.B-variant simulator, however, is not strongly influenced by locality.

The C:VIB-variant curves, which are pegged to the ratio of null messages verses event­

containing messages, show very little change as the size of the circuit is decreased. The

154

hybrid simulator curves show a steady Rattening in slope, and hyb rid-! curves Pventuall.\·

lose all speedup when there are only 281 gates left in lhe circuit.

155

Real-mode results for a 12-unit network

log2(seconds) CMB- variant log2(seconds) hybrid - l

12 12

11

10

9

8

I

6

5

4
0 l

"' ' '~ ,', , .. , '
~

2 3 4 5 6 7
log2(nodes)

log2(seconds) hybrid -2

12

11

10

9

8

7

6

5

4
0 1 2 3 ·I 5 6 I

log2 (node.s)

11

10

9

8

I

6

5

4
0 1 2 3 4 5 6 7

log2(nodes)

l og2 (seconds) all 3

12 k
11

10

9

8

7

6

5 """' --

4
0 1 2 3 4 5 6 I

l og2 (nodes)

Figure 8.12 A 1142-gate tree network for 50p.s on a Symult 2010.

156

Real-mode resu lts w ith r a ndom e lement distribution

log2(seconds) CNIB-\·ariant log2(.second$) hybrid-1

12

11

10

9

8

7

6

.5

4
0 1 2 3 4 5 6 7

l og2 (11 ode.~)

log2(seconds)

12

hybrid-2

11

10

9

8

7

6

5

4
0 1 2 3 4 5 6 I

/og2(nodes)

12

11

10

9

8

7

6

4
0 1 2 3 4 5 6 7

log2(nodes)

log2 (second$)

12 k

all 3

11

10

9

8

7

6

4
0 1 2 3 4 5 6 7

log2(nodes)

Figure 8.13 A 1142-gate tree network for 50jjs o n a Symult 2010.

157

Real-mode results for a 9-unit network

log2(seconds) CM B-variant l og2(srconrl.<) hybrid -1

12 12

Ll

10

9

7

6

.s

4
0 1 2 3 4 5 6 7

I og2(11 odes)

log2(seconds)

12

hybrid -2

11

10

9

6

5

4
0 1 2 3 4 5 6 7

log2 (nodes)

ll

10

9

8

7 -·-.:.~_ ::::: .
•'

6

5

4
0 1 2 3 4 5 6 7

log2 (nodes)

l og2 (seconds) aU 3

12

11

10

9

8

7

6

5

4
0 2 3 4 5 6 7

log2(nodes)

Figure 8.14 An 857-gate tree network for 70J.Ls on a Symult 2010

158

Real-mode resu lt s for a 6-unit network

lO[J2 (.~econds) C :VIB- \'ariant

12

11

10

9

7

6

.5

4
0 1 2 3 4 5 6 7

log2(nodes)

log2(seconds)

12

hybrid-2

11

10

9

T

6

5

4
0 1 2 3 4 5 6 7

log2(nodes)

lug2 (·'tcunrls)

12

11

10 I

9 I

7

6

.5

4

hybrid -1

0 2 3 4 5 6 7
log2 (nodes)

log2 (seconds) aU 3

12

11

10

9

8

7

6

.5

4
0 2 3 4 5 6 7

lo!n(nodes)

Figure 8.15 An 572-gate tree network for 100J.Ls on a Symult 2010

159

Real-mode res ults for a 3-unit network

log2(seconds) CMB-variant log2(seconds) hybrid -1

12 12

11

10

9

~

7

6 I

5 I

-1 I
0 1 2 3 4 5 6 7

log2(nodes)

log2 (seconds) hyb rid-2

12

11

10

9

8

I

6

5

4
0 1 2 3 4 .s 6 I

log2(nodes)

ll

10

9

8

7

6

5

4
0

; - .·.
, ... _:..- -":._· '":::.:;;"i:~

1 2 3 4 5 6 7
log2(nodes)

log2(seconds) all 3

12

11

10

9

8

7

6

5

4
0 1 2 3 4 5 6 7

l og2 (nodes)

Figure 8.16 An 287-gate tree network for 200}-Ls on a Symult 2010 .

Section 8.3 F IFO Lo o p

8.3.1 D escript io n

160

While the clock network example uses a 2-D array of cross-connec ted FIFO controllers . the

FIFO loop example uses a circularly connected linear array of FIFO cont ro llers and FIFO

registers . (Refer to the fi gu re in the clock network section.) The registers a re made of a

bank of _ cross-coupled latches with clocked inputs. Each latch is mad<> of 4 logic gatPs. as

shown in Figure 8.17.

Figure 8.17 Circuit for one latch.

Since t he design of the controller constrains the FIFO to contain no more t han 1 unit

of data for every pair of FIFO units, and since we chose to initiali ze the FIFO loop with

alternating data units of all ones and all zeros, the number of F IFO units must be a multiple

of four .

8.3 .2 S imulation results

Figu re 8 .18 contains the CMB-variant sweep-mode simulation result using a loop of 28

FIFO units. The FIFO loop is an example with a lot of usable concurrency. However.

unlike the clock network, the lazier simulation variants are not a ny better than the most

eager simulation variant, evidently due to the majority of the circuit loops being found in the

cross-coupled latches. Non-essential null messages do not remain long in the cross-coupled

latch because the load signal a nd the reset signal must be long enough for t he cross-coupled

latch to sett le down to a final value. In doing so, the input to one of the cross-coupled

161

latches is held low for a sufficiently long time that all free-running null messages in the

cross-coupled la t ch are eliminated clue to the non-s trict input condit ion of the NAND-gates.

Yet, there are st ill essential null messages in the simulation , and the overhead estimate

of the sweep-mode simulation is lwtween 2 and 3 octaves. The curves should show a linear

speedup uptoN = 2.56 be fore t hey start to level off.

log2 (sweeps)

19

18

17

16

15

14

13

12

11

10

9

8
0 2 3 4 .) 6 7 8 9 10 11

log2 (nodes)

Figure 8.18 Sweep-mode CMB- variant sim ulation of an 1067-gate FIFO loop .

The real-mode CM B-variant curves for the FIFO loop circuit matches the sweep-mode

predictions well . The curves for the hybrid simulators are also as expected . T he hybrid- 1

curves flatten out and cross over the CMB-variant curves earlier than they do in the previous

examples because the gates in this ci rcui t are under non-strict input conditions most o f th e

time, and because hybrid-1 simulators are unable to make use of such conditions.

One unique characteristic of t his circuit is that when the circuit size is reduced to 4

FIFO units. all three sets of results show evidence that the curves are bending upward at

N = 32. This characteristic is not observed in the sweep-mode result. and is an indica.tion

that some tight loops are broken up and distributed across node boundaries. At N = 64.

162

the re a re 2 or 3 e lements per nod e. \Vi th granul arit.v approachi ng the number of gates in a

cross-coupled latch. a misalignment in a sys tematic distribution will cause t he majority of

the cross-coupled latches to be split ac ross node boundaries.

163

Real-mode result s for a 28-element loop

log2 (secorzds) CMB-variant log2(.second.s) h.vbrid -1

13 1:3 I
l2 f.

~(: ~

11
_.,.,<>,

10

9

8

6

5

4

'~<:~,
'\:\.'.~,

0 1 2 3 4 5 6 7

log2 (seconds)

l3

12

11

10

9

8

7

6

5

4

log2(nodes)

hybrid-2

0 1 2 3 4 5 6 7
log2(nodes)

12

11

10

9

8

7

6

5

4
0 2 3 4 5 6 7

log2(nodes)

l og2 (seconds)

13

12 '(:,
-"<~

11 ''<·.~,
~,.·,

10 ,,~~

9

8

7

6

5

4

all 3

0 1 2 3 4 5 6 7
l og2 (nodes)

Figure 8.19 An 1067-gate FIFO loop for 100{Ls on a Symult 2010.

164

Real-mode res ults with random e lement distribution

log2(.stconds) Cl\ID- \·ariant log2 (~econds) h.vbrid- 1

t:3

12 r<.
,.. ... ~ ...

- "<:;. -·.
11 ·-.-- ~ , ·­., ' ... -
J 0 I '<·,. ,' ·.... ' -
9

'-

7

6

,')

-1
0 1 2 :3 -I .') (j 7

lorn (nvdes)

log2(seconds) hybrid -2

1:3

12

11

~ 10
I ,,

9 I . >~,,
,,

' ,
'' ... ,

7
~

6

5

4
0 1 2 3 -1 5 (j 7

log2(nodes)

13

12

11

10

9

8

7

6

5

-1 i

0 1 2 3 4 5 6 7
l og2 (nodes)

log2(seconds) all 3

13

12

11

10

9

8

7

6

.')

4
0 1 2 3 4 5 6 7

log2(nodes)

Figure 8.20 An 1067-gate FIFO loop for lOOp.s on a Symult 2010 .

165

Real-mode results for a 12-element loop

/og2(seconds) C!\:fB-variant log2(second.s) hybriu-1

13

12

11

10

9

8

7

6

5

4
0 1 2 3 4 ~ 6 7

log2(nodes)

log2(seconds) hybrid-2

13

12

11

10

9

8

7

6 ' ' ' '

5
-~

4
0 1 2 3 4 5 6

...,
I

log2(nodes)

13

12

11

10

9

8

7

6

5

4
0 1 2 3 4 5 6 7

log2(nodes)

l og2 (seconds) all 3

13

12

11

10

9

8

7

6

.')
-~~

4 I

0 1 2 3 4 5 6 7
log2(nodes)

Figure 8.21 A 459-gate FIFO loop for 100J..Ls on a Symult 2010 .

166

Real-mode result s for a 4-element loop

log2(seconds) CiviB-variant log2 (seconris) hybrid-1

l3 13

12 12

11

lO

9

8

7

6

5

4

. '

0 2 3 ~ 5 6 7
log2(nodes)

log2(seconds)

13

hybrid-2

12

11

10

9

8

7

6

5

4
0 1 2 3 4 5 6 7

log2(nodes)

11

10

9

8

6

5

-!
0 1 2 3 4 5 6 7

l og2 (seconds)

13

12

11

4

l og2(nodes)

all 3

0 1 2 3 4 5 6 7
log2(nodes)

Figure 8.22 A 155-gate FIFO loop for :200f.Ls on a Symult 2010.

167

Chapter 9 Summary

Section 9.1 Economy and Performance of a Multicomputer

Ylulticomputers are appealing because they improve (and. with advances in VLSI techno!-

ogy. promise to continue to improve) the two most prominent figures of merit of computing

systems: performance and economy. Performance is proportional to the processing speed

of a machine:

Performance ex: processing speed

Economy is inversely proportional to the cost of running a program; it is, therefore, both

proportional to the processing speed and inversely proportional to the cost of the machine:

Economy ex: processing speed
machine cost

In most cases, performance and economy are at odds with each other because higher speed

is achieved by using faster circuits; however, the increase in the machine cost is greater than

the increase in the processing speed. In a multicomputer, speed is increased not by having

faster circuits, but by having many cooperating computers. Hence, it is possible to improve

economy by increasing performance without causing a proportionally larger increase in the

machine cost.

Path A

single­
processor
computer

Path B

DO
oo·

DODO
-70000

DODO
DODO

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

Figure 9.1 Two idealized multicomputer evolution paths.

Whether one agrees that economy can be improved, however, depends on how one sees

the basic premise of multicomputing. Shown in Figure 9.1 are two idealized evolutionary

168

paths leading from the same single-node computer. \Ve will, in our idealized model. consider

computers to be made entirely of memory, because a fairly fast processor can be built in

the area required for a few thousand bytes of fast memory. When we compare two single­

processor computers, we compare two collections of memory attached to two identical,

zero-sized processors . Thus, any two single-processor computers in our comparison have

the same speed regardless of their size differences. We will also assume that programs do

not take up more memory as they become more distributed.

Along path A, we build anN-node multicomputer by putting together N copies of the

single-node computer. Performance has improved by a factor of N because there are now N

single-node computers, and each is as fast as the original; economy has not changed because

the totn.l machine cost has increased by the same factor .

Along path B, the circuitry of a single-node computer is regrouped into N smaller

nodes. Performance has improved by a factor of N because each of the N smaller nodes is

as fast a." the original; economy has also improved by a factor of N because performance

has improved while the cost of the machine has remained constant.

These paths A and B also have a strong influence on multicomputer programming. The

cost C of running a program, in this idealized model, is:

C = SNT

S = Price per node per unit time (ex size of the node).

N = Number of nodes in the machine.

T = Time it takes for the program to complete.

When drawn as a 3-D log-log -log plot, which we call the cost space, the surfaces of constant

cost are given by:

log(S) + log(N) + log(T) = log(C)

Constant-cost surfaces, called the C planes, appear as planes perpendicular to the

(1.1,1) direction vector. Suppose we have an application whose single-node cost is marked

by point Pin Figure 9.2. If we can find a point that is lower than P for the same application,

169

log(T)

log(S)

Figure 9.2 Multicomputer cost space.

w(' have found a point with higher performance; if we can find a point that is on a plane

closer to the origin . we have found a point with lower cost.

log(T)

log(S)

log(T)
a cost-ineffective curve
a cost-effective curve

t
p

' 0'
0 0 '
0 0 0 '
o o o o'
0000 ;,-"
oooooo ,
ooooooo ,
oooooooo ,
000000000
0 0 0 0 0 0 0 0 0 0 '
00000000000,
000000000000,
0000000000000,

D attainable region

§lower-cost region

Figure 9.3 Intersection with A plane

~
log(N)

Surfaces corresponding to path A correspond to constant node cost; thus they appear

a.s planes perpendicular to the S-axis. We call such a plane an A plane. Figure 9.3 shows

the A plane containing P. The intersections of an A plane with C planes form lines of

slope -1 on the A plane. Since super-linear speedup is impossible by our definition. the

grey area shown in Figure 9.3 (right) is the possible range of N and T. The cheese area

170

is the range intersected by those C planes that are closer to the origin than the C plane

containing P. The non-cheese area (which is the same as the grey a rea in this case) is the

range intersected by those C planes that are further away from the origin. The only way to

have the application be cost-effective is for it to exhibit a linear speedup starting at .V = l.

Any deviation from linear speedup means that the performance curve of the application

has crossed into a C plane that is further away from the origin, and that the program will

be more costly to run. In practice, there are many contributing factors to the actual cost

of running a program that may more than make up for the inefficiency, but. in the long

run, what we can afford to bu.v and what we are able to build will ultimately determine the

performance improvement we can get by adding nodes.

log(T)

plane

log(S)

Figure 9.4

log(T)
a cost-effective curve
a cost-effect ive curve

t
p ~~ vv vvvvvvvvvvv

~ 00 ~~ 0 0000 00 0000
0 ~00 0 ~~ 0 0000 0 0000
0 0~~0 00~~ 00 0 00000
0 0 0 '-\.0 0 0 0 ~, 0 0 0 0 0 0 0 0
oooo ~oooo b oo o oooo
00000 ~0000 00 0 0000
000000 ~ 000 0000000
0000000 ~ 0000000000
00000000 ~ 00 00 0000
00 0 000000 ~ 0000000
000000000000 000 000
0 0 0000000000 00 00 0 0
0000000000000 0 0 0 00
0 0 00000000000000 0 0

attainable region t::(N)
0

lower-cost region

Intersection with B - plane .

Surfaces corresponding to path B appear as planes perpendicular to the (1,1,0) direction

vector. We call such a plane a B plane. All points on a B plane have the same SN product.

and correspond to multicomputers with the same total cost. The plane that contains P is

shown in Figure 9.4. The intersections of a B plane with C planes form horizontal lines

on the B plane. An appli cation becomes cheaper to run if it shows any speedup relative

to the 1-node case. Performance is improved because the time required to perform the

computation is reduced. Cost is reduced because the computation is now on a C plane that

171

is closer to the origin. The area that is both grey and cheese is that range that is attainable

by the a.pplica.tion, and where both performance and economy are improved.

In practice. neither of the two paths can continue indefini tely. ln path A, we are limited

by the maximum physical size of a machine we are able to build , and by the amount of

concurrency we can find in computations. In path B, we are limited by the minimum

amount of hardware required to construct a node - computers are not made entirely of

memory and most programs do take up more memory as they become more distributed.

node size

single
processor
computer

B

r ultimate
'-------------~ --' machine

node count
Figure 9.5 Two idealized multicomputer evolution paths in the path space.

To continue, path A mu st use smaller and smaller nodes and path B must use more and

more hardware. The two paths (Figure 9.5) will eventually meet at t he ultimate machine

where all nodes are of a sensibly minimal size and the machine contains as many nodes as

we can assemble in one machine.

Section 9.2 Overhead and Latency

Along path B, we encounter a series of multicomputers with progressively smaller nodes .

Those with single-board nodes are called the medium-grain multicomputers; examples of

medium-grain multicomputers are the Cosmic Cube, the iPSC/1, the iPSC/2, and the

Symult 2010. Those with single-chip nodes are called the fine-grain multicomputers; an

example of a fine-grain multicomputer is the Mosaic. Due to the reduced node cost when

nodes become smaller and more abundant, the programming emp hasis for a multicomputer

shifts from one of achieving a linear speedup to one of exploiting the maximum concurrency.

172

Since medium-grain nodes are few and expensive. the primary goal of programming

such multicomputers is to profitably utilize all available CPU c.vcles. Cycles can be lost

to sources in the application itself: load-imbalance. ext ra synchronization, and insufficient

concurrency: these internal delays are called overheads. Cycles can also be lost to sources

in the system: message handling, kernel operation. and network congestion: these external

delays are called latencies. In a medium-grain multicomputer, overheads and latencies

are countered by employing at least several times more concurrency in the program than

there are nodes in the multicomputer. The weak law of large numbers, together with the

clustering of related elements. covers most of the problems . Nodes are seldom idle because

the chance that all of their elements are blocked is low. The cost of message transaction s

is low because clustering causes most of t.he interactions to take place between elements of

the same node.

To exploi t more concurrency, we must use more nodes in the multicomputer and fewer

program elements in each node. Although we can no longer overwhelm overheads and

latencies by an abundance of concurrency, we no longer have to be obsessed with linear

speedup, because nodes become cheaper as they decrease in size. Instead, programming for

fine-grain multicomputers emphasizes the exploitation of all available concurrency in the

program. Factors that prevent the exploitation of available concurrency are distinguished

from factors that merely require the use of more nodes.

Latencies are factors that can prevent the full exploi tation of concurrency. For example,

when a message is delayed enroute to a waiting element. the element is blocked and the

program may not progress as fast as it could. Overheads, on the othe r hand, do not prevent

the full exploitation of concurrency. When an element is blocked waiting for a message

that has not been produced, it is blocked only because the program has less concurrency

than there are nodes . Synchronization operations, such as the use of null events in the

conservative discrete-event simulators, are also overheads: They keep more of the nodes

busy without interfering with the exploitation of concurrency in the system being simulated.

173

An element with unconsumed normal events may sti ll be blocked awaiting a null eve nt. If

the requ ired null event has been produced and sent, we would attribute the blockage to

message latency ; if the null event has not been produced , then we would attribute the

blockage to lack of concurrency.

Section 9.3 Fine-Grain Multicomputer Programming

To fully exploit the concurrency of a program, we must remove all latencies and overheads.

Overheads can be mitigated by putting one program element in each node. but latencies

can only be reduced by careful hardware and software design.

On the hardware side. message latency can be reduced with high- speed routers. These

routers move messages in the network via a modified form of circuit switching called worm­

hole or cut-through routing, which moves a message one step through the network in a time

comparable to one m emory cycle. Since a router is able to store and fetch messages at a

rate close to the bandwidth of the memory, sending a message from one node to any other

node is comparable to copying the same message from one buffer to another buffer.

On the software side, we must. without giving up generality, provide the thinnest cush­

ion possible between the processes and the hardware. The Reactive Kernel and a fine-grain,

light-weight programming environment, such as Reactive-Cor Cantor, make an ideal com­

bination because the program is never further than one function call away from the system.

The execution units for these programming environments, especially the more restricted

ones like Cantor, are small enough that nearly all of the concurrency in the program can

be exploited .

We have aimed in the direction of fine-grain multicomputers in all of our research. and

our work on the discrete-event simulation is no exception. The CM B-variant simulator is

ideally suited for fine-grain machines because it is written in a fine-grain notation, and is

able to fully exploit the concurrency of the system it simulates. The simulator takes on a

large overhead at N = 1, but this overhead does not prevent the simulation from attaining

174

a large speedup at a large N. In many of the logic circuits we tested . near-linear s peedup

continues until there are only two or three elements in each node .

Since the C~v!B-variant simulator does not use a ny special techn iques to reduce t he o\·er­

head on a medium-grain multicomputer, the qualities that contribute to the perform a nce

characteris tics of the simulator persist as the simulation becomes more distributed . The

hybrid simulators were created to demonstrate the effect of those techniques . The overhead

is reduced when N is small, but the effect of t hese techniques vani shes and t he performance

converges to that of the CMB-variant simulator when N is large.

Section 9 .4 The Next Frontier

vVe have fully dispersed all available concurrency in a di screte-event simulation program

when we put one element on each node. If there were more nod es in a mul t icomputer than

elements in the simulation, we would not be able to utilize those leftover nodes. However,

we can st ill change the program to one t hat contains more concurrency. In a medium­

grai n multicomputer, where it is necessary to use concurrency to overwhelm lat e ncies a nd

overheads, rollback simulators such as Time Warp seek to produce additional concurrency

by computing on speculation .

The memory in each node of a fine-grain multicomputer is in sufficient for s toring the

previous states of its element in a rollback simulator. However, when there are more nodes

than elements, previous states can be stored on unused nodes. When an element has reached

a synchronization point, where its future is to be decided by a message that has yet to arri ve .

the element picks a possible outcome and ships a copy of its old self to an unused node for

storage . Alternatively, the element can make a copy of its new self, which it spawns and

runs on an unused node. But rather t han becoming dormant, the old self can continue

to run and produce more copies until all possible outcomes have been exhausted. This is

the concurrent branch-and-bound simulator; it is the next frontier to be explored when a

fine -grain multicomputer becomes a vailable.

175

Chapter 10 Bibliography

[1] G.A. Agha, Actors: A :viodel of Concurrent Computation in Distribu ted Systems,

MIT Press, 1986.

[2] W.C. Athas, and C.L. Seitz, Multicomputers: Message-Passing Concurrent

Computers, IEEE Computer, August 1988.

[3] C.L. Seitz, J . Seizovic, and W-K. Su, The C Programmer's Abbreviated Guide to

Multicomputer Programming, Caltech-CS-TR:88-1, 1988.

[4] W-K. Su, R. Faucette, and C.L. Seitz, C Programmer 's Guide to the Cosmic Cube,

Caltech CS 51.50:DF:84, 1984.

[5] J. Seizovic, The Reactive I\ erne/, Caltech-CS-TR-88-10, 1988.

[6] G.M. Birtwhistle, 0-J Dahl, B. Myrhaug, and K. Nygaard, Simula Begin,

Petrocelli, New York , 1973.

[7] Dan Ingalls , The Smalltalk 76 Programming System: Design and Implementation ,

Proceedings of the Fifth ACM Conference on Principles of Programming Systems,

Janurary 1978.

[8] C.A.R. Hoare, Communicating Sequential Processes, CACM 21(8):666-677, August

1978.

[9] C.R. Lang, The Extension of Object-Oriented Language to a Homogeneous,

Concurrent Architecture, Caltech-CS-TR-5014, May 1982.

[10) InMos, Ltd., The Occam Programming Manual, Prentice-Hall, 1985.

[11] William J . Dally, VLSI Architecture for Concurrent Data Structure, Cal tech CS

5209:TR:86, 1986.

176

[12] R.E. Bryant. Simulation of Packet Communication Architecture Computer Systems.

MIT /LCS/TR-1 8. November 1977.

[13] K.M. Chandy, and J. :viisra. Distributed Simulation: A Case Study in Design and

Verification of Distributed Programs, IEEE Software Engineering, September 1979.

[14] D.R. Jefferson , Virtual Time. ACvf Transactions on Programming Languages and

Systems, 7(3):404- 425, July 1985.

[1.5] W.C. Athas, Fine-Grain Concurrent Computations, Caltech CS 5242:TR:87, 19 7.

[16] Donald E. I\nuth. The Art of Computer Programming, V3, Sorting and Searching,

Addison-Wesley, 1973.

[17] M.R. Garey, and D.S. Johnson, Computers and Intractability, A Guide to the

Theory of NP-Completeness, W.H. Freeman and Company, 1919.

[18] A.J. Martin, A Message-Passing Model for Highly Concurrent Computation,

Cal tech CS-TR-88-13, 1988.

[19] M. Schuster, R.E. Bryant, and D. Whiting, MOSSIM II: A Switch-Level Simulator

for MOS VLSI, User's Manual, Caltech CS 5033:TR:82, 1982.

