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Chapter 5 

Additional Thermodynamic Quantities Related to 
Lattice Vibrations of hcp-Fe3

 

5.1 Introduction  

A large theoretical and experimental effort has been dedicated to investigating the 

structural, thermoelastic, and thermodynamic properties of pure iron at the pressure- and 

temperature (PT) conditions of Earth’s core. The properties that have received the most 

attention from the Earth science community are those that are most closely related to 

seismic observations, since that is the most direct tool we have for probing the deep Earth. 

In particular, numerous studies have investigated iron’s equation of state (e.g., Brown and 

McQueen, 1982; Jephcoat et al., 1986; Mao et al., 1990; Wasserman et al., 1996; Stixrude 

et al., 1997; Dubrovinsky et al., 1998; Dewaele et al., 2006; Sola et al., 2009; Sha and 

Cohen, 2010) and sound velocities (e.g., Jeanloz, 1979; Brown and McQueen, 1986; 

Lübbers et al., 2000; Fiquet et al., 2001; Mao et al., 2001; Giefers et al., 2002; Antonangeli 

et al., 2004; Nguyen and Holmes, 2004; Lin et al., 2005; Mao et al., 2008), which are 

closely related to seismic observations of Earth’s core. Iron’s high-pressure melting 

behavior has also received a significant amount of attention (e.g., Brown and McQueen, 
                                                 
3 Portions of this chapter are revised from Murphy et al. (2011b). 
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1986; Boehler et al., 1990; Boehler, 1993; Shen et al., 1998; Belonoshko et al., 2000; 

Ahrens et al., 2002; Alfè et al., 2002; Ma et al., 2004; Nguyen and Holmes, 2004; Sola and 

Alfè, 2009; Komabayashi and Fei, 2010; Murphy et al., 2011a; Jackson et al., 2012), and is 

related to seismic observations via the disappearance of shear waves in the outer core 

region, and their reappearance in the inner core. Such observations dictate that the 

temperature at the inner–core boundary must be equal to the melting temperature of core 

materials, since the solid inner core and liquid outer core are in contact.  

Despite the experimental and theoretical efforts that have been applied to the 

aforementioned properties, significant uncertainties remain (Section 1.2 and Chapter 6). 

Therefore, there is still a need for accurately determining the vibrational thermodynamic 

and thermoelastic properties of ε-Fe with high statistical quality, in order to provide a 

baseline against which to evaluate the effects of alloying candidate light elements with iron. 

When combined with seismic observations, such high-statistical quality measurements will 

be a significant step toward better constraining the identities and amounts of light elements 

that are present in Earth’s core.  

To further investigate the properties of Earth’s core, there are a number of 

additional thermodynamic parameters that can be obtained from lattice dynamics. For 

example, the thermal expansion coefficient of ε-Fe helps to constrain the density of iron 

under the pressure and temperature (PT) conditions of Earth’s core and, in turn, the core-

density deficit (Section 3.5) (e.g., Jeanloz, 1979; Alfè et al., 2001; Isaak and Anderson, 

2003). In addition, the isotopic partition function ratios of iron provide information about 

the distribution of heavy iron isotopes during equilibrium processes involving solid iron. 

We note that the latter parameter is related to lattice dynamics via the fact that the mass of 
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atoms in a crystal influence the frequency of atomic vibrations (phonons) and, in turn, the 

internal energy of the system.  

Here we present the volume dependence of select thermodynamic and thermoelastic 

parameters of ε-Fe related to lattice vibrations, which we obtained from measurements of 

its total phonon density of states (DOS) between pressures of 30 and 171 GPa (Chapter 2). 

In particular, we report experimentally determined values for the volume dependence of ε-

Fe’s Lamb-Mössbauer factor (fLM); vibrational components of its kinetic energy (EK) and 

entropy (Svib); and its Debye sound velocity (vD). Details for obtaining each parameter from 

the phonon DOS will be presented in their respective sections.  

From our experimentally determined EK(V), we obtain ε-Fe’s reduced isotopic 

partition function ratios (β-factors), and discuss their utility for investigating iron’s 

equilibrium isotope fractionation based on the available pressure and temperature 

resolution. In addition, we use our measured Svib(V) to determine the vibrational 

components of ε-Fe’s thermal expansion coefficient and, in turn, investigate the 

temperature dependence of the thermal pressure and Grüneisen parameter. Finally, we use 

our measured vD and existing equation of state parameters (Dewaele et al., 2006) to 

determine ε-Fe’s compressional and shear sound velocities, which we qualitatively 

compare with seismic observations of Earth’s core. 

5.2 Lamb-Mössbauer Factor 

The Lamb-Mössbauer factor (fLM) represents the probability for recoilless 

absorption, or the ratio of the elastic to total incoherent scattering in NRIXS experiments. It 

has a similar functional form as that of the Debye-Waller factor (fDW), where fDW describes 

coherent, fast scattering events and fLM describes slow scattering events, i.e., events that 
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occur over the lifetime of nuclear resonance (141 ns for 57Fe) (Sturhahn, 2004). In general, 

fLM can best be understood by its relationship to the thermal motion of resonant nuclei 

about their equilibrium positions (57Fe in our case): 2 2
0exp ,LMf k u = −   where k0 is the 

wavenumber of the resonant x-rays (7.306 Å–1 for 57Fe) and <u2> is the mean square 

atomic displacement. This relationship highlights the fact that fLM contains information 

about lattice dynamics and, in turn, depends strongly on the binding of the resonant nuclei 

in the lattice (e.g., on composition, lattice structure, and pressure and temperature 

conditions).  

There are two ways to access fLM from NRIXS data. First, fLM can be determined 

from a moments analysis of the pure phonon excitation spectrum, I'(E), which is the 

spectral shape produced by fitting and subtracting the elastic peak from the measured 

NRIXS data (Sturhahn et al., 1995). In turn, I'(E) is related to the excitation probability 

density, S(E), via the previously discussed normalization and refinement procedures (see 

Section 2.3.3). Finally, fLM is obtained from the total S(E)—i.e., the sum of the one- and 

multi-phonon contributions—by evaluating its 0th-order moment, or ( )n
nS E S E dE= ∫  for 

n = 0. Details of this procedure can be found in Sturhahn and Chumakov (1999).  

The second method for extracting fLM from NRIXS data is via the measured total 

phonon DOS, D(E,V), which is obtained by applying a quasi-harmonic lattice model to the 

total S(E) described above. In particular,  

( ) ( )exp coth , ,
2

R
LM

E Ef V D E V dE
E

β  = −     
∫  (5.1) 

where β = (kBT)–1 is the inverse temperature, kB is Boltzmann’s constant, and the phonon 
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Figure 5.1.  Lamb-Mössbauer factor of ε-
Fe from NRIXS data. Black circles give 
the Lamb-Mössbauer factor (fLM) as 
determined from ε-Fe’s total phonon 
DOS and Equation (5.1). Green squares 
show fLM as determined from the 0th-
order moment of our measured NRIXS 
data, as described in Section 5.2. 
 

DOS has been normalized by ( ) 3D E dE =∫  (Sturhahn and Jackson, 2007). Values for fLM  

determined using Equation (5.1) are given in Table 5.1. We restate the high statistical 

quality of our dataset by comparing our uncertainties for fLM with those reported by Mao et 

al. (2001) up to 153 GPa. Performing the same PHOENIX analysis on both datasets, we 

find that our data produce errors in fLM that are ~75% smaller on average using the 

moments method, and ~60% smaller on average using Equation (5.1). 

Values for fLM determined using these two methods are indistinguishable for all of 

our compression points, as can be seen in Figure 5.1. The most noticeable disagreement in 

Figure 5.1 occurs at a molar volume per 57Fe atom of 5.81 ± 0.01 cm3/mol—the 

compression point at which we had the lowest overall counts based on fewer scans 

collected (Table 2.2)—which demonstrates the importance of a high-statistical quality 

dataset for accurately determining vibrational thermodynamic parameters. We note that the 

two methods are intimately related via S(E), but obtaining fLM from the moments analysis 

requires no assumptions, while obtaining fLM from Equation (5.1) involves the assumption 

that a quasi-harmonic oscillator model accurately describes the behavior of ε-Fe. Good 

agreement between fLM determined from the two distinct methods is consistent with the 

validity of the quasi-harmonic model over our experimental conditions.  
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5.3 Kinetic Energy and its Relation to the β-Factors of ε-Fe  

The vibrational internal energy per 57Fe atom (Uvib) can be obtained directly from 

the integrated phonon DOS, as previously demonstrated in Equation (4.2). In turn, Uvib is 

made up of equal parts kinetic and potential energies in the harmonic lattice approximation, 

so the vibrational kinetic energy per 57Fe atom (EK) is given by: 

( ) ( )1 coth ,
4 2K

EE V E D E V dEβ
= ∫  (5.2) 

(Table 5.1), where the phonon DOS has been normalized by ( ) 3.D E dE =∫  
In addition, 

EK can be obtained from the 2nd-order moment of S(E), in a procedure similar to that 

described in the Section 5.2. Values for EK determined from Equation (5.2) and the 

moments analysis method are plotted together in Figure 5.2. For all compression points, the 

values agree within uncertainty, but the moments analysis produces more scatter than 

Equation (5.2). In addition, the scatter in EK(V) produced by the moments analysis is larger 

than that produced in the corresponding determination of fLM (Section 5.2). This is a result 

of the fact that the kinetic energy arises from a higher-order moment, which amplifies the 

high-energy region of the measured NRIXS data where counting rates are inherently low 

and, in turn, statistical fluctuations result in larger uncertainties. Finally, for comparison, 

we also include in Figure 5.2 the results of our PHOENIX analysis of the NRIXS data 

measured by Mao et al. (2001) up to 153 GPa.  

Values for Uvib determined using Equation (5.2) were previously reported in 

Chapter 4 (Table 4.1), where they were used to relate the vibrational Grüneisen parameter 

to the vibrational thermal pressure using a Mie-Grüneisen type relationship. Here we use 

the kinetic energy component of the vibrational internal energy to evaluate ε-Fe’s reduced 
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(a) 

 

(b) 

 
 
Figure 5.2.  Vibrational kinetic energy of ε-Fe from NRIXS data. (a) Black circles give the volume 
dependence of the vibrational kinetic energy (EK) determined from our total phonon DOS for ε-Fe 
and Equation (5.2); green squares show EK determined from the 2nd-order moment of our measured 
NRIXS data (see related discussion in Section 5.2). (b) Black circles and green squares give the 
same values for EK as in Figure 5.2a, but now as a function of pressure, which is determined from 
our in situ XRD and the Vinet EOS parameters reported by Dewaele et al. (2006). For comparison, 
we also plot EK from our PHOENIX analysis of the NRIXS dataset on ε-Fe measured by Mao et al. 
(2001); blue stars give EK from their phonon DOS, and red X’s give EK from the 2nd-order moment 
of their measured NRIXS data. 
 

isotopic partition function ratios (β-factors), which are related to the distribution of isotopes 

of iron that results from equilibrium processes at elevated pressures. At a given pressure,  

the β-factor between two isotopes is related to their free energies (F) via 

* *ln ,
B B classical

F F F F
k T k T

β
 − −

= − +  
 

 (5.3) 

(Bigeleisen and Mayer, 1947; Schauble, 2004) where kB is Boltzmann’s constant, T is 

temperature, asterisks denote values for the isotopically substituted form, and the final 

subscript refers to values from classical mechanics. From first-order thermodynamic 

perturbation theory, the difference between free energies of substituted and unsubstituted 

isotopic forms (F* - F) can be written in terms of EK and the difference in isotope masses 

* ,
*K
mF F E

m
∆

− =  (5.4) 
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(a) 

 

(b) 

 

Figure 5.3.  Reduced isotopic partition function ratios of ε-Fe. (a) Black circles give the density 
dependence of the reduced isotopic partition function ratios (1000lnβ57Fe/54Fe) of ε-Fe at 300 K by 
the procedure described in Section 5.4. (b) Lines give the temperature dependence of 
1000lnβ57Fe/54Fe, with each color corresponding to an individual compression point as labeled in the 
figure. Error bars for three compression points (31, 90, and 171 GPa) are plotted at T = 1100 K; 
they reflect the propagation of measured uncertainties for EK in Equation (5.5). 

where ∆m = m – m* (i.e., ∆m = -3 when 57Fe substitutes for 54Fe) (Polyakov and Mineev, 

1999). Together with the classical mechanics value of the kinetic energy, which is equal to 

3kBT/2, Equations (5.3) and (5.4) can be combined to obtain  

3ln .
2 *

K

B

E m
k T m

β
  ∆

= − − 
 

 (5.5) 

Finally, we apply our measured EK(V) to Equation (5.5) in order to determine the β-factors 

of ε-Fe for each of our compression points and at 300 K (Table 5.1). In addition, the 

temperature dependence of Equation (5.5) allows us to explore the effects of temperature 

on the β-factors of ε-Fe (Figure 5.3), assuming the quasi-harmonic model accurately 

describes the vibrational behavior of ε-Fe at the relevant PT conditions. The accuracy of the 

quasi-harmonic model for ε-Fe at high-temperature conditions is unknown (see Section 3.5 

for more discussion), but due to the lack of sufficient data on the temperature dependence 

of ε-Fe’s phonon DOS, we will apply it to the discussion in Section 5.6. 
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Figure 5.4.  Vibrational entropy 
of ε-Fe. Black circles give the 
vibrational entropy (Svib) at each 
compression point and at 300 K 
(Equation (5.6)); the black line 
gives the errors-weighted linear 
fit of our data, the result of 
which is given on the figure. We 
note that the reported slope of 
0.685 (kB/atom)/(cm3/mol) is 
equivalent to the value given in 
the text via a conversion of 
units. 

5.4 Entropy and its Relation to the Thermal Expansion Coefficient of ε-Fe 

The vibrational entropy per 57Fe atom (Svib) at 300 K can be obtained directly from 

the integrated phonon DOS via 

( ) ( )coth , ln 2sinh ,
2 2 2
B

vib B
k E ES E D E V dE k D E V dEβ β β = −  

 ∫ ∫  (5.6) 

(Table 5.1), where the phonon DOS has been normalized by ( ) 3D E dE =∫ (Sturhahn, 

2004). Values for Svib determined from Equation (5.6) as a function of our in situ measured 

volumes are plotted in Figure 5.4, where one can see that Svib decreases roughly linearly 

with decreasing volume.  

The volumetric derivative of Svib at constant temperature is directly related to the 

vibrational component of the thermal expansion coefficient (αvib) via thermodynamic 

definition:  

,vib
vib T

T

S K
V

α∂  = ∂ 
 (5.7) 

where KT is the isothermal bulk modulus. Since our Svib(V) is approximately linear, our  
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Figure 5.5.  Vibrational thermal 
expansion coefficient of ε-Fe at 
300 K. The volume dependence 
of the vibrational component of 
the thermal expansion coefficient 
(αvib) was determined using our 
measured Svib(V), Equation (5.7), 
and established EOS parameters 
from Dewaele et al. (2006).  
 

 

results are consistent with the suggestion that the product αvibKT is approximately 

independent of volume at constant temperature. Therefore, taking the derivative of an error- 

weighted linear fit of our measured Svib(V), we find ( )300 Kvib vib TS V Kα∂ ∂ = =  5.70 ± 0.05  

MPa/K. We note that the slope given in Figure 5.4 is equivalent to the slope given here via 

a conversion of units. For comparison, the corresponding electronic component for ε-Fe 

was calculated to be αelKT ~ 0.25 MPa/K, which is a factor of 20 smaller than the 

vibrational component at 300 K (Wasserman et al., 1996).  

Applying our ( )300 KvibS V∂ ∂  result and KT(V) from the Vinet equation of state 

(EOS) parameters for ε-Fe reported by Dewaele et al. (2006), we find αvib(300 K) = 1.84 ± 

0.02 10–5 K–1 and 0.67 ± 0.01 10−5 K−1 at 30 GPa and 171 GPa, respectively, where 

reported errors reflect the uncertainties associated with our fitting procedure (Table 5.1; 

Figure 5.5). Our αvib(V) agrees well with the results from first principles calculations by Sha 

and Cohen (2010a); based on their Figure 6, we approximate their αvib(300 K) = 0.9 × 

10−5 K−1 and 0.6 × 10−5 K−1 at 100 GPa and 200 GPa, respectively. In addition, our αvib(V) 
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agrees fairly well with the results of shock-compression experiments by Jeanloz (1979) at 

larger compression (see Figure 2 in reference). Based on his reported fitting equations for 

the bulk modulus and α along the Hugoniot (KS,H and αH, respectively), Jeanloz (1979) 

found αH(90 GPa) = 1.2 × 10−5 K−1 and αH(171 GPa) = 0.7 × 10−5 K−1. However, at 

smaller compressions, our values disagree by more than uncertainties, with their reported 

αH(31 GPa) = 2.6 × 10–5 K–1. This large discrepancy at small compressions may be due to 

the different experimental conditions, i.e., shock-compression experiments are adiabatic, 

whereas our experiments are isothermal. Finally, considering the fact that electronic and 

temperature effects are included in αH—both of which should positively contribute to α—

the agreement between our results and those of Jeanloz (1979) suggests α is only weakly 

dependent on temperature, particularly at larger compressions.  

This argument is inconsistent with the conclusions of Alfè et al. (2001) and 

Wasserman et al. (1996), both of whom found αvibKT to have a significant dependence on 

temperature. For example, Wasserman et al. (1996) report that at a pressure of 58 GPa, 

their αvibKT decreases by ~10% between T = 1000 and 6000 K due to anharmonic effects, 

but their overall αKT increases by 40% as a result of the rapidly increasing electronic 

contribution. We note that our αvib(V, 300 K) is indeed smaller than their plotted αvib(V) at 

elevated temperatures (T ≥ 1000 K; see Figures 11 and 8 in references, respectively), but a 

quantitative comparison at 300 K is not straightforward from their figures alone.  

Finally, our αvib(V) is approximately half as large as α(V) reported by Anderson et 

al. (2001) and Isaak and Anderson (2003). These two earlier studies are related, and are 

both based on the differentiation of previously reported high-PT XRD data that was 

collected for ε-Fe up to 305 GPa and 1370 K (Dubrovinsky et al., 2000b). As a result, their 
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reported values are nearly identical with one another. Comparing their reported values with 

our measurements at the most similar molar volumes per atom, Isaak and Anderson (2003) 

found α(5.9 cm3/mol) = 3.88 × 10−5 K−1 and α(4.9 cm3/mol) = 1.61 × 10−5 K−1, both of 

which are roughly twice as large as our measured values. We acknowledge that 

investigations of α from XRD include the electronic component, to which our 

measurements are insensitive. However, based on the high-statistical quality of our dataset 

and αelKT ~ 0.25 MPa/K at 300 K reported by Wasserman et al. (1996) (see Figure 8 in 

reference), we conclude that the our results do not agree with those of Anderson et al. 

(2001) and Isaak and Anderson (2003).  

5.5 Sound Velocities 

A parabolic fit of the low-energy region of ε-Fe’s phonon DOS provides its Debye 

sound velocity (vD), which reflects a weighted average of its compressional (vp) and shear 

(vs) sound velocities (Hu et al., 2003; Sturhahn and Jackson, 2007). Therefore, we 

determined vD for ε-Fe by using an exact relation for the dispersion of low-energy acoustic 

phonons and our measured density at each compression point, the latter of which is based 

on our in situ measured volumes and m = 56.95 for 95% isotopically enriched 57Fe (Table 

2.1). The appropriate energy range over which to perform each parabolic fit was first 

estimated from visual inspection of our data, and ultimately determined for each fit via χ2 

analysis. A typical minimum energy for our fits was 3.5 meV, which corresponds roughly 

to the width of our measured resolution functions; the maximum energy varied between 16 

and 34 meV, with larger energy ranges corresponding to larger compressions (Table 5.1). 

The vD for each compression point are given in Table 5.2 and plotted in Figure 5.7. Typical 

uncertainties are ≤ 1%, with the exception of our measurement at V = 4.70 ± 0.02 cm3/mol  
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Figure 5.6.  Our density-
dependent sound velocities 
at 300 K. Filled black circles 
give the compressional (vp) 
shear (vs), and Debye (vD) 
sound velocities of ε-Fe as a 
function of density from our 
NRIXS and in situ XRD 
experiments. Uncertainties 
in sound velocities and 
densities are smaller than the 
symbol if not visible. 
 
 

 

(P = 151 ± 5 GPa). The relatively large uncertainty reported at this compression point is the 

result of a long “tail” on our measured resolution function that extended to approximately 

−20 meV (Table 5.2).  

From our measured vD and ρ, we determine ε-Fe’s compressional (vp) and shear (vs) 

sound velocities via: 

2 24
3

S
P S

K v v
ρ

= −

 
3 3 3

3 1 2

D P Sv v v
= +  

(5.8) 

(5.9) 

(Table 5.2). The density (ρ) at each compression point is determined from our in situ 

measured volumes, and the adiabatic bulk modulus (KS) is related to the isothermal bulk 

modulus (KT) via KS = KT(1 + αγT). Therefore, to determine KS at each compression point, 

we scale the ambient temperature KT reported by Dewaele et al. (2006) with the Grüneisen 

parameter (γvib) from Section 4.3 (Murphy et al., 2011b) and the vibrational component of  
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Table 5.1.  Vibrational thermodynamic parameters of ε-Fe from the phonon DOS. 

V  
(cm3/mol)a 

P  
(GPa)a 

fLM
b
 EK 

(meV/atom)b 
103lnβ57Fe/54Fe 

c Svib 
(kB/atom)b 

αvib 
(10−5 K−1)d 

5.92(2) 30(2) 0.857(1) 43.9(5) 10.9(9) 2.63(2) 1.84(2) 
5.81(1) 36(2) 0.862(2) 44.3(9) 11.6(1.9) 2.57(3) 1.69(1) 
5.56(1) 53(2) 0.876(2) 45.2(6) 13.6(1.6) 2.38(3) 1.40(1) 
5.36(1) 69(3) 0.888(1) 46.0(5) 15.3(1.3) 2.24(2) 1.20(1) 
5.27(2) 77(3) 0.892(1) 46.3(5) 15.9(8) 2.20(1) 1.13(1) 
5.15(2) 90(3) 0.899(1) 46.8(6) 17.0(1.0) 2.10(1) 1.03(1) 
5.00(2) 106(3) 0.904(1) 47.5(4) 18.4(1.1) 2.01(1) 0.92(1) 
4.89(2) 121(3) 0.910(1) 48.2(4) 19.9(1.0) 1.92(1) 0.85(1) 
4.81(2) 133(4) 0.913(1) 48.6(5) 20.8(1.3) 1.87(2) 0.79(1) 
4.70(2) 151(5) 0.918(1) 49.1(6) 21.7(1.3) 1.81(2) 0.73(1) 
4.58(2) 171(5) 0.923(1) 50.0(9) 23.7(1.9) 1.70(2) 0.67(1) 

 aMolar volume per 57Fe atom (V) and pressure (P) for each compression point are duplicated from 
Tables 2.1 and 2.2. A brief explanation of reported uncertainties is given in Section 2.2. 
bThe Lamb-Mössbauer factor (fLM) and vibrational components of the kinetic energy (EK) and 
entropy (Svib) per 57Fe atom were determined from the integrated phonon DOS (Equations (5.1), 
(5.2), and (5.6)). Values in parentheses give uncertainties for the last significant digit reported, as 
determined by the PHOENIX software (Sturhahn, 2000).   
cReduced isotopic partition function ratios (103nβ57Fe/54Fe) for ε-Fe at 300 K are based on our EK(V) 
(Equation (5.2)) and the procedure described in Section 5.4; uncertainties in the last significant digit 
reflect our measured uncertainties in EK as determined by the PHOENIX software (Sturhahn, 2000). 
dThe vibrational component of the thermal expansion coefficient (αvib) for ε-Fe at 300 K is from our 
Svib(V) (Equation (5.6)) and the Vinet EOS parameters reported by Dewaele et al. (2006), as 
described in Section 5.5; uncertainties in the last significant digit reflect the uncertainties from an 
error-weighted linear fit of our Svib(V), with uncertainties in Svib determined by the PHOENIX 
software (Sturhahn, 2000).  
 

the thermal expansion coefficient from Section 5.4 (Table 5.1). Using these parameters and 

including uncertainties in αvib and γvib, we find αvibγvibT < 0.01 over our compression range 

and at 300 K, thus introducing a difference between KS and KT of no more than 1%. In 

addition, we expect the electronic contributions of α and γ—and, in turn, KS—to be fairly 

minor, based on the fact that 4%el vibα α ≈  (Wasserman et al., 1996), and the electronic 

contribution to the Grüneisen parameter (weighted by the electronic specific heat capacity) 

is negligible over this compression range at 300 K (Boness et al., 1986; Alfè et al., 2001). 
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Table 5.2.  Elasticity of ε-Fe from the phonon DOS.  

ρ 
(g/cm3)a 

P 
(GPa)a 

Energy 
Range (meV)b 

vD 
(km/s)b 

KS 
(GPa)c 

vp  
(km/s)c 

vs 
(km/s)c 

μ   
(GPa)c 

9.61(3) 30(2) 3.5 – 16.1 4.36(3) 312 7.27(16) 3.92(3) 147(2) 
9.80(1) 36(2) 3.5 – 23.5 4.37(6) 340 7.42(8) 3.91(5) 150(4) 
10.25(1) 53(2) 3.5 – 23.5 4.57(4) 411 7.89(8) 4.08(4) 171(3) 
10.63(1) 69(3) 3.5 – 23.5 4.80(4) 476 8.33(9) 4.29(4) 196(3) 
10.80(2) 77(3) 3.5 – 25.5 4.93(3) 506 8.53(9) 4.40(3) 209(3) 
11.06(2) 90(3) 3.5 – 28.4 5.13(3) 558 8.84(9) 4.58(3) 232(3) 
11.38(5) 106(3) 3.5 – 28.4 5.23(3) 621 9.14(9) 4.67(3) 248(3) 
11.64(2) 121(3) 3.5 – 27.3 5.33(4) 677 9.40(10) 4.76(4) 264(4) 
11.84(2) 133(4) 3.5 – 31.2 5.47(5) 721 9.62(11) 4.88(5) 282(6) 
12.13(3) 151(5) 9.7 – 32.7 5.72(10) 786 9.98(12) 5.10(9) 316(11) 
12.43(3) 171(5) 3.5 – 33.8 5.64(7) 859 10.14(12) 5.03(6) 314(8) 

 aDensity (ρ) and pressure (P) for each compression point are duplicated from Tables 2.1 and 2.2. A 
brief explanation of reported uncertainties is given in Section 2.2. 
bThe best energy range over which the phonon DOS was fit to determine the Debye sound velocity 
(vD) was determined by χ2 analysis; vD at each compression point depends on our in situ measured 
volumes (densities) and accounts for 57Fe enrichment levels. 
cThe adiabatic bulk modulus (KS) was determined from the relationship KS = KT(1 + αγT), with the 
isothermal bulk modulus (KT) reported by Dewaele et al. (2006) (Table 2.1), our αvib from Table 5.1 
and our γvib from Section 4.3 (Murphy et al., 2011b), as described in Section 5.5. In turn, KS was 
used with our ρ and vD(V) to determine the compressional (vp) and shear (vs) sound velocities and 
the shear modulus (μ) for ε-Fe using Equations (5.8) and (5.9). Reported uncertainties in the last 
significant digit reflect uncertainties determined by the PHOENIX software (Sturhahn, 2000). We 
note that uncertainties are not given for KS because they would largely reflect uncertainties in the 
EOS parameters reported by Dewaele et al. (2006); in particular, our uncertainties in αvib and γvib 
contribute an error of only 0.2 GPa. 

Applying these values for KS and our measured ρ and vD to Equations (5.8) and 

(5.9), we determined vp and vs at each of our compression points (Table 5.2, Figure 5.6). 

We note that vp and vs determined using KS and KT at each compression point are identical 

within uncertainty. Comparisons with previously reported measurements of ε-Fe’s vD(P) 

and vp(P)—from NRIXS and inelastic x-ray scattering (IXS) experiments at 300 K and up 

to 153 GPa (Mao et al., 2001; Giefers et al., 2002; Antonangeli et al., 2004; Lin et al., 

2005; Mao et al., 2008)—are presented in Figures 5.7 and 5.8, respectively. We do not 
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Figure 5.7.  Debye sound velocities of ε-Fe at 300 K. Filled black circles give our Debye sound 
velocities as a function of pressure, vD(P), where our measured volumes have been converted to 
pressures using the Vinet EOS parameters reported by Dewaele et al. (2006), in order to facilitate 
comparison with previous studies (unfilled circles). Also plotted are vD(P) reported by Mao et al. 
(2001) (blue squares); Lin et al. (2005) (green diamonds); and Mao et al. (2008) (purple down-
triangles). We note that we do not include reported values from Lübbers et al. (2000) because the 
energy scale used in that study was incorrect. In addition, we do not include reported values from 
Giefers et al. (2002) because they performed their NRIXS experiments on a purposefully textured 
sample, with the DAC oriented at an angle relative to the beam; without in situ XRD, it is difficult 
to know the true volume (pressure) of their measured data points. 

 

 

 

Figure 5.8.  Compressional 
sound velocities of ε-Fe at 
300 K. Filled black circles 
give our compressional sound 
velocities as a function of 
pressure, vp(P). Also plotted 
are vp(P) from NRIXS 
experiments conducted by 
Mao et al. (2001) (blue 
squares); Lin et al. (2005) 
(green diamonds); and Mao 
et al. (2008) (purple down-
triangles). Finally, we plot as 
black triangles vp(112 GPa) 
from an inelastic x-ray 
scattering (IXS) study by 
Antonangeli et al. (2004).  
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present a similar comparison for vs because it would be similar to Figure 5.7, since vD and 

vs from NRIXS experiments are closely related (Equation (5.9)), and the reported IXS 

experiments on polycrystalline ε-Fe are not sensitive to vs. 

As can be seen in Figures 5.7 and 5.8, our results at smaller compressions are 

similar to previous NRIXS and IXS measurements. However, the large compression range 

and high statistical quality of our data provide a new, tight constraint on the density 

dependence of ε-Fe’s sound velocities to an outer core pressure of 171 GPa. In particular, 

performing the same PHOENIX analysis on datasets reported by Mao et al. (2001) and Lin 

et al. (2005), we find that our data produce errors in vD that are ~60% smaller and ~30% 

smaller, respectively. Finally, we note that there is no resolvable discontinuity in our 

measured sound velocities for NRIXS experiments performed in the neon (P ≤ 69 GPa) and 

boron-epoxy pressure-transmitting media (Table 2.1).  

5.6 Discussion 

The high-statistical quality of our phonon DOS and, in turn, the previously 

discussed parameters, provide a new tight constraint on the Lamb-Mössbauer factor, β-

factors, thermal expansion coefficient, and sound velocities of ε-Fe. In the following 

subsections, we discuss applications of each parameter in the context of Earth’s core.  

5.6.1 Melting Behavior from fLM 

As previously stated, the Lamb-Mössbauer factor (fLM) can best be understood in 

the context of lattice dynamics by considering the relationship 2 2
0exp .LMf k u = −   

From this relationship, we see that the steady increase in fLM with compression corresponds 

to a reduction of thermal motion—i.e., reduced displacement of the iron atoms, or 
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stiffening of the lattice—which is consistent with the expected decrease in <u2> with 

increasing compression. We have previously used this behavior to predict a melting curve 

shape (Section 3.4) based on Gilvarry’s reformulation of Lindemann’s melting criterion 

(Gilvarry, 1956b; a; Murphy et al., 2011a), which we calibrated in PT space with 

previously reported melting points for ε-Fe (Shen et al., 1998; Ma et al., 2004; 

Komabayashi and Fei, 2010; Jackson et al., 2012). In particular, the values of fLM given in 

Table 5.1 are closely related to those for the Lamb-Mössbauer temperature (Table 3.1), 

which was derived from a high-temperature formulation for <u2> in Equation (3.7). For 

details of this relationship, see Section 3.4.  

5.6.2 Other Thermodynamic Parameters from αvib 

The product αvibKT is related to a number of other parameters via thermodynamic 

definitions. For example, αvibKT directly gives the temperature derivative of the vibrational 

thermal pressure via 

1 ,vib
vib T

P T V

PV PK V
V T V T

α
    ∂∂ ∂     = − =        ∂ ∂ ∂        

 (5.10) 

where the negative sign in the central equation is cancelled by Maxwell’s relations and the 

chain rule. Taking the average temperature derivative of the harmonic component of the 

vibrational thermal pressure (Pvib
h) we determined in Chapter 3, we find that αvibKT depends 

on temperature. Therefore, we performed an errors-weighted quadratic fit our Pvib
h(V,T) at 

each of our compression points between T = 100 and 1000 K (see Section 3.3). Taking the 

derivative of these quadratic fits, we found αvibKT(300 K) = 5.5 ± 0.2 MPa/K, which agrees 

well with the value determined here of αvibKT(300 K) = 5.70 ± 0.05 MPa/K. We attribute 
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the ~3% discrepancy between these two results to the fact that we are comparing the 

derivatives of two parameters obtained from our experimental data.  

In addition, αvibKT is related to the vibrational Grüneisen parameter (γvib) via 

.vib T
vib

vib

K V
C

αγ =    (5.11) 

The volume (V) at each compression point is known from our in situ XRD measurements, 

and the vibrational component of the specific heat capacity (Cvib) can be obtained from the 

total phonon DOS via Equation (4.1). Therefore, we can apply these measured values and 

the volume-derivative of our measured Svib (i.e., αvibKT) to Equation (5.11) to estimate 

γvib(V) at 300 K. This new analysis of γvib agrees with our previously determined γvib(V) 

within uncertainty, but Equation (5.11) predicts a shallower slope than our original analysis 

(Section 4.2) (Murphy et al., 2011b). Using the common parameterization γvib(V) = 

γvib,0(V/V0)q, where the subscript 0 corresponds to ambient pressure conditions and q 

determines the curvature of γvib(V), we previously found a preferred q value range of 0.8 to 

1.2 for γvib,0 = 2.0 ± 0.1 (Section 4.2) (Murphy et al., 2011b); the determination using 

Equation (5.11) predicts q ~ 0.4 and a smaller γvib,0. Part of this discrepancy may arise from 

the volume independence of our αvibKT, which significantly influences the volume 

dependence of γvib. 

The two methods for determining γvib(V) have better agreement at our larger 

compression points, with identical values at V = 4.89 ± 0.02 cm3/mol and 4.81 ± 0.02 

cm3/mol; at our largest compression point, γvib(4.58 ± 0.02 cm3/mol) = 1.40 ± 0.03 from 

Equation (5.11) and including all reported uncertainties, and 1.34 ± 0.1 from our original 

analysis (Section 4.2) (Murphy et al., 2011b). We note that the larger uncertainty from our 
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original analysis reflects the range of q values included in the final reported fit to our 

individual γvib points, which were determined from the volume dependence of the total 

phonon DOS. In fact, the use of Equation (5.11) involves a more circuitous path from the 

phonon DOS to γvib that relies on a number of independent parameters, thus introducing 

more uncertainties in the analysis presented here than our original analysis.  

5.6.3 Equilibrium Isotope Fractionation from β-factors  

The β-factors for ε-Fe at each of our compression points are plotted in Figure 5.3a 

at 300 K, and as separate lines as a function of inverse temperature (106/T2) for T ≥ 1000 K 

in Figure 5.3b. Uncertainties in our determined β-factors are temperature-independent, so 

we plot single error bars for select compression points at T = 1100 K, which reflect the 

propagation of our measured uncertainties for EK(V,T). In Figure 5.3a, one can see that the 

β-factors for each compression point are fairly distinct at 300 K. However, by the moderate 

temperature of 1000 K (106/T2 = 1 K-2), β-factors for our smallest and largest compression 

points are indistinguishable within uncertainty, suggesting only a weak pressure 

dependence at the relevant temperature conditions (Figure 5.3b). Finally, by ~1200 K (~0.7 

K-2), it becomes unclear whether the β-factors at all compression points are positive or 

negative. We note that we are currently exploring methods for determining the same β-

factors using ε-Fe’s average force constant, which can be obtained from an analysis of the 

3rd-order moment of S(E), similar to the procedure presented in Section 5.2. The advantage 

of our forthcoming analysis is that it should reduce the uncertainties in the β-factors, 

potentially providing the required volume resolution to evaluate isotopic shifts from 

equilibrium processes involving solid iron above 1000 K.  
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It has been suggested that anharmonic effects are likely to be minor at the extreme 

compressions discussed here (Polyakov, 1998; 2009). However, it is possible that the quasi-

harmonic model does not accurately describe the behavior of ε-Fe at these high 

temperatures and, in turn, phonon–phonon or phonon–electron interactions may play a non-

negligible role under these conditions. We rely on the quasi-harmonic model largely 

because of the lack of sufficient data on the temperature dependence of ε-Fe’s phonon DOS 

(Section 3.5), but unknown temperature effects further increase the uncertainty of our high-

temperature β-factors.  

A similar analysis was performed by Polyakov (2009), based on the previously 

published NRIXS dataset measured by Mao et al. (2001) up to 153 GPa. His results are 

identical to ours within uncertainty, but reflect the larger scatter that is present in the dataset 

measured by Mao et al. (2001) (Figure 5.2b). We note that the goal presented by Polyakov 

(2009) was to explain isotopic ratios of the mantle based on equilibrium partitioning 

between pure iron and iron-bearing lower-mantle phases. This application is roughly based 

on the theory that primary differentiation of the Earth (i.e., core segregation) was achieved 

via the formation and sinking of dense, iron-rich droplets (e.g., Stevenson, 1981). These 

droplets would have interacted with the surrounding silicate-rich mantle materials as they 

descended, resulting in element and isotope partitioning between silicate- and iron-rich 

phases over a range of depths (pressures) and temperatures. Therefore, comparison of β-

factors for ε-Fe and coexisting solid phases at the appropriate PT conditions could, in 

theory, be used to predict the distribution of heavy iron isotopes that results from 

equilibrium processes. However, we note that such iron–silicate interactions during core 

formation would have occurred over a range of depths, including those corresponding to 



 100 

modern-day upper-mantle pressures. In addition, we emphasize that the values reported 

both here and by Mao et al. (2001) are for solid ε-Fe, whose β-factors are expected to differ 

significantly from those of liquid iron. Therefore, a relevant discussion of core-formation 

models from iron’s β-factors would require an NRIXS study of liquid iron at high 

pressures, which would be extremely challenging for reasons similar to those discussed in 

the following section.  

5.6.4 Comparison of ε-Fe’s Sound Velocities with PREM  

As previously discussed in Sections 1.2 and 5.1, the sound velocities of iron have 

been investigated over many decades using a variety of theoretical and experimental 

techniques. In Figure 5.8, we plot our measured compressional sound velocities (vp) as a 

function of pressure, which we determine from our measured volumes and the Vinet EOS 

reported by Dewaele et al. (2006). We also plot previously reported values from NRIXS 

and inelastic x-ray scattering (IXS) experiments at 300 K in Figure 5.8, but we do not 

include sound velocities measured by shock-compression experiments since the 

corresponding experimental conditions involve simultaneous high pressures and 

temperatures. Similar to our discussion about our vD(ρ) in Section 5.5, the overall trend of 

our vp(P) agree fairly well with previously reported values from NRIXS, but our curve 

defines a new, tightly constrained pressure dependence up to 171 GPa. In addition, our 

largest compression point defines a curvature that lowers the trend with pressure 

compared to that presented by Mao et al. (2001) (Figure 5.8).  

The two data points from the IXS measurements executed by Antonangeli et al. 

(2004) at 112 GPa reflect experimental probes of vp in two different crystallographic 

directions. Antonangeli et al. (2004) prepared a DAC with nonhydrostatic conditions in 
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the sample chamber in order to develop texture in their polycrystalline ε-Fe sample. They 

then rotated the DAC with respect to the beam to investigate vp along crystallographic 

directions that were 50º and 90º from the c-axis in ε-Fe, based on texturing effects. Their 

reported values of vp(50º) = 9.9 ± 0.2 km/s and vp(90º) = 9.45 ± 0.15 km/s are based on 

fits of the linear region of the phonon dispersion curve.  

To discuss the apparent discrepancy between our results and those of Antonangeli 

et al. (2004) that is evident in Figure 5.8, we begin by pointing out a few fundamental 

differences between the two experimental techniques. First, we note the very different 

energy ranges of phonons that were used to obtain the sound velocities: we fit the low-

energy region of our phonon DOS measured at 106 GPa (V = 5.00 ± 0.02 cm3/mol) with 

3.5 meV < E < 28.5 meV (Table 5.2), while Antonangeli et al. (2004) determined vp from 

E ≥ 35 meV at 112 GPa (see Figure 4 in reference). Given the limited energy range 

utilized by Antonangeli et al. (2004) in their fit of the linear low-energy region of the 

phonon dispersion curve, we argue that it is difficult to resolve their reported anisotropy 

of only 0.1 km/s beyond uncertainties. In particular, we note that our experiments are not 

sensitive to anisotropies of this magnitude, because NRIXS measures the projected 

phonon DOS and, in turn, an average sound velocity from nearly all crystallographic 

directions (Sturhahn, 2000). As a result, direct comparison with IXS experiments—which 

are much more sensitive to crystal orientation because they select for longitudinal 

acoustic phonons—is not straightforward.  

The most direct comparison would be between NRIXS sound velocities and an 

average vp from IXS experiments performed over a wide range of crystallographic 

directions, which would require weeks of experiments. An alternative method is to apply 
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values for the elastic stiffness constants of ε-Fe to the Christoffel equation (Musgrave, 

1970) in order to determine the sound velocities for all crystallographic directions. Then, 

by using the proper averaging procedure (Sturhahn, 2000; Sturhahn and Jackson, 2007), 

we can explore how sensitive sound velocities determined with NRIXS are to 

crystallographic anisotropies. The elastic stiffness constants have not been measured  

because a single-crystal of ε-Fe does not yet exist, so we use values from first-principles 

calculations at 52 GPa and 300 K by Steinle-Neumann et al. (2004) in our calculations. 

We find vp(0º) is only ~1% (< 100 km/s) faster than vp(90º)—where 0º corresponds to a 

wave propagating along the c-axis direction—which agrees qualitatively with the 

orientation dependence of the anisotropy reported by Antonangeli et al. (2004). However, 

the predicted magnitude of anisotropy is significantly smaller and would not be 

detectable with NRIXS, based on the uncertainties of our high-statistical quality dataset. 

In particular, if we apply the proper averaging procedures, we find that vp(50 GPa) from 

NRIXS is ~10 km/s faster than vp(90º), and ~70 km/s slower than vp(0º), both of which lie 

within our reported uncertainties at ~50 GPa. We note that this argument is meant to be 

qualitative because there is a large amount of uncertainty associated with the elastic 

stiffness constants of ε-Fe, which are the primary input parameters for this calculation. 

Next, to compare our results with seismic observations, we plot in Figure 5.9 our 

vp(ρ) and vs(ρ) with those predicted for the liquid outer core (~136 to 329 GPa) and solid  

inner core (P ~ 329 to 364 GPa) by the preliminary reference Earth model (PREM) 

(Dziewonski and Anderson, 1981). For a qualitative comparison—since our experiments 

were performed at 300 K and the temperature at Earth’s inner core boundary (ICB) is 

thought to be between ~5000 and 7000 K based on previous reports of the melting behavior  
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Figure 5.9.  Density dependence 
of our compressional and shear 
sound velocities of ε-Fe at 300 K 
with PREM. Black circles give 
our compressional and shear 
sound velocities as a function of 
density, vp(ρ) and vs(ρ); blue 
lines show PREM throughout 
Earth’s core (Dziewonski and 
Anderson, 1981). We note that vs 
= 0 in Earth’s liquid outer core, 
and the apparent discontinuity in 
PREM corresponds to the 
density jump across the ICB.  
 

of ε-Fe (Section 1.2)—we use a linear fit of our data (i.e., Birch’s Law) to extrapolate our 

vp(ρ) to the expected density of the ICB (Birch, 1960; 1961). From an errors-weighted 

least-squares linear fit of our vp(ρ), we find a slope of 1.07 ± 0.04, which predicts vp(330 

GPa, 300 K) for ε-Fe is ~9% larger than the reported value from PREM on the inner core 

side of the ICB, where the corresponding density of ε-57Fe is 14.1 g/cm3 (Dewaele et al., 

2006). Birch’s law is only strictly relevant for compressional sound velocities, but in the 

absence of reliable information about the density dependence of ε-Fe’s shear modulus 

beyond our compression range, we use the same relationship to estimate vs(330 GPa, 

300 K) ~67% larger than the reported value for PREM at a density for ε-57Fe of 14.1 g/cm3.  

It is possible to probe the high-PT sound velocities of ε-Fe with NRIXS, and results 

from such experiments were previously reported by Shen et al. (2004) at 20 and 29 GPa up 

to 720 K using resistive heating methods; and by Lin et al. (2005) between 39 and 73 GPa 

and up to 1700 K using laser heating methods. However, as previously discussed (Section 

3.5), these studies did not collect either ambient- or high-temperature in situ XRD, so their 

reported pressures are based on ruby fluorescence measurements collected before and after 
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heating. In addition, only Lin et al. (2005) considered thermal pressure effects via an 

existing thermal EOS (Dubrovinsky et al., 1998). Additional experiments are needed at 

higher-PT conditions—with higher statistical quality and in situ XRD—in order to better 

constrain the sound velocities of ε-Fe at Earth’s core conditions. However, the PT 

conditions that are currently feasible for NRIXS experiments are well below those expected 

for Earth’s core, and are limited by the need for very stable temperatures over timescales of 

several hours (Sturhahn and Jackson, 2007; Gao et al., 2009).  

Finally, it is thought that the Earth’s core comprises an iron-nickel alloy that 

incorporates some light elements (e.g., McDonough, 2003). Now that the compressional 

and shear sound velocities of pure iron have been firmly established up to an outer core 

pressure of 171 GPa, an important next step is to investigate the effects of alloying light 

elements with iron on its thermoelastic properties. A number of studies have been 

dedicated to probing the sound velocities of iron alloys, and a comparison with their 

existing results will be one of the primary focuses of Chapter 6.  
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Chapter 6 

Discussion and Conclusions 

6.1 Introduction 

Now that we have firmly established the vibrational properties of ε-Fe, we will 

devote this chapter to discussing what conclusions we can draw about the Earth’s core, 

which is composed primarily of iron. Many of the parameters presented in the preceding 

chapters were obtained from the integrated total phonon density of states (DOS), including 

the Lamb-Mössbauer factor and vibrational components of the free energy, internal energy, 

kinetic energy, specific heat capacity, and entropy. In turn, the properties of ε-Fe that were 

derived from these parameters—e.g., thermal pressure, melting behavior, Grüneisen 

parameter, reduced equilibrium isotopic partition function ratios, and thermal expansion 

coefficient—also depend on knowledge of the total phonon DOS. Since nuclear resonant 

inelastic x-ray scattering (NRIXS) is an isotope-selective technique that only probes the 

phonons experienced by the resonant nuclei in the lattice (57Fe), investigations of iron 

alloys with NRIXS results in a partial projected phonon DOS (Sturhahn, 2000). Therefore, 

analysis of the effects of alloying on the thermodynamic properties of iron using NRIXS 

alone is somewhat indirect at this time. An exciting possibility for future studies is the 
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combination of NRIXS measurements with density-functional theory (DFT) calculations. 

In particular, for DFT calculations of an iron alloy, one can separately determine phonons 

experienced by iron, and phonons experienced by the alloy components (many of which are 

also experienced by 57Fe). The consistency between the two techniques could then be 

confirmed via comparison between the calculated partial phonon DOS and that measured 

by NRIXS.  

In the meantime, we will devote the next two sections to discussing the effects of 

alloying and temperature on the sound velocities of ε-Fe, in an effort to better constrain the 

composition of the core via comparison with seismic observations (e.g., Dziewonski and 

Anderson, 1981; Kennett et al., 1995). It has been shown previously that the low-energy 

region of the phonon DOS provides the Debye sound velocity of the bulk sample (e.g., Hu 

et al., 2003), so we can investigate the effects of alloying on iron’s sound velocities by 

comparing our results with those determined from NRIXS and inelastic x-ray scattering 

(IXS) experiments on iron alloys (Section 6.2). We note that the following sections do not 

include comparisons with results from theoretical calculations (e.g., Stixrude et al., 1997; 

Steinle-Neumann et al., 2001; Vočadlo et al., 2009) or shock-compression experiments 

(e.g., Jeanloz, 1979; Brown and McQueen, 1986; Nguyen and Holmes, 2004; Huang et al., 

2011) on the high-PT sound velocities of either iron or iron alloys. In addition, we do not 

consider results from other static-compression techniques are also capable of investigating 

high-pressure sound velocities, such as brillouin spectroscopy (BS), impulsive stimulated 

light scattering (ISLS), and ultrasonics. For opaque samples, BS only excites scattering 

from surface acoustic modes, whose relationship to bulk acoustic modes is not well-known 

(e.g., Crowhurst et al., 1999). In addition, ISLS and BS require accurate knowledge of the 
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sample surface, which is very difficult to achieve at core pressures (e.g., Crowhurst et al., 

2004). Finally, data from BS and ultrasonics have largely been restricted to lower pressures 

than those probed by NRIXS and IXS because of experimental geometries and low signal 

to noise ratios at large compressions (e.g., Mao et al., 1999).  

In Section 6.3, we investigate the effects of temperature on ε-Fe’s sound velocities 

and density using a finite-strain model, and we conclude with a summary of the major 

findings of this thesis (Section 6.4). 

6.2 Alloying Effects 

As previously discussed in Section 1.2, the Earth’s core is thought to contain ~5 to 

10 wt% nickel (Ni) and some light elements (McDonough, 2003), based on the comparison 

of seismic and cosmochemical observations with experiments. Commonly cited candidate 

light elements for the core include hydrogen (H), carbon (C), oxygen (O), silicon (Si), and 

sulfur (S). The focus of this section will be on evaluating the current understanding of the 

effects of alloying Ni and select light elements (H, C, Si, and S) with iron on its high-

pressure thermoelastic properties, based on NRIXS and IXS experiments. We note that 

Struzhkin et al. (2001) investigated FeO in the diamond-anvil cell with NRIXS, but they 

reported only a calculated curve for the sound velocities as a function of momentum 

transfer, without any discrete data points (see Figure 4b in reference). In addition, previous 

IXS measurements of FeO by Badro et al. (2007) report vp only as a function of density, 

without a clear explanation of the pressure range, crystal structure, or XRD measurements 

used to determine the relevant amount of compression. Therefore, analysis of the effect of 

alloying oxygen with Fe is not straightforward and will not be included here. 

To facilitate comparison of our measured sound velocities for ε-Fe with results 



 108 

from existing experiments on iron alloys, we begin by converting our measured volumes 

(densities) to pressures using the Vinet equation of state (EOS) parameters reported by 

Dewaele et al. (2006) (Tables 2.1 and 2.2). We then plot in Figure 6.1 the pressure 

dependence of our measured Debye sound velocities (vD; filled circles) with those reported 

from previous NRIXS studies (Lin et al., 2003c; Lin et al., 2004; Mao et al., 2004; Gao et 

al., 2009). One of the most striking features of Figure 6.1 is the limited pressure range over 

which the sound velocities of iron alloys have been probed with NRIXS. A number of the 

data points lie at pressures below that of the α→ε (bcc→hcp) transition of pure iron, and 

thus cannot be directly compared with our results. Data collection times are likely 

responsible, in part, for the sparse data coverage on the sound velocities of iron alloys, 

since a single high-pressure IXS or NRIXS measurement can take days to collect due to 

low counting rates at larger compressions (i.e., thinning of the sample). Therefore, it is 

likely that the compression range over which the sound velocities of iron alloys have been 

measured will expand with time, as more data are collected. One possible approach for 

maximizing counting rates and, in turn, performing higher-pressure experiments, is to 

apply the previously discussed boron-epoxy insert, whose high shear strength helps to 

maintain a thick sample and stabilize the gasket (Section 2.1.2).  

In the following subsections, we plot only the pressure range over which our data 

overlap with existing data for the compressional and shear sound velocities of iron alloys. 

Thus, Figures 6.2–6.5 provide a better depiction of the relevant features that will be 

discussed in Sections 6.2.1 and 6.2.2. In addition, we perform a quantitative analysis of 

how our vp and vs for ε-Fe compare with those reported for iron alloys. Finally, we evaluate 

whether existing data for iron alloys can provide any trends in how the alloying of light 
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Figure 6.1.  Debye sound velocities of ε-Fe and iron alloys. Black circles give our 
measured Debye sound velocities (vD) for ε-Fe as a function of pressure, which is 
determined from our in situ XRD and the Vinet EOS parameters reported by Dewaele et al. 
(2006). The remaining symbols give vD(P) from NRIXS experiments on FeHx (purple left 
triangle; (Mao et al., 2004)); Fe3C (dark blue square; (Gao et al., 2009)); Fe0.85Si0.15 
(orange cross; (Lin et al., 2003c)); Fe3S (brown downward triangle; (Lin et al., 2004)); and 
Fe0.92Ni0.08 (green x; (Lin et al., 2003c)). For Figures 6.2–6.5, we note that we plot only the 
compression range over which our data overlap with existing data for iron alloys. 

elements affects the sound velocities of iron and, thus, help to better constrain the 

composition of Earth’s core via a comparison with seismic observations. 

6.2.1 Alloying Effects on Compressional Sound Velocities 

In Figure 6.2, we plot the pressure dependence of our compressional sound 

velocities (vp; filled circles) with those from NRIXS (empty squares) and IXS (empty 

triangles) studies of iron alloys (Lin et al., 2003c; Lin et al., 2004; Mao et al., 2004; Kantor 

et al., 2007; Fiquet et al., 2009; Gao et al., 2009; Antonangeli et al., 2010; Shibazaki et al., 

2012). The limited compression range over which the compressional sound velocities of 
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iron alloys have been probed with NRIXS or IXS is demonstrated by the restricted pressure 

range that is plotted in Figure 6.2 (compared to Figure 6.1). A new trend that is evident in 

Figure 6.2 is the often significant disagreement between reported values for vp from IXS 

and NRIXS experiments on a similar iron alloy, the scatter from which increases the 

overall uncertainty for that composition. One likely explanation for the disagreement 

between sound velocities measured with NRIXS and IXS is the fact that they are based on 
 

 

Figure 6.2.  Compressional sound velocities of ε-Fe and iron alloys. Black circles give our 
measured compressional sound velocities (vp) for ε-Fe as a function of pressure, which is 
determined from our in situ XRD and the Vinet EOS parameters reported by Dewaele et al. (2006). 
We note that we only plot our vp(P) at pressures that overlap with reported values for the following 
iron alloys. Unfilled squares give vp(P) from NRIXS experiments on FeHx (purple; (Mao et al., 
2004)); Fe3C (dark blue; (Gao et al., 2009)); Fe0.85Si0.15 (light green; (Lin et al., 2003c)); Fe3S (cyan; 
(Lin et al., 2004)); and Fe0.92Ni0.08 (dark green; (Lin et al., 2003c)). Unfilled triangles give vp(P) 
from IXS experiments on Fe (black; (Antonangeli et al., 2004)); FeHx (purple; (Shibazaki et al., 
2012)); Fe3C (dark blue; (Fiquet et al., 2009)); Fe0.89Ni0.04Si0.07 (red; (Antonangeli et al., 2010)); and 
Fe0.78Ni0.22 (green; (Kantor et al., 2007)). 
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very different energy ranges (see Section 5.6.4). For example, Lin et al. (2003c) determined 

vp for Fe0.92Si0.08 (in weight %) by fitting the low-energy region of their measured phonon 

DOS (from NRIXS) with 3.5 meV < E < 14 meV, while Antonangeli et al. (2010) obtained 

vp for Fe0.89Ni0.04Si0.07 (in weight %) from a linear fit of their IXS data with E ≥ 15 meV.  

Similar discrepancies between sound velocities measured with NRIXS and IXS are 

evident in the data for double hexagonal close-packed (dhcp) FeHx (Figure 6.2): Mao et al. 

(2004) report vp(P) from NRIXS measurements of dhpc-FeHx that are identical to our 

results for ε-Fe up to 52 GPa, while Shibazaki et al. (2012) report vp(P) from IXS 

measurements up to 70 GPa that are well above our values for ε-Fe and have a very 

different slope. In addition to the very different energies used to obtain these sound 

velocities, another possible contributing factor to this discrepancy is the difficulty 

associated with determining the exact amount of hydrogen that enters the lattice, as denoted 

by the subscript “X.” This challenge is somewhat unique to hydrogen-bearing alloys, 

because hydrogen is not directly detectable with XRD, and it cannot be measured in 

recovered samples because the very small hydrogen atoms can escape the lattice upon 

decompression to ambient pressures. As a result, both Mao et al. (2004) and Shibazaki et 

al. (2012) estimate the amount of hydrogen in their samples to correspond to x ≈  1, based 

on comparisons with existing equations of state (EOS) for the dhcp crystal structure of FeH 

(Badding et al., 1991; Hirao et al., 2004a).  

Another noticeable feature from Figure 6.2 is that the reported uncertainties for the 

sound velocities of iron alloys are often relatively large, even at small compressions. For 

example, reported errors for IXS measurements of the compressional sound velocities of 

Fe0.89Ni0.04Si0.07 at pressures that overlap with our experimental compression range (32 to 
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68 GPa) are on the order of 200 to 300 m/s (Antonangeli et al., 2010); errors reported for 

the compressional sound velocities of Fe0.92Si0.08 measured by NRIXS over a similar 

pressure range (36 to 55 GPa) are between 300 and 400 m/s (Lin et al., 2003c). Errors of 

this magnitude only correspond to a few percent of the measured vp, but it is important to 

note that they are from measurements performed at pressures that are ~1/2 that of Earth’s 

core–mantle boundary. Not only are experimental uncertainties likely to increase with 

compression as counting rates decrease and statistical fluctuations become increasingly 

important, but extrapolation of NRIXS and IXS data to core pressures will only exacerbate 

the existing divergence between them at lower pressures. In addition, the amount of light 

elements present in the core is thought to be only a few percent (e.g., Badro et al., 2007; 

Sakai et al., 2011), so it is essential to have sound velocity data of similarly high statistical 

quality as our measurements (Table 5.2) in order to first compare with pure iron and, thus, 

better constrain the identity and amounts of light elements that are present in the core.  

In addition to the magnitude of reported uncertainties for the compressional sound 

velocities in Figure 6.2, it is important to consider how they were calculated from the 

corresponding experimental data. For example, Lin et al. (2004) report vp(P) from NRIXS 

measurements of the tetragonal phase of Fe3S that have uncertainties on the order of 1.5%. 

However, Lin et al. (2004) did not measure in situ XRD, so their reported pressures are 

based on fluorescence measurements of ruby chips in the sample chamber and the 

nonhydrostatic ruby pressure scale reported by Mao et al. (1978). Their sound velocities 

are then based on the pressures determined from these secondary pressure markers, which 

are used with an established EOS (e.g., Fei et al., 2000) to determine the sample’s density 

in the absence of in situ XRD and, in turn, obtain sound velocities from the phonon DOS. It 
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Figure 6.3.  Compressional sound 
velocities of ε-Fe and Fe3C. Black 
circles give our measured 
compressional sound velocities 
(vp) for ε-Fe as a function of 
pressure. Blue symbols give vp(P) 
for Fe3C from NRIXS (squares 
(Gao et al., 2009)) and IXS 
(triangles; (Fiquet et al., 2009)). 
 

is important to note that uncertainties in pressure propagate to those of sound velocities, so 

an underestimation of pressure uncertainties can result in artificially low sound velocity 

errors, particularly if the reported EOS parameter uncertainties are not considered. 

Therefore, we reemphasize the importance of measuring in situ XRD, which provides 

direct knowledge of the sample density and, in turn, increasingly accurate sound velocities. 

Finally, Gao et al. (2009) and Fiquet et al. (2009) did measure in situ XRD along 

with NRIXS and IXS, respectively, so we are able to provide a more detailed comparison 

between their results and ours for ε-Fe (Figure 6.3). Both studies investigated orthorhombic 

Fe3C; Gao et al. (2009) performed NRIXS and in situ XRD experiments up to 50 GPa, and 

Fiquet et al. (2009) performed IXS and in situ XRD experiments up to 68 GPa. The three 

largest compression points from each of these studies overlap with our experimental 

pressure range. Gao et al. (2009) reported compressional sound velocities that are ~2.5% 

larger than ours for ε-Fe at similar pressures (Table 5.2), which is within their reported 

uncertainties for those compression points. In addition, two of the sound velocities 

measured by Fiquet et al. (2009) agree well with those measured by Gao et al. (2009), and 
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are ~4% to 5% larger than our measured sound velocities at similar pressures. However, vp 

at the largest compression point measured by Fiquet et al. (2009) (P = 68 GPa) is ~15% 

larger than our measured sound velocity at 69 GPa. The cause of this sudden increase in vp 

measured by Fiquet et al. (2009) is not immediately clear, since measurements by Gao et 

al. (2009) do not show any indication of a positive curvature up to their largest 

compression point at 50 GPa, and existing EOS experiments on orthorhombic Fe3C 

observed no phase transitions up to 73 GPa.  
 

 

Figure 6.4.  Density dependence of compressional sound velocities of ε-Fe and iron alloys. Black 
circles give our measured compressional sound velocities (vp) for ε-Fe as a function of density, 
which is determined from our in situ XRD and m = 56.95 g/mol for 95% isotopically enriched 57Fe. 
Blue symbols give vp(ρ) for Fe3C from NRIXS (squares (Gao et al., 2009)) and IXS (triangles; 
(Fiquet et al., 2009)). All other symbols are labeled on the figure and are from IXS measurements 
by Badro et al. (2007) (FeS2, brown downwards triangle; FeSi, orange cross; FeO, turquoise 
diamond); Kantor et al. (2007) (Fe0.78Ni0.22, green x); Antonangeli et al. (Fe0.89Ni0.04Si0.07, red star); 
and Shibazaki et al. (2012) (FeHx, purple left-triangle). 
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Because both studies also measured in situ XRD, we can further investigate this 

discrepancy via the density dependence of their compressional sound velocities for Fe3C 

(Figure 6.4). In particular, we compare the slopes of vp(ρ) measured by each study: the data 

measured by Fiquet et al. (2009) suggest a slope of 1.90 ± 0.23 (km/s)/(g/cm3) for vp(ρ), 

while values reported by Gao et al. (2009) correspond to a slope of 1.29 ± 

0.14 (km/s)/(g/cm3). For comparison, we note that our vp(ρ) for ε-Fe reveal a slope of 1.07 

± 0.04 (km/sec)/(g/cm3) (Section 5.6.4). The disagreement between the slopes measured by 

Fiquet et al. (2009) and Gao et al. (2009) is beyond the relevant uncertainties, which are 

based on an errors-weighted least-squares linear fit of the reported vp(ρ) from each study. 

We note that the largest compression point measured by Fiquet et al. (2009) deviates from 

the linear trend that is suggested by their four smallest compression points. Inspection of 

their data (see Figure 2 in reference) reveals that Fiquet et al. (2009) determined vp from a 

minimum momentum transfer of 4 nm–1 and E ≥ 20 meV for their first four compression 

points, but from a minimum momentum transfer of 6 nm–1 and E ≥ 35 meV at 68 GPa. For 

comparison, we note that Gao et al. (2009) determined vp by fitting the low-energy region 

of their measured phonon DOS with 3 meV < E < 12 meV. Therefore, the limited energy 

range of the fit by Fiquet et al. (2009) for their final compression point could be 

responsible for the disagreement between their results and those of Gao et al. (2009).  

Also in Figure 6.4, we plot reported results for the density dependence of vp from 

additional IXS studies that measured in situ XRD (Badro et al., 2007; Kantor et al., 2007; 

Antonangeli et al., 2010; Shibazaki et al., 2012). The apparently linear dependence of vp 

with respect to density for most data sets (i.e., compositions) is consistent with Birch’s Law 

(Birch, 1960; 1961). We note that Badro et al. (2007) do not report corresponding 
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pressures, crystal structures, or EOS for their measured densities of Fe3C, FeO, FeSi, FeS, 

and FeS2, which inhibits direct comparison with our results for ε-Fe at the same pressure 

(i.e., depth in the Earth). In addition, we point out that for both NRIXS and IXS 

investigations of Fe-Ni alloys (Figures 6.1 and 6.2), Ni has been shown to have only a 

slight effect on the compressional sound velocities of pure iron, for both hcp (Mao et al., 

1990; Lin et al., 2003c) and fcc (Kantor et al., 2007) crystal structures.  

In summary, we have evaluated the effects of alloying on iron’s compressional 

sound velocities by comparing our measured vp(ρ) and vp(P) with those reported for iron 

alloys containing Ni and candidate light elements for the core (H, C, Si, S). In theory, it 

should be possible to combine our measured densities and sound velocities with those 

reported for iron alloys, and invert the resulting dataset to better constrain the composition 

of Earth’s core via comparison with seismic observations. However, a higher statistical 

quality, larger compression range, and better understanding of discrepancies from different 

experimental techniques that have been used to probe the compressional sound velocities of 

iron alloys are necessary before such an inversion will be feasible. In addition, temperature 

effects must be considered in order to make direct comparisons with seismic observations 

of Earth’s core (Section 6.3). 

6.2.2  Alloying Effects on Shear Sound Velocities 

We begin our discussion of the effects of alloying on the shear velocities of ε-Fe by 

recalling that our measured shear sound velocities for ε-Fe are estimated to be ~67% larger 

than those predicted by PREM on the inner core side of the inner–core boundary (ICB; 

Section 5.6.4) (Dziewonski and Anderson, 1981). This estimate is based on a linear fit and 

extrapolation of our vs(ρ) to the predicted density of ε-Fe at the depth of the ICB and at  
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Figure 6.5.  Shear sound velocities of ε-Fe and iron alloys. Black circles give our measured shear 
sound velocities (vs) for ε-Fe as a function of pressure, which is determined from our in situ XRD 
and the Vinet EOS parameters reported by Dewaele et al. (2006). The remaining symbols give vs(P) 
from NRIXS experiments on FeHx (purple left triangle; (Mao et al., 2004)); Fe3C (dark blue square; 
(Gao et al., 2009)); Fe0.85Si0.15 (orange cross; (Lin et al., 2003c)); Fe3S (brown downward triangle; 
(Lin et al., 2004)); and Fe0.92Ni0.08 (green x; (Lin et al., 2003c)). 

300 K (Dewaele et al., 2006), which revealed a slope of 0.44 ± 0.02 (km/s)/(g/cm3).  

In Figure 6.5, we plot the pressure dependence of our measured shear sound 

velocities (vs; filled circles) with those reported from previous NRIXS studies (Lin et al., 

2003c; Lin et al., 2004; Mao et al., 2004; Gao et al., 2009). The first noticeable feature 

when qualitatively comparing existing measurements of the high-pressure vp (Figure 6.2) 

and vs (Figure 6.5) for iron alloys is that far fewer data points have been measured for the 

latter quantity. This is a result of the fact that the IXS studies included in Figures 6.2–6.4 

were performed on polycrystalline samples, in which the signal to noise ratio is too low to 
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detect the shear mode and, in turn, the shear sound velocities of iron alloys.  

As before, it is immediately obvious that experiments must be performed over a 

wider pressure range in order to make reasonable inferences about the corresponding sound 

velocities in Earth’s core, either via comparison with average Earth models or with the 

sound velocities of ε-Fe (Figure 6.5). A maximum of four data points for an iron alloy 

containing a given candidate light element (i.e., H, C, Si, or S) overlap with our 

experimental compression range, and the largest compression point plotted in Figure 6.5 is 

at 70 GPa. We note that the shear sound velocities of hcp-Fe0.92Ni0.08 have been measured 

with NRIXS up to 106 GPa (Lin et al., 2003c), and that they are ~7% smaller than those of 

ε-Fe, based on an average of the three overlapping compression points. However, there is a 

large amount of scatter in the dataset presented by Lin et al. (2003c), thus prohibiting a 

more quantitative treatment. In general, we conclude that while Ni may not have a strong 

influence on the density or compressional sound velocities of pure iron, its effects on the 

shear sound velocities (i.e., the shear moduli) could be significant.  

Another striking feature in Figure 6.5 is that the shear sound velocities of dhcp-

FeHx are slightly larger than—but identical within uncertainty to—those of ε-Fe. We note 

that this is opposite of the trend desired to move closer to matching seismic observations 

(independent of temperature effects). In addition, 15 atomic% Si appears to have little 

effect on the shear sound velocities of ε-Fe up to 55 GPa (Lin et al., 2003c), while the shear 

sound velocity reported for their largest compression point (70 ± 3 GPa) is ~4.5% smaller 

than our measured vs(69 ± 4 GPa). Using the EOS for hcp-Fe0.85Si0.15 reported by Lin et al. 

(2003a), we find ρ(55 GPa) ~ 9.8 g/cm3 and ρ(70 GPa) ~ 10.1 g/cm3, correcting for the 

mass of 95% isotopically enriched 57Fe. Together with their reported vs(55 GPa) = 4.09 ± 
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0.02 km/s and vs(70 GPa) = 4.10 ± 0.02 km/s, the predicted increase in shear modulus (μ) 

between 55 and 70 GPa is expected to be only ~6.7 ± 2.4 GPa (4.5%), following vs
2 = μ/ρ 

and considering reported uncertainties in vs. For comparison, we note that the increase in μ 

between compression points at 46 and 55 GPa is 17 GPa (12%), indicating a significantly 

different trend immediately before their largest compression point. Additional 

measurements at compression points beyond 70 GPa are needed to determine whether the 

largest compression point measured by Lin et al. (2003c) defines a noticeably different 

slope of vs(P) or a new lower trend in vs, or whether it requires a different explanation. 

A similar discussion applies to reported values for the shear sound velocities of 

orthorhombic Fe3C, which were measured by Gao et al. (2009) up to 50 GPa (Figure 6.5). 

It is possible that the small dip in shear sound velocity at 41 GPa corresponds to a softening 

in vs at that pressures, but with only a single larger compression data point, it is difficult to 

determine whether a new lower trend in vs(P) is being defined for Fe3C, or perhaps that its 

slope is significantly shallower than that of ε-Fe. Gao et al. (2009) report that their 

compressional sound velocities at pressures above the magnetic collapse between 4.3 and 

6.5 GPa increase linearly with density, i.e., they do not report a softening in vs. In 

particular, they find a slope of vs(ρ) to be ~0.24 (km/s)/(g/cm3), compared to our reported 

value of 0.44 ± 0.02 (km/s)/ (g/cm3) for ε-Fe.  

Finally, Figure 6.5 shows a trend of vs(P) for tetragonal Fe3S that is distinctly lower 

than that of ε-Fe, but with a similar slope. In particular, shear sound velocities for Fe3S 

reported by Lin et al. (2004) are ~8% smaller on average than those of ε-Fe at similar 

pressures. A larger compression range would be useful for determining an accurate slope 

for vs(P) of Fe3S and, in turn, whether vs(P) of Fe3S and ε-Fe remain roughly parallel or 
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ultimately cross at a higher pressure. We reemphasize here our discussion in Section 6.2.1 

about additional uncertainties associated with determining sound velocities from densities 

based on secondary pressure markers and an existing EOS, rather than in situ XRD. 

In summary, we have investigated the effects of alloying on iron’s shear sound 

velocities by comparing our measured vs(ρ) and vs(P) with those reported from NRIXS 

studies of iron alloys. With the exception of H, we found that the alloying of all other 

candidate light elements (C, Si, and S) presented in this chapter results in lower shear 

sound velocities than those measured for ε-Fe. However, as we concluded in the previous 

subsection, the large scatter and limited compression range of available experimental data 

on the shear sound velocities of iron alloys do not allow for a quality inversion in order to 

better constrain the composition of Earth’s core via comparison with seismic models.  

6.3 Temperature Effects  

In order to directly compare experimental values for the sound velocities of 

candidate core compositions with seismic observations, the effects of temperature must be 

considered. In particular, all of the experimental results presented in the previous sections 

were measured at 300 K, while temperatures in Earth’s core are on the order of thousands 

of Kelvin (Section 1.2). However, due to experimental challenges for NRIXS (and IXS) at 

simultaneous high pressure and temperature (PT) conditions (Section 5.6.4), little is known 

about the temperature effects on the phonon DOS (dispersion of acoustic phonons) of ε-Fe 

and, in turn, its sound velocities. Available information from NRIXS experiments on ε-Fe 

comes from two previously discussed high-PT studies by Shen et al. (2004) and Lin et al. 

(2005) (Section 5.6.4). Both studies found that ε-Fe’s sound velocities decrease with 

increasing temperature, and Lin et al. (2005) reported the following values for the 
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temperature derivatives of vp, vs, and the shear modulus (μ) at a constant density of 10.25 

g/cm3 (determined from secondary pressure markers and an EOS): dvp/dT ≈ -0.35 m/s/K; 

dvs/dT ≈ -0.46 m/s/K; and dμ/dT ≈ -0.035 GPa/K. However, the limited compression 

range, lack of in situ XRD, and large scatter and uncertainties—in addition to inherent 

challenges associated with maintaining stable temperatures over timescales of many 

hours—make overall trends difficult to quantify.  

Here we approximate the effects of temperature on our measured sound velocities 

for ε-Fe using a model based on finite-strain theory that was originally presented by Duffy 

and Anderson (1989). In general, we will determine the structural and thermoelastic 

properties of ε-Fe at an anchor point (i.e., one of our compression points after accounting 

for temperature effects), and then use finite-strain theory to extrapolate those properties 

along an adiabat to the pressures of Earth’s solid inner core. More specifically, we begin by 

determining the density (ρ) of ε-Fe at the temperature of our anchor point from our 

measured density at 300 K and an assigned value for its thermal expansion coefficient (α). 

Then, using the temperature dependence of the density and assigned values for ε-Fe’s 

ambient-temperature elastic moduli (K, μ) and their pressure (K', μ') and temperature 

( K T∂ ∂ and )Tµ∂ ∂  derivatives, we calculate values for the elastic moduli at the 

temperature of our anchor point. Finally, we extrapolate the high-PT density and elastic 

moduli to greater depths along an adiabat using finite-strain theory (Duffy and Anderson, 

1989), in order to allow for comparison between the structural and thermoelastic properties 

of ε-Fe at high-PT conditions and those of the solid inner core.  

To investigate whether finite-strain theory accurately describes the density 

dependence of our measured compressional and shear sound velocities, we build a simple 
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finite-strain model that is anchored at the density (pressure) of our smallest compression 

point, so that many of the necessary input parameters can be taken either directly from our 

data (ρ, α), or from a combination of our data and the Vinet EOS parameters reported by 

Dewaele et al. (2006) (KS, KS', μ, μ'). Specific values assigned for each necessary input 

parameter are given in Table 6.1. We set the temperature at the foot of the adiabat to be 

300 K to remove all temperature effects, which are calculated relative to the ambient 

temperature conditions at which experiments are often performed. The results of this 
 

 

Figure 6.6.  Density dependence of ε-Fe’s sound velocities from our finite-strain model at 300 K, 
with PREM. Black circles give the density dependence of our measured compressional (vp) and 
shear (vs) sound velocities for ε-Fe. Red dashed lines give the result of our finite-strain model 
without temperature effects (T = 300 K; Section 6.3; Table 6.1), to confirm the appropriateness of 
the model. vp(ρ) and vs(ρ) from PREM are given by blue and green lines with x’s, respectively 
(Dziewonski and Anderson, 1981). 
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simple finite-strain model are plotted as a function of density in Figure 6.6 as dashed red 

lines, where one can see that they agree well with our measured vp(ρ) and vs(ρ) at each 

compression point (filled circles). For comparison, we also include values for vp(ρ) and 

vs(ρ) from PREM as blue and green lines with X’s, respectively. 

Given the good agreement in Figure 6.6, we can now explore temperature effects 

on ε-Fe’s sound velocities via the same finite-strain model. We assign a new anchor point 

to coincide with our measurement at ρ = 11.84 ± 0.02 g/cm3 (P = 133 ± 4 GPa), which is 

close to the pressure of the core–mantle boundary (CMB; 135 GPa). We assign values for 

the ambient-temperature elastic moduli (KS, KS', μ, μ') from a combination of our data and 

the Vinet EOS reported by Dewaele et al. (2006) as before (Table 6.1), and a temperature 

at the CMB of 4000 K, based on an inner–core boundary (ICB) temperature of 5800 K and 

an outer core adiabat with γ = 1.56 (Jackson et al., 2012). In order to approximate the 

temperature-dependent input parameters for our finite-strain model, we turn to theoretical 

calculations of the high-temperature elastic properties of ε-Fe. We note that pressure and 

temperature effects on Tµ∂ ∂  have only been addressed with theoretical calculations and 

are not well-known. We estimate the temperature derivative of the shear modulus at the 

conditions of our anchor point to be -0.045 GPa/K, based on an interpolation of values 

given for the elastic stiffness constants at select densities and temperatures in Table 1 of 

Sha and Cohen (2010b). We note that this value is fairly close to the experimental value 

determined by Lin et al. (2005) at a smaller density (10.25 g/cm3) and lower temperature (T 

< 1700 K). Next, we approximate ε-Fe’s thermal expansion coefficient (α) at 135 GPa and 

4000 K to be 5 -1~ 1.8 10  K−× , based on Figure 11 in Alfè et al. (2001). Finally, the 

temperature derivative of the bulk modulus is related to the Anderson-Grüneisen parameter 
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(δT) via 

ln 1 .
ln

T
T

PT

K
V K T
αδ

α
∂∂   = = −   ∂ ∂   

 (6.1) 

Using Equation (6.1) with αKT ≈  12.5 MPa/K at 4000 K and ~135 GPa from Figure 12 in 

Alfè et al. (2001), and δT ≈  4.5 from Figure 7 in Sha and Cohen (2010a), we approximate 

( )135 GPaTK T∂ ∂ ≈  -0.056 GPa/K at 4000 K (Table 6.1).  

The pressure dependence of the density and compressional and shear sound 

velocities produced from the finite-strain model based on an anchor point near the 

conditions of Earth’s CMB and the aforementioned parameters are plotted in Figure 6.7 as 

dashed red lines. Gray dashed lines give the results of a similar model with the same values 

for the elastic moduli listed in the second column in Table 6.1, but with a lower CMB 

temperature of 3600 K and, in turn, an inner core temperature of 5400 K. This lower-bound 

temperature for the CMB is based on recent high-PT XRD experiments of an Fe-O-S alloy. 

Finally, ρ(P), vp(P) and vs(P) from PREM are plotted as black, blue, and green lines with 

X’s, respectively (Dziewonski and Anderson, 1981). We note that vp and vs from the finite-

strain model are determined as a function of density; to plot all of the parameters versus 

pressure, we apply the relevant densities to the Vinet EOS reported by Dewaele et al. 

(2006) and correct for thermal pressure following the procedure described in Sections 3.3 

and 3.5. We assume the inner core is isothermal (e.g., Stixrude et al., 1997) with a 

temperature of 5800 K, which corresponds to the melting point of ε-Fe at the ICB 

determined by Jackson et al. (2012) using a combination of high-temperature synchrotron 

Mössbauer spectroscopy experiments and the melting curve shape and thermal pressure 

determined in Chapter 3. 
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Figure 6.7.  Modeled pressure dependence of ε-Fe’s density and sound velocities from our finite 
strain model, with PREM. Red dashed lines give results for the density (ρ) and compressional (vp) 
and shear (vp) sound velocities of ε-Fe from our finite-strain model with an anchor point near the 
conditions expected for Earth’s core–mantle boundary (133 GPa and 4000 K; Section 6.3; Table 
6.1). Grey dashed lines correspond to a lower bound CMB temperature of 3600 K, based on the 
results of Terasaki et al. (2011). Densities from the model are converted to pressure using the Vinet 
EOS reported by Dewaele et al. (2006) and our thermal pressure correction described in Chapter 3, 
assuming an inner core temperature of 5600 K. ρ(P), vp(P), and vs(P) from PREM are given by 
black, blue, and green lines with x’s, respectively (Dziewonski and Anderson, 1981). 

Figure 6.7 reveals fairly good agreement between the modeled high-PT 

compressional sound velocities of ε-Fe and those of the inner core, but noticeably different 

slopes for vp(P). By contrast, the predicted densities and shear sound velocities from the 

finite-strain model have very similar slopes as those from PREM, but the modeled values 

are significantly larger: ~8% and ~4.5%, respectively, throughout the inner core. We note 

that our reported density contrast (i.e., the core density deficit, or CDD) is from the mass of 

our 95% isotopically enriched samples (m = 56.95 g/mol), which was the mass (density) 
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used to determine our sound velocities for ε-Fe and all of the input parameters for the 

finite-strain model that were based on our data. Scaling the densities in the finite-strain 

model by the ratio of the mass for the natural isotopic distribution of iron (55.845 g/mol) to 

that of our 57Fe samples and recalculating the CDD, one obtains a constant value of ~5.8%, 

which agrees well with our previously determined value of 5.5 ± 0.2 in Section 3.5. Finally, 

we note that the nearly constant value of the CDD throughout the inner core—assuming a 

constant temperature in the layer—is consistent with a chemically homogeneous inner core.  

\ 

Table 6.1.  Input parameters for our finite-strain model.  

 Figure 6.6 Figure 6.7 
Anchor Point Valuesa   
T (K) 300 4000 
P (GPa) 31(2) 133(4) 
ρ (g/cm3) 9.61(3) 11.84(2) 
K (GPa) 309 718 
K'  4.47 3.87 
μ (GPa) 147.7(1.3) 282.3(6.2) 
μ'  1.5 1.16 

Thermal Propertiesb   
α (10–5 K–1) -- 1.8 

K T∂ ∂ (GPa/K) -- -0.056 

Tµ∂ ∂ (GPa/K) -- -0.045 
aParameters that define the anchor points for our finite-strain models. Temperatures (T) are assigned 
to 300 K (Figure 6.6) to confirm that the finite strain model matches our data well; and to an 
approximate temperature on the core side of the CMB (Figure 6.7) to investigate temperature 
effects on our measured sound velocities. Pressures (P) and densities (ρ) correspond to two of our 
measured compression points (Tables 2.1 and 2.2). The adiabatic bulk modulus (K) and its pressure 
derivative (K') are determined from the Vinet EOS reported by Dewaele et al. (2006) and our 
measured thermodynamic properties (Section 5.5); the shear modulus (μ) and its pressure derivative 
(μ') are determined from our measured densities and shear sound velocities following 2

sv µ ρ= .  
bThe thermal expansion coefficient (α) and temperature derivatives of the bulk modulus ( )K T∂ ∂

and shear modulus ( )Tµ∂ ∂ are only relevant for T > 300 K, and are approximated as described in 
the text (Section 6.3). 
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Therefore, our finite-strain models gives no indication that a chemical gradient exists in the 

inner core, as might be expected if the light elements in the core preferentially enter the 

liquid phase, resulting in an outer core that becomes increasingly enriched in light elements 

with time and, in turn, an inner core that hosts more light elements with increasing radius. 

Putting this all together, our approximate finite-strain model for the high-PT elastic 

properties of ε-Fe suggests that its compressional sound velocities match those inferred for 

Earth’s solid inner core fairly well, while its density and shear sound velocities are larger 

than those of the core. Based on our discussion in Section 6.2, one possible mechanism for 

resolving this discrepancy is via the addition of light elements, which tend to have only 

minor effects on the compressional sound velocity of pure iron, but can significantly lower 

both its density and shear sound velocities. Another possible mechanism would be a higher 

temperature in the inner core, but we note that temperature is also expected to affect 

compressional sound velocities (e.g., Lin et al., 2005). Therefore, temperature alone cannot 

explain our estimates for the shear sound velocity and density contrasts, suggesting that 

light elements must be present in Earth’s inner core to match seismic observations. 

Finally, while our finite strain model provides a good qualitative investigation of 

temperature effects on the sound velocities of ε-Fe, we note that it is highly sensitive to the 

temperature derivatives of the high-pressure elastic moduli, which are not well-known. As 

previously discussed, we rely on theoretical calculations for these values because they are 

extremely difficult to access experimentally at the conditions of Earth’s core. Results from 

a variety of first-principles calculations seem to agree that the shear modulus decreases 

with increasing temperature ( )0Tµ∂ ∂ <  at core pressures, although the magnitude of this 

derivative varies from study to study (Steinle-Neumann et al., 2001; Vočadlo et al., 2009; 
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Sha and Cohen, 2010b).  The same studies also produce very discrepant values for the 

temperature derivative of the bulk modulus: Vocadlo et al. (2009) predict K T∂ ∂ < 0—

which is consistent with the value used in our finite strain model (Table 6.1)—but both 

Steinle-Neumann et al. (2001) and Sha and Cohen (2010b) find 0K T∂ ∂ >  as a result of 

the fact that c / a increases rapidly at high temperatures. Therefore, additional work is 

needed to better understand the behavior of the elastic constants of ε-Fe at high-PT 

conditions before more quantitative conclusions can be made about the effects of 

temperature on the sound velocities of ε-Fe. 

6.4 Concluding Remarks  

In this thesis, we have investigated the thermoelastic and vibrational 

thermodynamic properties of the high-pressure hexagonal close-packed phase of iron (ε-Fe) 

up to an outer core pressure of 171 GPa, for the purpose of improving our understanding of 

Earth’s iron-rich core. In particular, we used nuclear resonant inelastic x-ray scattering and 

in situ x-ray diffraction experiments in a diamond-anvil cell to directly probe the volume 

dependence of the total phonon density of states (DOS) of ε-Fe. In turn, we determined a 

variety of vibrational thermodynamic parameters, whose volume dependences are 

intimately related to many important properties of Earth’s core. The major conclusions of 

this thesis include 

• The volumetric derivative of ε-Fe’s vibrational free energy is directly related to its 

vibrational thermal pressure, which we use to determine the total thermal pressure 

by accounting for temperature and electronic effects. Assuming an inner–core 

boundary (ICB) temperature of 5600 K, we determine a total thermal pressure of 
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56 GPa at this boundary and a corresponding core-density deficit of 5.5 ± 0.2%. We 

note that this new tight constraint on the amount of light elements present in Earth’s 

solid inner core has important implications for the relative importance of chemical 

versus thermal buoyancy in generating the geodynamo, and in estimates of the 

melting (freezing) point depression at the inner–core boundary (Chapter 3). 

• The volume dependence of ε-Fe’s Lamb-Mössbauer factor is related to the mean-

square atomic displacement and, in turn, the melting curve shape via Gilvarry’s 

reformulation of Lindemann’s melting criterion. By anchoring our determined 

melting curve shape with established melting points for ε-Fe and accounting for 

both temperature effects and the previously mentioned thermal pressure, we 

determine a melting temperature of ε-Fe at 330 GPa of 5600 ± 200 K. This serves 

as an estimate for the temperature at the ICB, where Earth’s iron-rich solid inner 

core and liquid outer core are in contact (Chapter 3). 

• The volume dependence of the phonon DOS is directly related to the definition of 

the vibrational Grüneisen parameter (γvib), which we determine using a generalized-

scaling analysis of the phonon DOS and the common parameterization, γvib(V) = 

γvib,0(V/V0)q. We find an ambient pressure γvib,0 = 2.0 ± 0.1 for a range of q = 0.8 to 

1.2 at 300 K, which provides a self-consistent check on the vibrational thermal 

pressure and melting curve shape previously described (Chapter 4). 

• The reduced isotopic partition function ratios (β-factors) of ε-Fe are directly related 

to its vibrational kinetic energy. We investigated ε-Fe’s β-factors as a function of 

pressure and temperature, and found that the available resolution does not permit 

determination of isotopic shifts at the temperatures expected for Earth’s mantle. In 
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addition, we emphasize that the β-factors reported here are for solid iron and are 

expected to differ significantly from the corresponding values for liquid iron, where 

the latter are more closely related to discussions of core formation (Chapter 5). 

• The volumetric derivative of the vibrational entropy is directly related to the 

product of the vibrational thermal expansion coefficient (αvib) and the isothermal 

bulk modulus. Using existing equation of state parameters, we determine αvib(300 

K) ranges from 1.84 ± 0.01 10–5 K–1 to 0.67 10–5 K–1 over our experimental 

compression range. Together with our γvib, this result provides the means for 

converting between isothermal and adiabatic bulk moduli, which is necessary for 

determining accurate sound velocities for ε-Fe (Chapter 5). 

• A parabolic fit of the low-energy region of the phonon DOS provides ε-Fe’s Debye 

sound velocity via our measured sound velocities. In turn, the combination of our 

Debye sound velocities with our measured density, γvib, and αvib, and established 

isothermal bulk moduli gives ε-Fe’s compressional and shear sound velocities at 

300 K. Comparing our measured sound velocities with those reported for iron 

alloys, we find that an important next step is to extend the compression range and 

improve the statistical quality of sound velocity data for iron alloys, in order to 

allow for more quantitative conclusions about the effects of alloying on the sound 

velocities of ε-Fe. Finally, we compare our measured sound velocities with seismic 

observations via third-order finite-strain analysis and estimates for the thermal 

properties of ε-Fe. From the modeled high-temperature behavior of our sound 

velocities, we find fairly good agreement between ε-Fe’s compressional sound 

velocities and those inferred for the inner core from the Preliminary Reference 
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Earth Model; however, ε-Fe’s density and shear sound velocities are ~6% and 4.5% 

larger than those of the core, respectively, further suggesting the presence of light 

elements in the solid inner core. We note that a better understanding of the high-

pressure and temperature behavior of ε-Fe’s elastic moduli is necessary in order to 

make more quantitative conclusions about the effects of temperature on the sound 

velocities of ε-Fe.  
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