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Abstract 

Continued refinement of a global Geologic Timescale solely through increased pre­

cision of biostratigraphic correlations philosophically suffers from the inherent lack of a 

universal reference frame. Geomagnetic polarity reversals, which occur relatively rapidly 

and simultaneously on a global scale, can provide the necessary universal reference frame, 

provided the polarity reversals are correlated within a well-defined biostratigraphic frame­

work and occur with a fairly distinctive pattern. 

Magnetostratigraphic correlations across the Cambrian-Ordovician boundary inter­

val indicate that normal polarity zones correlative to Late Cambrian conodont zones occur 

within sections from Texas, northern China, western Newfoundland, central Australia, and 

possibly Kazakhstan. These correlations strongly suggest that temporal differences may 

exist between sections in the absolute time value of key biostratigraphic horizons. There 

may also be very brief normal polarity zones correlative with Early Ordovician conodont 

and graptolite zonations, but those relationships have not yet been well-established. 

Magnetostratigraphic correlations allow polarity to be unambiguously determined 

for the relevant continental unit, even in the absence of previous paleomagnetic investiga­

tion. Extension of this to Late Cambrian and Early Ordovician paleogeographic problems 

indicate that North China, and probably also South China, underwent approximately 90° 

counterclockwise rotation during the Cambrian, and were most likely attached to or very 

near the present northern margin of Australia during that time. 

Paleomagnetic results from Upper Silurian through Middle Devonian carbonates of 

the Barrandian area, Czechoslovakia have at least three components of magnetization pre­

served within them. Two of the components appear to pass the fold test, indicating that 

they pre-date the deformation creating the basin, constrained to be not later than Late 

Carboniferous. Differences between the two components probably correspond to different 

times of acquisition, and may record rapid plate motion of the Bohemian Massif during the 

Middle Paleozoic. 

Paleomagnetic results from Upper Ordovician to Lower Silurian carbonates from 

Anticosti Island, Quebec are not reliable because of the extremely weak magnetization of 

these rocks. Sharp increases in intensity during thermal demagnetization experiments may 

provide insight into the chemical changes which occur within carbonate rocks during ther­

mal demagnetization, but at the present time those phenomenon are not well understood. 
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Ozapter One Introduction 

By the mid-1800's, nearly all of the currently recognized geologic systems had 

been defined, and the utility of fossils for long-range correlation and the demarcation of 

geologic time had already been well-established. Most of the systems were recognized as 

discrete units bounded by sharp changes in the fossil or rock record, and were thought to 

represent changes which affected the entire planet (probably reflecting the lingering 

influences of catastrophism, which viewed the geologic record as dominated by a series of 

widespread natural disasters, and Werner's Neptunist scheme, which considered the time 

relationships of a single locality to reflect universal events). 

In retrospect, placing system boundaries at major breaks in the stratigraphic record 

was a prescription for dilemma. Under such a scheme, a portion of geologic time could not 

be defmed by a physical point in rock within the type locality (Figure 1.1 ). As the body of 

stratigraphic knowledge increased, it became clear that other localities preserved strati­

graphic levels which were absent from the type area, and problems arose as to which 

system best encompassed the intervening strata Fossil zones which had clear system 

affinities in one area were found to correspond more closely to different systems in other 

areas when multiple groups of fossils were compared. Regional geologic timescales that 

could not be accurately correlated to each other became established. As geologic data 

accumulated on a global scale, and as geologists became interested in the rates and timing 

of wide-ranging phenomena such as glaciations and biological extinctions, it became clear 

that time-equivalent, or chronostratigraphic, marker horizons were necessary constraints 

for global correlations. 

Under the auspices of the International Union of Geological Sciences' International 

Commission on Stratigraphy (ICS), the stratigraphic community has for the past 25 years 

been attempting to address many of these problems primarily by refining the biostrati­

graphic correlations used to construct the geologic time scale. Unfortunately, this strategy 

generally suffers from one philosophical pitfall: the potentially fallacious assumption that 

equivalent horizon correlations, such as the first or last occurrences of a particular taxa or 

changes in sea-level, also represent equivalent time correlations. In fact, equivalence of 

time can only be established using a chronometer universal within the reference frame being 

investigated. For the earth, only the physical laws and certain global physical properties 
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Figure 1.1. Hypothetical Silurian-Devonian boundary demonstrating the difference 

between a system boundary and a period boundary. Systems are physical units, and 

are completely defined by the type locality, despite a bounding unconformity. Periods 

are the abstract equivalents of systems, and cannot be precisely defined when an uncon­

formity is used for a system boundary. 
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satisfy this requirement Fossils are inadequate primarily because living organisms are 

influenced tremendously by their environment, and environments are subject to local 

changes that may not reflect a general planetary trend. Therefore, the time equivalence of 

fossil horizons in different localities needs to be demonstrated through another planetary 

clock before it can be considered reliable. 

There are a plethera of planetary properties and physical laws which can be safely 

assumed to have everywhere the same value at the same time; examples include the obliq­

uity of the planet's rotational axis to its orbit around the sun, the laws governing radioactive 

decay, and the length of the day. Unfortunately, virtually all of these properties and physi­

cal laws either leave no presently observable stratigraphic record of their value through 

time, or have changes so small as to be useful only for deducing very long term relation­

ships. Radioactive decay can provide powerful insight into age relationships, but the pre­

ponderance of the fossil record lies within lithologies that are currently inaccessible to 

accurate radiochronology, and the associated error values for Paleozoic rocks (rocks older 

than about 230 million years) are too large to prove useful in establishing fine-scale strati­

graphic relationships. However, one property of the earth leaves a readily observable 

record of its value in virtually all kinds of rocks, and, except for (geologically) very brief 

periods of time, has the same value simultaneously on a planetary scale: the polarity of the 

earth's magnetic dipole field. 

Geomagnetic polarity stratigraphy, or magnetostratigraphy, involves determination 

of the earth's magnetic field polarity preserved in rocks. Polarity reversals of the earth's 

magnetic field are global events that probably take less than 10,000 years to complete 

(Harrison and Somayajulu 1966; Opdyke et al. 1973; many others). There is no evidence 

to suggest that normal and reversed polarities are simultaneously stable at the earth's 

surface, so that, except during the transitional periods of polarity changes or excursions, 

the geomagnetic field polarity is universal over the globe. Therefore, it is a logical conclu­

sion that geomagnetic reversals can provide the necessary marker horizons useful for test­

ing the chronostratigraphic significance of intercontinental biostratigraphic correlations. 

Magnetostratigraphy has been widely applied to Cenozoic correlation problems for 

the past 20 years, and also to a lesser extent in Mesozoic correlations, but the technique has 

not previously been used for correlation problems involving the Lower Paleozoic except for 

the Precambrian-Cambrian boundary (Kirschvink 1978; Kirschvink and Rozanov 1984). 

One of the main reasons for this is the absence of marine magnetic anomalies older than 

Middle Jurassic: marine magnetic anomalies provide an ideal reference correlation for 
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magnetostratigraphy, and without them correlations must originally be made to define a 

magnetic polarity reference scale rather than in conjunction with one. Also, even though 

the preservation of the geomagnetic field polarity is relatively insensitive to the rock type 

(the sole requirement being that a very minor amount of magnetic mineral be present), 

magnetostratigraphic correlations are most effectively made within a detailed biostrati­

graphic framework, which further compounds the difficulties in extending the technique to 

the Paleozoic: virtually all detailed Paleozoic biostratigraphies are found in either 

carbonate- or shale-rich sections, which are far from the most desirable lithologies for pale­

omagnetic work because they are often only weakly magnetic. 

Overcoming the problems introduced by the use of weakly magnetic lithologies 

requires large numbers of samples, which increases the importance of identifying sample 

areas with the highest probabilities of success. However, the eligible candidates for sam­

pling are greatly reduced by the need for a detailed biostratigraphic framework, and by the 

fact that older rocks have greater probabilities of having undergone levels of either meta­

morphorism or tectonization (or both) that may render them unsuitable for paleomagnetic 

work. Fortunately, an opportune side effect of the ICS effort to establish stratotype locali­

ties and precise boundary horizons for the geologic periods has been the detailed catalogu­

ing of a large number of stratotype-quality sections from around the world. Many of the 

sections collected from during this study have been designated as global chronostratotypes 

by the ICS, or as potential chronostratotypes by the salient ICS boundary working group. 

In addition to their potential for establishing chronostratigraphic relationships, mag­

netostratigraphic correlations provide important constraints for paleogeographic reconstruc­

tions. Many areas in the world have large gaps in the Paleozoic record, making construc­

tion of apparent polar wander paths (APWP), and quantitative constraints of paleogeo­

graphic positions, extremely difficult. Polarity stratigraphy allows the determination of 

hemisphere even in the complete absence of previous paleomagnetic work from the area, 

requiring only that one of the sections involved in the correlation comes from a continent 

with known polarity for that time interval. This proves to be invaluable when determining 

the paleogeographic positions of micro-continents, which often have limited stratigraphic 

records. 

The identification of intercontinental chronostratigraphic horizons is essential for an 

accurate global view of the rates and timing of events in earth history. Magnetostratigraphy 

provides a unique correlation tool that is insensitive to the problems of lithologic facies or 
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faunal endemism, and has a potential accuracy on the order of 10,000 years at reversal 

boundaries, while simultaneously providing valuable paleogeographic information. 
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Olapter Two Methods of Investigation 

Magnetostratigraphic investigations using Paleozoic rocks face special problems 

that stem from the fact that the necessary detailed biostratigraphic framework almost always 

occurs within carbonate rocks. Carbonates are usually only weakly magnetized, so the use 

of a cryogenic magnetometer is necessary. Additionally, during thermal demagnetization 

experiments carbonates often display mineralogical alteration that obscures or obliterates the 

original magnetization (Lowrie and Heller 1982). Many modem carbonates lithologically 

similar to those used in these studies have magnetizations that are completely unblocked or 

obscured by mineralogical alteration at demagnetization temperatures around 400° Celsius 

(D. McNeill, pers. comm.). Carbonate rocks are also easily and strongly affected by 

weathering, and the effects of recrystallization on the existing magnetization are not 

presently well-understood. Yet another complication is the possibility that the magnetite 

occurring within a particular carbonate section is authigenic (McCabe et al. 1983). 

Trying to overcome all of these problems often results in a paradox. The most de­

sirable sections, those that have experienced very low temperatures of metamorphism or 

burial, often lack the structural complexity necessary to perform the fold test, making it im­

possible to constrain the age of the magnetization by this method. The best carbonate 

lithologies for paleomagnetic work are usually finer-grained platform limestones, which oc­

cur in a depositional regime generally lacking any conglomeratic units, thus making it im­

possible to establish the age of the magnetization through use of the conglomerate test In 

the absence of any stability tests, then, the primary methods of assessing the reliability of 

results from sections are through applications of the consistency test and the reversal test 

The reversal test has the inherent handicap that it is not applicable when a sample locality 

has only one polarity preserved, and is of limited validity when one polarity predominates 

over the other. The consistency test, which is based on the probability of similar magne­

tostratigraphic patterns arising in n number of sections through chance, is potentially the 

most powerful, and actually becomes stronger if one polarity predominates over another 

(although this increase has an upper bound; the test is useless if only one polarity is pre­

sent). Since the probability rapidly becomes smaller as n becomes larger, a large number 

of sections (and samples) is desirable. This fact further strengthens the logic that period 

boundaries are the places to begin definition of a Lower Paleozoic magnetostratigraphic 

timescale. 
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2.1 Site and sample selections 

Because carbonates are usually weakly magnetized, and often undergo mineralogi­

cal changes during thennal demagnetization, a great deal of care must be exercised in select­

ing sample areas. ldeallocalities are those that have not experienced temperatures of burial 

or metamorphism exceeding the highest demagnetization temperature from which useful 

data can reasonably be expected to be obtained. For the purposes of this study a single 

criterion, the conodont alteration index (CAl), has been used to discriminate between 

desirable and undesirable sample localities. The CAl is a measure of the level of organic 

metamorphism occurring within the section (Epstein et al. 1977). Extrapolating the typical 

laboratory unblocking temperature back to Paleozoic times using time-temperature blocking 

relationships for magnetite (which is the dominant mineral carrying magnetic remanence in 

virtually all the rocks in this study), constrains the maximum conodont alteration indice 

(CAl) that permits elimination of thennal remagnetization as a likely source of the preserved 

direction (Figure 2.1). Generally, those relevant-aged sections exhibiting CAl values 

higher than 2.5 were not studied, on the grounds that the potential for the preserved di­

rections being the result of thennal remagnetization is too high. CAl values for sections 

used in this study are given in Table 2.1 

Diagenesis detrimental to paleomagnetic study often manifests itself in one or both 

of two forms: recrystallization of the surface material, with concomittant loss of the origi­

nal direction; and development of iron oxides through secondary mineralization. 

Generally, both can be largely overcome by sampling the freshest exposures. However, in 

some localities this guideline proved to be insufficient, and results from these sites often 

reflected the influence of diagenesis. 

A further complication is the possibility that the magnetite occurring within a par­

ticular carbonate section is authigenic (McCabe et al. 1983). In those studies that have 

identified authigenic magnetite, the mineral was found to be multi-domain and largely 

spheroidal in shape. To help identify those samples that may contain authigenic magnetite, 

IRM acquisition-AF demagnetization experiments were performed to characterize the 

magnetic mineralogy. 

Once a site has been selected, the most important considerations for selecting sam­

ples are the freshness of exposure of the individual bed, the continuity of the outcrop, and 

the stratigraphic interval between samples in relation to the relevant biostratigraphic zones. 

Sampling intervals, which are given in Table 2.1, were generally as small as was logisti­

cally practical. 
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Figure 2.1 Comparison of conodont alteration indices (CAl) (after Epstein et al. 1977) 

with unblocking temperature-time curves for magnetite (after Pullaiah et al. 1975). 

Grey region indicates extrapolation of typicallal:x>ratory unblocking temperatures to 

plausible timescales of burial or metamorphism. 
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2.2 Sample collection techniques 

There were two separate sample collection techniques employed during this investi­

gation. One involved the collection of oriented block samples, with subsequent laboratory 

drilling of cores. The other employed a portable gas-powered drill (a specially-modified 

chain saw) equipped with diamond-tipped coring bits. The latter technique is much more 

rapid, eliminating the tedious step of drilling cores out of the blocks back in the laboratory, 

but it requires that a good supply of water be close by. Drilling also removes another 

source of error, since only one set of orientation measurements are required, instead of 

two. Most of the samples reported on here were collected as cores using either a 

McCullough or Pomeroy drill. 

Sample orientations were determined in the field using both Brunton and (when 

possible) sun compasses. Standard procedure for both solar and magnetic orientation mea­

surements involved placing a brass sleeve around the drilled core while it was still attached 

to the outcrop, and measuring the orientation of a plate orthogonal to the cylindrical axis of 

the core. By our convention, measurements with the Brunton compass were made with 

instrument north pointing to the right while facing the outcrop. Orientation marks were 

then placed on the core by running brass 'scritchers' down a thin gap at the top of the ori­

enting sleeve, with the intention of leaving a distinctive sheen. Samples were labelled us­

ing "Sharpie" permanent ink pens, wrapped in paper, and labelled again. For most of this 

study, as an adopted convention sample labelling was done with the top of the core (that 

part nearest the edge of the outcrop) pointing to the left 

Block sampling was done with two conventions: Brunton measurements were 

done with compass north pointing to the right (as in core sampling), and measurements 

were made facing upslope. When possible, sun compass directions were also collected. 

2.3 Laboratory preparation 

Laboratory preparatory procedures involved converting block or core samples to a 

standard size for measurement in the magnetometer. Block samples required the drilling 

out of cores; this was done using a drill press modified to use coring bits. Orientations 

were then taken using the same equipment and techniques outlined above, with the added 

step that field orientations for the block were taken into account 

Before all other preparation steps, the cores had their brass orientation marks re­

placed by deep scratches, made using diamond-tipped scratching pens. Sample cores, 

which have a diameter of 2.5 em, were cut to 2.5 em in length using a Felker rock saw 
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equipped with a stainless steel blade, and subsequently rinsed in a 4 N HCl bath until all 

ink marks were removed. After drying, the samples were labelled using Koh-i-noor 

opaque white ink. Broken samples were repaired using Zircar white cement Reunification 

took place within a mu-metal shielded room, to eliminate the remanent magnetization asso­

ciated with solidification of the cement (ZRM). 

After final specimen preparation, the cores were placed within the shielded room 

and allowed to remain for at least one month before sample analysis, to facilitate loss of any 

viscuous components of the natural remanence. 

2.4 Sample analysis 

2.4.1 Instrumentation 

Paleomagnetic measurements were performed using an SeT cryogenic magnetome­

ter with 2G SQUID electronics, interfaced to a dedicated Zenith XT-compatible or Apple 

lie microcomputer controlling data collection and measurement procedures. Alternating­

field demagnetization was done with a Schoenstedt model GSD-1 three-axis instrument 

Thermal demagnetizations took place in a custom-built large-volume shielded oven. 

Rock magnetic studies were performed on a 2G cryogenic magnetometer with 2G 

SQUID devices, interfaced to a (separate) dedicated XT-compatible microcomputer. 

Samples were crushed into 3-5 mm chunks, rinsed briefly in 1.2 N HCL, and placed 

within plastic vials, which served as sample holders during measurement procedures. 

Excellent discussions concerning the principles utilized by the various types of 

magnetometers, including their construction and their relative strengths, and other 

instrumentation used in paleomagnetic research, can be found in Collinson (1983). 

2.4.2 Demagnetization experiments 

Both alternating-field (AF) and thermal demagnetization techniques were used on 

most samples. Typically, AF intensities did not exceed 15 mT (150 gauss) because of an 

anhysteretic remanent magnetization (ARM) that was pronounced above 15 mT. In most 

instances AF demagnetization procedures were controlled by microcomputer. 

Thermal demagnetization yielded the more valuable information of the two demag­

netization techniques used. Since carbonate rocks often do not give reliable results after 

heating at about 400° C., standard procedure was to perform thermal steps in 50° C. incre­

ments beginning with 100° C. up to 300° C., followed by 25° C. increments until the sam­

ple intensity decreased below the sensitivity of the instrument, about 1 o-5 Am-1 or in-
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creased by two orders of magnitude over the 200° C. measurement. (Using the 200° C. 

step as a basis for comparison eliminated the possible influence of magnetic components 

carried by goethite.) Heating times were generally one hour. For some samples, mea­

surements were continued using higher temperatures despite fulfillment of one of the above 

criteria. However, there were no instances that suggested that these guidelines were un­

reliable as indicators that further data collection would be fruitless. 

2.4.3. Rock magnetic studies 

Rock magnetic studies used isothermal remanent magnetization (IRM) acquisition 

coupled with AF demagnetization. IRMs were induced using a custom-designed pulse-coil 

apparatus; typically, maximum IRM intensities attained were around 2 tesla. AF demagne­

tization was done with equipment manufactured by 2G Enterprises; maximum AF intensi­

ties were typically around 1 T. Both procedures were controlled by microcomputers. 

A few experiments investigating the changes in rock magnetic properties with heat­

ing were undertaken. In these experiments, four splits, of approximately 1 gram each, 

were made from a single specimen; one split was unheated, and one each was heated for 

one hour at 150°, 300°, and 4500 C. Each split then underwent identical protocols for IRM 

acquisition- AF demagnetization. 

Magnetic mineral phases and sizes were estimated based on the shape of the IRM 

acquisition- AF demagnetization curves, and through use of the Lowrie-Fuller test (Lowrie 

and Fuller 1971; Cisowski 1981 ). 

2.5 Data reduction 

Data reduction was performed using the Macintosh-compatible QuickBasic program 

Paleomag, based on the principal component analysis techniques outlined in Kirschvink 

(1980) and developed at Caltech by Jones, Ripperdan, and Kirschvink (©1990). 
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Chapter Three Magnetostratigraphic results from the 
Cambrian-Ordovician boundary 

Introduction 
Agreement upon a horizon to represent the end of the Cambrian period has been 

difficult since the Cambrian system was first established by Adam Sedgewick in 1835. 

The original dispute (which is famous both for its participants, Sedgewick and his former 

student, Sir Roderick Murchison; and its acrimony, which ended in the dissolution of their 

long friendship) arose because the overlying Silurian, defined in southeastern Wales on 

biostratigraphic grounds by Murchison, had its base well below the top of Sedgewick's 

Cambrian system, which had been defined using the largely unfossiliferous strata in 

northwestern Wales. Their disagreement would not be resolved until 1879, when Charles 

Lapworth formally proposed a tripartite division of the Cambrian and Silurian strata, and 

defined the intermediate Ordovician system (Lapworth 1879). 

Lapworth's own defmition, which was solely on paleontologic grounds, placed the 

base of the Ordovician System at the base of the Lower Arenig Series in Wales, at the 

location of the change from Barrande's 'fauna primordiale' to 'fauna seconde'. However, 

correlation to other parts of the world indicated that the upper part of the Tremadoc Series 

in Wales should also be included in the Ordovician (Henningsmoen 1973). Much of this 

confusion was due to differences between Lapworth's personal definition of the Lower 

Arenig in Wales, and that of many other geologists Lapworth originally considered strata 

previously defined as Upper Tremadoc to be part of his Arenig Series. However, in 1902 

Lapworth explicitly stated that 'the systematic base of the Ordovician System was originally 

drawn at the bottom of the Upper Tremadoc' (Henningsmoen 1973). Lapworth's place­

ment of the Cambrian-Ordovician boundary at a major paleontological break, without 

direct specification of an individual representative taxon, further compounded the problem. 

Other workers outside Wales identified the change from the 'first' to 'second' faunas at 

stratigraphic levels ranging from the base of the (Lower) Tremadoc Series to the base of the 

Arenig Series (Figure 3.1). As a result, there has never been a universally recognized hori­

zon representing the Cambrian-Ordovician boundary. 

Under the guidance of the International Commission on Stratigraphy (ICS), the 

Cambrian-Ordovician Boundary Working Group (COBWG) has been seeking a biostrati­

graphic horizon suitable for unifying the various definitions for the Cambrian-Ordovician 
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Figure 3.1. The various levels at which the Cambrian-Ordovician boundary has been 

drawn in Britain and in Scandinavia (after Henningsmoen 1973). 
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boundary, to be located within a global stratotype section. Their efforts have concentrated 

on conodonts and graptolites, with current preference given to conodonts. Both groups are 

abundant and diverse in the boundary interval, with detailed biostratigraphic zonations 

(Miller 1988; Erdtmann 1988). Trilobites also serve as valuable correlation tools, and were 

an important component of the original definition of the base of the Ordovician, but most of 

the Late Cambrian and Early Ordovician faunas are apparently highly provincialized 

(Shergold 1988), making them unsuitable as global biochrons. Recent studies have also 

been undertaken into the geochemical (J. Wright) and paleomagnetic (this study) signatures 

occurring across the boundary horiwn, in hopes of helping to establish the chronostrati­

graphic significance of biostratigraphic correlations. 

For the past four years, the COBWG has focused principally on choosing between 

the base of two conodont wne boundaries, Cordylodus proavus and Cordylodus 

lindstromi (COBWG Circular #26; COBWG Circular #25), for the Cambrian-Ordovician 

boundary. The current debate over which horizon is more appropriate revolves around 

questions basic to the concept of a global stratotype. Many of the sections throughout the 

world have hiatuses interpreted by some to represent a eustatic sea level drop coincident 

with the base of C. proavus (Miller 1984). Establishing the Cambrian-Ordovician at this 

level in a section showing unconformities at or near this level would be most undesirable. 

Placement of the boundary at this level in a section free of unconformity or hiatus would be 

satisfactory; in fact, if the extent of the hiatus in most sections is minor, placing the bound­

ary at this level could facilitate correlation. There is currently a great deal of support for 

establishing the boundary at this level. However, a Cambrian-Ordovician boundary at this 

horiwn would make it impossible for the pericxl boundary to be accurately correlated to a 

physical point in rock in most sections. 

A different philosophical problem arises when considering Cordylodus lindstromi 

for use as the boundary taxon. C.lindstromi represents an intermediate member of an 

evolutionary lineage. It is not strikingly distinct from other members of the lineage also 

used to establish biostratigraphic wnes; in fact, the taxonomy of C. lindstromi has not been 

universally agreed upon by concxlont specialists. For many, it is difficult to support the 

establishment of a boundary at an observer-specific level. However, the C. lindstromi 

wne is much closer to the historical concept of the base of the Ordovician, which is essen­

tially at the first appearance of nematophorous (planktonic) graptolites. 

The results from this study strongly suggest that the first observed occurrences of 

Cordylodu.s proavus and Cordylodu.s lindstromi do not represent chronostratigraphic hori-
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rons. Unfortunately, little concern has been expressed over the chronostratigraphic signifi­

cance of either of these biostratigraphic levels. A motion is currently under consideration 

by the COBWG that would allow re-introduction of candidate sections which are not 

amenable to magnetostratigraphy, thereby excluding the possibility of establishing their 

absolute time relationships with respect to other important sections. If the Cambrian­

Ordovician system boundary is established within a section from which no magnetostrati­

graphic information can be obtained, it would mean that the Cambrian-Ordovician period 

boundary would remain uncorrelatable, since the time significance and relationships of the 

system boundaries in various parts of the world could not be established. It is hoped that 

this study demonstrates the importance of establishing the Cambrian-Ordovician boundary 

within a global stratotype that permits accurate determination of the magnetostratigraphy of 

the boundary interval, thereby allowing confident establishment of a chronostratigraphic 

boundary in other sections. 
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Abstract 

Magnetostratigraphic results from Cambro-Ordovician boundary-age 

sections in North America, China, Kazakhstan and Australia indicate that 

the Late Cambrian geomagnetic field had predominantly reverse polarity 

with short, highly correlative intervals of normal polarity within the Upper 

Cambrian conodont zones Proconodontus muelleri, Proconodontus 

posterocostatus, and Cordylodus proavus. This polarity pattern provides a 

globally isochronous framework for constraining intercontinental chronos­

tratigraphic correlations. Other intervals of normal polarity occurring in 

younger strata are presently difficult to correlate. 

These results also constrain polarity (with respect to North America 

and Australia) for the apparent polar wander paths of the North China block 

and Kazakhstan, placing Kazakhstan in the southern hemisphere and North 

China near the equator by the end of the Cambrian. 

1. Introduction 

The Cambrian-Ordovician boundary presents an excellent opportunity for magne­

tostratigraphic study primarily for two reasons: 1) the boundary interval has been recog­

nized within many sections, providing a variety of lithologies to sample and increasing the 

likelihood of determining a workable polarity reversal stratigraphy, and 2) a diverse fauna 

of conodonts, graptolites and trilobites has been characterized from the boundary interval, 

establishing a detailed framework for correlation in a number of different facies and faunal 

provinces. 

Fifteen sections at 7 different localities were investigated for their geomagnetic po­

larity stratigraphy (Figure 3.2). Of the sections studied critically by the Cambrian­

Ordovician Boundary Working Group (COBWG), those in Kazakhstan, Texas, North and 

South China, western Newfoundland and central Australia have higher likelihoods for 

successful paleomagnetic research because they have low conodont alteration indices (CAl) 

(fable 3.1 ), indicating the sections have experienced low ~evels of thennal or burial meta­

morphism (Epstein eta/. 1977). The sections near Dayangcha, (northern) China and the 

western Newfoundland Cow Head Group sections at Broom Point, Green Point, Martin 
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Figure 3.2. Sample localities. Abbreviations: WPA) Wilcox Pass, Alberta, Canada; 

LUT) Llano Uplift area, central Texas; CHN) Cow Head Group, western 

Newfoundland, Canada; KAZ) Malyi Karatau Range, Kazakhstan SSR; YGC) Yangtze 

Gorges area, Hubei province, China; DAY) Dayangcha, Jilin province, China; and 

BMA) Black Mountain, western Queensland, Australia. 
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Table 3.1. Conodont alteration indices for Cambro-Ordovician boundary-aged localities 

sampled for this study. 

Locality 

Malyi Karatau Range, central Kazakhstan SSR 
Yangtze Gorges area, Hubei province, China 
Llano Uplift area, central Texas, USA 
Dayangcha, Jilin province, China 
Cow Head area, western Newfoundland, Canada 
Black Mountain, western Queensland, Australia 

1.0-1.51 

2.02 

1.0-1.23 

1.54 
1.55 
1.06 

Average lab. 
blockin2 temp. • 

400-500° c. 
-300' 

300-4000 
350-450° 
350-400° 
400-450° 

References: 1 Apollonov et al. 1988; 2a.G. Ma, pers. comrn.; 3Miller et al. (1982); 4Chen 
et al. (1988); 5Barnes (1988); 6R. Nicoll, pers. comrn. 

• Average laboratory blocking temperatures represent the temperatures at which the mag­
netic moment drops below 1.5 x w-11 Am2, or the magnetic moment increases by two 
or more orders of magnitude over the NRM. 
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Point, and St Paul's Inlet are of particular importance because of their prominence as 

potential international stratotypes for the Cambrian-Ordovician boundary (COBWG 1985). 

On its own, magnetostratigraphy is not generally useful in Paleozoic rocks. 

However, when used in conjunction with other stratigraphies, the technique can provide 

certain refinements. Geomagnetic field polarity is a property of the earth's deep interior, 

and in the absence of secondary effects, the polarity preserved in sediments is not sensitive 

to changes in facies, allowing different depositional environments to be correlated with 

high accuracy at reversal boundaries. Also, polarity reversals are globally isochronous 

events that take less than 10,000 years to complete. Magnetostratigraphy, therefore, is 

potentially useful as a tool whereby global biostratigraphic correlations can be made in a 

global chronostratigraphic framework without the difficulties imposed by facies-dependent 

or endemic faunas. 

Another important benefit of magnetostratigraphy is the ability to resolve polarity 

ambiguities in the apparent polar wander paths (APWP) of continental blocks for which lit­

tle or no previous paleomagnetic data exists. Paleomagnetic data alone cannot determine 

which hemisphere a continental block was in at the time of deposition, especially in blocks 

that may have undergone substantial rotations and plate motions. However, by correlating 

polarity patterns from areas where the APWP is well-known, such as North America and 

Australia, to places where the polarity has not previously been determined, like North 

China and Kazakhstan, the ancient geomagnetic field polarity can be established. This, in 

turn, constrains hemispheric relationships with respect to the reference APWP, facilitating 

paleogeographic reconstructions. 

The major problem encountered in magnetostratigraphic research when using 

Paleozoic rocks is determining whether the preserved paleomagnetic directions have any 

relationship to the geomagnetic field at the time of deposition. There are a nwnber of ways 

that the original magnetic directions can be lost; common examples include through diagen­

esis and thermal resetting. This problem is compounded by the lack of a geomagnetic po­

larity reference scale such as that preserved in marine magnetic lineations, which dates back 

only to the Middle Jurassic. Carbonate sections, the most logical choices for Paleozoic 

magnetostratigraphy because of their abundant fossils, are particularly difficult to work 

with: carbonate samples have a tendency to develop new minerals around 400° C. during 

thennal demagnetization experiments, with consequent loss of the original directions. 

Furthermore, two of the field tests for magnetic stability, the fold and conglomerate tests, 

are often not applicable in the carbonate sections most suited for magnetostratigraphic 
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studies as determined by CAI, since one of the logical reasons for a low CAl is a lack of 

tectonic activity and one of the common features of a highly continuous section is a stable, 

low-energy environment of deposition. Because of these problems, it is most important 

that a number of sections that can be correlated accurately with fossils be studied, so that 

any internal consistency of the magnetostratigraphic data occurs within a tightly-constrained 

framework. This fact makes period boundaries, which are historically the time intervals 

most closely scrutinized by stratigraphers, logical places to begin assembling a geomagnetic 

polarity time scale for the Paleozoic. 

2. Previous results 

Previous paleomagnetic studies from rocks this old are few, and investigations with 

accurate knowledge of the age of the samples are even rarer. Watts eta/. (1980), using 

Upper Cambrian carbonates and sandstones of the Wilberns Formation in the Llano Uplift 

area of central Texas, found that the polarity of their samples was predominantly reversed, 

with a short zone of mixed polarities possibly occurring within the upper pan of the Cap 

Mountain Limestone (Figure 3.3). Studies by Khramov eta/. (1965) and Rodionov (1966) 

from the Siberian platform determined large-scale polarity patterns in at least 10 Upper 

Cambrian and Lower Ordovician sections, but locating their results within the present 

biostratigraphic framework in Siberia is problematic, making correlation to the Cambrian­

Ordovician boundary sections used in this study difficult. 

Recent studies, by Prasad (1986) and Deutsch and Prasad (1987), using Cambrian­

Ordovician carbonates in western Newfoundland, broadly identified the Lower Ordovician 

geomagnetic field as reversed polarity, with the Middle Ordovician showing normal polar­

ity. Their work did not concentrate on the Cambrian-Ordovician boundary interval, and 

from their results it was impossible to construct a magnetic polarity stratigraphy across the 

boundary, but it suggested that polarity reversals might be preserved in the Cow Head 

Group. 
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Figure 3.3. Generalized magnetostratigraphic results of Watts eta/. (1980) for Upper 

Cambrian units in the Llano Uplift area (after Watts eta/. 1980). Results are con­

strained at the member level. 
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3. Sampling strategy and techniques 

Ideally, the following criteria should be met when collecting samples for magne­

tostratigraphic research from any section: 1) samples should be located precisely with re­

spect to biostratigraphic horizons, 2) samples should be collected with as small an interval 

as is possible or reasonable, 3) special attention should be paid to prominent correlatable 

horizons, and 4) any possible field tests should be performed. Furthermore, the selection 

of carbonate sections for sampling should be based in part on the conodont alteration indice 

(when applicable); carbonate sections with CAis of greater than 2.5 have a much higher 

potential for thermal remagnetization components (see Figure 3.4) that cannot be com­

pletely removed before mineralogical changes obliterate in situ directions during thermal 

demagnetization experiments. These selection criteria have been more or less fulfilled for 

the sections in this study (see Table 3.1 ). 

The vast majority of samples were collected as 2.5 em diameter cores using a 

portable gas-powered drill and field oriented with both magnetic and (when possible) sun 

compasses. Samples were prepared in the laboratory by trimming to 2.5 em length with a 

Felker rock saw, followed by careful washing in 1.2N HCI to remove any stainless steel 

particles that may have been left behind by the drill bit or saw blade. All broken samples 

were glued using Zircar cement, with re-assembly taking place inside a mu-metal shielded 

room. Samples were measured using an SeT cryogenic magnetometer with 2G SQUID 

electronics, interfaced to a dedicated Zenith XT-compatible microcomputer, which con­

trolled measurement procedures. Both alternating-field and thermal procedures were used 

on most samples during demagnetization experiments. Alternating-field demagnetization 

was done with a Schoenstedt model GSD-1 three-axis instrument. Alternating-field inten­

sities were usually limited to below 15 millitesla (150 gauss) because of a prominent anhys­

teretic remanent magnetization (ARM) component that typically began to appear in samples 

at 20 mT (200 gauss). Thermal demagnetizations were usually carried out using 50° C. 

increments up to 400°, and then with smaller increments to the Curie point of magnetite 

(580° C.), until the intensity of the sample was less than 1.5 X w-5 Am-1 (1.5 X w-8 emu), 

or until the measured direction was demonstrably the result of mineralogical changes during 

heating. The primary criteria used for recognition of the latter were order-of-magnitude 

increases in intensity accompanied by random demagnetization trends when viewed in 

orthogonal and equal area projection. During subsequent data analysis, components of 

magnetization were identified using the principal component techniques outlined in 
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Figure 3.4. Comparison of CAl and log time-temperature curves for magnetite 

unblocking. CAl curves from Epstein et al. (1977); magnetite unblocking curves from 

Pullaiah et al. (1975). Comparisons of unblocking temperatures with organic 

metamorphism temperatures, indicated by CAl, are used to estimate the probability of 

the unblocked component being a thermal remanent magnetization (TRM). Under this 

scheme, for a sample bearing conodonts with CAI=2.5 and length of thermal 

event=l08 years, the laboratory unblocking temperature necessary to rule out a TRM 

source for a component carried by magnetite is -300° C. 
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Kirschvink ( 1980). For most of the samples in this study, single components could not be 

completely isolated by demagnetization. However, the trend of the demagnetization trajec­

tory was often useful in identifying the polarity of the sample. Also, some measure of the 

consistency of the constituent components was gained by comparison of the poles of the 

least-squares planes, especially when only two components were present and one of the 

components was well-known. (When two components are being removed during 

demagnetization, the demagnetization path describes a plane in equal area projection.) 

Rock magnetic studies were performed on a 2G cryogenic magnetometer with 2G 

SQUID devices, interfaced to a (separate) dedicated Zenith XT -compatible microcomputer. 

Samples were crushed into 3-5 mm chunks and placed within plastic vials, which served as 

sample holders during measurement procedures. The average sample weight was about 1 

gram, enough to ensure that contribution by the holder to the total moment was negligible. 

Samples were subjected to IRM induction and AF demagnetization to obtain characteristic 

curves, and compositions were estimated using criteria outlined by King ( 1982) and 

Cisowski (1981). 

Magnetic mineral extraction studies on samples from Batyrbay ravine were carried 

out by S.-B. R. Chang at the California Institute of Technology. Samples were ground 

into a coarse powder and placed in water within a test tube. Magnetite was then extracted 

with a cobalt-samarium magnet placed on the side of the test tube. After 1 day the sample 

was collected, placed on a standard SEM sample stub, dried, and AF demagnetized to re­

duce aggregation of magnetite grains. Samples were then observed using a scanning elec­

tron microscope. 

4. Results 

4.a. Malyi Karatau Range, Kazakhstan SSR 

Our initial magnetostratigraphic work on the Cambrian-Ordovician boundary was 

done with 24 samples collected from limestone units in the Malyi Karatau Range of south­

eastern Kazakhstan during the 1984 visit of the Cambrian-Ordovician Boundary Working 

Group. The sections at Batyrbay ravine and along the Kyrshabakty River are excellent 

candidates for magnetostratigraphy study because they contain nearly continuous 

sequences, have CAis of 1.0-1.5 (Apollonov et al. 1988), and have been the objects of 

intense paleontologic investigation, the results of which are excellent biostratigraphic 
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zonations based on both conodonts and trilobites. Also, sufficient structural complexity 

exists both within and between sections to perform fold tests. 

An average of one sample per trilobite zone was collected from the middle of the 

Middle Cambrian to just below the base of the Ordovician, with most of the samples col­

lected at trilobite zonal boundaries. Alternating-field and thermal demagnetization revealed 

two magnetic components, one of low coercivity and thermal stability with a direction very 

similar to that of the present-day geomagnetic field in Kazakhstan, and another two-polarity 

component dipping moderately downwards to the southwest (Figure 3.5; Table 3.2). The 

latter component passes the fold test (McElhinney 1964, McFadden and Jones 1981) at the 

99% confidence level (Figure 3.6), indicating it was acquired before deformation of the 

area, interpreted to have begun in the Late Ordovician during formation of the Aksai 

structural belt (Abdulin eta/. 1984). Comparison of unblocldng temperatures for this 

component to the maximum metamorphic temperatures indicated by the regional CAl 

suggest that any contribution of a thermal remanent magnetization (TRM) to this component 

is insignificant. 

Rock magnetic studies and mineral extractions indicate that the primary carrier of 

remanence is magnetite (Figure 3.7). Although other investigations have demonstrated the 

existence of authegenic magnetite in some limestones (McCabe eta/. 1983), the formation 

of which could have preceded deformation while post-dating deposition, we found no evi­

dence for a low-coercivity spheroidal fraction consistent with their findings. Coupled with 

the positive fold test and the low CAl of the region, this suggests that the high-stability 

component preserved in magnetite and isolated during thermal demagnetization is probably 

representative of the geomagnetic field at or immediately after the time of deposition. 

The results from this preliminary suite of samples indicate that the geomagnetic field 

had predominantly single polarity from the Middle Cambrian Ptychagnostus atavus trilobite 

zone up through at least the base of the Eoconodontus alisonae conodont zone of the Upper 

Cambrian (Figure 3.8). This is in general agreement with the Upper Cambrian results of 

Watts eta/. (1980) from the Llano Uplift area of central Texas, and on this basis the polar­

ity was interpreted to be reverse. The youngest sample, taken from the E. alisonae 

(conodont)-Lotagnostus hedini (trilobite) zone boundary, about 5 meters below the first 

occurrence of Cordylodus proavus at Batyrbay, shows opposite (normal) polarity. 

Because only one sample of our original suite showed opposite polarity it was impossible 

to demonstrate conclusively that a reversal occurred at this level. However, recent studies 

by other investigators in Alma-Ata have both confinned our original conclusion and 
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Figure 3.5. Typical demagnetization trend in orthogonal (left) and equal area projection 

for samples with reverse polarity. Sample crz 14.0, Kyrshabakty River section. In 

orthogonal projection, filled squares represent declination; empty squares represent 

inclination. Filled circles in equal area projection represent positive (down) inclina­

tions. NRM=natural remanent magnetization. 
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Figure 3.6. Characteristic directions isolated by least-squares analysis, in geographic 

and tilt-corrected coordinates. The directions pass the fold test of McElhinney (1964) at 

the 99% level (k2 1 1c1 = 4.1). Filled circles represent positive inclinations; shaded oval 

represents <X95 circle of confidence. 

Figure 3.7. Isothermal remanent magnetization (IRM) acquisition versus AF 

demagnetization of sample crz 14.0. Solid circles represent AF demagnetization of 

ARM (anhysteretic remanent magnetization). 

Figure 3.8. Stratigraphic positions and polarity interpretation for samples from the Malyi 

Karatau Range, Kazakhstan SSR. (a) Kyrshabakty River section; (b) Batyrbay ravine 

section. 
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extended it, fmding that a short period of normal polarity, beginning within the E. alisonae 

zone and ending a few meters above the lowest observed occurrence of C. proavus, is pre­

served at Batyrbay ravine (M. Apollonov, pers. comm.). Their work did not extend lower 

into the Upper Cambrian sequence, however, and because of the sampling interval, it is 

impossible to rule out the possibility that other short periods of normal period may be pre­

served within the sections reported on here. Present plans include re-sampling of the 

boundary section at Batyrbay ravine in August, 1990. 

4.b. Llano Uplift Area, Texas 

The Llano Uplift area in central Texas appeared to be a good place to try to corrobo­

rate the preliminary results from Kazakhstan. It is highly accessible, detailed conodont and 

trilobite biostratigraphies are in place, and the extremely low CAl of the area (1.0; Miller, 

pers. comm.) indicates the region has experienced little or no thermal alteration since de­

position. Furthermore, the results from a previous paleomagnetic investigation in the area 

(Watts et al. 1980) suggested that the long period of predominantly single polarity observed 

in the Upper Cambrian rocks in Kazakhstan was also present in the Upper Cambrian rocks 

of the Llano Uplift. 

Two sections, separated by about 1 kilometer (Figure 3.9) within the Threadgill 

Creek drainage, were sampled in June of 1985. The Lange Ranch section lies within the 

San Saba Member of the Wilberns Formation and extends upward into the overlying Th­

readgill Member of the Tanyard Formation. Excellent exposures begin about 23 meters 

below the Croixan-Canadian series boundary. The outcrops are composed primarily of in­

terbedded coarse bioclastic, oolitic, and wavy-bedded nodular limestones, and are struc­

turally simple, displaying very shallow dip and only two minor vertical faults. Samples 

taken from this section were precisely located within the local conodont biostratigraphy 

with the help of J.L. Miller. 

The Threadgill Creek section is essentially the downward continuation of the Lange 

Ranch section, encompassing the lower members of the Wilberns Formation. Stratigraphic 

overlap of the two sections was obtained. Unfortunately, the Threadgill Creek section has, 

for much of its length, poorer exposures than the Lange Ranch section, and sample loca­

tions from here are generally less precise. 

In spite of the many excellent aspects of these sections, they both have several 

drawbacks. The wet environment of central Texas and the Threadgill Creek drainage is 
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Figure 3.9. Sample localities within the Llano Uplift area (this study). Map symbols: 

Cr) Riley Formation; Cwwm) Welge Sandstone and Morgan Creek Limestone Members; 

Cwp) Point Peak Member; and Cws) San Saba Member, all of the Wilbems Formation; 

Ott) Threadgill Member of the Tan yard Formation; K) undifferentiated Cretaceous; QK) 

undifferentiated Quaternary to Cretaceous. Chevron pattern indicates location of traverse 

across outcrops. Horizontally ruled area is complexly faulted Cambrian and Ordovician 

strata. Modified from Miller et a!. ( 1982). 
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Figure 3.9 
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highly conducive to diagenetic alteration and oxidation of magnetite, leading to loss of the 

original magnetic direction. The lack of structural complexity makes it impossible to per­

form a fold test for magnetic stability, and no breccia or conglomerate beds exist to perform 

a conglomerate test Many of the beds within both sections appear to have been extensively 

recrystallized. Also, most of the limestone units are coarse-grained, while in previous 

studies the senior authors have found that finer-grained limestones have consistently given 

more reliable results. 

Sixty core samples were collected from the Lange Ranch section; thiry-two were 

collected from the Threadgill Creek section. Paleomagnetic results from both sections re­

flect the field observation of surface weathering and recrystallization. Only 26 of the 92 

collected samples have interpretable demagnetization paths consistent with previous inves­

tigations from the area (Watts eta/. 1980). Of these, only three samples appear to have 

single components that are completely isolated by thermal demagnetization. These samples 

have directions that are almost identical to the previous results of Watts et al. (1980); com­

parisons between the two data sets are given in Figure 3.10 and Table 3.3. In most of the 

26 samples, however, at least two components are present. The first is removed at low 

demagnetization temperatures, and has a direction very similar to the modem geomagnetic 

field in Texas; it is interpreted to be a viscous remanent magnetization (VRM) of that field. 

The second is stable at demagnetization temperatures up to about 400° C., and is shallowly­

dipping and east-southeast- or west-northwest-directed (Figure 3.11). A typical demagne­

tization trajectory for samples with reverse polarity where the second component is not 

completely isolated is given in Figure 3.12. A third component, anti-parallel to the second, 

is present in a few of the interpretable samples. Rock magnetic studies on these samples, 

after heating to the temperature where a third component becomes prominent, suggest that 

this component resides primarily in hematite (Figure 3.13). Based on the rarity of hematite 

as an "original" carrier of remanence in modern carbonates, this component is interpreted to 

be a diagenetic overprint. 

The data indicate that dual polarities are preserved within the Lange Ranch section. 

A preliminary magnetostratigraphy based on results from these samples is given in Figure 

3.14. Samples interpreted as having normal polarity were located within the Upper 

Cambrian conodont subzones Proconodontus posterocostatus and P. muelleri, and near the 

base of the conodont zone Cordylodu.s proavu.s. Individual samples with normal polarity 

were also found higher in the section. Precise locations for the reversal boundaries are 

impossible to define; intervals between interpretable samples are too large. However, it 
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Figure 3.10. Comparison of characteristic directions from samples that appear to have 

had all other components completely removed by demagnetization, and site mean 

directions from Watts eta/. (1980). Symbols as in Figure 3.7. Abbreviations for site 

mean directions : Hl-H7, LBC) sites from the Hickory Member of the Riley 

Formation; Cl-C3) sites from the Cap Mountain Limestone Member (nand r denote 

normal and reverse polarity); LM, K) sites from the Lion Mountain Sandstone Member; 

and SM, BC) sites from the Morgan Creek and Welge Members of the Wilberns 

Formation. 
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Figure 3.11. Poles to least-squares planes for samples having interpretable demagnetiza­

tion trajectories, plotted in tilt-corrected coordinates. Symbols as in Figure 3.7. 

Figure 3.12. Typical demagnetization trajectories for samples with reverse (a) and 

normal polarities. Symbols as in Figure 3.6. 

Figure 3.13. Results of IRM induction-AF demagnetization studies on a sample heated 

to 450° C. The incomplete saturation above 300 mT during IRM induction suggests 

part of the remanence is carried by hematite or a similar high-coercivity mineral. 

(Goethite is not a likely candidate because the mineral breaks down at temperatures 

above -100° C.) 

Figure 3.14. Interpretative magnetic polarity stratigraphy for the Lange Ranch and 

Threadgill Creek sections. Normal polarity intervals are blackened Intervals where no 

data was obtainable are shaded. Lithologic section and chronstratigraphy after Miller et 

a!. 1982. 
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appears that the intervals containing nonnal polarities are short, and that much of the 

Threadgill Creek section and the upper part of the Lange Ranch section are of predomi­

nantly reverse polarity, consistent with both the previous results from stratigraphically 

lower sections within the Llano Uplift, and the reconnaisance results from Kazakhstan. 

4.c. East Yangtze Gorges, South China 

Strata of Cambrian-Ordovician age are widespread and well-developed in the East 

Yangtze Gorges area. Because of the excellent exposure, a number of sections have been 

extensively studied. Many of the sections are rich in fossils and demonstrate fairly com­

plete stratigraphic successions. 

The Huanghuachang section is located in Hubei province on the north part of the 

Yangtze platform, about 25 km north of Yichang City. It is composed of a suite of highly 

fossiliferous carbonates showing continuous deposition within a single sedimentary facies. 

Seventy-five samples were collected from the section in September, 1985. Alternating­

field and thermal demagnetization experiments yielded simple two-component demagneti­

zation paths for 44 of these samples; a representative example is shown in Figure 3.15. 

One of the components is closely aligned to the present-day geomagnetic field, and is inter­

preted to be a VRM. The second, which in many samples was stable until the moment 

dropped to below 2 X w-5 Am-1' has moderate positive inclination and east-directed decli­

nation (Figure 3.16; Table 3.4). The lowermost two samples from this suite, near the 

lowest observed occurrence of Cordylodus proavus, appear to have a second component 

antiparallel to that of the remaining samples. Unfortunately, there were no other normal 

polarity samples identified, despite the fact that Early Ordovician normal polarity intervals 

are found in at least four other sections. It is possible, though unlikely, that the age 

assignment of this section is in error. Numerous studies (see Kent et al. 1987) have 

demonstrated that much of the South China block has experienced remagnetization to some 

degree, and at the present time, it is impossible to rule out remagnetization as an influence 

on the directions from this section. 

4.d. Dayangcha, Jilin province, China 

The Cambrian-Ordovician boundary-aged Xiaoyangqiao critical section, in Jilin 

province near Dayangcha, China (Figure 3.17), is one of the leading candidates for 
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Figure 3.15. Typical demagnetization trajectories for Lower Ordovician limestone from 

Huanghuachang. Symbols and projections as in Figure 3.6. 

Figure 3.16. Equal area projection of characteristic directions obtained from the section 

near Huanghuachang. Symbols as in Figure 3.7. 

Figure 3.17. Location map for the Dayangcha sections. Detailed site map from Chen et 

a/. (1988). 
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Characteristic directions isolated by 
principal component analysis 

Huanghuachang section 
Yangtze Gorges area, Hubei province, China 

Corrected for tilt of bedding 

North 

' Meishucun, China 
Wu, Vander Voo, and Liang 1989 
Precambrian-Cambrian boundary 
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designation as the international stratotype. The sections in this area are extremely important 

to understanding the boundary interval because of the rich diversities of fauna; 

biostratigraphic schemes exist for conodonts, trilobites, graptolites, and acritarchs. 

Lithologically, the sections are comprised primarily of a rhythmical sequence of 

fine-grained carbonates deposited in a moderately deep outer shelf environment, well below 

the normal storm wave base (Chen eta/. 1988). The entire boundary interval shows no 

break in sedimentation. The xes section is free of faulting and folding, and the exposure 

is relatively fresh, although some weathering is evident A CAl value of 1.5 (Chen et al. 

1988) indicates the area has not been subjected to metamorphism 

The Xiaoyangqiao Critical and Lower Sections (XCS and XLS) were sampled in 

August, 1986, in conjunction with the visit of the Cambrian-Ordovician Boundary 

Working Group. A total of 165 core samples were collected from the two sections. 

Sample positions were highly constrained within the local bio- and litho- stratigraphies; 

sampling intervals were particularly small around the zonal bases of C. proavus and C. 

lindstromi. Although some of the samples showed evidence of the thin weathering rind 

present in the Dayangcha sections, most were from fresh exposure, and where possible, 

care was taken in the laboratory to ensure that the weathered portions of cores were not 

used during analysis. 

All samples underwent AF and thermal demagnetization. As with other samples, 

the maximum AF intensities used did not exceed 15 mT. Thermal demagnetizations were 

performed in the usual manner up through the Curie point of magnetite, although for most 

samples, useful data was not obtained from steps above 450°. The data indicate the 

presence of a ubiquitous overprint component, interpreted as a VRM of the present day 

field, which was not completely removed by demagnetization. However, the contribution 

of this component to the total magnetization was sufficiently reduced to determine that a 

second component, with clearly antiparallel behavior, was present No other components 

were identified Representative examples of samples with normal and reversed polarities 

are given in Figures 3.18 and 3.19. Equal area projection of the poles to least-squares 

planes (Figure 3.20) strongly suggest that the second component is the same in all samples. 

There were no significant differences between the results from the XCS and the XLS 

(Table 3.55). 

Unfortunately, demonstrating that the directions preserved in this section represent 

the geomagnetic field at the time of deposition is difficult It was not possible to perform a 

fold test or a conglomerate test with these sections. Furthermore, in cases where an 
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Figure 3.18. Typical demagnetization trajectories for samples from the Xiaoyangqiao 

sections, showing reverse (a) and normal polarities. 

Figure 3.19. Equal area projection of the poles to least-squares planes for samples from 

the sections near Dayangcha, China. Choice of pole to represent the plane is by a right­

hand convention; with palm up and fingers pointed in the direction of demagnetization, 

thumb points towards pole. 

Figure 3.20. Reversal test using mean directions of poles to demagnetization planes. 

Reverse polarity mean has been rotated 180° around an east-west axis for comparison 

with normal polarity mean. Overlap of Cl95 ovals of confidence indicates a positive 

reversal test, suggesting that the age of acquisition for the preserved directions is not 

significantly different. 
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Characteristic directions 
Xiaoyangqiao Critical and Low sections 

Dayangcha, Jilin province, China 

Corrected for tilt of bedding 
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Reversal test 
Xiaoyangqiao critical and low sectil>ns 

Dayangcha, Jilin province, China 

North 

Figure 3.20 
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compares two components instead of one, making a positive reversal test less reliable. It 

was not possible to perform a fold test or a conglomerate test with these sections. To make 

matters worse, there are no previous results from the North China Block for the Late 

Cambrian, leaving the consistency test as the only other means of assessing the nature of 

the magnetization. Intervals interpreted as nonnal polarity occur within the Proconodontus 

posterocostatus and P. muelleri subzones, and beginning at the base of the Cordylodus 

proavus zone (Figure 3.21), as in many of the other studied sections, arguing that the 

characteristic magnetization of the Xiaoyangqiao sections represents the depositional 

geomagnetic field. However, normal polarity appears to persist from the base of the C. 

proavus zone up through the C. intermedius zone to the base of the C. lindstromi zone. 

This is the only section studied to date that shows such a long interval of uninterrupted 

normal polarity at this level. Further study is needed to determine why this unique signa­

ture occurs. 

Magnetostratigraphic correlation of the Upper Cambrian normal polarity intervals 

allows the Cambrian-Ordovician paleogeographic position of the North China block to be 

uniquely determined as oriented about 90° clockwise from its present position, and nearly 

equatorial. (A further discussion of the paleogeography of the North China block is given 

in Chapter 6.) 

4.e. Cow Head area, western Newfoundland 

The Cow Head Group, outcropping on the western coast of Newfoundland, prcr 

vides a unique setting for magnetostratigraphic investigations because it possesses both 

large conglomeratic beds and extensive folding while displaying low CAl, maximizing the 

opportunity for performing magnetic stability tests while minimizing the possibility that 

thermal overprinting is a significant problem. The geologic setting of the Cow Head 

Group, i.e., that of a large submarine fan complex, allows collection in a variety of litholcr 

gies, and extremely detailed studies have identified a number of Cambrian-Ordovician sec­

tions preserving correlatable lithostratigraphic and biostratigraphic horizons (Noel and 

James 1986; Barnes 1988; many others). Furthennore, most of the sections are within 

Gros Morne National Park (declared as a World Heritage site in 1987), assuring both their 

protection and accessibility to legitimate scientific investigation. 

While blessed with a number of positive aspects for paleomagnetic investigation, 

working with the Cow Head Group also has some special difficulties. The Cow Head 

Group makes up the northern portion of the Humber Allochthon and is locally highly de-
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Figure 3.21. Geomagnetic polarity interpretation for the Xiaoyangqiao Critical (a) and 

Low sections near Dayangcha, Jilin Province, China. Stratigraphic column and 

biozonation from Chen (1986). Data points are poles to demagnetization planes. By 

convention, poles to the north represent normal polarity. 
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formed from the emplacement event, which has been interpreted to have begun in the 

Middle Ordovician. Deformations of this style have a high probability for rotational com­

ponents that are non-penetrative, making interpretations of fold tests between sections diffi­

cult. Also, material comprising the Upper Cambrian and Lower Ordovician conglomeratic 

units are predominantly carbonate intraclasts that have been ripped off up-slope and shed 

down the submarine fan. Even though these blocks were probably fairly well-lithified be­

fore being reworked, it is impossible to discount the possibility that post-depositional dia­

genesis could be responsible for their preserved directions. If diagenesis occurred within a 

few thousand years, or even tens of thousands of years, the magnetic stratigraphy would 

still provide a higher level of temporal resolution than any other stratigraphic framework, 

but the paleomagnetic results would yield negative conglomerate tests. 

Another problem relates to the Cambrian-Ordovician paleoecology of the Cow Head 

Group. Lower Ordovician rocks yield abundant faunas of conodonts, graptolites, and 

trilobites from various sections. Upper Cambrian units, however, are greatly impoverished 

in conodonts, making establishment of Upper Cambrian zonal boundaries impossible in the 

critical sections. Graptolites are not presently useful for biozonation in the Upper 

Cambrian rocks of this area, and trilobites appear to be rare in most of the Upper Cambrian 

sections. 

In spite of these difficulties, the large number of sections and levels that can be cor­

related using widely-recognizable biostratigraphic and lithostratigraphic horizons makes the 

Cow Head Group an attractive place to attempt magnetic polarity stratigraphy. Demonstr­

able consistency of magnetostratigraphic results between sections within the group, and 

correlatability with sections outside the Cow Head area, would be powerful arguments for 

the reliability of the results, even in the presence of ambiguous fold and negative conglom­

erate tests. 

A total of 6 sections, all with CAl values of 1.5, were collected from on two sepa­

rate sampling trips, in September 1986 and August 1988. Sample localities are shown in 

Figure 3.22. A representative cross-section of the submarine fan complex was obtained 

(Figure 3.23). Conglomeratic units at Cow Head Ledge, Broom Point, and Green Point 

were collected for a conglomerate test. Bedding orientation differences permitted the fold 

test to be performed between sections, and the presence of highly deformed bedding at 

Broom Point allowed for micro-fold tests. 
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Figure 3.22. Sampling localities in the Cow Head Group, western Newfoundland, 

Canada. 

Figure 3.23. Reconstructed depositional framework for the Cow Head Group. From 

James and Stevens (1986). 



74 

·cow Head 

North 

1 km 

1 lcm 

sa• to• w. 

50"00' N. + Broom Point 

Gulf of 
St. Lawrence 

Martin' s Point 

Figure 3.22 



L
. 0

. 
::!

::6
:!:

 

u
~
 

M
~
 

j:::
.: :

·~<
.I 

C
A

L
C

A
R

E
N

IT
E

 

j.:-
--

=.~
 L

IM
E

 M
U

D
S

T
O

N
E

 

-
S

H
A

L
E

-M
IN

O
R

 L
IM

E
S

T
O

N
E

 

C
O

W
 H

E
A

D
 G

R
O

U
P

 

P
O

S
T

U
L

A
T

E
D

 D
E

P
O

S
IT

IO
N

A
L

 
S

E
T

T
IN

G
 

S
T

E
A

R
IN

G
 I

S
L

A
N

D
S

 

B
R

O
O

M
 P

O
IN

T
 

( 
(

S
T

. 
P

A
U

L
'S

 T
IC

K
L

E
 

(
M

A
R

T
IN

 P
O

IN
T

 
(G

R
E

E
N

 P
O

IN
T

 

'W
//

//
//

//
//

//
/7

/7
7

7
»

7
}.

 
A

R
E

N
IG

 

T
R

E
M

A
D

O
C

 

U
P

P
E

R
 

C
A

M
B

R
IA

N
 

M
ID

D
L

E
 

C
A

M
B

R
IA

N
 

-
l 

V
I 



76 

4.e.l. Green Point 

The Green Point section is comprised of a sequence of shales, shaley limestones, 

and limestones exposed along a wave-cut cliff, with two prominent conglomeratic beds 

within the Cambrian-Ordovician boundary interval. Shales and shaley limestones predom­

inate in the lower part of the section, the Upper Cambrian Green Point Member, while the 

Lower Ordovician Broom Point Member is almost exclusively platform limestones. The 

section contains perhaps the world's finest assemblage of graptolites for this time interval 

(Erdtmann 1988). Unfortunately, most of the Green Point Member has an impoverished 

conodont fauna, but near the Green Point Member-Broom Point Member contact conodonts 

become more abundant (see Barnes 1988). Reported trilobite finds are extremely rare, 

especially in the Green Point Member, although recent comments by S.H. Williams 

(COBWG Circular #26) indicate they may be useful in the uppermost part of the section. 

Magnetostratigraphic samples were collected from the section in September, 1986 

and again in August, 1988. The first sampling traversed almost the entire section, from the 

lowest exposure of the Upper Cambrian up to the base of the Arenig Series. The second 

sampling concentrated on the interval between two prominent breccia units, approximately 

corresponding to the Cordylodus intermedius through Cordylodus lindstromi zones. For 

the first sampling, cores were taken using a portable drill, but with the establishment of 

Gros Morne National Park as a World Heritage site, no further mechanized collection was 

permitted, and block samples were taken in 1988. 

Results of demagnetization experiments using the first suite of samples suggest the 

presence of at least two magnetic components in an overwhelming number of samples. 

Natural remanent magnetization (NRM) directions are nearly identical to that of the present­

day geomagnetic field in western Newfoundland (Figure 3.24), and are interpreted to 

reflect a viscous remanent magnetization (VRM) component which, in the absence of any 

laboratory demagnetization, is usually strong enough to obscure all other components. 

This first component was often almost completely removed by alternating-field and thermal 

demagnetization (Figure 3.25). The second component (Figure 3.26; Table 3.6) is similar 

to directions previously identified as Lower Ordovician (Deutsch and Prasad 1987; Hall 

and Evans 1988) (Figure 3.27); i.e., southeastern and down at about 40° inclination for 

directions interpreted as reverse polarity. In a number of samples the second component 

was completely isolated, but for the majority, demagnetization did not completely remove 

the VRM component. Poles to the planes of least-squares directions from samples for 

which the second component could not be completely isolated, and those to the planar 
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Figure 3.24. Natural remanent magnetizations of samples from the Green Point section, 

demonstrating strong similarity to the present-day field direction in western 

Newfoundland. 

Figure 3.25. Typical demagnetization trajectories in equal area (a,b) and orthogonal 

projection (c) for samples with reverse (a) and normal (b) polarities at Green Point, 

showing separation from the original NRM towards a direction trending southeast, with 

moderately positive inclination (for reverse polarity). 

Figure 3.26. Equal area projection of characteristic directions isolated from the Green 

Point section. 

Figure 3.27. Comparison, in equal area projection, of characteristic directions of sam­

ples from Green Point (this study), and previous directions identified from western 

Newfoundland. 
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Site-mean characteristic directions 
Cow Head Group (this study) and previous results 

western Newfoundland, Canada 

Corrected for tilt or bedding 

North 

+ 
Table Head Group (Deutsch and Prasad 1987) 

St . George Group (Deutsch and Prasad 1987) 

Table Head Group I 

Green Point • 
St. George Group (Hall and Evans 1988) 

I (Hall and Evans 1988) 

~ I 
• Broom Point South 

Figure 3.27 

Broom Point North . / 
St. Paul's Inlet quarry 
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(two-component) portions of the demagnetization trends for samples from which the VRM 

component was completely removed, are virtually identical, indicating that the second 

component is probably the same in all samples. 

A strong remagnetization component is present after thermal demagnetization at 

40()0 C. in virtually all samples. Rock magnetic studies indicate that the mineral carrying 

the natural remanence (NRM) is magnetite, while the mineral carrying remanence at 4500 C. 

and higher is predominantly hematite or another very high coercivity mineral. From this 

information it is concluded that the directions present after demagnetization temperatures 

higher than 400° represent new components acquired by chemical alteration, and are not 

components of the original NRM. This interpretation is consistent with results from 

modem-day carbonates, which frequently yield unreliable results above 400° C due to 

chemical alteration (D. McNeill, pers. comrn.). 

Magnetostratigraphic interpretation of the results from this section reveal two nor­

mal polarity intervals within the Eoconodontus notchpeakensis or Cordylodus proavus 

zone (Fig. 3.28). Within the overlying C. intermedius and C. lindstromi zones there are no 

samples that are conclusively of normal polarity, although there are two samples, separated 

by about 5 meters, which may possibly represent brief periods of normal polarity within 

the C. lindstromi zone. 

Because of the extremely low conodont yields from units of the Martin Point 

Member (except for two samples from the large conglomerate comprising Bed 19) (Barnes 

1988), no detailed Upper Cambrian conodont zonation has been established, making mag­

netostratigraphic correlation to other localities difficult. There are at least two plausible cor­

relation schemes. The first suggests that the impoverished conodont faunas have severely 

obscured the first appearances of C. proavus, C. caboti, and C. intermedius, and that the 

upper normal polarity interval at Green Point correlates with normal polarity zones around 

the first occurrence of C. proavus at other localities. Under this hypothesis, the base of the 

C. proavus zone would be about 50 meters below Bed 19. 

The second possibility presumes that Bed 19 was emplaced with enough erosion at 

its base to remove most of the C. proavus zone. Barnes (1988) argues that such a mecha­

nism is implausible; Bed 19 sits upon a thin bed of limestone, arguing for a base that did 

not down-cut during emplacement. Under this scheme, the two normal polarity intervals 

would correlate with normal polarity intervals found at other localities in the Proconodontus 

muelleri and P. posterocostatus zones. 
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Figure 3.28. Magnetic polarity interpretation for Green Point. Lithologic section from 

James and Stevens (1986); biostratigraphy from Barnes (1988). Dashed text lower in 

the section indicates predicted biozone boundaries based on magnetostratigraphic 

correlation with sections outside the Cow Head Group. 
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Unfortunately, resolving this question through collection of adequate numbers of 

conodonts from the lower part of the Green Point section appears wrrealistic. Comparison 

with zonations in other sections is promising, but problematic. At Martin Point, the base of 

the C. caboti zone occurs 19 meters below the Martin Point Member-Broom Point Member 

contact (Barnes 1988), as opposed to 5 meters below at Green Point. However, the Martin 

Point-Broom Point contact is demonstrably diachronous (James and Stevens 1986, p. 74) 

between the more proximal and distal facies of the Cow Head Group, and may also be di­

achronous between the sections at Green Point and Martin Point. At the present time, the 

degree of collection from Martin Point does not pennit an accurate estimate of the thickness 

of the C. caboti zone in a facies similar to that at Green Point, but at the St Paul's Inlet 

quarry section, the C. lindstromi, C. caboti, and C. proavus zones are all of approximately 

the same thickness. Furthermore, assuming the time encompassed by the C. proavus zone 

is about 1 million years, and that the top of the C. proavus zone corresponds to Bed 19, the 

sedimentation rate required to have the first appearance of C. proavus 50 meters below Bed 

19 is only 5 cm/1000 years. This seems quite reasonable; the sedimentation rate within the 

distal facies found at Green Point should have been fairly high (see Figure 3.22). 

Because of the impoverished faunas, the improbability that Bed 19 was emplaced 

with significant erosion, and because the required sedimentation rate is quite realistic, cor­

relation of the normal polarity interval in Beds 11-15 with the C. proavus zone is presently 

favored. 

4.e.2. Broom Point North 

The northern section at Broom Point was originally considered as a strong candi­

date for the Cambrian-Ordovician boundary global stratotype. The most intensively studied 

portion of the section consists predominantly of platform limestones, with a number of 

prominent conglomeratic units and highly deformed ribbon limestones. Primary biostrati­

graphic control for the section is based on both conodonts (Barnes 1988) and trilobites 

(Fortey eta/. 1982), although trilobite recoveries are usually restricted to the conglomeratic 

units. Graptolites are also present Unfortunately, the most accessible (and most studied) 

interval in the section begins above the base of the Cordy/odus proavus zone, and perhaps 

even as high as the base of the Cordylodus lindstromi zone. 

Ninety-seven core samples were collected from 88levels in September, 1986 (10 

samples were collected from a single wrinkled limestone unit as a micro-fold test), begin­

ning in Bed 74 (see James and Stevens 1986). The directions of results from this section 
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were similar to the results at Green Point, despite striking differences in the attitude of 

bedding between the two localities. Two components were obvious; one was similar to the 

present-day field in western Newfoundland, and the other very similar to the second 

component at Green Point (Figure 3.29; see also Table 3.6, Figure 3.27). The first com­

ponent was removed by low levels of thennal demagnetization, and is interpreted to be a 

VRM. In a relatively high percentage of samples, the second component was completely 

isolated during thermal demagnetization. Equal area projection shows that the characteristic 

directions of this component (Figure 3.30) are highly consistent, particularly given this 

type of lithology, and compare well with other results from western Newfoundland, 

including Green Point. 

Results from a micro-fold test, using a highly defonned limestone unit, were nega­

tive (Figure 3.31 ), demonstrating that the preserved directions were acquired after defor­

mation. However, soft-sediment deformation of this type probably occurred immediately 

after deposition, since the folds do not interrupt the overlying bedding. Furthermore, when 

these directions are corrected for the present-tilt of bedding, they are identical to directions 

from other samples taken from non-deformed units, indicating the direction was acquired 

no later than the Middle Ordovician folding of the Cow Head Group. Therefore, the pres­

ence of a negative fold test from this section does not imply that a magnetic polarity stratig­

raphy from this section would not be representative of the field during (or immediately 

after) deposition, but simply that the direction preserved in the folded units was acquired 

after the folding took place. 

Three very short normal polarity intervals have been identified within the Broom 

Point North section, although none of the three is defined by more than one sample (Figure 

3.32). The lower two samples displaying normal polarity, which are both in the upper part 

of the Cordylodus lindstromi zone, each have adjacent 3-5 meter intervals with unstable 

magnetic properties. Both of these levels are unusual; there are very few other samples in 

this section that are apparently unstable. The lower occurs at virtually the same level as the 

reported ftrst occurrence of the graptolite Anisograptus nuuanensis. The uppennost sample 

with normal polarity was the youngest sample collected from the section, and stratigraphi­

cally the highest collected from the Cow Head Group for this study. 

4.e.3 Broom Point South 

Samples were also collected from the Broom Point South section in September, 

1986. The section contains many large conglomeratic units and at least two substantial un 
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Figure 3.29. Typical demagnetization trajectories in equal area (a) and orthogonal 

projection for samples with reverse polarity at Broom Point North. 

Figure 3.30. Equal area projection of tilt-corrected characteristic directions of samples 

from the Broom Point North section. Dec1.=156°, inc1.=25°, lC= 25.3, <X95= 6°. 

Figure 3.31. Equal area projection of characteristic directions obtained from Bed 74, a 

highly-deformed limestone unit within the Broom Point North section. Results yield a 

strongly negative fold test (1Ctilt-corrected/1Cgeographic = 4.1/55.4 = 0.07), clearly 

indicating the preserved characteristic directions in this bed were acquired after the 

original soft-sediment deformation, but before Middle Ordovician folding of the Cow 

Head Group. 

Figure 3.32. Magnetic polarity interpretation for the Broom Point North section. 

Stratigraphic column from James and Stevens (1986); biozonation from Barnes (1988). 
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Characteristic directions 

Broom Point North section 
Cow Head Group, wesern Newfoundland 

Corrected for tilt of bedding 

North 

Figure 3.30 
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conformities close to the Cambrian-Ordovician boundary, rendering it unsuitable as astra­

totype. However, the section has the advantage over its northern counterpart of having an 

easily accessible Upper Cambrian sequence extending down to below the base of the 

Trernpealeauian Series. Like most of the other sections in the Cow Head, the Upper 

Cambrian biostratigraphic zonations are poor or non-existent because of the extremely low 

number of recovered specimens. Only limited study has been done on the conodont faunas 

at Broom Point South, and some of the units show evidence that these faunas have been re­

worked. Trilobites are relatively abundant, but their mixed faunas also raise questions as to 

whether they may have been re-worked 

Thermal demagnetization experiments on the samples from this section gave results 

very similar to those from other sections in the Cow Head Group. In most samples two 

components of magnetization were apparent The first has a direction very similar to the 

present-day field in western Newfoundland, and is interpreted to be a VRM. This compo­

nent dominates the NRM, but is removed by low levels of thermal demagnetization (Figure 

3.33). The characteristic direction, which in a moderate percentage of samples is com­

pletely isolated (Figure 3.34; see Table 3.6), is similar to those from other sections, 

although some dispersion is apparent (see Figure 3.27). Dual polarities are present. 

Fourteen samples, from four different levels within the Upper Cambrian portion of 

the Broom Point South section, appear to have normal polarity (Fig. 3.35). The most rea­

sonable correlations, given the present biostratigraphic information, have the uppermost 

normal polarity zone, which occurs within Beds 42-45, correlative to normal polarity inter­

vals within the Cordylodus proavus zone in other sections. The middle two normal zones 

appear to correlate well with normal polarity intervals in the Proconodonrus muelleri and P. 

posterocostatus zones at Dayangcha, China; Black Mountain, Australia; and Threadgill 

Creek, Texas. Correlation of the lowest normal polarity zone is not presently possible. 

4.e.4 St. Paul's Inlet quarry 

Forty-six samples were collected from the section at St. Paul's Inlet quarry in 

August, 1988. Good conodont and graptolite faunas have been documented (Barnes 1988; 

James and Stevens 1986), although the number of specimens of both taxa that have been 

recovered is fairly small compared to the other relevant sections in the Cow Head 

Paleomagnetic directions from this section are very similar to those from the other 

Cow Head sections included in this study. Characteristic directions were isolated by ther­

mal demagnetization in a few of the samples (Fig. 3.36; see Table 6), and polarity interpre-
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Figure 3.33. Typical demagnetization trajectories in equal area (a) and orthogonal 

projection for samples with reverse polarity at Broom Point South. 

Figure 3.34. Equal area projection, in tilt-corrected and geographic coordinates, of 

characteristic directions from the section at Broom Point South. 

Figure 3.35. Magnetic polarity interpretation of the section at Broom Point South. 

Stratigraphic column for James and Stevens (1986); biozonation from Barnes (1988). 

Figure 3.36. Equal-area (left) and orthogonal projection of a typical demagnetization 

trajectory for samples with normal polarity at St. Paul's Inlet quarry. 
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Progressive demagnetization of sample BSN 97.0 
Broom Point SouJh section 

western Newfoundland, CanLUia 

North, up 

-S -1 
Each division = 10 Am 

Figure 3.33.b 
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Progressive demagnetization of sample SPN 22.0 

St. Paul's lnleJ qu.arry section 
Cow Head Gro11.p, western Newfou.ndland 

Nor tit 

Nor/It , wp Both projections corrected for 
tilt or bedding 

t-+--+---+-+-<1-+-+---+-+-<-->-+-+--+....:;~"'ooo::~-+-+-<~-+-+-+-+-+---.../---+-~ &.rl,. lwrizofllal 
45()0 

Each division= 10 "
4

Am"
1 

Figure 3.36 
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interpretation was possibly in most of the other samples from this section. Demagnetiza­

tion trajectories were dominated by a VRM, which was substantially removed by low 

temperatures. Generally, characteristic directions isolated by this method compared 

favorably with those from other sections in the Cow Head (Figure 3.37). 

Four levels of normal polarity were found within the section (Figure 3.38). The 

lower two are separated by a large conglomerate (Bed 8) and are probably the same event. 

Their position just below the first occurrence of Cordylodus proavus strongly suggests that 

they are correlative to normal polarity zones within the C. proavus zone in other sections, 

and that the first appearance of C. proavus is somewhere in Bed 5. Very low specimen 

yields from conodont sampling through the interval in question do not argue against this 

interpretation. 

The youngest normal polarity zone occurs in Bed 19, just below the reported occur­

rence of Anisograptus matanensis. This position agrees well with that of a normal polarity 

sample in the Broom Point North section. The other sample with normal polarity occurs 

within Bed 12. Correlation of this level with other sections is not presently possible, 

although two samples with normal polarity are found at a similar level in the section at 

Black Mountain, Australia. 

An extended form of the fold test can be performed using both characteristic 

(individual) directions (Figure 3.39) and site-mean directions (Figure 3.40) from the vari­

ous sections. The results clearly indicate that acquisition of the characteristic component of 

magnetization preceded large-scale deformation of the Cow Head Group, and therefore, 

occurred no later than about Middle Ordovician. The similarity of polarity patterns between 

the sections at Green Point and Broom Point South, and possibly also the St. Paul's Inlet 

quarry section, further suggests this characteristic direction may represent the geomagnetic 

field at the time of deposition. 

Work is in progress on the Cow Head Ledge and Martin Point sections. Unfortu­

nately, the lowest sample collected at Martin Point was at the reported base of the 

Cordylodus proavus zone, and sampling intervals were larger in this section than in others, 

which may severely limit the utility of this section. Another conglomerate test, using non­

carbone clasts, was collected from the megaconglomerates at Cow Head Ledge, and it is 

hoped that the results will shed more light on the age of magnetization of the Cow Head 

units, and perhaps also on the reasons for negative conglomerate tests from the carbonate 

clast-dominated conglomerates at Broom Point and Green Point 
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Figure 3.37. Characteristic directions of samples from the St. Paul's Inlet quarry 

section. 

Figure 3.38. Magnetic polarity interpretation for the section at St. Paul's Inlet quarry. 

Stratigraphic section from James and Stevens (1986); biozonation from Barnes (1988). 

Figure 3.39. Fold test using characteristic directions from the four principal sections 

studied. lCtiJtflCgeographic = 1.57; N=211. 

Figure 3.40. Fold test using site means of the characteristic directions from the four 

principal sections studied. lCtiJtflCgeographic = 8.5, which is significantly positive at the 

95% level of confidence (McElhinny 1964). The disparity between the site-mean 

direction from Green Point and the site-mean directions from the other Cow Head 

Group sections probably represents unresolved non-horizontal axes of folding 

(possibly related to tectonic style), and does not significantly weaken the argument that 

directions at Green Point are contemporaneous with those from the other sections. 
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4.f. Black Mountain, western Queensland, Australia 

The Black Mountain section is one of the thickest in the world encompassing the 

Cambrian-Ordovician boundary, and displays a CAl of 1.0-1.5 (R. Nicoll, pers. comm.), 

indicating an extremely low thermal maturity. Limestone, dolostone, and siltstone are the 

predominant lithologies, with a variety of grain sizes and depositional environments. 

Abundant trilobite and conodont faunas are present, and detailed zonations have been 

established for both groups in at least parts of the section. However, as in the Cow Head 

Group, conodonts appear to be sparse in some of the Upper Cambrian units, and no 

conodont zonation presently exists at Black Mountain for this time interval (Druce and 

Jones 1971 ; Druce et al. 1982). 

One hundred seventeen oriented block samples were collected from 750 meters of 

the Upper Cambrian Chatsworth Limestone and Lower Ordovician Ninmaroo Formations 

in August, 1989. Samples were prepared and analyzed as previously described in this 

paper. The remainder of each block was dissolved for conodonts by R. Nicoll (Bureau of 

Mineral Resources, Canberra, Australia), allowing precise comparison of biostratigraphic 

and magnetostratigraphic results. (Future plans include detennination of the oc13 

stratigraphy using the end chips from core preparation.) 

Thermal demagnetization revealed two components in many of the samples (Figure 

3.41). One was removed by low temperatures, and was directionally similar to the present 

day field direction in western Queensland. This component is interpreted to be a VRM. 

The second component had dual-polarity directions trending approximately east-west, with 

very shallow inclinations (Figure 3.42, Table 3.7), that were stable in the middle (300-400° 

C.) and high (400-550° C.) temperature ranges. The direction of this component agrees 

well with other reponed directions from Australia for this time period (Klootwijk 1980), 

and satisfies the reversal test (Figure 3.43). Comparison of unblocking temperatures with 

the conodont alteration index indicates that this direction is not a thennal remanent 

magnetization. 

Fifteen other samples, for which thermal demagnetization did not completely isolate 

a component before unblocking, showed trends in their demagnetization trajectories which 

allowed unambiguous interpretation of their polarity. A few samples showed very stable 

second components with declinations ~ counterclockwise from the majority of samples, 

but with similar inclinations. The time of acquisition of this component has not yet been 

detennined, but may possibly reflect Ordovician diagenesis (Radke 1982) during a period 

of rapid Australian apparent polar wander (Klootwijk 1980). 



1 1 0 

Figure 3.41. Typical demagnetization trajectories in equal area and orthogonal 

projections for samples with reverse (a) and normal (b) polarities from the Black 

Mountain section. 

Figure 3.42. Characteristic directions obtained from samples taken from the Cambro­

Ordovician section at Black Mountain, Australia. 

Figure 3.43. Reversal test using characteristic directions presumed to be Cambro­

Ordovician in age. Overlap of <X95 ovals of confidence suggest that there is no 

significant difference (other than polarity) between normal and reverse polarity 

directions. 
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Reversal test 

Black Mountain section 
western Queensland, Australia 

North 

nol71Ull polarity 

Figure 3.43 
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A preliminary magnetostratigraphy, based on 62 samples, indicates the presence of 

a 70 meter thick interval of normal polarity (6 samples) beginning at the 230m level, within 

the reported range of Proconodontus muelleri (Druce et al. 1982; R. Nicoll, pers. comm.) 

(Figure 3.44). This normal polarity interval correlates well with previously reported results 

from other Uppermost Cambrian sections in this study. Three shorter periods of normal 

polarity were identified near the 475m (3 samples), 675m (2 samples), and 750m (2 

samples) levels. Correlation of these zones is problematic. Recent work by R. Nicoll 

indicates that the base of the Cordylodus proavus zone may be as much as 130 meters 

higher than previously reported (R. Nicoll, pers. comm.), placing it near the 550m level. 

Coupled with the indeterminate nature of magnetostratigraphic results from many of the 

samples at this level, and the observation that the base of the C. lindstromi zone is above 

our highest sample, the present interpretation of the three short periods of normal polarity is 

that they correlate as a group to other normal polarity intervals within the C. proavus zone. 

Intervening reverse polarity samples may be a true reflection of reverse polarity episodes 

that were unresolvable within the other studied sections; alternatively; they may reflect the 

influences of diagenesis during a period of reverse polarity. Further work is needed to 

confirm these interpretations. 

5. Conclusions 

Magnetostratigraphic results from 9 different sections indicate changes in polarity 

occurring throughout the studied interval, which ranges from the base of the Trem­

pealeauian Series (or slightly below) to near the base of the Arenig Series. Relatively brief 

periods of normal polarity appear to be globally correlatable at no less than 3, and perhaps 

as many as 7, different stratigraphic levels. A compilation magnetostratigraphy, including 

an idealized section, is given in Figure 3.45. 

Global correlation of magnetic polarity reversals occurring near the Cambrian­

Ordovician boundary is complicated by the relative abundances of conodont samples olr 

tained from the different sections. The Cow Head Group sections have severely impover­

ished Upper Cambrian conodont faunas (Barnes 1988), raising the possibility that the 

actual first occurrences of important Cordylodus species may be much lower, particularly 

in the critical Green Point section. At Black Mountain, Australia, only three species of 

conodonts have been reported from UnitE and Unit F of the Upper Cambrian Chatswonh 



117 

Figure 3.44. Magnetostratigraphic results from the Cambro-Ordovician boundary 

section at Black Mountain, western Queensland, Australia. Lithologic section and 

chronostratigraphy from Druce et al. (1982); biozonation based on R. Nicoll (pers. 

comm.). 

Figure 3.45. Magnetostratigraphic correlation of Cambro-Ordovician boundary sections 

investigated in this study. Shaded intervals represent biozones. Biozonations after 

Barnes (1988), Miller et al. (1982), Chen et al. (1988), Druce et al. (1982), R. Nicoll 

(pers. comm.) and Apollonov et al. (1988). Stratigraphic height scale is the same for 

all sections except Black Mountain and Batyrbay ravine; scale for those two sections 

given with Black Mountain magnetostratigraphy. Cordylodus caboti and C. 

oklahomensis zones included within C. intermedius zone. Pinching out of a biozone is 

the result of no zonation present for that interval within a given section, and does not 

necessarily imply a depositional break. 
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Limestone, and only two from the overlying Lily Creek Member (Druce et al. 1982). As a 

result, there is presently no conodont zonation for the Upper Cambrian at Black Mountain. 

However, recent re-investigation of Black Mountain conodont faunas will likely establish 

more precise biostratigraphic boundaries for most of the section (R. Nicoll, pers. comm.). 

It is impossible to obtain magnetostratigraphic correlations between more than two 

sections when assuming that the first observed occurrences of Cordylodus proavus and 

Cordylodus lindstromi represent chronostratigraphically-significant events. However, 

strong correlations between 4 (and possibly as many as 6) sections can be obtained by 

assuming that the documented first appearances of Cordylodus proavus are diachronous on 

a global scale, and then simply comparing the magnetostratigraphic pattern. Correlation by 

this method strongly suggests that the inability to make global magnetostratigraphic 

correlations in conjunction with Cordylodus biozones is a reflection of sampling bias due to 

insufficient specimen recovery. It is worth noting that, except for the section at Black 

Mountain, the base of the Cordylodus proavus zone required lowering in sections with 

few specimens in order to correlate normal polarity intervals with similar intervals in other 

sections. This would be expected if the significant boundary taxa were not observed due to 

low specimen recovery (see Sanders 1969). Furthermore, the difficulty imposed by the 

apparent raising of the base of C. proavus in the Black Mountain section is removed by the 

preliminary conclusions of a recent re-investigation of the conodont faunas from this 

section (R. Nicoll, pers. comm.), which raises the base of C. proavus by as much as 130 

meters using only biostratigraphic criteria. (Using Nicoll's new position for the base of C. 

proavus actually implies that a small lowering of the base of C. proavus might be possible 

with more collection.) 

The results have clear implications for selection of a globally-significant Cambrian­

Ordovician period boundary horizon. In particular, the sections within the Cow Head 

Group, western Newfoundland, should not be candidates for consideration of a boundary 

based solely on the fust reported occurrence of Cordylodus proavus until further 

biostratigraphic work conclusively documents this level. However, the correlations also 

suggest that the proposed base of the C. proavus zone at Green Point, if confirmed by 

further biostratigraphic work, would be the preferred horizon; the proposed base occurs in 

a continuous, thick sequence of shales and shaley limestones, as opposed to the base of C. 

lindstromi , which is near a large conglomeratic unit 

The correlations also imply that there may be large temporal differences between 

sections in the first appearance of Cordylodus lindstromi. At Dayangcha, the fust 
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appearance of C. lindstromi is found a few meters above the end of the normal polarity 

interval associated with the C. proavus zone. This may also be the case in the Lange Ranch 

section, but difficulties imposed by diagenesis allow only for speculation. In the Cow 

Head Group, the firSt appearance of C. lindstromi is documented to be much higher in the 

Broom Point South and Green Point sections than the end of the proposed C. proavus­

correlative normal polarity zone. Differences may be due in pan to the impoverished 

conodont faunas through the relevant intervals within the Cow Head Group, and in part to 

differential taxonomy between the various conodont specialists (J. Repetski, App.6, 

COBWG Circular 26 (1990)). 

Very preliminary correlations of individual samples having normal polarity within 

the Cow Head Group suggest that two very short normal polarity events may have 

occurred in the upper part of the Cordylodus lindstromi zone, with the higher event 

occurring just below the reported first appearance of the graptolite Anisograptus matanensis 

in the Broom Point North section. Because these events are found very near the first 

observed appearance of an important graptolite species, they may prove to be extremely 

valuable indicators of the chronostratigraphic significance of this taxon within the Cow 

Head Group, but further work is needed. 

It is noteworthy that, at the present time, a significant bias against the merits of 

magnetostratigraphy exists within factions of the Cambro-Ordovician Boundary Working 

Group. Even at this late stage in the boundary selection process, it appears important to 

point out that a useful Cambro-Ordovician period boundary requires identification of a 

demonstrably isochronous, globally-significant stratigraphic horizon. Placement of the 

boundary horizon in a section that is inaccessible to magnetostratigraphic study would 

define only the system boundary, since the global isochroneity of the boundary horizon 

would be impossible to demonstrate by current methods. It is hoped that the results 

detailed above confirm the importance of magnetostratigraphy in establishing a temporally­

significant global horizon for the Cambro-Ordovician boundary, and spur renewed interest 

in selecting a truly chronostratigraphic boundary. 
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Chapter Four Paleomagnetic results from Late 
Silurian to Middle Devonian rocks of the Barrandian 
area, Prague Basin, Czechoslovakia 

4.1. Introduction 

The Barrandian area of Prague Basin, stretching southwest from Prague in western 

Czechoslovakia, is one of the world's truly classic fossil localities. Middle Paleozoic strata 

in the area range in age from Late Silurian to Middle Devonian, and the preserved faunas 

are both diverse and abundant (Chlupac 1977). A number of sections have been identified 

as having global significance, including the Silurian-Devonian boundary global stratotype 

section at Klonk (near Suchomasty), the Ludlow-Pridoli stage boundary global stratotype 

near the Pozary quarries outside of Reporyje, and the proposed Pragian-Lochkovian 

boundary stratotype near Cerna Rokle. The high density of important, critically studied, 

and internationally-recognized sections makes the Barrandian area one of the premier places 

in the world to attempt to gain magnetostratigraphic information from rocks of this age. 

Another important feature of the Barrandian area, which has both positive and 

negative aspects, is its tectonic setting. The Barrandian sits within Prague Basin, a broad 

synclinorium formed during the Carboniferous-aged Hercynian orogeny and trending 

southwest-northeast, with dips of about 300 on the limbs. Because of the shape of the 

basin, fold tests can be performed between sites, providing one measure of the stability of 

the preserved magnetic components. Deformation appears to be restricted to gentle tilting 

of the strata in many sections, and conodont alteration indices (CAD for some of the stud­

ied sections are 1.5-2.0 (G. Klapper, pers. comm.), indicating only low levels of meta­

morphism. However, some of the sections, like the classic Silurian-Devonian boundary 

section at Budnany-Karlstejn, are highly deformed, confirming the acknowledged haphaz­

ard and often localized influence of the orogeny (Zwart and Dornsiepen 1978) extended to 

the Prague Basin. 

Another strong motivation for paleomagnetic study in the Barrandian area involves 

its paleogeographic position during the Middle Paleozoic. The Barrandian area has been 

recognized as one of the elements of the Bohemian Massif, the Early and Middle Paleozoic 

tectonic affinities of which have been the subject of debate. Many workers consider the 

Bohemian Massif as part of the Armorica microplate, which has been interpreted to have 
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accreted to Laurentia (Europe) during the Hercynian. Others have suggested that the 

Bohemian Massif was an independent block with unknown plate affinities. Previous 

paleomagnetic results from the Bohemian Massif did not encompass the critical Silurian 

through Devonian interval, the time periods immediately preceding a postulated Carbonif­

erous collision of the Bohemian Massif with Laurentia (as part of the Hercynian orogeny). 

Resolution of this problem will rely heavily on paleomagnetic data; faunal information does 

not allow unique solutions to continental configurations during the Silurian and Devonian. 

4.2. Results 

In August of 1985 over 350 oriented core samples were collected from 6 sections 

within the Barrandian (Figure 4.1). Careful attention was paid to biostratigraphic relations, 

and all of our collecting was done with the assistance of members of the Czechoslovak 

Geological Survey. Except for a few minor gaps, collection spanned from the top of the 

Ludlow Stage to the Lochkovian-Praguean (stage) boundary. 

Laboratory measurements were performed on an SeT cryogenic magnetometer un­

der microcomputer control. Alternating-field demagnetizations were made with a Schoen­

sted GSD-1 three-axis instrument, usually up to a maximum field of 10 millitesla. Thermal 

demagnetizations were done in 50° (to 350° C.) and 25° (above 350°) steps using a custom­

built large-volume oven. Thermal demagnetization typically did not proceed above 450° 

due to the obvious development of laboratory-induced directions, probably as the result of 

chemical changes within the carbonate samples. Characteristic directions were isolated 

using the principal component techniques outlined in Kirschvink (1980). 

A few samples from each of the sections were subjected to isothermal remanent 

magnetization (IRM) acquisition-AF demagnetization in an attempt to characterize the mag­

netic mineralogy. Induced IRM fields of 2 tesla were achieved using a custom-built pulse 

coil. Typically, the maximum AF demagnetization field used was about 1 tesla. 

A recent study using three samples from the section at Klonk (Ellwood et a1. 1988) 

suggested that siderite was present, indicating that the primary carriers of magnetization 

should still be intact. Their study identified a high inclination, southwest trending compo­

nent, which matched well with the hypothesis that the Bohemian Massif was attached to the 

main body of Baltica (Europe) during the Middle Paleozoic (Briden and Duff 1981). How­

ever, two of the three samples they reported on have natural remanent magnetization 

(NRM) directions that are nearly equatorial, unlike the present-day-field-dominated NRM 
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Figure 4.1. Sample localities within the Barrandian area. 
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directions obtained from most of our samples. Furthennore, the extremely low number of 

samples used makes it difficult to assess the reliability of their characteristic direction. 

4.2.1 Klonk 

The Klonk section, near Suchomasty, is the international stratotype for the Silurian­

Devonian boundary. Flaggy limestones with shaley intercalations are the predominant 

lithology, and are well-exposed, particularly in the upper part of the section. There are no 

obvious breaks in deposition, or marked changes in lithology; the contact between the 

Pridoli Formation and the overlying Lockhov Formation, which marks the Silurian­

Devonian boundary, can be distinguished only on paleontologic grounds. The official 

boundary horizon is marked within Bed 20, at the first observed occurrence of the grapto­

lite Monograptus uniformis. 

As might be expected, the Klonk section was the focus of our sampling. Ninety­

four oriented core samples were collected with the help of I. Chlupac, J. Kriz, M. Krs, 

and M. Krsova. Sampling intervals around Bed 20 averaged about 10 em, and about 30 

em in the rest of the section. All of the samples were subjected to progressive alternating 

field (AF) and thermal demagnetization. 

Most of the samples from this section showed two components of magnetization; a 

representative example is given in Figure 4.2. One component is very similar to the pre­

sent-day field, and dominated the natural remanent magnetization (NRM) measurements. It 

is interpreted to be a VRM from the present-day field. The influence of this component, 

hereafter referred to as component "PDF", on the total magnetization was sharply reduced 

by AF and low temperature demagnetization, and often was completely removed after 

heating to 200° C. 

The second component found in most of the samples (designated "OVP" for con­

venience) trends southward, with very shallow inclinations (Table 4.1). In some cases the 

OVP component was completely isolated by moderate temperatures (300°-450° C.) of de­

magnetization (Figure 4.3), but often was incompletely resolved before apparent 

mineralogical changes (induced by thermal demagnetization) dominated the measured 

directions. Poles to the demagnetization planes of those samples where the OVP 

component was incompletely resolved are shown in Figure 4.4. There was no indication 

that the OVP component possessed dual polarities. 

Demagnetization trajectories from a few samples suggested the presence of a third 

component, with high inclination and indeterminate declination (Figure 4.5), but the large 



129 

Figure 4.2. Typical demagnetization trajectories, in (tilt-corrected) 1 As-Zijderveld (left) 

and equal area projections, for samples from the Silurian-Devonian boundary stratotype 

section at Klonk, Czechoslovakia. In As-Zijderveld projection, solid squares represent 

declination, while open squares represent inclination. In equal area projection, solid 

circles represent positive (down) inclinations; open circles represent negative inclina­

tions. The larger circle, situated at about 50° north in equal area projection, represents 

the present-day field direction in Czechoslovakia. 

Figure 4.3. Equal area projection of the characteristic directions obtained using isolated 

OVP components. Symbols as in Figure 4.2. 

Figure 4.4. Poles to planes of demagnetization of PDF and OVP components, and the 

associated mean demagnetization plane. Both the mean OVP and PDF component 

directions are constrained to lie within the mean demagnetization plane, defined by the 

average pole and its associated error angle. 

Figure 4.5. Orthogonal and equal area projections of sample 15.0 from Klonk, showing 

a possible third component with high inclination. Symbols as in Figure 4.2. 

1 Hyperbolic projection used to facilitate viewing; in orthogonal projection (the customary format for As­
Zijderveld diagrams) of this data set, declination and inclination curves collapse upon one another. 
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Poles to PDF-OVP 
demagnetization planes 

Klonk section 
Barrandian area, Czechoslovakia 

North 

PresenJ day field 

Corrected for tnt of bedding 

Figure 4.4 
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amount of scatter in the apparent direction of the component makes it impossible to confirm 

that the component is the same in the few samples that possess it 

4.2.2 Pozary Quarry #1 

Like Klonk, the lithology of the strata in Pozary quarry #1 is dominantly flaggy 

limestones with shaley intercalations, becoming more massive and well-bedded towards the 

very top of the section. The section spans from the top of the Ludlow Stage to the lower­

most Devonian, thereby stratigraphically overlapping with the lower portion of the Klonk 

section, and is the international stratotype for the Ludlow-Pridoli stage boundary. Also, 

the beds dip quite steeply in comparison to Klonk, allowing a fold test to be performed 

between the two sections. 

Generally, the results from this section were very disappointing. Two components 

of magnetization, very similar to the PDF and OVP components identified from Klonk, 

were apparent during demagnetization (Figure 4.6). A much lower percentage of samples 

from this section had the OVP component completely isolated by demagnetization tech­

niques (see Table 1 ). In a few samples, particularly in the lower part of the section, a third 

component with high inclinations is suggested (Figure 4.7), but too few samples display 

directions of this kind to make an accurate determination of this component. 

A positive fold test (McFadden and Jones 1981) between the two sections using the 

OVP component (Figure 4.8) indicates that the OVP component in these two sections was 

acquired before deformation of the area (between these two sections), which has been inter­

preted to have occurred between the Middle Devonian and Late Carboniferous. 

4.2.3 Pozary Quarry #2 

This section is the upwards extension of the Pozary Quarry #1 section, beginning at 

the base of the Lockhov Stage and extending upwards to near the Lockhov-Pragian contact. 

The lithology in this section is predominantly massive carbonate, with some sand. A 

detailed biostratigraphy has not yet been established, although horizons of overlap have 

been recognized, tying the section to the Pozary quarry #1 section. 

Twenty-five samples were collected from the section, and subjected to the same 

measurement and demagnetization procedures outlined above. For most samples, three 

components were identifiable (Figure 4.9). NRM directions were dominated by a VRM 

contribution from the present-day field, identifying this component as the PDF component 

of the sections described above. The contribution of the PDF component to the total mag-
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Figure 4.6. Demagnetizaton trajectories, in orthogonal and equal-area projection, of 

sample DVC 86.5 from Pozary quarry #1, showing two components of magnetization. 

Symbols as in Figure 42. 

Figure 4.7. Sample DVC 37.0 from Pozary quarry #1 , showing three components of 

magnetization. Symbols as in Figure 4.2. 

Figure 4.8. Equal area projection of OVP component directions from Pozary quarry #1. 

Symbols as in Figure 4.3. 

Figure 4.9. Fold test between KJonk and Pozary quarry #1 sections using the OVP 

component. 
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netization was rapidly reduced by AF and low temperature thermal demagnetization. A 

second component with shallow, southern directions, identified as the OVP component, 

was recognized at intermediate demagnetization temperatures in many samples. This com­

ponent was, in some samples, stable throughout successive demagnetization steps (Figure 

4.10 and 4.11; Table 4.1 ). A third component, with an apparently polar direction in tilt­

corrected coordinates, was found with varying levels of contribution in many samples, 

always at higher temperature demagnetization steps. In one sample, it appears that this 

component was completely isolated by thermal demagnetization, but in most cases the 

component was overwhelmed by development of a strong magnetization apparently related 

to chemical changes induced by heating. The third component appears to have dual 

polarities. 

4.2.4 Prastav Quarry 

The Prastav Quarry section at Praha-Holyne has been selected as the most suitable 

for definition of the Lower-Middle Devonian boundary. Particularly rich faunas of trilo­

bites, brachiopods, crinoids, amminoids, nautiloids, bivalves, ostraccxis and conodonts 

have been identified in the section and the immediately surrounding area (Chlupac 1982). 

Deposition was apparently continuous, and the proposed boundary position is recognizable 

only on paleontological grounds. Unfortunately, the deposition rate for this section is low 

compared to most of the other studied sections, making sampling intervals from this section 

temporally large. 

Twenty-three core samples were collected from the section with the help of I. 

Chlupac and J. Kriz. Three distinct components of magnetization can be recognized in 

many of the samples (Figure 4.12). The first is the PDF component seen in other sections, 

and is removed by alternating-field and low temperature thermal demagnetization. The sec­

ond is south-directed and approximately equatorial, and is identified as the OVP compo­

nent In a few samples, the OVP component was completely isolated by demagnetization 

(Figure 4.13). 

The third component found within this section appears to trend approximately west­

east, with steep inclinations, in tilt-corrected coordinates, very similar to the third compo­

nent seen in samples from Pozary quarry #2. Poles to the demagnetization planes of this 

component and OVP are consistent wtith similar poles from Pozary quarry #2. Dual 

polarities for this component appear to be preserved within this section, although in none of 

the samples was the component successfully isolated by demagnetization. 
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Figure 4.10. Demagnetization trajectories of a typical sample from Pozary quarry #2 in 

equal area (a) and orthogonal projection, showing three components of magnetization. 

Symbols as in Figure 4.2. 

Figure 4.11. Equal area projection of the OVP component direction in samples from 

Pozary quarry #2. 

Figure 4.12. Demagnetization trajectories of sample HPC 3.3, from the Prastav Quarry 

section, showing the OVP component dominating the NRM direction. Symbols as in 

Figure 4.2. 

Figure 4.13. Equal area projection of characteristic directions from samples for which 

the OVP component was completely isolated Symbols as in Figure 4.2. 
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4.2.5 Cerna rokle 

The Cerna rokle section, southwest of Barrande's Rock, contains upper Pridolian 

through Lochkovian strata The lower part of the section is composed predominantly of 

flaggy, fine-grained limestones with interbedded calcareous shale, while in the upper part 

of the section, limestones become more definitely bedded and finer-grained. Exposures of 

the upper part of the section are excellent, occurring in an abandoned quarry; the lower part 

of the section is partially covered. The section has only a minor dip. 

Thirty-five samples were collected from this section with the help of I. Chlupac. 

Results from this section were generally very disappointing, but indicate that the PDF and 

OVP components make up the bulk of the magnetization (Figure 4.14). There is no 

evidence that the latter component has dual polarities. The third component found in some 

of the other sections does not appear to be present, although a few samples had directions 

that may reflect the contribution of a highly-inclined component. Most of the samples from 

this section, however, became very weak during thermal demagnetization, and 

measurement errors for directions determined after higher demagnetization temperatures are 

large, precluding positive identification of any components that might be present. 

4.2.6 Mramarovy Lorn 

Of all the sections studied from the Barrandian area, the quarry at Mramarovy Lorn 

appeared to have the lowest potential for good paleomagnetic data. Outcrops in the quarry 

consisted primarily of marble, which in some cases were highly veined, and in some cases, 

diagenetically brecciated. Furthermore, the section is highly condensed, encompassing 

Late Silurian through Middle Devonian time. 

Unfortunately, the paleomagnetic results were consistent with our original predic­

tion. In all samples at least two components were present; in a few samples, as many as 

four were apparent. In most samples, the PDF component was very strong, but was 

rapidly removed by low temperature thennal demagnetization. The OVP component was 

usually south-directed and shallow, as in the other sections. In a few of the other samples 

third (southeast and moderately inclined) and fourth (high positive inclination) components 

were present (Figure 4.15). However, none of the samples had any components, includ­

ing OVP and PDF, that were demonstrably isolated by demagnetization. 
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Figure 4.14. Demagnetization trajectories of a typical sample from Cerna rokle, 

showing the PDF and OVP components of magnetization. Symbols as in Figure 4.2. 

Figure 4.15. Demagnetization trajectories of a sample from Mramarovy Lorn quarry, 

showing four different components of magnetization. Symbols as in Figure 4.2. 
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4.3. Discussion 

The influence of at least three different components of magnetization in the Barran­

dian area is indicated by the demagnetization behavior of many of the samples from the 

various sections. The first component removed in all cases, the PDF component, is clearly 

a VRM related to the present-day field. NRM directions expressed in geographic coordi­

nates from all of the sections (Figure 4.16) indicate that the PDF component dominates the 

NRM in most samples, regardless of section. 

The second component removed during demagnetization, the OVP component, is 

present in all sections as a southerly directed, shallowly inclined direction, and was com­

pletely isolated by thermal demagnetization in some samples (Figure 4.17). A positive fold 

test based on this component, and encompassing all of the studied sections, strongly 

suggests that the OVP component was acquired after the deformational event that tilted and 

folded strata within the Barrandian area. 

Interpretation of the demagnetization behavior of samples from some of the sec­

tions, notably those at Pozary quarry #2 and Prastav Quarry, is complicated by the pres­

ence of a third component. In all of the samples that exhibited a third (or rarely, a fourth) 

component, the PDF and OVP components were the first removed by demagnetization, and 

were usually only incompletely resolved. A provisional fold test, using poles to the OVP­

third component demagnetization planes from the different sections hints that the third 

component was acquired before folding. Unlike the other components, the third compo­

nent also exhibits dual polarities, but the low number of samples with this component does 

not allow magnetostratigraphic interpretation. 

Rock magnetic studies indicated the magnetic mineralogies of the different sections 

were substantially different in size ranges, but not in mineralogy. All of the studies sug­

gested that the primary carrier of remanence was magnetite (Figure 4.18), with minor 

amounts of a different, high coercivity mineral, but could not rule out the possibility that 

some of the magnetite might be diagenetic. 

4.4. Conclusions 

The presence of a third component carried by magnetite at higher demagnetization 

temperatures than the OVP component, and the inconclusive nature of fold tests using the 

OVP component despite large differences in structural corrections, indicate that the OVP 

component represents an overprint direction acquired either after or during deformation. 

The pole position derived from the direction of this component falls near the Carboniferous 
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Figure 4.16. Equal area projections of NRM directions of all samples, in geographic 

coordinates. Symbols as in Figure 4.3. 

Figure 4.17. Equal area projections of directions from all samples with isolated OVP 

components, in a) geographic and b) tilt-corrected coordinates. lCtiltfKgeographic = 2.0; 

N=106. Symbols as in Figure 4.3. 

Figure 4.18. Typical IRM acquisition-AF demagnetization curves for samples from the 

Barrandian area, Czechoslovakia. The curves indicate the primary carrier of remanence 

is magnetite, with a J so= 35 mT. Incomplete saturation at IRM levels above 300 mT is 

due to the presence of high coercivity magnetic minerals, but the shape of the curve 

suggests the contribution of the high coercivity mineralogy to the total NRM is small. 



• 
• • 

• 

• 

155 

NRM directions 
Barrandian area sections, Czechoslovakia 

0 

• 

• 
• 

• 

• 

North 

• 

•• 
• 

~ . 

• .. .. . •', •• • • • . . ,. . 
••• •• • • , . 
• •• • • 

• 
•• 

• •• • 
• 

• 
• • 

'· 

Geographic coordinates 

Figure 4.16 

• • • • 
• • • 

• 
• 



• 
0 

• 

0 +
 • • • •
 

• 
• 

• 
•q

. 
O

o
 

• 
• 

~·
 

:
\
~
.
 

. 
.. .

 
0 

·~
 

.e
 

e 
I 

,
.
 
~·

 
• 

b 
i 

• 
.,

 

G
eo

gr
ap

hi
c 

co
or

di
na

te
s 

F
ol

d 
te

st
 u

si
n

g 
O

V
P

 c
om

p
on

en
t 

A
ll

 se
ct

io
ns

 
B

ar
ra

nd
ia

n 
ar

ea
, C

ze
ch

o
sl

ov
ak

ia
 

• 

• 
• 

• 

• 
~
 

• 

0 o
o

 • • 
• 

0 +
 

• 
0 

• 
9

>
o

 
• 

C
or

re
ct

ed
 r

or
 ti

lt
 o

r b
ed

di
ng

 

F
ig

ur
e 

4.
17

 

-VI 0
\ 



0 
0 
~ 

0 
m 

0 
CD 

0 
lD 

0 
LD 

157 

0 
(T) 

0 
C\1 

0 
~ 

0 
0 
(T) 

0 
0 
~ 

0 
LD 

0 
(T) 

0 
~ 

LD 

(T) 

~ 

I-
E 

'---"' 

TI 
r-1 
QJ 

· rl 

LL 

u 
· rl 

-+-1 
QJ 

c 
(J') 

m 
:L 



158 

portion of the APWP for Europe (Figure 4.19), corresponding to the time of the Hercynian 

about 60 million years), which is rapid but not impossible. However, very high latitudes 

are completely incompatible with the lithologic setting of the area, assuming that extensive 

carbonate production is restricted to tropical or temperate latitudes. Until the contradiction 

between the lithologic evidence and indicated high latitude of the third component can be 

either explained or resolved, the source of the third component can not be ascertained, and 

until the direction of the third component can be better defined, it is impossible (using these 

samples) to detennine what tectonic affinities the Bohemian Massif may have had at the 

time of the Silurian-Devonian boundary . 
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Figure 4.19. Comparison of the European APW path (Briden and Duff 1981) with the 

pole position determined from OVP directions. 
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European APW for Early Paleozoic 
compared with OVP component 
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Figure 4.19 
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Chapter Five Paleomagnetic results from the 
Ordovician-Silurian boundary section at Falaise Ouest, 
Anticosti Island, Quebec, Canada 

5.1 Introduction 
The Late Ordovician and Early Silurian strata found on Anticosti Island, Quebec, 

Canada represent a unique opportunity for paleomagnetic and magnetostratigraphic investi­

gation because of the unusual thickness and continuity of section for this time period. and 

because of the extremely low thermal maturity of the caroonates found on the island 

(CAI=l.O; C. Barnes, pers. comm.). Fresh exposures are guaranteed by the occurrence of 

extensive sea-cliff sections around the island. Exceptionally rich brachiopod, trilobite, 

coral, and conodont faunas can be found within various sections around the island, and 

detailed biostratigraphic frameworks have been established for many of the sections. The 

primary reason for designation of the section at Dob's Lin, Scotland as the international 

stratotype for the Ordovician-Silurian ooundary • rather than on Anticosti Island, was the 

lack of graptolites at Anticosti; graptolites are far superior to any other group for biostrati­

graphic zonations of this time period. 

The predominant lithologies present within the Falaise Ouest section are lime mud­

stones and thin-to-medium-bedded limestones, and coarser-grained equivalents up to 

packstones and wackestones. Near the ooundary horizon, prominent bioherms, some as 

much as 3 meters high, can be found with cateniporid corals and stromatoporoids as 

framebuilders (lUGS Field meeting guidetx>ok Vol. 1; 1981). A few easily-recognizable 

marker beds are also present within the stratigraphic column. 

An unfortunate aspect of the island is the total lack of structure, forbidding applica­

tion of the fold test None of the sections on the western half of the island display any 

significant dip; generally, dips were less than 5° to the southwest A few Jurassic dykes 

are also present. permitting a baked contact test. but were not sampled for this study. 

However, a previous investigation using rocks from Anticosti demonstrated that the site­

mean directions of the De Puyjalon Cliff dykes were significantly different from Lower 

Paleozoic directions obtained from Anticosti caroonates (Seguin and Petryk 1984). Addi-
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tionally, a few intraclastic conglomerate units are available, particularly on the eastern 

shores of the island 1. 

Two problems that could be addressed using paleomagnetic data from the Anticosti 

sections bear on the magnetostratigraphic relationships across the boundary interval, and 

comparison of any pole positions obtained from Anticosti Island with the North American 

APW path. The Late Ordovician through Early Silurian portion of the North American 

APW path is poorly-constrained. Furthermore, most of the poles presently used come 

from the Appalachian Mts., an area known to have widespread remagnetization. The pos­

sibility of obtaining a reliable pole position from undeformed, unmetamorphosed strata is 

also attractive in terms of shedding new light on the paleogeographic position of Anticosti 

Island. 

5.2. Results 

The Falaise Ouest section is located on the western shore of Baie Ellis, stretching 

for about 3 km north from Pointe Aux lvrognes, to the Baie Jolliet swamp at the northern 

end of the bay (Figure 5.1). The Ordovician-Silurian boundary is near the south end of the 

section, within the Becscie Formation. The Upper Ordovician Ellis Bay Formation has its 

top 15 meters below the boundary, and stretches northward to the north end of the section. 

Exposures along the shore of Baie Ellis are excellent, and access can be made via boat from 

Port-Menier, or by 4-wheel drive vehicle along the coast. 

Ninety-three oriented core samples were collected from the section in August of 

1986, prepared using standard procedures outlined elsewhere (see Chapter 2), and 

measured on an SeT cryogenic magnetometer using SQUID devices interfaced to a 

microcomputer. Both alternating-field (AF) and thermal demagnetizations were performed. 

Typically, the peak AF intensity used was 20 mT; thermal demagnetizations often were 

done up to 650° C. 

Unfortunately, the results from the Falaise Ouest section were very disappointing. 

In virtually all samples, a strong VRM component of the present-day field dominated the 

natural remanent magnetization (NRM) (Figure 5.2). In many cases, alternating-field 

demagnetization to 20 mT did not change the preserved direction. Significant departures 

from NRM directions were obtained using thermal demagnetization, but a consistent 

lWork is in progress on samples recently provided by D.G.F. Long from one of these 
units. 
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Figure 5.1. Map showing the location of the Falaise Ouest section on Anticosti Island, 

Quebec, Canada. 

Figure 5.2. Equal area projection of NRM directions of samples from Falaise Ouest, 

showing the strong influence of a present-day field VRM component Positive 

inclinations are denoted by filled circles. 
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NRM directions 

Falaise Ouest section 
Anticosti Island, Quebec, Canada 
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component could not be obtained. Figures 5.3-5.5 demonstrate the 'shotgun pattern' 

obtained from these samples, which is characteristic of unstable magnetic behavior. 

To complicate matters further, magnetizations were usually reduced to around 1 x 

w-10 Am-1 after AF demagnetization to 20 mT and thermal demagnetization to 300° C., but 

after heating to 400° c. (and often at 350° C.), typically increased to 1 X w-8 Am-1 (Figure 

5.6). Rapid increases of this kind often are due to chemical changes developed as the result 

of thermal demagnetization, and do not yield information relevant to the geomagnetic field 

at the time of deposition. In many samples, marked increases in intensity were accompa­

nied by the development of a red tint 

5.3. Conclusions 

Unfortunately, the section at Falaise Ouest does not appear to have preserved any 

directional or stratigraphic data providing knowledge of the Ordovician-Silurian boundary­

age geomagnetic field. Only one component can be clearly identified- the VRM component 

that dominates the present-day field . Directions obtained after higher temperatures of 

demagnetization are not internally consistent, and cannot presently be used for any sort of 

interpretation. 

The unusually large increases in magnetization induced by moderate temperatures of 

thermal demagnetization may be of some interest, however, in terms of investigating the 

rock magnetic properties of platform and shallow water carbonate rocks. It has long been 

recognized that carbonates undergo changes in their magnetic mineralogy during thermal 

demagnetization, often hampering their utility for paleomagnetic study. Rock magnetic 

studies of samples subjected to different levels of thermal demagnetization may provide 

clues as to what these changes are, and perhaps lead to development of better techniques to 

recover directional information that might otherwise be obscured 
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Figure 5.3. Directions obtained from Falaise Ouest samples after thermal 

demagnetization at 100° C.; the strong influence of the VRM component is still evident 

Symbols as in Figure 5.2. 

Figure 5.4. Directions obtained after thermal demagnetization at 250° C. The VRM 

component has been effectively removed, but no directional grouping is apparent. 

Figure 5.5. Directions obtained after thermal demagnetization at 350° C. There is no 

apparent trend visible in this representation. 

Figure 5.6. Typical demagnetization trajectories of samples from Falaise Ouest. In 

orthogonal projection, filled squares denote declination; unfilled squares represent 

inclination. In equal area projection, symbols as in Figure 5.2. 
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Directions after heating at 100° C. for 1 hour 

• 

• 

0 

Falaise Ouest section 
Anticosti Island, Quebec, Canada 

• 
• • 
• 
• 

• • • • • 
0 
0 .. 

•• 

~~ • • 
• • .. ...... 

0 

+ • 

• 
• 

0 

• • • 

• 

• 

Corrected for tilt of bedding 

Figure 5.3 

• • 

• 



co 

0 

169 

Directions after heating at 250° C. for 1 hour 
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Directions after heating at 350° C. for 1 hour 
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Chapter Six Magnetostratigraphically-constrained 
paleogeographic positions of the North China and South 
China Blocks during the Cambrian-Ordovician 
boundary interval 

This study represents the first application of magnetostratigraphic techniques to 

Paleozoic paleogeographic reconstructions. It is, in some respects, a fortuitous fact that 

there has been a great deal of controversy generated over paleogeographic reconstructions 

for the late Cambrian and Early Ordovician; it provides a ready forum for testing the paleo­

magnetic data from this study against available data of various kinds. 

Paleogeographic reconstructions for Latest Cambrian and Earliest Ordovician time 

involving 'East Gondwana' (Australia, Antarctica, India, and 'proto-Asian' fragments) 

have been at odds with each other, dependent on the data base being used. Previous pale­

omagnetic results from the North China and South China blocks (Lin 1984) allowed pre­

liminary paleolatitude determinations (Lin et al. 1985) (Figure 6.1 ), but the hemispheric 

ambiguity inherent within paleomagnetic data was not resolved by their correlation tech­

niques or through development of a continuous apparent polar wander path. Instead, the 

authors based their polarity interpretation on the assumption that large-scale rotations (of 

approximately 180°) for the two blocks were implausible. 

Paleogeographic reconstructions by Burrett and Stait (1986) for the Early Cambrian 

to the Middle Ordovician, using faunal associations, arrived at much different conclusions 

than those of Lin et al. for the positions of the North China and South China blocks 

(Burrett and Stait 1986). They concluded that both blocks were undergoing large-scale 

rotations in conjunction with the 90° counterclockwise rotation of Australia suggested by 

Klootwijk (1980). The faunal associations also suggested that North China and South 

China must have been very close to Australia throughout much of the Early Paleozoic. 

The magnetostratigraphic correlations outlined in Chapter 3 have allowed definition 

of polarity for Cambrian-Ordovician boundary-aged samples in North China through 

correlation with sections from Australia and North America. When the data sets of Lin et 

al. (1985) and Lin (1984) are inverted, 90° of counterclockwise rotation during the 

Cambrian is apparent, identical to the apparent rotation experienced by Australia during the 

same time period. This observation strongly suggests that previous polarity interpretations 
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Figure 6.1. (a) Early Cambrian time paleogeographic reconstruction of Lin et al. (1985), 

showing North China in the southern hemisphere at about 30° latitude and oriented 

in approximately its present day orientation. Note the position of the South China 

block with respect to North China. (b).Late Cambrian paleogeographic reconstruc­

tion of Burrett and Stait (1986), showing North China and South China next to the 

present-day northern coast of Australia, and oriented about 90° clockwise from their 

current position. 
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were inverted, and that the Burrett and Stait models are reasonable interpretations of the 

paleogeography of 'East Gondwana' at the time of the Cambrian-Ordovician boundary. 
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Magnetostratigraphically-constrainted positions of the North China and 
South China Blocks during the Cambrian-Ordovician boundary interval 

R.L. Ripperdan and J.L. Kirschvink 
Division of Geological and Planetary Sciences 170-25 
California Institute of Technology 
Pasadena, California U.S.A. 91125 

Several paleogeographic reconstructions for Early and Late Cambrian 

time have had strikingly different solutions for the positions of 'proto­

Asiatic' microcontinental blocks near what is now the northern margin of 

Australia.1
•
2

•
3 Those based primarily on paleomagnetic resuit/•2 have nei­

ther resolved the hemispheric ambiguity inherent in the data, nor addressed 

the question of whether the blocks strewn along the margin were connected 

to or moving independently of a postulated Austral-Asian supercontinent 

during the Cambrian. Our results, based on magnetostratigraphic correla­

tions in Upper Cambrian carbonates from North America, Kazakhstan, 

China, and Australia,4 resolve the Late Cambrian paleogeographic position 

of the North China block, constraining it to the northern hemisphere for 

most of the Cambrian period. Comparison of Early and Late Cambrian and 

Late Precambrian-age pole positions from the North China4
'
5

'
6 and South 

China block/'4'
5

'
7 and Australia4

'
8

'
9

'
10

'
11

'
12 suggest that they simultane­

ously underwent about 90 ° of counterclockwise rotation during Cambrian 

time. These results support the hypothesis that the North China and South 

China blocks were an integral part of an Austral-Asia supercontinent 

throughout the entire Cambrian period, although the observation is made 

that true polar wander could account for the similarity of rotations. 

Introduction 

The composition and integrity of the northern and western margins of an Early 

Paleozoic Austral-Asian supercontinent, and the orientations of the constituent blocks, have 

been the subjects of sharp disagreements between paleogeographic reconstructions based 

on paleomagnetic data and those relying on faunal relationships. In particular, the positions 

of the North China and South China blocks with respect to each other and to Australia have 

been given markedly different solutions. Lin et al.1 placed the North China block at 30° S. 

and the South China block at the equator in the Early Cambrian, basing the positions pri-
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marily on their own paleomagnetic results
1
.5 and a preliminary interpretation of polarity. In 

their reconstruction, North China is in approximately the same orientation as today, while 

South China is rotated 90° counterclockwise from the present. Both are distinctly separated 

from Australia. 

Burrett and Stait3 based their paleogeographic reconstructions primarily on faunal 

associations. They placed the North China Block in northern sub-tropical latitudes at the 

beginning of the Cambrian, adjacent to what is now the northern margin of Australia. 

Their reconstructions have the North China Block rotating counterclockwise with Australia 

beginning in the Early Cambrian, and by the end of the period, oriented about ffJO clock­

wise from its modern orientation and separated slightly from Australia. In their model the 

South China Block is also close to Australia, also moving into more southerly latitudes in 

the Early Cambrian, and also oriented aoout 90° clockwise from the present by the end of 

the period. They further concluded that the distributions of faunas required that the relative 

positions of microcontinents with respect to Australia be roughly maintained throughout the 

Cambrian. Another reconstruction based primarily on paleomagnetic data, by Scotese
2

, 

places the North China block near the equator and north of South China in the Late 

Cambrian, but rotated 180° from the present and essentially independent of Australia 

Fundamental to establishing a reliably-constrained configuration for the western 

Austral-Asian margin at the end of the Cambrian is resolution of the hemispheric ambiguity 

inherent in paleomagnetic data There are essentially two strategies for accomplishing this 

objective. The method used in virtually all previous studies is construction of an apparent 

polar wander path (APWP) for the continental unit, using a large number of closely-spaced 

pole positions with well-constrained ages. Such data are presently available only for a few 

of the larger cratons. A second method, applied here for the first time to Early Paleozoic 

reconstructions, utilizes magnetostratigraphic correlations where one of the sections has 

known polarity (through use of the first method). This strategy has a decided advantage 

when working in areas from which there are few or no previous results, or where there are 

large gaps in the stratigraphic record, ooth of which are true for the North China and South 

China blocks in Early Paleozoic time. 

Magnetostratigraphic constraints 
Magnetostratigraphic results from Cambrian-Ordovician boundary-aged sections in 

the North China block, Newfoundland, Kazakhstan, Texas, and Australia have identified 

correlatable normal polarity events preserved within the Upper Cambrian conodont sub-
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wnes Proconodontus posterocostarus and P. muelleri, and possibly also within the Upper 

Cambrian/Lower Ordovician conodont wne Cordylodus proavus, following a long interval 

of predominantly reverse polarity during the Late Cambrian
4
'
13 (Figure 1). Geomagnetic 

polarities for the North China, western Newfoundland, and Kazakhstan sections were 

established through magnetostratigraphic correlation with results from Upper Cambrian 

sections in central Texas and Australia. Geomagnetic polarities for the latter were estatr 

lished by comparison with the APWP of their respective cratons. 

Only one of the sample localities, Kazakhstan, yields results that conclusively sat­

isfy standard paleomagnetic criteria for reliability; they pass the fold test. The sections 

from North China provisionally pass the reversal test, but the results are statistically notre­

liable because many samples possess multiple, overlapping components. Pole positions 

obtained from western Newfoundland sections approximately pass fold tests between sites, 

but substantial differences in site mean directions exist that are probably related to deforma­

tion of the Cow Head Group during emplacement as the northern element of the Humber 

Allochthon. Only about one-fourth of the central Texas samples yield results that are con­

sistent with those from Watt et al.13
; the other samples demonstrate serious overprinting 

through diagenesis and/or complete viscous remagnetization by the present geomagnetic 

field. Results from the Australian samples are very consistent, with half of the samples 

showing stable components during thermal demagnetization, but the low number of sam­

ples with normal polarity render the positive reversal test insignificant 

The major argument for the reliability of the results from each of the above-men­

tioned sections is the consistency in stratigraphic position of Late Cambrian normal polarity 

events with the Upper Cambrian Proconodontus muelleri conodont wne. It seems highly 

unlikely that stratigraphically-equivalent diagenetic overprinting could occur within sections 

from such widely-spaced localities as Texas, Newfoundland, Australia, and North China. 

A more logical explanation would be that the polarities preserved within these sections rep­

resent the Late Cambrian geomagnetic field, even though standard paleomagnetic reliability 

tests may not be applicable or completely satisfied. 

Another estimate of the reliability of our results can be gained through comparison 

of pole positions with the previous results from the area. Our pole from Black Mountain, 

western Queensland fits well with similar-aged poles from Australia (fable 1 ). Likewise, 

our results from the Uano Uplift area, central Texas, compare favorably with the directions 

determined by Watts et al. for the same area and time period 
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Figure 1. Magnetostratigraphic correlations for Cambrian-Ordovician boundary-aged 

sections in (a) Australia, China, and Texas, and (b) western Newfoundland (from 

Ripperdan et al. , in review). Shaded regions represent conodont biorones. 



Gr
ee

n 
Po

int
 

IS
O 

14
0 

13
0 

12
0 

11
0 

10
0 90
 

80
 

70
 

60
 

so 40
 

30
 

20
 

10
 0 

m
et

er
s 

F
ig

ur
e 

6.
1 

M
ag

ne
to

st
ra

ti
gr

ap
hi

c 
co

rr
el

at
io

n 
of

 
C

am
br

ia
n-

O
rd

ov
ic

ia
n 

bo
un

da
ry

 s
ec

tio
ns

 

St.
 P

au
l's

 
In

let
 

-
no

rm
al

 p
ol

ar
it

y 

L 
J 

re
ve

rs
e 

po
la

ri
ty

 

l~
_~

:-
·

_ •. ' ..
. ·-~
 

r.
~~

·~
~:

,}
j 

no
 d

at
a 

re
co

ve
re

d 

Bl
ac

k M
ou

nta
in 

Au
str

ali
a 

... ~
 



181 

Comparisons of apparent polar wander paths 

The Late Precambrian to Early Ordovician portion of the Australian APWP indicates 

about 90° of counterclockwise rotation between Vendian time and the Early Ordovician 

(Figure 2). When recalculated for a Burrett and Stait-type fit using the Euler poles given in 

Figure 2, our Late Cambrian pole position from the North China Block lies very near the 

Late Cambrian portion of the Australian APWP (and can be placed directly on it by a 10° 

shift in paleolatitude), arguing for placement of North China adjacent to Australia at the end 

of the Cambrian. Late Precambrian and Early Cambrian pole positions from North China 

also lie on the corresponding-aged portions of the Australian APWP. Our pole from the 

South China block, recalculated in similar fashion, lies within 30° of the Late Cambrian 

portion of the Australian APWP. Likewise, a pole from the Precambrian-Cambrian bound­

ary section at Meischucun, South China7 is also reasonably close to the Australian APWP, 

but does not lie directly upon it. Differences between the Australian and South China poles 

may reflect a pervasive Late Mesozoic and Cenozoic remagnetization event in South China, 

based on recent paleomagnetic investigations in the Yichang area14
• Alternatively, differ­

ences may also be due to separation of South China from the main continental mass. How­

ever, the faunal associations used by Burrett and Stait indicate that South China was close 

to Australia, so that any separation between the two at the end of the Cambrian must have 

been minor. 

Conclusions 

Based on these lines of evidence, we conclude that North China and South China 

were either attached to, or moving in conjunction with, Australia during the Cambrian, and 

underwent about 90° of counterclockwise rotation with Australia between the Late Precam­

brian and the Earliest Ordovician. During that time, North China moved from about 30° 

north latitude to near the equator, and perhaps even into low southerly latitudes. South 

China moved from near the equator to about 20° south latitude. Both of these conclusions 

are compatible with faunal evidence. Also, the North China block had an orientation about 

90° clockwise from the present at the end of the Cambrian, slightly more than in the Burrett 

and Stait model. Our data also indicate that the South China block was oriented about 70° 

clockwise from its present position. The orientation of the North China block is more 

highly constrained than the paleolatitude; the nearly vertical tw<rcomponent least-squares 

planes of the samples from Xiaoyangqiao allowed for very accurate determination of decli­

nation, but less reliable estimates of inclination. Unlike the results from the North China 
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Table 1. Virtual geomagnetic poles used to construct Vendian to Ordovician portion of 
apparent polar wander paths for Australia and the North China and South China 
blocks. 

Locality Symbol Au LaL. Lon~:. Source 

Australia 
Black Mountain AU13 C/0 -10 '23'? Ripperdan et a/.4 
Aroona Dam Fm. AU12 lateC 360 21~ Klootwijk 19808 
Lake Frome Gp. AUll mid to late c 31° '1!)T Klootwijk 198o8 
Giles Creek Dolo. AUIO middleC 40"' 2100 Klootwijk 19808 
Billy Crk Fm. (Flinders) AU9 upper early C 37> 'lf.ff Klootwijk 19808 
Billy Crk Fm. (Kang.Is) AU8 upper early C ')90 196° Klootwijk 19808 
Hawker Gp. (top) AU7 mid-earlyC 130 211° Klootwijk 19808 
Hawker Gp. (base) AU6 earliest C 27> 18~ Klootwijk 19808 
Todd River Dol. AU5 early C 43° 160" Kirschvink 1978b9 
Upper Arwnbera Ss. AU4 latest PreC 47> 157> Kirschvink 1978b9 
Lower Arumbera Ss. AU3 latest PreC 440 162° Kirschvink 1978b9 
Elatina Fm. AU2 Cryogenian 51° 15~ Embleton and Williams 19861° 
Yilgarn craton dykes AU l -750 my ~ 1~ Giddings 197611 

NQnh China blo~k 
Xiaoyangqiao section NC6 C/0 -1~ 39" *Riprrdan et a1.4 

Maozhuang Fm. NC5 early C -19" 1200 t Lin 

Jing'eryu Fm. ( IOc) NC4 late Prot. s> 139" Elston et a/.6 

Jing'eryu Fm. ( lOb) NC3 late Prot. 3 146° Elston et a/.6 

Jing'eryu Fm. ( lOa) NC2 late Prot. -120 1700 Elston et a/.6 

Xiarnaling Fm. NCI late Prot. -'120 'lJ.1)0 Elston et a/.6 

S.ouh China block 
Huanghuachang sec. SC3 C/0 -2'? no Ripperdan et a1.4 

Tianheban Fm. SC2 early C 
_., 

100 t Lin et a1. 1 

Meischucun sec. SCI PC/C ..()80 91° t v an der Voo and Wu 7 

Ages: 0) Ordovician; C) Cambrian; PC) Precambrian; Prot) Proterozoic 
*Estimated pole position. 
tlnterpreted polarity has been inverted from the original reference. 
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Figure 2. Precambrian to Earliest Ordovician apparent polar wander paths for Australia 

and the North and South China blocks, after re-fitting of North and South China to 

Australia (based in part on Burrett and Stait model) using the following Euler poles: 

North China 22° N. 120.5° E., 179.3° rotation; South China 5.8° N. 111.00 E., 162.8° 

rotation. 
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block, obtained from the Yangtze Gorges area have much smaller deviations in inclination, 

allowing a more precise determination of paleolatitude than of orientation. 

Our paleogeographic reconstructions of 'East Gondwana' for Middle Early Cam­

brian and Cambrian-Ordovician boundary times are given in Figure 3. Both show the 

present northern margin of Australia as inboard from an amalgamation of microcontinental 

blocks which apparently remained coherent with Austral-Asia throughout the Cambrian, 

similar to the Burrett and Stait model. In their reconstructions they slightly separated the 

various continental fragments from Australia, basing their reasoning in part on the interpre­

tation that the Early Cambrian Antrim Plateau basalts in northern Australia are the result of 

rifting of a continental block15
. Any separation must have been minimal, however, since 

the paleomagnetic data argue for coordinated rotational motion of the Chinese blocks and 

Australia throughout the Cambrian. 

An alternative possibility for the congruent rotations of the Chinese microcontinents 

and Australia is that an episode or episodes of true polar wander occurred during the Cam­

brian. The dashed portion of the Late Precambrian to Earliest Ordovician APWP shown in 

Figure 2 reflects the assumption that all of the data used are equally reliable. 11rree sharp 

hairpins are present; one around the time of the Precambrian-Cambrian boundary, one 

occurring around the end of the Early Cambrian, and one in the Middle to Late Cambrian. 

Midpoints of the APWP between the cusps of hairpins approximately trace out a smooth 

arc reflecting counterclockwise rotation of Australia, but the presence of the hairpins creates 

the impression that rapid and erratic plate motion was occurring. Others have noted that 

Australia, during the Latest Precambrian and throughout the Cambrian, underwent rotation 

at discrete intervals, interspersed with periods of quasi-stasis8. One possible explanation 

for this type of 'apparent plate motion' is that Australia was undergoing continual counter­

clockwise rotation, with a slowly wandering rotational (and magnetic) axis superimposing 

alternatingly additive and subtractive shifts of as much as 45 degrees. A curious coinci­

dence is that, during the Cambrian, perhaps as much as 95% of the global continental mass 

may have been in the southern hemisphere16. 

When assuming that true polar wander did not occur, the simplest explanation for 

the equivalent rotations is that North and South China were attached to Australia during the 

Cambrian, which in tum, makes it reasonable to compare isochronous pole positions from 

Australia and North and South China. Permitting the possibility that true polar wander was 

responsible for the similarities in rotation removes the constraint that North and South 

China must have been tectonically associated with Australia to have had identical rotations. 
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Figure 3. Paleogeographic reconstructions of an Austral-Asian supercontinent (East 

Gondwana) for (a) the Middle Early Cambrian, and (b) the Cambrian-Ordovician 

boundary. 
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However, even if true polar wander were responsible for the observed rotations, it seems 

unlikely that the similarities between Early and Late Cambrian pole positions from the 

North and South China blocks (after recalculation to accomodate a fit against Australia), 

and corresponding-aged segments of the Australian APWP, are coincidental. The most 

logical interpretation for the existing paleomagnetic data is that North and South China were 

either very near or attached to Australia throughout the Cambrian, and rotated about 9()0 

counterclockwise with Australia during that time. 

Acknowledgements 

This study was supported by National Science Foundations grant EAR-8721391. 

The authors wish to thank A.K. Kirschvink and C. Budney for their assistance with sam­

ple collection and analysis, and A. Boucot, J. Shergold, A.R. Palmer, and B. Stait for 

helpful discussions. 

References 
1Lin, J.-1., Fuller, M., and Zhang, W.-y. 1985. Paleogeography of the north and south 

China blocks during the Cambrian. Journal of Geodynamics 2: 91-114. 
2Scotese, C.R. 1987. Plate tectonic development of the Circum-Pacific (Panthallasic 

Ocean) during the Early Paleozoic. In Circum-Pacific Orogenic Belts and the Evolution 
of the Pacific Ocean Basin (J.W. Monger and J. Francheteau, eds.), American 
Geophysical Union Geodynamics Series 18:49-57. 

3Burrett, C. and Stait, B. 1986. China and southeast Asia as part of the Tethyan margin 
of Cambro-Ordovician Gondwanaland. In Shallow Tethys 2 (K.G. McKenzie, ed.), pp. 
65-77. International Symposium on Shallow Tethys 2, Wagga Wagga. 

4Ripperdan, R.L., Kirschvink, J.K., Apollonov, M.K., Ma, G.G., and Zhang, Z.C. 
Magnetostratigraphy across the Cambrian-Ordovician boundary. In review (Geological 
Magazine). 

5Lin, J.-1. 1984. The apparent polar wander paths for the North and South China Blocks. 
Ph.D. thesis, University of California, Santa Barbara. 248 pp. 

6Elston, D.P., Zhang, H., and Zhang, W. 1989. Paleomagnetic poles from Middle and 
Late Proterozoic Changcheng, Jixian, and Qingbaikou Groups, Jixian County, North 
China [abstract], 28th International Geological Congress Abstracts, Vol. 1, 448-449. 

7Wu, F., Vander voo, R., and Liang, Q.Z. 1989. Reconnaissance magnetostratigraphy 
of the Precambrian-Cambrian boundary section at Meishucun, Southwest China. 
Cuadernos de Geologia Iberica 12: 205-222. 

8KJootwijk, C.T. 1980. Early Paleozoic paleomagnetism in Australia. Tectonophysics 
64: 249-332. 

9JGrschvink, J.L. 1978. The Precambrian-Cambrian boundary problem: Paleomagnetic 
directions from the Amadeus Basin, Central Australia Earth and Planetary Science 
Letters 40:91-100. 



190 

10£mbleton, B.J.J. and Williams, G.E. 1986. Low palaeolatitude of deposition for Late 
Precambrian periglacial varvites from South Australia: Implications for 
palaeoclimatology. Eanh and Planetary Science Letters 58: 383-394. 

11Giddings, J.W. 1976. Precambrian palaeomagnetism in Australia 1: basic dykes and 
volcanics from the Yilgam Block. Tectonophysics 30:91-108. 

12ouff, B.A., and Embleton, B.J.J. 1976. Palaoemagnetic directions in Precambrian 
basic intrusives of the Mount Isa province, Australia Eanh and Planetary Science Letters 
28:418-426. 

13Watts, D.R., Vander Voo, R., and Reeve, S.C. 1980. Cambrian paleomagnetism of 
the Llano Uplift, Texas. Journal of Geophysical Research 8S(Bl0): 5316-5330. 

14Kent, D.V., Zeng, X., Zhang, W.Y., and Opdyke, N.D. 1987. Widespread late 
Mesozoic to Recent remagnetization of Paleozoic and lower Triassic sedimentary rocks 
from South China Tectonophysics 41:113-133. 

15Veevers, J.J. (eeL) 1984. Phanerozoic earth history of Australia. Oxford: Clarendon 
Press. 

16Kirschvink, J.L. in review. 
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Chapter Seven Summary 

The past 100 years have seen major changes in the way geologists think about 

global geological phenomenon. As biostratigraphic correlations have become more refmed, 

questions concerning the timing and mechanism of global events have come to the fore­

front. Especially in today's philosophical environment, which has retained elements of the 

old ideology of earth history as punctuated by globally significant events providing natural 

demarcations of geologic time, it becomes especially important that global correlations be 

done within a globally isochronous framework. Magnetic polarity reversal stratigraphy 

provides that framework by utilizing globally simultaneous events with transition times on 

the order of 10,000 years. 

The application of magnetostratigraphic techniques to problems concerning defini­

tion of a globally applicable Cambrian-Ordovician boundary indicate that temporal differ­

ences exist between the major conodont biozones suggested as boundary horizons. In 

particular, correlations between North China, Australia, North America, and Kazakhstan 

suggest that the first observed occurrence ofCordylodus proavus may provide a suitably 

isochronous horizon, but that sampling bias (due to extremely low specimen recovery) may 

be obscuring the 'real' first occurrence of Cordylodus proavus within the important west­

em Newfoundland sections. They also confirm that problems exist in correlating the level 

of the first observed specimens of Cordylodus lindstromi, that may stem from observer­

dependent taxonomic assignments. 

Application of magnetostratigraphic techniques is not always successful. Results 

from several important Silurian-Devonian boundary interval sections within the Barrandian 

area of Prague Basin, Czechoslovakia do not yield a polarity stratigraphy. It appears likely 

that many of the characteristic directions isolated using samples from the international 

Silurian-Devonian boundary stratotype section at Klonk, and from stratotype sections 

within the Daleje Valley at Reporyje, were acquired immediately before or contem­

poraneous with Hercynian folding of the Prague Basin during the Carboniferous, so that 

stratigraphic information has been lost Some samples preserve a component which may 

record the geomagnetic field at the time of deposition, but intervals between these samples 

are too great to make stratigraphic relationships meaningful. Important paleogeographic 

information can be inferred from these results, however, suggesting major latitudinal 

transport for the Bohemian Massif during the Devonian. Future work is needed to confirm 
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the time of acquisition of the observed components before conclusions about plate motion 

can be constrained. 

Some magnetostratigraphic investigations yield neither useful stratigraphic nor 

directional information because of magnetically-unstable lithologies. Directions from the 

Ordovician-Silurian boundary parastratotype section at Falaise Ouest, Anticosti Island, 

Quebec, are essentially random during thennal demagnetization experiments, and no useful 

conclusions concerning the paleogeographic position of the section can be gleaned from 

them. 

Successful application of magnetostratigraphic techniques within magnetically­

stable lithologies, however, can yield important paleogeographic information, especially 

from continental entities from which little or no previous paleomagnetic data has been ob­

tained Magnetostratigraphic correlations around the Cambrian-Ordovician boundary, and 

comparisons with the Australian apparent polar wander path, indicate that North China (and 

probably South China) were rotating with Australia during the Cambrian. Future work 

may reveal whether this observed coordinated rotation was the result of plate motion or 

translocation of the earth's magnetic pole in the form of true polar wander. 
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