Stochastic Computation

John A. Cortese

Department of Electrical Engineering
California Institute of Technology
Pasadena, California

1995

Stochastic

Computation

Thesis By
John A. Cortese

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1995

(Defended May 15, 1995)

i

©1995
John A. Cortese
All Rights Reserved

- iii -

Acknowledgements

Many people contributed to the research effort which led to this thesis. Fellow Ph.D. students
Bhusan Gupta and Jeff Dickson provided considerable moral and technical support. Marvin
Simon throughout has been a mentor, as well as a friend. My advisor, Rodney Goodman, made
it all possible, by first admitting me, and then supplying a superbly equipped lab in which I

could pursue my rescarch.

The support of my family has been critical at every step. My brother David and sister Susan
kept up a steady flow of cards and letters filled with words of encouragement and humor. And
most important of all, my mother’s phone calls and spontaneous boxes of gifts brightened many

a day.

To these people, and countless others, I can only say thank you. I would never have gotten this

far without you.

Stochastic Computation

John A. Cortese
jeort@micro.caltech.edu
Department Of Electrical Engineering
California Institutc Of Technology
Pasadena, CA. 91125
June 4, 1995

Abstract

This thesis approaches computation from a communication theory perspective. Data is given to
a computer, which is asked to arrive at a binary hypothesis decision. The computétion task is
viewed as a signal drawn from an ensemble, corrupted by noise, and passed to a receiver which

is asked to make a binary signal detection decision.

To illustrate the approach, learning in a neural network is studied. An algorithm based on
statistical communication techniques is developed which allows the determination of the neural
network size, architecture, and system parameters. The computation, as interpreted in the
communication framework, is assigned an equivalent channel capacity which measures the
effectiveness with which the computing system extracts information in the Shannon sense from
the input data. Numerical simulations of a neural network recognizing handwritten digits are

used to illustrate key points.

-1V -

CONTENTS

. Introduction

. Neural Computation

. General Neural Network Architecture .

3.1 A Single Neuron

. Binary Classification With A Single Neuron .

4.1 Random Variable Inputs And How A Neuron Uses Them

4.2 Calculation Of The Weight Vector W .

4.3 Handwritten Digit Recognition Example

. Binary Symmetric Channel Model

. Multiple Neuron Hidden Layer Architecture .

6.1 FEigenvalue Decay For Handwritten Digits

11

18

24

25

10.

11.

12.

13.

6.1.1 Determining Single Layer, Multiple Neuron Weight Sets

6.2 Extending The Binary Symmetric Model For Multiple Neurons in

Parallel

Hard Versus Soft Decision Decoding .

Implementing A Soft Decision Rule

Multiple Neurons In A Single Layer

9.1 Example With Six And Seven Images

9.2 Example With Three And Five Images

9.3 Soft Decision Numerics With The 3 And 5 Image Set

Approximating The Tanh Function

Estimating The Sigmoid : A Case Study With Real Data

Quantifying And Visualizing Soft Versus Hard Decision Decoding .

Multiple Neuron Hidden Layer Architecture .

-vi-

31

32

37

41

46

46

54

58

61

69

73

78

13.1 Calculating PH%% Versus PO/, .

13.2 Soft And Hard Decoding Versus The Number Of Neurons .

14. Multiple Layer Networks
14.1 Linear Versus Non-Linear Networks
14.2 Lateral Inhibition And Winner Take All Nctworks
14.3 Textures And Lateral Inhibition .
14.4 Lateral Inhibition And Second Order Moments
14.5 Parity, Order Statistics, And Neural Networks
14.6 Parity, Memorization, And Generalization
14,7 Generalization Versus Memorization

15. Order Statistics Versus Hard And Soft Decoding

16. Recurrent Networks

- Vil -

83

88

91

91

92

94

102

107

113

114

114

119

18.

19.

20.

16.1 Recurrent Neural Networks

. Handwritten Digit Database Descriptions

Neural Learning Algorithm .
18.1 Single Layer, Multiplc Neuron, Weight Vector Calculation
18.2 Unbiased, Consistent, Sufficient Statistics And Moment Estimation

A Statistical Communications Theory Perspective On Neural

Computation

19.1 Neural Computation, And The Information Theoretic Channel

Model
Information Flow .
20.1 K-Winner Take All Networks
20.2 Training Set Peculiarities .

20.3 MUSIC And Other Principle Eigenspace Techniques

- Viii -

119

138

139

140

143

146

148

154

156

160

161

20.3.1 MUSIC: M U ltiple S I gnal C lassification

20.4 Adding Noise To The Training Data

20.5 General Learning Algorithms

20.6 Confidence Estimates .

20.7 Dccision Directed Adaptive Feedback .

21. Conclusion

REFERENCES

Six -

161

162

164

165

167

168

170

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figurc 6.

Figure 7.

Figure 8.

LIST OF FIGURES

Binary Symmetric Channel Model

Single Linear Neuron

Two Hypothesis Scatter Histogram

Two Hypothesis Scatter Plot .

Case | : Unequal Means , Case 11 : Equal Means

Output Threshold Step Function .

Histogram Of Cedar Database Handwritten Digit 6 And 7

Projections

Histogram Of Cedar Database Handwritten Digit 6 And 7

Projections

10

11

18

19

Figure 9.

Figure 10.

Figure 11.
Figure 12,

Figure 13.

‘Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Estimation Decision Error Via Brute Force Variation Of The Neuron

Threshold

Estimation Decision Error Via Brute Force Variation Of The Neuron

Threshold

Prob Of Error I‘s The Area Under The Tails Past The Threshold
Binary Symmetric Channel Model

Binary Symmetric Channel Capacity Versus Crossover &
Three Neurons In Parallel .

A T & T Bell Laboratories Database Eigenvalue’s

Cedar Database Eigenvalue Rolloff .

NIST Database Eigenvalue Rolloff .

Three Binary Symmetric Channels In Parallel Neuron’s .

Effective Crossover For Three Neurons In Parallel

-xi -

20

21

22

22

24

25

27

28

28

33

34

Figure 20.
Figure 21.
Figure 22;
Figﬁre 23.

Figure 24.

Figure 25.

Figure 26.

Figure 27.

Figure 28.

Figure 29.

Effective Shannon Channel Capacity (In Bits) For Three Neurons .
Effective Epsilon Versus Single Channel Epsilon .

Effeétive Chaﬁnel Capécity Versus Single Channel Epsilon

Three Neurons And Hard Decision Misidentification

Sigmoid Shape For

PlylH;] = n(+1,1) And P[y|H,] = n(-1,1)
Neuron 5 For The Set Of Five Parallel Neurons

Estimation Decision Error Via Brute Force Variation Of The Neuron

Threshold
Neuron 4 For The Set Of Five Parallel Neurons

Estimation Decision Error Via Brute Force Variation Of The Neuron

Threshold

Neuron 3 For The Set Of Five Parallel Neurons

- Xii -

35

36

37

38

46

47

48

49

49

50

Figure 30.

Figure 31.

Figure 32.

Figurc 33.

Figure 34.

Figure 35.

Figure 36.

Figure 37.

Estimation Decision Error Via Brute Force Variation Of The Neuron

Threshold

Neuron 2 For The Set Of Five Parallel Neurons

Estimation Decision Error Via Brute Force Variation Of The Neuron

Threshold

Neuron 1 For The Set Of Five Parallel Neurons

Estimation Decision Error Via Brute Force Variation Of The Neuron

Threshold

Neuron 5 For The Sct Of Five Parallel Neurons For The 3/5

Images

Neuron 4 For The Set Of Five Parallel Neurons For The 3/5

Images

Neuron 3 For The Set Of Five Parallel Neurons For The 3/5

Images

- xiil -

50

51

51

52

52

55

55

56

Figure 38.

Figure 39.

Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.

Figure 45.
Figure 46.

Figure 47.

Neuron 2 For The Set Of Five Parallel Neurons For The 3/5

Images

Neurbn 1 For The Set Of Five Parallel Neurons For The 3/5

Images

Threshold Varigtion With Variance .

Left-Hand Side Variance 1.0, Right-Hand Side Variance 1.5
Left-Hand Side Variance 1.0, Right-Hand Side Variance 2.0
Left-Hand Side Variance 1.0, Right-Hand Side Variance 3.0

Left-Hand Side Variance 1.0, Right-Hand Side Variance 4.0

Left-Hand Side Variance 1.0, Right-Hand Side Variance %
Left-Hand Side Variance 1.0, Right-Hand Side Variance %

Left-Hand Side Variance 1.0, Right-Hand Side Variance —1%

- X1v-

56

57

62

64

64

65

65

66

66

67

Figure 48.
Figure 49.
Figure 50.
Figﬁre 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.

Figure 59.

Left-Hand Side Variance 2.0, Right-Hand Side Variance 3.0

Left-Hand Side Variance 2.0, Right-Hand Side Variance 4.0

Left-Hand Side Variance 2.0, Right-Hand Side Variance 6.0

Estimating Sigmoid Gain(y) and Offset(0) .

Estimating Sigmoid Gain(y) and Offset(0) .

Estimating Sigmoid Gain(y) and Offset(0) .

Estimating Sigmoid Gain(y) and Offset(0) .

Estimating Sigmoid Gain(y) and Offset(0) .

Hard Decision Regions

Soft Decision Spherical Distributions

Mean + 1, Variance 1 Input Gaussian’s Pd{’s

Tanh Output For Mean + 1, Variance 1 Input Gaussian’s

- XV—

67

68

68

70

71

71

72

72

75

77

80

81

Figure 60.

Figur¢ 61.

Figure 62.

Figure 63.

Figure 64.

Figure 65.

Figure 66.

Figure 67.

Figure 68.

Figure 69.

Figure 70.

Tanh Pdf For Various Variance’s And Mean + 1

Tanh Density Mean And Variance As A Function Of Input

Variancé .

Probability Of Error Versus Variance Of Symmetrical Projections
11 Neuron Variance Versus P,

51 Neuron Variance Versus P,

101 Neuron Variance Versus P, -

Tanh SNR Output Versus Projection SNR Input

Varying The Number Of Neurons For p = x1,0 = 1

Varying The Number Of Neurons For Mean 1, Variance 30,

Projections
Winner Take All Neural Network

Discrete Pixel Texture .

- XVi-

82

83

84

86

87

88

89

90

91

93

94

Figure 71.

Figure 72.

Figure 73.

Figure 74.

Figure 75.

Figure 76.

Figure 77.

Figure 78.

Figure 79.

Figure 80.

Figure 81.

Figure 82.

Uniform Pixel Texture
Sigmoid For Equal Mean & Different Variance Projection’s
Sigmoid For Equal Mean & Different Variance Projection’s

Solid Is For Discrete Texture Images, Dotted For Uniform Texture

Images

Sigmoid For Equal Mean & Different Variance Projection’s
Order 1t Maximum Absolute Value Order Statistic

Order 51 Maximum Absolute Value Order Statistic .
Order 101 Maximum Absolute Value Order Statistic

Two Parity

Four Parity

Six Parity

Eight Parity

- XVii-

95

98

99

99

102

104

104

105

108

109

110

111

Figure 83.

Figure 84.

Figure 85.

Figure 86.

Figure 87.

Figure 88.

Figure 89.

Figure 90.

Figure 91.

Moment Tables And Discrete Density Functions For K-Parity .

Varying The Number Of Neurons For Fixed Mean 1, Variance 1,

Projectibns

Hard Decision Versus Maximum Order Statistic

Order Statistic Yields The Better Performance

Eleven Neuron Maximum Order Statistic

Two Neuron Recurrent Neural Network

Multiple Pixel, One Neuron Per Pixel, Recurrent Nepral Network .

N =25,100,200,300 : Probability Of Correctness : Input Bits Versus Output

Bits

N = 25 : Probability Of Correctness : Input Bits Versus Qutput

Bits

- XVl -

112

115

116

117

118

119

123

127

128

Figure 92

Figure 93.

Figure 94.

Figure 95.

Figure 96.

Figure 97.

Figure 98.

. N =300 : Probability Of Correctness : Input Bits Versus Output

Bits

N = 300 : Probability Of Correctness : Input Bits Versus Output

Bits

N = 1000 : Probability Of Correctness : Input Bits Versus Qutput

Bits
N=1000:L =100, 120, 130, 140, 150, 160, 170

Theoretical Maximum Number Of Stablc Points Versus System

Size

Three Parallel Binary Symmetric Channels Are Equivalent To

One

Two Cascaded Binary Symmetric Channels Are Equivalent To

One

- Xix-

128

129

133

134

137

149

150

Figure 99,
Figure 100.
Figure 101..
Figu.re 102.

Figure 103.

Serial And Parallel BSC Improvement

Generic Neural Network

Sample Size 11 - Top 5 Order Statistics

Sample Size 51 - Top 5 Order Statistics

Sample Size 101 - Top 5 Order Statistics

- XX~

151

152

158

158

159

Equation 1.

Equation 2.

Equation 3.

Equation 4.

Equation 5.

Equation 6.

Equation 7.

Equation 8.

LIST OF EQUATIONS

The Gump’s Versus Albert Einstein

Introduction To Determining Thresholds For Hypothesis

Projections .

Probability The Hypothesis Test Will Make An Error

Step Function Neuron Sigmoid .

Random Vector X

N-Dimensional Random Vector Expansion

Correlation Matrix

Karhunen-Loeve Expansion For The Conditional Hypothesis Input

Vectors .

- XXi -

39

10

11

12

12

13

Equation 9.

Equation 10.

Equation 11.

Equation 12.

Equation 13.

Equation 14.

Equation 15,

Equation 16.

Equation 17.

Equation 18.

Magnitude Of The Inner Product Of Two Arbitrary N- Dimensional

Vectors .

The Principle Component Of The Two Conditional Hypothesis Data

Vectors .

X o Mean Projection Onto E

Channel Capacity .

Compiling The Corrclation Matrix For The Image Set .
Multiple Neuron Weight Vector Determination

Prob. Of Three Parallel BSC’s Making An Error Using Majority

Voting
Soft Decision Neuron Outputs
Soft Decision Rule

ML Versus MAP

- XXii -

14

15

16

23

26

30

34

39

39

40

Equation 9.

Equation 20.

Equation 21.

Equation 22.

Equation 23.

Equation 24,

Equation 25.

Equation 26.

Equation 27.

Soft Decision Rule

Expand The Probability Of A Hypothesis Given A Projection Using Bayeé
Law .

Applying Baycs Law Again, Obtain The Optimum Sigmoid For A

Neuron

Simplify The Sigmoid By Assuming Equal A Priori

Probabilitics

Expand The Gaussian Conditional Probability Density

Functions

Make Substitutions To Normalize Variable With Respéct Too

Substitute In For a and 8

Expand The Squares, Cancel Common Terms, And Simplify .

Rewrite The Tanh Argument As A Slope and Offset

- XXI1ii -

42

43

43

43

44

44

44

44

Equation 28.
Equation 29.

Equation 30.

Equation 31.

Equation 32.

Equation 33.
Equation 34.
Equation 35.
Equation 36.
Equation 37.

Equation 38.

Define The Slope and Offset Constants
Express The Equal Variance Neuron Sigmoid In Final Form

Probability Of Neurons 2, 3, And 4 Together Making A Hard Decision

Error
Soft Decision Rule

Soft Decision Sigmoid Computed For Three, Five Image

Example

Soft Error Upper Bound Estimate

Sofl Error Example Performance Estimate
Recapping The Equal Variance Sigmoid
Second Order Tanh Approximation

Effective Variance’s For Tanh Approximation

Three Neuron Soft Versus Hard Decoding Example

- XX1V -

45

45

58

59

59

60

60

61

63

69

74

Equation 39.

Equation 40.

Equation 41.

Equation 42.

Equation 43.

Equation 44.

Equation 45,

Equation 46.

Equation 47.

Three Neuron Example Weight Vectors
Three Neuron Example Hard Decision Rule
Soft Decision Metric For Points X In R *

Calculating The Tanh Random Variable Output Probability Density

Function
Interim Expressions Used To Arrive At The Results Below

Probability Density Function For z With Arbitrary 3 and Threshold

T .

Equal Variance, Symmetrical Mean’s, § And Threshold

Substituted .

The Probability Of Error For Two Gaussians At = 1, With [dentical

Variances

Hard P g,,,, For M Neurons .

- XXV -

74

75

76

79

79

79

80

84

85

Equation 48.

Equation 49.

Equation 50.

Equation 51.

Equation 52.

Equation 53.

Equation 54.

Equation 55.

Equation 56.

Equation 57.

Equation 58.

Relation Between Probability Of An Error Before And After The

Sigmoid

Soft P g, For M Neurons

The Hypothesis Pixel Means

The Hypothesis Pixel Variance’s

Independence Of The Texture Neuron Outputs

Mexican Hat Texture Sigmoid

Maximum Order Statistic Formula .

K - Parity Problem

Two Memory Error Function Integral Capacity Inequaiity .

Outer Product Weight Vector Construction

Multiple Memory Error Function Integral Relationship

- XXVi -

85

86

96

96

97

98

103

107

126

133

Equation 59.

Equation 60.

Equation 61.

Equation 62.

Equation 63.

Equation 64.

Equation 65.

Equation 66.

Equation 67.

Equation 68.

Equation 69.

Stability / Capacity Equation For Multiple Memory Recurrent

Networks

Oja’s Single Neuron Weight Vector Update Rule

Oja’s Weighted Subspace Multiple Neuron Updatc Rule
Statistical Definitions And Distributions® .

Matched Filtter Equations

Equivalent Parallel BSC Crossover

Equivalent Cascaded BSC Crossover

Density Functions For The Top 5 Texture Order Statistics .
Order Statistic Formula

Improvement In Cross Correlation Coefficients Due To Injected

Noise

General Risk Formula

- XXVii -

136

140

141

144

147

149

150

156

157

163

166

TABLE 1.

TABLE 2.

TABLE 3.

TABLE 4.

TABLE 5.

TABLE 6.

TABLE 7.

TABLE 8.

TABLE 9.

TABLE 10.

LIST OF TABLES

Projection Statistics . .« . . .+ o« 4 e 4 e e w0 e 19
Projection Statistics« . . .+ .« 4 . e e 0 e v . 39
Neuron Projection Statistics . . « « .+« « « o« 53
Covariance Of The Neuron Projection 53
Covariance Of The Neuron Projection 54
Neuron Projection Statistics 57
Covariance Of The Neuron Projection 58

Probability Of Error Versus Variance Of Symmetrical

Projections+ + .« + v v ¢ 4 4 4 4. e o+ o« . 8

MATLAB Texture Moments« « v v o v « « « « . 100

Hard And Pseudo-Hard Error Rates For The Texturess 102

- XXvill -

TABLE 11.
TABLE 12.
TABLE 13'.
TABLE 14.
TABLE 15.
TABLE 16.
TABLE 17.

TABLE 18.

TABLE 19.
TABLE 20.
TABLE 21.

TABLE 22.

Maximum Absolute Order Statistic Probability Of Error
2 Parity Problem

4 Parity Probieni

6 Parity Problem

8 Parify Problem

Three Neuron Recurrent Network With Two Fixed Points
Dynamics Of The Three Neuron Recurrent Network .

Hamming Separation For The Six Fixed Points For the Results

Below

Recurrent Convergence Example
6 : 7 Image Oja Numerical Simulation Parameters
3 : 5 Image Oja Numerical Simulation Parameters

Neuron Statistical Parameters Extracted From Training Set

- XXIX -

105

108

109

110

112

120

121

131

131

142

142

145

TABLE 23. Algorithm Types . . + +« + « « « « « « « « « « « . . lo4

TABLE 24. Bit Error Rate Risk Function 166

- XXX~

Stochastic Computing

John A. Cortese
Department Of Electrical Engineering
California Institute Of Technology
Pasadena, CA. 91125

jeort@micro.caltech.edu
June 4, 1995

1. Introduction

This thesis investigates stochastic computation. The theme of the research is that a large number
of simple, unreliable computing elements operating in parallel can together achieve very
reliable, complex computation. Inspiration for this approach comes frorﬁ biological cortex,
where a hugé number of primitive, unreliable cells, together implement incredibly complex data
processing functions. The following example illustrates the philosophy of stochastic computing.
Imagine you have 15001 Forrest Gump individuals arrayed against a single' Albert Einstein.
Albert answers single questions correctly with an accuracy of 99.0 perceht. -Each Gump
answers single questions correctly with an accuracy of 51 percent. Imagine each Gump’s answer
is independent of his fellow Gumps. If you asked all 15001 Gumps the same question, and

tallied their answers, who as a group would be more accurate : The single Albert or the Gump

Stochastic Computation

family ? The answer lies in the statistic below. The probability the Gump family is correct is

seen below.

15001 [

Y

1 , .
| 15‘?01J 0.517 0.4915001~ = 993
i=7501

1

Equation 1. The Gump’s Versus Albert Einstein

This is the probability that more than half of the Gump family (7501 —15001) choosés the
correct answer. Thus you would be correct more often listening to the Gump family than Albert
! The primary point of this example is the ability of a collective system to efficiently compute
using simple, individually inaccurate clements through the use of a relatively straightforward
interaction algorithm : tally the individual Gump votes, and choose the majority perspective.
Note the redundancy of the system. Large sections can fail entirely (Gumps die), yet overall

system performance degrades gracefully, not catastrophically.

With' a statistical outlook, we shall apply concepts from communication theory to describe
stochastic c’omputation. For instance, consider a channel for a communication system. A single
bit enters the channel, and a single bit exits the channel. The channel input and output are
typically described by a random variable. Assuming for simplicity channel symmetry, the
crossover or decode probability of error is &. However, this model also can represent computing.
If the input represents the occurrence of an event a, then the output can represent a guess or
opinion of the occurrence of an event B. Specifically, consider a binary symmetric channel

mode] such as below.

Stochastic Computation

X & Z
e
Ho 1-¢ H,

Figure 1. Binary Symmetric Channel Model

This model also represents a binary hypothesis computer. An input event o o.ccurs. The output
represents the occurrence of event 3. We shall show that many common commupication channel
models can be used to represent stochastic computing operations, merely by reinterpreting the
meaning of the input and output channel random . variables. The resulting generalized
communication channel models can be systematically cascaded in parallel and serial to achieve

a generalized channel model representing an arbitrary hypothesis computation.

2. Neural Computation

As a specific illustration of the principles of stochastic computing, neural computation is
considered. Neural systems typically embody the philosophy advo.cated here. Unsophisticated
computing elements, with an interconnection algorithm or architecture, éffectively solve
complex problems. This thesis introduces a technique for designing and fraining general neural
networks. The original paradigm treated is designing a neural network to solve a binary

~ hypothesis classification problem.

Stochastic Computation

The technique to be introduced allows one to calculate the weights, thresholds, and non-linear
sigmoid functions for a multi-layer neural network which performs binary hypothesis testing.
Leamiﬁg of parameters is accomplished using a learning algorithm operating on a labeled (two-
class) training set. Numerical results from the various handwritten digit databases are presented

to illustrate key points with a real life scenario.

The.lessons learned for the binary construction case are then extended to multiple hyi)bthesis
| classification. Last, the behavior of recurrent networks and associative memoriés is studied. The
tools used throughout are those of classical statistics. Analogies to commqnication system
implementations, such as for signal detection and classification, are made to help visualize the
concepts presented. These analogies also serve to provide a link to probability theory via

statistical communication theory.

3. General Neural Network Architecture

In the work to follow, neural inputs x; are considered to be random \}ariables, and not
deterministic numbers. The determination of individual neuron parameters is with an aim to
optimize the networks performance across the ensemble of all probléms which will be presented
to the system. The action of any one neuron will be to map an incoming pfobability density
function into a form which can be used to make an efficient statistically‘ optirhurn decision, of
which more will be said later. Here, a neuron is viewed as a deterministic function operating on
~arandom input. This model is opposite to several other neural network learﬁing algorithms. For

example, in a Boltzmann machine, a neurons output is a probabilistic function of its

Stochastic Computation

deterministic inputs. Another probabilistic mapping of deterministic inputs is the update rule
typically used in simulated annealing approaches, whereby a temperature controls the degree of
randonﬁness introduced in the neuron mapping. The approach here can be considered as a dual
to the Boltzmann/ Simulatéd Annealing approaches. Learning methods which utilize both
probabilistic inputs and probabilistic update/decision rules will be discussed briefly at the end of

this thesis.

3.1 A Single Neuron

The simplest neural network architecture considered is feedforward, with real valued weights
and inputs. The neuron implements a threshold shifted inner product of an input vector with a

weight vector. This operation is shown below.

Figure 2. Single Linear Neuron

Stochastic Computation

The determination of the weight vector W and threshold T is via a labeled set of training

examples.

4. Binary Classification With A Single Neuron

Consider the classification of digitized images of the digits zero and one. Upon presentation of
an image, the neuron output must indicate whether a zero (hypothesis H) or a one (hypothesis
VH 1) was seen. One perspective is that the neuron can be modeled as. a commuﬁicat_ion channel.
For equal a priori hypothesié H, and H, one bit of information is always present at the channel
input. The channel typically limits the flow of this information to the channel output. The
channel capacity quantifies this constriction, indicating the average information content of a
channel output, which is a hypothesis decision. Physically, the constriction in information flow
is due to the projection mapping from an N-dimensional input space intob a one-dimensional
space. In most practical situations, information will be lost in the mapping. This loss is reflected
in a channel capacity of less than one bit. The actual hypothesis decision is ﬁlade by identifying
segments of fhe one-dimensional real line with a choice of hypothesis : Hy or H;. Note that in
general, information about a set of hypothesis outcomes is NOT equivalent to the probability of
error in choosing among that set of hypotheses. However, for a two state system, thére is a one-

to-one relationship between information and P, (1]

Consider the single neuron in the figure above. We shall now determine how the output regions
should be labeled with hypothesis decisions. Statistically, the problem is straightforward. For

every point on the real axis, we assign the hypothesis which minimizes the probability of error.

Stochastic Computation

That is, given a large number of samples in a labeled training set, and the weight vector W,
project each training point onto W, and obtain a pool of labeled y points. For every point on the
one-dinﬁensional y axis, the corresponding hypothesis assigned to that point would be the
hypothesis of the nearest préjected labeled sample. For large size training sets, a histogram of
the projections under the two hypotheses can be constructed. The decision as to whethef an
unkﬁown data point projection came from hypothesis Hy or H; could then be made based on
 the relative frequency of the two hypotheses within the histogram bin or cell the unknown data
point fell into. For example, consider the two sets of points below. The set of 250 points

labeled 0 yield the solid histogram. The set of 250 points labeled 1 yield the do&ed histogram.

Scatter Plot Example
4 |
X2 2]
Coordinate
0
-2 |

x; Coordinate

Figure 3. Two Hypothesis Scatter Histogram

Stochastic Computation

Histogram Of The Projected Scatter Plot Points

50 -

30 -

Bin
Frequency 20 _

10

| | |
=5 0 -5
Projection Value y

Figure 4. Two Hypothesis Scatter Plot

A good threshold appears to be zero. Thus, our decision rule for deciding H versus H; would

be that seen below.

y= (w,wy) e | M - y So
X2 > -
7

Equation 2. Introduction To Determining Thresholds For Hypothesis Projections

The histograms shown are approximations to the conditional probability density functions
PlylH,] and P[ylH,]. Here y is WeX, the projection of the two-dimensional data pairs

{x,x,} onto the line shown. In the full N - dimensional input space of data points, X, the two

Stochastic Computation

conditional probability density functions conditioned on the hypotheses are P[X|H;] and
P[X|H,]. In order for any function or network to statistically distinguish between the two
hypothéses, these two N - dimensional probability density functions must be different. If this
occurs, and the neuron Weight and threshold are chosen wisely (which we shall discuss later), a
néural network can take advantage of the differences between these two N - dimeﬂsiqnal pdf’s.
The >result will be that the two projgction pdf’s Ply|H,] and Piy|H,] will be different. A
‘suitably chosen threshold will enable the system to make a better than random guessing decision
as to which hypothesis occurred, given X as an input. How much better than randofn, and other

questions related to network performance will be discussed as the concept is developed.

4.1 Random Variable Inputs And How A Neuron Uses Them

The neuron input vector X is considered to consist of N random variables x;. If N is large, and
the x;’s are uncorrelated or only weakly correlated, then the scalar quantity y E WeX is a
Gaussian random variable by the Central Limit Theorem.!*! [} Shifting a Gaussian random
variable by a constanj[T will only change the mean of the Gaussian random variable. Hence,

WeX - T is also a Gaussian random variable by the Central Limit Theorem. -

The application of the Central Limit Theorem to the projection pdf’s P[y|H,] and PlylH]
means both of these pdf’s will appear either as Case I or Case Il in the figure below. The case of
equal means will turn out to be somewhat less common, and Case I will be what typical

projections look like.

Stochastic Computation

-10 -

Ply | Hol Plyl H,]

! 1 | | | | | | |
-10 -5 0 5 10 -10 -5 0 5 10

Case | (Unequal Means) Case II (Equal Means)

Figure 5. Case I : Unequal Means , Case II : Equal Means

For Case 1, a scalar threshold T serves to shift the two probability density functions P[ylH i1
symmetrically about zero. Identification of H; if y > 0 and Hy if y < 0 can then be made. The
threshold or shift is calculated to minimize the total probability of error: | This error is the a
priori weighfed sum of the probability tails falling underneath the threshold in the figure for

Case I and is shown as a dashed vertical line above.

Peror = P[Hg] [Area Of P[y|H0] Above Threshold]

+ P[H;] [Area Of P[y|H1] Below Threshold }

Equation 3. Probability The Hypothesis Test Will Make An Error

Stochastic Computation

-11 -

Placing a step function at the output of the neuron creates the desired output binary decision

variable z. Thus z indicates a choice between hypothesis H, and H ;.

z = Unit Step[y] = Hy if y<O0, H; if y >0

Equation 4. Step Function Neuron Sigmoid

z =1 (Hypothesis 1)

z = 0 (Hypothesis 0)

y=0

Figure 6. Output Threshold Step Function

4.2 Calculation Of The Weight Vector W

The optinium weight vector, W ,pimym, for any one neufon is. calculated by minimiziﬁg the
Pe,m,.. That is, the optimum weight is the vector W which yields the lowest overall system
P, Intuitively, W (;p,,-mum must be a function of the statistics of both conditionai hypotheses,
P[X|H,] and P[X|H{]. To see the exact functional relationship between ‘_the statistics and

W o ptimum» @ review of the Karhunen - Loeve representation is needed.

The K-L representation is a series expansion of an N-dimensional random vector. Each entry in

the input data vector X below is a random variable.

Stochastic Computation

-12-

X1

xy
Equation 5. Random Vector X

- 'We expand the random vector X in a series, with random variables o; multiplying N -

dimensional deterministic unit magnitude vectors E ;.

Equation 6. N-Dimensional Random Vector Expansion

From a degree of freedom argument, note that all N o.; random variables are needed in the series
to fully and acéurately represent the N-dimensional random vector X. Now we would like to
sort the terms o; E; so that a1 E is the most important term in our series expansion, o, E, is
the next most important term, and so on, all the way up toi =N. In fhis way, if we truncate the
series expansion at some number M < N, we will be getting the best possible repreéentation we
can, with the limited random degrees of freedom { o ,....,a 3/} available. We consider the
expected mean square error to be our measure of importance. That is, we seék M random

variables «; and corresponding deterministic vectors E; such that if we define X as

- M ~ - ~
X = ¥ a; E,, then the expected value of IX-X[? = (X-X)T e(X~-X) is smaller than if
i=1 ,

Stochastic Computation

-13 -

we pick any other a; or E;. The Karhunen-Loeve representation is exactly this expansion.[]]
[6117) The E; are the eigenvectors of the correlation matrix C of the N-dimensional probability

density function P[X]. C is the expected value of the outer product of the random vector X.

E[x%] Elxy xo] .. . E[x; xn] _.
E[x; x,] E[x3]

| Elxy xy] Elxy xn] . . . E[x}]

Equation 7. Correlation Matrix

Since a correlation matrix is positive definite, and symmetric, the eigenvalues are positive. The
Karhunen - Loeve theory tells us that the relative importance of the {random variable
a;,vector E;} pair is directly related to the magnitude of the e_igenvalue Ay correéponding to
the eigenvector E,;. The largest A; eigenvalue indicates the most important {o;,E;} pair.

Decreasing eigenvalues indicate successively less important expansion terms.!

The Karhunen-Loeve representation has several other properties which will be useful in the
analysis below. First, the eigenvectors E; are orthonormal. Thus, E;eE; = 8 ;- Second, the

random variables a; are uncorrelated. That is, E[a,; o;] = 8;; E[a 2.

1. Assume the random variables x; are real. If the x; are complex, replace the word symmetric with Hermitian. The
argument to follow is still valid for complex x ;.

Stochastic Computation

-14 -

The Karhunen-Loeve theory allows one to expand the two conditional vector pdfs P[X g] and

P[Xy,] as follows.

H, H
B:' F;'
Equation 8. Karhunen-Loeve Expansion For The Conditional Hypothesis Input Vectors

Before we proceed, we will need a lemma about the magnitude of the dot product of two
arbitrary vectors in N-dimensional space. Suppose we have two N-dimensional deterministic
vectors A and B. We wish to know the average value of their inner product A e B. Since these
two vectors can point in any direction in N space, and are arbitrary, and hence unrelated to each

other, their average dot product is the integral below.

X1 dx 1 dx 2 e e dx N
N - Dim Unit HemiSphere

The Surface Area Of An N — Dimensional Hemisphere

- zero as N - o

Equation 9. Magnitude Of The Inner Product Of Two Arbitrary N- Dimensional Vectors

Above, we have set the vector A in the x; unit vector direction. Integration over the N -
dimensional hemisphere centered around this unit vector yields the average A o B dot product
magnitude. Note that we are not including negative projections between A and B. The negative
projections all lie in the opposing hemisphere, and yield symmetric magnitude answers with a

negative sign. Since we divide by the surface area of a hemisphere, we are accounting for this

Stochastic Computation

-15-

symmetry in our answer. The result we shall use is that the dot product — 0 as N — oo. Thus,

for large N, we shall conclude A « B = 0.

This asymptotic, large N result is in keeping with our analysis, which will be based on large
data input Vdimerisioinality.’ Indeed, the theme of this thesis is that large dimensionality helps a
stochastic system, and hence a neural network, process data. We saw one aspect of this in the
application of the Central Limit Theorem. Below we shall see another large dimensionality

advantage. This is all in contrast to Bellman’s so - called Curse Of Dimensionality rule.2

Returning to our Karhunen-Loeve analysis, take only the first term of the expansion above for

each of the two conditional pdf vectors.

Xo = a; E; X, = B Fy

Equation 10. The Principle Component Of The Two Conditional Hypothesis Data Vectors

Thus, we approximate the N-dimensional random vector X; by the one-vd‘imensional random
representatidn X; = af" E{{ Consider the vector difference W = F; — E;. For an unknown
image X, the projection W e X is equal to F; ¢ X — E; ¢ X If X € Hy, then
WeX~F oeX If XeHy, then WeX ~ — E; ¢X. The two hypothesis
eigenvectors F; and E are the Minimum Mean Square Error estimators (MMSE) for X | Hy,

and X | H, respectively. Thus, E[(X | Hy — o; E;)?]is at a minimum when X € H,,.

2. Bellman’s adage states that, in general, information processing becomes computationally more difficult
exponentially as the dimensionality of the data increases.

Stochastic Computation

-16 -

Represent X as a signal S buried in noise n. The principle eigenvector projection is akin to
making a one - dimensional measurement of X | Hy which injects the least possible noise into
the system. That is, we represent the original signal X with the approximation (X ¢ E) E,,

and this approximation has the lowest noise of any approximation of X € H.

Ih everything which follows, a communication systems view is held. There is a signal buried in
noise, which is embedded in RY. The neural network must find and identify the signé,l, and
determine whether the signal was more likely to be drawn from one of two deﬁsities :
P[X | H;], or P[X | Hy]. In the process of making measurements to determine which
hypothesis is more likely true, noise minimization is important so as to increase the quality of
the decision. Using principle component eigenvectors minimizes the noise injection, during

measurement, into the system.]

The specific construction of the weight vector W from the two hypotheses principle-components
is motivated by the following argument(s). For a distribution in R with mean = 0, the
principle eigenvector obtained via the reinforcement algorithm used below will always point in

the direction of the mean. Consider the two dimension example below.

H
—
Iu—-

—

~ [1 _ [ot A =2 _ [1] _
XO ~ [J Lo = [J CO = |:1 l:l)\4250 El = + 1 E2 =

Equation 11. X, Mean Projection Onto E;

If the positive sign is taken for E;, the projections of X € H, onto E; will be positive.

Conversely, if the negative sign is taken for E |, the projections of X € H, onto E; will be

Stochastic Computation

-17-

negative. However, the reinforcement algorithm always yields the positive signed eigenvector,
so that the mean of the projected data is always positive : E[X ¢ E;] > 0. We take
advantége of this fact, and create approximately antipodal signals. That is, by taking the
difference F; - E 1 wé cfeate a separation in the means of the two hypotheses projections,
since E[X(eH;) * W] 20 and E[X(€Hy) ® W] <0. This separation is roughly

centered about zero.

The reason we do not take a linear combination of the form
aF, —bE;,where a, b €R, and a , b = 0, is because pure amplification of a signal does

not improve the SNR. That is, under case I above, the area of the tails under the threshold is

related to the SNR = M—O. Multiplying the random variable obtained via the projection onto E ;
So

by the real positive constant a changes the mean of the projection random variable to

2 .
up =a po and the variance to o) = a’ 3. The new signal to mnoise ratio,
Mo Mo
SNR' = — = — = old SNR. Thus, a pure gain will not increase the neurons ability to
c' o}

make a correct decision. Note that crucial to the line of reasoning is the use of the orthogonal
hypothesis assumption. If X(€H;) e E; # 0, or X(eH;) ® F; # 0, then the neuron

indifference to gain argument does not hold.

To summarize our search for Wy, We calculate the two correlation matrices. for X and
X, and find the eigenvectors corresponding to the largest eigenvalue for each matrix. Taking

W optimum €qual to the difference of these two eigenvectors Ey — Ep , serves as a Minimum

Mean Square Error (MMSE) approximation to a neural network consisting of a single neuron

Stochastic Computation

- 18-

implementing a binary hypothesis test. The threshold used for the decision test on the projected
data points is approximately zero. Positive projections are concluded as from H |, and negative

projections are decided as coming from H .

4.3 Handwritten Digit Recognition Example

As an example to validate the above assumptions, consider the following data calculated from a
database of handwritten digits. ©! A total of 1616 images of the handwritten digit 6, and 1616
images of the digit 7 were used to construct the Principle Component projection histograms.
The images consisted of 32 by 32 (1024 total) pixels, with each pixel represénted by an 8 bit
grayscale number. The continuous curve is the Gaussian density function with the mean and

variance tabulated from the projection data.

P[WeX|H,] P[WeX|H] P[WeX|H¢] P[WeX|H,;]

Digit 6

Z*

i’ Digit 7

Digit 6

T l l | | | | | | |
-0 5 10 15 20 -0 5 10 15 20

Projection Onto Digit 6 Principle Component Projection Onto Digit 7 Principle Component

Figure 7. Histogram Of Cedar Database Handwritten Digit 6 And 7 Projections

Stochastic Computation

-19-

In both the plot above and the plot below, the continuous curve is the probability density

function which the histograms should approximate.

Histogram Of Projections Onto The W6 - W7 Weight Vector

500 — .
400 —
Histogram 300 —
Cell
Count 200 —
100 —
-0 |

Projection Value

Figure 8. Histogram Of Cedar Database Handwritten Digit 6 And 7 Projections

For later reference, the mean and variance of the projections under the different hypotheses is

shown in the table below.

Weight Digit 6 Digit7 ‘
Vector Mean Variance | Mean Variance
W, 10.726 | 6224 | 4.251 1.408
W, 5.172 2.070 8.886 5.289

We — W5 5418 3.52 -4.521 2.346

TABLE 1. Projection Statistics

Stochastic Computation

-20 -

In the plot below, the threshold of the neuron with the weight vector W — W is varied, and
1616 Six images, and 1616 Seven images (3232 images total) are passed through the 'neuror_l.
The probability of a correct decision is then tallied. Thus, the plot below should give us an idea

of the symmetry of the probability: of error about the theoretically expected threshold value of

ZETO.
As The Threshold Varies, The Probability Of An Incorrect Decision Changes

0.5+
0.4

Probability 03
Of An "~]

Incorrect
Decision |
0.1
-0 -
| | | ! T l
—10 -5 0 5 10
Neuron Threshold

Figure 9. Estimation Decision Error Via Brute Force Variation Of The Neuron Threshold

A closecup of the zero threshold region shows the minimum error is achieved for a threshold of
-0.184. The optimum threshold yielded a probability of error of 0.0031 or ten errors out of a
total of 3232 images looked at. The jagged nature of the plot is due to the discrete number of

points (3232) used in calculating the probability of a misclassification.

Stochastic Computation

221 -

Closeup In The Zero Threshold Region Of The Previous Plot

0.007 -
Probability0.006 —
Of An
Incorrect 0.005 —|
Decision
0.004 —|
0.003 - _
| | | | [
—1 0.5 0 0.5 S 1
Neuron Threshold

Figure 10. Estimation Decision Error Via Brute Force Variation Of The Neuron Threshold

5. Binary Symmetric Channel Model

A useful picture which aids visualizing single neuron behavior iﬁ an information theory context
is the Binary Symmetric Channel (BSC) model. Without loss of generality, the two hypotheses
are considered equal in a priori probability, meaning we shall consider the areaé of the tails
falling on both sides of the threshold to be equal. Consider the decision which occur’s by

thresholding, as shown below.

Stochastic Computation

2.

Ply | Hy] Ply | H]

0.1 4

Ply]
0.05 —

| l
-10 =5

|
|
|
|
|
|
|
!
|
|
|
0 5

10

Figure 11. Prob Of Error Is The Area Under The Tails Past The Threshold

The area under the tails past the threshold represents the probability that any one message or bit

is misidentified. This area is the crossover probability, €, for the BSC, as shown below.

H, o H,
X £ Z
e
Hy 1-¢ H,

Figure 12. Binary Symmetric Channel Model

The idea is that one bit of information is always being presented at the BSC input. This bit

represents which digit, of two possibilities, the sender intended to transmit. The digit is

Stochastic Computation

-23 -

represented as a single point in a high-dimensional space. Hence, the single bit of information is
distributed across the large dimension input space. The neuron corresponds to a channel which
is projécting the high-dimensional space into a one-dimensional space. By calcula’ﬁng the
probability distribution of the projected values, one can calculate the mutual information of the
BSC input and output random variables. Since the channel is assumed, for simplicity, to be
symfnetric, the mutual information is a maximum when the input hypotheses are equal in
‘probability. That is when P H, = Pu, = . The resulting channel capacity C, as a function of

the crossover probability ¢, is seen below.

Ce) = 1 +elogy(e) + (1 — g) logy(1 — ¢)

Equation 12. Channel Capacity

A plot of C(g) versus ¢ is below.

Stochastic Computation

-24 -

Binary Symmetric Channel Capacity Versus Crossover &

1
Channel
Capacity 0.5 —
C (In Bits)

-0—

| | I

-0 0.5 1

€

Figure 13. Binary Symmetric Channel Capacity Versus Crossover &

Channel capacity is an alternative measure of probability of error for binary hypothesis testing.
The mental picture of the BSC and channel capacity will be an aid in discussions below on

multiple neuron per layer, multiple layer networks.

6. Multiple Neuron Hidden Layer Architecture

The above treatment is for one neuron. However, as discussed in the forewérd, the power of
parallel processing relies on. many simple units operating cooperatively togefhe’r. To analyze
how neurons could work in parallel, consider three neurons which are placed side by side, and
their results voted on. That is, each neuron is expected to make a binary Yes/No decision based

on the same input data. The majority voting decision of the three neurons is taken to arrive at

Stochastic Computation

-25-

the system decision.

Ny
X1
Final
X2 System
Decision
X3

Figure 14. Three Neurons In Parallel

Consider the output set Z = {z,2,,23 JT. The Z vector is a binary codeword representing the
layers output decision. Before we introduce how to determine the neuron weight set
{W [, W, , W3}, we digress and discuss a feature of real-life pa‘ttern recognition situations

which we shall exploit.

6.1 Eigenvalue Decay For Handwritten Digits

Consider an ensemble or training set with a total of M images. Each image consists of N x N
pixels. Represent these M images as N 2_element vectors {X i=1.2,.Mm4. The correlation matrix

for this set of vectors can be constructed as seen below.

Stochastic Computation

=26 -

E[x}] E[x, x2] . . . E[x, xx] |
E[x, x2] E[x3]

| E[x, xy] E[x, xy1 ... E[x¥]

Equation 13. Compiling The Correlation Matrix For The Image Set

C is a positive definite, symmetric matrix, and the eigenvalues are all positive. We ofder the
cigenvalues from largest magnitude to smallest magnitude. The plots below show this
eigenvalue ordering for three databases of handwritten digits. The digit to the left of the first
data point indicates which set of images that eigenvalue curve represents. The rolloff of the
cigenvalues for the correlation matrices for all ten digits is rapid, and the magnitudes of
corresponding number (e.g. : largest, second largest, etc.) eigenvalués, across the three

‘databases, are similar.

Stochastic Computation

-27-

A T & T Bell Laboratories Guyon Database

100 —
Eigen- 10

) Value
14

Eigenvalue Number In Decreasing Magnitude

Figure 15. A T & T Bell Laboratories Database Eigenvalue’s

The A T & T Bell Laboratories database is composed of 16 by 16 binary pixel images.l'"!

Below is the same data from the CEDAR handwritten digits database.[!]

Stochastic Computation

-28-

CEDAR Database Eigenvalue Rolloff

100 —|
Eigen— 10
- Value
1
I | | I
2 4 6 8
Eigenvalue Number In Decreasing Magnitude
Figure 16. Cedar Database Eigenvalue Rolloff
NIST Database Eigenvalue Rolloff
0
1004 1
Eigen-
Value 10 —

I I : l
-0 5 10
Eigenvalue Number In Decreasing Magnitude

Figure 17. NIST Database Eigenvalue Rolloff

Stochastic Computation

-29.

The CEDAR images were of varying size, since they were obtained from digitized images of
envelopes passing through the Buffalo, New York Post Office. They were converted to a 32 by
32 8 bit pixel format using the PbmPlus set of filters.!!?] The NIST images were supplied in 32

by 32 binary pixel format.

The eigenvalues were determined in three fashions. The CEDAR eigenvalues were calculated
using C code implementing the OJA algorithm to be discussed below. The AT & T eigeﬁvalues
were obtained by first calculating the outer product correlation matrix C as des.cribed above. The
matrix was passed through MATLAB, and the eigenvalues were extracted using MATLAB
routines.!'3] The NIST eigenvalues were obtained using C code written by the author which
implemented the power method of principle eigenvector and eigenvalue determination. By
successively projecting the input space onto the subspace orthogonal to the principle
eigenvector, successive principle eigenvalues and eigenvectors can be fouﬁd. "vl“hisAtechnique is
particularly effective in determining the principle eigenvalues. for matrices which are-highly
singular, which is the situation for handwritten digit correlation matrices.‘[”] [13] Notev there is
essentially ﬁo difference in the three results, despite having different algorithms operate on

distinct databases.

The rapid rolloff of the eigenvalues indicates there is a relatively small subépace of the large
dimensional input space which is very important in representing the random input vectors X;.
The exact subspace basis varies from digit to digit. Since the eigenvalue rolloff is rapid, we can
assume, by applying our result for random dot products above, that the subspaces of activity for

any two digits is orthogonal. Thus, we can represent the entire input space for a two hypothesis

Stochastic Computation

-30 -

test as X € RY = S) ® S| @ Sppise. The space S; represents the subspace or basis < RV
where most hypothesis H; vectors have significant projections. Since the dimension of S and
S aré assumed to be a small fraction of the total input space dimension N, the subspace
Se® S, 'occupiesb only a-small portion of the entire space R". The remaining space
Se@®S; =RY - (8, \ S/ is denoted Sy, and represents the subspace of RY where
neither H o nor H, data vectors typically have projections. Applying our large N lemma for

random dot products, we can conclude that typically S L S;.

The subspace orthogonality assumption has wide ranging consequences in this Work. First, it
provides a method to determine the single layer, multiple neuron weight set {W;}. The set of
weights {W{,W,,....W} for the neurons in a single layer network of width L, should span
both of the subspaces S ; to provide a reasonably good approximation to the two conditional
random vectors X and X;. Let the dimension of the subspace S; be M ;. Let Q equal the
maximum of the two subspace dimensions M;, and let K equal the minimum of the M;. An
orthonormal basis for S; is the first M; Karhunen-Loeve eigenvectors, E;]",‘ of the coﬁelation
matrix for H ;. One weight vector representation which meets the spanning requirement of both

S; is the following.

Equation 14. Multiple Neuron Weight Vector Determination

Stochastic Computation

-31-

Here * is the hypothesis which has the larger dimension of the two subspace’s §;, and the + is

taken depending on whether S | has the largest M (choose +)‘0r S has the largest M (choose -).

The above decomposition indicates it is of no use to attempt to produce a basis which répresents
points outside of eifher S;, since we are assuming all significant projections occur inside the
subspaces S, or S;. Thus, a limit on the number of neurons in any one layer is found to be Q,
deﬁﬁed above. That is, L = Q. Adding more neurons to any one layer essentially adds Weight
vectors which span space outside the S;, and hence inside S y,;.. Projections 6nto thesev weight
vectors constitutes noise, and hence will only decrease the performance of the overall system by

raising the noise floor which a final voting neuron must deal with to arrive at a decision.

The identification of where the subspaces S; rolloff or end is somewhat subjective. Due to the
noise and other variations across the images, the eigenvalues in the spectrqm rolloff aboye do
not become perfectly zerd, but only small outside the subspaces of interest, S;. In the above
graphs, and in most practical cases, it is clear where the eigenvalues have decayed into the noise

floor, and the resulting subspace identification can be made easily.

6.1.1 Determining Single Layer, Multiple Neuron Weight Sets

Before we proceed with an example, we note that the construction abox)e of the {W;}
automatically ensures the {z;} are statistically independent under bbth hypotheses. - The
orthogonality of the two subspaces S; under the large N approximation, coupled with the lemma
above, have allowed us to decorrelate the z; random variables under both hypotheses. This

essentially means the weight vectors {W;} simultaneously diagonalize the correlation matrices

Stochastic Computation

-32-

of X, and X, via a single linear transformation. Thus, regardless of which hypothesis has been
presented to the input via the X input vector, thé z; hidden layer outputs will be uncdnelatgd
randorh variables. Since we are assuming the input x; are random variables, and the Central
Limit Theorem holds, the z ; are Gaussian random variables. Uncorrelated Gaussian random
variables are statistically independent. 6] Thus, from another perspective, the éimultaﬂeous
diagbnalization of the two correlation matrices has determined the hidden layer weight vectors.
The columns of the diagonalizing transformation matrix are the weight vectors for the different
neurons.l'”1 This iﬁdependence property obtained almost as an afterthought from the Karhunen-
Loeve eigenvector difference algorithm is an additional bonus in disguise, sinée cbding theory
tells us that the maximum information contént is obtained when each elerhent of the coding
vector is statistically independent from the other elements.['®! Thus, by using the differences of
the Karhunen Loeve expansion vectors Efl‘ and EiH", the ensemble of neurbns are working
together to extract as much information as possible from the high-dimensionality .inputvspace,
under the meah—square approximation criteria. Since the z; random variables are statistically
independent under both hypotheses, the set {z;} can be thought of as a binary code word being
passed from the hidden unit layer to a voting neuron. The voting neuron implements the
majority decision rule. This type of majority rule is called hard decision- decoding in the

statistical communication literature.

6.2 Extending The Binary Symmetric Model For Multiple Neurons in Parallel

As presented above, the idea of a single neuron acting as a channel for one bit of information

allowed us to connect the neuron with the Binary Symmetric Channel (BSC) model of

Stochastic Computation

-33-

communication. For multiple neurons operating in parallel, this picture can be extended by
considering multiple BSC’s in parallel. Each neuron in a Single layer network corresponds to
one BSC. The figure below represents a three neuron layer, with a layer output

ro
Z= {2_1522523} .

H,O ‘ T7e (OH,

X E Zl.
Hy 1-¢ OH,
HIO 1-¢ Hl
X i 23
H, OHy
X

Ho(O—=

Figure 18. Three Binary Symmetric Channels In Parallel Neuron’s.

The probability that the ensemble of three BSC’s will make a misidentification is summarized
by the formula below. Key to this formula is the assumption that the three neurons (channels)
are experiencing misidentifications independently, which occurs when the neuron outputs are

statistically independent under both hypotheses.

Stochastic Computation

-34 -

g =(1—-g;)ere3 +e1(1 —€y)e3 +816(1 —83) + €1€283

Equation 15. Prob. Of Three Parallel BSC’s Making An Error Using Majority Voting

The plot below ‘demonstrates the performance improvement one attains with three parallel
BSC’s versus just one, as ¢ is varied. For simplicity, we assume below that each BSC has an

identical crossover probability. This is not true in practice, as will be discussed later.

Improvement In The Error For Three Neurons

0.5 -
0.4
0.3
02—

0.1

| | | |
- -0 0.1 0.2 0.3 04 : 0.5

Individual Neuron g)

Figure 19. Effective Crossover For Three Neurons In Parallel

The improvement in channel capacity is seen below.

Stochastic Computation

-35-

Improvement In Channel Capacity For Three Neurons

1
Shannon
Channel
Capacity 0.5
(In Bits)

-0

| | ! l | |
-0 0.1 0.2 0.3 04 0.5

Individual Neuron g

Figure 20. Effective Shannon Channel Capacity (In Bits) For Three Neurons

The ensemble of three BSC’s can be pictured as a single effective BSC with crossover
probability &€, The effective BSC models the hard voting decision performance of the entire
layer. € is the probability that the three neurons will simultaneously maké’ either two ér three
decision errofs. Since the probability of simultaneous errors is less than the probability that any
one neuron will make a single error, overall system performan'cé imprdves. Adding more
neurons in parallel further aids the overall system performance. For N néurons placed in
parallel, each producing 0utputs statistically independent under both hypotheses, the entire
voting system is in error when 4 N or more of the neurons simultaneously make a
misidentification. This becomes increasingly rare, for a fixed single neuron P,,,,., as the

number N of neurons is increased. Extending the effective BSC concept outlined above for

Stochastic Computation

-36-

three neurons, a parallel bank of BSC’s is equivalent to a single effective BSC with crossover
probability €. The plot below shows € as a function of the number of independent parallel

neurons/BSC’s, for various individual channel error rates.

Effective Epsilon Versus Individual Channel Epsilons

0.5 —

04 \ £=/0.49
- £=|0.48
, 0.3+ =047
¢ 0.2 _ £ =0.46
€ =|0.45

|

“1 043

848, 0.30, 0.35

M

Number Of Parallel Channels

Figure 21. Effective Epsilon Versus Single Channel Epsilon

Below, the improvement in channel capacity is plotted as the number of parallel channels is

varied.

Stochastic Computation

-37-

Effective Channel Capacity Versus Individual Channel Epsilons

€ 0.5

| | |
-0 50 - 100

Number Of Parallel Channels

Figure 22. Effective Channel Capacity Versus Single Channel Epsilon

As can be seen from the plots, a large group of neurons with individually poor P, can
together achieve as an ensemble a low system P,,,,,. This is in keeping with the philosophy of
this thesis that large ensembles of statistically independent, marginally perfofming subsystems,

can yield excellent overall system results.

7. Hard Versus Soft Decision Decoding

As discussed above, improvement in overall system performance, denoted by &, is significant
for large numbers of hidden layer neurons. The above improvement is achieved using hard
decision decoding. Majority voting implements a hard decision decoding rule. No information

about how strongly each neuron "feels" about the decision it is making is passed on to the

Stochastic Computation

-38-

voting neuron. This could lead to situations such as that sketched below.

Neuron 1 Neuron 2 Neuron 3
Output R Output Output
H H
| | | | I I | | | | !] | l |
10 -5 O 5 10 —-10 -5 O 5 10 -10 -5 O 5 10
Neuron I Neuron 11 Neuron 111

Figure 23. Three Neurons And Hard Decision Misidentification

In the dilemma above, all three neurons have symmetrical conditional prqbability densities
about zero. Hence, the/ hard decision threshold for each neuron is zero. Two decisions, indicated
by dotted arrows, barely fall over the threshold into the H regime, The third neuron decision
falls strongly in the H, regime. Hard decoding yields a system decision of H;, whereas our
intuition and Bayes analysis indicates H is more likely to have occurred. This hérd decision
type of error is avoided if each neuron outputs a real number indicating the probability of
hypothesis H, versus H . Ideally, the output of each neuron should be the two element vector

below.

Stochastic Computation

-39.-

P[H,|X]
P[H|X]
Equation 16. Soft Decision Neuron Outputs

The soft decision is arrived at by summing the individual hypothesis probabilities, ahd choosing

the most probable hypothesis. This is decision decoding in the soft sense.

H,
>
> Pi[HIX] g S Pi[HylX]
Neurons . HO Neurons

Equation 17. Soft Decision Rule

A quick glance at the hard decision dilemma above will show soft decoding resolves the issue
éf two ambivalent outputs which have fallen on the wrong side of the threshold, énd one neuron
strongly iﬁdicating a hypothesis. For the example above, the prbjection probabilities onto each
neuron is tabulated below. These projections were computed from the example conditional

densities P[Hy | X] = n(v=-3,06%2=3),and P[H,|X] = n(v=+3,6%=3),

Neuron | Projection | Hypothesis 0 | Hypothesis 1 | Hard Decision
One 0.6 0.065 0.097 Decide H;
Two 0.8 0.059 0.102 Decide H,
Three -5.0 0.106 0.004 Decide Hy
Hard 1 Vote 2 Votes Decide H,
Soft 0.230 0.203 Decide H,

TABLE 2. Projection Statistics

Stochastic Computation

- 40 -

The soft decision rule is the sum seen above. This is the Maximum-Likelihood receiver (ML).
Since in our example, we have assumed equal a priori probabilities for the two hypotheses, this
decisioii structure is also the Maximum-A-Posteriori receiver (MAP). For non-equal a priori
probabilities, these two decision methods are not equal. The difference between MAP and ML
lies in how the a priori probabilities P[Hy] and P[H,] are used. In MAP, the a priori
probébilities are actively used iil the decision mechanism. In ML, the a priori probabilitig:s are
assumed to be equal. These considerations lead to different thresholds used to determine which
hypothesis is chosen. The basic form of a threshold decision rule however is the same for MAP
and ML. Consider y; to be the output of neuron i’s projection of input data 6nt6 the weight

vector W;. The ML and MAP decision test are shown below

H H,
PH |yl S PlH(lyl 5 P[H,]

P[H,] o P[H,ly] o P
0 0

Equation 18. ML Versus MAP

For MAP, variation of the a priori hypothesis probabilities P[Hy] and P[H] results in changes
to the optimum threshold. In general, knowledge of the a priori probabilities will allow a more
efficient threshold test to be constructed, and result in an overall lower P ,,,,.. In what follows,
we shall assume equal a priori hypotheses to simplify the conceptual presentation. However, it
should be kept in mind that unequal a priori probabilities can easily be incorporated into the

hypothesis test by altering the threshold.

Stochastic Computation

-4] -

The analysis above is a departure from the traditional treatment of sigmoids in the literature.
Typically, all network neurons are embodied witli an identicial nonlinear function, usualiy of the
form Tanh[Yy (W e X — 0)]. The y parameter is called a gain, and the 6 parameter is called the
threshold or offset. These two parameters are often chosen to optimize criteria such as
minimization of the time needed to reach the onset of generalization for a training set. In this
work, a typically unique sigmoid is determined for each and every neuron in the network. The
criteria motivating inclusion of sigmoids is an increase in system error performance. A side
result may be an increase in the speed with which generalization is achieved. However, this is a
secondary consideration here. Thus, each neuron sigmoid is unique. There dees not typically

exist a global Hyperbolic Tangent Gain y and offset 0 that is suitable for all neurons.

The optimum soft decision sigmoid can be determined exactly from the first two moments of
the two hypotheses pdf’s. This is local information, and is available to the rieuron if it has been
compiling statistics during the training period. There are statistically efficient unbiased
estimators for all of the parameters which each neuron needs to optimize it’s sigmoid, which
meet the Craimer-Raorbound for optimality. These Cramer-Rao optimum statistical estimators

will be further discussed in the implementations section below.

8. Implementing A Soft Decision Rule

Above, symbolically, each neuron outputs a two element vector. Ideally, each neuron should
output a single real number. Suppose each neuron output’s the quantity P[H |y i1-P[H, ly i1

The final layer voting neuron would sum over all previous layer outputs to arrive at the system

Stochastic Computation

-42 -

soft decision.

#Neurons Hl

InTheLayer >
Y PIHly1 - PlHoly; 1 2 0

ji=1 ' H

‘ 0

Equation 19. Soft Decision Rule

The issue arises as to whether we can obtain and output the probabilities P[H;| vl for each
neuron j and each hypothesis i. Looking at the figures above where the two Gaussians overlap,
we see that the projection y uniquely determines a point on each conditional p(if P[H oly ;] and
P[H,| y;1. If the neuron has compiled a history (perhaps through labeled sa;inple training to be
discussed below), so that internal to each neuron is known the mean and standard deviation for
each hypothesis, pg,1;,60, and 6, then given the projection value y, we ean construct the
two probabilities P[H,]| yj]and P[H, 1 y;] internal to the neuron. Taking these twe conditional
pdf’s difference, we can output a real number. This real number has the two dimensional
conditional probabilities alluded to above encoded into it. There is no informatiqn loss in this
mapping of the two-dimensional data P[H, | y] and P[H,] into the one-dimensional nlimber
P[H,|y] - P[H,y]. The theoretical reason why we can unambiguously map a two-
dimensional quantity into a one-dimensional quantity is because we know. that one of the
hypotheses, either Hy or H; must occur for each trial. This gives us a degree of freedom
constraint which makes the 2-D to 1-D map NOT a projection, but a bijective (one to one and
onto) function. Let us call the desired neuron output quantity z; =P[H | y;1-P[H, | vl We

use Bayes rule to determine how exactly to obtain P[H, | y;j1=P[H, | y;] from the projection

Stochastic Computation

-43 -

onto the j’th neuron, y; = W ;® X.

' Pl Hy, y; P[Hy ., y;
P[H, |y;1-P[Holy1 = __1)[1y_§11 _ [P[Ova]}J 1
. y T

_ Py |H(] PLH] Ply | Hol PLH,]
Ply;] Pl y;]

Equation 20. Expand The Probability Of A Hypothesis Given A Projection Using Bay'es Law

Rewriting P[y;] as P[ylel]P[H,] + P[yj|H0]P[H0], we obtain the desired function

mapping y; to z;.

Ply;|H1 P[H\] - Ply;|Ho] P[H,]
Ply;|H\1P[H,] + Ply;|Ho]P[H,]

Equation 21. Applying Bayes Law Again, Obtain The Optimum Sigmoid For A Neuron

Under the equal a priori hypothesis assumption, P[Hy] = P[H]. Thus, the above ratio reduces

to that below.'

Ply;|H1 - Ply;|Ho]
Ply;|H,1 + Ply;|Ho]

Zj = f(yj)

Equation 22. Simplify The Sigmoid By Assuming Equal A Priori Probabilities

Recall the central limit theorem argument we made above. If both the a priori hypothesis

probabilities are equal, and the variances of both Gaussians, y|H o and y|H 1 are equal, the

Stochastic Computation

-44 -

hyperbolic Tanh -function emerges. Let y denote the normalized ratio L, Expanding the
c

conditional pdf’s in the equation above, we obtain the following.

- w) - m)’)
Ply;|H\1 - Ply;lHol ¢ 20 _ o 27
Ply;|H\] + Ply;|H,] _-owy _wg
e 206 + e 20

Equation 23. Expand The Gaussian Conditional Probability Density Functions

, , a2+BZ BZ_QZ B Bz_az .
e~ _e B o 2 Rk _ e 2 - B2 —a?
e_a[+e_l31 o+ P = B« ~ ﬁl—q = an ——————2 |
e ? e ? + e ?
Equation 25. Substitute In For o and 8
B2-o? _ 07 -2poy+red)-02-2miy+pi?) 2p(p—pe) - (1P - po?)

Equation 26. Expand The Squares, Cancel Common Terms, And Simplify

[Zy — (1 + uo)} [ul - Ho} (y_ﬂ%&l

4 g2 » 262

) (Bi—uo)

Il
M1l
I

Equation 27. Rewrite The Tanh Argument As A Slope and Offset

Stochastic Computation

-45 -

M1l
JIE

o (11 + Mo) (L1 — po) . Li—Ho » Hi+Ho
Y 2 2 o2 ’ 2 o2 2

Equation 28. Define The Slope and Offset Constants

z; = P[H|y;1-P[Holy;]1 = Tanh[y(y; -0)]1 = f())

Equation 29. Express The Equal Variance Neuron Sigmoid In Final Form

As a brief check oﬁ our calculations, note that for 6® equalto I, and pg = —1,and pu, = 1, we
—_— + ! .

have y = (u—lz—;—lﬂ = 1 and the threshold 6 = Hirlo is zero. By inspection of the
c

Y _ g7V
equations above, the expression for f(y) is % = Tanh(y). This is the same as the
e’ + e

y = 1,0 = 0 result.

To recap, for the special case of equal a priori probability of occurrence for both hypotheses,
and equal Variance for projections under both hypotheses onto a neurons v‘veight vector, the
nonlinear sigmoid Tanh(y (y; — 0)) will map individual neuron projections y; into a
probabilistic quantity that a voting neuron can use to implement a éoft decoding scheme. As a
result, the system performance changes from a hard decision decoding rnethoci to an improved
soft decision decoding scheme when one uses the ‘nonlinear sigmoid
Tanh(y ((W; « X) — 0), and the gain y and threshold © parameters as defined above.
These two parameters are calculated from the first two moments of | the two hypotheses

statistical distributions. Below is shown a Tanh sigmoid for two conditional pdfs. The

Stochastic Computation

- 46 -

distributions P[y|H] and P[y|H] are both Gaussian, with u; =1, py=-1,and 6, =c,=1.

(1+1)

Thus, y = = 1 and O is zero. The fact that 6 = 0 should be expected from the

symmetry of the conditional probability density functions.

Bold : Tanh, Thin : Conditional Densities

Ply | Hy] Pyl H]

1_
0.5 -
f(y)0
—0.5
i

f [[[I

—10 -5 0 5 10

y

Figui‘e 24. Sigmoid Shape For P[y|H,] = n(+1,1) And PlylHy] = n(-1,1)

9. Multiple Neurons In A Single Layer
9.1 Example With Six And Seven Images

In this section, we look at the actual performance of five neurons working in parallel on the Six
and Seven image set described above. The five top eigenvectors for the Six and Seven images

was calculated, and theoretical differences used to construct five weight vectors, W through

Stochastic Computation

-47 -

Ws.

The results are plotted below. The solid histograms and curves are for hypothesis Six. The
dotted curves are for hypothesis Seven. In neurons five through two, the decision threshold was
such that hypothesis 7 w‘as‘ less fhan the threshold and hypothesis 6 was greater than the
threshold. For the last neuron shown, neuron 1, the opposite sign was taken. Tﬁus, for neuron
_one only, the brute force Bit Error Rate (BER) curve is for hypothesis 6 less than the threshold

and hypothesis 7 greater than the threshold.

Ply | Hyl Ply | Hq]

500 —

400 —
300 — EER
Plyl Lo
200 - S

100 —

Neuron 5

Figure 25. Neuron 5 For The Set Of Five Parallel Neurons

Stochastic Computation

-48 -

As The Threshold Varies, The Probability Of A Correct Decision Changes

0.5 -

v 0.4 -
Probability 03

Of An =~

-Incorrect

Decision N

0.1 -

-0 _|

I | | | |
-10 -5 0 5 o 10
Neuron 5 Threshold

Figure 26. Estimation Decision Error Via Brute Force Variation Of The Neuron Threshold

Stochastic Computation

- 49 -

Ply | Hy] Ply | H]
500
400 —
300 —
P
| [y] 200]
100 —
-0
l | | | |
—10 -5 0 5 10 15
Neuron 4
Figure 27. Neuron 4 For The Set Of Five Parallel Neurons
As The Threshold Varies, The Probability Of A Correct Decision Changes
Probability
Of An
Incorrect

Decision 0.45 —

| | l |
—10 -5 0 5

Neuron 4 Threshold

Figure 28. Estimation Decision Error Via Brute Force Variation Of The Neuron Threshold

Stochastic Computation

-50 -

Ply | Hy] Ply | Hq]
400 —|
300 —
‘P[y] 200—
100 —
0] 5
| l l I | ‘
—10 -5 0 5 10 - 15
Neuron 3
Figure 29. Neuron 3 For The Set Of Five Parallel Neurons
As The Threshold Varies, The Probability Of A Correct Decvision Changes
0.5 -
Probability,
0.45
Of An >
Incorrect
Decision
0.4 —

f | [
-5 0 5
Neuron 3 Threshold

Figure 30. Estimation Decision Error Via Brute Force Variation Of The Neuron Threshold

Stochastic Computation

-51 -

Ply | Hy] Ply | Hq]
300 —
200 —
Ply]
100 —
-0
| | | ! !
-10 =5 0 5 10 15
Neuron 2
Figure 31. Neuron 2 For The Set Of Five Parallel Neurons
As The Threshold Varies, The Probability Of A Correct Decision Changes
0.5 -
Probability
Of An 0.48 —
Incorrect

Decision 0.46 —

0.44

[| |
-5 0 : 5
Neuron 2 Threshold

Figure 32. Estimation Decision Error Via Brute Force Variation Of The Neuron Threshold

Stochastic Computation

-52-

Ply | Hgl Ply | Hq]

400 — 7[;

300 - | SN
Ply]l 200
100 —
-0

T | | I |
~10 -5 0 5 10 15
Neuron 1

Figure 33. Neuron 1 For The Set Of Five Parallel Neurons

As The Threshold Varies, The Probability Of A Correct Decision Changes

0.5

Probability?*>

Of An
Incorrect
Decision

0.35 —

| | |
=5 0 5

Neuron 1 Threshold

Figure 34. Estimation Decision Error Via Brute Force Variation Of The Neuron Threshold

Stochastic Computation

-53-

Weight Digit 6 Digit 7 BER Parameters
Neuron Vector Mean Variance | Mean Variance | Threshold MinP,
5 We—Wq | 5418 3.52 -4.521 2.346 -0.25 0.0034 .
4 We—Wq | -1.067 7.06 -1.35 5.08 1.34 0.42
3 We—Wq | -0.299 5.67 -1.72 3.87 1.28 0.37
2 We—Wy | .-0.244 5.47 -0.654 6.04 -1.56 0.435
1 We¢—W5 | -0.834 3.52 0.567 4.01 0.35 0.34

TABLE 3. Neuron Projection Statistics

Ideally, it would be nice if perfect decorrelation occurred between all neurons under both
hypotheses. Then the Central Limit Theorem could be invoked, and the Gaussian outputs of the
five neurons could be assumed statistically independent under both hypotheses. The actual

covariance of the neurons under both hypotheses is seen below. The tabulated values are the
Els;s j]
VELs?1E[s}]

hypothesis 6 results are below the diagonal.

, where s; is x;—u;. The hypothesis 7 results are above the diagonal. The

Neuron 5 Neuron 4 Neuron 3 Neuron2 | Neuron 1
Neuron 5 | 1 -0.43513 0.09990 0.03745 -0.099
Neuron 4 | -0.005255 1 -0.21411 -0.21810 -0.01400
Neuron3 | 0.483652 | -0.294616 1 0.4770 -0.09981
Neuron2 | 0.473566 | -0.069312 | 0.442220 1 -0.156165
Neuron 1 | -0.060548 | 0.005252 | -0.046695 0.040725 1
TABLE 4. Covariance Of The Neuron Projection

A few of the covariances are quite bad. Consider neuron 5 and neuron 3, under the hypothesis
an image of a Six was seen. Their covariance is 0.48, which is high. However, note the

corresponding covariance for the same two neurons under hypothesis 7 is low, only 0.10. This

Stochastic Computation

-54 -

seems to be the theme for all the high covariances below. Averaging the two hypotheses

absolute value covariance’s for the neurons yields the tables below.

v Neuron 5 | Neuron4 | Neuron3 | Neuron2 | Neuron 1
Neuron 5 1 0.220 0.292 0.256 0.080
Neuron 4 0.220 1 0.254 0.144 0.010
Neuron 3 0.292 0.254 1 0.460 0.073
Neuron 2 0.256 - 0.144 0.460 1 0.098
Neuron 1 0.080 0.010 0.073 0.098 1

TABLE 5. Covariance Of The Neuron Projection

Most covariances are good. Only the neuron 2 - 3 combination is still high.

9.2 Example With 7hree And Five Images

In this section, we look at the actual performance of five neurons working ih parallel on a Three
and Five digit image set. The five top ecigenvectors for the Three and Five images were
calculated, and eigenvector differences used to construct five weight Vecto‘rs,' W through Ws.
The results ére shown below. The solid histograms and curves are for hypothesis Three. The
dotted curves are for hypothesis Five. There was a total of 1459 Three irﬁages and the same
number of Five images used in the analysis below for each neuron. The vertical linve’ topped by a
small bullet denotes the brute force optimum threshold equal to the minimum of the 6 & 7 digit

image BER curves.

Stochastic Computation

-55-

Dotted: Ply|Hs],Solid: P[y| Hs]

300 | fﬁ\
200
Ply]
100 —
0o e
| | l i
-5 0 5 10
Neuron 5

Figure 35. Neuron 5 For The Set Of Five Parallel Neurons For The 3/5 Images

Dotted: Pyl Hs1,Solid:P[y| Hy]

300 — XK
200 —
Ply]
100 —
-0 %
| | | |
-5 0 5 10
Neuron 4

Figure 36. Neuron 4 For The Set Of Five Paralle]l Neurons For The 3/5 Images

Stochastic Computation

-56 -

Dotted:P[y|Hs],Solid:P[y|H;]

300 /“—"..
200
Ply]
' 100 -
-0
| I | I
-5 0 5 10

Neuron 3

Figure 37. Neuron 3 For The Set Of Five Parallel Neurons For The 3/5 Images

Dotted:P[y|Hs],Solid: P[y| H;]

300 —| 7%

200
Ply]

100 —

-0 —
| I I |
-5 0 5 10
Neuron 2

Figure 38. Neuron 2 For The Set Of Five Parallel Neurons For The 3/5 Images

Stochastic Computation

-57-

Dotted: P[y|Hs],Solid: P[y| Hs]

300 —

200 —

100 —

Neuron 1

Figure 39. Neuron 1 For The Set Of Five Parallel Neurons For The 3/5 Images

The mean and variances for the two hypotheses are shown below, along with the optimum

threshold and the probability of error obtained for that neuron using that threshold.

| Weight Digit 5 Digit 3 BER Parameters
Neuron Vector Mean Variance | Mean Variance | Threshold MinP,
5 Wis—Ws | -2.39 3.44 2.63 3.10 . -0.001 0.089
4 Wis—Ws | 053 3.625 0.37 3.07 - 0.7895 0.456
3 Wi—Ws 1.53 3.46 0.92 3.78 2.579 0.451
2 Wsi—Ws | 3.045 5.74 3.73 3.82 2.211 0.417
1 Wsis—-Ws | -0.44 3.53 1.14 4.57 -1.21 0.338

TABLE 6. Neuron Projection Statistics

The covariance of the neurons under both hypotheses is seen below. The tabulated values are
Els;s;]

VE[s?1E[s7]

the , where s; is x; — ;. The hypothesis 3 results are above the diagonal. The

Stochastic Computation

-58-

hypothesis 5 results are below the diagonal.

Neuron5 | Neuron4 | Neuron3 | Neuron2 | Neuron 1
Neuron 5 1 0.16 0.40 0.68 0.5
Neuron 4 -0.24 1 0.22 0.08 0.40
Neuron 3 -0.55 0.17 1 0.26 0.05
Neuron 2 -0.59 0.01 0.29 1 0.36
Neuron 1 0.30 0.24 -0.55 -0.12 1

TABLE 7. Covariance Of The Neuron Projection

9.3 Soft Decision Numerics With The 3 And 5 Image Set

To illustrate the benefits obtained from soft decision decoding, we shall use neurons 2, 3, and 4
above. We do this for two reasons. First, this subset of three neurons has similar individual
P gyvor, Which yields an example closest to the idealized, equal € discussion above. Second, this
subset has minimal corrélation between them, under both hypotheses, yielding as close to
ihdependent output’s as we could get. The theoretical hard decision probability of error for the

three equally weighted neurons in a voting scenario is denoted by &' in the equation below.

g = (1 —-—86,) €384 + €, (1 - ¢83) &4 + 8283(1—84) + €, €3 &4

Equation 30. Probability Of Neurons 2, 3, And 4 Together Making A Hard Decision Error

The theoretical hard decision result is 0.412, slightly better than the 0.417 performance of
neuron 2. The actual hard decision performance obtained by tallying up the three neurons for the

two sets of 1459 images under each hypothesis was 0.441, worse than neuron 2 acting alone, yet

Stochastic Computation

-59-

better than either neuron 3 or neuron 4’s individual performance. The soft decision performance
was obtained by equally summing the probability of each hypothesis being true, given the input

image X.

H,

> .
3 P,[H;|X] g > P;[Hs|X]
1 e (Nz,N3,N4) HS te (N23N3’N4)

Equation 31. Soft Decision Rule

Physically, this was obtained by calculating the mean and variance of the projectidn data from

the two sets of images, and constructing the sigmoid function seen below.

(y - ny) (y - us)

. 20, 265
e _ e
PlyilH;] — PlyilHs] o3 os
Ply;IH3] + Ply;lHs] — G -w) G-
e 20, e 265,
+
Gi3 Gs

Equation 32. Soft Decision Sigmoid Computed For Three, Five Image Example

Each image was passed through the sigmoid, and the fhree neuron outputs wére tallied. If the
sum was positive, H3 was chosen. If the sum was negative, Hs was chosén. The resulting soft
decision error performance was 0.411, which is better than the best neuron (number 2) making a
decision alone. A useful approximation to the soft error performance can be constructed as

follows. Assuming the Central Limit Theorem holds, the total soft error is upper bounded by

Stochastic Computation

-60 -

probability tails of the sum of the three neurons, without sigmoids, spilling over a threshold of

0. That is, construct the sum below.,

Y= WyeX + WyeX + W eX

Equation 33. Soft Error Upper Bound Estimate

The projections are assumed statistically independent, and each projection is Gaussian under the
CLT assumption, under both H 3 and Hs. Thus, the random variabie Y will also be Gaussian,
under both hypotheses. Thus Y given H3 occurred has mean 2.44, and variance 10.67.
Similarly, Y given Hs occurred has mean 0.985 and variance 12.825. This estimate then

becomes the equation below.

H3 Hs
E Er
rfc \/E G3] * fc \/E Gj }

PSoft Estimate =) = 0.310

Equation 34. Soft Error Example Performance Estimate

The soft performance more closely agrees with the ideal hard performance (0.412) than the
estimated upper bound for soft performance. Thus, the example indicates the correlation
between the neurons does degrade the hard and soft decision performance. Implémentatioﬁ of
soft decoding brings the system to approximately where ideal hard performance should be.
Many (= 25) other runs were made using all three databases, and this example’s results were

typical of hard versus soft performance behavior. That is, using a soft decision technique usually

Stochastic Computation

-61 -
yielded performance on par with the theoretical independent neuron, hard decoding P .

10. Approximating The Tanh Function

In this section, we investigate how well the equal variance Tanh form theoretically works when
the variances are unequal. Recall that the sigmoid for equal conditional Gaussian projection

pdf’s was the following.

: Ly — Wy B + Ko
afpe [-7)] e top plmin
anh (Be | x - T B o2)

Equation 35. Recapping The Equal Variance Sigmoid

The method of analysis to study how well the sigmoid fits a non equal vari}ancve situation is the
following. We can always map a pair of random variables with two different means into a pair
with means equal to + 1 by shifting and scaling the original pair simultancously via the map
y=me(X = b). No information is lost in this map, in that it is a lineér map, and hence
bijective. However, now the variance of each of the transformed pair is fixed. Thus, by studying
the case with means equal to + 1, and unequal variances for the two raﬁdom yariables, we
should obtain an idea of the robustness of the Tanh approximation. For purposés of comparison,
we shall first set the variance 6_; 2 of the random variable with u = —1 équal to 1, and vary the

variance o, | 2 of the random variable with p = +1.

First, we track the change in the threshold as the variance is altered. Previously, the threshold

was —L—L—l—;—m. Now a second-order approximation to the deviation of the threshold from the

Stochastic Computation

-62 -
above ideal case is derived using the the plot below, which shows the actual curve which results

from using MAPLE to solve for the intersection point of the two random variables.!'®} The solid

curve is the exact MAPLE result. The dashed and dotted lines are the approximations to follow.

Threshold Variation With Variance

Threshold
Offset From
Hi + Mo
2

Figure 40. Threshold Variation With Variance

A second-order approximation to the deviation of the threshold from the above is 0.075 (6,2 -

1), where the subscript 1 means the variance at p = 1, and the variance at p = -1 is assumed = 1.

Using this second-order threshold offset correction, four functions were studied for their
goodness of fit. These were Minimum Variance, Maximum Variance, Arithmetic Average, and
Geometric Average, of the two variances, when their means have been mapped to + 1. The best

fit was achieved when the geometric average was used. Thus, only this fit curve will be shown

Stochastic Computation

below. The exact equations to be used for

therefore the following, foro_; = 1.

s +
o= 2T RO 6075
2
+
o= M0 6444
, 2
"(71(71 - Y=
G-1

-63 -

determining the Tanh parameters B and 0 are

2

o}

[1} - 1] Foro; > 1
G-1
c 2 :

[1] -1 Forc51<‘1
o1 i

1
G1

Equation 36. Second Order Tanh Approximation

Plots for various ;| are seen below. The

bold curves are the Tanh approximations. The

Gaussians are shown, as well as the exact equal probable a priori expression (i.e., the difference

of the conditional Gaussians over the sum of the conditional Gaussians).

Stochastic Computation

-64 -

Variance 1.5

Tanh(B (x - 6))

Figure 41. Left-Hand Side Variance 1.0, Right-Hand Side Variance 1.5 .

Variance 2.0

Tanh(B (x - 6))

Figure 42. Left-Hand Side Variance 1.0, Right-Hand Side Variance 2.0

Stochastic Computation

- 65 -

Variance 3.0

Tanh(B (x -96))

Figure 43. Left-Hand Side Variance 1.0, Right-Hand Side Variance 3.0

Variance 4.0

Tanh(B (x - 0))

Figure 44. Left-Hand Side Variance 1.0, Right-Hand Side Variance 4.0

Stochastic Computation

- 66 -

Variance %

Tanh(B (x - 6))

Figure 45. Left-Hand Side Variance 1.0, Right-Hand Side Variance ;—

. 1
=
Variance)

Tanh(B (x - 0))

Figure 46. Left-Hand Side Variance 1.0, Right-H;'«md Side Variance :1‘—

-67 -

Variance TIO~
1
0.5 —
Tanh(B (x - 0)) 0—
—0.5
1

Figure 47. Left-Hand Side Variance 1.0, Right-Hand Side Variance Tl()—

Left-Hand Variance 2.0, Right-Hand Variance 3.0

Tanh(B (x - 6))

| | l | |
—10 =5 0 5 10

Figure 48. Left-Hand Side Variance 2.0, Right-Hand Side Variance 3.0

Stochastic Computation

-68 -

Left Variance 2.0, Right Variance 4.0

Tanh(B (x - 8))

l | | l l
—10 =5 0 5 10

Figure 49. Left-Hand Side Variance 2.0, Right-Hand Side Variance 4.0

Left-Hand Variance 2.0, Right-Hand Variance 6.0

1 —
0.5
Tanh(B (x - 0)) 0—
05—

1 |

I | I] |
10 -5 0 5 10
X

Figure 50. Left-Hand Side Variance 2.0, Right-Hand Side Variance 6.0

Stochastic Computation

- 69 -

The conclusion to be drawn from these plots is that a Tanh function provides an adequate
approximation to the soft decision sigmoid, as long as there is a separation of the means and the

conditional variances are of the same order of magnitude.

11. Estimating The Sigmoid : A Case Study With Real Data

In réal data processing situations, the equal variance assumption does not hold. As-an eﬁ?ample,
glance over the means and variances for the Six and Seven image projectioﬁs above.’ In this
section, we get a rough feel for how well the Tanh approximation holds ip the non equal
variance scenario. To understand what effective G , gcsive t0 use with the Tanh form, we lodk at
Setting G ¢ rocrive €qual to the minimum, and maximum, of the two hypothesis variances, as well
as using the geometric and arithmetic mean of the two variances. The differént curves are
shown below, as well as the optimum curve obtained from the ideal ﬁinction .ratio of the
difference of the Gaussians over their sum. For the purposes of the plots below, the gain y and

threshold 6 are the following quantities.

n1—Ho B1 + Mo
Y = ———5 6 = —
2 2
2 O ¢ fective
Min[6, , 6¢] Max[o1 , 69]
c1 + Oy

5 Vo1 Oy

Equation 37. Effective Variance’s For Tanh Approximation -

Stochastic Computation

-70 -

We have dropped the second-order threshold correction in the real data calculations because we

found the results were not influenced by them.

In the plots below, the solid lines with the small bullets along the curve is the ideal sigméid, the
difference of Gaﬁssians over the sum of Gaussians. The dotted curves are the minimium and
maximum variance estimators. The solid curve is the arithmetic mean, and the dashed curvé is
the geometric mean estimator. Relevant portions of the two hypothesis pdf’s are also shéwn as

solid curves.

Digit 6 , 7 Neuron 5 : Estimating y and 0

1
0.5 4
z 0—
—0.5
-1 -

J | | i f

—4 -2 0 2 4

y

Figure 51. Estimating Sigmoid Gain(y) and Offset(0)

Stochastic Computation

-1 -

Digit 6 , 7 Neuron 4 : Estimating y and 6

1+

0.5 —

Figure 52. Estimating Sigmoid Gain(y) and Offset(0)

Digit 6 , 7 Neuron 3 : Estimating y and 0

Figure 53. Estimating Sigmoid Gain(y) and Offset(6)

Stochastic Computation

-72 -

Digit 6 , 7 Neuron 2 : Estimating y and 0

0.5+

Figure 54. Estimating Sigmoid Gain(y) and Offset(6)

Digit 6 , 7 Neuron 1 : Estimating y and 0

Figure 55. Estimating Sigmoid Gain(y) and Offset(0)

Stochastic Computation

-73 -

The neuron 5, 3, 2, and 1 Tanh approximations are fair. In each of these cases, there is some
separation of the means of the two conditional distributions‘ which the Tanh function can take
advantdge of. For neuron 4, the Tanh approximation is poor. This is to be expected, siﬁce the
means of the two distributions are both equal to about zero. The information in these cases is in
the fact that there are differences in the second moments, the variance. However, the Tanh
sigmoid function was developed under the assumption that there would be a separation in the
~> means, and identical conditional variances. For almost equal means, the Tanh gain term, v, is
very small. The Tanh sigmoid is well approximated in this case by a straight line equal to

(M1 = 1o) (2 x =(py + po))
26°

. This straight line is seen in neuron 4’s plot. However, the

optimum sigmoid given by the difference in the conditional Gaussians, over their sum, is

shaped more like a Mexican hat, so the line is a poor fit.

This example points up the fact that the Tanh function is a good sigmoid only Whé_n there is a
reasonablély wide separation of the means for the two conditionai hypotheses. When the fneans
coincide, the Tanh sigmoid doesn’t help the network implement soft decision decoding. Later
on, we shall reinvestigate this example in much more detail. First, however, We study the

performance tradeoff between soft and hard decoding.

12. Quantifying And Visualizing Soft Versus Hard Decision Decoding

As described above, a nonlinear function acting on the projection W e X can move the system
from the hard decoding decision regime to the soft decision method, sometime resulting in

significant performance improvement. To quantify this improvement, and provide an aid to

Stochastic Computation

-74 -

visualizing how the improvement is obtained, a three neuron single layer network is studied

under both hard and soft decision decoding operation.

Consider the three-dimensional input space X = (x; x2,x3)T. A point X e R3 is-either a
sample from the probability distribution P[X|H] or P[X|H o]- In the example below, set the

mean and correlation matrix equal to the quantities given.

1 10 0]
uls[u] C, = |010]
+1 00 1]
_q 10 0]
po = [—1} Co = (010
-1 100 1]

Equation 38. Three Neuron Soft Versus Hard Decoding EXample

Since both hypothesis correlation matrices are diagonal, the standard basis vectors yield

statistically independent outputs when used as weight vectors for the three neurons.

1 0 0
W, = |0 W, = 1 W; = |0
0 0 1

Equation 39. Three Neuron Example Weight Vectors

Due to the symmetry of the two hypotheses density functions, the optimum threshold for each

neuron/dimension is zero. Thus, a hard decision decoding rule for this example is the following.

Stochastic Computation

=175 -

Sign[W,; e X]

1N g K

Hy

Equation 40. Three Neuron Example Hard Decision Rule

The hard decoding rule divides R into eight regions. Each region is assigned an overall system
deciéion hypothesis, H; or H,, depending on which sign dominates among the .three
coordinates (x;,x,,x3). These eight regions are shown below. The dark c.ubes‘ are fegions
where the hypothesis H; is the system decision. (Recall /1 is the random Var@able with mean

wp = (1,1,1) T) The wireframe cubes are areas where H , is the system decision.

Figure 56. Hard Decision Regions

Stochastic Computation

-76 -

For soft decision decoding, the probability distributions have symmetries which we take
advantage of. For soft decoding, a point X € R® is assigned that hypothesis whose mean,

Ly or Wy, lies closest. The distance used here is the standard Euclidean metric.

1B - Al = V(b —a)? + (by — a3)® + (b3 — a3)?

-1
1) 11
1

H,
+1 >
[[x - fal [2 1]x-

+1 HO

Equation 41. Soft Decision Metric For Points X In R3

Below, a picture of the two hypothesis distributions is seen. The lightly shaded sphere is
intended to represent the Gaussian distribution P[X | H o] with mean vector (.-1, -1, -1"). The
more darkly shaded sphere is intended to represent the Gaussian distribution P[X | H,] with

mean vector (+1, +1, +1).

Stochastic Computation

-77 -

Figure 57. Soft Decision Spherical Distributions

The optimum division of R? is given by the hyperplane of points equidistant to both mean

vectors, which is not shown since it would blot out the nice spheres !

Contrasting the soft and hard decoding rules, the hard decoding rule is a ragged approximation
to the soft decisior; hyperplane. The P, improvement is the volume in | R3 which is
misclassified by the jagged edges of the hard decision boundary. If the misclassiﬁed probability
distribution has a significant probability of occurrence in these misclassiﬁed volumes, the
improvement in migrating from a hard decision to a soft decision rule can be signiﬁcant. The:1t is,
.if there are significant probability tails of the conditional distributioﬁs? then soft decision
decoding helps the system performance. For systems which perform well under hard decoding,

marginal performance gains are realized. However, as we shall see, and as we advanced above

Stochastic Computation

-78 -

in our beginning statements, typically each neuron individually does poorly in making a
decision. Hence, in real life situations, soft decoding helps system performance. We shall

quantify this improvement in an example in a later section.

13. Multiple Neuron Hidden Layer Architecture

In this section, we compare the hard and soft decision decoding output density functions. The
two hypothesis projections are Gaussians with equal variance o? and means p; = —pgy = 1.
The optimum sigmoid is of the form Tanh(B x). The threshold is zero since the means are

symmetrically arrayed.

For hard decoding, the sign of the individual neuron projection’s W e X is tallied for the
neurons. The resulting sum’s sign yields the decision : + — H{,— — Hj. The hard decoding

output density functions are Gaussians by our application of the central limit theorem.

For soft decision performance, we use the sum of the Tanh output’s to arrivé ét a decision. If the
Tanh sum isv positive, we conclude H, otherwise we conclude Hy. This is because Tanh is a
monotonically increasing function which passes through the origiﬁ. A negative input to the
Tanh map implies, for that neuron, H is more probable. Similarly, a positive 'inpﬁt implies H
is more probable. The Tanh function preserves the sign, and allows us to make a system
decision based on the sign of the sum of the Tanh neuron outputs. The nonlinear mapping of
the Tanh function in the positive and negative regions however allows us to optimize the

cooperative nature of the eleven neurons working together to arrive at system decision.

Stochastic Computation

-79 -

To determine the soft decision performance improvement over the hard decision performanée,
we need to calculate the probability distribution for the Tanh output. This is done using the
change of variable technique.®” Let z equal the output of the Tanh mapping. The prébability
density function for z is detailed below, for the case of identical variances for lthe two

conditional projection random variables.

Uy — Ho nwp + Ho .
BE__262 T:———2 z=TanhI:[3(x—‘T)j|

d arcTanh(z) I

» arcTanh(z) +
B dz *

B T

pz(z) =

Equation 42. Calculating The Tanh Random Variable Output Probability Density Function

d arcTanh(z) 1

s L
dz 1 — z?2 4

arcTanh(z)

i
i1l

1+‘z}
1 -2z~

Equation 43. Interim Expressions Used To Arrive At The Results Below

2

~ arcTanh(z) F T

() 2
20

B (1-22) V2 n &2

e

p-(z) = For -1 <z < 1, And Zero Elsewhere

Equation 44. Probability Density Function For z With Arbitrary § and Threshold T

Under the assumption of symmetrical means, and identical variances for the two conditional

projection random variables, the threshold T is zero, and 3 becomes Lz Thus, the density for z
c

Stochastic Computation

-80 -

becomes the following.

G e

pz(vz) = i (1_22) m—

For -1 <z <1, And Zero Elsewhere

Equation 45. Equal Variance, Symmetrical Mean’s, p And Threshold Substituted

A plot of the transformed density function is seen below. Below, we have set the means (jtq,1)

to +1, and vary the variance of the projection pdf’s, which for both hypotheses is o2

Mean * 1, Variance Is Varied

Probability 0.2

Figure 58. Mean = 1, Variance 1 Input Gaussian’s Pdf’s

Stochastic Computation

-81 -

The Small Overlap Situation Leads To A pdf For z Which Peaks At 1

4 _|
Probability
| -
-0
| | | | |
-1 0.5 0 0.5 1
Z

Figure 59. Tanh Output For Mean + 1, Variance 1 Input Gaussian’s

The above plot is the output pdf of a Gaussian random variable with meén 1,-and variance 1
passed through a soft decision Tanh sigmoid constructed under the assumption that the two
conditional projections pdf’s were mean *1, and variance 1. The pdf for a.Géussian with mean
-1, and Variénce 1, passed through the same sigmoid, would have an identical shape, but

reflected over the vertical axis.

The above plot agrees with our intuition of what the soft decision pdf outputrshould look like.
For small pdf overlap, and resulting small tails under the threshold, we expect that the
probability of a +1, given that our projection W e X was above the threshold, would be close to
+1 with large probability. Furthermore, the probability should decay or roll off as we approach

-1, which is also seen.

Stochastic Computation

-82-

Projections Mean’s Are 1, Variance’s Are 2,3,4,5,7,10

1
Probability
: 0.5 -
-0
| | l | }
—1 0.5 0 0.5 1
z

Figure 60. Tanh Pdf For Various Variance’s And Mean + 1

The above plot again agrees with our intuition of what a soft decision outpﬁt should look like.
Consider the limit as 6 — oo. In this case, we would expect the soft output to approach a
Gaussian centered at 0, with a broad variance. This is because in this limit, éaéh neuron’s output
becomes apﬁroximately uniform over the interval (—co , oo). Thus, the probability density of
the neuron output would be Gaussian, with approximately a zero mean, aﬁd a large variance.
Looking at the plots above, as the conditional variance is increased from 1 to 10, We indeed see
the mean approach zero, and the soft output variance broaden. The behavior of the mean and
variance of the Tanh output is quantified in the plot below. For this plot, the mean of the input
Gaussian was fixed at 1, and the input variance varied. Note that the mean approaches zero, and

the output variance approaches 1, as the input variance — oo.

Stochastic Computation

Output (.5 —|

) Moment

Figure 61. Tanh Density Mean And Variance As A Function Of Input Variance

13.1 Calculating P1¢ Versus P52,

-83-

Output Tanh Random Variable Mean And Variance

Variance

0.1

Input Gaussian Variance With Mean = 1

l
1

l
10

!
100

The probability of error for a single pair of conditional pdfs centered at + 1, with different

variance’s, is seen below in the table and plot.

The table below shows the individual probability of error for a single neuron with conditional

pdf’s centered on + 1, and as the variance is varied.

Variance

1

2

4

8

16

32

64

128

256

Pe

0.159

0.240

0.309

0.362

0.401

0.430

0.450

0.465

0475

TABLE 8. Probability Of Error Versus Variance Of Symmetrical Projections

Stochastic Computation

-84 -

Probability Of Error Versus Variance Of Symmetrical Projections

0.5+

Probability
_ Of Error

0.1+

| ! | t |
1 10 100 1000 ©~ - 10000

Variance

Figure 62. Probability Of Error Versus Variance Of Symmetrical Projections

The above graph is the function of the variance below.

1
Peryor = ?Er ¢

1
o V2

Equation 46. The Probability Of Error For Two Gaussians At + 1, With Identical Variances

The hard decoding probability of error for M neurons ensemble is given by the sum below. To

avoid ties, we shall consider M to always be odd.

Stochastic Computation

-85 -

M
PMd = ¥
M

Equation 47. Hard P g,,,,, For M Neurons

The probability of a single neuron being incorrect is p. Since the Tanh function is
monotonically increasing, and maps zero to zero, the total probability of the Tanh output below
zero for the conditional density with mean at +1 must equal the Gaussian tail of the same
conditional density below zero. This is the connection between calculating the pfobability of

error for a single neuron before and after the Tanh mapping. This relation is shown below.

2 2

(2 Tz | _
(m n[«/_—_ll_z] w)

26"

—— o

1 .
dz = — Erfc
—0 n(l-z-) V2=« 2

S
Il

H
V2 o
Equation 48. Relation Between Probability Of An Error Before And After The Sigmoid

As a check, we set ; = +1, ug = -1, and 6; = 6y = 1. Numerically integrating using
MAPLE, we find the soft integral and the Erfc expression above both yield 0.158655. This soft

error integral result implies the Tanh density function was calculated correctly.

For a system of M neurons; if all outputs are statistically independent, then the soft systém

performance is seen below.

Stochastic Computation

Equation 49. Soft Pg,,,,. For M Neurons

The plot below compares P4 versus P/t for the cases of 11, 51, and 101 neurons in

parallel, as a function of the variance, for the conditional means at £+ 1. The upper curve is the

hard decision result, and the lower curve the soft decision result.

11 Neuron’s : Soft Versus Hard Decoding
For Mean * 1, Projection PDF’s

0.4 —

0.3

Probability Of
System Error 0.2 -

0.1+

| I ' —
1 10 100
Variance Of The Projection PDF’s

Figure 63. 11 Neuron Variance Versus P .,

For the 11 neuron case, to be sure everything is kosher, we conduct the following experiment.

Using MATLAB, we generate 200,000 sets of 11 numbers, drawn from a normal distribution

Stochastic Computation

-87-

with mean 1, and variance 30. With 100,000 sets, we conduct hard decision decoding. With the

other 100,000 sets, we pass the eleven numbers through a Tanh function, with gain B equal to

3%. These eleven Tanh outputs are then tallied, and thresholded about zero. From this

simulation run, we obtain a P74 and a P;?;’rfo’;. These are shown on the above graph as the solid
vertical line segment with bullets on the end. The numerical simulation agreement with the

theoretical curves is very good, for both the hard and soft decoding.

51 Neuron’s : Soft Versus Hard Decoding
For Mean * 1, Projection PDF’s

0.3
Probability Of9-2 — Soft
System Error
0.1 Hard
-0 v
| |] |
1 10 100

Variance Of The Projection PDF’s

Figure 64. 51 Neuron Variance Versus P, -

Stochastic Computation

- 88 -

101 Neuron’s : Soft Versus Hard Decoding
For Mean % 1, Projection PDF’s

0.3
0.2 -
Probability Of Hard
System Error
0.1 — Soft
-0 _
| | o
1 10 100

Variance Of The Projection PDF’s

Figure 65. 101 Neuron Variance Versus P,

13.2 Soft And Hard Decoding Versus The Number Of Neurons

We now look at how soft decision decoding does as the number of neurons in any one layer is
increased. Here, the mean of the two projection pdf’s is set to + 1 and the variance to 1 for both
hypotheses. The p ., for the transformed Tanh pdf is calculated, and a soft decision curve
obtained, as a function of the number of neurons. We assume for the soft decision that the
central limit theorem will yield a Gaussian pdf for the sum of the soft neuron oufputs. As the
plots above show for the transformed Tanh output densities, individual neuron’s with
conditional projection densities which overlap a reasonable amount yield a Gaussian-like
sigmoid transformed pdf. Thus, typically for numbers of more than about ﬁve neurons per

layer, applying the central limit theorem means the sum of the Tanh outputs will approach a

Stochastic Computation

-89 -

Gaussian distribution. We also assume the neuron outputs are statistically independent, so that
the soft decision Gaussian pdf will have a mean of # ., and a variance of n 6,2, where z is the

output of a single neuron’s Tanh mapping. The system probability of soft error is the area of the

) i] ‘ #Neurons
resulting Gaussian random variable > z; tail under the zero threshold. This was
i=1
.) 1
calculated for single neurons above, and shown to be P,,,, = — Erfc(B).

2 o V2

To use the equation above, the output SNR is needed as a function of the input SNR. That is, for

u .)
Z as a function of By is

o, oy

y =W o X, and z = Tanh(y), to determine the system soft error,

needed. The solid curve below shows this relationship. The dotted curve shows the identity

l'l’lap SNRout = SNR input~

Tanh SNR Output Versus Projection SNR Input

SNR(Out)

0.1 4

SNR
In

Figure 66. Tanh SNR Output Versus Projéction SNR Input v

Stochastic Computation

-90 -

The plot shows the SNR map is the identity for small SNR;,, and exceeds SNR, for large

SNR ;,. Thus, a lower bound on system soft P, can be obtained by using the input SNR

- B in the Erfc equation shown above. This yields the two plots below. The vertical bar is

Oy

the samé MATLAB simulation run described above.

Varying‘ The Number Of Neurons For Mean %1, Variance 1

0.1

0.01 —

Probability
Of Error 0.001 —

0.0001 -

le-05 —

| ! I |
-0 5 10 15 20 25
Number Of Neurons In The Single Layer

I |

Figure 67. Varying The Number Of Neurons For p = 1,6 = 1

Stochastic Computation

-91-

Varying The Number Of Neurons For Mean *1, Variance 30

0.5 —

0.2 -
Probability
‘Of Error 0.1

0.05 -

I | |
-0 50 <100
Number Of Neurons In The Single Layer

Figure 68. Varying The Number Of Neurons For Mean 1, Variance 30, Projections

As can be seen from the plots, soft decision decoding has an increasing performance advantage

over hard decision decoding as the number of neurons increases..

14. Multiple Layer Networks
14.1 Linear Versus Nen-Linear Networks

The discussion above centered on how to derive a suitable set of weight vectors for a single
layer of neurons. For a linear network (i.c., without nonlinear sigmoids on each neuron outpﬁt),
a multiple (L) layer network has no advantage over a single layer network. This is due to the
fact that a linear multiple layer network can be rewritten as a single layer network. That is,

suppose layer i takes the set of inputs X; and maps these to an output set of neurons Z ;. This

Stochastic Computation

-9 -

mapping can be achieved by a not necessarily square matrix M; such that Z; = M; ¢ X;. A
cascade of n layers can be written as one matrix transformation M = My eM(;) - - - M.
This yields a single layer network with transfer matrix M, which maps the first input vector X

directly to the final output vector Z, : Z, = Me X,;.

The linear network example implies the power of a multilayer network is due to the nonlinear
featﬁres of the computation. Above, nonlinearities were introduced via sigmoids which fnodify
the neuron’s projections onto a weight vector. However, there is typically anladdi_tional source
of nonlinearity in biologicél neural systems. This second source of nonlinear operation is that
introduced by lateral inhibition. Before we study how lateral inhibition modifies network

performance, let us study why we would need lateral inhibition.

14.2 Lateral Inhibition And Winner Take All Networks

‘A Winner Take All (WTA) network is seen in the figure below. The lateral arcs between the
cluster of three neurons {M,M,,M;} serve to suppress the output of all neurons except the

strongest neuron. The largest magnitude neuron output is unchanged.

Stochastic Computation

-93 .

Vote

Figure 69. Winner Take All Neural Network

The lateral inhibition which serves to implement the WTA function has been studied by s¢veral
authors.?11 [221 231 When the lateral weights are symmetric and equal in rﬁagnitude, the WTA
function selects from the set of neuron outputs z;, the largest output and forces the femaining Z;
outputs to zero. This operation is statistically equivalent to selecting the largest element from
the set {z;}. Before proceeding with an explanation of what this sampling behavior implements,
recall how a single neuron makes a decision. The hypothesis test’s were baséd on the difference
between the means of the two hypotheses P[H IX] ahd P[H, IX], projected onto the weight
vector for that neuron. A single layer consists of several weight vectors b"looking" in different
directions of the input space, and expecting the projected means to differ. That is, the single
layer decision rule was dependent on case I above occurring. This separatioﬁ of the projection

means does not always occur, as the following texture example will show.

Stochastic Computation

-94 .

14.3 Textures And Lateral Inhibition

Consider the two 32 by 32 pixel textures seen below.

Figure 70. Discrete Pixel Texture

Stochastic Computation

-95-

Figure 71. Uniform Pixel Texture

In both images, the pixels vary between -1(black) and +1(white). The first texture consists of
random pixels which are + 1 with equal probability. The second texture has pixels which are

drawn from a uniform distribution over the interval [-1,1]. Thus, each pixel in both images is a

Stochastic Computation

-96 -

random variable with a mean of zero. However, the discrete & 1 image pixels have a variance of

1, while the uniform pixels have a variance of %

1+1) +1
—fxax=|X- = 0.
2-.[1 {4:|_1

Equation 50. The Hypothesis Pixel Means
2 2
o’ {_1} e Prob Of {_1} . {H} e Prob Of {H} - % ; ;— = 1

1+1
6% = —i—fxz dx =
-1

%.{_1} - %.{fl} = 0

il

Hi

<
il

1l
—
ml"’*

W
L
I +
_ -

-
w|»—n

Equation 51. The Hypothesis Pixel Variance’s

Let hypothesis D be the texture consisting of the Discrete & 1 pixels, while hypothesis U is the
Uniform random pixel texture. We desire to train a neural network to distinguish between the
two hypotheses. Since the pixels are statistically independent of each other in both images, there
is, by a symmetry argument, no preferred direction in the 32 by 32 or 1024 dimensional space
where the images reside. In each direction, the projected means of both hypotheses is zero. For

an arbitrary weight vector, we set the weight vector elements équal to = 1. This is because any

Stochastic Computation

-97-

one pixel is no more important than another, so each weight vector element should have the
same magnitude. The sign flip is due to the pixel symmetry about zero under both H , and H U-
Changing different weight elements sign will allow us to obtain several statistically indépendent
neuron outputs. ‘The independence is shown below. Note that the expectation is taken with
fespect to both the X pixels, and the W pixels. The y; are also Gaussian by the Central Limit

Theorem, for sufficiently large dimension N.

i
E
A
2
il
E
"

yi = i* X, Elyiy;]

k=1024 k=1024
= W, e W, = 3 E[wi(k) wi(k)] kZ E[wi(k) 1 E[w;(k)-]
k=1 =1

It

1 1 5
= 1024 (—(=1) + —(+1 = 0
(3 (D + Z D)
Equation 52. Independence Of The Texture Neuron Outputs
Uncorrelated Gaussian random variables are statistically independent. Since in our example the

images have a total of 1024 pixels, the one-dimensional random variable y = W o X will, under

hypothesis D have mean zero, and variance 1024. Under hypothesis U, the random variable y

will have mean zero and variance 1024 . The two pdf’s for ypandyy are seen below.

Stochastic Computation

-98-

Narrow Distribution Is For The Uniform Texture, Broader Is For Discrete

0.02 —

0.015 -

Probability 0.0] —

0.005 —

-0

| | |
—100 0 100
Projection Value y

Figure 72. Sigmoid For Equal Mean & Different Variance Projection’s

The optimum sigmoid consisting of the difference of the Gaussians over their sum, is seen

below.

Plyp] - Plyul
Plyp] + Plyvl

Sigmoid Function — f(y) =

Equation 53. Mexican Hat Texture Sigmoid

The shape is markedly different from the Tanh form. The Mexican Hat reflects the fact that for a
projection falling near the ori‘gin, hypothesis U is the more likely pdf to have generated that
point. The opposite is true for points far from the origin, where the larger variance distribution

for hypothesis D is more likely to be responsible for the projécted point.

Stochastic Computation

-99 .

|
—100 0 100

Figure 73. Sigmoid For Equal Mean & Different Variance Projection’s

A MATLAB simulation will be used for the purposes of illustration. We generate 50,000

random projections by the method described above, for 32 by 32 pixel images. This yields the

histogram plot below.
10000 — .
5000 —
-0—
l | | | |
—100 =50 0 50 100

Figure 74. Solid Is For Discrete Texture Images, Dotted For Uniform Texture Images

Stochastic Computation

- 100 -

The envelope curve outline here, and in succeeding plots, are analytically the density function
which should be expected. Numeric agreement with theory is good. The tabulated moments

illustrate the agreement.

Discrete Texture Uniform Texture
Mean | Variance | Mean | Variance
Theory 0 1024 0 341.3
MATLAB 0.11 1022.5 0.0 336.2

TABLE 9. MATLAB Texture Moments

Our ultimate goal here is to develop a netwprk which can distinguish these t;)vo textures. Our
previously developed algorithms do not work well with this type of problem. This is because
the information which enables a statistical test to be devised lies in the differihg second
moments of the two densities. Our previous work took advantage of diffeﬁng means. One
approach would be to arbitrarily put a threshold such as the dotted vertical line .in the ‘above
plot, to pick Voff differences in one tail only. However, there is ohly‘ Pp = 0.23, and

Py =0.10, to the right of the threshold, so such a neuron has a

Poror = (0.1 +2 0.77) = 0.435. This is not good performance, althbugh our discussion

above indicates we can obtain good system performance with individual neurdn error rates such
as this, if we use enough neurons in parallel. A soft decision apprdach using a nonlinear
sigmoid helps somewhat. We could implement the full soft decision techniques discussed
; above. We can also apply a pseudo technique which is partially hard and soft, and which we

shall now briefly describe.

Stochastic Computation

-101 -

The pseudo hard-soft technique is interesting because the Mexican hat structure is one often
seen in biological specimens. Consider the Mexican hat shaped curve below, which is the
differehce of the two hypotheses pdf’s. Institute a hard decision rule on the Mexican haf output.
This rule remains a zero threshold test, since we are only eliminating a positive constant
multiplier, namely the denominator term of the full soft decision sigmoid. Hypothesis U (the
moré peaked Gaussian) is chosen if the sigmoid output is greater than zero, and hypothesi‘s Dis
chosen if the sigmoid output is less than zero. Conduct hard decisiqn voting on the thresholded
neuron sigmoid outputs. Our error performance improves by a factor of two, since now we are
implementing a dual tail threshold equivalent to the simultaneous applica“cion' of the two
symmetric dotted thresholds in the figure above. Thus, our P, with softbdecision decoding
becomes 0.37. The performance of this approach lies between true soft and hard performance.
However, it is a simple technique which serves to double the individual neu’ronvl?ermr with only

amild increase in complexity.

Regardless of whether hard, soft or the pseudo technique is implemented, there is still
considerable error inherent in the decision rule. Lateral inhibition is a nonlinear technique which

provides another level of system improvement beyond hard/soft/pseudo perfbrmance.

Stochastic Computation

-102 -

Narrow Distribution Is For The Uniform Texture, Broader Is For Discrete

0.02 —

0.015

Probability 0-01 —
' 0.005 —

I I | | |
-100 —50 0 50 - 100
Projection Value y

Figure 75. Sigmoid For Equal Mean & Different Variance Projection’s

Neurons 11 51 101
Hard 0.329 | 0.174 | 0.094
Pseudo 0.185 | 0.029 | 0.004

TABLE 10. Hard And Pseudo-Hard Error Rates For The Textures

14.4 Lateral Inhibition And Second Order Moments

Lateral Inhibition implements a nonlinearity which complements other features of fhe network.
Lateral inhibition allows us to map the two hypotheses’s decision output pdf’s for
hard/soft/pseudo decoding, into a form which allows access to the second moment in a
statistical test to be performed by a following layer. The specific form of lateral inhibition we

shall first investigate is that which chooses the maximum absolute magnitude output of either

Stochastic Computation

-103 -

the projection W e X directly in hard decision operation, or the nonlinear sigmoid outputs

f(W e X) in soft decision operation.

Lateral inhibition implements an Order Statistic.?*1 251 An order statistic is the probability
density function fér fhe following situation. Draw M samples from a zero mean density P[C]
which is symmetric about zero. Take, in our case, the largest absolute value of this sample of M

nurnbérs. Repeat this experiment, and build a histogram of the results. The histogram Wﬂl, in
the limit of large numbers, have the distribution given by the equation below. On the right hand
side of the equals sign, p(y) is the probability of a single absolute value sample. Thus, p(y) is

twice the Gaussian density for x > 0, and zero for x < 0.

0

y M-1
PY(y) = M p®) {j p(2) dz}

where y € (-0, ®)

Equation 54. Maximum Order Statistic Formula

The maximum absolute order statistic probability density functions for the discrete and uniform
pixel textures are seen below. The sample size order’s calculated are 11, 51, and 101.kThe
smaller mean order statistic corresponds to the smaller variance hypothesis, U. The larger mean
order statistic corresponds to the larger variance hypothesis, D. The distributions for Uand D
are also shown for comparison purposes. Note that as the order increases, the‘mean of both D
and U order statistics increases. This agrees with our intuition, since with a larger sample size,

we are more likely to pick a larger magnitude point from either distribution.

Stochastic Computation

- 104 -

Order Statistic, Maximum Absolute Value Out Of A Sample Of 11

0.05 -
0.04 —
0.03 —
Probability
0.02 —

0.01 —

-0 |

-0 50 100 ' 150
Absolute Value Of The Projection

Figure 76. Order 11 Maximum Absolute Value Order Statistic

Order Statistic, Maximum Absolute Value Out Of A Sample' Of 51

0.06 —

0.04 —
Probability

0.02 —

|
-0 50 100 150
Absolute Value Of The Projection

Figure 77. Order 51 Maximum Absolute Value Order Statistic

Stochastic Computation

- 105 -

Order Statistic, Maximum Absolute Value Out Of A Sample Of 101

0.06
0.04 —
Probability

0.02 —

-0

Y 1

| |
100 - 150

Absolute Value Of The Projection

Figure 78. Order 101 Maximum Absolute Value Order Statistic

Discrete | Above | Below
11 0.165 0.835
51 0.044 0.956
101 0.021 0.979
Uniform | Above | Below
11 0.867 0.133
51 0.946 0.054
101 0.969 0.031
Order | Threshold | Perror
11 45.9 0.149
51 60.3 0.049
101 66.6 0.026

TABLE 11. Maximum Absolute Order Statistic Probability Of Error

Stochastic Computation

- 106 -

MATLAB is used to demonstrate lateral inhibition. Above it was mentioned that the 1024
dimensional input space is isotropic, in that no one direction is preferred over another. We use
this facf to create M weight vectors, and thus M neurons in a single layer. Generate M weight
vectors, each with random + 1 elements. The mean and variance of the projections onto each of
these weight vectors are identical, yet the projections are statistically independent. Implement
lateral inhibition by preserving that neuron output which has the largest magnitude of all M
projections, and force the remaining M-1 neuron outputs to zero. This is a Winner Take All
Network, where we are using the absolute neuron magnitude as the quantity we are competing
among the set of neurons outputs. The order statistics above represent the,pr(;bability density
function of the winner of the lateral inhibition. MATLAB is used to generate 50,000
projections for a series of discrete images, and 50,000 projections for uniform textures.
Histograms were compiled by taking the maximum absolute value sample from successive
samples of sizes of 11, 51, and 101. The agreement of the histograms with théi theoretical

density functions is excellent.

The maximuin absolute order statistic maps two random variables with identicai= means, and
different variances, into a pair of random variables with different means. ‘The order statistic
makes the distributions higher moment available for a succeeding layer to 'con(vluct a 1inear
threshold test on. In this way, a distributions higher moments can be used in a statistical
hypothesis test. Order statistics are also effective in separating distributions which have broad
variances, and means very closely clustered. Recall that the soft non-linear sigmoids also serve
to separate the conditional hypothesis densities. Lateral inhibition coupled with a non linear

sigmoid together form a potent mechanism for pulling apart distributions so that a succeeding

Stochastic Computation

- 107 -

layer can make a hypothesis test with only small tails spilling across the threshold.

Consider using an order statistic to do hypothesis testing. We input a texture for which a
decision is desired. Using our weight vector set, generate a sample of size M, one 'for each
neuron using one of the Weight vectors. Take the maximum absolute value of the set of M
oﬁtputs. Determine a threshold by calculating where the two hypothesis order statistics of size
M intersect. If the maximum from the M sample set for the unknown texture exceeds the above
threshold, decide the texture came from the broader variance pixel texture,landhence is the
discrete texture. Conversély, if the maximum absolute projection lies beloW the threshold,

conclude the texture is from the small variance, uniformly distributed pixel type.

An important fact to note from the order statistic plots is that the overlap of the tails diminishes
as the order sample size increases. Thus, the probability of making an error decreases as the

number of parallel neurons used to obtain the samples is increased.

14.5 Parity, Order Statistics, And Neural Networks

Consider the problem posed by a determination of the parity of a {0,1} vector. The K-Parity

binary hypothesis problem is shown below.
ko Hy:Even
Given |ai.,az,asz, " .,d,], a; € 0,1, Y a;i=

Equation 55. K - Parity Problem

Stochastic Computation

The discrete probability distributions and moments about the mean for the even and odd

hypotheses are below for various values of K. The solid lines are for the odd distributions, and

- 108 -

the dashed lines are for the even distributions.

Two Parity
0.5 4
0.4 -
0.3 4
Probability ' '
0.2 - : :
| {
014 | ?
| 1
| |
-0 — : i
T | | |
-0 0.5 1 2
Sum Of The Two Boolean Variables
Figure 79. Two Parity
K | Hypothesis | Moment Valu-é
2 Even 1 1
2 Odd 1 1
2 Even 2 1
2 Odd 2 0

TABLE 12. 2 Parity Problem

Stochastic Computation

- 109 -

Four Parity
0.4
h
|
1
0.3 !
|
|
I
Probability 0-2 | !
|
|
0.1 — [
' | '
t | i
-0 - L i :
| | | | |
-0 1 2 3 4

Sum Of The Four Boolean Variables

Figure 80. Four Parity

Hypothesis | Moment | Value

Even 1
Odd
Even
Odd

Even
Odd

Even
Odd

Sl S B S o | e | |-~

— nllo ofl— |

TABLE 13. 4 Parity Problem

Stochastic Computation

-110 -

Six Parity
0.3
* t
0.2 - } |
Probability | |
. t |
0.1 - : :
I I
i ¢
0 ! i !
| | I
-0 2 4
Sum Of The Six Boolean Variables
Figure 81. Six Parity
K | Hypothesis | Moment | Value
6 Even 1 3
6 Odd 1 3
6 Even 2 1.5
6 0Odd 2 1.5
6 Even 3 0
6 0dd 3 0
6 Even 4 6
6 Odd 4 6
6 Even 5 0
6 Odd 5 0
6 Even 6 46.5
6 0Odd 6 24

TABLE 14. 6 Parity Problem

Stochastic Computation

-111-

Eight Parity

'

|

. . |

0.2 |

1

|

Probability |
‘ 0.1 ! | '
| ! !
I ! I
! | I
ol 1 1 1
| | | |
-0 2 4 6

Sum Of The Eight Boolean Variables

Figure 82. Eight Parity

Stochastic Computation

-112 -

K | Hypothesis | Moment | Value

8 Even 1 4

8 0dd 1 4

8 Even 2 2

8 0Odd 2 2
|8 Even 3 0

8 Odd 3 0

8 Even 4 11

8 Qdd 4 11

8 Even 5 0

8 0dd 5 0

8 Even 6 92

8 Odd 6 92

8 Even 7 0

8 0Odd 7 0

8 Even 8 1136

8 Odd 8 821

TABLE 15. 8 Parity Problem

Figure 83. Moment Tables And Discrete Density Functions For K-Parity

An interesﬁng observation is that the first moment for which the reven and odd random Vafiables
differ is the K*th. By recursively applying the order statistic operation, each lateral inhibition
equipped layer strips éway at least one moment from the characteristic function expémsion of the
two conditional hypotheses random variables Ply|H,] and P[y|H o]. Thus the depth of a
network with lateral inhibition equipped layers, is related to the depth»in terms of moments
about the mean, of the two conditional input probability density functions, that a network can
ﬁse in a decision test. By incorporating successive lateral inhibition layers, a network can
theoretically recursively strip away moments from the conditional probability density functions

until a separation in means occurs. A linear decision test could then be applied to arrive at a

Stochastic Computation

- 113 -

hypothesis decision.

14.6 Parity, Memorization, And Generalization

Another perspective on parity is that the problem is trivially solved using lateral inhibition in
the following manner. For every possible even permutation € { 0, 1 K form a weight vector,
thereby creating the set {W,ent. For every unknown input, take Max
|y, = W; e X, w i € {W g} If the maximum is equal to K, the number of bits in the
parity problem, choose H . Otherwise choose H ,4,. What this does is pass the unknown
’image through a set of filters tuned to all possible even patierns. No attenuation indicates an

even pattern. Attenuation indicates an odd pattern. This is brute force behavior. Every input is
X
2

correctly classified by our lateral inhibition structure, but at the cost of using 2 © neurons in the

competition layer ! The network has attained this performance by Memorization, not

Generalization. Now decrease the number of neurons in the hidden, lateral, layer. As the

number of neurons L in the competition layer are decreased, the probability that an incoming

even image will matich one of the competition neurons is —%—, yielding a net P, of

2 2.
% - KL . Thus, the number of neurons needed to be able to have reasonable P o
.__1 .
2 2

performance is always on the order of 2K, That is, the network does not generalize, it

memorizes.

Stochastic Computation

~114-

14.7 Generalization Versus Memorization

To explain our situation above, recall the Bias versus Variance issue in statistical modeling. /%!
We have implicitly assumed a statistical model which emphasizes the lower moments. Higher
moments beyond tﬁe mean and variance, such as the skewness and kurtosis, are not easily
extracted and used in a statistical hypothesis test. This is the price we pay and the tradeoff for
our central limit theorem and other approximations. The poor performance of neural nétworks
on purely combinatorial problems can perhaps be attributed to the fact thét these problems,
when viewed from the statistical perspective of densities conditioned on the hypothesis, differ in
high ‘moments. Several layers, often wide layers, are needed to access these higher moments.
Problems which have significant information in lower moments, such as handwritten character
recognition, result in good generalization with only a few neurons. For examplé, recall how well
a single neuron does with the 32 by 32 handwritten digits of Sixr Veréus vSev‘en. Here the
probability of error was 0.003 ! More about this moment view will be said in the section below
which develops the information theory and channel model of neural compﬁfation. HoWever, it
should be nbted here that this neural stochastic technique does not work well With problems
where the information a hypothesis test needs is buried in the higher conditional distribution

moments.

15. Order Statistics Versus Hard And Soft Decoding

In this section, we shall look at the performance of the maximum order statistic, and make

comparisons to hard and soft decision decoding. We consider two cases. In the first, the

Stochastic Computation

-115-
projections pdf’s have means at +1, and a variance of 1. The second case also has means at +

and a variance of 250. As the plots below show, for both cases, the order statistic method of

arriving at a hypothesis decision is definitely inferior to the hard and soft decision approach.

Varying The Number Of Neurons For Fixed Projection Pdf’s

0.1 4 Maximum Order Statistic

0.01

Probability 0.001
Of Error
0.0001 —

le-05 —

I | 1 T |
-0 5 10 15 .20
Number Of Neurons In The Single Layer

Figure 84. Varying The Number Of Neurons For Fixed Mean 1, Variancé 1, Projections

Even when the variance is increased below to 250, but with : u still 1, order statistic

performance more closely approximates hard decision detection, but is still inferior.

Stochastic Computation

-116 -

Hard Decision Versus Maximum Order Statistic

0.45 |

Probability
‘Of Error

0.4 —

I | I l | |
-0 5 10 15 20 - 25

Variance Is 250 For Both Projections, Mean Is *1

Figure 85. Hard Decision Versus Maximum Order Statistic

The conclusion to be drawn from these two plots is that when there existé a separation of the
conditional projection means, there are better ways of implementing a low P, decisi‘on test
than via the calculation of a maximum order statistic. However, as can be éeeh from the plots of
the digit 6 aﬁd 7 image projections above, typically we have neurons with conditional means
which are clustered closely together, and have differing variances és well. For neurons such as
these, order statistics outperform hard decision decoding, since the order Statiétic can take
advantage of differences in both mean and variance between the projection random variables,
whereas the hard decision threshold test uses only differences in the means. To demonstrate this,
consider the two pdf’s below. They are Gaussians with mean -0.1, variance 1, and mean 0.1,

variance 2.

Stochastic Computation

-117 -

A Pair Of Pdf’s For Which Order Stats Out Perform Hard Decision

Probability

Figure 86. Order Statistic Yields The Better Performance

The eleven neuron order statistic is shown below.

Stochastic Computation

-118 -

Eleven Neuron Maximum Order Statistic For n(-0.1,1) And 1(0.1,2)

0.6
0.4 —

0.2

Figure 87. Eleven Neuron Maximum Order Statistic

The probability of error for the thresholded single neuron is 0.436. The resulting eleven neuron
hard decision p ., 18 0.332. The maximum order statisticrof size eleven has a threé_hold at 1.90,
and a resulting p ., 0f 0.266. Thus, the order statistic outperfo@s the hard decision case. This
had to happen at some point as the means approached each other, and the variance remained
different. The issue is whether it is important. We look at the four neurons besides‘ the Prihciple
component for the Six and Seven images considered above. We in fact have the situation we
alluded to in the above analysis. The means and variances of the projections are close ehough
for the Tanh approximation to marginally hold, and the pdf’s are clustered tightly énough to .the

origin that an order statistic approach is more appropriate than a hard decision rule.

Stochastic Computation

-119 -

16. Recurrent Networks

A recurrent network is one that feeds back onto itself. An example is shown in the figure below.

i Input N, Outpu
Feedback Feedback
Loop For Loop For
Neuron N, Neuron N,

N, Output N, Input

Figure 88. Two Neuron Recurrent Neural Network

16.1 Recurrent Neural Networks

In the network above, each neuron looks at its own value, and that of its neighbor, and produces
an output. As discussed previously, this output is z;=f(W; . X — T;). For our .initial
discussion of recurrent networks, we shall assume the value of each neﬁron is discrete, and
either on or off, £1. The weight values can be any real number. Thus, z will bé thresholded, and
a {-1,1} output decision obtained. The feedback structure shown ébove implements an
associative memory. If the state of each neuron is initially set to some pattern, then dynamical
updates will occur either indefinitely, or until a fixed point is reached. If a fixed point is reached,

then no further changes will occur to any neurons values, and the values of the set of neurons

Stochastic Computation

- 120 -

will remain stabilized. Mathematically, a fixed point is a set of neuron values such that
X={x; },andx; = fi(W; « X - T;). Asetof desiréd fixed points is encoded into the
network via the values of the weights, thresholds, and sigmoid functions. As an example,
consider a three neuron recurrent network. We wish to encode two fixed points into the system,
A={1,-1,1} and B={1,1,-1}. First, we shall conduct a brute force analysis. We:list all 23 or 8

system states. These are seen below.

System Hamming | Hamming | Neuron | Neuron | Neuron

State From A From B One Two Three
{1,1,1} 1 1 1/dc dc dc
{1,1,-1} 2 0 1 1 -1
{1,-1, 1} 0 2 1 -1 1
{1,-1,-1} 1 1 1/dc dc dc
-1, 1,1} 2 2 1/dc dc dc
{-1, 1,-1} 3 1 1 -1 1

{-1,-1, 1} 1 3 1 1 -1
{-1,-1,-1} 2 2 1/dc dc dc

TABLE 16. Three Neuron Recurrent Network With Two Fixed Points

The columns labeled neuron one, two, and three are what the value of these neurons should be if
the minimum Hamming distance is to be reduced at every iteration lor system update interval. A
dc above means "Don’t Care", and indicates the current system state is equidistant from both
stable states. We could "go either way" with equal probability. Below, Web' implement a "when in

doubt, choose stable state A rule, and set any N dc to 1, any N, dc to -1, and any N3 dc to 1.

Stochastic Computation

-121 -

System Hamming | Hamming | Transitions To

State From A From B | A Stable Point
c=1{1,1,1} 1 1 ciT A
B={1,1,-1} 2 0 Brr B
A={1-1,1} 0 2 A= A
d={1,-1,-1} 1 1 dex A
e={-1,1,1} 2 2 cer= A
f={-1,1,-1} 3 1 fr= B
g=1{-1,-1,1} 1 3 gz A
h={-1,-1,-1} 2 2 he= A

TABLE 17. Dynamics Of The Three Neuron Recurrent Network

As can be seen, each system state reaches a stable state { A or B } in one step or iteration. This
typically doesn’t occur in larger size networks. When N is greater than 3, often more than one
step is required for the system to reach a stable state. In this case, the system state passes
through several intermediate states on the way to a stable state. An important feature of
network design is that the cluster of neurons only have specified stable states, ‘and that every
possible system' state end up in one of these stable points. That is, the issues of stable points
other than the desired or specified ones, and whether some initial system state will result in an
endlessly cycling thrdugh a sequence of non-stable points, does not occur. A deterministic
approach to whether a network suffers from these two problems is to form an energy function,
or Hamiltonian, for the system. The Hamiltonian represents the energy the system has given that
the system is in a certain state. The Hamiltonian is constructed so that it is bounded. Thatdis,
eatch state must have a finite energy value. In addition, the Hamiltonian is constrained so that
Energy minima only occur at specified stable points. The network update or transition rule is

then shown to always result in a reduction of system energy. Since this reduction is bounded,

Stochastic Computation

-122 -

and always greater than some quantity E due to the finite number of possible system states, a

stable point will be reached in a finite number of steps. (27}

In this research, a probabilistic approach to recurrent networks is espoused. The aﬂélogy to
statisti'cal vmecharmic‘:s is made, where convergence occurs "in the mean". That is, there exist
many possible system permutations which can occur. However, probabilistically, given an
initial state, one final state or configuration will occur with overwhelming préferenCe. Tb better
sketch out this concept, we appeal to our simple two fixed point systerﬂ, along With our
statistical update rule outlined in the feedforward discussion. Consider a recurrent network
where the number of neurons is large, and each neuron is again either on or off. Let the two
stable states be labeled A and B as above in the three neuron case. An example of such a system
is shown in the figure below. Imagine the image pixels are either black {-1} or white {I1}. A
single neuron inputs the values of all pixéls, and makes an "updaté" récorﬁmendation for a
“single pixel. Although only a single pixel neuron is shown, it is to be visualized that an identical
update process is occurring for all pixels in the image. Imagine our two s.table points fepresent

images, say a digitized picture of a handwritten one 1 or zero 0.

Stochastic Computation

-123 -

Sample Image

Handwritten Zero

Figure 89. Multiple Pixel, One Neuron Per Pixel, Recurrent Neural Network

Construct a system state vector X which consists of the rstatesr of each pixe_l at any oné time.
Thus,v our two stable states are X 4 and X . For neuron states which are both +1 or -1 for both
patterns A and B, v&;e set the corresponding pixel’s neuron to have that_valueb for all input
patterns. For neurons which have differing values for the two patterns (eg : +1 for A, -1 for B),
we use the feedforward PCA approach to construct a weight vector and threshold for that
neuron. Let the weight vector be W = X4, — Xjp. This is because, for two class data, the
Principle Component of the class is that class vector. Thus, the PCA vector for X 4 is X 4 itself,
and similarly for X 3. As in the feedforward case, we consider each pixel a random variable, and

hence the projection W e X is a one-dimensional random variable. Let us now calculate the pdf

Stochastic Computation

124 -

of W e X..

When an image close to image A is seen, WeX will be positive, and we assign the pixel shade
which corresponds to image A at that pixel location. Correspondingly, if an image close to B is
seen, than WeX is ﬁegati\ze, and we assign to the pixel the value corresponding to that pixel
location on image B. Implicitly, we have assumed that vectors A and B are statistically
independent, so that A e B is typically very close to zero. If there is a perféct match,; in that
X = A, then W o X will be +N, where N is the number of neurons preseﬁt, and hence the
length of X. Similarly, if IX = B, then W e X is -N. Let us consider images close toy A.
Suppose we have a vector X' which differs from X 4 in m places. Then the Hamming distance
between X, and X' is m. The expected value of W e X is the expected value of
X, ¢ X' - Xz * X'. By supposition, the expected value of X, ¢ X’ is N - 2m. Assuming
the pattern vectors X 4 and X are statistically independent, the expected value of X o X' is
equivalent to the Xz e E[X']. But each pixel in X' is equiprobable +1, so E[X'] is Zerd, and
thus the expected value of X o X', given that the vector X' is a Hammmg distancé m from
X 4, and m %< N, is zero. Thus, the mean of the projection WeX' is N - 2 m. The factor of 2
occurs since, there are N - m perfect bit matches, and m bit mismatéhes. Thus, the dot product
ofthetwois (N-m)* (1) +m*(-1), or N-2m. The variance of the projection is the
variance induced by the fluctuating possibilities of the projection of X' onto X . Thus the
variance of W e X’ about the mean N - 2 m is the noise injected by the projection of X' onto
X . Since the N bit values of X are assumed independent of each other, the variance is the
sum of N independent random variables ¢, each identically distributed. ¢ is equiprobable of

being 1 or -1. Thus, the expected value of ¢ is zero, and the variance of ¢ is

Stochastic Computation

-125-

(1-0)> (-1 -0)>
2 * 2

or 1. Thus the variance of W e X is N. This means that the projection of a N bit vector X' a
Hamming distance m frorﬁ X, is normally distributed with mean N - 2 m, and variance N.
(Note that implicitly, we have used the normal approximation to the binomial dis(ribution. A
detéiled discussion of this approximation is in Feller, Chapter VII, The Normal Approximation
To The Binomial Distribution.)!*®! This characterization of the pdf of W e X' will allow a
stochastic perspective derivation of the two stability properties of recurrent networks discussed

above.

The update rule of each neuron modifying a pixel occurs in parallel, and is independent of the
change in all other pixels. If the initial seed vector X’ is a Hamming distance m from X 4,
convergence to the fixed point X 4 will occur if the Hamming distance of the iterated vector X is

less than m. However, due to the independence assumption of the updates, this is équivalent to
requiring that the update occur correctly with probability better than —%— The pdf of the

projection of W o X' was found above, and due to the symmetry of the situation, a correct bit

update will occur with probability equal to the integral below.

Stochastic Computation

- 126 -

; © (x=N+2m)*
- 2N m
Iexp dx 2 1 - —
N2rN o N

- Erf{N—z?vm} > 1 - 2Nm

Equation 56. Two Memory Error Function Integral Capacity Inequality

The integral above is the probability that any one bit is chosen correctly on an update. Thus, the

N-m

integral above must be greater than orl - % This inequality relationship yields the
attraction radius, or basin of attraction size, for the two memory associative. memory. Below is

plotted the probability of a bit being correct on the horizontal axis (1 - %), and the probability

of an updated bit being correct on the vertical axis (1- %). Curves are shown for N equal to

25, 100, 200, and 300 below. The steeper the curve, the higher the N. The straight line' is the
Output equals Input curve. Thus, convergence occurs when the update curve lies above the

straight line.

Stochastic Computation

-127 -

N=25,100,200,300 : Probability Of Correctness : Input Bits Versus Output Bits

1
Probability
~ Output
Bit Is 0.5 —
Correct '
Q
-0

. | | |
-0 0.5 ‘ 1
Prob. Input Bit Is Correct : P

Figure 90. N = 25,100,200,300 : Probability Of Correctness : Input Bits Versus Output Bits

The markers below were obtained using a simulation in MATLAB. Firét, two fixed point
vectors, X 4 and X 5 were randomly generated. Then for each data point, 50000 "neafby" vectors
were generated which had a single bit probability P of being equal to the saﬁlé bit valﬁ'e for that
location in the fixed point vector X 4. The update rule described above was implevmentedi with
the neuron weight W set equal to X4, — X . The output probabiﬁty Q of a single bit being
correctly matched to the fixed point vector X 4 was then calculated upon the updaté. The 50000
sample average was then plo‘;ted. This process was repeated for each bullet marker shown. As
can be seen, the simulation data points and the theoretical curves agree fairly well. The number
of bits in error initially is the probability a single bit is in error, times the dimension of the

system. The corresponding Hamming distance is m, or N (1 - Probability Of A Correct Bit).

Stochastic Computation

- 128 -

N = 25 : Probability Of Correctness : Input Bits Versus Output Bits

Prob.
Output
- Bitls 0.5
- Correct

Q

| | I
-0 0.5 1
Prob. Input Bit Is Correct : P

Figure 91. N = 25 : Probability Of Correctness : Input Bits Versus Output Bits

N = 100 : Probability Of Correctness : Input Bits Versus Oﬁtput Bits

Prob.
Output

BitIs 0.5 -
Correct

Q

| I \
-0 0.5 : i

Prob. Input Bit Is Correct : P

Figure 92. N =300 : Probability Of Correctness : Input Bits Versus Output Bits

Stochastic Computation

-129 -

N =300 : Probability Of Correctness : Input Bits Versus Output Bits

1
: Prbb.
Output
BitIs 0.5 4
Correct
Q
-0

— | |
-0 0.5 T 1
Prob. Input Bit Is Correct : P

Figure 93. N = 300 : Probability Of Correctness : Input Bits Versus Output Bits

1 —

1t is important to note that when m is /4 N, then ™ s zero, and Erf(0) is 0, so both the

left-hand side and right-hand side above are equal to 0. This coincides with our intuitioﬁ. When
there are only two fixed points, and we are less than 4 N Hamming distance from one of them,
we should spiral intb that fixed point. This is what these two memory curves ‘are telling us.
Convergence occurs in the mean when we are less than 2 N bits away from one of the stable
points. Since we are always within 4 N bits from one of the two memories, we always converge
to one of the two stable points. Indeed, the update rule is in retrospect somewhat silly, since we
vare simply taking the projection of the input state vector X onto the two fixed points, and
assigning the output state vector to be that corresponding to the fixed point with the largest

projection. Nonlinear sigmoids are not used, as these above were shown to aid the merging of

Stochastic Computation

-130 -

multineuron information. Each pixel is updated by a single neuron, so no merging occurs, and
non-linearities do not help here. Hence, we apparently have shown the obvious : an
implementation of a transition matrix for a finite state machine. The utility of the above

formalism lies in what happens when there are more than two memories or fixed points.

The extension of the associative memory architecture to handle more than two fixed points is
doné as follows. Consider a set of fixed points X;,j€1,2,3,..M. For eachvneuro‘n, wé divide
the fixed point vectors into two sets, which we call X, and X _, according to.whether X ; has a
+1 value for the pixel the neuron is assigned to update. Our Principle Components Analysis
algorithm is run, yielding two weights, W, and W_, and the corresponding weight vector is
constructed as their difference, W is W, — W _. This construction is done for every neuron.
Note that the partition of the X; into the two sets X, and X_ will change from neuron to
neuron, and so every neuron will have a different weight vector. Also ﬁote fhat a sigmoid is not

‘used.

For rhultip1¢ memories, and for each pixel, we have a binary hypothesis ‘: Giyen the input
vector, should this pixel be +1 or -1 ? For each bit, we assemble the training sét S, and S-. We
place into one set or the other, a desired fixed point vector dependihg on whether the sign of the
fixed point’s pixel is +1 or -1 at the pixel location being updated. Do prinéiple components
analysis independently on these two training sets, and obtain the largest éigenvalue eigenvector
W, and W_ for the two sets S, and S_. The weight for the corresponding neuron will then be
W = W, — W_. The threshold is set to zero, and a binary test is made at‘each iteration. Now

convergence for m memories does not occur in a single step as seen for two memory systems.

Stochastic Computation

-131 -

Below are seen a few convergence runs for N = 1200.

State 1 | State2 | State3 | State4 | State5 | State 6
State 1 0 588 590 595 577 588 -
State 2 588 -0 578 595 573 584
State 3 590 578 0 595 597 616
State 4 595 595 - 595 0 550 587
State 5 | 577 573 597 550 0 595
State 6 588 584 616 587 595 0

TABLE 18. Hamming Separation For The Six Fixed Points For the Results Below

State 1 | State2 | State3 | State4 | State5S | State 6
Initial 585 581 © 611 594 594 599
Step 1 376 212 790 509 499 578
Step 2 410 178 756 543 465 544
Step 3 476 112 690 547 461 548
Step 4 588 0 578 595 573 | 584

TABLE 19. Recurrent Convergence Example

In the above simulation, the weight vector for each neuron was constructed as the sum below.

M
W) = 3 Sign[Xi(k)J X;
i=1

Equation 57. Outer Product Weight Vector Construction

This is a valid approximation for the principle component or primary eigenvector due to the
mutual orthogonality of the fixed point vectors and the relative sparseness of the fixed points

with respect to the dimension. That is, L, the number of fixed points, is much less than 2V the

Stochastic Computation

-132-

total of states or configurations possible. Here N is the dimension of X, and is the number of

neurons present.

The principle component vectors W, and W _, in the large N, small L limit, are approkimately
the averagé of the éets S, and S_ described above. However, if the vectors in S, and S_ are
sfati_stically independent, then the averaged weight vector will approach zero as N increases.
That is, averaging over larger and larger sets will produce a smoothed vector. Since we are
taking the difference of W, and W_, and both of these weight PCA Vectoré are approaching
zero as N increases, our ébility to pick useful information off of an initial "seed" vector X

decreases as N increases. It is useful to keep this in mind during the analytic discussion below.

The analysis for multiple memories is similar to the analysis for the two memory case. Consider
what happens when the multiple memory weight vector is constructed as outlined above. Let the
number of fixed points be L. We load one of the fixed points into the netwbrk. ‘Since the fixed
point vector matches ONE of the vectors in the sum from which W was derived, the signal
component Qf the projection is still N, as derived above. However, there aré now L - 1 noise
terms. Where the noise component before was o2 =N, now we ha_ve L - 1 independent. noise
terms, all with variance o> = N. The total variance is thus (L - 1) N. Our analytical approach
for the binary situation still holds. Using it, we obtain the multiple memoryrrelationship seen
below. Again, m is the number of incorrect bits in vector of length N. Hence, m is the
Hamming distance from one of the system’s fixed point vectors. L is the total number of system

fixed point vectors.

Stochastic Computation

-133 -

® (x - N+2m)

1 T 2(L-1)N m
exp dc 2 1 - —
\/27:(L—1)N'([' N

I

N-2m 2m
- El =21 - —
rf{h(L—l)N} N

Equation 58. Multiple Memory Error Function Integral Relationship -

Thus, the addition of more fixed points presents itself as an added noise source for the iterative
stochastic update algorithm. Furthermore, the additional noise introduced grows linearly with

the number of additional fixed points. We use this equation to study what happéns‘ as fixed

points are added.

Consider the system with one thousand neurons below.

N=1000: L =2,50,100,150,200

Prob.
Output
Bit Is
Correct

0.5

| l |
-0 0.5 1
Prob. Input Bit Is Correct= 1 — %

Figure 94. N = 1000 : Probability Of Correctness : Input Bits Versus Output Bits

Stochastic Computation

-134-

The behavior for L greater than about 150 is interesting. In this region, the signal component of
the projection has reached it’s largest value possible, N. However, there is a significant tail
under the threshold, even with the Hamming distance equal to zero, and the mean at N This
tail is due to the noise introduced by the large number of fixed points. Thus, even when the
signal is "strong", the noise is also high, and the system makes significant errors. As the plot
below shows, the noise tends to kick the system back away from a fixed point whenever
convergence toward a fixed point seems imminent. Amplifying the region where the system
seems to make the transition from stable basins of attraction into a more chaotic type of

behavior, we obtain the plot below. The curves are the left-hand side Erf function of the last set

of equations. The straight line represents the map P oo (In) = P oo, (Out) = 1 —

z|3

N=1000 : Fixed Points = 100,120,130,140,150,160,170

14

0.995 -

Prob.

Output 0.99 —
Bit Is

Correct 0.985 —|

0.98 —

| \ | | | |
0.975 0.98 0.985 0.99 0.995 1

Prob. Input Bit Is Correct

Figure 95. N =1000: L =100, 120, 130, 140, 150, 160, 170’

Stochastic Computation

-135 -

The intersection of the Erf curves with the linear equation marks the points where we encounter
a transition in behavior. When the curve lies above the straight line, the system is converging to
a ﬁxed point. When the curve lies below the straight line, noise supersedes the fixed points
attraction, and the System state moves away from the fixed point. Thus, as the system starts to
‘become overloaded with memories, it responds by small oscillations about a fixed p:oint vector.
The system will attempt to stay in the neighborhood of where the Erf curve intersects the
straight line. Here, there is a finite, non-zero probability that each updated vector wﬂl have bits
in error. Which bits differ from the fixed point will randomly change on each iteration. Thus, the
behavior will be seen as a chaotic type of motion about the fixed point, instea‘d of convergence
to the fixed point, and no dynamic motion afterwards. Exactly this type of chaotic behaviér was

seen by Hopfield and described in his 1982 paper.[*]

System convergence occurs when the sjstem can reach the (1.0,1.0) 'poivnt on our plots.
However, our system is discretized, and consists of only N neurons, a finite number. Hehce, we
consider convergence as achieved when the intersection of the Erf curve With the liﬂear line, is
close to, bﬁt necessarily exactly equal to, 1.0. Define the stability transition poiht as the point
where a vector is equally probable of being thrown away from the ﬁearby fixed point as towards
it. The probability the network makes the correct decision on all N bits is (1 - Pe)N . We set
this equal to %. Since N is assumed large, in order for (1 — P)" to be equal to 0.5, the bit

error probability P, must be fairly small. Thus, the approximation (1 -P)V=1 - NP, is
valid. Setting the probability of correct recall to ' yields 1 — N P,= /2 or Pezﬁ. Putting

the error function equal to this cutoff point yields the desired equation.

Stochastic Computation

-136 -

N -1 N -1
E —
rf{\/Z(L—I)N} N

Equation 59. Stability / Capacity Equation For Multiple Memory Recurrent Networks

As a check, we attempt to duplicate Hopfield’s results on stability from his 1982 paper. In that
paper, using a network with 100 neurons, he found the system could memorize abouf 0.15 N, or
=~ 15 memories. Recall however faﬂed if more fixed points were loaded into the network.
Solving the above equation for L when N = 100 yields L 515.77 19, which is in close

" agreement with Hopfields result’s.[3%]

The maximum number of memories does not scale linearly with the dimensionality of the
system. A plot of L, versus N for the cutoff criteria we are using is seen below. This plot was
calculated using MAPLE to iteratively solve the capacity equation as the system size N was

varied.

Stochastic Computation

-137 -

McEliece Theory For The Max. Memories Vs System Size

04

| Stochastic Theory

0.3 -

Lmax 0.2 —

McEliece Th

] | |
10 100 1000 10000

Number Of Neurons

Figure 96. Theoretical Maximum Number Of Stable Points Versus System Size

The bold curve is the stochastic theory advanced here. The thinner solid curve is a theoretical

L max

calculation of McEliece et al.B!! These authors showed the capacity - shbuld be

proportional to We obtain good agreement between the McEliece theory and the

|
2Log(N)

stochastic theory over four orders of neuron system size magnitude. Furthermore, the McEliece

and stochastic results asymptotically approach each other as N — .

Stochastic Computation

- 138 -

17. Handwritten Digit Database Descriptions

Three handwritten digits databases are used in this thesis to
demonstrate key points. These were obtained from the Center
Qf Excellence Fot Document Analysis And Recognition
(CEDAR) at SUNY Buffalo University, A T & T Bell Labs,
and .NIST respectively. The CEDAR data is used for all

examples unless otherwise indicated. This is due to the fact

vthat the CEDAR CD-ROM consisted of a large enough
number of images for statistically valid conclusions to be drawn. The Bell Labs and NIST
databases were substantially smaller in size. In all the numerical simulations, there was no
separation of the images into training and test sets. All data was used for training. VThi_s is in
keeping with the philosophy of this thesis that the statistics charactéristté ot the underlying
problem are being tabulated and are not changing in time.
Hence, using the same data for training and testing is not
improper. The CEDAR digits were 8 bit grayscale and varied
in width and height. This was due to the fact the CEDAR

digit segmentation algorithm operated on digitized envelope

images. The single digit images were extracted from multiple
digit zip code blocks. The varying size CEDAR images were converted by the author to a 32 by
32 pixel image, with 8 bits per pixel, using the PbmPlus software suite of image processing
utilities. The principle component was found using C code written by the authorvusing an

algorithm to be described below. The conversion of the resultihg PCA images to postscript for

Stochastic Computation

-139-

inclusion in this thesis was done using the xv program. The images to the right are the PCA
images for the Six (upper) and Seven (lower) digits reépectively. As expected, these PCA
imagés correspond approximately to the average across all respective handwritten di‘gits seen
during training. This is due to the similarity of principle components with matched filters ‘when
the variation across the sample images is small. That is, if all the six digit images were virtually
identical, then the training set is not varying, and the optimum receiver structure-is a matched
filter.[*?] In matched filters, the demodulating signal is the image that is expecfed tq be received.
Thus, PCA and matched filter structures can be expected to agree when the variation across
training samples is small. This indeed occurs, and can be seen from the two PCA images shown

above. The PCA images loosely correspond to average, or typical, six and seven digit images.

The A T & T Bell Laboratories digit images were of size 16 by 16 binary pixels. There were a
total of 120 images for each digit. These were broken down into 10 safnples each from 12

“writers.

The NIST data consisted of approximately 3,400 characters of 32 by 32 8 bit pixel images

compiled from 49 writers filling out fake forms.[**

18. Neural Learning Algorithm

There are several steps in the implementation of the algorithm. First, the eigenvectors for the
two correlation matrices must be found. Second, the mean and variance of both hypotheses
projections onto the neuron’s weight vectors must be calculated to determine a threshold point if

hard decision decoding is used, and to determine the sigmoid shape if soft decision decoding is

Stochastic Computation

- 140 -

used. We shall discuss the weight vectors, and moment accumulation in the following two

sections.

18.1 Single Layer, Multiple Neuron, Weight Vector Calculation

The neural learning rule implemented is based on Erkki Oja’s PCA learning rule work, 341 331

[36] {37]

For a single neuron, learning is accomplished using a labeled training ‘set. _Whénever a
‘hypothesis Hy input vector is presented to the neuron, weight vector W is updated. Similarly,
W is updated upon presentation of a hypothesis H; input vector. When the neuron is used to
classify an unknown input vector, the eigenvector difference weight vector W = W, — W,
is formed. The difference weight vector is the neuron weight vector used in the classification

mode of operation.

For each input vector X presented during training, the Weight update rule used to update the

weight for hypothesis i, W', is the following,

Wn+1 = Wn T Oy Yy Xn

where y, = W, ¢ X,

Equation 60. Oja’s Single Neuron Weight Vector Update Rule

The subscript n on the data and weight vectors denotes that these are for the n‘th iteration in our
update process. The algorithm described above is for a single neuron. The neuron will converge

to the principal component eigenvector of the correlation matrix for the data presented to it. The

Stochastic Computation

-141 -

. . . . 1 .
coefficient o, is a parameter which decreases as n — oo. In this work, o, was set to —. This
. n

setting meets Qja’s convergence requirements.>8! The update rule for L neuron’s in a layer is

seen below.

Equation 61. Oja’s Weighted Subspace Multiple Neuron Update Rule

Above, n is the iteration number, and m is the neuron whose weight vector W™ is being
updated. The subtraction of the sum serves to provide a symmetry breaking which avoids
having all L neurons cqntending for the principal eigenvector. The ¢™ are the symmetry
breaking coefficients. In this work, they were evenly distributed about 1.0. Tﬁus;_ for the five
neuron case, these were set to 0.8, 0.9, 1.0, 1.1 and 1.2. The smallest ¢ yields the principal

eigenvector. Successive eigenvectors are obtained as ¢ is increased.

The algorithm above was implemented in C, and run on the three databases discussed above.
Less than one hundred epochs were used for training all five neuron layers, although most
convergence occurred in the first few epochs. The table below summarizes the numerical

calculations and parameters used for both the Three / Five and Six / Seven digit recognition runs.

Stochastic Computation

142 -

Six - Seven Digit Image Oja Learning Run Statistics

Symmetry Breaking Array 1.1,1.05,1.00,0.95.0.90
Image Size 32 x 32 (1024) Double Float Pixels
Competing Neurons 5

Starting Step Size 0.002

Number Of Epochs Per 36(.11)

Hypothesis Training Run

Images Seen Per Epoch 1616

Total Images Seen Per 58360

Hypothesis Training Run

Run Time Per Hypothesis

2 Hours, 39 Minutes(Sparc 10)

TABLE 20. 6:7 Image Oja Numerical Simulation Parameters

Three - Five Digit Image Oja Learning Run Statistics

Symmetry Breaking Array 1.1,1.05,1.00,0.95.0.90
Image Size 32 x 32 (1024) Double Float Pixels
Competing Neurons 5

Starting Step Size 0.002

Number Of Epochs Per 80.00

Hypothesis Training Run

Images Seen Per Epoch 1459

Total Images Seen Per 116720

Hypothesis Training Run

Run Time Per Hypothesis

3 Hours, 57 Minutes(Sparc 10)

TABLE 21. 3 : 5 Image Oja Numerical Simulation Parameters

The run times need some explanation. There are two runs per hypothesis, and two hypotheses.
For each hypothesis, one run was made to determine the eigenvector set. This is the run time
seen in the tables above. A second, much shorter run consisting of a single epoch was then
made to determine the hypotheses projection statistics for the eigenvectors.‘ This is because the

eigenvectors needed to be stable before accurate statistics could be determined. The single

Stochastic Computation

-143 -

epoch time was negligible compared to the training run. Thus, the net computer time needed for
both hypotheses was twice that listed above, or approximétely 8 hours for determination of all
3-5 eigendata. However, since two Sun Sparc-10’s were available in the lab, the two hypothesis
computations were done in parallel, so that the true elapsed time was still only 4 hours. The
‘main cpu usage during a series of diagnostic runs seemed due more to i/0 access than actual Oja
rule updates. Optimization of i/o access in place of the crude C scanf/printf foutiné_s used in the
code could perhaps have reduced the computer time. For example, in the 3-5 simulation, a grand
total of 1024 x 1459 x 82 x 2, or 245 million double precision numbers were fetched from disk !
There are four bytes per double precision number, so this is a total i/o througfnput of more than

980 MEGABYTES over approximately 4 hours, when the two hypotheses ran in parallel. This

averages out to about —;— of a second for every 32 x 32 pixel image processed.

There are several minor variations in the algorithms which Oja and his co-authors present in the
papers above. The one specifically implemented for the 6-7 and 3-5 data runs used the version

producing unit magnitude eigenvectors.3%)

18.2 Unbiased, Consistent, Sufficient Statistics And Moment Estimation

There is considerable literature on how to optimally extract estimates of moments from a
population sample.[*] 411 [42] 1 this section, we shall review the basic concepts of point
estimation using samples drawn from an infinite population. That is, given a set of M data
points {g;} drawn from a distribution G, we wish to estimate pg and cZ from

{g1.€22,-..-.8u}. Several definitions and concepts are first given. Denote the set {g,;} as &.

Stochastic Computation

- 144 -

Suppose we wish to estimate some parameter £ from the set &. We devise an estimator é(&) and

study E; Numerous properties of the estimator é are listed below.

E[G] = png » Var(G) = og
Unbiased : E [é] =
‘ lim

Consistent : Unbiased and Moo Variance({) —0

Su fficient : Variance(é) < Variance(All Other Estimators &’) Of C.

M
‘ gi 2
G = = — Sufficient Estimator Of g , G ~ n{uG , GVG]
M ~ M 5
Z (g —-G) E 8i)
Defi S2 = i=1 = i=1 o~
e fine Vi T

§? = y2(M - 1) { S? is Chi Square Distributed With M — 1 Degreés Of Freedom }

E[S’l = M-1 , Var(S*) = 2(M~-1)

M 2 . . . 2
g S“ — Sufficient Estimator Of og

Equation 62. Statistical Definitions And Distributions?

A sufficient estimator is one which extracts all possible information from a sample to make a

Mk

I

Y (&-GY
3. Some authors define §? as ———
M-1

Stochastic Computation

- 145 -

point estimation. No other estimator can do a better job at estimating . Cramer and Rao derived
a general formula for the minimum possible variance an unbiased point estimator can have. This
is called the Cramer - Rao bound. Any unbiased point estimator which meets the Cramer - Rao

bound is a sufficient statistic for that {. There may be several estimators which are

2

%

fundamentally different, and yet all meet the Cramer - Rao bound. G and

are sufficient

statistics for the mean and variance of G respectively. Note that G and S? are random variables

because different sample sets {g;} may be drawn each time, resulting in different G and S?

5 .
are also statistically independent random variables.!**!

values. G and 3

GG

In our algorithm development, numerous quantities are estimated from the training set. For a

single neuron, these are tabulated below.

Parameter Name Why Needed And Where Used

W, HyEigenvector Find H, Projecti_bn Direction

W, H Eigenvector Find H Projection Direction

P{ Hy] A Priori H Probability For Sigmoid And Threshold

P[H,] A Priori H Probability For Sigmoid And Threshold

E[W e X,] Mean Of H, Projections For Sigmoid 7

E[(W e X,)?>] | For Variance Of H, Projections For Sigmoid
E[W e X,] Mean Of H; Projections For Sigmoid
E[(W e X,)2] | For Variance Of H; Projections For Sigmoid

TABLE 22. Neuron Statistical Parameters Extracted From Training Set

Recall W = W, — W, All parameters in the table, with the exception of the determination of

W, and W, can be calculated by sufficient statistics operating on the data flowing through the

Stochastic Computation

- 146 -

neuron during training. That is, during training, one global wire can connect all neurons, and
output a single bit message indicating whether the incomihg image is H or Hy. Internal to
each ﬂeuron, the moment and eigenvector information is compiled and stored. T héie is no
massive global synéhronization or communication. Only data, a one bit training on/off signal,

and a one bit hypothesis H/H ; indicator.

The. Oja et al. update rule used in this thesis has been determined to be unbiased and
consistent.[**! However, it has not been proven to be sufficient. That is an opén questioh. Thus,
the moment extraction estimators are optimum and minimum variance, while it\ can only be said
the weight update rule asymptotically yields the correct eigenvector(s), as the nﬁmber of

training vectors — co.

19. A Statistical Communications Theory Perspective On Neural Computaﬁoh

As motivation for a communication system perspective'on neural computation, consider the
folloWing prpblem. One is given noisy time series data, {x(O),x(-T),X(—2T),.....x(-KT)}, sampled
from a continuous function x(t), and asked to make a decision at time t=0 as to which of two
possible events occurred. Imagine the events are signals, So(¢) or Sy (¢), corrupte;d by additive
noise. Thus, the observed data is the received signal x(¢) = S;(¢) + n(¢). We assume (or low
pass filter x(t)) that x(t) is bandlimited, and sample at or above the Ny(iuist rate, to obtain the
discrete set {x(nT)}. The solution to this signal detection in noise problem has been well studied
in communications theory. The optimum solution, or receiver structure when the noise is white

and Gaussian, is the matched filter.[**] 461 ¥7] For instance, imagine the simple case where S ()

Stochastic Computation

- 147 -

is a constant signal of amplitude A, and S (¢) a constant signal of amplitude -A. If the noise per
sample is zero mean, Gaussian, with variance 6%0ise» and S and S occur equally often, then
the optimum weight vector by symmetry considerations has all constant entries, and the final

decision of an observed data point is seen below.

) |
y= ¥ x-nD L PDAS)T = 0| K+D 4, (K+1) ofo
n=0
So
PIISI = | -(K+1) A4, K+1) G | . ¥ % 0
S

Equation 63. Matched Filter Equations

A matched filter will yield the lowest probability of error under the signal and noise
‘assumptions above. For binary, antipodal signals, So(¢) = — S;(?), the optimum weight

vector or Finite Impulse Response (FIR) taps, are samples of the function W(t) = § (f).

In neural type situations, the problem is not as clear cut as deciding whether one of two fixed
signals was transmitied. For instance, in handwritten character recognition, everyone has their
own way of writing digits. However, any individuals style is repeatable and typically varies
only slightly from one instance to another. In this case, it is more appropriate to consider the
problem as follows. There are two signal classes, Sy and §;, each described by a probability
distribution. The signals S; are considered as random variables. Noise is added, and a decision
is sought as to which signal distribution the received data was generated from. This problem

again has been solved. It has again a matched filter type structure, only now the sampled

Stochastic Computation

- 148 -

optimum weight function W(t) is the largest eigenvector of the correlation matrix of the
sampled signal S (#). To quote Haykin : "The eigenfilter aSsociated with the largest eigenvalue
of the .correlation matrix of the signal component at the filter input is the optimum ﬁltéﬁ" And
"The optimum ﬁltef maximizes the signal to noise ratio for a random signal in additive white
noise." "A matched filter on the other hand, maximizes the signal to noise ratio for a known
signal in additive white noise. "[48] This view of neural computation as a random signal drawn
from one of two possible signal ensemble’s, and then corlup‘;ed by uncorrelated (white)
Gaussian noise, forms the foundation of the statisticél communications model of neural

computation.

19.1 Neural Computation, And The Information Theoretic Channel Model

In this section, we discuss the channel model equivalent for a neural network implementing a
binary hypothesis test. To simplify the analysis, we shall assume the pdf’s for each neuron are
symmetric, with pg = — p; and 6% = o7. The arguments to be presented generalize to the

more practical situations where these assumptions do not hold.

Earlier, we noted that a single neuron’s probability of error performance could be represented by
a Binary Symmetric Channel. Several parallel neurons in a single layer could alsd be collapsed
into a single equivalent neuron, and hence represented by a single BSC. Similarly, serially
cascaded BSC’s representing successive layer neurons can be collapsed down into a single BSC
model. The figures below graphically represent these operations. For simplicity, all neurons /

BSC’s are assumed to have identical €’s.

Stochastic Computation

- 149 -

Figure 97. Three Parallel Binary Symmetric Channels Are Equivalent To One

The equivalent parallel &' is seen below.

g = [3

2] (1 —g)e® + &

Equation 64. Equivalent Parallel BSC Crossover

Stochastic Computation

- 150 -

Figure 98. Two Cascaded Binary Symmetric Channels Are Equivalent To One
The equation below gives the equivalent &' for the cascaded BSC’s.

g = 2(1-¢)ce

Equation 65. Equivalent Cascaded BSC Crossover

Below is plotted the equivalent system performance for a three neuron parallel concatenation(P)
and a two neuron serial (S) concatenation. Note that parallel concatenation improves

performance, while serial concatenation worsens performance.

Stochastic Computation

- 151 -

Serial And Parallel BSC Improvement

0.5 -

0.4

Probability Of 0.3
Error For The

Equiv. BSC 0.2

0.1 -

I | \ T T |
-0 0.1 0.2 0.3 0:4 0.5

Probability Of Error Of One BSC

Figure 99. Serial And Parallel BSC Improvement

By recursively applying these parallel and serial reduction operations; an entire network

implementing a binary hypothesis test can be collapsed into a single BSC model.

Stochastic Computation

sample came from a Gaussian density function with mean +p and variance ¢

-152-

. Decision

Voting

Neuron

Layer One Layer Two

Figure 100. Generic Neural Network

The network above reduces to three serial BSC’s, which then réduce to a single BSC. The final,

equivalent, BSC has a probability of error &’ which represents the systems error performance.

There is a corresponding channel capacity, C(e'), for the system above which was developed
carlier. But consider the BSC model in our development has a more physical representation than
abstract cross over probabilities between states. The cross over probability is given by the tails

of a Gaussian distribution spilling over a threshold. This is how a decision of whether a drawn

2

scenario is that of detecting a signal in noise. Under our equal variance, symmetrical means

assumption, our neuron is extracting an antipodal () signal buried in Additive White

Stochastic Computation

is made. This

- 153 -

Gaussian Noise (AWGN). The whiteness is the independence in time across samples. Thus,
whiteness comes from the assumption that the noise in a Vector element sample is independent
from the noise in the same vector element in any other sample. Shannon derived the channel
capacity C in bits per second for detection of a signal in AWGN as
C = bandwidth Log,(1 + SNR). The Shannon derivation uses bandwidth as. the number of
samples per second, and the SNR as the ratio of the mean of the signal to the root‘noise power
accumulated in one second. Consider the neural network as reading in one sample vector X per
second. The dimension of the incoming vector is the number of samples taken per second, and
thus proportional to the bandwidth by the application of Nyquists criterion‘ for bandlimited
signals. The projection means +p are the signals. The noise is the standafd deviation ef the
Gaussian distributions about the means. Thus, an analogy is drawn between neural cemputation
and diversity communication via the combination of multiple channels transmitting the same
‘message. That is, each pixel is attempting to convey the same one bit, on/off, message‘in our
hypothesis testing scenario. Therefore, each pixel in the images can be considered as
transmitting a binary signal. However, the noise and distortion in the system 1s $0 high that
only when a large number of parallel signals are sent simultaneously can the binary message be
classified with high probability of success. This view of neural hypothesis testing, when
coupled with Shannons bandwidth / SNR formula, lead to an interesting picture of network

depth versus width.

Suppose you are given the network above. You are then given five more neurons, and asked to
put it into the network in the location which will best improve overall system performance. If

you used the five to extend the width of either of the two existing layers, you are increasing the

Stochastic Computation

154 -

bandwidth of those layers. If you created another layer in an attempt to further sharpen the
Gaussians presented to the final voting neuron, you are using the neurons to improve the system
SNR. Shannons formula gives us a tradeoff for improving system performance. Improving
bandwidth imprdves channel capacity and thus system performance by a linear factor. Of
course, as was discussed above, each layer is bandlimited by the maximum diménsion of the
two ‘hypotheses subspéce given by the number of correlation eigenvalues lying ab'é,ve the noise
floor. Similarly, improving SNR increases channel capacity, and thus system performance, but
logarithmically. This is another interpretation of the system performance behavior obtained
during the parity examples. Performance improvement trails off quickly (logari‘thmically) as the
network depth is increased. Networks which appear to work well are wide and shallow. This is
in keeping with the theory advanced above that the statistical model implicit in our central limit
theorem and other approximations is attempting to exploit differences in the lower moments of

the two chditional densities.

20. Information Flow 7

Another useful picture is to think about information flow through thé network. Linkser has been
successful in this area. Linkser proved that using the set of eigenvectors correspbnding to the
largest eigenvalues of a set of jointly Gaussian random variables as weight vectors, maximizes
information flow from input to output.! Building on an information flow approach such as
Linksers, a useful interpretation of the Shannon conclusion we came to above can be made by
appealing to an almost trivial algorithm. Keep adding neurons to a network so as to maximally

increase the information flow through the network, from source (input) to sink (output). Recall

Stochastic Computation

-155-

each layer has an upper bound saturation limit beyond which adding more neurons does not
help. This limit is given by the maximum dimension of the two hypothesis subspaces for the
input épace to that laygr. A general algorithm is to calculate which unsaturated laygf has an
equivalent BSC ‘representation with the highest probability of error, and supplementing that
iayer with more neurons. This algorithm can be iteratively implemented until no further
impfovement occurs, resulting in a network with the maximum channel Capacity. When all
layers have been saturated, two neurons on a new layer are added. If this layer saturates with
these two neuron’s, the new layer is not needed. That is, as much SNR enhancement as possible

has been achieved.

This general algorithm description has been brief. It’s importance is more as a conceptual
picture for growing a neural network to an optimum size. A more realistic algorithm is to
monitor the eigenvalue corresponding to tﬁe weakest eigenvector introduced in a layer. If that
“eigenvalue is approximately equal to the eigenvalue of his neighbor, then we have reached the
flat portion of the eigenvalue spectrum, and more neurons will not help tﬁéfllayers throughput.
In practice,v given the strength of neural networks seems to be in extracting lower moment
information, and keeping in mind how the OJA algorithm learns, it may be more efficient to
place excessive numbers of neurons in each layer, and allow neurons to die or tufn themselves
off from the network when their eigenvalues decay to a level a few orders of magnitude less

than the principle eigenvalue.

Stochastic Computation

- 156 -

20.1 K-Winner Take All Networks

In the discussion of lateral inhibition, a single output from a layer was passed on to the next
layer when a Winner Take All approach was used. This however, defeats thé large
dimensionélity afgument used to motivate several points in the discussions above. A K Winner
Take All (K-WTA) implementation is a tradeoff between the two diametrically opposed
opefations of WTA and large dimensionality inputs. A K-WTA implementaﬁon passes on the
largest K magnitude neuron outputs to the next layer. This is statistically idenﬁcal to oufputting
a vector with the top K order statistics to the next layer. Hence, it is advantagequs to look at the
variation of the top K order statistics to gain a feel for how K-WTA pdf’s differ kfror‘n the
maximum WTA pdf. If, for instance, the spread of the top K-WTA pdf mean’s for each
hypothésis does not spill over into each other, than a K-WTA implementation can be used to
introduce redundancy by averaging the top K-WTA results, and ﬁguriﬁg out Which hypothesis
this average may have come from. However, it is important to realize the top K order statistics

are statistically dependent.

Below is graphed the top 5 order statistics for the absolute magnitude of the texture Gaussians
discussed above. Thus, the plots below are the top five order statistics for the texture two

hypotheses.

Plyl#e] = Incoci2ay | Pyt = Inco, 125 |

Equation 66. Density Functions For The Top 5 Texture Order Statistics

Stochastic Computation

- 157 -

The general order statistic density formula is seen below. Here r is the order, and N is the
sample size. Thus r = 99, N = 100 means the density for the 99th out of 100th eniry in a sorted

list of the absolute values of samples drawn from the corresponding generating density.

r—1
i N-r
Np(x) |7 T |
O e TR LR [p) @

where x, € (—o0 , ©)

Equation 67. Order Statistic Formula

The plots below are for sample sizes of 11, 51, and 101. These were the sample sizes
considered above in the maximum absolute order statistic discussion with the same texture
density functions. The bold dotted curves are for the larger variance, 6 = 1024, texture

density. The thin, solid curves are for the smaller variance, o’ = 10324 , texture density.

Stochastic Computation

- 158 -

Top 5 Order Statistics For Sample Size Of 11

0.08 —

0.06 —

Probab-
ility0-04 —

0.02 —

Figure 101. Sample Size 11 - Top 5 Order Statistics

Top 5 Order Statistics For Sample Size Of 51 |

0.1 A

Probab-
ility0'05 —

Figure 102. Sample Size 51 - Top 5 Order Statistics

Stochastic Computation

- 159 -

Top 5 Order Statistics For Sample Size Of 101

0.1 4

Probab-
ility0.05 —|

Figure 103. Sample Size 101 - Top 5 Order Statistics

Several effects in the above plots match our intuition and bear comment. F‘i.rst, the means of the
order densities decreases as the order decreases. This is expected, because we are how taking a
lower magnitude number from the sorted list as the value of r decreases fof ﬁXéd N, where r and
N are deﬁnéd above. - Second, the variance also gets narrower as r decreases. This vwas expected,
since as we approach the maximum of the density function, we expect more points will be
generated in that area, and thus there will be less variability in this region. Last, fof all r, there is
increasing separation among the two hypothesis density functions as the sample size increases.

This was also seen in the numerical example of the maximum absolute order statistic.

In general, K-WTA and WTA implementations should be thought of as suppressing the noisy

projections, and passing on the high SNR components for further computation. This perspective

Stochastic Computation

- 160 -

of non-linear operations acting on a signal embedded in noise to enhance the SNR of the signal
is discussed at great length in Davenport and Root. D&R’s discussion focuses on p law
devicés, which have a transfer function acting on the received signal, of the form f(x) =x".
Here the received data is the sum -of a transmitted signal plus noise : x(t) = s(t) + n(t). D&R
‘c’onclude that for signals buried in Gaussian noise, the general effect of p law devices is Small
signal suppression. That is, for small input SNR*‘s (<< 1), the SNR gain of a p law device is
proportional to the square of input SNR. For large input SNR’s (>>‘ 1), the p law gain is directly
proportional to the input SNR. The result of p law devices is to drive low power signals into the
noise floor.’’"] WTA and K-WTA implement the same type of non-linear function’ality ina

radically different fashion. Yet the general concept of small signal suppression is the same.

20.2 Training Set Peculiarities

A few comments are warranted in regards to training sets. In the algorithm deséribed in this
thesis, statistics are compiled based on the training data. The training data must faithfully
represent the underlying problem probability density functions. This means the user should not
attempt to bias the training set to speed agreement on all training set data points. Thaf is, in
algorithms such as the perceptron convergence technique, the frequency with which hard to
learn points are represented in the training set is often increased. The reasoﬁ why this is
sometimes done is so that the algorithm will spend more time trying to fit these tougher points.
By essentially calling attention to points one knows will be difﬁcult; one speeds convergence to
a weight vector solution.*?! This should not be done in the algorithm described in this thesis, as

it biases the probability distributions the network thinks it is learning. The training set for this

Stochastic Computation

-161 -

thesis’s method must accurately reflect the statistics of the problem the network is being asked
to solve. This includes both the conditional hypothesis distributions, as well as the relative

frequency of the two hypotheses.

'20.3 MUSIC And Other Principle Eigenspace Techniques

A basic concept in this algorithm has been the identification of subspaces where there is a
substantial amount of activity. This fact, and the idea that the dimension of such a subspace can
often be much less than the overall data dimension, has been exploited in many other
algorithms.!>!

A few are mentioned here.

20.3.1 MUSIC : MUltiple SIgnal Classification

The MUSIC algorithm, and it’s close cousin, the minimum norm method, ',are used for
parameter estimation of one or more signals in sampled data.® For instance, a classic
application of the MUSIC algorithm is in identifying the frequencies of one or more sinusoids
in Gaussian noise. The signal waveform type (eg : sinusoids), must be known a priori. The
signal also typically has a free parameter (eg : frequency). Unknown sampled data is
obtained, and the eigenvalue spectrum is calculated. The eigenvalue spectrum is divided up into
a signal set of eigenvalues, and a noise set of eigenvalues. The eigenvectors for the noise set are
computed. A vector corresponding to the known sampled signal as a function of the free
parameter is then projected onto the noise subspace. The free parameter is swept over an

allowed range, and the minimum projection determines the parameter. Multiple local minima,

Stochastic Computation

-162 -

for instance at {®{,®,, * - - ®;}, indicate multiple signals are present with these frequencies.
The minimum norm method is similar. MUSIC is notabie because of three facts. First, ‘it
identiﬁes signal and noise subspaces, and is oriented towards utilizing projections onto these
subspaces to make a signal classification. Second, a detailed analysis of the MUSIC technique
for uncorrelated sinusoids buried in Gaussian noise indicates the algorithm.asymptotically
appfoaches the Cramer-Rao bound as the number of data samples — 001! Third, the MUSIC
estimator is a random variable since it depends on a sample from_an unknown, but fixed and
deterministic, signal population. This random variable is asymptotically Gaussian. This
philosophically agrees with the central limit theorem approximation taken eaﬂy in this thesis

work.

Although MUSIC has some qualities in common with this thesis work, it is fundamentally

different in several aspects.

20.4 Adding Noise To The Training Data

Several authors have cited improved generalization and faster learning when noise is added to
the data before it is handed off to the network. The amount of noise, optimum distribution, and
a theoretical basis for noise injection are open questions. This section will briefly discuss noise

injection for this model.

A key feature to the operation of this algorithm is the statistical independence of a neural layer’s
outputs. This independence was achieved by decorrelating the outputs, and assuming the

outputs were jointly Gaussian. Hence, the outputs are independent. If the neural output

Stochastic Computation

-163 -

distributions were not Gaussian, decorrelation does not imply independence, and overall system
performance degrades. If Gaussian noise is added to each pixel independently, then two effects
are seén. First, the resulting projection of the data has a distribution which more closely
approximates a Gaussian. Second, the correlation coefficient between the neural outputs
decreases. The increased Gaussian behavior is due to the central limit theorem application. If
before the projection vpdf was the random variable y, now it is y + n, where n is a Gaussian

random variable. This sum will be more Gaussian distributed than y alone was.

The second benefit arises because the correlation coefficient between two neuron outputs is

changed, as seen below.

E[y:;]

A _ old J
Yk Yk Rg > P \/ — —
Ely;] E[J’j]

il
M1l

new E[yiy)]

p

 N(E3P 1+ Nod) (B 1+N%)

Equation 68. Improvement In Cross Correlation Coefficients Due To Injected Noise

Here, o2 is the variance of the zero mean noise injected into each pixel, and N is the total
dimensionality of the incoming, raw data. For instance, in the 32 by 32 input Six & Seven
image vectors considered above, the average variance across the five vectors in table 2 was‘4.7.
Thus, addition of noise with zero mean, and variance 4.7/1024 = 0.0046, to each image pixel
will decrease every cross correlation coefficient p;; by half. Thus, noise injection can

theoretically help system performance by improving the statistical independence between neural

Stochastic Computation

- 164 -

outputs.

The tradeoff is the hypothesis projections now have increased variance than in the case without
noise. Hence, individual neuron performance is degraded in every case. System performance

may however improve due to the decreased cross correlation effects between neuron outputs.

20.5 General Learning Algorithms

Deterministic ~ Random
Algorithms Algorithms .
Deterministic | Perceptron Convergence | Boltzmann Machine
Inputs Backprop Simulated Annealing
Random This Future
Inputs Thesis Research

TABLE 23. Algorithm Types

Above we sketch the main types of algorithms. In the authors view, the deterministic input
algorlthms are subsets of the random input algorithm approaches. Th1s is because takmg the
variance — 0 in a random input algorithm yields it’s deterministic counterpart It should be
noted various authors have shown deterministic algorithms such as Backprdp are also stochastic
approximators to random problems.[®! For instance, consider the output Y of ‘a network as
providing a point estimation for a continuous parameter Y. Halbert White discusses how
Backprop produces a set of weights which minimizes the expected mean square error between Y
and Y| X, E[lY - Y] X||?]. The expectation is taken over the joint density function P(X, Y),

and the training set is a labeled sample drawn from the joint distribution of X and Y.>")

Stochastic Computation

- 165 -

20.6 Confidence Estimates

Confidence estimates for the hypotheses can be extracted from networks designed as described
above. That is,y instead of the binary decision, one can obtain the probability of H Véfsus H,.
This is useful for unsymmetrical or complex cost functions associated with the calculation and
minimization of a risk for a binary decision. That is, if we wish to minimize a criterion other
thaﬁ probability of error, the estimated probabilities of one hypothesis VGI‘SU,S‘ the other are often
needed. In all systems, including the ones described in this thesis, a ﬁistogram can be
constructed during training which estimates the output hypothesis probabiliti;s. However, the
algorithm described in this thesis outputs the relative hypothesis probabilities from the voting
node when a sigmoid and soft decoding are used. Recall that the soft neuron outputs a real
number z of the form P[H,1X] - P[Ho|X 1. Since P[H X]+ P[Ho|X 1= 1, trivially one

1-z

2

obtains P[H|X] = - ;Z _and P[H, | X]

Typical risk functions R are of the form ¥ C(x,y), where x is the hypothesis you guessed, and
y is the hypothesis that was actually true. C(x,y) is the cost of the joint set of (x,y) events.
Typically, one attempts to arrive at a decision strategy which minimizes the expected value of
the risk function — E[R]. To illustrate, for our work above, Bit Error Rate (BER) was

minimized. This is the same as optimizing the risk function below.

Stochastic Computation

- 166 -

» H, Actually Occurred H Actually Occurred
Guessed H 0 (No Risk) 1 (An Error Costs 1 Unit)
Guessed H; | 1 (An Error Costs 1 Unit) 0 (No Risk)

TABLE 24. Bit Error Rate Risk Function

The general impact of a cost function on a binary hypothesis decision problem is well
documented in the literature.’®! For this thesis’s approach, the decision which minimizes the

risk changes to the general form below.

BER Risk Form

H,
z = PH\} - P[H)] 7 0
General Risk ‘Form :
H,

— _ > C(0,1) - C(1,0) + C(0,0) — C(1,1)
z = PUL = PlHO o C(0,1) + C(1,0) - C(0,0) — C(1,1)

Equation 69. General Risk Formula

The only assumption made in deriving the General Risk Form was that the sum C(0,1) + C(1,0)
- C(0,0) - C(1,1) was positive. If not, the hypothesis decision assignment and inequality

directions should be exchanged.

Stochastic Computation

- 167 -

20.7 Decision Directed Adaptive Feedback

A few comments regarding unsupervised learning techniques will be made in this section. First,
suppose a network can learn enough about a binary hypothesis problem during sﬁi)ewised
training o attain a probability of error = 0.4 or better. Then a technique called decision directed
feedback can be used to improve this probability of error during unsupervised o'peration.[sg] 601
In this technique, after supervised training is complete, any decision made on an unknown
image is fed back to the update algorithm, and considered a label for that inpﬁt vector X. This
best guess as to which hypothesis was seen, together with the corresponding input vector, is
used to determine how the weight vectors should be updated, in a similar fashion as to how
weight vectors are updated during the labeled training period. This technique is called decision
directed feedback by it’s inventor, R. W. Lucky.[61] However, the step size used in the decision
directed phase of operation typically has to‘ be at least 100-1000 times smaller than that used in
the labeled training period. Thus, in Oja’s rule, the a; must be decreased substantially from that
used in labeled training. If not, the noisy estimates of the estimatedv décision may cause
divergence énd instabilities. A general rule of thumb for multi-dimensional grédient descent
algorithms is to keep the step size below the reciprocal of the largesf correlation matrix

eigenvalue A [0 For the handwritten digits used here, that implied o in the Oja rule should

be smaller than ﬁ = 0.005. In reality, an slightly higher step size was used at the beginning

1
iterationnumber

of a simulation run, as the geometric damping factor of for the a; prevented

divergence, and 0.005 was frequently too small to allow for significant convergence before the

step size died out. For instance, both the Six & Seven image runs and the Three & Five image

Stochastic Computation

- 168 -
runs were made starting at a step size of 0.002.

' 21. Conclusion

The view in this work has been that input data and the output decision of a binary hypothesis
computation problem can be interpreted as random variables. The act of computing is to
manipulate the often high-dimensional input random variables into a one-dimensional form

from which a Yes/No decision can be extracted. Hence the thesis title : Stochastic Computation.

Such a picture of computation holds much in common with the generalized statistical
communication model. In this model, a signal is drawn from one of twor possible ensembles.
The drawn signal is corrupted by additive noise, and passed to a recciver. The receiver must
determine which ensemble the input was most likely to be drawn from. In computation, the
‘decision process is viewed in a similar fashion. Binary hypothesis .computation is the
determination of whether input data was drawn from a Yes ensemble versus a No ensemble. The
corruption of the ensemble signals with additive noise acts to ensure robus;cnéss in the face of

imperfections in the data collection and data processing stages.

A view of communication and computation as the extraction of a generalized signal from a
noise corrupted, often high-dimensional input space allows one to apply the tools of

communication and information theory to analyze problems in computation. The assignment of

4. Details of the numeric parameters used in the C code which determined the weight vectors and eigenvalue’s can be
found in tables in the section on the discussion of the Oja algorithm.

Stochastic Computation

- 169 -

an equivalent Shannon channel capacity to computing architectures and algorithms quantifies
the ability of the computation to extract a correct decision from input data. For neural networks,
the caﬂculation of the channel capacity leads to an interesting interpretation of netwérk depth
versus width. The épplication of a computational channel capacity to other types of computing
architectures and algorithms could also possibly lead to a better, more intuitive interpretation of

computation system parameters and tradeoffs.

In conclusion, the generalized communication model and a stochastic view of computation lead
to the same mathematical formalism. Borrowing tools from statistical communication and
information theory, and applying these to computational problems, and vice versa, is a fruitful

approach, and opens new areas for analytic investigation.

Stochastic Computation

-170 -

REFERENCES

. Caltech EE 129 Information And Complexity Course Notes, By Yaser Abu-Mostafa, 1994

. An Introduction To Pfobability Theory And Its Applications, By William Feller, Volume
1, Third Edition, Revised Printing, Wiley Series In Probability And Mathemaﬁcal Statistics,

‘John Wiley and Sons, 1968, ISBN 0-471-25708-7, Pages 244 and 256

. Mathematical Methods Of Statistics, By Harald Cramer, Princeton University Press, 1945

(Eighteenth Printing 1991), ISBN 0-691-08004-6, Section 17.5.3, Page 219

. Fundamentals Of Digital Image Processing, By Anil K. Jain, Prentice Hall Publishers,

1989, ISBN 0-13-336165-9, Page 163

. Digital Communication Techniques : Signal Design And Detection, By Marvin K. Simon,,
Sami M. Hinedi, and William C. Lindsey, Prentice Hall Publishers, 1995, ISBN 0-13-

200610-3, Page 237

. Statistical Theory Of Signal Detection, By Carl W. Helstrom, Second Edition, 1968,

Pergamon Press Inc., Page 124

. An Introduction To The Theory Of Random Signals And Noise, Wilber B. Davenport Jr.,
and William L. Root, The Maple Press Publishing Company, York, PA,, 1958, Page 96

(Recently Reprinted By The IEEE Press)

. Detection Of Signals In Noise, By Anthony D. Whalen, 1971, Academic Press

Stochastic Computation

10.

11.
12.
13.

14.

15,

16.

17.

-18.

-171 -

.CDROM 1 : USPS Office of Advanced Technology Database of Handwritten Cities,

States, ZIP Codes, Digits, and Alphabetic Characters. The Center Of Excellencc for
Document Analysis and Recognition (CEDAR), 226 Bell Hall, State University of New York

at Buffalo, Buffalo, NY 14260-0001

Little 1200 Handwritten Digit Database, collected by Isabelle Guyon, A T & T Bell

Laboratories, 50 Fremont Street, 6th Floor, San Francisco, CA 94105,

CEDAR Database, ibid.
PBM-Plus Image Processing Utilities, By Jef Poskanzer, 1991
MATLAB, The MathWorks, Inc., Cochituate Place, 24 Prime Park Way, Natick, MA. 01760

Analysis Of Numerical Methods, By Herbert Bishop Keller and Eugene Isaacson, Dover

Publications, Inc., 1994, ISBN 0-486-68029-0, Page 147

Introduction To Numerical Analysis, By Josef Stoer and Roland Bulirsch, Springer-Verlag

Ihc., Second Corrected Printing, 1983, ISBN 0-387-90420-4, Chapters IV, VI and VIIL
Feller, ibid.

Introduction To Statistical Pattern Recognition, By Keinosuke Fukunaga, Second Edition,

Academic Press, Inc., 1990, ISBN 0-12-269851-7, Page 31

An Introduction To Information Theory, By John R. Pierce, Second, Revised Edition,

Dover Publications, Inc., 1980, ISBN 0-486-24061-4, Pages 143-144, 164-165

Stochastic Computation

19.

20.

21.

22.

23,

24,

25.

26.

27.

-172 -

MAPLE V : A Symbolic Manipulation Program, Waterloo Maple Software, Symbolic
Computation Group, Department Of Computer Science, University Of Waterloo, Waterloo,

Ontario, Canada, N2L 3Gl

Mathématical Statistics, By John E. Freund and Ronald E. Walpole, Third Edition,

Prentice-Hall Inc., 1980, ISBN 0-13-562066-X, Page 232

On The K-Winners Take All Network, By Eric Majani, Ruth Erlansonz and Yaser. S. Abu-
Mostafa, The 1988 IEEE Conference On Neural Information Processing Systems, NIPS 1,

Morgan Kaufmann Publishers, ISBN 1-558-60015-9, Page 634

Adaptive Network For Optimal Linear Feature Extractions, By Peter Foldiak, 1989,
International Joint Conference On Neural Networks (IJCNN), Volume 1, Pages 401-405,

Washington, DC.
Hertz et al., ibid., Pages 201 - 209

Introduction To Mathematical Statistics, By Robert V. Hogg, and Allen T. Craig, Fourth

Edition, MacMillan Publishing Co., Inc. 1978, ISBN 0-02-355710-9, Pages 154-161

Mathematical Statistics, By John E. Freund and Ronald E. Walpole, Third Edition,

Prentice-Hall Inc., 1980, ISBN 0-13-562066-X, Pages 179-282

Neural Networks and The Bias / Variance Dilemma, by Stuart Geman, Elie Bienenstock,

and Rene’, Neural Computation, The MIT Press, Volume 4, Number 1, January, 1992, Page 1

Introduction To The Theory Of Neural Computation, By John A. Hertz, Anders S. Krogh,

and Richard G. Palmer, Addison-Wesley Publishing Co., 1991, ISBN 0-201-51560-1, Page

Stochastic Computation

28.

29.

30.

31

32.

33.

34.

-173 -

21

An Introduction To Probability Theory And Its Applications, By William Feller, Volume
I, Third Edition, Revised Printing, Wiley Series In Probability And Mathematical Statistics,

John Wiley and Sons, 1968, ISBN 0-471-25708-7, Page 174

‘Neural Networks And Physical Systems With Emergent Collective Computational

Abilities, John J. Hopfield, Proceedings Of The National Academy Of S_ciences, Volume 79,
April, 1982, Pages 2554-2558. Reprinted In Neural Networks : Theoretical Foundations
And Analysis, Edited By Clifford Lau, IEEE Press, 1992, ISBN : 0-87942-280-7, Hopfield,

1982, ibid., Page 144, Column 2, Paragraph 1.
Hopfield, 1982, ibid., Page 144

The Capacity Of The Hopfield Associative Memory, by Robert J.- McEliece, Edward C.
Posner, E. R. Rodemich, and Santosh S. Venkatesh, IEEE Transactions On Information

Theory, 1987, Volume 33, Pages 461-482.

Adaptive Filter Theory, By Simon Haykin, Second Edition, 1991, PrenticevHall Inc., ISBN

0-13-013236-5, Page 147

NIST Handwritten Digit Database(fi3), NIST Special Database 1, By Michael Garris,

National Institute Of Standards

A Simplified Neuron Model As A Principal Component Analyzer by Erkki Oja, Journal

Of Mathematical Biology, 1982, Volume 15, Pages 267-273

Stochastic Computation

35.

36.

37.

| 38.
39.
40.
41.
42.
43.

44,

174 -

Fast Adaptive Formation Of Orthogonalizing Filters And Associative Memory In
Recurrent Networks Of Neuron-Like Elements, By Teuvo Kohonen and Erkka Oja,

Biological Cybernetics, Volume 21, Pages 85 - 95, 1976

Principle Component' Analysis By Homogeneous Neural Networks, Part 1 : The

Weighted Subspace Criterion, By Erkki Oja, Hidemitsu Ogawa, 'and- Jaroonsakdi

Wangviwattana, IEICE Transactions On Information And Systems, May, 1992, Volume

E75-D, Number 3, Pages 366 - 375

Principle Component Analysis By Homogeneous Neural Networks, Part IT : Analysis
and Extensions Of The Learning Algorithms, By Erkki Oja, Hidemitsu Ogawa, and
Jaroonsakdi Wangviwattana, IEICE Transactions On Information And Systems, May, 1992,

Volume E75-D, Number 3, Pages 376 - 382

Oja et al., IEICE, Part II, ibid., Page 377

Oja et al., ibid., IEICE, Part I, Page 380, Equation 28
Hogg aﬁd Craig,-ibid.

Freund and Walpole, ibid.,

Feller, Volume I, ibid.,

Hogg and Craig, ibid., Page 175

Oja, IEICE 11, Page 377-379

Stochastic Computation

45.

46.

47.

48.

49.

50.
S1.

52.

53.

54.

-175 -

Davenport and Root, ibid., Page 244

Modern Digital Analog Communications Systems, by Bhagwandas Pannalal Lathi, 1983,

CBS College Publishing, ISBN 0-03-058969-X, Page 503

Digital Communications, by John G. Proakis, 1983, MaGraw-Hill Inc., ISBN 0-07-050927-

1, Page 142-143

Haykin, Adaptive Filter Theory, ibid, Page 147

Self Organization In A Perceptual Network, By R. Linkser, Computer, March, 1988, Pages

105-117
Davenport and Root, ibid, Chapters 12 and 13, Pages 250 - 311.
Davenport and Root, ibid, Page 308

Perceptron Convergence Theorem, Perceptrons : An Introduction To Computational
Geometry, Expanded Edition, By Marvin Minsky and Seyinour Papert, 1988, The MIT Press,

ISBN 0-262-63111-3, Page 167

Introduction To Communication Science And Systems, By John R. Pierce, and Edward C.
Posner, Plenum Press, 1980, ISBN 0-306-40492-3, (BSC Stuff) Pages 312-313, Chapter 13,
Sources And Encoding, Section 13.5 Multidimensional Scaling And The Message Behind

The Message, Pages 359-367

Haykin, Adaptive Filter Theory, ibid, Pages 452 - 471

Stochastic Computation

55.

56.

57.

58.

59.

60.

6l.

62.

-176 -

MUSIC, Maximum - Likelihood, and The Cramer - Rao Bound, by P. Stoica, and B.
Nehorai, 1988, IEEE Transactions On Acoustics, Speech, and Signal Processing, Volume 37,

Pages 720 - 741,

Artiﬁcial Neural Networks : Approximation and Learning Theory, by Halbert White,

1992, Blackwell Publishers, ISBN 1-55786-329-6, Pages 79-131

White, ibid., Page 84

Detection, Estimation, and Modulation Theory - Part I, By Harry L. Van Trees, John

Wiley and Sons, 1968, ISBN 0-471-89955-0, Page 26
Caltech EE 164 - Adaptive Signal Processing - 1994 Course Notes

EE 164 Class Project In FIR (Finite Impulse Response) & LMS (Least Mean Square)

Decision Directed Feedback

Adaptive Signal Processing, By Bernard Widrow and Samuel D. Stearns, 1985, Prentice

Hall Inc., ISBN 0-13-004029-01, Page 247-248

Widrow and Stearns, ibid., Page 59

Stochastic Computation

