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Controlling Quantum Information
by
Andrew J. Landahl

In Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

Abstract

Quantum information science explores ways in which quantum physical laws can
be harnessed to control the acquisition, transmission, protection, and processing
of information. This field has seen explosive growth in the past several years from
progress on both theoretical and experimental fronts. Essential to this endeavor
are methods for controlling quantum information.

In this thesis, I present three new approaches for controlling quantum informa-
tion. First, I present a new protocol for continuously protecting unknown quantum
states from noise. This protocol combines and expands ideas from the theories of
quantum error correction and quantum feedback control. The result can ou‘tper—
form either approach by itself. I generalize this protocol to all known quantum
stabilizer codes, and study its application to the three-qubit repetition code in
detail via Monte Carlo simulations.

Next, I present several new protocols for controlling quantum information that
are fault-tolerant. These protocols require only local quantum processing due to
the topological properties of the quantum error correcting codes upon which they
are built. I show that each protocol’s fault-dependence behavior exhibits an order-
disorder phase transition when mapped onto an associated statistical-mechanical
model. I review the critical error rates of these protocols found by numerical study
of the associated models, and I present new analytic bounds for them using a self-

avoiding random walk argument. Moreover, I discuss fault-tolerant procedures for
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encoding, error-correction, computing, and decoding quantum information using
these protocols, and calculate the accuracy threshold of fault-tolerant quantum
memory for protocols using them.

I end by presenting a new class of quantum algorithms that solve combinatorial
optimization problems solely by measurement. I compute the running times of
these algorithms by establishing an explicit dynamical model for the measurement
process. This model, the digitized version of von Neumann’s measurement model,
is recognized as Kitaev's phase estimation algorithm. I show that the running
times of these algorithms are closely related to the running times of adiabatic
quantum algorithms. Finally, I present a two-measurement algorithm that achieves

a quadratic speedup for Grover’s unstructured search problem.
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Preface

In the spring of 1996, I visited Caltech as a prospective graduate student eager to
pursue research in the nascent field of quantum computing. I was drawn to Caltech
by the recent experimental demonstration of quantum logic by Jeff Kimble’s group.
Here was a place where ground-breaking research was being done! Although I
leaned more towards theory, I was willing to convert to an experimentalist if it
meant being involved in this exciting new field. What a surprise it was to meet
John Preskill that fateful week—a theoretical physicist at Caltech interested in
quantum computation. John taught me about quantum error correction through
Shor’s code and I shared with him what limited knowledge I had about compression
and Huffman coding. I realized that I had found the best of both worlds—a place
where I could pursue theoretical quantum computing research and be close to
quantum computing experiments at the same time.

Although I was familiar with scattered quantum computing results from the
background research I undertook for my undergraduate Honors thesis, I learned
a thousand-fold more from serving as the teaching assistant for John Preskill’s
new class on quantum computation and quantum information in 1997-98 and its
team-taught version with Alexei Kitaev in 1998-99. It was a bit daunting to serve
as TA for a class that had never been taught before, but I'm glad that I accepted
the challenge—this Ph.D. thesis is built upon the material [ learned there.

In September of 1997, in search of a research project with some real meat
to it, John suggested studying ways to develop Kitaev’s toric codes into a full-
fledged architecture for fault-tolerant quantum computing. That sounded like
a straightforward problem, or so I thought. Little did I know that pursuing it
would result in a four-year collaborative effort incorporating concepts from so
many different fields! The results of this investigation and its associated grand
tour through various problems in mathematics, physics, and computer science, are
reported in Chapter 4 and in [29].

Having learned so much the last time I was TA for a class I had never taken



before, I accepted in 1999 when Jeff Kimble asked me to TA his class on quantum
optics. Once again, I learned much more than I think I would have if 1 was just
taking the class. Perhaps the most important lesson I learned was the importance
of doing theoretical science that is useful to experimentalists. That principle is
reflected in the first chapter of this thesis, where I address the disconnect between
the discrete-time language frequently used in quantum information theory and the
continuous-time language frequently used in quantum optics.

After finishing the four-year project on fault-tolerance, I was eager to initiate a
research project of my own, and hopefully one of shorter duration. I settled on the
problem finding common ground between quantum control theory and quantum er-
ror correction. From what I had heard from Hideo Mabuchi and Andrew Doherty,
both of these fields seemed to have similar goals, but radically different approaches.
Reading background articles in both fields only reinforced that notion—the scien-
tists working in the two fields formed essentially mutually exclusive sets. The
specific problem I decided to address was one that had been gnawing at me for
some time: How well does quantum error correction work when it is restricted to
use (experimentally realistic) continuous and weak controls? Charlene Ahn and
I taught ourselves about continuous measurement theory and quantum feedback
theory from the background literature. We learned even more through many sub-
sequent discussions with Andrew Doherty. I proposed a model for continuous-time
quantum error correction that incorporated these new ideas, and Andrew, Char-
lene, and I explored the model in detail with Monte Carlo simulations as described
in Chapter 3 and in [5]. Ultimately this project took a year to complete, but it
was very rewarding. More significantly, it started me down the path of exploring
problems lying in the intersection of quantum information theory and quantum
control theory.

During a visit to MIT in 2002, T had the opportunity to present Eddie Farhi
and Andrew Childs with an idea I had relating adiabatic algorithms and mea-
surement. Because I had been thinking about continuous measurements from my

previous research, I wondered if continuous measurements could be used elsewhere
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in quantum information science, and in particular whether they could be used to
mock up adiabatic evolution through the Zeno effect. [ was glad to discover that
Eddie and Andrew were excited by the idea, and they invited Sam Gutmann and
Jeffrey Goldstone to a subsequent meeting where we hashed out in more detail how
quantum measurement algorithms should work. The five of us and Enrico Deotto
subsequently bounced many e-mails back and forth, which led to the material
presented in Chapter 5 and in [22]. I am certain that this project wouldn’t have
developed as quickly as it did if it weren’t for the wealth of expertise in quantum
adiabatic algorithms that my MIT collaborators brought to this project.

As you can see, my graduate research experience has approximated a miniature
random walk through quantum information science, but if a common thread is to be
found, it would be that everything I have worked on is concerned with controlling
quantum information, either to make it robust, to make it realistic, or to make it
compute. I think that this pragmatic approach is the right one to take to make
meaningful progress. For far too long, theoretical quantum mechanics research
has been confined to philosophical questions and progress has been difficult to
measure. If we challenge ourselves to explore the limits of quantum mechanics and
information science through quantum information engineering problems, then we

can learn meaningful things about quantum information science itself.

May, 2002 ANDREW J. LANDAHL
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Chapter 1

Introduction

1.1 Quantum information science

Just exactly what is quantum information, and why would someone want to control
it? As a first step in answering this question, it is worthwhile to contemplate what
is meant by information. Loosely speaking, one has more information when one
is more certain about which one of a number of mutually exclusive alternatives is
true. Since probabilities also measure degrees of certainty, it’s natural to expect
that probability and information are related. It turns out that they are famously
related through the notion of entropy, a quantity that Boltzmann was so proud to
have invented that he had it engraved on his tombstone.

Okay, so information measures certainty. But what does information have to
do with quantum mechanics? Quite a bit, actually. The central idea of quantum
mechanics is that maximal information and complete information about a physical
system are not the same. This idea shows up in fascinating quantum effects that
defy common sense intuition. For example, when one tries to increase one’s maxi-
mal information about a physical system, a disturbance is created so that some of
the previous information one had disappears [43]. Even more strangely, one can
perform operations on one system that change the information one has about a
causally separated system [36, 13, 7). These effects, and others like them, lie at

the heart of the growing field of quantum information science.
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Communication

Computation Cryptography
\ Quantum /
Control Theory
Compression Correction

Figure 1.1: The five C’s of quantum information science: communication, com-

pression, computation, correction, and cryptography.

Quantum information science currently cousists of five major subdisciplines:
quantum communication theory, quantum compression theory, quantum computer
science, quantum error correction, and quantum cryptography. Fach subdiscipline
is defined by a particular quantum information task. Often one is concerned with
several of these tasks in conjunction. For example, one may wish to process some
quantum data, protect it from noise, compress it, and then transmit it securely
to trusted parties. In order to understand the extent to which these tasks may
be accomplished, it is important to have a theory detailing the limitations and
capabilities for establishing control of quantum systems. In other words, “quan-
tum control theory” anchors these subdisciplines, as depicted in Fig. 1.1. T use
quotes because I mean the term to represent the full array of quantum control
possibilities discovered by quantum information science, not just the narrow set of
mathematical techniques generalized from classical control theory.

Coming back to the original question, then, I would respond by defining quan-
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tum information as a quantitative measure of the certainty one has about a quan-
tum system, and I would suggest that it might be desirable to control this informa-
tion for various technological applications including communication, compression,
computation, correction, and cryptography. The goal of this thesis is to explore
some new ways that quantum mechanics can be harnessed to control quantum

information.

1.2 Summary by chapter

The organization of this thesis is as follows. In Chapter 2, I review an eclectic set
of background material in quantum information science that will be useful later
in the thesis. The material there can be found elsewhere; I include it as a conve-
nience for the reader. In particular, I review the rules of quantum mechanics when
both maximal and non-maximal information is available, and list some important
properties and equivalent representations of density matrices and quantum opera-
tions. I also review perturbation theory, the adiabatic theorem, and the adiabatic
approximation—well-worn tools of quantum mechanics that I will make use of in
subsequent chapters.

Chapter 3 is the beginning of new research results. I begin by reviewing contin-
uous measurement theory, quantum feedback control, and quantum error correc-
tion. I then propose a new method for continuously correcting errors in unknown
quantum states that uses ideas from these approaches. I present Monte Carlo
simulation results of an analysis of this method applied to a three-qubit system,
and show how this method can outperform rate-limited quantum error correction
in that system. The results of this research are also reported in [5].

In Chapter 4, I explore a new method for achieving fault-tolerance in quantum
systems that is built upon topological quantum error correcting codes. I review
these codes and present a list of architectural desiderata conducive to fault-tolerant
quantum design. I reflect on how such a design may be adapted to be physically

fault-tolerant, and propose a correction algorithm for these codes. I show that the
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fault-tolerance behavior of the errors and correction algorithm in this code can
be mapped onto an order-disorder transition in a statistical model known as the
random-bond Ising model. I discuss order parameters in this model and its gen-
eralization to three dimensions, and use the critical behavior of these statistical
mechanical models to numerically estimate the accuracy threshold for quantum
computation when fault-tolerant design principles haven’t been incorporated. I
then arrive at an analytical bound on this threshold from a combinatorial count-
ing argument based on self-avoiding polygons. I explore the effects of finite time
intervals on the correction algorithm, and adapt it accordingly. [ argue that the
threshold for fault-tolerant quantum computation should be close to the threshold
for fault-tolerant quantum storage using these codes, and proceed to analyze the
threshold for fault-tolerant quantum storage by explicit analysis of fault-tolerant
circuits used in the recovery algorithm. 1 present techniques for robustly encoding
unknown quantum states via a local tesselation-increasing algorithm, and provide
explicit constructions for a universal set of gates for fault-tolerant quantum com-
putation, although I do not analyze the thresholds for these protocols. I conclude
with a discussion of a generalization of this method to topological codes in four
spatial dimensions, and calculate a threshold for storage using these codes which
uses entirely local processing, both quantum and classical. The results of this
research are also reported in [29].

Finally, in Chapter 5, I present a new class of quantum algorithms that can
solve combinatorial search problems using only a sequence of measurements. 1
review adiabatic algorithms and the Zeno effect, and present a dynamical model for
measurement originally proposed by von Neumann [103] and digitized by Kitaev
[59]. T analyze the running time of a measurement algorithm which simulates
an adiabatic algorithm by appealing to this dynamical model, and show that it
is polynomially related to running time of the adiabatic algorithm it simulates.
I then study the specific problem of unstructured quantum search proposed by
Grover [53], and show that the quantum measurement algorithm may be adapted

to the special properties of this problem so that it saturates the bound for the



Chapter 1: Introduction 5

fastest possible quantum algorithm solving the problem, namely one which has
a quadratic speedup in the number of oracle calls relative to the best possible

classical algorithm. The results of this research are also reported in [22].



Chapter 2

Background

The most incomprehensible thing about the universe is that it is com-

prehensible.

—A. Einstein [35]

Experimental science places sharp constraints on the mathematical objects
one can use to consistently represent one’s knowledge of Nature. In this chapter,
I present these constraints as a set of representational rules that every physical
theory consistent with these experiments must obey.

I begin by first stating the rules for when maximal information is available
(quantum mechanics) and then generalize to the case when non-maximal infor-
mation is available (quantum information mechanics). I elaborate in detail some
of the properties of representations for states and dynamics. (Later in the thesis,
notably in Chapters 3 and 5, I elaborate the properties of the representation for
measurement.) Finally, I review some useful mathematical techniques for describ-

ing quantum mechanics in perturbative and adiabatic approximations.
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2.1 Quantum mechanics
Maxwell writes {75]

Physical science is that department of knowledge which relates to the

order of nature, or, in other words, to the regular succession of events.

Evidently, then, a physical theory needs to represent “events,” their “regular
succession,” and a means for obtaining “knowledge” about them. In more modern
language, we would say that a physical theory needs to represent states, dynam-
ics, and measurements. Moreover, the possibility of comparing events suggests a
physical theory should also represent subsystems of a larger system.

Quantum mechanics is not a physical theory in and of itself. Rather, it is
a set of rules for how the concepts of a physical theory should be represented.
The rules are designed to ensure that physical theories constructed within them
are consistent with the results of prior experiments. Sometimes called azioms or
postulates, 1 prefer to simply call them quantum rules because, unlike axioms or

postulates, they can be challenged by experiment.

2.1.1 The rules of quantum mechanics

Representation Rule 2.1.1 (States). The state of a physical system is repre-

sented by a ray ¢ in a Hilbert space H.

Representation Rule 2.1.2 (Dynamics). The time-evolution of a physical sys-
tem is represented by a one-parameter unitary group {U(t)}ter in the space L(H)
of linear operators on H. The self-adjoint operator H(t) generating U(t) is called

the Hamiltonian of the system.

Representation Rule 2.1.3 (Measurement). A measurement of a state ¥ is
represented by the projection-valued measure (PVM) P : II; +— ¢! ;1) on 'H, where
S I = 1 and ILII; = §;;. The measure is perceived as probability.
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Representation Rule 2.1.4 (Subsystems). The representation of states, dy-
namics, and measurements on subsystems are combined via the tensor product (®)

to create a representation of the corresponding objects on the combined system.

Rather than working with the ray representation of states, I will often use

Dirac notation instead:

Definition 2.1.1 (Dirac notation). In Dirac notation, a ray ¢ € H is repre-
sented by a unit-norm vector in the equivalence class of ¢ called the ket for ¢
in ‘H, denoted by |#). The multiplicative phase freedom e*¥ (where ¢ is real) in
the ket representation of v is unphysical; only the ray is physical. (However, the
relative phase and amplitude of rays is physical.) The linear functional dual to
this ket is called a bra and is denoted by ()|. The inner product of kets |¢)) and
|¢) is denoted by (¢ |¢), so that the unit-norm condition for |4} reads (¥ |¢) = 1.

When [ want to emphasize the irrelevance of the overall phase in Dirac notation,
I will represent 1 by the rank-1 projector |¢) (3| instead. To simplify notation,
I will frequently concatenate kets, operators, and their Hilbert-space labels to
denote the tensor product. For example, I might express Uq ® Ug(|0), ® |1)5) as
Ua®Ug|0),|1)g or Us ® Up |01),5 or even UsUp (01}, 5.

2.1.2 General remarks on quantum mechanics

In Chapters 3 and 5, I will re-examine these rules and their ramifications as I
develop new techniques for solving quantum information processing problems. In-
stead of waiting until then to comment on these rules, I would like to make some

general remarks regarding them before proceeding further.

Remark 2.1.1 (On interpretations). Addressing just what exactly probability
means is the subject of interpretations of quantum mechanics. As far as I can tell,
progress in this metaphysical endeavor is measured only by aesthetics. I'll lay my

cards on the table and confess that I subscribe to the Bayesian interpretation! of

T reserve the right to change my metaphysics in the future!



Chapter 2: Background 9

quantum mechanics; namely, I believe that probabilities represent subjective states
of knowledge (or belief) about the outcomes of future events, which are updated
according to Bayes’ rule. Mine is certainly not the only view! For a lucid descrip-
tion of the Bayesian viewpoint as well as a comparison to other epistemological
viewpoints, see the well-written (but unabashedly biased) samizdat by Caves on

his home page [21].

Remark 2.1.2 (On pictures). Suppose all states and observables in quantum
mechanics were rotated by some unitary operator V, i.e., suppose v — V) and
II — VIVt The predictions of this new theory are the same as the old one,
because Y VIVIIVIVy = 4T I14p. Hence there is a freedom in what objects one
uses to represent the states and measurements of a physical theory. Each choice of
the unitary V corresponds to what is called a picture of quantum mechanics. The
reason for moving from one picture to another is to make the dynamics appear
simpler.

In this thesis, I will mostly work in the Schrédinger picture, where V = 1.
The infinitesimal form of dynamics in this picture is the well-known Schrddinger

equation:

Do) = ZLHO W)

When discussing quantum error correction in Chapters 3 and 4, I will sometimes
switch pictures and work in the Heisenberg picture, where V = U, the evolution
operator. The infinitesimal form of dynamics in this picture is the Heisenberg
equation:

A = 2 H®, AW)
dt TR ’ ’
where A(t) is the Hermitian operator (observable) corresponding to the measure-

ment being acted upon.

Remark 2.1.3 (On Planck’s constant). The origin of / in each of the pictures
above comes from experiment and appears to be universal, although it is not ex-

plicitly included in the quantum rules. I find its appearance the most mysterious
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aspect of quantum mechanics (even more than entanglement). Is & a phenomeno-
logical parameter? Is it fundamental? Computable? Information-bearing? No-
body really knows. Perhaps scientists of the future will learn how % came to take
on the value that it has. In this thesis, I'll take the pragmatic view and simply
accept that it has a certain value. To make it even more ignorable, I'll set A = 1;

in other words, I'll work in units which are set by the value of A.

Remark 2.1.4 (On the need for measurement). It is natural to ask whether
or not one can derive the quantum measurement rule 2.1.3 from the other three
rules. On the one hand, it seems it ought to be possible because the measuring
system, the measured system, and their interactive dynamics can be described by
the other quantum rules. On the other hand, the quantum measurement rule does
not explicitly refer to time, whereas the dynamics rule does. This problem comes
up in Chapter 5, where it will be necessary to use a simulation of the measurement
process by unitary dynamics in order to calculate the computational complexity

of measurement.

Remark 2.1.5 (On the need for subsystems). As with the measurement rule,
it is unclear whether or not the subsystem rule is fundamental or derivable. In
particular, it is known that dynamics can impose subsystem structure through
superselection rules. Some have speculated that all subsystem structure is estab-
lished in this way. Whether or not this is the case remains an open, and perhaps

unresolvable, question.

Remark 2.1.6 (On the invertibility of the rules). It is important to recognize
that the quantum rules can only be used in the forward direction. Every physical
object may be represented by one of these mathematical objects, but not every such
mathematical object can be realized as a corresponding physical object. Physical
science and computer science place additional restrictions on which objects are

physically realizable. For example, causality and computability place restrictions
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on physically realizable measurements as shown in [12, 11] and [78]. Similarly the
observed statistics of particles with spin (famously) place symmetry restrictions
on physically realizable quantum states. In fact, the rules themselves were arrived
at by experiments demonstrating that the mathematical objects used to represent

physical objects had to be of the form specified by the rules.

2.2 Quantum information mechanics

The rules of quantum mechanics are useful when one has maximal information
about a quantum system. When one does not, rays, unitary groups, PVMs, and
tensor products are (in general) no longer the correct mathematical objects to use
to represent Nature. Instead, one must use density matrices, quantum operations,
positive operator-valued measures (POVMs), and direct sums—notions I elaborate
in this section via quantum information rules analogous the quantum rules of the
preceding section.

What is the source of the non-maximality of information? There is no unique
answer. In quantum statistical mechanics, the source is a coarse-graining of mi-
croscopic degrees of freedom. In open quantum systems mechanics, the answer is
uncontrollable couplings to an external environment. In quantum communication
theory the answer is a noisy quantum channel. In each of these scenarios, there
is an uncontrollable/unobservable part of the quantum system that is deemed
responsible for the lack of maximal information. The idea that there exists a max-
imal information description on a larger system is the basis for the purification
principle? | which I will discuss in Section 2.3.

Without further ado, here are the quantum information rules:

2.2.1 The rules of quantum information mechanics

Representation Rule 2.2.1 (States). The state of a physical system is repre-

sented by a Hermitian, unit-trace, positive operator p on a Hilbert space H.

2This principle is sometimes colorfully referred to as the “Church of the larger Hilbert space™.
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Representation Rule 2.2.2 (Dynamics). The time-evolution of a physical sys-
tem is represented by a linear hermiticity-preserving, trace-preserving, completely

positive map on L{H).

Representation Rule 2.2.3 (Measurement). A measurement of a state p is

represented by a positive operator-valued measure (POVM) on L(H).

Representation Rule 2.2.4 (Subsystems). Let {A;;} be a collection of math-
ematical objects that represent states, dynamics, or measurements on subsystems
{Si;}. Then the representation of the object they form on the combined system is

a direct sum (®) over the tensor product (®) of the corresponding objects on the

subsystems: @, ®j Aij.

2.3 The density matrix

In this section, I motivate the density matrix as a way to represent an ensemble
of quantum states. I then present some well-known theorems regarding density
matrices. The proofs of these theorems can be found in many places; for proofs
with a quantum information-theoretic flair, see [80, 86, 63].

Consider a probability distribution {p1...,p;,...} over a finite set of states
given by {|¥),..., |¥),...}. That is, consider the ensemble & = {p, |1;)}. Suppose
we draw a state from this ensemble and measure it. The probability that it will

be observed in the subspace M is

p(&, M) = Zpip (lwi),M) (2.1)
= D_pi (il Iy 400) (2.2)
= Zpi tr (IYM I¢i><¢il) (2.3)
= ”1 Iy, (2.4)

where p = > pi |¢:) (| is called the density matriz or density operator for £.
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Because the probabilities and associated measurement outcomes are encoded in p,
it makes sense to define p as the quantum state of the ensemble £ where the rule
(2.4) defines the probability of measurement outcomes.

A useful way to classify density matrices is in terms of their purity:

Definition 2.3.1 (Purity). The purity of a density matrix p is defined as P(p) =
tr p2. A density matrix is said to be a pure state if P(p) = 1; otherwise it is said

to be a mized state.

It is straightforward to verify that pure states are exactly the rank-1 density ma-
trices, i.e., p is a pure state iff p = [¢)(¢| for some [¢).

When does an operator represent the quantum state of an ensemble? In other
words, when is an operator a density operator? The answer is given by the following

theorem:

Theorem 2.3.1 (Axiomatic characterization). An operator p on the Hilbert
space H is a density matriz iff it is a positive unit-trace Hermitian operator, i.e.,
iff

DY) eH, (Plpl)>0; i) trp=1; i) p=pl.

This theorem provides an equivalent definition of density matrices, which is
why it is given the status of a representational rule in Section 2.2.1. This theorem

also has two useful corollaries which characterize the space of density matrices:

Corollary 2.3.1.1 (Convexity). The density matrices on the Hilbert space 'H

form a convex subset of the Hermitian operators on H.

Corollary 2.3.1.2 (Extremal points). The extremal points of the set of density

matrices are the pure states.

It is tempting to think that further generalization is achieved by considering
ensembles of mixed states (ensembles of ensembles). However, any ensemble of
mixed states £ = {p;, p;}, where p, = >, pgf)]zj),(:))(w,(:)l, is equivalent to the en-
semble of pure states &' = {pip,(f), Iw,(:))}, where some states in the ensemble £ may

be repeated. Hence it suffices to restrict attention to ensembles of pure states.



Chapter 2: Background 14

A surprising observation is that the mapping g : £ — p is not injective, t.e.,
different ensembles can give rise to the same state p. Apparently some information
about the preparation of a state has no physical consequence. The following the-
orem cements this idea by characterizing the freedom in choice of ensemble that

one may ascribe to a density operator:

Theorem 2.3.2 (Ensemble freedom). The ensembles £ = {p;,|¥;)} and & =

{ai, lpi)} give rise to the same density matriz p iff \/pi i) = D2, uij /G lps) for

some unitary matriz with entries u;;.

A recurring theme in quantum information mechanics is the purification prin-
ciple alluded to earlier. To define the principle rigorously, it is necessary to first

define the partial trace:

Definition 2.3.2 (Partial trace). Let p,p be a density matrix on L(H 4, ®H ).
The partial trace trg : L(H 4, ®H ) — L(H 4) of pap over the space H p is defined

by the linear extension of the map

trp(jai){az| @ |b1)(be]) = |a1)(ag| tr [b1) (b, (2.5)

where |a1), |as) € H 4 and |b1), |b2) € H . The output of the partial trace, py, is

called the reduced density matriz on H 4.

Using the partial trace, the purification principle may be formulated as follows:

Theorem 2.3.3 (Purification principle). Let ps be a density matriz on H ,.
Then p, = trg |Y) 45 ap(¥| for some pure state |¢),5 € H 4 ® Hp, where Hp is
a Hilbert space having dimHp < dimH 4. The ket |1) 5 is called a purification

of pa-

As might be expected for an extension to a larger Hilbert space, the purification
of a density matrix p is not unique. The following theorem characterizes the

freedom in purifications:
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Theorem 2.3.4 (Purification freedom). Let [) 5, l¢)ap € H 4 @ Hp be pu-
rifications of pa € L(H 4). Then there exists a unitary operator U € L(H) such
that | = (1 & U) |¢).

This purification freedom also allows pure bipartite quantum states to be ex-
pressed in a standard form called the Schmidt decomposition, as the following

corollary shows:

Corollary 2.3.4.1 (Schmidt decomposition). Let |4),5 € H,® Hg. Then
there exist orthonormal sets of vectors {|i),} C H 4 and {}i)g} C Hp and nonneg-
ative numbers p; summing to 1 such that )45 = >, \/Pi li)4 l1)g- The numbers
V/Pi are called the Schmidt coefficients of 1), -

The real power behind the Schmidt deéomposition is that the Schmidt coeffi-
cients, \/p; are, by construction, invariant under local unitary operations on each
subsystem—such operations merely rotate the orthonormal bases of each subsys-
tem to other orthonormal bases of those subsystems. A quantity that is invariant

under all such transformations is its Schmidt number:

Definition 2.3.3 (Schmidt number). The Schmidt number of a bipartite pure
state |¢),p is the number of nonzero Schmidt coefficients in its Schmidt decom-

position.

The Schmidt number has many applications in the study of entanglement, a
complete discussion of which is beyond the scope of this thesis.

In the special case of a density matrix on a two-dimensional Hilbert space, the
density matrix can be represented by a three-dimensional Bloch vector. This rep-
resentation is called the Bloch sphere representation (although it probably should

be called the Bloch ball representation) for the density matrix:

Theorem 2.3.5 (Bloch sphere representation). A density matriz p € B,

where B is the Hilbert space of a qubit, can be uniquely expressed as

p=5(1+po), (2.6)
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where p € R? satisfies |p|| < 1 and o = (01,09,03), where the o; are the (non-
identity) Pauli matrices. The vector p € R3 is called the Bloch vector for p, the
space spanned by Bloch vectors is called the Bloch ball, the boundary of which is
called the Bloch sphere.

One of the most useful properties of the Bloch ball representation is that the
boundary of the Bloch ball, the Bloch sphere, corresponds precisely to the extremal
points of density matrices, the pure states. The boundary points of a generic space
are not necessarily extremal, as can be seen by the example of a triangle, but for
qubit density matrices (and, as it turns out, only for qubit density matrices),
boundary points and extremal points are one and the same.

As a parting remark on density matrices, I would like to point out that density
matrices represent the most general classical states as well, namely probability
distributions over orthogonal sets of pure states. In fact, one can define what one

means by “classical” by this subset of density matrices:

Definition 2.3.4 (Classical). A quantum state is said to be classical relative
to the basis 3 when the density matrix describing that state is diagonal in the g

basis.

Notice that the definition of classicality is always with reference to some basis.

A classical system is one in which the dynamics keep classical states classical.

2.4 Quantum operations

Because density matrices are the most general representation for states of a physical
system, it is natural to ask what the corresponding most general representations are
for dynamics and measurements. A reasonable criterion for these representations
is that they preserve the ensemble interpretation of density matrices. In other
words, dynamics and measurements should act linearly on density matrices. A

linear map between Hilbert spaces is a superoperator:
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Definition 2.4.1 (Superoperator). A superoperator Q) is a linear map between

operator spaces of Hilbert spaces: Q : L(H) — L(K).

A subset that is usually regarded as the “right” one to represent physically
realizable superoperators is the set of quantum operations. Quantum operations
have several representations, all of which are equivalent. It is therefore a matter
of taste as to which one is taken as the definition. I shall take the axiomatic
representation as the definition below, and consider the equivalence of the other
representations to be theorems. As in the previous discussion regarding density

matrices, proofs of these theorems can be found in [80, 86, 63].

Definition 2.4.2 (Quantum operation; Azxiomatic representation). A map
Q is called a quantum operation if it is a completely positive superoperator that
maps density matrices to density matrices. In other words, the superoperator @
is a quantum operation on L(H) iff it satisfies the following axioms (note that p

is not necessarily a density matrix in the criteria below):

1) VpeL(H) trQ(p) =trp
i) ¥p e L(KH) Qp)T = Q(p)
i) Vpe LT (H®K) (Q@ Lrx))(p) >0,

where K is any Hilbert space and L+(G) represents the positive operators on G.

This definition is equivalent to the representational rule for dynamics stated in

Sec. 2.2.1.

Theorem 2.4.1 (Unitary representation). A superoperator () is a quantum

operation on L(H ,) iff it can be expressed as

Qo) = 15 [Unglpa @ [9)p gDV 5] (2.7)

for some ) € Hp and some unitary operator U, p € L(H , @ Hy).
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Theorem 2.4.2 (Operator-sum representation). A superoperator Q) is a quan-

tum operation on L(H) iff it can be expressed as
Qloy) =Y ApAl where Y AlA; = 1. (2.8)

Theorem 2.4.3 (Matrix representation). A superoperator Q on L(H), ez-

pressed in coordinate form as
QUHGD =D Qi 1] (2.9)
i3t

is a quentum operation iff the following are satsified

1) 2ok Quriy(kj) = i
i) Qupgr = Qi

ii1)  (Qirs)(j75)) 18 @ positive matriz.

2.5 Perturbation theory

Few problems can be solved exactly using the mathematical framework of quantum
mechanics. What might be called the “art” of physics is first determining which
effects are the most important in a problem and then applying an appropriate
approximation method. One well-developed approximation method is the pertur-
bation method, useful when one has a problem that is only slightly deformed, or
perturbed, from a previously solved problem. The basic approach in the pertur-
bation method is to expand the problem and its solution in a power series in the
perturbation, keeping only the lowest order terms.

In this section, I will review the application of the perturbation method to
the problem of finding the eigenstates of a time-independent Hamiltonian that is
only slightly perturbed from a time-independent Hamiltonian having a discrete

spectrum of nondegenerate eigenvalues. For obvious reasons, this procedure is
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called nondegenerate time-independent perturbation theory. My discussion here
closely follows Messiah [77].
Let H® be a time-independent Hamiltonian with a discrete spectrum of non-

degenerate energy eigenvalues {Ei(o)} and corresponding eigenvectors {IEi(O))}.

Namely, let
HOEOY = EOE), (2.10)
where
(EOIE) = 6y (2.11)
and
STIEOVEL| = 1. (2.12)

1

Consider the perturbed Hamiltonian H = H(® 4 §H’ arising from the time-
independent perturbation dH’. Let E; be the energy eigenvalue of H that tends

to Ei(o) when 6 — 0. It will also be a nondegenerate eigenvalue when ¢ is small:

The corresponding eigenvector is defined up to a constant, which we shall fix

(0|E) =1, (2.14)

where |E?)= [0).

When ¢ is sufficiently small, the changes in the energy levels caused by H’ are
much smaller than the differences between them, so the new energy eigenvalues
and (unnormalized) eigenvectors can be expanded in terms of the old ones in a

power series:

E=E9 46 4523 4. (2.15)

[E;) = [05) + 0]1) 4+ 62 (2) + --- . (2.16)
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By eq. (2.14), the perturbative eigenvectors are orthogonal to the § — 0

eigenvector:

(0: |15) = (0:|2s) = --- = {0 |ns) = 0. (2.17)

Substituting the expansions (2.15) and (2.16) into eq. (2.13) and matching

terms of the same order, one obtains the following set of equations:

(HO — EOY|0,) = 0
(HO —EO) 1) + (68 -<)(0) =0
(HO - E@)j2)) + (5H —e) 1) ) =0
HO ~EO)|n) + @H —eM)n-1) + -~ — 7)) = 0

(2.18)

The first-order correction is usually all that is considered—when higher order
corrections are important, the perturbation method begins to break down.

The first-order correction to the eigenstate IEZ.(O)> is
0 0
1) = 1B EP L), (2.19)
J

where <E§0)|1i> is found by projecting the first of egs. (2.18) onto the bra (E](O)I
(and recalling the orthogonality condition (2.17)). When i # j, the resulting

overlap is
1

(B =
J Ei(O) . EJ(O)

(B 15| B, (2.20)

and when 7 = j, the resulting overlap vanishes by the orthogonality condition

(2.17). Hence, to first order in 8, the new (unnormalized) eigenstates are

(B |1\ EP)
E)y= B +63 (____](0) 5 1By, (2.21)
i\ B E

A quantity that will be useful in Chapter 3 is the error distance dg between



Chapter 2: Background 21

associated energy eigenstates of the perturbed and unperturbed Hamiltonians:
dp(E), |E™)) = 1 - (EJ|E®)P. (2:22)

In the present context, the error distance can be interpreted as the probability that
the perturbing Hamiltonian § H” will cause an “erroneous” transition to a different
state. Although the error distance can sometimes be calculated exactly, it is helpful
to bound it generically in terms of two variables: the smallest separation in energy

eigenvalues of H(Y, or minimum gap,
— i © _ O
g= Izl;l;l (Ei E; > , (2.23)

and the minimum variance of H' in the ith state of H(®), or state perturbation
variance,

([:)? = (AH); = (EQ|(H|EL) — (B9 H'Ey?. (2.24)

Using these two quantities, and using the normalized version of eq. (2.21), one can

bound the error probability of the perturbed eigenstates:

dp(|E:), |E)) = 1 - (E(|EO)P (2.25)

KE|H | B2

~1— (146 (2.26)
; 2 - B
(B | (B
=~452 J (2.27)

el VO S

& 0 0)y ; £+(0 0
> o | 2EDIHIEWEDIHE?) ~ (BB
J
(2.28)

=t (2.29)
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2.6 The adiabatic theorem

The adiabatic theorem is a powerful theorem in quantum mechanics that relates
the asymptotic behavior of a unitary operator generated by a time-varying Hamil-
tonian and the projectors onto the eigenspaces of that Hamiltonian. Much of
my treatment of this theorem® and its associated approximation is adapted from

Messiah [77].

Theorem 2.6.1 (Adiabatic theorem). Consider a Hamiltonian that continu-
ously varies from Hy at time tog to Hy at time t; such that its spectrum of eigen-
values F1, Es, . .. remains discrete throughout the variation. Let H(s) denote the

Hamiltonian at time t = tg + sT, where

t—to
T =1t —tgy s = 7

(2.30)

and let E;(s) and II;(s) denote the eigenvalues and associated subspace projectors

of H(s). Suppose that the following conditions are satisfied:
(i) (Continuity) E;(s) and II;(s) are continuous functions of s.

(i) (Non-crossing) E;(s) # Ei(s) when j # k for all s € [0,1].

. ey dll d211;
(é22) (Differentiability) Fl and ! are piecewise continuous functions on
s

ds?
[0,1].

Then the unitary evolution operator Ur(s) = U(t, to) generated by H(s) via

Ur(s) = /Os do exp(—iH (o)) (2.31)

=1+1 /s TH(o)U(o)do (2.32)
0

3The theorem is even more general than the statement I give for it here. The restrictions I

place are sufficient for how 1 shall consider it in Chapter 5, and make the proof simpler.
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has the following asymptotic property:

Tlim Ur(s)11;(0) = II;(s) Tlim Ur(s)

(G=1,2..)
Proof. Let H(s) be the Hamiltonian
H(s) =) Ej(s)I;(s)
J
that generates the unitary operator
Ur(s)=1—1 /OS TH(o)U(o)do.
Counsider the operator K(s) defined by

K(s) =iz%nj(s).

J

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

This operator is Hermitian, as can be verified using the product rule for and lin-

earity of differentiation, and the Hermiticity, idempotency, and unit-summability
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of projectors:

dIr!
K(s)' = =i > (s)! d;
J

, dil;
= “Z}:Hj(s)—ds—]
7

. dILIL)  dll
_ZZ( ds  ds U

J

) dir;
= =i g5 HEE

J

d
= —ZEZHj + K(s)
J

d
= ~iz 1+ K(s)

= K(s).

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

As K(s) is Hermitian, it may be thought of as a Hamiltonian, which generates the

unitary operator
8
A(s) =1 — z/ K(o)A(o)do.
0
By definitions (2.37) and (2.45), we see that

d dil;
—{ Atr7. — ;AT : T20 A AT,

dll; all; arl;
=AM 222 222 0
A ( ds 1 + ds 7 ds )A
d(I1; IT) dil;  dlIl; all;
S O G ) Ay i .2
A ( ds + 10 ds i ds 1 ds )A

=0,
so that, in particular,

AT()IT;(s)A(s) = 1T;(0).

(2.45)

(2.46)

(2.47)
(2.48)

(2.49)

(2.50)
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Let ®7(s) be the unitary operator generated by T A'(s)H(s)A(s):
Br(s) =1 —i / T A (o) H(0) A(0)®r(c)do. (2.51)
0

This integral equation for ®7(s) may be solved with the help of egs. (2.35) and
(2.50):

Or(s) =) exp [—z’T /0 ) Ej(a)da] 17;(0) (2.52)
J
_ Z e~ i (S)Hj (0), (2.53)
J
where [ have introduced the following to simplify notation:
23() = [ By(o)de, (2:54)
Consider the unitary operator
W (s) = ®h(s) Al (s)Ur(s). (2.55)
By egs. (2.36), (2.45) and (2.51), W(s) obeys the integral equation
W(s)=1+1 /O K(o)W (0)do, (2.56)
where
K =oLATKA®y. (2.57)
Integrated by parts, eq. (2.56) may be rewritten as

Wi(s) =1+ :F(s)W(s)+ /OS F(0)K (o)W (0)do, (2.58)
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where

F(s) = /Os K(o)do. (2.59)

Using the solution (2.53) for ®7(s) and the conjugation property (2.50), F(s)

may be rewritten as

s) = SeiT( 5—ek) j¢ ) o)do .
F(s) zkj/O #1-00 K(0)do, (2.60)
where
K (s) = 1;(0)A' (0)K (0) A(0) 1k (0) (2.61)
= AY(0)II;(0) K (o) I}, (o) A(0). (2.62)

The terms in the sum (2.60) when j = k vanish because II; KII; = 0 by eq. (2.37).

The remaining terms may be integrated by parts:

@ (4)

F(s) = E L iP5 — k) Kjk _/ T (5—0k) i Kjk do.

i#k il Ej — By 0 do Ej —~ B
0

(2.63)

The terms in the outer brackets are independent of T and remain finite when

conditions (7)—(zii) are satisfied, so

F(s)=0 (-%) . (2.64)

Hence, eq. (2.58) for W(s), when rewritten using eq. (2.55), reads

Ur(s) = A(s)®r(s) [1 +0 (%)} . (2.65)

Applying the ®7(s) solution (2.53) and the conjugation property (2.50) to this
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expression and taking the asymptotic limit, we obtain the desired result:

Jim Ur(s)I1,(0) = T(s) Jim Ur(s) (2.66)

(=12,..) (2.67)

2.7 The adiabatic approximation

The proof of the adiabatic theorem suggests that when T is large, it is reasonable

to make the following adiabatic approzimation to Ur(s):
Ur(s) ~ A(s)®r(s), (2.68)

where A(s) and ®7(s) are defined by (2.45) and (2.51). One way to view this ap-
proximation is as a simulation of the unitary Ur(s), much in the same way that a
quantum circuit is a simulation of a unitary operation. To understand the complex-
ity of this simulation, it is important to quantify how good this approximation is.
The error distance is one reasonable measure of its performance. (Other measures
are certainly possible.) Operationally, this distance measures the probability that
a measurement won’t be able to distinguish between Ur(1) |7} and A(1)®7(1) |7),
where |7) is an initial eigenstate of H(0). This probability should be small when

the approximation is good.
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The error distance of the adiabatic approximation is

A = dp(AQ)®Q) |i), Up(1) 10) (2.69)
=1~ || @) AT Q) U (1) 14)? (2.70)
=1 | (| W |3) (2.71)
=D WG = LW )P (2.72)
= ST 1GIW . (2.73)

JF#L

where W = W (1) is defined by eq. (2.55).

Because W can be expressed in terms of F' = F(1) via eq. (2.58), and because
F = O(1/T) by eq. (2.64), we can substitute the solution of eq. (2.58) into itself
and obtain a power series for W in 1/T. To first order in 1/T, this expansion
yields W = 1 + 2F'. Introducing the notational shorthands w;; = ¢; — ¢; and
ay = (ilKi(f) |7), and using eqs. (2.60) and (2.62) for F' and K4, the error

distance A may be rewritten as follows:

A= IGIW P (274)
JF#

=D IGIE )P (2.75)
J#

l/ ds aj(s) eZT‘“”(S (2.76)

J?él

The function «;;(s) may be expressed in terms of H'(s) = dH/ds via the

following identity:
dH d d
=1 = 1T <Z E—= ”’“ —E’ink) 11 (2.77)

_ZEkﬂ[ (ITdT;) — dn] 45,

I + SJ 6i; 1T, (2.78)

dFE.:
aE; —L85,511;. (2.79)

=(E; — E)H JH +
ds
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Applying this identity, a;;(s) becomes

aij(s) = (i| K5V(5) I5) (2.80)
= (i| AT(s) IT(s) K (s) IT;(s) A(s) |) (2.81)
= i (i| AT (s)II; (S)Z -—~Uk(8 i(s)A(s) |7) (2.82)
= il AN () S <s>A<s> m (2.83)
= ——————Z i| Af(s 8)—1IL;i(s)A(s .
= ———————Z | I, Y VH' (s)A(s)II; ' .
B B I BOA T @AGLOL @8
= ——————Z i| AY(s)H'(s s)i7 .
E—Em AT OH 6)AG) ) (2.86)
S H () 5(s))
Ey(s) = Ex(s) (2.87)

where |i(s)) denotes the eigenstate of H(s) arrived at from the eigenstate |i) of
H(0) by continuity (viz., by application of A(s)).

Although it is not entirely rigorous, Messiah [77] argues that the integral on the
right-hand side of eq. (2.76) should have a value no greater in order-of-magnitude
than the value it has when «;;(s) and w;;(s) are independent of s. In other words,

he argues that

4sin? w;;(0)T/2
A< Zm3x|aij(s)l2 max 77 ]i ))IQ/ (2.88)
i wigle
maxs I%(S)l
2.89
- T2 Z ? min, ]ww(o)l ( )

Taking this argument at face value, and introducing notational shorthands for

the minimum gap and mazimal perturbation variance in a manner similar to the
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way it was introduced in Section 2.5,

g = min |w(0);j] (2.90)
2

02 = max )] (G ) 1iGoD) — (9] Srlits)? (291)

= AH' in state |i(s)), (2.92)

the bound on the error distance becomes

2

A < gy max 3 | (06) () 1i(9) (2.93)
J#i
=£?@MMWﬂme-mmm@mm2 (2.94)
2
= ;—zrga (2.95)

which applies whenever the maximum over s can be taken outside the sum. (In
general, this bound may not apply; only the weaker version with the maximization
inside the sum applies.)

Thus, to ensure that A <« 1, we require that

r
T> (2.96)

This is the central result I will use later in Chapter 5.
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Chapter 3

Continuous-time quantum error

correction

Abstract

In this chapter, I describe a new protocol for continuously protecting unknown
quantum states from decoherence that incorporates design principles from both
quantum error correction and quantum feedback control. This protocol uses con-
tinuous measurements and Hamiltonian operations, which are weaker control tools
than are typically assumed for quantum error correction. A cost function appro-
priate for unknown quantum states is developed and used to optimize the state-
estimate feedback. This protocol is studied in detail for the three-qubit bit-flip
code by the use of Monte Carlo simulations. For this code, it is shown that the
protocol improves the fidelity of quantum states beyond what is achievable using
ordinary quantum error correction when the time between quantum error correc-
tion cycles is limited.

The work presented in this chapter is the result of a collaboration with Ahn
and Doherty [5]. The single qubit example in 3.4.2 and the proof in 3.7 are due to
Ahn.
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3.1 Introduction

Long-lived coherent quantum states are essential for many quantum information
science applications including quantum cryptography {15], quantum computation
[80, 86], and quantum teleportation [16]. Unfortunately, coherent quantum states
have extremely short lifetimes in realistic open quantum systems due to strong
decohering interactions with the environment. Overcoming this decoherence is the
chief hurdle faced by experimenters studying quantum-limited systems.

Quantum error correction is a “software solution” to this problem [92, 94].
It works by redundantly encoding quantum information across many quantum
systems. The key to this approach is the use of measurements which reveal infor-
mation about which errors have occurred and not about the encoded data. This
feature is particularly useful for protecting the unknown quantum states that ap-
pear frequently in the course of quantum computations. The physical tools used
in this approach are projective von Neumann measurements that discretize errors
onto a finite set and fast unitary gates that restore corrupted data. When com-
bined with fault-tolerant techniques, and when all noise sources are below a critical
value known as the accuracy threshold, quantum error correction enables quantum
computations of arbitrary length with arbitrarily small output error, or so-called
fault-tolerant quantum computation [93, 60].

Quantum feedback control is also sometimes used to combat decoherence [111,
46, 97]. This approach has the advantage of working well even when control tools
are limited. The information about the quantum state fed into the controller
typically comes from continuous measurements and the operations the controller
applies in response are typically bounded-strength Hamiltonians. The performance
of the feedback may also be optimized relative to the resources that are available.
For example, one can design a quantum feedback control scheme which minimizes
the distance between a quantum state and its target subject to the constraint that
all available controlling manipulations have bounded strengths [31].

The availability of quantum error correction, which can protect unknown quan-
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tum states, and quantum feedback control, which uses weak measurements and
slow controls, suggests that there might be a way to merge these approaches into a
single technique with all of these features. Previous work to account for continuous
time using quantum error correction has focused on “automatic” recovery and has
neglected the role of continuous measurement [9, 25, 84, 10]. On the other hand,
previous work on quantum state protection using quantum feedback control has
focused on protocols for known states and has not addressed the issue of protecting
unknown quantum states [106, 68]; however see [73] for related work.

This chapter is organized as follows. In Sec. 3.2, I review quantum feedback
control and introduce the formalism of stochastic master equations. In Sec. 3.3,
I present the three-qubit bit-flip code as a simple example of a quantum error-
correcting code and sketch the general theory using the stabilizer formalism. In
Sec. 3.4, I present a protocol for continuous-time quantum error correction as de-
rived from an optimal non-Markovian feedback strategy. In Sec. 3.5, I demonstrate
the efficacy of this feedback strategy for the bit-flip code via Monte Carlo simu-
lations, and compare the behavior to discrete quantum error correction when the

time between quantum error correction cycles is finite. Section 3.6 concludes.

3.2 Quantum feedback control

3.2.1 Open quantum systems

To describe quantum feedback control, we first need to describe uncontrolled open
quantum system dynamics. Let S be an open quantum system weakly coupled to
a reservoir R, whose self-correlation time is much shorter than both the time scale
of the system’s dynamics and the time scale of the system-reservoir interaction.
The Born-Markov approximation applies in this case and enables us to write down

a master equation [20] describing the induced dynamics in S:

p=—i[H, p]+>_ Dlep. (3.1)
pu=1
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Here p denotes the reduced density matrix for S, H its Hamiltonian, and D a
decohering Lindblad superoperator that takes a system-reservoir coupling operator

(or jump operator) ¢ as an argument and acts on density matrices as
t Loy Lot
Dlclp = cpc' — 5¢'ep — gpcle. (3.2)

One way to derive this master equation is to imagine that the reservoir con-
tinuously measures the system but quickly forgets the outcomes because of rapid
thermalization. The induced dynamics on S therefore appear as an average over
all possible quantum trajectories that could have been recorded by the reservoir.

What kinds of measurements can the reservoir continuously perform? The
most general measurement quantum mechanics allows is a positive operator-valued
measure (POVM) {E;} acting on §. According to a theorem by Kraus [69}, the
POVM {Ej;} can always be decomposed as

Z Q:'(jQij = Ejv (3'3)
i
such that its stochastic action is p — p; with probability p; = tr(pE;), where

pj = :cr_(/_:f?j—) Z ;P (3.4)
This POVM is called a strong measurement when it can generate finite state
changes and a weak measurement when it cannot [72]. POVMs that generate
the master equation (3.1) involve infinitesimal changes of state, and therefore are
weak measurements.

One reservoir POVM that results in the master equation (3.1) is the continuous

weak measurement with Kraus operators

Qo(dt) = 1— [iH+3) cle,) dt (3.5)

p=1
Qu(dt) = Vite,, p=1...,m. (3.6)

N =
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Moreover, any POVM related to the one above via the unitary rotation
Q= UapQp (3.7)
B

will generate the same master equation. We call each distinct POVM that gener-
ates the master equation when averaged over quantum trajectories an unravelling

[112] of the master equation.

3.2.2 Quantum feedback control

The previous discussion of the master equation suggests a route for feedback con-
trol. If we replace the reservoir with a device that records the measurement current,
then we could feed the measurement record back into the system’s dynamics by
way of a controller. For example, the master equation (3.1) with m = 1 can be

unravelled into the stochastic master equation (SME) [20, 113]

dpe(t) = —i[H, p(t)]dt
+Dlelpe(t)dt + Hclpc(t)dW (t) (3.8)
dQ(t) = (c+cl).dt+dW(t), (3.9)

where p. is the conditioned density matrix, conditioned on the outcomes of the
measurement record Q(t), the expectation (a). means tr(p.a), dW is a normally
distributed infinitesimal random variable with mean zero and variance dt (a Wiener
increment [45]), and H is a superoperator that takes a jump operator as an argu-

ment and acts on density matrices as
Hlclp = cp+ pct —ptrfep+ pe']. (3.10)

This sort of unravelling occurs, for example, when one performs a continuous
weak homodyne measurement of a field ¢ by first mixing it with a classical local

oscillator in a beamsplitter and then measuring the output beams with photodetec-
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tors [113]. The stochastic model (3.8-3.9) is flexible enough to incorporate other
noise sources such as detector inefficiency, dark counts, time delays, and finite
measurement bandwidth [107].

We can add feedback control by introducing a Q(t)-dependent Hamiltonian
to the dynamics of p.. There are two well-studied ways of doing this. The first,
and simplest, is to use Wiseman-Milburn feedback [111, 113], or current feedback,
in which the feedback depends only on the instantaneous measurement current
Io(t) = dQ(t)/dt. For example, adding the Hamiltonian Ig(¢)F to the SME (3.8)

using current feedback leads to the dynamics [111]

dp(t) = —ilH, p(t)}dt
+Dc]pc(t)dt + Hlc]pe(t)dW (t)
—i [F cpe(t) + pc(t)cq dt
+D[Fpe(t)dt — i [F, pe(t)] dW (3.11)

dQ(t) = (c+ ) dt+dW(2). (3.12)

The second, and more general, way to add feedback is to modulate the Hamil-
tonian by a functional of the entire measurement record. An important class of
this kind of feedback is estimate feedback {31], in which feedback is a function
of the current conditioned state estimate p.. This kind of feedback is of especial
interest because of the quantum Bellman theorem [30], which proves that the op-
timal feedback strategy will be a function only of conditioned state expectation
values for a large class of physically reasonable cost functions. An example of such
an estimate feedback control law analogous to the current feedback Hamiltonian
used in (3.11) is to add the Hamiltonian (Io(#)). F = {c + c!). F, which depends
on what we expect the current Ig(t) should be given the previous measurement

history rather than its actual instantaneous value. Adding this feedback to the
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SME (3.8) leads to the dynamics

dp(t) = —i[H, pe(t)]dt

+Dlelpc(t)dt + Hic]pc(t)dW (t)

—i{IQ). [F), pe(t)] dt (3.13)
dQ(t) = (c+ch),dt +dW(t). (3.14)

3.3 Quantum error correction

Although quantum feedback control has many merits, it has not been used to
protect unknown quantum states from noise. Quantum error correction, however,
is specifically designed to protect unknown quantum states; for this reason it has
been an essential ingredient in the design of quantum computers [48, 66, 85]. The
salient aspects of quantum error correction can already be seen in the three-qubit
bit-flip code, even though it is not a fully quantum error correcting code. For that
reason, I shall introduce quantum error correction with this example and discuss

its generalization using the stabilizer formalism.

3.3.1 The bit-flip code

The bit-flip code protects a single two-state quantum system, or qubit, from bit-

flipping errors by mapping it onto the state of three qubits:

0) — ]000) = |0) (3.15)

) — (1) =1 (3.16)

The states |0) and |1) are called the basis states for the code and the space spanned
by them is called the codespace, whose elements are called codewords.
After the qubits are subjected to noise, quantum error correction proceeds in

two steps. First, the parities of neighboring qubits are projectively measured.
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These are the observables!

My = ZZI (3.17)
M, = IZZ. (3.18)

The error syndrome is the pair of eigenvalues (mg, m1) returned by this measure-
ment.
Once the error syndrome is known, the second step is to apply one of the

following unitary operations conditioned on the error syndrome:

(-1,+1) — XII (3.19)
(-1,-1) — IXI (3.20)
(+1,-1) — IIX (3.21)
(+1,41) — III. (3.22)

This procedure has two particularly appealing characteristics: the error syn-
drome measurement does not distinguish between the codewords, and the projec-
tive nature of the measurement discretizes all possible quantum errors onto a finite
set. These properties hold for general stabilizer codes as well.

If the bit-flipping errors arise from reservoir-induced decoherence, then prior

to quantum error correction the qubits evolve via the master equation

dpnoise = Y(D[XII] + DIIXI] + DIIX))pdt, (3.23)

where ~dt is the probability of a bit-flip error on each qubit per time interval

'"We use the notation of [48] in which X, Y, and Z denote the Pauli matrices 0., o, and o,

respectively, and concatenation denotes a tensor product (e.g., ZZI =0, Q o, ® I).
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[t,t + dt]. This master equation has the solution
p(t) =
a(t) po
+6(t) (XTI poXIT + IXIpol XI + IIXpolIX)
+e(t) (X XIpoXXIT+ XIXpoXIX +IXXpollX)
+d (t) XX X po X X X, (3.24)
where
a(t) = (1+3e™ 2" 4374 +¢79) /8 (3.25)
b(t) = (1+ e — e —e ™% /8 (3.26)
ct) = (1— et~ 4707 /8 (3.27)
dt) = (1-3e 243741t —e7%") /8. (3.28)

The functions a(t)-d(t) express the probability that the system is left in a

state that can be reached by zero, one, two, or three bit-flips from the initial

state, respectively. After quantum error correction is performed, single errors are

identified correctly but double and triple errors are not. As a result, the recovered

state, averaged over all possible measurement syndromes, is

= (a(t) +b(t) po+ (c(t) +d(£) XX XpgX X X.

(3.29)

The overlap of this state with the initial state depends on the initial state, but is

at least as large as when the initial state is |0); namely, it is at least as large as

F3 = (2432 —e 0 /4

12

1 —3(yt)%

(3.30)

Recalling that a single qubit subject to this decoherence has error probability
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p = ~t, we see that, when applied sufficiently often, the bit-flip code reduces the

error probability on each qubit from O(p) to O(p?).

3.3.2 Stabilizer formalism

The bit-flip code is one of many quantum error correcting codes that can be de-
scribed by the stabilizer formalism [48]. Let C be a 2*-dimensional subspace of
a 2"-dimensional n-qubit Hilbert space. Then the system can be thought of as
encoding k qubits in n, where the codewords are elements of C. Let us further
define the Pauli group to be P, = {*1,+:i} @ {I, X, Y, Z}®", and let the weight of
an operator in P, be the number of non-identity components it has when written
as a tensor product of operators in Pi. The stabilizer of C, S(C), is the group of
operators which fix all codewords in C. We call C an [[n, k, d]] stabilizer code when
(a) the n — k generators of S(C) form a subgroup of P, and (b) d is the smallest
weight of an element in P, \ S(C) that commutes with every element in S(C).

In this general setting, quantum error correction proceeds in two steps. First,
one projectively measures the stabilizer generators to infer the error syndrome.
Second, one applies a unitary recovery operator conditioned on the error syndrome.
The strong measurement used in this procedure guarantees that all errors, even
unitary errors, are discretized onto a finite set. For this reason I will sometimes
refer to this procedure as discrete quantum error correction. When the noise rate
is low and when correction is applied sufficiently often, this procedure reduces the

error probability from O(p) to O(p?).

3.4 Continuous quantum error correction via quantum

feedback control

In this section, I present a method for continuously protecting an unknown quan-
tum state using weak measurement, state estimation, and Hamiltonian correction.
As in the previous section, this method is introduced via the bit-flip code and then

generalized.
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3.4.1 Bit-flip code: Theoretical model

Suppose p is subjected to bit-flipping decoherence as in (3.23); to protect against
such decoherence, we have seen that we can encode p using the bit-flip code (3.15-
3.16). Here we shall define a similar protocol that operates continuously and uses
only weak measurements and slow corrections.

The first part of the protocol is to weakly measure the stabilizer generators
ZZI and IZZ for the bit-flip code, even though these measurements will not
completely collapse the errors. To localize the errors even further, we also measure
the remaining nontrivial stabilizer operator Z1Z.2 The second part of the protocol
is to apply the slow Hamiltonian corrections XII, I X1, and ITX corresponding to
the unitary corrections X 11, IX1I, and II X, with control parameters A; that are
to be determined. If we parameterize the measurement strength by « and perform
the measurements using the unravelling (3.8-3.9), the SME describing the protocol

18

dpe =  y(D[XII|+D{IXI|+ D{IIX])p.dt
+x(D[ZZ1) + DI ZZ] + D|Z12Z))p.dt
+VE(H[ZZ1dW1 + H[I Z Z]dWo

+ H[ZIZ)dWs3)p.
—i[F, pc]dt (3.31)
dQ, = 2w(ZZI),dt + /rdW, (3.32)
dQy = 2x(IZZ),dt + /rdW, (3.33)
dQs = 2r(ZI1Z).dt+ /kdWs, (3.34)
where
F=MXII+XIXI+AIIX (3.35)

2The modest improvement gained by this extra measurement is offset by an unfavorable scaling
in the number of extra measurements required when applied to general [[n, k, d}] codes having 2" ~*

stabilizer elements and only n — k generators.
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is the feedback Hamiltonian having control parameters Ag.
Following the logic of quantum error correction, it is natural to choose the Ay

to be functions of the error syndrome. For example, the choice

M= S0 22000+ (122))( - (212),)
Yo = G- (220N~ 122))(1+(212),)

N = 2(H(BZD)( - 122))( - (Z12),), (3.36)

where X is the maximum feedback strength that can be applied, is reasonable?: it
acts trivially when the state is in the codespace and applies a maximal correction
when the state is orthogonal to the codespace. Unfortunately this feedback is
sometimes harmful when it need not be. For example, when the controller receives
no measurement inputs (i.e., & = 0), it still adds an extra coherent evolution
which, on average, will drive the state of the system away from the state we wish
to protect.

This weakness of the feedback strategy suggests that we should choose the
feedback more carefully. To do this, we introduce a cost function describing how
far away the state is from its target and choose a control which minimizes this
cost. The difficulty is that the target is an unknown quantum state. However,
we can choose the target to be the codespace, which we do know. We choose the
cost function, therefore, to be the norm of the component of the state outside the
codespace. Since the codespace projector is Il¢ = %(III +ZZI+ZIZ+1227),
the cost function is 1 — f, where f(p) = tr(pll¢). Under the SME (3.31), the time

evolution of f due to the feedback Hamiltonian F' is

fn = 20 ZI+YIZ),
+20(ZY T + IY Z),

+2A(ZIY + IZY),. (3.37)

3The factor of % is included to limit the maximal strength of any parameter Ay to A.
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Maximizing ffb minimizes the cost, yielding the optimal feedback coeflicients

A1 = Asgn(YZI+YIZ),
Ay = Asgn(ZYI+ 1Y Z),

A3 = Asgn(ZIY +IZY),, (3.38)

where, again, A is the maximum feedback strength that can be applied.

This feedback scheme is a bang-bang control scheme, meaning that the control
parameters A are always at the maximum or minimum value possible (A or —A,
respectively), which is a typical control solution both classically [56] and quan-
tum mechanically [102]. In practice, the bang-bang optimal controls (3.38) can
be approximated by a bandwidth-limited sigmoid, such as a hyperbolic tangent
function.

The control solution (3.38) requires the controller to integrate the SME (3.31)
using the measurement currents @;(t) and the initial condition p.. However,
typically the initial state p.(0) will be unknown. Fortunately the calculation of
the feedback (3.38) does not depend on where the initial condition is within the
codespace, so the controller may assume the maximally mixed initial condition
pe = 3(|0)(0] + |I)(1]) for its calculations. This property generalizes for a wide
class of stabilizer codes, as is proved in Sec. 3.7; this property is conjectured to

hold for all stabilizer codes.

3.4.2 Intuitive one-qubit picture

Before generalizing the procedure, it is helpful to gain some intuition about how
it works by considering an even simpler “code”: the spin-up state (i.e., |0)) of a
single qubit. The stabilizer is My = Z, the noise it protects against is bit flips X,
and the correction Hamiltonian is proportional to X. The optimal feedback, by a
similar analysis to that for the bit-flip code, is F' = X sgn(Y).X, and the resulting
stochastic master equation can be rewritten as a set of Bloch sphere equations as

follows:
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dX) = —29(X)odt - 2V/R(X),(Z).dW (3.39)
dY), = —29(Y)dt = 2(Y), — 2V/R(Y), (Z).dW

—2A(sgn(Y), )(Z), dt (3.40)
dZ), = —2/Z)dt+2VR(1 — (Z2)2)dW

+2X(sgn(Y), )(Y), dt. (3.41)

The Bloch vector representation ((X),(Y),(Z)) [85] of the qubit provides a
simple geometric picture of evolution. Decoherence (the v term) shrinks the Bloch
vector, measurement (the x terms) lengthens the Bloch vector and moves it closer
to the z-axis, and correction (the A term) rotates the Bloch vector in the y—z plane.
Fig. 3.1 depicts this evolution: depending on whether the Bloch vector is in the
hemisphere with (Y') > 0 or (Y) < 0, the feedback will rotate the vector as quickly
as possible in such a way that it is always moving towards the codespace (spin-up
state). Note that if the Bloch vector lies exactly on the z-axis with (Z) < 0,
rotating it either way will move it towards the spin-up state—the two directions

are equivalent, and it suffices to choose one of them arbitrarily.

3.4.3 Feedback for a general code

This continuous feedback approach generalizes for a full [[n, &, d]] quantum error-
correcting code, which can protect against depolarizing noise [85] acting on each
qubit independently. The depolarizing channel, unlike the bit-flip channel, gener-
ates a full range of quantum errors—it applies either X, Y, or Z to each qubit
equiprobably at a rate v. We weakly measure the n — k stabilizer generators {M;}
with strength x. For each syndrome m, we apply a slow Hamiltonian correction

F,, with control strength A,,, the weight of each correction being d or less. The
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Figure 3.1: Bloch sphere showing the action of the feedback scheme on one qubit.
Wherever the Bloch vector is in the y—z plane, the feedback forces it back to the
spin-up state, which is the codespace of this system. All the vectors shown lie,

without loss of generality, in the = = 0 plane.
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SME describing this process is

n n—k
doe = 7 > S (Do pedt + £y DIMpedt
j=z,y,z i=1 =1
n—k R
+VE D HIMAW,pe — 1 Y Ac[Fr, peldt. (3.42)
=1 r=1

The number of feedback terms R needed will be less than or equal to the number
of errors the code corrects against. The reason that this equality is not strict is
that quantum error correcting codes can be degenerate, meaning that there can
exist inequivalent errors that have the same effect on the state—a purely quantum
mechanical property [48].

We optimize the A, relative to a cost function equal to the state’s overlap with
the codespace. For a general stabilizer code C, the codespace projector is

n—k

1
=1

and the rate of change of the codespace overlap due to feedback is

n—k
ffb = —¢ tr Z )\T[Hc, FT]p.
=0

Maximizing this overlap subject to a maximum feedback strength A yields the
feedback coeflicients

Ar = A sgn((e, ), - (3.43)

This control solution, as for the bit-flip code, requires a controller to compute
the feedback (3.43). A natural question to ask is how the scaling of the classical
computation behaves. In Sec. 3.7, it is shown that the evolution of (27%)2 param-
eters must be calculated in order to compute the feedback for an [[n, &, d]] code,
which at first does not seem promising. However, if one encodes mk qubits using
m copies of an [[n, k, d]] code, as might well be the case for a quantum memory,

the SME (3.42) will not couple the dynamics of the m logical qubits; and, as in
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the bit-flip case, the initial condition for the controller’s integration can still be the
completely mixed state in the total codespace. Then the relevant scaling for this

system, the dependence on m, is linear: the number of parameters is m(2"%)2.

3.5 Simulation of the bit-flip code

In this section, I present the results of Monte Carlo simulations of the implemen-

tation of the protocol described in Section 3.4 for the bit-flip code.

3.5.1 Simulation details

Because the bit-flip code feedback control scheme (3.31-3.34) uses a nonlinear feed-
back Hamiltonian, numerical simulation is the most tractable route for its study.
To obtain p.(t), these equations were integrated using a simple Euler integrator
and a Gaussian random number generator. Stable convergent solutions were found
when the dimensionless time step vdt was on the order of 107 and averaged over
10* quantum trajectories. As a benchmark, a typical run using these parameters
took 2-8 hours on a 400 MHz Sun Ultra 2. More sophisticated Milstein [65] in-
tegrators were found to converge more quickly but required too steep a reduction
in time step to achieve the same level of stability. All of these simulations began
in the state p.(0) = |0)(0], because it is maximally damaged by bit-flipping noise
and therefore it yielded the most conservative results.

Two measures are used to assess the behavior of the bit-flip code feedback
control scheme. The first measure is the codeword fidelity F.,(t) = tr(p.(0)p.(t)),
the overlap of the state with the target codeword. This measure is appropriate
when one cannot perform strong measurements and fast unitary operations, a
realistic scenario for many physical systems. The quantity Fi,(t) is compared to
the fidelities of one unprotected qubit F1(t) = 3(1+e~2") and of three unprotected
qubits Fy(t) = (Fi(t))>.
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The second measure is the correctable overlap

FCOT""(t) = tr(pc(t)ncor'r), (344)
where
Meorr = po-i—XIIpoXII
FIXIpoI XTI+ I1XpolIX (3.45)

is the projector onto the states that can be corrected back to the original codeword
by discrete quantum error correction applied (once) at time ¢. This measure is ap-
propriate when one can perform strong measurements and fast unitary operations,
but only at discrete time intervals of length ¢. The quantity F,,(t) is compared
to the fidelity F5(t) obtained when, instead of using the protocol up to time ¢, no
correction was performed until the final discrete quantum error correction at time
t. As was shown in equation (3.30), the expression for F5(t) may be calculated

analytically; it is F3(t) = $(2 + 3e™2"" — e767%) ~ 1 — 34242,

3.5.2 Results

The Monte Carlo simulations demonstrate that both the optimized estimate feed-
back scheme (3.38) and the heuristically motivated feedback scheme (3.36) effec-
tively protect a qubit from bit-flip decoherence. Figs. 3.2 and 3.3 depict how these
schemes behave for the (scaled) measurement and feedback strengths x/v = 64,
A/ = 128 when averaged over 10* quantum trajectories. Using the first measure,
one can see that at very short times, both schemes have codeword fidelities Fi,,(t)
that follow the three-qubit fidelity F3(t) closely. For both schemes, Fr,,(t) improves
and surpasses the fidelity of a single unprotected qubit Fi(¢). Indeed, perhaps the
most exciting feature of these figures is that eventually F.,(t) surpasses F3(t),
the fidelity achievable by discrete quantum error correction applied at time t. In

other words, continuous-time quantum error correction alone outperforms discrete
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Figure 3.2: Behavior of the feedback protocol with optimized feedback (3.38) for
parameters x/y = 64, A\/y = 128, averaged over 10* quantum trajectories. The
analytical curves shown are as follows: the dashed line is the fidelity of one deco-
hering qubit, F1(t); the dashed-dotted line is the fidelity of three decohering qubits,
F5(t); and the dotted line is the fidelity of an encoded qubit after one round of
discrete error correction, F5(t). The simulation results are as follows: the solid line
is the codeword fidelity F,(t), and the thick solid line is the correctable overlap
Frorr(£).

quantum error correction alone if the time between corrections is sufficiently long.

Looking at the second measure in Figs. 3.2 and 3.3, one can see that Fi,,(t)
is as good as or surpasses Fj(t) almost everywhere. For times even as short as a
tenth of a decoherence time, the effect of using (weak) continuous-time quantum
error correction (CTQEC) between discrete quantum error correction cycles is
quite noticeable. This improvement suggests that, even when one can approximate
discrete quantum error correction but only apply it every so often, it pays to use
CTQEC in between corrections. Therefore, CTQEC offers a means of improving
the fidelity of a quantum memory even after the system has been isolated as well as
possible and discrete quantum error correction is applied as frequently as possible.

There is a small time range from ¢ = 0.01 to ¢t = 0.05 for the parameters
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o 0.05 0.1 0.15 0.2 0.25

Figure 3.3: Behavior of continuous-time quantum error correction with feedback
(3.36) for parameters k/v = 64, A/y = 128, averaged over 10* quantum trajecto-
ries. As in Fig. 3.2, the dashed line is Fi(t), the dashed-dotted line is F3(¢), the
dotted line is F5(¢), the solid line is Fi,,(¢) and the thick solid line is Fr,(t). Note
that this feedback is qualitatively similar to that in Fig. 3.2 but does not perform

as well.

used in Fig. 3.2 in which using CTQEC before discrete quantum error correction
actually underperforms not doing anything before the correction. The simulations
suggest that the reason for this narrow window of deficiency is that, in the absence
of CTQEC, it is possible to have two errors on a qubit (e.g., two bit flips) that
cancel each other out before discrete quantum error correction is performed. In
contrast, CTQEC will immediately start to correct for the first error before the
second one happens, so the advantage of this sort of cancellation is lost. This
view is supported by the fact that F,,,.(t) in the simulations always lies above the
fidelity line obtained by subtracting such fortuitous cancellations from F3(¢). In
any case, this window can be made arbitrarily small and pushed arbitrarily close
to the beginning of CTQEC by increasing the measurement strength x and the
feedback strength A.

In Figs. 3.2 and 3.3, the F_,,(t) line is much more jagged than the Fi,.(t) line.
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The jaggedness in both of these lines is due to statistical noise in the simulation
and is reduced when averaged over more than 10 trajectories. The reason for the
reduced noise in the Fg,,(¢) line has to do with the properties of discrete quantum
error correction—on average, neighboring states get corrected back to the same
state by discrete quantum error correction, so noise fluctuations become smoothed
out.

The improvement the optimized estimate CTQEC feedback protocol yields
beyond the heuristically motivated CTQEC feedback protocol is more noticeable
in Fi,(t) than in F,(t) as seen in Figs. 3.2 and 3.3. The optimized protocol acts
to minimize the distance between the current state and the codespace, not between
the current state and the space of states correctable back to the original codeword,
so this observation is perhaps not surprising. In fact, optimizing feedback relative
to Fiorr(t) is not even possible without knowing the codeword being protected.
Nevertheless, the optimized protocol does perform better, so henceforth 1 shall
restrict my discussion to it.

How CTQEC behaved when the scaled measurement strength «/~ and feedback
strength A/vy were varied was also studied using the two measures described in
Sec. 3.5.1. The first measure, the codeword fidelity Fe.,(t), crosses the unprotected
qubit fidelity F1(¢) at various times 7 as depicted in Fig. 3.4. This time is of interest
because it is the time after which the optimized protocol improves the fidelity of
a qubit beyond what it would have been if it were left to itself. Increasing the
scaled feedback strength A/~ improves the CTQEC scheme and reduces 7, but the
dependence on the scaled measurement strength /-~ is not so obvious from Fig.
3.4.

By looking at cross sections of Fig. 3.4, such as at A\/v = 80 as in Fig. 3.5, one
can see that, for a given scaled feedback strength A/~, there is a minimum crossing
time 7 as a function of measurement strength x/v. In other words, there is an
optimal choice of measurement strength x/+. This optimal choice arises because
syndrome measurements, which localize states near error subspaces, compete with

Hamiltonian correction operations, which coherently rotate states between the
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Figure 3.4: Time 7 at which F,(7) = F1(7) as a function of measurement strength
k/v and feedback strength \/~. This crossing time is the time after which the
optimized continuous-time quantum error correction protocol improves the fidelity

of a qubit beyond what it would have been if it were left to itself.

nontrivial error subspaces to the trivial error subspace. This phenomenon is a
feature of continuous-time quantum error correction that is not present in discrete
quantum error correction; in the former, measurement and correction are simulta-
neous, while in the latter, measurement and correction are separate processes that
don’t interfere.

In order to study how the second measure, the correctable overlap Fo,(t),
varies with x and A, it is instructive to examine its behavior at a particular time.
Fig. 3.6 plots F..(t), evaluated at the time t = 0.2/, as a function of x and X. As
was found with the crossing time 7, increasing A always improves performance, but
increasing x does not because measurement can compete with correction. Since
F5(0.2/v) = 0.927, for all the x and A plotted in Fig. 3.6, using CTQEC between
discrete quantum error correction intervals of time 0.2/ improves the reliability

of the encoded data.
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Figure 3.5: Time 7 at which Fe,,(7) = Fy(7) as a function of measurement strength

K/, keeping correction strength fixed at \/y = 80.

Figure 3.6: F.or at vt = 0.2 as a function of measurement strength x/v and
feedback strength A/~+. This quantity corresponds to the fidelity of a state given
continuous error-correction up to vyt = 0.2, at which point discrete error-correction

is performed.
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3.6 Conclusion

Often, in realistic quantum computing architectures, weak measurements and
Hamiltonian operations are likely to be the tools available to protect quantum
states from decoherence. Moreover, even quantum systems in which strong mea-
surements and fast operations are well approximated, such as ion traps [110],
it is likely that these operations will only be possible at some maximum rate.
Continuous-time quantum error correction (CTQEC) is able to continuously pro-
tect unknown quantum states using only weak measurements and Hamiltonian
corrections and can improve the fidelity of quantum states beyond rate-limited
quantum error correction. In addition, because CTQEC responds to the entire
measurement record and not to instantaneous measurement results, it will not
propagate errors badly and therefore has a limited inherent fault-tolerance that
ordinary quantum error correction does not.

Continuous-time quantum error correction is expected to be applicable to other
continuous-time quantum information processes, such as reliable state preparation
and fault-tolerant quantum computation. It is also expected that this protocol
will work when different continuous-time measurement tools are available, such as
direct photodetection. Finally, although current computing technology has limited
investigation by simulation to few-qubit versions of CTQEC, it is expected that
many of the salient features found in the three-qubit bit-flip code example will

persist when CTQEC is applied to larger codes.

3.7 Feedback based on the completely mixed state

Although the CTQEC scheme described in Section 3.4 does not distinguish be-
tween codewords, it is not obvious that in order to use it one does not need to
first know the initial codeword to integrate the SME and calculate the relevant
expectation values. Since one of the primary selling points of CTQEC is that it can

protect unknown quantum states, this property is crucial to the scheme’s success.
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Fortunately, for a large class of stabilizer codes, the computation of the feedback
can be done by assuming the initial state is the completely mixed codespace state
Pe = 3= ;’:_1]“(] + M), which I prove here. The proof is originally due to Ahn [5].

Defining the set G for the [[n, k,d]] code C with stabilizer S(C) as
G ={as|a € P,,s€ S5(C),[s,a] =0 iff |a is even}, (3.46)

where |a| denotes the weight of o as defined in section 3.3.2.

The normalizer N(S) for the code is defined to be the group of operators that
commute with every element in S(C). The elements of N(S)\ S can be thought
of as the encoded operations for the code—they move one codeword to another.

Let g = 0y, ® ... ® 0y, where 7y .. .4, take on the values z,v,z, [ and o; = I.

Define the Pauli basis coefficients R,(p) of a density matrix p as follows:

Ry(p) = tr(pg) /2" = {g)/2", (3.47)

The following theorem shows that the conditions for the feedback to be insen-

sitive to the initial codeword can be expressed as

1. For every R, used in CTQEC, g € G.
2. For every g € G and every p; and py in C, Ry(p1) = Ry(p2).

3. Evolution under the SME couples members of the set {R,|g € G} only to

each other.

Theorem 3.7.1. Let C be an [[n,1,3]] 4 stabilizer code whose stabilizer S(C) has
generators of only even weight and whose encoded operations set N(S) \ S has

elements of only odd weight.> Then the conditions 1-3 above are satisfied; conse-

“The restriction to [[n,1,3]] codes is for simplicity of analysis; the proof may be extended to

larger codes. Note that for an [[n, 1, 3]] code, the F} in the master equation (3.42) are all of the
(

3
51t is possible that this restriction may be able to be relaxed; however, it is sufficiently general

form o k), where this notation denotes the weight-one Pauli operator ¢; acting on qubit k.

that it holds for the most well-known codes, including the bit-flip code, the five-bit code, the
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quently, continuous-time quantum error correction does not require knowledge of

where the initial codeword lies in C.

Proof. In this proof, any variable of the form «, is an arbitrary element of P,, and
any variable of the form s, is an arbitrary element of S(C). Each of the conditions
listed above are proven separately.

Condition 1: By construction, G contains all M of the form M = sia(.k), where

J
[ss, Uj(-k)] = 0. These are precisely the operators used to compute the feedback in
(3.43) for a code encoding one qubit.

Condition 2: Let ¢ = as € G and let p € C. We know either o € S, a €
N(S)\ S, or « ¢ N(S). Suppose @ € S. Then g € S acts trivially on all
states in the codespace, so R, = 1/2"tr(pg) = 1/2" for this case. Now suppose
a € N(S)\S. Then [a, s] = 0, and since as € G, |a| is even. But every element of
N(S)\ S has odd weight by hypothesis, which is a contradiction. Hence a cannot
be in N(S)\ S. Finally, suppose a ¢ N(S). Then there exists some s’ € S such

that [a, s'] # 0; let ' be such an element. Then for |¢), |¢) € C,

(Wlas' 6) = — (4] s'a|¢)
= ~(@lalg)=0. (3.48)

Ylale)

Hence for this case Ry = 1/2"tr(pas) = 0. Note that these expressions for
R, must be the same no matter where p is in the codespace; therefore, for every
g € G and p1,p2 € C, Ry(p1) = Ry(p2).

Condition 3: Consider dRy;, where M € G. It will be shown that dRy =
f{RN|N € G}) for some real function f. For any M € P,, dRy = Tr(dp M),
where dp is given by the master equation (3.42). Hence the satisfaction of condi-
tion three can be demonstrated for each term of the master equation separately.

First, substituting in the master equation shows that any term of the form D(c]pdt

Steane code, and the nine-bit Shor code. This condition also ensures that G is consistent, i.e., if

ajsi € G and @ = @nSm, then o, and smsk also fulfill the conditions for an(smsk) to be in G.
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contributes either 0 or the simple exponential damping term —2Rjys to dRyy if M
and ¢ commute or anticommute, respectively.

As for the master equation term H([s;|dW,p, by writing the master equation in
the Pauli basis one can see that Ry contributes to dR s through this term precisely
when Ns; = M and {s;, N} # 0. Since M € G, one may write M = ays; (with the
appropriate restriction on [y, s;] depending on the weight of ar) . N = agsis; =
Q. Sm, 50 the condition above that [s;, N] = 0 becomes [s;, ays185] = (ak[sy, sis;]+
[sj, ak)sis;) = [sj, ] = 0. Therefore, [ag, sm] = silak, s;] + [ak, si]s; = [ax, si]s;
which is zero or not depending on the original weight of . So if M = a5 is such
that M € G, N = as,, must fulfill that same condition, implying that N € G
also.

Similarly, Ry contributes to dRps through the master equation term [O'](k) , P)
when Na(k> M and [o (k),N] # 0. Now, M € G so M = ays;m,, again with
the appropriate restriction on [ay, s,,] depending on the weight of oy. Then N =

a( )alsm = anSm, SO the condition above that {O’;k), N} # 0 becomes

{0'](- ) O']( ) s }o= 0’§k) [oyc),al]sm +0§k)al{a§k),sm}
= a;k){oyc), o} Sm — oék)al[aék),sm]

= 0. (3.49)

The analysis of this term can be divided into two cases. Case 1 occurs when
a(k)al has weight |oy|, implying that {ay,0; )} 0. Then {0'(» ) ol* )alsm} =

g
—a§k)a1[a§k),sm] = 0, which implies that [sm, o] = [sm,o](- )]al + o( )[sm,al] =
O'g»k) [$1n, 1]. S0 [$mm, @n] = 0 just when [s,,, oq] = 0, which means that NV € G since
lan| = |aul.
In Case 2, U(.k)al has weight |oq £ 1] = [al,aj(k)] = 0. Then (3.49) be-
comes {o( ) a( )5 mm = U(k)al{a( ) ,8m} = 0, which implies that [sm,,an] =
{s7n,ajk)}al+a§ ){sm,al} = 0‘§» ){sm,al}. SO [$m, @n] = 0 just when {sm,q} =0,

which means that N € G since |a,| = |y £ 1]. B
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In summary, the theorem demonstrates that all three of the conditions above
are satisfied: all the R’s used to compute the feedback are of the form Rpyeq; for
a given M € G, Rys will be the same for any state in the codespace; and evo-
lution via the master equation mixes the R’s of the form Ryee only with each
other. Therefore, CTQEC works the same for any state initially in the codespace,
including the true initial state and the entirely mixed state, so it suffices to pre-
suppose the completely mixed state as the initial condition rather than the actual
(unknown) code state.

Another consequence of using the completely mixed state for feedback arises
from the fact that doing so corresponds to discarding information about the state
of the system. Therefore, this procedure should reduce the number of parame-
ters needed to compute the feedback. Unfortunately, this only leads to a modest
reduction in the number of parameters, which can be found by using a simple
counting argument. There are 2"/2% = 2"~* different error subspaces, including
the no-error (code) space, and if one starts with the completely mixed state in the
codespace one does not need to worry at all about any movement within any of
these spaces. One only needs to worry about which error space the state is actu-
ally in, along with coherences between these spaces, so that (277%)2 parameters

are needed to describe the system.
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Chapter 4

Topological quantum memory

Abstract

In this chapter, I present an analysis of surface codes, the topological quantum
error-correcting codes introduced by Kitaev. In these codes, qubits are arranged in
a two-dimensional array on a surface of nontrivial topology, and encoded quantum
operations are associated with nontrivial homology cycles of the surface. I present
new protocols for error recovery, and study the efficacy of these protocols. An
order-disorder phase transition occurs in this system at a nonzero critical value of
the error rate; if the error rate is below the critical value (the accuracy threshold),
encoded information can be protected arbitrarily well in the limit of a large code
block. This phase transition can be accurately modelled by a three-dimensional
Zo lattice gauge theory with quenched disorder. I present an estimation of the
accuracy threshold, assuming that all quantum gates are local, that qubits can be
measured rapidly, and that polynomial-size classical computations can be executed
instantaneously. I also describe a robust recovery procedure that does not require
measurement or fast classical processing; however, for this procedure the quantum
gates are local only if the qubits are arranged in four or more spatial dimensions.
I present procedures for encoding, measurement, and performing fault-tolerant
universal quantum computation with surface codes, and argue that these codes

provide a promising framework for quantum computing architectures.
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The work presented in this chapter is the result of a collaboration with Dennis,
Kitaev, and Preskill [29]. Large sections of this chapter were originally written by

Preskill.

4.1 Introduction

The microscopic world is quantum mechanical, but the macroscopic world is classi-
cal. This fundamental dichotomy arises because a coherent quantum superposition
of two readily distinguishable macroscopic states is highly unstable. The quantum
state of a macroscopic system rapidly decoheres due to unavoidable interactions
between the system and its surroundings.

Decoherence is so pervasive that it might seem to preclude subtle quantum
interference phenomena in systems with many degrees of freedom. However, re-
cent advances in the theory of quantum error correction suggest otherwise [92, 94].
Quantum states can be cleverly encoded so that the debilitating effects of deco-
herence, if not too severe, can be resisted. Furthermore, fault-tolerant protocols
have been devised that allow an encoded quantum state to be reliably processed
by a quantum computer with imperfect components [93]. In principle, then, very
intricate quantum systems can be stabilized and accurately controlled.

The theory of quantum fault tolerance has shown that, even for delicate coher-
ent quantum states, information processing can prevent information loss. In this
chapter, we will study a particular approach to quantum fault tolerance that has
notable advantages: in this approach, based on the surface codes introduced in
[60, 61], the quantum processing needed to control errors has especially nice local-
ity properties. Hence, surface codes suggest a particularly promising approach to
quantum computing architecture.

One glittering achievement of the theory of quantumn fault tolerance is the
threshold theorem, which asserts that an arbitrarily long quantum computation
can be executed with arbitrarily high reliability, provided that the error rates of

the computer’s fundamental quantum gates are below a certain critical value, the
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accuracy threshold [67, 2, 62, 87, 48]. The numerical value of this accuracy thresh-
old is of great interest for future quantum technologies, as it defines a standard
that should be met by designers of quantum hardware. The critical error prob-
ability per gate p. has been estimated as p. > 1074; very roughly speaking, this
means that robust quantum computation is possible if the decoherence time of
stored qubits is at least 10% times longer than the time needed to execute one
fundamental quantum gate [52], assuming that decoherence is the only source of
error.

This estimate of the accuracy threshold is obtained by analyzing the efficacy
of a concatenated code, a hierarchy of codes within codes, and it is based on many
assumptions, which will be elaborated in Sec. 4.2. Some of these assumptions
are less realistic than others. For example, one assumption is that a quantum
gate can act on any pair of qubits, with a fidelity that is independent of the
spatial separation of the qubits. This assumption is clearly unrealistic; it is made
because it greatly simplifies the analysis. Thus this estimate will be reasonable for
a practical device only to the extent that the hardware designer is successful in
arranging that qubits that must interact are kept close to one another. It is known
that the threshold theorem still applies if quantum gates are required to be local
[2, 51], but for this realistic case careful estimates of the threshold have not been
carried out.

In this chapter, I will perform a quite different estimate of the accuracy thresh-
old, based on surface codes rather than concatenated codes. This estimate applies
to a device with strictly local quantum gates, if the device is controlled by a classi-
cal computer that is perfectly reliable, and whose clock speed is much faster than
the clock speed of the quantum computer. In this approach, some spatial nonlo-
cality in effect is still allowed, but all the nonlocal processing is demanded to be
classical. Specifically, an error syndrome is extracted by performing local quantum
gates and measurements; then a classical computation is executed to infer what
quantum gates are needed to recover from error. We will assume that this classical

computation, which actually requires a time bounded above by a polynomial in
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the number of qubits in the quantum computer, can be executed in a constant
number of time steps. Under this assumption, the existence of an accuracy thresh-
old can be established and its value can be estimated. It will be shown that,
under the assumption that the classical computation can be completed in a single
time step, the critical error probability p. per qubit and per time step satisfies
pe > 1.7 x 1074, This estimate applies to the accuracy threshold for reliable stor-
age of quantum information, rather than for reliable processing. The threshold for
quantum computation is not as easy to analyze definitively, but it will be argued
that its numerical value is not likely to be substantially different.

It is reasonable to believe that the principles of fault tolerance will dictate
the shape of future quantum computing architectures. In Sec. 4.2, the hardware
features that are conducive to fault-tolerant processing will be listed, and the
design of a fault-tolerant quantum computer that incorporates surface coding will
be outlined. I review the properties of surface codes in Sec. 4.3, emphasizing in
particular that the qubits in the code block can be arranged in a planar sheet
[17, 42], and that errors in the syndrome measurement complicate the recovery
procedure. The core of the chapter is Sec. 4.4, where recovery from errors using
surface codes is related to a statistical-mechanical model with local interactions.
In the (unrealistic) case where syndrome measurements are perfect, this model
becomes the two-dimensional Ising model with quenched disorder, whose phase
diagram has been studied by Monte Carlo simulations. These simulations indicate
that if the syndrome information is put to optimal use, error recovery succeeds
with a probability that approaches one in the limit of a large code block, if and
only if both phase errors and bit-flip errors occur with a probability per qubit less
than about 11%. In the more realistic case where syndrome measurements are
imperfect, error recovery is modelled by a three-dimensional Zs gauge theory with
quenched disorder, whose phase diagram (to the best knowledge of me and my
collaborators) has not been studied previously. The third dimension that arises
can be interpreted as time—since the syndrome information cannot be trusted,

one must repeat the measurement many times before one can be confident about
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the correct way to recover from the errors. It will be argued that an order-disorder
phase transition of this model corresponds to the accuracy threshold for quantum
storage, and furthermore that the optimal recovery procedure can be computed
efficiently on a classical computer. In Sec. 4.5, a rather crude lower bound on
the accuracy threshold will be proved, concluding that error recovery procedure
is sure to succeed in the limit of a large code block under suitable conditions: for
example, if in each round of syndrome measurement, qubit phase errors, qubit
bit-flip errors, and syndrome bit errors all occur with probability below 1.14%.
Tighter estimates of the accuracy threshold could be obtained through numerical
studies of the quenched gauge theory.

In deriving this accuracy threshold for quantum storage, it is assumed that an
unlimited amount of syndrome data could be deposited in a classical memory, if
necessary. But in Sec. 4.6, it will be shown that this threshold, and a corresponding
accuracy threshold for quantum computation, remain intact even if the classical
memory is limited to polynomial size. Then in Sec. 4.7, quantum circuits for syn-
drome measurement are analyzed, so that the estimate of the accuracy threshold
can be reexpressed as a fidelity requirement for elementary quantum gates. The
conclusion is that such a quantum memory can resist decoherence if gates can be
executed in parallel, and if the qubit decoherence time is at least 6000 times longer
than the time needed to execute a gate. In Sec. 4.8, it will be shown that encoded
qubits can be accurately prepared and reliably measured. It will also be shown
how a surface code with a small block size can be built up gradually to a large
block size; this procedure allows one to enter a qubit in an unknown quantum
state into this quantum memory with reasonable fidelity, and then to maintain
that fidelity for an indefinitely long time. It will be explained in Sec. 4.9 how a
universal set of quantum gates acting on protected quantum information can be
executed fault-tolerantly.

Most of the analysis of the accuracy threshold in this chapter is premised on the
assumption that qubits can be measured quickly and that classical computations

can be done instantaneously and perfectly. In Sec. 4.10, these assumptions are
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dropped. A recovery procedure that does not require measurement or classical
computation will be presented, and a lower bound on the accuracy threshold will
be inferred. Unfortunately, though, the quantum processing in this procedure is
not spatially local unless the dimensionality of space is at least four. Sec. 4.11
contains some concluding remarks.

This chapter analyzes applications of surface coding to quantum memory and
quantum computation that could in principle be realized in any quantum computer
that meets the criteria outlined in Sec. 4.2, whatever the details of how the local
quantum gates are physically implemented. It has also been emphasized [60, 61]
that surface codes may point the way toward realizations of intrinsically stable
quantum memories (physical fault tolerance). In that case, protection against
decoherence would be achieved without the need for active information processing,
and how accurately the protected quantum states can be processed might depend

heavily on the details of the implementation.

4.2 Fault tolerance and quantum architecture

To prove that a quantum computer with noisy gates can perform a robust quantum
computation, we must make some assumptions about the nature of the noise and
about how the computer operates. In fact, similar assumptions are needed to prove
that a classical computer with noisy gates is robust [44]. Still, it is useful to list
these requirements—they should always be kept in mind when we contemplate

proposed schemes for building quantum computing hardware:

e Constant error rate. We assume that the strength of the noise is independent
of the number of qubits in the computer. If the noise increases as we add
qubits, then we cannot reduce the error rate to an arbitrarily low value by

increasing the size of the code block.

o Weakly correlated errors. Errors must not be too strongly correlated, either
in space or in time. In particular, fault-tolerant procedures fail if errors

act simultaneously on many qubits in the same code block. If possible, the



Chapter 4: Topological quantum memory 65

hardware designer should strive to keep qubits in the same block isolated

from one another.

e Parallel operation. We need to be able to perform many quantum gates in
a single time step. Errors occur at a constant rate per unit time, and we
are to control these errors through information processing. We could never
keep up with the accumulating errors except by doing processing in different

parts of the computer at the same time.

e Reusable memory. Errors introduce entropy into the computer, which must
be flushed out by the error recovery procedure. Quantum processing transfers
the entropy from the qubits that encode the protected data to “ancilla”
qubits that can be discarded. Thus fresh ancilla qubits must be continually
available. The ability to erase (or replace) the ancilla quickly is an essential

hardware requirement [3].

In some estimates of the threshold, additional assumptions are made. While not
strictly necessary to ensure the existence of a threshold, these assumptions may be
useful, either because they simplify the analysis of the threshold or because they
allow us to increase its numerical value. Hence these assumptions, too, should

command the attention of the prospective hardware designer:

o [ast measurements. 1t is helpful to assume that a qubit can be measured as
quickly as a quantum gate can be executed. For some implementations, this
may not be a realistic assumption—measurement requires the amplification
of a microscopic quantum effect to a macroscopic signal, which may take a
while. But by measuring a classical error syndrome for each code block, we
can improve the efﬁciency of error recovery. Furthermore, if we can measure
qubits and perform quantum gates conditioned on classical measurement
outcomes, then we can erase ancilla qubits by projecting onto the {|0),|1)}

basis and flipping the qubit if the outcome is |1).
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o lust and accurate classical processing. If classical processing is faster and
more accurate than quantum processing, then it is beneficial to substitute
classical processing for quantum processing when possible. In particular, if
the syndrome is measured, then a classical computation can be executed to
determine how recovery should proceed. ldeally, the classical processors that
coordinate the control of the quantum computer should be integrated into

the quantum hardware.

o No leakage. It is typically assumed that, though errors may damage the
state of the computer, the qubits themselves remain accessible—they do not
“leak” out of the device. - In fact, at least some types of leakage can be
readily detected. If leaked qubits, once detected, can be replaced easily by
fresh qubits, then leakage need not badly compromise performance. Hence,

a desirable feature of hardware is that leaks are easy to detect and correct.

o Nonlocal quantum gates. Higher error rates can be tolerated, and the esti-
mate of the threshold is simplified, if we assume that two-qubit quantum
gates can act on any pair of qubits with a fidelity independent of the dis-
tance between the qubits. However useful, this assumption is not physically
realistic. What the hardware designer can and should do, though, is try to
arrange that qubits that will need to interact with one another are kept close
to one another. In particular, the ancilla qubits that absorb entropy should

be carefully integrated into the design [51].
If we do insist that all quantum gates are local, then another desirable feature
is

o High coordination number. A threshold theorem applies even if qubits form a
one-dimensional array [2, 51]. But local gates are more effective if the qubits

are arranged in three dimensions, so that each qubit has more neighbors.

Suppose, then, that we are blessed with an implementation of quantum compu-

tation that meets all of our desiderata. Qubits are arranged in a three-dimensional
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lattice, and can be projectively measured quickly. Reasonably accurate quantum
gates can be applied in parallel to single qubits or to neighboring pairs of qubits.
Fast classical processing is integrated into the qubit array. Under these conditions

planar surface codes provide an especially attractive way to operate the quantum

computer fault-tolerantly.

We may envision our quantum computer as a stack of planar sheets, with a
protected logical qubit encoded in each sheet. Adjacent to each logical sheet is
an associated sheet of ancilla qubits that are used to measure the error syndrome
of that code block; after each measurement, these ancilla qubits are erased and
then immediately reused. Encoded two-qubit gates can be performed between
neighboring logical sheets, and any two logical sheets in the stack can be brought
into contact by performing swap gates that move the sheets through the interven-
ing layers of logical and ancilla qubits. As a quantum circuit is executed in the
stack, error correction is continually applied to each logical sheet to protect against
decoherence and other errors. Portions of the stack are designated as “software
factories,” where special ancilla states are prepared and purified—this software
is then consumed during the execution of certain quantum gates that cannot be
implemented directly.

A notable feature of this design (or other fault-tolerant designs) is that most of
the information processing in the device is devoted to controlling errors, rather than
moving the computation forward. How accurately must the fundamental quantum
gates be executed for this error control to be effective, so that our machine is

computationally powerful? The goal of this chapter is to address this question.

4.3 Surface codes

We will study the family of quantum error-correcting codes introduced in [60, 61].
These codes are especially well suited for fault-tolerant implementation, because

the procedure for measuring the error syndrome is highly local.
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4.3.1 Toric codes

For the code originally described in [60, 61], it is convenient to imagine that the
qubits are in one-to-one correspondence with the links of a square lattice drawn on
a torus, or, equivalently, drawn on a square with opposite edges identified. Hence
we will refer to them as “toric codes.” Toric codes can be generalized to a broader
class of quantum codes, with each code in the class associated with a tessellation
of a two-dimensional surface. Codes in this broader class will be called “surface
codes.”

A surface code is a special type of “stabilizer code” {18, 47]. A (binary) sta-
bilizer code can be characterized as the simultaneous eigenspace with eigenvalue
one of a set of mutually commuting check operators (or “stabilizer generators”),

where each generator is a “Pauli operator.” We use the notation

10 01

I= , X = , (4.1)
01 10
0 —i 1 0

Y = , Z = (4.2)
i 0 0 -1

for the 2 x 2 identity and Pauli matrices; a Pauli operator acting on n qubits is

one of the 227 tensor product operators

{I,X,Y,Z}°". (4.3)

For the toric code defined by the L x L square lattice on the torus, there are
2L2 links of the lattice, and hence 2L? qubits in the code block. Check operators
are associated with each site and with each elementary cell (or “plaquette”) of the
lattice, as shown in Fig. 4.1. The check operator at site s acts nontrivially on the

four links that meet at the site; it is the tensor product

Xs = Q35 X¢ (4.4)
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Figure 4.1: Check operators of the toric code. Each plaquette operator is a tensor
product of Z’s acting on the four links contained in the plaquette. Each site

operator is a tensor product of X’s acting on the four links that meet at the site.

acting on those four qubits, times the identity acting on the remaining qubits. The
check operator at plaquette P acts nontrivially on the four links contained in the

plaquette, as the tensor product

Zp = @epZy, (4.5)

times the identity on the remaining links.

Although X and Z anticommute, the check operators are mutually commuting.
Obviously, site operators commute with site operators, and plaquette operators
with plaquette operators. Site operators commute with plaquette operators be-
cause a site operator and a plaquette operator act either on disjoint sets of links,
or on sets whose intersection contains two links. In the former case, the operators
obviously commute, and in the latter case, two cancelling minus signs arise when
the site operator commutes through the plaquette operator. The check operators
generate an Abelian group, the code’s stabilizer.

The check operators can be simultaneously diagonalized, and the toric code

is the space in which each check operator acts trivially. Because of the periodic
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boundary conditions, each site or plaquette operator can be expressed as the prod-
uct of the other L? — 1 such operators; the product of all L? site operators or all
L? plaquette operators is the identity, since each link operator occurs twice in the
product, and X2 = Z? = I. There are no further relations among these operators;
therefore, there are 2- (L2 —1) independent check operators, and hence two encoded
qubits (the code subspace is four dimensional).

A Pauli operator that commutes with all the check operators will preserve the
code subspace. What operators have this property? To formulate the answer,
it is convenient to recall some standard mathematical terminology. A mapping
that assigns an element of Z; = {0,1} to each link of the lattice is called a (Zs-
valued) I-chain. In a harmless abuse of language, we will also use the term 1-chain
(or simply chain) to refer to the set of all links that are assigned the value 1 by
such a mapping. The 1-chains form a vector space over Zs—intuitively, the sum
u + v of two chains u and v is a disjoint union of the links contained in the two
1-chains. Similarly, O-chains assign elements of Z, to lattice sites and 2-chains
assign elements of Zs to lattice plaquettes; these also form vector spaces. A linear
boundary operator & can be defined that takes 2-chains to 1-chains and 1-chains
to O-chains: the boundary of a plaquette is the sum of the four links comprising
the plaquette, and the boundary of a link is the sum of the two sites at the ends
of the link. A chain whose boundary is trivial is called a cycle.

Now, any Pauli operator can be expressed as a tensor product of X’s (and
D’s) times a tensor product of Z’s (and I's). The tensor product of Z’s and I’s
defines a Zs-valued 1-chain, where links acted on by Z are mapped to 1 and links
acted on by [ are mapped to 0. This operator trivially commutes with all of the
plaquette check operators, but commutes with a site operator if and only if an
even number of Z’s act on the links adjacent to the site. Thus, the corresponding
1-chain must be a cycle. Similarly, the tensor product of X’s trivially commutes
with the site operators, but commutes with a plaquette operator only if an even
number of X’s act on the links contained in the plaquette. This condition can

be more conveniently expressed if we consider the dual lattice, in which sites and
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plaquettes are interchanged; the links dual to those on which X acts form a cycle
of the dual lattice. In general, then, a Pauli operator that commutes with the
stabilizer of the code can be represented as a tensor product of Z’s acting on a
cycle of the lattice, times a tensor product of X’s acting on a cycle of the dual
lattice.

Cycles are of two distinct types. A l-cycle is homologically trivial if it can be
expressed as the boundary of a 2-chain (Fig. 4.2a). Thus, a homologically trivial
cycle on our square lattice has an interior that can be “tiled” by plaquettes, and
a product of Z’s acting on the links of the cycle can be expressed as a product
of the enclosed plaquette operators. This operator is therefore a product of the
check operators—it is contained in the code stabilizer and acts trivially on the code
subspace. Similarly, a product of X’s acting on links that comprise a homologically
trivial cycle of the dual lattice is also a product of check operators. Furthermore,
any element of the stabilizer group of the toric code (any product of the generators)
can be expressed as a product of Z’s acting on a homologically trivial cycle of the
lattice times X'’s acting on a homologically trivial cycle of the dual lattice.

But a cycle could be homologically nontrivial, that is, not the boundary of any-
thing (Fig. 4.2b). A product of Z’s corresponding to a nontrivial cycle commutes
with the code stabilizer (because it is a cycle), but is not contained in the stabilizer
(because the cycle is nontrivial). Therefore, while this operator preserves the code
subspace, it acts nontrivially on encoded quantum information. Associated with
the two fundamental nontrivial cycles of the torus, then, are the encoded opera-
tions Z; and Z, acting on the two encoded qubits. Associated with the two dnal
cycles of the dual lattice are the corresponding encoded operations X; and Xy, as
shown in Fig 4.3.

A Pauli operator acting on n qubits is said to have weight w if the identity
acts on n — w qubits and nontrivial Pauli matrices act on w qubits. The distance
d of a stabilizer code is the weight of the minimal-weight Pauli operator that
preserves the code subspace and acts nontrivially within the code subspace. If an

encoded state is damaged by the action of a Pauli operator whose weight is less
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Figure 4.2: Cycles on the lattice. (a) A homologically trivial cycle bounds a region
that can be tiled by plaquettes. The corresponding tensor product of Z’s lies in the
stabilizer of the toric code. (b) A homologically nontrivial cycle is not a boundary.
The corresponding tensor product of Z’s commutes with the stabilizer but is not

contained in it. It is a logical operation that acts nontrivially in the code subspace.

than half the code distance, then we can recover from the error successfully by
applying the minimal weight Pauli operator that returns the damaged state to the
code subspace (which can be determined by measuring the check operators). For
a toric code, the distance is the number of lattice links contained in the shortest
homologically nontrivial cycle on the lattice or dual lattice. Thus in the case of an
L x L square lattice drawn on the torus, the code distance is d = L.

The great virtue of the toric code is that the check operators are so simple.
Measuring a check operator requires a quantum computation, but because each
check operator involves just four qubits in the code block, and these qubits are
situated near one another, the measurement can be executed by performing just a
few quantum gates. Furthermore, the ancilla qubits used in the measurement can
be situated where they are needed, so that the gates act on pairs of qubits that
are in close proximity.

The observed values of the check operators provide a “syndrome” that we may

use to diagnose errors. If there are no errors in the code block, then every check
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Figure 4.3: Basis for the operators that act on the two encoded qubits of the toric
code. The logical operators Z; and Zj are tensor products of Z’s associated with
the fundamental nontrivial cycles of the torus constructed from links of the lattice.
The complementary operators X; and X» are tensor products of X’s associated

with nontrivial cycles constructed from links of the dual lattice.

operator takes the value 1. Since each check operator is associated with a definite
position on the surface, a site of the lattice or the dual lattice, we may describe the
syndrome by listing all positions where the check operators take the value —1. It
is convenient to regard each such position as the location of a particle, a “defect”
in the code block.

If errors occur on a particular chain (a set of links of the lattice or dual lattice),
then defects occur at the sites on the boundary of the chain. Evidently, then, the
syndrome is highly ambiguous, as many error chains can share the same boundary,
and all generate the same syndrome. For example, the two chains shown in Fig. 4.4
end on the same two sites. If errors occur on one of these chains, we might
incorrectly infer that the errors actually occured on the other chain. Fortunately,
though, this ambiguity need not cause harm. If Z errors occur on a particular
chain, then by applying Z to each link of any chain with the same boundary as the
actual error chain, we will successfully remove all defects. Furthermore, as long

as the chosen chain is homologically correct (differs from the actual error chain
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Figure 4.4: The highly ambiguous syndrome of the toric code. The two site defects
shown could arise from errors on either one of the two chains shown. In general,
error chains with the same boundary generate the same syndrome, and error chains

that are homologically equivalent act on the code space in the same way.

by the one-dimensional boundary of a two-dimensional region), then the encoded
state will be undamaged by the errors. In that event, the product of the actual Z
errors and the Z’s that we apply is contained in the code stabilizer and therefore
acts trivially on the code block.

Heuristically, an error chain can be interpreted as a physical process in which a
defect pair nucleates, and the two members of the pair drift apart. To recover from
the errors, we lay down a “recovery chain” bounded by the two defect positions,
which we can think of as a physical process in which the defects are brought
together to reannihilate. If the defect world line consisting of both the error chain
and the recovery chain is homologically trivial, then the encoded quantum state is
undamaged. But if the world line is homologically nontrivial (if the two members
of the pair wind around a cycle of the torus before reannihilating), then an error

afflicts the encoded quantum state.
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4.3.2 Planar codes

If all check operators are to be readily measured with local gates, then the qubits of
the toric code need to be arranged on a topologically nontrivial surface, the torus,
with the ancilla qubits needed for syndrome measurement arranged on an adjacent
layer. In practice, the toroidal topology is likely to be inconvenient, especially if we
want qubits residing in different tori to interact with one another in the course of
a quantum computation. Fortunately, surface codes can be constructed in which
all check operators are local and the qubits are arranged on planar sheets [17,
42]. The planar topology will be more conducive to realistic quantum computing
architectures.

In the planar version of the surface code, there is a distinction between the
check operators at the boundary of the surface and the check operators in the
interior. Check operators in the interior are four-qubit site or plaquette operators,
and those at the boundary are three-qubit operators. Furthermore, the boundary
has two different types of edges as shown in Fig. 4.5. Along a “plaquette edge” or

)

“rough edge,” each check operator is a three-qubit plaquette operator Z®3. Along

a “site edge” or “smooth edge,” each check operator is a three-qubit site operator
X®3,

As before, in order to commute with the code stabilizer, a product of Z’s must
act on an even number of links adjacent to each site of the lattice. Now, though,
the links acted upon by Z’s may comprise an open path that begins and ends on a
rough edge. We may then say that the 1-chain comprised of all links acted upon by
Z is a cycle relative to the rough edges. Similarly, a product of X’s that commutes
with the stabilizer acts on a set of links of the dual lattice that comprise a cycle
relative to the smooth edges.

Cycles relative to the rough edges come in two varieties. If the chain contains
an even number of the free links strung along the rough edge, then it can be tiled by
plaquettes (including the boundary plaquettes), and so the corresponding product

of Z’s is contained in the stabilizer. We say that the relative 1-cycle is a relative
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Figure 4.5: A planar quantum code. (a) At the top and bottom are the “plaquette
edges” (or “rough edges”), where there are three-qubit plaquette operators, and
at the left and right are the “site edges” {or “smooth edges”), where there are
three-qubit site operators. The logical operation Z for the one encoded qubit is a
tensor product of Z’s acting on a chain running from one rough edge to the other,
and the logical operation X is a tensor product of X’s acting on a chain of the
dual lattice running from one smooth edge to the other. For the lattice shown, the
code’s distance is L = 8. (b) Site and plaquette defects can appear singly, rather
than in pairs. An isolated site defect arises from an error chain that ends at a
rough edge, and an isolated plaquette defect arises from a dual error chain that

ends at a smooth edge.
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boundary of a 2-chain. However, a chain that stretches from one rough edge to
another is not a relative boundary—it is a representative of a nontrivial relative
homology class. The corresponding product of Z’s commutes with the stabilizer
but does not lie in it, and we may take it to be the logical operation Z acting
on an encoded logical qubit. Similarly, cycles relative to the smooth edges also
come in two varieties, and a product of X'’s associated with the nontrivial relative
homology cycle of the dual lattice may be taken to be the logical operation X (see
Fig. 4.5a).

A code with distance L is obtained from a square lattice, if the shortest paths
from rough edge to rough edge, and from smooth edge to smooth edge, both contain
L links. The lattice has L? + (L — 1) links, L(L — 1) plaquettes, and L(L — 1)
sites. Now all plaquette and site operators are independent, which is another way
to see that the number of encoded qubits is L2 + (L — 1)2 = 2L(L — 1) = 1.

The distinction between a rough edge and a smooth edge can also be charac-
terized by the behavior of the defects at the boundary, as shown in Fig. 4.5b. In
the toric codes, defects always appear in pairs, because every 1-chain has an even
number of boundary points. But for planar codes, individual defects can appear,
since a l-chain can terminate on a rough edge. Thus a propagating site defect
can reach the rough edge and disappear. But if the site defect reaches the smooth
edge, it persists at the boundary. Similarly, a plaquette defect can disappear at
the smooth edge, but not at the rough edge.

Let us briefly note some generalizations of the toric codes and planar codes
that we have described. First, there is no need to restrict attention to lattices
that have coordination number 4 at each site and plaquette. Any tessellation of a
surface (and its dual tessellation) can be associated with a quantum code. Second,
we may consider surfaces of higher genus. For a closed orientable Riemann surface
of genus g, 2¢ qubits can be encoded—each time a handle is added to the surface,
there are two new homology cycles and hence two new logical Z’s. The distance
of the code is the length of the shortest nontrivial cycle on lattice or dual lattice.

For planar codes, we may consider a surface with e distinct rough edges separated
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by e distinct smooth edges. Then e — 1 qubits can be encoded, associated with the
relative 1-cycles that connect one rough edge with any of the others. The distance
is the length of the shortest path reaching from one rough edge to another, or from
one smooth edge to another on the dual lattice. Alternatively, we can increase the
nuinber of encoded qubits stored in a planar sheet by punching holes in the lattice.
For example, if the outer boundary of the surface is a smooth edge, and there are h
holes, each bounded by a smooth edge, then h qubits are encoded. For each hole,
a cycle on the lattice that encloses the hole is associated with the corresponding
logical Z, and a path on the dual lattice from the boundary of the hole to the
outer boundary is associated with the logical X.

If (say) phase errors are more common than bit-flip errors, quantum informa-
tion can be stored more efficiently with an asymmetric planar code, such that the
distance from rough edge to rough edge is longer than the distance from smooth
edge to smooth edge. However, these asymmetric codes are less convenient for
processing of the encoded information.

The surface codes can also be generalized to higher dimensional manifolds,
with logical operations again associated with homologically nontrivial cycles. In

Sec. 4.10, I will discuss a four-dimensional example.

4.3.3 Fault-tolerant recovery

A toric code defined on a lattice of linear size L has block size 2L? and distance L.
Therefore, if the probability of error per qubit is p, the number of errors expected
in a large code block is of order pL?, and therefore much larger than the code
distance.

However, the performance of a toric code is much better than would be guessed
naively based on its distance. In principle, L/2 errors could suffice to cause damage
to the encoded information. But in fact this small number of errors can cause
irrevocable damage only if the distribution of the errors is highly atypical.

If the error probability p is small, then links where errors occur (“error links”)

are dilute on the lattice. Long connected chains of error links are quite rare, as
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Figure 4.6: Pairs of defects. If the error rate is small and errors on distinct links
are uncorrelated, then connected error chains are typically short and the positions
of defects are highly correlated. It is relatively easy to guess how the defects should

be paired up so that each pair is the boundary of a connected chain.

indicated in Fig. 4.6. It is relatively easy to guess a way to pair up the observed
defects that is homologically equivalent to the actual error chain. Hence we expect
that a number of errors that scales linearly with the block size can be tolerated.
That is, if the error probability p per link is small enough, we expect to be able to
recover correctly with a probability that approaches one as the block size increases.
We therefore anticipate that there is an accuracy threshold for storage of quantum
information using a toric code.

Unfortunately, life is not quite so simple, because the measurement of the
syndrome will not be perfect. Occasionally, a faulty measurement will indicate
that a defect is present at a site even though no defect is actually there, and
sometimes an actual defect will go unobserved. Hence the population of real
defects (which have strongly correlated positions) will be obscured by a population
of phony “ghost defects” and “missing defects” (which have randomly distributed
positions), as in Fig. 4.7.

Therefore, we should execute recovery cautiously. It would be dangerous to

blithely proceed by flipping qubits on a chain of links bounded by the observed
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Figure 4.7: Ghost defects. Since faults can occur in the measurement of the error
syndrome, the measured syndrome includes both genuine defects (lightly shaded)
associated with actual errors and phony “ghost defects” (darkly shaded) that arise
at randomly distributed locations. To perform recovery successfully, we need to
be able to distinguish reliably between the genuine defects and the ghost defects.
The position that is shaded both lightly and darkly represents a genuine defect

that goes unseen due to a measurement error.
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defect positions. Since a ghost defect is typically far from the nearest genuine de-
fect, this procedure would introduce many additional errors—what was formerly a
ghost defect would become a real defect connected to another defect by a long error
chain. Instead we must repeat the syndrome measurement an adequate number of
times to verify its authenticity. It is subtle to formulate a robust recovery proce-
dure that incorporates repeated measurements, since further errors accumulate as
the measurements are repeated and the gas of defects continues to evolve.

There are three well-studied general strategies that can be invoked to achieve
robust macroscopic control of a system that is subjected to microscopic disorder.
One method is to introduce a hierarchical organization in such a way that effects
of noise get weaker and weaker at higher and higher levels of the hierarchy. This
approach is used by Gdcs [44] in his analysis of robust one-dimensional classical
cellular automata, and also in concatenated quantum coding [67, 2, 62, 87, 48]. A
second method is to introduce more spatial dimensions. A fundamental principle
of statistical physics is that local systems with higher spatial dimensionality and
hence higher coordination number are more resistant to the disordering effects of
fluctuations. In Sec. 4.10 this strategy will be followed in devising and analyzing
a topological code that has nice locality properties in four dimensions. From the
perspective of block coding, the advantage of extra dimensions is that local check
operators can be constructed with a higher degree of redundancy, which makes it
easier to reject faulty syndrome information.

In the bulk of this chapter I will address the issue of achieving robustness
through a third strategy, namely by introducing a modest amount of nonlocality
into the recovery procedure. However, all quantum processing will be demanded
to be strictly local; the nonlocality will be isolated in classical processing. Specif-
ically, to decide on the appropriate recovery step, a classical computation will be
performed whose input is an error syndrome measured at all the sites of the lat-
tice. This classical computation will be required to be able to be executed in a
time bounded by a polynomial in the number of lattice sites. For the purpose of

estimating the accuracy threshold, we will imagine that the classical calculation is
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instantaneous and perfectly accurate.

This approach is guided by the expectation that quantum computers will be
slow and unreliable while classical computers are fast and accurate. It is therefore
advantageous to replace quantum processing by classical processing if the classical

processing can accomplish the same task.

4.3.4 Surface codes and physical fault tolerance

In this chapter, the surface codes are regarded as block quantum error-correcting
codes with properties that make them especially amenable to fault-tolerant quan-
tum storage and computation. It is worth remarking that because of the locality
of the check operators, these codes admit another tempting interpretation that
was emphasized in [60, 61].

Consider a model physical system, with qubits arranged in a square lattice, and
with a (local) Hamiltonian that can be expressed as minus the sum of the check
operators of a surface code. Since the check operators are mutually commuting, we
can diagonalize the Hamiltonian by diagonalizing each check operator separately,
and its degenerate ground state is the code subspace. Thus, a real system that is
described well enough by this model could serve as a robust quantum memory.

The model system has several crucial properties. First of all, it has a mass
gap, so that its qualitative properties are stable with respect to generic weak local
perturbations. Secondly, it has two types of localized quasiparticle excitations,
the site defects and plaquette defects. And third, there is an exotic long-range
interaction between a site defect and a plaquette defect.

The interaction between the two defects is exactly analogous to the Aharonov-
Bohm interaction between a localized magnetic flux ® and a localized electric
charge @ in two-spatial dimensions. When a charge is adiabatically carried around
a flux, the wave function of the system is modified by a phase exp(iQ®/hc) that is
independent of the separation between charge and flux. Similarly, if a site defect is
transported around a plaquette defect, the wave function of the system is modified

by the phase —1 independent of the separation between the defects. Formally,
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this phase arises because of the anticommutation relation satisfied by X and Z.
Physically, it arises because the ground state of the system is very highly entangled
and thus is able to support very long range quantum correlations. The protected
qubits are encoded in the Aharonov-Bohm phases acquired by quasiparticles that
travel around the fundamental nontrivial cycles of the surface; these could be
measured in principle in a suitable quantum interference experiment.

It is useful to observe that the degeneracy of the ground state of the system
is a necessary consequence of the unusual interactions among the quasiparticles
(34, 108]. A unitary operator Us; can be constructed that describes a process in
which a pair of site defects is created, one member of the pair propagates around
a nontrivial cycle C; of the surface, and then the pair reannihilates. Similarly
a unitary operator Ups can be constructed associated with a plaquette defect
that propagates around a complementary nontrivial cycle Cs that intersects Cy
once. These operators commute with the Hamiltonian H of the system and can
be simultaneously diagonalized with H, but Us; and Ups do not commute with

one another. Rather, they satisfy (in an infinite system)
[Jpﬁg_1 US,l_l Up72 U‘g,l = —1. (46)

The nontrivial commutator arises because the process in which (1) a site defect
winds around Cj, (2) a plaquette defect winds around C; (3) the site defect winds
around C7 in the reverse direction, and (4) the plaquette defect winds around Cy
in the reverse direction, is topologically equivalent to a process in which the site
defect winds once around the plaquette defect.

Because the unitary operators Ug; and Upg do not commute, they cannot be
simultaneously diagonalized—indeed applying Ups to an eigenstate of Ug; flips
the sign of the Ug; eigenvalue. Physically, there are two distinct ground states
that can be distinguished by the Aharonov-Bohm phase that is acquired when a
site defect is carried around C7; we can change this phase by carrying a plaquette

defect around Co. Similarly, the operator Ugy commutes with Ug; and Upsy but
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anticommutes with Up ;. Therefore there are four distinct ground states, labelled
by their Ug; and Ug o eigenvalues.

This reasoning shows that the topological interaction between site defects and
plaquette defects implies that the system on an (infinite) torus has a generic four-
fold ground-state degeneracy. The argument is easily extended to show that the
generic degeneracy on a genus g Riemann surface is 229. By a further extension,
we see that the generic degeneracy is ¢%9 if the Aharonov-Bohm phase associated

with winding one defect around another is

exp(2mip/q), (4.7)

where p and ¢ are integers with no common factor.

The same sort of argument can be applied to planar systems with a mass gap in
which single defects can disappear at an edge. For example, consider an annulus
in which site defects can disappear at the inner and outer edges. Then states
can be classified by the Aharonov-Bohm phase acquired by a plaquette defect that
propagates around the annulus, a phase that flips in sign if a site defect propagates
from inner edge to outer edge. Hence there is a twofold degeneracy on the annulus.
For a disc with A holes, the degeneracy is 2" if site defects can disappear at any
boundary, or ¢" if the Aharonov-Bohm phase of site defect winding about plaquette
defect is exp(2mip/q).

These degeneracies are exact for the unperturbed model system, but will be
lifted slightly in a weakly perturbed system of finite size. Loosely speaking, the
effect of perturbations will be to give the defects a finite effective mass, and the
lifting of the degeneracy is associated with quantum tunneling processes in which
a virtual defect winds around a cycle of the surface. The amplitude A for this

process has the form
A ~ Cexp (—ﬁ(m*A)l/QL/h> : (4.8)

where L is the physical size of the shortest nontrivial (relative) cycle of the surface,
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m* is the defect effective mass, and A is the minimal energy cost of creating a

defect. The energy splitting is proportional to A, and like A becomes negligible
when the system is large compared to the characteristic length [ = A(m*A)~1/2,
In this limit, and at sufficiently low temperature, the degenerate ground state
provides a reliable quantum memory. If a pair of defects is produced by a thermal
fluctuation, and one of the defects wanders around a nontrivial cycle before the
pair reannihilates, then the encoded quantum information will be damaged. These
fluctuations are suppressed by the Boltzmann factor exp(—A/EkT) at low temper-
ature. Even if defect nucleation occurs at a nonnegligible rate, we could enhance
the performance of the quantum memory by continually monitoring the state of
the defect gas. If the winding of defects around nontrivial cycles is detected and

carefully recorded, damage to the encoded quantum information can be controlled.

4.4 The statistical physics of error recovery

One of the main objectives of this chapter is to invoke surface coding to estab-
lish an accuracy threshold for quantum computation—how well must quantum
hardware perform for quantum storage, or universal quantum computation, to
be achievable with arbitrarily small probability of error? In this section, rather
than study the efficacy of a particular fault-tolerant protocol for error recovery, I
will address whether the syndrome of a surface code is adequate in principle for
protecting quantum information from error. Specifically, an order parameter that
distinguishes two phases of a quantum memory will be formulated: an “ordered”
phase, in which reliable storage is possible, and a “disordered phase,” in which
errors unavoidably afflict the encoded quantum information. Of course, this phase
boundary also provides an upper bound on the accuracy threshold that can be
reached by any particular protocol. The toric code and the planar surface code

have the same accuracy threshold, so we may study either to learn about the other.
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4.4.1 The error model

Let us imagine that in a single time step, we will execute a measurement of each
stabilizer operator at each site and each plaquette of the lattice. During each time
step, new qubit errors might occur. To be concrete and to simplify the discussion,
we assuine that all qubit errors are stochastic, and so can be assigned probabilities.
(For example, errors that arise from decoherence have this property.) We will also
assume that the errors acting on different qubits are independent, that bit-flip (X)
errors and phase (Z) errors are uncorrelated with one another, and that X and Z
errors are equally likely. Thus the error in each time step acting on a qubit with

state p can be represented by the quantum channel

p— (1-p)>2Ipl +p(1—p)XpX

+p(1 = p)ZpX + p*Y pY, (4.9)

where p denotes the probability of either an X error or a Z error. It is easy
to modify our analysis if some of these assumptions are relaxed; in particular,
correlations between X and Z errors would not cause much trouble, since we have
separate procedures for recovery from the X errors and the Z errors.

Faults can also occur in the syndrome measurement. We assume that these
measurement errors are uncorrelated. We will denote by ¢ the probability that the
measured syndrome bit is faulty at a given site or plaquette.

Aside from being uncorrelated in space, the qubit and measurement errors are
also assumed to be uncorrelated in time. Furthermore, the 