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ABSTRACT 

The discontinuous change in solvent quality of a liquid crystal (LC) solvent, 5CB, at the 

nematic-isotropic phase transition produces abrupt changes in the phase behavior of 

solutions of coil and LC-polymers and in the self-assembly of coil-LC block copolymers.  

Nematic 5CB is strongly selective for a side-group liquid crystal polymer (SGLCP) and 

isotropic 5CB is a good solvent for both SGLCP and a random coil (polystyrene, PS).  In 

nematic 5CB, unfavorable LC-PS interactions drive phase separation in SGLCP-PS-LC 

ternary solutions and drive micellization of PS-SGLCP diblocks.  In isotropic 5CB, rich 

phase behavior occurs in both ternary solutions and block copolymer solutions.  Despite 

the fact that isotropic 5CB is a good solvent for both SGLCP and PS, segregation can 

occur due to the asymmetric solvent effect (i.e., the preference of the solvent for the 

SGLCP).  In concentrated isotropic solutions, unfavorable SGLCP-PS interactions 

become dominant.  

In binary solutions of SGLCP and 5CB, the delicate thermodynamic balance between LC 

order and polymer entropy manifests itself in a non-monotonic concentration dependence 

of the solutions’ clearing points.  The frustration between LC order and polymer entropy 

in an SGLCP melt is partially relieved by the addition of small molecule LC, greatly 

increasing the polymer’s configurational freedom and stabilizing the nematic phase.  In 

dilute solutions, the polymer adopts an anisotropic conformation because of its coupling 

to the LC solvent’s prevailing director field; the sense and the magnitude of the 

anisotropy depend on the architecture of the SGLCP (end-on or side-on mesogens).  

Coil-SGLCP-coil triblock copolymers self-assemble in 5CB to form liquid crystalline 

gels in which nematic order is coupled to an associative polymer network.  The network’s 

dynamic restructuring couples to fluctuations in the LC’s local order to provide an 

additional relaxation process that is not present in SGLCP solutions or LC elastomers, 

and the importance of this process is highly dependent on the underlying anisotropy of 

the SGLCP-based network.  The network furthermore provides a memory of the LC 

orientation state: when the LC is reoriented by electric-magnetic fields or mechanical 
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shear, the network structure prevents the orientation from relaxing back to a random 

distribution when the aligning force is removed. 
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Portions of this chapter are reproduced from Kempe, Scruggs, Verduzco, Lal, and 

Kornfield, Nature Materials 2004, 3, 177-182 and from Kempe, Verduzco, Scruggs, and 

Kornfield, Soft Matter 2006, 2, 422-431. 

1.1 Background 

Crystals and liquids are familiar condensed matter phases in which the relative positions 

and orientations of the constituent molecules are either well-defined by a rigid lattice or 

lacking long-range correlation, respectively.  In between the crystal and liquid phases lies a 

progression of partially ordered phases termed “liquid crystalline mesophases,” the 

simplest of which is termed the “nematic” phase (Figure 1.1).[1, 2]  Rod-like molecules 

typically lend themselves to the formation of a nematic phase in a particular range of 

temperatures, and such materials are termed “calamitic, thermotropic liquid crystals” 

(LCs).  In the nematic phase, the molecules diffuse about one another randomly, but they 

tend to retain orientation in a preferred direction called the “director,” n.  The director 

breaks the material’s isotropic symmetry and gives rise to properties such as optical 
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birefringence, dielectric anisotropy, diamagnetic anisotropy, and orientational elasticity.  

The coupling of order and fluidity makes LCs particularly intriguing materials because 

their orientation-dependent properties can be influenced by readily accessibly fields. 

Nematic LCs are far from perfectly ordered; the LC’s molecules have a distribution of 

orientations with respect to the director.  The nematic order parameter, S = ½ <3 cos2 θ - 

1>, where θ is the angle between a molecule and the director, quantifies the degree of order 

ranging from S = 1 in a perfectly oriented medium to S = 0 in an isotropic medium.  The 

intermolecular interactions maintaining the orientational order of a nematic LC are 

relatively weak: the Maier-Saupe model of nematic ordering estimates their strength to be 

approximately five times the thermal energy.[2]  For this reason, the local director is in a 

constant state of flux, and these thermally-induced distortions to the director field are 

responsible for the turbid, milky appearance of nematic LCs.  Distortions to a nematic LC 

can be expressed as the sum of splay, twist, and bend distortions (Figure 1.2), and the 

elastic free energy per unit volume, FV, is given by 

( ) ( )( ) ( )[ ]2
3

2
2

2
12

1 nnnnn ×∇×+×∇⋅+⋅∇= KKKFV  ,                   (1.1) 

where K1, K2, and K3 are the splay, twist, and bend elastic constants, respectively.[2]  The 

dynamics of director fluctuations are governed by the LC’s elastic constants and 

anisotropic viscosity coefficients.[3, 4]  One way to express the viscosity of a nematic LC is 

in reference to the three fundamental orientations of the director in shear flow.  The 

viscosities measured in these geometries, ηa, ηb, and ηc, are known as the Miesowicz 

viscosities (Figure 1.3).[1, 2] 

Macromolecular LCs can be formed when rod-like molecules are either incorporated 

directly into a polymer chain to form a main-chain liquid crystal polymer (MCLCP) or 

laterally attached to a polymer chain via a flexible spacer to form a side-group liquid crystal 

polymer (SGLCP) (Figure 1.4).  Macromolecular LCs are frustrated materials because the 

defining characteristics of polymers and LCs are directly at odds with one another: polymer 

chains seek random configurations and LC molecules seek long-range order.[5]  Bonding 

LC mesogens to a random-coil polymer forces compromise between the opposing 
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tendencies, compromise that often manifests itself in unique physical phenomena that are 

not present in either pure LCs or bulk polymers alone.   

Nematic order is coupled to the conformation of SGLCPs and MCLCPs in the melt and in 

solution with small-molecule LCs.  The trajectory of an ideal, random-coil polymer is a 

random walk from one end to the other and the chain’s conformation is spherical in 

solution and in the melt.[6]  The conformation of a liquid crystalline polymer deviates from 

sphericality in order to accommodate the orientational order of its mesogens.[5]  Neutron 

scattering experiments on LC polymers in the melt, reviewed by Cotton and Hardouin,[7] 

demonstrate that MCLCPs and side-on SGLCPs adopt a highly prolate (aspect ratio > 5) 

ellipsoidal conformation in the nematic phase.[8, 9]  On the other hand, end-on SGLCPs 

have mild anisotropy (aspect ratio ≈ 1.5) and can be either prolate[10] or oblate[11-15] 

ellipsoids.  Experiments on solutions of  liquid crystalline polymers in small-molecule LC 

solvents, reviewed by Jamieson et al.,[4] reveal that the orientation of the polymer’s 

attached mesogens is coupled to that of the solvent, and that the polymer adapts to the 

director field similar to the way it does in the melt: MCLCPs and side-on SGLCPs become 

strongly prolate[16-20] while end-on SGLCPs are mildly anisotropic prolate[21, 22] or oblate[16, 

18, 19, 22-27] ellipsoids.  A few experiments on solutions of non-LC polymers in LC solvents 

have demonstrated that these polymers, too, adopt anisotropic conformations in solution, 

but the strength of the orientational coupling is not as strong as it is when the polymer itself 

is mesogenic.[28]  

The coupling between polymer conformation and liquid crystalline order modifies polymer 

solution thermodynamics and results in novel phase behavior in mixtures of both LC and 

non-LC polymers with LC solvents.  The phase behavior of LC polymers in LC solvents 

has been treated theoretically by Brochard[29, 30] and ten Bosch et al.[31]  These theories 

agree with numerous experimental studies demonstrating the coexistence of two nematic 

phases in these mixtures,[27, 32-37] a phenomenon rarely, if ever, observed in binary mixtures 

of small-molecule LCs.[36]  Nematic-nematic coexistence appears to be a unique 

consequence of the coupling between LC order and polymer thermodynamics.  The phase 

behavior of non-LC polymers in LC solvents has also been treated theoretically[38, 39] and 
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experimentally.[40-46]  In these systems, the solvent’s orientational order presents a large 

entropic penalty to dissolution in the nematic phase, but when the solvent transitions to the 

isotropic phase the polymer’s solubility instantly increases.  It is not uncommon to observe 

a transition from nematic / isotropic coexistence to a single isotropic phase coincident with 

the solvent’s nematic to isotropic phase transition.   

When mesogens are grafted to a polymer chain, LC order also becomes coupled to polymer 

dynamics.  Conformational anisotropy of an SGLCP dissolved in small-molecule LC 

solvent leads to anisotropic modification of the solution’s flow properties.[4, 16, 21, 22, 25, 26, 47-

50]  The hydrodynamics of solutions of LC polymers in LC solvents has been treated by 

Brochard,[51] whose theory predicts the LC’s orientation-dependent viscosity coefficients to 

be modified differently according to the anisotropy of the dissolved polymer chain: the 

increase in ηb, for example, is larger when an oblate polymer is dissolved in nematic 

solvent than when the polymer is prolate.  A modification of Brochard’s theory[22] has been 

used with some success to deduce a dissolved polymer’s anisotropy from the solution’s 

rheology.[21, 25, 26, 50]  Polymer anisotropy also leads to anisotropic modification of the 

director’s fluctuation dynamics.[4, 18, 52, 53]  Dynamic light scattering experiments on 

solutions of SGLCPs in nematic LCs[4, 18, 52, 53]  have demonstrated that prolate polymers 

preferentially slow the relaxation of splay distortions while oblate polymers more strongly 

affect the relaxation of bend distortions.   

The discussion of coupling between LC order and polymer conformation has been thus far 

limited to homopolymers, but introducing LC order also has a profound effect on the 

structure and dynamics of block copolymers (BCPs).[54]  Two or more different polymers 

covalently bonded together constitute a BCP, and unfavorable thermodynamic interactions 

between the blocks usually cause a self-assembled microstructure to form in which the 

contact between them is minimized.  BCPs have been extensively studied in recent decades 

because they are a versatile system for engineering nanotechnologies, as reviewed by Park, 

Yoon, and Thomas.[55]  Selection of the length, chemical structure, and connectivity of the 

component blocks gives access to a wide variety of morphologies, having sizes typically on 

the order of ~10-100 nm, which can be ordered with respect to one another in grains of one 
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micrometer or larger.[55, 56]  When one block of a BCP is an LC polymer, the resulting 

material exhibits order over a variety of length scales from a few nanometers (the 

cooperative alignment of LC molecules) up to the larger-scale structure of the BCP.[54, 56]  

In these systems the orientational order of the mesophase couples strongly to the 

microphase separated BCP morphology, and the LC director often dictates the orientation 

of the microdomains.  In contrast to the alignment tendency of cylindrical microdomains of 

a triblock copolymer that normally align in the direction of shear, an orientation 

perpendicular to the shear plane is observed when one block is a LC polymer because of 

the anchoring of the mesogens to the cylinder walls.[57]  Another  example of this coupling 

is the observation that changing LC order can either change the morphology of the 

microphase separated structure (order-order transition),[58, 59] or trigger the order-disorder 

transition coincident with the isotropization temperature of the LC block.[60-62] 

BCPs in solution are thermodynamically rich systems because the polymer’s self-

assembled structure depends not only on pairwise interactions between the different 

polymer blocks, but also on interactions between the blocks and the solvent.[63-70]  The 

polymer concentration and the relative enthalpic interactions between the solvent and the 

polymer blocks (the solvent’s “selectivity”) determine the morphology of the BCP in 

solution.  In a strongly selective solvent, the solubility of one block, A, is distinctly greater 

than the other block, B, and the BCP usually self-assembles into micelles with block B 

segregated to a core surrounded by a solvent-rich corona containing block A.  In the limit of 

no selectivity, both blocks are soluble and the BCP will not self-assemble in dilute solution 

where block-block interactions are screened by polymer-solvent interactions.  For a fixed 

BCP at fixed concentration, the choice of solvent determines whether or not micelles form.  

If they do, the solvent choice also determines their shape, size, and long-range order 

relative to one another (e.g., BCC or FCC lattice).   

Knowing that orientational order is strongly coupled to the thermodynamics of SGLCP 

homopolymers in LC solvent and to the morphology of LC BCPs in the bulk suggests an 

additional layer of complexity might be added to the thermodynamics governing self-

assembly of BCPs in solution if one block is an SGLCP and the solvent is nematogenic.  
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From a practical standpoint, swelling an LC BCP with small-molecule solvent could serve 

to improve their sluggish and weak responses to electro-magnetic stimuli, making them 

better candidates for use in devices such as liquid crystal displays.  Despite these 

motivations, only one research group[71-73] reported experiments on LC solutions of LC 

BCPs prior to the Kornfield group’s studies of liquid crystalline gels self-assembled from 

triblock copolymers in nematic solvent.[19, 74, 75]  Much of the work described in this thesis 

was motivated by a desire to better understand the physics of these gels.   

1.2 Motivation: Orientational Coupling Phenomena in Self-Assembled Triblock 

Copolymer Gels  

Solutions of coil-SGLCP block copolymers in a nematic solvent combine the 

thermodynamic phenomena deriving from the coupling of LC order to polymer chains with 

the rich thermodynamics governing BCP self-assembly in solution.  Triblock copolymers 

were synthesized with polystyrene (PS) endblocks and an SGLCP midblock having 

mesogens attached either end-on or side-on.  Dissolving the triblocks in 4-pentyl-4′-

cyanobiphenyl (5CB), a small-molecule nematic LC, causes the random-coil PS endblocks 

to segregate from the ordered solvent, and a nematic gel is formed when the polymer 

concentration is 5 wt % or greater (Figure 1.5).[19, 74]  The segregated PS-rich domains form 

the crosslinks of a polymer network spanned by the LC-soluble SGLCP midblocks.  The 

network structure of 5 wt % polymer gels is thermoreversible because the entropic penalty 

to dissolution of the PS blocks disappears when the solvent is heated to the isotropic phase 

(> 35 °C), causing the segregated domains to dissolve then re-form when the solution is 

cooled to the nematic phase again.  However, the rheology of gels containing 20 wt % 

triblock copolymer shows that associations between PS  blocks persist beyond the solvent’s 

nematic to isotropic transition,[74] suggesting that polymer concentration plays a non-trivial 

role in the self-assembly of LC gels, just as it does in the self-assembly of non-mesogenic 

BCP solutions.   

Director reorientation dynamics in nematic gels self-assembled from coil-SGLCP block 

copolymers are almost as fast as in 5CB itself and are coupled to the underlying polymeric 



 7
network.  The gel’s director aligns parallel to electric fields of 1.2 V/µm or greater, 

allowing for the creation of an optically clear monodomain from an initially opaque, 

polydomain gel (Figure 1.6).  When the electric field is removed, the coupling of the 

solvent orientation to the topology of the polymer network provides a memory of the 

original orientation and the gel returns to the polydomain state on time scales as fast as 15 

ms,[19] comparable to the relaxation time of pure 5CB in a 5 µm-thick cell (~ 40 ms).[76, 77]  

In stark contrast to small-molecule LCs, the time required to fully return to the original 

polydomain state depends strongly on the previously applied field: higher applied fields 

cause the relaxation time to increase (Figure 1.7).  Nevertheless, there appears to be a 

separate, fast relaxation process present that allows the gel’s optical response to track the   

1 kHz oscillation of the applied voltage (Figure 1.7). 

The gels’ responses to mechanical strain also demonstrate the coupling of the LC 

orientation to the polymer network.  The LC director becomes uniformly aligned when the 

gels are subjected to shear and the orientation of the SGLCP mesogens dictates the 

orientation of the director relative to the velocity gradient: end-on gels align with the 

director parallel to the velocity gradient, side-on gels align perpendicular (Figure 1.8).  

These orientations mirror the behavior of SGLCP homopolymers in nematic solvent.[47]  

However, in contrast to homopolymer solutions, the gel’s network serves to lock in the 

orientation and the monodomain alignment remains after cessation of shear.   

Changing the anisotropy of the SGLCP block by heating or cooling the gel in the nematic 

phase causes an unusual buckling instability to occur because of the LC director’s coupling 

to the polymer network.[75]  When the network initially forms near the nematic / isotropic 

phase transition, the order parameter of the solvent is low and the induced conformational 

anisotropy of the SGLCP midblocks is mild.  Upon further cooling into the nematic phase, 

the conformational anisotropy increases, but the SGLCPs are not free to expand in their 

preferred direction because their PS endblocks lock them into a network that is constrained 

by anchoring to the gel’s contact surface.  The compromise between changing 

conformational anisotropy and the constraints of the polymer network causes a periodic 
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distortion to the director field that generates a striking striped texture when the gel is 

viewed in a microscope between crossed polarizers (Figure 1.9).  

1.3 Thesis Organization 

Experimental investigations of the physics underlying the novel phenomenology of self-

assembled liquid crystalline gels are the subject of this thesis.  In Chapter 2, the phase 

behavior of SGLCP and random-coil homopolymers in 5CB demonstrates the 

discontinuous change in random-coil polymer solubility that takes place when the LC 

solvent is heated from the nematic to isotropic phase.  The influence of polymer-polymer 

interactions on the phase behavior of ternary blends of SGLCP, random-coil polymer, and 

5CB is used to understand the self-assembly of coil-SGLCP diblock copolymers, whose 

temperature-dependent structure and rheology is expounded upon in Chapter 3.  The 

consequences of coupling LC order with the polymer’s conformational entropy on 

orientational order and polymer phase behavior is explored in Chapter 4, and in Chapter 5 

the influence of polymer architecture (side-on or end-on) and temperature on 

conformational anisotropy are demonstrated by small-angle neutron scattering.  The 

coupling of director relaxation dynamics to the underlying polymer network is investigated 

by dynamic light scattering in Chapter 6.  Finally, Chapter 7 looks at the effect of the 

interconnected triblock copolymer network on the gel’s orientational memory and 

demonstrates that memory is absent in gels composed of non-interconnected diblock 

copolymer micelles.   
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1.4 Figures 
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Figure 1.1 Schematic representation of the molecules of a thermotropic liquid crystal, 
represented by gray ellipses, in the solid, nematic liquid crystal, and liquid phases.  In the 
solid phase, the molecules have regular positions and orientations.  When heated above 
the crystalline to nematic phase transition temperature, TCN, the molecules lose their 
positional order, but remain oriented in a preferred direction called the “director,” n.  
Above the nematic-isotropic transition temperature, TNI, the molecules have no long-
range positional or orientational correlations.   
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Figure 1.2 Schematic representation of the three fundamental distortions of the nematic 
LC director.  The free energy cost of each distortion is expressed in Equation 1.1 using 
elastic constants K1, K2, and K3 for splay, twist, and bend, respectively.  The spatially 
varying local director orientation is represented by black ellipses and the equilibrium 
director is denoted n.      
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Figure 1.3 Schematic representation of the three fundamental orientations of the nematic 
director, n, in relation to the gradient of the velocity, v, in shear flow.  The effective 
viscosities measured in these geometries, ηa, ηb, and ηc, define the Miesowicz viscosities 
of a nematic LC.   
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Figure 1.4 Schematic representation of liquid crystalline polymers.  Main-chain liquid 
crystal polymers incorporate the mesogens into the polymer chain, and side-group liquid 
crystal polymers have mesogens laterally attached to the backbone via a flexible spacer.  
End-on polymers have the mesogens attached with their long axes perpendicular to the 
polymer, while side-on polymers have the mesogens attached with their long axes 
parallel.   
 

 



 12

Si
O

Si
O

n

O

O

OO

O

O

m p

Si
O

Si

O

C
N

m n p

Side-On Triblock End-On TriblockNematic Solvent

C
N

Side-On GelSide-On Gel End-On GelEnd-On Gel

n=550

m=2,700

p =640

 

Figure 1.5 Chemical structures of the side-on and end-on triblock copolymers that self-
assemble in the nematic solvent (4-pentyl-4′-cyanobiphenyl, 5CB) to form liquid 
crystalline gels.  Schematics of the gels illustrate the segregation of the polystyrene 
blocks (blue circles) to form physical crosslinks spanned by the LC-soluble SGLCP 
midblocks (black lines to represent the polymer backbone with red ellipses to represent 
the attached mesogens).  The solvent is represented in the schematics by white ellipses.  
The relative sizes of the segregated domains, SGLCP midblocks, and solvent molecules 
are not drawn to scale.   
 



 13

(a) (b)

E Field:                      OFF                               ON

Printed 
Logo

Substrate

Ambient Light

Polydomain Monodomain

 

Figure 1.6 (a) A 5 wt % end-on triblock copolymer gel is sandwiched between two 
transparent indium-tin-oxide electrodes spaced 25 µm apart.  The gel is loaded into the 
cell by capillary action: when heated above 35 °C it transitions to a liquid and flows into 
the gap, cooling to the nematic phase triggers the polymer’s self-assembly.  In this case, 
the gel is only partially filling the field of view, and the printed logo placed behind the 
cell is clearly visible in the empty portion.  (b) Applying an electric field of 1.6 V/µm 
reoriented the LC director and creates an optically clear monodomain; the empty portion 
of the cell cannot be distinguished from the portion containing aligned gel and the printed 
logo behind the cell is clearly visible.  The opaque, polydomain state (a) is recovered 
when the field is removed.  The gel’s structure is represented schematically according to 
the same conventions as in Figure 1.5. 
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Figure 1.7 Transient electro-optic response of a 5 wt % side-on triblock copolymer gel 
under application of alternating current electric fields of 2.4, 4.0, and 6.4 V/µm 
oscillating at 1 kHz.  The gel is contained between transparent indium-tin-oxide 
electrodes and the transmission of a 10 mW, 633 nm laser beam is measured during 
application of the field.  (a) The time required for the transmitted intensity to reach 90% 
of its maximum when the field is switched on is denoted τ90. (b)  The time required for 
the transmitted intensity to reach 10% of its maximum when the field is switched off is 
denoted τ10.  When not shown, τ90 and τ10 are beyond the graphs’ scales.   
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Figure 1.8 Conoscopic figures demonstrating monodomain alignment of end-on and 
side-on LC gels induced by shear flow.  The angle θ is the angle between the optic axis 
and the velocity gradient direction deduced from the type of conoscopic figure 
observed.[78, 79]  The cross pattern observed for end-on gels is characteristic of alignment 
of the director parallel to the velocity gradient, and the hyperbolic pattern observed for 
side-on gels is characteristic of alignment perpendicular.   
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Figure 1.9 Optical micrograph of a 5 wt % end-on LC gel observed at room temperature 
between crossed polarizers.  A periodic stripe pattern is observed because of a buckling 
instability induced by changes in conformational anisotropy of the gel’s SGLCP 
midblock.  The orientation of the director is denoted “n”.     
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2.1 Introduction 

The thermodynamics governing phase behavior in polymer solutions is strikingly different 

from that of regular, small-molecule solutions.  The entropy of mixing that favors 

miscibility between small-molecule species is substantially reduced by the covalent 

connectivity of monomers in a polymer chain.  The usually unfavorable enthalpy of mixing 

two species is, therefore, more difficult to overcome when one of them is a polymer.  The 

competition between entropy and enthalpy is summarized by the Flory-Huggins equation[1] 
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which expresses the free energy of mixing, ∆Fmix, as a function of the polymer’s volume 

fraction, φ, and degree of polymerization, N, as well as an interaction parameter, χ, that 

quantifies the enthalpy of mixing: 

( ) ( ) ( )φχφφφφφ −+−−+=∆ 11ln1ln
NkT

Fmix ,                            (2.1) 

where k is Boltzmann’s constant and T is the temperature.  The Flory interaction parameter 

is usually positive and has been found empirically to depend on temperature according to  

( )
T
BAT +=χ ,                                                    (2.2) 

where A and B are constants.[1] 

Small-molecule nematic liquid crystals (LCs) are particularly interesting as solvents for 

polymers because they can undergo a first-order transition between ordered (nematic) and 

disordered (isotropic) fluid phases, and the χ parameter changes discontinuously at the 

nematic-isotropic transition temperature (TNI).  Below TNI the entropic penalty of dissolving 

a random-coil polymer in ordered solvent is lumped into the χ parameter, which grows 

with the solvent’s degree of orientational order, but above TNI this penalty is lost and the 

LC behaves like a conventional solvent.[2]  If, however, the polymer also has liquid 

crystalline character, χ may switch from being positive to negative when the solvent 

becomes isotropic.  In either case, the miscibility of a polymer with an LC solvent may 

change drastically in the small temperature window around TNI.   

Rich thermodynamics result from dissolving a coil polymer and a side-group liquid crystal 

polymer (SGLCP) together in an LC solvent.  The ternary phase behavior of such a 

polymer-polymer-solvent system is determined by the entropy of mixing balanced with 

polymer-solvent interactions (characterized by χAS and χBS) as well as polymer-polymer 

interactions (characterized by χAB).[3-7]  In a nematic solvent, all three χ parameters change 

discontinuously at TNI and the solution’s phase behavior is altered accordingly.     

In this chapter, the binary phase behavior of a random-coil polymer (polystyrene, PS) in an 

LC solvent (4-pentyl-4′-cyanobiphenyl, 5CB) is compared to solutions of an SGLCP in 
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5CB in order to correlate polymer properties with changes in polymer miscibility that 

take place at TNI.  These results elucidate the physics behind the rich phase behavior of 

ternary solutions of PS, SGLCP, and 5CB that has consequences for solutions of coil-

SGLCP block copolymers discussed in later chapters.    

2.2 Experimental 

2.2.1 Materials 

A side-group liquid crystal homopolymer, 490HSiCB4, was synthesized and characterized 

according to the methods described in Appendix A (Figure 2.1).  A 63 kg/mol 1,2-

polybutadiene (PB) prepolymer was synthesized via living anionic polymerization by 

Steven Smith of Proctor and Gamble, Inc. (see Appendix A for characterization).  After 

attaching the mesogenic side-groups, the polymer’s molecular weight (Mn) is 489 kg/mol 

and 97 mol % of the monomers have SiCB4 mesogens attached.  Of the remaining 4 mol 

%, 1 mol % of the monomers are residual 1,2-butadiene and 3 mol % are unreactive 1,4-

butadiene.  The polydispersity (PDI = Mw / Mn) is 1.48 (Table 2.1).  Monodisperse 

polystyrene (PS) homopolymer with Mn = 44 kg/mol was purchased and used as received 

from Aldrich.  The nematic LC solvent 4-pentyl-4′-cyanobiphenyl (5CB) was used as 

received from TCI America.    

2.2.2 Methods 

Ternary mixtures of 490HSiCB4 homopolymer and PS homopolymer in 5CB were made 

by combining the three components in controlled quantities for a total mass of 

approximately 50 mg then dissolving them together in ~100 µL of tetrahydrofuran (THF).  

Samples were mixed for at least an hour to ensure complete dissolution of all three 

components.  A small drop of the THF solution was placed in the shallow well of an 

indented microscope slide and the THF was evaporated away at elevated temperature 

(~100 oC).  Slides were examined using a Zeiss Universal optical microscope equipped 

with a Mettler FP82 hot stage and removable polarizers.  Each sample was first heated 

from room temperature at a rate of 2 oC/min to observe the nematic to isotropic phase 

transition; the temperature at which the colorful, birefringent texture viewed between 
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crossed polarizers (Figure 2.2a) disappeared was recorded as the isotropization point 

(TNI).  Next, the polarizers were removed and the sample was heated further until droplets 

characteristic of two-phase, isotropic/isotropic coexistence (Figure 2.2b) were no longer 

observed (Figure 2.2c).  Then, the sample was cooled at a rate of 10 oC/min and the 

temperature at which droplets reappeared was recorded as a nominal upper critical solution 

temperature (UCST).  This measurement was repeated five times, examining a different 

area on the slide each time, and the results averaged.  To set a bound on the subcooling 

required for observable drops to form on cooling, several samples were raised to 5 °C 

above the nominal UCST.  Consistently, a single phase formed over time.  Therefore, the 

true UCST lies within 5 °C of the nominal one.  Since the changes in UCST with solution 

composition were very large, this uncertainty did not affect the conclusions of this study.   

2.3 Results 

Binary solutions of 490HSiCB4 with 5CB were observed to be single phase both above 

and below TNI (Figure 2.3a).  Binary solutions of PS with 5CB exhibit a small biphasic 

window in the isotropic phase of 7.4 oC or less (Figure 2.3b) and are single-phase above an 

upper critical solution temperature (UCST).  This result is consistent with previously 

established phase diagrams of PS with 5CB,[8, 9] which found the two to be miscible above 

40 oC, provided the concentration of PS is less than 50 wt %. 

Ternary mixtures of PS, 490HSiCB4, and 5CB were observed to phase separate below TNI 

into coexisting nematic and isotropic phases at all compositions tested (up to 20 wt %).  

The measured isotropization points in ternary mixtures (i.e., transition from N + I to I + I 

biphase or N + I to I) were found to be within 3.5 oC of the bulk TNI of 5CB (35 oC), 

indicating that the nematic phase contains little or no isotropic diluent and partitioning of 

the polymers into an SGLCP-rich, nematic phase and a PS-rich, isotropic phase must 

therefore be nearly complete.  Above TNI wide miscibility gaps were observed up to the 

UCST.   
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The UCST of ternary mixtures of PS, 490HSiCB4, and isotropic 5CB was found to be 

highly sensitive to the concentrations of the two polymers and an effective solubility limit 

was quickly reached with increasing concentrations (Figure 2.4).  For example, holding the 

concentration of 490HSiCB4 fixed at 4.5 wt %, the addition of 0.5 wt % PS opens up a 14 
oC miscibility gap (UCST = 49 oC) which expands to 97 oC (UCST = 132 oC) when the 

concentration of PS is 6 wt %.  When the overall concentration of polymer, PS and 

490HSiCB4 combined, exceeds approximately 10 wt %, the UCST cannot be reached 

before the sample thermally degrades, representing an effective solubility limit.  This steep 

increase in UCST with increasing polymer concentration is surprising because each of the 

two polymers dissolves in all proportions tested in isotropic 5CB alone. 

2.4 Discussion 

Binary and ternary mixtures of 490HSiCB4 and PS dissolved in 5CB show that nematic 

5CB is strongly selective solvent for the SGLCP.  As previously reported by Hori et al.,[9] 

PS is insoluble in nematic 5CB; mixtures phase separate into an isotropic, PS-rich phase 

and a nematic phase nearly devoid of PS altogether.  On the other hand, 490HSiCB4 is 

soluble in nematic 5CB at all concentrations tested (up to 20 wt %).  The liquid crystalline 

order of the nematic solvent imposes a large entropic penalty to solvation of a random coil 

polymer (e.g. PS),[9-11] but the chemically similar side-groups and liquid crystalline nature 

of the SGLCP facilitate miscibility with the nematic solvent.[2]   

The observation of large miscibility gaps in ternary mixtures of PS, 490HSiCB4, and 5CB 

was surprising because single-phase solutions are easily achieved in binary mixtures of 

5CB with either polymer alone.  One reason for the polymers’ poor solubility in ternary 

solutions is that unfavorable interactions between the polymers themselves (a large 

contribution of χAB) increase the free energy of mixing.[7]  However, this effect is weak in 

dilute solutions where polymer-polymer interactions are effectively screened by solvent.  

Small-angle neutron scattering experiments presented in Chapter 5 demonstrate that 5 wt % 

solutions of similar SGLCPs (310HSiCB4 and 780HSiCB4) are in the semidilute regime, 

but when the concentration of 490HSiCB4 is substantially lower the polymer chains should 
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be dilute and non-interacting.  The overlap concentration of PS is calculated[12] to be 

approximately 7 wt % at 35 °C in cyclohexane[13] which represents a lower bound on the 

dilute regime since 5CB is not as good a solvent for PS as cyclohexane.  A portion of the 

measured phase diagram is, therefore, well within a regime where the free energy 

contribution of inter-polymer interaction (χAB) should be small.     

Besides polymer-polymer interactions, polymer-solvent interactions also contribute to the 

system’s thermodynamics, as described by the Patterson[6]-Prausnitz[3] treatment of the 

Scott[4]-Tompa[5] theory for ternary polymer-polymer solutions.  Patterson and Prausnitz 

found that any differential preference of the solvent for one polymer over the other (χAS ≠ 

χBS), even if that preference is small, can induce phase separation.  Furthermore, the effect 

is exacerbated when the molecular weight difference between the polymers is large.  The 

asymmetric solvent effect is, therefore, predicted to play a substantial role in the 

thermodynamics governing phase separation of solutions of PS and 490HSiCB4 in 5CB: 

the chemical structure of the two polymers is sufficiently different to cause an appreciable 

difference in polymer-solvent interactions between the two, and the molecular weight ratio 

of PS to HSiCB4 is approximately 1:10.  Isotropic 5CB is, therefore, not a neutral solvent 

(χAS = χBS), but is better classified as “slightly selective” (|χAS - χBS | << χAS ≈ χBS). 

Compared to conventional solvents, 5CB is unique in its ability to undergo a discontinuous, 

thermally-induced change in its miscibility with polymers.  Solvent quality is typically a 

monotonic function of temperature,[1] but the first-order nematic-isotropic phase transition 

results in an abrupt change so that increasing temperature less than 1 °C can cause an 

initially insoluble polymer to become miscible with 5CB.  This phenomenon is termed 

“switchable solvent quality.”   

2.5 Conclusions 

The “switchable” solvent quality of an LC solvent results in rich ternary solution 

thermodynamics.  Unfavorable polymer-polymer interactions work together with strong 

solvent selectivity to drive macroscopic phase separation in the nematic phase.  In the 
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isotropic phase, favorable interactions between the solvent and both polymers are 

balanced against polymer-polymer incompatibility and the asymmetric solvent effect, 

resulting in phase behavior that is strikingly sensitive to changes in the solution’s 

composition.  Modulation between the two regimes is achieved with temperature changes 

of less than 1 °C.   

The unique phase behavior of homopolymer solutions in an LC solvent suggests that the 

driving force for self-assembly of a coil-SGLCP block copolymer could also be modulated 

by the solvent’s transition between the nematic and isotropic phases.  Below TNI the 

solvent’s orientational order would drive the block copolymer to self-assemble into a 

structure that segregates the coil-block from the LC host.  Above TNI this driving force 

would be lost, but self-assembly could still occur as a result of the same thermodynamic 

interactions that drive phase separation in the isotropic homopolymer solutions.  This topic 

is explored in detail in Chapter 3.   
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2.6 Tables 

 
Table 2.1 Molecular weight, conversion, and polydispersity of the side-group liquid 
crystal homopolymer.  Details of characterization are presented in Appendix A.    

Name Mn 
[kg/mol] 

Mole 
Fraction 
1,2 PB 

Mole 
Fraction 
1,4 PB 

Mole 
Fraction 

LC 
PDIa 

490HSiCB4 489 0.01 0.03 0.96 1.48 
aPDI = Polydispersity Index (Mw/Mn) 
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2.7 Figures 
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Figure 2.1 Chemical structures of side-group liquid crystal polymer (490HSiCB4), 
polystyrene (PS), and nematic liquid crystal solvent (5CB).  The SGLCP’s name is 
derived from its molecular weight (489 kg/mol), the letter “H” to indicate a 
homopolymer, and “SiCB4” to indicate end-on attachment of the mesogens.  In addition 
to monomers having an attached mesogen, the polymer also contains ~ 1 mol % each of 
residual 1,2- and 1,4-butadiene monomers.  Its properties are summarized in Table 2.1 
and the details of its synthesis and characterization are presented in Appendix A. 
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Figure 2.2 Optical micrographs typical of ternary blends of PS, 490HSiCB4, and 5CB at 
temperatures (a) below TNI, (b) between TNI and the UCST, and (c) above UCST.  The 
sample is imaged between crossed polarizers in the nematic phase (T < TNI).  These 
particular micrographs are of 2.25 wt % PS and 4.57 wt % 490HSiCB4 in 5CB at (a) 34 
°C, (b) 70 °C, and (c) 90 °C. 
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Figure 2.3 Partial binary phase diagrams of (a) 490HSiCB4 homopolymer in 5CB and 
(b) polystyrene homopolymer with 5CB.  Dashed lines are drawn to guide the eye toward 
plausible phase boundaries.  The letters “N” and “I” indicate a single nematic or isotropic 
phase, respectively.  “I+I” indicates two coexisting isotropic phases and “N+I” indicates 
coexisting nematic and isotropic phases.   
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Figure 2.4 Partial ternary phase diagram of PS (44 kg/mol), 490HSiCB4, and isotropic 
5CB determined from optical microscopy.  The shading and letter of each point expresses 
the upper critical solution temperature (UCST) at which a single-phase solution is 
obtained.  A UCST equal to TNI means the solution became single-phase immediately 
upon transitioning to the isotropic phase.  A UCST > 140 °C means a single phase was 
inaccessible because the mixture began to decompose.  The dashed line is drawn to guide 
the eye to the region where a single-phase solution cannot be reached.   
 

 

 

 



 34

2.8 References 

[1] Rubinstein, M.; Colby, R. H. Polymer Physics, 1st ed; Oxford University Press: 
New York, 2003. 

[2] Brochard, F. Solutions of flexible polymers in a nematic liquid. C. R. Acad. Sc. 
Paris 1979, 289, 229-232. 

[3] Hsu, C. C.; Prausnitz, J. M. Thermodynamics of Polymer Compatibility in Ternary 
Systems. Macromolecules 1974, 7, 320-324. 

[4] Scott, R. L. The Thermodynamics of High Polymer Solutions. V. Phase Equilibria 
in the Ternary System: Polymer 1- Polymer 2- Solvent. J. Chem. Phys. 1949, 17, 
279-284. 

[5] Tompa, H. Phase Relationships in Polymer Solutions. Trans. Faraday Soc. 1949, 
45, 1142-1152. 

[6] Zeman, L.; Patterson, D. Effect of the Solvent on Polymer Incompatibility in 
Solution. Macromolecules 1972, 5, 513-516. 

[7] Olabisi, O.; Robeson, L. M.; Shaw, M. T. Polymer-Polymer Miscibility, Academic 
Press, Inc.: San Diego, 1979. 

[8] Hakemi, H. Elastic constants in dilute poly(styrene)/nematic liquid crystal solutions 
- effects of concentration and molecular weight. Polymer 1999, 40, 4099-4103. 

[9] Hori, H.; Urakawa, O.; Adachi, K. Dielectric Relaxation in Phase-Segregated 
Mixtures of Polystyrene and Liquid Crystal 5CB. Macromolecules 2004, 37, 1583-
1590. 

[10] Benmouna, F.; Daoudi, A.; Roussel, F.; Buisine, J.-M.; Coqueret, X.; Maschke, U. 
Equilibrium Phase Diagram of Polystyrene and 8CB. J. Polym. Sci., Part B: Polym. 
Phys. 1999, 37, 1841-1848. 

[11] Gogibus, N.; Maschke, U.; Benmouna, F.; Ewen, B.; Coqueret, X.; Benmouna, M. 
Phase Diagrams of Poly(dimethylsiloxane) and 5CB Blends. J. Polym. Sci., Part B: 
Polym. Phys. 2001, 39, 581-588. 

[12] Noda, I.; Kato, N.; Kitano, T.; Nagasaw, M. Thermodynamics of Moderately 
Concentrated Solutions of Linear Polymers. Macromolecules 1981, 14, 668-676. 

[13] Brandup, J.; Immergut, E. H.; Grulke, E. A., eds. Polymer Handbook. 4th ed. 1999, 
Wiley: New York. 

 
 



 35

Chapter 3  

SELF-ASSEMBLY OF COIL-LIQUID CRYSTALLINE DIBLOCK 
COPOLYMERS IN A SOLVENT OF “SWITCHABLE” QUALITY: 

STRUCTURE AND INTERACTIONS MEASURED BY SANS AND 
RHEOMETRY  

Chapter 3 ............................................................................................................ 35 

3.1 Introduction.......................................................................................................................36 

3.2 Experimental.....................................................................................................................37 

3.3 Results...............................................................................................................................41 

3.4 Discussion.........................................................................................................................47 

3.5 Conclusions.......................................................................................................................55 

3.6 Tables ................................................................................................................................57 

3.7 Figures...............................................................................................................................59 

3.8 References.........................................................................................................................87 

 

Reproduced in part with permission from Scruggs, Kornfield, and Lal, Macromolecules 

2006, 39, 3921-3926. Copyright 2006 American Chemical Society. 

 

Rafael Verduzco contributed to the experiments discussed in this chapter.  He synthesized 

and characterized the side-on polymers (names ending with “BB”).  He and I traveled 

together to Argonne National Lab where we shared the responsibility of performing the 

neutron scattering experiments.  He also performed rheometry on solutions of side-on 

polymers.  Zuleikha Kurji assisted us in performing neutron scattering experiments.  We 



 36
are grateful to the Macromolecular Complex Systems group at Oak Ridge National 

Laboratory’s Center for Nanophase Material Sciences (CNMS), especially David Uhrig, 

for synthesizing some of our diblock prepolymers.  We also thank Jyotsana Lal and Ed 

Lang at Argonne’s Intense Pulsed Neutron Source for their help with neutron scattering 

experiments.   

3.1 Introduction 

Microphase separation in diblock copolymer melts is a well-understood phenomenon that 

allows access to a wide range of morphologies that find application in nanotechnologies, as 

reviewed by Park, Yoon, and Thomas.[1]  The symmetry and length scale of the ordered 

state are controlled by selection of the chemical structure, connectivity, and relative lengths 

of the component blocks.[2]  Binary thermodynamic interactions between the polymer 

blocks ultimately determine the block copolymer’s nanostructure in the melt.  In solution, 

thermodynamic interactions with a third component modulate the self-assembled structure: 

a fixed block copolymer at a fixed concentration can adopt various morphologies 

depending on the solvent.[3-10]  Block copolymers in selective solvents are used as rheology 

modifiers and drug delivery systems, for example, and are also of fundamental interest 

because of the rich thermodynamics governing their self-assembly.   

The choice of solvent heavily influences the equilibrium microstructure of AB diblock 

copolymer micelles.[3, 5-8]  Partitioning of the solvent between the microdomains rich in 

block A and those rich in block B is referred to as the solvent’s “selectivity” and is 

determined by thermodynamic interaction parameters between the solvent (S) and each 

polymer, χAS and χBS.[11-15]  In the limit of strong selectivity towards A (χBS >> χAS), diblock 

copolymers form micelles with cores composed of B almost completely devoid of solvent.  

In contrast, a neutral, or non-selective, solvent partitions between core and corona.  In the 

former case, dense-core micelles are formed having stronger inter-micelle interaction 

potentials than the highly swollen, soft micelles afforded in the latter case.[16, 17] 
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When the solvent is a small-molecule thermotropic liquid crystal (LC) the phase 

behavior of a dissolved block copolymer is enriched by the discontinuous change in quality 

at the LC phase transitions. The simplest example is the transition from the nematic to the 

isotropic phase.  The orientational order of the LC in the nematic phase presents a large 

entropic penalty to solvation of a random coil polymer, but in the isotropic phase the 

solvent’s spherical symmetry imposes no such solubility constraints.[18, 19]  In contrast to a 

random coil polymer, a side-group liquid crystalline polymer (SGLCP) can undergo the 

change in orientational order with the LC solvent, making it soluble in both the nematic 

and isotropic phases.  A coil-SGLCP block copolymer in a LC solvent can switch from 

being dissolved in a strongly selective solvent to being dissolved in a good solvent for both 

blocks when the first-order transition from the nematic to isotropic phase takes place.  Such 

abrupt changes in solvent quality do not occur in non-LC solvents, and we term the 

phenomenon “switchable solvent quality.”  We demonstrate that the jump in solvent quality 

indeed produces an abrupt change in the self-assembly of block copolymers, specifically a 

change in micelle structure of coil-SGLCP diblocks in solution.  We infer the driving force 

for block copolymer self-assembly from the phase behavior of ternary homopolymer 

solutions and further demonstrate that exceptional sensitivity to temperature and 

concentration allows the dominant driving force for block copolymer self-assembly to be 

modulated with small changes to these parameters.      

3.2 Experimental 

3.2.1 Materials 

A series of diblock copolymers was synthesized having a random coil polymer block 

(polystyrene, PS) and a side-group liquid crystal polymer (SGLCP) block (Figure 3.1).  

Starting with poly[styrene-b-1,2-butadiene], the reactive 1,2-butadiene monomers were 

functionalized with cyanobiphenyl-based mesogenic side groups by methods described in 

Appendix A.  These polymers are referred to as “end-on” SGLCPs because the mesogenic 

group is attached along its long axis, perpendicular to the polymer backbone.  Their 

properties are summarized in Table 3.1 and details of their characterization are given in 
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Appendix A.  Using the same set of PS-PB prepolymers (Appendix A), a series of 

SGLCPs bearing “side-on” mesogens, attached with the long axis parallel to the polymer 

backbone, was synthesized by Rafael Verduzco.[20]   

Prepolymers were obtained from two different sources; the details of characterization are 

given in Appendix A.  A series of four PS-PB diblock copolymers having approximately 

equally sized PB blocks and variably sized PS blocks were synthesized via living anionic 

polymerization by David Uhrig at Oak Ridge National Laboratory’s Center for Nanophase 

Material Sciences (CNMS). The molecular weight (Mn) of the PB block is approximately 

55 kg/mol and the molecular weight of the PS block ranges from 40 to 120 kg/mol.  The 

PB block contains greater than 95 mol % 1,2-butadiene monomers, the remainder being 

unreactive 1,4-butadiene.  These prepolymers were used to synthesize the first four 

polymers listed in Table 3.1.  Other PS-PB prepolymers were purchased from Polymer 

Source (Montreal, Quebec) and used to synthesize the remaining three polymers listed in 

Table 3.1.  These diblocks are also synthesized by living anionic polymerization and the 

PB block is composed of 10 - 20 mol % 1,4-butadiene monomers.    

The sizes of the PS and PB blocks were chosen to yield a series of PS-SGLCP diblock 

copolymers that would access a variety of polymer compositions and overall molecular 

weights, changing only one variable at a time (Figure 3.4).  The four polymers synthesized 

at the CNMS give a series of variable composition, but approximately equal molecular 

weight.  Two of the polymers purchased from Polymer Source closely match the 

composition of the largest CNMS polymer, giving a series of different molecular weights.   

 In addition to PS-SGLCP diblock copolymers, end-on and side-on SGLCP homopolymers 

(Figure 3.2) were synthesized from an anionically polymerized PB prepolymer purchased 

from Polymer Source.  The prepolymer has Mn = 47.5 kg/mol and the properties of the 

resulting SGLCPs are summarized in Table 3.2.  Finally, a coil-SGLCP diblock copolymer 

with a poly(methyl methacrylate) (PMMA) coil block (Figure 3.3) was synthesized, 

starting from a poly[(methyl methacrylate)-b-1,2-butadiene] prepolymer.  This prepolymer 

was also purchased from Polymer Source and the properties of the PMMA-SGLCP diblock 
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are summarized in Table 3.3.  A PS-SGLCP diblock with similar coil block content and 

total molecular weight was synthesized from a PS-PB prepolymer also purchased from 

Polymer Source.  The details of the characterization of all these polymers and their 

precursors are given in Appendix A.   

Solutions of SGLCP homopolymers and diblock copolymers in liquid crystal solvent were 

prepared by dissolving a polymer together with the nematic LC 4-pentyl-4′-cyanobiphenyl 

(5CB) in  dichloromethane, then evaporating the dichloromethane under a stream of air 

followed by drying in vacuum for at least 18 hours.  

3.2.2 Methods 

Small-angle neutron scattering (SANS) experiments were performed on the Small-Angle 

Scattering Instrument (SASI) at Argonne National Laboratory’s Intense Pulsed Neutron 

Source (IPNS).  The instrument records the intensity of neutrons scattered from a sample at 

various scattering vectors, q = 4π/λ sin (θ /2), between approximately 0.007 and 2 Å-1.  

Neutrons at the IPNS are generated by spallation and are therefore polychromatic.  The 

wavelength, λ, is calculated from a neutron’s time of flight to a detector at an angle, θ , to 

the sample.  The raw intensity scattered onto a two-dimensional array of detectors is 

converted to the two-dimensional scattered intensity in q-space by computers at the IPNS.  

An advantage of time-of-flight SANS at a spallation source is that the instrument’s entire q 

range is accessed in a single experiment without having to change the sample-detector 

distance.   

Samples were prepared by dissolving diblock copolymers in a perdeuterated liquid crystal 

solvent.  Since the coherent neutron scattering length of hydrogen (bH = -3.74 x 10-5 Å) is 

very different from that of deuterium (bD = 6.67 x 10-5 Å), the perdeuterated solvent 

provides scattering contrast without significantly altering the solvent’s other physical 

properties.  Perdeuterated 4-penyl-4’-cyanobiphenyl (d195CB) was synthesized according 

to methods described in Appendix B.  The nematic-isotropic transition temperature (TNI) of  

d195CB is approximately 3 °C lower than that of hydrogenated 5CB.[21]  
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Diblock copolymer solutions were contained in cells consisting of circular quartz 

windows spaced apart by a metal or quartz ring either 0.5 or 1.0 mm thick.  In most cases 

the samples were simply loaded in the polydomain state; no effort was made to achieve 

uniform alignment of the liquid crystal director.  During the scattering experiments the cells 

were held in a heated aluminum block where the temperature was stable within 

approximately 0.1 °C.  At least fifteen minutes of temperature equilibration was allowed 

prior to collecting data.   Samples were typically irradiated for one hour and the two-

dimensional scattering pattern was circularly averaged to yield data in the form of intensity 

versus q.     

Rheometry was performed on solutions of diblock copolymers dissolved in 5CB using a 

TA Instruments ARES-RFS fluids rheometer with a dynamic range of 0.001 to 200 rad/s.  

Approximately 200 mg of solution was held in a titanium cone-and-plate tool 25 mm in 

diameter.  The temperature was controlled with the rheometer’s built-in Peltier plate and 

was stable to within 0.1 °C.  Frequency sweeps were performed in the linear regime at 

temperatures ranging from 25 °C to at least 60 °C, traversing small temperature increments 

near the isotropization point.  Temperature ramps between 25 and 60 °C were performed in 

the linear regime at heating/cooling rates of 1, 5, and 10 °C/min.  Prior to beginning each 

experiment, the sample’s thermal history was erased by heating it to 60 °C for at least 5 

minutes, then annealing at the desired temperature for at least 5 minutes.   

The transition temperatures of diblock copolymer solutions were measured by polarized 

optical microscopy (POM).  A drop of solution was placed on a microscope slide and 

observed between crossed polarizers in a Zeiss Universal stereomicroscope with 

temperature controlled by a Mettler FP82 hot stage.  The temperature at which the colorful, 

birefringence texture began to disappear was recorded as the isotropization point (TNI).  

Two temperatures were recorded for samples that became biphasic during the transition: 

the temperature at which the first black spots appear marks the beginning of the biphasic 

region and the temperature at which the last colorful spots disappear marks the end.   
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3.3 Results 

3.3.1 Neutron Scattering at High q  

The scattering patterns from diblock copolymer solutions all have a few basic features in 

common (Figure 3.5 and Figure 3.6).  The scattered intensity is highest at low q and drops 

precipitously as q increases, until it merges with I(q) of the equivalent SGLCP 

homopolymer for q > ~0.06 Å-1.  At large q, q-independent, incoherent background 

scattering becomes dominant beyond q ≈ 0.3 – 0.5 Å-1.  The magnitude of the scattered 

intensity at low q is highly sensitive to changes in temperature (Figure 3.5).  For example, 

the maximum intensity, Imax, for a 5 wt % 320(120)ABSiCB4 solution drops an order of 

magnitude as the temperature is raised from 25 °C to 40 °C (Figure 3.5a).  A similar 

decrease of Imax is observed as 10 wt % 320(120)ABSiCB4 is heated from 25 °C to 50 °C 

and then drops down to the level seen for the equivalent SGLCP homopolymer as T 

increases to 60 °C (Figure 3.5b).  At high q (q > ~0.06 Å-1), however, I(q) is insensitive to 

temperature (Figure 3.5).  The high-q scattering is also unaffected by changing the size of 

the polystyrene block (Figure 3.6).  Scattering patterns from diblocks having approximately 

matched SGLCP blocks and PS blocks varying in size from 40 to 120 kg/mol all overlap at 

q greater than approximately 0.06 Å-1 (Figure 3.6).   

Since the high-q scattering is completely described by the scattering of SGLCP 

homopolymers (Figure 3.5 and Figure 3.6), this portion of the SANS patterns is attributed 

to the monomer-level structure of SGLCP chains.  At low values of q the self-assembled 

structure dominates the scattering and from here on the presentation of SANS patterns will 

be limited to this regime.   

3.3.2 Effects of PS Block Size on Structure: Temperature Dependence of SANS and 

Rheometry  

The diblock copolymers 470(40)ABSiCB4, 390(60)ABSiCB4, 420(80)ABSiCB4, and 

320(120)ABSiCB4 comprise a series with approximately constant total molecular weight 

(440 – 510 kg/mol) having increasing PS content from 8 and 23 wt % (Figure 3.4).  The 

changes in the SANS patterns from these diblock solutions with temperature (Figure 3.7a-
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Figure 3.14a) are correlated with the temperature dependence of the storage modulus, G′  

(Figure 3.7b-Figure 3.14b).  The SANS patterns from 5 wt % solutions of all four polymers 

change shape within a small temperature window near TNI, and three out of the four 

polymers have a large change in the maximum scattered intensity, Imax, near TNI (Figure 

3.7a-Figure 3.10a, inset).  The storage modulus of each of these solutions drops from G′ ~ 

O(100 Pa) to G′ ~ O(10-2 Pa) within, at most, 5 °C of TNI  (Figure 3.7b-Figure 3.10b).  The 

correlated changes in SANS and G′ are similar to those observed at the order-disorder or 

order-order transition temperatures of non-LC diblock copolymers in isotropic solvents[3, 8].  

The temperature at which the low q scattering decreases to the level seen in an analogous 

homopolymer solution increases with increasing PS block length, MPS.  In the case of the 

smallest PS block (MPS  = 40 kg/mol) this temperature is below TNI (Figure 3.7a); for the 

next in the series (MPS  = 60 kg/mol), it is above TNI (at 40 °C, I(q) is similar to that of a 

homopolymer solution) (Figure 3.8a).  Block copolymer segregation persists up to 40 °C 

for the case of PS block lengths greater than 60 kg/mol and the resulting scattering that 

remains at 40 °C is of higher intensity for the polymer with MPS  = 120 kg/mol (Figure 

3.10a) than for the polymer with MPS  = 80 kg/mol (Figure 3.9a).   

Similarly, the temperature at which G′ drops below 1 Pa increases with increasing PS block 

length.  For the diblock with MPS  = 40 kg/mol, G′ falls to 1 Pa at TNI – 0.4 °C (the 

subsequent rise and fall of G′ results from the narrow biphasic temperature range of 5 wt % 

470(40)ABSiCB4) (Figure 3.7b).  When MPS  = 60 or 80 kg/mol, G′ falls to 1 Pa at the end 

of the nematic-isotropic phase transition (35.4 and 36.6 °C, respectively) (Figure 3.8b and 

Figure 3.9b).  For the longest PS block in the series (MPS  = 120 kg/mol), the decrease in G′ 

with increasing temperature beyond TNI is relatively gradual, reaching 1 Pa at a temperature 

distinctly greater than TNI (Figure 3.10b).  Within the nematic phase, increasing PS block 

length causes the temperature dependence of G′ to change from softening (MPS  = 40 

kg/mol) to stiffening (MPS  = 60, 80, and 120 kg/mol), and the steepness of stiffening with 

increasing temperature increases as the size of the PS block increases from 60 to 120 

kg/mol (Figure 3.7b-Figure 3.10b).   
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Solutions of 10 wt % diblock copolymer (Figure 3.11-Figure 3.14) exhibit similar trends 

in SANS and rheology as the 5 wt % solutions.  At high q, the scattered intensity is 

approximately two times greater in the 10 wt % as in their 5 wt % counterparts, as it should 

be for scattering arising from approximately the monomer-level structure.  Interestingly, at 

small q, the 10 wt % solutions with MPS ≤ 60 kg/mol do not have greater intensity; indeed, 

when normalized by concentration, Imax / c is greater for the 5 wt % solutions in each pair.  

When MPS ≥ 80 kg/mol, Imax / c is approximately the same for 5 and 10 wt % solutions, as 

expected.  The storage modulus of a 10 wt % solution is approximately ten times greater 

than its 5 wt % counterpart.  Similar to 5 wt % solutions, G′ increases with temperature in 

the nematic phase (except for the diblock with MPS = 40 kg/mol) and decreases with 

temperature above TNI.  However, for MPS  ≥ 60 kg/mol the decay of G′ in the isotropic 

phase is much more gradual for 10 wt % solutions.  Whereas G′ of 5 wt % solutions fell 

approximately tenfold at TNI for diblocks with MPS = 60 or 80 kg/mol, the corresponding 

drop requires T > TNI for the 10 wt % solutions (Figure 3.12b and Figure 3.13b).  The 

largest PS block delays a comparable drop in G′ to TNI + 10 °C (Figure 3.14b).     

3.3.3 Effects of Total Molecular Weight on Structure: Temperature Dependence of 

SANS and Rheometry  

Together with 320(120)ABSiCB4, the diblock copolymers 210(60)ABSiCB4 and 

580(190)ABSiCB4, synthesized from prepolymers purchased from Polymer Source, 

comprise a series with approximately constant PS content (~24 wt %) having total 

molecular weights of 270, 440, and 780 kg/mol (Figure 3.4).  Similar to 5 wt % 

320(120)ABSiCB4 (Figure 3.10a), scattering patterns from 5 wt % 210(60)ABSiCB4 

(Figure 3.15a) change shape at TNI; however, unlike 5 wt % 320(120)ABSiCB4 and 

solutions of other polymers derived from prepolymers provided by the CNMS, their 

maximum scattered intensities are insensitive to temperature.  For the longest polymer in 

this series, neither the shape nor intensity change across TNI.  The magnitude of the storage 

modulus in the nematic phase increases with increasing molecular weight from G′ ~ O(100 

Pa) (Figure 3.10b and Figure 3.15b) to G′ ~ O(102 Pa) (Figure 3.16b).  The decay of G′ 

above TNI becomes increasingly gradual as the polymer molecular weight is increased.  For 

the smallest polymer, 210(60)ABSiCB4, G′ decays tenfold at TNI (Figure 3.15b).  
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Increasing the molecular weight causes the tenfold decay of G′ to shift to TNI + 2.5 °C 

(Figure 3.10b), and for the largest polymer, 580(190)ABSiCB4, G′ does not decay tenfold 

until TNI + 16 °C (Figure 3.16b).   

The same trends are observed in 10 wt % solutions (Figure 3.17, Figure 3.14, and Figure 

3.18).  The effect of increasing concentration on G′ is similar to what was observed for 

diblocks with a series of different PS contents; doubling the concentration increases G′ 

approximately tenfold and the decay of G′ in the isotropic phase becomes more gradual.  In 

the case of the largest polymer, G′ decays so slowly that it changes less than four-fold over 

the entire temperature range (Figure 3.18b).  When the concentration of 210(60)ABSiCB4 

or 580(190)ABSiCB4 is increased to 20 wt % (Figure 3.19 and Figure 3.20), the storage 

modulus remains relatively constant throughout the entire temperature range studied 

(Figure 3.19b and Figure 3.20b).  The value of Imax / c in 20 wt % solutions (Figure 3.19a 

and Figure 3.20a, inset) is lower than that of their 5 or 10 wt % counterparts.  The shapes of 

the scattering patterns from 20 wt % 210(60)ABSiCB4 (Figure 3.19a) are also qualitatively 

different than those of its 5 and 10 wt % counterparts.       

3.3.4 Effects of PS Block Size on Dynamics: Frequency Dependent Rheology 

Frequency dependent rheology of diblock solutions exposes their dynamics as a function of 

temperature.  The magnitude of the complex viscosity, |η*|, is normalized by the bulk 

viscosity of 5CB, η5CB, at the same temperature to remove the solvent’s temperature 

dependence.    Solutions of 5 wt % diblock copolymers having varied PS block sizes are 

viscoelastic fluids in the nematic phase: the reduced viscosity slopes upward at low 

frequency (Figure 3.21).  In the isotropic phase, the three diblocks with MPS < 120 kg/mol 

remain viscoelastic fluids right after TNI and at T ≥ 40 °C the reduced viscosity becomes 

frequency-independent, characteristic of a viscous fluid (Figure 3.21a,b,c).  The polymer 

with the largest PS block remains a viscoelastic fluid for temperatures less than 50 °C and 

is a viscous fluid at T ≥ 50 °C (Figure 3.21d).  

When the polymer concentration is increased to 10 wt % the solutions become room-

temperature gels:  |η*| / η5CB  ~ ω-1 at 25 °C, corresponding to nearly constant storage 
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modulus, G′(ω), and G′(ω) >> G′′(ω) (Figure 3.22)†.  When these solutions are heated 

above TNI they immediately cease to be gels.  When MPS = 40 kg/mol the solution 

transitions directly to a viscous fluid at TNI (Figure 3.22a), but when MPS ≥ 60 kg/mol the 

solutions are viscous fluids only at T ≥ 50 °C (Figure 3.22b,c,d).  Within the nematic phase, 

the size of the PS block is correlated to deviations from |η*| / η5CB  ~ ω-1.  Solutions of 

diblocks with MPS ≥ 80 kg/mol retain this scaling throughout the dynamic range at all 

temperatures in the nematic phase (Figure 3.22c and d).  When the PS block is decreased to 

MPS = 60 kg/mol, deviations are observed at 35 °C (Figure 3.22b).  The viscosity of 10 wt 

% 470(40)ABSiCB4 begins to deviate from |η*| / η5CB  ~ ω-1 at T = 32 °C, and the 

frequency range over which the scaling is valid shrinks as temperature is increased (Figure 

3.22a). 

3.3.5    Effects of Total Molecular Weight on Dynamics: Frequency Dependent 

Rheology  

The frequency dependent rheology of solutions of 210(60)ABSiCB4 and 

580(190)ABSiCB4 was measured at concentrations of 2, 5, 10, and 20 wt %.  Solutions of 

210(60)ABSiCB4 are room-temperature gels only at concentrations of 10 and 20 wt %; 

lower concentration solutions are fluids.  At 2 wt % the solution is a viscous fluid both 

above and below TNI (Figure 3.23a).  Increasing the concentration to 5 wt % results in a 

solution that is a viscoelastic fluid in the nematic phase and a viscous fluid at T ≥ 40 °C 

(Figure 3.23b).  The 10 wt % solution is a gel in the nematic phase and the viscosity 

deviates from |η*| / η5CB  ~ ω-1 when T = 35 °C.  At T ≥ 50 °C the solution is a viscous 

fluid (Figure 3.23c).  When the polymer concentration is 20 wt % the solution is a gel 

throughout the entire temperature range (Figure 3.23d).   

Increasing the molecular weight of the diblock results in solutions that are nematic gels at 

all four concentrations (Figure 3.24).  The most dilute solution, 2 wt % 580(190)ABSiCB4, 

transitions to a viscoelastic fluid at TNI and becomes a viscous fluid at  T ≥ 50 °C (Figure 

3.24a).  The other three solutions remain gels after the nematic-isotropic transition (Figure 

                                                 
† Detailed plots of G′(ω) and G′′( ω) are located in Appendix E. 
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3.24b,c,d).  The 5 and 10 wt % solutions become viscoelastic fluids at 50 and 60 °C, 

respectively (Figure 3.24b,c).  The 5 wt % solution becomes a viscous fluid at 60 °C 

(Figure 3.24b), but the 10 wt % solution remains a viscoelastic fluid over the entire 

temperature range (Figure 3.24c).  The 20 wt % solution remains a gel up to at least 100 °C 

(Figure 3.24d).      

3.3.6    Frequency Dependent Rheology: Changing the Identity of the Coil Block 

Comparing solutions of 700(70)ABSiCB4 and 950(70)BdMMASiCB4 allows the effects 

of changing the identity of the coil block to be investigated in polymers having similar 

composition (~9 and 7  wt % coil block, respectively) and molecular weight (770 and 1,050 

kg/mol, respectively).  At low concentration (2 wt % polymer) solutions of both PS- and 

PMMA-containing diblocks are viscoelastic fluids in the nematic phase and transition to 

viscous fluids above TNI (Figure 3.25a and Figure 3.26a).  Data are not available for 5 wt % 

700(70)ABSiCB4, but a 10 wt % solution is a gel in the nematic phase, transitioning to a 

viscoelastic fluid at TNI and at T ≥ 50 °C the solution is a viscous fluid (Figure 3.25b).  

Deviation from |η*| / η5CB  ~ ω-1 is never seen in 10 wt % 700(70)ABSiCB4.  The 10 wt % 

solution of PMMA-based polymer behaves similarly in that it is a gel in the nematic phase, 

transitioning to a viscoelastic fluid in the temperature range between TNI and 40 °C (Figure 

3.26c).  However, in contrast to its PS-based counterpart, the reduced viscosity shows 

strong low-frequency deviations |η*| / η5CB  ~ ω-1 at temperatures between 30 °C and TNI.  

The frequency range over which deviations from this scaling occur expands as temperature 

is increased.  When the concentration is increased to 20 wt % polymer, both 

700(70)ABSiCB4 and 950(70)ABSiCB4 behave similarly (Figure 3.25c and Figure 3.26d); 

the reduced viscosity scales with ω-1 throughout the nematic phase and at temperatures just 

above TNI.  In the isotropic phase the solutions are viscoelastic fluids with the PS-based 

diblock transitioning to a viscous fluid at 80 °C.   
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3.4 Discussion 

3.4.1 Background: Connecting SANS and Rheology to Self-Assembled Particle 

Structure 

Dissolving a coil-SGLCP diblock copolymer in a small-molecule LC solvent causes the 

polymer to self-assemble into a core-shell type structure where the LC-phobic coil block is 

segregated into the core and surrounded by a corona rich in the SGLCP block.  SANS and 

rheometry provide complimentary means to understand both the structure of self-assembled 

micelles and the interactions between them.   

Within a given polymer solution, changes in Imax that occur with changing temperature can 

be related to changes in the number of polymer chains participating in one micelle (the 

aggregation number, Nagg).  Regardless of whether any self-assembled structure exists, the 

monomer-level scattering (at large q) of solutions of diblock copolymers resembles that of 

homopolymer solutions (Figure 3.5 and Figure 3.6).  Excess scattering at low q, however, 

is from the structure of the self-assembled micelles.  The differential scattering cross-

section for a solution of Np particles (here, micelles) of volume VP and overall neutron 

scattering contrast (∆ρ)2 is 

( ) ( ) ( ) ( )qSqPVNq Pp
22 ρ∆=

Ω∂
Σ∂ ,                                      (3.1)  

where P(q) is the form factor describing the shape of the particle and S(q) is the structure 

factor describing interparticle correlations.[22]  In the limit of vanishing q, P(q) = 1 and in 

the absence of long-range correlations, S(q) = 1.  The differential scattering cross-section of 

uncorrelated particles at q = 0 is, therefore 

( ) ( )220 ρ∆==
Ω∂
Σ∂

PpVNq .                                            (3.2) 

Equation 3.2 is valid for any solution of uncorrelated particles; it assumes nothing about the 

shape or constitution of the scatterers.  The scattering length density (ρp) of a micellar 

particle swollen with solvent, such that the overall volume fraction of polymer in the 

particle is φA, may be calculated from the scattering length densities of the polymer (ρA) 

and solvent (ρB): 
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( ) BAAAp ρφρφρ −+= 1 ,                                            (3.3) 

so that the contrast between the micelle and a pure solvent background is 

( ) ( )222
BAA ρρφρ −=∆ .                                           (3.4) 

The volume of a solvent-swollen micelle is  

A

agg
p

vN
V

φ
= ,                                                          (3.5) 

where v is the volume of a single polymer chain, and the number of particles in a volume of 

solution, VS, is  

Ap

S
p V

cVN
φ

= ,                                                          (3.6) 

where c is the volume fraction of “dry” polymer.  Combining Equations 3.2, 3.4, 3.5, and 

3.6 gives the differential scattering cross-section in terms of fixed solution properties (VS, c, 

v, ρA, ρB) and only one structural property, Nagg: 

( ) ( ) aggBAS NcvVq 20 ρρ −==
Ω∂
Σ∂ .                                 (3.7) 

Equation 3.7 is valid for any solution of arbitrarily shaped, uncorrelated micelles, provided 

every polymer chain participates in a micelle and the matrix surrounding the micelles is 

composed of pure solvent.  In the case of overlapping micelles, the scattering length density 

of the surrounding matrix, ρM, is unknown and the contrast becomes 

( ) ( )[ ]22
MBBAA ρρρρφρ −+−=∆ .                               (3.8) 

The differential scattering cross-section will depend on both Nagg and φA, but Equation 3.7 

may still be a valid approximation if the matrix is composed of a dilute polymer solution 

(ρM  ≈ ρB).   

Zero-angle scattering is not accessible in these experiments, but the relative changes in 

Imax for a given polymer solution at different temperatures still reflect changes in Nagg 

according to Equation 3.7, provided the form factor is not drastically different from one 

temperature to the next.  For example, if the size of the particles increases, the form factor 

may shift within the window of observation to decrease the maximum measured intensity 

(Figure 3.27).  Nevertheless, in many data sets (e.g., 10 wt % 390(60)ABSiCB4, Figure 
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3.14a) the shape of I(q) is virtually unchanged over several temperatures (in this case, 

25 - 32 °C) indicating that P(q) is not responsible for the observed drop in Imax.   

Micellar dispersions studied here are all within the “liquid-like” or “gas-like” concentration 

regime.  In both cases, micelles lack long-range order, but micelles in a liquid-like 

dispersion remain correlated with one another, while in a gas-like dispersion they are non-

interacting.[3]  The “solid-like” regime is ruled out because SANS patterns do not exhibit 

structure factor peaks resulting from inter-micelle interference,[3, 8] nor do they exhibit 

diffraction peaks characteristic of well-ordered micellar lattices.[23, 24]  Inter-micellar 

correlations are, however, clearly demonstrated by rheology, and result in viscoelasticity or 

gelation.  In general, the more strongly the micelles interact with one another, the higher G′ 

becomes.  The most likely mechanism for inter-micellar interactions is the overlap of 

adjacent coronas or, equivalently, correlation of chain conformations in neighboring 

coronas in order to satisfy the osmotic requirement of minimum concentration variation in 

the matrix surrounding the micellar cores.[24-26]  SANS on SGLCP homopolymer solutions 

demonstrated that 5 wt % solutions are in the semidilute regime (Chapter 2), suggesting 

that diblock solutions of equal or greater concentration must also have corona chains that 

overlap one another, if only at the outermost edge of the micelle.   

The time-scale for relaxation in a micellar solution, indicated by the transition to 

frequency-independent viscosity, indicates the strength of the coil block’s segregation and 

may be qualitatively linked to how “hard” or “soft” are the micelle cores.  When the 

reduced viscosity deviates from |η*| / η5CB  ~ ω-1 it indicates that the micelle-micelle 

interactions have dissipated on the time-scale where the viscosity is frequency-independent, 

and this time-scale may be attributed to the lifetime of a micelle (the time required for all 

the participating polymer chains to disengage from the core). Micelles have longer 

lifetimes as the free energy cost of chain dissociation (the strength of segregation) 

increases.[27, 28]  Micelles with short lifetimes have “soft” cores; mechanical interactions are 

weak because stress is relieved by the dissociation of the polymer chains.   
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3.4.2 Implications of “Switchable” Solvent Quality 

The thermodynamic driving forces for self-assembly of coil-SGLCP diblock copolymers 

may be inferred from the phase behavior of PS and SGLCP homopolymers in 5CB 

discussed in Chapter 3.  In the nematic phase, the entropic cost of dissolving PS in an 

ordered solvent makes it insoluble in 5CB.  When the entropic penalty disappears in the 

isotropic phase, 5CB and PS become miscible.  On the other hand, the covalent attachment 

of chemically similar, mesogenic units to the polymer backbone makes the SGLCP 

miscible with 5CB both above and below TNI.     Self-assembly of coil-SGLCP diblock 

copolymers below TNI is intuitively understood as being driven by the solvent’s strong 

selectivity for the SGLCP block. In the isotropic phase, where the solvent is reasonably 

good for both blocks, self-assembly is driven by a combination of unfavorable interactions 

between the polymer blocks and by the asymmetric solvent effect; the solvent’s slight 

thermodynamic preference for the SGLCP block can drive self-assembly of a diblock 

copolymer in the same way that macroscopic phase separation is driven in ternary PS-

SGLCP-5CB blends.  At low polymer concentration, polymer-polymer interactions are 

screened by solvent, but as concentration is increased they dominate the system’s 

thermodynamics.    

Heating samples through the nematic-isotropic phase transition often has a profound and 

sudden effect on micellar structure and micelle-micelle interactions as a result of the 

discontinuous change in solvent quality that takes place at TNI.  In contrast to conventional 

solvents, whose quality changes continuously with temperature, the unique ability of the 

LC solvent to undergo a first-order phase transition between two distinct fluid phases 

allows the regimes of strong selectivity[5, 7, 9] and slight selectivity[3, 6, 8] to be accessed with 

small changes in temperature.  Depending on the copolymer’s composition and molecular 

weight, the temperature at which the micelles disassemble to become free chains (the 

microphase separation temperature, MST) can be below, above, or coincident with TNI.   

3.4.3 Influence of PS Content on the Driving Force for Self-Assembly 

Just as the upper critical solution temperature of ternary homopolymer solutions is highly 

sensitive to changes in the relative concentrations of the two polymers, the MST of diblock 
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solutions gets progressively higher as the copolymers’ PS content is increased.  At fixed 

total polymer concentration and molecular weight, increasing MPS serves to increase the 

total volume fraction of PS and decrease the volume fraction of SGLCP.  Interestingly, at 

low PS content, the covalent bonding between PS and SGLCP serves to draw the PS block 

into solution even when the solvent quality for PS is poor; the MST of these solutions (both 

5 and 10 wt %) is less than TNI.  When MPS is small, the free energy cost of mixing PS with 

a blend of nematic 5CB and SGLCP is not large enough to outweigh the entropic penalty of 

organizing the SGLCP into micelles.  Increasing the size of the PS block to MPS = 120 

kg/mol shifts the MST of diblock solutions to be greater than TNI, indicating that the 

asymmetric solvent effect together with unfavorable polymer-polymer interactions is 

sufficiently strong to overcome the favorable free energy of mixing the individual blocks 

with isotropic 5CB.   

The aggregation number appears to increase with the size of the PS block, as predicted for 

solutions of associating polymers.[27, 29, 30]  Comparing the data from 5 or 10 wt % solutions 

at 25 °C, the increase in G′ that takes place with increasing PS content indicates greater 

overlap between micelle coronas or, equivalently, an increase in the size of the micelle.  

The thickness of the micelle corona should be much larger than the radius of the core (a 

“hairy” micelle) by virtue of the SGLCP block’s substantially larger volume fraction in the 

bulk polymer (VSGLCP / VPS ≥ 3 for all polymers studied).  At fixed Nagg, the size of a hairy 

micelle is insensitive to changes in the size of the core block because the dimensions of the 

corona chains dictate those of the micelle.  Increasing Nagg, however, causes increased 

stretching of the corona chains due to greater crowding at the core-corona interface,[30] and 

results in larger micelles with a greater degree of corona-corona overlap.  In accord with 

the rheological data, Imax / c at 25 °C also increases with PS content in both 5 and 10 wt % 

solutions, implying an increase in Nagg.  However, Imax / c cannot necessarily be compared 

from sample to sample because of possible differences in the form factor. 

In a given diblock copolymer solution the temperature dependence of G′ in the nematic 

phase is primarily due to changes in the aggregation number.  In solutions of all but the 

diblock with MPS = 40 kg/mol, G′ increases with temperature in the nematic phase and is 
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accompanied by a decrease in Nagg indicated by the decrease in Imax / c (except in 5 wt % 

320(120)ABSiCB4 where Imax / c increases slightly between 25 and 32 °C).  The order 

parameter of 5CB gets smaller with temperature, lessening the entropic penalty to 

dissolution of PS and allowing the solvent to penetrate the core.  This decreases the energy 

per unit area of the core-corona interface and results in a decrease in Nagg.  Consequently, 

the solution contains more micelles, each with fewer polymer chains.  Swelling increases 

the volume fraction of micelles, pushes them closer together, and causes them to interact 

more strongly.  The temperature-dependence of G′ is stronger in diblocks with higher PS 

content because the swelling of the cores affects a larger volume fraction of the overall 

sample.   

For samples that have a substantial G′ above TNI (Figure 3.10b, Figure 3.12b, Figure 3.13b, 

and Figure 3.14b), the temperature-dependence falls into two categories: G′ rapidly 

decreases at TNI (Figure 3.10b, Figure 3.12b, and Figure 3.13b), or G′ decreases gradually 

at first, then rapidly decays after some T > TNI (Figure 3.14b).  The former is characteristic 

of composition fluctuations that decay above the MST in conventional micellar solutions,[3, 

8] and the latter indicates that distinct micelles continue to exist in a range of TNI < T < 

MST, then decay with similar composition fluctuations.  These observations are in accord 

with the scattering patterns that clearly demonstrate the existence of micelles in the 

temperature range where G′ is gradually decreasing (Figure 3.14), but only show diffuse 

excess scattering in the range where G′ is falling rapidly (Figure 3.10, Figure 3.12, Figure 

3.13, Figure 3.14).  The aggregation number of the isotropic micelles decreases with 

temperature, but the inter-micellar interactions decrease because the cores become very 

soft; frequency-dependent rheology shows that the fluid’s relaxation time is fast (~ O(102 s) 

or greater) in this temperature range (Figure 3.22d). 

3.4.4 Influence of Molecular Weight on the Driving Force for Self-Assembly 

At fixed PS content, increasing the molecular weight of a coil-SGLCP diblock copolymer 

increases the driving force for self-assembly in 5CB; the MST of both 5 and 10 wt % 

solutions increases from being coincident with TNI at low molecular weight (Figure 3.15 

and Figure 3.17) to being much higher than TNI at high molecular weight (Figure 3.16 and 
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Figure 3.18).  Decreasing the degree of polymerization increases the polymer’s entropy 

of mixing because shorter chains benefit from greater positional entropy in solution.   

Similar to what was observed as a function of PS content in the previous series of diblocks, 

increasing the total molecular weight causes the temperature dependence of G′ in the 

isotropic phase to shift from being a steep decay reflecting composition fluctuations above 

the MST (Figure 3.10b and Figure 3.17b) to a gradual decay between TNI and the MST 

characteristic of persisting micellization (Figure 3.14b, Figure 3.16b, and Figure 3.18b).  

However, the corroborating evidence from SANS is unclear in solutions of 

210(60)ABSiCB4 and 580(190)ABSiCB4.  Scattering patterns at high temperature do not 

resemble the diffuse excess scattering observed in solutions of 320(120)ABSiCB4; a high-

intensity upturn at low q is observed at all temperatures.  The explanation for these 

anomalous scattering patterns is unclear, but may be related to the high content of 1,4-

butadiene in the SGLCP block.  Perhaps there is some clustering among short domains of 

1,4-polybutadiene driven by poor solubility in the strongly dipolar solvent that gives rise to 

low-q scattering, similar to clustering between hydrocarbon end-groups and polymer 

backbones in solutions of poly(ethylene oxide) in water.[31]  The ambiguity in interpreting 

the high-temperature SANS patterns makes it impossible to draw conclusions about 

changes in Nagg that take place with increasing temperature; Imax / c is virtually constant in 

these samples.   

As predicted by theory,[27, 28, 30] both the strength of coil-block associations and Nagg 

increase with molecular weight.  Comparing samples at the same concentration, increase in 

segregation strength is evidenced by the slowing of the solution’s relaxation time (Figure 

3.22b, Figure 3.23c, and Figure 3.24c).  The increase in Nagg with increasing molecular 

weight results in a transition from viscoelastic fluid to gel in 5 wt % solutions below TNI.  

At higher concentration, the increased Nagg causes isotropic solutions of high molecular 

weight polymer to be gels (Figure 3.24c) while their low molecular counterparts form 

viscous liquid solutions (Figure 3.22b, Figure 3.23c).   
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3.4.5 Influence of Polymer Concentration on the Driving Force for Self-Assembly 

In dilute solution, the relatively weak asymmetric solvent effect is the dominant 

thermodynamic driving force for self-assembly.  The unfavorable interactions between the 

polymer blocks become increasingly important with concentration as they are less 

effectively screened by solvent.  As a result, the segregation strength and, consequently, the 

MST increase with concentration.  This is demonstrated most clearly in solutions of 

210(60)ABSiCB4 and 580(190)ABSiCB4 because frequency-dependent rheometry was 

performed over the concentration range of 2 to 20 wt % polymer (Figure 3.23 and Figure 

3.24).  The increase in segregation strength is best illustrated by comparing 10 and 20 wt % 

solutions.  The micelle lifetime in 10 wt % solutions of both polymers lies within the 

dynamic range at a few temperatures, but at 20 wt % deviations from |η*| / η5CB  ~ ω-1 are 

never observed.  The increase in the MST is also evident because the temperature required 

to achieve viscous liquid behavior increases with concentration.  Similarly, SANS and 

rheology of the most concentrated samples (Figure 3.19 and Figure 3.20) show that 

polymers remain self-assembled throughout the entire temperature range of 25 to 60 °C, 

which is not the case in 5 wt % solutions (Figure 3.15 and Figure 3.16).   

Similar trends are also observed in solutions of diblocks from the variable PS content 

series, though these were only studied at two concentrations (5 and 10 wt %).  The 

observation that Imax / c decreased as the concentration of 470(40)ABSiCB4 or 

390(60)ABSiCB4 was increased from 5 to 10 wt % is probably the result of a change in 

what constitutes the matrix surrounding the micelles.  If the background matrix is pure 

solvent, the micelle’s scattering contrast is maximized (Equation 3.4), but if the volume 

fraction of micelles increases to the point they are space-filling, the effective matrix 

becomes a solution of SGLCP chains in 5CB and the scattering contrast is lowered 

(Equation 3.8).  The perceived scattering may then be from an effective corona composed 

of a dense layer of SGLCP adjacent to the core surface.[32] 

3.4.6 Influence of the Coil Block Identity on the Driving Force for Self-Assembly 

Though the entropy of mixing is probably comparable, the enthalpy of mixing PMMA with 

5CB is greater than that of PS with 5CB and the PMMA-SGLCP diblock is, therefore, less 
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strongly associated.  Studies of the phase behavior of polyacrylates with cyanobiphenyl 

LCs shows them to be slightly more miscible with one another than PS and 5CB.[33-36]  The 

improved miscibility decreases the segregation strength so that the lifetime of a PMMA-

based micelle is evident within the dynamic range of rheometry (Figure 3.26), while that of 

an equivalent PS-based micelle is not (Figure 3.25).  Otherwise, solutions of the PMMA-

based behave very similarly to their PS-based counterparts; the MST is comparable for 

solutions having the same polymer concentration.        

3.5 Conclusions 

Solutions of coil-SGLCP diblock copolymers in small-molecule LC solvent are unique in 

that two distinct regimes of solvent selectivity can be accessed in a single solution, simply 

by heating the solution through its nematic-to-isotropic phase transition.  In the nematic 

phase, the solvent is strongly selective for the SGLCP block, but in the isotropic phase it is 

a reasonably good solvent for both blocks.  The change in solvent quality often triggers the 

transition from self-assembled micelles to a solution of free chains, but by tailoring the 

composition and molecular weight of the block copolymer, the MST can be adjusted to be 

above or below the TNI.  These conclusions are summarized in Figure 3.28, where the 

structure and interactions between diblock copolymer micelles in 5 wt % PS-SGLCP 

solutions are superimposed over the phase diagram of PS content versus total molecular 

weight over a temperature range from well below to well above TNI.   

In the context of the literature on block copolymers in isotropic solvents, the results 

presented here imply that new juxtapositions of ordered phases can be introduced into their 

phase diagrams.  The progression of ordered phases that would conventionally be observed 

in two separate solvents of different quality (strongly selective[5, 7, 9] versus slightly 

selective [3, 6, 8]) can now be combined into the single phase diagram of a given block 

copolymer in a single LC solvent.  Small temperature changes could switch the system 

between the two regimes of ordered phases.  The present systems switch from a disordered 

micelle phase that is relatively rigid and has a low volume fraction of the PS-rich domains 

to a different disordered micelle phase that is much softer and has a substantial volume 
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fraction of the PS-rich domains.  This suggests that for other relative block lengths and 

concentrations, the system could jump between ordered phases (e.g., FCC and BCC) very 

abruptly with temperature.   
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3.6 Tables 

Table 3.1 Molecular weight, conversion, and polydispersity of the end-on side-group 
liquid crystal diblock copolymers with coil block composed of polystyrene (PS).  Details 
of characterization are presented in Appendix A.  

 SGLCP Block  

Name 

PS 
Block 

Mn 
[kg/mol]

Mn 
[kg/mol]

Mole 
Fraction 
1,2 PB 

Mole 
Fraction 
1,4 PB 

Mole 
Fraction 

LC 
PDIa 

470(40)ABSiCB4 43 472 0 0.01 0.99 1.19 

390(60)ABSiCB4 59 388 0.15 0.03 0.85 1.11 

420(80)ABSiCB4 83 422 0.05 0.05 0.90 1.07 

320(120)ABSiCB4 121 323 0.22 0.01 0.77 1.05 

700(70)ABSiCB4 70 700 0 0.11 0.89 1.50 

210(60)ABSiCB4 63.5 205 0.13 0.15 0.72 1.22 

580(190)ABSiCB4 191 577 0.09 0.23 0.68 1.56 
aPDI = Polydispersity Index (Mw/Mn) 
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Table 3.2 Molecular weight, conversion, and polydispersity of end-on and side-on side-
group liquid crystal homopolymers.  Details of characterization are presented in 
Appendix A.  

Name Mn 
[kg/mol] 

Mole 
Fraction 
1,2 PB 

Mole 
Fraction 
1,4 PB 

Mole 
Fraction 

LC 
PDIa 

350HSiCB4 347 0 0.11 0.89 1.27 
aPDI = Polydispersity Index (Mw/Mn) 
 
 
 
 
 
 
 
Table 3.3 Molecular weight, conversion, and polydispersity of the side-group liquid 
crystal diblock copolymer with coil block composed of poly(methyl methacrylate) 
(PMMA).  Details of characterization are presented in Appendix A.  

 SGLCP Block  

Name 

PMMA 
Block 

Mn 
[kg/mol]

Mn 
[kg/mol]

Mole 
Fraction 
1,2 PB 

Mole 
Fraction 
1,4 PB 

Mole 
Fraction 

LC 
PDIa

950(70)BdMMASiCB4 68 954 0.07 0.13 0.80 1.11 
aPDI = Polydispersity Index (Mw/Mn) 
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3.7 Figures 
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Figure 3.1 Chemical structures of end-on side-group liquid crystal diblock copolymers 
having a coil block composed of polystyrene.  The polymers’ names are derived from the 
molecular weights of the liquid crystal polymer block (X) and the coil block (Y) in units 
of kg/mol, the letters “AB” to indicate a diblock copolymer, and “SiCB4” to indicate end-
on, cyanobiphenyl-based mesogens.  In addition to monomers having an attached 
mesogen, the polymer also contains some residual 1,2- and 1,4-butadiene monomers.  
Compositions, expressed as the mole fractions x,y, and z, are given in Table 3.1 and 
details of characterization are given in Appendix A.     
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Figure 3.2 Chemical structures of end-on side-group liquid crystal homopolymers.  The 
polymers’ names are derived from the polymer’s molecular weight in units of kg/mol, the 
letter “H” to indicate a homopolymer, and “SiCB4” to indicate end-on, cyanobiphenyl-
based mesogens.  In addition to monomers having an attached mesogen, the polymer also 
contains some residual 1,2- and 1,4-butadiene monomers.  Compositions, expressed as 
the mole fractions x,y, and z, are given in Table 3.2 and details of characterization are 
given in Appendix A.     
 

 

 

 

 



 61

Si
O

Si

O

C
N

X(Y)BdMMASiCB4

x y z

O
O n m

 

Figure 3.3 Chemical structures of end-on side-group liquid crystal diblock copolymers 
having a coil block composed of poly(methyl methacrylate) (PMMA).  The polymer’s 
name is derived from the molecular weights of the liquid crystal polymer block (X) and 
the coil block (Y) in units of kg/mol, the letters “BdMMA” to indicate a diblock 
copolymer with PMMA coil block, and “SiCB4” to indicate end-on, cyanobiphenyl-
based mesogens.  In addition to monomers having an attached mesogen, the polymer also 
contains some residual 1,2- and 1,4-butadiene monomers.  Compositions, expressed as 
the mole fractions x,y, and z, are given in Table 3.3 and details of characterization are 
given in Appendix A.     
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Figure 3.4 Diagram illustrating the relative lengths and compositions of PS-SGLCP 
diblock copolymers described in Table 3.1.  The polymers derived from prepolymers 
synthesized at the Center for Nanophase Material Sciences (CNMS) comprise a series of 
almost equal total molecular weight (440 - 510 kg/mol) having PS block lengths between 
40 and 120 kg/mol.  Diblocks derived from prepolymers purchased from Polymer Source, 
together with the CNMS polymer having the largest PS block, comprise a series in which 
the PS content is almost constant (~ 24 wt %), but the total molecular weight varies 
between 270 and 770 kg/mol.   
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Figure 3.5 SANS patterns from solutions of (a) 5 wt % and (b) 10 wt % 
320(120)ABSiCB4 at a variety of temperatures as compared to patterns from 
homopolymer solutions collected at 50 °C.  The low q scattering of the diblock solutions 
is shown in detail in Figure 3.10a and Figure 3.14a.   
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Figure 3.6 Small-angle neutron scattering patterns from solutions of side-group liquid 
crystalline diblock copolymers and homopolymers at concentrations of (a) 5 wt % and (b) 
10 wt % polymer.  The scattering patterns from diblock solutions were collected at 25 °C 
and the patterns from homopolymer solutions were collected at 50 °C.  The low q 
scattering of the diblock solutions is shown in detail in Figure 3.7a-Figure 3.14a.   
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Figure 3.7 SANS and rheology of 5 wt % 470(40)ABSiCB4.  (a) The low q portions of 
SANS patterns collected at different temperatures in the nematic phase (open symbols) 
and in the isotropic phase (filled symbols).  The intensities at temperatures less than 40 
°C are successively shifted upwards by powers of three for clarity.  The inset shows the 
maximum scattered intensity normalized by the solution concentration (Imax / c) as a 
function of reduced temperature (T - TNI).  (b) The storage modulus (G′) at ω = 10 rad/s 
as a function of temperature.  Triangles are positioned at the same reduced temperatures 
where SANS patterns were collected.  The solution is biphasic between 35.4 and 38.0 °C.     
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Figure 3.8 SANS and rheology of 5 wt % 390(60)ABSiCB4.  (a) The low q portions of 
SANS patterns collected at different temperatures in the nematic phase (open symbols) 
and in the isotropic phase (filled symbols).  The intensities at temperatures less than 40 
°C are successively shifted upwards by powers of three for clarity.  The inset shows the 
maximum scattered intensity normalized by the solution concentration (Imax / c) as a 
function of reduced temperature (T - TNI).  (b) The storage modulus (G′) at ω = 10 rad/s 
as a function of temperature.  Triangles are positioned at the same reduced temperatures 
where SANS patterns were collected.   
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Figure 3.9 SANS and rheology of 5 wt % 420(80)ABSiCB4.  (a) The low q portions of 
SANS patterns collected at different temperatures in the nematic phase (open symbols) 
and in the isotropic phase (filled symbols).  The intensities at temperatures less than 40 
°C are successively shifted upwards by powers of three for clarity.  The inset shows the 
maximum scattered intensity normalized by the solution concentration (Imax / c) as a 
function of reduced temperature (T - TNI).  (b) The storage modulus (G′) at ω = 10 rad/s 
as a function of temperature.  Triangles are positioned at the same reduced temperatures 
where SANS patterns were collected.  The solution is biphasic between 35.4 and 38.0 °C.     
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Figure 3.10 SANS and rheology of 5 wt % 320(120)ABSiCB4.  (a) The low q portions 
of SANS patterns collected at different temperatures in the nematic phase (open symbols) 
and in the isotropic phase (filled symbols).  The intensities at temperatures less than 40 
°C are successively shifted upwards by powers of three for clarity.  The inset shows the 
maximum scattered intensity normalized by the solution concentration (Imax / c) as a 
function of reduced temperature (T - TNI).  (b) The storage modulus (G′) at ω = 10 rad/s 
as a function of temperature.  Triangles are positioned at the same reduced temperatures 
where SANS patterns were collected.   
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Figure 3.11 SANS and rheology of 10 wt % 470(40)ABSiCB4.  (a) The low q portions 
of SANS patterns collected at different temperatures in the nematic phase (open symbols) 
and in the isotropic phase (filled symbols).  The intensities at temperatures less than 40 
°C are successively shifted upwards by powers of three for clarity.  The inset shows the 
maximum scattered intensity normalized by the solution concentration (Imax / c) as a 
function of reduced temperature (T - TNI).  (b) The storage modulus (G′) at ω = 10 rad/s 
as a function of temperature.  Triangles are positioned at the same reduced temperatures 
where SANS patterns were collected.  The solution is biphasic between 37.3 and 37.7 °C.     
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Figure 3.12 SANS and rheology of 10 wt % 390(60)ABSiCB4.  (a) The low q portions 
of SANS patterns collected at different temperatures in the nematic phase (open symbols) 
and in the isotropic phase (filled symbols).  The intensities at temperatures less than 40 
°C are successively shifted upwards by powers of three for clarity.  The inset shows the 
maximum scattered intensity normalized by the solution concentration (Imax / c) as a 
function of reduced temperature (T - TNI).  (b) The storage modulus (G′) at ω = 10 rad/s 
as a function of temperature.  Triangles are positioned at the same reduced temperatures 
where SANS patterns were collected.   
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Figure 3.13 SANS and rheology of 10 wt % 420(80)ABSiCB4.  (a) The low q portions 
of SANS patterns collected at different temperatures in the nematic phase (open symbols) 
and in the isotropic phase (filled symbols).  The intensities at temperatures less than 40 
°C are successively shifted upwards by powers of three for clarity.  The inset shows the 
maximum scattered intensity normalized by the solution concentration (Imax / c) as a 
function of reduced temperature (T - TNI).  (b) The storage modulus (G′) at ω = 10 rad/s 
as a function of temperature.  Triangles are positioned at the same reduced temperatures 
where SANS patterns were collected.  The solution is biphasic between 36.4 and 36.6 °C.     
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Figure 3.14 SANS and rheology of 10 wt % 320(120)ABSiCB4.  (a) The low q portions 
of SANS patterns collected at different temperatures in the nematic phase (open symbols) 
and in the isotropic phase (filled symbols).  The intensities at temperatures less than 40 
°C are successively shifted upwards by powers of three for clarity.  The inset shows the 
maximum scattered intensity normalized by the solution concentration (Imax / c) as a 
function of reduced temperature (T - TNI).  (b) The storage modulus (G′) at ω = 10 rad/s 
as a function of temperature.  Triangles are positioned at the same reduced temperatures 
where SANS patterns were collected.   
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Figure 3.15 SANS and rheology of 5 wt % 210(60)ABSiCB4.  (a) The low q portions of 
SANS patterns collected at different temperatures in the nematic phase (open symbols) 
and in the isotropic phase (filled symbols).  The intensities at temperatures less than 40 
°C are successively shifted upwards by powers of three for clarity.  The inset shows the 
maximum scattered intensity normalized by the solution concentration (Imax / c) as a 
function of reduced temperature (T - TNI).  (b) The storage modulus (G′) at ω = 10 rad/s 
as a function of temperature.  Triangles are positioned at the same reduced temperatures 
where SANS patterns were collected.   
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Figure 3.16 SANS and rheology of 5 wt % 580(190)ABSiCB4.  (a) The low q portions 
of SANS patterns collected at different temperatures in the nematic phase (open symbols) 
and in the isotropic phase (filled symbols).  The intensities at temperatures less than 40 
°C are successively shifted upwards by powers of three for clarity.  The inset shows the 
maximum scattered intensity normalized by the solution concentration (Imax / c) as a 
function of reduced temperature (T - TNI).  (b) The storage modulus (G′) at ω = 10 rad/s 
as a function of temperature.  Triangles are positioned at the same reduced temperatures 
where SANS patterns were collected.   
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Figure 3.17 SANS and rheology of 10 wt % 210(60)ABSiCB4.  (a) The low q portions 
of SANS patterns collected at different temperatures in the nematic phase (open symbols) 
and in the isotropic phase (filled symbols).  The intensities at temperatures less than 40 
°C are successively shifted upwards by powers of three for clarity.  The inset shows the 
maximum scattered intensity normalized by the solution concentration (Imax / c) as a 
function of reduced temperature (T - TNI).  (b) The storage modulus (G′) at ω = 10 rad/s 
as a function of temperature.  Triangles are positioned at the same reduced temperatures 
where SANS patterns were collected.   
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Figure 3.18 SANS and rheology of 10 wt % 580(190)ABSiCB4.  (a) The low q portions 
of SANS patterns collected at different temperatures in the nematic phase (open symbols) 
and in the isotropic phase (filled symbols).  The intensities at temperatures less than 40 
°C are successively shifted upwards by powers of three for clarity.  The inset shows the 
maximum scattered intensity normalized by the solution concentration (Imax / c) as a 
function of reduced temperature (T - TNI).  (b) The storage modulus (G′) at ω = 10 rad/s 
as a function of temperature.  Triangles are positioned at the same reduced temperatures 
where SANS patterns were collected.   
 



 77

0.01 0.1
100

101

102

103

104

105

106

-10 0 10 20 30
100

101

102

(b)

(a)

27

T [oC]

60

37

31

29

25

 

I +
 V

.S
. [

A.
U

.] 

q [Å-1]

 

 

20% 210(60)ABSiCB4

 T-T
NI
 [oC]

 I m
ax
 / 

c 
[A

.U
.]

25 30 35 40 45 50 55 60 65
10-3

10-2

10-1

100

101

102

103

T N
I

 

G
' [

Pa
]

T [°C]  

Figure 3.19 SANS and rheology of 20 wt % 210(60)ABSiCB4.  (a) The low q portions 
of SANS patterns collected at different temperatures in the nematic phase (open symbols) 
and in the isotropic phase (filled symbols).  The intensities at temperatures less than 40 
°C are successively shifted upwards by powers of three for clarity.  The inset shows the 
maximum scattered intensity normalized by the solution concentration (Imax / c) as a 
function of reduced temperature (T - TNI).  (b) The storage modulus (G′) at ω = 10 rad/s 
as a function of temperature.  Triangles are positioned at the same reduced temperatures 
where SANS patterns were collected.   
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Figure 3.20 SANS and rheology of 20 wt % 580(190)ABSiCB4.  (a) The low q portions 
of SANS patterns collected at different temperatures in the nematic phase (open symbols) 
and in the isotropic phase (filled symbols).  The intensities at temperatures less than 40 
°C are successively shifted upwards by powers of three for clarity.  The inset shows the 
maximum scattered intensity normalized by the solution concentration (Imax / c) as a 
function of reduced temperature (T - TNI).  (b) The storage modulus (G′) at ω = 10 rad/s 
as a function of temperature.  Triangles are positioned at the same reduced temperatures 
where SANS patterns were collected.   
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Figure 3.21 Frequency (ω) dependence of the magnitude of the complex viscosity (|η*|) 
of 5 wt % solutions of PS-SGLCP diblock copolymers having similar total molecular 
weights (440 - 510 kg/mol) and PS block sizes of (a) 40 kg/mol, (b) 60 kg/mol, (c) 80 
kg/mol, and (d) 120 kg/mol.  The complex viscosity is reduced by the bulk viscosity of 
5CB (η5CB) at the same temperature.  In the nematic phase, data are represented by open 
symbols.  In the isotropic phase, half-filled symbols indicate a viscoelastic solution and 
filled symbols are used in the terminal regime where solutions behave as viscous fluids.   
   
 



 80

10-3 10-2 10-1 100 101 102
100

101

102

103

104

105

106

10 wt % 470(40)ABSiCB4

 

 

      T [°C]
 25
 32
 33
 34
 36
 40
 50
 60

|η
*|/

η 5C
B

ω [rad/s]
10-3 10-2 10-1 100 101 102

100

101

102

103

104

105

106

10 wt % 390(60)ABSiCB4

 

 

|η
*|/

η 5C
B

ω [rad/s]

      T [°C]
 25
 34
 35
 36
 40
 50
 60

10-3 10-2 10-1 100 101 102
100

101

102

103

104

105

106

10 wt % 420(80)ABSiCB4

 

 

|η
*|/

η 5C
B

ω [rad/s]

      T [°C]
 25
 35
 36
 40
 50
 60

10-3 10-2 10-1 100 101 102
100

101

102

103

104

105

106(d)

(b)

(c)

(a)

10 wt % 320(120)ABSiCB4

 

 

|η
*|/

η 5C
B

ω [rad/s]

      T [°C]
 25
 35
 36
 50
 60

 

Figure 3.22 Frequency (ω) dependence of the magnitude of the complex viscosity (|η*|)  
of 10 wt % solutions of PS-SGLCP diblock copolymers having similar total molecular 
weights (440 - 510 kg/mol) and PS block sizes of (a) 40 kg/mol, (b) 60 kg/mol, (c) 80 
kg/mol, and (d) 120 kg/mol.  The complex viscosity is reduced by the bulk viscosity of 
5CB (η5CB) at the same temperature.  In the nematic phase, data are represented by open 
symbols.  In the isotropic phase, half-filled symbols indicate a viscoelastic solution and 
filled symbols are used in the terminal regime where solutions behave as viscous fluids.   
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Figure 3.23 Frequency (ω) dependence of the magnitude of the complex viscosity (|η*|) 
of solutions of PS-SGLCP diblock copolymer 210(60)ABSiCB4 at concentrations of (a) 
2 wt %, (b) 5 wt %, (c) 10 wt %, and (d) 20 wt %.  The complex viscosity is reduced by 
the bulk viscosity of 5CB (η5CB) at the same temperature.  In the nematic phase, data are 
represented by open symbols.  In the isotropic phase, half-filled symbols indicate a 
viscoelastic solution and filled symbols are used in the terminal regime where solutions 
behave as viscous fluids.   
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Figure 3.24 Frequency (ω) dependence of the magnitude of the complex viscosity (|η*|) 
of solutions of PS-SGLCP diblock copolymer 580(190)ABSiCB4 at concentrations of (a) 
2 wt %, (b) 5 wt %, (c) 10 wt %, and (d) 20 wt %.  The complex viscosity is reduced by 
the bulk viscosity of 5CB (η5CB) at the same temperature.  In the nematic phase, data are 
represented by open symbols.  In the isotropic phase, half-filled symbols indicate a 
viscoelastic solution and filled symbols are used in the terminal regime where solutions 
behave as viscous fluids.   
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Figure 3.25 Frequency (ω) dependence of the magnitude of the complex viscosity (|η*|) 
of solutions of PS-SGLCP diblock copolymer 700(70)ABSiCB4 at concentrations of (a) 
2 wt %, (b) 10 wt %, and (c) 20 wt %.  The complex viscosity is reduced by the bulk 
viscosity of 5CB (η5CB) at the same temperature.  In the nematic phase, data are 
represented by open symbols.  In the isotropic phase, half-filled symbols indicate a 
viscoelastic solution and filled symbols are used in the terminal regime where solutions 
behave as viscous fluids.   
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Figure 3.26 Frequency (ω) dependence of the magnitude of the complex viscosity (|η*|) 
of solutions of PMMA-SGLCP diblock copolymer 950(70)BdMMASiCB4 at 
concentrations of (a) 2 wt %, (b) 5 wt %, (c) 10 wt %, and (d) 20 wt %.  The complex 
viscosity is reduced by the bulk viscosity of 5CB (η5CB) at the same temperature.  In the 
nematic phase, data are represented by open symbols.  In the isotropic phase, half-filled 
symbols indicate a viscoelastic solution and filled symbols are used in the terminal 
regime where solutions behave as viscous fluids.   
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Figure 3.27 The form factor of spheres with radius, R, of 400 and 500 Å.  In the low q 
limit, both form factors are equal (P(q) = 1), but the maximum scattered intensity is 
measured at the minimum accessible q (qmin = 0.00666 Å-1).  Thus, changing the size of 
the particles can result in changes to the measured Imax.   
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Figure 3.28 The storage modulus (G′) of 5 wt % PS-SGLCP diblock solutions at ω = 10 
rad/s and temperatures of 25 °C (T << TNI), 32-34 °C (T < TNI), 40 °C (T > TNI), and 60 
°C (T >> TNI).  Blue bars indicate the solution is a gel, green bars indicate a viscoelastic 
fluid, and red bars indicate a viscous fluid.  The letters “M” and “F” indicate that the 
diblock exists as micelles or free chains, respectively.     
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4.1 Introduction 

4.1.1 Background 

Random-coil polymers are rarely soluble in small-molecule nematic liquid crystals (LCs) 

because the solvent’s orientational order presents a large entropic penalty to dissolution.[1, 2]  

Decorating the polymer backbone with liquid crystalline moieties yields a side-group liquid 

crystal polymer (SGLCP) with orientational order of its own.  Nematic interactions with 

the polymer side-groups make it possible to dissolve an SGLCP in an LC solvent, and rich 
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phase behavior results from the thermodynamic balance between liquid crystalline order 

and the consequently anisotropic conformation of the polymer backbone. [3-16] 

Mixtures of SGLCPs and small-molecule LCs usually have a transition to the isotropic 

phase that occurs at temperatures near or below the isotropization temperatures of the pure 

components;[3-14] in rare instances the mixture’s isotropization point may lie slightly above 

that of the pure components.[16]    Mixtures of SGLCP and LC also often exhibit isotropic-

nematic or nematic-nematic coexistence between fully nematic and fully isotropic states.[3, 

4, 7-14, 16]  Phase diagrams similar to observed behavior (and a host of others yet to be 

observed) can be derived from Brochard’s mean-field theory[12, 15] combining the Flory-

Huggins theory of mixing with the Maier-Saupe theory for nematic order.  Within the 

Brochard model, the nematic order parameters predicted by the Maier-Saupe theory 

strongly influence the free energy of an SGLCP/LC mixture; however, there have been 

surprisingly few studies in which the component order parameters were measured in 

conjunction with the mixture’s phase behavior.  The few that exist examine main-chain 

liquid crystal polymers,[17, 18] for which Brochard’s theory breaks down because of the 

strong coupling of liquid crystalline order to polymer conformation. 

Here we examine the phase behavior and the order parameter of each component in an 

SGLCP/LC mixture.  Calorimetry shows that nematic order can be strongly stabilized in 

the mixtures relative to the pure components: there exist compositions that have 

isotropization points more than 15 °C greater than that of either component and have latent 

heats of transition much greater than either pure component.  This cooperative ordering at 

high polymer concentration (~80 wt %) occurs despite the opposite tendency at low 

polymer concentration, leading to strikingly non-monotonic effects of concentration.  The 

underlying molecular order of each component in the solutions is characterized using 

deuterium labeling and 2H NMR spectroscopy; the solutions’ overall order parameters are 

assessed using birefringence measurements.  The results demonstrate a strong coupling 

between liquid crystalline order and polymer conformational entropy that is unique in 

comparison to the prior literature on mixtures of SGLCPs with small-molecule nematic 

LCs.     
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4.1.2 Theory 

Brochard’s model for predicting the phase behavior of SGLCPs and small-molecule LCs 

assumes complete decoupling between the polymer backbone and the orientational order of 

the attached mesogens.  The molar free energy, G, is calculated from the sum of an 

isotropic contribution, Giso, and a nematic contribution, Gnem.  The isotropic free energy is 

given by the Flory-Huggins theory for dissolving a polymer, B, with degree of 

polymerization NB in a small-molecule solvent, A: 

( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
−+−−+= AAA

B

A
AAiso N

kTG φχφφφφφ 11ln1ln ,                    (4.1) 

where χ is the Flory interaction parameter, φA is the volume fraction of species A, T is the 

temperature and k is Boltzmann’s constant.  The nematic free energy is given by the Maier-

Saupe model: 

( ) ( ) ( ) ( )( )ABAAAABAABABBBAAAAnem STSTSSUSUSUG φφφφφφ −Σ−Σ−−−−−−= 111 22
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(4.2) 

where SA and SB are the nematic order parameters of the solvent and polymer, respectively, 

and UAA, UBB, and UAB are the pairwise nematic interaction parameters of two solvent 

mesogens, two polymer mesogens, and a solvent mesogen with a polymer mesogen, 

respectively.  These nematic interactions are assumed to arise from van der Waals 

interactions between the molecules.  The final two terms express the loss of entropy due to 

LC order that is described below.  

The order parameters in Gnem are functions of temperature, composition, and the nematic 

interaction parameters and are evaluated numerically as a function of temperature and 

composition.  Brochard uses the usual approximation of Uij independent of temperature and 

the familiar relationship between the pure-component isotropization temperature, TA or TB, 

and its self-interaction: 

cBB
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U
kT

α
1== ,  αc = 4.54.[19]                                       (4.3) 

The cross interaction parameter, UAB, is assumed to be related to UAA and UBB by 

BBAAAB UUcU = ,                                                      (4.4) 



 93
where c is an unknown proportionality constant.[12, 13]  If c < 1, nematic interactions 

between the polymer and solvent are unfavorable and the nematic phase is destabilized by 

mixing.  If c > 1, nematic interactions between the polymer and solvent are stronger than in 

either pure component.   At fixed T and φA, the individual species adopt individual order 

parameters that minimize the free energy of nematic interactions, completely decoupled 

from the conformational entropy of the polymer.  The penalty for deviation of the 

orientation of species i from the director is coupled to that of the other species.  The 

severity of the penalty for misalignment is captured by the field parameters, mi, of the 

Maier-Saupe theory adapted for mixtures:  
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The greater mi, the sharper the orientation distribution of species i (mi → ∞ gives a δ-

function and mi → 0 gives a perfectly isotropic distribution).  Therefore, the Si’s in 

Equation 4.5 must simultaneously satisfy  

( )∫+−=
1

0

22 exp
2
3

2
1 dxxmx

Z
S i

i
i ,                                (4.6) 

where the partition function, Zi, is given by 

( )∫=
1

0

2exp dxxmZ ii .                                              (4.7) 

At fixed values of T and φA, SA is solved as a function of SB, and vice versa, and the 

intersection of the two curves gives the solution.   

With the order parameters known, Gnem is calculated from Equation 4.2 with the entropy 

terms given by  

( ) ⎟⎟
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+−=Σ ii
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i Sm

Z
kS π4log .[15]                                      (4.8) 

When both order parameters fall below the critical value of Si = 0.429 the nematic phase is 

unstable and Gnem is set to zero.  The total free energy is calculated from G = Gnem + Giso 

assuming the Flory interaction parameter is proportional to the reciprocal of temperature  
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(χ = A / T) and two-phase coexistence is indicated when a single tangent line connects 

two points on G(φA) curve with fixed T.[12, 15]   

4.2   Experimental 

4.2.1 Materials 

Two side-group liquid crystal homopolymers, 350HSiCB4 and 490HSiCB4, were 

synthesized according to the methods described in Appendix A.  Isotopic labeling of the 

side-group was performed according to the method described in Appendix B and the 

labeled side-group was used to synthesize d2350HSiCB4, the deuterium-labeled analog of 

350HSiCB4 (Figure 4.1).  These polymers’ properties are summarized in Table 4.1 and the 

details of their characterization may be found in Appendix A.   

Solutions of these polymers in the nematic LC 4-pentyl-4′-cyanobiphenyl (5CB, used as 

received from TCI America) were prepared by dissolving the two together in 

dichloromethane (DCM) then evaporating the DCM under a stream of air followed by 

drying in vacuum overnight.   

4.2.2 Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry (DSC) was performed using a Perkin-Elmer DSC 7 

calorimeter.  Each sample consisted of between 10 and 20 mg of solution contained in an 

aluminum pan and loosely covered with an aluminum lid.  The pans were not sealed so as 

to avoid squeezing the solution out during the crimping process.  Prior to loading a sample, 

the calorimeter’s empty sample chamber was heated to 200 °C for a few minutes to drive 

off any residual moisture then cooled to 20 °C.  Temperature scans were performed at a 

rate of 10 °C/min in a maximum range of 20 to 100 °C; the actual range used for a given 

sample was chosen to encompass the nematic-isotropic transition.  The data from at least 

the first three full cycles of heating and cooling were discarded: data were retained when 

six consecutive cycles gave virtually indistinguishable results.   
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The onset temperature and latent heat of the nematic-isotropic phase transition were 

calculated from DSC data using Perkin-Elmer’s Pyris® software (version 3.04).  Since the 

heat flow versus time data has a sloping baseline, the data was numerically differentiated 

and ranges where the second derivative was non-zero were used to select the beginning and 

end points for integration.  The results from six separate scans were averaged to arrive at 

the onset temperatures of the phase transitions on heating and on cooling.  Random errors 

in the data sets are primarily associated with choosing the limits of integration.   

A baseline subtraction and normalization procedure was applied to DSC temperature scans 

to aid in visualizing qualitative differences in the nematic-isotropic transition endotherms.  

The magnitude and the temperature-dependence of the heat capacity differs between the 

nematic and isotropic phase.  Therefore, a quadratic fit of the baseline was performed in 

regions well below and well above the phase transition.  To estimate a baseline underlying 

the phase transition itself, the two fits were extrapolated inside the transition and spliced 

together at the temperature that minimized the difference between the two polynomials 

(they would ideally be equal).  The piecewise fit was subtracted from the data, which was 

then divided by the sample mass to give the normalized, subtracted heat flow, Q, due to the 

phase transition.  Note that the discontinuity in the spliced baseline gives rise to a 

discontinuity in Q(T).       

4.2.3 Polarized Optical Microscopy (POM) 

Polarized optical microscopy (POM) was performed using a Zeiss Universal 

stereomicroscope with temperature controlled by a Mettler FP82 hot stage.  A small 

amount of polymer was placed on a microscope slide and the colorful, birefringent texture 

was observed between crossed polarizers while the temperature was ramped at a rate of    

10 °C/min.   

4.2.4 Deuterium Nuclear Magnetic Resonance Spectroscopy (2H NMR) 

Deuterium NMR spectra were recorded at a variety of temperatures using a Bruker Avance 

200 MHz solid-state NMR spectrometer tuned to 30.73 MHz.  Approximately 250 mg of 

polymer solution was loaded into a zirconium NMR rotor 7 mm in diameter and cooled 
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from the isotropic phase inside the magnet to ensure alignment of the LC director 

parallel to the magnetic field.  The sample was equilibrated at the desired temperature for 

15 minutes prior to beginning data acquisition.  Spectra were acquired statically using a 

solid-echo pulse sequence with proton decoupling and averaging between 32 and 512 

scans, depending on the signal strength.           

The NMR spectrometer’s thermocouple was brought into registration with that of the 

microscope hot stage and the DSC using the liquid crystal itself: the transition temperature 

(TNI) of each sample determined by POM (the temperature at which a sample’s colored, 

birefringent texture disappeared) or from DSC (onset temperature upon heating) was 

compared to the temperature at which a single peak characteristic of an isotropic sample 

was first observed by 2H NMR.  The spectrometer’s temperature controller only permits 

control to the nearest degree.  For the purposes of these experiments, the TNI was taken as 

the first temperature at which an isotropic 2H NMR spectrum was recorded when 

successively increasing temperature in increments of 1 °C.  The thermocouple of the 

spectrometer was systematically 3 °C below that of the hot stage or the DSC.   

Deuterium was incorporated into the SGLCP (d2350HSiCB4) or into the LC solvent by 

mixing d195CB with 5CB.  Since the TNI of d195CB (~32 °C) is substantially lower than that 

of 5CB (35 °C) its concentration was kept below 5 wt % in order to keep each sample’s 

transition temperature within 1 °C of an equivalent hydrogenous sample.   

4.2.5 Refractive Index Measurement 

The ordinary and extraordinary refractive indices (no and ne) of mixtures of 490HSiCB4 

and 5CB were measured in an Atago 4T Abbe refractometer illuminated by LEDs having a 

peak wavelength of 630 nm and with temperature control of ± 0.1 oC achieved using 

circulated water from a Fisher Scientific Isotemp Refrigerated Circulator Model 900.  The 

refractometer was calibrated with liquid standards to read the index of refraction for light 

with 633 nm wavelength.  Monodomain samples having a uniformly aligned LC director 

are required to measure both no and ne.[20]  Alignment was achieved by coating the prisms 

of the refractometer with a solution of 1 % lecithin in chloroform.  When the lecithin 
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alignment layer alone was inadequate, monodomain alignment was achieved by 

wiggling the top prism to create shear stresses large enough to induce some macroscopic 

order.  Prior literature on a similar polymer[21] dissolved in 5CB at similar concentration 

showed that shear causes the director to align near the velocity gradient direction, here 

normal to the prism surfaces.  The birefringence of an LC monodomain causes light with 

different polarizations to refract at different angles; instead of the single line separating a 

light and dark area observed in isotropic fluids, a polarizer is used to visualize the two 

indices.  In one orientation, a change from a bright to a dimmer region is seen at ne and 

when rotated 90o a second line corresponding to no is observed.   

4.3 Results 

4.3.1 Differential Scanning Calorimetry (DSC) 

All mixtures of 350HSiCB4 and 5CB with polymer concentrations ranging from 0 to     

100 wt % are nematic at room temperature and undergo a transition to the isotropic phase, 

indicated by an endothermic peak in the DSC trace, somewhere in the temperature range of 

30 to 90 °C.  The onset temperature of the transition shows a strikingly non-monotonic 

dependence on polymer concentration: at low polymer concentration (0 to 20 wt %) the 

position of the peak changes very little with concentration, it shifts to higher T in the range 

of 20 to 78 wt %, and shifts to lower T as concentration is further increased.  In two ranges 

of polymer concentration, approximately 20 to 70 wt % and 85 to 95 wt %, the nematic to 

isotropic phase transition takes place over a broad temperature range and a shoulder is often 

observed in the phase transition endotherm (Figure 4.3).  Although POM shows no 

evidence of two-phase coexistence in either the nematic or isotropic phase, the broad 

transitions are attributed to a biphasic region near the phase transition.  We suspect that 

two-phase coexistence is difficult to detect by POM because the coarsening of phase 

separation to observable length scales is very slow, particularly for polymer concentrations 

of 20 wt % or more.      

The qualitative trends observed in the DSC traces are reflected in the concentration 

dependence of the nematic to isotropic phase transition’s onset temperature, T, and latent 
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heat, |∆H| (Figure 4.4).  At concentrations less than 20 wt % polymer the onset 

temperature during heating is relatively constant, but in the range of 20 to 78 wt % polymer 

it increases sharply (Figure 4.4a), eclipsing the onset temperature of either of the pure 

components by a wide margin (it reaches a maximum of 80.5 °C, much greater than 36.2 

°C and 63.0 °C for pure 5CB and bulk polymer, respectively).  The onset temperature 

decreases with further increase in concentration beyond 80 wt %, and the transition 

becomes remarkably broad.  The peculiarly broad transition observed at 91 wt % polymer 

(spanning > 20 °C range) is not inherent to the polymer itself, which has a single peak 

with a full width at half-maximum less than 3 °C.  Small differences between the onset 

temperatures on heating versus cooling are attributed to the subcooling regularly observed 

in LC phase transitions.    Corresponding features are evident in the transition enthalpies 

(Figure 4.4b).  The measured value of |∆H| on heating for pure 5CB is 2.01 ± 0.07 J/g, in 

good agreement with values reported in the literature[22, 23] (2.00 J/g or 1.56 J/g).  For the  

bulk polymer |∆H|  on heating is 4.23 ± 0.03 J/g, which is much greater than values 

reported for other SGLCPs (0.53 and 1.9 J/g).[5, 24]   In the range of 0 to 20 wt % polymer, 

|∆H| decreases slightly with increasing concentration.  Above 20 wt % the latent heat 

increases sharply with concentration, reaching a maximum (6.34 ± 0.05 J/g) at 83 wt % 

polymer that is substantially greater than either pure component.  Between 83 and 91 wt 

%, |∆H| again decreases with concentration.  The concentration-dependence of |∆H| is in 

stark contrast to the linear dependence reported by Finkelmann, Kock, and Rehage.[5] 

4.3.2 Deuterium Nuclear Magnetic Resonance Spectroscopy (2H NMR) 
2H NMR spectra were collected from samples containing between 0 and 10 wt % SGLCP 

with deuterium incorporated into either the solvent or the polymer’s side groups.  In the 

nematic phase, the spectra from d195CB consist of pairs of peaks symmetric about a 

frequency, ν, of 0 kHz with splittings, ∆ν, that depend on temperature (Figure 4.5a).  The 

spectra from d2350HSiCB4 consist of one pair of symmetric peaks centered about ν = 0 

kHz, also split by a temperature-dependent magnitude, ∆ν.  The splitting derives from the 

deuterons’ quadrupolar interactions with the local electric field gradient and when the 

director is parallel to the magnetic field, as is the case in these experiments, its magnitude is 
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directly proportional to the microscopic order parameter, SZZ, of the C-D bond of 

interest:[25] 

ZZ
Ar
CD SQ

2
1cos3 2

2
3 −=∆ θν ,                                          (4.9) 

Where Szz accounts for the orientation distribution of the molecule’s long axis, u, with 

respect to the magnetic field, H, ½ (3 cos2 θ -1) accounts for the orientation angle of the C-

D bond with respect to the molecular axis, u, and QCD
Ar is the quadrupolar coupling 

constant equal to 185 kHz for aromatic deuterons.[26]  For the purposes of making 

comparisons between the orientational order of the solvent and the polymer side groups, 

the measurement of ∆ν from d195CB is restricted to deuterons located para- to the alkyl 

chain (site “d” in Figure 4.5) since they are geometrically equivalent to the deuterons of 

d2350HSiCB4.  Emsley, Luckhurst, and Stockley have found θ = 60.6° for these deuterons 

in d195CB,[27] and previous measurements of the quadrupolar splittings of 4-hexyloxy-4′-

cyanobiphenyl (6OCB) have demonstrated that the geometry of the aromatic deuterons 

located para-  to the oxygen atom is not significantly different.[26, 28]  When the polymer 

concentration exceeds 10 wt % the peaks in the nematic phase become broad and difficult 

to distinguish, possibly due to poor alignment of the LC molecules with the magnetic field.   

In the isotropic phase the spectra from both d195CB and d2350HSiCB4 consist of a single 

peak centered at ν = 0 kHz (Figure 4.5b).  At temperatures 1 or 2 °C below the nominal TNI, 
2H NMR spectra from d195CB and d2350HSiCB4 have both an isotropic peak at ν = 0 kHz 

and nematic peaks split by ∆ν.  The presence of both nematic and isotropic character in the 

spectra near TNI is attributed to pretransitional orientation fluctuations induced by the strong 

magnetic field,[29] and should not be taken as a sign of two-phase nematic/isotropic 

coexistence.   

The measured values of ∆ν for the distinguishable deuterons in d195CB in the absence of 

polymer are within 5% of those reported by Auger et al.[30]  All of these splittings decrease 

when polymer is added.  Thus, the order parameter of the LC solvent decreases when 

polymer is dissolved in it (inset in Figure 4.6a).  At each concentration, the order parameter 

of the polymer is consistently lower than that of the LC solvent (Figure 4.6): for example, 
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at 5 wt % polymer and T = TNI - 9 °C, SZZ5CB

 = 0.31 and SZZ350HSiCB4 = 0.25.  As the 

concentration of polymer increases, SZZ of d195CB decreases (Figure 4.6a).  On the other 

hand, SZZ of d2350HSiCB4 is relatively insensitive to polymer concentration (Figure 4.6b).   

4.3.3 Refractive Indices 

The temperature-dependent ordinary and extraordinary refractive indices (no and ne, 

respectively) measured for pure 5CB (Figure 4.7) are within 0.5% of the values reported by 

Karat and Madhusudana.[31]  The effect of polymer on both no and ne could be measured up 

to 10 wt %; however, ne could not be measured for 20 wt % 490HSiCB4 because the 

sample alignment was poor and at concentrations > 20 wt %, neither no nor ne could be 

measured accurately.  Addition of polymer distinctly reduces ne, over the range of 

accessible concentrations.  The ordinary refractive index is relatively insensitive to polymer 

concentration, showing a slight increase with increasing concentration.  The refractive 

index in the isotropic phase, niso is also insensitive to added polymer, showing a slight 

decrease with addition of polymer.   

The nematic order parameter, S, is calculated from the ordinary and extraordinary refractive 

indices using the method described by Haller et al.[32]  The order parameter is related to no 

and ne by  

α
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2
 , ∆α is the anisotropy of the polarizability, and <α> is the 

average polarizability.[31-33]  The Haller analysis aims to estimate the ratio <α>/∆α from the 

temperature dependence of no and ne, using the empirical observation that log[S∆α] is 

proportional to log[(TNI - T)/TNI].  The average polarizability is related to the refractive 

indices by 
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where ρ and M are the LC’s density and the molar mass, respectively, and NA is 

Avogadro’s number.[32]  Combining Equations 4.10 and 4.11 gives S∆α in terms of the 
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known quantities no, ne, ρ, and M.  Plotting log[S∆α] versus log[(TNI - T)/TNI] and 

extrapolating to T = 0 K, where S = 1, gives ∆α.  Combined with <α> calculated from 

Equation 4.11, the order parameter is calculated from the estimate of <α>/∆α (Figure 4.8).   

The calculated order parameters for 5CB are less than 13% different from those estimated 

by Karat and Madhusudana.[31]  The order parameter of 1 wt % 490HSiCB4 is unchanged 

from that of 5CB throughout the entire temperature range studied.  As polymer 

concentration is increased to 5 or 10 wt %, the order parameter curve is shifted to 

progressively lower values (Figure 4.8).   

4.4 Discussion 

Although we do not have sufficient information to produce the phase diagram of 

350HSiCB4 and 5CB, we can deduce its character from the calorimetry results on heating 

(Figure 4.9a).  In particular, the narrow single peak in the endotherm of 78 wt % 

350HSiCB4 solution indicates that the phase diagram has a direct transition from the 

nematic to isotropic phase at that composition, with TNI of approximately 80 °C.  At 

concentrations immediately above and below 78 wt %, two-phase coexistence is indicated 

by broad endotherms.  The biphasic temperature range can be estimated from the measured 

onset temperature and the temperature at which the transformation to the isotropic phase is 

complete (the endotherm’s intensity final decrease).  The DSC traces from solutions with 

high polymer concentration indicate wide biphasic regions; for example, in 91 wt % 

350HSiCB4 the biphasic region may be as wide as 25 °C.  On the solvent-rich side, the 

biphasic region, if it exists, appears to be less than 10 °C wide. Our data do not allow for 

identification of the coexisting phases (e.g. N + N or N + I).     

The Brochard model commonly used to describe the phase behavior of SGLCPs with small 

molecule LCs can capture some of the characteristics of the 350HSiCB4/5CB phase 

diagram; however it does not accord with the underlying molecular order.  A phase 

diagram calculated by Chiu and Kyu[12] using the theory for an SGLCP/LC mixture with 

strong interactions between the different polymer and solvent mesogens                        

(c = UAB/(UAAUBB)1/2 = 1.2) is somewhat similar to the phase diagram inferred from the 
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DSC data (Figure 4.9b).  The model captures the presence of a stabilized, single 

nematic phase that transitions to a single isotropic phase at a high temperature relative to 

the pure components.  It also has biphasic windows at compositions above and below the 

composition having the maximum clearing point.  However, owing to the Flory-Huggins 

treatment of the polymer-solvent interaction in Brochard’s model, the theoretical phase 

diagram predicts the biphasic window to be wider on the solvent-rich side of the phase 

diagram (φ  < 0.5).  In contrast, the behavior of 350HSiCB4/5CB suggests a wider biphasic 

window in polymer-rich solutions.  Furthermore, the temperature at which the solution 

becomes completely isotropic in the model has a concentration dependence that is strictly 

concave down, whereas the observed isotropization transition changes from concave up to 

concave down as concentration is increased.    

Brochard’s theory has been used to model the experimental phase diagrams of SGLCP/LC 

mixtures,[11-13] and its apparent success cited as evidence that conformational entropy and 

LC order are decoupled.  However, there appears to be no prior verification that the 

component order parameters are adequately modeled, so it is not known whether the 

theory’s assumptions are substantiated or whether its agreement with observed phase 

behavior is coincidental.  The Brochard model is founded on the Maier-Saupe theory for 

nematic interactions.  Flory-Huggins interactions are included, which can add biphasic 

windows to the phase diagram, but cannot change the underlying composition dependence 

of the order parameters.  Maier-Saupe theory predicts the species with the lower pure-

component TNI always has the lower order parameter in a mixture.  In the present system 

that would imply that the order parameter of 350HSiCB4 (TNI = 63 °C) would always be 

greater than that of 5CB (TNI = 35 °C).  This is clearly not the case over the range of 

concentration in which we can measure the component order parameters (polymer 

concentrations up to 10 wt %).  2H NMR data from these solutions are in clear opposition 

to the mixing rule based on the Maier-Saupe model, showing that the order parameter of 

350HSiCB4 is less than that of 5CB despite its higher clearing point in the bulk.  The 

Brochard model gives phase diagrams with elevated TNI at intermediate φ by allowing the 

nematic potential between the two species, UAB, to be greater than those for the individual 

species, c = UAB /(UAAUBB)1/2 >1.  In this case, the Maier-Saupe mixing rule predicts that 
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addition of the high TNI species to the low TNI species will increase the order parameter 

of the latter.  In the present system that would imply that the order parameter of 5CB would 

increase upon addition of polymer, which is clearly not the case: both 2H NMR and 

refractive index data show that S of 5CB decreases as polymer concentration increases from 

0 to 10 wt %.   

Maier-Saupe theory assumes that mesogens interact with one another entirely through van 

der Waals forces, and the theory’s failure to describe the measured component order 

parameters suggests that additional thermodynamic interactions are of importance in 

mixtures of 350HSiCB4 and 5CB.  Indeed, it has been suggested by other authors that 

backbone flexibility and steric effects may have a strong influence on SGLCP/LC phase 

behavior.[4, 7, 8, 14]  Compared to the systems modeled by Chiu and Kyu, et al.[11-13] using 

Brochard’s theory, 350HSiCB4/5CB is similar with respect the structural details of the 

polymer and solvent. Fits were performed to experimental data from systems employing 

both phenyl benzoate-based and cyanobiphenyl-based mesogens, some with polymer 

mesogens that are chemically similar to the solvent[4, 5, 13] and some where the mesogens 

are mismatched.[11, 16]  They furthermore modeled SGLCPs having different types of 

backbones, including polysiloxane[4, 5, 16], polyacrylate[11], and poly(ethylene glycol)[13] 

derivatives.  Their fitting to the Brochard model is equally successful for this diverse group 

of SGLCP/LC systems, indicating that its failure to describe data from 350HSiCB4/5CB is 

not simply a consequence of the species’ chemical structures.  The one noteworthy 

difference between the present SGLCP and prior systems is its extremely high molecular 

weight.  Data fit to the Brochard model previously were from polymers having molecular 

weights of approximately 50 kg/mol (degree of polymerization of approximately 100), but 

350HSiCB4 is almost ten times as large.  The influence of polymer length in the Brochard 

model enters via the Flory-Huggins interaction.  Therefore, increasing the chain length can 

open biphasic windows in the phase diagram (or increase their width).  However, 

Brochard’s model has no coupling between the polymer backbone and the nematic order of 

the pendant mesogens, so changing SGLCP length has no effect on the order parameter of 

either species.   
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There must be an important thermodynamic contribution from the polymer that is 

unaccounted for in Brochard’s model, which assumes the mesogens of an SGLCP are 

completely decoupled from the backbone.  The coupling of the polymer backbone’s 

conformational entropy to the nematic orientation field is neglected by Brochard’s theory, 

but likely makes an important contribution to the thermodynamics of mixtures of 

350HSiCB4 and 5CB.  Indeed, such an effect could also play a major role in the 

thermodynamics of previously studied SGLCP/LC systems.  In the bulk polymer, the 

tendency of the mesogenic side groups to align with one another competes with the 

polymer’s conformational entropy and the system is highly frustrated (Figure 4.10d).  It 

appears that at compositions intermediate between bulk polymer and dilute solution the 

solvent serves to increase the polymer’s configurational freedom, allowing it to relax some 

of the frustration present in the melt.  The strong, non-monotonic dependence of |∆H| and 

onset T on polymer concentration, especially at compositions near bulk polymer, suggests 

the effect is related to the two components’ relative proportions.  We envision that the peak 

in |∆H| arises from maximizing the mesogens’ orientational order while minimizing the 

polymer’s perturbation from a random-walk conformation (Figure 4.10c).  If we consider 

the opposite extreme, starting from pure LC and adding SGLCP to it, we introduce a 

population of mesogens that are constrained by attachment to the polymer.  In this regime 

we envision that the compromise between LC orientation and conformational entropy 

causes the order parameters of both polymer and solvent drop as a result of the 

orientational frustration between the two (Figure 4.10b).   

It might be possible to rigorously account for the coupling between polymer entropy and 

LC order by including effects of chain flexibility, similar to the theory of ten Bosch, 

Maissa, and Sixou for main-chain polymers.[34]  In the absence of such a theory, the 

coupling can be empirically accounted for by introducing concentration dependence to the 

polymer-solvent nematic interaction parameter, UAB.  By doing so, the concentration 

dependence of the nematic-isotropic transition temperatures can be correctly captured, but 

the relative magnitudes of the component order parameters still cannot.  The theoretical 

TNI‘s of 350HSiCB4/5CB mixtures were calculated from Equation 4.2 at fixed values of c 

between 0.8 and 1.2 (Figure 4.11a).  The c values necessary to describe the data were used 
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to generate a continuous function c(φB) using a B-spline (Figure 4.11b).  The empirical 

c(φB) was then used to calculate a theoretical diagram using Brochard’s model with the 

Flory interaction parameter arbitrarily set to χ = 350 / T (Figure 4.11c).  The theoretical 

phase diagram resembles that inferred from the DSC data (Figure 4.9a); however, there is 

no physical basis for choosing a concentration dependence of UAB.  This exercise does 

serve to emphasize the idea that the interplay between polymer entropy and LC orientation 

depends strongly on the relative proportions of the two components and plays an important 

role in the system’s thermodynamics that is not accounted for in Brochard’s model.   

4.5 Conclusions 

4.5.1 Conclusions Based on the Present Work 

The delicate thermodynamic balance between liquid crystalline order and polymer 

conformational entropy serves to stabilize the nematic phase in mixtures of 350HSiCB4 

and 5CB.   In dilute solutions, the tradeoff between the two causes the order parameter of 

the polymer side-groups to be less than that of the solvent.  As concentration is increased, 

the orientational frustration between the two decreases the solvent order parameter as well.  

When the polymer concentration is increased to the range of 70 to 85 wt.-%, the minority 

fraction of small-molecule solvent affords the SGLCP freedom to optimize LC order 

subject ot the connectivity between the polymer backbone and its pendant side-groups, 

raising the nematic-isotropic transition temperature almost 20 °C above that of the bulk 

polymer and almost 45 °C higher than that of the LC solvent alone.  Thus, the SGLCP must 

also provide a favorable host for 5CB.   

The results presented here are in stark contrast to the body of literature on solutions of 

SGLCPs in nematic solvent.  Stabilization of the nematic phase is rarely[16] observed in 

these systems and the LC orientation is usually concluded to be decoupled from the 

conformational entropy of an SGLCP.  Our results suggest an avenue for future theoretical 

work that accounts for the interplay between the polymer’s conformational entropy and 

liquid crystalline order in a regime intermediate between strong coupling (e.g. main-chain 
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polymers, as considered by ten Bosch et al.[38]) and complete decoupling (Brochard’s 

theory for side-chain polymers).   

4.5.2 Suggestions for Future Experiments 
2H NMR spectroscopy and refractive index measurements are limited to the dilute regime 

because of the difficulty in aligning the samples.  However, these results beg the question: 

what is the relative orientation order of the polymer and solvent at higher concentration?  

Small-angle neutron scattering experiments on selectively labeled polymer solutions might 

reveal a strong concentration dependence of the polymer’s conformational anisotropy and 

provide evidence of orientational coupling, or wide-angle x-ray scattering experiments 

could be used to measure the nematic order parameter in the concentrated regime.  It 

would, furthermore, be of interest to study the molecular weight dependence of the 

polymer’s phase behavior, perhaps using smaller polymers to compare with previous 

studies more directly.     
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4.6 Tables 

 
Table 4.1 Molecular weight, conversion, and polydispersity of the side-group liquid 
crystal homopolymers.  Details of characterization may be found in Appendix A.   

Name Mn 
(kg/mol) 

Mole 
Fraction 
1,2 PB 

Mole 
Fraction 
1,4 PB 

Mole 
Fraction 

LC 
PDIa 

350HSiCB4 347 0 0.11 0.89 1.27 

d2350HSiCB4 348 0 0.11 0.89 1.27 

490HSiCB4 489 0.01 0.03 0.96 1.48 
aPDI = Polydispersity Index (Mw/Mn) 
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4.7 Figures 
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Figure 4.1 Chemical structures of the end-on side-group liquid crystal polymers 
(350HSiCB4 and d2350HSiCB4) and the nematic liquid crystal solvent (5CB).  The 
polymer’s name is derived from its molecular weight (350 kg/mol), the letter “H” to 
indicate a homopolymer, and “SiCB4” to indicate end-on mesogens.  In addition to 
monomers having an attached mesogen, the polymer also contains some residual 1,2- and 
1,4-butadiene monomers.  The polymers’ properties are summarized in Table 4.1.  Full 
details of polymer characterization are given in Appendix A.     
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Figure 4.2 DSC temperature scans from mixtures of 350HSiCB4 and 5CB in proportions 
ranging from 0 to 100 wt % polymer obtained on heating.  The peak position changes 
very little as concentration is increased from 0 to 20 wt % polymer (blue curves), then 
shifts to higher temperature as concentration is increased from 39 to 78 wt % polymer 
(red curves).  Above 78 wt % polymer the peak position shifts to lower T with increasing 
concentration (green curves).  Baselines were subtracted from the DSC scans as 
described in the text; in some cases the procedure produced a small discontinuity in the 
baseline, leading to the discontinuities evident in some of the baseline subtracted curves.  
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Figure 4.3 DSC temperature scans from Figure 4.2 plotted individually for clarity.  The 
peak position changes very little as concentration is increased from 0 to 20 wt % polymer 
(blue curves), then shifts to higher temperature as concentration is increased from 39 to 
78 wt % polymer (red curves).  Above 78 wt % polymer the peak position shifts to lower 
T with increasing concentration (green curves).  Arrows are used to indicate shoulders in 
the phase transition endotherms.  Baselines were subtracted from the DSC scans by 
fitting to second degree piecewise polynomials and data were normalized by the sample 
weight to give normalized, subtracted heat flow, Q.  
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Figure 4.4 Latent heat (|∆H|) and onset temperature (T) of the nematic/isotropic phase 
transition measured from DSC scans on heating and cooling in mixtures of 350HSiCB4 
with 5CB as a function of polymer concentration.  Data points are the average of six 
consecutive temperature scans and error bars indicate the standard deviation.  Dotted 
lines indicate the onset temperatures for pure 5CB and SGLCP.     
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Figure 4.5 Representative 2H NMR spectrum of 5 wt % d195CB in 5CB taken at (a) T = 
TNI – 8 °C and (b) T = TNI + 2 °C (b)   (a) Orienational order in the nematic phase (T < 
TNI) gives rise to a symmetric spectrum where the quadrupolar splitting, ∆ν, for each set 
of equivalent deuterons depends on the microscopic order parameter and the angle 
between the director and the magnetic field.  Peak assignments have been made 
according to Auger et al.[30]  (b) In the isotropic phase (T > TNI) the quadrupolar 
interactions are averaged to yield a single peak centered at ν = 0.   
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Figure 4.6 Microscopic order parameters, Szz, measured from quadrupolar splittings, ∆ν, 
of (a) aromatic deuterium atoms located  para- to the alkyl chain in d195CB and (b) 
aromatic deuterium atoms located para- to the oxygen atom in d2350HSiCB4 as a 
function of reduced temperature, TNI - T, containing various polymer concentrations, c, 
(legend to the right applies to both graphs).  The dependence of ∆ν on polymer 
concentration (c) at T = TNI - 9 °C is expanded in the inset plot.   
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Figure 4.7 Temperature dependence of the ordinary, no, and extraordinary, ne, refractive 
indices of pure 5CB and solutions of 490HSiCB4 in 5CB in the nematic phase and in the 
isotropic phase, niso.   
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Figure 4.8 Temperature dependence of the order parameter (S) of 5CB, and solutions of 
490HSiCB4 in 5CB, determined from refractive index measurements.  In performing the 
Haller analysis[32], the density and molar mass for polymer solutions were assumed equal 
to those of 5CB[31] (ρ = 1 g/cm3, M = 249 g/mol). 
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Figure 4.9 (a) Schematic representation of a plausible phase diagram deduced from DSC 
data.  The letter “N” represents a single nematic phase and the letter “I” represents a 
single isotropic phase.  (b) Schematic representation of a phase diagram calculated by 
Chiu and Kyu[12] using Brochard’s model[15] for an SGLCP polymer and a small-
molecule LC with strong nematic interactions between the two (c = UAB/(UAAUBB)1/2 = 
1.2).   
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Figure 4.10 Schematic representation of mixtures of 350HSiCB4 with 5CB at various 
concentrations.  Mesogens are represented by white (5CB) and red (350HSiCB4) ellipses.  
(a) 5CB without any dissolved polymer. (b) A dilute solution of polymer in 5CB.  The 
polymer adopts an anisotropic conformation because of its coupling to the solvent’s 
director field. (c) Polymer with a small amount of 5CB, corresponding to the stabilized 
nematic phase at approximately 80 wt.-% 350HSiCB4.  The solvent serves to increase the 
polymer’s configurational freedom, allowing it to relax some of the frustration present in 
the melt.  (d) Bulk polymer without any small-molecule solvent.  The polymer’s 
mesogens are strongly coupled to the backbone conformation.   
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Figure 4.11  (a) Nematic-isotropic transition temperatures predicted by Maier-Saupe 
theory using values of c = UAB / (UAAUBB)1/2 between 0.8 and 1.2 (dotted lines) together 
with phase transition onset temperatures of 350HSiCB4/5CB measured by DSC on 
heating (solid squares).  (b) The imposed concentration-dependence of c used to generate 
the phase diagram in (c).  (c) Phase boundaries (solid lines) predicted by Brochard’s 
model using a concentration-dependent polymer-solvent nematic interaction parameter, 
UAB, together with phase transition onset temperatures of 350HSiCB4/5CB measured by 
DSC on heating (solid squares).  “N” and “I” indicate single nematic and isotropic 
phases, respectively.  “I+I” indicates two coexisting isotropic phases and “N+I” indicates 
coexistence of a nematic and an isotropic phase.  The Flory interaction parameter was 
arbitrarily set to χ = 350 / T. In (a), (b), and (c), φB is the volume fraction of polymer.     
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5.1 Introduction 

The molecules of a liquid crystal (LC) tend to align with one another in a preferred 

direction called the “director,” yielding a fluid material with anisotropic optical, electro-

magnetic, and mechanical properties.  Random coil polymers are typically insoluble in LCs 

because of the entropic penalty to dissolution in an ordered solvent, but a side-group liquid 

crystal polymer (SGLCP) with mesogens covalently bonded to the polymer backbone can 

be dissolved in a small-molecule LC, where it adopts an anisotropic conformation as a 

result of its coupling to the orientational order of the host. [1-3]  The shape of the polymer in 

solution depends on the thermodynamic balance between maximizing its conformational 

entropy and alignment of its side groups with the solvent’s nematic orientation field.  

The coupling between the LC solvent and the polymer backbone is strongly influenced by 

the polymer architecture, the flexibility of the spacer connecting the side groups to the 

polymer backbone, and the strength of nematic interactions between the solvent and the 

side groups.[4]  Attaching the side groups with their long axis perpendicular to the polymer 

backbone (“end-on”) usually causes the polymer to extend its conformation perpendicular 

to the director, but when side groups are attached with their long axis parallel to the 

backbone (“side-on”) the polymer tends to extend parallel to the director.  The magnitude 

of the anisotropy is dependent on the flexibility of the spacer: when the side groups are 

connected by a rigid spacer their orientation is translated more efficiently to the polymer, 

but a flexible spacer provides partial screening of the orientational order.  The anisotropy 

also depends on the strength of nematic interactions between the solvent and the side 

groups.  When the pairwise interactions between the solvent and the side-groups are strong, 

the dissolved polymer strengthens the nematic order and when they are weak the solute 

polymer destabilizes the nematic phase.[5] 

Small-angle neutron scattering (SANS) is an ideal tool for measuring the conformational 

anisotropy of SGLCPs.  Anisotropic scattering patterns from samples with the nematic 

director aligned into a uniform, homogeneous monodomain allow the polymer’s 

dimensions to be probed in the directions parallel and perpendicular to the director.  SANS 
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experiments are usually performed on dilute solutions of polymers to extract the 

dimensions of individual polymer chains.  The experiments presented here are on solutions 

in the semidilute regime where the scattering from individual chains cannot be isolated.  

Although the polymers’ sizes cannot be measured, their conformational anisotropy is 

readily accessible through measurement of the correlation length, the length beyond which 

a monomer’s local environment contains monomers from other chains.      

SANS experiments are performed on semidilute solutions of SGLCPs in a nematic solvent. 

The conformational anisotropy of closely matched end-on and side-on polymers is 

examined as a function of temperature and molecular weight, and comparisons between the 

polymers give insight into the coupling between configurational entropy and orientational 

order.    

5.2 Experimental 

5.2.1 Materials 

Polybutadiene prepolymers were purchased from Polymer Source (Montreal, Quebec) and 

functionalized with end-on (SiCB4) and side-on (SiBB) mesogens to make side-group 

liquid crystal polymers (SGLCPs) (Figure 5.1).  End-on polymers were synthesized 

according to the methods described in Appendix A and side-on polymers were synthesized 

by Rafael Verduzco.[6]  The prepolymers had molecular weights of 48 kg/mol and 104 

kg/mol and the characteristics of the converted SGLCPs are summarized in Table 5.1.  The 

details of end-on polymer characterization may be found in Appendix A. 

Perdeuterated 4-pentyl-4′-cyanobiphenyl (d195CB, Figure 5.1) was synthesized according 

to methods described in Appendix B and had a nematic-to-isotropic transition temperature 

(TNI) of 32.3 °C.  Solutions of 5 wt % SGLCP in d195CB were prepared by dissolving the 

two components together in dichloromethane (DCM) then evaporating the DCM under an 

air stream followed by drying in vacuum overnight.  The TNIs of SGLCP solutions were 

within 1 °C of pure d195CB’s TNI. 
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5.2.2 Small-Angle Neutron Scattering (SANS) 

Cells were prepared by coating quartz plates with a rubbed polyimide alignment layer, then 

using epoxy to glue the plates together separated by an 813 µm thick aluminum spacer ring.  

SGLCP solutions were loaded into the cells with a syringe.  Cells were then placed in a 

room-temperature vacuum oven to remove small air bubbles and allowed to sit undisturbed 

for at least 18 hours prior to starting an experiment.  This allowed enough time for the 

sample to align into a uniform monodomain under the influence of the alignment layers 

with the LC director parallel to the cell surfaces.   

Small-angle neutron scattering (SANS) experiments were performed on the NG7 beamline 

at the National Institute of Standards and Technology Center for Neutron Research 

(NCNR).  Cells containing homogeneously aligned SGLCP solutions were mounted in the 

beam contained in a temperature-regulated aluminum block held between the pole pieces of 

a 1.3 T electromagnet.  The magnetic field served to reinforce the planar alignment induced 

by the rubbed polyimide layers and the neutron beam was incident perpendicular to the LC 

director.  Samples were annealed at the desired temperature for fifteen minutes prior to 

collecting data.  Experiments were performed at two temperatures in the nematic phase, 25 

and 30 °C, and one temperature in the isotropic phase, 50 °C.  

Two-dimensional scattering patterns were sector-averaged for easier visualization.  Data 

having the same magnitude of the scattering vector, |q| = q = 4π/λ sin (θ / 2), within ± 15° 

of the horizontal direction were averaged to give the scattering parallel to the director, Ipar, 

and data in a sector of ± 15° from the vertical direction were averaged to give the scattering 

perpendicular to the director, Iperp.   

5.3 Results 

5.3.1 Conformational Anisotropy: Effects of Polymer Architecture, Temperature, 

and Molecular Weight  

The scattering patterns from SGLCP solutions are anisotropic below the nematic-isotropic 

transition temperature (TNI) (Figure 5.2a,b) indicating that SGLCPs adopt ellipsoidal 
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conformations in LC solvent.  These patterns are similar to other scattering patterns of 

SGLCPs in LC solvents reported in the literature[1-3] and similar to SANS patterns collected 

at Argonne National Laboratory’s Intense Pulsed Neutron Source from polymers of 

identical structure, but different molecular weight.[7]  Since the nematic director must be an 

axis of symmetry for the ellipsoid, it is deduced that end-on polymers adopt an oblate 

conformation while side-on polymers adopt a prolate conformation.  A rough measure of 

the conformational anisotropy may be obtained from contours of equal scattered intensity 

on the two-dimensional patterns; the ratio of the major axis to the minor axis gives an 

aspect ratio.  Thus calculated, the aspect ratios at 25 °C of side-on polymers 500HSiBB and 

990HSiBB are 4.5 and 4.1, respectively, while end-on polymers 350HSiCB4 and 

760HSiCB4 have aspect ratios at 25 °C of 1.6 and 1.7, respectively.  In isotropic solvent, 

the scattering patterns from both end-on and side-on polymers are circularly symmetric 

(aspect ratio equal to one), indicating that polymer conformations are spherical (Figure 

5.2c). 

Conformational anisotropy is also evident in the polymers’ sector-averaged scattering 

patterns (Figure 5.3-Figure 5.6).  In the highest decade of q, side-on polymers scatter more 

strongly in the direction perpendicular to the nematic director (Figure 5.3 and Figure 5.4), 

while end-on polymers scatter more strongly in the direction parallel to the director (Figure 

5.5 and Figure 5.6).  Another rough measure of the anisotropy can be obtained from the 

ratio of the scattered intensity in the two orientations, Ipar and Iperp, in the high q regime 

where Ipar and Iperp are almost parallel.  Measured this way at 25 °C, the side-on polymers, 

500HSiBB and 990HSiBB, both have anisotropies Iperp / Ipar ≈ 10 and the end-on polymers, 

350HSiCB4 and 760HSiCB4, both have Ipar / Iperp  ≈ 2.   

Changing the molecular weight has very little effect on scattering patterns from 5 wt % 

solutions of side-on or end-on SGLCPs, suggesting that the polymer solutions are in the 

semidilute concentration regime.[8]  End-on polymers are particularly insensitive to 

molecular weight; the scattering patterns from 350HSiCB4 and 760HSiCB4 are virtually 

superimposable on one another (Figure 5.5 and Figure 5.6).  The scattering patterns from 

side-on polymers, 500HSiBB and 990HSiBB, also overlap one another at 25 °C, but when 
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the temperature is increased to 30 °C, Ipar from 5 wt % 500HSiBB increases, indicating 

a decrease in the polymer’s anisotropy (Figure 5.3).  The anisotropy of 990HSiBB also 

decreases when the temperature is raised, but to a much lesser extent (Figure 5.4).   

Scattering from all four polymer solutions is anomalously high at low q.  Theoretically, the 

scattering from a solution of Gaussian polymer chains is described by the Debye 

equation,[9] which predicts the scattered intensity to become virtually independent of q as q 

approaches zero.  The SGLCP solutions closely resemble the I ~ q-2 scaling predicted by 

the Debye equation at high q, and in an intermediate range all but Ipar from side-on 

polymers begin to flatten out as predicted.  However, strong deviations from the Debye 

prediction are observed at low q where the intensity takes a sharp upturn.  Similar excess 

scattering at low q has been previously observed in semidilute solutions of poly(ethylene 

oxide) and attributed to associations between polymer chains.[10, 11]  Supramolecular 

polymer aggregates have been observed in solutions of SGLCPs in isotropic solvents, such 

as tetrahydrofuran or chloroform, by light scattering[12-15] and rheology[16] and are attributed 

to specific interactions between the side groups of different polymer chains.  The 

observation of inter-polymer associations confirms that solutions are in the semidilute 

regime.   

In all four polymer solutions, the scattering patterns from isotropic solutions at T = 50 °C 

have high-q intensities intermediate between Ipar and Iperp in the nematic phase (Figure 5.3-

Figure 5.6).  Otherwise, the patterns’ qualitative shapes are not very different from nematic 

solutions.  

5.3.2 Quantitative Analysis of Conformational Anisotropy: Fitting Data to Models 

Models for dilute solutions of non-interacting polymer chains, such as the Debye equation, 

cannot be applied to the data from SGLCP solutions.  Instead, the data are fit to the form 

( ) 3
21

1
)( C

qL
C

q
CqI mn +

+
+= .                                             (5.1) 

This equation has been used to model SANS from clusters of poly(ethylene oxide) in 

water.[10]  The first term describes Porod scattering from the surface of the cluster.  The 
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exponent n is predicted to be between 3 and 4 for an object with a fractal surface and 

will be exactly 4 if the surface is smooth.[9]  The second term is a Lorentzian describing the 

scattering from the polymer chains.  The length L is the polymer’s correlation length and 

the exponent m is predicted to be 2 when the polymer is in a theta solvent and 1.7 for an 

expanded polymer in good solvent.[9]  C1 and C2 are weighting factors for the two terms and 

C3 accounts for a constant, incoherent background.  C3 was set to zero when fitting data 

from SGLCP solutions since incoherent background makes no apparent contribution to the 

scattering.   

Preliminary data fitting was performed allowing all the parameters to float freely.  The 

results gave similar values of n and m for a given polymer type (end-on or side-on) and 

direction (parallel or perpendicular to the director), regardless of molecular weight or 

temperature.  A second round of data fitting was performed fixing the exponent m at its 

average value.  The average value of n was between 2.5 and 3.2 and was therefore fixed at 

its theoretical minimum of 3, in agreement with the experimentally observed exponent for 

isotropic solutions of SGLCPs.[12, 15]  The results are summarized in Table 5.2.  The value 

of L that results when the exponents are fixed is less than 10% different from that obtained 

when all the parameters are floating.   

Ipar from side-on polymers could not be fit with Equation 5.1 because the correlation 

length, L, is too large.  In order to determine L from data fitting, the scattering pattern must 

crossover from an I ~ q-m power law (qL >> 1) to a region approaching I ~ q0 (qL << 1).  

When L is much larger than q-1 throughout the entire q range, the intensity becomes  

m
mn q

L
C

q
CqI −+= 21)( ,                                                       (5.2) 

and the value of L is absorbed into the fitting parameter C2.  Nevertheless, the fact that a 

crossover is not observed can be used to establish a lower bound on L.  Assuming the 

crossover regime needs to span at least from qmin = 1.4 x 10-3 Å-1 to q = 3 x 10-3 Å-1 to be 

observable, the maximum value of L that can be measured with this experiment is 

calculated from  qL = 3 x 10-3 Å-1 to be 330 Å.  Indeed, fixing m = 2 and C1 =0, tabulating 

I(q) from Equation 5.1 at varying values of L demonstrates that an I ~ q-2 power law spans 
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the entire q range when L is larger than approximately 350 Å.  The minimum value of L 

for side-on polymers in the direction parallel to the director is, therefore, ≈ 350 Å. 

The correlation length in the direction perpendicular to the director, Lperp, is larger than L 

parallel to the director, Lpar, in end-on polymer solutions (Figure 5.7a).  The reverse is true 

for side-on polymers, where Lpar > Lperp (Figure 5.7b).  The conformational anisotropy, 

measured as the ratio of correlation lengths parallel and perpendicular to the director, is 1.8 

< Lperp / Lpar < 2.1 for both end-on polymers at 25 and 30 °C and Lpar / Lperp > 10 for both 

side-on polymers at 25 and 30 °C.  The conformational anisotropy of the end-on polymers 

is relatively insensitive to temperature (Figure 5.7a), and the correlation lengths of both 

side-on and end-on polymers are systematically larger at higher molecular weight (Figure 

5.7).   

Although Lpar cannot be measured for side-on polymers, their relative anisotropies from 

one temperature to the next can still be estimated from the SANS data and  it is found that 

side-on polymer anisotropy is highly sensitive to temperature changes.  Assuming C2 does 

not change significantly when the temperature is increased from 25 to 30 °C, Equation 5.2 

in the high-q limit where C1 / qn ≈ 0 gives the ratio of Ipar at 25 °C to Ipar at 30 °C: 
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For 500HSiBB, the ratio is Lpar
30°C / Lpar

25°C = 0.55 (Figure 5.3) and for 990HSiBB the ratio 

is Lpar
30°C / Lpar

25°C = 0.82 (Figure 5.4).  The relative changes in anisotropy, x = Lpar / Lperp at 

30 °C relative to that at 25 °C, may then be calculated from 
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giving x = 0.53 for 500HSiBB and x = 0.77 for 990HSiBB.  The anisotropy of 500HSiBB 

is twice as large at 25 °C as it is at 30 °C and 990HSiBB is 1.5 times as anisotropic at 25 °C 

as it is at 30 °C.   
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The correlation lengths, Liso, of polymers in isotropic solution are similar regardless of 

whether mesogens are attached end-on or side-on (Figure 5.7).  Comparing polymers with 

the same degree of polymerization, 350HSiCB4 and 500HSiBB both have Liso ≈ 35 Å 

while 760HSiCB4 and 990HSiBB both have Liso ≈ 50 Å.   

5.4 Discussion 

Solutions of 5 wt % SGLCP are found to be in the semidilute regime, evidenced by the fact 

that the SANS patterns are virtually independent of molecular weight and supramolecular 

aggregates are formed by interactions between chains.  Individual polymers are 

indistinguishable and the characteristic length scale for scattering is the distance below 

which a monomer is surrounded mostly by solvent and monomers belonging to the same 

chain (the polymer’s correlation length).  Scattering from a semidilute solution does not 

allow the chains’ overall dimensions to be measured, but the relative magnitudes of the 

dimensions parallel and perpendicular to the director can still be deduced because the 

polymer conformation inside a correlation blob is similar to the polymer’s conformation in 

dilute solution,[8] therefore the anisotropy of the correlation lengths may be assumed the 

same as the anisotropy of the overall polymer chain.   

Conformational anisotropy of SGLCP chains in an LC solvent derives from coupling 

between the orientation of the mesogenic side groups and the trajectory of the polymer 

backbone.  Nematic interactions with the solvent cause the polymer side groups to align 

with the LC director, and their covalent connectivity to the backbone forces it to follow the 

path connecting the oriented molecules.  The polymer’s equilibrium conformation is 

determined by the thermodynamic tradeoff between the enthalpic benefit of side-group 

alignment and the entropic penalty of deviation from a spherical random-walk.  The sense 

of the coupling between the side groups and the backbone, end-on or side-on, determines 

whether the polymer chain extends perpendicular to the director to form an oblate ellipsoid 

or parallel to the director to form a prolate ellipsoid.   
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The end-on polymers studied here have weak coupling between the side groups and the 

backbone, relative to that of the side-on polymers.  Orienting the end-on polymer side-

groups with the LC solvent results in only mild anisotropy, between 1.8 and 2.1, whereas 

side-on polymers have aspect ratios exceeding 10.  This phenomenon may be understood 

by the difference in the length of the spacer separating the mesogens from the backbone.  

End-on side groups are separated from the polymer backbone by a ten atom spacer, 

whereas side-on mesogens are separated by seven atoms (Figure 5.1).  End-on polymer 

backbones may find easier accord with the side groups’ orientation field through the 

flexibility of a longer spacer.  The inherently larger anisotropy of the side-on polymers 

allows the relative dimensions of the polymer to change drastically with increasing 

temperature as the LC solvent’s orientational order decreases and the polymer approaches 

its spherical conformation in the isotropic phase.  These changes in conformational 

anisotropy have a strong effect on director relaxation dynamics, as explored in detail in 

Chapter 6. 

A notable trend is observed in the exponent m derived from fitting scattering patterns: m = 

2.0 for scattering in the direction parallel to the spacer connecting the side groups to the 

polymer backbone and m = 1.7 or 1.8 in the direction perpendicular.  This implies that the 

importance of excluded volume effects is anisotropic, giving some insight into the detailed 

molecular interactions that give rise to conformational anisotropy.  Excluded volume 

effects appear to arise between mesogens attached adjacent to one another on the same 

polymer chain, causing the polymer to expand in this direction.  One possible explanation 

is that interactions between polymer side-groups and nematic 5CB are more energetically 

favorable than interactions between the side-groups themselves,[8] a theory supported by the 

experiments discussed in Chapter 4.      

Once the solutions are heated to the isotropic phase, the end-on and side-on polymers are 

virtually indistinguishable.  The polymers adopt spherical conformations and the 

correlation lengths are similar at comparable molecular weights.  The increased correlation 

length at higher molecular weight is intuitively understood because the likelihood of 

surrounding monomers being connected to the same chain increases with the degree of 
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polymerization.  In the absence of nematic ordering, excluded volume effects disappear 

and m = 2.0, implying that favorable side-group / solvent interactions derive from nematic 

cross-interactions being of higher magnitude than nematic interactions in either polymer or 

solvent alone.    

5.5 Conclusions 

Small-angle neutron scattering from semidilute solutions of SGLCPs in a small-molecule 

nematic solvent reveals the conformational anisotropy of the polymer chains.  The coupling 

between the LC solvent’s orientational order and the polymer’s conformation is mediated 

by the covalently bonded side groups.  The sense (oblate or prolate) and the magnitude of 

the anisotropy is determined by the sense (end-on or side-on) and the magnitude of the 

polymer / side-group coupling: end-on polymers with weak coupling adopt mildly oblate 

conformations while side-on polymers with strong coupling adopt highly prolate 

conformations.  The anisotropy of a side-on polymer is strongly dependent on temperature, 

but end-on polymers remain mildly oblate throughout the nematic phase.  Once heated to 

the isotropic phase both types of polymer take on spherical conformations.  The 

conformational anisotropy of these polymers in nematic solvent, and its temperature 

dependence, has a tremendous influence on the dynamics of nematic director fluctuations 

discussed in Chapter 6.   
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5.6 Tables 

 
Table 5.1 Molecular weight, conversion, and polydispersity of the side-group liquid 
crystal homopolymers.  Details of the characterization of end-on polymers (350HSiCB4 
and 760HSiCB4) may be found in Appendix A.   

Name Mn 
(kg/mol) 

Mole 
Fraction 
1,2 PB 

Mole 
Fraction 
1,4 PB 

Mole 
Fraction 

LC 
PDIa 

350HSiCB4 347 0 0.11 0.89 1.27 

760HSiCB4 762 0.06 0.04 0.90 1.11 

500HSiBBb 497 0.07 0.11 0.82 1.15 

990HSiBBb 992 0.22 0.04 0.74 1.10 
aPDI = Polydispersity Index (Mw/Mn) 
bSynthesized and characterized by Rafael Verduzco[6] 
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Table 5.2 Fitting parameters used to model scattering data with Equation 5.1 

Polymer Ipar or 
Iperp

a T [°C] L [Å]b m C1
 x 107 C2 

500HSiBB Ipar 25 >350 1.7 - - 

500HSiBB Ipar 30 >350 1.7 - - 

500HSiBB Iperp 25 31.5(1) 2.0 3.6 16 

500HSiBB Iperp 30 33.5(1) 2.0 17 21 

500HSiBB - 50 33.9(1) 2.0 4.3 21 

990HSiBB Ipar 25 >350 1.7 - - 

990HSiBB Ipar 30 >350 1.7 - - 

990HSiBB Iperp 25 30.2(2) 2.0 8.1 12 

990HSiBB Iperp 30 32.0(2) 2.0 10 14 

990HSiBB - 50 47.1(4) 2.0 0.63 11 

350HSiCB4 Ipar 25 48.4(2) 2.0 8.2 27 

350HSiCB4 Ipar 30 47.7(2) 2.0 5.3 23 

350HSiCB4 Iperp 25 97.7(7) 1.8 3.4 33 

350HSiCB4 Iperp 30 88.0(6) 1.8 2.1 27 

350HSiCB4 - 50 39.6(1) 2.0 0.077 11 

760HSiCB4 Ipar 25 56.9(2) 2.0 15 39 

760HSiCB4 Ipar 30 55.1(7) 2.0 16 4.8 

760HSiCB4 Iperp 25 118(1) 1.8 4.4 48 

760HSiCB4 Iperp 30 111(1) 1.8 6.5 33 

760HSiCB4 - 50 49.7(3) 2.0 0.20 15 
aThe parallel and perpendicular designations do not apply at 50 °C, where there is 
no nematic director and the data are circularly averaged. 
bThe number in parentheses is the standard deviation in the last digit of the value 
of L. 
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5.7 Figures 
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Figure 5.1 Chemical structures of end-on (XHSiCB4) and side-on (XHSiBB) side-group 
liquid crystal homopolymers and the perdeuterated nematic liquid crystal solvent 
(d195CB).  A polymer’s name is derived from its molecular weight (X) in units of kg/mol, 
the letter “H” to indicate a homopolymer, and either “SiCB4” or “SiBB” to indicate 
either end-on or side-on mesogens, respectively.  In addition to monomers having an 
attached mesogen, the polymer also contains some residual 1,2- and 1,4-butadiene 
monomers.  Compositions, expressed as the mole fractions x,y, and z, are given in Table 
5.1.  Details of end-on polymer characterization are presented in Appendix A, and 
synthesis of d195CB is described in Appendix B.   
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Figure 5.2 Two-dimensional small-angle neutron scattering patterns from 5 wt % 
solutions of (a) oblate end-on and (b) prolate side-on homopolymers in d195CB in the 
nematic phase (25 °C).  The orientation of the nematic director, n, is indicated by the 
double-headed arrows.  When heated above the nematic-isotropic transition temperature, 
the polymers adopt a spherical conformation and the scattering patterns become 
circularly symmetric as illustrated with (c) end-on homopolymer solution at 50 °C.   
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Figure 5.3 Sector-averaged small-angle neutron scattering patterns from 5 wt % 500 
HSiBB in d195CB at two temperatures in the nematic phase (25 and 30 °C) and circularly 
averaged scattering pattern from the sample in the isotropic phase (50 °C).  “Ipar” and 
“Iperp” denote sector averaging in a ± 15° wedge parallel and perpendicular to the LC 
director, respectively.  For the sake of clarity, a solid line is used to represent data at      
50 °C even though the intensity was measured at the same discrete values of q as for 25 
and 30 °C data sets.   
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Figure 5.4 Sector-averaged small-angle neutron scattering patterns from 5 wt % 990 
HSiBB in d195CB at two temperatures in the nematic phase (25 and 30 °C) and circularly 
averaged scattering pattern from the sample in the isotropic phase (50 °C).  “Ipar” and 
“Iperp” denote sector averaging in a ± 15° wedge parallel and perpendicular to the LC 
director, respectively.  For the sake of clarity, a solid line is used to represent data at      
50 °C even though the intensity was measured at the same discrete values of q as for 25 
and 30 °C data sets.     
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Figure 5.5 Sector-averaged small-angle neutron scattering patterns from 5 wt % 350 
HSiCB4 in d195CB at two temperatures in the nematic phase (25 and 30 °C) and 
circularly averaged scattering pattern from the sample in the isotropic phase (50 °C).  
“Ipar” and “Iperp” denote sector averaging in a ± 15° wedge parallel and perpendicular to 
the LC director, respectively.  For the sake of clarity, a solid line is used to represent data 
at 50 °C even though the intensity was measured at the same discrete values of q as for 
25 and 30 °C data sets.       
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Figure 5.6 Sector-averaged small-angle neutron scattering patterns from 5 wt % 760 
HSiCB4 in d195CB at two temperatures in the nematic phase (25 and 30 °C) and 
circularly averaged scattering pattern from the sample in the isotropic phase (50 °C).  
“Ipar” and “Iperp” denote sector averaging in a ± 15° wedge parallel and perpendicular to 
the LC director, respectively.  For the sake of clarity, a solid line is used to represent data 
at 50 °C even though the intensity was measured at the same discrete values of q as for 
25 and 30 °C data sets.       
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Figure 5.7 Correlation lengths, L, in the directions perpendicular to (Lperp) and parallel to 
(Lpar) the nematic director for 5 wt % solutions of (a) end-on and (b) side-on 
homopolymers derived from fits to scattering data using Equation 5.1.  The correlation 
length in the isotropic phase is denoted Liso.  In side-on polymers, Lpar cannot be 
determined by fitting, but a lower bound of Lmin = 350 Å has been established.  Fitting 
parameters are given in Table 5.2. 
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6.1 Introduction 

Dispersing a physically crosslinked network of associating polymer in a small-molecule 

nematic liquid crystal (LC) solvent couples the network’s elasticity with the LC’s 

orientational order, giving rise to electro-optic and mechano-optic properties not present in 

either material alone.  For example, the gel can be aligned into a uniform monodomain 

simply by applying mechanical shear, and the gel’s optical response is fast enough to track 

a 1 kHz alternating electric field.[1]  This coupling between the polymer network and the 

LC solvent also gives rise to rich dynamic processes in LC physical gels.  The physically 

associated network is capable of dynamic restructuring: on short time scales the network is 

unchanging, as though it were chemically crosslinked, but the slow process of breaking and 

reforming crosslinks allows the network to rearrange on long time scales.  The orientation 

of the LC solvent fluctuates with thermal energy and these fluctuations are translated to the 

network via liquid crystalline side-groups covalently attached to the polymer chains.   

The dynamics of LC orientation fluctuations has been extensively studied using dynamic 

light scattering.[2]  When the LC orientation, described by the nematic director, n, fluctuates 

away from its equilibrium orientation, n0, the resulting distortion can be expressed as the 

sum of a splay, twist, and bend distortion (Figure 6.1) and the elastic penalty is expressed 

by the Frank elastic free energy per unit volume, FV: 

( ) ( )( ) ( )[ ]2
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1 nnnnn ×∇×+×∇⋅+⋅∇= KKKFV                             (6.1) 

where K1, K2, and K3 are the splay, twist, and bend elastic constants, respectively.[3]  Frank 

elasticity drives the director to return to n0 at a rate, τν
-1, determined by the ratio of Kν to 

the LC’s corresponding anisotropic viscosity ηsplay, ηtwist, and ηbend:  
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ν
ν η

τ =− ,     ν = splay, twist, or bend,[2, 4]                    (6.2) 

where q is the magnitude of the scattering vector.  Choosing the correct geometry can 

isolate light scattering from fluctuations of splay, twist, and bend distortions in a nematic 

LC[2] (Figure 6.2) and the time correlation of the scattered light reveals the dynamics of the 

distortion’s relaxation. 
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Coupling of LC order to a polymer network has previously been accomplished by 

chemically crosslinking polymers bearing covalently attached liquid crystalline side groups 

to create a solvent-free LC elastomer, as reviewed by Warner and Terentjev.[5]  The theory 

of nematic LC elastomers[5-9] predicts the network to provide a restoring torque to director 

fluctuations, in addition to Frank elasticity, which is a function of the anisotropy of the 

network’s polymer chains.  Despite the existence of extensive theory, there exists only one 

experimental investigation of director dynamics in an LC elastomer.[10]  This is due, in part, 

to the difficulty in preparing uniformly aligned monodomain elastomers that are suitable 

for dynamic light scattering experiments.  

LC physical gels are ideal candidates for dynamic light scattering experiments because they 

are relatively easy to align.  A triblock copolymer having random-coil polymer endblocks 

(polystyrene, PS) and a side-group liquid crystal polymer (SGLCP) midblock self-

assembles in nematic LC solvent to create a physical gel.[1, 11]  When the solvent is heated 

to the isotropic phase, the endblocks become soluble and the network dissolves.  Cooling a 

PS-SGLCP-PS triblock copolymer solution from the isotropic to the nematic phase in the 

presence of a biasing electromagnetic field causes the gel to form in an aligned solvent and 

provides an optically uniform monodomain.  These gels are similar to nematic elastomers 

in that mechanical strain is coupled to LC order,[12] but they are orders of magnitude softer 

by virtue of their solvent content: the modulus of an LC physical gel is approximately 102 

Pa[11] while the modulus of an LC elastomer is typically greater than 105 Pa.[10]  The 

network elasticity in an LC gel is, therefore, comparable to the Frank elasticity of a nematic 

LC (~102 – 103 Pa on ~1 µm length scales),[3] in contrast to LC elastomers where Frank 

elasticity is orders of magnitude less than network elasticity. 

The dynamics of director fluctuations in LC gels and, for the purposes of comparison, 

analogous side-group liquid crystal polymer (SGLCP) solutions are explored here using 

dynamic light scattering from uniform monodomains.  Both network elasticity and Frank 

elasticity contribute to relaxation dynamics, and the network’s ability to rearrange with 

time contributes an additional process for director relaxation.  In qualitative agreement with 
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the theory of nematic elastomers, gel relaxation dynamics are found to be dependent on 

the anisotropy of the network chains.   

6.2 Experimental 

6.2.1 Materials 

Two different triblock copolymers having random coil endblocks and a side-group liquid 

crystal polymer (SGLCP) midblock were synthesized (Figure 6.3) along with two 

analogous SGLCP homopolymers (Figure 6.4).  An anionically polymerized poly[styrene-

b-(1,2-butadiene)- b-styrene] (57 kg/mol PS, 146 kg/mol PB, 67 kg/mol PS) triblock 

copolymer was purchased from Polymer Source (Montreal, Quebec) and functionalized 

with end-on (SiCB4) mesogens according to the methods described in Appendix A.  Side-

on (SiBB) mesogens were attached to the same prepolymer by Rafael Verduzco.[13]  An 

anionically polymerized, 63 kg/mol 1,2-polybutadiene prepolymer provided by Steve 

Smith of Proctor and Gamble, Inc. was used to make the homopolymers.  The 

characteristics of these four polymers are summarized in Table 6.1 and the details of 

characterization of end-on polymers are given in Appendix A. 

Solutions of polymers in the nematic LC 4-pentyl-4′-cyanobiphenyl (5CB, purchased and 

used as received from TCI America) were prepared by dissolving the polymer and 5CB 

together in dichloromethane (DCM), then evaporating the DCM under a stream of air 

followed by drying in vacuum overnight.   

6.2.2 Methods   

Solutions of polymer in 5CB were loaded into cells consisting of glass plates separated by 

4, 9, or 25 µm spacers.  Cells having 4 or 9 µm gaps were purchased from LC Vision 

(Boulder, CO) and have SiO2 alignment layers for homogeneous (planar) alignment.  Cells 

having a 25 µm gap were purchased from EHC (Japan) and have rubbed polyimide 

alignment layers for homogeneous alignment.  All three cell types have 5 mm x 5 mm 

transparent indium-tin oxide (ITO) electrodes in their centers.  Cells were filled with 

polymer / LC solutions by capillary action; homopolymer solutions readily flowed in at 
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room temperature and triblock gels flowed readily when heated above the gel point (35 

°C for 5 wt % 1100ABASiCB4 and 33 °C for 5 wt % 1400ABASiBB).  Homopolymer 

solutions spontaneously aligned into a monodomain under the influence of the alignment 

layers.  Gels were aligned into a homogeneous monodomain (LC director parallel to the 

cell surface) by heating them above the gel point then slowly cooling them inside the bore 

of an 8 T NMR magnet.  Alternatively, gels were aligned into homeotropic monodomains 

(LC director perpendicular to the cell surface) by heating them above the gel point then 

cooling while applying a 15 Vrms potential difference to the ITO electrodes.    

Aligned samples were mounted in a temperature controlled oven with optical access that 

was stabilized to better than ± 0.01 °C and illuminated with a focused, polarized 20 mW 

HeNe laser (wavelength λ = 633 nm) incident perpendicular to the cell surface.  The 

incident polarization was vertical, orthogonal to the horizontal scattering plane.  

Monodomain LC samples were placed in the beam oriented so their director was either 

parallel to the incident polarization (vertical, V), perpendicular to both the incident 

polarization and the incident beam (horizontal, H), or parallel to the incident beam 

(parallel, P) (Figure 6.2).  Depolarized light scattering was collected at various scattering 

angles, θs, with the optical scattering vector q (|q| = q = 4πn/λ sin (θs/2), where n ≈ 1.55 is 

the sample’s refractive index) lying in the horizontal plane.  The time correlation of the 

scattered intensity (g2(t) = <I(q,0)I(q,t)>) was recorded in the homodyne regime.  The 

resulting intensity autocorrelation functions were normalized by their maximum value, 

typically 1.95. 

Prior to initiating a time correlation experiment, the sample position was adjusted to find a 

well-aligned region of the sample that minimized the static intensity of the scattered light.  

Monodomains of homopolymer solutions were highly uniform and required little 

adjustment. On the other hand, it was more difficult to achieve high-quality monodomains 

with gels, and more sample adjustment was required prior to each experiment.   

On small (< 100 nm) length scales, the gels have a heterogeneous structure that consists of 

a LC midblock dissolved in LC and phase-separated endblocks swollen with LC.  
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Significantly, the length scales probed by the experiment are large enough that the 

system can be considered homogeneous.  The light scattering experiments probe length 

scales ranging between 350 nm (q = 0.018 nm-1) and 2.9 µm (q = 0.002 nm-1).  The data 

may be interpreted on the basis of a uniform material because the length scale of the spatial 

fluctuations that scatter light are much greater than the length scale of a single micelle.   

In some samples, the intensity autocorrelation function did not decay completely even after 

several hours.  Due to the large number of experiments, all samples could not be 

independently verified for ergodicity.  However, selected samples that were chosen to 

verify ergodicity did manifest a complete decay of the intensity autocorrelation function 

after a sufficiently long time, up to several weeks.   

6.3 Results 

6.3.1 Comparison of Gels to Homopolymer Solutions 

The relaxation dynamics of liquid crystalline gels are qualitatively different from those of 

homopolymer solutions or 5CB alone.  Pure 5CB exhibits a single, exponential relaxation 

that fully decays on time scales on the order of 10-3 s.  Homopolymer solutions behave the 

same way but the relaxation is shifted towards longer times (10-2 - 10-1 s).  In contrast to 

both of these, correlations in gels decay non-exponentially and often relax over much 

longer time scales (> 1 s) (Figure 6.5).  In some cases there are two distinct relaxation 

processes observed; the correlation function nearly overlaps that of the homopolymer 

solution at short times, but decays slowly at long times (Figure 6.5a).     

The degree to which relaxation is slowed in homopolymer solutions relative to pure 5CB 

depends on the scattering geometry.  End-on homopolymer (5 wt % 490HSiCB4) slows 

relaxation more in the H geometry than in V (Figure 6.5a and b).  Side-on homopolymer (5 

wt % HiBB) has the opposite effect, slowing relaxation more strongly in the V geometry 

(Figure 6.5c and d).  Anisotropy of the relaxation dynamics is also observed in gels; end-on 

gels (5 wt % 1100ABASiCB4) have longer-lived correlations in the H geometry and side-

on gels in the V geometry (5% 1400ABASiBB) (Figure 6.6).  The correlation functions of 
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end-on gels overlap those of end-on homopolymers at short times (Figure 6.5a and b).  

In the case of side-on gels, the short time relaxation is slower than the homopolymer in the 

H geometry (Figure 6.5c) and faster in the V geometry (Figure 6.5d).   

6.3.2 Comparison of End-On and Side-On Gels 

Examining the correlation functions of gels at a variety of scattering angles further 

demonstrates anisotropy in their relaxation dynamics: both the qualitative shape of the 

correlation functions and the time scales for relaxation are dependent on the scattering 

geometry (H or V).  The time correlation functions from the end-on gel strongly deviate 

from single exponential decay at all scattering angles in the H geometry with crossover 

from fast relaxation to slow relaxation occurring between ~10-3 and 10-2 s (Figure 6.6a).  In 

the V geometry relaxation closely resembles a single exponential, albeit a stretched 

exponential, for θs ≥ 30° and transitions to relaxation by two processes for θs < 30° (Figure 

6.6b).  Correlations in the end-on gel are significantly longer-lived in the H geometry than 

in the V; over the dynamic range studied here, correlation functions in the H geometry do 

not decay to a baseline of g2(t) = 1 when θs is less than ~30° but complete decay is 

observed at all scattering angles in the V geometry.  These trends are reversed in the side-

on gel where the relaxation is clearly non-exponential for all scattering angles in the V 

geometry (Figure 6.6d) but closely resembles a stretched exponential for θs ≥ 16° in the H 

geometry (Figure 6.6c).  Long-lived correlations are evident in the V geometry, but in the 

H geometry the correlation functions completely decay to g2(t) = 1, except at θs = 8°.  

Unlike the end-on gel there is no clear inflection point signaling a crossover from a fast 

relaxation process to a slow relaxation process in the side-on gel.  Instead, the correlation 

functions in the V geometry are highly stretched to long times.   

The sense of the dynamical anisotropy in the gels is identical to that of the homopolymer 

solutions: the end-on gel has slower dynamics in the bend (H) geometry and the side-on gel 

has slower dynamics in the splay (V) geometry.  The relative contribution of the fast and 

slow processes is also dependent on the scattering geometry with the slow process playing 

a more prominent role in the geometry where dynamics are slowest.  The relative 
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contribution of the processes is independent of the scattering angle in side-on gels, but 

in end-on gels the slow process becomes more prominent at smaller angles.   

6.3.3 q-Dependence of the Relaxation Dynamics 

The scaling of relaxation rate with q is revealed by plotting a series of correlation functions 

at different scattering angles versus rescaled delay time, tR = t (sin(θs)/sin(θs,0))2, where θs,0 

is a reference angle of θs = 8°, thus collapsing them onto a single curve when the relaxation 

rate depends on q2.  Correlation functions from end-on (Figure 6.7a and b) and side-on on 

(Figure 6.8a and b) homopolymer solutions superimpose well with this rescaling, but such 

is not always the case with gels.  Correlation functions from end-on gels in the V geometry 

superimpose well when θs ≥ 30°.  At smaller scattering angles they superimpose well at 

short times (tR < 10-2 s) but deviate towards higher values of g2(t) at longer times (Figure 

6.7d).  The H geometry is similar; correlation functions superimpose well at large 

scattering angles, but deviate at smaller θs (Figure 6.7c).  In side-on gels, the correlation 

functions are found to superimpose well at all scattering angles in both H and V 

geometries, the only exception being  when θs = 8° in the H geometry (Figure 6.8c and d).   

Comparing the time scale for relaxation of the gels to that of the corresponding 

homopolymer solutions shows that the gel slows relaxation in one scattering geometry 

more strongly than the other.  The time scale for complete loss of correlation (g2(t) = 1) is 

approximately the same for end-on gel and homopolymer solution at θs < 22° in the V 

geometry (tR ≈ 10-1 s) (Figure 6.7b and d), but the gel has much longer-lived correlations (tR 

≈ 103 s) in the H geometry when compared to the homopolymer solution (Figure 6.7a and 

c).  Opposite to what is observed for end-on polymers, the time scale for complete loss of 

correlation in side-on gel is approximately equal to that of the side-on homopolymer 

solution (tR ≈ 10-2 – 10-1 s) in the H geometry (Figure 6.8a and c), but is shifted to much 

longer time scales in the V geometry (tR  ≈ 103 s) (Figure 6.8b and d). 
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6.3.4 Concentration Dependence of the Relaxation Dynamics  

The time correlation functions from solutions of end-on triblock copolymers are 

qualitatively different above and below the gel point (~ 5 wt % polymer) (Figure 6.9).  A 

solution of 1 wt % 1100ABASiCB4 in 5CB has a single, exponential relaxation similar in 

shape to an end-on homopolymer solution.  Above the gel point the shape of the correlation 

function is relatively insensitive to concentration and the dynamics get slower as 

concentration is increased; correlations are longer-lived in 15 wt % 1100ABASiCB4 than 5 

wt % 1100ABASiCB4.   

6.3.5 Temperature Dependence of the Relaxation Dynamics  

The dynamics of the end-on homopolymer solution and gel are relatively insensitive to 

changes in temperature.  Time correlation functions are virtually superimposable in the 

temperature range from 25.0 to 33.5 °C (Figure 6.10).  In contrast, director relaxation in 

side-on polymer solutions gets faster as temperature is increased (Figure 6.11).  Most 

dramatically, the relaxation rate of 5 wt % side-on homopolymer in the V geometry 

increases by almost two orders of magnitude as temperature is increased from 25.0 to 33.5 

°C (Figure 6.11b).  In the H geometry, however, there is no observable change in this 

temperature range (Figure 6.11a).  Increasing the temperature of the side-on gel has the 

strongest effect on long-time relaxation dynamics; correlation functions are shifted toward 

shorter times at higher temperatures, especially in the H geometry (Figure 6.11c).  

Examining the entire range of scattering angles makes temperature-induced changes in 

side-on polymer solutions more evident (Figure 6.12).  At the highest temperature studied 

(33.5 °C), homopolymer correlation functions are shifted towards smaller times in the V 

geometry, but unchanged in the H geometry (Figure 6.12a and b) relative to the data at 25 

°C (Figure 6.8a and b).   The correlation functions from side-on gels in the H geometry at 

31.5 °C in the H geometry more closely resemble a single exponential decay and are 

shifted towards shorter times relative to the 25 °C data (Figure 6.12c and Figure 6.8c).  In 

the V geometry there is a similar shift and change in shape for correlation functions at θs ≥ 

30°, but when θs ≤ 22°, the correlation functions are dramatically different from those at 

high angle: they do not superimpose with the (sin(θs)/sin(θs,0))2 rescaling and correlations 

persist to longer time scales (Figure 6.12d).   
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6.3.6 Relaxation Dynamics of Gels in the P Geometry 

Correlation functions from gels in the P geometry have many of the same characteristics 

observed in the H and V geometries (Figure 6.13).  Both gels’ correlation functions decay 

by a combination of a fast and a slow process, the slow process being most prominent at 

small scattering angles.  Long-lived correlations are observed in the side-on gel when θs ≤ 

16° but are not observed in the end-on gel.   The time scale for complete loss of correlation 

in the P geometry is similar for both gels (tR ~103 s); for the end-on gel it is similar to that 

in the H geometry and for the side-on gel it is similar to that in the V geometry. 

6.3.7 Fitting Correlation Functions to Determine Relaxation Rates 

Correlation functions from homopolymer solutions were fit to the empirical Williams-

Watts function:[14, 15] 
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where τ is the relaxation rate and 0 < β ≤ 1 is a stretching exponent equal to one for purely 

exponential relaxation.  If β < 1 is assumed to derive from a spectrum of relaxation times, 

the average relaxation time <τ > may be calculated:[16] 
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β
ττ

                                                           (6.4) 

where Γ denotes the Gamma function.  Plotting the inverse of <τ > versus q2 gives a 

straight line for homopolymer solutions (Figure 6.14), further demonstrating the expected 

scaling between relaxation rate and q (equation 6.2).  The anisotropy of the relaxation 

dynamics is evident in the relaxation rates, as well.  Relaxation rates of end-on 

homopolymer solution are faster in the V geometry (Figure 6.14a), but side-on 

homopolymer solution relaxes faster in the H geometry (Figure 6.14b).  The anisotropy is 

much greater in side-on homopolymer solution; relaxation in the H geometry is about two 

orders of magnitude faster than in the V geometry whereas the difference is approximately 

tenfold for end-on homopolymer.  The change in the relaxation rates with temperature is 

negligible in end-on homopolymer solution (Figure 6.14a), but relaxation dynamics get 

much faster in side-on solution when temperature is increased to 33.5 °C (Figure 6.14b). 
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The value of the stretching exponent used to fit correlation functions from 

homopolymer solutions ranged from 0.8 to 1.0, except when fitting end-on solution in the 

H geometry; in this case the exponent was as low as 0.6.  These exponents correlate with 

the polymers’ polydispersities (Table 6.1) and are consistent with a spectrum of relaxation 

times that would result from a broad distribution of molecular weight.  Attempts to use the 

Williams-Watts function to fit data from gels resulted in β values as low as 0.3, too low to 

be accounted for by polydispersity alone.  Furthermore, the Williams-Watts function fails 

to describe the two relaxation processes often observed in gels.   

6.4 Discussion 

6.4.1 Dynamics of Homopolymer Solutions  

Director relaxation in solutions of SGLCP homopolymers is a hydrodynamically controlled 

process: just like small-molecule LCs, Frank elasticity of the director field provides the 

restoring torque to a director fluctuation and the LC’s viscosity resists the return to 

equilibrium.  Thus, the relaxation rate of homopolymer solutions scales with q2 (Equation 

6.2).  Numerous studies on SGLCP solutions have found similar hydrodynamic relaxation 

and shown that dissolving an SGLCP in a nematic LC increases the viscosity without 

significantly changing the Frank elastic constants.[4, 17-21]   

The dynamical anisotropy observed in homopolymer solutions is consistent with the 

Brochard theory,[22] which predicts the viscosity to be affected anisotropically depending 

on the dissolved polymer’s conformation in solution: prolate SGLCPs have the greatest 

effect on the splay viscosity (ηsplay) while oblate SGLCPs affect the bend viscosity (ηbend) 

more.    The end-on homopolymer, which has been shown by small-angle neutron 

scattering (SANS) to have a mildly oblate conformation in solution with 5CB (Chapter 5),  

has a greater effect on the dynamics of relaxation in the bend geometry (τ / τ5CB = 120) than 

in the splay geometry (τ / τ5CB = 3).  Similarly, the side-on homopolymer has been shown 

by SANS to adopt a strongly prolate conformation (Chapter 5) and has a larger effect on 
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the dynamics of relaxation in the splay geometry (τ / τ5CB = 90)  than in the bend 

geometry (τ / τ5CB = 3).   

The temperature dependence of relaxation dynamics in homopolymer solutions may be 

interpreted within the Brochard theory to indicate a change in the polymer’s 

conformational anisotropy; the theory predicts the anisotropy in the increase of viscosity to 

vanish as R|| / R┴ approaches unity (R|| and R┴ denote the polymer’s radii of gyration parallel 

and perpendicular to the director, respectively).  The temperature dependence of end-on 

homopolymer solution is small, but when side-on homopolymer solution is heated from 

31.5 to 33. 5 °C the anisotropy in the relaxation rate, τH / τV, goes from 60 to 5.  This 

dramatic decrease in dynamical anisotropy is attributed to a decrease in R|| / R┴ as the 

polymer approaches an isotropic conformation near TNI (35 °C).  The effect is not evident 

in end-on polymer where the room-temperature anisotropy is small (R|| / R┴  ≈ 0.6) 

compared to that of side-on polymer (R|| / R┴  ≈ 5-7)[1] and large changes in anisotropy are 

therefore not possible.     

6.4.2 Dynamics of Gels  

In contrast to the single hydrodynamic relaxation process observed in homopolymer 

solutions, relaxation in gels takes place via two distinct processs.  The qualitative change in 

behavior is clearly a consequence of network formation since triblock copolymer solutions 

below the gel point behave similarly to homopolymers.  The gels’ fast relaxation process 

retains the q2 scaling observed in homopolymer solutions, characteristic of hydrodynamic 

relaxation, but the slow process has a stronger q dependence and is non-hydrodynamic.  

The slow process is reminiscent of relaxation dynamics of non-LC physical gels[23-27] but, 

significantly, light scattering in an LC gel arises from nematic director fluctuations, not 

from density fluctuations.  The LC gels’ structural changes are revealed indirectly by their 

effect on director dynamics.  The slow process is attributed to reorganization of the 

physically associated polymer network: director relaxation via the fast, hydrodynamic 

process can only proceed to a certain extent because of its coupling to the local orientation 

of the underlying network.  At long times the network structure can rearrange and allow the 

director to completely lose correlation with its initial orientation. 
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The proposed mechanism of director relaxation via two processs is illustrated 

schematically in Figure 6.15.  A spontaneous thermal fluctuation causes a distortion to the 

director field that is translated to the polymer network by the coupling between the director 

and the network, mediated by the mesogens attached to the polymer midblock.  The 

network distortion causes the local concentration of SGLCP chains to increase or decrease 

as the crosslinks are pushed together or pulled apart.  Relaxation of the distortion takes 

place by a fast process that does not change the network’s connectivity and by a slow 

restructuring of the network to relieve crowding of adjacent micellar crosslinks and 

stretching or compressing of chains spanning between two crosslinks.  The PS blocks that 

make up a physical crosslink are constantly disengaging and reengaging, and when one 

disengages from a crosslink that is in a high energy environment due to polymer crowding 

or depletion, or chain stretching or compression, it is more likely to reengage in a crosslink 

that mitigates those osmotic and elastic penalties. The schematic captures the basic physics, 

but the ordered structure depicted is simply for the sake of clarity.  Small-angle neutron 

scattering from the gel shows no evidence of such long-range order on a cubic lattice.    

The dynamical anisotropy that is present in homopolymer solutions translates to the gels, 

suggesting some anisotropy in the network structure, as well.  The SGLCP blocks that 

make up the network strands have a preferred conformation that balances the alignment of 

the polymer’s mesogens and the director with the backbone’s conformational entropy.  It is 

plausible that SGLCPs radiating from a crosslink are, therefore, more likely to connect to 

another crosslink that is positioned in a way that accommodates that preferred 

conformation, leading to higher crosslink density perpendicular to the director in the case 

of end-on polymers and parallel to the director in the case of side-on polymers.  This effect 

also results in an anisotropic distance between crosslinks.  The underlying physics for 

dynamical anisotropy in gels may be understood in terms of the dynamic restructuring of 

an anisotropic network (Figure 6.16).  Distortions to the director field couple to the 

polymer network and force the physical crosslinks to shift position.  The deformation is 

easily accommodated when the network can undulate along its long axis without 

significantly changing the average distance between crosslinks.  However, when the 

wavevector of the deformation is along the short axis, crosslinking domains are pushed 
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close together or pulled far apart and the SGLCP network strands are forced to stretch 

and compress, accordingly.  The free energy cost of changing the equilibrium chain 

conformation, combined with the osmotic resistance to increasing SGLCP overlap, creates 

a driving force for network rearrangement.  Thus, when an end-on gel composed of oblate 

polymer strands is subjected to a bend distortion, the spreading out and pushing together of 

crosslink points causes network rearrangement to be an important mechanism for 

relaxation, but splay distortions are more easily accommodated and relaxation can take 

place without rearranging the connectivity.  The opposite holds true for side-on gels 

composed of prolate polymer strands where splay distortions more severely perturb the 

network and bend distortions are relatively easily tolerated.  Twist distortions significantly 

perturb the network in both gels.   

Further evidence for anisotropic network structure is found in the temperature dependence 

of gel relaxation dynamics.  The temperature dependence observed in homopolymer 

solutions carries over to gels:  end-on gels are insensitive to temperature, but the relaxation 

of the side-on gel in the V geometry gets slower with increased temperature, opposite to 

what is observed in the corresponding homopolymer solution.  This is consistent with 

Lubensky’s theory of nematic elastomers,[7] which predicts that the network provides an 

additional restoring torque on director fluctuations that is highly dependent on its 

anisotropy.  As the side-on gel transitions from being highly anisotropic at low temperature 

to being mildly anisotropic near TNI, the decrease in the network’s restoring torque results 

in slower relaxation.   

6.5 Conclusions 

The dynamics of director relaxation in liquid crystalline physical gels are governed by two 

processes: a fast, hydrodynamic relaxation process similar to homopolymer solutions and a 

slow relaxation process resulting from the network’s ability to rearrange itself.  The 

dynamical anisotropy observed in liquid crystalline gels suggests an anisotropic network 

structure resulting from the anisotropy of the polymer chains that comprise the network 

strands.  Bend distortions relax slowly in networks composed of oblate polymers because 



 157
the distortion perturbs the arrangement of the network, but when the polymer chains are 

prolate, splay distortions are more strongly affected.   

The existing theories of LC elastomers and gels[5, 7, 9] cannot be directly applied to a 

physical gel because the finite lifetime of the crosslinks modifies the director dynamics.  

An interesting avenue of research would be to combine the theory of LC gels with the 

theory of associating polymers[28] to predict director dynamics in LC physical gels.   

 



 158

6.6 Tables 

Table 6.1 Molecular weight, conversion, and polydispersity of side-group liquid crystal 
polymers.  The full details of characterization are given in Appendix A.  

 SGLCP Block  

Name 

PS 
Blocks 

Mn 
[kg/mol]

Mn 
[kg/mol]

Mole 
Fraction 
1,2 PB 

Mole 
Fraction 
1,4 PB 

Mole 
Fraction 

LC 
PDIa 

490HSiCB4 -- 489 0.01 0.03 0.96 1.48 

710HSiBBb -- 711 0.08 0.03 0.89 1.08 

1100ABASiCB4 57,67 1,012 0.02 0.14 0.84 1.16 

1400ABASiBBb 57,67 1367 0.21 0.14 0.65 1.50 
aPDI = Polydispersity Index (Mw/Mn) 
bSynthesized and characterized by Rafael Verduzco[13] 
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6.7 Figures 

 

Figure 6.1 Schematic diagrams of the splay, twist, and bend distortions in a nematic 
liquid crystal.  The spatially varying nematic director is represented by ellipses and the 
equilibrium director is denoted n. 
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Figure 6.2 Top-view schematic of the three scattering geometries used.  The scattering 
plane, which contains q, is in the plane of the page, perpendicular to i.  Relative to the 
incident polarization, i, and wavevector ki, the LC director, n, is oriented parallel to i 
(“V” for “vertical”), perpendicular to both i and ki (“H” for “horizontal”), or parallel to ki 
(“P” for “parallel”).  The polarization direction of the analyzer, f, is horizontal, 
perpendicular to i.  The intensity of the scattered, depolarized light is recorded at a 
discrete angle, θs, in the laboratory frame, corresponding to a final wavevector, kf, and 
scattering vector q = kf – ki.  The V, H, and P geometries are typically known as the 
splay, bend, and twist geometries, respectively.   
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Figure 6.3 Chemical structures of end-on (1100ABASiCB4) and side-on 
(1400ABASiBB) side-group liquid crystal triblock copolymers with polystyrene 
endblocks.  A polymer’s name is derived from its molecular weight in units of kg/mol, 
the letters “ABA” to indicate a triblock copolymer, and either “SiCB4” or “SiBB” to 
indicate either end-on or side-on mesogens, respectively.  In addition to monomers 
having an attached mesogen, the midblock also contains some residual 1,2- and 1,4-
butadiene monomers.  These polymers’ properties are summarized in Table 6.1.   
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Figure 6.4 Chemical structures of end-on (490HSiCB4) and side-on (710HSiBB) side-
group liquid crystal homopolymers.  A polymer’s name is derived from its molecular 
weight in units of kg/mol, the letter “H” to indicate a homopolymer, and either “SiCB4” 
or “SiBB” to indicate either end-on or side-on mesogens, respectively.  In addition to 
monomers having an attached mesogen, the polymer also contains some residual 1,2- and 
1,4-butadiene monomers.  These polymers’ properties are summarized in Table 6.1.   
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Figure 6.5 Normalized time correlation functions, g2(t),  at 25 °C and θs = 30° for 5CB, 5 
wt % homopolymer solutions, and 5 wt % triblock copolymer gels in the H and V 
orientations   
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Figure 6.6 Normalized time correlation functions, g2(t),  at 25 °C for end-on and side-on 
gels (5 wt % 1100ABASiCB4 and 5 wt % 1400ABASiBB, respectively) in the H and V 
orientations 
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Figure 6.7 Normalized time correlation functions, g2(t), at 25 °C of end-on polymers at a 
variety of scattering angles as a function of rescaled delay time, tR = t (sin(θs)/sin(θs,0))2, 
where θs,0 = 8°.  5 wt % end-on homopolymer (490HSiCB4) in (a) H orientation and (b) 
V orientation; and 5 wt % end-on triblock copolymer (1100ABASiCB4) gel in (c) H 
orientation and (d) V orientation 
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Figure 6.8 Normalized time correlation functions, g2(t), at 25 °C of side-on polymers at a 
variety of scattering angles as a function of rescaled delay time, tR = t (sin(θs)/sin(θs,0))2, 
where θs,0 = 8°.  5 wt % side-on homopolymer (710HSiBB) in (a) H orientation and (b) V 
orientation; and 5 wt % side-on triblock copolymer (1400ABASiBB) gel in (c) H 
orientation and (d) V orientation 
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Figure 6.9 Concentration dependence of the normalized time correlation functions, g2(t), 
at 25 °C and θs = 30° of end-on triblock copolymer gels (solutions of 1100ABASiCB4) in 
the H orientation 
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Figure 6.10 Temperature dependence of the normalized time correlation functions, g2(t), 
at θs = 30° of 5 wt % end-on homopolymer (490HSiCB4) in (a) H orientation and (b) V 
orientation and 5 wt % end-on triblock copolymer (1100ABASiCB4) gel in (c) H 
orientation and (d) V orientation    
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Figure 6.11 Temperature dependence of the normalized time correlation functions, g2(t), 
at θs = 30° of 5% side-on homopolymer (710HSiBB) in (a) H orientation and (b) V 
orientation and 5% side-on triblock copolymer (1400ABASiBB) gel in (c) H orientation 
and (d) V orientation       
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Figure 6.12 Normalized time correlation functions, g2(t), of side-on homopolymer 
solution and triblock polymer gel at a variety of scattering angles as a function of 
rescaled delay time, tR = t (sin(θs)/sin(θs,0))2, where θs,0 = 8°.  5 wt % side-on 
homopolymer (710HSiBB) solution at 33.5 °C in (a) H orientation and (b) V orientation 
and 5 wt % side-on triblock copolymer (1400ABASiBB) gel at 31.5 °C in (c) H 
orientation and (d) V orientation 
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Figure 6.13 Normalized time correlation functions, g2(t), at 25 °C of triblock copolymer 
gels in P orientation at a variety of scattering angles as a function of rescaled delay time, 
tR = t (sin(θs)/sin(θs,0))2, where θs,0 = 8°.  (a) 5 wt % end-on triblock (1100ABASiCB4) 
and (b) 5 wt % side-on triblock (1400ABASiBB) 
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Figure 6.14 Average relaxation rates (<τ>-1) of (a) end-on and (b) side-on homopolymer 
solutions at various temperatures in the H and V scattering geometries derived from 
fitting time correlation functions to an empirical Williams-Watts function   
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Figure 6.15 Schematic illustrating the two director relaxation processes in LC physical 
gels.  Physical crosslinks consisting of microphase separated polystyrene are represented 
by black circles and the connections between them, comprised of SGLCP strands, are 
represented as black lines.  The shading of the gray ellipses represents the local density of 
SGLCP chains.  When the network undergoes a spontaneous deformation, it can relax by 
a fast process that does not require network rearrangement, and by a slow process in 
which the physical crosslinks break and reform to reestablish a uniform density of 
SGLCP and mitigate chain stretching. 
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Figure 6.16 Schematic illustrating the effects of bend and splay distortions on an 
anisotropic network.  Physical crosslinks consisting of microphase separated polystyrene 
are represented by black circles and the connections between them, comprised of SGLCP 
strands, are represented as black lines.  The shading of the gray ellipses represents the 
local density of SGLCP chains.  When an oblate network, such as an end-on LC gel, is 
subjected to a bend distortion, the local density of SGLCP chains and the average 
distance between crosslinks are significantly perturbed, but a splay distortion is 
accommodated by undulation of the network.  The effects are reversed in a prolate 
network, such as a side-on LC gel, where bend distortions are more easily 
accommodated.  The LC director, n, is indicated by the double-headed arrow.   
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7.1 Introduction 

When a block copolymer having a side-group liquid crystal polymer (SGLCP) block and a 

random-coil polymer block is dissolved in a small-molecule liquid crystal (LC) solvent, the 

polymer self-assembles to segregate the random-coil block from the ordered solvent.  Self-

assembly of a coil-SGLCP diblock copolymer results in the formation of micelles and, at 

sufficiently high concentration, the osmotic repulsion between neighboring micelles causes 

the solution to behave rheologically as a gel:[1] the elastic modulus is greater than the 

storage modulus and is virtually independent of frequency.[2]    Self-assembly of a coil-

SGLCP-coil triblock copolymer results in the formation of a percolated polymer network 
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because a single polymer chain can participate in up to two different coil-block 

domains.  Triblock copolymer solutions also behave rheologically as gels above a critical 

concentration.[3, 4]   

Although diblock and triblock copolymer gels are rheologically similar, the two are in stark 

contrast when it comes to their electro-optic performance.  Triblock copolymer gels 

preserve a memory of the LC orientation field present when they self-assemble,[3, 5] but this 

memory is absent in diblock copolymer gels.  These experiments compare the relaxation of 

diblock and triblock copolymer gels after removal of an orienting electric field as a 

function of the orienting field’s duration.   

7.2 Experimental 

7.2.1 Materials 

Diblock copolymers having a side-group liquid crystal polymer (SGLCP) block and a 

random coil block (polystyrene, PS) (Figure 7.1) were synthesized according to the 

methods described in Appendix A from poly[styrene-b-1,2-butadiene] prepolymers 

supplied by David Uhrig (Oak Ridge National Laboratory’s Center for Nanophase 

Materials Sciences).  A PS-SGLCP-PS triblock copolymer (Figure 7.1) was synthesized 

according to the methods described in Appendix A from a poly[styrene-b-1,2-butadiene-b-

styrene] prepolymer purchased from Polymer Source (Montreal, Quebec).  The properties 

of these polymers are summarized in Table 7.1. 

Solutions of these polymers in 4-pentyl-4′-cyanobiphenyl (5CB, purchased and used as 

received from TCI America) were prepared by dissolving the polymer and 5CB together in 

dichloromethane (DCM) then evaporating the DCM under a stream of air, followed by 

drying in vacuum overnight.  Polymer concentrations were chosen such that the polymers 

would form gels: 10 wt % for diblocks and 5 wt % for the triblock. 
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7.2.2 Methods 

Solutions of polymer in 5CB were loaded into cells purchased from LC Vision (Boulder, 

CO) consisting of glass plates with 5 mm x 5 mm transparent indium-tin oxide (ITO) 

electrodes in their centers and separated by spacers 9 µm thick.  Cells were filled with 

polymer / LC solutions by capillary action: when heated above the gel point (35 °C) the 

gels transition to liquids and readily flow into the gap.  Cooling to the nematic phase 

produces unaligned, polydomain gels.  Cells were mounted in an aluminum block equipped 

with electrical heaters and a temperature controller stable to within ± 1 °C.  Before 

beginning an experiment, the sample’s history was erased by annealing to 50 °C for 

approximately 15 minutes, then annealing at 25 °C for approximately 15 minutes.   

Samples were illuminated through the ITO electrodes with a 10 mW polarized HeNe laser 

(λ = 633 nm) and the transmitted intensity was measured using a Thorlabs PDA55 

photodiode detector.  The output of the detector was recorded by a computer using a 

National Instruments PCI-MIO-16XE-10 data acquisition card.  A potential difference was 

applied to the cell’s electrodes using a computer-controlled California Instruments 251TL 

alternating current power source set to a frequency of 1 kHz.   

7.3 Results 

Before applying the electric field, diblock and triblock copolymer gels are unaligned and 

the polydomain orientation of the LC director causes light to be scattered as it passes 

through the samples.  The intensity that reaches the detector in the polydomain state is 

minimal.  When a sufficiently large potential difference is applied across the sample, the 

LC is uniformly aligned with its optic axis perpendicular to the electrodes, by virtue of the 

LC’s positive dielectric anisotropy.  Aligned samples are optically clear and the detected 

intensity reaches a maximum with the applied field.  The transmitted intensity as a function 

of field strength was recorded for each gel and a representative voltage sweep is presented 

in Figure 7.2.   
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A 50 Vrms potential difference, far above all three gels’ switching thresholds, was 

applied to initially polydomain gels for increasing durations ranging from one minute to 

four days.  The transmitted intensity was measured at periodic intervals both during the 

application of the field and for at least six hours after the field was removed, and was 

converted to percent transmittance by subtracting the initial baseline intensity in the 

polydomain state (I0) then dividing by the maximum intensity achieved during application 

of the field (Imax).  The transmittance of all three gels changes from 0 to 100% when the 

field is applied.  When the field is removed, the transmittance decreases with time from 

100% to value that depends on the duration of the previously applied field (Figure 7.3 - 

Figure 7.5).   

The field-induced orientation is imprinted on diblock copolymer gels: neither 10 wt % 

390(60)ABSiCB4 nor 10 wt % 320(120)ABSiCB4 return to 0% transmittance when the 

field is removed (Figure 7.3 and Figure 7.4).  The field-off transmittance increases with the 

duration of the applied field.  When 10 wt % 390(60)ABSiCB4 is exposed to the 50 Vrms 

potential difference for 1 min the transmittance remains above 40% for the entire six-hour 

window of field-off observation.  After exposure for 1 day, the gel’s transmittance remains 

above 85% in the field-off state.  10 wt % 320(120)ABSiCB4 is even more susceptible to 

imprinting.  Applying the field for 1 min causes the field-off transmittance to remain above 

50% in the six-hour window of observation, and field durations of 1 hour or more peg the 

field-off transmittance at greater than 80%. 

In contrast to diblock gels, the triblock gel resists imprinting and retains a “memory“ of its 

polydomain field-off orientation.  When the 50 Vrms potential difference is applied for less 

than 1 day the transmittance returns to less than 5% within an hour of removing the field.  

Even when the field-on time is increased to 4 days the triblock gel returns to less than 25% 

transmittance within the six-hour window of observation.    
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7.4 Discussion 

The presence of an interconnected polymer network in triblock copolymer gels provides a 

memory of the gel’s orientation that is absent in diblock copolymer gels (Figure 7.6).  

When the orientation of the LC solvent is changed, diblock micelles reorient to align their 

corona chains with the new director.  The required rotation does not change the micelles’ 

positions relative to one another.  When the field is removed the micelles return to a 

random orientation distribution by Brownian diffusion, but the return is slow because the 

micelles are large and packed relatively close together.  In the triblock gel, changing the 

orientation of the LC solvent causes the conformations of polymer chains spanning 

between two crosslinks to be significantly distorted and the stresses cannot be relieved 

without changing the network’s connectivity because the positions and orientations of the 

physical crosslinks are highly correlated with one another. 

These electric field imprinting experiments give an order of magnitude estimate of the 

triblock copolymer network’s reorganization time.  The network’s physical junctions 

continuously break and reform with a characteristic time scale, tR, and when a strong bias 

voltage is used to torque the LC away from its equilibrium orientation it creates a driving 

force for a broken junction to reform in way that accommodates the new director field.  

However, network restructuring can only play a role when the field-on time is sufficiently 

long compared to tR.  The observation that triblock gels retain no memory of field-induced 

orientation when the field on time is less than or equal to six hours demonstrates that tR is 

greater than six hours, in agreement with the order of magnitude (> 103 s) of the 

reorganization time scale measured by dynamic light scattering  in Chapter 6.   

Amongst diblock copolymer gels, the observation that 10 wt % 390(60)ABSiCB4 is less 

susceptible to imprinting than 10 wt % 320(120)ABSiCB4 may be related to the size of the 

micelles and the modulus of the gel.  SANS from the two gels (Chapter 4) demonstrates 

that micelles in 10 wt % 320(120)ABSiCB4 are larger than in 10 wt % 390(60)ABSiCB4, 

and rheology (Appendix E) demonstrates that 10 wt % 320(120)ABSiCB4 is more viscous.  

Assuming the bias field provides the same degree of orientation in both gels, the relaxation 
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time to return to the polydomain state would be much longer in 10 wt % 

320(120)ABSiCB4 because the diffusion of larger micelles in a more viscous medium is 

slower.  Anisotropy of the micelle structure may also play a role.  If the aspect ratio of 

micelles in 10 wt % 320(120)ABSiCB4 is larger than those in 10 wt % 390(60)ABSiCB4, 

their field-on reorientation may be much faster.[6]  At equal field-on times, the micelles in 

10 wt % 320(120)ABSiCB4 would be more strongly oriented than those in 10 wt % 

390(60)ABSiCB4 and would, therefore, better serve to reinforce the LC’s uniform 

orientation after the field was removed.   

7.5 Conclusions 

The network structure in an LC gel self-assembled from a triblock copolymer serves to 

reinforce the alignment state present when the gel is formed.  When an orienting electric 

field is removed from an initially polydomain gel, the network causes the alignment to 

return to the polydomain state.  When the field is left on for very long times, the network 

can restructure to accommodate the new director field.  In contrast, gels formed from 

diblock copolymers, in which the micelles are not interconnected, do not return to their 

polydomain alignment state when the electric field is removed.  Instead, the slow diffusion 

of the micelles back to a random orientation distribution serves to preserve the field-on 

orientation.   
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7.6 Tables 

 
Table 7.1 Molecular weight, conversion, and polydispersity of the side-group liquid 
crystal block copolymers.  Details of their characterization may be found in Appendix A.   

 SGLCP Block  

Name 

PS 
Block 

Mn 
[kg/mol]

Mn 
[kg/mol]

Mole 
Fraction 
1,2 PB 

Mole 
Fraction 
1,4 PB 

Mole 
Fraction 

LC 
PDIa 

390(60)ABSiCB4 59 388 0.15 0.03 0.85 1.11 

320(120)ABSiCB4 121 323 0.22 0.01 0.77 1.05 

1100ABASiCB4 57,67 1,012 0.02 0.14 0.84 1.16 
aPDI = Polydispersity Index (Mw/Mn) 
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7.7 Figures 
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Figure 7.1 Chemical structures of side-group liquid crystal diblock (X(Y)ABSiCB4) and 
triblock (1100ABASiCB4) copolymers.  The diblocks’ names are derived from the 
molecular weights of the SGLCP block (X) and the PS block (Y) in units of kg/mol, the 
letters “AB” to indicate a diblock copolymer, and “SiCB4” to indicate end-on mesogens.  
The triblock’s name derives from its total molecular weight (1100 kg/mol) and the letters 
“ABA” to indicate a triblock copolymer.  In addition to monomers having an attached 
mesogen, the polymers also contain some residual 1,2- and 1,4-butadiene monomers.  
Compositions, expressed as the mole fractions x,y, and z, are given in Table 7.1.  Details 
of polymer characterization are presented in Appendix A.  
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Figure 7.2 Representative voltage sweep performed on a 10 wt % 390(60)ABSiCB4 gel.  
A potential difference of 50 Vrms is well above the threshold field for switching.  Voltage 
sweeps from 10 wt % 320(120)ABSiCB4 and 5 wt % 1100ABASiCB4 gels were similar.    
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Figure 7.3 Time-dependence of the percent transmittance of light ((I-I0)/Imax) through a 
gel composed of 10 wt % 390(60)ABSiCB4 in 5CB after applying a 50 Vrms potential 
difference for 1 min, 10 min, 1 hr, 6, hr, or 1 day then removing it at time t = toff.    
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Figure 7.4 Time-dependence of the percent transmittance of light ((I-I0)/Imax) through a 
gel composed of 10 wt % 320(120)ABSiCB4 in 5CB after applying a 50 Vrms potential 
difference for 1 min, 10 min, 1 hr, 6, hr, or 1 day then removing it at time t = toff.    
 
 



 188

0 1 2 3 4 5 6

0

25

50

75

100

5% 1100ABASiCB4

 1 min
 10 min
 1 hr
 6 hr
 1 day
 4 day

 

(I-
I 0) 

/ I
m

ax
 [%

]

t-toff [hr]

 

Figure 7.5 Time-dependence of the percent transmittance of light ((I-I0)/Imax) through a 
gel composed of 5 wt % 1100ABSiCB4 in 5CB after applying a 50 Vrms potential 
difference for 1 min, 10 min, 1 hr, 6, hr, 1 day, or 4 days then removing it at time t = toff.    
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Figure 7.6 Schematic illustrating the reorientation of liquid crystalline gels before 
applying an electric field (t = t0), during field application (t0 < t < toff), and after removing 
the electric field (toff  < t).  The micelles in the diblock copolymer gel can rotate to align 
with the field, then diffuse slowly back to a random distribution when the field is 
removed.  The network structure in the triblock copolymer gel provides memory of the 
initial polydomain alignment state, unless the field is applied long enough to allow the 
network to restructure.   
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A.1 Appendix 

All reagents were purchased and used as received from Aldrich, unless otherwise noted.   

A.1.1 Strategy for Synthesis of Side-Group Liquid Crystal Polymers 

Polymer-analogous synthesis is used to attach liquid crystalline side-groups to existing 

polymer backbones.  A library of polybutadiene (PB) homopolymers (Figure A.1-Figure 

A.3) and PB-containing block copolymers (Figure A.4-Figure A.12) was obtained from 

various sources.  The PB portion of every polymer contains a high percentage (> 80 mol 

%) of 1,2-addition monomers.  A cyanobiphenyl-based mesogen is synthesized separately 

and attached in one step to the pendant vinyl groups of 1,2-PB, yielding a side-group liquid 

crystal polymer (SGLCP).   

A.1.2 Synthesis of Cyanobiphenyl-Based Mesogenic Side Groups 

A cyanobiphenyl-based mesogen is synthesized by Mitsunobu reaction[1, 2] between 4-

cyano-4′-hydroxybiphenyl (CHB) and 3-buten-1-ol (4OH) (Scheme A.1).  CHB (1.3 g, 6.2 
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mmol, purchased and used as received from TCI America) and 1.1 equivalents each of 

4OH (0.60 mL, 6.8 mmol) and triphenylphosphine (TPP) (1.8 g, 6.8 mmol) are dissolved 

together in 50 mL anhydrous tetrahydrofuran (THF).  The solution is chilled in an ice water 

bath followed by the dropwise addition of 1.1 equivalents of diisopropyl azodicarboxylate 

(DIAD) (1.3 mL, 6.8 mmol).  The reaction flask is then removed from the ice water bath 

and the reaction proceeds at room temperature until thin-layer chromatography no longer 

reveals the presence of CHB (approximately 3-5 hours).  Upon completion, the THF is 

evaporated and the product, 4-cyano-4′-(3-butenoxy)-biphenyl (CBV4), is dissolved in 

dichloromethane (DCM) and purified on a silica gel column using 5% ethyl acetate in 

hexane as the mobile phase.  CBV4 is further purified by recrystallization from hexane, 

achieving 77% yield overall (1.2 g, 4.7 mmol).   

The phenolic Mitsunobu reaction (Scheme A.1) is the preferred scheme for synthesizing 

CBV4 because relatively high yield is achieved in a single reaction.  However, an alternate 

scheme is Williamson ether synthesis (Scheme A.2).[3, 4]  4OH (10. mL, 120 mmol) is first 

converted to 3-butenyl-1-tosylate (4OTs) by reaction with two equivalents of p-

toluenesulfonyl chloride (tosyl chloride, TsCl) (44 g, 230 mmol) in 150 mL DCM along 

with one equivalent of pyridine (9.4 mL, 120 mmol).[5, 6]  Reagents are mixed at 0 °C then 

the reaction flask is removed to room temperature and the reaction proceeds for 

approximately ten hours.  The product, 4OTs, is purified by liquid-liquid extraction.  After 

adding an excess of pyridine (100 mL), the DCM solution is washed with 400 mL of 

aqueous hydrochloric acid (5% HCl).  4OTs remaining in the aqueous layer is extracted 

with DCM then the combined organic layers are washed once more with 5% HCl.  The 

organic layer is dried with anhydrous sodium sulfate and the DCM evaporated to recover 

the product (83% yield, 22 g, 96 mmol).  Williamson ether synthesis yields the final 

product, CBV4.  A seventy percent excess of 4OTs (22 g, 96 mmol) is added to a solution 

of CHB (11 g, 57 mmol) in 50 mL of N,N-dimethylformamide (DMF).  A seventy percent 

excess of anhydrous potassium carbonate is added (13 g, 96 mmol) and the mixture heated 

at 90 °C for eight hours.  Upon completion, the potassium tosylate byproduct is precipitated 

with an excess of DCM and removed by filtration.  After evaporating the majority of the 

solvent the remaining CBV4 is purified on a silica gel column using ten percent ethyl 
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acetate in hexane, then recrystallized from hexane for an overall yield of 43% (6.1 g, 25 

mmol).    

A siloxane linking group is attached to the cyanobiphenyl mesogen, CBV4, by 

hydrosilylation (Scheme A.3).  A tenfold excess of 1,1,3,3-tetramethyldisiloxane (TMDS) 

(18 mL, 99 mmol) is dissolved together with CBV4 (2.5 g, 9.9 mmol) in 20 mL anhydrous 

toluene.  A drop of platinum catalyst (PC072 platinum divinyl complex in xylene, United 

Chemical Technologies, Bristol, PA) is added and the mixture is stirred at room 

temperature for 16 hours under inert gas.  Upon completion, the solvent and excess TMDS 

are evaporated at 80 °C under vacuum and the product, 4-cyano-4′-(5-(1,1,3,3,-

tetramethyldisiloxane)butoxy)biphenyl (SiCB4), is purified by column chromatography.  

An anhydrous chromatography column is prepared in order to prevent the degradation of 

SiCB4 by reaction with water.  The column is filled with silica gel dried in a 150 °C oven 

and then repeatedly flamed with a propane torch while dry, inert gas flows through the 

silica.  The column is then filled with anhydrous hexane and mixed to create a slurry of 

silica gel in hexane.  Once the silica gel settles, the SiCB4 is loaded onto the column and 

eluted with an anhydrous mixture of 10% ethyl acetate in hexane.  Anhydrous column 

chromatography is sometimes repeated to recover a clear, liquid product (75% yield, 2.1 g, 

7.4 mmol).      

A.1.3 Attaching Side Groups to Polymer 

The cyanobiphenyl-based mesogen with attached siloxane linking group (SiCB4) is 

suitable for attachment to the pendant vinyl groups of a 1,2-polybutadiene polymer by 

platinum-catalyzed hydrosilylation (Scheme A.4) in manner similar to the synthesis of 

SiCB4.  1,2-Polybutadiene (0.14 g, 2.5 mmol) is dissolved in 5 mL of anhydrous 

tetrahydrofuran (THF) in inert atmosphere.  A threefold excess of freshly purified SiCB4 

(2.1 g, 7.4 mmol) is added along with a drop of platinum catalyst (PC085 platinum 

cyclovinyl complex in vinylmehtylsiloxanes, United Chemical Technologies, Bristol, PA) 

and the mixture heated at 50 °C for between four and seven days.  Reaction progress is 

monitored periodically by proton NMR.  When the reaction is complete, as evidenced by 
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the disappearance of the 1,2-PB vinyl resonance peak at δ = 4.9 ppm, it is quenched by 

heating at 50 °C overnight after addition of excess styrene (~2-5 mL).   

After quenching with styrene the polymer is concentrated by evaporating approximately 

half the solvent under vacuum.  Unreacted mesogen is removed by precipitating the 

polymer from solution using an excess of methanol.  The precipitated polymer is then 

repeatedly dissolved in THF and precipitated with methanol.  The methanol used for 

precipitation contains 10 ppm of a radical inhibitor (BHT) to improve stability during long-

term storage.  After the final precipitation the solid polymer is dried in vacuum.  Polymer 

conversion is nearly quantitative; yield is greater than 95% of the theoretical value.   

Cross-linking reactions are seemingly unavoidable; polymers almost always have a 

bimodal molecular weight distribution with a small fraction of high molecular weight, 

cross-linked polymers, which is removed by solvent fractionation.  A solution of 

approximately ten percent polymer in THF is passed through a 0.45 µm syringe filter then 

diluted with toluene and THF for a final composition of 0.5% polymer dissolved in a 

mixture of 60% THF and 40% toluene.  While stirring vigorously, methanol is added until 

the solution becomes cloudy (the amount of methanol required is typically almost equal to 

the volume of the solution).  THF is then slowly added until the solution becomes clear; at 

this point it is very near its room-temperature cloud point.  Next, a small amount of 

methanol is added, usually between 5 and 15 mL.  The amount of methanol added 

determines the degree to which the polymer will fractionate: more methanol will result in 

more polymer dropping out of solution.  The cloudy solution is heated to 70 °C and stirred 

until it becomes clear again.  Finally, the clear, hot solution is poured into a hot separatory 

funnel wrapped in plenty of insulation.  The insulated funnel is isolated from air currents 

and left to cool very slowly overnight.  A viscous syrup composed largely of high 

molecular weight polymer separates into the bottom of the separatory funnel while low 

molecular weight polymer remains in the dilute solution above.  The high molecular weight 

fraction is easily drained off, precipitated with methanol, and dried in vacuum.  The low 

molecular weight fraction is recovered by evaporating the solvent and drying in vacuum.   
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A.1.4 Characterization of Polybutadiene-Containing Prepolymers 

The molecular weight of the SGLCP precursor polymers is measured by the manufacturer 

using light scattering.  Proton NMR is used to measure the percentage of 1,2-PB monomers 

and to verify the mass fraction of PB in block copolymers (Figure A.1-Figure A.12).  A 

300 MHz Varian NMR spectrometer is used to collect proton NMR spectra from solutions 

of polymers in deuterated chloroform (CDCl3).  Hydrogen atoms in the vinyl group of 1,2-

butadiene contribute to the intensities of peaks at δ = 4.9 ppm (two hydrogens) and δ = 5.4 

ppm  (one hydrogen).  The two hydrogen atoms attached to the double-bonded carbons of 

1,4-butadiene contribute to the peak intensity at δ = 5.4 ppm.  The 1,2-butadiene content is 

calculated from these peak intensities:  x1,2 = Iδ =4.9ppm / (Iδ =4.9ppm + Iδ =5.4ppm - ½ Iδ =4.9ppm ).  

The mole fraction of PB in a PB-polystyrene (PS) block copolymer is computed by 

comparing the intensity per mole of hydrogen of PB peaks (both 1,4- and 1,2- addition) to 

that of aromatic peaks in the range of δ = 6.2 – 7.4 ppm.  The mole fraction is easily 

converted to the mass fraction using the monomers’ molar masses. 

The polymers’ molecular weight distributions, characterized by the polydispersity index 

(PDI = Mw / Mn), is measured using gel permeation chromatography (GPC) (Figure A.1-

Figure A.12).  A dilute solution of the polymer in THF is eluted through four gel columns 

(Polymer Laboratories PLgel 10 µm analytical columns, 30 cm long) using THF flowing at 

a rate of 0.9 mL/min and is detected at the outlet by a Waters 410 differential refractometer.  

The chromatograph is calibrated with monodisperse PS standards and the PDI is calculated 

using the Millenium® software from Waters.  The total time to traverse all four columns is 

approximately 45 minutes.  In some cases (when the GPC trace only goes from zero to 30 

minutes) only two columns were used.   

Prepolymer properties are summarized in Table A.1-Table A.4.  NMR and GPC data from 

prepolymers are presented in Figure A.1-Figure A.12.   

A.1.5 Characterization of Side-Group Liquid Crystal Polymers 

The degree of conversion (percentage of reacted 1,2-PB monomers) of SGLCPs is 

measured by proton NMR (Figure A.13-Figure A.25).  Just as was the case in the 
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prepolymer, the mole fraction of unreacted 1,2-buatdiene monomers is quantified by 

the intensity of the peak at  δ = 4.9 ppm.  Using the peak at δ = 3.9 ppm (two alkyl 

hydrogens adjacent to the cyanobiphenyl core) as a convenient measure of the mesogenic 

side groups, the degree of conversion is the ratio of this peak intensity to that of 1,2 PB: xLC 

= Iδ =3.9ppm / (Iδ =4.9ppm + Iδ =3.9ppm).  The mole fraction of unreactive 1,4-PB and the molecular 

weight of the coil block(s) is assumed to be the same as in the prepolymer.  The molecular 

weight of SGLCP block is calculated using the measured composition and the known 

molecular weight of polybutadiene in the prepolymer.  Polydispersity of the SGLCPs is 

measured by GPC, just like the prepolymer (Figure A.13-Figure A.25).   

SGLCP properties are summarized in Table A.5-Table A.8.  NMR and GPC data from 

SGLCPs are presented in Figure A.13-Figure A.25.   
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A.2 Tables 

Table A.1 Molecular weight, composition, and polydispersity of 1,2-polybuatdiene 
prepolymers used to synthesize side-group liquid crystalline homopolymers in Table A.5.  
See Figure A.1-Figure A.3 for data used to calculate and composition of the PB block 
and polydispersity.       

Name Mn 
[kg/mol] 

Mole 
Fraction 
1,2 PB 

Mole 
Fraction 
1,4 PB 

PDIa 

50H 47.5b 0.89 0.11 1.06 

60H 63c 0.97 0.03 1.05 

100H 104b 0.96 0.04 1.05 
aPDI = Polydispersity Index (Mw/Mn) 
bInformation provided by the supplier, Polymer Source (Montreal, Quebec) 
cPolymer synthesized by Steven Smith (Proctor and Gamble, Inc.), Mn 
independently measured by Michael Kempe using multi-angle laser light 
scattering[4] 
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Table A.2 Molecular weight, composition, and polydispersity of poly[styrene-b-1,2-
butadiene] diblock prepolymers used to synthesize PS-SGLCP diblock copolymers in 
Table A.6.  See Figure A.4-Figure A.10 for data used to calculate and composition of the 
PB block and polydispersity.     

 PS 
Block PB Block  

Name Mn 
[kg/mol] 

Mn 
[kg/mol] 

Mole 
Fraction 
1,2 PB 

Mole 
Fraction 
1,4 PB 

PDIa 

30(60)AB 33b 63.5b 0.85 0.15 1.12 

100(70)AB 97b 70b 0.88 0.12 1.19 

100(190)AB 97b 191b 0.77 0.23 1.42 

60(40)AB 59c 43c 0.99 0.01 1.04 

60(60)AB 57c 59c 0.97 0.03 1.08 

60(80)AB 57c 83c 0.95 0.05 1.09 

50(120)AB 50c 121c 0.99 0.01 1.06 
aPDI = Polydispersity Index (Mw/Mn) 
bInformation provided by the supplier, Polymer Source (Montreal, Quebec) 
cInformation provided by the supplier, David Uhrig (Center for Nanophase 
Materials Sciences, Oak Ridge National Laboratory) 
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Table A.3 Molecular weight, composition, and polydispersity of poly[styrene-b-1,2-
butadiene-b-styrene] triblock prepolymer used to synthesize the PS-SGLCP-PS triblock 
copolymer in Table A.7.  See Figure A.11 for data used to calculate and composition of 
the PB block and polydispersity.     

 PS 
Blocks PB Block  

Name Mn 
[kg/mol] 

Mn 
[kg/mol] 

Mole 
Fraction 
1,2 PB 

Mole 
Fraction 
1,4 PB 

PDIa 

(60)150(70)ABA 57, 67b 146b 0.86 0.14 1.43 
aPDI = Polydispersity Index (Mw/Mn) 
bPolymer purchased from Polymer Source (Montreal, Quebec), Mn independently 
measured by Michael Kempe using multi-angle laser light scattering[4] 
 
 
 
 
Table A.4 Molecular weight, composition, and polydispersity of poly[(methyl 
methacrylate)-b-1,2-butadiene] diblock prepolymer used to synthesize the PMMA-
SGLCP diblock copolymer in Table A.8.  See Figure A.12 for data used to calculate and 
composition of the PB block and polydispersity.   

 PMMA 
Block PB Block  

Name Mn 
[kg/mol] 

Mn 
[kg/mol] 

Mole 
Fraction 
1,2 PB 

Mole 
Fraction 
1,4 PB 

PDIa 

140(70)BdMMA 68b 142b 0.87 0.13 1.24 
aPDI = Polydispersity Index (Mw/Mn) 
bInformation provided by the supplier, Polymer Source (Montreal, Quebec) 
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Table A.5 Molecular weight, composition, and polydispersity of the side-group liquid 
crystal homopolymers synthesized from prepolymers in Table A.1.  See Figure A.4-
Figure A.10 and Figure A.17-Figure A.23 for data used to calculate composition, 
polydispersity, and the molecular weight of the SGLCP block.   

Name Mn 
[kg/mol] 

Mole 
Fraction 
1,2 PB 

Mole 
Fraction 
1,4 PB 

Mole 
Fraction 

LC 
PDIa 

350HSiCB4 347 0 0.11 0.89 1.27 

d2350HSiCB4 348 0 0.11 0.89 1.27 

490HSiCB4 489 0.01 0.03 0.96 1.48 

760HSiCB4 762 0.06 0.04 0.90 1.11 
aPDI = Polydispersity Index (Mw/Mn) 
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Table A.6 Molecular weight, composition, and polydispersity of the side-group liquid 
crystal diblock copolymers with coil block composed of polystyrene (PS), synthesized 
from prepolymers in Table A.2 .  See Figure A.4-Figure A.10 and Figure A.17-Figure 
A.23 for data used to calculate composition, polydispersity, and the molecular weight of 
the SGLCP block.   

 SGLCP Block  

Name 

PS 
Block 

Mn 
[kg/mol]

Mn 
[kg/mol]

Mole 
Fraction 
1,2 PB 

Mole 
Fraction 
1,4 PB 

Mole 
Fraction 

LC 
PDIa 

210(60)ABSiCB4 63.5 205 0.13 0.15 0.72 1.22 

700(70)ABSiCB4 70 700 0 0.11 0.89 1.50 

580(190)ABSiCB4 191 577 0.09 0.23 0.68 1.56 

470(40)ABSiCB4 43 472 0 0.01 0.99 1.19 

390(60)ABSiCB4 59 388 0.15 0.03 0.85 1.11 

420(80)ABSiCB4 83 422 0.05 0.05 0.90 1.07 

320(120)ABSiCB4 121 323 0.22 0.01 0.77 1.05 
aPDI = Polydispersity Index (Mw/Mn) 
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Table A.7 Molecular weight, composition, and polydispersity of the side-group liquid 
crystal triblock copolymer with polystyrene endblocks, synthesized from the prepolymer 
in Table A.3.  See Figure A.11 and Figure A.24  for data used to calculate composition, 
polydispersity, and the molecular weight of the SGLCP block.   

 SGLCP Block  

Name 

PS 
Blocks 

Mn 
[kg/mol]

Mn 
[kg/mol]

Mole 
Fraction 
1,2 PB 

Mole 
Fraction 
1,4 PB 

Mole 
Fraction 

LC 
PDIa 

1100ABASiCB4 57,67 1,012 0.02 0.14 0.84 1.16 
aPDI = Polydispersity Index (Mw/Mn) 
 
 
 
Table A.8 Molecular weight, composition, and polydispersity of the side-group liquid 
crystal diblock copolymer with coil block composed of poly(methyl methacrylate) 
(PMMA), synthesized from the prepolymer in Table A.4.  See Figure A.12 and Figure 
A.25 for data used to calculate composition, polydispersity, and the molecular weight of 
the SGLCP block.   

 SGLCP Block  

Name 

PMMA 
Block 

Mn 
[kg/mol]

Mn 
[kg/mol]

Mole 
Fraction 
1,2 PB 

Mole 
Fraction 
1,4 PB 

Mole 
Fraction 

LC 
PDIa

950(70)BdMMASiCB4 68 954 0.07 0.13 0.80 1.11 
aPDI = Polydispersity Index (Mw/Mn) 
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A.3 Schemes 
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OCN

CHB 4OH CBV4  
 
Scheme A.1 Synthesis of 4-cyano-4′-(3-butenoxy)-biphenyl (CBV4) by Mitsunobu 
reaction between 4-cyano-4′-hydroxybiphenyl (CHB) and 3-buten-1-ol (4OH) using 
diisopropyl azodicarboxylate (DIAD) and triphenylphosphine (TPP) in tetrahydrofuran 
(THF) at room temperature   
 

 

 

OH

4OH

CH3S
O

O
Cl

TsCl

1 eq. Pyridine

DCM, 10 h
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Scheme A.2 Synthesis of 4-cyano-4′-(3-butenoxy)-biphenyl (CBV4) by Williamson ether 
synthesis.  3-buten-1-ol (4OH) is first converted to 3-butenyl-1-tosylate (4OTs) by 
reaction with p-toluenesulfonyl chloride (TsCl) and is subsequently reacted with 4-cyano-
4′-hydroxybiphenyl (CHB) to yield the final product.    
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Scheme A.3  Synthesis of 4-cyano-4′-(5-(1,1,3,3,-tetramethyldisiloxane)butoxy)biphenyl 
(SiCB4) by platinum-catalyzed hydrosilylation   
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Scheme A.4 Attachment of SiCB4 to a 1,2-polybutadiene monomer by platinum-
catalyzed hydrosilylation   
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A.4 Figures 
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Figure A.1 300 MHz proton NMR spectrum of 50H, a 1,2-polybutadiene homopolymer 
with Mn = 47.5 kg/mol, in CDCl3.  Peak labels include the relative intensity (integrated 
area) and their assignments.  This data was used to calculate the polymer composition 
reported in Table A.1. The GPC chromatograph used to measure polydispersity is shown 
in the inset.   
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Figure A.2 300 MHz proton NMR spectrum of 60H, a 1,2-polybutadiene homopolymer 
with Mn = 63 kg/mol, in CDCl3.  Peak labels include the relative intensity (integrated 
area) and their assignments.  This data was used to calculate the polymer composition 
reported in Table A.1. The GPC chromatograph used to measure polydispersity is shown 
in the inset.   
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Figure A.3 300 MHz proton NMR spectrum of 100H, a 1,2-polybutadiene homopolymer 
with Mn = 104 kg/mol, in CDCl3.  Peak labels include the relative intensity (integrated 
area) and their assignments.  This data was used to calculate the polymer composition 
reported in Table A.1. The GPC chromatograph used to measure polydispersity is shown 
in the inset.   
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Figure A.4 300 MHz proton NMR spectrum of 30(60)AB, a poly[styrene-b-1,2-
butadiene] block copolymer with MPS = 63.5 kg/mol and MPB = 33 kg/mol, in CDCl3.  
Peak labels include the relative intensity (integrated area) and their assignments.  This 
data was used to calculate the polymer composition reported in Table A.2. The GPC 
chromatograph used to measure polydispersity is shown in the inset.   
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Figure A.5 300 MHz proton NMR spectrum of 100(70)AB, a poly[styrene-b-1,2-
butadiene] block copolymer with MPS = 70 kg/mol and MPB = 97 kg/mol, in CDCl3.  Peak 
labels include the relative intensity (integrated area) and their assignments.  This data was 
used to calculate the polymer composition reported in Table A.2. The GPC 
chromatograph used to measure polydispersity is shown in the inset.   
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Figure A.6 300 MHz proton NMR spectrum of 100(190)AB, a poly[styrene-b-1,2-
butadiene] block copolymer with MPS = 191 kg/mol and MPB = 97 kg/mol, in CDCl3.  
Peak labels include the relative intensity (integrated area) and their assignments.  This 
data was used to calculate the polymer composition reported in Table A.2. The GPC 
chromatograph used to measure polydispersity is shown in the inset.   
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Figure A.7 300 MHz proton NMR spectrum of 60(40)AB, a poly[styrene-b-1,2-
butadiene] block copolymer with MPS = 43 kg/mol and MPB = 59 kg/mol, in CDCl3.  
Peak labels include the relative intensity (integrated area) and their assignments.  This 
data was used to calculate the polymer composition reported in Table A.2. The GPC 
chromatograph used to measure polydispersity is shown in the inset.   
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Figure A.8 300 MHz proton NMR spectrum of 60(60)AB, a poly[styrene-b-1,2-
butadiene] block copolymer with MPS = 59 kg/mol and MPB = 57 kg/mol, in CDCl3.  
Peak labels include the relative intensity (integrated area) and their assignments.  This 
data was used to calculate the polymer composition reported in Table A.2. The GPC 
chromatograph used to measure polydispersity is shown in the inset.   
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Figure A.9 300 MHz proton NMR spectrum of 60(80)AB, a poly[styrene-b-1,2-
butadiene] block copolymer with MPS = 83 kg/mol and MPB = 57 kg/mol, in CDCl3.  
Peak labels include the relative intensity (integrated area) and their assignments.  This 
data was used to calculate the polymer composition reported in Table A.2. The GPC 
chromatograph used to measure polydispersity is shown in the inset.   
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Figure A.10 300 MHz proton NMR spectrum of 50(120)AB, a poly[styrene-b-1,2-
butadiene] block copolymer with MPS = 121 kg/mol and MPB = 50 kg/mol, in CDCl3.  
Peak labels include the relative intensity (integrated area) and their assignments.  This 
data was used to calculate the polymer composition reported in Table A.2. The GPC 
chromatograph used to measure polydispersity is shown in the inset.   
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Figure A.11 300 MHz proton NMR spectrum of (60)150(70)ABA, a poly[styrene-b-1,2-
butadiene-b-styrene] triblock copolymer with MPS = 57 and 67 kg/mol and MPB = 146 
kg/mol, in CDCl3.  Peak labels include the relative intensity (integrated area) and their 
assignments.  This data was used to calculate the polymer composition reported in Table 
A.3. The GPC chromatograph used to measure polydispersity is shown in the inset.   
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Figure A.12 300 MHz proton NMR spectrum of 140(70)BdMMA, a poly[(methyl 
methacrylate)-b-1,2-butadiene] block copolymer with MPMMA = 68 kg/mol and MPB = 142 
kg/mol, in CDCl3.  Peak labels include the relative intensity (integrated area) and their 
assignments.  This data was used to calculate the polymer composition reported in Table 
A.4. The GPC chromatograph used to measure polydispersity is shown in the inset.   
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Figure A.13 300 MHz proton NMR spectrum of 350HSiCB4, an SGLCP homopolymer 
synthesized from 50H, in CDCl3.  Peak labels include the relative intensity (integrated 
area) and their assignments.  This data was used to calculate the polymer composition 
and molecular weight reported in Table A.5. The GPC chromatograph used to measure 
polydispersity is shown in the inset.   
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Figure A.14 300 MHz proton NMR spectrum of d2350HSiCB4, a deuterium-labeled 
SGLCP homopolymer synthesized from 50H, in CDCl3.  Peak labels include the relative 
intensity (integrated area) and their assignments.  This data was used to calculate the 
polymer composition and molecular weight reported in Table A.5. The GPC 
chromatograph used to measure polydispersity is shown in the inset.   
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Figure A.15 300 MHz proton NMR spectrum of 490HSiCB4, an SGLCP homopolymer 
synthesized from 60H, in CDCl3.  Peak labels include the relative intensity (integrated 
area) and their assignments.  This data was used to calculate the polymer composition 
and molecular weight reported in Table A.5. The GPC chromatograph used to measure 
polydispersity is shown in the inset.  The relative intensity of peak d may be anomalously 
high due to incomplete removal of unreacted mesogen in this particular sample.   
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Figure A.16 300 MHz proton NMR spectrum of 760HSiCB4, an SGLCP homopolymer 
synthesized from 100H, in CDCl3.  Peak labels include the relative intensity (integrated 
area) and their assignments.  This data was used to calculate the polymer composition 
and molecular weight reported in Table A.5. The GPC chromatograph used to measure 
polydispersity is shown in the inset.   
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Figure A.17 300 MHz proton NMR spectrum of 210(60)ABSiCB4, a PS-SGLCP diblock 
copolymer synthesized from 30(60)AB, in CDCl3.  Peak labels include the relative 
intensity (integrated area) and their assignments.  This data was used to calculate the 
polymer composition and molecular weight of the SGLCP block reported in Table A.6. 
The GPC chromatograph used to measure polydispersity is shown in the inset.   
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Figure A.18 300 MHz proton NMR spectrum of 700(70)ABSiCB4, a PS-SGLCP diblock 
copolymer synthesized from 100(70)AB, in CDCl3.  Peak labels include the relative 
intensity (integrated area) and their assignments.  This data was used to calculate the 
polymer composition and molecular weight of the SGLCP block reported in Table A.6. 
The GPC chromatograph used to measure polydispersity is shown in the inset.  The 
relative intensity of peak d may be anomalously high and the presence of a peak at δ = 
3.85 ppm may be due to incomplete removal of unreacted mesogen in this particular 
sample.    
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Figure A.19 300 MHz proton NMR spectrum of 580(190)ABSiCB4, a PS-SGLCP 
diblock copolymer synthesized from 100(190)AB, in CDCl3.  Peak labels include the 
relative intensity (integrated area) and their assignments.  This data was used to calculate 
the polymer composition and molecular weight of the SGLCP block reported in Table 
A.6. The GPC chromatograph used to measure polydispersity is shown in the inset.   
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Figure A.20 300 MHz proton NMR spectrum of 470(40)ABSiCB4, a PS-SGLCP diblock 
copolymer synthesized from 60(40)AB, in CDCl3.  Peak labels include the relative 
intensity (integrated area) and their assignments.  This data was used to calculate the 
polymer composition and molecular weight of the SGLCP block reported in Table A.6. 
The GPC chromatograph used to measure polydispersity is shown in the inset.   
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Figure A.21 300 MHz proton NMR spectrum of 390(60)ABSiCB4, a PS-SGLCP diblock 
copolymer synthesized from 60(60)AB, in CDCl3.  Peak labels include the relative 
intensity (integrated area) and their assignments.  This data was used to calculate the 
polymer composition and molecular weight of the SGLCP block reported in Table A.6. 
The GPC chromatograph used to measure polydispersity is shown in the inset.   
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Figure A.22 300 MHz proton NMR spectrum of 420(80)ABSiCB4, a PS-SGLCP diblock 
copolymer synthesized from 60(80)AB, in CDCl3.  Peak labels include the relative 
intensity (integrated area) and their assignments.  This data was used to calculate the 
polymer composition and molecular weight of the SGLCP block reported in Table A.6. 
The GPC chromatograph used to measure polydispersity is shown in the inset.   
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Figure A.23 300 MHz proton NMR spectrum of 320(120)ABSiCB4, a PS-SGLCP 
diblock copolymer synthesized from 50(120)AB, in CDCl3.  Peak labels include the 
relative intensity (integrated area) and their assignments.  This data was used to calculate 
the polymer composition and molecular weight of the SGLCP block reported in Table 
A.6. The GPC chromatograph used to measure polydispersity is shown in the inset.   
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Figure A.24 300 MHz proton NMR spectrum of 1100ABASiCB4, a PS-SGLCP-PS 
triblock copolymer synthesized from (60)150(70)ABA, in CDCl3.  Peak labels include 
the relative intensity (integrated area) and their assignments.  This data was used to 
calculate the polymer composition and molecular weight of the SGLCP block reported in 
Table A.7. The GPC chromatograph used to measure polydispersity is shown in the inset.   
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Figure A.25 300 MHz proton NMR spectrum of 950(70)BdMMASiCB4, a PMMA-
SGLCP diblock copolymer synthesized from 140(70)BdMMA, in CDCl3.  Peak labels 
include the relative intensity (integrated area) and their assignments.  This data was used 
to calculate the polymer composition and molecular weight of the SGLCP block reported 
in Table A.8. The GPC chromatograph used to measure polydispersity is shown in the 
inset.   
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B.1 Appendix 

All reagents were purchased and used as received from Aldrich, unless otherwise noted.   

B.1.1 Synthesis of Perdeuterated 4-Pentyl-4′-Cyanobiphenyl (d195CB) 

Using the same method employed by Michael Kempe[1, 2], a platinum-catalyzed deuterium 

exchange is used to perdeuterate 4-pentylbiphenyl (5B) (Scheme B.1).[3]  5B (20 mL, 

purchased from TCI America and used as received) is combined with deuterium oxide 

(D2O, 20 mL), platinum black (400 mg), and a piece of aluminum foil (approximately 2 

cm2) in a high-pressure, Teflon-lined reaction vessel.  The vessel is mounted on a rotating 

arm inside an oven, where it is continually agitated and held at a temperature between 170 

and 200 °C.  Approximately once every seven days, the vessel is removed from the oven 

and, after cooling to room temperature, it is opened and the water inside is replaced with 

fresh D2O.  At this time, a small sample of 5B is taken and the deuterium content is 

measured by NMR spectroscopy: a proton NMR spectrum is collected from a solution 

containing known quantities of 5B (~ 100 mg) and DCM (~ 1 mg) in deuterated chloroform 

(CDCl3) and the DCM peak is used as a standard to calculate the degree of deuteration.  
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The process is repeated for approximately eight weeks until a high degree of deuterium 

substitution is achieved, typically 95 mol %.  

After completing the deuterium substitution, perdeuterated 5B (d205B) is converted to 

perdeuterated 4-pentyl-4-cyanobiphenyl (d195CB) in two steps (Scheme B.1).  First, d205B 

(26 g, 110 mmol) is reacted with one equivalent of elemental bromine (5.4 mL, 110 mmol) 

catalyzed by FeBr3 (900 mg, 3.0 mmol).  The d205B and FeBr3 are dissolved together in 50 

mL chloroform then Br2 is added dropwise at room temperature.  The mixture is allowed to 

stir at room temperature for 30 minutes after completing the Br2 addition.  The product, 

perdeuterated 4-pentyl-4-bromobiphenyl (d195BBr), is precipitated with water, filtered, and 

dried.  The dry product is recrystallized from hot hexane (200 mL heated to 40 °C), 

achieving 31% yield overall (11 g, 34 mmol).  Next, d195BBr is reacted with potassium 

cyanide to yield the final product, d195CB.  A palladium catalyst (Pd(TPP)2) is synthesized 

by dissolving palladium II acetate (Pd(OAc)2, 180 mg, 0.80 mmol) together with triphenyl 

phosphine (TPP, 420 mg, 1.6 mmol) in 40 mL anhydrous toluene and heated at 50 °C until 

the mixture turns bright red.  The remaining reagents are then added directly to the catalyst 

solution: d195BBr (1.8 g, 5.5 mmol), KCN (360 mg, 5.5 mmol), and the phase-transfer 

catalyst N, N, N′, N′-tetramethylethylenediamine (TMEDA, 160 µL, 1.1 mmol), which 

promotes the solubility of KCN in organic solvent.[4]  The reaction flask is purged with 

inert gas, then sealed and heated at 90 °C for approximately 18 hours.  The product is 

purified on a silica gel column using 1% ethyl acetate in hexane as the mobile phase, and 

the typical yield is approximately 75%.  The d195CB is often repeatedly fractionated on a 

silica gel column and fractions having very low nematic-isotropic transition temperatures 

(TNI) are discarded.  The TNI of the final product, obtained by combining d195CB from 

several separate syntheses, is usually between 32.0 and 33.5 °C, slightly below that of 

hydrogenous 5CB (TNI = 35 °C).  The deuterium content of d195CB is measured by proton 

NMR in the same way as for d205B (Figure B.1).   

B.1.2 Synthesis of Deuterium-Labeled 4-Cyano-4′-hydroxybiphenyl (d2CHB) 

Deuterium atoms are incorporated into 4-cyano-4′-hydroxybiphenyl (CHB) by acid-

catalyzed deuterium exchange.[3]  A solution of deuterium bromide (DBr) and deuterium 
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phosphate (D3PO4) is synthesized by dropwise addition of phosphorus tribromide (2.1g, 

7.8 mmol) to D2O (3.4g, 170 mmol) at 0 °C.  Excess PBr3 is removed from the DBr /  

D3PO4 solution by extraction with ether.  The DBr /  D3PO4 solution is added to a solution 

of CHB (1.9g, 9.7 mmol, purchased from TCI America and used as received) in 13 g 

perdeuterated acetone.  The mixture is refluxed for approximately 72 hours, during which 

time a dark brown tar forms in the reaction flask.  The product is selectively dissolved in 

ether and the tar separated by filtration.  The ether solution is extracted repeatedly with 

water until the aqueous layer ceases to become yellow during washing.  The ether layer is 

then dried with anhydrous Na2SO4 and the product is applied to approximately 100 mL of 

silica gel by evaporating the ether.  The product-loaded silica gel is eluted with hexane, 

followed by 5% ethyl acetate in hexane, followed by 50% ethyl acetate in hexane.  The 

waxy, orange product is purified on another silica gel column using 50% ethyl acetate in 

hexane as the mobile phase then recrystallized from toluene heated to 100 °C.  The overall 

yield is approximately 20%, and the deuterium content is measured by proton NMR 

(Figure B.2).  Deuterium-labeled CHB is attached to a polymer according to the methods 

described in Appendix A.  
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B.2 Schemes 
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Scheme B.1 Synthesis of perdeuterated 4-pentyl-4′-cyanobiphenyl (d195CB).  The 
hydrogen atoms of 4-pentylbiphenyl (5B) are exchanged for deuterium via platinum-
catalyzed exchange with D2O to make perdeuterated 4-pentylbiphenyl (d205B).  This is 
then reacted with elemental bromine to make 4-pentyl-4′-bromobiphenyl (d195BBr), 
which is subsequently reacted with potassium cyanide to yield the product.  Typically, 
between 90 and 95 mol % of the hydrogen atoms are replaced with deuterium in the final 
product.   
 

OHCN
DBr / D3PO4

d6Acetone, 3 days
Reflux

ODCN

D

D

CHB d2CHB  

Scheme B.2 Deuterium labeling of 4-cyano-4′-hydroxybiphenyl (d2CHB).  Heating CHB 
in perdeuterated, acidic solution results in exchange of the hydrogens ortho- to the 
hydroxyl group.   
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Figure B.1 300 MHz proton NMR spectrum of d195CB and dichloromethane (DCM) in 
CDCl3 used to calculate the deuterium content.  The number under each peak assignment 
is the relative intensity (integrated area) per mole of hydrogen at that site, taking into 
account the relative amounts of d195CB and DCM in the sample.  The mole fraction of 
hydrogen at a specific site on the d195CB molecule is calculated by dividing its relative 
intensity by that of DCM.  In this particular sample, 94 mol % of the total hydrogen 
atoms have been replaced with deuterium.   
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Figure B.2 300MHz proton NMR spectrum of d2CHB in d6-acetone.  The number under 
each peak assignment gives the relative intensity (integrated area).  The molecule’s 
deuterium content is measured from the ratio of the peak intensity at δ = 7.0 ppm to that 
at δ = 7.6 ppm, or half that at δ = 7.8 ppm.  In this case, 94 mol % of the hydrogen atoms 
in the position para- to the hydroxyl group have been replaced with deuterium.   
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C.1 Appendix 

Small-angle neutron scattering (SANS) data from solutions of diblock copolymers having a 

side-group liquid crystal polymer (SGLCP) block and a random-coil polymer (polystyrene, 

PS) in a small-molecule liquid crystal (LC) solvent is presented in Chapter 3.  The diblock 

copolymers self-assemble in LC solvent to form micelles composed of PS-rich cores 

surrounded by SGLCP-rich coronas.  Extensive efforts were made to fit the SANS data to 

structural models in order to extract parameters such as the core radius, the corona 

thickness, and the aggregation number, but the results are inconclusive.  This appendix 

details the successes and failures of the data-fitting methods used.   

C.1.1 Theory of Scattering from Block Copolymer Micelles 

The differential scattering cross-section, ∂Σ/∂Ω(q), from a solution of N mondisperse, 

spherically symmetric particles of volume V and with neutron scattering contrast (∆ρ)2 is 

given by the product of a form factor, P(q), and a structure factor S(q): 

( ) ( ) ( ) ( )qSqPVNq 22ρ∆=
Ω∂
Σ∂ ,                                                   (C.1) 
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where q = 4π/λ sin (θs / 2) is the magnitude of the scattering vector at an angle, θs.[1, 2]  

The form factor accounts for intra-particle scattering and depends on the shape and 

composition of the particle.  The structure factor accounts for interference between 

particles and depends on the inter-particle potential.  In the case of a solution of 

polydisperse, interacting particles, a decoupling approximation[3] may be used to write the 

scattered intensity 

( ) ( ) ( ) ( ) ( )( )[ ]1122 −+∆=
Ω∂
Σ∂ qSqqPVNq βρ ,                          (C.2) 

where β(q) is a factor between 0 and 1 that dampens the structure factor oscillations.  

Interparticle interference becomes negligible when the volume fraction of particles is very 

small or when particles are correlated on length scales much larger than q.  In this case, 

S(q) = 1 and the differential scattering cross-section from a solution of uncorrelated 

particles, whether monodisperse or polydisperse, is simply  

( ) ( ) ( )qPVNq 22ρ∆=
Ω∂
Σ∂ .                                             (C.3) 

Numerous form factors are available for modeling block copolymer micelles with varying 

levels of structural detail (Figure C.1).  In the simplest case, a micelle may be modeled as a 

spherical core of homogeneous scattering length density surrounded by a concentric shell 

of homogeneous scattering length density (Figure C.1a).[4, 5]  This model is extended to 

anisotropic micelles by using ellipsoidal or cylindrical cores and shells, for examples 

(Figure C.1b,c).[5]  More detailed models take into account the polymeric nature of the 

material in the shell and treat the micelle as a homogeneous core with chains attached to the 

surface (Figure C.1d)[6, 7] or account for a radial density profile of the polymer in the shell 

(Figure C.1e).[8-10]  These models are extended to anisotropic micelles, as well.[11]  

Choosing a very detailed form factor can yield more structural information about the 

micelles, but it also introduces an increasing number of fitting parameters and requires 

increasingly high-resolution scattering experiments to be confident in the physical 

significance of the resulting fit.  In practice, one narrows the field to physically realistic 

form factors for the system of interest then chooses the simplest one that can be used to fit 

the data with consistency between different samples.   
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The structure factor most commonly employed for block copolymer micelles is the 

Percus-Yevick model for hard spheres[12, 13] because fits to SANS data are usually equally 

good regardless of the interparticle potential invoked.[5]  For example, Castelletto, Hamley, 

and Pedersen[14] found that highly swollen micelles formed the BCC lattice expected for 

soft spheres, but the scattering was equally well modeled with the hard-sphere structure 

factor as with the soft-sphere structure factor.  The Percus-Yevick model is, therefore, 

preferred because it is one of the few structure factors that can be calculated analytically, 

thus saving computing time.   

Polydispersity of particle size and the limitations of instrumental resolution[15] cause 

smearing of the intensity profile, and these effects must be accounted for when modeling 

experimental data.  The distribution of block copolymer micelle radii, R, is typically 

modeled with a Schultz distribution:[3, 4] 

( )1
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⎥
⎦
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where n is the population of micelles with radius R,  <R> is the average radius, β is a width 

parameter, and Γ denotes the gamma function.  Applying this distribution to the differential 

scattering cross-section from uncorrelated micelles (Equation C.3) gives: 

( ) ( ) ( )∫
∞

∆=
Ω∂
Σ∂

0

22 ,)( dRRqPVNRnq ρ ;                              (C.5) 

higher-order corrections must be made when S(q) ≠ 1.[3, 5]  The instrument used to measure 

the scattering pattern has a particular resolution function, σ(q), that must be applied to 

simulate experimentally measured data.  The resolution-smeared differential scattering 

cross-section, ∂Σ/∂Ω(q)smeared, is 
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C.1.2 Fitting Scattering Data from PS-SGLCP Diblock Copolymer Micelles with the 

Spherical Core-Shell Form Factor Including Polydispersity and Instrumental 

Smearing 

In practice, the experimentally measured intensity, I(q), is not necessarily in absolute units.  

I(q) is assumed to be proportional to ∂Σ/∂Ω(q) and the proportionality constant is lumped 

together with the product N(∆ρ)2V2 into an overall multiplicative factor, K. Physical 

parameters are extracted from the data by hypothesizing a form factor and structure factor 

then using least-squares algorithms to determine the model parameters that give the best fit 

to the experimental data.[5]  

The structure factor was found to make a negligible contribution to the scattering from coil-

SGLCP diblocks dissolved in LC solvent.  The peaks often observed at low q are 

insensitive to concentration, in opposition to the strong concentration dependence predicted 

by the hard-sphere structure factor model.  Indeed, in a series of diblock solutions ranging 

from 2 to 20 wt % polymer, the peak positions do not change with concentration and the 

maximum intensity (normalized by concentration) varies by less than 40%, implying that 

S(q) is, at most, 1.4.[16]  These structure factor contributions are ignored and scattering 

patterns are modeled as the product of a form factor and a multiplicative constant. 

The spherical core-shell form factor for coil-SGLCP diblock micelles is derived in 

Appendix D to be 

[ ]2222
2 2)(1

ssssccsscccc
PS

KVKVVKVqP
f

ψψψψ ++= ,                             (C.7)  

where 
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Equation C.7 contains only two adjustable parameters: Rc and Rs, the radius of the core and 

overall micelle, respectively (Figure C.1a).   ρPS, ρLCP, and ρd195CB denote the scattering 

length densities of pure PS, SGLCP, and d195CB, respectively, while vPS and vLCP denote 

the volumes of one polystyrene block and one SGLCP block, respectively.  The scattering 

length densities are listed in Table D.1 and the polymer volumes are calculated from the 

molecular weights and the densities listed in Table D.1.  Keeping the ratio of Rs / Rc 

constant, a Schultz distribution (Equation C.4) of core sizes is used to calculate the 

unsmeared intensity with Equation C.5 and Equation C.7, absorbing the volume fraction of 

PS in the core, fPS, into a constant K′ = K / fPS
2.  A Lorentzian describing the monomer-level 

scattering of a polymer with correlation length ξ is added to describe the high-q scattering: 

( ) ( )( )21 ξq
KqI L

+
= ,                                                (C.8) 

where KL is a weighting factor for this term.  Equation C.8 was used to model scattering 

from SGLCP homopolymers in Chapter 5.  The total intensity is smeared with the 

resolution function of the Small-Angle Scattering Instrument (SASI) at Argonne National 

Laboratory’s Intense Pulsed Neutron Source, which has been previously reported[17] and is 

interpolated for numeric integration with a sixth degree polynomial (Figure C.2).  In 

summary, the total calculated intensity is  
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with K′ = K / fPS
2, n(Rc) given by Equation C.4, and P(q, Rc) given by Equation C.7.  Iinc 

accounts for q-independent background scattering.  Least-squares fitting of Equation C.9 to 

the experimental scattering patterns is performed with WaveMetrics IGOR Pro® using 

procedures available from the NIST Center for Neutron Research,[18, 19] modified to 

include Equation C.7.    

SANS patterns are well-described by Equation C.9 (Figure C.3), and the fits give values of 

Rc and Rs (Figure C.4 and Figure C.5).  Least-squares fitting was initially performed 

allowing all the variables, K′, Rc, Rs, β, KL, ξ, and Iinc, to float freely.  A second round of 

data fitting was performed at fixed polydispersities, p = (1+β)-1/2.  The quality of fit 

changes with p, but the values of Rc and Rs
 are insensitive to this parameter.  Mean values 

of Rc and Rs
 (such as those reported in Figure C.4 and Figure C.5) are calculated by 

averaging Rc and Rs
 values obtained from fits with p fixed at various values between 0.01 

and 0.45.  The average is weighted by the sum of the square of the residuals, χ2, between 

the fit and the experimental data.  

C.1.3 Checking Fits for Self-Consistency and Physical Significance 

The length scales extracted from fits to Equation C.9 must be checked for realism and self-

consistency.  The aggregation number, Nagg, is related to Rc and fPS by 

PS

cPS
agg v

RfN
3

3
4 π= ,                                                  (C.10) 

allowing an upper limit on Nagg to be estimated assuming the core is solvent-free (fPS = 1).  

An upper limit on Nagg may also be estimated from the thickness of the shell, using the 

analogous relation, 

 ( )
LCP

csLCP
agg v

RRfN
33

3
4 −= π ,                                        (C.11) 
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and assuming the shell is solvent-free (fLCP = 1).  The upper limits on Nagg for 5 wt % 

diblock solutions in Figure C.4, estimated from Equations C.10 and C.11, jar the intuition 

(Table C.1).  Qualtitative trends in the micelle sizes and aggregation numbers for 5 wt % 

diblock solutions are in agreement with the conclusions drawn from the raw data (Chapter 

3).  Nagg increases with the size of the PS block (Figure C.4) and decreases with increasing 

temperature (Figure C.5).  However, the values of Nagg estimated for the core and corona 

are not consistent with one another.  The corona is expected to be highly swollen with 

solvent, and the upper limit of Nagg estimated from Equation C.11 should, therefore, be 

much larger than that estimated from Equation C.10, but the data show the opposite trend: 

Nagg estimated from the shell dimension is, at most, 50% of that estimated from the core.  In 

the physically unrealistic case that the corona is composed of pure SGLCP, these values of 

Nagg would require between 50 and 70% of the core’s volume to be occupied by solvent 

(Table C.1).  In a more realistic scenario, if the volume fraction of SGLCP in the shell is 

0.5, the core would have to be composed of more than 70% solvent (Table C.1).   

A fundamental assumption of the core-shell model may be responsible for the discrepancy 

between Nagg estimated from the core and the corona.  In applying this model it was 

assumed that there is a well-defined interface between the surface of the micelle and a 

matrix composed of pure d195CB.  In reality, one expects the volume fraction of SGLCP in 

the corona to decay with increasing distance from the core.[20-22]  The high-density layer of 

polymer immediately adjacent to the core surface may constitute and effective shell in an 

effective matrix of SGLCP/d195CB solution; this phenomenon has been observed before in 

aqueous solutions of PEO-PPO-PEO micelles.[23]  A better model for PS-SGLCP micelles 

may be a core-shell model with a density profile (Figure C.1e), but attempts to fit the data 

with such models fail because the selection of a functional form for the density decay is 

arbitrary and introduces additional fitting parameters.[9]  Since equality of the aggregation 

number in the core and shell was imposed in deriving the form factor (Appendix D), the 

accuracy of Rc derived from the core-shell model relies on the accuracy of the shell 

thickness and both length scales are therefore suspect. 
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Confidence in the extracted length scales is further called into doubt by the observation 

that different form factors can provide equally good fits to the data (Figure C.6).  The form 

factor for a homogenous cylinder with radius of 185 Å and length of 545 Å provides a 

description of data from 5 wt % 320(120)ABSiCB4 just as well as the spherical core-shell 

model.  Without data from monodomain samples it is impossible to determine whether an 

anisotropic model is more appropriate for these micelles.  Even if this were the case, 

models for elliptical core-shell structures are extremely difficult to fit because there are 

twice as many length scales involved (Figure C.1b).   

C.1.4 Conclusions 

SANS data from solutions of PS-SGLCP diblock copolymer micelles can be fit with a 

spherical core-shell model, but the length scales extracted from the fits are highly suspect.  

The corresponding aggregation numbers estimated for the core and shell are inconsistent 

with one another and the radial density profile of SGLCP in the corona that likely exists is 

not considered at all by the model.  Furthermore, it is unknown whether a spherical model 

is even appropriate for these micelles; the orientation of the LC solvent probably causes 

them to adopt anisotropic forms.[24, 25]   

The limited range of scattering vectors is, perhaps, the biggest obstacle standing in the way 

of extracting meaningful length scales from this data.  The size of these micelles is greater 

than 150 Å according to every form factor that was attempted.  To get unambiguous fits to 

a form factor, plenty of data should be available in a range of q < L-1, where L is the 

characteristic length scale.  The minimum value of q that was accessed in these 

experiments is 0.00666 Å-1, giving q equal to L-1 at best.  Perhaps data fitting would be 

more successful if the experiments were repeated at a facility giving access to lower values 

of q (e.g., the NIST Center for Neutron Research or, perhaps, a small-angle x-ray scattering 

beamline).      
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C.2 Tables 

Table C.1 Upper bounds on the aggregation number (Nagg) in 5 wt % solutions of diblock 
copolymers estimated from the size of the core using Equation C.10  and from the size of 
the shell using Equation C.11.  The volume fraction of polystyrene in the core (fPS) is 
estimated from Nagg of the shell for two cases: a shell composed of pure SGLCP (fLCP = 
1.0) and a shell composed of 50% SGLCP and 50% solvent (fLCP = 0.5).      

Polymer Max Nagg 
(core) 

Max Nagg 
(shell) 

fPS 
(fLCP = 1.0) 

fPS 
(fLCP = 0.5) 

470(40)ABSiCB4 210 58 0.52 0.14 
390(60)ABSiCB4 240 95 0.34 0.20 
420(80)ABSiCB4 2200 760 0.40 0.17 
320(120)ABSiCB4 4200 2200 0.27 0.26 
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C.3 Figures 

 

Rc

Rs

ρc
ρs

Rc

Rs

ρc
ρs

(a) Spherical Core-Shell (b) Elliptical Core-Shell

Rc
major

Rs
major

ρc

ρs

Rc
minorRs

minor

Rc
major

Rs
major

ρc

ρs

Rc
minorRs

minor Rc

Rs

ρc
ρs

L

Rc

Rs

ρc
ρs

L

(c) Cylindrical Core-Shell

Rc

Rg

ρc
ρchainRc

Rg

ρc
ρchain

(d) Spherical Core-Chain

Rc

ρc

Rc

ρc

Rs

ρs

Rc Rs

ρs

Rc Rs

ρs

Rc

(e) Spherical Core-Shell with Density Profile

Rs

 

Figure C.1 Schematic drawings of examples of structural models that may be used to 
calculate form factors of block copolymer micelles.  These examples all assume a core of 
radius Rc with homogenous neutron scattering length density, ρc.  (a,b,c,e) The core-shell 
models assume the core is surrounded by a concentric shell with scattering length density 
ρs such that the overall micelle’s radius is Rs.  (d) In the core-chain model, the core is 
surrounded by a corona of polymer chains having neutron scattering length density ρchain 
and radii of gyration Rg.   
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Figure C.2 Resolution function of the Small-Angle Scattering Instrument (SASI) at 
Argonne National Laboratory’s Intense Pulsed Neutron Source.  Experimentally 
determined[17] values of σ (square symbols) were interpolated with a sixth degree 
polynomial (line).   
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Figure C.3 Small-angle neutron scattering data from 5 wt % diblock copolymer solutions 
at 25 °C (square symbols) together with representative fits (lines) obtained using the 
spherical core-shell form factor (Equation D.9).   
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Figure C.4 Values of the core radius (Rc) and shell thickness (Rs - Rc) for 5 wt % 
solutions of 470(40)ABSiCB4, 390(60)ABSiCB4, 420(80)ABSiCB4, and 
320(120)ABSiCB4 at 25 °C as a function of the molecular weight of the polystyrene 
block (MPS).  Values are derived from fitting neutron scattering data to the spherical core-
shell model (Equation D.9).  Error bars represent the standard deviation of an average 
from fits using different polydispersities, weighted by the fits’ χ2.   
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Figure C.5 Values of the core radius (Rc) and shell thickness (Rs - Rc) for (a) 5 wt % 
420(80)ABSiCB4 and (b) 5 wt % 320(120)ABSiCB4 as a function of temperature.  
Values are derived from fitting neutron scattering data to the spherical core-shell model 
(Equation D.9).  Error bars represent the standard deviation of an average from fits using 
different polydispersities, weighted by the fits’ χ2.   
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Figure C.6 Small-angle neutron scattering data from 5 wt % 320(120)ABSiCB4 at 25 °C 
(Iexp) shown together with a representative fit using the spherical core-shell model 
(Equation D.9) and the form factor for a cylinder of homogeneous scattering length 
density.   
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D.1 Appendix 

A spherical particle having a total radius Rs composed of a core of radius Rc surrounded by 

a shell of thickness Rs – Rc is assumed to have uniform scattering length density in the core, 

ρc, and in the shell, ρs. The surrounding solvent has a scattering length density ρsolv.  

(Figure D.1).  The form factor, P(q), of the particle is given by[1] 

( ) ( )( ) ( )[ ]222222 2)( ssolvssscsolvsscsccscc VVVVqP ψρρψψρρρρψρρ −+−−+−=     (D.1)  

where Vc and Vs are the volumes of the core and shell, respectively, and  

( ) ( )[ ]
( )3

cossin3

x

xxx
x qR

qRqRqR −=ψ .                                    (D.2) 

The first and last terms in Equation D.1 describe the scattering from the core and from the 

overall particle, respectively.  The middle term (cross term) accounts for the interference 

between the two.  The scattered intensity in the absence of interparticle correlations (S(q) = 

1) is 

( ) ( )qKPqI = .                                                        (D.3) 
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The proportionality constant K is related to the number of scatterers and is, effectively, 

simply a fitting parameter.     

In the case of a polystyrene (PS) – liquid crystal polymer (LCP) diblock copolymer micelle 

dissolved in perdeuterated 5CB (d195CB), PS segregates into the core and the shell contains 

the LCP block.  These cannot be assumed to consist of pure polymer because the 

penetration of d195CB into the micelle dilutes the core such that the volume fraction of PS 

is fPS < 1 and the remaining volume is occupied by solvent.  Similarly, the volume fraction 

of LCP in the shell is fLCP < 1 and the remaining volume is occupied by solvent.  The 

scattering length density of the core and shell are then calculated from   

( ) CBdPSPSPSc ff 519
1 ρρρ −+=                                  (D.4) 

( ) CBdLCPLCPLCPs ff 519
1 ρρρ −+=                                  (D.5) 

where ρPS and ρLCP are the scattering length densities of PS and LCP, respectively, and the 

scattering length density of the solvent is CBd 519
ρ .  The contrast factors, (ρc-ρs) and (ρs-

ρsolv), then become   

( ) ( )CBdLCPLCPCBdPSPSsc ff 55 1919
ρρρρρρ −−−=−                         (D.6) 

And 

( )CBdLCPLCPsolvc f 519
ρρρρ −=−                                         (D.7) 

A relationship between fPS and fLCP is derived from the requirement that the number of LCP 

chains in the shell must equal the number of PS chains in the core by virtue of the diblock 

copolymer’s connectivity.  In other words, the aggregation number of the core must equal 

that of the shell, expressed mathematically as   

( )
LCP

csLCP

PS

cPS

v
RRf

v
Rf 3

3
43

3
43

3
4 πππ −=                               (D.8) 

where vPS and vLCP are the volumes occupied by a single PS block and LCP block, 

respectively.  Equation D.8 gives the following relationship between  fPS and fLCP: 

33

3

cs

c

PS

LCP
PSLCP RR

R
v
vff

−
= .                                          (D.9) 
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Eliminating fLCP from Equations D.6 and D.7 by substituting Equation D.9 gives the 

contrast factors in terms of fPS alone: 

( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
−

−
−−=− CBdLCP

cs

c

PS

LCP
CBdPSPSsc RR

R
v
vf 533

3

5 1919
ρρρρρρ         (D.10) 

( )⎥
⎦
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⎢
⎣

⎡
−

−
=− CBdLCP
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LCP
PSsolvs RR

R
v
vf 533

3

19
ρρρρ .                        (D.11) 

The form factor for the swollen PS-LCP micelle is now written 

[ ]2222 2)( ssssccsscccc KVKVVKVqP ψψψψ ++=                                 (D.12)  

where 
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Evidently, the volume fraction of PS in the core is a multiplicative factor that may be 

absorbed into the proportionality constant, K, when calculating the scattered intensity 

(Equation D.3).  This implies that the degree to which solvent penetrates the micelle cannot 

be measured with SANS unless additional information can be gleaned from the 

interparticle structure factor.  The aggregation number is similarly indeterminate from form 

factor scattering alone, though an upper bound may be established by setting fPS = 1. 

For the purposes of fitting experimental SANS data the scattered intensity calculated from 

Equations D.3 and D.12 contains only three adjustable parameters:  K, Rc, and Rs.  The 

scattering length densities (ρPS, ρLCP, and CBd 519
ρ ) are calculated from the chemical 

composition of each species using 
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m

n

i
c

v

b
i∑

== 1ρ                                                              (D.13) 

where the bcs are the bound coherent scattering lengths of the molecule’s n atoms and vm is 

the molecular volume.  Results for the polymers and solvent studied here are summarized 

in Table D.1.   

It is interesting to speculate on the potential use of contrast matching techniques to simplify 

the scattering from these micelles.  If the scattering length density of the shell is equal to 

that of the solvent, the form factor is reduced to that of a homogeneous sphere, 

( ) 222)( csccVqP ψρρ −= ,                                                 (D.14) 

and the scattering only depends on one length scale, Rc.  However, matching the scattering 

length density of the solvent and the core does not eliminate any terms from the form 

factor.  Only when ρc = ρs does the form factor get simpler, reducing to that of a 

homogenous sphere with radius Rs.    

The high incoherent scattering length of hydrogen makes it undesirable to use 

hydrogenated 5CB as the solvent, but mixtures of 5CB and d195CB could make suitable 

solvents if the mixture was less than perhaps 50 % 5CB.  Deuterium atoms must be 

incorporated into the polymer in order to achieve a contrast match with the solvent.  

Polystyrene is the most obvious candidate for deuteration because styrene monomer 

containing 1, 2, 3, 5, 6, or 8 deuterons (Table D.2) is readily available from chemical 

suppliers.  However, this is not particularly helpful since contrast matching the core does 

not eliminate a length scale; even an empty shell is still characterized by Rc and Rs.  The 

complete form factor for a diblock micelle having a contrast-matched core is 

( ) [ ]2222
2

533

3
2 2)(

19 ssscscccCBdLCP
cs

c

PS

LCP
PS VVVV

RR
R

v
vfqP ψψψψρρ +−⎥

⎦

⎤
⎢
⎣

⎡
−

−
= . (D.15) 

The alternative is to incorporate deuterium into the LCP block, a difficult problem from the 

synthetic point of view.  It may be possible to fully deuterate the mesogens’ aromatic rings 

with techniques similar to those used to synthesize d195CB and d2HSiCB4 (Appendix B).  

Additional deuterons could be incorporated by using a perdeuterated polybutadiene (d8PB) 
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backbone as the prepolymer.  If achievable, these two substitutions would raise the 

scattering length density of HSiCB4 from 0.9 x 10-6 Å-2 to 2.8 x 10-6 Å-2 which would be 

contrast matched with a mixture of 30 % d195CB / 70% 5CB (ρ5CB = 1.4 x 10-6 Å-2), a 

mixture that is likely too high in hydrogen content.  In order to achieve a contrast match 

between HSiCB4 and a 50/50 mixture of d195CB/5CB, 22 of the polymer’s 35 hydrogens 

must be replaced with deuterium atoms (Figure D.2).  This would require deuterium 

substitution of all hydrogens except those on the siloxane linking group.    

Notably from Figure D.2, the scattering length density of d2HSiCB4 is almost perfectly 

matched to that of PS.  This match does not, however, imply that a d2HSiCB4-PS diblock 

would form a micelle with matched core and shell.  Note that all of the contrast terms in 

Equation D.12 are relative to the solvent; none are between the two polymers.  The solvent 

penetrates the core and shell to different degrees such that ρc ≠ ρs, even when ρLCP = ρPS.   
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D.2 Tables 

Table D.1 Densities and scattering length densities, ρ, of relevant molecules.   

 Density 
[g/cm3] 

ρ x 106        
[Å-2] 

 
d195CB 1.1a 6.2 
HSiCB4 1.0a 0.9 
HSiBB 1.0a 1.0 

PS 1.05 1.4 
PB 0.9 0.4 

 aEstimated density; actual value unknown 

 

Table D.2 Densities and scattering length densities, ρ, of polystyrene having various 
levels of deuteration.   

Number of 
Deuterons 

Density 
[g/cm3] 

ρ x 106        
[Å-2] 

 
0 1.05 1.4 
1 1.06a 2.0 
2 1.07a 2.6 
3 1.08a 3.2 
5 1.10a 4.4 
6 1.11a 4.9 
8 1.13a 6.5 

aEstimated density; actual value unknown 
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D.3 Figures    

     

Rs

Rc
ρs ρcρsolv

core

shell

 

Figure D.1 Schematic diagram of a spherical core-shell particle having an overall radius 
Rs and a core radius of Rc.  The scattering length densities of the core and corona (ρc and 
ρs, respectively) are assumed be uniform throughout their respective volumes.  The 
particle is in a solvent with scattering length density ρsolv.   
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Figure D.2 Achievable neutron scattering length densities of the solvent, side-group 
liquid crystal polymer (HSiCB4), and polystyrene (PS) by various strategies for changing 
each component’s deuterium content.  The deuterium content of the solvent can be varied 
by mixing d195CB with 5CB (bottom axis) to achieve ρ x 106 anywhere between 1.4 and 
6.2 Å-2 (solid line).  As the 5CB content increases, the incoherent scattering (Iinc) 
increases.  Deuterium can be incorporated into polystyrene by polymerizing dx-styrene 
where x is the number of deuterium atoms in the monomer (dotted lines).  It might be 
possible to substitute deuterium for some of the 35 hydrogen atoms on the HSiCB4 
monomer (squares, top axis).  Only one such deuteriated polymer, d2HSiCB4, has been 
synthesized to date.   
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E.1 Appendix 

A TA Instruments ARES-RFS fluids rheometer was used to measure the dynamic storage 

modulus, G′(ω), and loss modulus, G′′(ω), of solutions of side-group liquid crystalline 

diblock copolymers, triblock copolymers, and homopolymers dissolved in nematic liquid 

crystal solvent, 4-pentyl-4′-cyanobiphenyl (5CB).  Temperature was controlled with the 

rheometer’s built-in Peltier plate, and before beginning a frequency sweep, the sample was 

heated to 60 °C then annealed at the desired temperature for at least five minutes.  A 25 

mm titanium cone-and-plate tool with a cone angle of 0.04 rad was used, which requires 

approximately 250 mg of sample.   
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