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Abstract 

Iron is the main constituent in Earth’s core, along with ~5 to 10 wt% Ni and some 

light elements (e.g., H, C, O, Si, S). This thesis explores the vibrational thermodynamic and 

thermoelastic properties of pure hexagonal close-packed iron (ε-Fe), in an effort to improve 

our understanding of the properties of a significant fraction of this remote region of the 

deep Earth and in turn, better constrain its composition. 

In order to access the vibrational properties of pure ε-Fe, we directly probed its total 

phonon density of states (DOS) by performing nuclear resonant inelastic x-ray scattering 

(NRIXS) and in situ x-ray diffraction (XRD) experiments at Sector 3-ID-B of the 

Advanced Photon Source (APS) at Argonne National Laboratory. NRIXS and in situ XRD 

were collected over the course of ~14 days at eleven compression points between 30 and 

171 GPa, and at 300 K. Our in situ XRD measurements probed the sample volume at each 

compression point, and our long NRIXS data-collection times and high-energy resolution 

resulted in the highest statistical quality dataset of this type for ε-Fe to outer core pressures. 

Hydrostatic conditions were achieved in the sample chamber for our experiments at smaller 

compressions (P ≤ 69 GPa) via the loading of a neon pressure transmitting medium at the 

GeoSoilEnviroCARS (GSECARS) sector of the APS. For measurements made at P > 69 

GPa, the sample was fully embedded in boron epoxy, which served as the pressure 
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transmitting medium. 

From each measured phonon DOS and thermodynamic definitions, we determined 

a wide range of vibrational thermodynamic and thermoelastic parameters, including the 

Lamb-Mössbauer factor; vibrational components of the specific heat capacity, free energy, 

entropy, internal energy, and kinetic energy; and the Debye sound velocity. Together with 

our in situ measured volumes, the shape of the total phonon DOS and these parameters 

gave rise to a number of important properties for ε-Fe at Earth’s core conditions. 

For example, we determined the Debye sound velocity (vD) at each of our 

compression points from the low-energy region of the phonon DOS and our in situ 

measured volumes. In turn, vD is related to the compressional and shear sound velocities via 

our determined densities and the adiabatic bulk modulus. Our high-statistical quality 

dataset places a new tight constraint on the density dependence of ε-Fe’s sound velocities 

to outer core pressures. Via comparison with existing data for iron alloys, we investigate 

how nickel and candidate light elements for the core affect the thermoelastic properties of 

iron. In addition, we explore the effects of temperature on ε-Fe’s sound velocities by 

applying pressure- and temperature-dependent elastic moduli from theoretical calculations 

to a finite-strain model. Such models allow for direct comparisons with one-dimensional 

seismic models of Earth’s solid inner core (e.g., the Preliminary Reference Earth Model).  

Next, the volume dependence of the vibrational free energy is directly related to the 

vibrational thermal pressure, which we combine with previously reported theoretical values 

for the electronic and anharmonic thermal pressures to find the total thermal pressure of ε-

Fe. In addition, we found a steady increase in the Lamb-Mössbauer factor with 

compression, which suggests restricted thermal atomic motions at outer core pressures. 
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This behavior is related to the high-pressure melting behavior of ε-Fe via Gilvarry’s 

reformulation of Lindemann’s melting criterion, which we used to obtain the shape of ε-

Fe’s melting curve up to 171 GPa. By anchoring our melting curve shape with 

experimentally determined melting points and considering thermal pressure and 

anharmonic effects, we investigated ε-Fe’s melting temperature at the pressure of the 

inner–core boundary (ICB, P = 330 GPa), where Earth’s solid inner core and liquid outer 

core are in contact. Then, combining this temperature constraint with our thermal pressure, 

we determined the density of ε-Fe under ICB conditions, which offers information about 

the composition of Earth’s core via the seismically inferred density at the ICB.  

In addition, the shape of the phonon DOS remained similar at all compression 

points, while the maximum (cutoff) energy increased regularly with decreasing volume. As 

a result, we were able to describe the volume dependence of ε-Fe’s total phonon DOS with 

a generalized scaling law and, in turn, constrain the ambient temperature vibrational 

Grüneisen parameter. We also used the volume dependence of our previously mentioned vD 

to determine the commonly discussed Debye Grüneisen parameter, which we found to be 

~10% smaller than our vibrational Grüneisen parameter at any given volume. Finally, 

applying our determined vibrational Grüneisen parameter to a Mie-Grüneisen type 

relationship and an approximate form of the empirical Lindemann melting criterion, we 

predict the vibrational thermal pressure and estimate the high-pressure melting behavior of 

ε-Fe at Earth’s core pressures, which can be directly compared with our previous results.  

Finally, we use our measured vibrational kinetic energy and entropy to approximate 

ε-Fe’s vibrational thermodynamic properties to outer core pressures. In particular, the 

vibrational kinetic energy is related to the pressure- and temperature-dependent reduced 
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isotopic partition function ratios of ε-Fe and in turn, provide information about the 

partitioning behavior of solid iron in equilibrium processes. In addition, the volume 

dependence of vibrational entropy is directly related to the product of ε-Fe’s vibrational 

component of the thermal expansion coefficient and the isothermal bulk modulus, which 

we find to be independent of pressure (volume) at 300 K. In turn, this product gives rise to 

the volume-dependent thermal expansion coefficient of ε-Fe at 300 K via established EOS 

parameters, and the vibrational Grüneisen parameter and temperature dependence of the 

vibrational thermal pressure via thermodynamic definition. 
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NOTATION AND NOMENCLATURE 

As a reference, we provide descriptions and definitions for the following list of 

acronyms and variables that appear frequently in the chapters of this thesis. The following 

three tables are organized by related topics. 

Table xvii.1.  Acronyms for average Earth models and major boundaries in the deep Earth. 

Acronym Definition and Description 

CMB Core–mantle boundary: A seismically determined boundary between 
Earth’s iron-rich outer core and the overlying silicate-rich mantle, which 
lies at a depth of ~2891 km. It is indicated in seismic models by a sudden 
increase in density, decrease in compressional sound velocity, and 
disappearance of shear waves. 

ICB Inner–core boundary: A seismically determined boundary between Earth’s 
solid inner core and liquid outer core, which lies at a depth of ~5150 km. It 
is indicated in seismic models by a slight increase in density and 
compressional sound velocity, and the reappearance of shear waves. 

PREM Preliminary reference Earth model: A commonly cited average Earth model 
that is based on thousands of seismic observations collected at over 30 
seismic stations around the continents. PREM provides average density and 
seismic wave velocity profiles with depth, based on the assumption that the 
Earth is radially symmetric (Dziewonski and Anderson, 1981). 
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Table xvii.2.  Terms related to experimental techniques discussed in this thesis. 

Term Definition and Description 

ALS Advanced Light Source: A 2nd-generation synchrotron x-ray source at 
Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 

APS Advanced Photon Source: A 3rd-generation synchrotron x-ray source at 
Argonne National Laboratory, Argonne, IL, USA. 

IXS Inelastic x-ray scattering: An experimental technique that probes the 
dispersion of longitudinal acoustic phonon energies and in turn, the elastic 
tensor and sound velocities of single crystal samples. 

NRIXS Nuclear resonant inelastic x-ray scattering: An experimental technique that 
probes the partial projected phonon density of states of select isotopes.  

DOS Density of states: In general, a density of states gives the distribution of 
states, or the number of states that exist for a given energy interval; in this 
study, we use the term in the context of the “phonon density of states,” 
which provides the energy (frequency) distribution of all vibrational states 
(phonon modes) of a material. 

XRD X-ray diffraction: An experimental technique that probes a material’s 
interplanar atomic spacing and in turn, the unit cell parameters and unit 
cell volume of a crystalline material.  

EOS Equation of state: An equation describing the relationship between state 
variables for a material under a given set of physical conditions. In this 
study, the most common equations of state relate a material’s pressure with 
its volume, and occasionally temperature. 

bcc Body-centered cubic: A non-close-packed crystal structure with cubic 
symmetry. 

fcc Face-centered cubic: A close-packed crystal structure with cubic 
symmetry. 

hcp Hexagonal close-packed: A close-packed crystal structure with hexagonal 
symmetry.  

ε-Fe Hexagonal close-packed iron: The high-pressure phase of iron that will be 
the focus of this thesis.  
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Table xvii.3.  Variables that appear frequently in this thesis. 

Variable Common 
Units Description 

V cm3/mol; 
Å3/mol 

Volume: Unless otherwise stated, volume refers to a material’s 
molar volume per atom at a given amount of compression; 
reported volumes from this study are determined from in situ x-
ray diffraction and the definition of a hexagonal close-packed 
unit cell; a subscript 0 indicates some reference conditions; a 
subscript i indicates a single compression point.  

ρ g/cm3 Density: A material’s mass per unit volume at a given amount of 
compression; reported densities from this study are determined 
from our measured volumes and m = 56.95 g/mol for 95% 
isotopically enriched 57Fe; a subscript 0 indicates some reference 
conditions. Another use of density refers to densities in the 
Earth, which are inferred from seismic observations of its normal 
modes and modeled as a function of depth in average Earth 
models like PREM (see acronym section above). 

P 

 

GPa; 
Mbar 

Pressure: the amount of force applied per unit area; reported 
pressures from this study are determined from our measured 
volumes and an established equation of state for ε-Fe; in other 
studies, pressure is often determined using the compressional 
behavior of secondary pressure markers, such as ruby, gold, and 
other metals. Subscripts can indicate static pressure (Pv) as 
determined from an ambient temperature equation of state; 
thermal pressure (Pth) or its vibrational (Pvib) or electronic (Pel) 
components, which indicate the amount of internal pressure 
produced by thermal excitations of phonons or electrons,; 
superscripts can indicate either harmonic (h) or anharmonic (ah) 
contributions to a given component of thermal pressure. 

K GPa Bulk modulus: a material’s resistance to uniform compression, 
given by the 2nd-order volume derivative of the material’s free 
energy; sometimes referred to as “incompressibility;” subscripts 
can indicate adiabatic (KS) or isothermal (KT) bulk moduli; its 
pressure derivative is indicated by a prime (K'). 

μ GPa Shear modulus: a material’s resistance to shear stress, given by 
the ratio of shear stress to shear strain; sometimes referred to as 
“rigidity”; its pressure derivative is indicated by a prime (μ'). 
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Variable Common 
Units Description 

D(E,V) 1/eV Phonon density of states (see acronym section above). 

C kB/atom; 
meV/atom 

Specific heat capacity: the amount of heat (energy) required to 
increase the temperature of a material by a given amount; 
subscripts indicate the vibrational (Cvib) or electronic (Cel) 
components of the specific heat capacity. 

F kB/atom; 
meV/atom 

Helmholtz free energy: a material’s free (usable) energy at a 
fixed volume and temperature; subscripts indicate the vibrational 
(Fvib) or electronic (Fel) components of the free energy.  

Svib kB/atom; 
meV/atom 

Vibrational entropy: the temperature derivative of a material’s 
vibrational Helmholtz free energy at constant volume; 
proportional to the number of ways the internal coordinates of a 
system can be arranged to produce thermodynamically 
equivalent states, considering dynamical (phonon) effects. 

Uvib kB/atom; 
meV/atom 

Vibrational internal energy: the vibrational component of a 
material’s total internal energy, which includes contributions 
from both kinetic and potential energies.  

EK kB/atom; 
meV/atom 

Vibrational kinetic energy: the portion of material’s internal 
energy that is produced by atomic motions (phonons).  

<u2> Å2 Mean-square atomic displacement: the amplitude of an atom’s 
displacement around its equilibrium position, which is sensitive 
to chemistry, crystal structure, pressure, and temperature. 

fLM -- Lamb-Mössbauer factor: a material’s probability for recoilless 
absorption, which contains information about lattice dynamics 
and is closely related to <u2>. 

TLM K Lamb-Mössbauer temperature: a parameter introduced to 
represent the high-temperature behavior of <u2>.  

v km/s Sound velocities: the velocity with which sound waves travel 
through a material; subscripts indicate either the Debye (vD), 
compressional (vp), or shear (vs) sound velocities; vD is an 
average sound velocity obtained directly from the phonon 
density of stations; vp and vs are related to vD via the density and 
adiabatic bulk modulus, and are conceptually equivalent to 
seismic velocities measured in the Earth. 
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Variable Common 
Units Description 

γ -- Grüneisen parameter: the coefficient that relates a material’s 
internal energy and thermal pressure; subscripts indicate 
vibrational (γvib) or Debye (γD) Grüneisen parameters; the former 
is related to the phonon density of states, and the latter is based 
on Debye’s approximate description of the same spectrum. 

lnβ -- Reduced isotopic partition function ratio: the ratio of isotope 
ratios for a given material and for dissociated atoms at 
equilibrium; β-factors are related to the equilibrium fractionation 
factor and in turn, determine the distribution of isotopes in 
equilibrium processes.  

α 10−5K−1 Thermal expansion coefficient: the change in volume that results 
from increasing temperature at constant pressure; subscripts 
indicate the vibrational contribution to the thermal expansion 
coefficient (αvib). 

δT -- Anderson-Grüneisen parameter: the volume dependence of the 
thermal expansion coefficient; from thermodynamic definition, 
the Anderson-Grüneisen parameter is proportional to the 
temperature derivative of the bulk modulus. 
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Chapter 1 

Introduction 

1.1 The Earth’s Core 

The Earth’s core accounts for approximately one-sixth of the Earth’s volume and 

one-third of its mass. We cannot directly sample such great depths in the Earth, so we rely 

largely on seismology to probe this remote region. Seismic observations of Earth’s normal 

modes provide constraints on the density of the deep Earth, and body-wave travel times are 

related to the velocity at which compressional and shear sound waves travel through it. 

Such observations have revealed that to first order, the Earth comprises four basic layers: 

crust, mantle, outer core, and inner core (Figure 1.1). More specifically, the seismically 

inferred sharp increase in density across the core–mantle boundary suggests that the Earth’s 

core is compositionally distinct from the overlying mantle. In addition, it has been 

determined that while Earth’s inner and outer cores are likely to be compositionally similar 

based on their comparable densities, they have very different elastic properties. Shear 

waves do not propagate through the outer core, but they reappear in the inner core, thus 

implying that a liquid outer core surrounds the solid inner core. Further evidence for a 

liquid outer core lies in geodynamo theory, which argues that the Earth’s magnetic field is 
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Figure 1.1.  Cut-out model of 
the Earth. The four basic layers 
of Earth’s interior are the crust; 
the silicate-rich mantle, which 
is often divided further into an 
upper mantle (P < 24 GPa) and 
lower mantle (24 GPa < P < 
135 GPa); the liquid metallic 
outer core (135 GPa < P < 330 
GPa); and the solid metallic 
inner core (330 GPa < P < 364 
GPa). We note that the pressure 
at the center of the Earth is 
mislabeled. Figure taken from 
Duffy (2008).  

generated by the rotation and vigorous convection of an electrically conductive fluid (i.e., 

the iron-rich liquid outer core) deep in the Earth. 

The combination and inversion of astronomic-geodetic data (e.g., radius, mass, and 

moment of inertia) with observed free oscillations, long-period surface waves, and body-

wave travel times results in average Earth models. These models assume a radially 

symmetric Earth (i.e., they are one-dimensional), and therefore they do not contain any 

information about lateral variations of the Earth’s elastic properties. Instead, average Earth 

models provide information about the average elastic properties of deep Earth materials, in 

addition to estimates for the depths (pressures) of major boundaries that correspond to 

discontinuities in the inferred elastic and structural properties.  

Two of the most commonly cited average Earth models are AK135 (Kennett et al., 

1995) and the Preliminary Reference Earth Model (PREM) (Dziewonski and Anderson, 
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1981). There are slight differences between AK135 and PREM near the boundaries 

between distinct layers in the deep Earth, but overall they agree on the general features 

(Figure 1.2). For example, they place the core–mantle boundary (CMB) at a depth of 

2891 km—which corresponds to a pressure of ~136 GPa—where there is a sudden increase 

in density by 78%, a decrease in compressional wave velocity by 41%, and the complete 

disappearance of shear waves. In addition, they find the boundary between the solid inner 

core and the liquid outer core (inner–core boundary; ICB) to be at a depth of 5150 km 

(329 GPa), based on the reappearance of shear seismic waves and smaller discontinuities 

  

 

Figure 1.2.  Average Earth models. The density (ρ, black) and compressional (vp, blue) and shear 
(vs, green) sound velocities predicted by the Preliminary Reference Earth Model (PREM) are 
plotted as a function of depth (Dziewonski and Anderson, 1981). Predictions for the same quantities 
from AK135 (Kennett et al., 1995) are plotted as red dashed lines beneath the PREM curves, for 
comparison. We note that the most prominent differences between the two plotted seismic models 
occur near major boundaries in the Earth, such as the transition zone and the core–mantle boundary, 
the latter of which corresponds to the sharp discontinuity at a depth of 2891 km. In addition, we 
point out that vs = 0 between 2891 and 5150 km depth, because shear waves cannot propagate 
through the liquid outer core; the latter depth corresponds to the inner–core boundary.  
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in the density (~5%) and compressional wave velocities (~6.5%) (e.g., Dziewonski and 

Anderson, 1981). Finally, within a given layer, models like PREM and AK135 provide 

radial density and velocity profiles (Figure 1.2), which are related to the composition of 

these remote regions via comparison with theoretical and experimental investigations of the 

structural and thermoelastic properties of candidate materials. 

From arguments based on seismic observations, laboratory experiments, and 

cosmochemical observations, iron is considered to be the main constituent in Earth’s core 

(e.g., Birch, 1964; McDonough, 2003). We will return to a discussion of the more minor 

constituents in the core in Section 1.3, but for now we focus on our current understanding 

of the high-pressure properties of pure iron. Pure iron crystallizes in the body-centered 

cubic (bcc; α-Fe) crystal structure at ambient pressure and temperature (PT) conditions. At 

ambient pressure, iron transitions to the face-centered cubic structure (γ-Fe) at ~1185 K 

(e.g., Birch, 1940), and then back to a bcc structure (δ-Fe) at ~1667 K before melting 

around 1811 K (e.g., Strong et al., 1973) (Figure 1.3). At low temperatures, iron undergoes 

a single phase transition to the more densely packed hexagonal close-packed structure (hcp; 

ε-Fe) around 10 to 18 GPa (e.g., Bancroft et al., 1956; Stixrude et al., 1994; Dewaele et al., 

2006; Sha and Cohen, 2006). Finally, the crystal structure at simultaneous high-pressure 

and temperature conditions is somewhat controversial (e.g., Saxena and Dubrovinsky, 

2000), but existing data suggest that ε-Fe is the stable phase at core condition (e.g., Vočadlo 

et al., 2000; Alfè et al., 2001; Ma et al., 2004; Nguyen and Holmes, 2004; Tateno et al., 

2010). Therefore, firmly establishing the high-pressure material properties of ε-Fe—the 

end-member composition of the core—with high-pressure experiments is essential for 

improving our understanding of a significant fraction of this remote region. 
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Figure 1.3.  Pressure–temperature phase diagram of iron. At ambient conditions, iron takes 
on the bcc structure (α); at low-P and high-T conditions, iron transforms first into an fcc 
structure (γ) and then back to a bcc structure (δ); at low-T and high-P conditions, iron 
transforms into an hcp structure (ε); the crystal structure of iron at high-PT conditions 
remains controversial, although there is significant evidence that ε-Fe remains stable 
throughout the PT conditions of Earth’s core (e.g., Tateno et al., 2010). Figure taken from 
Nguyen and Holmes (2004) and associated references within. 

1.2 Investigating Iron at Earth’s Core Conditions  

A wide variety of techniques have been used to investigate the structural, 

vibrational, and thermoelastic properties of ε-Fe. Shock-compression experiments have 

historically been the preferred method for experimentally probing the properties of 

candidate core materials, in part, because they simultaneously induce the pressure and 

temperature conditions expected in Earth’s core (~136 to 364 GPa, T > 2500 K). In such 

experiments, pressures are generated by dynamically impacting an iron sample with a 
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“flyer” that has been accelerated toward it using, e.g., a two-stage light gas gun. Across the 

resulting shock front, iron undergoes a nearly discontinuous, adiabatic change of state, 

from which one can investigate the pressure-volume-internal energy equation of state (e.g., 

McQueen et al., 1970), adiabatic bulk modulus (e.g., Jeanloz, 1979), compressional sound 

velocity (e.g., Jeanloz, 1979; Brown and McQueen, 1986; Nguyen and Holmes, 2004), and 

melting behavior (e.g., Brown and McQueen, 1986; Williams et al., 1987; Yoo et al., 1993; 

Ahrens et al., 2002; Nguyen and Holmes, 2004) of ε-Fe at simultaneous high-pressure and 

temperature (PT) conditions. For shocks that are large enough to induce melting of iron, 

one can also probe the high-PT bulk sound velocity and Grüneisen parameter of the liquid 

phase (e.g., Jeanloz, 1979; Brown and McQueen, 1986; Nguyen and Holmes, 2004).  

The induced pressures, sample densities, and internal energies from shock-

compression experiments are very well-known via the measured shock velocity, particle 

(sample) velocity, and initial pressure and density of the system, but it is difficult to 

accurately determine the temperature of a given shock. For transparent materials, the shock 

temperature can be measured fairly accurately (ΔT ~ 50 K at 4000 K) using time-resolved 

optical pyrometry (e.g., Luo et al., 2004). Determining the shock temperature for an opaque 

sample is much more challenging, so for experiments on ε-Fe, it is often approximated 

from thermodynamic calculations that use estimated values for ε-Fe’s Grüneisen parameter 

and heat capacity. Reported temperature uncertainties from this method are typically on the 

order of ~500 K (e.g., Brown and McQueen, 1986; Nguyen and Holmes, 2004).  

A complementary approach to investigating thermoelastic and thermodynamic 

properties at core pressures is to use static compression in the diamond-anvil cell (DAC; 

see Section 2.1 for details on the DAC). Static-compression experiments can achieve 
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similar pressures as those produced with shock compression, but they are performed at 

constant volume rather than constant entropy. In addition, the nature of static compression 

allows for independent manipulation of pressure and temperature and, in turn, a more 

controlled sampling of PT conditions. However, determining the pressure experienced by 

the sample in a DAC is difficult, and reported pressures are often based on calibrated 

pressure scales for secondary pressure markers that disagree significantly at core pressures 

(e.g., Steinle-Neumann et al., 2001; Dorogokupets and Oganov, 2006). The recorded 

pressure from a secondary pressure marker is also sensitive to the sample chamber 

environment (i.e., degree of hydrostaticity), so additional uncertainties are introduced to 

reported pressures based on the DAC preparations for a given experiment. For example, the 

pressure experienced by the sample may be significantly different than that experienced by 

the secondary pressure marker, which is most often not the sample itself. 

A wide variety of DAC techniques have been used to investigate the high-pressure 

structural and thermoelastic properties of iron. Synchrotron x-ray diffraction (XRD) has 

been used to investigate the crystal structure and compressibility of ε-Fe, the combination 

of which gives rise to its isothermal equation of state (e.g., Mao et al., 1990; Dewaele et al., 

2006). In addition, the use of a laser-heated DAC allows for the investigation of ε-Fe’s 

thermal equation of state and melting behavior via high-PT XRD experiments 

(Dubrovinsky et al., 1998; Shen et al., 1998; Uchida et al., 2001; Ma et al., 2004; Tateno et 

al., 2010). High-pressure Raman spectroscopy has been used to measure ε-Fe’s E2g Raman 

mode, which is correlated with a transverse acoustic phonon and, in turn, provides 

information about its shear sound velocity (Merkel et al., 2000). Inelastic x-ray scattering 

(IXS) has been used to probe iron’s compressional wave velocity via the inelastic scattering 
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of x-rays by long-wavelength acoustic phonons (e.g., Antonangeli et al., 2004). In general, 

IXS can be used to investigate the elastic constants and shear sound velocities of single 

crystals, but single crystals are not preserved across iron’s α→ε phase transition, and thus 

are not available for ε-Fe. For IXS measurements on polycrystals, the shear mode is 

extremely difficult to detect, typically because the background is too high or elastic 

scattering dominates at low energies. Finally, nuclear resonant inelastic x-ray scattering 

(NRIXS) is an especially powerful technique that probes the total phonon density of states 

of select resonant isotopes and, in turn, their sound velocities and vibrational 

thermodynamic properties. Somewhat fortuitously for the Earth Science community, 57Fe is 

one such isotope, and therefore has been the focus of many high-pressure NRIXS studies 

(e.g., Lübbers et al., 2000; Mao et al., 2001; Giefers et al., 2002; Lin et al., 2005; Mao et 

al., 2008; Murphy et al., 2011b). NRIXS experiments of ε-Fe will be the focus of this 

study, and will be described in more detail in Chapter 2. 

Finally, many theoretical studies have been dedicated to investigating the structural, 

thermoelastic, and thermodynamic properties of iron at core conditions. In particular, ab 

initio techniques have been applied by a number of research groups to investigate the 

Helmholtz free energy (F) and, in turn, the equation of state, thermodynamic, and 

thermoelastic properties of ε-Fe  (e.g., Wasserman et al., 1996; Stixrude et al., 1997; Alfè et 

al., 2001; Vočadlo et al., 2009; Sha and Cohen, 2010a). From the volume dependence of F, 

these studies explored the specific heat capacity, bulk modulus, thermal expansion 

coefficient, and Grüneisen parameter of ε-Fe up to pressures of 400 GPa and temperatures 

of 8000 K, often producing significantly different results at core conditions. Access to such 

extreme conditions highlights a major advantage of theoretical calculations: the PT range 
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they have access to is much larger than that of most experiments. However, the utility of 

theoretical studies at such conditions is limited by their lack of confirmation from 

experimental results; in general, it is via benchmarking against experiments that the 

accuracy of theoretical calculations is discussed.  

Another important strength of theoretical calculations is their ability to probe 

properties that are difficult or impossible to measure experimentally at in situ high-PT 

conditions. For example, theoretical calculations provide the most complete information 

about the pressure and temperature dependences of ε-Fe’s elastic moduli (e.g., Vočadlo et 

al., 2009; Sha and Cohen, 2010a). In addition, they are currently the sole source of 

information about electronic contributions to the thermodynamic and thermoelastic 

properties of ε-Fe at high-PT conditions, since experimental techniques that probe the 

electronic density of states require a free sample surface.  

Despite the wealth of data provided by theoretical, shock-compression, and static-

compression experiments—and in part because of it—many of the properties of iron at the 

PT conditions of Earth’s core remain highly uncertain. For example, there is an ongoing 

debate about the crystal structure of iron at Earth’s core conditions; many studies support 

the stability of ε-Fe, but a variety of solid–solid phase transitions have been suggested as a 

result of both static- and shock-compression experiments (e.g., Brown and McQueen, 1986; 

Anderson and Isaak, 2000; Andrault et al., 2000; Dubrovinsky et al., 2000b; Saxena and 

Dubrovinsky, 2000). In addition, even if we assume ε-Fe remains stable throughout Earth’s 

core, there is significant disagreement between theoretical (e.g., Vočadlo et al., 1997; Sola 

et al., 2009; Sha and Cohen, 2010a) and experimental (e.g., Brown and McQueen, 1982; 

Mao et al., 1990; Dubrovinsky et al., 1998; Uchida et al., 2001; Dewaele et al., 2006) 
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determinations of its equations of state (EOS). The ambient pressure volume (V0), 

isothermal bulk modulus (KT0), and pressure derivative of the isothermal bulk modulus 

(KT0′) from various static-compression experiments seem to be converging around V0 ~ 

6.75 cm3/mol, KT0 ~ 160 to 165 GPa, and KT0′ ~ 5.33 to 5.38 (e.g., Dewaele et al., 2006). 

However, many theoretical calculations of ε-Fe’s EOS report dramatically different EOS 

parameters: V0 ~ 6.08 cm3/mol, KT0 ~ 290 GPa, and KT0′ ~ 4 to 4.44 (e.g., Sha and Cohen, 

2010a). Such discrepancies result in significantly different predicted pressures for a given 

volume at small compressions ( 0 0.85V V ≥ ) (Dewaele et al., 2006; Sha and Cohen, 2006), 

and are due, in part, to the fact that theoretical calculations predict ε-Fe remains magnetic 

until ~50 GPa. Another likely factor is the trade-off between KT0 and KT0' when fitting an 

EOS to pressure–volume relationships measured with static-compression experiments.  

Finally, we note that the predicted melting temperatures for ε-Fe at the pressure of 

Earth’s inner–core boundary (330 GPa) span a range of  almost 3000 K: from 4850 ± 200 

K (Boehler, 1993) to 7600 ± 500 K (Williams et al., 1987). Many studies have found the 

melting temperature of ε-Fe falls in a slightly narrower range of ~5000 to 6000 K (e.g., 

Brown and McQueen, 1986; Shen et al., 1998; Laio et al., 2000; Ma et al., 2004; Nguyen 

and Holmes, 2004; Murphy et al., 2011a; Jackson et al., 2012). However, recent reports 

have predicted melting temperatures consistent with both the upper (Sola and Alfè, 2009) 

and lower (Komabayashi and Fei, 2010) bounds of the original range, suggesting that we 

are not yet converging on a single melting point for ε-Fe at Earth’s core conditions.  

1.3 Alloying and Temperature Effects of Iron 

Determining the properties of Earth’s core becomes even more complicated when 

one considers the fact that the end-member composition is not an accurate representation of 
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the overall composition. In addition to iron, the core is thought to contain ~5 to 10 wt% Ni 

and some light elements (e.g., H, C, O, Si, S), based in part on elemental ratios measured in 

iron meteorites (McDonough, 2003). The presence of light elements is further supported by 

the fact that the inferred density of the core is smaller than that of pure iron (e.g., Birch, 

1964; Jeanloz, 1979; Mao et al., 1990; Stixrude et al., 1997; Laio et al., 2000; Dewaele et 

al., 2006). In addition, the sound velocities and pressure and temperature derivatives 

inferred for the core do not match those measured for pure iron (e.g., Dziewonski and 

Anderson, 1981; Brown and McQueen, 1986; Mao et al., 2001; Antonangeli et al., 2004).  

The identity and amount of alloying elements present in the core is a highly 

underdetermined problem, so the focus of experimental and theoretical efforts has been 

divided over a long list of candidate compositions. Perhaps the most obvious composition 

to explore after pure iron is Fe-Ni, whose structural and elastic properties have been 

investigated with a variety of techniques, e.g., XRD (Mao et al., 1990), IXS (Kantor et al., 

2007), and NRIXS (Lin et al., 2003c). However, the three studies listed above measured the 

properties of iron alloyed with 20, 23, and 7.5 wt%, respectively; therefore, while 

discussion can involve results from all three experiments, additional uncertainties are 

introduced because of the different overall compositions, starting materials, and synthesis 

procedures. The situation is similar for investigations of iron alloyed with candidate light 

elements, such as Fe-H (e.g., Hirao et al., 2004a; Mao et al., 2004; Narygina et al., 2011; 

Shibazaki et al., 2012), Fe-C (e.g., Scott et al., 2001; Fiquet et al., 2009; Sakai et al., 2011), 

Fe-O (e.g., Struzhkin et al., 2001; Badro et al., 2007; Seagle et al., 2008; Fischer et al., 

2011; Ohta et al., 2012), Fe-Si (e.g., Lin et al., 2003c; Hirao et al., 2004b; Badro et al., 

2007; Asanuma et al., 2010), and Fe-S (e.g., Williams and Jeanloz, 1990; Lin et al., 2004; 
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Badro et al., 2007; Campbell et al., 2007; Morard et al., 2008). Finally, it is only fairly 

recently that experimental studies have considered iron alloyed with multiple elements (i.e., 

Ni and a light element, or more than one light element) (e.g., Antonangeli et al., 2010; 

Asanuma et al., 2011; Huang et al., 2011; Sakai et al., 2011; Terasaki et al., 2011), which 

is likely to be closer to an accurate description of the core’s composition. More discussion 

on the effects of alloying nickel and light elements with iron is presented in Chapter 6. 

Another important factor that must be addressed in future experiments is the effects 

of temperature on the aforementioned properties of ε-Fe. Theoretical studies have been 

investigating the properties of iron and iron alloys at the PT conditions of Earth’s core for 

over a decade, but discrepancies exist and confirmation with experimental results is 

essential. Shock-compression experiments are capable of achieving such experimental 

conditions, but suffer from the previously discussed challenge of accurately determining 

the shock temperature for opaque materials. DAC experiments at simultaneous high-PT 

conditions remain challenging to execute and interpret, but select experiments have been 

performed at the conditions of Earth’s solid inner core (e.g., Tateno et al., 2010; Terasaki et 

al., 2011). As the precision of DAC preparations continues to increase, we can anticipate 

more high-PT experiments that investigate a wider variety of candidate core compositions. 

1.4 Scope of Thesis 

It is now clear that exploring the structural, thermoelastic, and thermodynamic 

properties of core materials at Earth’s core conditions is a complex problem. To simplify it, 

the focus of this thesis will be on firmly establishing the high-pressure properties of pure 

iron up to an outer core pressure of 171 GPa. The ultimate goal is that our measurements 

and results of our analyses will provide a quality baseline for future investigations of the 
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effects of alloying and temperature.  

In order to probe the thermoelastic and vibrational thermodynamic properties of ε-

Fe, we measured the volume dependence of its total phonon density of states with nuclear 

resonant inelastic x-ray scattering (NRIXS) and in situ x-ray diffraction (XRD) 

experiments. Details of our experimental methods can be found in Chapter 2. Based on our 

NRIXS and in situ XRD data, we present the derivation and discussion of the following 

parameters for ε-Fe: 

• Thermal pressure (Pth) is the increase in internal pressure that results from the 

thermal excitation of electrons and phonons. In the context of Earth’s core, 

knowledge of ε-Fe’s Pth is necessary for determining the density of iron at the 

pressure and temperature conditions of Earth’s core. In turn, Pth is related to the 

amount of light elements that must be present in the core to match seismically 

inferred values for the density of this remote layer (Chapter 3).  

• As previously discussed, the high-pressure melting behavior of iron is an 

important quantity for constraining the temperature of the inner–core boundary, 

where Earth’s solid inner core and liquid outer core are in contact. Our 

experiments are performed at ambient temperature so we do not directly probe 

melting, but we investigate ε-Fe’s melting curve shape via parameters obtained 

from our measured phonon DOS (Chapter 3). 

• The vibrational Grüneisen parameter (γvib) relates vibrational components of the 

thermal pressure and thermal energy per unit volume, and is often used to 

extrapolate available melting points to higher pressures. We investigate both γvib 

and the approximate Debye Grüneisen parameter via the volume dependence of 
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the total phonon DOS and its low-energy region, respectively. Comparison of 

these two quantities allows us to evaluate the accuracy of the Debye model for 

ε-Fe (Chapter 4). 

• The reduced isotopic partition function ratios (β-factors) of ε-Fe provide 

information about the distribution of heavy isotopes during equilibrium 

processes involving crystalline iron. We investigate ε-Fe’s β-factors as a 

function of pressure and temperature, with an emphasis on understanding the 

available resolution at the conditions of Earth’s lower mantle (Chapter 5). 

• The thermal expansion coefficient (α) is important for discussions of Earth’s 

core via its close relationship with both Pth and γvib. Determination of α thus 

provides a self-consistent check on these parameters, and allows us to convert 

between isothermal and adiabatic bulk moduli, which is necessary for 

determining accurate sound velocities from the phonon DOS (Chapter 5). 

• Accurate knowledge of the sound velocities of ε-Fe is essential because they 

provide one of the most direct means for comparison with seismic observations 

of Earth’s core. We determine the Debye sound velocity from the low-energy 

region of the phonon DOS and, in turn, obtain values for its compressional and 

shear sound velocities via our measured density, γvib, and αvib. We compare our 

sound velocities directly with those reported for iron alloys at 300 K, and 

approximate their high-temperature behavior in order to make comparisons with 

seismic velocities in Earth’s solid inner core (Chapter 6).  
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Chapter 2 

Experiments 

The data presented in this thesis were collected at synchrotron radiation facilities in 

the United States. The majority of our experiments were conducted at the Advanced Photon 

Source (APS) at Argonne National Laboratory, Argonne, Illinois; select measurements 

were made at the Advanced Light Source (ALS) at Lawrence Berkeley National 

Laboratory, Berkeley, California. Experimental preparations were performed in the 

Diamond Anvil Cell Laboratory at the California Institute of Technology, Pasadena, 

California, prior to each experimental run.  

2.1 Static Compression 

For all compression studies, the pressure experienced by a sample is equal to the 

force imposed upon it divided by the area over which the force is applied: P F A= . 

Therefore, the extreme pressures of planetary interiors can be achieved by either (1) 

applying a very large force, or (2) applying a lesser force over a very small area. Both 

methods are capable of generating hundreds of gigapascals (GPa) of pressure, including 

pressures beyond those expected for the center of the Earth (364 GPa).  

As previously discussed (Section 1.2), shock-compression experiments fall into 
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category (1). The pressure in a given experiment is generated by dynamically impacting the 

sample, and scales with the acceleration (force) of the impactor. We reiterate that such 

impacts result in a simultaneous increase in pressure and temperature, and an adiabatic 

change of state of the sample. On the other hand, static-compression experiments (e.g., 

Paris-Edinburgh press, multi-anvil press, and diamond-anvil cell) are based on method (2). 

The relevant area in a diamond-anvil cell (DAC) experiment is the culet of a gem-quality 

diamond, which typically has a diameter on the order of 50 to 500 µm. In DAC 

experiments, a small force applied to the table (back) of the diamond is transferred to the 

culet and, in turn, the pressure-transmitting medium that is in contact with the culet and 

fully encloses the sample. Therefore, the force required for inducing 100 GPa of pressure 

on a 100 μm culet is on the order of ~800 N. As previously discussed in Section 1.2, DAC 

experiments are performed at constant volume (as opposed to constant entropy), and allow 

one to easily define the pressure resolution (step size) in an experimental series. In addition, 

manipulation of temperature is independent of the means for inducing pressure, thus 

allowing for a more controlled sampling of PT space.  

2.1.1 Panoramic Diamond-Anvil Cell (DAC) Assembly 

Many different DACs have been designed to meet the requirements of various 

experimental geometries and setups. The experimental technique that will be the focus of 

this thesis—nuclear resonant inelastic x-ray scattering (NRIXS)—requires a panoramic 

DAC (Figure 2.1). The main feature of a panoramic DAC is that is has large “windows” cut 

out of the cylinder, so that detectors can be brought in very close to (~2 cm from) the 

compressed sample without compromising the ability to apply a uniform force to the 

sample chamber and, in turn, generate pressure. The components involved in a complete 
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Figure 2.1.  Panoramic Diamond-Anvil 
Cell (DAC). This panoramic DAC was 
designed and machined at Caltech. The 
cylinder side of the panoramic DAC is on 
top in this picture, and the 90º opening for 
in situ XRD is visible. The most 
prominent feature is the large “window” 
that is cut out of the cylinder to allow 
detectors to be brought in very close to 
(~2 cm from) the sample for high-pressure 
NRIXS experiments. The two opposing 
diamond anvils are mounted onto seats 
using the procedure described in the text; 
pink numbers reflect the three 
“orientations” of the DAC that are 
available; and the small disk between the 
diamonds is the Be gasket. 

panoramic DAC assembly are 1 piston, 1 cylinder, 2 diamonds, 2 seats, mounting epoxy, 

aligning screws, 2 set screws, mounting putty, 1 beryllium gasket, 1 boron epoxy insert, 

and 4 tightening screws.  

To prepare a panoramic DAC for NRIXS experiments, one begins by mounting the 

diamonds to the seats, or backing plates. Gem quality diamonds that are ~2 mm thick are 

used because of their superior hardness and bulk modulus, transparency at optical and 

typical x-ray energies (wavelengths), and thermal properties, all of which are essential for 

performing experiments at in situ high-pressure and temperature conditions. Seats are 

commonly made from tungsten carbide (WC) or cubic boron-nitride (cBN) ceramic 

materials, which also have large bulk moduli and hardness values. A significant difference 

between them is that at typical x-ray energies, WC is highly absorbing while cBN is largely 

transparent. For high-pressure NRIXS experiments, the majority of the signal is collected 

in the radial direction (i.e., photons that are detected after passing through the gasket 

material rather than the seat), so it is possible for the downstream seat to be x-ray 
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absorbing. However, a cBN seat is preferable over WC on the downstream side of the DAC 

if one plans to collect in situ x-ray diffraction (XRD), in order to maximize the range of 

accessible diffraction angles. For a similar purpose, our panoramic DACs are also specially 

designed with a 90º opening on the downstream side (Figure 2.1; Section 2.2). 

To mount a diamond, the diamond and seat are thoroughly cleaned, and a mounting 

jig is used to align and secure the diamond roughly in the center of the seat. A mixture of 

Stycast 2651 resin and a catalyst in a ratio of 100:7 by weight—prepared immediately 

before diamond mounting—is made to serve as the “glue” between the diamond and the 

seat. The epoxy should cover the girdle of the diamond and fill in between the girdle and 

the seat, but in order to maximize stability of the anvil, the epoxy cannot seep between the 

table and the seat (Figure 2.2). When the epoxy is in place, the seat is placed on a heating 

plate to allow the epoxy to harden overnight on a low-heat setting. 

Once the diamonds have been secured to their seats, they are positioned in the  

piston and cylinder sides of the panoramic DAC (e.g., Figure 2.1) using the aligning 

screws, which hold the seats flush against the base of the DAC. The cylinder (i.e., 
 

(a) 

 

(b) 

 
Figure 2.2.  Diamond mounting and alignment. (a) A black resin is used to mount diamond anvils to 
a seat; shown here are a WC seat and a diamond with culet diameter of ~100 μm and bevel diameter 
of 300 μm. (b) Mounted diamonds (of the same dimensions) are aligned in the microscope to bring 
the culets directly on top of one another; this image provides a close-up view of the resin and anvils. 

1 mm 
4 mm 
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downstream in an NRIXS experiment) is equipped with six aligning screws, while the 

piston (upstream) only has four. Therefore, common practice is to first secure the diamond 

on the cylinder side, and then adjust the aligning screws on the piston side—while looking 

through the cylinder-side diamond using a high-magnification microscope—to bring the 

culets directly on top of each other. By looking through the microscope while the DAC is 

on its side, one can measure the spacing between the culets and perform this alignment 

procedure at a variety of spacings, e.g., 500, 200, 100, 30, and 10 μm. Finally, the 

alignment of the diamonds is confirmed while they are in contact, and their parallelness is 

checked by investigating whether any optical fringes are visible. If ≥2 full fringes are 

visible, the alignment process can be repeated, or a new orientation of the piston with 

respect to the cylinder can be chosen. Since there are three “windows” in the panoramic 

DAC, there are three possible orientations that allow for placement of the detectors during 

an NRIXS experiment (Figure 2.1); in some DACs, one orientation may produce a better 

and more reproducible alignment than the others. 

The next step is to prepare a beryllium gasket, which will serve as the walls of the 

sample chamber in the DAC. Beryllium (Be) is a hazardous and very soft material, which 

makes DAC preparations difficult and limits the pressure range over which the DAC 

remains stable. However, the scattered photons in an NRIXS experiment must pass through 

the gasket to reach radially positioned detectors (e.g., Figure 2.4), so the more common, x-

ray absorbing gasket materials cannot be used (e.g., stainless steel and rhenium). Early Be 

gaskets that were machined for NRIXS experiments were 5 mm in diameter. We use 

specially designed Be gaskets that are 3 mm in diameter and machined with a ~400 μm flat 

area in center that is ~100 μm thick. The smaller diameter results in less absorption of 
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scattered photons, while the flat area in the center allows for the gasket to rest stably in a 

horizontal position on the diamond culets before (and during) indentation. 

Preparation of a Be gasket for high-pressure NRIXS experiments involves (1) pre-

indenting the gasket, (2) drilling a hole in the center of it, and (3) applying an insert made 

of a stiff, low-atomic number material, e.g., boron-epoxy, cBN, or diamond. To pre-indent 

the Be gasket, one begins by supporting it on a ring of mounting putty and centering the flat 

area over the culets. Indenting the Be gasket to a thickness of ~35 μm work-hardens it prior 

to the experiment, resulting in an increased resistance to further deformation during the 

experiment and, in turn, improves the chances of achieving higher pressures. A sample 

chamber is produced by drilling a hole in the Be gasket using electrical discharge 

machining; the drill hole diameter should be ~1/3 of the culet diameter (Dculet) for Dculet ≥ 

250 μm, and equal to or slightly larger than the culet size for Dculet < 250 μm. For larger 

culet sizes, a sample chamber large enough for precision sample loading will fit easily into 

the center of the culet, leaving some room for sample chamber migration during 

compression. For smaller culets, e.g., Dculet = 150 μm, a sample hole that would fit onto the 

culet makes sample loading very challenging. Therefore, for small culet sizes, we drill 

roughly the entire culet and fill in the hole with the insert material, which reinforces the 

shape and size of the sample chamber—thus avoiding rapid thinning of the sample during 

compression—as a result of the insert’s high shear strength.  

For our high-pressure NRIXS experiments, we use a boron-epoxy insert material 

because it is less absorbing at the relevant x-ray energies (~14.4 keV) than cBN and 

diamond. To make the boron-epoxy, one mixes amorphous boron and epoxy (in a ratio of 

3.5:1 by weight) with acetone in a mortar until they are well combined (Lin et al., 2003b). 
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This procedure should be done under a fume hood and immediately before the first insert is 

to be loaded, since the boron-epoxy tends to dry out and become difficult to work with. 

Extra boron-epoxy material can be stored under acetone for loading in the days after it is 

made. To make the insert, one loads a small piece of the boron-epoxy into the drilled hole 

in the Be gasket and compresses it between the diamonds. The insert should fill the entire 

hole; spilling over onto the gasket material is fine as long as its distribution is roughly even 

and symmetric. Finally, a tungsten loading needle is used to drill a smaller hole in the 

boron-epoxy insert, which will serve as the sample chamber. We note that tungsten is used 

to avoid 57Fe contamination, which could occur if a stainless steel loading needle is used. 

The ideal sample for a high-pressure NRIXS experiment is isotopically enriched in 

the resonant isotope (57Fe in our case), and has a starting thickness between 10 to 20 μm. 

Both allow for optimal counting rates, while this sample thickness prevents absorption of 

the forward scattering signal and significant sample thinning during compression. Ideally, 

the sample will be in the center of the culet and not in contact with the gasket or insert 

materials, to avoid pressure gradients. When necessary, a few ruby spheres or a piece of 

gold will also be loaded as secondary pressure markers, to allow for offline monitoring 

while increasing the pressure (e.g., Mao et al., 1986; Dorogokupets and Oganov, 2003; 

2006). However, rubies and gold are relatively absorbing materials at ~14.4 keV, and thus 

reduce the counting rates of the NRIXS signal. Therefore, we do not load a secondary 

pressure marker for our NRIXS experiments on ε-Fe, and instead monitor the pressure in 

the sample chamber offline (e.g., while increasing the pressure) using the high-frequency 

Raman edge of the diamond from the center of the culet (e.g,. Akahama and Kawamura, 

2006). We note that our final reported pressures are based on our in situ measured volumes 
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of ε-Fe and do not depend on the diamond edge calibration.  

The final (optional) step is to load a quasi-hydrostatic pressure-transmitting 

medium into the sample chamber. For example, pressurized helium and neon gas–loading 

facilities are available at GeoSoilEnviroCARS (GSECARS) sector of the APS. If the 

experiment does not require quasi-hydrostatic conditions, or the size or geometry of the 

sample chamber does not allow for it, then the sample can also be fully embedded in the 

boron epoxy insert. To close the DAC and increase the pressure, one uses the tightening 

screws. By turning them in sequence two at a time, one applies a parallel force to the 

diamonds—and, in turn, the metal gasket—which improves the stability of the sample 

chamber with compression. 

2.1.2 Our Panoramic DAC Preparations 

The analysis presented in this thesis is based on four preparations of modified 

panoramic diamond-anvil cells (DACs) with 90º openings on the downstream side (Figure 

2.1) and beveled anvils with flat culet diameters of 250 or 150 μm. WC seats were used on 

the piston side of the DAC, and cBN seats were used on the cylinder (downstream) side to 

maximize the available diffraction angles for our in situ XRD experiments.  

For the DACs assembled with 250 μm culets, 80 μm diameter holes were drilled 

and filled with boron epoxy. A hole was then drilled in the center of the insert to create the 

sample chamber using a loading needle. Into each sample chamber, a piece of 10 μm thick 

95% enriched 57Fe foil was loaded, with an area of ~20 × 30 μm. Hydrostatic conditions 

were achieved in the sample chamber for our experiments at molar volumes per atom of 

57Fe greater than 5.27 cm3/mol (P ≤ 69 GPa) via the loading of a neon pressure transmitting 

medium at the GSECARS sector of the APS (Figure 2.3). For measurements made at all 
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other compression points, the 57Fe foil was fully embedded in the boron epoxy, which 

served as the pressure transmitting medium. The pressure in the sample chamber was 

monitored offline while increasing the pressure using the diamond-edge calibration 

(Akahama and Kawamura, 2006). The final reported pressure was determined from our in 

situ XRD and the Vinet equation of state (EOS) for ε-Fe reported by Dewaele et al. (2006). 

For the DACs assembled with 150 μm culet diameters, 125 μm diameter holes were drilled 

in the Be gaskets and filled with boron epoxy. A hole was then drilled in the center of the 

insert to create the sample chamber, into which a piece of 10 μm thick 95% enriched 57Fe 

foil was loaded (~15 × 15 μm in area). Upon compression, the 57Fe foil was fully 

embedded in the boron epoxy, which served as the pressure-transmitting medium. Again, 

no secondary  pressure markers were loaded, and the pressure in the sample chamber was 

monitored offline while increasing the pressure using the diamond edge. 

 

 

Figure 2.3.  Sample chamber. For each panoramic DAC preparation, we pre-indented and 
drilled a Be gasket; loaded a boron-epoxy insert to maintain the thickness of the sample 
chamber with compression; and loaded into each a piece of 10 μm thick 57Fe foil (sample). 
For select measurements, we also loaded a neon pressure-transmitting medium (Table 2.1). 
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2.2 Synchrotron X-ray Diffraction (XRD) 

The theory behind synchrotron x-ray diffraction (XRD) experiments is identical to 

that of conventional XRD. Therefore, synchrotron XRD probes the interplanar spacing (d) 

of a crystal structure as a function of x-ray energy (λ) and diffraction angle (2θ): 

2 sinn dλ θ=  (2.1) 

(i.e., Bragg’s Law). In turn, the sample’s unit cell parameters and volume are obtained. The 

main advantages of synchrotron XRD are that the flux, high-precision x-ray focusing 

hardware, and very sensitive XRD image plates available at synchrotron radiation facilities 

allow for the investigation of very small samples, i.e., samples in a DAC.  

The basic setup for a synchrotron XRD beamline—such as Sector 12.2.2 at the 

Advanced Light Source at Lawrence Berkeley Laboratory—is similar to the in-line portion 

of the schematic for Sector 3-ID-B at the APS (Figure 2.4). The principal hardware 

component for synchrotron XRD at both sector 12.2.2 and 3-ID-B is the MAR3450 image 

plate, which is a very sensitive detector that allows for high-statistical quality with low-

energy XRD. Sector 12.2.2 is equipped with a Si(111) monochromator, which has an 

energy range of 6 to 40 keV, and a sample-detector distance of ~200 mm. For our 

experiments in the panoramic DAC, we used E = 30 keV (λ = 0.4133 Å), and determined 

the sample-detector distance with high accuracy using a LaB6 standard. Together with our 

x-ray transparent cBN seat in the downstream position and angular opening in the DAC of 

90º, we have access to a maximum 2θ of ~40º (d ≥ 0.6 Å) (Figure 2.5). 

Sector 3-ID-B is optimized for NRIXS experiments, but is also equipped for in-line 

XRD (Figures 2.4 and 2.5). The MAR3450 image plate is positioned between the sample 

stage and the forward scattering detector (see Section 2.3.2), and can be moved in and out  
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 (a)

 

(b) 

 

Figure 2.4.  Sector 3-ID-B at the Advanced Photon Source. (a) This schematic shows the individual 
components (labeled in the figure) that are described in Section 3.2.2. (b) A picture taken inside the 
experimental hutch, with the upstream direction on the right-hand side of the image (i.e., the 
orientation is the opposite that presented in Figure 2.4a). The panoramic DAC is mounted in the x-
ray beam, with three APDs positioned radially around and close to the sample. The XRD image 
plate is visible in the bottom left corner; it is a MAR3450, which can be moved in and out of the 
beam to measure XRD before and after NRIXS data collection. The forward-scattering detector is 
mounted behind where the MAR3450 image plate is positioned in the picture (i.e., off the image to 
the left); it measures the energy resolution for each NRIXS experiment.  
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of the x-ray path to allow for in situ XRD before and after an NRIXS experiment. The 

incident energy for this in situ XRD is dictated by the NRIXS technique, which requires an 

incident x-ray energy equal to that of the nuclear resonant energy of 57Fe (E = 14.4125 

keV, λ = 0.86025 Å). The sample-detector distance is ~318 mm, as determined during each 

experimental run from the calibration procedure using a CeO2 standard. This suggests a 

maximum 2θ of 28.5º (d ≥ 1.75 Å), which would corresponds to the maximum pressure at 

which the (101) diffraction peak for ε-Fe is accessible of ~100 GPa. However, by 

positioning the MAR3450 image plate at a horizontal offset of 35mm from a centered 

alignment with the x-ray beam, we were able to increase the maximum accessible 2θ to 33º 

(d ≥ 1.51 Å). This new 2θ corresponds to a pressure from the (101) diffraction peak of ε-Fe 

that is well beyond that of the center of the Earth.  

In summary, the majority of the XRD data presented in this thesis are from 

synchrotron XRD that was collected in-line at Sector 3-ID-B. The energy of the incident x-

rays was fixed by the NRIXS experiments (E = 14.4125 keV λ = 0.86025 Å), and the 

sample-detector distance was calibrated at the beginning of each experimental cycle with a 

60-second XRD exposure of a CeO2 standard. Before and after each NRIXS dataset, a lead 

plate was inserted directly upstream of the sample stage to reduce detected scattering from 

objects in the experimental hutch, while a small hole allowed the incident x-ray beam to 

pass through to the sample. A 5 to 10 minute XRD exposure was measured at the sample 

position that was probed with NRIXS (Table 2.1). XRD image plate data were analyzed 

with the Fit2D software (Hammersley et al., 1996), and the Fityk software (Wojdyr, 2010) 

was used to determine the a and c lattice parameters at each compression point by fitting 

Gaussians to the observed (100), (002), and (101) diffraction peaks. Evaluation of the 
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Figure 2.5.  Example MAR3450 x-ray 
diffraction (XRD) image. Black concentric 
rings are Bragg reflections (i.e., the 
satisfaction of Equation (2.1)), with the 
conical angle between the center of the 
image, the sample, and each ring defining 2θ; 
the bright feature is the beam stop, which 
protects the MAR3450 image plate from the 
direct x-ray beam. This XRD measurement 
was collected for P9 at the ALS with E = 30 
keV (λ = 0.4133 Å). 

elastic and vibrational thermodynamic parameters for ε-Fe relies on these in situ measured 

volumes. To present our results on a common scale and for discussion, we convert our 

volumes to pressures using the Vinet EOS (Dewaele et al., 2006) (Tables 2.1 and 2.2). 

Propagating uncertainties in a and c obtained from our XRD data analysis, all 

compression points have volume errors less than 0.3% and corresponding pressure 

uncertainties less than 2 GPa (Table 2.2). In order to determine total pressure errors, 

uncertainties for the EOS parameters determined by Dewaele et al. (2006) must be also 

considered (Table 2.1). However, there is an inherent tradeoff between KT0 and KT0' when 

fitting isothermal XRD data, and Dewaele et al. (2006) do not provide information about 

the correlation of their reported uncertainties. Therefore, we refit their published pressure–

volume data with the EOSfit software (Angel, 2000) in order to obtain the variances and 

covariances for KT0 and KT0' (Figure 2.6), using the EOS parameters reported by Dewaele 

et al. (2006) and fixing V0. We note that the EOS parameters we obtain from our fit—

KT0 ≈ 160.6 GPa and KT0' ≈ 5.53—differ slightly from those reported by Dewaele et al. 

(2006), but agree within uncertainty. Finally, combining errors from V0 (Table 2.1) and our 

measured volumes with our calculated correlated errors for KT0 and KT0', we obtain total 

pressure uncertainties between 2 and 5 GPa over our experimental compression range.  
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Figure 2.6.  Correlation of 
reported EOS parameter 
uncertainties. The 1σ error 
ellipse was calculated as 
described in Section 2.2, and is 
centered on the EOS parameters 
reported by Dewaele et al. 
(2006). We note that the error 
ellipse was calculated with V0 
fixed to the value given in the 
caption of Table 2.1.  

For our five largest compression points, we observed some texturing in the form of 

a loss of intensity in the (002) diffraction peak, likely due to nonhydrostatic conditions at 

extreme pressures. To investigate the sensitivity of our results to possible effects from 

texturing, we reevaluated the volumes of our five largest compression points with the ratio 

c a  assigned to be that reported by Dewaele et al. (2006), who measured XRD on ε-Fe to 

over 200 GPa with He and Ne as pressure-transmitting media. With the exception of our 

measurement at 5.00 ± 0.02 cm3/mol (P = 106 ± 3 GPa), all resulting volumes and 

corresponding pressures were within the errors of our original analysis, indicating only a 

weak effect from texturing. Finally, XRD spectra were collected for P9 at sector 12.2.2 of 

the ALS, approximately 3 months after the corresponding NRIXS measurement at the APS 

(Figure 2.5). The energy of the incident x-rays was set to E = 30 keV (λ = 0.4133 Å), and 

the sample-detector distance was calibrated at the beginning the experimental run with a 

60-second XRD exposure of a LaB6 standard. Observed (100), (002), (101), (102), (110), 

and(103) diffraction peaks revealed unit cell parameters a = 2.263 Å and c = 3.598 Å, 

which differ slightly from those measured in situ 3 months earlier at Sector 3-ID-B (Table 

2.1). However, we note that these unit cell parameters correspond to a molar volume per  
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 Table 2.1.  Parameters from a reported EOS and our XRD data collection for ε-Fe. 

Index Exposure 
Time (sec), 

Before/Afterb 

a  
(Å)c 

c  
(Å)c 

V 
(cm3/mol)c 

ρ 
(g/cm3)c  

KT 
(GPa)d 

KT' d  

P1a 300 / 300 2.424(2) 3.866(2) 5.92(2) 9.61(3) 309 4.47 

P2a 300 / -- 2.404(1) 3.854(1) 5.81(1) 9.80(1) 337 4.37 

P3a 300 / 300 2.373(2) 3.784(2) 5.56(1) 10.25(1) 408 4.17 

P4a 300 / 300 2.344(1) 3.739(1) 5.36(1) 10.63(1) 473 4.03 

P5 300 / 300 2.335(1) 3.709(1) 5.27(2) 10.80(2) 503 3.97 

P6 480 / 480 2.314(1) 3.686(1) 5.15(2) 11.06(2) 555 3.89 

P7 480 / 480 2.296(1) 3.639(1)  5.00(2)* 11.38(5) 619 3.80 

P8 -- / 300 2.269(1) 3.643(1)  4.89(2)* 11.64(2) 674 3.73 

P9 300 / 300 2.262(1) 3.605(1)  4.81(2)* 11.84(2) 718 3.68 

P10 600 / 600 2.244(1) 3.577(2)  4.70(2)* 12.13(3) 783 3.62 

P11 600 / 600 2.225(1) 3.547(2) 4.58(2)* 12.43(3) 856 3.55 
aFor these measurements, neon was loaded as the pressure transmitting medium. For all other 
compression points, the sample was fully embedded in the boron epoxy insert, which served as 
the pressure transmitting medium. 
bExposure time of the MAR3450 image plate, for in situ XRD measured before and after 
NRIXS scans at the same sample position. XRD was not collected after our NRIXS scans at P2 
because the beam was lost at ~2 am on the final day of our experiment run, and it did not return 
before the scheduled machine intervention that morning. In addition, no XRD was collected 
before our NRIXS scans at P8 due to a software problem in the middle of the night that was not 
solved until the following morning. 
cHexagonal close-packed unit cell parameters (a and c) were determined from measured 
diffraction peaks corresponding to (100), (002), and (101) crystallographic planes. Reported 
values are the average of the unit cell parameters measured before and after our NRIXS scans 
at the same sample position. The molar volume per atom (V) was calculated from the measured 
a and c values and the definition of a hexagonal close-packed unit cell; density (ρ) was 
determined from V and m = 56.95 g/mol for 95% isotopically enriched 57Fe. Values in 
parentheses give uncertainties for the last significant digit reported. 
dThe isothermal bulk modulus (KT) and its pressure derivative (KT') at each compression point 
were determined from the Vinet EOS parameters for ε-Fe reported by Dewaele et al. (2006): 
V0 = 6.75 ± 0.03 cm3/mol, KT0 = 163.4 ± 7.9 GPa, and KT0' = 5.38 ± 0.16.  

*Texturing was observed at these compression points in the form of a loss of intensity in the 
(002) diffraction peak.   
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atom of 4.81 cm3/mol and a pressure of 133 GPa, which is consistent with the values 

measured at the APS. 

2.3 Nuclear Resonant Inelastic X-ray Scattering (NRIXS) 

Nuclear resonant inelastic x-ray scattering (NRIXS) is a fairly recent experimental 

technique that probes the lattice vibrations (phonons) of select resonant isotopes and, in 

turn, their phonon density of states. The timing of the earliest NRIXS experiments 

coincided with the 3rd-generation synchrotrons coming online, as a result of their very high 

brilliance (∝ flux of a focused beam) compared to earlier synchrotrons. In addition to a 

very brilliant x-ray source, NRIXS relies on advanced instrumentation and well-defined 

resonances (which are based on the interaction between protons and neutrons in atomic 

nuclei) to observe the excitation of nuclear resonant isotopes. One of the most important 

features of NRIXS is that it is an isotope-selective technique, which means the signal 

originates only from resonant nuclei and, in turn, the measured background is extremely 

low. This quality is especially important for experiments at extreme conditions (e.g., high-

pressure), where counting rates can be restricted by complicated sample environments.  

Currently, the NRIXS technique is available at Sector 3 and the High Pressure 

Collaboratorive Access Team (HP-CAT, Sector 16) beamlines of the APS; BL11XU and 

BL35XU at the Super Photon Ring 8-GeV (SPring-8) in Hyogo, Japan; ID18 and ID22N at 

the European Synchrotron Radiation Facility (ESRF) in Grenoble, France; and at P01 at 

PETRA–III in Hamburg, Germany. All NRIXS data presented here were collected at 

Sector 3-ID-B of the APS. 

2.3.1 NRIXS Theory  

Nuclear resonance and nuclear resonant scattering techniques have previously been 
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described in great detail (Gerdau et al., 1985; Ruffer et al., 1990; Seto et al., 1995; 

Sturhahn et al., 1995; Sturhahn, 2004), so we provide here only a brief overview. The term 

“nuclear resonance” refers to the resonant excitation of select nuclei, which can occur via 

radioactive decay of a parent nucleus, collision with an energetic particle, or absorption of a 

photon. When the nucleus relaxes to its lower-energy ground state, a γ-ray is emitted with 

equal or lower energy, depending on the amount of recoil that results from absorption of 

the photon (required by conservation of momentum). If the recoil energy (ER) is 

negligible—which occurs when the lattice in which the absorber is embedded recoils as a 

single unit—then the emitted photon retains the energy required to excite another nucleus, 

resulting in resonant excitation. This phenomenon is known as the Mössbauer effect, and is 

the basic idea behind Mössbauer spectroscopy. 

NRIXS is based on the same governing principle, but involves the simultaneous 

excitation of nuclear resonance and change of quantum state. In Figure 2.7, we provide a 

schematic representation of the nuclear energy level(s) of 57Fe, and the corresponding 
 

 

 

Figure 2.7.  Schematic of NRIXS Theory. 
(a) The top-left schematic gives a nuclear 
energy level diagram for a fixed 57Fe 
nucleus, which demonstrates that incident 
x-rays whose energy is equal to 14.4125 
keV induce a transition of the 57Fe nucleus 
from the ground state (│g>) to an excited 
state (│e>); in turn, a sharp peak is 
produced in the excitation probability 
density, S(E), given in the bottom left. (b) 
Schematics on the right show the same 
quantities, but for 57Fe nuclei embedded in 
a crystal lattice. The new energy levels 
reflect lattice vibrations (phonons), and the 
creation or annihilation of one (dashed 
lines) and multiple (dotted lines) phonons 
depicted in the energy level diagram are 
present as sidebands in S(E). Figure taken 
from Sturhahn (2004).  
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excitation probability density (i.e., the number of times resonance is achieved at a given 

energy), which is the quantity measured by NRIXS (Sturhahn, 2004). The pair of plots on 

the left-hand side show a single transition and elastic peak that correspond to the resonant 

excitation of a fixed nucleus, i.e., a nucleus that cannot recoil (ER = 0). Plots on the right-

hand side show similar excitations for 57Fe nuclei bound in a crystal lattice, and one can see 

that multiple transitions (and corresponding peaks) are now present.  

In the plot presented in the bottom-right corner of Figure 2.7, the most prominent 

peak at the center of the spectrum is still the elastic peak (E = 0). This peak represents 

recoilless absorption of the lattice during absorption of a photon whose energy equals that 

of the nuclear transition energy. In turn, the emitted photon has the same energy, and 

resonant excitation of the nuclei can be achieved. This purely elastic (i.e., recoilless) 

process occurs over a timescale dictated by the lifetime of the nuclear resonance (which is 

inversely proportional to the energy width of 4.66 neV), and ultimately results in the 

delayed emission of a photon.  

For incident radiation energies on the order of millielectronvolts (meV) larger and 

smaller than the nuclear transition energy (i.e., slight “off-resonance”), there are additional 

peaks that represent similar resonant nuclear excitations that were achieved by the creation 

or annihilation of quantized lattice vibrations (phonons). These peaks are often referred to 

as Stokes and anti-Stokes peaks, respectively, because of their conceptual similarity to 

those measured with optical spectroscopy techniques. The anti-Stokes peak corresponds to 

“phonon-annihilation” because the energy of the incident photon is smaller than the nuclear 

transition energy, so the resonance signal must originate from the simultaneous absorption 

of the incident radiation and preexisting energy in the crystal, i.e., a phonon. Similarly, the 
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Stokes peak corresponds to the number of times resonance was achieved when the excess 

energy from the incident photon was successfully transferred to the lattice in the form of a 

new phonon. Finally, a similar pair of lower-intensity peaks at slightly greater energy 

differences (i.e., farther off-resonance) corresponds to the simultaneous creation (or 

annihilation) of multiple phonons. The same general features described above can also be 

seen in Figures 2.8 and 2.9.  

There are a few important instrumentation developments that make the elegant 

features of the previously described NRIXS experiment possible, the first being the 

extreme brilliance of 3rd-generation synchrotrons like the APS, SPring-8, and ESRF. In 

addition, the development of efficient and tunable monochromators with very high-energy-

resolution (ΔE~1 meV) near the nuclear transition energy (e.g., 14.4125 keV for 57Fe) was 

essential for investigating the relevant vibrational information, i.e., nuclear resonances that 

occur at energies on the order of meV away from of the nuclear transition energy (Toellner, 

2000). Finally, the development of avalanche photodiode (APD) detectors with a very large 

dynamic range and fast time resolution (nanosecond; ns) was necessary to cleanly 

distinguish the nuclear resonant scattering signal (which is delayed by the lifetime of 

nuclear resonance) from the much more efficient (when considering all timescales), nearly 

instantaneous electronic scattering (Sturhahn et al., 1995).  

Another important aspect of NRIXS experiments is the properties of the resonant 

isotopes themselves. In order for the experiment to be feasible for a given resonant isotope, 

it must have a large nuclear resonant cross section (i.e., scattering efficiency); a nuclear 

transition energy that can be produced with high intensity by synchrotron radiation; and a 

reasonable lifetime for nuclear resonance (i.e., reasonably narrow energy width of 
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resonance). Fortuitously, 57Fe is one of the most ideal resonant isotopes. It has a nuclear 

resonant cross section that is 450 times larger than the photoelectric cross section at that 

energy. In addition, its nuclear transition energy (14.4125 keV) falls at an optimal level that 

allows for a reasonable flux of incident photons (based on the efficiency of the high-

resolution monochromator) and efficiency of other x-ray optics and detectors. Finally, the 

width of its nuclear resonance is 4.66 neV, which corresponds to a lifetime of nuclear 

resonance (τ) of 141 ns via the inverse relationship ,τ = Γ  where   is the reduced 

Planck constant (Sturhahn et al., 1995). These values are ideal for timing based on the 

bunch separation time of the APS (153 ns) and detector efficiency. 

2.3.2 Data Collection 

A schematic for the basic setup for an NRIXS beamline is given in Figure 2.4a. A 

brilliant, continuous spectrum of photons is produced by insertion devices at 3rd-generation 

synchrotron radiation sources, such as the APS. To select out the x-rays with the necessary 

energy for an NRIXS experiment, the beam first passes over a diamond (111) high-heat-

load monochromator, which selects for a narrow band of wavelengths around the nuclear 

transition energy of 57Fe with a resolution (ΔE) of ~1 eV. Next, the beam passes over a Si 

multireflection high-resolution monochromator, which selects an x-ray energy of 14.4125 

keV with ΔE ~1 meV (Toellner, 2000). Finally, the beam is focused onto the sample using 

Kirkpatrick-Baez mirrors, which produce a focused spot size of ~10 × 10 μm. Delayed 

scattered photons from nuclear resonances are detected by avalanche photodiode (APD) 

detectors positioned radially around and close to the sample (Figure 2.4). In addition, the 

energy resolution is determined via a fourth APD, which is placed in the forward-scattering 
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direction. When installed (as in Sector 3-ID-B), an XRD image plate can be moved into 

and out of the beam’s path to collect in situ XRD, as described in Section 2.2. 

The following procedure for collecting an NRIXS dataset is specific to Sector 3-ID-

B of the APS, and assumes that the x-ray beam is already optimally aligned and focused. In 

addition, it assumes the monochromator has been tuned so that the energy of the incident x-

rays is near the nuclear resonance energy of 57Fe (14.4125 keV), although small deviations 

due to temperature drift are fine for the described procedure because the hutch is well-

insulated. Finally, it assumes the placement of an APD detector in the forward scattering 

position, which will measure the energy resolution during the experiment. 

The first step is to prepare the panoramic DAC to be mounted on the sample stage. 

The putty that supported the Be gasket during indentation and sample loading must be 

removed in order to maximize the counting rates, since leftover putty will absorb scattered 

photons. Next, it is recommended that a mark be made on the panoramic DAC to note 

which “window” is orientated in the upward direction, for consistency between 

measurements. The DAC can then be secured in the sample holder, and the three APD 

detectors can be positioned as close to the sample as possible, i.e., ~2 cm away because of 

the DAC geometry (Figure 2.4). At this point, it is important to check whether any signal 

(i.e., noise) is being detected by the APDs while the x-ray shutter is closed, since this could 

add significant background noise to the dataset. If there are significant counts on any of the 

detectors, their mounting should be checked to ensure they are in contact with the DAC and 

not being torqued. If everything seems correct but the signal remains without any incident 

x-rays, the detector itself likely needs to be replaced or repaired. Finally, the sample mount 

can be placed in the path of the x-ray beam, to begin the procedure of locating the sample.  
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Before the x-ray shutter is opened, one initially locates the sample using a 

microscope that has been aligned with the x-ray spot in all dimensions. Once the sample is 

approximately focused in the aligning microscope, a small diamond correction is made to 

account for the index of refraction of the diamond that is upstream of the sample (1.15 μm 

in the upstream direction). After recording the approximate position of the sample, one can 

open the x-ray shutter and check whether any delayed signal is being registered on the 

APDs. If there is little to no signal, the first step is to tune the monochromators to ensure 

the energy of the beam is on resonance, i.e., 14.4125 keV. Once the energy of the beam has 

been optimized, one can scan the position of the sample stage in the horizontal and vertical 

directions, to align the beam in a very reproducible spot on the sample that has high 

counting rates; this often corresponds to the center of the sample. The energy of the beam is 

tuned to fully optimize the energy of the beam and, in turn, the counting rates. Finally, the 

background that is being measured by the APDs is checked by allowing them to count for 

100 seconds at an energy that is 200 meV below the resonance energy. If the number of 

background counts is too high (> 0.1 Hz), then it is likely that the timing window of the 

detectors needs to be adjusted because photons are spilling over from the prompt signal.  

If in situ XRD is being collected, then the image plate must be moved in-line with 

the x-ray beam and the lead plate inserted upstream of the DAC at this time. After securing 

the hutch, the MAR3450 image plate is erased (of any previously collected data), and an 

exposure is collected by opening the x-ray shutter for a fixed amount of time (5 to 10 

minutes in our case). After closing the shutter, the image from the MAR3450 image plate is 

recorded (read out), and the XRD data can be viewed and initially processed with the Fit2d 

software to determine the sample pressure.  
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To begin an NRIXS measurement, the parameters of a single scan are assigned, 

including the energy range around the nuclear resonance energy to be scanned; the number 

of points to be collected over that energy range (i.e., the energy step size); and the amount 

of time for data collection at each energy step. The energy can drift over time due to 

temperature changes, so a scan time of ~1 hour is ideal. This allows for the optimization of 

the energy between scans to ensure a high-quality dataset. Finally, individual scans can be 

summed together after as many scans as are necessary to produce the desired number of 

counts have been collected, e.g., in the Stokes peak.  

The NRIXS data presented in this thesis are based on experiments that were 

performed at beamline 3-ID-B of the APS in October 2009, August 2010, and February 

2011. For each experimental run, the storage ring was operated in top-up mode with 24 

bunches that were separated by 153 ns. Three APD detectors were positioned radially 

around and close to the sample to collect the incoherent inelastic scattered photons. A 

fourth APD was positioned downstream in the forward scattering direction and 

independently measured an average ΔE ~ 1.2 meV at FWHM (Toellner, 2000). For each 

NRIXS scan at most compression points, the high-resolution monochromator was tuned 

from –65 to +85 meV around the nuclear resonance energy of 57Fe (14.4125 keV). For our 

two largest compression points, this range was extended to –75 to +90 meV, to ensure we 

were measuring all of the vibrational information. Between 8 and 21 NRIXS scans were 

collected for each compression point, with the exception of our measurement at 5.81 ± 0.01 

cm3/mol (P = 36 ± 2 GPa), for which only four scans were collected (Table 2.2). The raw 

NRIXS data from each of our 11 compression points are plotted together in Figures 2.8 and 

2.9. 
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Table 2.2.  Pressures and experimental parameters for our NRIXS data collection. 

Index V (cm3/mol) P (GPa)e  Energy Range 
(meV)f 

Stokes Peak 
(counts/sec)g 

Number 
of Scansg 

P1a 5.92(2) 30(2) −65 to +85 290/58 12 
P2b 5.81(1) 36(2) −65 to +85 70/18 4 

P3a 5.56(1) 53(2) −65 to +85 100/36 8 

P4a 5.36(1) 69(3) −65 to +85 130/38 8 

P5c 5.27(2) 77(3) −65 to +85 280/50 10 

P6c 5.15(2) 90(3) −65 to +85 310/88 18 

P7c  5.00(2)* 106(3) −70 to +85 290/66 14 

P8c  4.89(2)* 121(3) −65 to +85 210/85 21 

P9c  4.81(2)* 133(4) −65 to +85 130/38 8 

P10d  4.70(2)* 151(5) −75 to +90 130/65 13 

P11d 4.58(2)* 171(5) −75 to +90 70/40 8 

aNRIXS and in situ XRD measurements were performed using a single preparation of DAC11, 
in order of increasing compression (P1, P3, P4). 
bNRIXS and in situ XRD measurements were performed at P2 during decompression of 
DAC12. (No other NRIXS experiments were performed with this DAC preparation.) We note 
that only 4 NRIXS scans were collected at P2 because the beam was lost at ~2am on the final 
day of our experiment run, and it did not return before the scheduled machine intervention. 
cNRIXS and in situ XRD measurements were performed using a single (new) preparation of 
DAC11, in order of increasing compression (P5, P6, P7, P8, P9). 
dNRIXS and in situ XRD measurements were performed using a single (new) preparation of 
DAC11, in order of increasing compression (P10, P11). We note that only 70 counts were 
collected in the Stokes peak for P11 because the diamonds failed during the 9th scan. 
eMeasured volumes were converted to pressures (P) using the Vinet EOS for ε-Fe reported by 
Dewaele et al. (2006) (Table 2.1). Reported uncertainties in P reflect measured uncertainties in 
V and reported uncertainties for the Vinet EOS parameters, with a correlation between KT0 and 
KT0' determined from our fit of the pressure–volume data reported by Dewaele et al. (2006). 
See Section 2.2 and Figure 2.6 for more details. 
fThe energy range over which NRIXS data was collected, relative the nuclear transition energy 
of 57Fe (14. 4125 keV). Larger energy regions were necessary at P10 and P11 to ensure that we 
were measuring all of the vibrational information. 
gThe numerator of the ratio gives the absolute number of counts at the height of the first Stokes 
peak. The denominator provides the total seconds counted at each energy step, which reflects 
the number of scans and the data collection time at each energy step. 
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2.3.3 Data Analysis 

The data analysis procedure presented here is based on the PHOENIX software 

(Sturhahn, 2000), which greatly simplifies and streamlines the necessary data analysis. The 

first step is to sum together all of the scans collected at a given compression point using the 

“padd” command, which also converts the data file measured directly by the APDs into a 

more commonly readable format. To prepare the input file for the “padd” command 

(“in_padd”), one must assign values for the operating energy and sample temperature, 

which are fixed at 14.4125 keV and 300 K, respectively, for our investigations of 57Fe at 

ambient temperature. In addition, detailed information is needed about the monochromator, 

scan parameters, and the background, width, and asymmetry of the measured resolution 

function. The final step for preparing the input file for “padd” is indicating the names of the 

scans that are to be summed together. 

The result of running the “padd” (or “mpadd”) command are *.dat (data; Figures 

2.8–2.10) and *.res (resolution function) files. The data file provides the flux of delayed k-

fluorescence photons emitted during deexcitation of the nucleus, i.e., the sum of data 

collected by the three APDs positioned radially around the sample, from all relevant scans. 

Similarly, the resolution file contains the sum of all data collected by the APD in the 

forward scattering position. An example of these two curves measured at 90 GPa is given 

in Figure 2.10, with the data file plotted in black and the resolution file plotted in red. In 

total, 18 scans were collected over an energy range of −65 to +85 meV around the nuclear 

transition energy; 1 scan counted for 3 seconds at each energy step, and 17 scans counted 

for 5 seconds, resulting in a total of 88 seconds at each energy step. The number of counts 

per second is a function of both sample thickness and how well optimized the 
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Figure 2.8.  Our raw NRIXS spectra for ε-Fe. Black circles represent the number of times 
resonance was achieved at a given energy around the nuclear transition energy of 57Fe 
(14.4125 keV, which is plotted as 0-energy). The energy-step size was 0.25 meV. The 
elastic peaks at E = 0 extend vertically beyond the edge of the plot; peaks present at E > 0 
correspond to the excitation of lattice phonons, while peaks present at E < 0 correspond to 
the annihilation of pre-existing lattice phonons. Gray dotted lines are plotted horizontally at 
increments of 100 counts, to allow for estimation of the height of the Stokes (Table 2.3) 
and anti-Stokes peaks for a given spectrum. We note that the raw data presented here is not 
normalized and, thus, absolute peak heights are largely influenced by data collection times.  
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Figure 2.9.  Our raw NRIXS spectra for ε-Fe, normalized. Black circles represent the same data 
given in Figure 2.8, but now plotted separately and with a logarithmic vertical scale for intensity (I), 
in order to facilitate viewing data at each compression point. We note that the raw data measured at 
90 GPa is not included in this figure because it is plotted separately in Figure 2.10. 
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Figure 2.10.  Example raw NRIXS spectrum with detail. The raw NRIXS spectrum measured at V = 
5.15 ± 0.02 cm3/mol (P = 90 ± 3 GPa) is given, highlighting the important features: raw data in 
black (i.e., the flux of delayed K-fluorescence photons emitted during de-excitation of the nucleus; 
Figures 2.8 and 2.9); resolution function in red (measured with the forward scattering detector); 
energy range of scans (-65 to + 80 meV); counts per 88 sec (related to the number of scans and the 
degree of optimization of the monochromator); an intense elastic peak (demonstrating the large 
recoilless fraction of ε-Fe); and the pressure determined from in situ XRD and an established EOS 
(Dewaele et al., 2006). 

monochromator is. The strong intensity of the central elastic peak demonstrates ε-Fe’s 

large recoilless fraction (Section 2.3.1).  

Once the individual NRIXS scans for a given compression point have been 

summed together, the resolution function file must be prepared so that it can be read and 

analyzed by the PHOENIX software. First, one subtracts any overall background, 

determined by fitting a line to the entire dataset. Next, the width of the resolution function 
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is determined by visually investigating where its intensity decreases to the level of the 

background noise (typically around E ~ ±5 meV for our experiments); any data beyond this 

width is then removed. In the case of a poorly resolved resolution function, any “tails” that 

extend to higher energies should be kept in the resolution function file; in turn, this 

introduces additional uncertainties for analyses involving low-energy vibrational 

information (Section 5.5). We note that the procedure of preparing the resolution function 

file is not necessary if one is using the newest version of the software (PHOENIX 2.1.0), 

which automatically prepares the resolution function file during the command that sums 

together the measured NRIXS spectra.  

The NRIXS data and resolution function files are now ready (e.g., Figure 2.10) to 

be read and analyzed. Basic information that must be provided in the input file for 

PHOENIX (“in_phox”) includes the nuclear transition energy and recoil energy of the 

resonant isotope (14.4125 keV and ER = 1.956 meV for 57Fe, respectively), and the sample 

temperature. In addition, tunable parameters that influence the quality of the data analysis 

include the inelastic and overall data background, and the fit range and asymmetry of the 

elastic peak. These parameters must be adjusted during analysis to produce the optimal 

normalization of the data and avoid negativity of the resulting phonon density of states 

(DOS), i.e., in order to obtain accurate vibrational thermodynamic parameters. 

The first important output of the PHOENIX software is the pure phonon excitation 

spectrum, I'(E), which is the spectrum that is produced once the PHOENIX software 

properly fits and removes the elastic contribution (peak) from the data file. In turn, I'(E) is 

related to S(E)—the excitation probability density, or the probability for absorption per unit 

of energy—via a normalization procedure which is based on the general property that the 
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first moment of S(E) is equal to ER. To decompose the measured S(E) into one- and multi-

phonon (n-phonon) contributions, the PHOENIX software performs a forward data 

inversion (i.e., the Fourier-log technique), as described by Sturhahn (2000). From the total 

S(E), the Lamb-Mössbauer factor, kinetic energy, and mean force constant can be obtained 

from the 0th-, 1st-, 2nd-, and 3rd-order moments, i.e., ( )n
nS E S E dE= ∫  for n = 0, 1, 2, 

and 3. Details of this procedure have been presented by Lipkin (1995), Sturhahn and 

Chumakov (1999), and Sturhahn (2004).  

Next, to determine the phonon density of states (DOS), D(E,V), the PHOENIX 

software applies the quasi-harmonic lattice model to S(E). In general, the quasi-harmonic 

lattice model assumes individual lattice vibrations (phonons) do not interact, so the system 

is approximated as a set of independent harmonic oscillators. It assumes the interatomic 

potential around equilibrium atomic positions has a quadratic dependence on atomic 

displacement, resulting in phonons with infinite lifetimes and well-defined atomic motions. 

In turn, the quasi-harmonic model implies the temperature dependence of phonon 

frequencies and, in turn, the phonon DOS, arises only from thermal expansion (i.e., a 

change in volume). Such an assumption is thought to be reasonable for ambient 

temperature conditions, such as those relevant for the experiments presented here. 

However, we note that the accuracy of the quasi-harmonic approximation becomes 

questionable at high temperatures, where phonon-phonon and phonon-electron interactions 

play an increasingly important role. 

As previously stated, PHOENIX applies the quasi-harmonic lattice model to S(E) in 

order to determine the partial and projected phonon DOS, D(E,V): 
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( ) ( )( )1 1( , ) tanh , ,
2R

E ED E V S E V S E V
E

β
= + −  

for E ≥ 0 (Sturhahn, 2004). The phonon DOS determined from NRIXS measurements at 

each of our 11 compression points are plotted together in Figure 2.11. From the phonon 

DOS, one obtains a variety of elastic and vibrational thermodynamic parameters. For 

example, the integrated phonon DOS is directly related to the Lamb-Mössbauer factor and 

vibrational components of the specific heat capacity, free energy, entropy, internal energy, 

and kinetic energy, providing a self-consistent check on the parameters that are related to 

the moments of the raw NRIXS data. Details of how each parameter can be determined 

from the phonon DOS will be presented in their respective sections.  

To demonstrate the high statistical quality of our phonon DOS, we compare our 

measured uncertainties with those from a previous NRIXS study on ε-Fe over a similar 

compression range (Mao et al., 2001). Performing the same PHOENIX analysis on both 

datasets, we find that our data produce errors for parameters determined from the phonon 

DOS that are ~70% smaller on average, largely due to our long data collection times and 

the higher-resolution monochromator (∆E = 2 meV in Mao et al. (2001)). 

Finally, the “psvl” command in PHOENIX performs a parabolic fit of the low-

energy region of the phonon DOS to determine the Debye sound velocity (see Section 4.4). 

The input file for psvl (“in_psvl”) requires knowledge of the sample density, which can 

either be determined from in situ measured volumes (as in our case), or via an equation of 

state (EOS). The latter calculation can be performed by the “psvl” command, based on the 

indicated pressure value and EOS parameters. In addition, the user must determine the 

appropriate energy range over which to perform the fit. The lower bound of this range is  
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Figure 2.11.  Our measured phonon DOS for ε-Fe. Black circles give the measured phonon 
DOS at an energy step of 0.25 meV, determined by applying the quasi-harmonic model to 
our raw NRIXS data after removal of the elastic peak (Sturhahn, 2000). Uncertainties are 
plotted as gray vertical lines; the pressure of each phonon DOS is labeled on the figure, and 
was determined from our in situ measured volumes.  
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dictated by the width of the resolution function (~3.5 meV), which may influence the 

curvature of the phonon DOS and, in turn, the Debye sound velocity. The upper bound is 

dictated by the maximum energy at which the Debye model is appropriate, i.e., where the 

phonon DOS is parabolic, which was below ~20 to 34 meV for our experimental 

compression range. The end result is that the “psvl” command will provide values for the 

Debye sound velocity produced by fits over various energy ranges, in addition to the 

corresponding compressional and shear sound velocities that are based, in part, on the input 

EOS parameters. We note that the choice of energy range by the user introduces some 

uncertainty to the output sound velocities; therefore, it is important to investigate the 

magnitude of this uncertainty as a function of energy range. 
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Chapter 3 

Melting and Thermal Pressure of hcp-Fe1 

3.1 Introduction 

The Earth’s core is thought to be composed mainly of iron with some light elements 

(McDonough, 2003). Therefore, an accurate determination of the high-pressure phase 

diagram of iron is of fundamental importance for studies of the deep Earth. Of particular 

interest is iron’s high-pressure melting behavior (e.g., Williams et al., 1987; Boehler, 1993; 

Shen et al., 1998; Ahrens et al., 2002; Ma et al., 2004; Nguyen and Holmes, 2004), because 

Earth’s solid inner core and liquid outer core are in contact at the inner–core boundary. 

This phase boundary serves as an important constraint on the temperature profile of the 

core and offers insight into the temperature at the core–mantle boundary, which is a key 

parameter for geodynamic modeling and for determining what phases are stable in the 

lowermost mantle. 

Existing data suggest that hexagonal close-packed iron (ε-Fe) is the stable phase at 

core pressures and room temperature (Alfè et al., 2001; Ma et al., 2004; Dewaele et al., 

2006; Tateno et al., 2010). However, the high-pressure melting behavior of ε-Fe is not well 

                                                 
1 Revised over what was previously published as Murphy et al. (2011a). 
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established due to experimental challenges at simultaneous high-pressure and temperature 

(PT) (e.g., see Figure 1 in (Nguyen and Holmes, 2004)), which also make it difficult to 

confirm or reproduce past experimental results. 

An alternative to investigating the melting curve of ε-Fe with high-PT experiments 

is to measure its ambient temperature phonon density of states (DOS), which contains 

vibrational information that is coupled with its melting behavior. In particular, the phonon 

DOS of ε-Fe is directly related to its mean-square displacement of atoms, which can be 

used to determine the shape of ε-Fe’s high-pressure melting curve. By anchoring this shape 

with an experimentally determined melting point, one obtains ε-Fe’s high-pressure melting 

behavior from phonon DOS experiments at 300 K. This approach minimizes the potential 

for chemical reactions in high-PT experiments and the need to rely on accurate temperature 

readings at extreme conditions. We present the shape of ε-Fe’s high-pressure melting 

curve, which we benchmark through existing experimental data on ε-Fe. 

An additional geophysical application of ε-Fe’s phonon DOS at 300 K is the direct 

determination of the volume- and temperature-dependent vibrational free energy, which is 

related to the vibrational component of the thermal pressure. Together with the electronic 

and anharmonic components, this gives the total thermal pressure (Pth), which is an 

important parameter for determining the density of iron under core conditions. Shock-

compression experiments have accessed Pth via the thermodynamic Grüneisen parameter 

and Mie-Grüneisen theory (Jeanloz, 1979; Brown and McQueen, 1986; Asimow and 

Ahrens, 2010), and many past theoretical calculations have dealt with Pth (Wasserman et 

al., 1996; Stixrude et al., 1997; Vočadlo et al., 2000; Alfè et al., 2001; Sha and Cohen, 

2010a). Here we present a direct determination of the vibrational component of the thermal 
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pressure from measurements of ε-Fe’s phonon DOS. 

We performed nuclear resonant inelastic x-ray scattering (NRIXS) and in situ 

synchrotron x-ray diffraction (XRD) experiments in order to directly probe the volume 

dependence of ε-Fe’s total phonon DOS between pressures of 30 and 151 GPa. Similar 

NRIXS experiments have previously been performed on ε-Fe up to 153 GPa (Lübbers et 

al., 2000; Mao et al., 2001; Giefers et al., 2002; Shen et al., 2004; Lin et al., 2005). 

However, these reports did not attempt analysis of the melting curve shape or the 

determination of the volume-dependent thermal pressure of ε-Fe. In addition, our long data 

collection times at pressures over 100 GPa resulted in the highest statistical quality phonon 

DOS to outer core pressures measured to date, and our in situ determination of sample 

volume with XRD distinguishes this study from previous similar works.  

3.2 Experimental  

For details of our DAC preparation, experimental procedures, and data analysis, see 

Chapter 2. The analysis, results, and discussion in this chapter are based on the first 10 

compression points of the dataset described in Chapter 2 (P ≤ 151 GPa), because it was 

performed before the final compression point (P = 171 ± 5 GPa) was collected in February 

2011. We note that results from the analysis presented in this chapter with the addition of 

our final, largest compression point agree with the original results within uncertainty. 

NRIXS data were analyzed with the PHOENIX software, which was used to 

remove the elastic contribution and apply the quasi-harmonic lattice model (Sturhahn, 

2000; Sturhahn and Jackson, 2007). From the resulting volume-dependent total phonon 

DOS, D(E,V), we obtained two parameters that are related to ε-Fe’s thermal pressure and 

melting curve shape. The vibrational free energy per 57Fe atom (Fvib) is given by  



 51 

  ( )1( , ) ln 2sinh ,
2vib
EF V T D E V dEβ

β
 =  
 ∫  (3.1) 

(Table 3.1, Figure 3.1), where β = (kBT) –1 is the inverse temperature and kB is Boltzmann’s 

constant. In addition, the mean-square displacement of 57Fe atoms (<u2>) is given by 

  ( )2
2
0

1 coth , ,
3 2

RE Eu D E V dE
k E

β
= ∫  (3.2)  

where ER is the recoil energy and k0 is the wavenumber of the resonant photon. For the 

14.4125 keV transition of 57Fe, ER = 1.956 meV and k0 = 7.306 Å–1 (Sturhahn, 2004). In 

Equations (3.1) and (3.2), the phonon DOS has been normalized by ( ) 3.D E dE =∫  

 

 

Figure 3.1.  Vibrational free energy per 57Fe atom at 300 K.  Inset shows the measured 
total phonon DOS of ε-Fe at 30 GPa (red) and 151 GPa (black) at 300 K. 
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Table 3.1.  Free energy and Lamb-Mössbauer temperature from NRIXS data, and 
melting temperatures and thermal pressures from analysis.  
 

V 
(cm3/mol)a 

PV 
(GPa)a 

Fvib 
(meV/atom)b 

TLM (K)b  (K)c Pth 
(GPa)d (K)c 

5.92(2) 30(2) 19.8(6) 2140(20) 2470(70) 17(1) 2190 
5.81(1) 36(2) 22(1) 2210(40) 2520(80) 18(1) 2250 
5.56(1) 53(2) 29(1) 2520(40) 2790(90) 22(1) 2600 
5.36(1) 69(3) 34.1(8) 2810(30) 3040(90) 25(1) 2940 
5.27(2) 77(3) 35.7(5) 2920(20) 3130(90) 27(1) 3110 
5.15(2) 90(3) 39.2(7) 3180(30) 3300(100) 30(1) 3400 
 5.00(2) 106(3) 42.9(8) 3370(30) 3500(100) 31(1) 3520 
 4.89(2) 121(3) 46.7(7) 3660(40) 3700(100) 35(2) 3880 
 4.81(2) 133(4) 48.8(9) 3830(50) 3900(100) 36(2) 3930 
 4.70(2) 151(5) 51.1(9) 4130(60) 4100(100) 39(2) 4160 

4.58(2)e 171(5) 55.9(1.4) 4330(90) 4300(100) 40(2) 4240 
Note:  Values in parentheses denote errors for the last significant digit(s) reported. 
aMolar volumes per 57Fe atom (V) and pressure (PV) for each compression point are duplicated 
from Tables 2.1 and 2.2. A brief explanation of reported uncertainties is given in Section 2.2. 
bThe vibrational free energy (Fvib) and Lamb-Mössbauer temperature (TLM) at 300 K were 
calculated from the measured total phonon DOS (Sturhahn, 2000; 2004).  
cThe harmonic melting temperature  was determined using Equation (3.9) and the Ma et al. 
(2004) anchor melting point; anharmonic melting temperatures (TM) account for anharmonic 
effects (Section 3.5; Appendix A).  
dThe total thermal pressure (Pth) was taken at TM and used in Equation (3.10) before extrapolating 
and plotting TM (P) in Figure 3.4.  
eAlthough our final, largest compression point was not included in the analysis presented in this 
chapter, we report the corresponding values for reference. We note that the results from the fitting 
and extrapolation procedures described in Section 3.5 with the addition of our largest 
compression point agree with the original results within uncertainty. 

3.3 Thermal Pressure 

The total thermal pressure is additive in its vibrational and electronic components:  

   (3.3) 

Fitting our Fvib data (Table 3.1) with a 2nd-order polynomial, we find Fvib(V, 300 K) = 

220.15 − 43.74V + 1.67V2, in units of meV/atom. Then, taking the volumetric derivative of 

h
MT

MT

( )h
MT

.vib el
th vib el

T T

F FP P P
V V

∂ ∂   = + = − −   ∂ ∂   
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this relation, we obtain Pvib(V, 300 K) = 0.0965(43.74 − 3.35V), which gives Pvib(V, 300 K) 

= 2.31 ± 0.06 and 2.70 ± 0.06 GPa at our smallest (30 GPa) and largest (151 GPa) 

compression points, respectively. We note that the value outside of the parentheses in our 

relation for Pvib(V, 300 K) corresponds to a conversion of units, giving Pvib in units of GPa. 

We can also investigate the temperature dependence of Pvib using our ambient 

temperature data, because Fvib is directly proportional to T (see Equation (3.1)). However, 

temperature (anharmonic) effects on the phonon DOS have not been accounted for, e.g., 

softening of phonon energies with increasing temperature, so derivatives of the best-fit 

polynomials of our Fvib(V, T > 300 K) give only the harmonic component of the vibrational 

thermal pressure . Therefore, taking T = 5600 K, we find (5600 K) = 37 ± 3 GPa 

and 40 ± 3 GPa at our smallest and largest compression points, respectively. 

In order to obtain the total Pvib(V,T) for T > 300 K, we must account for the 

anharmonic component of the vibrational thermal pressure  using  

  (3.4) 

Experimental data for temperature effects on ε-Fe’s phonon DOS are not available for the 

PT conditions of interest here, so we rely on theoretical values for (V,T). Dewaele et 

al. (2006) fit ab initio anharmonic thermal pressures (Alfè et al., 2001) with the formulation 

 
  (3.5) 

(Dorogokupets and Oganov, 2006), and found  = 1.28 × 10-7 GPa∙K-2 and  = 0.87. 

Applying Equation (3.5) and our (V,T) to Equation (3.4), we obtain the total Pvib(V,T).  
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Figure 3.2.  Vibrational thermal pressure of ε-Fe. Anharmonic effects have been accounted 
for in high-temperature values for the vibrational thermal pressure, Pvib(T > 300 K); errors 
calculated from best-fit parameters are smaller than the symbol if not visible. 

compression points, respectively, which corresponds to a 5% increase over the volume 

range of this study (Figure 3.2). 

Finally, for the volume- and temperature-dependent electronic thermal pressure, we 

use the fit of ab initio values for Pel(V,T) (Alfè et al., 2001) with the formulation given in 

Equation (3.5) by Dewaele et al. (2006), who found Ael = 4.82 × 10-7 GPa∙K-2 and Bel = 

0.339. Applying our Pvib(V,T) and this semi-empirical relationship for Pel(V,T) to Equation 

(3.3), we find Pth(300 K) = 2.35 and 2.74 GPa, and Pth(5600 K) = 55 and 56 GPa at our 

smallest and largest compression points, respectively (Table 3.1). The small variation in Pth 

over our compression range and at a given temperature suggests only a weak volume 

dependence. However, Pth depends strongly on temperature, as can be seen in Figure 3.3. 

Our Pvib(V, 300 K) agree well with reported values for the quasi-harmonic Debye 

thermal pressure from Dewaele et al. (2006). In addition, our (V,T) agree fairly well  
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Figure 3.3.  Temperature 
dependence of ε-Fe’s total 
thermal pressure. The black 
curve gives the total thermal 
pressure (Pth) of ε-Fe as a 
function of temperature for 
the largest compression 
point considered in this 
chapter (V = 4.70 ± 0.02 
cm3/mol, P = 151 ± 5 GPa). 
We note that Pth is only 
weakly volume-dependent, 
but it has a nearly linear 
dependence on temperature. 

 

with results from ab initio density-functional theory (DFT) calculations of the high-

temperature harmonic thermal pressure by Alfè et al. (2001), although they reported a faster 

increase in  with decreasing volume (~20% over the volume range of this study).  

Therefore, an experimental determination of (V,T) agrees qualitatively with select first 

principles calculations. Finally, our Pth(V,T) are in excellent agreement with a DFT 

calculation by Vočadlo et al. (2000), but our observed trend is opposite to that predicted by 

Sha and Cohen (2010a) in their DFT calculation of Pth for ε-Fe. 

3.4 High-Pressure Melting Behavior 

To constrain the high-pressure melting curve of ε-Fe, we start with Gilvarry’s 

reformulation of Lindemann’s original melting criterion, which states that melting occurs 

when the mean-square displacement of atoms (<u2>) reaches a critical fraction (C) of the 

mean-square separation of nearest neighbor atoms (<r2>) (Gilvarry, 1956b), or  

   (3.6) 
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It is important to note that Equation (3.6) predicts melting behavior based on a vibrational 

instability of the solid phase; in turn, the Lindemann melting criterion is often criticized for 

not having a strong thermodynamic basis since it does not consider the properties of the 

liquid state. However, it has been shown that the Lindemann melting criterion can be 

approximately derived from thermodynamic considerations of the relationship between the 

correlated atomic motion (entropy) of the liquid phase and vibrational properties of the 

solid phase for simple structures (Wallace, 1991; Lawson, 2009). Therefore, it has been 

argued that the Lindemann melting criterion provides a reasonable approximation for the 

melting curve shapes of monatomic, close-packed materials like ε-Fe. 

We have defined <u2> above (Equation (3.2)), and now present its high-

temperature formulation 

 ( )2
2 2 2
0 0

2 1 1,
3

R
B

LM

E Tu k T D E V dE
k E k T

≈ ≡∫  (3.7) 

where the Lamb-Mössbauer temperature (TLM) is introduced for discussion and to simplify 

the expression (Table 3.1). Equation (3.7) is valid for kBT ≫ Emax, where Emax is the 

maximum (cutoff) energy of the phonon DOS. For our smallest and largest compression 

points, Emax is ~50 and ~70 meV, respectively (Figure 2.11). If we predict an Emax at 330 

GPa and 300 K of ~100 meV, then this high-temperature approximation for <u2> is valid 

for T ≫ 1200 K, which is well below the temperatures discussed here.  

Substituting Equation (3.7) into Equation (3.6) and rearranging, we obtain an 

expression for the harmonic melting temperature  that is based on our measured 

phonon DOS via TLM(V): 

( )h
MT
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   (3.8) 

The value of k0 does not depend on volume, C is thought to be approximately constant with 

volume (Gilvarry, 1956a), and <r2> ∝ V2/3 for an hcp unit cell, so we rewrite Equation 

(3.8) in a reduced states form as  

   (3.9) 

From Equation (3.9), our TLM(V) determines the shape of ε-Fe’s melting curve, but an 

anchor melting point (represented by TM0 and VM0) is necessary to calibrate the melting 

temperatures. For the anchor melting point, we use TM(P = 105 GPa) = 3510 ± 100 K for ε-

Fe, which was measured by Ma et al. (2004) using laser-heated static compression in situ 

synchrotron XRD. We convert their reported pressure to volume using the Vinet EOS 

(Dewaele et al., 2006), and determine TLM(VM0) by quadratic interpolation of our measured 

TLM(V). Applying these anchor point values and our measured TLM(V) to Equation (3.9), we 

find = 2470 ± 70 K and 4100 ± 100 K at our smallest and largest compression points, 

respectively (Table 3.1). Reported errors account for measured uncertainties in V and TLM, 

and an uncertainty in TM0 of 100 K (Ma et al., 2004).  

3.5 Discussion 

Our harmonic melting points are based on measurements of the phonon DOS at 

300 K, and therefore do not account for thermal pressure or anharmonic effects. To find the 

total pressure at each melting point, we apply our Pth(V,T) to the high-PT EOS: 

   (3.10) 

PV is the pressure determined by applying the Vinet EOS (Dewaele et al., 2006) to our 
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measured volumes, and the square brackets contain our thermal pressure correction, which 

already accounts for anharmonic effects (see Section 3).  

Additional experiments will be necessary in order to understand the role of 

anharmonicity on ε-Fe’s phonon DOS and, in turn, the thermodynamic parameters 

determined here, i.e., the melting curve shape and thermal pressure. Previous experiments 

have looked in detail at the effects of temperature on the phonon DOS of low-pressure 

phases of iron, including the body-centered cubic (α-Fe) and face-centered cubic phases (γ-

Fe) (Kresch, 2009). These studies found the phonon energies of α-Fe to have large and 

varying shifts, and significantly less variation in the phonon DOS shape of γ-Fe with 

temperature (i.e., less pronounced anharmonic effects). Kresch (2009) argues that one 

possible explanation for the different behavior with temperature is the fact that α-Fe has a 

more open structure compared to that of γ-Fe, and, in turn allows for more anharmonicity 

because the atoms have more room to “move about.” Following the same logic, one might 

expect the properties of ε-Fe to be more closely related to those of γ-Fe, since they are both 

close-packed structures.  

Results from studies that have previously investigated the effects of temperature on 

ε-Fe’s phonon DOS seem to be consistent with the suggestion that the overall shape of the 

phonon DOS changes only slightly with temperature (Shen et al., 2004; Lin et al., 2005), 

based on qualitative inspection of their reported phonon DOS. However, we note that a 

more detailed comparison is not possible at this time because of sparse data coverage that is 

confined to low pressures, and the relatively low statistical quality that resulted from the 

limited duration of the stability of the laser-heating system. In order to quantitatively 

evaluate the role of anharmonicity on the thermodynamic parameters presented here, it will 



 59 

be necessary to collect higher-statistical quality NRIXS datasets for ε-Fe at high-PT 

conditions with in situ XRD. Such experiments are very challenging, but will be important 

for improving our understanding of the properties of iron at core conditions. 

In the absence of sufficient data on temperature effects on ε-Fe’s phonon DOS, we 

now approximate an anharmonic correction term for our melting temperatures by 

investigating the temperature dependence of TLM. We assume that the phonon DOS scales 

regularly with temperature, and that the temperature derivatives of the seismic velocity and 

the Debye sound velocity at constant volume are directly related (Appendix A). Combined 

with thermodynamic definitions, these assumptions give rise to an anharmonic correction 

term of –11% at our smallest compression point, or an anharmonic melting temperature 

(TM) of ~2190 K (Appendix A). This anharmonic correction decreases at larger 

compressions, and for P ≥ 100 GPa after accounting for Pth, our anharmonic melting 

temperatures are within the errors of our (V) (Table 3.1). The one exception, where 

TM(4.89 cm3/mol) exceeds (4.89 cm3/mol) by more than its error, may be related to the 

volume uncertainty of that compression point.  

At the pressure of the core–mantle boundary, we find TM(135 GPa) = 3500 ± 100 K. To 

benchmark this result, we find that it agrees well with the melting point reported by Ahrens 

et al. (2002) from shock-compression experiments: TM(135 GPa) = 3400 ± 200 K. In 

addition, it agrees fairly well with TM(135 GPa) = 3200 ± 100 K measured by Boehler 

(1993) (see Figure 2a in reference), who defined melting as the onset of convective motion 

in laser-heated static-compression experiments. However, our melting temperature lies well 

below that reported by Williams et al. (1987), who found TM(135 GPa) = 4800 ± 200 K 

using a combination of static- and shock-compression experiments. 

h
MT

h
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Figure 3.4.  High-pressure melting behavior of ε-Fe.  Black circles show melting points that 
account for thermal pressure and anharmonic effects.  The black dashed line gives the fit 
and extrapolation of our melting points with Equation (3.11), and the gray dashed lines 
show uncertainties of ±100 K over our experimental compression range, and ±200 K 
beyond our compression range.  The black dash-dotted line shows our harmonic melting 
temperatures, which account for thermal pressure.  The green x, +, and * show results from 
shock-compression melting experiments by Nguyen and Holmes (2004), Ahrens et al. 
(2002), and Brown and McQueen (1986), respectively; the green triangle, square, and 
diamond show results from static-compression experiments by Komabayashi and Fei 
(2010), Ma et al. (2004), and Shen et al. (1998), respectively, where the final two have 
been corrected to account for thermal pressure following Equation (3.10). 
  

To extrapolate our melting results beyond the compression range of this study, we 

apply two independent extrapolation equations. First, we use the Simon-Glatzel equation, 

which is an empirical relation for the pressure dependence of TM given by  

   (3.11) 

where x and y are fitting parameters (Simon and Glatzel, 1929). For the anchor melting 

point (TM0 and PM0), we again use the result from Ma et al. (2004), but we first apply our 
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thermal pressure correction since thermal pressure was not accounted for in their study. 

Using Equation (3.11) to fit and extrapolate our melting points, which account for thermal 

pressure and anharmonic effects, we find a melting temperature at the inner–core boundary 

(ICB, P = 330 GPa) of 5700 ± 100 K (Figure 3.4). Here we have assigned the error to be 

that of our largest compression point’s harmonic melting temperature, which is slightly 

larger than the error derived from fitting parameter uncertainties. 

The second extrapolation equation is a commonly used approximate form of 

Lindemann’s melting relation 

   (3.12) 

 (Poirier, 2000), where the vibrational Grüneisen parameter at the volume of the anchor 

melting point (γM0) serves as the fitting parameter. Taking TM0 and VM0 from Ma et al. 

(2004), we fit our ten melting points with Equation (3.12) and find γM0 = 1.65 ± 0.06. We 

then simultaneously solve for P(V,TM) and TM(V) (Equations (3.10) and (3.12)) in order to 

determine the volume of ε-Fe at the pressure of the ICB that accounts for the melting 

temperature-dependent thermal pressure. The result is a self-consistent melting temperature 

for ε-Fe at 330 GPa of 5500 ± 100 K, where the error is assigned as before.  

Combining the results of our two independent extrapolations, we find the melting 

temperature of ε-Fe at the ICB to be TM(330 GPa) = 5600 ± 200 K. To further benchmark 

this result and investigate its sensitivity to the anchor melting point, we perform the same 

thermal pressure correction, anharmonic correction, and extrapolation procedures with 

alternate anchor melting points. Anchoring our melting curve shape with the melting point 

measured by Jackson et al. (2012) at 82 GPa (after accounting for Pth) and 3025 K, we find 
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Table 3.2.  Anchor melting point parameters.a 

 
Ma et al. 
(2004) 

Jackson et al. 
(2012) 

Shen et al. 
(1998) 

Komabayashi 
and Fei (2010) 

TM0 (K) 3510(100) 3025(115) 2800(50) 2800 
VM0 (cm3/mol) 5.01 5.35 5.47 5.38 
PM0 (GPa) 134 82(5) 81 88 
TLM(VM0) (K) 3390 2820 2650 2770 
X 160(40) 110(20) 150(30) 230(30) 
Y 1.7(5) 1.78(5) 1.6(5) 1.4(5) 
γM0 1.65(6) 1.68(6) 1.75(6) 1.72(6) 

aParameters are calculated for the melting points measured by Ma et al. (2004), Jackson et al. 
(2012), Shen et al. (1998), and Komabayashi and Fei (2010), as described in the text. PM0 accounts 
for thermal pressure, assuming constant volume for all studies except Jackson et al. [2012], who 
report a thermal pressure correction that is half as large as that predicted by our constant volume 
considerations; parameters x and y are from Equation (3.11), and γM0 is from Equation (3.12).  

 

TM(330 GPa) ~ 5500 to 5800 K. A similar melting temperature range is found when 

anchoring our melting curve shape with the triple point measured by Shen et al. (1998) at 

81 GPa (after accounting for Pth) and 2800 K. Finally, anchoring our melting curve shape 

with Komabayashi and Fei’s (2010) reported triple point at 90 GPa and 2800 K, we find 

TM(330 GPa) ~ 5500 K from Equation (3.11), and ~5200 K from Equation (3.12). 

Therefore, using the shape we determine from the phonon DOS, the melting temperature of 

ε-Fe at the ICB predicted from the melting points reported by Ma et al. (2004), Shen et al. 

(1998), and Komabayashi and Fei (2010) all agree within their uncertainties, thus serving 

as benchmarks for our approach (Table 3.2).  

Finally, we note that considering the uncertainties of our melting curve shape and 

our two independent extrapolations, our results intersect the range of values reported in the 

shock-compression studies of Nguyen and Holmes (2004) and Brown and McQueen (1986) 

(Figure 3.4). 
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From Equation (3.10), our Pth(V,T), and our TM(330 GPa) = 5600 ± 200 K, we find 

the density of pure ε-Fe to be ρFe(330 GPa) = 13.50 ± 0.03 g/cm3. This ρFe can also be 

reported as a core density deficit (CDD), or the percent difference between the density of ε-

Fe under core conditions and the seismically inferred density of the core. The preliminary 

reference Earth model (PREM) predicts a density at the ICB of 12.76 g/cm3, based on 

observations of Earth’s normal modes and seismic wave travel times (Dziewonski and 

Anderson, 1981). Together with our ρFe(330 GPa, 5600 ± 200 K), this gives a CDD of 5.5 ± 

0.2%, where the uncertainty reflects the errors we assigned to our extrapolated melting 

temperatures. Our CDD value agrees well with Komabayashi and Fei’s (2010) recently 

calculated CDD of 5.3 wt%, which is based on static-compression experiments and a lower 

melting temperature for ε-Fe at the ICB.  

The CDD offers insight into the amount of light elements present in the core 

(Poirier, 2000; Hemley and Mao, 2001). However, the alloying of Ni and light elements 

(e.g., S, Si, O, C, H) may affect the melting temperature and other thermoelastic parameters 

of ε-Fe (e.g., Boehler, 1992; Poirier, 2000; Seagle et al., 2008) and, in turn, complicate the 

determination of the true composition of the core by, for example, altering the Pth 

correction. In order to better constrain the CDD, it would be ideal to use the density of an 

Fe-Ni alloy at ICB conditions as a reference, rather than pure Fe. While the EOS of Fe-Ni 

is thought to be similar to that of pure Fe (Mao et al., 1990), the effect of alloying on Pth is 

not well-known. 

3.6   Implications and Conclusions 

It is important to note that a significant amount of light elements in Earth’s solid 

inner core has far-reaching implications for the thermal properties of this remote region. 
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First, geodynamo theory argues that the Earth’s magnetic field is generated by the rotation 

and vigorous convection of the electrically conductive liquid outer core. Convection of the 

outer core is driven by a combination of thermal buoyancy and chemical buoyancy, the 

latter of which results from the exclusion of light elements from the solid inner core and, in 

turn, the formation of a relatively light fluid above the inner–core boundary (ICB). The 

relative importance of thermal and chemical buoyancy is not well constrained, but in his 

review paper of geodynamo models, Buffet (2000) predicts that 80% of the power for 

generating the goedynamo comes from chemical buoyancy. If a significant amount of light 

elements must be present in the inner core to match seismic observations, then either 

thermal buoyancy must play a larger role in driving convection in the outer core, or another 

mechanism is needed to generate the geodynamo.  

In addition, the melting (freezing) point depression at the conditions of Earth’s ICB 

is often estimated from a comparison of the melting temperatures of iron alloys and pure 

iron. Such a comparison is very difficult to make, since even the seemingly simplest 

component—the melting behavior of pure ε-Fe at the conditions of Earth’s ICB—is not 

well-known (see Section 1.2 for a more detailed review). If a significant amount of light 

elements are present in the solid inner core, then such a comparison becomes exceedingly 

complex, since multiple phases may be present in the inner core, all of whose melting 

behaviors must be accurately measured and considered. 

In summary, we determined ε-Fe’s high-pressure melting behavior and thermal 

pressure from measurements of its total phonon DOS at 300 K. Accounting for thermal 

pressure and anharmonic effects, we found ε-Fe’s melting temperature at the pressure of 

the CMB to be 3500 ± 100 K. In addition, by combining the results of two independent 
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extrapolations of our melting curve, we found ε-Fe’s melting temperature at the ICB to be 

5600 ± 200 K. We have presented benchmarking cases and show that the melting 

temperatures of ε-Fe predicted from our approach are in agreement with shock-

compression studies. Finally, our predicted melting temperature for ε-Fe at the ICB 

corresponds to a CDD of 5.5 ± 0.2% for the solid inner core, which has important 

implications for our understanding of the thermal properties of Earth’s core.  
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Chapter 4 

Grüneisen parameter of hcp-Fe2 

 

4.1 Introduction  

Iron is thought to be the main constituent in the Earth’s core (e.g., McDonough, 

2003), and existing data suggest that hexagonal close-packed iron (ε-Fe) is the stable phase 

at core conditions (Alfè et al., 2001; Ma et al., 2004; Dewaele et al., 2006; Tateno et al., 

2010). Therefore, the accurate determination of ε-Fe’s thermophysical properties is of 

fundamental importance for studies of the deep Earth. For example, accurate measurements 

of ε-Fe’s thermodynamic Grüneisen parameter (γth) would aid in the determination of its 

high-pressure thermal equation of state, because γth is the coefficient that relates thermal 

pressure to thermal energy per unit volume. In addition, γth is used to reduce shock-

compression data to isothermal data and to calculate adiabatic gradients (Poirier, 2000), 

both of which are important applications for furthering our understanding of Earth’s core.  

The thermodynamic Grüneisen parameter is made up of electronic and vibrational 

components, the latter of which is directly related to the volume dependence of the phonon 

                                                 
2 Revised over what was previously published as Murphy et al. (2011b). 
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density of states (DOS). The vibrational Grüneisen parameter (γvib) of ε-Fe is particularly 

important because it is used to extrapolate available melting data to the inner–core 

boundary, where Earth’s solid inner core and liquid outer core are in contact. However, 

reported values of γvib are not in complete agreement (Jeanloz, 1979; Brown and McQueen, 

1986; Dubrovinsky et al., 2000a; Lübbers et al., 2000; Alfè et al., 2001; Anderson et al., 

2001; Ahrens et al., 2002; Giefers et al., 2002; Dewaele et al., 2006), and are often based 

on indirect or approximate determinations. As a result, uncertainty and confusion surround 

γvib, and a wide range of extrapolated melting temperatures have been reported.  

An approximate form of γvib is the Debye Grüneisen parameter (γD), which is based 

on Debye’s approximation that the entire phonon DOS can be described by its low-energy 

region, where the dispersion relation is linear. In past studies, γD has been approximated 

from x-ray diffraction experiments via the Rietveld structural refinement method. From this 

refinement, one obtains an approximate mean-square atomic displacement and, in turn, the 

Debye temperature, which is related to γD (Dubrovinsky et al., 2000a; Anderson et al., 

2001). In addition, researchers have approximated γD from adiabatic decompression 

experiments via a thermodynamic relationship that relates γ and  (Boehler and 

Ramakrishnan, 1980).  

Here we determine γvib(V) from the total phonon DOS, which we measured at 

eleven compression points between pressures of 30 GPa and 171 GPa using nuclear 

resonant inelastic x-ray scattering (NRIXS) and in situ x-ray diffraction (XRD) 

experiments (Sturhahn et al., 1995). In addition, we determine γD(V) for ε-Fe from the 

volume dependence of its Debye sound velocity, which we obtain from the low-energy 

region of the phonon DOS (Sturhahn and Jackson, 2007). Our long NRIXS data-collection 

( )S
T P∂ ∂
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times and high-energy resolution resulted in the high statistical quality that is necessary to 

derive γvib and γD.  

4.2 Experimental 

For details of our diamond-anvil cell (DAC) preparations, experimental procedures, 

and data analysis, see Chapter 2. The analysis, results, and discussion in this chapter are 

based on our entire NRIXS and in situ XRD dataset (11 compression points). To derive γvib 

and γD, we rely on our in situ measured volumes. To present our results on a common scale 

and for discussion, we convert our measured volumes to pressures using the Vinet equation 

of state (EOS) (Dewaele et al., 2006) (Table 4.1).  

From our NRIXS experiments, we obtained ε-Fe’s total phonon DOS, D(E,V) 

(Sturhahn, 2000; Sturhahn and Jackson, 2007), from which we directly determined two 

parameters that relate γvib to the vibrational thermal pressure via a Mie-Grüneisen type 

relationship. The vibrational component of the specific heat capacity per 57Fe atom (Cvib) is 

given by 

 
 

(4.1) 

and the vibrational internal energy per 57Fe atom (Uvib) is given by  

 
 

(4.2) 

 (Table 4.1), where kB is Boltzmann’s constant and β = (kBT) –1 is the inverse temperature 

(Sturhahn, 2004). In Equations (4.1) and (4.2), the phonon DOS has been normalized by 
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Figure 4.1.  Comparison of measured and scaled phonon DOS of ε-Fe. Black curves show the 
measured phonon DOS at each compression point; green curves show the phonon DOS at Vi = 
5.15 ± 0.02 cm3/mol (P = 90 ± 3 GPa), scaled to each other measured phonon DOS using Equation 
(4.3) and the appropriate scaling parameter for each pair of phonon DOS, following the procedure 
described in Section 4.4. 
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4.3 Vibrational Grüneisen Parameter 

Qualitative inspection of our data reveals that our phonon DOS are similar in shape 

at all compression points, and that any pair of phonon DOS appears to be related by a  

single overall scaling parameter. This suggestion can be evaluated in Figure 4.1, where we 

plot our measured phonon DOS at each compression point in black, along with the phonon 

DOS at Vi  = 5.15 ± 0.02 cm3/mol (P = 90 ± 3 GPa) that has been scaled using 

  (4.3) 

and the appropriate scaling parameter (ξ) for each pair of phonon DOS in green. We note 

that ξ is energy independent and ξ(1) = 1.  

To determine the appropriate scaling parameter for each pair of phonon DOS, we 

assign one spectrum to be an initial reference phonon DOS, (E,Vi), to which we apply 

Equation (4.3). We then minimize the least-squares difference between this scaled 

reference phonon DOS and each of the other ten unscaled phonon DOS, (E,Vj) (Figure 4.1). 

This process is repeated with each phonon DOS serving as the reference, resulting in 

eleven datasets that each contain ten data points. To incorporate our entire scaling 

parameter analysis into each dataset, we then rescale all of our data to each reference 

volume (Vi) by  

 
  

(4.4) 

In Figure 4.2, we show the result of this scaling analysis for an example reference 

phonon DOS: ξ(Vk/Vi) at Vi = 5.15 ± 0.02 cm3/mol. Given the smooth trend and small 

errors, we find that a generalized scaling law successfully describes the volume dependence 

of ε-Fe’s phonon DOS. We note that a similar analysis was previously performed by Alfè et 
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Figure 4.2. Scaling parameter 
analysis demonstration. The 
scaling parameter (ξ) is 
plotted as a function of the 
relative volumes of a scaled 
reference phonon DOS, 
(E,Vi), and all other unscaled 
phonon DOS, 𝒟(E,Vk). In this 
example, Vi = 5.15 ± 0.02 
cm3/mol (P = 90 ± 3 GPa). 
All scaling analysis data have 
been included, following 
Equation (4.4). 

al. [2001], who investigated the volume dependence of dispersion curves for ε-Fe using ab 

initio density-functional theory (DFT) calculations. Alfè et al. [2001] reported ξ(1.244) = 

1.409 for Vi = 4.20 cm3/mol, which agrees fairly well with the value predicted by 

extrapolating our results to the same volume ratio. However, this comparison is largely 

qualitative because the scaling parameter reported by Alfè et al. [2001] was determined for 

dispersion curves calculated at T = 4000 K, and Vi = 4.20 cm3/mol is beyond the 

compression range of our measurements.  

Finally, we derive an expression for the relationship between γvib and the volume 

dependence of the scaling parameter, ξ(V/Vi), by combining the commonly used 

parameterization  

 
  

(4.5) 

with the definition of the vibrational Grüneisen parameter 
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where γvib,i and Vi are the vibrational Grüneisen parameter and volume at a reference 

compression, and q is a fitting parameter. Substituting Equation (4.5) into Equation (4.6) 

and integrating, we obtain 

 
 , 

(4.7) 

when q ≠ 0. At the reference compression, V = Vi and ξi = ξ(1) = 1, so Equation (4.7) 

simplifies to 

 
  

(4.8) 

Fitting each of our eleven ξ(Vk/Vi) datasets with Equation (4.8) and allowing both 

γvib,i and q to vary freely, we found large uncertainties in q, with the most tightly 

constrained fit being q(5.15 cm3/mol) = 0.8 ± 0.7. Therefore, we reperformed the fits with q 

fixed to one of three assigned values: first, q(5.15 cm3/mol) = 0.8; second, the commonly 

assumed q = 1; and third, q = 1.2. Finally, we fit the resulting three sets of γvib,i(V) with 

Equation (4.5) and obtained ambient pressure γvib,0 = 1.88 ± 0.02 for q = 0.8; γvib,0 = 1.98 ± 

0.02 for q = 1.0; and γvib,0 = 2.08 ± 0.02 for q = 1.2. These results can be combined and 

presented as γvib,0 = 2.0 ± 0.1, where we assign the error to reflect fitting parameter 

uncertainties and the range associated with our fixed q values.  

4.4 Debye Grüneisen Parameter 

The low-energy region of a material’s phonon DOS is related to its Debye sound 

velocity (vD), provided it is parabolic (“Debye-like”). We determined vD for ε-Fe at each of 

our eleven compression points (Table 4.1) by using an exact relation for the dispersion of 

low-energy acoustic phonons with our in situ measured volumes, and determining the best 
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energy range to use for this fit (see Equation (9) in Sturhahn and Jackson (2007)). The 

large compression range and high statistical quality of our data allow us to calculate a very 

accurate vD(V), which is related to γD by 

 
  

(4.9) 

Combining Equations (4.9) and (4.5) and integrating, we obtain the expression 

 
  

(4.10) 

which depends on the ambient pressure Debye sound velocity (vD,0), Debye Grüneisen 

parameter (γD,0), and volume (V0) (Dewaele et al., 2006), and the fitting parameter q 

(Sturhahn and Jackson, 2007). Therefore, to determine γD(V), we fit our vD(V) with 

Equation (4.10), fixing q as in Section 3, and found γD,0 = 1.70 ± 0.07 and vD,0 = 3.66 ± 0.06 

km/s for q = 0.8; γD,0 = 1.78 ± 0.07 and vD,0 = 3.63 ± 0.06 km/s for q = 1.0; and γD,0 = 1.87 

± 0.08 and vD,0 = 3.60 ± 0.06 km/s for q = 1.2. Combining these results as in Section 3, we 

find γD,0 = 1.8 ± 0.1 and vD,0 = 3.63 ± 0.09 km/s. 

4.5 Discussion  

A generalized scaling law describes the volume dependence of ε-Fe’s phonon DOS 

fairly well. However, it is important to note that the relative intensity of the middle 

vibrational mode decreases with respect to the low- and high-energy vibrational modes 

with compression (Figure 4.1). This slight deviation from perfectly generalized scaling 

could contribute to the poorly constrained nature of q, which is the parameter that controls 

the rate at which γvib and γD decrease with decreasing volume.  

Our γvib,i and γD at each compression point are listed in Table A.1 (in Appendix A), 
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Figure 4.3.  Grüneisen parameters of ε-Fe. Individual γvib,i from Section 4.3 are plotted as 
circles for q = 0.8 (black) and q = 1.2 (red); fitted curves of γvib,i with Equation (4.5) (solid 
lines) and γD(V) (dashed lines) are shown for q = 0.8 (black lines) and q = 1.2 (red lines). 
The dash-dotted line shows γD(V) reported by Dewaele et al. (2006), which is based in part 
on their XRD data; the black square and triangle show the individual γD determined from 
NRIXS measurements by Lübbers et al. (2000) and Giefers et al. (2002), respectively, at 
the average volume of each experimental pressure range; the dash-dot-dotted line shows 
γth(V) determined by Merkel et al. (2000) using Raman spectroscopy experiments; and the 
dash-dash-dotted line shows γth reported by Sha and Cohen (2010a) in their Figure 8, based 
on the results of their DFT calculations at T = 500 K. 

and are plotted with their fitted curves in Figure 4.3. We find that γvib is systematically 

~10% larger than γD, which may be explained in part by the fact that γvib is derived from the 

entire phonon DOS, while γD depends only on the acoustic regime (i.e., the low-energy 

region). There is not enough information to determine whether this discrepancy is related to 

sample texturing, which we observed in our five largest compression points (see 

supplemental materials). 

Our γvib(V) for q = 0.8 agree fairly well with γv(V) determined by Anderson et al. 

(2001) from intensity changes in static-compression XRD lines with compression. In  
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Table 4.1.  Specific heat capacity, internal energy, and Debye sound velocity of ε-Fe from 
NRIXS data.a 

V (cm3/mol) P (GPa) Cvib (kB/atom) Uvib (meV/atom) vD (km/s) 

 5.92(2) 30(2) 2.62(2) 87.9(9) 4.36(3) 
 5.81(1) 36(2) 2.60(4) 88.5(1.8) 4.37(6) 
 5.56(1) 53(2) 2.54(3) 90.4(1.5) 4.57(4) 
 5.36(1) 69(3) 2.49(2) 92.0(1.2) 4.80(4) 
5.27(2) 77(3) 2.47(2) 92.6(8) 4.93(3) 
5.15(2) 90(3) 2.44(2) 93.6(9) 5.13(3) 
 5.00(2) 106(3) 2.40(2) 95.0(1.0) 5.23(3) 
 4.89(2) 121(3) 2.36(2) 96.4(1.0) 5.33(4) 
 4.81(2) 133(4) 2.33(2) 97.2(1.2) 5.47(5) 
 4.70(2) 151(5) 2.30(2) 98.0(1.3) 5.72(10) 
 4.58(2) 171(5) 2.25(3) 100(2) 5.64(7) 

 

aVolume (V) was measured with in situ XRD and converted to pressure (P) using the Vinet EOS 
(Dewaele et al., 2006) (Tables 2.1 and 2.2); the vibrational specific heat capacity (Cvib) and 
vibrational internal energy (Uvib) per 57Fe atom were determined from the integrated phonon DOS 
(Equations (4.1) and (4.2)); and the Debye sound velocity (vD) was obtained from the low-energy 
region of the measured phonon DOS and our in situ measured volumes, and accounts for 57Fe 
enrichment levels. Values in parentheses give uncertainties for the last significant digit(s).  

addition, the slope for q = 0.8 agrees fairly well with that of γD(V) reported by Dewaele et 

al. (2006), which was determined from a combination of previously reported shock-

compression data, an assumed volume dependence of γ, and their static-compression XRD 

experiments. However, γD(V) from Dewaele et al. (2006) is ~10% larger than our γD(V). 

Finally, two previous NRIXS experiments on ε-Fe reported volume-independent γD up to 

42 GPa; our γD(V) agree well with that reported by Giefers et al. (2002), but are 

significantly lower than that reported by Lübbers et al. (2000) (Figure 4.3). We note that 

the discrepancy with the latter study may be related to the fact that the energy scale they 

used was incorrect. 

Although γvib is only one component of the total γth, we compare our results with 
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reported values for ε-Fe’s γth(V). Merkel et al. (2000) used Raman spectroscopy 

experiments to determine γ0 = 1.68 ± 0.2 for q = 0.7 ± 0.5, which is very similar to our 

γD(V) for q = 0.8. Sha and Cohen (2010a) performed DFT calculations to find γth(V) for 

nonmagnetic ε-Fe at 500 K. Their result agrees fairly well with our high-pressure γvib,i but 

has a steeper slope than our fitted curves, possibly due to different EOS parameters (Figure 

4.3). Finally, Brown and McQueen (1986) found γ = 1.56 at a density of 12.54 g/cm3 using 

shock-compression experiments, which is larger than our predicted value at the same 

density (~1.3). However, we note that the Brown and McQueen (1986) data point is for 

liquid iron, whereas our results are for solid ε-Fe at 300 K.  

To explore the geophysical applications of γvib, we first investigate the volume-

dependent vibrational thermal pressure (Pvib) of ε-Fe by applying our γvib(V) to a Mie-

Grüneisen type relationship:  

 
  

(4.11) 

Cvib(V) and Uvib(V) are obtained from our measurements (Equations (4.1) and (4.2)), and we 

use approximate values for the electronic component of the specific heat capacity (Cel) 

from Alfè et al. (2001). Applying these values and our γvib(V) to Equation (4.11), we find 

Pvib(300 K) = 2.39 ± 0.08 GPa and 2.75 ± 0.1 GPa at our smallest (30 GPa) and largest 

(171 GPa) compression points, respectively. Reported errors account for the previously 

mentioned uncertainties in γvib and our measured uncertainties in V, Cvib, and Uvib. These 

values agree very well with our Pvib calculated directly from the integrated phonon DOS 

(Murphy et al., 2011a), which were 2.31 ± 0.06 GPa and 2.74 ± 0.06 GPa at our smallest 

and largest compression points. Finally, accounting for electronic and anharmonic 
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contributions at high temperatures following Murphy et al. (2011a), we find the total 

thermal pressure (Pth) of ε-Fe at our new, largest compression point (V = 4.58 cm3/mol) to 

be Pth(2000 K) = 16 GPa, Pth(4000 K) = 37 GPa, and Pth(5600 K) = 56 GPa.  

Next, we use our γvib(V) to estimate the high-pressure melting behavior of ε-Fe by 

applying it to a commonly used, approximate form of the empirical Lindemann melting 

criterion 

 
  

(4.12) 

where TM
ref, VM

ref, and γvib
ref

  are the melting temperature, volume, and vibrational 

Grüneisen parameter at a reference melting point. We take the melting point measured by 

Ma et al. (2004) using laser-heated synchrotron x-ray diffraction experiments as the 

reference: TM
ref = 3510 ± 100 K at P300 K = 105 GPa, or VM

ref = 5.01 cm3/mol using the 

Vinet EOS (Dewaele et al., 2006; Murphy et al., 2011a). From Equation (4.5) and our 

results in Section 3, we find γvib
ref = 1.47 ± 0.1. Applying these reference point values to 

Equation (4.12), we estimate TM(4.70 cm3/mol) = 4100 ± 100 K and TM(4.58 cm3/mol) = 

4300 ± 100 K for ε-Fe. We note that replacing γvib
ref with γD

ref = 1.32 ± 0.1 (see Section 4.4) 

results in melting temperatures that are ~3% smaller at these compressions. 

Finally, we account for thermal pressure at the melting temperatures of our two 

largest compression points following Murphy et al. (2011a), which gives Pth(4.70 cm3/mol, 

4100 K) = 38 GPa and Pth(4.58 cm3/mol, 4300 K) = 40 GPa, respectively. Applying the 

corresponding thermal pressure correction assuming constant volume, we find TM(186 

GPa) = 4100 ± 100 K and TM(208 GPa) = 4300 ± 100 K. These estimated melting points 

agree very well with our previously reported high-pressure melting behavior of ε-Fe, 
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determined from the mean-square displacement of 57Fe atoms which we obtained directly 

from the integrated phonon DOS (Murphy et al., 2011a).  
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Chapter 5 

Additional Thermodynamic Quantities Related to 
Lattice Vibrations of hcp-Fe3

 

5.1 Introduction  

A large theoretical and experimental effort has been dedicated to investigating the 

structural, thermoelastic, and thermodynamic properties of pure iron at the pressure- and 

temperature (PT) conditions of Earth’s core. The properties that have received the most 

attention from the Earth science community are those that are most closely related to 

seismic observations, since that is the most direct tool we have for probing the deep Earth. 

In particular, numerous studies have investigated iron’s equation of state (e.g., Brown and 

McQueen, 1982; Jephcoat et al., 1986; Mao et al., 1990; Wasserman et al., 1996; Stixrude 

et al., 1997; Dubrovinsky et al., 1998; Dewaele et al., 2006; Sola et al., 2009; Sha and 

Cohen, 2010) and sound velocities (e.g., Jeanloz, 1979; Brown and McQueen, 1986; 

Lübbers et al., 2000; Fiquet et al., 2001; Mao et al., 2001; Giefers et al., 2002; Antonangeli 

et al., 2004; Nguyen and Holmes, 2004; Lin et al., 2005; Mao et al., 2008), which are 

closely related to seismic observations of Earth’s core. Iron’s high-pressure melting 

behavior has also received a significant amount of attention (e.g., Brown and McQueen, 
                                                 
3 Portions of this chapter are revised from Murphy et al. (2011b). 



 80 

1986; Boehler et al., 1990; Boehler, 1993; Shen et al., 1998; Belonoshko et al., 2000; 

Ahrens et al., 2002; Alfè et al., 2002; Ma et al., 2004; Nguyen and Holmes, 2004; Sola and 

Alfè, 2009; Komabayashi and Fei, 2010; Murphy et al., 2011a; Jackson et al., 2012), and is 

related to seismic observations via the disappearance of shear waves in the outer core 

region, and their reappearance in the inner core. Such observations dictate that the 

temperature at the inner–core boundary must be equal to the melting temperature of core 

materials, since the solid inner core and liquid outer core are in contact.  

Despite the experimental and theoretical efforts that have been applied to the 

aforementioned properties, significant uncertainties remain (Section 1.2 and Chapter 6). 

Therefore, there is still a need for accurately determining the vibrational thermodynamic 

and thermoelastic properties of ε-Fe with high statistical quality, in order to provide a 

baseline against which to evaluate the effects of alloying candidate light elements with iron. 

When combined with seismic observations, such high-statistical quality measurements will 

be a significant step toward better constraining the identities and amounts of light elements 

that are present in Earth’s core.  

To further investigate the properties of Earth’s core, there are a number of 

additional thermodynamic parameters that can be obtained from lattice dynamics. For 

example, the thermal expansion coefficient of ε-Fe helps to constrain the density of iron 

under the pressure and temperature (PT) conditions of Earth’s core and, in turn, the core-

density deficit (Section 3.5) (e.g., Jeanloz, 1979; Alfè et al., 2001; Isaak and Anderson, 

2003). In addition, the isotopic partition function ratios of iron provide information about 

the distribution of heavy iron isotopes during equilibrium processes involving solid iron. 

We note that the latter parameter is related to lattice dynamics via the fact that the mass of 
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atoms in a crystal influence the frequency of atomic vibrations (phonons) and, in turn, the 

internal energy of the system.  

Here we present the volume dependence of select thermodynamic and thermoelastic 

parameters of ε-Fe related to lattice vibrations, which we obtained from measurements of 

its total phonon density of states (DOS) between pressures of 30 and 171 GPa (Chapter 2). 

In particular, we report experimentally determined values for the volume dependence of ε-

Fe’s Lamb-Mössbauer factor (fLM); vibrational components of its kinetic energy (EK) and 

entropy (Svib); and its Debye sound velocity (vD). Details for obtaining each parameter from 

the phonon DOS will be presented in their respective sections.  

From our experimentally determined EK(V), we obtain ε-Fe’s reduced isotopic 

partition function ratios (β-factors), and discuss their utility for investigating iron’s 

equilibrium isotope fractionation based on the available pressure and temperature 

resolution. In addition, we use our measured Svib(V) to determine the vibrational 

components of ε-Fe’s thermal expansion coefficient and, in turn, investigate the 

temperature dependence of the thermal pressure and Grüneisen parameter. Finally, we use 

our measured vD and existing equation of state parameters (Dewaele et al., 2006) to 

determine ε-Fe’s compressional and shear sound velocities, which we qualitatively 

compare with seismic observations of Earth’s core. 

5.2 Lamb-Mössbauer Factor 

The Lamb-Mössbauer factor (fLM) represents the probability for recoilless 

absorption, or the ratio of the elastic to total incoherent scattering in NRIXS experiments. It 

has a similar functional form as that of the Debye-Waller factor (fDW), where fDW describes 

coherent, fast scattering events and fLM describes slow scattering events, i.e., events that 
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occur over the lifetime of nuclear resonance (141 ns for 57Fe) (Sturhahn, 2004). In general, 

fLM can best be understood by its relationship to the thermal motion of resonant nuclei 

about their equilibrium positions (57Fe in our case): 2 2
0exp ,LMf k u = −   where k0 is the 

wavenumber of the resonant x-rays (7.306 Å–1 for 57Fe) and <u2> is the mean square 

atomic displacement. This relationship highlights the fact that fLM contains information 

about lattice dynamics and, in turn, depends strongly on the binding of the resonant nuclei 

in the lattice (e.g., on composition, lattice structure, and pressure and temperature 

conditions).  

There are two ways to access fLM from NRIXS data. First, fLM can be determined 

from a moments analysis of the pure phonon excitation spectrum, I'(E), which is the 

spectral shape produced by fitting and subtracting the elastic peak from the measured 

NRIXS data (Sturhahn et al., 1995). In turn, I'(E) is related to the excitation probability 

density, S(E), via the previously discussed normalization and refinement procedures (see 

Section 2.3.3). Finally, fLM is obtained from the total S(E)—i.e., the sum of the one- and 

multi-phonon contributions—by evaluating its 0th-order moment, or ( )n
nS E S E dE= ∫  for 

n = 0. Details of this procedure can be found in Sturhahn and Chumakov (1999).  

The second method for extracting fLM from NRIXS data is via the measured total 

phonon DOS, D(E,V), which is obtained by applying a quasi-harmonic lattice model to the 

total S(E) described above. In particular,  

( ) ( )exp coth , ,
2

R
LM

E Ef V D E V dE
E

β  = −     
∫  (5.1) 

where β = (kBT)–1 is the inverse temperature, kB is Boltzmann’s constant, and the phonon 
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Figure 5.1.  Lamb-Mössbauer factor of ε-
Fe from NRIXS data. Black circles give 
the Lamb-Mössbauer factor (fLM) as 
determined from ε-Fe’s total phonon 
DOS and Equation (5.1). Green squares 
show fLM as determined from the 0th-
order moment of our measured NRIXS 
data, as described in Section 5.2. 
 

DOS has been normalized by ( ) 3D E dE =∫  (Sturhahn and Jackson, 2007). Values for fLM  

determined using Equation (5.1) are given in Table 5.1. We restate the high statistical 

quality of our dataset by comparing our uncertainties for fLM with those reported by Mao et 

al. (2001) up to 153 GPa. Performing the same PHOENIX analysis on both datasets, we 

find that our data produce errors in fLM that are ~75% smaller on average using the 

moments method, and ~60% smaller on average using Equation (5.1). 

Values for fLM determined using these two methods are indistinguishable for all of 

our compression points, as can be seen in Figure 5.1. The most noticeable disagreement in 

Figure 5.1 occurs at a molar volume per 57Fe atom of 5.81 ± 0.01 cm3/mol—the 

compression point at which we had the lowest overall counts based on fewer scans 

collected (Table 2.2)—which demonstrates the importance of a high-statistical quality 

dataset for accurately determining vibrational thermodynamic parameters. We note that the 

two methods are intimately related via S(E), but obtaining fLM from the moments analysis 

requires no assumptions, while obtaining fLM from Equation (5.1) involves the assumption 

that a quasi-harmonic oscillator model accurately describes the behavior of ε-Fe. Good 

agreement between fLM determined from the two distinct methods is consistent with the 

validity of the quasi-harmonic model over our experimental conditions.  
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5.3 Kinetic Energy and its Relation to the β-Factors of ε-Fe  

The vibrational internal energy per 57Fe atom (Uvib) can be obtained directly from 

the integrated phonon DOS, as previously demonstrated in Equation (4.2). In turn, Uvib is 

made up of equal parts kinetic and potential energies in the harmonic lattice approximation, 

so the vibrational kinetic energy per 57Fe atom (EK) is given by: 

( ) ( )1 coth ,
4 2K

EE V E D E V dEβ
= ∫  (5.2) 

(Table 5.1), where the phonon DOS has been normalized by ( ) 3.D E dE =∫  
In addition, 

EK can be obtained from the 2nd-order moment of S(E), in a procedure similar to that 

described in the Section 5.2. Values for EK determined from Equation (5.2) and the 

moments analysis method are plotted together in Figure 5.2. For all compression points, the 

values agree within uncertainty, but the moments analysis produces more scatter than 

Equation (5.2). In addition, the scatter in EK(V) produced by the moments analysis is larger 

than that produced in the corresponding determination of fLM (Section 5.2). This is a result 

of the fact that the kinetic energy arises from a higher-order moment, which amplifies the 

high-energy region of the measured NRIXS data where counting rates are inherently low 

and, in turn, statistical fluctuations result in larger uncertainties. Finally, for comparison, 

we also include in Figure 5.2 the results of our PHOENIX analysis of the NRIXS data 

measured by Mao et al. (2001) up to 153 GPa.  

Values for Uvib determined using Equation (5.2) were previously reported in 

Chapter 4 (Table 4.1), where they were used to relate the vibrational Grüneisen parameter 

to the vibrational thermal pressure using a Mie-Grüneisen type relationship. Here we use 

the kinetic energy component of the vibrational internal energy to evaluate ε-Fe’s reduced 
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(a) 

 

(b) 

 
 
Figure 5.2.  Vibrational kinetic energy of ε-Fe from NRIXS data. (a) Black circles give the volume 
dependence of the vibrational kinetic energy (EK) determined from our total phonon DOS for ε-Fe 
and Equation (5.2); green squares show EK determined from the 2nd-order moment of our measured 
NRIXS data (see related discussion in Section 5.2). (b) Black circles and green squares give the 
same values for EK as in Figure 5.2a, but now as a function of pressure, which is determined from 
our in situ XRD and the Vinet EOS parameters reported by Dewaele et al. (2006). For comparison, 
we also plot EK from our PHOENIX analysis of the NRIXS dataset on ε-Fe measured by Mao et al. 
(2001); blue stars give EK from their phonon DOS, and red X’s give EK from the 2nd-order moment 
of their measured NRIXS data. 
 

isotopic partition function ratios (β-factors), which are related to the distribution of isotopes 

of iron that results from equilibrium processes at elevated pressures. At a given pressure,  

the β-factor between two isotopes is related to their free energies (F) via 

* *ln ,
B B classical

F F F F
k T k T

β
 − −

= − +  
 

 (5.3) 

(Bigeleisen and Mayer, 1947; Schauble, 2004) where kB is Boltzmann’s constant, T is 

temperature, asterisks denote values for the isotopically substituted form, and the final 

subscript refers to values from classical mechanics. From first-order thermodynamic 

perturbation theory, the difference between free energies of substituted and unsubstituted 

isotopic forms (F* - F) can be written in terms of EK and the difference in isotope masses 

* ,
*K
mF F E

m
∆

− =  (5.4) 
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(a) 

 

(b) 

 

Figure 5.3.  Reduced isotopic partition function ratios of ε-Fe. (a) Black circles give the density 
dependence of the reduced isotopic partition function ratios (1000lnβ57Fe/54Fe) of ε-Fe at 300 K by 
the procedure described in Section 5.4. (b) Lines give the temperature dependence of 
1000lnβ57Fe/54Fe, with each color corresponding to an individual compression point as labeled in the 
figure. Error bars for three compression points (31, 90, and 171 GPa) are plotted at T = 1100 K; 
they reflect the propagation of measured uncertainties for EK in Equation (5.5). 

where ∆m = m – m* (i.e., ∆m = -3 when 57Fe substitutes for 54Fe) (Polyakov and Mineev, 

1999). Together with the classical mechanics value of the kinetic energy, which is equal to 

3kBT/2, Equations (5.3) and (5.4) can be combined to obtain  

3ln .
2 *

K

B

E m
k T m

β
  ∆

= − − 
 

 (5.5) 

Finally, we apply our measured EK(V) to Equation (5.5) in order to determine the β-factors 

of ε-Fe for each of our compression points and at 300 K (Table 5.1). In addition, the 

temperature dependence of Equation (5.5) allows us to explore the effects of temperature 

on the β-factors of ε-Fe (Figure 5.3), assuming the quasi-harmonic model accurately 

describes the vibrational behavior of ε-Fe at the relevant PT conditions. The accuracy of the 

quasi-harmonic model for ε-Fe at high-temperature conditions is unknown (see Section 3.5 

for more discussion), but due to the lack of sufficient data on the temperature dependence 

of ε-Fe’s phonon DOS, we will apply it to the discussion in Section 5.6. 
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Figure 5.4.  Vibrational entropy 
of ε-Fe. Black circles give the 
vibrational entropy (Svib) at each 
compression point and at 300 K 
(Equation (5.6)); the black line 
gives the errors-weighted linear 
fit of our data, the result of 
which is given on the figure. We 
note that the reported slope of 
0.685 (kB/atom)/(cm3/mol) is 
equivalent to the value given in 
the text via a conversion of 
units. 

5.4 Entropy and its Relation to the Thermal Expansion Coefficient of ε-Fe 

The vibrational entropy per 57Fe atom (Svib) at 300 K can be obtained directly from 

the integrated phonon DOS via 

( ) ( )coth , ln 2sinh ,
2 2 2
B

vib B
k E ES E D E V dE k D E V dEβ β β = −  

 ∫ ∫  (5.6) 

(Table 5.1), where the phonon DOS has been normalized by ( ) 3D E dE =∫ (Sturhahn, 

2004). Values for Svib determined from Equation (5.6) as a function of our in situ measured 

volumes are plotted in Figure 5.4, where one can see that Svib decreases roughly linearly 

with decreasing volume.  

The volumetric derivative of Svib at constant temperature is directly related to the 

vibrational component of the thermal expansion coefficient (αvib) via thermodynamic 

definition:  

,vib
vib T

T

S K
V

α∂  = ∂ 
 (5.7) 

where KT is the isothermal bulk modulus. Since our Svib(V) is approximately linear, our  
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Figure 5.5.  Vibrational thermal 
expansion coefficient of ε-Fe at 
300 K. The volume dependence 
of the vibrational component of 
the thermal expansion coefficient 
(αvib) was determined using our 
measured Svib(V), Equation (5.7), 
and established EOS parameters 
from Dewaele et al. (2006).  
 

 

results are consistent with the suggestion that the product αvibKT is approximately 

independent of volume at constant temperature. Therefore, taking the derivative of an error- 

weighted linear fit of our measured Svib(V), we find ( )300 Kvib vib TS V Kα∂ ∂ = =  5.70 ± 0.05  

MPa/K. We note that the slope given in Figure 5.4 is equivalent to the slope given here via 

a conversion of units. For comparison, the corresponding electronic component for ε-Fe 

was calculated to be αelKT ~ 0.25 MPa/K, which is a factor of 20 smaller than the 

vibrational component at 300 K (Wasserman et al., 1996).  

Applying our ( )300 KvibS V∂ ∂  result and KT(V) from the Vinet equation of state 

(EOS) parameters for ε-Fe reported by Dewaele et al. (2006), we find αvib(300 K) = 1.84 ± 

0.02 10–5 K–1 and 0.67 ± 0.01 10−5 K−1 at 30 GPa and 171 GPa, respectively, where 

reported errors reflect the uncertainties associated with our fitting procedure (Table 5.1; 

Figure 5.5). Our αvib(V) agrees well with the results from first principles calculations by Sha 

and Cohen (2010a); based on their Figure 6, we approximate their αvib(300 K) = 0.9 × 

10−5 K−1 and 0.6 × 10−5 K−1 at 100 GPa and 200 GPa, respectively. In addition, our αvib(V) 
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agrees fairly well with the results of shock-compression experiments by Jeanloz (1979) at 

larger compression (see Figure 2 in reference). Based on his reported fitting equations for 

the bulk modulus and α along the Hugoniot (KS,H and αH, respectively), Jeanloz (1979) 

found αH(90 GPa) = 1.2 × 10−5 K−1 and αH(171 GPa) = 0.7 × 10−5 K−1. However, at 

smaller compressions, our values disagree by more than uncertainties, with their reported 

αH(31 GPa) = 2.6 × 10–5 K–1. This large discrepancy at small compressions may be due to 

the different experimental conditions, i.e., shock-compression experiments are adiabatic, 

whereas our experiments are isothermal. Finally, considering the fact that electronic and 

temperature effects are included in αH—both of which should positively contribute to α—

the agreement between our results and those of Jeanloz (1979) suggests α is only weakly 

dependent on temperature, particularly at larger compressions.  

This argument is inconsistent with the conclusions of Alfè et al. (2001) and 

Wasserman et al. (1996), both of whom found αvibKT to have a significant dependence on 

temperature. For example, Wasserman et al. (1996) report that at a pressure of 58 GPa, 

their αvibKT decreases by ~10% between T = 1000 and 6000 K due to anharmonic effects, 

but their overall αKT increases by 40% as a result of the rapidly increasing electronic 

contribution. We note that our αvib(V, 300 K) is indeed smaller than their plotted αvib(V) at 

elevated temperatures (T ≥ 1000 K; see Figures 11 and 8 in references, respectively), but a 

quantitative comparison at 300 K is not straightforward from their figures alone.  

Finally, our αvib(V) is approximately half as large as α(V) reported by Anderson et 

al. (2001) and Isaak and Anderson (2003). These two earlier studies are related, and are 

both based on the differentiation of previously reported high-PT XRD data that was 

collected for ε-Fe up to 305 GPa and 1370 K (Dubrovinsky et al., 2000b). As a result, their 
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reported values are nearly identical with one another. Comparing their reported values with 

our measurements at the most similar molar volumes per atom, Isaak and Anderson (2003) 

found α(5.9 cm3/mol) = 3.88 × 10−5 K−1 and α(4.9 cm3/mol) = 1.61 × 10−5 K−1, both of 

which are roughly twice as large as our measured values. We acknowledge that 

investigations of α from XRD include the electronic component, to which our 

measurements are insensitive. However, based on the high-statistical quality of our dataset 

and αelKT ~ 0.25 MPa/K at 300 K reported by Wasserman et al. (1996) (see Figure 8 in 

reference), we conclude that the our results do not agree with those of Anderson et al. 

(2001) and Isaak and Anderson (2003).  

5.5 Sound Velocities 

A parabolic fit of the low-energy region of ε-Fe’s phonon DOS provides its Debye 

sound velocity (vD), which reflects a weighted average of its compressional (vp) and shear 

(vs) sound velocities (Hu et al., 2003; Sturhahn and Jackson, 2007). Therefore, we 

determined vD for ε-Fe by using an exact relation for the dispersion of low-energy acoustic 

phonons and our measured density at each compression point, the latter of which is based 

on our in situ measured volumes and m = 56.95 for 95% isotopically enriched 57Fe (Table 

2.1). The appropriate energy range over which to perform each parabolic fit was first 

estimated from visual inspection of our data, and ultimately determined for each fit via χ2 

analysis. A typical minimum energy for our fits was 3.5 meV, which corresponds roughly 

to the width of our measured resolution functions; the maximum energy varied between 16 

and 34 meV, with larger energy ranges corresponding to larger compressions (Table 5.1). 

The vD for each compression point are given in Table 5.2 and plotted in Figure 5.7. Typical 

uncertainties are ≤ 1%, with the exception of our measurement at V = 4.70 ± 0.02 cm3/mol  
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Figure 5.6.  Our density-
dependent sound velocities 
at 300 K. Filled black circles 
give the compressional (vp) 
shear (vs), and Debye (vD) 
sound velocities of ε-Fe as a 
function of density from our 
NRIXS and in situ XRD 
experiments. Uncertainties 
in sound velocities and 
densities are smaller than the 
symbol if not visible. 
 
 

 

(P = 151 ± 5 GPa). The relatively large uncertainty reported at this compression point is the 

result of a long “tail” on our measured resolution function that extended to approximately 

−20 meV (Table 5.2).  

From our measured vD and ρ, we determine ε-Fe’s compressional (vp) and shear (vs) 

sound velocities via: 

2 24
3

S
P S

K v v
ρ

= −

 
3 3 3

3 1 2

D P Sv v v
= +  

(5.8) 

(5.9) 

(Table 5.2). The density (ρ) at each compression point is determined from our in situ 

measured volumes, and the adiabatic bulk modulus (KS) is related to the isothermal bulk 

modulus (KT) via KS = KT(1 + αγT). Therefore, to determine KS at each compression point, 

we scale the ambient temperature KT reported by Dewaele et al. (2006) with the Grüneisen 

parameter (γvib) from Section 4.3 (Murphy et al., 2011b) and the vibrational component of  
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Table 5.1.  Vibrational thermodynamic parameters of ε-Fe from the phonon DOS. 

V  
(cm3/mol)a 

P  
(GPa)a 

fLM
b
 EK 

(meV/atom)b 
103lnβ57Fe/54Fe 

c Svib 
(kB/atom)b 

αvib 
(10−5 K−1)d 

5.92(2) 30(2) 0.857(1) 43.9(5) 10.9(9) 2.63(2) 1.84(2) 
5.81(1) 36(2) 0.862(2) 44.3(9) 11.6(1.9) 2.57(3) 1.69(1) 
5.56(1) 53(2) 0.876(2) 45.2(6) 13.6(1.6) 2.38(3) 1.40(1) 
5.36(1) 69(3) 0.888(1) 46.0(5) 15.3(1.3) 2.24(2) 1.20(1) 
5.27(2) 77(3) 0.892(1) 46.3(5) 15.9(8) 2.20(1) 1.13(1) 
5.15(2) 90(3) 0.899(1) 46.8(6) 17.0(1.0) 2.10(1) 1.03(1) 
5.00(2) 106(3) 0.904(1) 47.5(4) 18.4(1.1) 2.01(1) 0.92(1) 
4.89(2) 121(3) 0.910(1) 48.2(4) 19.9(1.0) 1.92(1) 0.85(1) 
4.81(2) 133(4) 0.913(1) 48.6(5) 20.8(1.3) 1.87(2) 0.79(1) 
4.70(2) 151(5) 0.918(1) 49.1(6) 21.7(1.3) 1.81(2) 0.73(1) 
4.58(2) 171(5) 0.923(1) 50.0(9) 23.7(1.9) 1.70(2) 0.67(1) 

 aMolar volume per 57Fe atom (V) and pressure (P) for each compression point are duplicated from 
Tables 2.1 and 2.2. A brief explanation of reported uncertainties is given in Section 2.2. 
bThe Lamb-Mössbauer factor (fLM) and vibrational components of the kinetic energy (EK) and 
entropy (Svib) per 57Fe atom were determined from the integrated phonon DOS (Equations (5.1), 
(5.2), and (5.6)). Values in parentheses give uncertainties for the last significant digit reported, as 
determined by the PHOENIX software (Sturhahn, 2000).   
cReduced isotopic partition function ratios (103nβ57Fe/54Fe) for ε-Fe at 300 K are based on our EK(V) 
(Equation (5.2)) and the procedure described in Section 5.4; uncertainties in the last significant digit 
reflect our measured uncertainties in EK as determined by the PHOENIX software (Sturhahn, 2000). 
dThe vibrational component of the thermal expansion coefficient (αvib) for ε-Fe at 300 K is from our 
Svib(V) (Equation (5.6)) and the Vinet EOS parameters reported by Dewaele et al. (2006), as 
described in Section 5.5; uncertainties in the last significant digit reflect the uncertainties from an 
error-weighted linear fit of our Svib(V), with uncertainties in Svib determined by the PHOENIX 
software (Sturhahn, 2000).  
 

the thermal expansion coefficient from Section 5.4 (Table 5.1). Using these parameters and 

including uncertainties in αvib and γvib, we find αvibγvibT < 0.01 over our compression range 

and at 300 K, thus introducing a difference between KS and KT of no more than 1%. In 

addition, we expect the electronic contributions of α and γ—and, in turn, KS—to be fairly 

minor, based on the fact that 4%el vibα α ≈  (Wasserman et al., 1996), and the electronic 

contribution to the Grüneisen parameter (weighted by the electronic specific heat capacity) 

is negligible over this compression range at 300 K (Boness et al., 1986; Alfè et al., 2001). 
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Table 5.2.  Elasticity of ε-Fe from the phonon DOS.  

ρ 
(g/cm3)a 

P 
(GPa)a 

Energy 
Range (meV)b 

vD 
(km/s)b 

KS 
(GPa)c 

vp  
(km/s)c 

vs 
(km/s)c 

μ   
(GPa)c 

9.61(3) 30(2) 3.5 – 16.1 4.36(3) 312 7.27(16) 3.92(3) 147(2) 
9.80(1) 36(2) 3.5 – 23.5 4.37(6) 340 7.42(8) 3.91(5) 150(4) 
10.25(1) 53(2) 3.5 – 23.5 4.57(4) 411 7.89(8) 4.08(4) 171(3) 
10.63(1) 69(3) 3.5 – 23.5 4.80(4) 476 8.33(9) 4.29(4) 196(3) 
10.80(2) 77(3) 3.5 – 25.5 4.93(3) 506 8.53(9) 4.40(3) 209(3) 
11.06(2) 90(3) 3.5 – 28.4 5.13(3) 558 8.84(9) 4.58(3) 232(3) 
11.38(5) 106(3) 3.5 – 28.4 5.23(3) 621 9.14(9) 4.67(3) 248(3) 
11.64(2) 121(3) 3.5 – 27.3 5.33(4) 677 9.40(10) 4.76(4) 264(4) 
11.84(2) 133(4) 3.5 – 31.2 5.47(5) 721 9.62(11) 4.88(5) 282(6) 
12.13(3) 151(5) 9.7 – 32.7 5.72(10) 786 9.98(12) 5.10(9) 316(11) 
12.43(3) 171(5) 3.5 – 33.8 5.64(7) 859 10.14(12) 5.03(6) 314(8) 

 aDensity (ρ) and pressure (P) for each compression point are duplicated from Tables 2.1 and 2.2. A 
brief explanation of reported uncertainties is given in Section 2.2. 
bThe best energy range over which the phonon DOS was fit to determine the Debye sound velocity 
(vD) was determined by χ2 analysis; vD at each compression point depends on our in situ measured 
volumes (densities) and accounts for 57Fe enrichment levels. 
cThe adiabatic bulk modulus (KS) was determined from the relationship KS = KT(1 + αγT), with the 
isothermal bulk modulus (KT) reported by Dewaele et al. (2006) (Table 2.1), our αvib from Table 5.1 
and our γvib from Section 4.3 (Murphy et al., 2011b), as described in Section 5.5. In turn, KS was 
used with our ρ and vD(V) to determine the compressional (vp) and shear (vs) sound velocities and 
the shear modulus (μ) for ε-Fe using Equations (5.8) and (5.9). Reported uncertainties in the last 
significant digit reflect uncertainties determined by the PHOENIX software (Sturhahn, 2000). We 
note that uncertainties are not given for KS because they would largely reflect uncertainties in the 
EOS parameters reported by Dewaele et al. (2006); in particular, our uncertainties in αvib and γvib 
contribute an error of only 0.2 GPa. 

Applying these values for KS and our measured ρ and vD to Equations (5.8) and 

(5.9), we determined vp and vs at each of our compression points (Table 5.2, Figure 5.6). 

We note that vp and vs determined using KS and KT at each compression point are identical 

within uncertainty. Comparisons with previously reported measurements of ε-Fe’s vD(P) 

and vp(P)—from NRIXS and inelastic x-ray scattering (IXS) experiments at 300 K and up 

to 153 GPa (Mao et al., 2001; Giefers et al., 2002; Antonangeli et al., 2004; Lin et al., 

2005; Mao et al., 2008)—are presented in Figures 5.7 and 5.8, respectively. We do not 
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Figure 5.7.  Debye sound velocities of ε-Fe at 300 K. Filled black circles give our Debye sound 
velocities as a function of pressure, vD(P), where our measured volumes have been converted to 
pressures using the Vinet EOS parameters reported by Dewaele et al. (2006), in order to facilitate 
comparison with previous studies (unfilled circles). Also plotted are vD(P) reported by Mao et al. 
(2001) (blue squares); Lin et al. (2005) (green diamonds); and Mao et al. (2008) (purple down-
triangles). We note that we do not include reported values from Lübbers et al. (2000) because the 
energy scale used in that study was incorrect. In addition, we do not include reported values from 
Giefers et al. (2002) because they performed their NRIXS experiments on a purposefully textured 
sample, with the DAC oriented at an angle relative to the beam; without in situ XRD, it is difficult 
to know the true volume (pressure) of their measured data points. 

 

 

 

Figure 5.8.  Compressional 
sound velocities of ε-Fe at 
300 K. Filled black circles 
give our compressional sound 
velocities as a function of 
pressure, vp(P). Also plotted 
are vp(P) from NRIXS 
experiments conducted by 
Mao et al. (2001) (blue 
squares); Lin et al. (2005) 
(green diamonds); and Mao 
et al. (2008) (purple down-
triangles). Finally, we plot as 
black triangles vp(112 GPa) 
from an inelastic x-ray 
scattering (IXS) study by 
Antonangeli et al. (2004).  
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present a similar comparison for vs because it would be similar to Figure 5.7, since vD and 

vs from NRIXS experiments are closely related (Equation (5.9)), and the reported IXS 

experiments on polycrystalline ε-Fe are not sensitive to vs. 

As can be seen in Figures 5.7 and 5.8, our results at smaller compressions are 

similar to previous NRIXS and IXS measurements. However, the large compression range 

and high statistical quality of our data provide a new, tight constraint on the density 

dependence of ε-Fe’s sound velocities to an outer core pressure of 171 GPa. In particular, 

performing the same PHOENIX analysis on datasets reported by Mao et al. (2001) and Lin 

et al. (2005), we find that our data produce errors in vD that are ~60% smaller and ~30% 

smaller, respectively. Finally, we note that there is no resolvable discontinuity in our 

measured sound velocities for NRIXS experiments performed in the neon (P ≤ 69 GPa) and 

boron-epoxy pressure-transmitting media (Table 2.1).  

5.6 Discussion 

The high-statistical quality of our phonon DOS and, in turn, the previously 

discussed parameters, provide a new tight constraint on the Lamb-Mössbauer factor, β-

factors, thermal expansion coefficient, and sound velocities of ε-Fe. In the following 

subsections, we discuss applications of each parameter in the context of Earth’s core.  

5.6.1 Melting Behavior from fLM 

As previously stated, the Lamb-Mössbauer factor (fLM) can best be understood in 

the context of lattice dynamics by considering the relationship 2 2
0exp .LMf k u = −   

From this relationship, we see that the steady increase in fLM with compression corresponds 

to a reduction of thermal motion—i.e., reduced displacement of the iron atoms, or 
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stiffening of the lattice—which is consistent with the expected decrease in <u2> with 

increasing compression. We have previously used this behavior to predict a melting curve 

shape (Section 3.4) based on Gilvarry’s reformulation of Lindemann’s melting criterion 

(Gilvarry, 1956b; a; Murphy et al., 2011a), which we calibrated in PT space with 

previously reported melting points for ε-Fe (Shen et al., 1998; Ma et al., 2004; 

Komabayashi and Fei, 2010; Jackson et al., 2012). In particular, the values of fLM given in 

Table 5.1 are closely related to those for the Lamb-Mössbauer temperature (Table 3.1), 

which was derived from a high-temperature formulation for <u2> in Equation (3.7). For 

details of this relationship, see Section 3.4.  

5.6.2 Other Thermodynamic Parameters from αvib 

The product αvibKT is related to a number of other parameters via thermodynamic 

definitions. For example, αvibKT directly gives the temperature derivative of the vibrational 

thermal pressure via 

1 ,vib
vib T

P T V

PV PK V
V T V T

α
    ∂∂ ∂     = − =        ∂ ∂ ∂        

 (5.10) 

where the negative sign in the central equation is cancelled by Maxwell’s relations and the 

chain rule. Taking the average temperature derivative of the harmonic component of the 

vibrational thermal pressure (Pvib
h) we determined in Chapter 3, we find that αvibKT depends 

on temperature. Therefore, we performed an errors-weighted quadratic fit our Pvib
h(V,T) at 

each of our compression points between T = 100 and 1000 K (see Section 3.3). Taking the 

derivative of these quadratic fits, we found αvibKT(300 K) = 5.5 ± 0.2 MPa/K, which agrees 

well with the value determined here of αvibKT(300 K) = 5.70 ± 0.05 MPa/K. We attribute 
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the ~3% discrepancy between these two results to the fact that we are comparing the 

derivatives of two parameters obtained from our experimental data.  

In addition, αvibKT is related to the vibrational Grüneisen parameter (γvib) via 

.vib T
vib

vib

K V
C

αγ =    (5.11) 

The volume (V) at each compression point is known from our in situ XRD measurements, 

and the vibrational component of the specific heat capacity (Cvib) can be obtained from the 

total phonon DOS via Equation (4.1). Therefore, we can apply these measured values and 

the volume-derivative of our measured Svib (i.e., αvibKT) to Equation (5.11) to estimate 

γvib(V) at 300 K. This new analysis of γvib agrees with our previously determined γvib(V) 

within uncertainty, but Equation (5.11) predicts a shallower slope than our original analysis 

(Section 4.2) (Murphy et al., 2011b). Using the common parameterization γvib(V) = 

γvib,0(V/V0)q, where the subscript 0 corresponds to ambient pressure conditions and q 

determines the curvature of γvib(V), we previously found a preferred q value range of 0.8 to 

1.2 for γvib,0 = 2.0 ± 0.1 (Section 4.2) (Murphy et al., 2011b); the determination using 

Equation (5.11) predicts q ~ 0.4 and a smaller γvib,0. Part of this discrepancy may arise from 

the volume independence of our αvibKT, which significantly influences the volume 

dependence of γvib. 

The two methods for determining γvib(V) have better agreement at our larger 

compression points, with identical values at V = 4.89 ± 0.02 cm3/mol and 4.81 ± 0.02 

cm3/mol; at our largest compression point, γvib(4.58 ± 0.02 cm3/mol) = 1.40 ± 0.03 from 

Equation (5.11) and including all reported uncertainties, and 1.34 ± 0.1 from our original 

analysis (Section 4.2) (Murphy et al., 2011b). We note that the larger uncertainty from our 
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original analysis reflects the range of q values included in the final reported fit to our 

individual γvib points, which were determined from the volume dependence of the total 

phonon DOS. In fact, the use of Equation (5.11) involves a more circuitous path from the 

phonon DOS to γvib that relies on a number of independent parameters, thus introducing 

more uncertainties in the analysis presented here than our original analysis.  

5.6.3 Equilibrium Isotope Fractionation from β-factors  

The β-factors for ε-Fe at each of our compression points are plotted in Figure 5.3a 

at 300 K, and as separate lines as a function of inverse temperature (106/T2) for T ≥ 1000 K 

in Figure 5.3b. Uncertainties in our determined β-factors are temperature-independent, so 

we plot single error bars for select compression points at T = 1100 K, which reflect the 

propagation of our measured uncertainties for EK(V,T). In Figure 5.3a, one can see that the 

β-factors for each compression point are fairly distinct at 300 K. However, by the moderate 

temperature of 1000 K (106/T2 = 1 K-2), β-factors for our smallest and largest compression 

points are indistinguishable within uncertainty, suggesting only a weak pressure 

dependence at the relevant temperature conditions (Figure 5.3b). Finally, by ~1200 K (~0.7 

K-2), it becomes unclear whether the β-factors at all compression points are positive or 

negative. We note that we are currently exploring methods for determining the same β-

factors using ε-Fe’s average force constant, which can be obtained from an analysis of the 

3rd-order moment of S(E), similar to the procedure presented in Section 5.2. The advantage 

of our forthcoming analysis is that it should reduce the uncertainties in the β-factors, 

potentially providing the required volume resolution to evaluate isotopic shifts from 

equilibrium processes involving solid iron above 1000 K.  
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It has been suggested that anharmonic effects are likely to be minor at the extreme 

compressions discussed here (Polyakov, 1998; 2009). However, it is possible that the quasi-

harmonic model does not accurately describe the behavior of ε-Fe at these high 

temperatures and, in turn, phonon–phonon or phonon–electron interactions may play a non-

negligible role under these conditions. We rely on the quasi-harmonic model largely 

because of the lack of sufficient data on the temperature dependence of ε-Fe’s phonon DOS 

(Section 3.5), but unknown temperature effects further increase the uncertainty of our high-

temperature β-factors.  

A similar analysis was performed by Polyakov (2009), based on the previously 

published NRIXS dataset measured by Mao et al. (2001) up to 153 GPa. His results are 

identical to ours within uncertainty, but reflect the larger scatter that is present in the dataset 

measured by Mao et al. (2001) (Figure 5.2b). We note that the goal presented by Polyakov 

(2009) was to explain isotopic ratios of the mantle based on equilibrium partitioning 

between pure iron and iron-bearing lower-mantle phases. This application is roughly based 

on the theory that primary differentiation of the Earth (i.e., core segregation) was achieved 

via the formation and sinking of dense, iron-rich droplets (e.g., Stevenson, 1981). These 

droplets would have interacted with the surrounding silicate-rich mantle materials as they 

descended, resulting in element and isotope partitioning between silicate- and iron-rich 

phases over a range of depths (pressures) and temperatures. Therefore, comparison of β-

factors for ε-Fe and coexisting solid phases at the appropriate PT conditions could, in 

theory, be used to predict the distribution of heavy iron isotopes that results from 

equilibrium processes. However, we note that such iron–silicate interactions during core 

formation would have occurred over a range of depths, including those corresponding to 
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modern-day upper-mantle pressures. In addition, we emphasize that the values reported 

both here and by Mao et al. (2001) are for solid ε-Fe, whose β-factors are expected to differ 

significantly from those of liquid iron. Therefore, a relevant discussion of core-formation 

models from iron’s β-factors would require an NRIXS study of liquid iron at high 

pressures, which would be extremely challenging for reasons similar to those discussed in 

the following section.  

5.6.4 Comparison of ε-Fe’s Sound Velocities with PREM  

As previously discussed in Sections 1.2 and 5.1, the sound velocities of iron have 

been investigated over many decades using a variety of theoretical and experimental 

techniques. In Figure 5.8, we plot our measured compressional sound velocities (vp) as a 

function of pressure, which we determine from our measured volumes and the Vinet EOS 

reported by Dewaele et al. (2006). We also plot previously reported values from NRIXS 

and inelastic x-ray scattering (IXS) experiments at 300 K in Figure 5.8, but we do not 

include sound velocities measured by shock-compression experiments since the 

corresponding experimental conditions involve simultaneous high pressures and 

temperatures. Similar to our discussion about our vD(ρ) in Section 5.5, the overall trend of 

our vp(P) agree fairly well with previously reported values from NRIXS, but our curve 

defines a new, tightly constrained pressure dependence up to 171 GPa. In addition, our 

largest compression point defines a curvature that lowers the trend with pressure 

compared to that presented by Mao et al. (2001) (Figure 5.8).  

The two data points from the IXS measurements executed by Antonangeli et al. 

(2004) at 112 GPa reflect experimental probes of vp in two different crystallographic 

directions. Antonangeli et al. (2004) prepared a DAC with nonhydrostatic conditions in 
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the sample chamber in order to develop texture in their polycrystalline ε-Fe sample. They 

then rotated the DAC with respect to the beam to investigate vp along crystallographic 

directions that were 50º and 90º from the c-axis in ε-Fe, based on texturing effects. Their 

reported values of vp(50º) = 9.9 ± 0.2 km/s and vp(90º) = 9.45 ± 0.15 km/s are based on 

fits of the linear region of the phonon dispersion curve.  

To discuss the apparent discrepancy between our results and those of Antonangeli 

et al. (2004) that is evident in Figure 5.8, we begin by pointing out a few fundamental 

differences between the two experimental techniques. First, we note the very different 

energy ranges of phonons that were used to obtain the sound velocities: we fit the low-

energy region of our phonon DOS measured at 106 GPa (V = 5.00 ± 0.02 cm3/mol) with 

3.5 meV < E < 28.5 meV (Table 5.2), while Antonangeli et al. (2004) determined vp from 

E ≥ 35 meV at 112 GPa (see Figure 4 in reference). Given the limited energy range 

utilized by Antonangeli et al. (2004) in their fit of the linear low-energy region of the 

phonon dispersion curve, we argue that it is difficult to resolve their reported anisotropy 

of only 0.1 km/s beyond uncertainties. In particular, we note that our experiments are not 

sensitive to anisotropies of this magnitude, because NRIXS measures the projected 

phonon DOS and, in turn, an average sound velocity from nearly all crystallographic 

directions (Sturhahn, 2000). As a result, direct comparison with IXS experiments—which 

are much more sensitive to crystal orientation because they select for longitudinal 

acoustic phonons—is not straightforward.  

The most direct comparison would be between NRIXS sound velocities and an 

average vp from IXS experiments performed over a wide range of crystallographic 

directions, which would require weeks of experiments. An alternative method is to apply 
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values for the elastic stiffness constants of ε-Fe to the Christoffel equation (Musgrave, 

1970) in order to determine the sound velocities for all crystallographic directions. Then, 

by using the proper averaging procedure (Sturhahn, 2000; Sturhahn and Jackson, 2007), 

we can explore how sensitive sound velocities determined with NRIXS are to 

crystallographic anisotropies. The elastic stiffness constants have not been measured  

because a single-crystal of ε-Fe does not yet exist, so we use values from first-principles 

calculations at 52 GPa and 300 K by Steinle-Neumann et al. (2004) in our calculations. 

We find vp(0º) is only ~1% (< 100 km/s) faster than vp(90º)—where 0º corresponds to a 

wave propagating along the c-axis direction—which agrees qualitatively with the 

orientation dependence of the anisotropy reported by Antonangeli et al. (2004). However, 

the predicted magnitude of anisotropy is significantly smaller and would not be 

detectable with NRIXS, based on the uncertainties of our high-statistical quality dataset. 

In particular, if we apply the proper averaging procedures, we find that vp(50 GPa) from 

NRIXS is ~10 km/s faster than vp(90º), and ~70 km/s slower than vp(0º), both of which lie 

within our reported uncertainties at ~50 GPa. We note that this argument is meant to be 

qualitative because there is a large amount of uncertainty associated with the elastic 

stiffness constants of ε-Fe, which are the primary input parameters for this calculation. 

Next, to compare our results with seismic observations, we plot in Figure 5.9 our 

vp(ρ) and vs(ρ) with those predicted for the liquid outer core (~136 to 329 GPa) and solid  

inner core (P ~ 329 to 364 GPa) by the preliminary reference Earth model (PREM) 

(Dziewonski and Anderson, 1981). For a qualitative comparison—since our experiments 

were performed at 300 K and the temperature at Earth’s inner core boundary (ICB) is 

thought to be between ~5000 and 7000 K based on previous reports of the melting behavior  
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Figure 5.9.  Density dependence 
of our compressional and shear 
sound velocities of ε-Fe at 300 K 
with PREM. Black circles give 
our compressional and shear 
sound velocities as a function of 
density, vp(ρ) and vs(ρ); blue 
lines show PREM throughout 
Earth’s core (Dziewonski and 
Anderson, 1981). We note that vs 
= 0 in Earth’s liquid outer core, 
and the apparent discontinuity in 
PREM corresponds to the 
density jump across the ICB.  
 

of ε-Fe (Section 1.2)—we use a linear fit of our data (i.e., Birch’s Law) to extrapolate our 

vp(ρ) to the expected density of the ICB (Birch, 1960; 1961). From an errors-weighted 

least-squares linear fit of our vp(ρ), we find a slope of 1.07 ± 0.04, which predicts vp(330 

GPa, 300 K) for ε-Fe is ~9% larger than the reported value from PREM on the inner core 

side of the ICB, where the corresponding density of ε-57Fe is 14.1 g/cm3 (Dewaele et al., 

2006). Birch’s law is only strictly relevant for compressional sound velocities, but in the 

absence of reliable information about the density dependence of ε-Fe’s shear modulus 

beyond our compression range, we use the same relationship to estimate vs(330 GPa, 

300 K) ~67% larger than the reported value for PREM at a density for ε-57Fe of 14.1 g/cm3.  

It is possible to probe the high-PT sound velocities of ε-Fe with NRIXS, and results 

from such experiments were previously reported by Shen et al. (2004) at 20 and 29 GPa up 

to 720 K using resistive heating methods; and by Lin et al. (2005) between 39 and 73 GPa 

and up to 1700 K using laser heating methods. However, as previously discussed (Section 

3.5), these studies did not collect either ambient- or high-temperature in situ XRD, so their 

reported pressures are based on ruby fluorescence measurements collected before and after 



 104 

heating. In addition, only Lin et al. (2005) considered thermal pressure effects via an 

existing thermal EOS (Dubrovinsky et al., 1998). Additional experiments are needed at 

higher-PT conditions—with higher statistical quality and in situ XRD—in order to better 

constrain the sound velocities of ε-Fe at Earth’s core conditions. However, the PT 

conditions that are currently feasible for NRIXS experiments are well below those expected 

for Earth’s core, and are limited by the need for very stable temperatures over timescales of 

several hours (Sturhahn and Jackson, 2007; Gao et al., 2009).  

Finally, it is thought that the Earth’s core comprises an iron-nickel alloy that 

incorporates some light elements (e.g., McDonough, 2003). Now that the compressional 

and shear sound velocities of pure iron have been firmly established up to an outer core 

pressure of 171 GPa, an important next step is to investigate the effects of alloying light 

elements with iron on its thermoelastic properties. A number of studies have been 

dedicated to probing the sound velocities of iron alloys, and a comparison with their 

existing results will be one of the primary focuses of Chapter 6.  
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Chapter 6 

Discussion and Conclusions 

6.1 Introduction 

Now that we have firmly established the vibrational properties of ε-Fe, we will 

devote this chapter to discussing what conclusions we can draw about the Earth’s core, 

which is composed primarily of iron. Many of the parameters presented in the preceding 

chapters were obtained from the integrated total phonon density of states (DOS), including 

the Lamb-Mössbauer factor and vibrational components of the free energy, internal energy, 

kinetic energy, specific heat capacity, and entropy. In turn, the properties of ε-Fe that were 

derived from these parameters—e.g., thermal pressure, melting behavior, Grüneisen 

parameter, reduced equilibrium isotopic partition function ratios, and thermal expansion 

coefficient—also depend on knowledge of the total phonon DOS. Since nuclear resonant 

inelastic x-ray scattering (NRIXS) is an isotope-selective technique that only probes the 

phonons experienced by the resonant nuclei in the lattice (57Fe), investigations of iron 

alloys with NRIXS results in a partial projected phonon DOS (Sturhahn, 2000). Therefore, 

analysis of the effects of alloying on the thermodynamic properties of iron using NRIXS 

alone is somewhat indirect at this time. An exciting possibility for future studies is the 
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combination of NRIXS measurements with density-functional theory (DFT) calculations. 

In particular, for DFT calculations of an iron alloy, one can separately determine phonons 

experienced by iron, and phonons experienced by the alloy components (many of which are 

also experienced by 57Fe). The consistency between the two techniques could then be 

confirmed via comparison between the calculated partial phonon DOS and that measured 

by NRIXS.  

In the meantime, we will devote the next two sections to discussing the effects of 

alloying and temperature on the sound velocities of ε-Fe, in an effort to better constrain the 

composition of the core via comparison with seismic observations (e.g., Dziewonski and 

Anderson, 1981; Kennett et al., 1995). It has been shown previously that the low-energy 

region of the phonon DOS provides the Debye sound velocity of the bulk sample (e.g., Hu 

et al., 2003), so we can investigate the effects of alloying on iron’s sound velocities by 

comparing our results with those determined from NRIXS and inelastic x-ray scattering 

(IXS) experiments on iron alloys (Section 6.2). We note that the following sections do not 

include comparisons with results from theoretical calculations (e.g., Stixrude et al., 1997; 

Steinle-Neumann et al., 2001; Vočadlo et al., 2009) or shock-compression experiments 

(e.g., Jeanloz, 1979; Brown and McQueen, 1986; Nguyen and Holmes, 2004; Huang et al., 

2011) on the high-PT sound velocities of either iron or iron alloys. In addition, we do not 

consider results from other static-compression techniques are also capable of investigating 

high-pressure sound velocities, such as brillouin spectroscopy (BS), impulsive stimulated 

light scattering (ISLS), and ultrasonics. For opaque samples, BS only excites scattering 

from surface acoustic modes, whose relationship to bulk acoustic modes is not well-known 

(e.g., Crowhurst et al., 1999). In addition, ISLS and BS require accurate knowledge of the 
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sample surface, which is very difficult to achieve at core pressures (e.g., Crowhurst et al., 

2004). Finally, data from BS and ultrasonics have largely been restricted to lower pressures 

than those probed by NRIXS and IXS because of experimental geometries and low signal 

to noise ratios at large compressions (e.g., Mao et al., 1999).  

In Section 6.3, we investigate the effects of temperature on ε-Fe’s sound velocities 

and density using a finite-strain model, and we conclude with a summary of the major 

findings of this thesis (Section 6.4). 

6.2 Alloying Effects 

As previously discussed in Section 1.2, the Earth’s core is thought to contain ~5 to 

10 wt% nickel (Ni) and some light elements (McDonough, 2003), based on the comparison 

of seismic and cosmochemical observations with experiments. Commonly cited candidate 

light elements for the core include hydrogen (H), carbon (C), oxygen (O), silicon (Si), and 

sulfur (S). The focus of this section will be on evaluating the current understanding of the 

effects of alloying Ni and select light elements (H, C, Si, and S) with iron on its high-

pressure thermoelastic properties, based on NRIXS and IXS experiments. We note that 

Struzhkin et al. (2001) investigated FeO in the diamond-anvil cell with NRIXS, but they 

reported only a calculated curve for the sound velocities as a function of momentum 

transfer, without any discrete data points (see Figure 4b in reference). In addition, previous 

IXS measurements of FeO by Badro et al. (2007) report vp only as a function of density, 

without a clear explanation of the pressure range, crystal structure, or XRD measurements 

used to determine the relevant amount of compression. Therefore, analysis of the effect of 

alloying oxygen with Fe is not straightforward and will not be included here. 

To facilitate comparison of our measured sound velocities for ε-Fe with results 
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from existing experiments on iron alloys, we begin by converting our measured volumes 

(densities) to pressures using the Vinet equation of state (EOS) parameters reported by 

Dewaele et al. (2006) (Tables 2.1 and 2.2). We then plot in Figure 6.1 the pressure 

dependence of our measured Debye sound velocities (vD; filled circles) with those reported 

from previous NRIXS studies (Lin et al., 2003c; Lin et al., 2004; Mao et al., 2004; Gao et 

al., 2009). One of the most striking features of Figure 6.1 is the limited pressure range over 

which the sound velocities of iron alloys have been probed with NRIXS. A number of the 

data points lie at pressures below that of the α→ε (bcc→hcp) transition of pure iron, and 

thus cannot be directly compared with our results. Data collection times are likely 

responsible, in part, for the sparse data coverage on the sound velocities of iron alloys, 

since a single high-pressure IXS or NRIXS measurement can take days to collect due to 

low counting rates at larger compressions (i.e., thinning of the sample). Therefore, it is 

likely that the compression range over which the sound velocities of iron alloys have been 

measured will expand with time, as more data are collected. One possible approach for 

maximizing counting rates and, in turn, performing higher-pressure experiments, is to 

apply the previously discussed boron-epoxy insert, whose high shear strength helps to 

maintain a thick sample and stabilize the gasket (Section 2.1.2).  

In the following subsections, we plot only the pressure range over which our data 

overlap with existing data for the compressional and shear sound velocities of iron alloys. 

Thus, Figures 6.2–6.5 provide a better depiction of the relevant features that will be 

discussed in Sections 6.2.1 and 6.2.2. In addition, we perform a quantitative analysis of 

how our vp and vs for ε-Fe compare with those reported for iron alloys. Finally, we evaluate 

whether existing data for iron alloys can provide any trends in how the alloying of light 
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Figure 6.1.  Debye sound velocities of ε-Fe and iron alloys. Black circles give our 
measured Debye sound velocities (vD) for ε-Fe as a function of pressure, which is 
determined from our in situ XRD and the Vinet EOS parameters reported by Dewaele et al. 
(2006). The remaining symbols give vD(P) from NRIXS experiments on FeHx (purple left 
triangle; (Mao et al., 2004)); Fe3C (dark blue square; (Gao et al., 2009)); Fe0.85Si0.15 
(orange cross; (Lin et al., 2003c)); Fe3S (brown downward triangle; (Lin et al., 2004)); and 
Fe0.92Ni0.08 (green x; (Lin et al., 2003c)). For Figures 6.2–6.5, we note that we plot only the 
compression range over which our data overlap with existing data for iron alloys. 

elements affects the sound velocities of iron and, thus, help to better constrain the 

composition of Earth’s core via a comparison with seismic observations. 

6.2.1 Alloying Effects on Compressional Sound Velocities 

In Figure 6.2, we plot the pressure dependence of our compressional sound 

velocities (vp; filled circles) with those from NRIXS (empty squares) and IXS (empty 

triangles) studies of iron alloys (Lin et al., 2003c; Lin et al., 2004; Mao et al., 2004; Kantor 

et al., 2007; Fiquet et al., 2009; Gao et al., 2009; Antonangeli et al., 2010; Shibazaki et al., 

2012). The limited compression range over which the compressional sound velocities of 
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iron alloys have been probed with NRIXS or IXS is demonstrated by the restricted pressure 

range that is plotted in Figure 6.2 (compared to Figure 6.1). A new trend that is evident in 

Figure 6.2 is the often significant disagreement between reported values for vp from IXS 

and NRIXS experiments on a similar iron alloy, the scatter from which increases the 

overall uncertainty for that composition. One likely explanation for the disagreement 

between sound velocities measured with NRIXS and IXS is the fact that they are based on 
 

 

Figure 6.2.  Compressional sound velocities of ε-Fe and iron alloys. Black circles give our 
measured compressional sound velocities (vp) for ε-Fe as a function of pressure, which is 
determined from our in situ XRD and the Vinet EOS parameters reported by Dewaele et al. (2006). 
We note that we only plot our vp(P) at pressures that overlap with reported values for the following 
iron alloys. Unfilled squares give vp(P) from NRIXS experiments on FeHx (purple; (Mao et al., 
2004)); Fe3C (dark blue; (Gao et al., 2009)); Fe0.85Si0.15 (light green; (Lin et al., 2003c)); Fe3S (cyan; 
(Lin et al., 2004)); and Fe0.92Ni0.08 (dark green; (Lin et al., 2003c)). Unfilled triangles give vp(P) 
from IXS experiments on Fe (black; (Antonangeli et al., 2004)); FeHx (purple; (Shibazaki et al., 
2012)); Fe3C (dark blue; (Fiquet et al., 2009)); Fe0.89Ni0.04Si0.07 (red; (Antonangeli et al., 2010)); and 
Fe0.78Ni0.22 (green; (Kantor et al., 2007)). 
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very different energy ranges (see Section 5.6.4). For example, Lin et al. (2003c) determined 

vp for Fe0.92Si0.08 (in weight %) by fitting the low-energy region of their measured phonon 

DOS (from NRIXS) with 3.5 meV < E < 14 meV, while Antonangeli et al. (2010) obtained 

vp for Fe0.89Ni0.04Si0.07 (in weight %) from a linear fit of their IXS data with E ≥ 15 meV.  

Similar discrepancies between sound velocities measured with NRIXS and IXS are 

evident in the data for double hexagonal close-packed (dhcp) FeHx (Figure 6.2): Mao et al. 

(2004) report vp(P) from NRIXS measurements of dhpc-FeHx that are identical to our 

results for ε-Fe up to 52 GPa, while Shibazaki et al. (2012) report vp(P) from IXS 

measurements up to 70 GPa that are well above our values for ε-Fe and have a very 

different slope. In addition to the very different energies used to obtain these sound 

velocities, another possible contributing factor to this discrepancy is the difficulty 

associated with determining the exact amount of hydrogen that enters the lattice, as denoted 

by the subscript “X.” This challenge is somewhat unique to hydrogen-bearing alloys, 

because hydrogen is not directly detectable with XRD, and it cannot be measured in 

recovered samples because the very small hydrogen atoms can escape the lattice upon 

decompression to ambient pressures. As a result, both Mao et al. (2004) and Shibazaki et 

al. (2012) estimate the amount of hydrogen in their samples to correspond to x ≈  1, based 

on comparisons with existing equations of state (EOS) for the dhcp crystal structure of FeH 

(Badding et al., 1991; Hirao et al., 2004a).  

Another noticeable feature from Figure 6.2 is that the reported uncertainties for the 

sound velocities of iron alloys are often relatively large, even at small compressions. For 

example, reported errors for IXS measurements of the compressional sound velocities of 

Fe0.89Ni0.04Si0.07 at pressures that overlap with our experimental compression range (32 to 
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68 GPa) are on the order of 200 to 300 m/s (Antonangeli et al., 2010); errors reported for 

the compressional sound velocities of Fe0.92Si0.08 measured by NRIXS over a similar 

pressure range (36 to 55 GPa) are between 300 and 400 m/s (Lin et al., 2003c). Errors of 

this magnitude only correspond to a few percent of the measured vp, but it is important to 

note that they are from measurements performed at pressures that are ~1/2 that of Earth’s 

core–mantle boundary. Not only are experimental uncertainties likely to increase with 

compression as counting rates decrease and statistical fluctuations become increasingly 

important, but extrapolation of NRIXS and IXS data to core pressures will only exacerbate 

the existing divergence between them at lower pressures. In addition, the amount of light 

elements present in the core is thought to be only a few percent (e.g., Badro et al., 2007; 

Sakai et al., 2011), so it is essential to have sound velocity data of similarly high statistical 

quality as our measurements (Table 5.2) in order to first compare with pure iron and, thus, 

better constrain the identity and amounts of light elements that are present in the core.  

In addition to the magnitude of reported uncertainties for the compressional sound 

velocities in Figure 6.2, it is important to consider how they were calculated from the 

corresponding experimental data. For example, Lin et al. (2004) report vp(P) from NRIXS 

measurements of the tetragonal phase of Fe3S that have uncertainties on the order of 1.5%. 

However, Lin et al. (2004) did not measure in situ XRD, so their reported pressures are 

based on fluorescence measurements of ruby chips in the sample chamber and the 

nonhydrostatic ruby pressure scale reported by Mao et al. (1978). Their sound velocities 

are then based on the pressures determined from these secondary pressure markers, which 

are used with an established EOS (e.g., Fei et al., 2000) to determine the sample’s density 

in the absence of in situ XRD and, in turn, obtain sound velocities from the phonon DOS. It 
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Figure 6.3.  Compressional sound 
velocities of ε-Fe and Fe3C. Black 
circles give our measured 
compressional sound velocities 
(vp) for ε-Fe as a function of 
pressure. Blue symbols give vp(P) 
for Fe3C from NRIXS (squares 
(Gao et al., 2009)) and IXS 
(triangles; (Fiquet et al., 2009)). 
 

is important to note that uncertainties in pressure propagate to those of sound velocities, so 

an underestimation of pressure uncertainties can result in artificially low sound velocity 

errors, particularly if the reported EOS parameter uncertainties are not considered. 

Therefore, we reemphasize the importance of measuring in situ XRD, which provides 

direct knowledge of the sample density and, in turn, increasingly accurate sound velocities. 

Finally, Gao et al. (2009) and Fiquet et al. (2009) did measure in situ XRD along 

with NRIXS and IXS, respectively, so we are able to provide a more detailed comparison 

between their results and ours for ε-Fe (Figure 6.3). Both studies investigated orthorhombic 

Fe3C; Gao et al. (2009) performed NRIXS and in situ XRD experiments up to 50 GPa, and 

Fiquet et al. (2009) performed IXS and in situ XRD experiments up to 68 GPa. The three 

largest compression points from each of these studies overlap with our experimental 

pressure range. Gao et al. (2009) reported compressional sound velocities that are ~2.5% 

larger than ours for ε-Fe at similar pressures (Table 5.2), which is within their reported 

uncertainties for those compression points. In addition, two of the sound velocities 

measured by Fiquet et al. (2009) agree well with those measured by Gao et al. (2009), and 
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are ~4% to 5% larger than our measured sound velocities at similar pressures. However, vp 

at the largest compression point measured by Fiquet et al. (2009) (P = 68 GPa) is ~15% 

larger than our measured sound velocity at 69 GPa. The cause of this sudden increase in vp 

measured by Fiquet et al. (2009) is not immediately clear, since measurements by Gao et 

al. (2009) do not show any indication of a positive curvature up to their largest 

compression point at 50 GPa, and existing EOS experiments on orthorhombic Fe3C 

observed no phase transitions up to 73 GPa.  
 

 

Figure 6.4.  Density dependence of compressional sound velocities of ε-Fe and iron alloys. Black 
circles give our measured compressional sound velocities (vp) for ε-Fe as a function of density, 
which is determined from our in situ XRD and m = 56.95 g/mol for 95% isotopically enriched 57Fe. 
Blue symbols give vp(ρ) for Fe3C from NRIXS (squares (Gao et al., 2009)) and IXS (triangles; 
(Fiquet et al., 2009)). All other symbols are labeled on the figure and are from IXS measurements 
by Badro et al. (2007) (FeS2, brown downwards triangle; FeSi, orange cross; FeO, turquoise 
diamond); Kantor et al. (2007) (Fe0.78Ni0.22, green x); Antonangeli et al. (Fe0.89Ni0.04Si0.07, red star); 
and Shibazaki et al. (2012) (FeHx, purple left-triangle). 
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Because both studies also measured in situ XRD, we can further investigate this 

discrepancy via the density dependence of their compressional sound velocities for Fe3C 

(Figure 6.4). In particular, we compare the slopes of vp(ρ) measured by each study: the data 

measured by Fiquet et al. (2009) suggest a slope of 1.90 ± 0.23 (km/s)/(g/cm3) for vp(ρ), 

while values reported by Gao et al. (2009) correspond to a slope of 1.29 ± 

0.14 (km/s)/(g/cm3). For comparison, we note that our vp(ρ) for ε-Fe reveal a slope of 1.07 

± 0.04 (km/sec)/(g/cm3) (Section 5.6.4). The disagreement between the slopes measured by 

Fiquet et al. (2009) and Gao et al. (2009) is beyond the relevant uncertainties, which are 

based on an errors-weighted least-squares linear fit of the reported vp(ρ) from each study. 

We note that the largest compression point measured by Fiquet et al. (2009) deviates from 

the linear trend that is suggested by their four smallest compression points. Inspection of 

their data (see Figure 2 in reference) reveals that Fiquet et al. (2009) determined vp from a 

minimum momentum transfer of 4 nm–1 and E ≥ 20 meV for their first four compression 

points, but from a minimum momentum transfer of 6 nm–1 and E ≥ 35 meV at 68 GPa. For 

comparison, we note that Gao et al. (2009) determined vp by fitting the low-energy region 

of their measured phonon DOS with 3 meV < E < 12 meV. Therefore, the limited energy 

range of the fit by Fiquet et al. (2009) for their final compression point could be 

responsible for the disagreement between their results and those of Gao et al. (2009).  

Also in Figure 6.4, we plot reported results for the density dependence of vp from 

additional IXS studies that measured in situ XRD (Badro et al., 2007; Kantor et al., 2007; 

Antonangeli et al., 2010; Shibazaki et al., 2012). The apparently linear dependence of vp 

with respect to density for most data sets (i.e., compositions) is consistent with Birch’s Law 

(Birch, 1960; 1961). We note that Badro et al. (2007) do not report corresponding 
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pressures, crystal structures, or EOS for their measured densities of Fe3C, FeO, FeSi, FeS, 

and FeS2, which inhibits direct comparison with our results for ε-Fe at the same pressure 

(i.e., depth in the Earth). In addition, we point out that for both NRIXS and IXS 

investigations of Fe-Ni alloys (Figures 6.1 and 6.2), Ni has been shown to have only a 

slight effect on the compressional sound velocities of pure iron, for both hcp (Mao et al., 

1990; Lin et al., 2003c) and fcc (Kantor et al., 2007) crystal structures.  

In summary, we have evaluated the effects of alloying on iron’s compressional 

sound velocities by comparing our measured vp(ρ) and vp(P) with those reported for iron 

alloys containing Ni and candidate light elements for the core (H, C, Si, S). In theory, it 

should be possible to combine our measured densities and sound velocities with those 

reported for iron alloys, and invert the resulting dataset to better constrain the composition 

of Earth’s core via comparison with seismic observations. However, a higher statistical 

quality, larger compression range, and better understanding of discrepancies from different 

experimental techniques that have been used to probe the compressional sound velocities of 

iron alloys are necessary before such an inversion will be feasible. In addition, temperature 

effects must be considered in order to make direct comparisons with seismic observations 

of Earth’s core (Section 6.3). 

6.2.2  Alloying Effects on Shear Sound Velocities 

We begin our discussion of the effects of alloying on the shear velocities of ε-Fe by 

recalling that our measured shear sound velocities for ε-Fe are estimated to be ~67% larger 

than those predicted by PREM on the inner core side of the inner–core boundary (ICB; 

Section 5.6.4) (Dziewonski and Anderson, 1981). This estimate is based on a linear fit and 

extrapolation of our vs(ρ) to the predicted density of ε-Fe at the depth of the ICB and at  



 117 
 

 

 

Figure 6.5.  Shear sound velocities of ε-Fe and iron alloys. Black circles give our measured shear 
sound velocities (vs) for ε-Fe as a function of pressure, which is determined from our in situ XRD 
and the Vinet EOS parameters reported by Dewaele et al. (2006). The remaining symbols give vs(P) 
from NRIXS experiments on FeHx (purple left triangle; (Mao et al., 2004)); Fe3C (dark blue square; 
(Gao et al., 2009)); Fe0.85Si0.15 (orange cross; (Lin et al., 2003c)); Fe3S (brown downward triangle; 
(Lin et al., 2004)); and Fe0.92Ni0.08 (green x; (Lin et al., 2003c)). 

300 K (Dewaele et al., 2006), which revealed a slope of 0.44 ± 0.02 (km/s)/(g/cm3).  

In Figure 6.5, we plot the pressure dependence of our measured shear sound 

velocities (vs; filled circles) with those reported from previous NRIXS studies (Lin et al., 

2003c; Lin et al., 2004; Mao et al., 2004; Gao et al., 2009). The first noticeable feature 

when qualitatively comparing existing measurements of the high-pressure vp (Figure 6.2) 

and vs (Figure 6.5) for iron alloys is that far fewer data points have been measured for the 

latter quantity. This is a result of the fact that the IXS studies included in Figures 6.2–6.4 

were performed on polycrystalline samples, in which the signal to noise ratio is too low to 
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detect the shear mode and, in turn, the shear sound velocities of iron alloys.  

As before, it is immediately obvious that experiments must be performed over a 

wider pressure range in order to make reasonable inferences about the corresponding sound 

velocities in Earth’s core, either via comparison with average Earth models or with the 

sound velocities of ε-Fe (Figure 6.5). A maximum of four data points for an iron alloy 

containing a given candidate light element (i.e., H, C, Si, or S) overlap with our 

experimental compression range, and the largest compression point plotted in Figure 6.5 is 

at 70 GPa. We note that the shear sound velocities of hcp-Fe0.92Ni0.08 have been measured 

with NRIXS up to 106 GPa (Lin et al., 2003c), and that they are ~7% smaller than those of 

ε-Fe, based on an average of the three overlapping compression points. However, there is a 

large amount of scatter in the dataset presented by Lin et al. (2003c), thus prohibiting a 

more quantitative treatment. In general, we conclude that while Ni may not have a strong 

influence on the density or compressional sound velocities of pure iron, its effects on the 

shear sound velocities (i.e., the shear moduli) could be significant.  

Another striking feature in Figure 6.5 is that the shear sound velocities of dhcp-

FeHx are slightly larger than—but identical within uncertainty to—those of ε-Fe. We note 

that this is opposite of the trend desired to move closer to matching seismic observations 

(independent of temperature effects). In addition, 15 atomic% Si appears to have little 

effect on the shear sound velocities of ε-Fe up to 55 GPa (Lin et al., 2003c), while the shear 

sound velocity reported for their largest compression point (70 ± 3 GPa) is ~4.5% smaller 

than our measured vs(69 ± 4 GPa). Using the EOS for hcp-Fe0.85Si0.15 reported by Lin et al. 

(2003a), we find ρ(55 GPa) ~ 9.8 g/cm3 and ρ(70 GPa) ~ 10.1 g/cm3, correcting for the 

mass of 95% isotopically enriched 57Fe. Together with their reported vs(55 GPa) = 4.09 ± 
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0.02 km/s and vs(70 GPa) = 4.10 ± 0.02 km/s, the predicted increase in shear modulus (μ) 

between 55 and 70 GPa is expected to be only ~6.7 ± 2.4 GPa (4.5%), following vs
2 = μ/ρ 

and considering reported uncertainties in vs. For comparison, we note that the increase in μ 

between compression points at 46 and 55 GPa is 17 GPa (12%), indicating a significantly 

different trend immediately before their largest compression point. Additional 

measurements at compression points beyond 70 GPa are needed to determine whether the 

largest compression point measured by Lin et al. (2003c) defines a noticeably different 

slope of vs(P) or a new lower trend in vs, or whether it requires a different explanation. 

A similar discussion applies to reported values for the shear sound velocities of 

orthorhombic Fe3C, which were measured by Gao et al. (2009) up to 50 GPa (Figure 6.5). 

It is possible that the small dip in shear sound velocity at 41 GPa corresponds to a softening 

in vs at that pressures, but with only a single larger compression data point, it is difficult to 

determine whether a new lower trend in vs(P) is being defined for Fe3C, or perhaps that its 

slope is significantly shallower than that of ε-Fe. Gao et al. (2009) report that their 

compressional sound velocities at pressures above the magnetic collapse between 4.3 and 

6.5 GPa increase linearly with density, i.e., they do not report a softening in vs. In 

particular, they find a slope of vs(ρ) to be ~0.24 (km/s)/(g/cm3), compared to our reported 

value of 0.44 ± 0.02 (km/s)/ (g/cm3) for ε-Fe.  

Finally, Figure 6.5 shows a trend of vs(P) for tetragonal Fe3S that is distinctly lower 

than that of ε-Fe, but with a similar slope. In particular, shear sound velocities for Fe3S 

reported by Lin et al. (2004) are ~8% smaller on average than those of ε-Fe at similar 

pressures. A larger compression range would be useful for determining an accurate slope 

for vs(P) of Fe3S and, in turn, whether vs(P) of Fe3S and ε-Fe remain roughly parallel or 
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ultimately cross at a higher pressure. We reemphasize here our discussion in Section 6.2.1 

about additional uncertainties associated with determining sound velocities from densities 

based on secondary pressure markers and an existing EOS, rather than in situ XRD. 

In summary, we have investigated the effects of alloying on iron’s shear sound 

velocities by comparing our measured vs(ρ) and vs(P) with those reported from NRIXS 

studies of iron alloys. With the exception of H, we found that the alloying of all other 

candidate light elements (C, Si, and S) presented in this chapter results in lower shear 

sound velocities than those measured for ε-Fe. However, as we concluded in the previous 

subsection, the large scatter and limited compression range of available experimental data 

on the shear sound velocities of iron alloys do not allow for a quality inversion in order to 

better constrain the composition of Earth’s core via comparison with seismic models.  

6.3 Temperature Effects  

In order to directly compare experimental values for the sound velocities of 

candidate core compositions with seismic observations, the effects of temperature must be 

considered. In particular, all of the experimental results presented in the previous sections 

were measured at 300 K, while temperatures in Earth’s core are on the order of thousands 

of Kelvin (Section 1.2). However, due to experimental challenges for NRIXS (and IXS) at 

simultaneous high pressure and temperature (PT) conditions (Section 5.6.4), little is known 

about the temperature effects on the phonon DOS (dispersion of acoustic phonons) of ε-Fe 

and, in turn, its sound velocities. Available information from NRIXS experiments on ε-Fe 

comes from two previously discussed high-PT studies by Shen et al. (2004) and Lin et al. 

(2005) (Section 5.6.4). Both studies found that ε-Fe’s sound velocities decrease with 

increasing temperature, and Lin et al. (2005) reported the following values for the 
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temperature derivatives of vp, vs, and the shear modulus (μ) at a constant density of 10.25 

g/cm3 (determined from secondary pressure markers and an EOS): dvp/dT ≈ -0.35 m/s/K; 

dvs/dT ≈ -0.46 m/s/K; and dμ/dT ≈ -0.035 GPa/K. However, the limited compression 

range, lack of in situ XRD, and large scatter and uncertainties—in addition to inherent 

challenges associated with maintaining stable temperatures over timescales of many 

hours—make overall trends difficult to quantify.  

Here we approximate the effects of temperature on our measured sound velocities 

for ε-Fe using a model based on finite-strain theory that was originally presented by Duffy 

and Anderson (1989). In general, we will determine the structural and thermoelastic 

properties of ε-Fe at an anchor point (i.e., one of our compression points after accounting 

for temperature effects), and then use finite-strain theory to extrapolate those properties 

along an adiabat to the pressures of Earth’s solid inner core. More specifically, we begin by 

determining the density (ρ) of ε-Fe at the temperature of our anchor point from our 

measured density at 300 K and an assigned value for its thermal expansion coefficient (α). 

Then, using the temperature dependence of the density and assigned values for ε-Fe’s 

ambient-temperature elastic moduli (K, μ) and their pressure (K', μ') and temperature 

( K T∂ ∂ and )Tµ∂ ∂  derivatives, we calculate values for the elastic moduli at the 

temperature of our anchor point. Finally, we extrapolate the high-PT density and elastic 

moduli to greater depths along an adiabat using finite-strain theory (Duffy and Anderson, 

1989), in order to allow for comparison between the structural and thermoelastic properties 

of ε-Fe at high-PT conditions and those of the solid inner core.  

To investigate whether finite-strain theory accurately describes the density 

dependence of our measured compressional and shear sound velocities, we build a simple 
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finite-strain model that is anchored at the density (pressure) of our smallest compression 

point, so that many of the necessary input parameters can be taken either directly from our 

data (ρ, α), or from a combination of our data and the Vinet EOS parameters reported by 

Dewaele et al. (2006) (KS, KS', μ, μ'). Specific values assigned for each necessary input 

parameter are given in Table 6.1. We set the temperature at the foot of the adiabat to be 

300 K to remove all temperature effects, which are calculated relative to the ambient 

temperature conditions at which experiments are often performed. The results of this 
 

 

Figure 6.6.  Density dependence of ε-Fe’s sound velocities from our finite-strain model at 300 K, 
with PREM. Black circles give the density dependence of our measured compressional (vp) and 
shear (vs) sound velocities for ε-Fe. Red dashed lines give the result of our finite-strain model 
without temperature effects (T = 300 K; Section 6.3; Table 6.1), to confirm the appropriateness of 
the model. vp(ρ) and vs(ρ) from PREM are given by blue and green lines with x’s, respectively 
(Dziewonski and Anderson, 1981). 
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simple finite-strain model are plotted as a function of density in Figure 6.6 as dashed red 

lines, where one can see that they agree well with our measured vp(ρ) and vs(ρ) at each 

compression point (filled circles). For comparison, we also include values for vp(ρ) and 

vs(ρ) from PREM as blue and green lines with X’s, respectively. 

Given the good agreement in Figure 6.6, we can now explore temperature effects 

on ε-Fe’s sound velocities via the same finite-strain model. We assign a new anchor point 

to coincide with our measurement at ρ = 11.84 ± 0.02 g/cm3 (P = 133 ± 4 GPa), which is 

close to the pressure of the core–mantle boundary (CMB; 135 GPa). We assign values for 

the ambient-temperature elastic moduli (KS, KS', μ, μ') from a combination of our data and 

the Vinet EOS reported by Dewaele et al. (2006) as before (Table 6.1), and a temperature 

at the CMB of 4000 K, based on an inner–core boundary (ICB) temperature of 5800 K and 

an outer core adiabat with γ = 1.56 (Jackson et al., 2012). In order to approximate the 

temperature-dependent input parameters for our finite-strain model, we turn to theoretical 

calculations of the high-temperature elastic properties of ε-Fe. We note that pressure and 

temperature effects on Tµ∂ ∂  have only been addressed with theoretical calculations and 

are not well-known. We estimate the temperature derivative of the shear modulus at the 

conditions of our anchor point to be -0.045 GPa/K, based on an interpolation of values 

given for the elastic stiffness constants at select densities and temperatures in Table 1 of 

Sha and Cohen (2010b). We note that this value is fairly close to the experimental value 

determined by Lin et al. (2005) at a smaller density (10.25 g/cm3) and lower temperature (T 

< 1700 K). Next, we approximate ε-Fe’s thermal expansion coefficient (α) at 135 GPa and 

4000 K to be 5 -1~ 1.8 10  K−× , based on Figure 11 in Alfè et al. (2001). Finally, the 

temperature derivative of the bulk modulus is related to the Anderson-Grüneisen parameter 
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(δT) via 

ln 1 .
ln

T
T

PT

K
V K T
αδ

α
∂∂   = = −   ∂ ∂   

 (6.1) 

Using Equation (6.1) with αKT ≈  12.5 MPa/K at 4000 K and ~135 GPa from Figure 12 in 

Alfè et al. (2001), and δT ≈  4.5 from Figure 7 in Sha and Cohen (2010a), we approximate 

( )135 GPaTK T∂ ∂ ≈  -0.056 GPa/K at 4000 K (Table 6.1).  

The pressure dependence of the density and compressional and shear sound 

velocities produced from the finite-strain model based on an anchor point near the 

conditions of Earth’s CMB and the aforementioned parameters are plotted in Figure 6.7 as 

dashed red lines. Gray dashed lines give the results of a similar model with the same values 

for the elastic moduli listed in the second column in Table 6.1, but with a lower CMB 

temperature of 3600 K and, in turn, an inner core temperature of 5400 K. This lower-bound 

temperature for the CMB is based on recent high-PT XRD experiments of an Fe-O-S alloy. 

Finally, ρ(P), vp(P) and vs(P) from PREM are plotted as black, blue, and green lines with 

X’s, respectively (Dziewonski and Anderson, 1981). We note that vp and vs from the finite-

strain model are determined as a function of density; to plot all of the parameters versus 

pressure, we apply the relevant densities to the Vinet EOS reported by Dewaele et al. 

(2006) and correct for thermal pressure following the procedure described in Sections 3.3 

and 3.5. We assume the inner core is isothermal (e.g., Stixrude et al., 1997) with a 

temperature of 5800 K, which corresponds to the melting point of ε-Fe at the ICB 

determined by Jackson et al. (2012) using a combination of high-temperature synchrotron 

Mössbauer spectroscopy experiments and the melting curve shape and thermal pressure 

determined in Chapter 3. 
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Figure 6.7.  Modeled pressure dependence of ε-Fe’s density and sound velocities from our finite 
strain model, with PREM. Red dashed lines give results for the density (ρ) and compressional (vp) 
and shear (vp) sound velocities of ε-Fe from our finite-strain model with an anchor point near the 
conditions expected for Earth’s core–mantle boundary (133 GPa and 4000 K; Section 6.3; Table 
6.1). Grey dashed lines correspond to a lower bound CMB temperature of 3600 K, based on the 
results of Terasaki et al. (2011). Densities from the model are converted to pressure using the Vinet 
EOS reported by Dewaele et al. (2006) and our thermal pressure correction described in Chapter 3, 
assuming an inner core temperature of 5600 K. ρ(P), vp(P), and vs(P) from PREM are given by 
black, blue, and green lines with x’s, respectively (Dziewonski and Anderson, 1981). 

Figure 6.7 reveals fairly good agreement between the modeled high-PT 

compressional sound velocities of ε-Fe and those of the inner core, but noticeably different 

slopes for vp(P). By contrast, the predicted densities and shear sound velocities from the 

finite-strain model have very similar slopes as those from PREM, but the modeled values 

are significantly larger: ~8% and ~4.5%, respectively, throughout the inner core. We note 

that our reported density contrast (i.e., the core density deficit, or CDD) is from the mass of 

our 95% isotopically enriched samples (m = 56.95 g/mol), which was the mass (density) 
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used to determine our sound velocities for ε-Fe and all of the input parameters for the 

finite-strain model that were based on our data. Scaling the densities in the finite-strain 

model by the ratio of the mass for the natural isotopic distribution of iron (55.845 g/mol) to 

that of our 57Fe samples and recalculating the CDD, one obtains a constant value of ~5.8%, 

which agrees well with our previously determined value of 5.5 ± 0.2 in Section 3.5. Finally, 

we note that the nearly constant value of the CDD throughout the inner core—assuming a 

constant temperature in the layer—is consistent with a chemically homogeneous inner core.  

\ 

Table 6.1.  Input parameters for our finite-strain model.  

 Figure 6.6 Figure 6.7 
Anchor Point Valuesa   
T (K) 300 4000 
P (GPa) 31(2) 133(4) 
ρ (g/cm3) 9.61(3) 11.84(2) 
K (GPa) 309 718 
K'  4.47 3.87 
μ (GPa) 147.7(1.3) 282.3(6.2) 
μ'  1.5 1.16 

Thermal Propertiesb   
α (10–5 K–1) -- 1.8 

K T∂ ∂ (GPa/K) -- -0.056 

Tµ∂ ∂ (GPa/K) -- -0.045 
aParameters that define the anchor points for our finite-strain models. Temperatures (T) are assigned 
to 300 K (Figure 6.6) to confirm that the finite strain model matches our data well; and to an 
approximate temperature on the core side of the CMB (Figure 6.7) to investigate temperature 
effects on our measured sound velocities. Pressures (P) and densities (ρ) correspond to two of our 
measured compression points (Tables 2.1 and 2.2). The adiabatic bulk modulus (K) and its pressure 
derivative (K') are determined from the Vinet EOS reported by Dewaele et al. (2006) and our 
measured thermodynamic properties (Section 5.5); the shear modulus (μ) and its pressure derivative 
(μ') are determined from our measured densities and shear sound velocities following 2

sv µ ρ= .  
bThe thermal expansion coefficient (α) and temperature derivatives of the bulk modulus ( )K T∂ ∂

and shear modulus ( )Tµ∂ ∂ are only relevant for T > 300 K, and are approximated as described in 
the text (Section 6.3). 
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Therefore, our finite-strain models gives no indication that a chemical gradient exists in the 

inner core, as might be expected if the light elements in the core preferentially enter the 

liquid phase, resulting in an outer core that becomes increasingly enriched in light elements 

with time and, in turn, an inner core that hosts more light elements with increasing radius. 

Putting this all together, our approximate finite-strain model for the high-PT elastic 

properties of ε-Fe suggests that its compressional sound velocities match those inferred for 

Earth’s solid inner core fairly well, while its density and shear sound velocities are larger 

than those of the core. Based on our discussion in Section 6.2, one possible mechanism for 

resolving this discrepancy is via the addition of light elements, which tend to have only 

minor effects on the compressional sound velocity of pure iron, but can significantly lower 

both its density and shear sound velocities. Another possible mechanism would be a higher 

temperature in the inner core, but we note that temperature is also expected to affect 

compressional sound velocities (e.g., Lin et al., 2005). Therefore, temperature alone cannot 

explain our estimates for the shear sound velocity and density contrasts, suggesting that 

light elements must be present in Earth’s inner core to match seismic observations. 

Finally, while our finite strain model provides a good qualitative investigation of 

temperature effects on the sound velocities of ε-Fe, we note that it is highly sensitive to the 

temperature derivatives of the high-pressure elastic moduli, which are not well-known. As 

previously discussed, we rely on theoretical calculations for these values because they are 

extremely difficult to access experimentally at the conditions of Earth’s core. Results from 

a variety of first-principles calculations seem to agree that the shear modulus decreases 

with increasing temperature ( )0Tµ∂ ∂ <  at core pressures, although the magnitude of this 

derivative varies from study to study (Steinle-Neumann et al., 2001; Vočadlo et al., 2009; 
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Sha and Cohen, 2010b).  The same studies also produce very discrepant values for the 

temperature derivative of the bulk modulus: Vocadlo et al. (2009) predict K T∂ ∂ < 0—

which is consistent with the value used in our finite strain model (Table 6.1)—but both 

Steinle-Neumann et al. (2001) and Sha and Cohen (2010b) find 0K T∂ ∂ >  as a result of 

the fact that c / a increases rapidly at high temperatures. Therefore, additional work is 

needed to better understand the behavior of the elastic constants of ε-Fe at high-PT 

conditions before more quantitative conclusions can be made about the effects of 

temperature on the sound velocities of ε-Fe. 

6.4 Concluding Remarks  

In this thesis, we have investigated the thermoelastic and vibrational 

thermodynamic properties of the high-pressure hexagonal close-packed phase of iron (ε-Fe) 

up to an outer core pressure of 171 GPa, for the purpose of improving our understanding of 

Earth’s iron-rich core. In particular, we used nuclear resonant inelastic x-ray scattering and 

in situ x-ray diffraction experiments in a diamond-anvil cell to directly probe the volume 

dependence of the total phonon density of states (DOS) of ε-Fe. In turn, we determined a 

variety of vibrational thermodynamic parameters, whose volume dependences are 

intimately related to many important properties of Earth’s core. The major conclusions of 

this thesis include 

• The volumetric derivative of ε-Fe’s vibrational free energy is directly related to its 

vibrational thermal pressure, which we use to determine the total thermal pressure 

by accounting for temperature and electronic effects. Assuming an inner–core 

boundary (ICB) temperature of 5600 K, we determine a total thermal pressure of 
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56 GPa at this boundary and a corresponding core-density deficit of 5.5 ± 0.2%. We 

note that this new tight constraint on the amount of light elements present in Earth’s 

solid inner core has important implications for the relative importance of chemical 

versus thermal buoyancy in generating the geodynamo, and in estimates of the 

melting (freezing) point depression at the inner–core boundary (Chapter 3). 

• The volume dependence of ε-Fe’s Lamb-Mössbauer factor is related to the mean-

square atomic displacement and, in turn, the melting curve shape via Gilvarry’s 

reformulation of Lindemann’s melting criterion. By anchoring our determined 

melting curve shape with established melting points for ε-Fe and accounting for 

both temperature effects and the previously mentioned thermal pressure, we 

determine a melting temperature of ε-Fe at 330 GPa of 5600 ± 200 K. This serves 

as an estimate for the temperature at the ICB, where Earth’s iron-rich solid inner 

core and liquid outer core are in contact (Chapter 3). 

• The volume dependence of the phonon DOS is directly related to the definition of 

the vibrational Grüneisen parameter (γvib), which we determine using a generalized-

scaling analysis of the phonon DOS and the common parameterization, γvib(V) = 

γvib,0(V/V0)q. We find an ambient pressure γvib,0 = 2.0 ± 0.1 for a range of q = 0.8 to 

1.2 at 300 K, which provides a self-consistent check on the vibrational thermal 

pressure and melting curve shape previously described (Chapter 4). 

• The reduced isotopic partition function ratios (β-factors) of ε-Fe are directly related 

to its vibrational kinetic energy. We investigated ε-Fe’s β-factors as a function of 

pressure and temperature, and found that the available resolution does not permit 

determination of isotopic shifts at the temperatures expected for Earth’s mantle. In 
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addition, we emphasize that the β-factors reported here are for solid iron and are 

expected to differ significantly from the corresponding values for liquid iron, where 

the latter are more closely related to discussions of core formation (Chapter 5). 

• The volumetric derivative of the vibrational entropy is directly related to the 

product of the vibrational thermal expansion coefficient (αvib) and the isothermal 

bulk modulus. Using existing equation of state parameters, we determine αvib(300 

K) ranges from 1.84 ± 0.01 10–5 K–1 to 0.67 10–5 K–1 over our experimental 

compression range. Together with our γvib, this result provides the means for 

converting between isothermal and adiabatic bulk moduli, which is necessary for 

determining accurate sound velocities for ε-Fe (Chapter 5). 

• A parabolic fit of the low-energy region of the phonon DOS provides ε-Fe’s Debye 

sound velocity via our measured sound velocities. In turn, the combination of our 

Debye sound velocities with our measured density, γvib, and αvib, and established 

isothermal bulk moduli gives ε-Fe’s compressional and shear sound velocities at 

300 K. Comparing our measured sound velocities with those reported for iron 

alloys, we find that an important next step is to extend the compression range and 

improve the statistical quality of sound velocity data for iron alloys, in order to 

allow for more quantitative conclusions about the effects of alloying on the sound 

velocities of ε-Fe. Finally, we compare our measured sound velocities with seismic 

observations via third-order finite-strain analysis and estimates for the thermal 

properties of ε-Fe. From the modeled high-temperature behavior of our sound 

velocities, we find fairly good agreement between ε-Fe’s compressional sound 

velocities and those inferred for the inner core from the Preliminary Reference 
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Earth Model; however, ε-Fe’s density and shear sound velocities are ~6% and 4.5% 

larger than those of the core, respectively, further suggesting the presence of light 

elements in the solid inner core. We note that a better understanding of the high-

pressure and temperature behavior of ε-Fe’s elastic moduli is necessary in order to 

make more quantitative conclusions about the effects of temperature on the sound 

velocities of ε-Fe.  
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Appendix A 

Details of Melting Temperature Calculation 

Relevant parameters for determining the high-pressure melting behavior of ε-Fe 

with Equations (3.9)–(3.12) and the Ma et al. (2004) or Jackson et al. (2012) anchor 

melting point are given in Table 3.2. To approximate an anharmonic correction term for 

our harmonic melting temperatures, we begin with the hypothesis that ε-Fe’s phonon DOS 

scales regularly with temperature: 

 ( ) ( ) ( )( )0 0, , , , , , ,D E V T V T D V T E V Tξ ξ=  (A.1) 

where the scaling parameter (ξ) is independent of energy and ξ(V0,T0) = 1. Together with 

the low-energy Debye-like description of the phonon DOS (Hu et al., 2003), Equation 

(A.1) gives 

 
  

(A.2)  

where vD is the Debye sound velocity, and the subscript 0 refers to some reference 

conditions.  

Next, we write the temperature derivatives of vD and the seismic velocity (vφ) at 

constant volume, which are given by  

( ) ( ) ( )3 3 3
0 0

0

, , ,
,D DV T v V T v V T

V V
ξ

=



 133 

   

  

 

(A.3) 

where vp and vs are the compressional and shear sound velocities, respectively. The 

derivatives in Equation (A.3) are related by  

   (A.4)  

where η = vs / vp, and ψ = (∂lnvs/∂lnT)V /(∂lnvp/∂lnT)V. There is also a direct relationship 

between vφ and the isothermal bulk modulus (KT), so we find 

  (A.5)  

where α is the thermal expansion coefficient, KT' is the pressure derivative of KT, δT is the 

Anderson-Grüneisen parameter, and γ is the thermodynamic Grüneisen parameter.  

Combining Equations (A.2), (A.4), and (A.5), we obtain an expression for the 

temperature derivative of the scaling parameter at constant volume: 

  (A.6) 

where є is introduced for abbreviation. Reasonable values of ψ over the compression range 

of this study are between 2 and 2.6 (Stacey and Davis, 2004), and previously reported 

values for vp and vs indicate η ~ 0.5 for ε-Fe (Mao et al., 2001; Lin et al., 2005).  
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Assuming αє varies with volume but not temperature, we are then able to integrate 

Equation (A.6) and obtain the following expression for the anharmonic melting 

temperature (TM): 

  (A.7)  

 is the uncorrected harmonic melting temperature (Equation (3.9)); αM0 = α(VM0) and 

єM0 = є(VM0), where VM0 is the volume of the anchor melting point; TM0 is the melting 

temperature of the anchor melting point; and T0 = 300 K, the temperature at which our 

experiments were performed. Finally, since we find |αє(TM – TM0)| ≪ 1, we can 

approximate the exponential linearly and solve for TM: 

 
 

(A.8)  

We use Equation (A.8) to determine our anharmonic melting temperatures, and the 

collection of terms to the right of  in Equation (A.8) are what we call the “anharmonic 

correction term.”  Taking η = 0.5, ψ(V) from Stacey and Davis (2004), δT from Sharma and 

Sharma (2010), and KT' and γ from Dewaele et al. (2006) (Table A.1), we find that є(V) 

varies between 4.6 and 9.0 over the compression range of this study. Finally, applying 

these є(V) values and α(V) from Anderson et al. (2001), we find an anharmonic correction 

term of 0.89 at our smallest compression point. For P ≥ 100 GPa (after accounting for 

thermal pressure), this correction term is ~1. 
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Table A.1.  Anharmonic correction term parameters.a 

V (cm3/mol)   α (10–5 K–1)  KT' δT γ Ψ 
5.92(2) 3.88 4.47 4.91 1.68 1.97 
5.81(1) 3.65 4.37 4.86 1.65 2.02 
5.56(1) 3.06 4.17 4.73 1.61 2.15 
5.36(1) 2.59 4.03 4.64 1.57 2.26 
5.27(2) 2.45 3.97 4.59 1.56 2.31 
5.15(2) 2.11 3.89 4.53 1.54 2.38 
5.00(2) 1.81 3.80 4.46 1.52 2.45 
4.89(2) 1.60 3.73 4.40 1.50 2.51 
4.81(2) 1.43 3.68 4.36 1.49 2.54 
4.70(2) 1.27 3.62 4.31 1.48 2.57 

aThe parameters presented here were used in Equation (A.8) to determine an anharmonic 
correction for our melting curve shape: α is the thermal expansion coefficient (Anderson et 
al., 2001); KT' is the pressure derivative of KT (Dewaele et al., 2006); δT is the Anderson-
Grüneisen parameter (Sharma and Sharma, 2010); γ is the Grüneisen parameter (Dewaele 
et al., 2006); and ψ is the ratio of the logarithmic temperature derivatives of vs and vp at 
constant volume (Stacey and Davis, 2004). 
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