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ABSTRACT 

This dissertation primarily describes structure-function studies of the nicotinic 

acetylcholine receptors (nAChRs).  These studies use a combination of unnatural amino 

acid mutagenesis and electrophysiology to determine the specific molecular interactions 

required for neurotransmitter binding to nAChRs. 

 Chapter 2 examines the mode of agonist activation for the α4β2 nAChR, the 

receptor responsible for nicotine addiction.  This study investigates the molecular 

interactions that differentiate the α4β2 receptor from other receptor subtypes and endow 

it with the ability to mediate nicotine addiction.  We report that the high affinity for 

nicotine at the α4β2 receptor is a result of a strong cation-π interaction and a 

strengthened backbone hydrogen bond to a conserved tryptophan (TrpB) of this receptor.  

We also establish that a point mutation just four residues away from TrpB appears to 

influence the shape of the agonist binding site, such that it can differentiate the agonist 

binding mode of the α4β2 and muscle-type receptors. 

  Chapter 3 extends studies of the point mutation near TrpB, termed the “loop B 

glycine.”  We examine the muscle-type, α4β2, and α7 subtypes and show that the 

identity of this residue strongly correlates with agonist potency.  Low-potency receptor 

subtypes have a glycine at the loop B site, while high-potency receptors have a lysine at 

this site.  We establish that mutation of this residue can to convert a low-potency receptor 

to a high-potency receptor and vice versa. 

Chapter 4 investigates the agonist binding mechanism of the α4β4 receptor.  We 

show both ACh and nicotine make a strong cation-π interaction to TrpB, and nicotine 

makes a strong hydrogen bond to the backbone carbonyl of TrpB.  Additionally, chimeric 
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β subunits are used to examine the influence of the complementary binding component 

on receptor pharmacology for the α4β2 and α4β4 receptors.   

Last, chapter 5 is a methodology-based project focused on optimizing the 

incorporation of unnatural amino acids into mammalian cells.  Using HEK293T cells, we 

successfully suppressed an amber stop codon using HSAS, an in vivo aminoacylated 

tRNA.  Additional studies will pursue the viability of in vitro aminoacylated tRNAs for 

nonsense suppression in mammalian cells.     
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Chapter 1 
 

Using Chemical Biology to Study the Brain 
 
1.1 Chemical Signaling in the Brain 

As scientists, we continually strive to understand complex biological and 

chemical systems with the ultimate goal of comprehending the human condition and 

improving human health.  From Hippocrates and Aristotle to the modern scientist, we 

have been fixated on studying the most complex organ in the human body – the brain.  

The adult human brain contains approximately 1011 neurons, and each neuron forms 

thousands of connections to other neurons through junctions called synapses.  As such, 

the resulting 1014 to 1015 synapses form the complex neural network responsible for the 

intricacies of cognition and behavioral function.  Efficient communication between 

neurons is facilitated by neuroreceptors located at these synapses.  Modern neurobiology 

aims to understand the relationship between the properties of these fundamental brain 

components and cognitive function/dysfunction.  

Neurons communicate via synaptic transmission; a process in which a presynaptic 

neuron produces a signal and a postsynaptic neuron receives this signal (Figure 1.1A).  

This process begins when the presynaptic nerve cell receives information from other 

neurons via its dendrites.  This information is processed and the presynaptic neuron fires 

an electrical signal, called an action potential, which travels down the axon of the 

presynaptic neuron.  Upon reaching the axon terminal, the action potential triggers the 

release of vesicles containing small-molecule neurotransmitters into the synaptic cleft, 

the space between neurons.  Neurotransmitters diffuse across the synaptic cleft and bind 

to receptors embedded within the postsynaptic membrane, the so-called neurotransmitter-
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gated ion channels.  Upon neurotransmitter binding, the receptor undergoes a 

conformational change from a closed (non-conducting) state to an open (ion-conducting) 

state allowing the flow of ions across the postsynaptic membrane (Figure 1.1B).  Thus, 

an electrical signal (the action potential) is converted into a chemical signal (the 

neurotransmitter) and subsequently back into an electrical signal (ion flow across the 

membrane), thereby completing the transmission of information from one cell to another.     

 
Figure 1.1. Synaptic transmission. A. The communication between two neurons occurs at 
the synapse, boxed in red. The presynaptic neuron receives a message from other neurons 
and transmits this information to the postsynaptic neuron. Enlargement of the synapse 
shows that various receptors are embedded within the postsynaptic membrane.  These 
neuroreceptors recognize and bind neurotransmitters (blue circles). B. Upon agonist 
activation, the ion channel undergoes a conformational change from a closed (non-
conducting) state to an open (ion-conducting) state, thereby propagating the signal.   
 



3 
 

 
 

These neuroreceptors are among the molecules of sensory perception, learning, 

and memory, and can function at either the presynaptic or the postsynaptic neuron.  If 

located at the presynaptic terminal, the ligand-gated ion channel usually has a regulatory 

function, such as facilitating neurotransmitter release, whereas postsynaptic receptors 

propagate rapid electrical signal transmission between neurons.1-3  Regardless of synaptic 

location of the ligand-gated ion channel, neurotransmitter binding and receptor activation 

are chemical-scale events essential to proper receptor function. As chemists, we are 

interested in developing chemical strategies to understand specific chemical interactions 

that mediate the structure/function relationship of these complex proteins.  We employ 

chemical neurobiology to understand the process by which small-molecule 

neurotransmitters activate these much larger neuroreceptors proteins.  

1.2 Nicotinic Acetylcholine Receptors: The Longest Known and Best-Studied 
Neuroreceptor 

The nicotinic acetylcholine receptor (nAChR) represents a class of 

neurotransmitter-gated ion channels belonging to the Cys-loop superfamily of 

neuroreceptors, which also includes the γ-aminobutyric acid type A and type C (GABAA 

and GABAC), glycine (Gly), and serotonin type 3 (5-HT3) receptors.4  As a family of 

complex transmembrane proteins, nAChRs are activated by the endogenous 

neurotransmitter acetylcholine.  Coincidentally, nAChRs are also activated by the 

addictive lipophilic alkaloid, nicotine and other structurally related molecules (Figure 

1.2).  This class of neuroreceptors is essential to rapid synaptic transmission in the 

mammalian central nervous system (CNS) and peripheral nervous system (PNS).4-6  
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Given the abundant source of nAChRs available from the Torpedo electroplax, the 

nAChR has become the best-studied and prototypical Cys-loop receptor.4-8   

S-Nicotine

N+

H
NN+

O

O
N+

N

Cl
H H

Epibatidine
Acetylcholine

(ACh)

N

N

N+

Varenicline

H

H

 
Figure 1.2. nAChR agonists studied in this dissertation.  Structures are shown for 
acetylcholine (ACh), S-nicotine, epibatidine, and varenicline (Chantix®). 

 
Over the past 20 years, several studies have greatly increased our understanding 

of nAChR structure.  To begin with, a cryo-electron microscopic structure of the Torpedo 

californica nAChR (4 Å) obtained by Unwin et al. revealed the gross topology of a full-

length nAChR.9, 10  As shown in Figure 1.3, nAChRs are composed of five homologous 

subunits arranged pseudosymmetrically around a central ion-conducting pore.  Each 

subunit contains a large, principally β-sheet extracellular N-terminal domain, four 

transmembrane α-helices (M1-M4), and a small extracellular C-terminal domain.  The 

agonist binding site resides within the N-terminal extracellular domain, whereas the 

channel gate is located 60 Å away in the transmembrane domain.  The M2 helix from 

each subunit lines the ion-conducting pore and the L9’ residue has been identified as the 

channel gate.9  (In Cys-loop receptors, these highly homologous M2 sequences are 

numbered from the cytoplasmic end, termed position 1’.)  
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Figure 1.3. nAChR structure. Detailed view of nAChR with one subunit highlighted in 
blue. Structure is based in Unwin’s model of the Torpedo receptor (left, pdb file 2BG9).9 
The highlighted subunit is compared to a cartoon (on right) describing the topology of a 
Cys-loop receptor subunit. 

A significant advance in the field of nAChR research was the discovery of the 

water-soluble, snail acetylcholine binding proteins (AChBPs).11-16  The pentameric 

AChBPs are structural surrogates for the extracellular ligand-binding domain of the 

nAChR, sharing 20%–25% sequence identity with the extracellular domain of the 

significantly larger ion channel proteins.11  As such, crystal structures of AChBPs bound 

to various ligands have guided our structure-function studies of the nAChR binding site 

presented herein.  The major caveat, however, is that AChBPs are not a neurotransmitter-

gated ion channel, like the nAChR.  Instead, AChBPs are merely proteins that contain an 

acetylcholine binding site, and therefore offer little guidance regarding the nAChR gating 

mechanism.  

extracellular

intracellular

Agonist 
Binding Site

Channel 
Gate

The “Cys” Loop

out

in membrane

120 Å

70 Å



6 
 

 
 

There are 16 mammalian genes that encode nAChR subunits, termed α1–α7, α9, 

α10, β1–β4, δ, γ, and ε.  nAChRs are modular in nature, so these subunits arrange into 

pentamers to form as many as 25 different nAChR subtypes in humans.7, 8  The muscle-

type receptor is the prototypical nAChR with its precise stoichiometry of (α1)2β1γδ, fetal 

form (the adult form is (α1)2β1εδ)) (Figure 1.4).4-6  This nAChR subtype is localized at 

the neuromuscular junction and mediates electrical transmission responsible for skeletal 

muscle tone.  The neuronal nAChRs comprise the remaining nAChR subtypes, which are 

formed by combinations of α2–α7, α9, α10 and β2–β4 subunits (Figure 1.4).7  The 

diverse array of neuronal subtypes is involved in maintaining multiple cognitive 

processes such as learning, memory, reward, and motor control.7, 8   

 

Figure 1.4. nAChR subtypes studied in this dissertation. 

In the CNS, the two major neuronal subtypes are the α4β2 and α7 receptors.8, 17  

The α4β2 receptor accounts for over 90% of the high affinity nicotine binding sites in the 

brain,7, 18-20 and as such, Pfizer’s smoking cessation drug varenicline was designed to 

target this receptor.21-23  The α4β2 receptor exists in two stoichiometries, (α4)2(β2)3 and 

(α4)3(β2)2, and chronic exposure to nicotine leads to upregulation of (α4)2(β2)3, the form 

most relevant to nicotine addiction.24, 25  The homopentameric α7 receptor has been 

implicated in schizophrenia and is considered a treatment target for Alzheimer’s disease 
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and other cognitive disorders.7  The last nAChR subtype discussed in this thesis is the 

α4β4 subtype, which like α4β2, can arrange in variable stoichometries and is associated 

with nicotine addiction.7, 26, 27 

Agonists bind at select subunit interfaces4-6 originally identified by photoaffinity 

labeling and mutagenesis experiments.11, 28-32  The agonist binding site is formed from 

several loops contributed by the principal and complementary binding interfaces.  The 

principal binding site (an α subunit) contributes loops A, B, and C, while the 

complementary binding site (a non-α subunit, e.g., γ, δ, β2, β4) contributes loops D, E, 

and F.  The cationic moiety of agonist molecules interacts with a cluster of five aromatic 

amino acids, termed TyrA, TrpB, TyrC1, TyrC2, and TrpD (Figure 1.5).  These residues 

are conserved for all nAChR subtypes and named according to the loop on which they 

reside.  A major focus of this thesis focus is TrpB, a residue shown to bind agonists via a 

cation-π interaction in several nAChR subtypes.33-35   

 

 
Figure 1.5. A model of the nAChR agonist binding site from AChBP (pdb file1I9B).11 
Residues are labeled according to the loop on which they reside.  Residues TyrA, TrpB, 
TyrC1, and TyrC2 are from the α subunit, but residue TrpD is from a non-α subunit. 
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1.3 The Nonsense Suppression Methodology: An Invaluable Tool  

Nonsense suppression is a broadly applicable technique that can dissect the 

structure-function relationship of various complex proteins,33-36 and is especially useful 

for understanding proteins in the absence of a crystal structure.  The major advantage of 

this approach is the ability to introduce minimal structural modifications to amino acid 

side chains, thereby allowing for more accurate interpretations of the effects of a specific 

perturbation.  This strategy is complementary to conventional site-directed mutagenesis 

which can more globally alter or completely abolish side chain functionality within the 

confines of the naturally occurring amino acids.   

Conventional mutagenesis can severely limit the ability to probe the functionality 

of a multifunctional residue.  Consider a tyrosine residue, which may serve as a hydrogen 

bond donor, a hydrogen bond acceptor, a site for a cation-π interaction, or a source of 

steric bulk (Figure 1.6).  When Tyr is mutated to an Ala, all possible side-chain 

functionality is abolished, and this mutation can only determine if Tyr is essential for 

protein function.  Alternatively, mutating the Tyr to either Phe or Ser can probe for a 

hydrogen bonding interaction.  Both mutations can only establish if the hydroxyl group is 

necessary for proper function, which can act as either a hydrogen bond donor or acceptor.  

The Tyr to Phe mutation is more conservative as it leaves the π system of the phenyl ring 

intact.  The Tyr to Ser mutation, however, is more complicated due to the significant size 

discrepancy between Ser and Tyr.  This mutant may result in decreased protein function, 

which could be attributed to the smaller size of the Ser residue unable to provide an OH 

group at the same point in space as that provided by Tyr.   
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Figure 1.6. Mutation of tyrosine: Comparison of conventional mutagenesis and unnatural 
amino acid mutagenesis. 

Unnatural amino acid mutagenesis, however, can address all of these issues by 

expanding the repertoire of amino acids offered by nature (Figure 1.6).  For instance, 

incorporation of 4-methoxy phenylalanine (4-MeOPhe) allows one to determine whether 

the residue of interest acts as a hydrogen bond acceptor.  The issue of steric bulk can be 

examined by incorporation of 4-methyl phenylalanine (4-MePhe), a residue that would 

occupy the same relative space as Tyr.  Incorporation of cyclohexylalanine (Cha) can 

establish if the aromatic nature of Tyr is important to proper function.  Additionally, 

incorporation of fluorinated Phe derivatives can investigate the presence of a cation-π 

interaction, a non-covalent interaction between the face of an electron-rich π system and 

a cation.37-40 

We use the nonsense suppression methodology, developed by Schultz in 1989,41 

to site-specifically incorporate unnatural amino acids into proteins heterologously 
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expressed in Xenopus laevis oocytes.42, 43  Using this method, our lab has successfully 

determined the ligand binding mechanism and channel gating properties of numerous ion 

channels and neuroreceptors.33-35, 44-52  

In normal protein synthesis, the ribosome is a multisubunit complex of RNAs and 

proteins that functions to decode a template mRNA strand and generate a specific protein 

target.  The mRNA sequence contains a series of codons that directs the succession of 

“charged” tRNA molecules (i.e., tRNA with an amino acid appended to the 3’ end) 

containing the appropriate anticodons.  Amino acids are linked together via peptide bonds 

to form the growing polypeptide chain.  Termination of protein synthesis occurs when the 

ribosome encounters a STOP or nonsense codon (e.g., UAA, UAG, or UGA), after 

which, the polypeptide chain is released. 

Nonsense suppression, however, “hijacks” the endogenous translational 

machinery of the Xenopus oocyte (Figure 1.7).  In this process, either a nonsense 

codon35, 41 or four-base codon50-52 (e.g., TAG or GGGT) is placed at the amino acid 

position of interest in DNA containing the subunit gene.  Naturally occurring tRNAs do 

not recognize these codons, and as such these codons would normally elicit termination 

of protein synthesis or a frameshift mutation, respectively.  Instead, we employ a special 

suppressor tRNA that contains the correct anticodon and is charged with the unnatural 

amino acid of choice linked through a highly reactive ester bond.51-53  The fidelity of this 

method relies on the orthogonality of the suppressor tRNA, meaning that the tRNA is not 

recognized by the endogenous aminoacyl-tRNA synthesizes of the cell and thereby 

avoids recharging with natural amino acids.  
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Figure 1.7. Hijacking protein translation: Using nonsense suppression to incorporate 
unnatural amino acids. 

A full-length, 76 nucleotide suppressor tRNA is made through a non-trivial 

process using a combination of synthetic and molecular biology techniques.42, 43, 53, 54  

First, the suppressor tRNA is in vitro transcribed as a 74-nucleotide fragment, which is 

missing the last two nucleotides of the acceptor stem (cytosine; C and adenine; A).  The 

deoxy-C and A (dCA) dinucleotide is synthesized and chemically acylated with the 

unnatural amino acid (UAA) of choice.  Chemical ligation of the dCA- UAA to the 

74mer tRNA produces a complete tRNA-UAA molecule.   

 In the last step of nonsense suppression, in vitro transcribed mRNA containing the 

nonsense codon and the tRNA-UAA are coinjected into a Xenopus laevis oocyte, an 

unfertilized frog egg (Figure 1.8).  The endogenous translational machinery of the oocyte 

completes this process by synthesizing, processing, and exporting the desired protein to 

the surface of the cell membrane.  We then examine the functional properties of the novel 
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protein, which can be attributed to the subtle structural perturbation induced by the 

unnatural amino acid. 

 

Figure 1.8. Illustration of the in vivo nonsense suppression technique, a method for 
incorporating unnatural amino acids into ion channels expressed in Xenopus oocytes. 
 

1.4 Electrophysiology: A Sensitive Assay of Receptor Function 

The nAChR proteins are ion channels, and as such they mediate the flow of ions 

(e.g., an electrical current) across a cell membrane.  Conveniently, this electrical signal 

can be readily measured and reports the functionality of the protein under study.  Recall, 

however, that the orthogonal suppressor tRNAs are a stoichiometric reagent – once they 

deliver their unnatural amino acid to the protein, they are not recharged with additional 

unnatural amino acid.  Additionally, the efficiency of nonsense suppression is inherently 

variable due to mRNA surveillance mechanisms of the cell (e.g., nonsense-mediated 
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decay).55, 56  These processes complicate suppression of a nonsense codon and therefore 

limit the production of the desired protein.  We overcome these potential challenges by 

using a very sensitive assay of ion channel function, termed two-electrode voltage clamp 

electrophysiology. 

Using this assay, receptors expressed on the cell membrane are exposed to 

increasing concentrations of agonists.  This results in electrical currents proportional to 

the amount of receptor activation (Figure 1.9A).  These data are then fit to the Hill 

equation to generate a dose-response relationship, a curve that plots the agonist 

concentration against the normalized current responses (Figure 1.9B).  From this curve, 

we measure the EC50 value, the concentration required to achieve half-maximal 

activation.  EC50 is a functional measure of the induced structural perturbation and is used 

to compare ion channel function.  As such, a rightward shift in EC50 is a “loss-of-

function” mutation, which would require more agonist to activate the channel, whereas a 

leftward shift in EC50 would indicate a “gain-of-function” mutation.  We note that EC50 is 

a composite measurement of both agonist binding and receptor gating.  As such, the 

studies presented herein focus mainly on mutation of the agonist binding site.  Given that 

the agonist binding site is separated by a distance of ~60 Å, we assume that such 

mutations primarily affect the binding parameter of EC50.  Additionally, single channel 

analysis has confirmed that the gating parameter is unaffected by mutations of the agonist 

binding site.34 
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Figure 1.9. Electrophysiology as an assay of ion channel function. A. Illustration of 
agonist-induced current traces for two agonist concentrations (50 µM and 500 µM).  
B. Dose-response relationships. The dose-response curve for a wild type protein (in 
black), a gain-of-function mutation (in green), and a loss-of-function mutation (in pink). 
 

1.5 Summary of Dissertation Work 

The following work describes structure-function studies of the nAChR.  These 

studies use unnatural amino acid mutagenesis and electrophysiology to elucidate the 

molecular determinants for agonist binding in several nAChR subtypes. 

In chapter 2, we study the nAChR subtype responsible for nicotine addiction, the 

α4β2 nAChR.  We determine the molecular interactions that differentiate this receptor 

from other nAChR subtypes and endow it with the ability to mediate nicotine addiction.  

We report that the high affinity for nicotine at α4β2 is a result of a strong cation-π 

interaction and a strengthened backbone hydrogen bond to TrpB of this receptor.34  This 

result contrasts what was observed in the muscle-type nAChR, where a cation-π 

interaction was found with ACh, but not with nicotine.35, 44  We also show that a point 

mutation near TrpB appears to influence the shape of the agonist binding site, such that it 

can differentiate the α4β2 and muscle-type receptors’ binding mechanisms.34 

In chapter 3, we further investigate the point mutation near TrpB, termed the 

“loop B glycine.”   In three nAChR subtypes (i.e., muscle-type, α4β2, and α7), we show 
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that the correlation between agonist potency and this loop B site is strong.  Low-potency 

receptor subtypes have a glycine at the loop B site, while high-potency receptors have a 

lysine at this site.  We establish that mutation of this residue can to convert a low-potency 

receptor to a high-potency receptor and vice versa. 

Chapter 4 describes our efforts to understand the agonist binding mechanism of a 

fourth nAChR subtype, the α4β4 receptor.  We confirm that the α4β4 receptor, like 

α4β2, utilizes a strong cation-π interaction to TrpB for both ACh and nicotine, and 

nicotine makes a strong hydrogen bond to the backbone carbonyl of TrpB.33  

Additionally, we use chimeric β subunits in an attempt to understand how the 

complementary binding component can influence agonist binding and receptor 

pharmacology in the α4β2 and α4β4 receptors.  Together, chapters 2-4 identify structural 

features of the nAChR that contribute to differential receptor pharmacology and hold 

significant implications for drug discovery efforts seeking to selectively target nAChRs. 

Last, chapter 5 takes a shift from the previous chapters and describes a 

methodology-based project.  This chapter focuses on the optimization of unnatural amino 

acid incorporation into mammalian cells and its application to large-scale imaging 

techniques, such as the FlexStation 3.  We have successfully suppressed an amber stop 

codon using HSAS, an in vivo aminoacylated tRNA, in HEK293T cells.  Studies are 

ongoing to achieve nonsense suppression using in vitro aminoacylated tRNAs.     
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Chapter 2 
 

Nicotine Binding to Brain Receptors Requires a Strong Cation–π 
Interaction* 

 
*This chapter is adapted in part from: Xiu, X.†; Puskar, N. L.†; Shanata, J. A. P.; Lester, 
H. A.; Dougherty, D. A. Nicotine binding to brain receptors requires a strong cation–π 
interaction. Nature. 2009; 458: 534-538. © Nature Publishing Group, a division of 
Macmillan Publishers Limited. The work described in this chapter concerning 
varenicline was done in collaboration with Ximena Da Silva Tavares Bongoll, Dr. 
Angela P. Blum, Darren T. Nakamura, and Dr. Jai A. P. Shanata. 
†Denotes equal contribution. 

 
2.1 ABSTRACT  

Nicotine addiction begins with high-affinity binding of nicotine to acetylcholine 

(ACh) receptors in the brain. The end result is over 4,000,000 smoking-related deaths 

annually worldwide and the largest source of preventable mortality in developed 

countries. Stress reduction, pleasure, improved cognition and other central nervous 

system effects are strongly associated with smoking. However, if nicotine activated ACh 

receptors found in muscle as potently as it does brain ACh receptors, smoking would 

cause intolerable and perhaps fatal muscle contractions. Despite extensive 

pharmacological, functional, and structural studies of ACh receptors, the basis for the 

differential action of nicotine on brain compared with muscle ACh receptors has not been 

determined. Here we show that at the α4β2 brain receptors thought to underlie nicotine 

addiction, the high affinity for nicotine binding is the result of a strong cation–π 

interaction to a specific aromatic amino acid of the receptor, TrpB. In contrast, the low 

affinity for nicotine at the muscle-type ACh receptor is largely due to the fact that this 

key interaction is absent, even though the immediate binding site residues, including the 
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key amino acid TrpB, are identical in the brain and muscle receptors. At the same time a 

hydrogen bond from nicotine to the backbone carbonyl of TrpB is enhanced in the 

neuronal receptor relative to the muscle-type. The cation-π interaction and hydrogen 

bond are also present between TrpB and the smoking cessation compound varenicline 

(Chantix®) in the α4β2 receptor. Additionally, a point mutation near TrpB that 

differentiates α4β2 and muscle-type receptors seems to influence the shape of the 

binding site, allowing nicotine to interact more strongly with TrpB in the neuronal 

receptor. ACh receptors are established therapeutic targets for Alzheimer’s disease, 

schizophrenia, Parkinson’s disease, smoking cessation, pain, attention-deficit 

hyperactivity disorder, epilepsy, autism, and depression.1 Along with solving a chemical 

mystery in nicotine addiction, our results provide guidance for efforts to develop drugs 

that target specific types of nicotinic receptors. 

2.2  INTRODUCTION 

Nicotinic acetylcholine receptors (nAChRs) comprise a family of ≥20 

homologous subtypes that mediate fast synaptic transmission throughout the central and 

peripheral nervous systems.2 The neuronal nAChRs are found in the central nervous 

system (CNS) and autonomic ganglia. Of these, the subtype most strongly associated 

with nicotine addiction and the target of recently developed smoking cessation drugs is 

termed α4β2.3-7 The high nicotine affinity of α4β2 receptors, when combined with the 

ability of nicotine to cross the blood–brain barrier and its favourable pharmacokinetics, 

allows nicotine at the submicromolar concentrations in tobacco smoke to activate acutely 

these receptors, providing reward, cognitive sensitization, and perhaps other effects. In 

addition, the high-affinity interaction allows smoked nicotine to act as an intracellular 
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pharmacological chaperone of α4β2 receptors, leading to the upregulation of receptors 

thought to underlie effects of chronic exposure.6-8 

In previous studies of the nAChR of the neuromuscular junction (muscle-type), 

we showed that an important contributor to ACh binding is a cation-π interaction to a 

specific tryptophan (called TrpB, residue 149, Figure 2.1).9 These results were 

subsequently supported by the important series of crystal structures of ACh binding 

proteins (AChBP).10, 11 These structures revealed the “aromatic box” structural motif of 

Figure 2.1, and the aligning residues are predominantly aromatic throughout the Cys-

loop family of neurotransmitter-gated ion channels. In other Cys-loop receptors, a cation–

π interaction between the natural agonist and one of the aromatics is always seen, 

although its precise location varies.12 Interestingly, when nicotine activates the muscle-

type nAChR, there is no cation–π interaction,13 consistent with its relatively low affinity 

for this receptor. This suggested that a cation–π interaction could discriminate between 

high-affinity neuronal receptors and low-affinity muscle-type receptors. However, subtle 

effects must be involved, as the nAChRs of the CNS and neuromuscular junction are 

homologous throughout most regions of sequence and are essentially identical in the 

immediate vicinity of the agonist binding site (Figure 2.2). 
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Figure 2.1. The binding site of 
AChBP, thought to resemble that 
of nAChRs. Shown are the four 
principal “loops” that define the 
binding site.2 Also highlighted are 
TrpB (149); its backbone carbonyl 
(green star); the remaining 
aromatic residues (TyrA, TyrC1, 
TyrC, and TrpD); and the α carbon 
on position 153, which has also 
been mutated here. The image is of 
Protein Data Bank file 1I9B.10  
 
 
 
 
 

 

 

Figure 2.2. Sequence alignment for loops A, B, C, and D in the vicinity of the aromatic 
binding box. The five residues of the aromatic box: TyrA, TrpB, TryC1, TyrC2, and 
TrpD are highlighted in green. They are universally conserved in these subunits. G153 
(α1) is the fourth residue after TrpB, highlighted in blue. 

α1 mouse W R P D V V L Y W T Y D G S V V Y S C C P T T P Y L D
α1 human W R P D L V L Y W T Y D G S V V Y S C C P D T P Y L D
α2 human W I P D I V L Y W T Y D K A K I Y D C C A E - I Y P D
α4 human W R P D I V L Y W T Y D K A K I Y E C C A E - I Y P D
α4 rat W R P D I V L Y W T Y D K A K I Y E C C A E - I Y P D
α3 human W K P D I V L Y W S Y D K A K I Y N C C E E - I Y P D
α6 human W K P D I V L Y W T Y D K A E I Y N C C E E - I Y T D
α7 human W K P D I L L Y W S Y G G W S L Y E C C K E - P Y P D
α9 human W R P D I V L Y W T Y N G N Q V Y G C C S E - P Y P D

γ mouse W I E M Q W
γ human W I E M Q W
δ mouse W I D H A W
δ human W I E H G W
β2 human W L T Q E W
β2 rat W L T Q E W
β3 human W L K Q E W
β4 human W L K Q E W
α7 human W L Q M S W
α9 human W I R Q I W

Loop A Loop B Loop C

Loop D

TrpB

153

TyrA

TrpD

TyrC1

TyrC2
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Here we describe studies of the neuronal α4β2 receptor. We find a remarkable 

distinction in binding behaviour: both the endogenous neurotransmitter ACh and the 

addictive nicotine molecule make a strong cation–π interaction to TrpB. In addition, a 

hydrogen bond from nicotine to the backbone carbonyl of TrpB that is weak in the 

muscle-type is much stronger in the α4β2 receptor. The smoking cessation drug 

varenicline (marketed as Chantix® in the U.S.) was designed to target α4β2 receptors,3, 14, 

15 and in fact makes the cation-π interaction and hydrogen bond. Taken together, these 

two noncovalent interactions fully rationalize the differential affinity of nicotine in the 

brain vs. the neuromuscular junction. 

2.3 RESULTS AND DISCUSSION 

2.3.1  Challenges in Studying Neuronal nAChRs 

A cation–π interaction between a drug and a receptor can be revealed by 

incorporation of a series of fluorinated amino acid analogues (Figure 2.3); a consistent 

trend in receptor response indicates a binding interaction.9 Such an experiment is enabled 

by the nonsense suppression methodology for incorporation of unnatural amino acids into 

receptors and channels expressed in Xenopus oocytes. Although we have found the 

nonsense suppression methodology to be broadly applicable,16, 17 implementing the 

methodology for study of the α4β2 neuronal nAChRs proved to be especially 

challenging, requiring new strategies. The α4β2 receptors are expressed in Xenopus 

oocytes at inadequately low levels for nonsense suppression experiments. However, 

recent studies showed that the Leu9’Ala (L9’A) mutation in the M2 transmembrane helix 

of the α4 subunit greatly improves expression without altering the pharmacological 
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selectivity of the receptor.18 (In Cys-loop receptors, the highly homologous M2 

sequences are often compared by numbering from the cytoplasmic end, termed position 

1’.) Therefore, all studies of α4β2 described here included this mutation. As with other 

mutations of L9’, the L9’A mutation lowers the agonist concentration for half-maximum 

response (EC50) by influencing receptor gating in ways that are fairly well understood 

and that do not distort the present analysis of the binding site (some 60 Å from the 9’ 

position).19, 20 In addition, previous studies of the muscle-type receptor used a comparable 

mutation at L9’, and control experiments established that it did not alter binding trends.9, 

21 

 

 

Figure 2.3. 
Agonists and 
unnatural amino 
acids considered 
here. A. 
Structures of 
ACh, nicotine, 
and varenicline. 
B. Unnatural 
amino acids 
considered here. 
If not indicated, 
an a, b, c, or d 
group is H. Br, 
bromo group; 
CN, cyano 
group; MeO, 
methoxy group. 
C. The 
backbone ester 
strategy for 
modulating a 
hydrogen bond. 
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The nAChRs are pentameric. The muscle-type receptor has a precise 

stoichiometry of (α1)2β1γδ, fetal form ((α1)2β1εδ); adult form).2, 22, 23 However, the 

α4β2 receptor can have variable stoichiometry. In particular, there are two forms of 

α4β2, (α4)2(β2)3 and (α4)3(β2)2, which we refer to hereafter as A2B3 and A3B2, 

respectively.8, 24, 25 Agonist binding sites are at the appropriate α–β interfaces. The A2B3 

form has higher sensitivity for nicotine and is upregulated during chronic exposure to 

nicotine; our studies have focused on it. Controlling the ratios of messenger RNAs 

injected into the oocyte can reliably control subunit stoichiometry in the wild type 

receptor. Injection of an mRNA subunit ratio α4(L9’A):β2 of 10:1 or higher produces 

pure populations of A3B2 receptors, while a ratio of 3:1 or lower guarantees a pure 

population of A2B3 (Table 2.1).  

Table 2.1.  Injection ratio of α4(L9’A):β2 mRNA controls receptor stoichiometry. EC50 
values (µM) and Hill coefficients (nH) are shown. 

 
 

Note that the α4(L9’A) mutation lowers EC50 in a multiplicative fashion, 

depending on how many α4 subunits are present. As such, our A3B2 receptor (with three 

L9’A mutations) actually has a lower EC50 than our A2B3 receptor (with two L9’A 

mutations), even though the binding site from the A2B3 stoichiometry is clearly that of 

the high sensitivity receptor. 

α4L9'A:β2 ratio ACh nH Stoichiometry
100:1 0.023 ± 0.002 1.5 ± 0.2 A3B2
10:1 0.023 ± 0.001 1.4 ± 0.1 A3B2
6:1 0.15 ±  0.02 0.67 ± 0.04 Mixture
3:1 0.44 ±  0.03 1.2 ± 0.1 A2B3
1:1 0.40 ±  0.01 1.2 ± 0.1 A2B3

1:10 0.43 ±  0.02 1.2 ± 0.1 A2B3
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In a nonsense suppression experiment, however, the subunit that contains the stop 

codon where the unnatural amino acid has been incorporated can show low and variable 

expression levels. Therefore we sought a second, independent indicator of the 

stoichiometry of the α4β2 receptor. We now report that the A2B3 and A3B2 forms of the 

α4(L9’A)β2 receptor show markedly different rectification behaviours. As indicated by 

either voltage ramp or voltage jump experiments, A2B3 is substantially more inward 

rectifying than A3B2 (Figure 2.4). Thus, in all our experiments with unnatural amino 

acids, the stoichiometries of mutant receptors are monitored by measuring current–

voltage relations with voltage jumps. For each mutant receptor studied, we determined 

the fraction (outward current at +70 mV/inward current at –110 mV), and a value ≤0.1 

establishes the desired A2B3 stoichiometry (Tables 2.2-2.7). With these methodological 

developments in hand, incorporation of unnatural amino acids into the α4β2 receptor 

becomes feasible (Figure 2.5). 
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Figure 2.4. Rectification behaviors of A2B3 and A3B2 α4L9’Aβ2 nAChRs. Upper: 
Representative voltage traces and current responses for voltage jump experiments. 
Lower: I-V curves for A2B3 (solid line) and A3B2 (dotted line). The inset shows positive 
voltages, where A2B3 and A3B2 exhibit markedly different behavior. 
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Figure 2.5. Nonsense suppression in the α4β2 receptor. Shown is a wild type recovery 
experiment, in which Trp is incorporated at the TrpB position. A. Representative traces of 
voltage-clamp currents. Bars represent application of ACh at concentrations noted (µM). 
B. Fit of data in A to the Hill equation. Error bars indicate s.e.m.; n = 6-8. 

2.3.2 TrpB Makes a Cation-π Interaction in the α4β2 Receptor 

Given the results with the muscle-type nAChR,9 a logical starting point to search 

for a cation-π interaction in the α4β2 receptor is at TrpB (α4Trp149). It is well 

established that fluorine is deactivating in a cation-π interaction, and that multiple 

fluorines have an additive effect. If a cation-π interaction is present, successively 

replacing the wild type aromatic amino acid with monofluoro, difluoro, trifluoro, and 

tetrafluoro analogues should lead to a systematic increase in EC50. As shown in Table 2.2 

and Figure 2.6, a compelling “fluorination” trend is seen for both ACh and nicotine at 

TrpB of the α4β2 receptor. This is in contrast to the results at the muscle-type receptor, 

in which no such trend is seen for nicotine activation.9 Further support for an important 

cation–π interaction for both agonists is provided by the large perturbation induced by a 

cyano (CN) group—which is strongly deactivating in a cation–π interaction—compared 
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to a bromo (Br) group, which is roughly isosteric to a cyano group but much less 

deactivating.  

Table 2.2. Functional characterization of TrpB in α4β2 (A2B3). EC50 values (µM), Hill 
coefficients (nH) and current size at +70 mV (normalized to current size at -110 mV).  

 

 

 

Figure 2.6. Fluorination plots for ACh and nicotine at α4β2 and muscle-type receptors. 
Note that in both plots, all data sets share the point x = 32.6 kcal/mol (cation-π binding 
energy for Trp). Moving to the left then corresponds to monofluoro-, difluoro-, trifluoro-, 
and tetrafluoro-TrpB. ACh (red), nicotine (blue). Cation-π binding energies (x-axes) are 
from Zhong 1998.9 A. α4β2 receptor. B. Muscle-type receptor, previously reported in 
Zhong 1998 and Beene 2002.9, 13  

Mutation

A2B3 0.42 ± 0.01 1.2 ± 0.1 0.08 ± 0.01 1.2 ± 0.1 0.041 ± 0.005
A3B2 0.023 ± 0.001 1.3 ± 0.1 0.01 ± 0.001 1.7 ± 0.2 0.297 ± 0.041

Trp 0.44 ± 0.03 1.3 ± 0.1 0.09 ± 0.01 1.5 ± 0.1 0.006 ± 0.014
F1-Trp 1.9 ± 0.1 1.2 ± 0.1 0.26 ± 0.02 1.3 ± 0.1 -0.065 ± 0.047
F2-Trp 2.0 ± 0.1 1.3 ± 0.1 0.32 ± 0.04 1.3 ± 0.1 0.032 ± 0.025
F3-Trp 13 ± 1 1.3 ± 0.1 1.2 ± 0.1 1.4 ± 0.2 -0.073 ± 0.029
F4-Trp 29 ± 2 1.1 ± 0.1 4.2 ± 0.4 1.3 ± 0.2 -0.027 ± 0.023

CN-Trp 12 ± 1 1.2 ± 0.1 0.90 ± 0.07 1.4 ± 0.1 0.009 ± 0.017
Br-Trp 1.1 ± 0.1 1.3 ± 0.1 0.20 ± 0.02 1.3 ± 0.2 0.020 ± 0.005

Wild type

TrpB A2B3

ACh nH Nicotine nH Norm. I (+70mV)
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The EC50 values reported here represent a measure of receptor function; shifts in 

EC50 can result from changes in ligand binding and/or receptor gating properties. By 

ascribing the results to attenuation of a cation–π interaction, we are effectively 

concluding that it is agonist binding that is being modulated by fluorination, but that 

conclusion is not incontrovertible. However, single-channel experiments of α4β2 

established that shifts in EC50 caused by subtle mutation of TrpB are a consequence of 

changes in agonist binding, not receptor gating.26 As such, fluorination of TrpB of the 

α4β2 (A2B3) receptor primarily has an impact on the sensitivity to nicotine by 

decreasing nicotine’s cation-π interaction with this residue. 

2.3.3 TyrA is a Hydrogen Bond Donor in the α4β2 Receptor 

The remaining residues (TyrA, TyrC1, and TyrC2) of the aromatic box were also 

probed with unnatural amino acid mutagenesis. We have found fluorination of tyrosine 

more challenging than tryptophan because progressive fluorination of tyrosine will lower 

the pKa of the side chain hydroxyl group.27 In fact, the pKa for tetrafluorotyrosine is ~5.3 

(lowered from ~10 for tyrosine) and can induce ionization of the OH in unnatural 

tyrosine analogues and complicate analysis. To address this issue, we first tested the 

phenylalanine mutant, and then successively fluorinated phenylalanine derivatives 

(Figure 2.3B), as Phe can be fluorinated without pKa complications.  

TyrA has been extensively studied in many Cys-loop receptors; it was identified 

as a hydrogen bond donor in the muscle-type receptor and a cation-π binding site in the 

GABAA receptor.27, 28 Here, in the α4β2 receptor, we find that TyrA is sensitive to 

substituents in the para position for both ACh and nicotine (Table 2.3). This indicates 

that the hydroxyl group is important to channel function, since deletion or substitution 
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with a cyano, bromo, or fluoro group resulted in a deleterious effect on channel function 

for both ACh and nicotine. Incorporation of MeO-Phe at TyrA resulted in a 6-fold and 4-

fold increase in EC50 for ACh and nicotine, respectively, indicating that TyrA is likely a 

hydrogen bond donor. Furthermore, TyrA is not sensitive to fluorination and therefore 

neither nicotine nor ACh interact with TyrA via a cation-π interaction. 

Table 2.3. Functional characterization of TyrA in α4β2 (A2B3). EC50 values (µM), Hill 
coefficients (nH) and current size at +70 mV (normalized to current size at -110 mV).  

 

TyrA behaves consistently in both the α4β2 and the muscle-type receptors; 

however, the importance of this interaction appears to differ for these two receptors. In 

α4β2, TyrA is much more sensitive to mutations at the para position. With ACh as the 

agonist, a Tyr to Phe mutation in α4β2 causes a 29-fold increase in EC50, but only a 9-

fold increase in the muscle-type receptor.  As such, it is likely that the hydrogen bond 

made by TyrA in α4β2 is more crucial for receptor function than in the muscle-type 

receptor.  

 

Mutation

A2B3 0.42 ± 0.01 1.2 ± 0.1 0.08 ± 0.01 1.2 ± 0.1 0.041 ± 0.005
A3B2 0.023 ± 0.001 1.3 ± 0.1 0.01 ± 0.001 1.7 ± 0.2 0.297 ± 0.041

Tyr 0.42 ± 0.03 1.2 ± 0.1 0.08 ± 0.01 1.7 ± 0.3 0.023 ± 0.009
Phe 12 ± 1 1.3 ± 0.1 0.77 ± 0.05 2.1 ± 0.3 0.064 ± 0.011

MeO-Phe 2.3 ± 0.2 1.2 ± 0.1 0.40 ± 0.02 1.7 ± 0.2 0.054 ± 0.032
F1-Phe 15 ± 1 1.2 ± 0.1 0.32 ± 0.03 1.4 ± 0.2 -0.076 ± 0.046
F2-Phe 16 ± 2 1.8 ± 0.3 0.39 ± 0.05 1.8 ± 0.4 0.028 ± 0.005
F3-Phe 14 ± 1 1.2 ± 0.1 0.53 ± 0.04 1.4 ± 0.1 0.044 ± 0.010
Br-Phe 3.3 ± 0.2 1.2 ± 0.1 0.54 ± 0.04 1.5 ± 0.1 -0.003 ± 0.031
CN-Phe 73 ± 4 1.7 ± 0.1 8.8 ± 0.9 1.5 ± 0.2 0.075 ± 0.008

ACh nH Nicotine nH Norm. I (+70mV)
Wild type

TyrA A2B3
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2.3.4 The Functions of TyrC1 and TyrC2 are Conserved in the α4β2 and Muscle-
type Receptors 

TyrC1 is highly sensitive to any mutation that obliterates hydrogen bond donating 

ability.  This is shown by a rightward shift in EC50 of over 100-fold for ACh and over 25-

fold for nicotine in response to the Phe, MeO-Phe, and CN-Phe mutations (Table 2.4). If 

TyrC1 function was compromised by a lack of steric bulk, then incorporation of CN-Phe 

should have returned normal receptor function. Additionally, if this position served as a 

hydrogen bond acceptor, then incorporation of MeO-Phe should have rescued wild type 

behavior. However, MeO-Phe incorporation gave a dramatic increase in EC50 for both 

ACh and nicotine, and we therefore conclude that TyrC1 is an important hydrogen bond 

donor.  

Table 2.4. Functional characterization of TyrC1 in α4β2 (A2B3). EC50 values (µM), Hill 
coefficients (nH) and current size at +70 mV (normalized to current size at -110 mV).  

 
 

In contrast, substitution of TyrC2 displays a strikingly different pattern compared 

to TyrC1. TyrC2 is extremely permissive to the same mutations tested at TyrC1. All 

TyrC2 EC50 values were essentially unaltered (~1.5-fold shifts in EC50) for both ACh and 

nicotine (Table 2.5). This indicates that TyrC2 primarily serves a structural role in 

shaping the binding box rather than ligand recognition.  

Mutation

A2B3 0.42 ± 0.01 1.2 ± 0.1 0.08 ± 0.01 1.2 ± 0.1 0.041 ± 0.005
A3B2 0.023 ± 0.001 1.3 ± 0.1 0.01 ± 0.001 1.7 ± 0.2 0.297 ± 0.041

Tyr 0.42 ± 0.03 1.5 ± 0.1 0.07 ± 0.01 1.3 ± 0.1 0.042 ± 0.014
Phe 53 ± 4 1.3 ± 0.1 3.3 ± 0.2 1.2 ± 0.1 0.059 ± 0.014

MeO-Phe 48 ± 5 1.4 ± 0.2 2.8 ± 0.4 1.2 ± 0.2 0.064 ± 0.028
CN-Phe 210 ± 10 1.6 ± 0.1 19 ± 2 1.6 ± 0.2 0.057 ± 0.011

ACh nH Nicotine nH Norm. I (+70mV)
Wild type

TyrC1 A2B3



34 
 

Table 2.5. Functional characterization of TyrC2 in α4β2 (A2B3). EC50 values (µM), Hill 
coefficients (nH) and current size at +70 mV (normalized to current size at -110 mV).  

Mutation ACh nH Nicotine nH Norm. I (+70mV) 
Wild type 

A2B3 0.42 ± 0.01 1.2 ± 0.1 0.08 ± 0.01 1.2 ± 0.1 0.041 ± 0.005 
A3B2 0.023 ± 0.001 1.3 ± 0.1 0.01 ± 0.001 1.7 ± 0.2 0.297 ± 0.041 

TyrC2 A2B3 
Tyr 0.34 ± 0.01 1.2 ± 0.1 0.08 ± 0.01 1.3 ± 0.1 0.052 ± 0.012 
Phe 0.87 ± 0.03 1.3 ± 0.1 0.15 ± 0.01 1.4 ± 0.1 0.039 ± 0.007 

MeO-Phe 0.49 ± 0.02 1.3 ± 0.1 0.12 ± 0.01 1.3 ± 0.1 0.033 ± 0.013 
CN-Phe 0.64 ± 0.02 1.1 ± 0.1 0.41 ± 0.03  1.1 ± 0.1 0.035 ± 0.009 

The results for α4β2 very much parallel our previous findings for the muscle-type 

receptor. This indicates that it is specifically the interaction with TrpB that discriminates 

the two receptor subtypes. 

2.3.5 A Strong Hydrogen Bond in the α4β2 Receptor 

Our results suggest that nicotine is positioned more closely to TrpB in the α4β2 

agonist binding site than in the muscle-type. This suggested that another nicotine-binding 

interaction could also be altered. An important chemical distinction between ACh and 

nicotine is that only the latter can act as a hydrogen bond donor, through the pyrrolidine 

N+-H (Figure 2.3A). Examination of the AChBP crystal structures (Figure 2.1)29 

suggested that the backbone carbonyl associated with TrpB could act as the hydrogen 

bond acceptor, and several groups have shown the importance of this interaction.29-31 

Previously, we probed this potential hydrogen bond in the muscle-type receptor by 

replacing the (i + 1) residue with its α-hydroxy analogue (Figure 2.3C).32 This converts 

the backbone amide to a backbone ester, which is well established to be a substantially 

poorer hydrogen bond acceptor. In the muscle-type receptor, this change raised the 

nicotine EC50 by a modest factor of 1.6.32 We now find that for precisely the same change 

in the α4β2 receptor, the nicotine EC50 increases 19-fold, a relatively large effect for such 
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a subtle mutation.33-35 Recall that the backbone ester substitution does not destroy the 

hydrogen bond, it simply attenuates it. Notably, ACh, which cannot make a conventional 

hydrogen bond to the carbonyl, shows no shift in EC50 in response to this mutation 

(Table 2.6). This establishes that the ester mutation does not globally alter the 

binding/gating characteristics of the receptor. 

Table 2.6. Functional characterization of Thr (TrpB + 1) in α4β2 (A2B3). EC50 values 
(µM), Hill coefficients (nH) and current size at +70 mV (normalized to current size at       
-110 mV).  

 

 

2.3.6 Studies with the Smoking Cessation Drug Varenicline at the α4β2 Receptor 
 

We also evaluated the agonist binding mode of varenicline, a smoking cessation 

drug. Varenicline (marketed by Pfizer as Chantix® in the U.S.) was designed to target 

α4β2 receptors, and was approved for use in smoking cessation in 2006.3 Using the 

fluorination approach and the CN/Br effect, we show that varenicline, like nicotine, binds 

to TrpB of the α4β2 receptor via a cation-π interaction (Table 2.7, Figure 2.7).  

 

 

 

 

 

Mutation

A2B3 0.42 ± 0.01 1.2 ± 0.1 0.08 ± 0.01 1.2 ± 0.1 0.041 ± 0.005
A3B2 0.023 ± 0.001 1.3 ± 0.1 0.01 ± 0.001 1.7 ± 0.2 0.297 ± 0.041

Thr 0.41 ± 0.02 1.4 ± 0.1 0.09 ± 0.01 1.6 ± 0.1 0.044 ± 0.007
Tah 0.37 ± 0.02 1.3 ± 0.1 1.71 ± 0.14 1.2 ± 0.1 0.018 ± 0.013

Norm. I (+70mV)
Wild type

Thr (TrpB+1) A2B3

ACh nH Nicotine nH
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Table 2.7. Functional characterization of varenicline at TrpB in α4β2 (A2B3). EC50 
values (µM), Hill coefficients (nH) and current size at +70 mV (normalized to current size 
at -110 mV). 

 

 

 
Figure 2.7. Fluorination plot for varenicline at α4β2 (A2B3). All data sets share the point 
x = 32.6 kcal/mol (cation-π binding energy for Trp). Moving to the left then corresponds 
to monofluoro-, difluoro-, trifluoro-, and tetrafluoro-TrpB. ACh (red), nicotine (blue), 
varenicline (purple). Cation-π binding energies (x-axes) are from Zhong 1998.9  

 

We have previously argued that the magnitude of the perturbation to EC50 induced 

by fluorination can be taken as an indicator of the relative strength of a cation-π 

Mutation nH

A2B3 2.9 ± 0.1 1.4 ± 0.1 0.037 ± 0.007
A3B2 0.75 ± 0.06 1.4 ± 0.1 0.166 ± 0.014

Trp 2.4 ± 0.2 1.2 ± 0.1 0.043 ± 0.005
F1-Trp 5.7 ± 0.2 1.2 ± 0.1 0.040 ± 0.007
F2-Trp 9.0 ± 0.4 1.2 ± 0.1 0.050 ± 0.011
F3-Trp 27 ± 1 1.3 ± 0.1 0.044 ± 0.009
F4-Trp 56 ± 5 1.1 ± 0.1 0.033 ± 0.008
Br-Trp 7.1 ± 0.5 1.1 ± 0.1 0.039 ± 0.007
CN-Trp 31 ± 2 1.1 ± 0.1 0.040 ± 0.009

Varenicline Norm. I (+70mV)
Wild type

TrpB A2B3



37 
 

interaction. In Table 2.8 we characterize the strength of a cation-π interaction by the ratio 

of EC50 values for the F4-Trp mutant vs. the wild type. The F4-Trp residue represents a 

side chain in which the electrostatic component of the cation-π interaction has been 

completely removed, but other features of the residue are essentially intact (Figure 2.8). 

All drug-receptor pairings reported here show a significant “cation-π ratio,” thus 

establishing a common anchor point for the binding of the drugs considered here to the 

α4β2 receptor. 

Table 2.8. Evaluation of binding interactions in the α4β2 (A2B3) receptor. a. Values are 
corrected for the effects of α4L9’A mutation according to the procedure of Moroni et 
al.24 As such, these are EC50 for true wild type receptors. b. Ratio of EC50 values for F4-
Trp/Trp at position TrpB in α4. c. Ratio of EC50 values for Tah/Thr at position Thr (TrpB 
+ 1) in α4.  

 Measured 
EC50 (µM) 

Wild type 
EC50 (µM)a 

Cation-π 
interactionb 

N+–H•••O=C 
(Backbone H-bond)c 

ACh 0.42 4.0 69 1.1 

Nicotine 0.08 0.76 53 19 

Varenicline 0.00285 0.027 20 14 

 

 
Figure 2.8. Electrostatic potential surfaces of indole (left) and F4-indole, corresponding 
to the aromatic portions of the side chains of Trp and F4-Trp, respectively. Results are 
from HF-6-31G** calculations. Electrostatic potential ranges from -25 kcal/mol (red) to 
+25 kcal/mol (blue), so that green represents ~0 electrostatic potential. 
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Using the backbone amide-to-ester strategy for perturbing a hydrogen bond, we 

examined whether the N+H moiety of varenicline functions as a hydrogen bond donor to 

α4β2. Replacing the (TrpB + 1) residue, which is threonine with threonine-α-hydroxy 

(Tah) significantly impacts EC50, suggesting the hydrogen bond donor interaction to the 

backbone carbonyl of TrpB is significant. To facilitate comparison, we have expressed 

variations as a ratio of EC50 values, comparing the receptor with Tah at residue the (TrpB 

+ 1) residue to the wild type Thr (Table 2.9). Varenicline, like nicotine, shows an EC50 

ratio significantly greater than 1, with only modest variations in magnitude (Table 2.8). 

Table 2.9. Functional characterization of varenicline at Thr (TrpB + 1) in α4β2 (A2B3). 
EC50 values (µM), Hill coefficients (nH) and current size at +70 mV (normalized to 
current size at -110 mV). 

 

 

2.3.7 A Residue Outside of the Aromatic Box Differentiates the α4β2 and Muscle-
type Receptors 

The differential affinity of nicotine for α4β2 versus muscle-type receptors results 

from stronger interactions in the former with TrpB—both cation–π and hydrogen 

bonding. Because the two receptors are identical with regard to the five residues that 

make up the aromatic box, a factor “outside the box” must be influencing its precise 

geometry, such that nicotine can approach TrpB more closely in α4β2 than in muscle-

type nAChR. Pioneering work has identified residues responsible for the fact that α4β2 

receptors show consistently higher affinity than the homopentameric α7 neuronal 

Mutation nH

A2B3 2.9 ± 0.1 1.4 ± 0.1 0.037 ± 0.007
A3B2 0.75 ± 0.06 1.4 ± 0.1 0.166 ± 0.014

Thr 2.2 ± 0.1 1.3 ± 0.1 0.020 ± 0.002
Tah 30 ± 2 1.2 ± 0.1 0.029 ± 0.006

Varenicline Norm. I (+70mV)
Wild type

Thr (TrpB + 1) A2B3
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receptors.36 At a particular residue in loop B—position 153, just four residues from 

TrpB—mutations strongly influence affinity. In high-affinity α4β2 receptors this residue 

is a Lys, and this residue is proposed to help shape the aromatic box by forming a 

backbone hydrogen bond between loops B and C (Figure 2.1). In the lower affinity α7 

neuronal receptor, residue 153 is a Gly, and molecular dynamics simulations of α7 

suggest that a Gly at 153 discourages the formation of the hydrogen bond between loops 

B and C.36 Interestingly, the aligning residue in the muscle-type receptor is also Gly, and 

a naturally occurring G153S mutation is gain-of-function and associated with a 

congenital myasthenic syndrome.37 We now report that the muscle-type α1 G153K 

mutant shows much higher affinity for nicotine, and that, when this mutation is present, 

the cation–π interaction to TrpB is strong. The data are summarized in Table 2.10 and 

Figure 2.9. As expected, the ACh cation–π interaction is maintained in the muscle-type 

receptor with the G153K mutation. These data indicate that the loop B–loop C hydrogen 

bond that is naturally present in α4β2 shapes the aromatic box so that nicotine can make 

a closer contact to TrpB, and that this structural feature is absent or weaker in the muscle-

type receptor. 
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Table 2.10. Functional characterization of the muscle-type receptor containing the 
G153K point mutation in the α1 subunit. EC50 values (µM), Hill coefficients (nH). All 
studies of the muscle-type receptor contain a L9’S mutation in the β subunit.  

 

 

 
Figure 2.9. Fluorination plot testing nicotine at the muscle-type receptor containing the 
G153K point mutation in the α1 subunit. All data sets share the point x = 32.6 kcal/mol 
(cation-π binding energy for Trp). Moving to the left then corresponds to monofluoro-, 
difluoro-, trifluoro-, and tetrafluoro-TrpB. ACh at the WT receptor (red), nicotine at the 
WT receptor (blue), previously reported in Zhong 1998 and Beene 2002.9, 13 WT 
indicates glycine at position 153. Nicotine at the α1G153K receptor (green). Cation-π 
binding energies (x-axes) are from Zhong 1998.9  

 

Mutation

α1G153K 0.021 ± 0.001 1.3 ± 0.1 0.76 ± 0.05 1.7 ± 0.2

Trp 0.019 ± 0.001 1.5 ± 0.1 0.59 ± 0.04 1.8 ± 0.2
F1-Trp 0.094 ± 0.004 1.6 ± 0.1 2.8 ± 0.1 1.3 ± 0.1

F2-Trp 0.079 ± 0.004 1.3 ± 0.1 2.3 ± 0.1 1.3 ± 0.1

F3-Trp 1.05 ± 0.03 1.3 ± 0.1 11 ± 1 1.5 ± 0.1

F4-Trp 7.5 ± 0.5 1.2 ± 0.1 32 ± 4 1.5 ± 0.2
CN-Trp 2.4 ± 0.1 1.5 ± 0.1 36 ± 3 1.7 ± 0.2
Br-Trp 0.047 ± 0.001 1.4 ± 0.1 4.5 ± 0.4 1.2 ± 0.1

Conventional Mutagenesis

TrpB Muscle-type (α1G153K)

ACh nH Nicotine nH
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2.3.8 Summary 

Taken together, the present results indicate that the higher affinity of nicotine in 

the brain relative to the neuromuscular junction is a consequence of enhanced interactions 

with TrpB. A cation–π interaction that is absent in the muscle-type receptor is quite 

strong in α4β2. In addition, a hydrogen bond to a backbone carbonyl that is weak in the 

muscle-type is enhanced in α4β2. Varenicline, the smoking cessation drug designed to 

target α4β2 receptors and block nicotine binding, also employ the same cation-π and 

hydrogen bonding interactions. Both effects are quite substantial, and in combination 

they are more than adequate to account fully for the differential sensitivity to nicotine of 

the two receptors. The side chain of residue 153 in loop B distinguishes the two receptor 

types and apparently influences the shape of the binding site aromatic box, allowing a 

stronger interaction between nicotine and TrpB in high-affinity receptors.  

2.4 METHODS 

mRNA Synthesis and Mutagenesis 

All nAChR subunit genes were in the pAMV vector (rat α4 and β2; mouse α1, 

β1, γ and δ). nAChR subunit mRNA was obtained from NotI linearizations of the 

expression vector pAMV, followed by in vitro transcription using the mMessage 

mMachine T7 kit (Ambion, Austin, TX). The mutations for each subunit were introduced 

according to the QuikChange mutagenesis protocol (Stratagene, La Jolla, CA).  

Ion Channel Expression 

To express the ion channels with a wild type ligand binding box, α4L9’A mRNA 

was coinjected with β2 mRNA at various ratios, see Table 2.1 (total mRNA 10-
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25 ng/cell).  For muscle-type nAChR experiments, α1:β1:γ:δ mRNA was injected at a 

ratio of 2:1:1:1 by mass for wild type protein.  Note that for all experiments reported, we 

use a previously reported L9’S mutation in the β1 subunit to increase receptor 

sensitivity.9 For nonsense suppression experiments of the muscle-type receptor, an 

mRNA ratio of 10:1:1:1 was employed.  For wild type and nonsense suppression 

experiments, the total mRNA injected was 30-65 ng/oocyte.  Stage V-VI oocytes 

Xenopus laevis were injected and incubated in ND96 solution (96 mM NaCl, 2 mM KCl, 

1 mM MgCl2, 1.8 mM CaCl2, and 5 mM HEPES, pH 7.5) with 0.005% (w/v) gentamycin 

and 2% (v/v) horse serum at 18 °C for 24-48 hours. 

Unnatural Amino Acid / α-hydroxy Acid Incorporation 

Nitroveratryloxycarbonyl (NVOC) protected cyanomethyl ester form of unnatural 

amino acids and α-hydroxythreonine cyanomethyl ester were synthesized, coupled to the 

dinucleotide dCA, and enzymatically ligated to 74-mer THG73 tRNACUA.17, 38 The 

unnatural amino acid-conjugated tRNA was deprotected by photolysis immediately prior 

to coinjection with mRNA containing the UAG mutation at the site of interest. 

Approximately 10-25 ng mRNA and 25 ng tRNA-amino acid or tRNA-hydroxy acid 

were injected into stage V–VI oocytes in a total volume of 70 nL.  

The fidelity of unnatural amino acid incorporation was confirmed at each site with 

a “wild type recovery” experiment and a “read-through/reaminoacylation” test. In the 

“wild type recovery” experiment, UAG mutant mRNA was coinjected with tRNA 

charged with the amino acid that is present at this residue in the wild type protein. 

Generation of receptors that were indistinguishable from the wild type protein indicated 

that the residue carried by the suppressor tRNA was successfully and exclusively 



43 
 

integrated into the protein. In the “read-through/reaminoacylation” test, the UAG mutant 

mRNA was introduced with (1) no tRNA, (2) tRNA THG73 that was not charged with 

any amino acid or (3) tRNA THG73 enzymatically ligated with dinucleotide dCA. Lack 

of currents in these experiments validated the reliability of the nonsense suppression 

experiments. 

Whole-Cell Electrophysiological Characterization of Ion Channels 

Agonist-induced currents were recorded in two-electrode voltage clamp mode 

using the OpusXpress 6000A (Molecular Devices Axon Instruments) at a holding 

potential of -60 mV. Agonists were prepared in Ca2+-free ND96 solution and applied for 

12 seconds followed by a 2 minute wash with Ca2+-free ND96 solution between each 

concentration. Acetylcholine chloride and (-)-nicotine tartrate were purchased from 

Sigma/Aldrich/RBI (St. Louis, MO). Varenicline tartrate was obtained from Targacept. 

Dose-response data were obtained for at least 6 concentrations of agonists and for a 

minimum of 5 oocytes. Mutants with Imax of at least 100 nA of current were defined as 

functional. EC50 and Hill coefficient were calculated by fitting the dose-response relation 

to the Hill equation. All data are reported as mean ± SE. 

Voltage jump experiments were performed in the absence of ACh and at EC50 

concentration of ACh. The membrane potential was held at -60 mV, and stepped to 10 

test potentials at 20 mV increments between +70 mV and -110 mV for 400 ms each. 

600 ms at the -60 mV holding potential was allowed between each test potential. 

Background traces (no ACh) were subtracted from data traces, which were used to 

measure the steady-state amplitudes of the ACh-induced currents approaching the end of 

the test pulses. Normalized I-V curves were generated using current amplitudes 
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normalized to that at -110 mV. For each α4L9’Aβ2 mutant, normalized I+70 mV ± SE from 

at least 5 cells was reported.  
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Chapter 3 
 

Probing the Effects of Residues Located Outside the Agonist Binding 
Site on Drug-Receptor Selectivity in the Nicotinic Receptor 

 
3.1 ABSTRACT 

The nicotinic acetylcholine receptors (nAChRs) are a family of closely related but 

pharmacologically distinct neurotransmitter-gated ion channels. They are therapeutic 

targets for a wide range of neurological disorders, and a key issue in drug development is 

selective targeting among the greater than 20 subtypes of nAChRs that are known. The 

present work evaluates a proposed hydrogen bonding interaction involving a residue 

known as the “loop B glycine” that distinguishes receptors that are highly responsive to 

ACh and nicotine from those that are much less so. We have performed structure-

function studies on the loop B site, including unnatural amino acid mutagenesis, in three 

different nAChR subtypes and found that the correlation between agonist potency and 

this residue is strong. Low-potency receptor subtypes have a glycine at this key site, and 

mutation to a residue with a side chain converts a low-potency receptor to a high-potency 

receptor. Innately high-potency receptors have a lysine at the loop B site and show a 

decrease in potency for the reverse mutation (i.e., introducing a glycine). This residue lies 

outside of the agonist binding site, and the details of how changes at the site impact 

agonist potency vary for differing receptor subtypes.  This suggests a model in which the 

loop B residue influences the global shape of the agonist binding site rather than 

modulating any specific interaction. 
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3.2 INTRODUCTION 

Nicotinic acetylcholine receptors (nAChRs) are a diverse family of pentameric, 

neurotransmitter-gated ion channels responsible for rapid synaptic transmission 

throughout the central and peripheral nervous systems.1-3 Among the roughly two dozen 

subtypes that have been characterized as important in mammals,4 a clear pharmacological 

distinction is observed. nAChRs can be categorized into two groups:  receptors that 

display relatively lower potency for the natural agonist ACh as well as nicotine and 

related agonists, and receptors that exhibit much greater agonist potency.5 Prototypes of 

the low-potency family include the nAChR of the neuromuscular junction, with a subunit 

composition of (α1)2β1γδ (i.e., muscle-type), and the homopentameric CNS receptor 

(α7)5. The prototype high-potency receptors are the α4-containing receptors of the CNS 

that play a prominent role in nicotine addiction.6 All nAChRs show sequence identity 

among residues that are thought to make direct contact with bound agonists (Figure 3.1), 

and so the pharmacological selectivity must result from residues that are formally located 

outside of the agonist binding site.  

AChBP W V P D L A A Y W T H H S R E I Y S C C P E - A Y E D AChBP W Q Q T T W
α1 W R P D V V L Y W T Y D G S V V Y S C C P T T P Y L D γ W I E M Q W
α2 W I P D I V L Y W T Y D K A K I Y D C C A E - I Y P D δ W I D H A W
α3 W K P D I V L Y W S Y D K A K I Y N C C E E - I Y P D
α4 W R P D I V L Y W T Y D K A K I Y E C C A E - I Y P D β2 W L T Q E W
α6 W K P D I V L Y W T Y D K A E I Y N C C E E - I Y T D β4 W L K Q E W
α7 W K P D I L L Y W S Y G G W S L Y E C C K E - P Y P D α7 W L Q M S W
α9 W R P D I V L Y W T Y N G N Q V Y G C C S E - P Y P D α9 W I R Q I W
α10 W R P D I V L Y W T H G G H Q L Y G C C S E - P Y P D α10 W I R Q E W

Loop DLoop A Loop B Loop C

 
Figure 3.1. Sequence alignment of the nAChR agonist binding site. AChBP sequence is 
from Lymnaea stagnalis. α1, γ, and δ are from mouse; the human sequence differs from 
mouse at only one residue in loop C: CCPTT (mouse) vs. CCPDT (human). α4, 
β2, and  α7 are rat; which are identical to human for the residues shown. All other 
sequences are human. The five conserved residues of the “aromatic box”: TyrA, TrpB, 
TyrC1, TyrC2, and TrpD are shown in blue. The loop B Gly/Lys site is shown in pink. 
The backbone carbonyl that hydrogen bonds to the N+H of agonists is shown in yellow. 
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One such discriminating site is in the α subunit on loop B of the agonist binding 

site (Figure 3.2).5 In α1 subunit numbering this is position G153, and we will refer to the 

site generically as the “loop B glycine.”  It lies four residues from W149 (TrpB), which 

has been shown to make a cation-π interaction to most agonists.7, 8 In crystal structures of 

AChBPs, soluble proteins that have provided an excellent structural model of the nAChR 

agonist binding site,9, 10 there is a backbone hydrogen bond between loop B and loop C 

formed by the NH of G153 and the CO of residue 197 (muscle-type numbering). Residue 

198 is TyrC2, another conserved aromatic amino acid of the agonist binding site. This 

interesting interaction is also present in the recently reported crystal structure of the 

invertebrate GluCl channel,11 another member of the superfamily of Cys-loop 

(pentameric) receptors for which the nAChR is the prototype. The loop B glycine is 

conserved in the low-potency (α7)5 receptor with the aligning residue G152, but not in 

the higher potency (α4)2(β2)3 receptor, where the aligning residue is K158 (Figure 3.1). 

MD simulations have suggested that this sequence difference contributes to the 

distinction between low- vs. high-potency receptors.5 Having a side chain at the loop B 

residue (as in α4 K158) facilitates the loop B-loop C hydrogen bond.  However, the 

presence of glycine at this site weakens the hydrogen bond, and this impacts potency. 

Known mutations of the muscle-type receptor support this model.12 
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Figure 3.2. nAChR agonist 
binding site, based on the 
structure of AChBP (pdb: 
1UW6).13 Loop B is in green, 
loop C is in blue, nicotine is in 
purple, three of the five residues 
that form the “aromatic box” of 
the agonist binding site are 
highlighted. The backbone 
carbonyl (green star) that 
hydrogen bonds to the N+H of 
agonists, and the proposed loop 
B–loop C hydrogen bond is 
highlighted.  

 

 

We recently showed that, indeed, a G153K mutation in the muscle-type receptor 

greatly increased potency of both ACh and nicotine.7 The cause of the increased potency 

was a cation-π interaction to TrpB that was absent or weak in the wild type muscle-type 

receptor, but was strong in both α4-containing receptors and in the muscle-type receptor 

with the G153K mutation. 

In the present work we evaluate the role of the loop B glycine in both the muscle-

type and (α7)5 receptors. G-to-K mutations enhance potency substantially, but the details 

of how the potency is enhanced differ in the two subtypes. We also evaluate whether the 

reverse K-to-G mutation has the opposite effect on the high-potency (α4)2(β2)3 receptor. 

Finally, we use unnatural amino acid mutagenesis to disrupt the proposed hydrogen bond 

in the (α4)2(β2)3 receptor and evaluate the functional consequences. 
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3.3 RESULTS AND DISCUSSION 

3.3.1 Probing the G153 Site in the Low-Potency (α1)2β1γδ (Muscle-type) Receptor  

 In the (α1)2β1γδ receptor, we have previously shown7 that the α1 G153K 

mutation produces a significant gain-of-function for both ACh and nicotine, with EC50 

increasing 44- and 74-fold, respectively (Table 3.1).  We also showed that the G153K 

mutation strengthened the cation-π interaction between each agonist and TrpB.  We now 

report the effect of the G153K mutation on epibatidine (Figure 3.3A) at (α1)2β1γδ.  Note 

that unlike nicotine, epibatidine is fairly potent at the wild type muscle-type nAChR, and 

it does show a cation-π interaction to TrpB in the wild type receptor.14  Nevertheless, the 

G153K mutation produces a 75-fold increase in epibatidine potency, comparable to what 

is seen for nicotine (Table 3.1). Fluorination of the TrpB position (Figure 3.3B) was 

examined in the background of the G153K mutant.  Consistent with previous ACh and 

nicotine data,7 our results indicate that the G153K mutation also strengthens the cation-π 

interaction between epibatidine and TrpB of the receptor (Table 3.2).  This is indicated 

by an increase in sensitivity to progressive fluorination of the key Trp residue, as 

illustrated in a “fluorination plot” (Figure 3.4).     

Table 3.1. Mutation of the loop B Gly/Lys site. EC50 values (µM) for (α1)2β1γδ, (α7)5, 
and (α4)2(β2)3. Values in brackets represent the ratio of wild type EC50 to mutant EC50, 
such that ratios of >1 represent gain-of-function, and ratios of <1 represent loss-of-
function. For the K158Lah mutant, the reference “wild type” receptor is K158L. 
Complete data tables with Hill coefficients and standard errors are given in Tables 3.2, 
3.4-3.6. WT = wild type; ND = not determined. 

 (α1)2β1γδ (α7)5 (α4)2(β2)3  
WT G153K WT G152K WT K158G K158L K158Lah Y202Yah 

ACh 1.2 0.027 [44] 66 3.7 [18] 0.42 1.3 [0.32] 0.13 0.060 [2.2] 0.73 [0.58] 

Nic 56 0.76 [74] 23 0.76 [30] 0.08 0.30 [0.27] 0.035 0.011 [3.2] 0.42 [0.19] 

Epi 0.83 0.011 [75] 0.26 0.016 [16] 0.00035 ND ND ND ND 
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Figure 3.3. Agonists and 
unnatural amino acids used in 
the present study. A. nAChR 
agonists; ACh, S-nicotine, and 
epibatidine. B. Unnatural 
amino acids and α-hydroxy 
acids. If not indicated, a, b, c, 
or d group is H. F-Trp, 5-
fluoro-tryptophan; F2-Trp, 5,7-
difluoro-tryptophan; F3-Trp, 
5,6,7-trifluoro-tryptophan; F4-
Trp, 4,5,6,7-tetrafluoro-
tryptophan; F1-Phe, 4-flouro-
phenylalanine; F3-Phe, 3,4,5-
triflouro-phenylalanine; 4-Br-
Phe, 4-bromo-phenylalanine; 
4-CN-Phe, 4-cyano-
phenylalanine; 4-MeO-Phe, 4-
methoxy-phenylalanine; Tah, 
threonine, α-hydroxy; Lah, 
leucine, α-hydroxy; Yah, 
tyrosine, α-hydroxy. C. The 

backbone ester strategy for modulating hydrogen bonding interactions. 

 
Table 3.2. EC50 values (µM) and Hill coefficients for mutant (α1)2β1γδ nAChRs. The 
EC50 values are ± S.E. ND, not determined; N/A, not available.  ‡Previously reported in 
Cashin 2005;15 †previously reported in Xiu 2009.7 All other values in this table were 
determined in the present work.  

(α1)2β1γδ nAChR 
Mutation ACh nH Nicotine nH Epibatidine nH 

Wild Type 1.2 ± 0.1 1.6 ± 0.1 56 ± 4 2.2 ± 0.3 0.83 ± 0.08‡ N/A 
G153K 0.027 ± 0.001 1.5 ± 0.1 0.76 ± 0.05 1.6 ± 0.2 0.011 ± 0.001 1.5 ± 0.1 
G153A 0.029 ± 0.001 1.7 ± 0.1 1.2 ± 0.1 1.5 ± 0.1 ND ND 
G153T 0.030 ± 0.001 1.5 ± 0.1 1.2 ± 0.1 1.8 ± 0.1 ND ND 

(α1 G153K)2β1γδ – TrpB (W149) 
Trp 0.019 ± 0.001† 1.5 ± 0.1† 0.59 ± 0.04† 1.8 ± 0.2† 0.010 ± 0.001 1.4 ± 0.1 

F1-Trp 0.094 ± 0.004† 1.6 ± 0.1† 2.8 ± 0.1† 1.3 ± 0.1† 0.078 ± 0.001  1.2 ± 0.1 
F2-Trp 0.079 ± 0.004† 1.3 ± 0.1† 2.3 ± 0.1† 1.3 ± 0.1† 0.17 ± 0.01 1.2 ± 0.1 
F3-Trp 1.05 ± 0.03† 1.3 ± 0.1† 11 ± 1† 1.5 ± 0.1† 1.0 ± 0.1 1.3 ± 0.1 
F4-Trp 7.5 ± 0.5† 1.2 ± 0.1† 32 ± 4† 1.5 ± 0.2† 6.8 ± 0.9 1.2 ± 0.1 

(α1 G153K)2β1γδ – Thr(B+1) (T150) 
Thr 0.024 ± 0.001 1.3 ± 0.1 0.62 ± 0.03 1.6 ± 0.1 0.012 ± 0.001 1.2 ± 0.1 
Tah 0.028 ± 0.002 1.1 ± 0.1 9.0 ± 0.6 1.5 ± 0.1 0.13 ± 0.01 1.3 ± 0.1 
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Figure 3.4. Fluorination plots probing 
the effect of the α1 G153K mutation on 
the muscle-type nAChR. 
Log[EC50(mutant)/EC50(wild type)] is 
plotted versus quantitative cation-π 
binding energies.8 The data are from 
Table 3.2. Fluorination plots are shown 
for (A) ACh, (B) nicotine, and (C) 
epibatidine at the TrpB position. Moving 
to the left corresponds to Trp, F1-Trp, 
F2-Trp, F3-Trp, and F4-Trp.  
 

 

The AChBP crystal structure suggested that the backbone carbonyl of the TrpB 

residue can serve as a hydrogen bond acceptor for agonist molecules that possess an 

available hydrogen bond donor, such as nicotine and epibatidine (Figure 3.2).  We have 

confirmed the importance of this interaction in nAChRs by using backbone ester 

substitution, converting the contributing carbonyl from an amide to an ester, the latter 

being a much poorer hydrogen bond acceptor (Figure 3.3C).14 In the high affinity 

(α4)2(β2)3 receptor this mutation has a large effect,7 but previous studies on the 
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(α1)2β1γδ receptor revealed that both nicotine and epibatidine make modest backbone 

hydrogen bonds to the carbonyl (1.6- and 3.7-fold shifts, respectively).14  To monitor if 

this hydrogen bonding interaction is affected by the loop B glycine, we performed the 

same backbone mutation in combination with the G153K mutation in (α1)2β1γδ.  The 

G153K mutation strengthens the hydrogen bond between both nicotine and epibatidine to 

the TrpB carbonyl (Table 3.2, Table 3.3).  The amide-to-ester/G153K mutant results in 

15- and 11-fold loss-of-function for nicotine and epibatidine, respectively.  As 

anticipated, ACh is unperturbed by the backbone mutation, since ACh is a quaternary 

ammonium lacking a hydrogen bond donor.  

Table 3.3. Amide-to-ester experiments for the backbone carbonyl of TrpB residue for 
(α1)2β1γδ, (α7)5, and (α4)2(β2)3. EC50 values (µM). Values in brackets represent ratio of 
wild type EC50 to mutant EC50, such that ratios of >1 represent gain-of-function, and 
ratios of <1 represent loss-of-function. Complete data tables with Hill coefficients and 
standard errors are given Tables 3.2, 3.4-3.5. ND = not determined. 

 
(α1 G153K)2β1γδ  (α7 G152K)5  (α4 K158G)2(β2)3  

Thr Tah Thr Tah Thr Tah 
ACh 0.024 0.028 [0.86] 1.7 0.58 [2.9] 0.99 0.53 [1.9] 
Nic 0.62 9.0 [0.069] 0.29 2.3 [0.13] 0.25 3.4 [0.074] 
Epi 0.012 0.13 [0.092] 0.012 0.031 [0.39] ND ND 

 

 The MD simulations noted above suggested that the substantial increase in 

potency observed for G153K-containing receptors was not specific to lysine, but simply 

required a side chain at the loop B glycine.  We find that, indeed, mutation of G153 to 

either alanine or threonine produced receptors with a substantial gain-of-function 

phenotype, similar to the G153K phenotype (Table 3.2).     
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3.3.2 Probing the G152 Site in the Low-Potency (α7)5 Receptor  

The homopentameric (α7)5 receptor is distinctive in many ways, including its 

mode of agonist binding. While most nAChR subtypes employ a cation-π interaction 

between TrpB and the agonist, the (α7)5 receptor eschews this common ligand binding 

mechanism.16  Instead, in (α7)5, ACh forms a cation-π interaction to TyrA, and 

epibatidine forms a cation-π interaction to TyrC2 of the agonist binding site.  It is a “low-

potency” receptor, with a G152 aligning at the loop B glycine site. Given the unusual 

binding pattern observed in (α7)5, it was interesting to investigate whether changing the 

side chain of the loop B glycine would increase agonist potency through a mechanism 

similar to that observed in (α1)2β1γδ.  Introduction of lysine at this position (G152K) in 

(α7)5 did result in a significant gain-of-function when tested with ACh, nicotine, and 

epibatidine (Table 3.1).      

To determine whether an amplification of the cation-π interaction analogous to 

that seen in the muscle-type receptor would occur in (α7)5, we incorporated either F3Trp 

at TrpB or F3Phe at TyrA and TyrC2 in the background of the G152K mutant.  In contrast 

to (α1)2β1γδ, the consequences of fluorination at TrpB in the G152K mutant did not 

differ from wild type (α7)5 for ACh, nicotine, or epibatidine (Table 3.4). Similarly, 

introduction of G152K in (α7)5 does not enhance the naturally occurring cation-π 

interaction between ACh and TyrA.   
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Table 3.4. EC50 values (µM) and Hill coefficients for mutant (α7)5 nAChRs. The EC50 
values are ± S.E.   

(α7)5 nAChR 
Residue Mutation ACh nH Nicotine nH Epibatidine nH 

Wild type 66 ± 1 2.9 ± 0.1 23 ± 1 3.1 ± 0.1 0.26 ± 0.01 3.3 ± 0.2 
G152K 3.7 ± 0.1 1.8 ± 0.1 0.76 ± 0.03 2.4 ± 0.2 0.016 ± 0.001 2.9 ± 0.4 

(α7 G152K)5 
TyrA 
(Y92) 

Tyr 5.1 ± 0.3 2.1 ± 0.3 0.55 ± 0.01 3.3 ± 0.3 0.017 ± 0.001 2.8 ± 0.3 
F3-Phe 240 ± 11 2.9 ± 0.4 10 ± 1 2.8 ± 0.5 0.47 ± 0.01 3.4 ± 0.2 

TrpB 
(W148) 

Trp 4.1 ± 0.2 2.7 ± 0.3 0.77 ± 0.03 2.9 ± 0.3 0.016 ± 0.001 3.6 ± 0.5 
F3-Trp 9.0 ± 0.3 1.9 ± 0.1 1.2 ± 0.1 2.4 ± 0.2 0.23 ± 0.02 2.1 ± 0.2 

TyrC2 
(Y194) 

Tyr 3.9 ± 0.1 3.2 ± 0.2 0.61 ± 0.01 3.5 ± 0.3 0.015 ± 0.001 3.8 ± 0.2 
F1-Phe 8.0 ± 0.5 1.9 ± 0.2 3.5 ± 0.1 2.9 ± 0.1 0.079 ± 0.001 3.4 ± 0.2 
F3-Phe 170 ± 8 2.2 ± 0.2 60 ± 2 2.1 ± 0.1 2.2 ± 0.1 2.6 ± 0.3 

4-Br-Phe 3.0 ± 0.2 1.9 ± 0.2 1.1 ± 0.1 3.4 ± 0.3 0.021 ± 0.001 2.6 ± 0.2 
4-CN-Phe 10 ± 1 2.0 ± 0.2 15 ± 1 2.6 ± 0.2 0.12 ± 0.01 3.4 ± 0.3 

4-MeO-Phe 6.0 ± 0.4 2.3 ± 0.3 2.5 ± 0.1 3.2 ± 0.1 0.025 ± 0.001 3.0 ± 0.2 

Ser(B+1) 
(S149) 

S149T 1.8 ± 0.1 2.1 ± 0.1 0.29 ± 0.01 4.1 ± 0.4 0.009 ± 0.001 3.1 ± 0.4 
Thr 1.7 ± 0.1 2.0 ± 0.1 0.29 ± 0.01 4.6 ± 0.4 0.012 ± 0.001 3.5 ± 0.4 
Tah 0.6 ± 0.1 1.7 ± 0.2 2.3 ± 0.1 2.0 ± 0.1 0.031 ± 0.002 2.7 ± 0.5 

 

A large perturbation, however, was observed for incorporating F3Phe at TyrC2 in 

the G152K mutant.  Full fluorination plots were produced for ACh and epibatidine, and 

compared to wild type (α7)5 plots (Figure 3.5).  For ACh as agonist, the G152K mutant 

enhanced this binding interaction.  A similar but less pronounced trend was observed for 

epibatidine as agonist.  
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Figure 3.5. Fluorination plots probing the 
effect of the α7 G152K mutation on the 

(α7)5 nAChR. 
Log[EC50(mutant)/EC50(wild type)] is 
plotted versus quantitative cation-π 
binding energies.17 The data are from 
Table 3.4. Fluorination plots are shown for 
(A) ACh, (B) epibatidine, and (C) nicotine 
at the TyrC2 position. Moving to the left 
corresponds to 4-MeO-Phe, Tyr, F1-Phe, 
4-Br-Phe, 4-CN-Phe, F3-Phe. 

 

Additionally, we probed the effect of the G152K mutation on the backbone 

hydrogen bond to the carbonyl of TrpB using the amide-to-ester strategy.  In wild type 

(α7)5, epibatidine participates in a modest backbone hydrogen bond (2.1-fold shift).16  

Interestingly, the G152K mutation does not affect the backbone hydrogen bond, 

displaying a 2.6-fold loss-of-function for epibatidine (Table 3.3).  Consistent with 

previous trends, the backbone mutation had no effect on ACh binding.  
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Nicotine is not very potent at the (α7)5 receptor, which limits the kinds of studies 

we have been able to perform in the past.  Introduction of the G152K mutation in (α7)5 

produced hypersensitive receptors sufficient for examining nicotine as the agonist.  As 

such, (α7G152K)5 mutant receptors allowed accurate measurement of nicotine-induced 

currents even after incorporation of highly fluorinated Phe derivatives.  For such 

receptors, nicotine participates in a cation-π interaction with TyrC2, as indicated by a 

fluorination plot (Figure 3.5C).  For the backbone hydrogen bond, nicotine displayed a 

7.8-fold loss-of-function in the background of the G152K mutation (Table 3.3).  

3.3.3 Probing the K158 Site in the High-Potency (α4)2(β2)3 Receptor  

A G-to-K mutation significantly increases potency of agonists in both the muscle-

type and (α7)5 receptors. It seemed possible that the reverse mutation, K158G, in the 

high-potency (α4)2(β2)3 receptor would diminish potency. We now report that the 

K158G mutation in (α4)2(β2)3 receptors is, indeed, a loss-of-function mutation (Table 

3.1).  However, the magnitude of the impact is significantly less than that seen for the G-

to-K mutations in the low-potency receptors.  

For (α4)2(β2)3 receptors containing the K158G mutation, fluorinated tryptophan 

derivatives were incorporated at TrpB, the site of a cation-π interaction for ACh and 

nicotine (Table 3.5).7  Note that epibatidine also participates in a cation-π interaction and 

hydrogen bond at TrpB in α4β2 (Table 3.5), but we chose not to test the effect of the 

K158G mutation on epibatidine binding as it would likely mimic that of nicotine.  As 

such, the K158G mutation attenuated but did not completely abolish the existing cation-π 

interaction for both ACh and nicotine (Figure 3.6).   
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Table 3.5. EC50 values (µM) and Hill coefficients for mutant (α4)2(β2)3 nAChRs. The 
EC50 values are ± S.E. †Previously reported in Xiu 2009.7 All other values in this table 
were determined in the present work. 

α4β2 nAChR 
Mutation ACh nH Nicotine nH Norm. I (+70mV) 
(α4)3(β2)2 0.023 ± 0.001† 1.3 ± 0.1† 0.01 ± 0.001† 1.7 ± 0.2† 0.297 ± 0.041† 
(α4)2(β2)3 0.42 ± 0.01† 1.2 ± 0.1† 0.08 ± 0.01† 1.2 ± 0.1† 0.041 ± 0.005† 

(α4)3(β2)2 K158G 0.11 ± 0.01 0.99 ± 0.05 0.045 ± 0.001 1.5 ± 0.1 0.268 ± 0.015 
(α4)2(β2)3 K158G 1.3 ± 0.1 1.1 ± 0.1 0.30 ± 0.02 1.6 ± 0.1 0.015 ± 0.006 

(α4 K158G)2(β2)3 – TrpB (W154) 
Trp 1.3 ± 0.1 1.2 ± 0.1 0.27 ± 0.02 1.6 ± 0.2 0.014 ± 0.006 

F1-Trp 3.7 ± 0.1 1.2 ± 0.1 0.50 ± 0.04 1.4 ± 0.1 0.034 ± 0.005 
F2-Trp 5.4 ± 0.2 1.2 ± 0.1 0.67 ± 0.06 1.3 ± 0.1 0.024 ± 0.008 
F3-Trp 23 ± 1 1.3 ± 0.1 2.6 ± 0.2 1.2 ± 0.1 0.017 ± 0.009 
F4-Trp 25 ± 3 0.99 ± 0.08 4.5 ± 0.5 1.2 ± 0.1 0.021 ± 0.010 

(α4 K158G)2(β2)3 – Thr (B+1) (T155) 
Thr 0.99 ± 0.03 1.1 ± 0.1 0.25 ± 0.01 1.5 ± 0.1 0.023 ± 0.004 
Tah 0.53 ± 0.02 1.2 ± 0.1 3.4 ± 0.2 1.2 ± 0.1 0.024 ± 0.006 

(α4)2(β2)3 – Side Chain Mutations in the α4 Subunit  
D157A 0.58 ± 0.02 1.3 ± 0.1 0.18 ± 0.01 1.4 ± 0.1 0.013 ± 0.009 
D157N 0.61 ± 0.03 1.2 ± 0.1 0.14 ± 0.01 1.5 ± 0.1 0.032 ± 0.004 
D157E 0.86 ± 0.02 1.2 ± 0.1 0.19 ± 0.01 1.5 ± 0.1 0.017 ± 0.005 
D157K 6.0 ± 0.2 1.3 ± 0.1 0.39 ± 0.01 1.7 ± 0.1 -0.023 ± 0.015 
K158A 0.57 ± 0.01 1.2 ± 0.1 0.21 ± 0.01 1.4 ± 0.1 0.032 ± 0.008 
K160A 0.37 ± 0.01 1.1 ± 0.1 0.081 ± 0.005 1.5 ± 0.1 0.039 ± 0.006 
E200A 1.1 ± 0.1 1.1 ± 0.1 0.44 ± 0.02 1.4 ± 0.1 0.037 ± 0.006 
E200Q 0.93 ± 0.05 1.3 ± 0.1 0.34 ± 0.01 1.5 ± 0.1 0.019 ± 0.004 
E200D 0.32 ± 0.02 1.2 ± 0.1 0.11 ± 0.01 1.5 ± 0.1 0.025 ± 0.003 
E200K 0.96 ± 0.03 1.2 ± 0.1 0.36 ± 0.01 1.5 ± 0.1 0.025 ± 0.008 

D157AK158A 1.3 ± 0.1 1.2 ± 0.1 0.22 ± 0.02 1.4 ± 0.1 0.032 ± 0.008 
D157AK160A 0.63 ± 0.03 1.3 ± 0.1 0.14 ± 0.01 1.4 ± 0.1 0.031 ± 0.007 
D157AE200A 4.1 ± 0.1 1.3 ± 0.1 1.1 ± 0.1 1.4 ± 0.1 0.024 ± 0.006 
D157NE200Q 1.2 ± 0.1 1.2 ± 0.1 0.41 ± 0.03 1.5 ± 0.1 0.029 ± 0.010 
K158AK160A 0.58 ± 0.02 1.2 ± 0.1 0.096 ± 0.004 1.6 ± 0.1 0.021 ± 0.004 
K158AE200A 1.3 ± 0.1 1.2 ± 0.1 0.63 ± 0.03 1.5 ± 0.1 0.031 ± 0.004 
K160AE200A 1.2 ± 0.1 1.2 ± 0.1 0.40 ± 0.02 1.4 ± 0.1 0.026 ± 0.003 

D157NK158QE200Q 1.1 ± 0.1 1.2 ± 0.1 0.31 ± 0.02 1.5 ± 0.1 0.049 ± 0.007 
D157NK160QE200Q 0.93 ± 0.05 1.3 ± 0.1 0.24 ± 0.02 1.5 ± 0.1 0.035 ± 0.005 

(α4)2(β2)3 – TrpB (W154) 

Mutation ±Epibatidine nH 
Norm. I 
(+70mV)   

Trp 0.58 ± 0.03 1.6 ± 0.1 0.036 ± 0.008   
F1-Trp 6.8 ± 1.1 1.1 ± 0.2 0.039 ± 0.005   
F2-Trp 12 ± 2 1.1 ± 0.1 0.062 ± 0.006   
F3-Trp 35 ± 2 1.1 ± 0.1 0.032 ± 0.006   
F4-Trp 23 ± 1 1.0 ± 0.1 0.021 ± 0.007   

(α4)2(β2)3 – Thr (B+1) (T155) 
Thr 0.67 ± 0.04 1.4 ± 0.1 0.022 ± 0.004   
Tah 3.7 ± 0.1 1.5 ± 0.1 0.026 ± 0.004   
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Figure 3.6. Fluorination plots probing the effect of the α4 K158G mutation on the 

(α4)2(β2)3 nAChR. Log[EC50(mutant)/EC50(wild type)] is plotted versus quantitative 

cation-π binding energies.8 The data are from Table 3.5. Fluorination plots are shown for 
(A) ACh and (B) nicotine at the TrpB position. Moving to the left corresponds to Trp, F1-
Trp, F2-Trp, F3-Trp, and F4-Trp.  

In wild type (α4)2(β2)3, nicotine forms a strong hydrogen bond to the backbone 

carbonyl of TrpB, revealed by a 19-fold shift for the backbone ester mutation.7  In 

(α4)2(β2)3 receptors containing K158G, the amide-to-ester mutation revealed a 14-fold 

shift for nicotine (Table 3.3) indicating that this mutation has minimal impact on the 

backbone hydrogen bond.  

It is possible that other residues positioned outside the immediate binding site 

could play a role in reshaping the agonist binding site.  Taking into consideration the 

primary sequence of the α4 subunit and the crystal structure of AChBP, several residues 

were identified near the agonist binding site that could participate in ionic interactions 

with cationic agonists (D157, K158, K160, and E200).  Alanine substitution, side chain 

charge neutralization, and charge reversal were used to probe the importance of these 

residues in affecting agonist binding interactions.  Residues were examined individually 
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and in combination.  While each mutation produced a modest loss-of-function, no 

significant trend was observed (Figure 3.7, Table 3.5).     

 

Figure 3.7. Comparing the effect on agonist potency of mutating select residues located 
outside of the (α4)2(β2)3 agonist binding site. The data are from Table 3.5. For each 
mutation, the relative shift in agonist potency from the wild type (α4)2(β2)3 receptor is 
shown for ACh (red) and nicotine (blue). The effect of α1 G153K on ACh (green) and 
nicotine (black) potency for the muscle receptor are shown for reference. 
 

3.3.4 Probing the Proposed Loop B–Loop C Hydrogen Bond  

The present results have confirmed the influence of the loop B glycine site on 

agonist potency.  These studies were inspired by the AChBP structure and simulations 

that indicated a hydrogen bond between loop B and loop C of the agonist binding site is 

formed to the backbone NH of the loop B glycine.  Thus far, however, only side chain 

modifications have been considered, and these can only indirectly impact the putative 

hydrogen bond. As described above, backbone mutagenesis can directly probe hydrogen 
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bonding, and so we have applied that strategy to the proposed hydrogen bond.  We chose 

to study the (α4)2(β2)3, high-potency receptor, since this is the form for which the 

hydrogen bond is predicted to be stronger. We can mutate both components of the 

hydrogen bond by backbone mutagenesis: replacing the NH of K158 with an O by 

incorporating an α-hydroxy acid at position 158, and altering the backbone carbonyl 

acceptor of residue 201 by incorporating an α-hydroxy acid at position 202.   

As established above, the identity of the side chain at position 158 is not crucial, 

as long as it is not glycine, and we anticipated technical challenges in incorporating the 

α-hydroxy analog of lysine.  As such, we chose to start from the K158L mutant, since 

Lah (leucine, α-hydroxy) is readily available and incorporates well by nonsense 

suppression. As expected, the K158L mutation has a very modest effect on receptor 

function (Table 3.1, Table 3.6). Referenced to K158L, the K158Lah mutation also has a 

small effect on receptor function (Table 3.1), and it is actually a slight gain-of-function 

for both ACh and nicotine.  Similarly, the Y202Yah mutation produced a relatively small 

perturbation, but it is now a loss-of-function. It may be that the perturbation with nicotine 

as agonist is significant, but still the effect is smaller than comparable perturbations we 

have seen at other hydrogen bonding sites. 

Table 3.6. EC50 values (µM) and Hill coefficients for mutant (α4)2(β2)3 nAChRs probing 
the Loop B-Loop C hydrogen bond. The EC50 values are ±S.E. 

(α4)2(β2)3 – K158 
Mutation ACh nH Nicotine nH Norm. I (+70mV) 

K158L 0.13 ± 0.01 1.2 ± 0.1 0.035 ± 0.003 1.5 ± 0.1 -0.005 ± 0.023 
Leu 0.15 ± 0.01 1.3 ± 0.1 0.031 ± 0.001 1.3 ± 0.1 0.038 ± 0.010 
Lah 0.060 ± 0.001 1.2 ± 0.1 0.011 ± 0.001 1.3 ± 0.1 0.026 ± 0.004 

(α4)2(β2)3 – TyrC2 (Y202) 
Tyr 0.44 ± 0.01 1.2 ± 0.1 0.096 ± 0.006 1.5 ± 0.1 0.035 ± 0.007 
Yah 0.73 ± 0.03 1.2 ± 0.1 0.42 ± 0.03 1.4 ± 0.1 -0.008 ± 0.026 
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3.3.5 Implications for nAChR Function and Subtype Selectivity  

A number of lines of evidence have established an important role for the loop B 

glycine in nAChR function. AChBP structures show its involvement in a loop B-loop C 

hydrogen bond,9, 10 and MD simulations indicate that the strength of the hydrogen bond 

has an impact on the potency of ACh and nicotine at nAChR receptor subtypes.5 A 

mutation at this site in the muscle-type nAChR produces a myasthenic syndrome.12 

Furthermore, in the muscle-type receptor, the G153K mutation reshapes the agonist 

binding site, allowing nicotine to approach the key TrpB residue of the agonist binding 

site more closely, amplifying both a cation-π interaction7 and a hydrogen bonding 

interaction.  

In the present work we have further probed the loop B glycine in three different 

nAChR subtypes:  muscle-type, (α7)5, and (α4)2(β2)3. In the muscle-type receptor, ACh, 

nicotine, and the nicotine analog epibatidine all show substantial increases in potency in 

response to the G153K mutation, which can be ascribed to an increased interaction with 

TrpB. As seen previously with nicotine, the cation-π interaction is strengthened for 

epibatidine when the G153K mutation is present. It has been proposed that the G153K 

mutation should not be unique; any amino acid with a side chain should have a similar 

impact.  Indeed, we find in the muscle-type receptor that G153A and G153T show similar 

phenotypes to G153K.  Also, in the high-potency (α4)2(β2)3 receptor, a K158L mutation, 

which in most contexts would be expected to be strongly perturbing, has a minimal 

impact, indicating that there is nothing special about the lysine side chain. 

The (α7)5 nAChR is low-potency like the muscle-type nAChR, but it shows a 

distinct pattern of agonist binding.  As such, it was interesting to see if it would respond 
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to mutations of the loop B glycine in a similar manner. Indeed, the G152K mutation does 

significantly enhance the potency of ACh, nicotine, and epibatidine in the (α7)5 nAChR, 

however, the effects are generally smaller than seen for the muscle-type receptor. 

Agonists do not make a cation-π interaction to TrpB in (α7)5, and the G152K 

mutation does not change this. Similarly, the hydrogen bond to the carbonyl of TrpB is 

weak in both the wild type and the G152K mutant. However, the G152K mutation does 

amplify a cation-π interaction between agonists and TyrC2. A weak interaction with ACh 

becomes stronger in the mutant, and a strong interaction with epibatidine is further 

enhanced. Recall that TyrC2 is adjacent to the carbonyl that acts as the acceptor to the 

proposed critical hydrogen bond.  However, in the muscle-type receptor it is interactions 

with TrpB, which lies across the agonist binding site from TyrC2, that are impacted by 

mutations at the loop B glycine site. This suggests that mutation of the glycine site 

globally alters the shape of the agonist binding site, such that agonists that interact 

strongly with TrpB see that interaction enhanced, and agonists that interact with TyrC2 

see that interaction enhanced. 

Given these results it was reasonable to ask whether a high-potency receptor 

could be converted to a low-potency receptor by the reverse (K-to-G) mutation at the key 

loop B site. The binding interactions in the (α4)2(β2)3 receptor are well characterized, 

and so we chose it as the target of such studies. We find that the K158G mutation does 

indeed diminish potency, but the effect is much less substantial than seen with the two G-

to-K mutations. This suggests that in the optimized high-potency receptor there are other 

modifications that contribute to the high-potency. Conversely, in a low-potency receptor 
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the G-to-K mutation enhances potency considerably, and there may be other potential 

changes that could make the receptor even more “α4-like” and thus higher potency still. 

Although these and other studies of the loop B glycine have probed the effects of 

side chain mutations, the key proposed interaction actually involves interactions with the 

backbone. This is an attractive model because, as noted above, the residue contributing 

the carbonyl is adjacent to TyrC2, a conserved contributor to the “aromatic box” of the 

agonist binding site. The unnatural amino acid methodology allows us to probe such 

backbone hydrogen bonds, replacing the NH donor with an O or replacing the amide 

(peptide) carbonyl with an ester carbonyl, a much weaker hydrogen bond acceptor.  

We have performed both mutations in the high-potency (α4)2(β2)3 receptor, 

which is predicted to have a strong hydrogen bond, probing the response to both ACh and 

nicotine. In all cases, the impact is small, ranging from a 2-fold to a 5-fold change in 

potency. This is consistent with the argument given above that, in the optimized high-

potency (α4)2(β2)3 receptor, features other than just the backbone hydrogen bond 

contribute to increasing potency.  Furthermore, it is possible that these features are able to 

compensate for single disruptions in agonist binding (i.e., disrupting the proposed loop B-

loop C hydrogen bond). It is surprising that the two approaches to modulate the hydrogen 

bond have opposite effects:  one is a loss-of-function and one is actually a gain-of-

function.  Again, the effects are small, and we hesitate to attempt to provide detailed 

interpretation. 

Overall, these results provide strong support for the notion that the identity of the 

side chain at the loop B glycine site strongly influences nAChR function. With any 

residue other than glycine (and likely proline), the agonist binding site is shaped properly 
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to allow strong interactions with agonists. However, when this key residue is glycine, the 

agonist binding site is distorted such that optimal drug-receptor interactions cannot occur. 

This happens regardless of whether key drug-receptor interactions involve TrpB or 

TyrC2, and so we prefer a model that emphasizes a global reorganization of the agonist 

binding site, rather than just the repositioning of a single residue. Interestingly, although 

the model is based on the behavior of a proposed hydrogen bond, directly modifying that 

hydrogen bond has a smaller effect on receptor function than presumed indirect effects 

brought about by side chain modifications.  

3.4 METHODS 

Molecular Biology  

All nAChR subunit genes were in the pAMV vector (mouse α1, β1, γ, and δ; rat 

α4, β2, and α7).  Site-directed mutagenesis was performed using the QuikChange 

protocol (Stratagene).  For nonsense suppression experiments,18 the site of interest within 

the nAChR subunit was mutated to an amber stop codon (TAG).  Circular DNA was 

linearized with Not I.  After purification (Qiagen), linearized DNA was used as a 

template for runoff in vitro transcription using T7 mMessage mMachine kit (Ambion).  

hRIC-3 cDNA in pGEM vector was obtained from Dr. Miller Treinin at Hebrew 

University.19  Circular hRIC-3 DNA was linearized with Xho I, and mRNA was prepared 

as previously described. 

THG7320 was used as the amber suppressor tRNA.  Nitroveratryloxycarbonyl 

(NVOC) protected cyanomethyl esters of unnatural amino acids and α-hydroxy amino 

acid cyanomethyl esters were synthesized, coupled to dinucleotide dCA, and 
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enzymatically ligated to 74-nucleotide THG73 tRNACUA as previously reported.18  Crude 

tRNA-amino acid product was used without desalting, and the product was confirmed by 

MALDI-TOF MS on 3-hydroxypicolinic acid (3-HPA) matrix.  Deprotection of the 

NVOC group on the tRNA-amino acid was carried out by photolysis for 5 minutes prior 

to coinjection with mRNA containing the UAG mutation at the site of interest.  

Microinjection  

Stage V-VI Xenopus laevis oocytes were employed.  For muscle-type nAChR 

experiments, α1:β1:γ:δ mRNA was injected at a ratio of 2:1:1:1 by mass for wild type 

protein.  Note that for all experiments reported, we use a previously reported L9’S 

mutation in the β1 subunit to increase receptor sensitivity.7, 8  If an unnatural amino acid 

was to be incorporated into the α1 subunit, then an mRNA ratio of 10:1:1:1 was 

employed.  For wild type and nonsense suppression experiments, the total mRNA 

injected was 30-65 ng/oocyte.   

All studies of the (α7)5 receptor contain a T6’S mutation in the M2 

transmembrane helix, which serves to decrease desensitization without altering other 

aspects of receptor pharmacology.21  For (α7)5 experiments, 10 ng α7 mRNA was 

coinjected with 10 ng of hRIC-3 mRNA per oocyte.  In the case of nonsense suppression 

experiments, 20 ng α7 mRNA was co-injected with 25 ng of hRIC-3 mRNA per 

oocyte.16   

In accordance with previously reported protocols,7 all α4β2 receptors contain a 

L9’A mutation in the α4 subunit to increase receptor expression.  Coinjection of α4:β2 

mRNA at a ratio of 1:1 by mass yielded wild type (α4)2(β2)3 receptors.  For (α4)2(β2)3 
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nAChRs with conventional mutations located outside the immediate binding site (i.e., 

K158G, D157N, etc.), an injection ratio of 1:1 for α4:β2 mRNA by mass was employed 

(Table 3.7).  For wild type recovery experiments incorporating a tryptophan into the α4 

subunit to produce (α4)2(β2)3 receptors, a mass ratio of 1:1 for α4:β2 mRNA was 

injected into each oocyte.  However, for subsequent nonsense suppression experiments 

incorporating fluorinated tryptophan derivatives into the α4 subunit, a mass ratio of 3:1 

for α4:β2 mRNA was injected into each oocyte to account for decreased suppression 

efficiency.  The total α4β2 mRNA injected was 30-72 ng/oocyte depending on the 

relative expression level.  All (α4)2(β2)3 nAChR stoichiometries were confirmed by 

voltage jump experiments.7   

Table 3.7. Injection ratios of α4 K158G:β2 mRNA used to control α4β2 receptor 
stoichiometry in Xenopus oocytes.  EC50 values (µM) and Hill coefficients are shown.  
The EC50 values are ± S.E.  ND, not determined. 

α4 K158G:β2 mRNA Ratios 
Ratio ACh nH Nicotine nH Norm. I (+70mV) 
100:1 0.11 ± 0.01 1.0 ± 0.1 0.045 ± 0.001 1.5 ± 0.1 0.268 ± 0.015 
30:1 0.08 ± 0.01 1.0 ± 0.1 ND ND 0.248 ± 0.027 
10:1 0.35 ± 0.04 0.71 ± 0.05 ND ND 0.242 ± 0.021 
6:1 0.49 ± 0.02 0.80 ± 0.02 ND ND 0.215 ± 0.016 
3:1 0.68 ± 0.02 1.1 ± 0.1 ND ND 0.045 ± 0.008 
1:1 1.3 ± 0.1 1.1 ± 0.1 0.30 ± 0.02 1.7 ± 0.2 0.015 ± 0.006 
1:3 1.1 ± 0.1 1.3 ± 0.1 0.26 ± 0.02 2.1 ± 0.3 0.059 ± 0.006 
1:10 1.0 ± 0.1 1.2 ± 0.1 0.26 ± 0.03 1.7 ± 0.3 0.043 ± 0.032 

 
For all suppression experiments, approximately 15 ng/oocyte of tRNA was used.  

Each oocyte was injected with 50 nL of RNA solution, and the oocytes were incubated 

for 24-48 hours at 18 °C in ND96 buffer  (96 mM NaCl, 2 mM KCl, 1 mM MgCl2,       

1.8 mM CaCl2, and 5 mM HEPES, pH 7.5) with 0.005% (w/v) gentamycin and 2% (v/v) 

horse serum.  In the case of low-expressing mutant receptors, a second injection of 
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mRNA/tRNA was required 24 hour after the first injection.  As a negative control for all 

suppression experiments, 76-nucleotide tRNA (dCA ligated to 74-nucleotide tRNA) was 

coinjected with mRNA in the same manner as fully charged tRNA. 

Electrophysiology  

Acetylcholine chloride and (-)-nicotine tartrate were purchased from 

Sigma/Aldrich/RBI (St. Louis, MO) and drug dilutions were prepared from 1M aq stock 

solutions.  (±)-Epibatidine was purchased from Tocris and drug dilutions were prepared 

from a 50 mM stock solution (1:1 H2O:EtOH).  For (α1)2β1γδ and (α4)2(β2)3 

experiments, drug dilutions were prepared in Ca2+-free ND96 buffer.  For (α7)5 

experiments, drug dilutions were prepared in Ca2+-containing ND96 buffer. 

Ion channel function was assayed using the OpusXpress 6000A (Molecular 

Devices Axon Instruments) in two-electrode voltage clamp mode.  Oocytes were clamped 

at a holding potential of -60mV.  For (α1)2β1γδ and (α4)2(β2)3 receptors, 1 mL of each 

drug solution was applied to the clamped oocytes for 12 seconds, followed by a 2 minute 

wash with Ca2+-free ND96 buffer between each concentration.  In the case of 

hypersensitive (α1G153K)2β1γδ receptors, a 1.5 minute drug application was used to 

ensure maximum peak response when using very low concentrations of agonist.  

For  (α7)5 receptors, 1 mL of each drug solution was applied for 30 seconds, followed by 

a 5 minute wash step with Ca2+-containing ND96 buffer between each concentration.  

Data were sampled at 50 Hz and filtered at 20 Hz.  Voltage jump experiments were 

sampled at 5000 Hz and filtered at 180 Hz. 
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Data Analysis   

Dose-response data were obtained for at least 6 concentrations of agonists and for 

a minimum of 5 oocytes (from two different batches).  Mutants with Imax of at least 100 

nA of current were defined as functional. EC50 and Hill coefficients (nH) were calculated 

by fitting the averaged, normalized dose-response relation to the Hill equation. All data 

are reported as mean ±S.E. 

3.5 ACKNOWLEDGEMENTS 

This work was supported by the NIH (NS 34407 and NS 11756). 



72 

 

3.6 REFERENCES 

1. Corringer, P. J.; Le Novere, N.; Changeux, J. P., Nicotinic receptors at the amino 
acid level. Annu Rev Pharmacol Toxicol 2000, 40, 431-58. 
2. Grutter, T.; Changeux, J. P., Nicotinic receptors in wonderland. Trends Biochem 
Sci 2001, 26, (8), 459-63. 
3. Karlin, A., Emerging structure of the nicotinic acetylcholine receptors. Nat Rev 
Neurosci 2002, 3, (2), 102-14. 
4. Jensen, A. A.; Frolund, B.; Lijefors, T.; Krogsgaard-Larsen, P., Neuronal 
nicotinic acetylcholine receptors: Structural revelations, target identifications, and 
therapeutic inspirations. J. Med. Chem. 2005, 48, (15), 4705-4745. 
5. Grutter, T.; de Carvalho, L. P.; Le Novere, N.; Corringer, P. J.; Edelstein, S.; 
Changeux, J. P., An H-bond between two residues from different loops of the 
acetylcholine binding site contributes to the activation mechanism of nicotinic receptors. 
EMBO J. 2003, 22, (9), 1990-2003. 
6. Gotti, C.; Zoli, M.; Clementi, F., Brain nicotinic acetylcholine receptors: native 
subtypes and their relevance. Trends Pharm. Sci. 2006, 27, (9), 482-491. 
7. Xiu, X.; Puskar, N. L.; Shanata, J. A.; Lester, H. A.; Dougherty, D. A., Nicotine 
binding to brain receptors requires a strong cation-pi interaction. Nature 2009, 458, 
(7237), 534-7. 
8. Zhong, W.; Gallivan, J. P.; Zhang, Y.; Li, L.; Lester, H. A.; Dougherty, D. A., 
From ab initio quantum mechanics to molecular neurobiology: a cation-pi binding site in 
the nicotinic receptor. Proc Natl Acad Sci U S A 1998, 95, (21), 12088-93. 
9. Brejc, K.; van Dijk, W. J.; Klaassen, R. V.; Schuurmans, M.; van Der Oost, J.; 
Smit, A. B.; Sixma, T. K., Crystal structure of an ACh-binding protein reveals the ligand-
binding domain of nicotinic receptors. Nature 2001, 411, (6835), 269-76. 
10. Sixma, T. K.; Smit, A. B., Acetylcholine binding protein (AChBP): a secreted 
glial protein that provides a high-resolution model for the extracellular domain of 
pentameric ligand-gated ion channels. Annu Rev Biophys Biomol Struct 2003, 32, 311-34. 
11. Hibbs, R. E.; Gouaux, E., Principles of activation and permeation in an anion-
selective Cys-loop receptor. Nature 2011, 474, (7349), 54-U80. 
12. Sine, S. M.; Ohno, K.; Bouzat, C.; Auerbach, A.; Milone, M.; Pruitt, J. N.; Engel, 
A. G., Mutation of the acetylcholine receptor alpha subunit causes a slow-channel 
myasthenic syndrome by enhancing agonist binding affinity. Neuron 1995, 15, (1), 229-
239. 
13. Celie, P. H.; van Rossum-Fikkert, S. E.; van Dijk, W. J.; Brejc, K.; Smit, A. B.; 
Sixma, T. K., Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors 
as studied in AChBP crystal structures. Neuron 2004, 41, (6), 907-914. 
14. Cashin, A. L.; Petersson, E. J.; Lester, H. A.; Dougherty, D. A., Using physical 
chemistry to differentiate nicotinic from cholinergic agonists at the nicotinic 
acetylcholine receptor. J. Am. Chem. Soc. 2005, 127, (1), 350-356. 
15. Cashin, A. L.; Petersson, E. J.; Lester, H. A.; Dougherty, D. A., Using physical 
chemistry to differentiate nicotinic from cholinergic agonists at the nicotinic 
acetylcholine receptor. J Am Chem Soc 2005, 127, (1), 350-6. 



73 

 

16. Puskar, N. L.; Xiu, X.; Lester, H. A.; Dougherty, D. A., Two Neuronal Nicotinic 
Acetylcholine Receptors, alpha 4 beta 4 and alpha 7, Show Differential Agonist Binding 
Modes. Journal of Biological Chemistry 2011, 286, (16), 14618-14627. 
17. Lummis, S. C.; D, L. B.; Harrison, N. J.; Lester, H. A.; Dougherty, D. A., A 
cation-pi binding interaction with a tyrosine in the binding site of the GABAC receptor. 
Chem Biol 2005, 12, (9), 993-7. 
18. Nowak, M. W.; Gallivan, J. P.; Silverman, S. K.; Labarca, C. G.; Dougherty, D. 
A.; Lester, H. A., In vivo incorporation of unnatural amino acids into ion channels in a 
Xenopus oocyte expression system. Methods Enzymol 1998, 293, 504-529. 
19. Williams, M. E.; Burton, B.; Urrutia, A.; Shcherbatko, A.; Chavez-Noriega, L. E.; 
Cohen, C. J.; Aiyar, J., Ric-3 promotes functional expression of the nicotinic 
acetylcholine receptor alpha7 subunit in mammalian cells. J Biol Chem 2005, 280, (2), 
1257-63. 
20. Saks, M. E.; Sampson, J. R.; Nowak, M. W.; Kearney, P. C.; Du, F.; Abelson, J. 
N.; Lester, H. A.; Dougherty, D. A., An engineered Tetrahymena tRNAGln for in vivo 
incorporation of unnatural amino acids into proteins by nonsense suppression. J. Biol. 
Chem 1996, 271, 23169-75. 
21. Placzek, A. N.; Grassi, F.; Meyer, E. M.; Papke, R. L., An alpha7 nicotinic 
acetylcholine receptor gain-of-function mutant that retains pharmacological fidelity. Mol 
Pharmacol 2005, 68, (6), 1863-76. 
 
 



74 
 

Chapter 4 
 

Contrasting Drug-Receptor Interactions at Neuronal vs. Muscle-Type 
Nicotinic Acetylcholine Receptors: The Neuronal α4β4 Receptor* 

 
*This chapter is adapted in part from: Puskar, N. L.; Xiu, X.; Lester, H. A.; Dougherty, 
D. A. Two neuronal nicotinic acetylcholine receptors, α4β4 and α7, show differential 
agonist binding modes. The Journal of Biological Chemistry. 2011; 286: 14618-14627. © 
The American Society for Biochemistry and Molecular Biology. 
 

4.1 ABSTRACT  

Nicotinic acetylcholine receptors (nAChR) are pentameric, neurotransmitter-gated 

ion channels responsible for rapid excitatory neurotransmission in the central and 

peripheral nervous systems, resulting in skeletal muscle tone and various cognitive 

effects in the brain.  These complex proteins are activated by the endogenous 

neurotransmitter acetylcholine (ACh) as well as by nicotine and structurally related 

agonists.  Activation and modulation of nAChRs have been implicated in the pathology 

of multiple neurological disorders, and as such, these proteins are established therapeutic 

targets.  Our lab has reported that the muscle-type, α4β2, and α7 receptors bind agonist 

molecules via a cation-π interaction.1-3  This chapter describes our efforts to elucidate the 

agonist binding mechanism of the α4β4 receptor.  Unnatural amino acid mutagenesis and 

chimeric β subunits were used to probe the respective contributions of the α4β4 principal 

and complementary binding components to agonist binding and receptor pharmacology.  

Here, we report that the α4β4 receptor utilizes a strong cation-π interaction to a 

conserved tryptophan (TrpB) of the receptor for both ACh and nicotine, and nicotine 

participates in a strong hydrogen bond with a backbone carbonyl contributed by TrpB.   
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4.2 INTRODUCTION 

Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop superfamily 

of neurotransmitter-gated ion channels, which includes γ-aminobutyric acid (GABAA and 

GABAC), glycine (Gly), and serotonin type 3 (5-HT3) receptors.  These transmembrane 

proteins are critical to proper rapid synaptic transmission in the central and peripheral 

nervous systems.4  In fact, several nAChRs have been implicated in pathophysiology 

and/or therapy of multiple neurological and psychiatric disorders including addiction, 

schizophrenia, Parkinson’s disease, Alzheimer’s disease, pain, ADHD, epilepsy, 

depression, and congenital myasthenic syndromes. 5, 6 

The nAChR is the longest-known, most-studied neuroreceptor.  nAChRs are 

pentameric, integral membrane proteins whose overall structure has been roughly 

determined by cryo-electron microscopy images of the Torpedo californica nAChR 

(Figure 4.1).7  Each subunit contains a large, principally β-sheet extracellular N-terminal 

domain, four transmembrane α-helices (M1-M4), and a small extracellular C-terminal 

domain.  Five homologous subunits are arranged pseudosymmetrically around a central 

ion conducting pore formed by the M2 helices of each subunit.8  To date, 16 mammalian 

genes have been identified that encode nAChR subunits, termed α1-α7, α9, α10, β1-β4, 

δ, γ, and ε.   
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Figure 4.1. nAChR structure. Left panel, global layout of the nAChR based on cryo-
electron microscopy of the Torpedo receptor (pdb: 2BG9).7  The position of the 
membrane is denoted by gray bars.  A large intracellular domain that is only partly 
observed in the structure is omitted. Right panel, enlargement of agonist binding site 
from AChBP (pdb: 1I9B).9 Aromatic residues forming the ligand binding site are 
indicated.  TyrA, TrpB, TyrC1, and TyrC2 are contributed by the α subunit, and TrpD is 
contributed by the non-α subunit. Coloring of the residue labels matches that of the 
corresponding loops in the full structure. Backbone carbonyl contributed by TrpB is 
denoted by a star.  

 
The “muscle-type” nAChR is postsynaptically located at the neuromuscular 

junction and has a uniquely precise stoichiometry of (α1)2β1γδ (fetal form; the adult form 

is (α1)2β1εδ).  Neuronal nAChRs, however, are formed from various combinations of 

α2-α10 and β2-β4 subunits and current estimates indicate that as many as 25 active 

subtypes occur in humans.10, 11  These receptors are mostly located post- and 

presynaptically in autonomic ganglia and cholinergic neurons of the CNS, but can also 

occur in non-neuronal cells.5, 10  Given this large collection of closely related receptors, it 
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seems certain that therapeutics directed toward specific neurological disorders will 

require selectivity in terms of which nAChR subtype(s) is targeted. 

Early work established a nicotinic pharmacophore comprised of a cationic N and 

a hydrogen bond accepting group separated by an appropriate distance.12, 13  This report 

focuses on critical drug-receptor interactions occurring at the agonist binding site.  The 

cationic moiety of ACh interacts with a cluster of aromatic amino acids first identified by 

photoaffinity labeling and mutagenesis experiments of the full receptor.4, 9  Crystal 

structures of the acetylcholine binding proteins (AChBP) provided a structural template 

for the N-terminal, extracellular, ligand binding domain (LBD) of the nAChR, as it shares 

20%-25% sequence identity with the extracellular domain of the much larger ion channel 

protein.9, 14  Five aromatic residues (labeled according to their respective loop) form the 

agonist binding site, and these five aromatics are completely conserved across the 

nAChR family (Figure 4.1).  The principal binding site contributes loop A (TyrA), loop 

B (TrpB), and loop C (TyrC1 and TyrC2), and the complementary binding site contributes 

loop D (TrpD), loop E, and loop F.  In recent work, it was confirmed that the hydrogen 

bond acceptor of the agonist interacts with residues from the complementary subunits (β 

in neuronal nAChRs; γ, δ, ε in the muscle-type nAChR).15   

In the Dougherty group, we have used the nonsense suppression methodology to 

probe the molecular determinants for agonist binding in several nAChR subtypes, such as 

the muscle-type and neuronal α4β2 and α7 receptors.1-3, 16, 17  From these studies, the 

cation-π interaction proved a common component of agonist affinity in each of the 

aforementioned receptors.  Preliminary studies of the neuronal α4β4 nAChR, however, 

proved inconclusive.18  Interestingly, the α4 and β4 subunits colocalize in brain regions 
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implicated in behavioral responses to nicotine, and β4 -/- knockout mice are more 

resistant to nicotine-induced seizures when compared to wild type mice.5, 19  Given the 

significance of the α4β4 subtype in nicotine addiction and its similar structure to α4β2, 

we were interested in elucidating the agonist binding mode of the α4β4 receptor.   

The primary goal of the present work is described in two parts: (1) to use 

unnatural amino acid mutagenesis to probe the α4β4 principal binding site and determine 

the contribution of each residue (e.g., TyrA, TrpB, TyrC1, and TyrC2) to agonist binding, 

and (2) to employ chimeric β subunits to identify which region(s) of the complementary 

binding site contributes to the divergent pharmacologies observed for the α4β2 and α4β4 

receptors.  

4.3 RESULTS 

4.3.1 Part 1: Using Unnatural Amino Acid Mutagenesis to Probe the Principal 
Binding Site of the Neuronal α4β4 Receptor 

Challenges in Studying Neuronal nAChRs with Unnatural Amino Acids  

The nonsense suppression methodology for incorporating unnatural amino acids 

into receptors and ion channels expressed in Xenopus oocytes has proven to be broadly 

applicable, including studies of serotonin (5-HT3) receptors, GABA receptors, glycine 

receptors, K+ and Na+ channels, and GPCRs.16, 20-24  Studies of the muscle-type nAChR 

have long been straightforward, but attempts to apply the methodology to neuronal 

nAChRs were initially frustrated by several factors.  These issues include poor expression 

in Xenopus oocytes as well as expression of variable stoichiometries.  Here, we report the 

strategies used to overcome these obstacles in the α4β4 receptor. 
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Human α4 and β4 subunit genes were in plasmid Bluescript (pBluescript).  

Injection of mRNA transcribed from pBluescript into oocytes produced moderate 

expression of wild type protein and low expression for nonsense suppression 

experiments.  As such, both α4 and β4 subunit genes were subcloned into pGEMhe 

facilitating in vitro transcription of mRNA for expression in Xenopus oocytes.  Using 

mRNA transcribed from the pGEMhe vector, we successfully incorporated several 

unnatural amino acids into the α4β4 nAChR.         

An additional issue concerning the expression of neuronal nAChRs in Xenopus 

oocytes is the tendency of these receptors to exist in variable stoichiometries. This can be 

problematic, since interpretation of subtle structure-function studies requires a 

homogeneous collection of receptors.  Several studies of other receptor subtypes have 

shown that biasing the ratios of subunit mRNAs injected into the oocyte can influence 

subunit stoichiometry,2, 25 and we have found similar results in our previous studies of 

unnatural amino acids in the α4β2 receptor.2  For the α4β2 nAChR, the (α4)2(β2)3 form 

is the higher sensitivity form for nicotine, and chronic exposure to nicotine leads to 

upregulation of this form at the expense of (α4)3(β2)2 in a variety of cell types.25, 26 

In initial studies of the α4β4 receptor, we observed variable dose-response curves 

and anomalously low Hill coefficients, indicating a mixed population of receptors. By 

biasing the subunit mRNA ratios, we observed two dominant α4β4 receptor populations, 

which we have assigned as (α4)2(β4)3 and (α4)3(β4)2.  In order to facilitate comparisons 

and to emphasize the critical role of the β subunit in defining drug selectivity at nAChRs, 

our studies of the α4β4 nAChR have focused on the (α4)2(β4)3 form.  We found that 

injection of an mRNA ratio α4:β4 of 1:1 or lower produces a pure population of 
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(α4)2(β4)3, while a ratio greater than 30:1 is necessary to produce pure populations of 

(α4)3(β4)2 (Table 4.1).   

Table 4.1. Stoichiometries of α4β4 nAChRs expressed in Xenopus oocytes injected with 
different ratios of human α4:β4 subunit mRNA.  EC50 (µM) and nH values are ±SEM. 

Ratio ACh nH Stoichiometry 
100:1 58 ± 3 1.9 ± 0.2 A3B2 
30:1 51 ± 3 1.9 ± 0.2 Mixture 
10:1 41 ± 2 1.4 ± 0.1 Mixture 
3:1 26 ± 1 1.1 ± 0.1 Mixture 
1:1 11 ± 1 1.3 ± 0.1 A2B3 
1:3 13 ± 1 1.3 ± 0.1 A2B3 

Ratio Nicotine nH Stoichiometry 
100:1 12 ± 2 1.7 ± 0.3 A3B2 
1:3 2.4 ± 0.1 1.3 ± 0.1 A2B3 

 

With the above strategies, unnatural amino acid mutagenesis studies of the α4β4 

receptor proceeded smoothly (Figure 4.2).  In the present work, we report EC50 

measurements, the effective concentration of agonist required to induce half-maximal 

response.  EC50 is a functional measure that can be altered by changes in agonist affinity 

and/or receptor gating.  All of our previous studies of the nAChR agonist binding site 

have employed this metric, and so using EC50 values allows direct comparisons between 

different subtypes.  In addition, an earlier study of the α4β2 receptor employed single-

channel analysis to establish that shifts in EC50 caused by subtle mutations at TrpB, a 

major focus of the present work, result from changes in agonist affinity, not receptor 

gating.2 
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Figure 4.2. Wild type recovery experiments for the α4β4 nAChR. A. Representative 
voltage-clamp current traces from oocytes with Trp incorporated by nonsense 
suppression at position TrpB. Bars indicate application of ACh at concentrations (µM) 
noted. B. Dose-response curve and fit of data in A to the Hill equation. Error bars 
indicate SEM.; n = 10-13. 

Ligand Binding Mechanism of the α4β4 Receptor 

Our lab has previously established that the muscle-type and α4β2 nAChRs 

interact with agonists (Figure 4.3A) through cation-π interactions at TrpB.2, 3  We 

therefore focused on TrpB in the α4β4 receptor using strategies that are now well 

established for identifying a cation-π interaction.  In particular, we systematically 

fluorinate a side chain (Figure 4.3B) and determine whether the progressive diminution 

of the cation-π binding ability of the residue induced by fluorination is manifested in 

receptor function.  The fluorination approach can be augmented with other substitutions, 

such as the highly deactivating cyano (CN) substituent, and is compared to the much less 

deactivating but sterically similar bromo (Br) substituent.  With ACh as agonist, both the 

CN-Trp/Br-Trp effect (9-fold ratio of EC50; Table 4.2) and the fluorination effect (Figure 
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4.4A) establish that a cation-π interaction is present at TrpB.  We were unable to achieve 

adequate incorporation of F3-Trp or F4-Trp, so we incorporated 7-aza-Trp, which is 

structurally very similar to Trp but shows a diminished cation-π binding ability.  When 

all the data are combined (Trp, F1-Trp, F2-Trp, 7-aza-Trp, Br-Trp, and CN-Trp) into one 

plot, we observe a linear correlation with ab initio calculated cation-π binding energies.  

The slope of this cation-π binding plot resembles that reported for other nAChRs.  A 

much more thorough study was possible with nicotine as the agonist, producing 

compelling evidence for a cation-π interaction to TrpB (Figure 4.4B).  Considering the 

effects of nicotine at TrpB, the cation-π slope resembles that of the α4β2 receptor rather 

than the muscle-type receptor, which shows no consistent fluorination effect with 

nicotine as the agonist.  Hence, in the α4β4 receptor, similar to the α4β2 receptor,2 

nicotine mimics ACh at TrpB with regard to the cation-π interaction.  

Figure 4.3. Key 
structures employed in 
this study. A. Structures 
of ACh and nicotine. B. 
Tryptophan derivatives; 
F1-Trp, 5-fluoro-
tryptophan; F2-Trp, 5,7-
difluoro-tryptophan; F3-
Trp, 5,6,7-trifluoro-
tryptophan; F4-Trp, 

4,5,6,7-tetrafluoro-
tryptophan; Br-Trp, 5-
bromo-tryptophan; CN-
Trp, 5-cyano-
tryptophan; 7-aza-Trp, 
7-aza-tryptophan. C. 

Phenylalanine 
derivatives; F1-Phe, 4-flouro-phenylalanine; F2-Phe, 3,5-diflouro-phenylalanine; F3-Phe, 
3,4,5-triflouro-phenylalanine; Br-Phe, 4-bromo-phenylalanine; CN-Phe, 4-cyano-
phenylalanine; MeO-Phe, 4-methoxy-phenylalanine. If not indicated, a, b, c, or d group is 
H. D. Tah, threonine-α-hydroxy. 
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Table 4.2. Data for mutant α4β4 (A2B3) nAChRs. EC50 (µM) and nH values are ±SEM. 
NR = No response.  

Mutation ACh nH Nicotine nH 
(α4)3(β4)2 58 ± 3 1.9 ± 0.2 12 ± 2 1.7 ± 0.3 
(α4)2(β4)3 13 ± 1 1.3 ± 0.1 2.4 ± 0.1 1.3 ± 0.1 

TyrA 
Tyr 17 ± 1 1.2 ± 0.1 3.1 ± 0.2 1.3 ± 0.1 
Phe 260 ± 11 1.3 ± 0.1 11 ± 0.4 1.6 ± 0.1 

F1-Phe 254 ± 21 1.3 ± 0.1 6.6 ± 0.6 1.5 ± 0.2 
F2-Phe 159 ± 16 1.3 ± 0.1 7.1 ± 0.4 1.4 ± 0.1 
F3-Phe 158 ± 14 1.4 ± 0.1 7.7 ± 0.5 1.4 ± 0.1 
Br-Phe 49 ± 1 1.6 ± 0.1 3.5 ± 0.2 1.5 ± 0.1 

CN-Phe 855 ± 63 1.4 ± 0.1 80 ± 6 1.4 ± 0.1 
 MeO-Phe 50 ± 2 1.4 ± 0.1 4.2 ± 0.2 1.4 ± 0.1 

TrpB 
Trp 15 ± 1 1.3 ± 0.1 2.0 ± 0.1 1.2 ± 0.1 

F1-Trp 41 ± 2 1.5 ± 0.1 5.6 ± 0.5 1.4 ± 0.1 
F2-Trp 51 ± 2 1.6 ± 0.1 8.1 ± 0.9 1.5 ± 0.2 
F3-Trp NR NR 73 ± 6 1.2 ± 0.1 
F4-Trp NR NR 190 ± 116 0.8 ± 0.2 
Br-Trp 28 ± 1 1.5 ± 0.1 7.1 ± 0.5 1.5 ± 0.1 

CN-Trp 254 ± 27 1.2 ± 0.1 46 ± 3 1.6 ± 0.1 
7-aza-Trp 162 ± 17 1.6 ± 0.2 28 ± 2 2.0 ± 0.2 

TyrC1 
Tyr 11 ± 1 1.2 ± 0.1 1.8 ± 0.1 1.3 ± 0.1 
Phe 1100 ± 126 1.8 ± 0.3 60 ± 2 2.0 ± 0.1 

Br-Phe 1400 ± 140 2.0 ± 0.3 65 ± 9 1.3 ± 0.2 
CN-Phe 2700 ± 500 1.5 ± 0.2 156 ± 13 1.8 ± 0.2 

MeO-Phe 550 ± 37 1.6 ± 0.1 75 ± 9 1.5 ± 0.2 
TyrC2 

Tyr 11 ± 1 1.2 ± 0.1 2.2 ± 0.1 1.3 ± 0.1 
Phe 26 ± 1 1.6 ± 0.1 2.0 ± 0.2 1.6 ± 0.2 

Br-Phe 4.5 ± 0.3 1.4 ± 0.1 0.36 ± 0.01 1.7 ± 0.1 
CN-Phe 11 ± 1 1.2 ± 0.1 2.5 ± 0.1 1.4 ± 0.1 

MeO-Phe 13 ± 1 1.3 ± 0.1 1.3 ± 0.1 1.5 ± 0.2 
Thr(B+1) 

Thr 15 ± 1 1.3 ± 0.1 1.7 ± 0.1 1.3 ± 0.1 
Tah 12 ± 1 1.3 ± 0.1 23 ± 1 1.6 ± 0.1 
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Figure 4.4. Cation-π binding plots for α4β4 nAChR at position TrpB with ACh (A) and 
nicotine (B). Log[EC50(mut)/EC50(wt)] is plotted vs. quantitative cation-π binding 
energies.3 Data are from Table 4.2. Where not visible, error bars are smaller than the data 
marker.  

We performed extensive studies of the remaining components of the aromatic box 

contributed by the principal face of the ligand binding domain (TyrA, TyrC1, and 

TyrC2).  Historically, nonsense suppression with tyrosine derivatives has proven more 

challenging than tryptophan derivatives when probing for a cation-π interaction.  Direct 

fluorination of tyrosine progressively lowers the pKa of the side chain hydroxyl group, 

such that the pKa for tetrafluorotyrosine is ~5.3 (lowered from ~10 for tyrosine).  This 

decrease in pKa can lead to ionization of the hydroxyl in unnatural tyrosine analogues.  

Thus observed shifts in EC50 could result from ionization of the hydroxyl group rather 

than changes in the cation-π binding ability, complicating analysis.  In other receptors, 

we have circumvented this potential problem by first incorporating phenylalanine, 

followed by successively fluorinated phenylalanine derivatives (Figure 4.3C), thereby 

avoiding the pKa complication.27  
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In the α4β4 receptor, we found that for TyrA deletion of the hydroxyl group (to 

give Phe) severely impacts receptor function for both ACh and nicotine (Table 4.2).  

Incorporation of either MeO-Phe or Br-Phe perturbs receptor function minimally, while 

CN-Phe is strongly perturbing.  This represents a distinction in the behavior of TyrA 

when comparing α4β4 to the α4β2 and muscle-type receptors.  For proper receptor 

function in α4β4, it appears that TyrA requires only steric bulk at this position.  

However, MeO-Phe is highly deleterious in the α4β2 and muscle-type receptors, 

suggesting a hydrogen bond donor is required.  Successive fluorination of phenylalanine 

does not result in progressively reduced channel function; we conclude that neither ACh 

nor nicotine participates in a cation-π interaction with TyrA. 

The remaining two residues, TyrC1 and TyrC2, are both contributed by loop C, a 

very mobile component of the binding site.28  We probed both of these residues for 

possible hydrogen bonding and cation-π interactions, and we find that TyrC1 and TyrC2 

display opposite effects.  TyrC1 is highly sensitive to any mutation that obliterates 

hydrogen bond donating ability, as evidenced by a rightward shift in EC50 of over 50-fold 

for ACh and 30-fold for nicotine in response to the Phe, MeO-Phe, Br-Phe, and CN-Phe 

mutations (Table 4.2).  Given the small CN-Phe/Br-Phe ratio, TyrC1 is not likely to 

interact with either ACh or nicotine through a cation-π interaction.  If this position served 

as a hydrogen bond acceptor, then incorporation of MeO-Phe would have rescued normal 

channel function.  Rather, MeO-Phe incorporation resulted in a substantial loss of 

channel function; therefore, we conclude that TyrC1 is an important hydrogen bond 

donor.   
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In contrast, TyrC2 is quite receptive to mutations of the 4-position hydroxyl 

group, with many types of substituents accepted and no obvious structure-function 

relationship.  The fact that CN-Phe gives essentially wild type behavior for both ACh and 

nicotine would appear to rule out a strong cation-π interaction at this site.  These results 

suggest that TyrC2 participates structurally in shaping the ligand-binding site rather than 

directly in ligand recognition.  Again, the results for both TyrC1 and TyrC2 are similar to 

what is seen for muscle-type and α4β2. 

In α4β4, we also investigated the hydrogen bonding capability of the backbone 

carbonyl of TrpB (Figure 4.1), because this site is known to behave differently in the 

muscle-type and α4β2 nAChRs.2, 17  By replacing the amino acid at the i+1 position with 

the analogous α-hydroxy acid, one converts the carbonyl associated with residue i to an 

ester carbonyl rather than an amide (peptide) carbonyl (Figure 4.5, Figure 4.3D).17  It is 

well established that ester carbonyls are poorer hydrogen bond acceptors than amide 

carbonyls, and so if a hydrogen bond to this carbonyl is essential, the backbone ester 

mutation should influence agonist potency.  With nicotine as the agonist, the backbone 

ester mutation causes a 14-fold increase in EC50 in α4β4 (Table 4.2).  Importantly, the 

potency of ACh, which cannot make a conventional hydrogen bond to the carbonyl, is 

essentially unperturbed by the backbone ester mutation.  This establishes that the 

mutation does not globally alter the binding/gating characteristics of the receptor, 

supporting the notion that we are modulating a hydrogen bonding interaction between the 

receptor and nicotine.  As with TrpB, the behavior of α4β4 is more similar to that of 

α4β2 rather than muscle-type.   
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Figure 4.5. The backbone ester strategy for modulating a hydrogen bond; α-hydroxy acid 
incorporation. 

 

4.3.2 Part 2: Using Chimeric β Subunits to Examine the Contribution of the 
Complementary Binding Site to Subtype-Specific Receptor Pharmacology 

We have now established that α4β22 and α4β4 utilize the same drug-receptor 

interactions to bind agonists (e.g., a cation-π interaction and a hydrogen bond).  However, 

several studies have suggested that the subtle pharmacological differences observed for 

these neuronal nAChRs are determined by the identities of both the α and β subunits.29-31  

Given that both α4β2 and α4β4 receptors contain an identical principal binding site 

contributed by the α4 subunit, the complementary subunit (i.e., β4 vs. β2) is likely the 

discriminating factor amongst these two receptors.  In fact, studies by Parker et al. 

confirmed that β2- containing receptors consistently display higher affinities for agonists 

compared to β4-containing receptors, and identified loop D as a major determinant for 

agonist affinity.31  In part 2 of this chapter, we use chimeric β subunits to identify which 

loop(s) of the complementary binding site influences agonist binding and receptor 

pharmacology. 

General Strategy 

The complementary binding site was partitioned into discrete sections according 

to loops D-F, and several chimeric β subunits were designed, replacing portions of the β2 
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subunit with the corresponding region from the β4 subunit (Figure 4.6).  Chimera D 

converted loop D of the β2 subunit to that of the β4 subunit via a single semiconserved 

threonine to lysine mutation.  Similarly, chimeras E and F replaced either loop E or F to 

the analogous β4 region to examine their respective effects on agonist affinity.  As shown 

in Figure 4.6, there is considerable residue variety among the sequences of loops E and 

F.  In combination, these mutations may account for subtle changes in the ligand binding 

site and ultimately affect pharmacological properties of the receptor.  The four remaining 

chimeras (DE, DF, EF, and DEF) replaced multiple loops of the α4β2 complementary 

binding site with the corresponding β4 loops.  Chimera DEF completely converts the 

α4β2 agonist binding site to that of α4β4. 

 

Figure 4.6. Design of chimeric β subunits. A. Complementary LBD loop sequences for 
rat β2 and β4 subunits. TrpD is highlighted in red. Differences in the sequences are 
highlighted in blue. B. Depiction of chimeras constructed from various combinations β2 
and β4 regions.   
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All chimeric β subunits were coexpressed with the α4 subunit.  In accordance 

with previous studies of α4β2 and α4β4,1, 2 a α4:chimerc β mRNA ratio of 1:3 ratio was 

coinjected into oocytes to ensure a homogeneous population of (α4)2(β2/β4)3 receptors.  

In both α4β2 and α4β4, TrpB is the key residue that interacts with both ACh and nicotine 

via a cation-π interaction, a key component of agonist binding.2  We therefore 

incorporated F3-Trp at TrpB in each chimeric receptor and evaluated the impact on the 

cation-π interaction.  For chimeras that experienced a functional change in response F3-

Trp incorporation when compared to α4β2, additional tryptophan derivatives were 

incorporated at TrpB (Figure 4.3B).   

Functional Scan of Chimeric α4β2/β4 Receptors 

EC50 was used to evaluate receptor function as discussed in Part 1.  Although 

EC50 is composed of both binding and gating parameters, we anticipate that shifts in EC50 

caused by subtle mutations at TrpB result from changes in agonist binding, not receptor 

gating, based on previous single-channel analysis of α4β2.2  Using either ACh or nicotine 

as the agonist, a dose-response relationship was determined for each chimera.  EC50 

values of chimeric receptors were compared to α4β2 values (Table 4.3).  Each chimera 

was functional and EC50 values were slightly shifted from α4β2, with chimera DE 

experiencing the greatest perturbation.  
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Table 4.3. EC50 values (µM) and Hill coefficients for α4β2/β4 chimeras.  All values are 
±S.E.  †Previously reported in Xiu 2009.2  All other values in this table were determined 
in the present work. 

 

For each chimeric receptor, F3-Trp was incorporated at TrpB to evaluate the 

impact of the altered complementary binding site on the native cation-π interaction (a key 

component of the agonist binding mode) (Table 4.3).  The F3-Trp/Trp fold shifts reported 

for α4β2 and α4β4 were compared to the fold shift for each chimera (Figure 4.7).  A 

fold shift for ACh at α4β4 was unavailable due to inadequate incorporation of F3-Trp at 

TrpB.  With ACh as agonist, all chimeras exhibited a F3-Trp/Trp fold shift greater than 

that observed for α4β2.  A similar trend was observed for nicotine, with one exception – 

chimera F.  Here, the F3-Trp/Trp fold shift for chimera F was less than values observed 

for both α4β2 and α4β4.  This result was interesting; suggesting that chimera F disrupted 

ACh nH Nicotine nH Norm. I (+70mV)

0.023 ± 0.001 1.3 ± 0.1 0.01 ± 0.001 1.7 ± 0.2 0.297 ± 0.041

0.42 ± 0.01 1.2 ± 0.1 0.08 ± 0.01 1.2 ± 0.1 0.041 ± 0.005

Chimera Mutation
Wild Type (D) 0.31 ± 0.01 1.4 ± 0.1 0.09 ± 0.01 1.5 ± 0.1 0.022 ± 0.005

Trp 0.39 ± 0.01 1.4 ± 0.1 0.09 ± 0.01 1.4 ± 0.1 -0.006 ± 0.017
F3-Trp 30 ± 1 1.6 ± 0.1 2.1 ± 0.1 1.2 ± 0.1 0.031 ± 0.010

Wild type (E) 0.69 ± 0.02 1.4 ± 0.1 0.23 ± 0.02 1.9 ± 0.2 0.019 ± 0.004
Trp 0.83 ± 0.03 1.3 ± 0.1 0.23 ± 0.02 1.6 ± 0.2 0.006 ± 0.011

F3-Trp 46 ± 3 1.3 ± 0.1 10 ± 1 1.2 ± 0.2 0.015 ± 0.006
Wild type (F) 0.11 ± 0.01 1.1 ± 0.1 0.09 ± 0.01 1.3 ± 0.1 0.018 ± 0.011

Trp 0.10 ± 0.01 1.2 ± 0.1 0.06 ± 0.01 1.3 ± 0.1 0.040 ± 0.003
F3-Trp 6.5 ± 0.3 1.1 ± 0.1 0.54 ± 0.03 1.5 ± 0.1 0.047 ± 0.008

Wild type (DE) 1.8 ± 0.1 1.4 ± 0.1 0.68 ± 0.03 1.6 ± 0.1 0.018 ± 0.005
Trp 2.3 ± 0.1 1.3 ± 0.1 0.49 ± 0.03 1.7 ± 0.1 0.018 ± 0.004

F3-Trp 130 ± 10 1.1 ± 0.1 20 ± 3 1.9 ± 0.4 0.018 ± 0.012
Wild type (DF) 0.21 ± 0.01 1.2 ± 0.1 0.07 ± 0.01 1.1 ± 0.1 0.021 ± 0.004

Trp 0.16 ± 0.01 1.2 ± 0.1 0.04 ± 0.01 1.5 ± 0.1 0.039 ± 0.006
F3-Trp 13 ± 1 1.4 ± 0.1 1.1 ± 0.1 1.4 ± 0.1 0.043 ± 0.003

Wild type (EF) 0.22 ± 0.01 1.4 ± 0.1 0.24 ± 0.01 1.8 ± 0.1 0.041 ± 0.006
Trp 0.23 ± 0.01 1.1 ± 0.1 0.30 ± 0.01 1.8 ± 0.1 0.037 ± 0.006

F3-Trp 46 ± 2 1.4 ± 0.1 15 ± 1 1.9 ± 0.2 0.071 ± 0.009
Wild type (DEF) 0.55 ± 0.03 1.4 ± 0.1 0.39 ± 0.02 1.9 ± 0.1 0.005 ± 0.009

Trp 0.5 ± 0.02 1.1 ± 0.1 0.42 ± 0.02 1.5 ± 0.1 0.035 ± 0.004
F3-Trp 73 ± 3 1.5 ± 0.1 20 ± 1 1.8 ± 0.2 0.019 ± 0.003

DE

DF

EF

DEF

(α4)3(β2)2
†

 (α4)2(β2)3
†

E

D

F
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the cation-π interaction as evidenced by a smaller perturbation in response to 

incorporation of F3-Trp (Figure 4.7).  Although the effect was not large, chimera F was 

the obvious target for additional suppression experiments. 

 

Figure 4.7. Bar graph comparing F3-Trp/Trp fold shifts for chimeric receptors. Fold 
shifts for ACh (green) and nicotine (blue) are indicated in white lettering. *Previously 
reported in Xiu 2009.2 **Previously reported in Puskar 2011.1  All other values in this 
table were determined in the present work. 

Using the Fluorination Approach to Explore the Effect of Loop F on Agonist Binding  

Given that ACh and nicotine responded differently to incorporation of F3-Trp at 

TrpB in chimera F, we used the fluorination approach to further examine the effect of 

chimera F on the cation-π interaction at TrpB (as described in Part 1) (Figure 4.3B).  The 

log(EC50 (mutant)/EC50 (wild type)) was plotted against ab initio calculated cation-π 



92 
 

binding energies (Table 4.4).3  Typically, we interpret the slope of a cation-π binding plot 

to indicate the relative strength of a cation-π interaction, and as such, we compared the 

slope obtained for chimera F to values observed for α4β2 and α4β4.   

Table 4.4. EC50 values (µM) and Hill coefficients for chimera F. All values are ±S.E. F1-
Trp, 5-fluoro-tryptophan; F2-Trp, 5,7-difluoro-tryptophan; F3-Trp, 5,6,7-trifluoro-
tryptophan; F4-Trp, 4,5,6,7-tetrafluoro-tryptophan; Br-Trp, 5-bromo-tryptophan; CN-Trp, 
5-cyano-tryptophan. 

 

 

 

Figure 4.8. Cation-π binding (flourination) plots monitor the relative strength of a cation-
π interaction at TrpB.  Data are from Table 4.4.  Chimera F (blue) is compared to α4β2 
(red) and α4β4 (green) for ACh (A) and nicotine (B).   
 

Compared to both α4β2 and α4β4, chimera F strengthened the cation-π 

interaction between ACh and TrpB of the receptor.  This was indicated by an increase in 

Mutation ACh nH Nic nH Norm I (+ 70mV)

Trp 0.10 ± 0.01 1.2 ± 0.1 0.06 ± 0.01 1.3 ± 0.1 0.040 ± 0.003
F1-Trp 0.51 ± 0.02 1.3 ± 0.1 0.27 ± 0.01 1.4 ± 0.1 0.031 ± 0.011

F2-Trp 1.2 ± 0.1 1.1 ± 0.1 0.27 ± 0.01 1.3 ± 0.1 0.051 ± 0.009

F3-Trp 6.5 ± 0.3 1.1 ± 0.1 0.54 ± 0.03 1.5 ± 0.1 0.047 ± 0.008

F4-Trp 15 ± 1 1.1 ± 0.1 3.6 ± 0.3 1.0 ± 0.1 0.025 ± 0.007

Br-Trp 0.35 ± 0.02 1.4 ± 0.1 0.20 ± 0.01 1.6 ± 0.1 0.035 ± 0.005
CN-Trp 4.7 ± 0.2 1.3 ± 0.1 1.9 ± 0.2 1.4 ± 0.2 0.032 ± 0.005
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sensitivity to progressive fluorination of TrpB illustrated in the cation-π binding plot 

(Figure 4.8A).  Nicotine, however, displayed a more variable effect (Figure 4.8B).  

Some mutations displayed an increase in sensitivity to fluorination of TrpB, while others 

showed a decrease in sensitivity (Table 4.5).  As such, no significant trend was observed. 

 
Table 4.5. Ratios of mutant EC50 to wild type EC50, such that ratios >1 represent loss-of-
function. Chimera F (blue) is compared to α4β2 (red) and α4β4 (green) for ACh and 
nicotine. *Previously reported in Xiu 2009.2 **Previously reported in Puskar 2011.1 All 
other values in this table were determined in the present work. NR = not response. 

 

4.4 DISCUSSION 

With >20 nAChR subtypes, these neurotransmitter-gated ion channels are 

essential for proper brain function and provide a wide array of targets for pharmaceutical 

development.4, 5  Given the considerable sequence similarity, especially in the region of 

the agonist binding site, it becomes quite challenging to discern the mechanisms for 

differential activation of homologous receptors.  Our lab uses unnatural amino acid 

mutagenesis to address such questions.  This method enables subtle and systematic 

modifications that can isolate specific binding interactions and provide qualitative 

guidance on the relative magnitudes of specific interactions.  

Mutation α4β2* Chimera F α4β4** α4β2* Chimera F α4β4**
Trp 1.0 1.0 1.0 1.0 1.0 1.0

F1-Trp 4.3 5.1 2.7 2.9 4.5 2.8

F2-Trp 4.5 12 3.4 3.6 4.5 4.1

F3-Trp 30 65 NR 13 9 36.5

F4-Trp 66 150 NR 47 60 95.0
Br-Trp 2.5 3.5 1.9 2.2 3.3 3.6
CN-Trp 27 47 16.9 10 32 23.0

Ratio of EC50 (mutant)/EC50 (wild type recovery)

ACh Nicotine
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Here, we establish the agonist binding mode for the α4β4 receptor and contrast 

drug-receptor interactions for four members of the nAChR family:  muscle-type, α4β2, 

α7, and α4β4 (Figure 4.9).  Note that the side 

chains within the aromatic box are identical in 

all the receptors considered: three tyrosines 

and two tryptophans.  Thus, differences 

among the receptors must result from subtle 

structural effects. 

 
Figure 4.9. Summary of ligand-receptor 
interactions present for the muscle-type, 
α4β2, α4β4, and α7 nAChRs. Stars indicate 
relevant binding site interfaces. 
 

 

Considering the α4β4 receptor, the binding of ACh is similar to what has been 

previously observed for the muscle-type and α4β2 receptors, but not α7.  The quaternary 

ammonium ion of ACh makes a cation-π interaction to the face of the aromatic residue 

TrpB, providing an unambiguous anchor point for ACh docking.  The slopes of the 

cation-π binding plots are as follows: 0.095, 0.10, and 0.095 for the α4β4, α4β2, and 

muscle-type nAChRs, respectively.2, 3  We interpret such similarity in slopes to indicate 

that the three receptors participate in equally strong cation-π interactions between ACh 

and TrpB.  Further, we find that the roles of the other residues of the aromatic box (TyrA, 

TyrC1, and TyrC2) are similar to those seen in the muscle-type and α4β2 receptors when 
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binding ACh.  Results for α4β4 are strikingly different from the α7 receptor, which uses 

agonist specific cation-π interactions at TyrA and TyrC2. 

An interesting result is observed when nicotine is the agonist; now the neuronal 

α4β4 receptor acts similarly to the α4β2 receptor rather than to the muscle-type receptor.   

In α4β4, nicotine makes the same cation-π interaction to TrpB as ACh, consistent with 

the long-accepted nicotinic pharmacophore, but an interaction that is absent in the 

muscle-type receptor.  Interestingly, the slope of the cation-π binding plot for α4β4 is 

0.11, which could suggest a moderately stronger cation-π interaction at this position than 

observed for α4β2 (slope = 0.089).2  Thus, a cation-π interaction to TrpB serves as a 

discriminator between receptors with higher sensitivity to nicotine (α4β4 and α4β2) and 

those with lower sensitivity (muscle-type).  

Concerning the hydrogen bond to the backbone carbonyl associated with TrpB, 

α4β4 also behaves like α4β2, not muscle-type or α7.  At α4β4, nicotine displays a 14-

fold decrease in receptor function in response to the backbone ester mutation, comparable 

to 19-fold for α4β2.2  This contrasts the 1.6-fold shift for muscle-type or 2.1-fold shift for 

epibatidine at α7.1, 17  Note that when the agonist is ACh – a molecule unable to make a 

conventional hydrogen bond to a carbonyl – essentially wild type receptor behavior is 

observed.  This indicates that the backbone mutation did not alter receptor function 

downstream from binding, i.e., gating.  We conclude that nicotine is able to make a 

hydrogen bond to the carbonyl in question in all three receptors considered, but that the 

interaction is much stronger in α4β4 and α4β2.  This is an additional contributor to the 

enhanced potency of nicotine at the neuronal α4β4 and α4β2 receptors.  Previous studies 
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of neuronal nAChRs have indicated that large differences in agonist affinity are primarily 

determined by the nature of the complementary subunit.31  Our results provide a 

molecular rationale indicating that both α4-containing neuronal receptors make the same 

ligand-receptor interactions, but the magnitudes of the two interactions examined differ 

depending on the receptor, reflecting the nature of the β subunit.  For nicotine, the cation-

π interaction is stronger in the α4β4 receptor, whereas the hydrogen bond interaction is 

stronger in the α4β2 nAChR. 

Chimeric β subunits were used to further examine the role of the complementary 

binding site in defining subtype-specific receptor pharmacology.  Using the cation-π 

interaction at TrpB as a probe for agonist binding, we found that most chimeras 

experienced a modest increase in the F3-Trp/Trp ratio compared to α4β2 and α4β4.  One 

exception, however, was nicotine at chimera F, which showed a decreased F3-Trp/Trp 

ratio compared to α4β2.  Further analysis revealed that chimera F experienced a variable 

effect in response to additional tryptophan derivatives, and no significant trend was 

observed.  Given that the core residues of the principal binding site are conserved in all 

nAChRs and chimera studies of the complementary binding site appear less informative, 

the question remains as to what features of the nAChR are responsible for differences in 

receptor pharmacology.  It is possible that the variable residues flanking the conserved 

core residues may be the key to understanding the pharmacological diversity of nAChRs.  

Further experiments are underway to probe both the non-α subunits and residues within 

the α subunit that are located outside the aromatic box (Chapter 3). 

Here we identify structural features of the nAChR that discriminate among these 

four receptors and are likely to contribute to differential receptor pharmacology.  In the 
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muscle-type receptor, TrpB makes a cation-π interaction to ACh and to epibatidine, but 

not to nicotine.3, 16, 17  In the neuronal α4β4 and α4β2 receptors, the TrpB cation-π 

interaction to ACh remains, but now nicotine also makes a strong cation-π interaction.2  

The α7 receptor eschews the cation-π interaction to TrpB, as agonists have moved their 

cationic center across the aromatic box to TyrA and TyrC2.1  The nAChR family also 

uses a backbone hydrogen bonding interaction as a second discriminating feature for 

drug-receptor interactions.  This interaction is modest in the muscle-type and α7 

receptors,1, 17 but it is much stronger in α4β4 and α4β22 – the higher sensitivity receptors.  

Taken as a whole, the data support the view that the energy of the cation-π and hydrogen 

bond interactions studied here underlies the higher sensitivity of both α4β2 and α4β4.  

4.5  METHODS 

Molecular Biology  

For ligand binding studies of the α4β4 nAChR (Part 1), human α4 and β4 subunit 

genes were in pGEMhe.  For chimera experiments (Part 2), rat α4 and β2 nAChR subunit 

genes were in the pAMV vector, and as such, chimeras replaced loop regions of the rat 

β2 subunit with the corresponding regions of the rat β4 subunit.  In accordance with 

previously reported protocols,2 all α4β2/β4 chimeric receptors contained a L9’A 

mutation in the α4 subunit to increase receptor expression.  Site-directed mutagenesis 

was performed using the QuikChange protocol (Stratagene).  For nonsense suppression 

experiments, the site of interest within the nAChR subunit was mutated to an amber stop 

codon.  Circular DNA for nAChR subunit genes in pAMV were linearized with Not I and 

nAChR subunit genes in pGEMhe were linearized with Nhe I.  After purification 
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(Qiagen), linearized DNA was used as a template for runoff in vitro transcription using 

T7 mMessage mMachine kit (Ambion). 

THG7332 was used as the amber suppressor tRNA.  Nitroveratryloxycarbonyl 

(NVOC) protected cyanomethyl ester form of unnatural amino acids and α-

hydroxythreonine cyanomethyl ester were synthesized, coupled to dinucleotide dCA, and 

enzymatically ligated to 74-nucleotide THG73 tRNACUA as previously reported.20  Crude 

tRNA-amino acid product was used without desalting, and the product was confirmed by 

MALDI-TOF MS on 3-hydroxypicolinic acid (3-HPA) matrix.  Deprotection of the 

NVOC group on the tRNA-amino acid was carried out by photolysis for 5 minutes prior 

to coinjection with mRNA containing the UAG mutation at the site of interest.  

Microinjection  

Stage V-VI Xenopus laevis oocytes were employed.  For experiments in Part 1, 

coinjection of α4:β4 mRNA at a ratio of 1:1 by mass or lower yielded wild type 

(α4)2(β4)3 receptors, while a ratio greater than 30:1 by mass produced pure populations 

of (α4)3(β4)2.  If an unnatural amino acid was to be incorporated into the α4 subunit to 

produce a (α4)2(β4)3 receptor, then a mass ratio of 2:1 for α4:β4 mRNA was injected 

into each oocyte.   

In Part 2, α4β2/β4 chimeric receptors were expressed using a co injection of 

α4:β2/β4 chimera mRNA at a ratio of 1:3 by mass.  This ratio consistently produced 

chimeric receptors with the stoichiometry of (α4)2(β2/β4)3.  For nonsense suppression 

experiments incorporating an unnatural amino acid into the α4 subunit, a mass ratio of 

3:1 for α4:β2/β4 chimera mRNA was injected into each oocyte to produce (α4)2(β2/β4)3 
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receptors.  To ensure (α4)2(β2/β4)3 stoichiometry, all receptor stoichiometries were 

confirmed by voltage jump experiments.2 

For all experiments (Part 1 and 2), the total mRNA injected was 25-65 ng/oocyte 

depending on the relative expression level, and approximately 15 ng of tRNA per cell 

was used for suppression experiments.  Each oocyte was injected with 50 nL of RNA 

solution, and the oocytes were incubated for 24-48 hours at 18 °C in ND96 buffer (96 

mM NaCl, 2 mM KCl, 1 mM MgCl2, 1.8 mM CaCl2, and 5 mM HEPES, pH 7.5) with 

0.005% (w/v) gentamycin and 2% (v/v) horse serum.  In the case of low-expressing 

mutant receptors, a second injection was required 24 hours after the first injection.  As a 

negative control for all suppression experiments, 76-nucleotide tRNA (dCA ligated to 74-

nucleotide tRNA) was coinjected with mRNA in the same manner as fully charged 

tRNA. 

Electrophysiology  

Acetylcholine chloride and (-)-nicotine tartrate were purchased from 

Sigma/Aldrich/RBI (St. Louis, MO) and drug dilutions were prepared from 1M aq stock 

solutions.  Drug dilutions were prepared in calcium-free ND96 buffer.  Ion channel 

function was assayed using the OpusXpress 6000A (Molecular Devices Axon 

Instruments) in two-electrode voltage clamp mode.  Oocytes were clamped at a holding 

potential of -60 mV.  One mL of each drug solution was applied to the clamped oocytes 

for 12 sec and followed by a 2 minute wash with calcium-free ND96 buffer between each 

concentration.  Data were sampled at 125 Hz and filtered at 50 Hz.  Voltage jump 

experiments were sampled at 5000 Hz and filtered at 180 Hz. 
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Data Analysis  

Dose-response data were obtained for at least 6 concentrations of agonists and for 

a minimum of 5 oocytes (from two different batches).  Mutants with Imax of at least 100 

nA of current were defined as functional. EC50 and Hill coefficient (nH) were calculated 

by fitting the averaged, normalized dose-response relation to the Hill equation.  All data 

are reported as means ±S.E. 
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Chapter 5 
 

Optimizing Techniques to Implement Nonsense Suppression in 
Mammalian Cells* 

 
*This work was done in collaboration with Kristina McCleary. 
 

5.1 ABSTRACT 

Our lab previously used microelectroporation to incorporate unnatural amino 

acids into ion channels expressed in mammalian cells.  While this work represented 

major progress, this method still faced several limitations.  Specifically, 

microelectroporation is not robust enough for large-scale cellular imaging techniques and 

requires significant amounts of aminoacylated tRNA.  This chapter describes our efforts 

to further develop transfection techniques for mammalian cells to increase the expression 

of mutant protein such that functional analysis of several thousand cells simultaneously 

can be achieved using the FlexStation3.  Using HEK293T cells, we have optimized two 

protocols to efficiently cotransfect DNA and tRNA.  These protocols are termed double 

electroporation using the Neon transfection system and single transfection using TransIT 

transfection reagent.  Both methods successfully suppress an amber stop codon using an 

in vivo aminoacylated tRNA, but fail to achieve suppression using in vitro aminoacylated 

tRNAs.  Studies are ongoing to evaluate the cause of the failed suppression experiments 

using in vitro aminoacylated tRNAs.  Possible causes include the amino acid falling off 

the tRNA inside the cell and translational incompetence of the tRNA molecule itself.   
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5.2 INTRODUCTION 

 The nonsense suppression methodology, developed by Schultz in 1989,1 has 

emerged as a powerful biophysical tool facilitating site-specific incorporation of virtually 

any unnatural amino acid - as long as it can be synthesized in the chemistry lab - into 

biologically relevant proteins.  This method is particularly attractive because it can 

conceivably generate an infinite number of proteins with novel chemical properties as 

well as probe protein structure/function relationships.   

Our lab has adapted the nonsense suppression methodology to incorporate 

unnatural amino acids into proteins expressed in Xenopus laevis oocytes.2, 3  In doing so, 

we have successfully determined the ligand binding mechanism and channel gating 

properties of numerous ion channels and neuroreceptors.4-9  While heterologous 

expression in Xenopus oocytes has proven an optimal model system to efficiently express 

hundreds of mutant proteins, we are currently interested in expanding this technology to a 

mammalian expression system.  One advantage of implementing a mammalian 

expression system is that one can study mammalian proteins in a biologically relevant 

context (i.e., one can study a human protein in a human cell line).  Additionally, using a 

mammalian system will allow for the study of cell-specific signal transduction pathways, 

and one can imagine designing experiments using unnatural amino acids (e.g., 

photocaged amino acids) to exert temporal control of various signaling cascades.10   

Progress towards Unnatural Amino Acid Mutagenesis in Mammalian Cells 

One of the key challenges in mammalian protein expression is determining the 

appropriate transfection method that will maximize protein expression, limit cell toxicity, 

and consume the least amount of nucleic acid.  Several transfection techniques have been 
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developed to effectively introduce nucleic acids into cells, such as chemical-based 

methods (e.g., calcium phosphate, cationic polymers, cationic liposomes, and cationic 

activated dendrimers), non-chemical methods (e.g., electroporation), particle-based 

methods (e.g., gene gun), and viral transduction.  Each transfection technique is 

accompanied by inherent advantages and disadvantages depending on the cell line of 

interest and nucleic acid material being delivered.   

In recent years, many researchers have contributed major advances towards the 

types of transfection techniques amenable to introducing both DNA and tRNA into 

mammalian cells.  For example, RajBhandary and workers successfully suppressed a 

serine site with tyrosine in chloramphenicol acetyltransferase.11  This experiment utilized 

a cationic lipid (Effectene) to co-transfect in vitro aminoacylated tRNA with DNA into 

COS cells.11  Alternatively, Schultz and workers took a different approach employing 

directed evolution of suppressor tRNA-aminoacyl synthetase pairs to site-specifically 

incorporate unnatural amino acids into several types of mammalian cells.12-14  And in 

2003, our lab used microelectroporation to cotransfect mRNA and tRNA that had been 

aminoacylated in vitro with an unnatural amino acid to express mutant ion channels in 

CHO cells and cultured neurons.15  Whole-cell patch clamp electrophysiology confirmed 

the presence of functional mutant protein.15  While this work represents major progress in 

this field, these methods do not yield robust amounts of mutant protein and require 

functional analysis on a single cell scale.   

We are interested in further developing techniques to increase the expression of 

mutant protein in mammalian cells to a level that allows functional analysis of several 

thousand cells simultaneously.  This chapter describes our efforts to determine the 
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optimal transfection protocol for incorporating unnatural amino acids into ion channels 

expressed in mammalian cells.  

5.3 METHODS 

5.3.1 Molecular Biology 

 Human 5HT3A subunit gene in pcDNA3.1(+) vector was purchased from Missouri 

S & T cDNA Research Center.  Mouse α4, α4GFP, and β2 genes were in pciNEO vector, 

and the mouse β4 gene was in pcDNA3.1(+) vector.  All mouse constructs were obtained 

from the Lester lab.  All eGFP constructs used in these studies are from Monahan et al.15  

Site-directed mutagenesis was performed using the QuikChange protocol 

(Stratagene) to incorporate either an amber stop codon (TAG) or a frameshift stop codon 

(GTTT) at the site of interest within the subunit DNA.  THG7316 was used as the amber 

suppressor tRNA.  Human serine amber suppressor tRNA (HSAS) was used to 

incorporate serine opposite an amber stop codon.17  For suppression of the frameshift 

codon (GTTT), the yeast phenylalanine frameshift suppressor tRNA (YFaFS) was used.18 

Nitroveratryloxycarbonyl (NVOC) protected cyanomethyl esters of natural or 

unnatural amino acids and α-hydroxy acid cyanomethyl esters were prepared as 

previously reported.2  Aminoacyl tRNA was confirmed by MALDI-TOF MS on 3-

hydroxypicolinic acid (3-HPA) matrix.  Prior to transfection, the NVOC protecting group 

on the aminoacyl tRNA was deprotected by photolysis for 5 minutes. 

5.3.2 Mammalian Cell Culture 

Human embryonic kidney cells (HEK293T) cells were purchased from American 

Tissue Culture Collection (ATCC).  The HEK293T cell line is optimized for increased 



108 
 

efficiency of transient transfections due to expression of the simian virus 40 (SV40) large 

tumor antigen in the cell.19, 20  Therefore, transiently transfected plasmids containing the 

SV40 origin of replication produce extremely high levels of expression.  

All cell culture reagents were obtained from Gibco, except for heat-inactivated 

fetal bovine serum purchased from Sigma.  HEK293T cells were grown on sterile 100 

mm culture dishes at 37 °C and 5% CO2 in a humidified atmosphere.  Cells were cultured 

in DMEM:F12 with Glutamax ITM with 10% fetal bovine serum according to literature.21   

HEK293T cell seeding was optimized for both 100 and 35 mm dishes.  Tables 5.1 

and 5.2 indicate the number of cells to seed to achieve the appropriate confluency for day 

of transfection.  According to protocols, 70%-90% confluency is desired to achieve 

efficient transfection (highlighted in red).  35 mm dishes were used for all transfections 

and aliquotted into 3 columns of a 96-well plate, unless otherwise specified.   

Table 5.1. Optimization of HEK293T cell seeding for 100 mm dishes. 

Dilution 
Dilution 

Shorthand 24 hr 36 hr 48 hr 72 hr 

10 million cells/dish 1:1 80% n/a n/a n/a 
7.5 million cells/dish 1:1.5 70% - 100% n/a 
5 million cells/dish 1:2 70% 90% n/a n/a 

3.3 million cells/dish 1:3 25%-30% - 60% 80%-90% 
2.5 million cells/dish 1:4 20%-30% - 50% 80%-90% 
2 million cells/dish 1:5 30% - 70% 90% 
1 million cells/dish 1:10 15% - 30% 70% 

Table 5.2. Optimization of HEK293T cell seeding for 35 mm dishes. 
Dilution 24 hr 48 hr 72 hr 

100,000 cells/dish 5% 10% 40% 
200,000 cells/dish 10% 20% 50% 
300,000 cells/dish 15% 25% 70% 
400,000 cells/dish 25% 30% 70% 
500,000 cells/dish 35% 50% 100% 
600,000 cells/dish 30% 70% n/a 
700,000 cells/dish 30% 80% n/a 
800,000 cells/dish 40% 90% n/a 
900,000 cells/dish 50% 100% n/a 

1,000,000 cells/dish 60% 100% n/a 
1,500,000 cells/dish 70%-100% n/a n/a 
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Cells were transiently transfected using various protocols, such as 

polyethylenimine (PEI), ExpressFect transfection reagent (Denville Scientific), Neon 

Transfection System (Life Technologies), TransIT-mRNA transfection kit (Mirus), 

TransMessenger transfection reagent (Qiagen), and Lipofectamine RNAiMAX 

transfection reagent (Life Technologies).  Following transfection, cells were plated (~3 x 

104 cells/well) onto black 96-well plates with clear bottoms (BD Falcon), incubated for 1-

2 days, and then assayed using the Flexstation 3.  Unless otherwise indicated, 

manufacturers’ protocols were followed for each transfection method.  For PEI 

transfections in 35 mm plates, 1.5 µg of DNA was transfected with 0.3 mL of DMEM 

and 9 µL of PEI (in 3 mL DMEM total).  For confocal experiments, ExpressFect 

transfections were performed in 35 mm plates and 1 µg of DNA was transfected with 4 

µL of ExpressFect for 4 hr. 

5.3.3 The FlexStation 3 

 The FlexStation 3 is a 96-well fluorescent plate reader used to analyze the 

functional properties of neurotransmitter-gated ion channels (e.g., human 5HT3A and 

human α4β4 receptors).  This device is comprised of two modules - a fluidics module 

and a detection module (Figure 5.1).  The fluidics module contains an 8-channel pipette 

that delivers solutions of neurotransmitter from the source plate to the 96-well sample 

plate containing HEK293T cells expressing ion channels.  The detection module contains 

an excitation source and a PMT detector that detects the change in fluorescence in 

response to neurotransmitter activation. 
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Figure 5.1. Schematic of the FlexStation 3 microplate reader. © Molecular Devices. 

 
Following a two day incubation period, transfected cells in a 96-well plate were 

washed twice with flex buffer (115 mM NaCl, 1 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 

0.9 mM glucose, 10 mM HEPES, pH 7.4) at room temperature.21  FLIPR membrane 

potential assay dye (blue kit, Molecular Devices) was diluted 1:10 (unless otherwise 

specified) in flex buffer and loaded onto washed cells (100 µL/well).  Cells were 

incubated at 37 °C for 45-60 min, and then assayed using the FlexStation.  Fluorescence 

was measured every 1.5 sec for 180 sec, and at 20 sec, 100 µL of neurotransmitter (e.g., 

5-HT or ACh) was added to each well.  5-HT and ACh were purchased from Sigma, and 

neurotransmitter solutions were prepared in flex buffer.    

In response to neurotransmitter application, ion channels expressed on the cell 

membrane bind to the neurotransmitter, undergo a conformational change allowing ions 

to enter the cell, and cause a change in membrane potential.  This change in membrane 

potential is proportional to the relative fluorescence measurements detected by the 

FlexStation.  Prior to neurotransmitter application, the cell membrane is polarized and the 
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quenched fluorescent dye is located outside of the cell membrane (Figure 5.2).  In 

response to neurotransmitter stimulation, ion channels expressed on the cell membrane 

open, thereby depolarizing the membrane.  The dye enters the cell and fluoresces.      

 
Figure 5.2. Membrane potential assay. Schematic depicting the change in fluorescence in 
response to cell membrane depolarization. © Molecular Devices. 

 
 SOFTmax Pro (Molecular Devices) was used for data analysis (Figure 5.3A).  

Dose-response data were obtained for at least 3 columns of cells (unless otherwise 

specified).  For each column, reduction analysis was performed and the baseline 

fluorescence at 20 sec was subtracted from the peak fluorescence for each concentration 

of neurotransmitter (Figure 5.3B).  These values were normalized to the maximum 

fluorescence (fluorescence at maximal dose of neurotransmitter).  EC50 and Hill 

coefficient (nH) were calculated by fitting the averaged, normalized dose-response 

relation to the Hill equation. 
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Figure 5.3. SOFTmax PRO data analysis of a 96-well plate. A. Example plate containing 
HEK293T cells expressing human 5HT3A receptors is shown (data collected in house). 
The columns are labeled 1-12 and the rows are labeled A-H. The drug plate is prepared 
by serial dilution with row A containing the highest drug concentration, and row H 
containing the lowest. Each row receives a specific drug concentration. The peak relative 
fluorescence is reported for each well of the plate. B. Reduction analysis of column 7 
(from the plate in A), indicating the peak relative fluorescence per drug concentration.      
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5.3.4 Fluorescent Dye Experiments 

Several concentrations of rhodamine B (Sigma) were prepared in a drug plate by 

1:1 serial dilutions of rhodamine B:water starting with a 50 mM stock of rhodamine B.  

100 µL of dye was added to 100 µL of water in the assay plate for each concentration and 

the area under the curve of the emission spectrum was measured.  This was repeated for 

each PMT setting (low, medium, high).   

Note that eosin Y and fluorescein (purchased from City Chemical Company and 

Sigma, respectively) were also tested with the low PMT setting.  Interestingly, both dyes 

displayed a maximal RFU of 50,000 indicating that the FlexStation is capable of 

detecting very high fluorescence signals.    

5.4  RESULTS AND DISCUSSION 

5.4.1 Determining the Optimal PMT Setting to Detect Small Fluorescence Signals 

It is possible that even under optimal transfection conditions, the fluorescence 

signal of mutant ion channels containing unnatural amino acids will be significantly 

lower than for wild type ion channels.  Thus, we needed to determine the appropriate 

FlexStation PMT setting to maximize the relative fluorescence unit (RFU) signal 

detected.  The RFU dependence on PMT setting was measured for a serial dilution of 

rhodamine B at each of the PMT settings (low, medium, high). 

Using the low PMT setting, the FlexStation was unable to detect fluorescence for 

high rhodamine B concentrations (50 – 0.39 mM), which is likely due to self-quenching 

of the dye.  A maximal signal of 10,000 RFU was detected for 0.19 mM rhodamine B and 

each subsequent serial dilution produced a fluorescence signal decreased by 

approximately half (Table 5.3).  A similar trend was observed for the medium PMT 
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setting.  Here, the maximal signal is 6500 RFU detected for 0.049 mM rhodamine B, 

followed by a decrease in RFU proportional to dye concentration.  Under the high PMT 

setting, 1.52 µM rhodamine B was the highest concentration that produced a fluorescence 

signal (300 RFU).  Similarly, as the dye concentration decreased, so did the RFU. 

Table 5.3. Comparison of RFU signal detected by the FlexStation 3 for each PMT 
settings for a serial dilution of rhodamine B.  

Rhodamine B 
Concentration 

(µM) 

Low PMT 
Setting 

Medium 
PMT Setting 

High PMT 
Setting 

0.763 191.47 144.91 124.55 
0.381 77.67 65.71 47.34 
0.191 44.83 27.18 22.21 
0.095 20.88 16.13 12.56 
0.048 17.04 8.56 6.44 
0.024 10.07 5.52 4.34 
0.012 7.88 4.64 2.89 
0.006 5.87 3.42 2.25 

 
For any given rhodamine B concentration, the low PMT setting produced the 

greatest RFU signal. As shown in Table 5.3, we compared RFU values detected at 

various PMT settings for very low concentrations of dye.  We anticipate that small RFU 

signals (produced by very low dye concentrations) are likely to mimic those of a mutant 

ion channel expressing an unnatural amino acid.  We, therefore, chose to use the low 

PMT setting for FlexStation assays of transfected cells.   

5.4.2 Transfection of Mammalian Cells 

ExpressFect and PEI Transfections of Neuronal Nicotinic Acetylcholine Receptors 

 To establish a positive control, functional ion channels were expressed in 

HEK293T cells and detected using the FlexStation.  Neuronal α4β2 and α4β4 receptors 

were tested as ion channel targets for FlexStation analysis.  Using ExpressFect 
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transfection reagent, HEK293T cells were transfected with α4 DNA tagged with green 

fluorescent protein (α4-GFP) and either β2 or β4 wild type DNA.  Confocal microscopy 

revealed robust membrane expression of α4GFPβ4 receptors, but not α4GFPβ2 receptors 

(Figure 5.4).  The α4GFPβ4 image clearly shows membrane expression by the rough 

edges and the bright dots as ER exit sites, both of which are absent in the α4GFPβ2 

image.  This observation was not surprising since literature supports that α4β2 receptors 

become trapped in the endoplasmic reticulum (ER) due to the presence of an ER retention 

motif and lack of an ER export motif.22   

 
Figure 5.4. Confocal images of HEK293T cells expressing mouse α4β4 or α4β2 
receptors containing GFP in the α4 subunit.  
  

We previously reported that biasing α4:β4 subunit mRNA in Xenopus oocytes 

can control α4β4 receptor stoichiometry shown by electrophysiology (Chapter 4).7  We 

therefore tested the ability of the FlexStation to detect changes in receptor stoichiometry 

using a similar experiment.  HEK293T cells were transfected with several ratios of α4:β4 

subunit DNA and functionally analyzed using the FlexStation (Table 5.4).  Transfections 

were performed using both PEI and ExpressFect protocols.  Consistent results were 

obtained using both protocols. 
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Table 5.4. Human α4β4 receptors expressed in HEK293T cells for given ratios of α4:β4 
DNA. EC50 measurements and RFU values were collected using the FlexStation.  

α4:β4 Ratio EC50 (µM) Hill N 
Average 

Max RFU 
2000:1 1.79 ± 0.23 1.16 ± 0.14 6 40.4 
1000:1 1.46 ± 0.23 1.14 ± 0.17 5 52.9 
500:1 0.75 ± 0.04 1.67 ± 0.13 17 104.4 
200:1 0.70 ± 0.02 1.49 ± 0.05 17 106.2 
100:1 0.72 ± 0.07 1.13 ± 0.10 20 144.6 
50:1 0.70 ± 0.05 1.24 ± 0.09 20 155.4 
30:1 0.65 ± 0.04 1.20 ± 0.07 20 163.8 
10:1 0.66 ± 0.04 1.23 ± 0.07 21 125.0 
3:1 0.75 ± 0.07 1.14 ± 0.11 19 80.1 
1:1 3.14 ± 0.24 0.98 ± 0.06 23 67.0 
1:3 5.51 ± 0.62 2.55 ± 0.48 2 47.3 
1:10 7.45 ± 1.60 3.83 ± 3.23 2 16.1 

 
Multiple stoichiometries of the α4β4 receptor were observed.  The most abundant 

α4β4 population was observed for transfection of α4:β4 DNA ratios ranging from 500:1 

to 3:1, which likely represents (α4)3(β4)2.  These receptors displayed a characteristic 

EC50 of approximately 0.7 µM ACh and an average maximal RFU of 100-150.  

Alternatively, (α4)2(β4)3 receptors were observed for α4:β4 DNA ratios biasing the β4 

subunit, such as 1:1 to 1:10.  This second receptor population was accompanied by a 

right-shifted EC50 and decreased average maximal RFU compared to (α4)3(β4)2.  It 

appears that agonist sensitivity for these two α4β4 stoichiometries differs depending on 

whether the receptors are expressed in HEK293T cells or Xenopus oocytes.  In HEK293T 

cells, (α4)3(β4)2 receptors cells display a lower, more sensitive EC50 than (α4)2(β4)3 

receptors, while the reverse is observed for oocyte expression.7  We also note the 

presence of a third α4β4 population for DNA ratios extremely biasing α4 (e.g. 2000:1 

and 1000:1), which is probably a physiological irrelevant stoichiometry (e.g., (α4)4(β4)1) 

resulting from excessive subunit bias.    
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ExpressFect and PEI Transfections of the 5-HT3A Receptor 

 While the FlexStation can discriminate between receptors that experience variable 

stoichiometries, we anticipated that attempting nonsense suppression in such a receptor 

was unnecessarily complicated.  We moved forward with the homopentameric serotonin-

gated ion channel, the 5HT3A receptor.  HEK293T cells were transfected with human 

5HT3A DNA using either ExpressFect or PEI transfection protocols.  Both transfection 

methods produced similar results.  EC50 (0.3 µM 5-HT) and average maximal RFU were 

consistent with each other and literature values (Figure 5.5).23 

 

Figure 5.5. Dose-reponse curves of human 5HT3A receptors expressed in HEK293T 
cells. Cells were transfected using either ExpressFect transfection reagent (left) or PEI 
(right).  
 
 Expression of conventional mutant 5HT3A receptors in HEK293T cells was also 

examined.  Mutation of W183 in the 5HT3A receptor was a logical starting point since our 

lab previously reported that this residue participates in a cation-π interaction with 

serotonin and mutation of this residue results in large shifts in EC50.
4, 23  Using either 

ExpressFect or PEI, 5HT3A W183A and W183Y mutant receptors were expressed in cells 
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and assayed using the FlexStation.  Results were consistent with literature values (Figure 

5.6).  The slight differences in absolute EC50 value are likely due to species variation; we 

used human 5HT3A constructs while the literature values are based on mouse 5HT3A 

constructs (Table 5.5).  

 

    
Figure 5.6. Dose-response curves of 5HT3A W183A (left) or W183Y (right) mutant 
receptors expressed in HEK293T cells. 
 
Table 5.5. Conventional 5HT3A mutant receptors expressed in HEK293T cells. *Mouse 
5HT3A data is shown for comparison and referenced from Thompson 2008.23  

 Human 5HT3A Mouse 5HT3A* 
 EC50 (µM) Fold Shift Hill EC50 (µM) Fold Shift 

Wild Type 0.28 ± 0.01 - 3.84 ± 0.42 0.24 - 
W183A 180 ± 7 652 2.47 ± 0.21 39.8 166 
W183Y 34.5 ± 1.9 125 2.49 ± 0.25 5.25 22 

  
Since mRNA injection is routinely used in oocyte experiments and mRNA is one 

step further in protein translation compared to DNA, we explored the possibility that 

transfection of mRNA might yield increased receptor expression in HEK293T cells.  In 

vitro transcription 5HT3A mRNA from the pcDNA3.1(+) construct was unsuccessful.  So 

the 5HT3A gene was subcloned from pcDNA3.1(+) into the pGEMhe vector, which 
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facilitates in vitro mRNA transcription.  Oocytes injected with 5HT3A mRNA prepared 

from the pGEMhe vector expressed functional protein.  HEK293T cells were transfected 

with the same 5HT3A mRNA using TransMessenger, a kit developed for efficient mRNA 

transfection.  However, no protein expression was detected.  This is likely to reflect an 

mRNA polyadenylation issue rendering the mRNA less stable in a mammalian cell 

system.  We concluded that transfection of mRNA was inferior to DNA transfection, 

especially considering that the HEK293T cell line was chosen based on its ability to 

replicate plasmid DNA and yield increased expression.   

ExpressFect and PEI Transfections: Attempted Suppression in the 5HT3A Receptor 

Given that transfection of wild type 5HT3A DNA in HEK293T cells proved 

successful, several attempts were made to incorporate tryptophan at position W183 in the 

5HT3A receptor.  Since W183 makes a cation-π interaction to serotonin, lack of W 

incorporation or incorporation of any other endogenous amino acid (e.g., readthrough) 

should be easily detected by the FlexStation.  5HT3A W183TAG DNA and THG73 tRNA 

in vitro aminoacylated with W (THG73-W) were cotransfected into cells using either 

ExpressFect or PEI.  Despite transfecting various amounts of 5HT3A W183TAG DNA 

and/or THG73-W, no functional receptor expression was detected for either transfection 

protocol (Tables 5.6 and 5.7).  Robust expression was detected from wild type 5HT3A 

DNA transfected into the same batch of HEK293T cells establishing cell viability.  

Additional trials using new reagents and different batches of nucleic acid materials still 

resulted in no receptor expression.  As such, ExpressFect and PEI transfection methods 

are not suitable for nonsense suppression in mammalian cells. 
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Table 5.6. Using ExpressFect to perform wild type recovery of tryptophan at position 
W183 in the 5HT3A receptor. *DNA amount is per 3 columns of a 96-well plate.  

W183TAG DNA (µg)* THG73-W (µg) 
ExpressFect,           

Avg Max RFU 
0.5 1.25 No Expression 
1 1.25 No Expression 
2 1.25 No Expression 
5 1.25 No Expression 

 
Table 5.7. Using PEI to perform wild type recovery of tryptophan at position W183 in 
the 5HT3A receptor. *DNA amount is per 3 columns of a 96-well plate.    

W183TAG DNA (µg)* THG73-W (µg) PEI, Avg Max RFU 

Vary DNA, wide range of tRNA 
0.5 0.5 No Expression 
1 0.5 No Expression 
1 2 No Expression 
1 3 No Expression 

tRNA constant (1µg) 
0.25 1 No Expression 
0.5 1 No Expression 
1 1 No Expression 
2 1 No Expression 

Vary DNA and tRNA, but keep total nucleic acid constant (1µg)  
0.25 0.75 No Expression 
0.75 0.25 No Expression 
0.1 0.9 No Expression 
0.9 0.1 No Expression 

 
Neon Transfections of the 5-HT3A Receptor 

Electroporation was explored as an alternative transfection technique amenable to 

nonsense suppression in mammalian cells.  The Neon Transfection System was used to 

electroporate various amounts of 5HT3A DNA.  The average maximal RFU was 

monitored for one- and two-day incubation of transfected cells (Table 5.8).  Regardless 

of incubation time, 2 µg of wild type 5HT3A DNA per 3 columns of a 96-well plate 

yielded the highest expression.  Cells incubated for two days gave higher expression than 

for one-day incubations.  Several electroporation conditions (e.g., voltage, pulse width, 

and number of pulses) were tested to determine the most effective transfection protocol 
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(Table 5.9).  Conditions 6, 7, and 8 produced the highest average maximal RFU.  

Condition 7 (highlighted in red) was selected as the optimal condition for further 

electroporation transfections.    

Table 5.8. Optimizating wild type 5HT3A DNA transfection using the Neon Transfection 
System.  *DNA amount is per 3 columns of a 96-well plate. 

DNA (µg)* 
1 Day Incubation, 

Avg Max RFU 
2 Day Incubation, 

Avg Max RFU 
1 145.0 232.0 
2 300.1 359.7 
4 137.4 309.3 
8 185.1 304.5 

 
Table 5.9. Optimization of Neon electroporation protocol. Maximum RFU signals are 
reported for each of the 24 preprogrammed Neon transfection conditions. 2 µg of DNA 
was transfected per 3 columns of a 96-well plate. 

Condition Voltage Width 
# 

Pulses 
Max 
RFU Condition Voltage Width 

# 
Pulses 

Max 
RFU 

1 0 20 1 n/a 13 1100 20 2 242 
2 1400 20 1 294 14 1200 20 2 311 
3 1500 20 1 299 15 1300 20 2 280 
4 1600 20 1 174 16 1400 20 2 115 
5 1700 20 1 130 17 850 30 2 265 
6 1100 30 1 342 18 950 30 2 254 
7 1200 30 1 341 19 1050 30 2 301 
8 1300 30 1 322 20 1150 30 2 238 
9 1400 30 1 216 21 1300 10 3 265 
10 1000 40 1 321 22 1400 10 3 273 
11 1100 40 1 298 23 1500 10 3 270 
12 1200 40 1 256 24 1600 10 3 87 

 

Neon Transfections: Attempted Suppression in the 5HT3A Receptor 

Using the Neon Transfection System, cells were challenged to incorporate 

tryptophan at position W183 in the 5HT3A receptor.  Master mixes containing various 

amounts of 5HT3A W183TAG DNA and THG73-W were prepared, one of which 

contained THG73-76mer to test for readthrough.  HEK293T cells were electroporated 

with each master mix and the average maximal RFU was monitored (Table 5.10).  No 
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functional receptor expression was detected for any of the DNA/tRNA master mixes 

tested.   

Table 5.10. Using Neon electroporation for wild type recovery incorporating tryptophan 
at position W183 in the 5HT3A receptor. *DNA and tRNA amounts are per 3 columns of 
a 96-well plate. 

W183TAG DNA (µg)* THG73-W tRNA (µg)* Avg Max RFU 

Constant DNA 
2 0 No Expression 
2 2 (THG73-76mer) No Expression 
2 0.1 No Expression 
2 0.5 No Expression 
2 1 No Expression 
2 2 No Expression 
2 4 No Expression 

Constant tRNA 
1 2 No Expression 
2 2 No Expression 
4 2 No Expression 
8 2 No Expression 
16 2 No Expression 
32 2 No Expression 

 
Here, we show that transfection of DNA containing an amber stop codon and in 

vitro aminoacylated THG73 tRNA does not produce receptor expression for any 

transfection method employed.  These findings differ from previous work by Monahan et 

al. demonstrating that THG73 does in fact incorporate unnatural amino acids into ion 

channels expressed in mammalian cells.15  Monahan’s studies used whole-cell patch 

clamp electrophysiology to functionally analyze a single cell,15 but the FlexStation 

detects fluorescence signals from thousands of cells in a single well of a 96-well plate.  

As such, the signal obtained using the FlexStation can be easily diluted by non-

expressing cells under conditions of low expression.  So it follows that if THG73 is 

poorly recognized by the mammalian translational machinery resulting in limited protein 
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expression, this signal might be detected using single-cell detection techniques, but not 

by the FlexStation.   

 Given the negative results with THG73, we explored using an alternative 

suppressor tRNA, the yeast phenylalanine frameshift suppressor tRNA (YFaFS).  Cells 

were electroporated with 2 µg of 5HT3A W183GGGT DNA and varying amounts of 

YFaFS-W tRNA or YFaFS-76mer (Table 5.11).  Cells appeared healthy by visual 

inspection, but no expression was detected.  Control RFU levels were observed from 

electroporation of wild type 5HT3A DNA.  Several trials produced similar results 

indicating that YFaFS tRNA provides no additional benefit over THG73 tRNA.  

Table 5.11. Using Neon electroporation for wild type recovery of a frameshift codon at 
position W183 in the 5HT3A receptor. *DNA and tRNA amounts are per 3 columns of a 
96-well plate. 

Trial Date W183GGGT DNA (µg)* YFaFS-W tRNA (µg)* Avg Max RFU 

Trial 1 
2 (WT) 0 572.6 

2 8 (YFaFS-76mer) No Expression 
2 8 No Expression 

Trial 2 

2 (WT) 0 301.2 
2 8 (YFaFS-76mer) No Expression 
2 4  No Expression 
2 8 No Expression 

Trial 3 

2 (WT) 0 443.7 
2 8 (YFaFS-76mer) No Expression 
2 4 No Expression 
2 8 No Expression 

   
Using Human Serine Amber Suppressor tRNA to Suppress an Amber Codon in eGFP 

The endogenous aminoacyl tRNA synthetase in the cells charges the human 

serine amber suppressor tRNA (HSAS) with serine, which can then be incorporated 

opposite an amber stop codon.17  This human-derived tRNA is recognized by the 

HEK293T cells, and so we explored using HSAS to optimize co-transfection of DNA and 

tRNA materials. 
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We targeted residue A37 in the enhanced green fluorescent protein (eGFP) since 

this site is located well before the chromophore.  If suppression does not occur, then even 

expression of a truncated protein will not give a fluorescent signal.  Both electroporation 

and ExpressFect were used to transfect cells with eGFP A37TAG DNA and HSAS, and 

suppression efficiency was monitored by confocal microscopy.  Wild type recovery of 

eGFP A37TAG using THG73-Ala was attempted, but results were indistinguishable from 

76mer control experiments.  Cells transfected with eGPF A37TAG and HSAS revealed 

improved eGFP expression relative to wild type recovery, however approximate 

expression was <1% of wild type expression (Figure 5.7).  Electroporation gave slightly 

lower expression than ExpressFect.  These experiments provided the initial confirmation 

that successful transfection of tRNA had occurred, but that protein expression was 

significantly hindered when using a stoichiometric tRNA (e.g., THG73 tRNA).   
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Figure 5.7. Confocal images of HEK293T cells expressing eGFP. A. Wild type eGFP 
expression (ExpressFect). B. Neon electroporation; suppression of eGFP A37TAG DNA 
by HSAS. C. ExpressFect; suppression of eGFP A37TAG DNA by HSAS. Images 
obtained using 2.5% laser power contain 90% saturation.  Images obtained using 41% 
laser power contain 96% saturation. 
 
Using HSAS to Suppress an Amber Codon in the 5HT3A Receptor 

Returning to the 5HT3A receptor, we attempted to perturb receptor function by 

using HSAS to incorporate serine at position W183, the critical cation-π interaction 

residue.  Both electroporation and PEI were used to transfect a constant amount of 5HT3A 

W183TAG DNA with varying amounts of HSAS (Table 5.12).  Electroporation of 2 and 

4 µg of HSAS produced functional receptors with an EC50 of 370 µM 5-HT (1200-fold 

shifted from wild type).  It is likely that challenging the translational machinery to 

suppress a functionally important site with a non-native amino acid in all five subunits of 

the receptor can account for the observed low expression. However, this provided 



126 
 

additional evidence that tRNA was successfully delivered to the cells and protein 

translation occurred.  No expression was detected from PEI transfection of HSAS.   

Table 5.12. Comparison of Neon electroporation and PEI transfection using HSAS to 
incorporate serine at position W183 in the 5HT3A receptor. *DNA and HSAS amounts 
are per 3 columns of a 96-well plate. 

DNA (µg)* HSAS (µg)* 
Neon,  

Avg Max RFU 
PEI,  

Avg Max RFU 
2 (WT) 0 180.6 73.9 

2 (W183TAG) 0.5 No Expression No Expression 
2 (W183TAG) 2 14.9 No Expression 
2 (W183TAG) 4 33.5 No Expression 

 

Suppression with HSAS was further optimized by attempting wild type recovery 

of residue S61 in the 5HT3A receptor.  Electroporation, PEI, and ExpressFect were used 

to transfect a constant amount of 5HT3A S61TAG DNA and varying amounts of HSAS 

(Table 5.13).  Transfection efficiency was compared by monitoring the average maximal 

RFU.  HSAS suppression was most efficient with electroporation, since this method 

required the least amount of HSAS.  In fact, protein expression decreased with increasing 

amounts of HSAS.  Variable expression was detected from ExpressFect and required 

more HSAS than electroporation.  Cells appeared viable after PEI transfection, but no 

expression was detected.   

Table 5.13. Comparison of Neon electroporation, PEI, and ExpressFect: Wild type 
recovery using HSAS to incorporate serine at position S61 in the 5HT3A receptor. *DNA 
and HSAS amounts are per 3 columns of a 96-well plate. 

DNA (µg)* 
HSAS 
(µg)* 

Neon, 
Avg Max RFU 

PEI,  
Avg Max RFU 

ExpressFect,  
Avg Max RFU 

ExpressFect,  
Avg Max RFU 

  11/15/10 11/15/10 11/15/10 12/1/10 
2 (WT) 0 297.1 195.7 320.5 309.5 

2 (S61TAG) 2 93.8 No Expression No Expression No Expression 
2 (S61TAG) 4 37.7 No Expression 80.9 No Expression 
2 (S61TAG) 8 No Expression No Expression 78.3 No Expression 
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Given that suppression yielded much lower expression compared to wild type, 

preparation of the membrane potential dye was optimized to a 1:2 dilution in flex buffer 

to increase signal detection.  The average maximal RFU was measured from cells 

electroporated with 2 µg 5HT3A S61TAG DNA and varying amounts of HSAS and 

incubated with the newly prepared dye (Table 5.14).  For each HSAS concentration 

transfected, increased signal was detected using the 1:2 dye dilution compared to the 1:10 

dilution (Table 5.13).  The 1:2 dye dilution was used in all further FlexStation assays.   

Table 5.14. Monitoring RFU using the 1:2 dye dilution: Wild type recovery using HSAS 
to incorporate serine at site S61 in the 5HT3A receptor.  
*Note that µg of DNA and tRNA is per 3 columns of a 96-well plate. 

DNA (µg) HSAS (µg) 
Neon, 

Avg Max RFU 

2 (WT) 0 371.5 
2 (S61TAG) 2 112.4 
2 (S61TAG) 4 121.4 
2 (S61TAG) 8 91.9 

 

Neon Electroporation and ExpressFect: Double Transfections 

 We next explored the possibility that transfecting a second dose of DNA and/or 

tRNA to the cells might enhance protein expression.  Cells were electroporated with 2 µg 

of 5HT3A S61TAG DNA and 4 µg HSAS using condition 7 (1200 V, 30 ms, 1 pulse).  

Following 24 hr incubation, 24 preprogrammed electroporation conditions were sampled 

to electroporate the cells with a second dose of 4 µg HSAS (Table 5.15).  Condition 22 

(1400 V, 10 ms, 3 pulses) resulted in the greatest maximal RFU (390).  ExpressFect was 

also used to doubly transfect cells with DNA and/or HSAS, but these experiments gave 

significantly lower expression in comparison to electroporation.   
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Table 5.15. Optimization of Neon electroporation for double transfection of HSAS to 
incorporate serine at position S61 in the 5HT3A receptor. 2 µg of DNA and 4 µg of HSAS 
was transfected per 3 columns of a 96-well plate. 

Condition Max RFU Condition Max RFU 
1 (single) 17.4 13 No Expression 

2 161.1 14 118.8 
3 158.1 15 209.8 
4 170.5 16 278.4 
5 193.4 17 54.0 
6 172.6 18 135.9 
7 219.2 19 223.5 
8 264.5 20 279.7 
9 315.7 21 260.1 

10 216.8 22 390.0 
11 253.7 23 273.1 
12 277.1 24 183.1 

 

Using the electroporation protocol for double transfection, cells were challenged 

to incorporate tryptophan at position W183 using in vitro aminoacylated THG73-W.  

Cells were electroporated first with 2 µg of 5HT3A W183TAG DNA and 8 µg of THG73-

W, followed by a second electroporation of the same concentration of DNA and/or tRNA 

24 hr later (Table 5.16).  No readthrough was detected and despite the promising results 

with HSAS, no expression was observed for electroporation of THG73-W. 

Table 5.16. Double Neon Transfection: Wild type recovery incorporating tryptophan at 
position W183 in the 5HT3A receptor. *DNA and tRNA amounts are per 3 columns of a 
96-well plate.  

DNA (µg)* tRNA (µg)* 
Nucleic Acid 

Double Transfected 
Avg Max RFU 

(12/21/10) 

2 (WT) 0 DNA only Instrument disrupted, 
data lost 

2 (W183TAG) 8 (THG73-76mer) tRNA only No Expression 
2 (W183TAG) 8 (THG73-W) tRNA only No Expression 
2 (W183TAG) 8 (THG73-W) tRNA + DNA No Expression 

 
RNA Tranfections of the 5HT3A Receptor 

 Considering that efficient delivery of aminoacylated tRNA into the cells is half 

the battle, we tested several reagents designed for efficient transfection of RNA material.  
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TransIT-mRNA, TransMessenger, and Lipofectamine RNAiMAX transfection reagents 

were used in these studies and are intended for transfection of mRNA or siRNA.  Here 

we describe our efforts to adapt these protocols to cotransfect DNA and tRNA material 

into HEK293T cells.    

According to the TransIT-mRNA transfection protocol, transfection of wild type 

5HT3A DNA was performed using various ratios of Boost:TransIT reagent (Table 5.17).  

Significant receptor expression, as measured by average maximal RFU, was observed for 

2 µg of DNA.  Receptor expression was further increased under conditions using a 

minimum of 7.5 µL of TransIT and a 1:2 ratio of Boost:TransIT.   

Table 5.17. Optimization of TransIT Transfection. *DNA amount is per 3 columns of a 
96-well plate. 

WT DNA (µg)* Boost Reagent (µL) TransIT (µL) Avg Max RFU 
0.02 5  7.5 No Expression 
0.1 5 7.5 107.0 
0.5  5 7.5 308.9 
2 5 7.5 467.6 
2 1.25 2.5 408.1 
2 3.75 7.5 497.8 
2 7.5 15 541.8 
2 15 30 563.5 

 
 After determining the optimal Boost:TransIT ratio, the TransIT protocol was used 

to suppress an amber stop codon using HSAS.  Cells were transfected with various 

amounts of 5HT3A S61TAG DNA and HSAS (Table 5.18).  Cells experienced decreased 

viability and reduced protein expression when transfected using large amounts of 

TransIT transfection reagent (i.e., 15 and 30 µL TransIT).  Lowering the amount of 

TransIT to 7.5 µL improved expression, while 2.5 µL of TransIT gave very low 

expression.  We concluded that 2 µg of S61TAG DNA, a minimum of 4 µg of HSAS, 

and 7.5 µL of TransIT were necessary to achieve efficient expression.   
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Table 5.18. Optimization of TransIT Transfection: Wild type recovery using HSAS to 
incorporate serine at position S61 in the 5HT3A receptor. *DNA and HSAS amounts are 
per 3 columns of a 96-well plate. 

5HT3A DNA (µg)* HSAS (µg) Boost Reagent (µL) TransIT (µL) Avg Max RFU 
 DNA constant, vary HSAS and Boost:TransIT 

2 (WT) 0 7.5 15 471.1 
2 (S61TAG) 4 7.5 15 113.1 
2 (S61TAG) 8 7.5 15 94.6 
2 (S61TAG) 8 15 30 Cells Died 

Vary DNA, constant HSAS, vary Boost:TransIT 
0.5 (S61TAG) 4 3.75 7.5 95.2 
1 (S61TAG) 4 3.75 7.5 91.1 

0.5 (S61TAG) 4 7.5 15 44.8 
1 (S61TAG) 4 7.5 15 73.2 

Constant DNA, vary HSAS, using 2.5 µL TransIT 
2 (WT) 0 1.25 2.5 167.7 

2 (S61TAG) 2 1.25 2.5 No Expression 
2 (S61TAG) 4 1.25 2.5 37.4 
2 (S61TAG) 8 1.25 2.5 33.5 

Constant DNA, vary HSAS, using 7.5 µL TransIT 
2 (WT) 0 3.75 7.5 489.0 

2 (S61TAG) 2 3.75 7.5 162.9 
2 (S61TAG) 4 3.75 7.5 353.5 
2 (S61TAG) 8 3.75 7.5 340.0 

 
Using the optimized TransIT condition, cells were subjected to double 

transfections, in which the second transfection contained either DNA and HSAS or only 

HSAS (Table 5.19).  Double transfection of both DNA and HSAS produced significantly 

more cell death and lower expression than observed for single transfection.  However, 

when only HSAS was delivered during the second transfection, results were similar to 

those observed for single transfection, but did not provide any additional benefit over the 

single transfection.  These same conditions were used to doubly transfect cells with 

5HT3A W183TAG DNA and THG73-W tRNA.  Unfortunately, no expression was 

detected for double transfection of either DNA and tRNA or tRNA only (Table 5.20), an 

observation common to all experiments challenging the cells to express protein using this 

in vitro aminoacylated and stoichiometric tRNA.  
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Table 5.19. Double TransIT Transfection: Wild type recovery using HSAS to 
incorporate serine at position S61 in the 5HT3A receptor. The first transfection contains 
both DNA and HSAS, but the second transfection contains either DNA and HSAS or 
HSAS only. *DNA and HSAS amounts are per 3 columns of a 96-well plate. 

DNA (µg)* HSAS (µg)* 
Boost 

Reagent 
(µL) 

TransIT 
(µL) 

2X 
(DNA+HSAS) 
Avg Max RFU 

2X  
(HSAS only) 

Avg Max RFU 
2 (WT) 0 3.75 7.5 621.6 626.0 

2 (S61TAG) 2 3.75 7.5 46.2 177.7 
2 (S61TAG) 4 3.75 7.5 51.9 321.4 
2 (S61TAG) 8 3.75 7.5 85.0 390.1 
 

 
Table 5.20. Double TransIT Transfection: Wild type recovery of tryptophan at position 
W183 in the 5HT3A receptor.  The first transfection contains both DNA and tRNA, but 
the second transfection contains either DNA and tRNA or tRNA only. *DNA and tRNA 
amounts are per 3 columns of a 96-well plate. 
W183TAG 

DNA  
(µg)* 

tRNA (µg)* 
Boost 

Reagent 
(µL) 

TransIT 
(µL) 

2X 
(DNA+tRNA) 
Avg Max RFU 

2X  
(tRNA only) 

Avg Max RFU 
2  8 (THG73-76mer) 3.75 7.5 No Expression No Expression 
2  2 (THG73-W) 3.75 7.5 No Expression No Expression 
2  4 (THG73-W) 3.75 7.5 No Expression No Expression 
2  8 (THG73-W) 3.75 7.5 No Expression No Expression 

 

Additional RNA transfection methods were tested, but proved inferior to the 

TransIT method.  Suppression experiments using TransMessenger consumed more 

transfection reagent and produced significantly decreased RFU signals compared to 

TransIT (i.e., 70 vs. 350 RFU, respectively).  Alternatively, the Lipofectamine 

RNAiMAX transfection protocol yielded mediocre expression for transfection of wild 

type DNA and no expression for suppression experiments.  Experimental details for 

TransMessenger and RNAiMAX transfections are located in Tables 5.21-5.24.   
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Table 5.21. Optimization of TransMessenger transfection conditions. *DNA amount is 
per 3 columns of a 96-well plate.   

WT DNA (µg)* TransMessenger (µL) Avg Max RFU 
0.1 8 207.6 
0.5 8 366.0 
2 8 346.8 
2 4 No Expression 
2 8 376.0 
2 16 287.5 
4 8 310.0 
4 16 361.7 

 

 
Table 5.22. Optimization of TransMessenger transfection conditions: Wild type recovery 
incorporating serine at position S61 in the 5HT3A receptor.  *DNA and HSAS amounts 
are per 3 columns of a 96-well plate. 

DNA (µg)* HSAS (µg)* TransMessenger (µL) Avg Max RFU 

Constant DNA, vary HSAS, constant TransMessenger 
2 (WT) 0 8 274.7 

2 (S61TAG) 2 8 No Expression 
2 (S61TAG) 4 8 No Expression 
2 (S61TAG) 8 8 No Expression 

Vary DNA, constant HSAS, vary TransMessenger 
0.5 (S61TAG) 4 8 42.5 
1 (S61TAG) 4 8 47.2 

0.5 (S61TAG) 4 16 74.1 
1 (S61TAG) 4 16 120.4 

Constant DNA, vary HSAS, using 16 µL TransMessenger 
2 (WT) 0 16 208.4 

2 (S61TAG) 2 16 63.8 
2 (S61TAG) 4 16 No Expression 
2 (S61TAG) 8 16 No Expression 

Constant DNA, vary HSAS, using 32 µL TransMessenger 
2 (WT) 0 32 181.8 

2 (S61TAG) 2 32 69.9 
2 (S61TAG) 4 32 52.9 
2 (S61TAG) 8 32 No Expression 
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Table 5.23. Optimization of Lipofectamine RNAiMAX transfection conditions. *DNA 
amount is per 3 columns of a 96-well plate. 

WT DNA (µg)* RNAiMAX (µL) Avg Max RFU 

Vary DNA, constant RNAiMAX 
0.02 7.5 82.3 
0.1 7.5 141.5 
0.5 7.5 209.1 
2 7.5 270.6 

Constant DNA, vary RNAiMAX 
2 2.5 162.0 
2 7.5 146.1 
2 15 163.3 
2 30 42.9 

 

 
Table 5.24. Optimization of Lipofectamine RNAiMAX transfection conditions: Wild 
type recovery incorporating serine at position S61 in the 5HT3A receptor. *DNA and 
HSAS amounts are per 3 columns of a 96-well plate. 

DNA (µg)* HSAS (µg)* RNAiMAX (µL) Avg Max RFU 
2 (WT) 0 15 113.8 

2 (S61TAG) 0 15 No Expression 
2 (S61TAG) 4 15 No Expression 
2 (S61TAG) 8 15 No Expression 

 

5.4.3 Possible Challenges for Nonsense Suppression in Mammalian Cells 

A puzzling result that recurred throughout these studies is that HSAS tRNA easily 

suppressed the amber stop codon in 5HT3A receptors expressed in HEK293T cells, but in 

vitro aminoacylated tRNAs (e.g., THG73 and YFaFS) did not.  We then questioned the 

integrity of the tRNA in response to transfection conditions.  Specifically, does the amino 

acid fall off of the tRNA before entering the cell or does aminoacylated tRNA enter the 

cell, but is translationally incompetent?  We addressed the first question in two ways.  

Analyzing the Effect of Transfection Conditions on tRNA 

The integrity of in vitro aminoacylated tRNA was analyzed in response to the two 

most efficient transfection protocols previously identified: double Neon electroporation 

and single TransIT transfection.  To test Neon electroporation, THG73-W was 
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deprotected for 10 min, electroporated using either condition 7 or 22, and analyzed using 

MALDI-TOF MS (Figure 5.8).  To examine the effect of the TransIT protocol, THG73-

W was deprotected for 10 min, incubated in the TransIT reagents for 24 hr, and analyzed 

using MALDI-TOF MS (Figure 5.9).  As a control, MALDI-TOF MS analysis of 

THG73-W confirmed the removal of NVOC by deprotection through a mass change of 

237.48 (NVOC=239.04) (Figure 5.10).  Comparison of before and after deprotection for 

each transfection method did not differ significantly from the control suggesting that 

neither method should remove the amino acid from the tRNA. 
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Figure 5.8. THG73-W in response to Neon transfection. A. MALDI of THG73-W-
NVOC before deprotection by photolysis. B. MALDI of THG73-W after photolysis and 
Neon transfection using condition 7. C. MALDI of THG73-W after photolysis and Neon 
transfection using condition 22. 
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Figure 5.9. THG73-W after TransIT transfection. A. MALDI of THG73-W-NVOC 
before deprotection by photolysis. B. MALDI of THG73-W after photolysis and TransIT 
transfection. 
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Figure 5.10. Deprotection of THG73-W-NVOC. A. MALDI of THG73-W-NVOC 
before photolysis. B. MALDI of THG73-W tRNA after photolysis for 5 min. 
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Transfection of an α-hydroxy Acid 

An alternative approach to monitor the integrity of the tRNA is to transfect an α-

hydroxy acid, as these are relatively more stable than amino acids and therefore not 

protected.  Cells were challenged to incorporate tryptophan-α-hydroxy (Wah) at position 

W183 in the 5HT3A receptor.  Neon electroporation (condition 7) and TransIT 

transfection protocols were used to transfect 2 µg of 5HT3A W183TAG DNA and various 

amounts of THG73-Wah tRNA (Table 5.25).  No expression was observed for either 

transfection protocol. 

Table 5.25. Comparison of Neon electroporation and TransIT transfection to incorporate 
tryptophan α-hydroxy at position W183 in the 5HT3A receptor. *DNA and HSAS 
amounts are per 3 columns of a 96-well plate. 

DNA (µg)* tRNA (µg)* 
Neon,  

Avg Max RFU 
TransIT,  

Avg Max RFU 
2 (WT) 0 645.7 407.5 

2 (W183TAG) 4 No Expression No Expression 
2 (W183TAG) 8 No Expression No Expression 
2 (W183TAG) 12 No Expression No Expression 

 

5.5 CONCLUSIONS AND FUTURE DIRECTIONS 

 This chapter describes the development of methods to enhance nonsense 

suppression in mammalian cells with the ultimate goal of achieving robust protein 

expression via transfection of DNA and in vitro aminoacylated tRNA.  We optimized two 

protocols to effectively deliver DNA and tRNA to HEK293T cells, such as double 

electroporation using the Neon transfection system and single transfection using TransIT 

transfection reagent.  Both of these methods successfully suppressed a serine site in the 

5HT3A receptor using HSAS tRNA, which is aminoacylated with serine in vivo.  

However, both transfection methods failed to produce functional protein when applied to 
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suppression of an amber stop codon utilizing in vitro aminoacylated tRNAs, such as 

THG73 and YFaFS.   

Successful suppression experiments with HSAS tRNA indicated that tRNA is in 

fact delivered to the cells.  Possible issues limiting the functionality of in vitro 

aminoacylated tRNAs could be their stability during the transfection processes and 

subsequent recognition by the mammalian translational machinery.  MALDI-TOF MS 

analysis of deprotected THG73-W exposed to either transfection method suggested that 

only the NVOC protecting group was removed and the aminoacyl tRNA remained intact 

during transfection.  These data support the idea that tRNA is delivered to the cell, but 

that either the amino acid falls off the tRNA inside the cell or the tRNA is translationally 

incompetent.   

Translational incompetence may be attributed to the tRNA identity problem.  This 

concept refers to the specific interactions between the tRNA molecule and its synthetase 

required for proper activity.24  The success of nonsense suppression experiments rely on 

the principle that the mammalian synthetases will not recognize and aminoacylate the 

tRNA with an endogenous amino acid.  One can imagine future experiments designed to 

bypass the tRNA identity problem entirely.  This could be achieved by engineering a 

novel synthetase that retains tRNA recognition elements specific to the in vitro 

aminoacylated tRNA of interest, but does not recharge this tRNA with any endogenous 

amino acid.  Essentially, this would create a “dummy” synthetase capable of binding the 

tRNA and “handing it off” to the ribosome.  Complementary studies might include 

engineering the tRNA component to bind the synthetase.  Mutagenesis would target the 
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identity element regions of tRNA, such as the distal ends of the tRNA and the anticodon 

loop.   

Additionally, the possibility that the tRNA is not recognized by essential 

associated proteins (e.g., EF-Tu) could contribute to hindered translational activity.  As 

such, it may be useful to overexpress the mammalian elongation factor, EF-1α, which is 

responsible for delivering aminoacyl tRNA to the ribosome.  However, we note that 

several reports have confirmed the high conservation and abundant expression of EF-

1α in mammaliam cells.25 
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