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ABSTRACT

The problem of electromagnetic wave propagation in almost periodic
media is investigated and a solution is obtained directly from Maxwell's
equations. Techniques to evaluate this solution are developzd. These
techniques involve a generalization to almost periodic media of the
Brilleuin diagram of periodic media. The method of invariant imbedding
is applied to the coupled mode equations which determine the Brillouin
diagram for the purpose of transforming them to coupled Riccati equations.
These coupled Riccati equations, when subjected to a single boundary con-
dition, determine the solutions to both the periodic and almost periodic
boundary value problems. These evaluation techniques are ussd to place
in evidence similarities and differences of wave propagation in periodic
and almost periodic media. It is shown that although the periodic and
almost periodic theories agree in many cases of interest, there exist
cases in which distinct differences appear. In cases of multi-tone per-
turbations, the almost periodic theory yields both simpler and more rea-

sonable results than the periodic theory.
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Chapter 1

Introduction

Statement of Purpose

To begin, we wish to emphasize that this report is an attempt
to unify an abstract mathematical theory with wave propagation
theory and not an attempt to solve a specific engineering problen.
le Teel that the results of this report could become applicable to a
number of specific problems, but at the present time we are not able
to predict in which areas this work will become important. The in-
tent here is to present a theory of wave propagation in this newly
considered medium and to compare and contrast the electrcmagnetic
properties of this medium with the properties of better understood
media. In the process of the investigation, we intend to re-express
certain abstract mathematical concepts in engineering terminology as
211 as to develop new analytical techniques with which to treat
viave-propagation phenomena. 'le hope the report achieves its purpose
and, moreover, provides an interesting treatise to the reader.
Ye will now proceed to give the reader what we feel is the

necessary mathematical history and background.

B. The Theory of Almost Periodic Functions
1. Historical Perspective
The theory of almost periodic functions is a rather recent

development. Although the theory of Fourier series was essentially



completed by the 1820's with the work of Fourier, Poisson, Cauchy
and numerous others as footnoted in Mhittaker and !Yatson's trea-
tise,1 it was a century later when Harald Bohr‘z'3 found the almost
periodic generalization of Fourier series, horrowina heavily on the

4
quasi-periodic theory of Bohl" and Esc]angons. Inspired Ly Bohr's

10

-8 . . ...0Q
set ¢f review papers6 8, Besicovitch™, Bochner = and Favard11 found

various simplifications of the theory soon after its inception. 1In

12 13

1926~ and 1927 7, Favard extended the theory by considering linear

differential equations with almost periodic coefficients. (He later
unified his research into a book]4 on the topic.) Other authors took
a different direction from Favard, concentrating their efforts more
on Tifting restrictions on the class of almost periodic functions.
Besicovitch15 was the first to publish a generalized theory, followed

16 17 18 13

, Linfoot = and Wiener ~. Al-

20

by Stepanoff ~, Besicovitch and Bohr

though Bohr was the first to publish a book™ on the topic, he was

closely followed by Besicovitch.zq
Following this opening era of almost periodic theory of the
1920's and early 1930's, there was a three-decade period of little
activity in the field. However, with the dawn of the 1260's there
came a deluge of papers and books on the topic. Characteristic of
this period of renewed interest in the theory is Nicholas Minorsky's
chapter on almost periodic solutions in his book on non-linear oscil-

e2

lations His interest in the theory lay in the relationship

between almost periodic solutions and system stability, a common



reason for renewed interest in the topic. To completely review the
developments in this field in the last decade and a half is beyond
the scope of this report as is evidenced by the length of the ex-
tensive, but not exhaustive, bibiography in A. M. Fink's set of
lecture notes on almost periodic differential equation523. One
author's work is of importance in relation to our study. That would

24-25 of Jacob Abel who first considered the almost

be the two papers
periodic Mathieu equation, the same equation to be considered in this
work. Abel ran across the eguation while engaging in a study of
stability of elastic systems.

2. Important Concepts Involved in Almost Periodic Function Theory

lle begin this section with a short qualitative discussion of

almost periodic functions before jumping to the more abstract ele-
ments of the theory. Perhaps the most direct way of obtaining a
feeling for almost periodic functions is to compare them with their

close relatives (actually a direct subclass), the periodic functions.

Consider the periodic function

fp(z) = co0s mz + cos 3wz + cos 5wz (1)

and an almost periodic counterpart

.
pr(z) = cos mz + cos 3 lf;—wz + coS ffg Tz (2)

V3

These functions are plotted in figure (1).

For the first few periods of (1), the functions don't seem to
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Figure 1.1. a) A plot of the periodic function fp(z) = cosmz + cos3nz
+ cos5mz. b) A plot of the almost periodic function f,, = cosnz +



differ too much. Farther on they certainly do, in spite of the fact
that their arguments differ by only a small amount. The zlimost
periodic function appears to have a wandering phase with raspect to

the periodic one. This is indeed the case as we notice that

w
P

T._7_=3+IR

where IR is an irrational number. lle further note that we could

write (2) in the form

pr(z) = ¢os mwz + cos(3wz+¢2) + cos(5wz+¢3)
(3)
¢, = IR,z ¢y = IRymz
That IR is irrational is a fundamental point. If, in a sum of
trigonometric functions, the ratios of their frequencies can be

written as rational fractions, e.g. in the two-tone case

fp(z) = COS KyZ + COS KyZ

(4)
Aol
q

K
k2
p,q relatively prime integers
a period for the system can be found,and in fact the period is just
27 times p divided by K1,which is equal to 2w times q divided by Ko-

26

If the ratio is irrational,however, it is easily shown™ that no

period can exist. The function can come close to repeating at



values of z vhere rational approximations to the irrational ratio of

K1 to ko satisfy the above stated periodic condition, but the function
can only come close,as 27 times p divided by Ky is no longer equal to
2m times q divided by Ko The small difference in these two almost
periods will cause one or the other of the cosines to not truly re-
peat.

We now feel we are ready to approach the topic in a slightly
more rigorous lanauage for purposes of later exposition. Ue will use
Bohr"sz7 definition of almost periodicity.

Definition 1.

Let S(t) = {t| |f(t+r) - f(t)| < e ¥t}.
Then f(t) is an almost periodic function iff S(t) for every ¢ > O,
is relatively dense.

Definition 2.

A set of S on R is called relatively dense if there axists a

positive L such that

[a,atL] oS # ¢ VacR

A table of symbols for the definition is included in table (7).

It is shown27 from Definition 1 that any almost periodic func-
tion is uniformly continuous. It is also apparent from the definition
that an almost periodic function must have continually vacillating

28

values™ lest there bé no almost periods in some regime. But a func-

tion possessing these two attributes must in some sense be stable,as



TABLE I

{1 the set of

| such that
[f(x)] the absolute value of f(x)

¥ for all

() the open interval

[ 1] the closed interval

J the union of

Q the intersection of

) the null (empty)set

R the set cof real numbers
A> B A contains B
AC B A is contained by B

TABLE I. LIST OF MATHEMATICAL SYMBOLS EMPLOYED
IN THIS CHAPTER ALONG WITH THE MEANING QF THE
SYMBOLS.



its values over some finite interval of time is "about the same" as
its values at any other time. The definition therefore makes clear
that the existence of almost periodic solutions to differential equa-
tions governing the output of machines or orbits of celestial bodies
somehow implies the stability of the machine or the stability of the
orbit. !e can now understand one reason for the resurgence of inter-
est in almost periodic functions.

For further discussion we find it useful to use the results of the

basic theorem of almost periodic functions, that is to say:

Theorem 1.
Any almost periodic function f(t) is expressible as a gener-
alized Fourier series
iANt
f(t) =) ae (5)
N
or more precisely, if for any given ¢, 2y and A, can be found such

that

Ayt
fe) - Tae ] < (6)

then f(t) is an almost periodic function. This theorem has immediate
consequences concerning composites of almost periodic functions. Con-

sider the addition of two almost periodic functions. If we find



iuwt
f(t) = % aye (a)
, (7)
18Nt
a(t) = J bye (b)
N
then we can write
idNt iBN.t
f(t) + g(t) = } (aNe thyie )
N,N'
o
=T cue T = h(t) (8)

and therefore we find that the sum of two almost periodic functions
is also an almost periodic function. Similarly, we could show that
differences, products, quotients, integrals, and derivatives of
almost periodic functions are also almost periodic (with suitable
restrictions). It is then true that almost periodic functions are a
general class of functions which is closed under certain operations.
Implicit also in Theorem 1 is the inclusion of the periodic functions
as a subclass of the almost periodic functions as can be seen by

making the replacement

Ny > 1A (o)

in equation (5).
One more set of defintions will be included here for the use-
fulness of the terminology in discussina solutions of differential

equations with almost periodic coefficients.
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Definition 3

The exponent exp of an almost periodic function f(t) is de-

fined as the set of A's contained inh its generalized Fourier series,

1 x5 1F
o ith
f(t) = } aye
N=0
then exp[f(t)] = {kO,A],Az,...}

Definition 4

The module M of the exp [f(t)] is the closure of the set

under addition, i.e., if

then Mlexp[f(t)]1] = {bmmleN = MA] + NAZ, VI, MY,

Defintion 5
An almost periodic function g(t) is medularly contained by

Mlexp[f(t)]1] iff
Mlexp[a(t)]] C Mlexp[f(t)]]

The usefulness of these defintions may at first seem obscure. How-
ever, a simple example should prove their usefulness. !'e consider the
case of a differential equation with periodic coefficients which can

be written in the form



11

I

Df + Af = 0 (10)

vhere D is a differential operator and A a periodic function of basic
period k. Say that we know, from some very general techniques, that
a solution exists with the same period as A. 'le can then always

write the solution in the form
f(t) = z aNe'lNKt (-l-l)

where the aN's can be determined from a consistency requirement. e
would Tike to be able to generalize this argument to enable us to
solve systems of the form of equation (10) where A is an almost
periodic function, say for simplicity a two-tone almost veriodic
function expressible in the form
1K1t iKZt

A(t) = b1e + b2e (12)
We wouldn't know how to look for a solution of the same almost
period as the term"almost period'is still il1l-defined. However, we
could Took for a "modular containment" solution, i.e. a solution of

the form

iNK1t+MK t

2
F(t) = :
(t) NEME‘NMG (13)

where the a's, as in the argument above, are to be determined from a
consistency argument. The above argument is a simplification of the

argument that will appear in chapter two.
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C. Why Bother to Study llave Propagation in Almost Periodic Media?

To this point the development has seemed mathematical beyond
the scope normally required for engineering application. The natural
question in the reader's mind is why bother with all this mathematics
if no application is imminent? e wish to allay the reader's fears
by discussing briefly some promising areas of application.

Refore listing these areas, though, we wish to present a
brief discussion to motivate our reasoning. ‘e predicate this dis-
cussion on the fact that "real" electromaanetic (or optical) devices
are finite in length although periodic devices tend to contain many
periods within this length. Further,these "periods" are never per-
fect in practice. Whether they be due to amplitude wobble, phase
vobble, cracks in the structure or various other causes, there are
always small perturbations to destroy the "perfection" of the cellu-
lar structure of the device. A wave in traversing such a media,
therefore, sees many almost identical cells. But an almost periodic
structure would Took, at least qualitatively, much like this to the
vave, as the almost periodic structure comes close to, but does not
quite achieve, a "perfect" cellular structure. The almost periodic
structure seems to take imperfections into account and in this sense
is actually a more realistic model than a perfectly periodic struc-
ture.

But is the increased effort required to evaluate an almost

periodic solution worth the effort? Although we don't know the
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answer to that question in general,we do know of cases in which the
almost periodic solution is simpler than the periodic solution. (Such
cases will be considered in chapters three and four.) e conclude
that if one believes that almost periodic modeling is in some sense
more realistic than periodic modeling, then there are certain cases
in which the almost periodic modeling is worth the effort.

We will now list and briefly discuss some possible applica-

tions.

1. Stochastic Perturbations

Most random media propagation theory requires some type of
ensemble averaging which may not always be desirable. For example,
consider a fiber optic link in which we wish to compute some quantity,
such as the amount of mode-coupling due to stochastic perturbations.

Ensemble averaging would correspond to averaging over many
similarly dearaded Tinks, whereas in practice we will use but one
Tink. 1In general, the stochastic solution would correspond to
finding the first and second moments of a distribution function which
is too complex to obtain. But in certain cases (i.e., broad distribu-
tions) the averaged result does not necessarily correspond very
closely to the situation in any one given Tink. In these cases, to
obtain more reasonable bounds on operational characteristics, it
would be desirable to solve the problem for a single member of the
ensemble. As will be discussed in more detail in chapter five of

this work, a natural choice for an ensemble member would be a
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specially constructed alrmost periodically perturbed structure. By
solving this case deterministically, with free parameters, good

bounds could be obtained for operational characteristics.

2. Intearated Optics

Although to this point in the technological development of
integrated optics most of the periodic structure devices have oper-
ated very much as the periodic theory predicts they should, the possi-
bility remains that at some future date manufacturing limitations may
dictate that the theory be modified to agree with the experiment.
Under the assumption that almost periodic analvsis, in some sense,
requires less restrictive assumptions than periodic analysis, the
almost periodic theory could provide a useful analytic technique for
predicting the limiting precisions with which devices must he fabri-
cated, or even the theory could suggest ways to avoid techneclogical
Timitations. Perhaps, in certain cases, almost periodic devices will

be preferable to their periodic counterparts.

3. Crystal Lattice Disorder Theory
Work on the application of almost periodic function theory to

the theory of disordered crystal Tattices has already been initiated

29 30

in the work of Romerio™ and Balanis. We feel a good direction in

which to continue would be to apply almost periodic Brillouin diagram

analysis (developed in chapter three of this work for the one dimen-

31

sional case) to some simple cases, following the lead of Slater™ who
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so carefully and clearly treated the periodic lattice. Ue feel that
it is possible by gaining better insight into almost periodic phonon
modes to better understand the collective quantum processes which
cause solid state phenomena.

lle believe the above Tisting represents only a sample of the
areas of possible utility of almost periodic wave propagation but we
Teave our discussion at this point so as not to unduly lengthen this

report.

D. Preview of the Following Material

In chapter two we solve the problem of wave propagation in
longitudinally varying almost periodic media. The solution appears
as a generalization of Floquet's theorem for periodic media and is
therefore compared in structure to this familiar theory.

In chapter three the Brillouin diagram of periodic madia is
generalized to the almost periodic case. The chapter begins with a
brief discussion of dispersion relations and diagrams, and an his-
torical perspective on the development of the Brillouin diagram in
periodic wave propagation. The inclusion of this non-original
material is justified on the basis that it expedites the discussion
of almost periodic wave propagation by highlighting the underlying
concepts and techniques. The main developments of the chapter 1ie in
the generalization of the Brillouin diagram technique to almost

periodic media, and the detailed comparison of almost periodic wave
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propagation with periodic wave propagation employing this newly de-
veloped method.

In chapter four a technique is developed to calculate reflec-
tion coefficients of finite lTogitudinally varying almost periodic
media. As in chapter three, this chapter also begins by discussing a
certain amount of non-original, yet basic, material. The secularity
of standard perturbation expansions is illustrated and the method of
invariant imbedding, a powerful technique of avoiding secularity, is
developed in a more general way than has previously been accomplished.
The accomplishments of the chapter include numerical comparisons of
solutions of the exact Riccati equation for periodic and almost
periodic media and the development of a technique for generating
reflection coefficients for "practical" media.

Chapter five is devoted to discussion and conclusions. Pos-
sible research problems designed to extend and verify the theory are
suggested.

We are presently ready to embark on our exposition of the

theory of wave propaqation in almost periodic structures.
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Chapter 11
The General Theory of Wave Propagation in Almost Periodic

Media

A. Longitudinal Media

The motivation for the derivation contained in this chapter
comes in large part from the well known Floquet theory], so thoroughly
discussed in Whittaker and Watson's treatisez. However, the almost
periodic generalization of Floquet's theory can neither be proved or
evaluated by techniques analogous to those applied to the periodic
case. For these reasons, the development herein contained will in-
vestigate the two theories simultaneously from a new vantage point
which naturally allows for illumination of the nature of the general-
ization.

To begin, let us remind ourselves of Floquet's result. Given
the differential equation with periodic coefficients, e.g., the

second order equation
&y, 2
5+ kS(2)p = 0 (1)
dz
where k is a periodic function of the variable z with period «,

Floquet shows that ¢ can be written in the form

p = f(z)P(z) (2)

where P is a periodic function of z with period ¥ and f is a propaga-

tion factor which is to be determined. This result could be stated
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for the case of electromagnetic wave propagation as follows: the
wave solution to Maxwell's equations in a periodic medium can always
be written as a product of a propagation factor and a term involving
the periodicity of the medium. We wish to find an almost periodic
generalization of this theory.

We now consider the problem of wave propagation inside a
doubly infinite slab of a medium whose index of refraction varies
only with the coordinate z (refer to figure 1). We will consider
only plane wave solutions with propagation vector in the z-direction

and transverse polarization. For such a case, the wave equation is

easily derived from Maxwell's equations3, and found to be
d%y , .2
CS+Kk(z)p =0 (3)
dz

where | denotes either the x or y polarized component of the E vector
and kz(z) is defined by

2 w2
k“(z) = —§-e(z) (4)
o

where w is the angular frequency of the wave and c¢ the speed of

light in vacuum. We choose the medium's dielectric constant £ to be
a real (lossless) function of z, as the generalization to complex re-
fractive index should be straightforward, as it is in the periodic
case4'5. We further wish to consider cases in which € is either a

periodic or almost periodic function of z and therefore expressible
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as
+NT iz B -ik_\Z
elz) = & Y Lny e + ¥ Ln. € + 1 (5)
N N 2 N
N=1 N—-NT
where reality of € requires
*
M = A_s (6)

where the asterisk denotes complex conjugation. In the periodic case,

the k's must satisfy the relation

ky = Ne (7)

whereas in the almost periodic case

“

vk IR for at least one pair of i,j (i#]j) (8)

J
where IR represents an irrational number. To simplify the present
discussion we will assume all n's to be purely real,although this re-
striction will be relaxed in the discussion of chapter III.

For present and future use we wish to define the Fourier trans-

form pair
1 Iz iyz
o | Tlyle oy (a)

-0

f(z)

]

(9)

[eo]

f f(z)e” Y24z (b)

%(Y)
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where theorems concerning transform relationships to be employed in

present and future arguments can be found in any of numerous refer-

ences6"8.

We now apply the Fourier transform (9b) to equation (3) where
the € is expressible as in (5) to obtain

2
~ k™e  +N ~
~(y) + =L §T ny Ply=ky) = 0 (10)

|

where we have reduced the separate summations of (5) to a single sum-
mation by defining Koy = SN Mo = 2 ko = 0. We have now reduced a

second-order differential equation to a non-local algebraic equation,
a type of equation whose solution we do not know how to find in gen-

eral. However, we can reduce the non-local equation to an infinite

set of local equations by assuming a solution of the form

+oo +w0 +o0 &

¥(y) = ) T A M M f(Y+M1K]+M2|<2+...+MN Ky ) (11)

M.Iﬂ-co M2=—OO MNT=_00 TES Sl NT T N

and equating the coefficients of ; at each given argument to zero. It
is not necessarily true that this procedure will work, but we will
assume it does and later show it yields a reasonable result. For
concreteness we assume that the dielectric constant has but two

"tones" in its spectrum in the almost periodic case, i.e.,
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Ny =2 (a)
Ny =Ny (b)
Ny = N_yp (c) (12)
iy ™ i (d)
1=NT iKiZ
e(z) = Erz %ﬂi e = Er[]+n1COSK1Z+n2COSKZZ] (e)
i=—NT

but any number of tones in the periodic case. The tones in the periodic
case, however, must satisfy equation (7). Using our above ansatz we

see the solution should be written

~

$(Y) =} ay fly+e) periodic (a)
& " (13)
P(y) =} awm f(Y+MK]+NK2) almost periodic (b)

To solve the resulting equation we could simply equate the coeffi-
cients of f(y+Nk) for each N and solve the resulting infinite set of
coupled algebraic equations. We elect not to do this in transform
space but to inverse transform and consider our result in configura-

tion space. The resulting forms of solution are

Y(z) =) ay eiNKZf(z) periodic (a)
N
(14)
i(MK]z+NK22)
¥(z) =} ayy © f(z) almost periodic (b)
N,M

Not too surprisingly, equation (14a) is exactly a statement of
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Floquet's theorem and perhaps in (14b) we have found its almost
periodic generalization, We feel the result is at least plausible
in the following sense. In Floquet's theory we find the form of
solution to be the product of a propagation factor with a factor in-
volving the periodicity of the medium, in fact, the factor being
just the "modular containment" of the basic period. But in these
terms this is exactly what the almost periodic solution contains, the
product of a propagation factor and the modular containment of the
almost periods. The result agrees in form with that found by Abe]?_]o
who employed a different method in his derivation. However, we have
yet to show either existence or convergence of our scheme.

We wish to show that the aNM's die out for sufficiently large
N and M, We assume that the propagation constant does not g¢o to zero
(or at least we are considering a frequency range in which it does not

go to zero) allowing us to divide both sides of (14b) by f, resulting

in
i (M, Nk, )z
_ulz) v UKy,
g(z) = =y (15)
f(z) NoM
We now define the mean value operator by
) i
ma(2)) = 40 o [ acede (16)
-T

Taking the square modulus of both sides of (15) and applying the

mean value operator of (16), we find the Parseval type relation
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2 : 2
M } = {17
lg(z)] NZM |ale )

5

Let us consider this result. From energy considerations we would
expect the mean value of the squared modulus of y (the energy density
of the phase front) to be a bounded quantity and we haye already re-
stricted ourselves to cases in which the propagation factor is
bounded away from zero. Accordingly, the lefthand side of (17) is
taken to be a bounded quantity, The conclusion is that only a finite
number of the aNM's can be "appreciable" in order to satisfy (17).
Therefore, we can safely assume that the aNM's die out for sufficiently
large N and M and the system of (15) can be effectively truncated.
Having convinced ourselves of the plausibility of the ansatz
contained in (14b) we proceed to investigate the structure of the re-
sulting theory. The problem we have to solve to obtain a general
solution to (3) is to find the function f(z). We redefine cur un-

known by setting
£(z) = B2 (18)

where B is now the variable, Using (18) in (14b) and substituting

in (3) using (12) we find
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i(R+M< +NK2)Z

2 2- 1
ﬁgN[k €, '(B+MK]+NK2) ] e
4 . ; 2 3
ke P(BH(I+] )y +2k, )z 1(B=(J~1)k-+8k,)z
+ st ] [me b n_qe %
Js4
1(B+iky+(o+1 )k, )z i(BHjcy+(2-1)k,)z
& nze +n_26 ] =0 (19)

As we have Ky and Ko non-commensurable, we can adopt a technique used

11

in generalized harmonic analysis = to simplify the result. We simply

multiply by the kernel

ikz 1
B g g (20)

and integrate from -T to T taking the Timit for T»«. This procedure
removes both the complex exponentials and the summation signs and
leaves us with the doubly infinite set of algebraic equaticns

nkza

2 " 2- A
EY‘ —(B-MI(-I+NK2) _J aMN+ 2 - [n] (aM_'l ,N+aM+-l ,N)

[k
* mplay yortey 1)l = 0 (21)

where we have chosen n_y to be equal to " and N_o to be equal to Ny-
This is the set of equations of which we spoke earlier when
perusing the non-local equation (10) in transform space. The set is
homogeneous and it is useful to recast it in a matrix form. As the
's are a countable set, we know that we can always map them into a

aMN
one-dimensional vector and thus write (21) in a familiar form
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A=

g = 0 (22)

where a is the vector obtained by mapping the aMN's and D is the cop-
responding matrix of coefficients, Clearly then the condition B must

satisfy is

det D=0 . (23)

~

and by backsubstituting in (22) these values of B, we can obtain all

12

the a's as a one-parameter family Before discussing how to per-

form this feat, however, it is instructive to examine the analogous
situation in the periodic case,.

In the periodic case the wave equation is found to take the

form of (22) with D defined as.|3
‘\ \\ D-Z \‘ \‘
3 5 Uy "H
D = fN — e f2 f] DO f] f2 = = fN (24)
2 H., B %, T
~ N D+2\ ~ \\

0. = 1 (B+N+<)2

N k™ e

-h
=
I
=3
=
S~
N
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where all the elements of the matrix have been normalized by kzer,
Evidently, we are faced with the impossible task of evaluating an in-
finite determinant. We see that the matrix must somehow be truncated
if we are to obtain a useful approximation, But it is equally clear
that the infinite determinant cannot be uniformly convergent as its
diagonal grows with its dimension N, casting uncertainty on any trun-

cation scheme, Hi'l]14

circumvented this problem, however, by a
clever argument so aptly treated in Whittaker and Watson2 and ob-
tained an alternative dispersion relation,i.e, a relation connecting

g with k , of the form

nkve
sinz(gﬁ- = A(0) sin2( L
1 M=N
A(0) [y = —kzer (25)
B B e il s, M#N
22 2. mene M7
r

A(0) = det Q(O)
Perhaps the major achievemé;t of this approach is to explicitly
illustrate the "well-behavedness" of the theory. Clearly, for each k
there exist an infinite number of B's telling us that no pathology can
render this dispersion relation unsolvable, and hence (25) acts as an

existence theorem. Further, A(0) is now uniformly convergent for

(Ref.15)
r

practically all values of kza and therefore can be truncated
with gay abandon.
Looking back at the almost periodic case,we see a bleak pic-

ture. As the mapping of a plane to a line is non-unique, we must use
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care in impiementing our approach so as not to lose important terms,
Until we have defined this mapping from a plane to a Tine, we don't
even know thec form of 2, much less have a Hill's determinant-type
theory, Further, we c;n already see we are plaqued with the same lack
of uniform convergence so evident in (24), as our almost periodic
diagonal elements are of the form manifested in (24). However, having
come this far already, we push forward unrelentingly.

We now wish to define our plane-to-1ine mapping, with the moti-
vation for our technique to come later, The basic scheme is illu-
strated in figure 2, A grid is drawn with the points labeled by their
integer coordinates (i,j). The boxes are formed by lines passing
through points equidistant from the origin (0,0) in the sense that

the distance from point 1 (ii’ji) to point 2 (iz,jz) is defined by
d]z e Ii]”igl + Ij-lf‘jzl (26)

We label the boxes 1,2,3, etc,, according to the order in which they
would be traversed in traveling outward from the origin, analogously
to the labeling of Brillouin zones in a p]ane16. We say the points

i box are the 1th order points. Further, we de-

on and within the i
fine the points to the right of the origin to include those points
directly below the origin and the points to the left of the origin

to include those points that 1ie directly above the origin. To
specify a given order mapping,it remains only to specify the order in

which the points to the right and the points to the left must be
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taken. This is illustrated in figure (2b) for the second-order mapping.
The general rule for points to the right for a given order 2N is to

th

begin directly below the origin on the surface of the 2N~ box, follow

the box around to the last point on the right, drop directly below to

the (2n-1)th

box, follow it around to the last point on the right and

jump above to the (2N-2)th box, continuing the procedure to the origin.

Odd-order mappings and the points to the left are mapped analogously.
Now that we have picked the mapping we can investigate the re-

sulting theory. First, we wish to clear up a notational point. Ab-

stractly, we can represent our mapping by the symbolic equation

{M,N} ~ L (27)

Alternatively, using the definition

1(MK]+NK2)Z
[AP]M,N = g (28)

and )
1|<La2
[AP]L = e

we could denote the mapping by the symbolic equation

[APTyy y > [AP] (30)
We will find the opportunity to employ notations of (30) later in this
report.
We now wish to find the explicit form of the matrix D and the
vector a which appear in equation (22). Employing the mapp?ng of

equation (30), we find from (21) and (22) that for the first order
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theory (first box)

a’ = [ay,24,3,,.3_15535_4] (a)
- .
Do o2
Do My2
9 = 1’]2/2 n] 12 DOO Tl-i/z T}Z/z (b) (3])
Mrz Dag
N2/2 B
Dy = 1 - '
NM %
) i

Although our further investigations will almest exclusively involve
only the first order, it is instructive to also look at the second

order D matrix and a vector which can be written as

T e
2= 18420584141930222.1153017310°3003-10°%0-121 -1
25.223_7_123_9,] (32)
and D as in figure 3,
A point noticed from the comparison of the two above orders is
the striking growth of the order of D with the order of the theory.
For first order, D is five by five but in the second order D has bal-

lTooned to thirteen by thirteen. From elementary considerations it is

easy to see that for the theory of Nth order, the order of D (denoted

~
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0(D)) will be given by
0(D) =1 + 2N(N+1) (33)

A second interesting point can be noticed by comparing the
first-order case (31b) with the five-by-five, two-harmonic, periodic

Floquet matrix which can be written as

D, f; N
N T
p=|f, f D f T (34)
fa H1 Dy
o Iz % DBa

Immediately, it is seen that the periodic D matrix is a fuller matrix.
There is physical content in this fact. Were we to write the equa-
tions represented by (22) and D given by (34).,we would find z cou-

pling scheme represented by the following picture

Hy #/fz d:o Qo go
do Q4 Qi+o (35)
" ! |
a-y a-2 Jz gy
(a) (b) (c)

The double-arrowed line represents that the connected aN's appear

somewhere in the system in the same equation. The almost periodic
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coupling scheme which results from equations (22) and (31) has repre-

sentation
Q0 Ao
N 7
b\% /,/ GOO OOO
/gooo ? 3 a5)
# \\\x Q10 Uo +
a a
=10 O-1

(a) (b) (c)

The conclusion is that the precision of the phase relation of the
periodic medium leads to the richer coupling scheme of (35). In the
almost periodic case, (36b) and (36¢c) almost give the impression that
the perturbations represented by the two n's act independently,
whereas (35b) indicates this is not so in the periodic case. We will
return to this point in chapters III and IV and delve more deeply
into the physical consequences.

At an earlier point we became somewhat perplexed at the lack
of a Hill's determinant theory for the almost periodic solution. At
this point we will try to allay some of this apprehension by con-
sidering the Timiting case of small perturbations. First, let us

consider the case of no perturbation at all, i.e.,
1’1] = rl2 =0 (37)

The resulting D matrix of (31) becomes diagonal and has determinant
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o0 o0 (B+NK]+MK2)2
det D= T m 1= 5 (38)
~ M=-o N=-w k €,

We note that the product being over all N and M has terms symetrically
in plus and minus M and N, We use this fact to simplify the product,
combining the term in M and N with the term in -M and -N. We find (after

some manipulation)

- (B+Nk +MK2) ]{ (8- NK]—MK2)2 :
l e (39)
82 ) (] N NK]+MK2 ) NK-I +MK2)2
ko ke, ke
wnich tells us the product can be rewritten in the form

© o0 2 N, +Mc, 2

detD= 1 1 -+ FL. (40)
=-0 N=-c0 | k €. kw%r

The result is interesting for two reasons. First, as no B's
appear off the diagonal,(40) implies the dispersion relaticn can be
expressed as a polynomial in 82. This gives us an important part of
the Hill's determinant information, namely that for a given k we can
always find some B's, i.e., no obvious pathology occurs. Second, (40)
gives us information about the form that the solution can take, i.e.,

it gives both the B's and the ay,'s. Consider the Brillouin (disper-

NM
sion) diagram (to be discussed in detail in chapter III) of figure 4,

We see the roots of (40) are straight 1lines extending to infinity,
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all with slopes of +#1, As a determinant is a continuous function of
the elements of its constituent matrix,we should think that this
picture should not change too much for small perturbations. To find

the aNM's for a specific line in the diagram, say the lines

B = ik\/q 3 (4])

we go back to equation (22) and plug in our B value. For the pertur-
bationless case we are considering, the equations are quite simple,

i.e.,

N=0 (42)

We see that we can explicitly find the one-parameter string earlier

mentioned (equation 23), namely

a; = 0 i#0 (43)

a, arbitrary
We see that any reasonable boundary condition on { and hence on the

a,'s gives us a nice bounded solution, and as the aN's are also (as

N
are the B's) continuous functions of the elements of the D matrix, we
would expect equally encouraging results for any small perturbation.
It seems, in the small perturbation 1limit anyhow, that we have no

need for a Hill's determinant theorem.
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CHAPTER III

Brillouin Diagrams in Almost Periodic Media

In the present chapter we investigate the properties of waves
propagating in almost periodic media. As in the preceding and the fol-
lowing chapters, we borrow heavily in our attempt to implement the new
theory on the well-known periodic theory and the techniques developed
to implement the periodic theory. As a first cut in attempting to under-
stand almost periodic phenomena, we concentrate on the inhomogeneity-
induced dispersion of the medium. In studying the properties of the
dispersion relation we employ dispersion diagrams. We shall call these
diagrams Brillouin diagrams,as dispersion diagrams in periodic media are
usually called Brillouin diagrams. We feel the Brillouin diagram is an
effective artifice to employ in the attempt to gain physical insight into
the medium's properties as pictorial information is rather easy to digest.

We begin this chapter with two review sections. The first is de-
voted to review of the use of dispersion relations and diagrams. We feel
its inclusion is warranted on the basis that the development introduces
the ensuing notation as well as providing an exposition of the concepts
most useful in the following development. The second is devoted to a
review of the use of the Brillouin diagram in periodic media. This section
serves to highlight the techniques we are later to generalize, and gives

us historical perspective.

A) Basic Concepts
To begin, we simply define the phase and group velocities of the

wave, concepts so aptly treated elsewhere ! . For a component of the
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electric field which can be written in the form

1’-’ = e]kZ-Tmt (1)
we find that
_ _w - - dw
. Vphase Tk Vg = Vgroup T dk (2)

Our Brillouin diagram will always be displayed in terms of quan-
tities which exist in absence of modulation versus quantities that
actually exist inside the medium. Using the superscript u to denote

unperturbed and the superscript p to denote perturbed, we therefore

write
ik Ve - dwt
lPu sg @ T
(3)
l!)p _ e1Bz - Jwt
with the subseauent identifications that
u_ ¢ P _w
- ——— V = -
VP g P B
P
u dw p _ dw
Vv = — A = e (4)
9 q(kve,) g d

As we are interested only in variations with respect to the unperturbed
medium, we Turther make the identifications that
kve d(kve

/Er r ( r)

vp
r:_.P_: o e———
vp U 3 vg B (5)
P
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where r denotes relative. With reference to fTigure 1, an archetypal
Brillouin diagram, we can presently see the ease with which v; and vg
can be read. The relative phase velocity of a wave is simply a quotient
of its frequency (free space wavenumber) and its wavenumber in the medium.
The relative group velocity is simply the slope of the wave's dispersion
line. The quadrant of the diagram gives the direction of the phase velo-
city and the Tine's direction gives the direction of energy flow.

We now wish to consider in some depth the different regions drawn
in on figure 1. In region 1, we note that both the phase and aroup velo-
city of the wave drop below the unperturbed velocities. Operation in
this regime has been successfully employed in various applications such

. 4
2s3 and the traveling-wave tube ~ . We refer

as the particle accelerator
to this region as the slow-wave regime. Region 3 exhibits wave solutions
of greater phase velocity, yet smaller group velocity, than that of the
unperturbed region and therefore dons the title of fast wave regime.
Propagation in such a regime is reminiscent of plasma wave propagation
and has been treated elsewhere 5 . The region of real interest to the
present study, however, is region 2.

In region 2 there is an imaginary group velocity, indicating that
somehow the concept of group velocity needs reinterpretation. In refer-
ring to figure 2 we can see how the concept is deficient. The derivation
of group velocity is predicated by our ability to construct a wave
packet about the various differently wave-numbered components of electric

field in our medium. In region 2 our ability to construct such packets

is seriously impaired as the spatial dependence of our waves takes the
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form of growing or dying exponentials. No longer can we find a specific
amplitude point on a packet and follow it through the medium, as in this
case the point does not move.

A slightly more physical picture of these phenomena can be con-
structed by considering a truncated medium, one which extends from
z =0 to some z = L. The situation is depicted in figure 3. We Tump
the negative phase velocity waves together into a composite "backward"
wave and the positive phase velocity waves analogously into a "forward"
wave as has often been done in the literature b . The resulting picture
shows that waves attempting to propagate into the medium with fre-
quencies corresponding to region 2 are "redistributed in energy content"
with respect to waves with frequencies outside this region. From the
picture, we would expect the considered regime to be one of large re-
flection coefficient, as we will see it indeed is in the following
chapter.

As to the terminology employed in referring to this frequency
range, we feel the terms stopband or bandgap are preferable, for our
purposes, to the commonly used solid-state physics term, "forbidden

region" 7 ‘

The solid-state usage is justified in the sense that ther-
mal phonons generated in a "forbidden" energy range will not propagate
through the lattice and therefore will contribute negligibly to its
specific heat. However, in our case the source is external and the

region is not truly forbidden, but only somewhat more reflective than

at other frequencies. The distinction may be moot, but be it made.
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B) Brillouin Diagrams in Periodic Media--Information Contained
1) Historical Perspective

The first use of a dispersion diagram for a periodic medium in
an English language journal appears to be in a 1930 work by Kronig and
Penney 8 . Inspired by the pioneering work of Bloch 9; who in late
1928 was the first to consider the problem of electron-wave propagation
in a three-dimensional lattice, Kronig and Penney considered in detail
the more tractable problem of one-dimensional propagation. However,
between the publication of these two early works, independently Leon

10

Brillouin applied dispersion diagram techniques to one-, two-, and

three-dimensional lattice models and published his results in a French
journal. Brillouin expanded on his technique and published works 1in

1932 and 1933 in which he considered problems of crystalline magnetic

11

properties and superconductivity L , respectively. The first ap-

pearance of the name Brillouin being associated with an energy band

13

diagram was in the 1934 work by J. C. Slater In this work Slater

terms the zones on the diagram to be Brillouin zones. This terminology

caught on as is evidenced by the titles of references includad in the

14

appendix to Brillouin's definitive book on the topic of wave propa-

gation in periodic structures. The book by Brillouin stems from a 1936

15

work of his in which he first realized the great generality of

periodic-media techniques. But in spite of Brillouin's realization, it
appears to have been Slater who first applied the Brillouin diagram
techniques, not commonly in use, to the electromagnetic wave propagation

16,

probiem in his 1948 article on linear accelerators The use of
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these techniques in electromagnetic problems was expanded as is evidenced

17

by the 1959 paper of Oliner and Hessel , and the term "Brillouin

diagram" was certainly in standard usage by the time of the publication

of the 1965 review article of Cassedy and Oliner 18 :

2) Use as a Predictor

The greatest utility we have found for the Brillouin diagram is
that of a rule-of-thumb pictorial device which tells us not only which
effects are important, but also gives us an expectation for the results
of a physical measurement, such as that of the reflection coefficient.
We will adhere to this rule-of-thumb approach in the present section by
foregoing mathematical rigor in favor of physical pictures.

In considering periodic media, the first effect we should con-

19

sider is that described by Bragg's law The familiar picture of

figure 4 should make plausible the phase condition that
20 sin 6 = n\ (6)

where the Bragg order n is an integer. In the longitudinal case which

we are considering, the condition simplifies to

ke, = (7)

NI
7

where ¥ = 2n/A. In cases where equation (7) is satisfied we therefore
expect something to happen, the nature of which we will presently inves-
tigate.

The best vehicle with which to investigate the detailed Brillouin

diagram structure would be Hill's determinant, already introduced in
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Chapter II of this report. For purposes of clear expositicn we express

the theory here as

sin® () = ARe (8a)
where » nk%E;
ARG = A(0) sin“( ), (8b)
K
A(0) = det(a) " (8c)
1 M= N
A —
MN il (8d)
r
B2 2 T |nen| MR
r
and
_ TN-| .
fiN-m) = 72 (e

We wish to examine the various B values in the proximity of the
various Bragg orders to gain more insight into the nature of the solu-
tion. We first notice that in the absence of perturbation (all ni's

equal to 0) the solution to (8) reduces to

B = k/gr + Lk (L any integer) (9)

We also note that this solution is noticeably changed by the inclusion
of any small perturbation due to the coefficient of the off diagonal

terms of A :

-k €

B (M # N} = —popL e F (10)
N e 2o M-

which become singular for
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k/E;' = Me (with reference to equation (7) M = n/2) (11)

i.e., for all even Bragg orders. Let us presently break up the situa-
tion into cases and examine the argument ARG at even and odd Bragg

orders. e see from equations (7) and (8b) that for M odd

ARG = A(D)'max (maximized with respect to variations in k)(12a)
for M even

ARG = 1im A(0) sinZ(w + )
e >0

lim A(0) » - (12b)
e~>0

Tim sinz(w +g) » 0
e~>0

The situation is illustrated in figure 5. The values of the
argument can become greater than one at odd Bragg orders and less than
zero at even Bragg orders, causing the value of B to become complex.

To make the preceding argument more qualitative, considar the

following expansion of the arcsin 20

ARCSIN(x + iy) = kw + (—)ksin_](v) +(~)k 1£n(Lrh/u2— 1)

k integer
b= 2 Loe)? + 21172 4 Jrx-1)? + 2112
v=glien? + 212 L S -1 4 y7 (13)
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We break up the expression (13) into cases to reduce this formidable

result to a more palatable form.

Case 1. When ARG > 1, then
1r§= Fr+ (<)% i an[/ARG + /ARG =1
Fany half-odd integer
k any integer (14)

Case 2. When 0 < ARG < 1, then

2 = By + (-)¥ cos™1(ARG)
F any integer or half-odd integer
k any integer (15)

Case 3. When ARG < 0, then

T -~ Fr+ ()X i en[/7ARG + /T = ARG]
F any integer
k any integer (16)

The reason for the freely specifiable integer and half-odd integer
parameters is that there are an infinite number of branches of the
arcsin function, causing an uncertainty as to the branch we are on.

This just corresponds to the infinite number of identical branches of



o7,

the unperturbed case. We chcose to call the regime of case 1 the
overflow bandgap regime, case 2 corresponds to the slow and fast
wave regimes, and case 3 we denote the underflow bandgap regime.

Using equations (14-16) and figure 5 we can construct, quali-
tatively at least, a typical Brillouin diagram for a periodic structure
as depicted in figure 6. We see that the diagram contains all the
regimes which we discussed in the dispersion diagram section, with the
corresponding interpretations. We see, therefore, that from the pic-
torial representation of the dispersion relation much information about
the medium's frequency dependence and reflection characteristics can be
deduced. In this sense the Brillouin diagram is a quide to the predic-
tion of a material's physical response. However, this is not the only

use to which we apply the diagram.

3) The Brillouin Diagram as an Ordering Device
In this section we will consider the use of the unperturbed
Brillouin diagram as a guide to choosing the important terms in truncat-
ing our infinitely dimensioned dispersion relation in the case of small
perturbations.
We begin by reconsidering the earlier derived periodic rela-

tion:

R o

a =0 (17)

For the moment we wish to examine the case in which we only need con-
sider two space harmonics. In general, we will always start by con-
sidering the zeroth space harmonic, that is to say, the space harmonic

corresponding to the two lines on the Brillouin diagram closest to
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those on the Brillouin diagram of the perturbationless structure with
the same basic dielectric constant, € e In this case we shall consider
only the zeroth and the so-called minus-one harmonic (refer to figure 7.
Strictly, the harmonics on the Brillouin diagram should also be super-
scripted by the sign of their phase velocity as in equation 17; each
actually corresponds to two lines of the Brillouin diagram.) We con-
tinue by writing out the resulting two-by-two system obtained from

equation (17) by ignoring all the zeroth and minus space harmonics

D jaq* fa, = O
f.la_.I + Doa0 = 0 (18)
and by recalling that
k%, - (B ¥Nk)?
D = 5 (N any integer) (19)
+N k EY‘

We proceed in our argument by assuming the perturbation to be
small and expanding about the center of the assumed bandgaps. (This
approximation is consistent with the truncation which has already as-

sumed a small perturbation). Letting

k/g = KJ2 (20)
and

B =B, * AB

B, = K/2 (21)

where AR is assumad to be small, we find
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- . . 4aB _
-D_] i Do ~ = D (22)

Substituting back into equations (18) we find the new system

AB a = -Xa, (23a)
AR 3, = w)A_y (23b)
X = nK/8 (23c)

To proceed in our interpretation we borrow from the widely used

21-30 and consider our electric field to be

theory of coupled modes
comprised of a forward plus a backward traveling wave, and identify

these waves as

. +iABz
F a, e

B=a,e !l (24)

-1

With these substitutions we can rewrite our system (23) in the form

F' =ixB (25b)

-B' =ixF (25a)

where the primes denote differentiation with respect to z. We could
stop at this point and attempt to determine the sianificance of this
derivation on the Brillouin diagram, but instead we choose to push one
more step forward for the sake of clarity.

We now wish to consider the system of equations complementary

to (18), namely
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1l
o

Doao * f]a]

t18 * By

Il
o
—_—
™o

6)

and make the expansion comparable to (20) and (21), but this time making
the replacement

B > -8 (27)
We find, analogous to (22),

- = 8B -
-0y =D, = =5 = D (28)

resulting in the system

AB 8, = X3 (29a)

0

0B ay = Xxa (29b)

0

Now, by adding (29a) to (23a) and (29b) to (23b), we find

AB(aO+ a_1) X(a0+ a1) (30a)

—AB(aO+ aT) X(a + a_]) (30h)

¢}

We could now follow the earlier line of reasoning by defining

-
|

= aoeiABZ + a_1e'1ABZ (31a)

B = —a.le—.IABZ + aoemBZ (31b)

and still recover equation (25) intact. We have now rediscovered a fact

31

already noticed in the Titerature , namely, that it makes no differ-

ence in the expansion at the bandgap center whether we consider our



63.

forward (backward) going wave as comprised of a single space harmonic
or a sum of space harmonics. The situation is depicted in figure 8.
On occasion we shall also use the schematic representations of (Ra) and

(8b) which would be

(32)

Elsewhere (Refs. 32-34) this picture is extended to include in-
teractions at all orders and for arbitrary numbers of nonzero harmonic
perturbation coefficients. We will Teave the reader to check the
mathematics, but include several more pictures to illustrate the tech-
nique. We feel this is a congruous approach, as the original idea of
using the Brillouin diagram as an ordering device was to alleviate us
from performing tedious numerical calculations until after we knew
which calculations we were interested in.

In figure 9 we use the notation that

TRl (N any integer) (33)

and call it the nth order coupling coefficient. It can be

D o
(32 34)that the nth-order coupling coefficient can only couple

shown
waves differing in medium wave number by n units of the basic medium
(or equivalently grating) frequency. This is illustrated in fiqure 9
where only the first and second coupling coefficient are considered to
be non-zero. The figure also illustrates how the second-order coupling

derives its name. We consider the coupling of the two waves at second-

order Bragg frequency to be second order if achieved by two first-order
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interactions, or to be first order if achieved by one second order coupl-
ing. We will consider a system to be first order if it contains only

the forward-to-backward wave couplings which can be achieved by a

single coupling. Analogously, an nth-order system includes all space
narmonics which are necessary to couple the forward-to-backward wave in

n couplings or less. In general, we consider the coupling strengths to
be small and therefore the (N—l)th-order couplings to be more important
than those of the Nth order.

Figure 10 illustrates the full second-order coupling system at
the second Bragg order, where only one harmonic perturbation coefficient
is non-zero. In second order we notice there exist couplings which
couple the forward and backward waves back to themselves. These effects
are termed to be self-coupling terms and result in a movement of the
bandgap center from its unperturbed location, as is shown elsewhere A= "

It is important to remember that in the periodic case all band-
gaps at a given frequency are identical regardless of on which space
harmonic they lie. We will soon find that this is not true in the almost
periodic case.

At this point we feel we have completed the discussion of the
basics and will presently push on to apply the above developed techniques

to the almost periodic case.
C) The Brillouin Diagram in Almost Periodic Media

Through the mapping derived in Chapter Il we have seen that we
can write the almost periodic dispersion relation in the form of (17).

We now wish to use the Brillouin diagram to motivate our original use
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of the mapping and associated ordering definitions. Again, as in the
periodic case, we consider that the externally applied wave couples
completely to the zeroth-order space harmonic, which here is actually
the zero-zero space harmonic.

Figure 11 illustrates the notation used for space harmonics up
through the second-order theory. Also included in the diagram are all
of the first-order couplings. As alluded to earlier in this report,
there are but two first-order couplings, indicating, at this order of
approximation, that the space harmonics do not intercouple but couple
only to the zeroth-order harmonic. In this sense the theory is actually
simpler than the doubly perturbed periodic theory.

One may find disturbing the fact that as the theory is taken to
higher and higher order, the space harmonics do not, as in the periodic
theory, show up at higher and higher wavenumber, but that the difference
harmonics can become relatively dense about the origin. However, as long
as the perturbation remains small, only infinitesimal amounts of energy
can couple to these waves. In the absence of a Hill's determinant
theorem, therefore, the almost periodic theory is limited to this small
perturbation domain, as the effort necessary to generate the tremendous
matrices needed in these higher order theories is prohibitive.

From figure 11 we can reconstruct the dispersion reletion derived
in Chapter II for the first-order theory. We rewrite that dispersion

relation here as
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B -
Do+ 9
D:10 f
det g] f‘l DOO f'| g] = ) (343)
f D10
L 9 %0-1
(8 + i+ dcy)?
D,:=1 - . (34b)
J k~e
r
m N2
T =g 9 = 7 (34c)

As we have shown in Chapter II, the dispersion relation for any order

is expressible as a polynomial in 82. For the first-order theory we
have obtained this polynomial explicitly from (34a) and found it to be

expressible as

5 5 2
P() = § 1 Cuylke
N=0 M=0

M 2N
p) B (35)

where C is exhibited in figure 12.

The Hi11's determinant theory and the dispersion relation of
(35) were programmed on Caltech's IBM 370 for comparison. The results
are exhibited in figures 13 and 14. The test medium used had a dielec-

tric variation of the form
e(z) = € [1 + njcos kyz + nycos k,2] (36)

where we took
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Figure 3.13. A plot of the Brillouin diagram computed from equation
(8) for the periodic medium described by e(z) = Er[] + .5c0s2z +
.5c0s3z]. The imaginary part of B is the dotted line superimposed
over the stopband regions. The scale of the imaginary part can be
determined from

I (B)|luny = .2 = H%— (the perturbation theory prediction)
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Ky = 2 Koy = 3 ny = D Ny, = D (37)

It might be remarked that this dielectric constant (36) is periodic

and does not make sense for use in an almost periodic theory. The
point, however, is moot as, to computer accuracy, there is no distinc-
tion between a rational and irrational number. The two theories, how-
ever, do make the distinction automatically as the rationality or
irrationality of the ratio of the perturbation frequencies is inherent
in the dispersion relation derivation. Clearly, the different forms of
the two theories indicate that this is certainly the case. We therefore
are allowed to make a direct comparison between two media whose differ-
ence the computer cannot distinguish.

One interesting point noticeable on both plots is the greater
size of the upper, with respect to the lower, bandgap. The ratio be-
tween the two sizes is seen to be close to three halves. There is a
simple reason for this. As can be seen from equation (25) the important
coupling parameter is always expressed per unit length. Because the
wave sees more "bumps" per unit length at the higher frequency, it
couples more strongly to the higher frequency perturbation Tinearly in
a simple ratio of the frequencies. This result can be seen to be gen-
erally true, at least if the perturbations are small, from extended
coupled-mode arguments presented elsewhere $2-3

A few words are necessary on how to read the diagrams. Figure
13 is relatively straightforward as it looks much like the simple dis-
persion diagram of earlier sections. Figure 14, though, is of a

slightly different form. It is hard to tell a computer which branch of
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a dispersion relation to take, and therefore much easier to have it
plot them all, which is what was done. Ue see if we pick the most
central root in figure 14, we come very close to matching the plot in
figure 13, and therefore this is the branch we want. We can match

this real part with any combination of the complex conjugate imaginary
parts which are plotted separately and with a different scale. Al
three imaginary parts are plotted and on separate lines (i.e., have
different zero points). There is one minor embarrassment though, that
of the large imaginary part on root 1 extending right off the diagram.
This is easily explained away, however, as the theory is no longer
valid in this region on this root. The polynomial only contains enough
information for the first two bandgaps and the problem bandgap region
lies in the regime of the second or higher order theory.

As far as direct comparison is concerned, apart from the differ-
ent plotting format, the results of the two theories appear to he almost
identical for the given set of parameters. Yet we know they can't be
identical everywhere, as the dispersion relations do differ. This
compels us to take a closer look at the respective dispersion relations.

Let us consider the effect of phasing the two perturbations dif-

ferently, that is to say, let

ida]

f1 + f] e
_ periodic (38)
'[(f.)2

f2 * f2 e
1¢]

f-[ - f] e
_ almost periodic (38b)
1(,*)2
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We must perform this interchange, however, in a manner which 1eaves

the medium lossless. We find the resulting determinants can be written

as
"
by T T 3
f D f f
1 -1 1 2 fOT the
det D = det f§ fT D0 f} fz periodic (39a)
. o ; , case
fs i 1 1
* *
- R #W 0 |
and as
Doy O g o o0 |
0 D
10 T . . for the almost
| _ * * periodic
det D = det 97 f] D fI 9 ke (39h)
0 0 fT D.IO 0
o 0 g 0 Oy

Direct evaluation of (39a) leads to a formidable algebraic equation in-
volving all combinations and permutations of the perturbations and their

conjugates. It would be too much to believe that the expression could

32-34

be phase-independent and indeed it has been shown elsewhere by

other techniques that it is not. The evaluation of (39b), though, is
much simpler and more instructive, as can be seen from its form

2
|

- ]f

Do-1P-10P00°10%01 117 Pg109-1(D30% D_y0)

2 B}
- 1971 DygPyotPgr* Doy} = O VR




.

Equation (40) is more important for what it lacks than for what
it contains, namely the lack of an explicit dependence on the phasing
of the perturbations. In some sense the perturbations are independent
of one another. The only way that they could interact is through
matrix elements involving Dij‘ However, in the scheme we have been
using to analyze the interaction where attention is placed on a bandgap
center, the Dijs corresponding to different perturbations show up ex-
panded to different orders. To illustrate, consider the expansion around

the lowest order where we take

K
1
= B
kder koJer 4 Kk 5+ Ak (41a)
1
B =B, *AB=—5+AB (41b)

Expanding the three important D's we find

Dy ™ i—] (Ak - AB) (42a)
Dy ™ g? (Ak + AB) (42b)
D, ™ -f% (ok + AB) - %—‘]5 (42¢)
where
Ak = Ko = Ky

For validity of the expansion we must have

(43a)

Ak <z BO

|75

AB << B (43b)

Nl 7
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However, we have in no way specified Ak, although we can easily see

that something fundamental changes when Ax is allowed to become the

same order as other parameters in the expansion. !Ye would perhaps ex-
pect that this 1imit will yield part of the information we seak concern-
ing the relation of periodic and almost periodic wave propagation, and
we will therefore take up this Timit in detail in the next section,
where we wish to continue to consider the distinctions between the cases
when the harmonic perturbations are in phase and the bandgap spacing

goes to zero.
D) The Ax » 0 Limit

1) Need for a New Perturbation Theory
The first necessity in investigating the small A« 1imit is to
find exactly how small Ax must be to enter this 1imit. We know that
this "band spacing" variable must be on the order of the other small
parameters in the calculation, namely Ak and AR . However, these param-
eters are variable and therefore we need to know their maximum region

of variation in terms of some other constant. The needed relation is

easily found from equation (25). It is easily shown 32-34 that the
approximate bandgap width (figure 15) is given by
K = &
centra1‘
nek AP
Ak =2 x=2 —contral ; (a8)
edges Kcentr‘a])P = (N + Z)epasic

where RKeantval *> the average of €1 and Ko- It therefore follows that

nK
o cegtra] (45)
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As can be seen from figure 15, the limit of (45) must correspond to a
"coalescing" of the two bands into one, or at least some kind of over-
Tap.

Figures 16 and 17 are attempts to delve into the band coalescence
regime employing our almost period dispersion relation program. Figure

16 just starts to enter the interesting regime as

A = .1 (46a)
¥ = ”—SK— n .07 (46b)

Figure 17, however, although into the band coalescence region, is some-
what disappointing, as the variation of the band structure is too rapid
for our sorting routine to pick up and much interesting and valuable
information is lost. In the next section we will amend this problem.
Attempts to investigate the periodic band coalescence with our
present program are equally disappointing. In the periodic case we are
forced to fix Lk at unity and reach our desired Timit by applying our
perturbations at larger and larger multiples of the basic harmonic. But
as the perturbations are placed at the Nth and (N+1)th harmonic we
find the size of the matrix whose determinant we must evaluate must be

of order
0(a) = 2N +] (47)
for any accuracy to be achieved. But (47) places a restriction on how

large we can reasonably let N become due to the expense of obtaining

the determinant of a large matrix numerically. As we have taken our
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basic period to be unity we see that
nhN K .
_ basic _ nN
Taking the reasonable 1imit of N = 20, we find that

nn LA (49)

to achieve the band coalescence limit. Figures 18 and 19 illustrate the

result for the values

fy = »3 n, = .3 Figure 18 (50a)

I
o

m = iy = o5 Figure 19 (50b)

The result is rather surprising. Instead of two bands coming

together, we see many bands popping up at both super- and sub-harmonics

of the expected ones. But due to the large size of the perturbations we
must wonder if this effect is not really due to a breakdown of our per-
turbation theory instead of some more physical reason. It is now evident
from figures 16-19 that an improved theory would be desirable for both

the periodic and almost periodic cases, especially if one could be devised
that could reach the band coalescence region without requiring a large

perturbation. Such a theory is the subject of the following two sections.

2) Almost Periodic Perturbation Theory
Here we wish first to perform the expansions of equation (42) in
a more symmetric manner. We take the dielectric constant to be in the
form

e(z) = Er[] + ﬂ]COS(K-G)Z * nzcos(m+6)z] (51)
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where the § and the n's are first order quantities. 4Ye now expand the

quantities

kve

1l

- ”
ko/E; + Ak = > * Ak (52a)

fos]
]

B, + 48 = §-+ AR (52b)

Analogously to (42), we find

4
Dy ™ & (ak - 08) (53a)
D_y g-(Ak + 4B + §) (53b)
D ﬂ-(Ak + AB - §) (53c)
s & £

and the other D's are found to be of zeroth order. We now see that if
equation (40) is expanded to the lowest order in the perturbation, it

is reduced to the form

D.D

oP_1D

2
D_] - |91| D = 0

g = -2

(54)

0 = |f]| Ny = |g]|

We can further expand (54) with the use of (53) to find the polynomial

expression of (54), which can be written

2
x A = ~ e n
(38)3 + Ak(Eg)? - RB[(Ak)Z + &2 - E%
2
e s 555 n'l' (ST]_ = B (55)

- Ak[(‘&k) -6 - ﬁ] - BI— =
B =28  jgefX 5=8

K K K

where
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2 2 2

ng =Nyt (56a)
n = ng - n? (56b)

The real advantage of (55) over our earlier fifth degree polynimial
is that (55) is of only third order in AB. Being of third order, there

exists an explicit formula for the polynomial's roots 34

, and therefore
it is possible to follow each root separately through the coalesced
region. The numerical technique is described in Appendix A.

Several plots are exhibited in figures 20-23. We see that re-
sults are essentially what we would have expected from physical consider-
ations. As & is gradually decreased from the initial value (the pertur-
bation being kept constant), the bands come smoothly together, and in

the 1limit of 6 equal zero, it can be seen that the total bandgap width

becomes

Bk | total = ZXpus
\fﬂ? + ng
- = Ocritical © 7 88 (57)
indicating that the perturbations sum in a root mean square manner, an

outcome to be expected from a system in which absolute phase is unimpor-

tant.

3) Periodic Perturbation Theory
To develop the periodic perturbation theory, we fix the basic
period k at unity, equate the basic period to Ak, the spacing between
our perturbations, and to force the bands to come together we let Nk,

the frequency of the lower perturbation, become large. We can indicate
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this coupling scheme on a schematic Brillouin diagram analogous to that

of (32), as follows:

which represents the

system of equations

2
By * *ohy =0
' g
gt * 72y * 2 a (uay) = O
il
K LE L g Y =9
& Ag
Pyt z3%*z22 =0
D i N

Expanding the D's of equation (59), we find

D_(n+1) =

D_n

~

4

(N+ 3

4

(N+—;~)r<

(k + 88 - 3)

(Ak + A + -g—)

(58)

(59a)

(59h)

(59¢)

(59d)

(59e)

(60a)

(60b)
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D= (N—f])— (Ak - AB - k) (60c)
? K

D, = a—{%—)—-(Ak - AB) (60d)
? K

D, = EE:%I;: (Ak - OB + k) (60e)
7

The rather surprising thing here is that all five D's are of the same

order. In fact, in general we can write

4

D(Oi g) = za:jg;;-(ak - AB % 2x) (61)
and
D (n22) = Zﬁ;—? (s + ag + ZFHD (62)
L integer

The result that the D's fall off only algebraically is indeed disturbing

as it is not clear how to truncate the general system

nog

a = 0 (63)

However, if we arbitrarily cut off the system (63) with five harmonics as

in (60), we find the system (assuming N to be very large)

HZNK
AB ay - (Ak + k) ay = 5= ay (64a)
n]NK HZNK
A 3y - Bk 3y =g &t E (64b)
n]NK

AB a_.l =- (Ak-K)a_] = —8— a_(NH) (64(:)




94.

” n]NK DZNK
AB a_y * (ak + EJa_N = s eg— iy =y (64d)
- ﬂ]NK UZNK

which can be rewritten in the matrix form

(Dey 88 1) a =0 (65)

where I is the identity matrix. As (65) is a matrix eigenvalue equation,
we can obtain its solution numerically for any number of harmonics by
simply augmenting the system (64). This we have done and we have plotted
the results in figures 24-28, which should be compared with the results
plotted in figures 18 and 19.

In figures 24 and 25 we use the values of the plots of fiqures 18
and 19 to obtain a direct comparison. Figures 18 and 24 are rather hard
to compare, as the precise meaning of 24 is not completely clear. The
figure seems to say there are three bandgaps, but they have not yet coal-
esced. One problem with figure 24 may be that the derivation of (64)
requires restrictive assumptions about Ax,perhaps limiting the system's
usefulness to cases in which coalescence has already occurred. In com-
paring figures 19 and 25 we see that this may be the case, as 25 indeed
resembles 19 closely in length, however, not so closely in the center fre-
gquency. This disagreement in center frequency is perhaps not so severe,
as figure 19 includes the second order effects. For the parameters given,

the coupling constant for second order couplings

nZN

which is indeed quite large and could lead to band-center offset. If N
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could be taken larger and n smaller, the Floquet theory might well give
results more comparable to figure 25.

Figure 26 arises from the coupling scheme

~(N=1) =N —=(N+1) —(N+2)

O
I

+
(67)

Figure 26 is plagued with the same disease as fiaure 24; that is to say,
it is hard to interpret. It seems to be telling us that more harmonics
are taking part in the interaction but that not all the bandgaps have yet
coalesced. If we combine the results of figures 25 and 26 using this
kind of interpretation, we decide that three bandgaps have coalesced, yet
at lTeast two more bandgaps exist. This interpretation seems to agree
fairly well with the result of fiqure 19.

To check if our interpretation was correct,we raised the perturba-

tion value to a higher level given by

5 =’}3—”= 2.5 : (68)

and plotted the seven and nine-harmonic results in figures 27 and 28. The

nine-harmonic coupling scheme is given by
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2%
149

21 0 S 2SS N (N —(N2)

(69)

which is simply the symmetrical extension of (67) and (58). Figure 27
then exhibits the same behavior as figqure 25, and figure 28 somewhat
mimics figure 26. It seems that if our interpretation is correct, this
perturbation would yield a five-bandgap coalescence with at least two
other non-coalesced bandgaps appearing.

It appears we have unearthed a definite distinction between the
periodic and almost periodic cases. In the last section of the next
chapter we shall again address this problem of bandgap coalescence, al-
though this time we will have both reflection and Brillouin diagram
techniques at our disposal. As the reflection coefficient is the physi-
cally observable parameter, we feel it is best to defer the physical ex-
planation of the above detected phenomena until after we have developed

sufficient techniques with which to treat the reflection problem.
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CHAPTER IV

The Reflection Coefficient

Although the discussion of the last chapter yielded information
concerning the differences between periodic and almost periodic wave
propagation, the information was always contained in a Brillouin diagram.
The problem is now that we have no experimental technique to measure a
Brillouin diagram. Although we feel that quantities on the Brillouin
diagram relate to physically measurable parameters, such as the imaginary
part of the bandgap telling us about the relative magnitude of the reflec-
tion coefficient, we have no firm tie-in. This chapter will attempt to
mitigate this uncertainty by first considering the reflection coefficient
in some depth and then developing a technique to find the reflection coef-
ficient from the same equations with which we found the Brillouin diagram
in the last chapter.

We begin the discussion by reminding the reader of some elementary
considerations concerning reflection coefficients and perturbation expan-
sions, essentially at the level of Morse and Feshbach.1 This discussion
is designed to point out the problem of secularity in perturbation expan-
sions, a problem which must later be overcome to obtain physically

acceptable results for the reflection coefficient.

A) Standard Perturbation Theory for the Reflection Coefficient
1) Setting up the Exact Boundary Value Problem
Figure 1 defines the parameters and regions of the problem. We begin

by writing the fields separately in each region:
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TR Pl (1)

iNk,z2 + iMk,Zz . : .
& + 1 2" 1Bz - _iNksz+iMk,z -z
V=1 ayye e "t ) ayqe 2" e

N, M b=

ikz (3)

Note that we have assumed the almost periodic solution of Chapter II to
be valid in region 2.

Before equating the values and derivatives of U across the bound-
aries, we must reduce the number of constants in region 2 through use of
the dispersion relation. As y satisfies a second-order differential
equation, only two of the doubly infinite number of constants must actu-
ally be arbitrary. We proceed by solving the determinantal eguation of
Chapter III,

det D = 0 (4)
2.
3
value of B, we can back-substitute into the equation

for the doubly infinite set B As discussed in Chapter II, for each

R

a = 0 (5)

and obtain the a's as a one-parameter string, say in terms of a5(2s
as

Ay, = G lICh 10 0) a (6)
LI RS R |Bij 00
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Say that for each of the positive (negative) roots of (4) we carry out
the procedure indicated by (5) and (6), denoting the free parameter by

ago(aao). We then find the field in region 2 to be expressible as

PNyt Mey)z 185 .2

s T 1d
P = a I F Gialkyake ) e e
00 by by SPSTSREYL
ij
~ ) 1'(N}<.'+ Mscz)z -‘iB,ijz
+ a Gl K735 5k} e e (7)
00 ;45 by TmMi<10%2 \‘Bij

We have reduced the boundary value problem to four equations (continuity
of y and its first derivative across two boundaries) in four unknowns
(aSO’aBO’ R and T). However, the sheer complexity of the system renders
exact solution impossible. The need for some perturbation theory is evi-
dent.

2) Born-Neumann Series

Perhaps the most straightforward perturbation scheme to apply is

that of Born 2 and Neumann 3 . If we expand  in our wave equation
d2 2 szr‘ - g’- & 7 % .g'_ (8)
;;E-w t ke b = -—— AP(z}y 2 2

where AP(z} is an almost periodic function in terms of the parameter n,

and pick off the first order reflection coefficient R, we obtain the fami-

Tiar form

ink/E: z
RKED = - —h FpW(2) rectG - Pl g L g 9)

where
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Fo DEFGa) = fe“'B"- flz) dz (10)

We have found this Fourier transform property to be a more general property
of scattering than before stated in the literature, and in Appendix B we
show it to be true for three dimensional scattering in very general con-
stitutive media. However, in spite of the generality, simplicity and
invertibility of this result, we will presently show it is not of much

practical interest in our case.
3) Secularity of Born-Neumann Series at Bragg Resonance

Consider the simplest of almost periodic functions (periodic func-

tions being a subclass)

AP(z) = cos kz (11)

A simple computation with (11) yields the result, noted elsewhere ° , that

i k/e. sin(k/E + -E)z . sin(kve, - )%

R(kve) = (12)
% 4 K K
kv‘Er + g)g’ (kVEr = -2-)5?.
If we investigate the maximum of this equation, which occurs for
= s &
k € T 3 (13)

the longitudinal Bragg condition, we find

Ky _ ‘ink/z; _ inkf
RES) =

4 8
a most disconcerting result. The maximum value increases linearly in both
the frequency and the length of the medium, not just in the perturbation.

It is as if we expanded in the quantity nk2 instead of n an effect
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commonly termed secularity 6 . It appears we are stuck with a theory
that breaks down as soon as we reach the regime of interest where there
is strong wave-medium coupling.

It is easy to check that the problem does not improve in the
almost periodic case. MNor does it really improve by use of the various
renormalization techniques / designed to remove secular terms, as the
increase in complexity leads to no certain increase in accuracy 8 ‘

Further, the method is not designed to show any difference between

periodic and almost periodic media. Clearly a new theory is required.

B) The Electromagnetic Riccati Equation

The first and perhaps most basic result of the technique of invari-
ant imbedding is that of the Riccati equation for the electromagnetic
reflection coefficient. This section is intended not only to introduce
the reader to the basic precepts of this technique, but also to develop
and discuss this exact reflection coefficient equation whose numerical
solution we shall later employ. We begin with a brief historical perspec-

tive on the invariant imbedding technique.

1) Invariant Imbedding--Historical Perspective
The invariant imbedding technique was first applied by Sir George
Gabriel Stokes in an 1862 work 9 considering the propagation of light
through a striated medium. Some fifty years later, Lord Rayleigh 10,11
somewhat extended the technique in investigations of a similar problem.
H. W. Schmidt 12 was the first to continuously vary the length of a

medium rather than simply add a discrete slab as had Stokes and Rayleigh.

In spite of Schmidt's 1907 study of B-decay, however, the first




110.

generaliy recognized work of invariant imbedding is that of V. A.

Ambartsumian in ]94513. In this work as in his 1958 treatise14,

Ambartsumian employed the invariant imbedding technique to develop a

theory of radiative transfer. Although Ambartsumian's work stimulated

15

certain workers in the West ™, it was Chandresekhar's unifying treat-

116

ment in his 1960 boo on radiative transfer that brought the concept

to a research forefront. Coupling Chandresekhar's book with the earli-

17

er developed functional equation techniques of Redheffer ', various

workers in mathematics and physics‘then solved a plethora of problems

in numerous areas as evidenced by the reference 1ists in recent books]8

on the topic. Of the numerous references on the topic we have found

139 to be the most useful and in most of what

that of Bellman and Wing
follows we adhere somewhat to their notation and conventions.
2) Stokes Recursion Relation and the Conservation of Energy
It was prior to the publication of Maxwell's electromagnetic

20 that Stokes solved the problem of wave propagation in a

theory
layered medium. He considered a geometry similar to that of figure (2)
and was armed essentially only with the Fresnel relations (refer to

figure (2b) for directional definition)
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n -n
% SRy (@)
[+1 I
2n
I+1
t, = =1+r (b)
I n1+] iF nI I
(15)
n. - n
I I+1
r{ s ————— = -r (c)
I nI + nL+] 1
2nI
e T (d)
L By W lipg

The technique employed was similar, but not equivalent, to the

multiple-bounce argument21

used for the solution of the single slab
problem. The essential difference lay in the use of the invariant
imbedding approach. Stokes assumed he knew the solution to the i
layer problem, added an (1‘+1)th layer, summed the added contributions
to the reflection arising from the (1+1)th layer as in the multiple-
bounce argument, by assuming that each time a wave traversed the

th th

(i+1) " layer and impinged on the i~ layer, it acted as a source for

the reflection coefficient to the i Tayer problem. The technique is
basic to invariant imbedding and is indicated schematically in figure
(3). As the details are carried out eisewhere]g, without further ado
we write the result that

2ik. A
rI + e I IRI
Risp = EU (16)
R1

T+ r,e 'l

where
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ke = > Ag is the free space wavelength.

The recursion relation (16) is sufficient to solve the problem given

some initial condition such as

Further, as Fresnel's formulas are rigorously derivable from Maxwell's
equations, equation (16) represents an exact solution to the propaga-
tion problem.

Of primary interest in this is the property of non-secularity
and/or energy conservation. As (16) is an exact solution to a propa-
gation problem, somehow it should include energy conseryation. To
indicate that this may be the case, we consider the following argu-
ment. If at some interface I the reflection coefficient has a magni-
tude of unity and some phase angle ¢, we find that at the next inter-
face

2ikpay €' + rIe-21kIAI " (18)
21k

R = e s
| Ie1¢

I+1

1 # ree

where ¢' is some new phase angle. The argument indicates that the
reflection coefficient can never exceed the value one, and indicates
that (16) certainly has the attributes of energy conservation, as it

should.
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3) The Electromagnetic Riccati Equation

The most straightforward generalization of Stokes' recursion re-
lation is to allow A to go zero and thereby obtain a differential
equation valid for media in which the refractive index varies con-

19

tinuously. Such a generalization is easily affected ~ and the result

found to be

o
N |20

= %{]_Rz) 9522) E1%3"_ 2ik(z)R (19)

where z is the longitudinal coordinate and

k(z) = Zmiz) (20)
0

Equation (19) has the well-known form of a generalized Ricatti equa-
tionzz.

The energy-conservation argument culminating in (18) can also
be applied here and will result in a real equation for the variation
of the phase angle with longitudinal coordinate, again indicating
that (19), when subject to a reasonable initial condition, will not
allow the reflection coefficient to exceed one. The solution to the
inhomogeneous slab problem is completed.

The problem is, however, that (19) is a non-constant coeffi-
cient, non-linear differential equation which in general is not
solvable. In Appendix C we derive some intefesting properties of the

equation in general. In this appendix we also show that attempted

perturbation expansions of (19) for the periodic and almost periodic
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cases contain first-order secularities and are therefore of little
use. Essentially, the only way to solve (19) or (16) is numerically.
This we have also done and found the solution to (16) to be consider-
ably faster for comparable accuracy.

Armed with a numerical solution, one might think the problem
is completed: only specific cases need be run off to compare the
two solutions whose difference is our primary concern. This is not
true for two reasons. First, the computer program becomes exces-
sively expensive to run when more than a few periods of the dielectric
constant are included in the medium, yet to find any difference be-
tween periodic and almost periodic media at all it is necessary to
include many periods, lest the phase between the "bumps" be rela-
tively unimportant. Second, small numerical round-off errors will
cause an almost periodic equation to appear essentially periodic, at
least for small numbers of periods, which is to say that there is no
provision in the Riccati equation or computer to differentiate the
cases. Although the Riccati equation is a powerful tool in checking
perturbation solutions in its own regime of validity, it is not the
definitive solution to the problem. However, as we shall see in the
next section, in the derivation of the electromagnetic Riccati equa-
tion, i.e., the technique of invariant imbedding, lie the seeds of a
method to both circumvent the problem of secularity and further
illustrate the difference between periodic and almost periodic

structures.
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C) A Generalized Look at Invariant Imbedding

In this section we will generalize an argument due to Bellman
and Ning19 in two ways. First, we shall make the derivation appli-
cable to arbitrary numbers of forward and backward waves, allowing
the resulting system of equations to fit the form of the coupled
equations we derived in the last section of chapter III. Secondly,
we will apply generalized energy-conservation criteria to the char-
acteristic parameters of the problem to deduce under what conditions
we can be assured of a unitary (energy conserving) solution.

1) First-Order Wave Equations from Particle Counting
Consider the diagram of figure (4). We wish to obtain the

"particle flux" (field flow) through the medium in terms of forward
and backward moving streams. We will assume that there are M dis-
tinguishable states (modes) moving to the right, generically denoted
the forward wave, and N distinguishable states (modes) moving to the
left, generically denoted the backward wave. The physical situation
could be that of particles with spin moving down an accelerator, or
that of energy being propagated through a ribbed multimode fiber-optic
waveguide. The anisotropy between forward and backward waves could be
due to a magnetic field in the accelerator, or an anisotropic ribbing
structure in the lightguide. Whatever the situation, we wish to con-
sider the change in the forward and backward waves as they traverse a
tiny distance A in the media, a quantity which is later allowed to go

to zero. First, let us consider the contributions to the forward
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wave which leaves our test region at z+A. Certainly, it receives
a contribution from the impinging forward wave at z,which we shall
write in the form

1st contribution = (EM + 1§FA)E(2) (21)

~

where EM

part denotes phase shift per unit length and whose imaginary part de-

is the MXM identity matrix and QF an MXM matrix whose real

notes medium gain or loss per unit length. Note that in equation (21)
we have only considered quantities of first order in A in anticipation
of a later 1imit. We have still to include the contribution from the
backward wave impinging on z+A from the left which gets backscattered
in traversing the infinite-simal slab. This contribution is denoted
by

2nd contribution = i Xppl §(2+A) (22)

where XFR is an MXN matrix whose elements denote the amount of each
backward wave component to get scattered into each forward wave com-

ponent. We also note at this point that

B(z+A) = g(z) + 0(A) (23)

where the 0 function indicates that any additional terms go to zero
at least as fast as A. Summing the contributions of (21) and (22)

with the use of (23) we find

F(z+a) = (Iy+i8pA)F(z) + ixpptB(z) (24)
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Similar reasoning leads to the relation

B(z) = (; +i8 A)§(2+A) + iKBFAE(z) (25)

where the new quantities §B and Xgp are defined in analogy with those
of (26). i i
Equations (24) and (25) are now in the form of coupled trans-
mission-line equations, a very convenient form in which to apply
energy conservation considerations. We accordingly defer our dis-
cussion of generalized invariant imbedding for one more sub-section.
2) The Energy Conservation Relations

In his elassic work of 195425

» J. R. Pierce derived, by elemen-
tary considerations, a very general set of energy conservation rela-
tions applicable to systems expressible as four-port equations. For

the system Pierce considered

F(z+A) A B| | F(z)
= (26)
B(z) £ D) [ B(z+A)
the relations are
* *
A +CC -1=0
* *
BB+ DD -1=20
s+t =0 - (27)

where it has been assumed that energy is proportional to the squared

modulus of the F and B quantities. We state, without proof, that
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the great generality of the derivation allows us to take the system of
(26) and (27) directly over to a matrix case, or more specifically,

for the generalized four-port system

F(z+a))] E2) 7

Ll x=
¢ 3

- ~ (28)

B(z) @(Z+A)

¢
¢

[ <=

where F is an M vector and B an N vector, the energy conservation

relations can be written

* b -

AA+CC - Ty= Oyy (a)

k™ e H = fass

BB+DD -1, =0y (b) (29)
Y af o

oot <oy @

where the definitions are as in (24) and (25), i.e., O is the MXN
zero matrix, with the exception of the asterisk whichwhere denotes
Hermitian transposition.

We note here that the system (28) is of equivalent form to our
system of (24) and (25) and therefore that (29) applies as well to
(24) and (25). We now want to find what constraints (29) imposes on
our propagation matrices if the system of (24) and (25) is to conserve
energy. We note, however, that the conditions of (29) need only be
satisfied to first order in the parameter A as the system of (24)

and (25) is only correct to this order in A. Bearing this in
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mind we note that for the identities

A= Iy + 16 A (a)
B = iy A (b)
S (30)
C = ixgp & (c)
D=1Iy+isga (d)
we find
* . +* 2
A'A =T, + id(§c +8c) + 0(a%) (a)
*
B8 = 0(s°) (b)
*
ccC-= 0(4%) (c)
L , (31)
* *
29" * ‘A(§B +8g) + 0(a7) (d)
* -
A B = ilxpp (e)
* %
o - i, "

With the substitutions of (31) in (29), we find our energy conserva-

tion relations are

*
8 = % 7 O (a)

" - b) 32
%% 7 I ( (32)
Xgr ~ XrB = Onm (c)
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We find that energy conservation dictates the reality and symmetry
of the A's and a Hermitian transpose equality of the y's. We will
later see that these relations do hold for our coupled-propagation
theory derived from the dispersion matrix.

3) Invariant Imbedding of Coupled Equations

We now wish to transform our system of (24) and (25) to a set of
differential equations. The change is easily effected as we need only

rewrite (24) and (25) in the form

F(z+8) - F(z)

= 18 F(2) + iy B(2)  (a)
(33)
B(z+A) - B(z) _ _
= St A8 BE2) * Ty FL2) ()
and take the Timit of A going to zero to find
dF(z) _
ElZ = igF E(Z) * T}EFB B(Z) (a)
(34)
dB(z) _ _
- gz T 18 B(z) + ixge F(2) (b)
In general our boundary conditions will take the form
Tn _ 2y _
F-7) = ¢ Bigl = 0 (35)
where s i
,~ith componen
T | p— , 0,1, 0,----, 0] (36)

corresponding to the situation in figure (4) where only one
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distinguishable wave would be impinging on the slab from the left and
no other source in the problem. Such two point boundary value
problems can be solved by a straightforward, yet arduous and usually
numerical, technique. This technique and its growth in complexity
with the order of the system are described in Appendix D. What we
wish to do here is to apply invariant imbedding and reduce the reflec-
tion coefficient problem to one of the initial value type.

Consider the diagram of figure (5). The diagram is very similar
to that of figure (3), the geometry that Stoke59 considered, with one
basic difference: A is now a continuous and not a discrete, variable.

12 34 which A

The case here is equivalent to that considered by Schmidt
is at first considered small and later allowed to go to zero. Figure
(6) schematically illustrates the procedure of the calculation. 1In
(a) a source is incident on the added thickness of slab. This extra
slab immediately backscatters an amount given by the term in y written

to the left of the slab, and passes an amount given by the term in

GF written to the right of the slab. The term on the left
1st contribution = 1XFB A (37)

is seen to directly contribute to the reflection coefficient as that
wave is lost to the system. The amount passed, however, is not lost
to the system but in fact acts as a source for the original slab
problem whose solution we have assumed is known. For this reason,
the S term returns to our considerations in (b) where the portion
of tﬁis secondary source
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2nd contribution = (1 + 1§FA)B(Z)(IN + iéBA) (38)

~

which passes through the extra slab, is seen to directly contribute
to our reflection coefficient while the back reflected portion acts
as a tertiary source for the original slab. 1In (c) we note that this

tertiary source contributes an amount

3rd contribution = (IM + 1§FA)8{2)1§BFAB(Z)(£N + 1§BA) (39)
to the reflection. We could continue this summing process ad infini-
tum, but realize we already have more than we need as we are ex-

panding only to first order in A. Ignoring the higher order terms in

A, we find that our expression can be written in the form

g(z + 1) - B(z)

A = ixpp + T(8gR(2) + R(2)8p) (40)
1 R(z) xpe R(z)
which in the Timit of vanishing A becomes
dR(z)
<5 = ixpp * 1(§F5(z) + E(z)gB) + i§(2)§BF§(Z) (41)
The associated initial condition would be
R(z = 0) = Oy (42)

if the media to either side of the slab were equivalent.
A few words are necessary here about having a matrix reflection

coefficient. In measuring reflection in general we measure at best
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a vector, corresponding to distinguishable backward modes. But here
we have derjved a matrix reflection. The explanation is simple
though. If we consider the i, j component of R we realize it denotes
the amount of wave exiting in the jth backward mode, given the ith

forward mode was incident. The vector we would therefore measure is

r*= Finitiay R (43)

where Einitia] should be normalized such that

* -
Finseaar Frmigsay = ) (44)

Therefore, if we measure only the total reflected énergy, the

quantity we measure would be

r*r o= F% R R* F (45)

~ ~initial ~initial

A few words are necessary here about what we have actually
achieved. In (41) we have a non-linear differential equation for a
matrix, a very complicated system to solve analytically. The
achievement however lies in the fact that (41) has constant coef-
ficients in the cases which we will presently consider. This is an
extremely desirable improvement over the electromagnetic Riccati
equation as we are no longer Timited to some number of periods inside
the medium in a numerical solution, as the addition of more periods
simply causes the redefinition of one of the constant coefficients of
a numerically stable system. We have succeeded in applying a per-

turbation theory to our original problem, which both simplifies the
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method of solution and preserves the unitarity of the theory. We
schematically illustrate our approach and the approaches that fail in
figure 7. More will be said on this in the next section whare we

will apply (41) to some systems of Chapter III.

D) Riccati Equations, Brillouin Diagrams and Dispersion Matrices

1) Single Harmonic Perturbation

Before considering the case of bandcoalescence, we wish to
apply our technique to the simplest problem we know, that of a single
harmonic perturbation. The schematic Brillouin diagram for this

problem would be

(46)
representing the set of equations
&+ isF = ixB (a)
y (47)
B s 3 :
- E + 'IGB = 1XF (b)
where
§ = Ak (a)
x = X (b) 148}

where the notations of Chapter III have been used. We note here
that indeed the system of (47) satisfies the criteria of (32). To
find the reflection coefficient we can immediately employ the

Riccati equation (41), which now takes the simple form
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dR _ 45(1 + R%) + 2i6R (49)

where the identifications of (48) apply. Equation (49) has constant
coefficients and can therefore be solved by quadrature
R

dr :
S _ 5 s S dz . (50)
0 ix(1 + R%) + 2i68R 0

The integral on the left hand side is available in Gradshtein and
Ryzhik's manua124 and, with some algebraic manipulation, the
resulting equation can be inverted to yield

ix

R(2) = geoth 0z =78

(51)
where

b= /8% - ¥ (52)

The result (51) is a familiar one from the 1iterature25'26

where it has been obtained by solving the coupled-mode two-point

25-26 bt

boundary value problem. It has also been shown elsewhere
(51) gives a very good prediction of experimental results, and
further that the half-width of the main lobe is very close to the
width of the bandgap. In Appendix E this result is compared with
that of the exact Riccati equation.

2) The Almost Perijodic Ax-+0 Solution.

We next reconsider a problem from the last section of the pre-

vious chapter, which can be represented by
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where 0.P. abreviates operating point and is used to indicate that

we are expanding about this point.

the system

where

and

and

The notation employed here is just that of the last section of

The schematic (53) represents

aF ...
35 = THF = 1(X]B] + XZBZ) (a)
- ol 1'('5+B1 - ix]F (b)
de ) )
g 16_82 = 1x2F (c)
60 = Ak (a)
8, = bk £ A (b)
S P_I_K_ (a)
8

_ ¥
X2 = 78~ (b)
o B TRy
5 2

(54)

(55)

(56)

(57)
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Chapter I1I1 except for A replacing § of Chapter III. Again we can di-

rectly employ the Riccati equation of (41), providing we make the

identifications
% = % (a)
(58)
§.,0
+
&y (b)
~B =lg s
and
Yos = a
:FB X2
(59)
XgF ~ [X]X2] (b)

We note at this point that (58) and (59) do indeed satisfy (32), the
Pierce energy-conservation criteria. The resulting set of reflection

coefficient equations can now be written out explicitly and are

found to be
dry 2. . .
(60)
R, | 2. .
az = Ixp(l + R7) +i(85 + 8) Ry + ixgRyR,

We are not in so fortunate a position with equation (60) as we
were with equation (49) as although (60) has constant coefficients,
it is no longer integrable by simple quadratures. However we pro-

grammed the system of (60) in a program called "Criccatti" and will
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now present some of the results.
Figures (8) and (9) represent solutions of the system (60) for

parameters given by

% =8.10° | (a)
n =/Z 1073 n, =vZ 1073 (b)  (61)
Wk = T ¥al = V2 (c)

- - £ g 2 2 oo 2
60 = (7.6_, 4.8} = (7.5 22, 4. hE w2} (d)

i.e., the widely spaced perturbation limit. It is notable that in
this 1imit the results appear much as the result of two independent
single perturbation solutions (cf. APPENDIX E) patched together
might appear. From the considerations of Chapter III we would
assume this would be the case.

In figures (10)-(13) we plot a sequence of graphs for constant
X% = Xpb = V2 (62)

while varying 82 through the values

82 = 2.8, = 2.vxp%+xy2 figure 10 (a)
- - 2o 2 .
8% = 1.58, 1.5#&1 X figure 11 (b) -
8¢ = 1.6, = 1.7 2 o2 figure 12 (c)
8% = .58 = .SJX]Z +x22 figure 13 , (d)

i.e., the closely spaced perturbation 1imit. The results are just

what we would have expected qualitatively from the Brillouin diagram
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plots of the last section of Chapter III (figures (20)-(23) of
Chapter III). We also note that in figure (14) the total reflection
coefficient appears to be just that of the root mean square y defined,

as in Chapter III, by

/2 2 =
7 M ol K 5
_ 1 2 v2n _ /5

XRMS ~ 8 = —g =Y2x (64)
n] = nz =n

We can illustrate this effect analytically by the following argument.

If we take
X = Xo =% (a)
8,=85=8_=8 (b)
then we see that
R] = R2 = R/VZ (66)

where R denotes the total reflection coefficient which, from (45), is

defined as

R = /IRy 1% + [R,|® (67)

We now write (60) in the form

Ry 2. . .
. ix{1 + R1 1 1xR1R2 + 21'6R.I (a)
dR, . (€8)
Now, substituting (66) in (68), we find the single equation
dR _ 2 ; _ 7 ;
T = 72x (1 +RE) + 2i6R = xpuo (1 + R%) + 2i6R (69)
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But (69) is equivalent to (49) with x replaced by XRMS and we have
illustrated that our system (60) has the correct 1limit in the sense
that it agrees with the result of the two-point boundary value problem,
which in turn is shown to closely agree with the electromagnetic
Riccati equation in Appendix E.

As the system (60) has the correct 1imits for A becoming large
and A going to zero, it seems a safe assumption to consider (60) the
result of a correct perturbation theory. Also the close analogy be-
tween the results of the reflection coefficients and the Brillouin
diagrams generated by our approach also tends to vindicate our
assumption that the Brillouin diagram does contain much information
about a medium's properties. As the reflection coefficient and
Brillouin diagram calculations come from an equivalent set of equations
we therefore feel we can consider either of them basic quantities.

3) The Periodic Media Small Ax Limit

We note here that the system (34), assuming a harmonic spatial

dependence with characteristic exponent AR-can be written in the

form
F
(gcw - AB %) (B) = 0 (70)
with the characteristic equation
det (ch - AB é) =0 (71)

which is equivaient to equation (65) of Chapter III. We also note
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that equation (65) of Chapter III satisfies the Pierce energy-
conservation criteria (Eqs. (32) of this chapter). The point of writ-
ing (70) and (71) was to point out that equation (41) is simply an
imbedding of a problem we have essentially solved in Chapter III;

that is to say, having been given the Brillouin diagram we have a

good idea of the structure of the reflection coefficient. We
therefore, without further reflection coefficient calculations em-
ploying (41), will proceed to compare the almost periodic and

periodic cases in a qualitative sense.

Recalling figures (18), (19) and (24)-(28) of Chapter III and
employing the results of this chapter, we would conclude that the
reflection coefficient of periodic media in the small Ax Timit is a
complicated, broad-band structure, probably containing many dips and
peaks. An example is plotted in figure (15), employing the exact
Riccati equation, and our conclusions are well borne out. The
basic point is that the periodic case is considerably more complicated
than the almost periodic case. We now will attempt to give physical
meaning to this distinction.

Consider the periodic or almost periodic dielectric constant

given by
e(z) = Er[] + n(coskz + cos((k + Ax)z)] (72)

Using a well known trigonometric identity we can write the second

bracketed term as

coskz + cos((k + Ak)z) = 2cos(é§5) cos((k + %?)z) (73)
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The function (72) is sketched for the periodic and almost periodic
cases in fiqure (16).

To proceed we must first accept the principle of local reflection.
The idea behind it is that a wave is strongly reflected by portions
of a medium which satisfy the Bragg relation but that the wave is not
very much affected by other parts of the medium. Now with reference
to figure (16), we notice that the "wiggles" of (72) become more
closely spaced near the relative nulls of the wave packet. This
packing phenomena is caused by the slope of the modulating wave
packet increasing sinusoidally to a maximum at its nulls. The
unperturbed carrier peaks would be equally spaced without the wave
packet, but in the presence of this modulation, the peaks are
squashed inward toward the wave packet maximum at a rate which
increases as the slope of the wave packet, as the tips of the un-
modulated peaks are being multiplied by a value of the modulation
function which is smaller than that which is multiplying the
perturbed peak location. The gross effect of the varying peak spacing
is that along the z-axis different Bragg conditions are satisfied
at different locations. This means that waves of different fre-
guencies are reflected from different positions and one would expect
a broadening of the reflected spectrum. But the spectral broadening
will only occur in the periodic case as in the periodic case the wave
is successively reflected nearly in phase by each of the carrier

humps, causing a cumulative effect. This is not so in the almost
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periodic case as the phasing of the "wiggles" within each carrier
hump is essentially random and no cumulative effect occurs, other
than that due to the separate periods of (72). This effect, however,
will disappear gradually as Ax is increased as the number of carrier
humps per unit length decreases. We now can see a reason for the
behavior we have discovered in this report. In the large Ac limit
the two-tone periodic and almost periodic theories should appear
identical; however, this identity will disappear as the frequencies

of the two perturbations approach a central Timit.
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Chapter V

Conclusions

A) Relationship of the Brillouin Diagram to the Reflection
Coefficient

In Appendix E of this report the close agreement of the exact
Riccati equation and the coupled mode two-point boundary value
problem is illustrated. This agreement had previously been pointed
out e]sewhere.] In Chapter IV of this report a technique was de-
veloped in which the coupled-mode two-point boundary value problem
is solved exactly by constant-coefficient coupled Riccati eguations.
The technique is applicable to cases in which arbitrary numbers of
space harmonics are inc]qded. The constantfcoefficient nature of
the coupled Riccati equations allows numerical solution of cases in
which the exact Riccati equation becomes numerically unstable and
therefore we are able to investigate cases heretofore inaccessible.
As the coupled Riccati equations are derived from the same set of
equations that determine the Brillouin diagram, the predictive
ability of the Brillouin diagram is thus illustrated. In the almost
periodic case, numerical results illustrate that bandgap regions give
rise to frequency regimes of large reflection, as one would expect.
The result allows us to use the Brillouin diagram and reflection
coefficient interchangeably in qualitative discussions of periodic
and almost periodic media.

B) How Periodic and Almost Perijodic Structures Differ
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1) Phase Relations

As has already been explicitly shown,2 different phasings of
harmonic perturbations in a periodic structure lead to diverse elec-
tromagnetic responses, as evidenced by Brillouin-diagram results. In
this report it has been shown explicitly that such is not the case in
an almost periodic structure to the most important order of approxima-
tion. As precise phasing of multiple harmonic perturbations is a
very complex task in practice, we feel that this phasing property
of almost periodic structures makes these structures in some sense
less abstract models than periodic structures.

2) The Band Coalescence Regime

In this report the cases of periodic and almost periodic band
coalescence have been studied in detail. It has been found that
very closely spaced periodic perturbations give rise to an exceedingly
complex bandstructure which should lead to broadband reflection
characteristics. In the almost periodic case the picture is much sim-
pler. As the band centers are brought together the reflection
"humps" add in a root-mean-square manner until total coalescence is
achieved. Each perturbation (or more correctly each associated back-
ward mode) seems somewhat oblivious to the proximity of the other
perturbation, in contradistinction to the periodic case where all the
perturbations are coupled and many backward modes become important.
C) The Basic Nature of Almost Periodic Structures

1) Multi-tone Almost Periodic Perturbations
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Generalizing the mapping of Chapter II to the case of N almost

periodic tones, we find the first order dispersion matrix to be

f
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By induction it can be easily shown that the dispersion relation
resulting from the determinant of this matrix 1is again phase-
independent, indicating that the phase independence relation is very
basic to almost periodic wave propagation.

2) Almost Perijodic Ensembles and Stochastic Ensembles

The apparent incoherency of almost periodic perturbations
when coupled together with their root-mean-square addition properties
tend to make one think of stochastic effects where phases are
averaged and probabilities added. To help force the analogy, we have
plotted, in figure (1), the specially constructed AM-FM modulated
almost periodic function

flz) = [T + %‘(COSK]Z + COSk,2Z + C0SK52)]

(2)

x cos[(r:4 + COSKkpZ + COSKeZ + cosm7z)z]
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where

Ky =T Kg = 6.m

_ 343 - (3)
K2 T‘?’ " K5 m

5 led - e
K3 = ™ KB o m

V3 V3
Koy, = Beis ™
7 1.7

(That (2) is almost periodic is evident from elementary AM and FM
considerations, i.e., its spectrum is a line spectrum.) Although
(2) possesses a line spectrum we could consider the various «'s as
random variables which vary between members of an ensemble of functions
of the form of (2), and thereby obtain a stationary ensemble of
arbitrary spectra. This could certainly be done with other deter-
ministic functions, but we know of none with phase properties of the
almost periodic functions. Further, as (2) illustrates we can
generate very general almost periodic functions and still have the
ability to analyze the wave propagation characteristics in such media
through the matrix of (1).
D) Possible Research Directions

1) Extensions to More General Geometries

Certainly the longitudinal geometry is not the only or even the
most common wave propagation geometry. By choosing separable
geometries and using the solution of Chapter II, a plethora of

interesting problems could be solved. A possibility would be the
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transverse geometry of holography analyzed by Burckhardta. The
transverse geometry is nice as gratings are both fabricated and
operated in such a geometry, a fact which may make that geometry the
simplest in which to attempt experimental verification of the
almost perijodic wave propagation theory. As was mentjoned in Chapter
I, the three-dimensional geometry in which phonons propagate could
also be of interest.

2) Modeling of Random Perturbations

As was discussed in (C) above, almost periodic structures seem
to be natural candidates for deterministic members of stochastic
ensembles. By using AM, FM and/or more general sums of almost
periodic tones, modeling of very general statistical perturbations
should be possible.

3) Extensions to Active Media-Stability Criteria

Following the Tead of Jaggard and E]achi4 and Jaggards, who
analyzed the periodic case, one could attempt to analyze the
possibly more realistic almost periodic case. Such results could
be applicable to distributed feedback lasers.

4) Experimental Verification of the Theory

This would certainly be the most important contribution to the
theory. Although the two-tone case discussed in this report would
be very hard to verify directly, it seems within the realm of
jmagination that a more easily verifiable case could be constructed,

perhaps from the 1ist of suggested topics above. However, the



158.

verification could be performed, though care will have to be taken
to make sure that it is indeed the difference between periodic and

almost periodic media that is the measured quantity.
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APPENDIX A

Ordering the Roots of a Third Order Polynomial

We start from the set of equations for the roots of the third

order polynomial

3 2 -
z° +ayz" +agz tag = 0 (1)

which can be written as]

g
By ®idyp * sy =g (a)
Z, = - 5 (57 +5,) - ig-+ 23 (s - s,) (b) (2)
2 2 1 2 3 Z ] 2
1 %2 9F .
23 = -3 (5 45 = 35 1P (s - 5p) (@)
where
s; = [r+ 1/ (a)
s, = [r #1173 (b) (3)
f =[[q®+ r°]'7% (c)
and
9= ]§ gy = 15322 (a)
2 (4)
ro= l-(a a, = 3a,) = 2 (b)
& )2 0 7
Using our dispersion relation of Chapter III
2
n
ag3 + akag? - (ak2 + 82 - zr) b8 :
2 5)
2
2 2 M+ Sn_ _
-Ak[Ak"é-"s-a_]-_g—"_o
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We can make the following identifications:

—

n
q=-§-(§ ——6—4—-)—'%‘Ak2 (a)

8 .2 25 1”+2 on 2 )
= bklyz 8k - 3= 3 5] + 95 (b)

=
1

The behavior of these functions is sketched in figure Al.

If we define the quantities

= . 2
B = Sepipieay = T /69 (a)
(7)

8s? + 205°

-5
1}

2 4
8%~ &, (b)

we find 3
2 2
2 (8 - 68°)
278 278

M
1

We note that the roots of this expression are at

2 _ 1 W T
Ak-zsaz[Pd_ﬁG a(s® - 52)°] (9)

The behavior of F2 is sketched in figure A2.

The problem with direct evaluation of (3) is the arbitrariness
of the phase in taking the cube root. Taking a cube root can put us
on any of three branches in the complex plane. We solve this problem
by invoking the dubious principle of monotonic phase, i.e., forcing
the absolute phase of the expression to increase monotonically. Be-
fore directly addressing the branch problem, we summarize the

results of our calculations and ad hoc rules using the notation for
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our arbitrary branch variable

to find

o=
Case 1 £2 < 0
_ i
sy =se
2
zy = 25 Ccos ¢
a2 '
z, = -5C0S¢ - 3~ - V3 sin ¢
. 82
z3 = -s[cos ¢ - /3 sing] - 3
Case 2
— £2 > 0
_ i
gy = [8] # ¢ SP = |sy] + s,
-i
s, = |s,| &' M= Isy] - Is,l
2
z, = SPcos¢ - §——+ iSM sin¢
a
z. = _SP(C05¢ + V3 sing) - b i§M-(/3cos¢— sing)
2 2 3 2
a
2y _gP(cos¢ - /3 sing) - §§-~ i%m-(fﬁcos¢-+ sing)
Ad hoc rule
If Sy and So have different signs, set
|32| 2 ‘|52l
= SP > SM

SM -+ SP
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The branch problem is solved by the following rule (with

reference to figure A3): Start the phase 3¢ at 3w and subtract

out m for @-»@, @+ @ and @+@
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APPENDIX B

The Constitutive Interaction

We start from the lossless media electrodynamic action (1-2)

— = A 4 .op 4 . uv
S--45de Fas+§dxAqun (1)
where
0 £, -Ey -EZW
E 0 B -B
Fuv ’ ’ i & Av o™ Ay,u (a)
Ey -B, 0 B,
{FZ By -B, 0 |
[0 D, Dy D,
-D 0 H -H
LA z y (b)
-Dy -H, 0 H,
_TDZ Hy -H,, 0 |
_ " (2)
-1 0 0 0
0 1 0 0
Y = (c)
0 0 1 0
| 0 0 0 1|
[ p
g = ] | (d)
g

and commas denote partial differentiation. It is easily seen that

variations performed on (1) yield
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and that the other Maxwell equations

Flog,y1 = ©
follow from (2a):
We continue by defining the most general Tossless, linear

constitutive relation by

Hv _ ~uvafp - pHVY _ gHv
G C FaB F M (3)
where
GHE o PR %—xuvaﬁ (a)
@l @2 03 !23 31 12
" 01 ap
X(e) ! XEM 02
3 - 03
WV 2 s | (b)
* : 23
XEM FoX(M) 3
: 12
]
X(e) =€ -1 (c)
I (4)
Xwy =1 - ¥ ket)
X(uv)aB _ Xuv(aB) _ X(uv)(aB) -0 (e)
XU\»‘CLB i (XIJ\)OLB)* (f)
[0 -p, -P, 5.1
MY = 1 MWaBe Px ? MZ -My (g)
~2X B |p oy 0. M ’
y Oz : X
L% My -My 0 n

With the above substitutions, we can rewrite our action in the form
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_ ] 4  uo VB 1 4  pvapR
S=- g dtxn B F g [ dt xR E F

B pv o

(5)
4 .UV
+ _[d XAUJUn
If we perform variations with respect to Au on (5), we find the

corresponding Maxwell equations

P =i, e jF e 58 + §H (6)

¥ # bound  free
with the corresponding interpretation that the E and B travel
through free space augmented by a bound polarization current. This
can be explicitly illustrated by integrating the second term of (5)

by parts, to obtain

1 4  uvop " 4  auv - [.4 . bound_awv
g Jdtxx™oBr Foo= fatxm, A = fdtxA g PN (7)

Our argument can now be completed by noting that

Scattered fields o transition amplitude T o interaction action SIIS)

Certainly for the first-order interaction with a lossless, linear

constitutive media,
N 4 . bound _av
§; = .fd x Ad, i (9)
Taking the incoming and outgoing states to be plane wave states,
incoming of propagation vector °k, polarization °e, outgoing of

propagation vector 'k,polarization 'e, we evaluate (9) to find

(after some manipulation)
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Taolk e ¥ (x““B“)Ik, O O¢ (10)

The result is manifestly gauge invariant under transformations

1 i
g = Tg P k a
H E'Ll ¥ H ( )

0 0 0 (11)
By ™ Ry 2y ku (b)

and explicitly illustrates that any first-order interaction with a
lossless, linear constitutive media is proportional to the Fourier
transform of the medium's constitutive tensor. The argument can be
carried to higher orders and can be shown to be equivalent to the

Neumann series for simple media.
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APPENDIX C

The Electromagnetic Riccati Equation

We first address the question of what the basic properties of
the Rjccati equation are, or more specifically whether the individual

terms have meaning. Starting from the equation itself

93 =2 (1 - R%) i - 2ikr (1)
We first consider the case where
r K <k (2)
Equation (1) then becomes
R = _2ikr (3)

with the obvious solution

z
R = R, e-21f0 k(z') dz' (4)

The clear interpretations of (4) are that the last term on the right
hand side of (1) must be some sort of phase determining quantity, and
that the magnitude of the reflection coefficient is dependent not so
much on k as on its rate of change. We now investigate the first
term of (1) by making the assumption that

k << %—%; (5)

In this case the second term on the right hand side of (1) is

ignorable and (1) can be integrated to yield
ke - kg * Ry (ke + kg)

R=Rf ¥ kg * Ro (kg - k)

(6)
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This result contains as 1imits the two well-known results that as

R0 -0 (a)
(7)
n-n
0
& n+n0 (b)
and as
Ry > 1 (a)
¥ (8)
R =1 (b)

and therefore shows that the first term on the right hand side of
(1) contains the boundary effects. This is reasonable as the
condition (5) is satisfied only in the neighborhood of sharp inter-
faces.

There exist many perturbation schemes other than the Born-
Neumann series discussed in Chapter IV. Examples are the Bremmer
series] and the Arth (R) transformationz. By considering explicitly
the behavior of these approximation schemes in periodic media it is
easily seen that they become secular. Here we wish to present a sim-
ple argument to show that any perturbation scheme which uses simple
ordering of terms will become secular at resonance. Let us write

the Riccati equation in the form

gg._ %-(1 - R%) é%—(1og n(z)) - 2ikn(z)R (9)
where
k = kO = w/c (10)

and we take the index of refraction to be of the form
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n = ng[1 + nP(z)]

where n is small and P denotes a periodic function. We now

Fourier transform (9) into the variable 8 to obtain
g = 1B g 1as 3 -
-iBR = -5 76[1ogr1] + 3 R*R*BFB[Iogzwj 21k?6[n]*R

where the asterisk denotes convolution. We now expand

log n = log ng *+ log [1 + nP]

; (_)ﬂ (T]P)nﬂ

= log n, +
0 sl n+l

= log o + =0+
With this we find
7, [1og n] = as() + 7 (a)
Fg [n] = ngs(8) + ngnP (b)

Substituting (14) in (12) we find
~ 'I ~ o~ ~ ”~
[2kn, - BIR = - %—z + 5 Re[R%BX - 2kyngnP]

The Bragg condition is just

2k ng = B

showing that the left-hand side of (15) vanishes on resonance.

the left-hand side is the only zeroth-order term in n of (15).

(11)

(12)

(13)

(14)

(15)

(16)
But

Clearly, for this reason, any expansion in n of (9) must fail as the

higher order terms in n become more important than the zeroth-order

term at resonance.
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176.

APPENDIX D

Two-Point Boundary Value Problems

We consider the geometry of figure (4.1), Chapter IV. We wish

to find the transmission and reflection coefficients of the system

defined by
dF(z)
a7 - 1 F(2) = ixgg B(2) a)
dB(z) (1)
a7~ - 1% Bl2) = ixpe F(2) (b)

where [ is an N vector and B an M vector. As the system of (1) is

always reducible to an (N + M)th order differential eguation, we

can assume solutijons of the form

1]
| e B

F(z)
(2)

I
I~ +

B(z)

where the Di's must be determined as the roots of an (M+N)th order
polynomial. We can substitute (2) back into (1) and obtain 2N + 2M
equations for the fi's and the bi's. However, only (N+M) of these
equations will be independent. To complete the solution to our prob-

lem we must write the system

F- ) = & Fig) = T (a) "
3
B(- ) = R B(3) = 0 (b)




177.

where e; is a unit input vector. The system of (3) represents

2N + 2M equations for 3N + 3M unknowns: E, @, I, B. But when

coupled with the N+M independent equations obtained from sub-
stituting (2) in (1), we are left with a 3(N+M) order system in
3(N+M) unknowns, and therefore can compute a unique solution for

8 and I. To summarize, solution of the two-point boundary value
problem requires: 1) derivation of the (N+M)th-order differential
equation from the system of (1); 2) determination of the roots of the
(N+M) th-order polynomial resulting from the (N+M)th-order differential

equation; 3) solution of a 3(N+M) order system of algebraic equations.
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