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ABSTRACT 

This dissertation primarily describes structure-function studies of the nicotinic 

acetylcholine receptors (nAChRs).  These studies use a combination of unnatural amino 

acid mutagenesis and electrophysiology to determine the specific molecular interactions 

required for neurotransmitter binding to nAChRs. 

 Chapter 2 examines the mode of agonist activation for the α4β2 nAChR, the 

receptor responsible for nicotine addiction.  This study investigates the molecular 

interactions that differentiate the α4β2 receptor from other receptor subtypes and endow 

it with the ability to mediate nicotine addiction.  We report that the high affinity for 

nicotine at the α4β2 receptor is a result of a strong cation-π interaction and a 

strengthened backbone hydrogen bond to a conserved tryptophan (TrpB) of this receptor.  

We also establish that a point mutation just four residues away from TrpB appears to 

influence the shape of the agonist binding site, such that it can differentiate the agonist 

binding mode of the α4β2 and muscle-type receptors. 

  Chapter 3 extends studies of the point mutation near TrpB, termed the “loop B 

glycine.”  We examine the muscle-type, α4β2, and α7 subtypes and show that the 

identity of this residue strongly correlates with agonist potency.  Low-potency receptor 

subtypes have a glycine at the loop B site, while high-potency receptors have a lysine at 

this site.  We establish that mutation of this residue can to convert a low-potency receptor 

to a high-potency receptor and vice versa. 

Chapter 4 investigates the agonist binding mechanism of the α4β4 receptor.  We 

show both ACh and nicotine make a strong cation-π interaction to TrpB, and nicotine 

makes a strong hydrogen bond to the backbone carbonyl of TrpB.  Additionally, chimeric 
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β subunits are used to examine the influence of the complementary binding component 

on receptor pharmacology for the α4β2 and α4β4 receptors.   

Last, chapter 5 is a methodology-based project focused on optimizing the 

incorporation of unnatural amino acids into mammalian cells.  Using HEK293T cells, we 

successfully suppressed an amber stop codon using HSAS, an in vivo aminoacylated 

tRNA.  Additional studies will pursue the viability of in vitro aminoacylated tRNAs for 

nonsense suppression in mammalian cells.     
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