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ABSTRACT

The collinear collision of an atom with a diatomic molecule has
been studied within the frameworks of quantum and classical mecha-
nics. Three major topics have been investigated.

In part I, the collinear collision of hydrogen atoms with hydrogen
fluoride (and singly deuterium substituted variants of this system)
have been studied in the exchange channel by coupled-channel quantum
mechanical calculations using a realistic (high barrier) potential
energy surface. We have also investigated the effect on the dynamics
of varying the barrier height of the potential ene rgy surface.

In part II, we consider the characterization of low energy
resonances in the collinear H + H2 and F + HZ(HD’ DH, DZ) systems.
A variety of characterization techniques are used; the most useful
proves to be the variation with energy of the eigenvalues of the col-
lision lifetime matrix.

In part III, we develop the method of hyperspherical coordinates
for the study of collinear reactive atom-diatomic molecule collisions.
The method is tested for the H + H2 system, and is applied to a model
system above the threshhold for collision-induced dissociation and to
reactions in which a light atom (hydrogen) is transferred between two
heavy ones. Systems of this type studied include I + HI and Br + HCI;
we also consider some aspects of the dynamics in the Cl + HCl sys-
tem. We develop the formalism to extract the physical scattering
wave function from the method and present preliminary results of
probability densities and probability current densities on the H + HZ
system. We also consider the formulation of the method in the
adiabatic representation and examine both numerically and analytical-

ly the behavior of the coupling matrices at large values of the

propagation variable. Convergence properties of the method are
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investigated in detail for the H + I—I2 and F + HZ systems. Quasi-
classical trajectory calculations have been used to help understand

the results obtained and to determine the importance of quantum

mechanical effects.
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PART I

COLLINEAR QUANTUM MECHANICAL STUDY OF THE
REACTIONS H + FH, D + FH, and H + FD
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INTRODUCTION

In this section we present the results of quantum mechanical

coupled-channel calculations on the collinear systems
H' + FH(v) —> H'F(v')+ H, H' + FH(v'")
D + FH(v) = DF(v')+H, D + FH(v'")
H + FD(v) = HF(v')+ D, H + FD(v')

Our interest in these systems is derived from two major con-
siderations. First, it is now recognized that the barrier height in
the exchange reaction in these systems is quite large (over 40 kcal/
mole), whereas previous collinear quantum mechanical calculations
assumed the barrier height to be much smaller (~1.2 kcal/mole).
Thus, it is worthwhile to restudy these reactions on a realistic poten-
tial energy surface. We use a model surface wi?:h a 40 kcal/mole
barrier to exchange. Second, these processes have been thought to
be a possible mechanism for removal of population inversions in the
HF/DF chemical laser system. Accurate knowledge of the kinetics
and dynamics of the HF/DF laser system is important if one is to
successfully understand (and model) its operation, and the calcula-
tions performed may shed some light on these kinetics.

There are three papers in this section. Paper I.1 examines the
D + FH(v=0, 1, 2) and H + FD(v=0, 1, 2, 3) reactions on a high barrier
(40 kcal/mole) potential energy surface. We are particularly interes-
ted in the effectiveness of vibrational excitation in promoting reac-
tion. We show that many aspects of the dynamics of these reactions
can be understood quite easily in terms of a one-dimensional model.

Paper I.2 presents results for both reactive and non-reactive
processes on the 40 kcal/mole barrier surface for the H + FH(v)
and D + FH(v) systems. A wide variety of dynamical properties of
these systems, such as state-to-state transition probabilities, ac-
tivation energies, and reaction product state distributions. Non-

reactive processes are found to be the predominant ones, and we
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show that a number of aspects of the non-reactive dynamics are
well understood in terms of the simple Landau-Teller model for
vibrational-to-translational energy transfer.

Paper 1.3 presents results for both reactive and non-reactive
processes on six different potential energy surfaces, which have
barrier heights to exchange of 1.5, 5, 10, 20, 30, and 40 kcal/
mole for the H + FH(v) and D + FH(v) systems. Three main topics
are considered: the relative rates and mechanisms of vibrational de-
activation on the different surfaces, the effect of reagent vibra-
tional excitation on probabilities for chemical reaction, in particular
on the translational energy threshhold for reaction and the vibrational
state distribution of the reaction product, as a function of the height
of the barrier in the surface, and the relative importance of quantum
mechanical resonances for the different potential energy surfaces

and the two isotopic systems.



QUANTUM MECHANICAL COLLINEAR CALCULATION
OF THE REACTIONS D + FH(v=0,1,2) =+ DF(v')t+H
AND H + FD(v=0,1,2,3) — HF(v') + D ON A
REALISTIC POTENTIAL ENERGY SURFACE
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1. Introduction

The exchange reactions between hydrogen or deuterium atoms

and hydrogen halides
H’ (D) + HX — H' X(DX) + H (1)

(X = F, Br, Cl, I) have been among the more studied simple chemical
reactions [1]. These reactions compete with the H(D) atom abstraction

process
H’ (D) + HX - HH'(HD) + X . (2)

One of the goals of studies of these systems is the understanding of the
relative importance of the exchange and abstraction channels.

Interest in reactions (1) and (2) has been heightened by the recog-
nition of their possible importance in collisional deactivation of vibra-
tionally excited HX in HX chemical lasers, especially when X = F [2]

State-to-state rate constants for processes of the type

H'[D] + HX(v) = H' X(v' <v) [DX(v'<vVv)]+ H (3a)
~ W H(v") [HD(v")] + X (3b)

are necessary if one is to successfully model the kinetics of HX lasers.
The exchange reactions (1) have been extensively studied by
classical trajectory calculations as well as collinear quantum mechanical
calculations for X = F [3], Cl[4], and Br [5]. Interest has been greatest
in the H(D) + FH and H(D) + ClH systems, which have the smallest num-
ber of electrons and are thus candidates for the calculation of accurate
potential energy surfaces by ab initio techniques. Such calculations
have been performed on the HFH and HClH systems, and the results

suggest the existence of large barriers to exchange, in excess of



40 kcal/mole for HFH and 20 kcal/mole for HCIH [6]. Recent experi-
ments on these systems appear to confirm the existence of a high
barrier to exchange [7].

Mo st of the early theoretical studies of these systems were
carried out on potential energy surfaces with a small barrier to
exchange, and therefore cannot be expected to give even qualitatively
correct behavior for many important dynamical properties [8]. These
surfaces were normally obtained by using global semi-empirical
potential energy functions, such as the extended LEPS form [9], which
were obtained by optimizing agreement between quasi-cla ssical tra-
jectory calculations and experiments on the reverse of reaction (2).

In particular, in previous quantum mechanical studies of the HFH
exchange reaction, both collinear [10] and coplanar [11], potential
energy surfaces with barriers to exchange of 1.2 kcal/mole and 1.8
kcal/mole, respectively, were used.

In this work, we report the results of collinear quantum mech-

anical calculations of the reactions

D+ FH(v) - DF(vV)+H (4a)
H+FD(v) — HF(V)+D (4b)

on a potential energy surface with a barrier to exchange of 40 kcal/mole.
We will be particularly concerned with the effects of reagent vibrational
excitation on the rate of reactions (4a, b) as this is a quantity which is
obtainable by experiment, and has been determined for reaction (4a) [7b].
The ability of a one-mathematical dimension (1MD) model to predict

and explain the results will also be considered.



2. Potential Energz Surface and Comgutational Model

The potential energy surface used in these calculations is of the
rotating Morse-cubic spline type, which has been described elsewhere
[12]. In its application to this system, we have constrained the energy
level at the bottom of the local Morse oscillator well as a function of
the swing angle 6 (defined in ref. [12]) to be a Gaussian, with a maxi-
mum at 6 = /4 radians. The saddle point occurs at Ruyp=Rpy=
1.97 bohr. The values of B(6) were determined by fitting to the exchange
channel portion of the semi-empirical (extended LEPS form) Muckerman
V FH, potential energy surface [13]. Thus, the position of the minimum
energy path on this surface is identical to that on the Muckerman V sur-
face. Note that the saddle point on this surface occurs at a shorter RHF
distance than that predicted by ab initio calculations. A fuller descrip-
tion of the potential energy surface will be given in a forthcoming
paper [14]. This surface is plotted for the D + FH reaction in the
mass-weighted Delves coordinate system [15] in fig. 1.

A vibrational correlation diagram [16] for this surface, also
showing the potential along the minimum energy path, is shown in fig.

2. The potential energy Vn(s) along each curve (except, of course, for
that showing the minimum energy path) is the sum of the potential
energy along the minimum energy path ymep (s) and the appropriate
eigenvalue Ev(s) of the potential formed by taking a cut perpendicular

to the minimum energy path (in Delves coordinates)

Vv(s) = VI2€P(g) 4 E (s) , (5)

where s is the distance along the minimum energy path measured from
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the saddle point, also measured in Delves coordinates. The eigenvalues
EV(S) are determined numerically from the potential by a finite difference
procedure [17].

The numerical calculations were performed using the coupled-
channel method of Kuppermann, which has been described previously
[18]. Between 20 and 24 basis functions were used in the calculations,
and unitarity of the open part of the scattering matrix § was obtained to
within 3% for all energies used; for most energies it was obtained to
better than 1%. Calculations were carried out to energies up to 2,45 eV
above the isolated HF (v = 0) energy level. At the highest energies
studied, there were six open HF states and eight open DF states. State-
to-state rate constants were calculated from the reaction probabilities

tr

va’ , which are a function of the reagent translational energy E™ by

the expression
. (e 0]
_ -2
ko (T) = (2 Mo bekT) [ P_(E

0

tr
tr)e—E /deEtr , (6)

where “a,bc is the reduced mass of the a, bc collision pair. The exact
method of evaluating this integral has been discussed by Truhlar and
Kuppermann [19].

Because of the large barrier to reaction, probabilities of reaction

tr. As the collinear

are extremely small (< 10™"?) at small values of E
reactive scattering program is written in single precision (for use on
an IBM 370/158 computer), we do not entirely trust the exact magnitude
of these very small probabilities. Hence, we restrict the temperature
range of our rate constant calculations to those temperatures where the

major contribution to the integral in eq. (6) comes from energy ranges
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where the reaction probabilities are larger and thus more reliable.
3. Results and Discussion

Reactions (4) only become probable in this system for fairly large
values of the translational energy. In figs. 3 and 4, respectively, we

' the total reaction probability for reactions (4a)

plot as a function of E
and (4b), respectively, for a few of the lowest reagent vibrational states.
While there are some strong similarities between the two figures, such
as the large threshold to reaction, the relative magnitude of the threshold
lowering with vibrational excitation, and the approximately parallel
nature of the probability versus energy curves in the region of greatest
increase of probability with energy, there are some major differences,
however.

In the immediate vicinity of and slightly above the threshold energy,
there are major differences in figs. 3 and 4 for vibrationally excited
reagents. For reaction (4a), for the D + FH (v = 1, 2) reaction, the
probability of reaction rises smoothly and rapidly in an s-shaped curve
from 0 to 1, while for reéction (4b), for the reaction H + FD (v = 1, 2),
there exist broad shoulders in these curves. It can be seen by examining
state-to-state reaction probability versus energy curves that the should-

ers seen in fig. 4 are due to reactions of the type
H+ FD(v) - HF(v-1)+D. (7)

This is shown graphically for the v = 1 case in fig. 5, where state-to-

state reaction probabilities Pﬁ, PE, and PFZ are shown as a function of

Etr. It is worth noting that at higher translational energies, PE

R R

becomes substantially smaller than P;;, and Pj,.
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One other difference observed between figs. 3 and 4 is that at high
translational energies, the probability of reaction (4a) stays near unity,
while that of reaction (4b) is smaller than unity and is highly irregular.

The vibrational correlation diagram in fig. 2 provides a useful
way of looking at the DXH systems. A number of conclusions may be
drawn from a quick examination of this diagram for the DFH system.
First, because of the large barrier, there are no wells in the vibra-
tionally adiabatic correlation diagram, at least for the first few levels.
As wells in this diagram have been shown to be related to resonances
in reaction probabilities [16], we can conclude that in the energy range
considered here there should be no resonances, and, indeed, none has
been observed in the dynamics. Second, because of the large difference
between HF and DF vibrational frequencies, the highest point on the
vibrationally adiabatic correlation diagram moves into the HF reagent
channel, especially for vibrationally excited reagents. Thus, one may
interpret, within a vibrationally adiabatic model, reaction (4a) as having
its saddle point on the reagent side, while reaction (4b) has its on the
product side. Third, the vibrational frequencies at and near the saddle
point are fairly large; hence the magnitude of the vibrationally adiabatic
barriers decreases with energy by an amount that is substantially
smaller than the vibrational energy spacing of HF and DF. Thus, for
example, the translational energy threshold for reactions (4a) should
decrease by 0. 21 eV on going from the ground to the first excited level
of HF and 0. 17eV on going from the first to the second excited state of
HF, the differences in vibrational energies between these levels are

0.49 and 0.46 eV, respectively. The lowering in threshold energies



15

(defined as the energy at which the probability of reaction first reaches
0. 02) for reaction (4a) are 0.22 and 0.17 eV, respectively. Thus, the
simple one-dimensional vibrationally adiabatic picture provides a good
model for the D + FH system at low translational energies.

For the H + FD reactions one can interpret the low e nergy non-
adiabatic reaction as occurring due to a crossing from the DF(v) curve
to the HF(v - 1) curve. If this crossing occurs on the DF side of the
saddle point (as seems reasonable from examination of fig. 2), the
apparent barrier to reaction should be much smaller than to vibration-
ally adiabatic reaction. This qualitatively explains the 0.25 eV separa-
tion in fig. 5 between the center of the PE flat maximum and that of the
Pﬁ maximum,

Rate constants for reactions (4a) and (4b) are plotted in fig. 6 as
a function of temperature in the form of an Arrhenius plot (log of the
rate constant versus inverse temperature). Such plots are frequently
linear, over a broad temperature range, and linearity or near-linearity
is seen in all of the plots shown. In the usual way, Arrhenius pre-
exponential parameters(A) and activation energies (Ea) are obtained
for the linear region of these curves, and the resulting data are sum-
marized in Table 1. The vibrational energy associated with e ach
reagent level is also included in Table 1 for comparison.

The rate constants obtained are quite small in all cases; by
comparison, the gas kinetic rate constant kgk (that when every

collision results in reaction) is given by the formula

1
2 1 _ -
kg (T) = (;‘_T - 2.69 % 10° T? cm -molec™ ' sec”! (D + FH) (6a)
Lfn

A - o
3.71 x 10° T2 em *molec ' sec¢ ' (H + FD). (6b)
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Even at the highest temperatures considered, the rate constants
are five to seven orders of magnitude less than gas kinetic. Thus, the
large barrier and the resulting large threshold for reaction produce
small rate constants.

The activation energies Ea shown in Table 1 decrease as reagent
vibrational excitation is increased. The lowering of the activation energy
with reagent vibrational excitation is less than the amount of internal
energy in the vibrationally excited reagents, however. Recall that a
similar behavior was observed for the lowering of the threshold energy
with reagent vibrational excitation. The decrease in activation energy
with reagent vibrational excitations is, however, greater than the
corresponding decrease in the vibrationally adiabaéic barrier height.
This difference can be explained by the dominance of vibrationally non-
adiabatic reaction over vibrationally adiabatic reaction in the energy
region where the reaction probabilities are small (< 107 ). This energy
region only makes a substantial contribution to the integral in eq. (D)
at fairly low temperatures.

In order to further understand the applicability of the one-
dimensional vibrationally adiabatic model, we have calculated trans-
mission coefficients for the three lowest vibrationally adiabatic barriers
for reaction (4a) as a function of tr anslational energy. These calcula-
tions, involving a numerical solution of the one-dimensional Schrédinger
equation, were performed with the method described by Truhlar and
Kuppermann [20]. We then used these transmission coefficients (equiv-
alent to reaction probabilities in the coupled-channel calculations) to

calculate rate constants for the D + FH (v = 0,1, 2) reactions, and the
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results (labeled 1MD for one mathematical dimension) at 500° K and
1000°K are given in Table 1, along with those obtained in the full two
mathematical dimension (2MD) coupled-channel calculation. For
comparison, the gas kinetic rate constants are also included.

At 1000°K, the results of the 1MD and 2MD calculations agree
quite well (within 5%), while at 500°K, the agreement is less satisfac-
tory, becoming worse as one goes from HF (v=0)to HF (v = 2). This
lack of agreement when the HF reagent is vibrationally excited is due
to the above mentioned dominance of vibrationally nonadiabatic reactions
at low translational energies.

The usefulness of the vibrationally adiabatic model for the DFH
system makes it worthwhile to well characterize the potential energy
surface in the region at the saddle point; in particular, accurate values
of the local vibrational frequencies (i.e., the symmetric stretch at the
saddle point) are important, as these, along with the actual barrier
height itself, combine to give the vibrationally adiabatic correlation
diagram shown in fig. 2 and found to be so useful.

A word of caution must be expressed concerning the applicability
of a collinear model to reactions (4). Ab initio calculations by Wadt
and Winter [6] suggest that the lowest barrier to exchange occurs not
for a collinear H- F-H configuration, but rather for one with a 106°
bond angle, and further that the barrier height is nearly independent of
the bond angle. Thus, it appears that an accurate dynamical treatment
of the exchange reaction would require three physical dimensions (3D).
A 3D calculation on this system would have the advantage of allowing

one to directly compare the importance of the abstraction and exchange
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channels. Such a calculation would require a good semi-empirical
potential energy surface incorporating a large barrier to exchange.

A method for constructing such a surface has been developed by Baer
and Last [21], and has been applied to all XH, systems. Their FH,
surface has a reasonably high barrier (33.5 kcal/mole), but has much
stronger dependence of the barrier height on the H-X-H bond angle than
that predicted by Wadt and Winter [6].
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4, Conclusions
e i W S

Reaction probabilities and rate constants for reactions (4a) and
(4b) have been obtained on a realistic potential energy surface by a
collinear quantum mechanical calculation. Reaction has been shown to
set in at large values of the translational energy (=1 eV) for reagents
in their first three vibrational states. Vibrational excitation has been
shown to promote the reaction, although the decrease in the activation
energy is less than the internal energy added to the reagents on vibra-
tional excitation. A number of aspects of the dynamics, such as the
translational energy threshold for reaction and the importance of vibra-
tionally nonadiabatic processes near the threshold region for reaction
(4b), have been shown to be explained by use of vibrationally adiabatic
correlation diagrams. The overall rate of reaction (4a) has been shown
to be reproduced quite well at high temperatures by a 1IMD model based
on these vibrationally adiabatic correlation diagrams. The results
obtained help demonstrate the importance of an accurate knowledge of

the potential energy surface in the immediate vicinity of the saddle point.
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Table 1

Arrhenius parameters for rate constants for reactions (4a, b)

£n A Ea Internal
o . -1 Energy
¥ T (°K) (cm Hi(:lec (kcal/ of Reagent
sec ) mole) (kcal/mole)
A. D + FH(v) = DF(v' = all) + H
0 500-950 11.8 36. 8 98
1 450-700 9.3 28,3 17.0
2 450-600 4.8 18.0 277
B. H + FD(v) = HF(v' = all) + D
0 550-1000 11.9 38. 6 4.2
1 450-800 9.4 30. 3 12.4
2 450-700 6.8 22.8 20.4
3 450-700 4.5 16,5 28.1




Table 2

i9

Rate constants for the reaction D + FH(v) = DF(v’ = all) in units

-1 -1
cm *molec sec

T (°K) v=10 v=1 v=2
2MD
500 1.16 (-11) 3.91 (-9) 8.42 (-7)
1000 1.29 (-3) 1.61 (-2) 1,07 (-1)
1MD
500 9.80 (-12) 1.43 (-9) 8.28 (-8)
1000 1.23 (-3) 1.57 (-2) 1.07 (-1)
Gas Kinetic
500 6.02 (4) 6.02 (4) 6.02 (4)
1000 8.51 (4) 8.51 (4) 8.51 (4)




20

References

[1]
(2]

[5]

[7]

M. R. Levy, Progr. Reaction Kinetics 10 (1979) 1.

N. Cohen and J. F. Bott, in Handbook of Chemical Lasers, eds.
F. Gross and J. F. Bott (Wiley-Interscience, New York, 1976),
pp 33-94,

D. L. Thompson, J. Chem. Phys. 57 (1972) 4170; R. L. Wilkins,
J. Chem. Phys. 58 (1973) 3039; R. L. Wilkins, Mol. Phys. 29
(1975) 555,

I. W. M. Smith and P. M. Wood, Mol. Phys. 25 (1973) 441;

D. L. Thompson, H. H. Suzukawa, Jr., and L. M. Raff, J.
Chem. Phys. 62 (1975) 4727; R. L. Wilkins, J. Chem. Phys.

63 (1975) 534.

J. M. White, J. Chem. Phys. 65 (1976) 3674; D. J. Malcolme-
Lawes, J. Chem. Soc. Faraday Trans. 2 74 (1978) 182.

C. F. Bender, B. J. Garrison, and H. F. Schaeffer III, J.
Chem. Phys. 62 (1975) 1188; P. Botschwina and W. Meyer,
Chem. Phys. 20 (1977) 43; W. R. Wadt and N. W. Winter, J.
Chem. Phys. 67 (1977) 3068; A. F. Voter and W. A. Goddard III,
J. Chem. Phys. 75 (1981) 3638; T. H. Dunning, Jr., J. Chem.
Phys. 66 (1977) 2752.

a) J. F. Bott, J. Chem. Phys, 65 (1976) 1976.

b) F. E. Bartoszek, D. M. Manos, and J. C. Polanyi, J. Chem.
Phys. 69 (1978) 933.

c) W. Bauer, L. Y. Rusin, and J. P. Toennies, J. Chem.
Phys. 68 (1978) 4490,

H. F. Schaefer III, in Atom-Molecule Collision Theory, ed.



[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

21

. Bernstein (Plenum Press, New York, 1979), pp. 45-78.
. Kuntz, E. M. Nemeth, J. C. Polanyi, S. D. Rosner, and
. Young, J. Chem. Phys. 44 (1966) 1168,

@ a9
QO H o W

. Schatz and A. Kuppermann, J. Chem. Phys. 72 (1980)
2737,

M. Baer, J. Chem. Phys. 65 (1976) 493.

J. M. Bowman and A. Kuppermann, Chem. Phys. Lett. 34
(1975) 523.

G. C. Schatz, J. M. Bowman and A. Kuppermann, J. Chem.
Phys. 63 (1975) 674; J. T. Muckerman, J. Chem. Phys. 56
(1972) 2997.

J. A. Kaye, J. P. Dwyer, and A. Kuppermann, manuscript in
preparation.

L. M. Delves, Nucl. Phys. 9 (1959) 391; 20 (1960) 275.

S. L. Latham, J. F. McNutt, R. E. Wyatt, and M. J. Redmon,
J. Chem. Phys. 69 (1978) 3746; A. Kuppermann, J. Phys.
Chem, 83 (1979) 171,

D. G. Truhlar, J. Comp. Phys. 10 (1972) 123,

A. Kuppermann, in Proceedings of the Conference on Potential
Energy Surfaces in Chemistry, ed. W. A. Lester (University of
California, Santa Cruz, 1979), pp. 121-124; in Proceedings of
the Tth International Conference on the Physics of Electronic and
Atomic Collisions (North-Holland, Amsterdam, 1971), pp. 3-5.
D. G. Truhlar and A. Kuppermann, J. Chem. Phys. 56 (1972)
2232,



22

[20] D. G. Truhlar and A. Kuppermann, J. Am. Chem. Soc. 93
(1971) 1840.
[21] M. Baer and I. Last, in Potential Energy Surfaces and Dynamics

Calculations, ed. D. G. Truhlar (Plenum, New York, 1981), pp.
519-534,



23

Figure CaEtions

Figure 1. Contour plot of the potential energy surface for the reaction

D + FH — DF + H in Delves scaled coordinates. The solid curves are
equipotential contours at the total energies measured with respect to

the bottom of the HF (DF) wells. The dashed line is the minimum energy

path. The cross indicates the location of the saddle point.

Figure 2. Vibrationally adiabatic correlation diagram for the reaction
D + FH(v) = DF(V) + H, v=0,1,2., The vertical scale is an energy
scale. The lowest curve is the potential energy along the minimum
energy path Vmep(s) as a function of the distance s along the minimum
energy path from the saddle point. Positive values of s take one towards
separated D + FH, negative values of s towards DF + H. The higher
curves are plots as a function of s of the potential Vv(s) defined in eq.

(5) of the text for v=0,1,2,

Figure 3. Probabilities PIS+FH(V) of the reactions D + FH(v) =DF(v' =
all) + H for v=0,1,2 as a function of reagent translational energy Etr.
The solid line is for v = 0, the dashed line is for v = 1, and the dotted
line is for v = 2,

Figure 4. Probabilities PE+FD(V) of the reactions H + FD(v) = HF(v' =
all) + D for v=0,1,2,3 as a function of reagent translational energy Etr.

The solid line is for v = 0, the dashed line is for v = 1, the dotted line

is for v = 2, and the dashed line is for v = 3.

Figure 5. State-to-state reaction probabilities P§+FD(1)"HF(V' )+D o]

the reaction H + FD(v=1) = HF(v') + D for v/ = 0,1,2 as a function of

f

tr

reagent translational energy E The dashed line is for v/ = 0, the
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solid line is for v’ = 1, and the dotted line is for v/ = 2. While the
HF (v’ = 3) product channel is energetically accessible in this energy
range, the probability of reacting into it is less than 1% in this energy

range, and is not shown.

Figure 6. Arrhenius plot of rate constants for the reactions D + FH(v) —
DF(v' = all) + H (dashed line) and H + FD(v) = HF(v’ = all) + D (solid line)
over a temperature range from 450 to 1500°K. Where the curves are
not continued to the highest temperatures, the scattering calculations
were not carried out to sufficiently high energy for the integrand in eq.
(6) to become sufficiently small. (a) H+ FD(v = 0), (b) D+ FH (v = 0),
(c)H+ FD(v=1), d)D+FH(v=1), () H+ FD (v=2), (f) D+ FH
(v=2), (g) H+ FD (v = 3).



25

e &5

oF

1 L
L od

ayoq /4

R/ bohr

Figure 1



26

14yoqy/s

H4d+d d4+H

A3/

Figure 2



f v
1]
m >
1
|
e W
. » —
“ llllllllll V
w ) o
e - n h
llllllllllllllllll .l...ll.‘l.ltv A
L | - : _
ﬁu. (00)] rO. 4. ik O
S c o c ©
(A)H4+0

2.5

2.0

1.5

EMev

Figure 3



28

i o

Q,

Etr/ev



29

0.8}

1

o
o o
g+(ANdH=—(1)dd +H
S

Figure 5

.2

E'/ev



T/K
800 700

500

600

1000

1500

1200

20

1000 K/T

| | 1 | ] ] O
(@) o < [te) © @) @]
O | | | | -
= o o © © o

(,-98S x |_8|Nd3|ow x uu:))/>1

Figure 6



31

L2 COLLINEAR QUANTUM MECHANICAL CALCULATIONS
ON THE SYSTEMS HF(v) + H AND HF(v) + D ON A
REALISTIC POTENTIAL ENERGY SURFACE
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Collinear Quantum Mechanical Calculations on the Systems

HF(v) + H and HF(v) *+ D on a Realistic Potential Energy Surface.a)
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The rates of the reactions HF(v) + H and HF(v) + D as well as
those of processes resulting in vibrational deactivation of HF have
been studied by collinear quantum mechanical calculations on a
realistic potential energy surface. The surface used has a

40 kcal/mole barrier to exchange, far greater than those used in
previous calculations and in the vicinity of that suggested by

ab initio calculations and recent experiments. It is found that
vibrational deactivation of H " in this exch.ange channel occurs
almost entirely by non-reactive single-quantum processes, and
the rate of which varies weakly with reagent vibrational state.
The rate of chemical reaction, however, is enhanced dramatical-
ly by reagent vibrational excitation, although vibrational energy
lowers the threshhold for reaction by far less than a vibrational
guantum of energy. The relationship between vibrational and
translational energy in promoting reaction will be discussed, as
will the relationship of the results of these calculations to

experimental data.
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I. INTRODUCTION

A knowledge of accurate rate constants for the reactions of vibrational-
ly excited hydrogen fluoride (HF) molecules with those atoms and mole-

cules present in the HF laser system (1) (FZ, H HF, H, F) is important

>
if one is to accurately model the system's behavior. In the HF laser sys-
tem, vibrationally excited HF is produced by one of the highly exoergic
reactions (2)

F+H2---) HF(v£3) + H (1a)

H+F, — HF(v£10) + F (1b)

These pumping reactions have received a great deal of attention, both

experimentally (3) and theoretically (4). Of the deactivating processes
present in the HF laser, the best studied are those due to inelastic col-
lisions of vibrationally excited HF with other diatomics (ground state HF
and HZ) (5). Collisions of vibrationally excited HF and H or F atoms
have received less attention. Among the few studies of these processes

include the experiments of Bott and Heidner (6) and Bartoszek, et al.(7),

and the quasi-classical trajectory calculations of Wilkins (8), Thompson

(9), and Thommarson and Berend (10). Recently, Schatz and
Kuppermann (11) have studied the HF + H system (and its D-substitu-
ted counterparts) via a collinear quantum-mechanical calculation,
although the barrier to reaction in the potential energy surface used in
these calculations is now known to be unreasonably low. Baer (12)
has performed a coplanar quantum mechanical calculation on the HF

T H reaction, also on a surface with an unreasonably low barrier.

In this paper, we report the results of collinear quantum mechanical
calculations on the systems HF(v) + H and HF(v) + D. We consider those
processes, both reactive and non-reactive, responsible for vibrational
deactivation of HF, which may be represented by the reactions

HF(v) + H' — HF(v') + H' (2a)
— H + FH'"(v"") (2b)
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HF(v) + D—HF(v') + D (3a)
—H + FD{y") (3b)

The potential energy surface used in these calculations has a barrier to
exhange of 40 kcal/mole. This is in line with recent ab initio calculations
(13) as well as the definitive experiments of Bartoszek, et al. (7).

No attention will be given to deactivating processes in the abstraction
channel

HY HF(V)—-—)HZ(V') + F (4a)
—3H' + HF (v'") (4b)
in this paper, although this channel is likely the one in which much of the
deactivation of HF(v£3) occurs.

We focus in this work on the relative rates of vibrational deactivation as
a function of the initial state of the HF reagent, the fraction of deactivation
occurring by reaction (processes 2b and 3b, respectively in the HFH and
DFH systems), the relative importance of single and multi-quantum deacti-
vating processes, and the relative ef fectiveness of translational energy in
promoting reaction.

A brief outline of this paper is as follows. In section 2, we consider
the potential energy surface used in these calculations and the reasons for
which we chose to use it. In section 3, we very briefly discuss some of
the important aspects of the calculation. In section 4, we present our re-
sults, which will be discussed in section 5. In section 6 we summarize

by reviewing their significance.
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II. POTENTIAL ENERGY SURFACE

There has been a great deal of interest over the last decade in deter-
mining the nature of the potential energy surface for reactions 2b and 3b.

A large number of semi-empirical global potential energy surfaces, mainly
of the extended LEPS type (14), have been developed for reaction la (15).
The parameters for these surfaces were normally chosen to maximize
agreement between the results of quasi-classical trajectory calculations
and experiments on reaction la (quantities compared are usually rate con-
stants and distributions of product vibrational and rotational states).

Since these surfaces are global, the form of the exchange channel is de-
termined by this optimization procedure (which has taken place in the
abstraction channel). - Most of these surfaces have a very small barrier to
exchange, for example 1.2 kcal/mole for the well-known Muckerman V
surface (4d). Such low barrier surfaces have been used in most dynamical
calculations performed so far on reactions 2 and 3. A notable exception is
the calculation done by Thompson (9), in which a surface with a barrier to
exchange of 28.6 kcal/mole was used.

Four high quality ab initio calculations on the potential energy surface
of reactions 2b and 3b yielded barrier heights of 49.0 (13a), 44.9 (13b),
47.6 (13c), and 48.3 (13d) kcal/mole, however, and the experiments of
Bartoszek, et al. (7) seem to securely resolve this question in favor of a
high barrier to exchange. In this calculation, therefore, we use a potential
energy surface with a barrier to exchange of 40 kcal/mole, which seems to
be within the range of uncertainty of the ab initio calculations.

The potential energy surface used in these calculations is of the rota-
ting Morse~- cubic spline type (16), made slightly less general by requiring
that the potential energy along the minimum energy path as a function of
the angle @ in reference 16 to be given by a Gaussian:

D(B) = D(B=0) - (A + Brexp(-C*(r/4 -8)°) (5)
The parameters have values A = 0.01681 kcal/mole, B = 39.983 kcal/mole,
and C = 33.879 ra.dia.ns-i. B(B) and ,Qeq(B) are defined in reference 16, and
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are obtained by cubic spline interpolation between the values given for
the supplied points listed in Table 1. The profile of the barrier height
vs. reaction coordinate (distance along the minimum energy path from
the saddle point as calculated in Delves mass-scaled coordinates (17))
for H + FH is shown in figure 1, along with the asymptotic eigenvalues for

HF and DF. A contour plot of the potential energy surface for H + FH

in Delves coordinates is shown in figure 2.
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IIT. DETAILS OF THE CALCULATION

Numerical solution of the Schrodinger equation for these systems
was performed using the coupled-channel method of Kuppermann (18),
which has been described elsewhere. This technique has previously been
applied to a number of systems, including H + HZ and its isotopically

substituted analogues (20), F + I—I2 (4d), F+D_ (21), H+ FH (on a low

barrier surface) (11), and Be + FH {(22). 20 -224 basis functions were used
in the calculation, although no more than seven were open asymptotically
at any of the energies studied.

Reactions 2a and 2b were studied in the energy range up to 2.94 eV
above the zero-point energy of HF, while reactions 3a and 3b were studied
up to 2.45 eV above the HF zero-point energy. The smaller range in the
latter case was due to the smaller vibrational requency of DF, which re-
sults in more open channels at a given energy tha..n in the HF system
(energy levels of isolated HF and DF are shown in figure 1). In all
calculations reported here, flux was conserved to better than 3%; for
most energies it was conserved to better than 1%.

From the transition probabilities obtained in these calculations,
state-to-state rate constants were calculated by evaluating the usual
integral Gt

K (T) = @up \ KT)” . /Zjopij(Etr)exp(—Etr /KT)AE™ (6)
Wixe re Pij is the probability for the transition from state i to state j,
E ' is the relative translational energy of the collision, and /Aa, be is the

reduced mass of the a, bc collision pair.
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IV. RESULTS

Wehave obtained information on many aspects of the dynamics of the
collinear HFH and DFH systems and will try to present some of the most
important features of our results in this section. In particular, we will
consider in this section and the ensuing discussion section questions such
as the following:

1)What are the relative rates of deactivation of the vibrationally ex-
cited HF, and how do they vary with initial reagent excitation ?

2) What is the relative importance of reactive and non-reactive pro-
cesses ?

3) What is the relative importance of single and multi-quantum
transitions ?

4) How do all of these quantities vary with temperature ?

5) How do the roles of translational and vibrational energy in promo-
ting reaction compare ?

6) How do the results obtained for non-reactive processes compare
with those predicted from simple models, such as the Landau-
Teller model (23)7?

7) Wat is the nature and magnitude of the isotope effect on going from
the HFH to the DFH system ?

A. H + FH

Rates for state-to-state vibrational deactivation have been calculated
for temperatures in the range 200 K 4T £ 1000 K. Values of the rate
constants at three temperatures (300, 650, 1000 K) are contained in
Table 2. For purposes of comparison, we also include in Table 2 the
'"gas kinetic'' rates for the H + FH system at these three temperatures.
This rate is that obtained if a transition occurred with unit probability at
all energies; hence, it represents the sum of all possible state-to-state
rate constants at a given temperature. It is seen that at all three tempera-
tures, the total rates of deactivation are less that 1% of the gas kinetic

rate. Thus, vibrational deactivation is a very unlikely process.



40
We display total rate constants for vibrational deactivation, both
reactive and non-reactive, as a function of initial HF quantum number
in figure 3. Three important features of the dynamics are clearly evi-
dent on this plot:

1) For all initial quantum states at all temperatures, non-reactive
deactivating processes are much more likely than reactive pro-
cesses, and account for, to a good degree of approximation, all
the deactivating processes.

2) The variation of the rate of deactivation occurring by non-reactive
processes with initial HF quantum number is far less than that of
the reactive processes.

3) The variation of the rate of deactivation occurring by non-reactive
processes with temperature is far less than that of the reactive
processes. ‘

An additional difference between the dynamics of deactivating pro-

cesses in non-reactive collisions from those occurring in reactive
ones may be seen in Table 2. Specifically, in non-reactive collisions,
vibrational deactivation occurs overwhelmingly by single-quantum
transitions, while in reactive collisions, deactivation by multi-quantum
transitions is favored. Further, while the dominance of non-reactive
deactivating processes by single-quantum transitions occurs over the
whole temperature range considered, in reactive deactivating processes,
as temperature increases, the single-quantum processes become more
important than they are at lower temperatures. This may be seen
graphically in figure 4, in which four state-to-state rate constants
(kZON, k21N, kZOR’ kZIR’ where the superscripts N and R refer to
non-reactive and reactive processes, respectively) are plotted vs.
temperature as Arrhenius plots, that is, In k vs. 1/T. We will con-
sider in some detail the vibrational state distribution of the products

of reactions 2b and 3b later omn.

In considering the temperature dependence of the rate constants
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obtained, it is frequently useful to make Arrhenius plots (defined above)
of the rate constants as a function of temperature. It is known that for a
wide variety of chemical reactions, such plots yield straight lines, al-
though curved Arrhenius plots are also common (24). In the systems
studied, it is frequently seen that Arrhenius plots for state-to-state
rate constants are linear at high temperatures (2700 K), but are non-
linear at lower temperatures. Frequently, they have linear regions at
high (700 - 1000 K) and low temperatures (200 - 400 K), but are curved in
between.

Reactions yielding linear Arrhenius plots obey the relationship

k= Aexp(—Ea/ka) (7)
where A is the Arrhenius pre-exponential factor, Ea is the activation
energy for the reaction, and kb is Boltzmann's constant. These quanti-
ties correspond to the y intercept and slope of the Arrhenius plots, re-
spectively. For ground vibrational state reagents, the activation energy
of a reaction is usually fairly close to the barrier height to the reaction
in the potential energy surface; when the reagents are vibrationally exci-
ted, it is frequently less. We examine plots of activation energies vs.
initial quantum states for n-quantum non-reactive and reactive deactiva-
ting processes in figures 5 and 6, respectively.

In figure 5, it is seen that there is no well-defined relationship
between the activation energies for the non-reactive processes and
reagent vibrational state. There does seem to be a clear difference in
the magnitudes of the activation energies for deactivation from v = 4 and
5 and those from v£3. Further, for deactivation from the higher vibra-
tional state, the activation increases drastically for large multi-quantum
transitions. Much more regular (and different) behavior is observed in
figure 6, in which we consider activation energies for reactive deactiva-
ting processes. In this case, one may clearly see that the activation
energies decrease substantially with reagent vibrational excitation, and

in general, decrease as one goes from single~-quantum to multi-quantum
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transitions. This is another example of differing dynamics between non-
reactive and reactive collisions. This subject will be further explored
later on.

Because of the large barrier to exchange (40 kcal/mole) in the
potential energy surface used in these calculations, it is reasonable that
reaction should only occur at high translational energies. This may be e
easily seen in figure 7, in which the total probability of reaction PVR is
plotted vs. translational energy for initial reagent vibrational states
v = 0-3. Reaction becomes appreciable at successively smaller values of
the translational energy as the vibrational level of the HF reagent is
increased. The decrease in translational energy requirement for reac-
tion threshhold is in the vicinity of 0.15 - 0.20 eV per vibrational quantum,
which is substantially smaller than the vibrational quantum of 0.45 - 0.49
eV. This difference will be considered more full-y later. It is also
evident that as the initial HF vibrational state is increased, the probability
for reaction vs. translational energy curve becomes more irregular, not
increasing smoothly to one as the v = 0 curve does.

In studying the dynamics of the reactive processes in general, itis
worthwhile to consider the distribution of product vibrational states, for
deactivating, vibrationally adiabatic (involving no change in quantum
number) and exciting (involving an increase in the quantum number) pro-
cesses. We consider some of these distributions for the HF reagent in
its v = 1 and v = 2 states at differing translational energies in figures
8 and 9, respectively. In these figures, the product state distribution is
given in terms of FVV‘R, the fraction of reaction products going into the

product state v' R
R vv'
vv Sl (8)

max R
Z':o ¥ vv!

where v is the maximum quantum number permitted by energy con-
max

servation. It is seen that at lower translational energies (but high enough
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for a large probability for reaction), vibrationally adiabatic reaction is
far more likely to occur than either deactivating or exciting reaction.
This preference for vibrational adiabaticity decreases as translational
energy increases. At the highest translational energies considered, the
distribution of product states is fairly flat for v = 2 reagent and shows
some evidence of bimodality for v = 1 reagent.

One good measure of the distribution of product states is the average
fraction of available energy going into product vibration, which is defined

by the formula

=
(Etr+EV)2max PR ' (9)

where energies are measured with respect to the bottom of the product
well. This quantity is displayed in figure 10 for the H + FH(v&€3) reac-
tions. No data are presented for the v= 4 and 5 initial reagent states
because the calculations were not carried out to sufficiently high energy
for there to be appreciable reaction. Lines are drawn to represent the
value this quantity would have if all reactions proceeded adiabatically
(with no change of quantum number). For v = 0 and v = 1 reagents, at
low translational energies (but still high eneough for appreciable reac-
tion), this quantity is fairly close to that expected if all reaction pro-
ceeded adiabatically, but at higher translational energies, it increases.
Thus, at high translational energies, vibrational excitation is more likely
than deactivation in reactive collisions. For v = 2 and v = 3 reagents,
the calculated points lie below the lines; hence, in the energy range con-
sidered, the net effect of the reactive collisions is a deactivating one.
B. D+ FH

In considering the deactivation processes in this system, we have
elected to look mainly at the processes which represent deactivation in

an ""absolute quantum number'' sense, that is, for reactive deactivating
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processes, only those of the type
D + FH(v) — DF(v{v) + H (10)

Due to the smaller vibrational energy spacing in DF than in HF, itis
possible, as may be seen from figure 1, for some DF(v) levels to ac-
tually have less internal energy than some HF(v-n) level, where n is an
integer that is 0 for v = 0,1, 2,3, 1 for v = 4, and which increases ir-
regularly with v thereafter. Further, since all vibrationally adiabatic
reactions of the type 3b (where v'' = v) have the DF product containing
less internal energy than the reagent HF, they might be defined as de-

activating processes in the '

'strict energetic'' sense.

State-to-state rate constants for the deactivating processes 4a and 4b
are given in Table 3, at 300, 650, and 1000 K along with the correspon-
ding gas kinetic rate constants. Again, the overwhelming dominance of
non-reactive processes (and single-quantum deactivating ones) is seen.
A few reactive processes not satisfying the strict quantum number defi-
nition for deactivation are also included in Table 3. These processes
become more important relative to the total set of reactive deactivating
processes as temperature increases. As in the H + FH case, the net
contribution of reactive processes to the total deactivation of vibrational-
ly excited HF may be neglected.

On the whole, the deactivation rates for HF by collisions with D is
smaller than that for deactivation by H. Some of this difference is to be
expected by consideration of the gas kinetic rate constants, which are
related by the expression

ki’iFH = 0.724k(;’{1<+FH (11)
(the superscript GK refers to gas kinetic); the magnitude of the dif-
ference observed is greater than this, however.

Because of the similarity between the dynamics of the non-reactive
deactivating processes in the H + FH and D + FH systems, we will focus

our attention on the reactive ones, particularly because the se are most

easily amenable to experimental study. We first consider the total proba-
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bility for reaction as a function of translational energy for initial HF
states v = 0, 1, 2. This is plotted in figure 11 in a manner analogous to
that used in figure 7 for the H + FH system. We see large tresholds,
very similar in magnitude to those observed in the H + FH case. The
spacings between the curves are on the order of 0.15 and 0.22 eV be-
tween the v = 1 and 2 and the v = 0 and { curves. This is very close to
the 0.15 - 0.20 eV spacings observed in the H + FH system. One dif-
ference between the two systems is that the reaction probabilities seem
to rise more smoothly to one (and to stay there) for reagent states
v=1and 2 in D + FH(v) collisions than in the corresponding H + FH
ones.

Wehave also examined the distribution of product (DF) vibrational
states for initial reagent states HF (v = 1, 2) at a few translational ener-
gies, some of which were the same as in the corresponding H + FH
cases. These are shown in figures 12 and 13 for v = 1 and 2, respec-
tively. It is observed that there is slightly less tendency t owards vib-
rational adiabaticity than in H + FH. As in the H + FH case, the product
distribution broadens as one goes to higher translational energies, and
there is some evidence for bimodality in the distribution at high energies.

Finally, we have calculated the average fraction of product energy
going into vibration. This is displayed in figure 14 for HF initial
states v = 0, 1, 2 (this is analogous to figure 10 for H + FH). Again,
lines are drawn tkrough the points representing the value of <£V> if
the reaction proceeded adiabatically. Since the DF vibrational spacing
is smaller than that of HF, (fv> for the D + FH reaction should be
smaller than for the H + FH one. By comparing figures 10 and 14, it

can be seen that this is indeed the case.



46
V. DISCUSSION

The overwhelming dominance of non-reactive processes in accoun-
ting for vibrational deactivation of HF in collisions with H and D atoms
in the exchange channel makes it useful to discuss the non-reactive
processes separately from the reactive ones. Also, we have shown
that the dynamics of the reactive and non-reactive processes are very
different (for example in their preference for single or multi-quantum
transitions, and in their activation energies). We will consider first the
non-reactive deactivating processes, focusing on the variation of the
deactivation rate with reagent vibrational state and the degree to which
the calculated deactivation rates obey predictions of the approximate
Landau-Teller theory. We will then consider the reactive processes,
particularly the relative ability of translational and vibrational energy
to promote reaction. We will also examine the results of our calcula-
tions in the light of experimental studies of the vibrational deactivation
of HF by H and D atoms to show that deactivation of HF(v=1, 2, 3) must
be dominated by processes occurring in the abstraction channel 4.

A. NON-REACTIVE PROCESSES

The calculations show that, in general, the rate of vibrational de-
activation increases as reagent vibrational excitation increases. This
is true for HF(v=1, 2,3) + H and D. In the HF(v=4,5) + H cases one
does see lower deactivation rates than for HF(v=3) + H, although the
decrease becomes smaller at higher temperatures. Because of the
large barrier to exchange present in the potential energy surface, it
may be reasonable to consider whether the key features in the results
obtained here might have been obtained by a model based on a purely
non-reactive system, i.e. one in which reactions 2b and 3b cannot
occur.

Such a model is the Landau-Teller model (described in reference
23) for energy transfer in non-reactive collisions. The chief predic-

tions of this model (that of a collision of a particle with a harmonic
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oscillator governed by a repulsive exponential potential)
are as follows:

1) All deactivations occur by single quantum transitions.

2) The rate constants for deactivating processes between different

vibrational levels are related to the 1 —» 0 deactivation rates
by the expression
kNv,v—i - VkNi,O Hes

3) The rate constant for the deactivating process is related to the

temperature T by the expression:

In kN = A - BT1/3 (13)
v, v-1
where
13:3(%451;1 173 (14)
azkb

where/& is the reduced mass of the collision partners, V is the

vibrational frequency of the harmonic oscillator, and a is related

to the steepness of the assumed exponential interaction potential
Vi) = Vo exp(-ar) (15)

where r is the distance from the center of mass of the harmonic

oscillator to that of the second particle.

-1/

N 3
Landau-Teller plots (plots of In k B: & ) fer H + FH

v
and D + FH are shown in figures 15 a.nc‘ll,i‘g,lrespectively. The plots
are all reasonably linear (meaning equation 13 is approximately
obeyed by the data), especially at lower temperatures. Further, the
slopes of the v = 1, 2,3 curves for H + FH are all roughly the same,
as are those for the v = 4 and 5 curves for HF and those for v=1,2,3

for D + FH. The major deviation in behavior from that predicted by

Landau-Teller theory, then, is the smaller value of the rate constants

n

for deactivation from v = 4 and 5 in H + FH(v) collisions, and the dif-

I

ferent slope from the v 1, 2,3 curves (notice that according to eq. 13
the slope of the Landau-Teller plot should be independent of the ini-

tial vibrational state).
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The effect of substituting D for H as one of the collision partners
may also be examined in light of the pre dictions of the Landau-Teller
model. From equation 13, one sees that the slope of the Landau-Tel-
ler plot should be proportional to the one-third power of the reduced
mass of the collision. Since this mass for D + FH is roughly twice its
value for H + FH, the slopes for D + FH deactivations should be great-
er than for H + FH deactivations by a factor of 21/3 or roughly 5/4.

It is difficult to calculate exact ratios of slopes due to the non-linearity
in the Landau-Teller plots in figures 15 and 16 at high temperature.
Using crude estimates, however, one can find that the slopes are in-
deed greater for the D + FH deactivations than for H + FH by a number
that varies between 20% and 45%. Thus, the Landau-Teller model does
predict the general behavior and magnitude of the effect of isotopic sub-
stitution on the temperature dependence of the single-quantum non-
reactive deactivating processes.

The main failing of the Landau-Teller theory, then, is its inability
to predict the difference in the temperature dependence and thus the
magnitude of the rate constants kN43 and kN54. It is tempting to attri-
bute this failing to the fact that the total vibrational energy associated
with the v = 4 and 5 levels is greater than the 40 kcal/mole barrier.
Since there is always sufficient energy in collisions involving these
states to overcome the classical barrier, one might expect different dy-
namics than in cases (i.e. v£ 3) where a substantial amount of transla-
tional energy is needed. There is no strong evidence for this interpre-
tation, however.

One might be able to verify such a hypothesis by reducing the barrier
height of the surface somewhat such that it is between the v = 2 and
v = 3 levels. In that case, one might expect different dynamics in col-
lisions involving HF (v = 2) and HF(v = 3). We have carried out scat-
tering calculations for this reaction on a variety of surfaces with re-

duced barriers (25) but otherwise identical to that used here (the para-
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meters A, B, and C defined in eq. 5 giving the energy along the minimum
energy path as a function of the angle & differ; the functions 1eq(9) and
B(B) as defined in ref. 16 are identical), and will conduct similar Lan-
dau-Teller analyses of the dynamics on those surfaces.

A dynamical reason for this difference might be observable in colli-
near quasi-classical trajectory calculations. However, the small frac-
tion of collisions resulting in vibrational deactivation might make such
a study difficult.

B. REACTIVE PROCESSES

As has been mentioned repeatedly, the net contribution of reactive
processes to vibrational deactivation is essentially negligible over the
temperature range studied. Thus, the interest in reactive processes
centers around the effect of reagent vibrational excitation on reaction
rate and the distribution of product vibrational states. For reaction
3b both of these quantities should be fairly easily accessible to experi-
mental study (the experiments of Bartoszek, et al. (7) included a study
of the former).

From table 2 and figure 3, the enhancement in the rate of reaction
with vibrational excitation for reaction 2b is clear; table 3 similarly
shows the effect for reaction 3b. For reaction 2b at 300 K, for exam-
ple, the relative rates of reaction for v = 1,2, 3,4, 5 are approximately
1:104:1011:1013:1015. In spite of this large vibrational enhancement,
we can show that the efficiency of vibrational excitation in promoting
reaction is quite small. This can be seen in a variety of ways.

First, one may consider the threshold energy for reaction. We de-
fine this quantity as the translational energy at which the probability
for vibrationally adiabatic reaction first reaches 0.01. This quantity
is plotted as a function of vibrational energy in figure 17 for both reac-
tions 2b (for v=20,1, 2, 3, 4) and 3b (for v= 0,1, 2,3). If vibrational
energy and translational energy were equally effective in promoting re-

action, the lines in figure 17 would have slopes of -1, as the total
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energy threshold for reaction would be independent of reagent vibra-
tional state. Instead, the curves are non-linear, although they can be
fairly well approximated by straight lines whose slopes are approxi-
matley ~-0.31 for reaction 2b and -0.36 for reaction 3b. Thus, only
some 1/3 of the vibrational energy goes towards promoting reaction.
This fact can also be seen in the plots of total reaction probability vs.
translational energy for reactions 2b and 3b (figures 7 and 11, respec-
tively) in which it is seen that each quantum of reagent excitation lowers
the region of rapid increase of probability with translational energy by only
0.15 - 0.20 eV, less than half the vibrational spacing of HF of 0.45 -
0.50 eV, This inefficiency of vibrational energy is also seen in figure
6, in which even in the v = 5 state, where the reagent has some 2.4 eV
of vibrational energy above the zero-point energy, the activation
energies for reaction 2b may be as high as 13 kcal/mole. Since this
amount of vibrational energy is far in excess of the 40 kcal/mole classi-
cal barrier height, one can see that vibrational energy is not entirely
useful in promoting reaction.

In comparing threshold energies for different reagent vibrational
states, it is important not to neglect the contributions of the vibrational
energies for the H--F--H configuration occurring at the saddle point
(R* : r*) on the potentié.l energy surface. Because the surface does
not appreciably widen near the saddle point region these energies
will be fairly large, and thus the vibrationally adiabatic barrier height
AV*, defined by the expression

v

avt - £ ®Y, Y - E (R = (15)
v v v
will decrease only gradually =aith increasing v.

Wehave calculated the AV: for reaction 2b, and plotted the reac-
tion threshold vs. them in figure 18. The resulting plot is approxi-
mately linear with a slope of 0.8. Thus, as the reagent vibrational
state is increased (decreasing AV_:_t ), the reaction threshold does not

decrease as quickly as AV: , although the two decreases are fairly
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close in magnitude. Thus, much of the inefficiency of vibrational ex-
citation in producing reaction is due to the persistence of a large vibra-
tionally adiabatic barrier height to large quantum numbers. Because
the vibrationally adiabatic barrier heights can be expected to be slight-
ly smaller for reaction 3b than for 2b due to the heavier D atom being
substituted for one of the H atoms at the saddle point, vibrational ener-
gy should be slightly more effective at promoting reaction 3b than 2b.
This is observed in figure 15, where the slope of the threshold energy
vs. vibrational energy curve is some 10% higher for reaction 3b than
for 2b.

This feature of the dynamics might be particularly sensitive to the
exact nature of the potential energy surface near the saddle point, as
a smaller vibrational frequency at the saddle point wo uld decrease AV: ’
thus increasing the efficiency of vibrational eneréy in promoting reac-
tion. Similarly, increased curvature in the minimum energy path pro-
duced, for example, by moving the saddle point to large values of RHF’
might better couple translational and vibrational energy, thus leading to

increased efficiency of reagent vibrational excitation.

C. RELATIONSHIP TO EXPERIMENT

In analyzing the vibrational deactivation of HF by H and D, one must
be careful in relating the results of collinear quantum mechanical cal-
culations to experiment. The calculations reported here do not include
the abstraction channel, which may be where most of the deactivation
occurs, and include only the collinear portion of the exchange channel,
possibly eliminating important non-collinear reactions of the overall
potential energy surface. We will attempt in what follows to deal with
these two limitations.

The experiments most relevant to the study of HF vibrational de-
activation by H and D atoms are those of Bartoszek, et al. (7) and of
Bott and Heidner (6) . Additional experirments have been performed by

Quigley and Wolga (26). Bartoszek, et al. (7) showed that DF forma-
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tion via the reaction 3b only becomes appreciable when the initial vibra-
tional state of HF was five or greater. They also showed that disappear-
ance of HF(v = 3, 4) was due to the abstraction reaction (the D analogue
of reaction 4a). In their kinetic work, Bott and Heidner (6) found rela-
tive rate constants for removal of HF(V = 1, 2, 3) by collision with H
atoms 0f1:4:400, and determined that the abstraction reaction 4a can
contribute only some 20% of the observed removal rate of HF (v = 3) at
295 K. This latter result seems to contradict that of Bartoszek, et al.
(7), who relate the increase in deactivation of HF (v = 3) by D atoms to
the opening up of the abstraction channel.

In our calculations in the exchange channel, we see nothing remotely
resembling the 1:4:400 ratio for deactivation of HF (v = 1,2, 3) by H
atoms observed by Bott and Heidner (6). Instead, as mentioned earlier,
the deactivation rate increases nearly linearly with reagent vibrational
state for v£3. Unless these results were to change drastically on
going to a full three-dimensional calculation, it seems reasonable to
attribute the results of Bott and Heidner (6) to deactivating processes
occurring in the abstraction channel. Our rate constants for reactions
2b and 3b do show a very dramatic increase with reagent vibrational
excitation, and support the interpretation of Bartoszek, et al. (7) that
the barrier to exchange for reactions 2b and 3b must be large (over
40 kcal/mole).

The usefulness of the calculations for reactions 2b and 3b depends
to some extent on the accuracy of the potential energy surface, and in
particular, the requirement of collinearity implicit in these calculations.
While it has long been assumed that the transition states for the ex-
change reactions 2b and 3b are collinear, ab initio calculations (13c)
suggest that the transition state should instead have an HFH angle of
106 °, although the height of the barrier should be relatively insensitive
to that angle, increasing from 47.1 kcal/mole at 106° to 47.6 kcal/mole

at 180°. Including these non-collinear configurations could easily in-
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fluence the observed dynamics of the exchange reactions.

Further, the exact form of the potential energy surface used here
was chosen mainly for its flexibility. There is no reason to believe
that the appearance of the minimum energy path is exactly that shown
in figures 1 and 2; in fact, it is quite possible that the 40 kcal/mole
barrier is a few kcal/mole less than the correct one, and that the
position of the saddle point used (RHF = 1.975 bohr) is smaller than
the correct value (for example, Bender, Garrison, and Schaefer (13a)
calculated it to occur at 2.15 bohr). Thus, the results obtained for the
exchange reactions should not be taken to be more than qualitatively

correct.
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VI. CONCLUSIONS

We have studied on a realistic (high barrier) potential erergy
surface the dynamics of vibrational deactivation of HF in collision with
H and D atoms in the exchange channel and also the dynamics of the
H + FH and HF + D exchange reactions. The important features of the
dynamics are as follows:
1) Vibrational deactivation in the exchange channel occurs almost
entirely by single-quantum, non-reactive processes. The rate
of this deactivation varies only weakly with temperature, and, in
general, increases weakly with reagent vibrational excitation.
The overall dynamics of the deactivation processes are in line
with the predictions of Landau-Teller theory.
2) The rate of the exchange reactions is increased dramatically by
reagent vibrational excitation, although the effective lowering
of the threshold to reaction is less than half the extra energy
associated with each vibrational quantum. Rates of exchange
reactions are characterized by large temperature dependences,
and at high translational energies, broad product state distribu-
tions. The relative inefficiency of vibrational energy in promoting
reaction can be related to the large symmetric stretch vibrational
frequency at the H--F--H saddle point, resulting in a vibra-
tionally adiabatic barrier height which decreases only weakly
with an increase in the reagent vibrational quantum number.
3) The relationship of the calculated results to experimental ones
on these systems is complicated because of the collinear nature of
the theory; nevertheless, the results do support interpretations
that the deactivation of HF (v 4 3) by H at oms must be occurring
by processes in the abstraction channel and also support interpreta-
tions of experimental results that the barrier to exchange is quite

high (2 40 kcal/mole).
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A fuller understanding of the dynamics in this system awaits a
study of the dynamics of the abstraction channel (preliminary work on
the H + HF system has been performed (27) ) and the relation of the
results of the two channels by some technique (i.e. information theoretic
one dimensional to three dimensional transformation (28) ). Finally,
additional information from ab initic calculations on the potential energy
surface for the exchange calculation would be useful in insuring a more

accurate description of the saddle point region.



56
ACKNOWLEDGMENTS

We thank Ambassador College for the generous use of its computa-
tional facilities for most of the calculations reported here. Additional
calculations were performed on the Dreyfus-NSF Theoretical Chemistry
Computer (VAX 11/780) at Caltech, which was funded through grants from
the Camille and Henry Dreyfus Foundation, the National Science Founda-
tion (Grant - No. CHE78-20235), and the Sloan Fund of the California
Institute of Technology. One of us (JAK) would like to thank

Dr. Nancy M. Harvey for helpful comments on an earlier version of

this manuscript.



57

REFERENCES

N. Cohen and J. F. Bott, in: Handbook of Chemical Lasers,

ed. R. W F. Gross and J. F. Bott (Wiley-Interscience,

York, 1976), Ch, 2

The F + HZ reaction has been reviewed in J. B. Anderson,

Adv. Chem. Phys. 41, 229 (1980); an extensive review of all

work on the F + H2 and H + F2 reactions may be found in

M. R. Levy, Prog. React. Kin. 10 , 1, (1979).

Recent references include, for F + HZ:

E.Wurzberg and P. L. Houston, J. Chem. Phys. 72, 4811 (1980),
R. F. Heidner III, J. F. Bott, C. E. Gardner, and J. E. Melzer,
J. Chem. Phys. 72, 4815 (1980); R. K. Sparks, C. C. Hayden,

K. Shobatake, D. M. Neumark, and Y. T; Lee, in : Horizons of
Quantum Chemistry, ed. K. Fukui and B. Pullman (D. Reidel,
Boston, 1980), pp. 91 - 105.

For example, for F + HZ:

a) S. H. Suck, Chem. Phys. Lett. 77, 390 (1981);

b) M. J. Redmon and R. E. Wyatt, Chem. Phys. Lett. 63 209
(1979); ¢) J. N. 1. Connor, W Jakubetz, and J. Manz, Mol. Phys.
35, 1301 (1978); 4) G. C. Schatz, J. M. Bowman, and A.
Kuppermann, J. Chem. Phys. 63, 674 (1975).

for H + FZ:

e) D. C. Clary and J. N. L. Connor, Chem. Phys. Lett. 66,

493 (1979); f) W Jakubetz, Chem. Phys. 35, 129 (1978).

See, for example: a) G. M. Jurisch and F. F. Crim, J. Chem. Phys.
74, 4455 (1981); b) R. L.Wilkins and M. A, Kwok, J. Chem. Phys.
73, 3198 (1980); c) R. L.Wilkins, J. Chem. Phys. 70, 2700 (1979);
d) M. E. Coltrin and R. A. Marcus, J. Chem. Phys. 73, 4390
(1980).

a) J. F. Bott and R. F. Heidner III, J. Chem. Phys. 68, 1708



58
(1978); b) R. F. Heidner IIIl and J. F. Bott, Ber. Bunsen.

Gesellschaft 81, 128 (1977); c) J. F. Bott and R. F. Heidner III,
J. Chem. Phys. 66, 2878 (1977); d) R. F. Heidner Ill and J. F.
Bott, J. Chem. Phys. 63, 1810 (1975).

i F. E. Bartoszek, D. M, Manos, and J. C. Polanyi, J. Chem.
Phys. 69, 933 (1978).

8. R. L. Wilkins, J. Chem. Phys. 58, 3038 (1975); Mol. Phys. 29,
555 (1975)-

9. D. L. Thompson, J. Chem. Phys. 57, 4v64, 4~75 (1972).

10. R. L. Thommarson and G. C. Berend, Int. J. Chem. Kin. 6,
597 (1974).

11 G. C. Schatz and A, Kuppermann, J. Chem. Phys. 72, 2737 (1980).

12 M. Baer, J. Chem. Phys. 65, 493 (1976).

13. a) C. F. Bender, B. J. Garrison, and . F. Schaefer III,
J. Chem. Phys. 62 1188 (1975); b) P. Botschwina and W. Meyer,
Chem. Phys. 20, 43 (1977); c) W. R. Wadt and N. W. Winter,
J. Chem. Phys. 67, 3068 (1977); d) A. F. Voter and W. A.
Goddard III, J. Chem. Phys. 75, 3638 (1981).

14. P. J. Kuntz, E. M. Nemeth, J. C. Polanyi, S. D. Rosner, and
C. E. Young, .]'.‘ Chem. Phys. 44, 1168 (1966).

15; H. F. Schaefer III, in: Atom-Molecule Collision Theory, ed.
R. B. Bernstein (Plenum Press, New York, 1979), pp. 45-78.

16. J. M. Bowman and A. Kuppermann, Chem. Phys. Lett. 34,
523 (1975).

1% s L. N. Delves, Nucl. Phys. 9, 391 (1959); 20, 275 (1960).

18. A. Kuppermann, in: Potential Energy Surfaces in Chemistry, ed.
W. A. Lester (U, Calif. Santa Cruz, 1970), pp. 121-129;
in: Abstracts of Papers VII, ICPEAC, (North-Holland,
Amsterdam, 1971), pp. 3-5.

19. G. C. Schatz, J. M, Bowman, and A. Kuppermann, J. Chem.
Phys. 63, 685 (1975).



59
20. J. P. Dwyer, Ph. D. Thesis, California Institute of Technology,

1977; A. Kuppermann and J. P. Dwyer, Abstracts of Papers XI,
ICPEA C, (Society for Atomic Collision Research, Japan, 1979),
pp. 888-889.

2t G. C. Schatz and A. Kuppermann, J. Chem. Phys. 59, 964 (1973).
Lol J. F. Garvey, J. A, Kaye, and A, Kuppermann, in Abstracts of

Papers, 1979 DPacific Conference on Chemistry and Spectroscopy,
Pasadena, Ca., p. 39.

23. See, for example J. D. Lambert, Vibrational and Rotational
Relaxation in Gases (Clarendon Press, Oxford, 1977).

24. W. C. Gardiner, Jr., Acc. Chem. Res. 10, 327 (1977).

25, J. A. Kaye, J. P. Dwyer, and A. Kuppermann, manuscript in
preparation; a preliminary account of this work was presented at
the 1979 Pacific Conference on Chemistry 'and Spectroscopy,
Pasadena, Ca.

26. G. P. Quigley and G. J. Wolga, Chem. Phys. Lett. 27, 276 (1974).

27. J. A. Kaye and A. Kuppermann, unpublished results.

28 R. B. Bernstein and R, D, Levine, Chem. Phys. Lett. 29, 214
(1974); J. N. L. Connor, W.Jakubetz, J. Manz, and J. C.
Whitehead, Chem. Phys. 39, 395 (1979).



60

Table 1. Parameters for Rotating Morse cubic spline surface for

H+FH — HF + H

R].O = RZO =7.0 bohr

B (deg) 1,48 (bon) O} (bohe 3
0 5.267 1.163
6 5.296 1.149
15 5,453 1.122
30 6.079 1.012
39 6.742 0.9022
45 7.106 0.8194
54 6.742 0.9022
60 6.079 1.012
75 5.453 1122
84 5. 296 . 149

90 ' 5.267 1. 163




Table 2.
Constants for the Processes HF (v) + H' =~ HF(v'{ v) + H' (NR)

Selected State-to-State and Summed Deactivation Rate
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and HF(v) + H' =9 H + FH'(v' ¢ v) (R)
*

All rate constants

O N =

(S B L S S S N . T S V5 I VE U VLR oF B oV )

BN = O W e

(S

all
all
all
all
all

(S, B R

gas kin.

T = 300 K
NR R
1.185(2) 4.120(-16)
2.854(0) 5.172(-10)
1.189(2) 7.983(-13)
1.082(-1) 1.195(-4)
6.322(0) 3.548(-7)
3.992(2) 8.586(-9)
1.546(-3) 3.705(-3)
1.849(-1) 1.649(-2)
5.746(0) 8.555(-5)
6.039(1) 2.946(-6)
6.393(-4) 1.625(-2)
1.727(-2) 1.045(-1)
4.121(-1) 3.043(-1)
1.151(1) 2.854(-3)
1.098(2) 1.043(-4)
1.185(2) 4.120(-16)
1.197(2) 5.180(-10)
4.056(2) 1.199(-4)
6.605(1) 2.023(-2)
1.217(2) 4.279(-1)
6.433(4)

T = 650 K
NR R
2.065(2) 1.821(-7)
4.192(0) 5.392(-5)
2.657(2) 2.108(-5)
1.741(-1) 3.198(-3)
1.098(1) 1.957(-3)
5.552(2) 5.454(-4)
5.533(-3) 1.522(-2)
4.567(-1) 1.226(-1)
1.612(1) 3.034(-2)
2.621(2) 4.648(-3)
5.211(-3) 7.784(-2)
6.570(~2) 3.626(-1)
1.345(0) 1.103(0)
3.588(1) 4.064(-1)
4.465(2) 1.528(-2)
2.065(2) 1.821(=7)
2.699(2) 7.500(-5)
5.664(2) 5.701(-3)
2.786(2) 1.728(-1)
4,.838(2) 1.965(0)
9.469(4)

=1 =
are in units of cm*molecule *sec

T = 1000 K

NR
2.782(2)
5.437(0)
3.780(2)
2.210(-1)
1.549(1)
7.4 12(2)
2.516(-2)
8.098(-1)
2.595(1)
5.269(2)
3.764(-2)
2.498(-1)
3.083(0)
5.840(1)
7.919(2)

2.782(2)
3.834(2)
7.569(2)
5.537(2)
8.537(2)

R
3.768(-4)
5.097(-3)
1.640(-2)
2.501(-2)
9.502(-2)
1.706(-1)
8.998(-2)
4.982(-1)
7.082(-1)
6.205(-1)
3.378(-1)
1.280(0)
3.054(0)
3.595(0)
4,774(-1)

3.768(-4)
2.150(-2)
2.906(-1)
1.917(0)
8.744(0)

1.174(5)

* Numbers in parentheses represent powers of 10 by which the written

number should be multiplied.
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Table 3. Selected State-to-State Rate Constants for the Processes
HF(v) + D — HF(v'{ v) + D (NR)
HF(v) + D =— H + FD(v'") (R)

* -1
All rate constants are in units of cm¥molecule *sec

vy NR R NR R NR R

10 3.421(1) 1.265(-14) 6.267(1) 5.584(-7) 8.425(1) 1.266(-3)
2 0 9.141(-1) 6.015(-12) 1.812(0) 6.574(-6) 2.537(0) 4.635(-3)
2 4 6.476(1) 3.548(-13) 1.123(2) 1.454(-5) 1.556(2) 1.437(-2)
30 6.875(-2) 4.113(-5) 1.149(-1) 1.041(-3) 1.439(-1) 7.812(-3)
3 1 7.950(0) 3.514(-6) 1.044(1) 7.205(-4) 1.478(1) 1.997(-2)
3 2 9.057(1) 1.441(-7) 1.592(2) 1.944(-4) 2.106(2) 1.950(-2)
33 2.837(-9) 6.343(-5) 1.705(-2)
3 4 1.356(-10) 1.426(-5) 5.357(-3)
gas kin. 4.656(4) 6.855(4) 8.499(4)

* Numbers in parentheses represent powers of 10 by which the written

number should be multiplied.
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FIGURE CAPTIONS

Figure 1. Plot of the potential energy V along the minimum energy path
as a function of the reaction coordinate s for the reaction H' + FH )
H'F +H. s = 0 at the barrier (along the H--F--H symmetric stretch
line). The energy levels of the isolated HF reagent molecule are shown
on the left side of the plot. For comparison purposes, those of the
isolated DF molecule are shown at the right.

Figure 2. Contour plot of the potential energy surface for the reaction
H' + FH —3 H'F + H in the Delves coordinate system. Equipotentials
are drawn every 0.3 eV. The origin of energy is the bottom of the
isolated HF well. A cross is drawn at the saddle point, and the mini-
mum energy path is indicated by a dashed line.

Figure 3. Plot of rate constants kv-)v'(v for totzf.l reactive (R) and
non-reactive (N) deactivation in the collision H + FH(v) =9 H + FH(v'¢ v)
at T = 300, 650, and 1000 K as a function of the vibrational state v of the
reagent molecule. All curves for reactive collisions are indicated by
solid lines; those for non-reactive ones are indicated by dashed, dotted,
and dashed-dotted lines, respectively, for T = 300, 650, and 1000 K.
Figure 4. Arrhenius plot of state-to-state rate constants kvv' for the
reactive (superscript R) and non-reactive (superscript N) collisions

H + FH(v =2) — H + FH(v'=0,1). Curves for non-reactive transitions
are indicated by solid lines; those for reactive ones are indicated by
dashed lines.

Figure 5. Plot of high temperature (700 - 1000 K) Arrhenius activation
energies EaN(v-)v-n) for n-quantum non-reactive deactivating collisions
HF(v=1-5) + H' =3 HF(v-n) + H' as a function of the internal energy Eint
of the HF(v) reagent. The quantum number of each reagent state is
indicated on the upper abscissa. Different line types are used to connect
each of the data points: n=1 - solid line; n=2 - dashed line; n=3 - dotted

line; n=4 - dashed-dotted line. For n=5, only one data point exists; it
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is marked by a plus sign.

Figure 6. Plot of high temperature (700-1000 K) Arrhenius activation
energies EaR(v—)v-n) for n-quantum reactive deactivating cocllisions
HF(v=1-5) + H' =9 H + FH'(v-n) as a function of the internal energy
Eint of the HF(v) reagent. All line types and markings are as in

figure 5.

R
Figure 7. Plot of the probability P of the reaction HF (v) + H'

HF(v) t+ H

-3y H + FH' as a function of the initial translational energy of the reagents
t ;

E7 forv=0,1,2,3.

R
Figure 8. Histogram plot of the fraction of reaction product F -

for all possible product states v' for the reaction HF (v=1) + H'

H + FH'(v') at three values of the initial reagent translational energy
E'". Bars marked a,b, and c are for E'T = 1.5361 eV, 1.9443 eV,

and 2.4068 eV, respectively.

Figure 9. Histogram plot of the fraction of reaction product FRW,

for all possible product states v' for the reaction HF (v=2) + H' —)

H + FH'(v') at three values of the initial reagent translational energy
E'". Bavemmrked a,b, and care for B° = 1.3161 oV, 1.6154, eV,
and 1.9964 eV, respectively.

Figure 10, Plot of the é.vera.ge fraction of product energy going into
vibration { va) as a function of the initial reagent translational energy
]EJtr for v=0,1,2,3. Results for different values of v are indicated by
different symbols: v=0 - open circles; v=1 - open squares; v=2 - open
triangles; v=3 - filled circles. Lines correspond to the value expected if

the reaction were vibrationally adiabatic. Results are shown only for

energies where the probability of reaction is significantly greater than

ZETro.

R ;
Figure 11. Plot of the probability P D + FH(v) of the reaction HF (v) +
D —3 DF + H as a function of the initial reagent translational energy

t 5 .
E T for v=0,1,2. The solid line is for v = 0; the dashed line is for

v = 1; and the dotted line is for v = 2.
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Figure 12. Histogram plot of the fraction of reaction product FRW,
for all possible product states v' for the reaction HF(v=1) + D — H +
FD(v') at three values of the initial reagent translational energy Etr.
Bars marked a, b, and c are for Etr = 1.5361 eV, 1.7538 eV, and
1.9443 eV, respectively.
Figure 13. Histogram plot of the fraction of reaction product FRW,
for all possible product states v' of the reaction HF (v=2) + D —
H + FD(v') at two values of the initial reagent translational energy E o
Bars marked by a and b are for Etr = 1,.3161 eV and 1.5066 eV,
respectively.
Figure 14. Plot of the average fraction of product energy going into
vibration va as a function of the initial reagent translational energy
Etr for v = 0,1, 2. Symbols and lines have their same meaning as in
figure 10.
Figure 15. Landau-Teller plot of rate constants kNv, v—i(HF + H') for
single~quantum non-reactive deactivating collisions HF(v) + H' —3
HF(v-1) + H' for v=1-5. The temperature is indicated on the upper
abscissa. Different line types are used for each v: v=1 - solid line;
v=2 - dashed line (large dashed); v=3 - dotted line; v=4 - dashed-
dotted line; v=5 - dashed line (small dashes).
Figure 16. Landau-Teller plot of rate constants kNv V_1(HF + D) for
single~quantum non-reactive deactivating collisions H,F(v) + D —
HF(v-1) + D for v =1, 2,3. The temperature is indicated on the upper
abscissa. Different line types are used for each v: v=1 - solid line;
v=2 - dashed line; v=3 - dotted line.
Figure 17. Plot of the threshhold energy EthV for the vibrationally
adiabatic reactions HF (v) + H' —3 H + FH'(v) (solid line) and HF (v) +
D — H + FD(v) (dashed line) as a function of the internal energy Eint

Qf the reagent HF molecule. Open circles and squares, respectively, are

used to plot the original data points fcr the HF + H' and HF + D systems,
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respectively. The quantum number of the reagent HF state is indica-
ted on the upper abscissa.

Figure 18. Plot of the threshhold energy Eth for the vibrationally
adiabatic reaction HF(v) + H' — H + FH'(v) as a function of the
vibrationally adiabatic barrier height Avt , defined in eq. 15 of the
text for v = 0-4. The open circles mark the actual data points. The

values of v are indicated on the upper abscissa.
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I.3 BARRIER HEIGHT DEPENDENCE OF DYNAMICS IN THE
COLLINEAR H + FH(v) AND D + FH(v) SYSTEMS
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(Received )

Collinear coupled-channel quantum mechanical calculations
have been performed on the title systems on potential energy
surfaces with barriers to reaction of 1.5, 5, 10, 20, 30, and
40 kcal/mole. We have examined the differences in the dyna -
mics on the different surfaces, emphasizing the rate and mech-
anism of vibrational deactivation of HF in H + FH(v) collisions
and the influence of reagent vibrational excitation on reaction
probabilities and product state distributions in the D + FH(v)
reaction. The rate of vibrational deactivation decreases as
the barrier height is increased for low barrier height surfaces,
but becomes relatively insensitive to barrier height at higher
barrier heights at the temperatures studied. On the lower
barrier surfaces vibrational deactivation occurs mainly in
multi-quantum reactive transitions, while for higher barrier
surfaces it occurs in single-quantum non-reactive transitions.
In the D + FH(v) reaction, reagent vibrational excitation re-
duces the translational energy threshhold by an amount smaller
than the vibrational quantum and can lead to different product
state distributions depending on the potential energy surface.
Quantum mechanical resonances observed on the low barrier
surfaces can be understood by reference to vibrationally

adiabatic correlation diagrams.
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I. INTRODUCTION

The dependence of the dynamics of chemical reactions on the
potential energy surface governing the motion of the nuclei has been
the subject of substantial attention. In a pioneering series of papers,
Polanyi and collaborators used the classical trajectory technique to
study how the dynamics of the general class of reactions

A + BC(v,J) — AB((',J")+ C (1)
varied with changes in the potential energy surface (1). Features of
particular interest have been how the disposal of energy in exoergic
reactions or the usefulness of various forms of internal energy in
endoergic reactions depends on the position of the saddle point on
the surface. Other workers have also explored the relationship be-
tween the potential energy surface and the dynamics obtained from
classical mechanical calculations for both reactive and non-reactive
processes (2).

For quantum mechanical calculations, such studies have been
far fewer in number. As new potential energy surfaces are developed
over the years, dynamical calculations are frequently performed,
providing information on the sensitivity of dynamics to surface
parameters. For example, for the H + H2 system and its D substitu-
ted analogs, in exact and approximate quantum calculations (in one,
two, and/or three dimensions) (3), surfaces studied include the
scaled SSMK(4), the Porter-Karplus (5), and the SLTH (6) ones,
among others. For the F + H2 system, a variety of potential energy
surfaces, both semi-empirical (7) and ab initio (8) have been used in
collinear quantum mechanical calculations (7b, 9). Similar studies
have been carried out on the I + H2 (10), O + HZ (11), and I + HI
(12) systems, among others.

In most of this work, attention has been focused on the dynamics
of chemically reactive processes. If one is to understand the full

dynamics of potentially reactive chemical systems, however, one
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must also understand how the dynamics of non-reactive processes
depend on the nature of the assumed potential energy surface. For
example, in studying the dynamics of the collisional deactivation of
a vibrationally excited molecule (such as that present in a chemical
laser system), the quantities most of interest are the rates of vibra-
tional deactivation and the number of quanta transferred . Rabitz
and co-workers (13) have studied the sensitivity of energy transfer
processes to the nature of the assumed potential energy surface
in non-reactive collisions.
In this work we study the dynamics of the collinear systems
HF(v) + H' —» HF(v') + H'
H+ FH'(v'")
HF(v)+ D — HF(')+D

H + FD(v''")
by coupled-channel quantum mechanical calculations on six related
potential energy surfaces. These surfaces are identical except for
their profile along the minimum energy path, and have barriers of
1.5,5,10, 20, 30, and 40 kcal/mole. The first is close to the barrier
of the Muckerman V surface (7b)used in a previous collinear quan-
tum mechanical study of these systems (14); the last is closest to the
barrier heights indicated by the most recent experiments (15) and
also by ab initio calculations (16). The results of the calculation on
this surface have been presented separately (17).

In our calculations we will examine the effects of the change of
barrier height on various features of the H or D atom induced col-
lisional deactivation of HF(v), including the overall rate of deactiva-
tion, the fraction of deactivation occurring by reactive and non-
reactive processes, the relative importance of single and multi-
quantum transitions, and the temperature dependence of these
quantities. We will also consider the general class of reactive

processes (2b and 3b) and the role of quantum mechanical resonances
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on the different surfaces.

The outline of this paper is as follows. In section 2 we discuss
potential energy surfaces used in the calculations, and in section 3
we briefly review some important aspects of the calculations per-
formed. The results obtained will be presented in section 4, and
their significance will be discussed in section 5. Finally, in section

6 we will summarize the results and conclusions obtained.
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II. POTENTIAL ENERGY SURFACES

The potential energy surfaces used in this study are all of the
highly flexible rotating Morse~cubic spline form (18), in which the

potential energy as a function of the internuclear coordinates R

AB
and RBC is given by the expression
2
= - - = = + =
V(R ps Ry o) = DB - exp(-p(B)(L, (6) -))" - 1) + D(8=0) (4)
where
-1 o o
O= tan (R, - Ryp WRy o =Ry (5)
and
0.2 0.2 1/2
R (B~ R d * R~ B ]} (6)
o o . . . . .
(RAB p RBC ) is the point from which one swings the Morse oscil-
lator, whose parameters are thus functions of the angle ;when RAB
o o <o s
> RAB or when RBC Y RBC , the potential is just that of a Morse

(o}

oscillator. Normally, the point (R » R o) is far up the dissocia-

AB BC

tive plateau, that is, both R and RB Co are large. The coordinate

AB
system and definition of terms are indicated schematically in figure 1.
The Morse parameters ﬂeq(e) and B(B) are given at a small num-
ber of values of the swing angle , and a cubic spline interpolation is
then performed. A similar interpolation could be performed for
D(B) however, in thié case we assume it to be given by a Gaussian
D(®) = D(6=0) - (A + Bexp(-C(r/4 -8)%)) (7)
Values of the constants A, B, and C for each of the surfaces used
are given in Table 1; values of Ee (B) and B(8) have been presented
elsewhere (17). ?
The values of £ (6) and B(6) were obtained by numerically
finding their value segln the Muckerman V surface (7b) in the exchange
channel and then splining together; the values for A, B, and C were
first obtained from the Muckerman V surface at 3 values of 8 (0°,
22° and 45°). To increase the barrier height, only parameters

B and C in eq. 7 were changed.
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o o
AB >RAB (RBC small) or RBC P RBC (RAB

potential energy was taken to be independent of RAB and RBC'

respectively. This produced a slight upward shift (~0.0168 kcal/mole)

For R small), the

in the bottom of the HF diatomic well relative to its dissociation energy.
For use in the calculations reported here, we have constructed

surfaces with barrier heights of 1.5, 5, 10, 20, 30, and 40 kcal/mole.
We have plotted the 40 kcal/mole barrier surface in the Delves mass
scaled coordinate system (19) for the HFH system in figure 2. In

figure 3 we display the vibrational energy levels of HF and DF along

with the energies of the barriers on the six surfaces used.
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III. NUMERICAL ASPECTS

Numerical solution of the Schr'c;dinger equation has been performed
by the coupled-channel method of Kuppermann (20). 20 - 24 basis
functions were used in these calculations, and unitarity of the
scattering matrix was obtained to better than 3% at nearly all energies
studied; at most it was obtained to better than 1%. For those calcula-
tions where unitarity was not obtained to 3%, we do not include the
results in our analysis.

Reactions Z2a and 2b were studied in the energy range up to 2.94
eV above the zero-point energy of HF, while reactions 3a and 3b
were studied up to 2.45 eV above the HF zero-point energy. The
smaller range in the latter calculation was due to the smaller vibra-
tional energy spacing of DF (see figure 3) than HF, which gives rise
to more open channels at a given total energy than at the same total
energy in the HF + H system.

State-to-state rate constants have been calculated from the transi-
tion probabilities obtained in the scattering calculations by the

relationship

_ -1/2
kij(T) = @upm K T)

ju tr tr tr
( s T
o Pij‘E Jexp(-E /kb )AE (8)

where Pij is the probability for the transition from state i to state j,
T

E is the initial reagent relative translational energy of the collision,

A is the reduced mass of the a, bc collision pair, and kb is

a, bc
Boltzmann's constant.
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IV. RESULTS

We have studied a number of aspects of the dynamics of the col-
linear HFH and DFH systems on six different, but related, potential
energy surfaces, and will try to present some of the most important
features of our results in this section. We will consider the following
questions:

1) What are the relative rates of collisional deactivation of
vibrationally excited HF and how do they depend on the surface used
and on the reagent vibrational state ?

2) How do deactivating processes occur (single vs. multi-
quantum, reactive vs. non-reactive) on the different surfaces?

3) How do these quantities vary with temperature ?

4) How do the dynamics of the reactive processes (energy
thresholds, product vibrational state distribution, effect of reagent
vibrational excitation) depend on the surface?

5) What is the nature and magnitude of the isotope effect on
going from the HFH to the DFH system ?

6) How important are quantum mechanical resonances on the
different surfaces, and how do their position and strength vary as
the barrier height is increased ?

A. VIBRATIONAL DEACTIVATION

The rate of vibrational deactivation varies significantly as the
barrier height of the potential energy surface varies. This may be
seen in figures 4 and 5, in which the overall rate of vibrational deac-
tivation in the H + FH(v) system is plotted as a function of the barrier
height of the surface for v = 1 -5 at 300 and 650 K, respectively.
There are three important features of these figures. First, for
low barrier height surfaces, the rate of dgagtivation decreases
rapidly as the barrier height of the surface increases. For example,

in figure 4 one sees that as the barrier height increases from 1.5 to
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10 kcal/mole, the overall deactivation rates decrease by nearly two
orders of magnitude. As the barrier height is further increased be-
yond 10 kcal/mole, however, the deactivation rates no longer continue
to decrease; instead, they remain relatively constant, Second, the
variation in the deactivation rates with reagent vibrational excita-
tion differs on the low and high barrier surfaces. In the former
region, the deactivation rate in general increases as the reagent HF
molecule excitation is increased, while in the latter region there ap-
pears to be no clear correlation between reagent excitation and de-
activation rate. Third, the barrier height at which the transition be-
tween low barrier and high barrier behavior occurs is temperature
dependent. In comparing figures 4 and 5, for example, we can see
that at 300 K the division seems to occur at 10 kcal/mole; at 650 K it
occurs at 20 kcal/ mole.

This behavior is also seen to be independent of isotopic substitu-
tion. In figure 6 we present a plot of deactivation rates in the
HF(v) + D system at 300 K. In this figure we only include FD states
whose quantum number v'' is smaller than that of the reagent HF(v)
molecule.

We next consider the details of the deactivation process (those
features mentioned in item 2 above) in the HF(v) + H system. Plots
of the fraction fv(i) of deactivation occurring by single-quantum transi-
tions as a function of the barrier height of the surface are shown in
figure 7 for v = 2-5(for v=1 all deactivation occurs by single quantum
transitions) at 300 K. Clearly this quantity varies substantially as
the barrier height is increased although when the barrier is above
20 kcal /mole, the fraction for v=2 and 3 is close to unity and thus
nearly independent of the barrier height. In general, as the barrier
height increases, the importance of single-quantum deactivation in-

creases substantially till on the 40 kcal/mole surface, it accounts



96
for more than 80% of the deactivation, even in collisions of v =
4 and 5.

In figure 8 we plot the fraction va of deactivation occurring by
reactive processes (that is, those of the type 2b rather than 2a de-
fined above) as a function of the barrier height for v = 1 to 5 at 300K.
At low barrier heights, reactive deactivation is clearly the rule, as
for all initial states considered, over 75% of the deactivation rate on
the 1.5 kcal/mole barrier surface occurs by reaction. On high
barrier surfaces, the deactivation occurs totally by non-reactive
processes. From the arrows in figure 8showing the vibrational ener-
gy of the isolated HF(v) molecule, one can see that the v = 4 and 5
levels of HF already have sufficient energy to overcome any of the
barriers studied here. Thus, the absence of reactive deactivation
here indicates one of two things: either translational and vibrational
energy are so weakly coupled that the latter is not useful in promo-
ting reaction, or that reaction is possible but that it occurs over-
whelmingly by a vibrationally adiabatic proces. Examination of
state-to-state reaction probabilities indicates that the former expla-
nation must be the correct one, as at all but very high translational
energies the vibrationally adiabatic reaction probability is smaller
than the deactivating ones. For example, on the 40 kcal/mole sur-
face, just above the opening of the HF(v=4) level, the state-to-state
reaction probabilities P B and P - are over 105 times greater than

40 41

R
P44 ; at some 0.4 eVabove the opening, P

greater than P

4
42 is nearly 10 times

44 ° Only at translational energies above 1.0 eV

does P44R become the greatest of the reactive probabilities.

While figure 7 gives some feeling as to the importance of multi-
quantum transitions, it does not provide an indication of the relative
importance of the different possible multi-quantum transitions. To

aid in assessing their importance, in figure 9 we plot the average
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number (Anv7 of vibrational quanta lost in deactivating collisions,

de
both reactive and non-reactive, as a function of the barrier height
for v =2 - 5 at both 300 K (solid lines) and 1000 K (dashed lines).
This quantity is given by the formula

i

Vo i)
- 1
<Anv> de v'=0 (v - v )kvv' (9)
_1 T
v, -
=0 vV

where k ,T is the total (sum of reactive and non-reactive) deactiva-
tion rate constant for the v =3 v' transition. Since the rate constants
vary with temperature, so will <Anv>de. For a given reagent
vibrational level v, the maximum value this quantity may have is also
v, as would be the case when all deactivation occurred by a v-quantum
process, in which only ground state molecules were formed.

From figure 9 we see four main features. First, this average
number of quanta lost is always less than its maximum value, by an
amount ranging from almost 4 quanta for v = 5 on the 40 kcal/mole
barrier surface to 1/2 quanta for v = 2 on the 1.5 kcal/mole barrier
surface. Second, this quantity decreases as the barrier height of the
surface increases, till it is very close to 1 for all reagent states on
the 30 kcal/mole barrier surface. Third, this quantity is strongly
tempe rature dependent, with the temperature dependence in the 300 -
1000 K range having its greatest value for the intermediate (10 - 20
kcal/mole) barrier surfaces. Fourth, this quantity increases with
v. Thus, we see that on low barrier surfaces, not only are multi-
quantum transitions likely, but those multi-quantum transitions which
transfer more than 2 quanta of vibrational energy are quite likely.

Finally, we wish to consider the temperature dependence of the
rate constants for single~-quantum deactivation as a function of the
reagent vibrational state and the barrier height of the potential

energy surface. To show this temperature dependence, we calculate
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v, v-1 :
d ) for these rate constants in

Arrhenius activation energies (Ea
the high temperature (700 -~ 1000 K) and plot them as a function of
reagent internal energy in figure 10. These are the slopes of the
corresponding Arrhenius plots (logarithm of rate constant vs. inverse
temperature), which have been found normally to be reasonably linear
in the low (200 - 400 K) and high (700 - 1000 K ) temperature regions,
but curved in between. The activation energies calculated increase as
the barrier height of the potential energy surface increases and, in
general, decrease as the vibrational excitation of the reagent in-
creases. This decrease is far less than the increase in internal ener-
gy, however. For example, the activation energy on the 40 kcal/
mole barrier surface decreases only by some 16 kcal/mole as one
adds over 40 kcal/mole of internal energy. This is another manifes-
tation of the relative inefficiency of vibrational energy in promoting
reaction.

B. REACTIVE PROCESSES

In this section we will examine a few aspects of the dynamics of
reactive processes in the HF(v) + D system. This system is a bet-
ter one for experimental study than the HF(v) + H system, as the
reactive and non-reactive processes can be easily differentiated.

In fact, experiments on this system taking advantage of the mass
difference between the H and D atoms have already been performed
(15). The aspects of the dynamics of the reactive processes which we
will mainly consider are the gross features of the reaction proba-
bility and the vibrational state distribution of the DF product formed
in the reaction,

We examine the threshold region of the total reaction probability
for reaction of ground state HF with D atoms on the six surfaces in
figure 11. In this figure, we plot the reaction probability vs. energy

curves only in the threshold region, in which the probability increases
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rapidly and smoothly from zero to one. We also indicate in the figure
the translational energy equal to the classical barrier height of the
six surfaces studied. Note that this quantity is measured with respect
to the bottom of the HF well, while the translational energy is measured
with respect to the HF zero-point energy. The important points to
be learned from the figure are as follows. First, for all surfaces the
reaction probability does rise smoothly from zero to one over a fairly
narrow range of energy. Second, the threshold energy (the energy at
which the probability of reaction first becomes large, say 0.02) is
always smaller than the classical barrier height by an-amount which
increases as the barrier height increases (some 0.04 eV for the 1.5
kcal/mole barrier surface to some 0.23 eV for the 40 kcal/mole
barrier surface). Third, the width of the threshold region also in-
creases as the barrier height increases (from some 0.03 eV for the
1.5 kcal/mole barrier surface to some 0.25 eV for the 40 kcal/mole
barrier surface).

In figure 12 we plot the total reaction probability for reaction of
HF(v=1) with D atoms vs. energy in the threshold region on the
six surfaces. While this plot is fairly similar to that in figure 114,
there are two major differences. First, the probability vs. energy
curves have shifted to lower energy. This is reasonable, as the
vibrational energy should be at least partially effective in reducing
the translational energy threshold for reaction. One sees that its
effectiveness is limited, however, as the translational energy thresh-
old has been reduced by no more than 0.2 eV on vibrational excitation,
even though the vibrational quantum is 0.49 eV. Second, the behavior
of the probability vs. energy curves at the high energy end of the
threshold region is different than it is in figure 11 for the lower
barrier (1.5, 5, 10 kcal/mole) surfaces. In these cases, we see

that the reaction probabilities do not stay mnear unity as they do in
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figure 11; instead, they reach a maximum somewhat less than unity
and then decrease with increasing energy. On the higher barrier sur-
faces, behavior is similar to that in figure 11. We will discuss later
possible explanations for the more complicated nature of the dynamics
on the low barrier surfaces.

The next aspect of the reactive processes which we will consider
is the vibrational state distribution of the DF formed in the reaction,
and how it varies with the barrier height of the potential energy sur-
face and with reagent vibrational excitation. The quantity which we
will frequently consider in order to avoid having to look at the entire
product state distribution is the average fraction (fv) of product

energy going into product vibration

vmax R d
P
iy - 2o Eg Py (10)
Vmax R
v'=0 PW'

In figure 13 we plot for energies at which the reaction probability
is appreciable (more than 60%) this quantity for reactions of ground
state HF on the 1.5, 20, and 40 kcal/mole barrier surfaces. From
this figure we see that‘ the barrier height of the surface has a major
influence not only on the translational energy threshhold for rea ction,
but also on the product state distribution. As the barrier height in-
creases, there is less vibrational excitation of the DF product. We
also note that (fv} is a much smoother function of the energy for the
higher barrier surfaces (20, 40 kcal/mole) than it is for the low
(1.5 kcal/mole) barrier surface. Some of the lack of smoothness
in the plot for that surface can be attributed to at most very small
translational energy thresholds for vibrational excitation into newly
opened states. The arrows on the abscissa of figure 13 indicate the

energies at which DF product states become open, and we see that
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the curve for the 1.5 kcal/mole barrier surface rises rapidly at
almost identically those energies. This is particularly true at the
energies where the DF(v=1, 2, and 3) state become open. No such
rapid increases are seen for <fv) on the high barrier surfaces, sug-
gesting that reaction to higher vibrational energy product states
occurs with a large translational energy threshold.

To determine how reagent vibrational excitation influences the
vibrational state distribution of the DF product, we examine (fv)
for v = 0-4 at a variety of energies on the different potential energy
surfaces. The values obtained are given in Table 2. In this table
we only consider those combinations of potential energy surface,
energy, and reagent vibrational state for which the reaction probabili-
ty has gone through its initial rise; on the high barrier surfaces we
will only be able to examine the few lowest reagent vibrational states,
as the translational energy thresholds for reaction are too great
for reaction to occur in the energy range studied.

From the data in table 2, we can see that the influence of reagent
vibrational excitation on the product state distribution depends strong-
ly on the total energy and on the barrier height of the potential surface.

On high barrier su-rface s, reagent vibrational excitation leads to a
higher fraction of the product energy going into vibration, whereas on
low barrier surfaces, it leads to no particular behavior. In a number
of cases one actually sees less product vibrational excitation in col-
lisions of vibrationally excited reagents (see for example the 2.410
eV results on the 1.5 kcal/mole barrier surface and the 2.002 eV
results on the 5 kcal/mole barrier surface). On the intermediate
barrier surfaces, one can see both types of behavior. For example,
on the 10 kcal/mole barrier surface, reaction of vibrationally excited
HF leads to a more highly excited DF distribution than does that of

ground state HF at low energy (1.186 eV), but leads to a less highly
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excited one at higher energy (2.410 eV).

We can also obtain additional information about how the product
state distribution depends on the potential energy surface from the
data in table 2, especially for reactions of vibrationally excited
molecules (in figure 13 we considered only reaction of ground state
species). It appears that this dependence is itself energy dependent.
At the lowest energy considered (1.186 eV), while (f0> decreases
as the barrier height is increased, (f1> increases. At most other
combinations of energy and reagent vibrational state, ¢ fv> is essen-
tially independent of the barrier height (or more precisely, depends
on the barrier height in no easily recognizable way) on low barrier
height surfaces, but decreases substantially as the barrier height
further increases.

The distribution of the DF product states for reaction from HF(v=
0, 1, and 2) at a total energy of 2.410 eV is shown in figure 14 in the
form of histogram plots. In these plots, the height of the bar is pro-
portional to the reaction probability to the indicated product state.

We note here the most important features of these plots. For the
ground reagent state, as the barrier height increases, the product
state distribution as a. whole shifts to lower vibrational states, until
on the 40 kcal/mole barrier surface, 75% of the reaction occurs by a
vibrationally adiabatic process. On the low barrier surfaces the
product state distribution is quite kroad, being spread out over 3-5
product states. For the v=1 reagent state, the product distribution
also shifts to lower vibrational states as the barrier height increases,
but the shift is not as dramatic as for ground state reactions. This is
true for two reasons. First, on the 40 kcal/mole barrier surface the
reaction is primarily vibrationally adiabatic; hence the distribution
for that surface is peaked about v=1 and not about v=0 as in the ground

state reaction. Second, the product state distributions on the low
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barrier surfaces are wider than for ground state reaction, so that
there is appreciable population of the DF(v'=2) state on all surfaces.
An interesting feature is that at this energy, the probability of vibra-
tionally adiabatic reaction on the 30 kcal/mole surface is significantly
smaller than the probability for rea ction with an increase or decrease
of one in the vibrational quantum number. Thus, one cannot simply
assume that the reaction is vibrationally adiabatic on high barrier sur-
faces at all energies. The product state distributions in reactions of
HF(v=2) are even broader than those for reactions of HF(v=1), and
are also somevh at irregular (they are not smoothly peaked about one
quantum state). We note that some of the state-to-state reaction
probabilities on the low barrier surfaces vary fairly rapidly with
energy at high energy; it is this variation that gives rise to the
irregular structure of the plot of (fo> in figure 13.

C. QUANTUM MECHANICAL RESONANCES

The existence of low energy resonances in the collinear HFH
system (Muckerman V surface) has been noted previously (14), and
here we consider some aspects of the resonance structure on the
surfaces used. We are particularly interested in how the resonances
change in position and intensity as the barrier height is raised. In
figures 15-18 we present plots of state-to-state probabilities of
reaction 3b on the 1.5, 5, 10, and 20 kcal/mole barrier surfaces,
respectively, in the region of energy containing the threshold for
reaction from v = 0 and continuing up some 0.4 eV above that. The
plots strongly suggest the existence of a resonance in these systems.
The resonance is strongest on the 1.5 kcal/mole barrier surface, and
is substantially weaker on the 10 kcal /mole barrier surface. On the
20 kcal/mole barrier surface it has almost totally disappeared; it is
R

R
seen only by the formation of a small shoulder in the POO and P01
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curves. JThere is no minimum in POOR as there is on each of the
lower barrier surfaces. It is also interesting to consider the effect
of isotopic substitution on the strength of the resonance. To do this,
we plot state-to-state probabilities for reaction 2b on the 10 kcal/mole
barrier surface in figure 19. It is quite clear that the resonance is
much stronger in this system than it is in the D substituted sy stem.
There are two other interesting features of figure 19. First, there
is a small dip in the reaction probability shortly after it first reaches
unity. At higher energies the probability does return to one, and stays
there until the resonance. Second, the resonance occurs at a transla-
tional energy of 0.735 eV, which is some 0.1 eV greater than the
energy of the weaker and broader resonance in the D + FH system.
We will discuss these features of the dynamics in the ensuing dis-

cussion section.
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V. DISCUSSION

The dynamics of the collinear HFH and DFH systems are shown
to depend substantially on the barrier height of the potential energy
surface used. As the barrier height is increased a number of im-
portant changes in the dynamics take place. In collisions of vibra-
tionally excited HF molecules, the overall rate of vibrational deacti-
vation of the HF decreases for a while as the barrier height increases;
further increase of the barrier height makes little change in the deacti-
vation rate. The value of the barrier height at which this takes place
is a function of temperature (increasing as the temperature is in-
creased). On low barrier surfaces, the bulk of the deactivation oc-
curs by reactive (and multi-quantum) processes; on high barrier sur-
faces, it occurs by non-reactive (and single~quantum) processes.
On the lowest barrier surfaces (1.5 and 5 kcal/mole), what non-
reactive deactivation there is occurs from both single and multi-quan-
tum transitions at 300 K; the higher the reagent vibrational state, the
greater the contribution of multi-quantum non-reactive deactivation
processes. On the highest barrier surfaces (30 - 40 kcal/mole),
reactive deactivation occurs mainly by multi-quantum transitions at
300 K, for example twb quantum processes in collisions of HF(v=3)
with H and 3 and 4 quantum ones in collisions of HF(v=5) + H. We
have shown elsewhere (17) that as the temperature increases, the
relative importance of single quantum reactive deactivating processes
increases. On the highest barrier surface studied (40 kcal/mole) the
deactivation of vibrationally excited HF can be thought of, to a good
approximation, as occurring entirely in single-quantum non-reactive
processes.

On this class of surfaces, vibrational energy is not spectacularly
effective at promoting reaction. This is seen in two ways: the fairly

small decrease (0.10 to 0.22 eV) in translational thresholds for
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reaction on the moderate and high barrier surfaces to the vibrational
quantum (0.49 eV), and the calculation of large activation energies for
reactive single-quantum deactivation processes at high temperatures
(700 - 1000 K). Elsewhere, we have shown that this partial effective-
ness of vibrational energy can be explained on the 40 kcal/mole surface
by a vibrationally adiabatic model (17). The feature of the potential
energy surface which is greatly responsible for this partial effective-
ness is the relative narrowness of the reaction channel in the saddle
point region (see figure 2). This narrowness produces a large vibra-
tional frequency for symmetric stretch motion at the saddle point,
meaning that the vibrationally adiabatic barriers will be fairly large,
even when there are a few quanta of vibrational excitation.

For the surfaces with low or only moderate barriers, a vibra-
tionally adiabatic model provides useful insight into the dynamics of
the reaction. In figure 20 we plot a vibrationally adiabatic correla-
tion diagram for the DFH reaction on the 1.5 kcal/mole surface. In
this figure, the energy Vn(s) of the vibrational state n everywhere
along the reaction coordinate s is plotted. We also plot the energy
Vmep(s) along the minimum energy path. In this case, one can see
that there are wells in the vibrationally adiabatic correlation diagram
for all reagent states, and the wells become deeper as the vibrational
state increases. Since it is known that wells in the vibrationally
adiabatic correlation diagram can lead to reactive scattering reso-
nances (21), the existence of resonances in this system is not unex-
pected. Indeed, in figure 15 we s€€ a very strong resonance in the
reaction probability POOR at E0 = 0.3 eV. We indicate this energy on
figure 20 with a dotted line. The correlation between resonances and
bound states of the wells in the vibrationally adiabatic correlation
diagram is obvious. For higher vibrational states the wells are

quite deep and wide, suggesting that large numbers of bound states
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of the curves might exist, producing numerous resonances and hence
quite complicated dynamics. We also note that the curves for the dif-
ferent states come quite close to each other, suggesting that crossing
from one to another should occur fairly easily, especially between
states with n greater than 1.

If this picture is correct, it must explain both the decrease in
resonance intensity as the barrier height is increased and the greater
strength and higher energy of the resonance in the 10 kcal/mole bar-
rier surface for H + FH than for D + FH. In figure 21 we present the
vibrationally adiabatic correlation diagram for the DFH system on the
10 kcal/mole barrier sur face. The main differences between this fig-
ure and figure 20 are the absence of the small well in the n=0 curve
and the much smaller depth of the well in the n=1 curve. Because of
this small well depth, the resonance is expected to be substantially
broadened. The vibrationally adiabatic correlation diagram for the
HFH system on the 10 kcal/mole barrier surface is shown in figure
22. As in figure 20, the energy of the resonance is indicated by a
dotted line. We note two major differences between figures 21 and 22.
First, in the HFH system, the well in the v=1 curve is fairly deep
(v0.1 eV); the resonance energy is seen to lie about halfway between
the bottom and top of the well. Second, the vibrationally adiabatic
correlation diagram curves for HFH are symmetric about s = 0.
Thus, the formation of a flat shoulder-like area on the curves, such
as that seen for n = 1 in figure 21, cannot occur in the HFH case; any
well must be symmetric about the saddle point. The greater depth
of the well in the HFH case than for the DFH one is responsible for
the greater strength and smaller width of the resonance in the former
system. Because the vibrational frequencies near the saddle point
are greater for HFH than they are for DFH, the curves in the vibra-

tionally adiabatic correlation diagram for HFH will be at higher ener-
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gy in the saddle point region than are those for DFH. Thus, the

vibrationally adiabatic correlation diagrams produce the correct

dependence of the resonance strength and energy on isotopic substi-

tution.
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VI. CONCLUSIONS

On the basis of the scattering calculations performed, we are able
to answer the questions posed at the beginning of section 4 about the
dynamics of the collinear HFH and DFH systems and how those dy-
namics depend on the barrier height of the potential energy surface
used. We briefly surmmarize what we have learned in regard to
each question.

1) The relative rates of collisional deactivation of vibrationally
excited HF decrease substantially with increasing barrier height for
small barrier height surfaces; on larger barrier surfaces they are
relatively independent of the barrier height. The barrier height at
which this transition occurs increases with temperature.

2) On low barrier surfaces vibrational deactivation occurs
primarily by reactive multi~quantum processes, while on high bar-
rier surfaces it occurs primarily by non-reactive single-quantum
processes.

3) Vibrational deactivation rates increase with temperature.
On the high barrier surfaces the rate of reactive deactivation in-
creases with temperature much more rapidly than that of non-reac-
tive deactivation. As.the temperature increases, multi-quantum
deactivations increase in importance.

4) As the barrier height of the surface increases, both the
translational energy threshold for reaction increases and the average
fraction of energy going into product vibration decreases. On the high
barrier surfaces reagent vibrational excitation leads to a higher frac-
tion of energy going into product vibration; on the low-barrier sur-
faces this is not always true.

5) The gross features of the non-reactive dynamics are not
affected by isotopic substitution; the reactive dynamics differ sub-

stantially in their resonance behavior. This difference may be under-



110
stood in terms of the vibrationally adiabatic correlation diagram for
the HFH and DFH systems.

6) Quantum mechanical resonances are strongest on the low
barrier surfaces and significantly weaker or absent on the higher
barrier ones. They move to higher energy as the barrier height of
the surface increases. Consideration of the vibrationally adiabatic

correlation diagram helps one understand this dependence.
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Table 1. Parameters for Minimum Energy Path (Eq. 7)
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Surface Barrier A B C
kcal/mole kcal/mole kcal/mole radians
1.5 0.01681 1.4832 1.3434
5 0.01681 4.9832 20,955
10 0.01681 9.9832 25.268
20 0.01681 19.983 2%, 575
30 0.01681 29.983 32.093
40 0.01681 39.983 33.879
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Table 2. <£v> for Different Energies, Reagent Vibrational States,
and Potential Energy Surfaces

EleV
Surface" " 1.186  1.594 2.002 2.410 2.655
1.5 0 0.555 0.652 0.716 0.692 0.705
1 0.259 0.532 0.583 0.549 0.530
2 . 0.637 0.461 0.511 0.552
3 s . 0.501 0.460 0.554
4 . . = 0.394  0.480
5 - = - - 0.585
5 0 0.494 0,543 0.627 0.647 NAS
1 0.350 0.378 0.504 0.513 NA
2 . 0.415 0.457 0.488 NA
3 " - 0.447 0.475 NA
4 - . . 0.604 NA
10 0 0.357 0.473 0.508 0.620 0.648
1 0.508 0.433  0.377 0.507 0.528
2 . 0.399 0.381 0.477 0.492
3 5 . 0.465 0.455 0.485
4 " . < - 0.521
5 - . : & 0.621
20 0 0.159 0.222 0.330 0.412 0.456
1 , 0.348 0.344 0.422  0.448
2 . - 0.335 0.401  0.444
3 . . - 0.434  0.427
4 - " . - 0.522
30 0 # 0.116  0.149 0.233 NA
1 2 - 0.267 0.300 NA
2 2 . a 0.379 NA
20 0 - - 0.107 ©0.1412  0.143
1 5 < . 0.230  0.240
5 . - " - 0.332

a) Number indicated is the barrier height of the potential energy
surface in kcal/mole

b) Reagent Vibrational State

c) There is insufficient (below ~ 60%) reaction for this combination
of potential energy surface, reagent vibrational state and total energy
d) Calculations performed on this potential energy surface for this
energy gave scattering matrices which were not unitary to within

3% so we did not use the results (NA = not available)
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FIGURE CAPTIONS

Figure 1. Schematic diagram of coordinate system for rotating

Morse-cubic spline potential energy surface.

Figure 2. Potential energy surface for the collinear H + FH system
on the 40 kcal/mole barrier surface in the mass-scaled Delves
coordinate system. Equipotentials are drawn every 0.3 eV from 0.3
eV with respect to the bottom of the HF well up to a maximum of 3.0
eV. The minimum energy path is indicated by a dashed line; the sad-

dle point is marked by an "'x"'

Figure 3. Energy level diagram of the energy V of the various
HF(right) and DF (left) states and the barrier heights of the surfaces

(center).

Figure 4. Plot of the total rate constant (sum of reactive and non-
reactive) kae for deactivation in the collision H + FH(v) —» H +
FH(v'{ v) at 300 K for v = 1-5 as a function of the barrier height
Ebarr of the potential energy surface. Arrows mark the internal
energies of the four lowest HF states. Line types are as follows:

v=1 : solid line; v=2 : dashed line; v=3 : dashed-dotted line; v=4 :

dotted line; v=5 : dashed-triple-dotted line.

d
Figure 5. Plot of the total rate constant for deactivation kV € in the
collision H + FH(v) — H + FH(v'¢ v) at 650 K for v = 1-5 as a func-

tion of the barrier height E of the potential energy surface.

barr
Arrows and line types are as in figure 4.

d
Figure 6. Plot of the total rate constant for deactivation kv € in the
collision D + FH(v) =3 D + FH(v' { v), DF(v''¢ v) + H at 300 K for

v = 1-3 as a function of the barrier height E of the potential

barr
energy surface. Arrows and line types are as in figure 4.
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(1)

Figure 7. Plot of the fraction f of deactivation occurring by

v
single quantum transitions in the collision H + FH(v) — H + FH(v-1)
(both reactive and non-reactive) at 300 K for v = 2-5 as a function of

the barrier height E of the potential energy surface. Arrows and

barr
line types are as in figure 4.

R
Figure 8. DPlot of the fraction fv of deactivation occurring by reac-
tion in the collision H + FH(v) —» HF(v'¢ v) + H at 300 K for v= 1-5
as a function of the barrier height Ebarr of the potential energy sur-

face. Arrows and line types are as in figure 4.

Figure 9. Plot of the average number (Anv7 of vibrational quanta

lost in deactivating collisions in H + FH(v) =3 I(-iIe-!“ FH(v'{ v) (both
reactive and non-reactive) at 300 K (solid line) and 1000 K (dashed
line) for v = 2-5. Arrows are used as in figure 4. Symbols used
are as follows: v = 2 : circles; v = 3 : squares; v = 4 : triangles;

v = 5 : diamonds. Where no line is shown, <Anv>de may be taken as

being one.

e T for the

Figure 10. Plot of Arrhenius activation energies Ea
single -quantum deactivation reactions H + FH(v) = HF(v-1) + H
for v = 1-5 as a function of the internal energy Eint of the HF(v)
reagent state on the six potential energy surfaces studied. The

barrier height E of these surfaces is indicated on the right side

barr
of the plot. Internal energies of the v = 2-5 states are indicated by

Arrows.

R
Figure 11. DPlot of probability P of the reaction D + FH(0)

D+FH(0)
—3> DF + H as a function of the reagent translational energy EO in the
threshold region on the six potential energy surfaces studied, the
barrier heights of which are indicated. The arrows indicate the

energies corresponding to the heights of the barriers.
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R
Figure 12. Plot of probability P of the reaction D + FH(1)

D+FH(1)
—3 DF + H as a function of the reagent translational energy E1 in the
threshold region on the six potential energy surfaces studied.

All labeling is as in figure 11. The arrows on the abscissa indicate

the energies of the surface barrier heights.

Figure 13. Plot of the average fraction of available energy <f0>
going into product vibration in the reaction D + FH(0) — DF + H

as a function of the reagent translational energy EG on the 1.5
(triangles), 20 (squares) and 40 (circles) kcal/mole barrier surfaces.

Energies of the various DF product states are indicated on the abscissa.

Figure 14. Histogram plot showing product state distributions for the
reaction D + FH(v) — DEF(v') + H at a total energy of 2.410 eV for

v' up to and including 6 on the 6 potential energy- surfaces, the barrier
height of which is indicated in the upper right corner of each strip.
The height of the bar is proportional to the magnitude of the state-to-

state reaction probability P a) v=0; b) v=1; ¢)

D+FH(v) —3 DE(v')+H’

v=2.

Figure 15. Plot of the state-to-state reaction probability

P i th ti D+ FH(v=0 DF(v') + H
D+FH(0) —3 DF(v')+H or the reaction (v=0) — (v')

as a function of the reagent translational energy EO on the 1.5 kcal/

mole barrier surface. The arrow marks the energy at which the DF

(v=1) state becomes accessible. A solid line is used for the v'=0

transition; a dashed one is used for the v'=1 transition.

Figure 16. Plot of the state-to-state reaction probability

PD+FH(0) — DF(v')4H defined for fig. 15 as a function of the rea-
gent translational energy EO on the 5 kcal/mole barrier surface.
Arrows mark the energies at which the indicated states become acces-

sible. Line types are as in figure 15.
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Figure 17. Plot of the state-to-state reaction probability
P : ; £
D+FH(0) —» DF (v')+H defined for figure 15 as a function of the

reagent translational energy E. on the 10 kcal/mole barrier surface.

0

Arrows and line types are as in figure 16.

Figure 18. DPlot of the state-to-state reaction probability

P defi i ti t
D+FH(0) DF (v')+11 efined for figure 15 as a function of the

reagent translational energy EO on the 20 kcal/mole barrier surface.

Arrows and line types are as in figure 16.

Figure 19. Plot of the state-to-state reaction probability

P t tion H + FH(v=0 HF(v')+ H
H+FH(0) — HF(v') + H for the reaction FH(v=0) — ')

as a function of the reagent translational energy EO on the 10 kcal/

mole barrier surface. Arrows and line types are as in figure 16.

Figure 20. Vibrationally adiabatic correlation diagram showing the
energy V along the minimum energy path (MEP) and of the nthL local
vibrational state as a function of the reaction coordinate s measured
along the minimum energy path for the 1.5 kcal/mole barrier surface
for the D + FH reaction. The dotted line marks the energy at which

the resonance seen in figure 15 is observed.

Figure 21. Vibrationally adiabatic correlation diagram for the 10

kcal/mole barrier surface for the D + FH reaction.

Figure 22. Vibrationally adiabatic correlation diagram for the 10

kcal/mole barrier surface for the H + FH reaction.
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PART 11

CHARACTERIZATION OF LOW ENERGY RESONANCES
IN THE COLLINEAR H + H2 AND F + H2 SYSTEMS
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INTRODUCTION

Dynamical resonances have been found to be one of the most
interesting results of collinear quantum mechanical calculations on
the dynamics of atom-diatomic molecule reactions. Knowledge of
the features of the potential energy surfaces responsible for their exis-
tence is important if one is to be able to understand their dependence
on the potential energy surface, reagent vibrational excitation, and
isotopic substitution. Similarly, it is important that one be able to
adequately recognize and characterize dynamical resonances,
especially when they are partially masked by direct processes occur-
ring in the same energy region.

In this section we consider various characterization techniques
for the recognition and characterization of dynamical resonances for
two different systems: the collinear H + H2 and the collinear F + I—I2
(HD, DH, DZ) ones. Characterization techniques include studies of
the variation with energy of the state-to-state reaction probabilities,
scattering matrix element phases and their energy derivatives,
eigenphase shifts, and diagonal elements, eigenvalues, and eigen-
vectors of the collision lifetime matrix of Smith.

Paper II.1 presents results of a collision lifetime matrix analysis
of the low energy resonances in the collinear F + HZ(HD’ DH, DZ) sys-
tems. The strength of the resonances is shown to decrease in the
order FHD ) FH2> FDZ) FDH. Because the collision lifetime mat-
rix localizes the resonance into a single eigenchannel, it allows one
to determine the resonance position, width, and lifetime with a mini-
mum of ambiguity. The peak in the reaction probability vs. energy
curve for each system is shown to occur at higher energy than the
peak in the eigenvalue of the collision lifetime matrix vs. energy
curve for the same system, with the energy difference increasing
as the resonance weakens.

Paper II. 2 consists of a detailed study of the two lowest energy
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resonances in the collinear H + H2 system on the Porter-Karplus
potential energy surface. All of the characterization techniques men-
tioned above are utilized. The resonances are found to be reflected
in all of these methods, most notable the eigenvalues of the collision
lifetime matrix. Again, the resonances are almost entirely localized
in a single eigenchannel of this matrix. The effect of the symmetry
of the system in the results of the characterization procedures is
discussed. There appear to be substantial differences between the
two resonances as seen by the eigenvectors of the collision lifetime
matrix near the resonance energies.

Paper II. 3 includes a detailed study of the resonances studied in
paper II.1. As in paper II. 2, all of the above mentioned characteriza-
tion techniques are utilized. The degree to which the resonances are
reflected by the different techniques in each of the systems is dis-

cussed.
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1Ee 1 COLLISION LIFETIME MATRIX ANALYSIS OF THE FIRST
RESONANCE IN THE COLLINEAR F + I—I2 REACTION AND
ITS ISOTOPICALLY SUBSTITUTED ANALOGS

"This paper appeared in Journal of Physical Chemistry 85, 1969 (1981).
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A collision-lifetime matrix analysis of the first resonance in the
collinear F + H, reaction and its D-substituted analogs shows that
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ciated with a single lifetime eigenchannel. The observed lifetime
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1. Introduction

Among the most important results to come from quantum mechan-
ical calculations of the probabilities of chemical reactions are the exist-
ence and significance of resonant processes. Reactive scattering reso-
nances were first found in collinear calculations on the H + H, systeml’ %
and have been observed in a variety of other collinear atom-diatom cal-

culations, including those on the F + H,, HD, D,, 2% Cl + Hz,5 I+ H,, b

Ba + N,0, 1+ HL® and C1 + HCI? systems. The F + H, system and its

isotopically substituted counterparts are of particular interest because

of their simplicity and relative ease of study by both theoretical and

experimental techniques. It has recently been proposed that these

systems are prime candidates for experimental observation of resonances.
Approximate jz-conserving three~dimensional calcula-

tions on the F + H, system have been performed, and they suggest that

the resonance found in the collinear calculations exists in the three-

dimensional world, 10

Molecular beam experiments also provide indi-
cations of a resonance in this system. 11

Resonances have been observed in a wide variety of scattering
processes and are known to be associated with the existence of long-lived
metastable states. = Once a resonance is known to exist in a chemic-
ally reactive system, one desires to know what features of the potential
energy surface are responsible for its existence and what its lifetime is.
The latter is especially important in determining what systems are the
most suitable for the experimental detection of resonances.

Babamov and Kuppermann have recently developed a model that

gives a physical interpretation and predicts the location of the lowest

energy resonance in the collinear F + H, and isotopically substituted
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systems., 1 Hayes and Walker have also recently developed simple

models for the lowest collinear F + H, resonance. 14

Here we consider
the lifetime of the metastable state using the formalism of the collision
lifetime matrix developed by Smith. 18 This approach was previously
applied to the second resonance in the collinear H + H, reaction. 16
In section 2 we briefly review Smith's collision lifetime matrix
approach: in section 3 we present results obtained for the collinear
F + H,, HD, DH, and D, systems; and in section 4 we discuss their

significance.

28 Theory

The definition of a lifetime of a metastable state in a quantum
mechanical molecular scattering problem is not unique. For scattering
in one dimension, it is well knownl'7 that the delay time 7 of a particle
due to the existence of a potential is associated with the phase shift 7 of
the transmitted wave according to

o BEL o500 1)
vV ap oE
where v, p, and E are, respectively, the initial velocity, momentum,
and energy of the particle.

In the multichannel case, such as reactive scattering, there exists
a set of quantum numbers, j, which describes the internal states of both
colliding partners. Smith, in a seminal paper, 15 has shown that the
corresponding delay times are given by the diagonal elements ij of the

hermitian collision lifetime matrix Q defined by
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where S is the scattering matrix for the system. A resonance picture of

the scattering process in collision channel j is useful when the inequality
2EQ..
—J = (3)
h

holds, where Ej is the initial relative translational energy in that channel,
In those cases, one may diagonalize the 9 matrix and associate the
eigenvalues q, (which are real because C=Q is hermitian), when large

and positive, with the exponential decay times of long-lived metastable
states. Further, the wavefunction describing this state, called a lifetime-

eigenchannel state, may be obtained from the nth

eigenvector, yn’ of 9
In general, Q, its eigenvalues, and eigenvectors are a function of the -
energy.

The exact connection between the lifetime tn of the metastable state
and the eigenvalue qnis not obvious because away from resonances, q,
may be negative. In the rest of this paper we will determine the nature

of the variation of q, with energy across a resonance for the collinear

F+ HD, F+ H,, F+D,, and F + DH systems and suggest a definition tn.

3; Results

The coupled-channel calculations performed to generate the S
matrices use the method of ]{u1:>pern:|ann18 and are additions to the
calculations performed on these systems by Schatz, Bowman, and

Kuppermann. 3,4

They were performed at a sufficiently dense energy
grid to obtain the energy derivative of the S matrix by a three-point
finite difference method. As a result of this three-point approximation,

the Q matrix was almost but not precisely hermitian. To avoid complex
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eigenvalues, g was then forced to be hermitian by replacing it by the
average of it and its hermitian conjugate. Diagonalization of the result-
ing matrix was performed by a standard EISPACK routine. 19 Its eigen~
values were calculated as a function of energy and were associated with

a given lifetime-eigenchannel by requiring that its eigenvectors, which vary
slowly with energy, be continuous within the accuracy of the calculations.

Plots of the eigenvalues q, versus the total energy E of the system
(measured with respect to the bottom of the hydrogenic molecule well)
are presented in figure 1. Three main features of the curves are worthy
of notice. First, in each of the four isotopic systems, only one of the
curves displays a positive maximum, and for only this curve does q
acquire positive values, Second, at values of E sufficiently
above the resonant energy, all eigenvalues g are negative and nearly
independent of energy. Third, there is usually at least one curve sub-
stantially removed from the others (the bottom one or two curves in the
FH,, FD,, and FDH panels of figure 1), and examination of the corres-
ponding eigenvectors indicates that these are usually due to higher energy
HF or DF states that do not contribute significantly to the reaction
dynamics in the energy range considered.

We conclude from these properties that the resonance is associated
with a single eigenchannel n of the collision lifetime matrix; namely, the
one for which the corresponding qE(E) curve has a positive maximum,

In view of the bell-shaped nature of this curve, we choose to define the
lifetime tﬁ of a collision associated with the resonance lifetime eigen-

channel n by the expression

t=(E) = 95 (E) - a7 , @
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where qaﬁS is the value of Q5 at an asymptotic energy sufficiently large
with respect to the resonance energy for a5 to have become essentially
independent of energy. The values of tE for the resonance lifetime-
eigenchannels of the systems being considered are given by the right-
hand-side ordinates of fig. 1. This definition has the convenient property

that it makes tﬁ(}i‘) be greater than or equal to zero for all energies

considered. We define the resonance lifetime t%es as the maximum wvalue

res
n

Although for long-lived resonances, such as the FHD one, the difference

I'EES and qﬁ(Erﬁes) is rather small; for short-lived ones,

of tB and the energy at which it occurs the resonance energy E

between t
such as for FDH, t;es can be significantly larger than q-ﬁ(ErHes).

The shape of the q-ﬁ(E) curve, for each of the four isotopic systems, is
approximately Lorentzian over a 1 to 2 FWHM energy range. We define
that FWHM as the resonance width AEEeS.

As can be seen from fig. 1, the resonance lifetimes
clearly decrease in the order FHD > FH, > FD, > FDH. This is to be
expected on examination of the width of the peaks in the plots of reaction
probability versus energy for these systems given in fig. 2. However,
even weak resonances, such as those in the FD, and FDH systems, which
do not show up as clearly resolved peaks in the probability versus energy
plots, do exhibit distinct resonant behavior in the plots of fig. 1. This is
particularly important since in those two systems direct processes con-
tribute in a major way to the probability versus energy curves.

For each value of E, the components Un’n of the eigenvector Ljn of 2
furnish the contribution to the eigenchannel wavefunction ' of each of
the reagent or product molecule eigenstates. Those change significantly
with energy across a resonance eigenchannel and will be discussed

elsewhere.
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4. Discussion and Conclusions
P A A R S A A e A

The q(E) and t(E) curves of fig. 1 clearly demonstrate the useful-
ness of the eigenvalues of Smith's collision lifetime matrix15 for the
recognition and lifetime characterization of reactive scattering reso-
nances. Of particular interest is the fact that in the four isotopic sys-
tems considered, the presence of the resonance manifests itself in only
one of the lifetime eigenchannels, in contrast to an eigenphase shift
analysis, in which several of the scattering matrix eigenchannels are

affected by the resonance. 20

Thus, this kind of analysis seems specially
well suited for separating resonance processes, even very weak ones,
from direct reaction mechanisms, even when the latter are dominant,
as seems to be the case for the FD, and FDH systems.

The localization of the resonance in a single
lifetime eigenchannel implies that a single linear combination of
reagent and product asymptotic states, at the resonance energy, leads to
an effective trapping of the energy in internal degrees of freedom of the
compound system. This eigenchannel should play an important role in
modeling resonances. Whether or not resonances are normally con-
fined to a single lifetime eigenchannel is not clear at the present time,
and further work is required to elucidate this point.

A comparison of figs. 1 and 2 indicates that the resonance energy

P
max 2!

res

E , as defined in section 3, is always lower than the energy E

which the reaction probability curves of fig. 2 achieve a maximum. The
vertical arrows in the latter figure indicate the corresponding EFeS
positions. This shift appears to be at least in part due to the concomi-
tant occurrence of a direct mechanism. Table I furnishes several

quantities of interest for the systems being considered. From the last
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res P 5
n n
Ang l:"mr:ul(' A

, increases in the order FHD, FH,,

column in that table we see that the shift between E
units of the resonance width AET ¢°
FD,, FDH. We conclude that for weak resonances superimposed on
direct processes the identification of the resonance energy with the
energy at which a transition probability has a maximum may be
inappropriate.

Other techniques used for the characterization of resonances, such

as Argand diagrams, 2 the derivative of the phases of the S matrix

elements with respect to energy, 21

or the energy-dependence of its
eigenphase shifts mentioned above, all manifest the presence of the
resonance to some degree, but not as clearly as the collision lifetime
matrix eigenvalues. This is particularly true in the FDH and FD,
systems for which this resonance is quite weak.

The results in the sixth column of Table I and in Fig. 1 show that
the FHD resonance is about 75 times longer-lived than the FDH one.
This gives an indication of the dynamic range of the lifetime matrix
analysis techmque. These results lend further support to the recent

sugge stion1 8¢, 20

that the F + HD system is a particularly promising one

for the experimental detection of resonances. In that system, the

F+ HD (v=0) = HF (v = 2) + D channel should show sharp resonant behavior,
whereas the F+ DH (v=0) = DF (v’ = 3,4) + H channels should show

little, if any, such behavior. A further discussion of these resonances

will be presented in a future publication.
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Figure CAFTons

Fig. 1. Eigenvalues g of the collision lifetime matrix Q and collision
lifetime t as a function of energy for the collinear FHD, FH,, FD,, and
FDH systems. The bottom abscissa in each panel (E) denotes the total
energy with respect to the bottom of the isolated hydrogenic molecule
well, whereas the top common abscissa (E,) denotes the energy measured
with respect to the zero point energy of that molecule. The left ordinate
scale in each panel refers to all the curves in that panel, whereas the
right one refers only to the corresponding bell-shaped curve. The
dashed portion of the lowest curve of the FHD panel indicates a region

of numerical noise associated with the sharp peak of the top curve. The
horizontal straight line of that panel represents the eigenvalue curves
for two distinct eigenchannels. These curves coincide within the plotting
accuracy of the figure but are distinguishable on an expanded scale,

The divisor in the three lower panels indicates the number by which the

ordinate of the neighboring curve was divided before plotting.

Fig. 2. Probabilities of the collinear reactions F + HD (v = 0) —
FH(vV=2)+D, F+H,(v=0)=- FH(V=0)+H, F+D, (v=0) -

FD (v'=3)+ D, and F+ DH (v=0) — FD (v' = 3) + H as a function of

total energy E with respect to the bottom of the isolated hydrogenic
molecule well and of the initial reagent relative translational energy E,.
The vertical arrows indicate the energies at which the resonance collision

lifetime eigenvalues of fig. 1 achieve a maximum.
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1.2 CHARACTERIZATION OF THE TWO LOWEST ENERGY
RESONANCES IN THE COLLINEAR H + I—I2 SYSTEM
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a
Collinear H + H_ System. )
o
b
Jack A. Kaye ) and Aron Kuppermann

Arthur Amos Noyes Laboratory of Chemical Physics.

California Institute of Technology, Pasadena, California 91125

(Received )

We have performed quantum mechanical scattering calculations
on the collinear H + H2 reaction on the Porter-Karplus surface
at energies in the vicinity of the two lowest energy resonances.
We have examined the effect of the resonances on the energy
dependence of the state-to-state reaction probabilities, individual
S matrix element phases and their energy derivatives, eigen-
phase shifts, and diagonal elements, eigenvalues, and eigenvec-
tors of Smith's collision lifetime matrix. The eigenvalues of the
collision lifetime matrix provide the most unambiguous means
for characterizing the resonances and allow cne to obtain the
resonance position and width, as well as the lifetime of the long-
lived metastable state associated with the resonance. lhe two
resonances, located at 0.875 eV and 1.310 eV total energy, have
widths (FWHM) of 0.021 eV and 0.028 eV and lifetimes of 0.091
psec and 0.085 psec, respectively. While both resonances are
shown to be associated with symmetric collision lifetime eigen-
channels, the two resonances differ markedly in the fractional
compositions of the eigenvectors of the collision lifetime matrix.
The limitations and advantages of each of the characterization
techniques used was discussed. The eigenvalues of the collision
lifetime matrix are compared to the results of a classical theory

for the time delay.
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I. INTRODUCTION

The reaction of atomic hydrogen with molecular hydrogen
H+H, — H, + H (1)

has been the object of numerous theoretical studies, particularly in

the last twenty years when the existence of large computers has made
numerical calculations on this reaction feasible (1). The extensive

study of this reaction is due mainly to its simplicity: the small number
of electrons and nuclei makes the calculation of a chemically accurate
potential energy surface possible, the absence of low-lying excited
electronic states makes a single-surface calculation satisfactory, and

the small masses and large spectroscopic constants of H, make quan-

2
tum mechanical calculations of this reaction simpler (and less expen-
sive) than those of re actions involving heavier atoms.

Although a large number of three-dimensional classical trajectory
calculations have been performed on reaction 1 at energies below and
above dissociation, where the reaction

H+HZ-—)H+H+H (2)
becomes energetically allowed (1, 2), the number of exact three dimen-
sional quantum mechanical calculations is much smaller and has been
restricted to energies well below dissbociation. Most of the exact
guantum mechanical calculations on reaction 1 have been restricted to
collinear geometries, in which the three hydrogen atoms are restricted
to forever lie on a straight line (4).

One of the crucial results to come out of the collinear calculations
on reaction 1 is the presence of dynamical resonances in this system
(4). These resonances may be seen as rapid changes in the state-to-
state reaction probabilities with energy, although other results from
the calculation (such as the phase of an § matrix element) also change

rapidly with energy near a resonance. The three-dimensional exact

gquantum mechanical calculations that have been performed already
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suggest that these resonances carry over, albeit broadened and dimin-
ished somewhat in intensity, to the three-dimensional world (5).

An understanding of what features of the potential energy surface
are responsible for the observed resonances is important, especially

if one is to use reactive scattering resonances as a '

'spectroscopy'' of
potential energy surfaces. Since it is known that a resonance in a
scattering problem usually implies the existence of some long-lived
metastable state (6), one wants to know what its nature is (i.e. does
it involve excitation to a higher state in some internal degree of free-
dom). Finally, one wants to know the lifetime of this metastable state.
If this lifetime is sufficiently large that, after allowing for the expected
decrease on going from one dimension to three dimensions, it is sig-
nificantly greater than the rotational period of the molecule, it is rea-
sonable to expect that the resonance might make itself visible in the
variation of the differential cross section for the reaction with energy
(given an experiment of sufficient resolution).

In this paper, we attempt to characterize the first two resonances
for the collinear H + HZ reaction (on the Porter-Karplus surface) (7).
We consider various ways in which the resonance manifests itself, in-
cluding changes in probability and_S__matrix element phase with energy.
To help determine the lifetime of these resonant states, we calculate
Smith's collision lifetime matrix (8), positive eigenvalues of which
correspond roughly to the lifetimes of the resonant state. By con-
sidering the variation of the eigenvectors of the matrix with energy,
we help determine the nature of the two resonances and show that the
first two resonances are quite different from each other.

The outline of this paper is as follows: In section II we review the
definitions and origins of the various quantities we have studied, in-
cluding Smith's (8) collision lifetime matrix. We then briefly describe

the numerical procedures employed in these calculations. In section
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III, we present as a series of plots the results obtained. These are

discussed in section IV. In section V we offer conclusions.



171

II. THEORY AND NUMERICAL PARAMETERS

The direct result of the collinear quantum mechanical calculations
is the scattering matrix S that relates the incoming and outgoing wave
states associated with isolated reagents and products. A detailed des-
cription of the theory behind gand how one goes about calculating it
is presented elsewhere (9). S should be unitary and symmetric (10);
deviations from these conditions reflect inaccuracies in the scattering
calculation. Henceforth, we shall consider g to be both unitary and
symmetric. The probability for reaction from state i to state j is
just the absolute magnitude of the corresponding S matrix element (9,

10):

2
P.= |s.| (3)
1) 1)
Because S is symmetric, S.. = S.. so P.. = P, as must be true to
= ij ji i ij’ -
satisfy microscopic reversibility. Since S is unitary,

N 2

3 ‘Sijl -1 ()
=

which must be true if probabilities are to be normalized to one. The
amplitude and phase of the elements of S are both functions of the ener-
gy. The variation of these quantities with energy will be the initial in-
dicator of the presence of absence of resonances.

S is related to the reactance matrix g, which is symmetric (9, 10)
by the relationship

= (I + iBNL = i}}_)"1 (5)

—~ |l

The eigenphase shifts (11) are defined as the angles whose tangents are

the eigenvalues of g(which are real, due to the symmetry of B_:) These
eigenphase shifts lie in the range from -7n/2 to m/2 ; hence integral

multiples of m may be added to or subtracted from the eigenphase shifts to in-
sure continuity of eigenphase shift vs. energy curves. The eigenphase

shifts have been shown to have unusual energy dependence in the region

of a resonance (11-14). They may be thought of as being a generaliza-



172

tion of the phase shift in single particle scattering.

The definition of the lifetime is not so clear, however. In single
particle, one dimensional scattering, the delay time | of a particle
(the time spent by the particle in some region of space in excess of
the time it would have spent there if there were no potential) is related

to the phase shift }) of the transmitted wave (15):

= 4 o = *h_2 (6)
¥ VT%) 3%

where v, p, and E are the initial velocity, momentum, and energy of
the particle, respectively.

In the multi-channel case, instead of having a single equation (and
thus a single phase shift and a single delay time), there is a set of
equations, each of which may be thought to be related to an initial
state j of the colliding particles. Smith (8) has shown that in this
multi-channel case, the corresponding delay times of these states are
given by the diagonal elements ij of the collision lifetime matrix Q,

which is defined by

= thg dg’ (7)
dE
Since S is unitary, Q will be hermitian.

Ho

A positive value for Q,., then, suggests a positive time delay. If
Q.. is sufficiently positivej,J a resonance picture of the scattering pro-
céjss is appropriate. 8mith (8) has shown that a good definition of
""sufficiently positive'' is when the inequality

2EQ. .M 2 (8)

is satisfied, where E, isJ t}ije initial relative translational energy for
channel j (the total energy minus the internal energies of the colliding
particles in internal state j).

When inequality 8 is satisfied, g may be diagonalized (since 2_ is
hermitian, its eigenvalues must be real), and any positive eigenvalues

may be interpreted as the lifetime of the long-lived metastable states.
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The wave function describing these states, known as a lifetime eigen-
channel state, may be obtained from the corre sponding eigenvector of
g.__-_. In general, 9_;, its eigenvalues, and its eigenvectors are a function
of the energy.
As a rule, for an N channel scattering problem, all the matrices
(__I;_’, 2 R, §_-) will be N x N, and there will be N independent quantities,
such as the diagonal elements Q... In the case of symmetric systems,
that is, those of the type
A + BA —3 AB + A (9)
there are only N/2 different diagonal elements ij. This is due to the

symmetric block structure of S in the symmetric collision case:

g g*
s =", (10)
= gﬁ §1\]

where the superscripts N and R refer to the non-reactive and reactive
blocks of the S matrix, respectively. In this symraetric case, the
eigenvectors and eigvenvalues of Q may be broken up into two classes:
symmetric and anti-symmetric, as is shown in appendix A. The
eigenvalues and eigenvectors of R (and thus the eigenphase shifts)
may be similarly categorized.

The coupled channel calculations from which the g, g_., and g
matrices were obtained were performed using the method of Kupper-
mann (16), and are additions to the calculations performed previously
on this system (5). Thirteen basis functions were used in all calcula-
tions. Calculations were performed at a sufficiently dense energy
grid so that the energy derivative ofg__needed in the construction of_Q____
could be approximated by a three-point finite difference procedure.
For example, near the resonances, scattering calculations were per-
formed every 2.5 meV. Because of the approximate nature of the
diffcrentiation, the Q obtained was only nearly hermitian. For the

sake of simplicity, this approximate Q was replaced by the average of
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it and its hermitian conjugate. The resulting matrix was diagonalized
by a standard EISPACK routine (17). The eigenvalues were calculated
as a function of energy and were associated with a particular lifetime
eigenchannel by requiring that the corresponding eigenvectors, which
vary only slowly with energy, be continuous within the accuracy of the
calculations. A similar procedure is used to associated the eigenphase
shifts with a particular eigenstate of R The assignment of collision
lifetime matrix eigenvalues to their corresponding eigenvectors is sim-
plified in symmetric systems because of the aforementioned separation
of the eigenvectors and eigenvalues of Q into symmetric and anti -

symmetric sets.
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III. RESULTS

The reaction probabilities in the vicinity of the first and second
resonances are plotted as a function of energy in figures 1 and 2, re-
spectively. A better feel for how the resonances fit in with the overall
dynamics in the H + H2 system may be obtained by examining figure 5
of reference 18, in which the reaction probabilities (for vibrationally
adiabatic reaction, that is, that occurring with no change in vibrational
state) are shown over a broad energy range (up to 3.0 eV). The

resonances are seen as rapid changes in the reaction probabilities

POO and, to a lesser extent, pOiR at the first resonance
(figure 1) and P R, P R, and P at the second resonance (figure
00 01 11 &

2a) show such variation. Reactions involving the v = 2 state are un-

vs. energy.

likely near the resonance and show no rapid variation with energy
(figure 2b), although the energy dependence of the probabilities of
non-adiabatic reaction is somewhat unusual.

Next, we wish to consider the phases of those elements ofi
mentioned above, which vary rapidly with energy and thus are most in-
dicative of the existence of a resonance. In figure 3, we display
Argand diagrams (19) for the SOOR and SOiR matrix elements. In the
Argand diagram, the matrix element is plotted in the complex plane.
Points at successive energies are connected and a curve tracing out
the motion of the element in the complex plane is generated. Away
from a resonance, the diagram usually consists of a smooth clockwise
curve. Near a resonance, however, the curve frequently shifts to a
counter clockwise direction, possibly '"turning over'' on itself to form
a loop, as has been seen in the F + HZ, F + HD (14), I + HI (13), and
H + HZ (19) (second resonance on the scaled SSMK surface) systems.
In cases where resonant and direct processes are both important,
the curve may just cut across a region of the complex plane rather
than smoothly following a circular or spiral-shaped curve, as has

been seen in the F + D2 case (14).
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The Argand diagrams for these two transitions near the first re-
sonance are quite different. The Argand diagram for SOOR shows no
loop formation; the curve does acquire a ''half-moon'' shape with a
distinct region of counterclockwise direction running from approxi-
mately 0.86 to 0.89 eV (all energies given are total energies, that is,

with respect to the bottom of the isolated H2 well)., The diagram for

R
S01 does show loop formation, also in the region from 0.86 to 0.89

eV.
In figure 4 we display Argand diagrams for the S00 & S01 , and
811 matrix elements near the second resonance. Again, two kinds

R
of behavior can be seen. (figure 4a) and S (figure 4c) show

S00
loop formation, where the loop formed in the S

1

00
larger than that in the S1 1R diagram. SOiR’ on the other hand, shows

diagram is much

half-moon formation. In the SOO curve, the loop occurs in the energy

R
range from 1.28 to 1.32 eV, while in the S11 courve it is from 1.30

to 1.34 eV. The half-moon formation in the 501 curve is from 1.28

to 1.33 eV. The slight shift to higher energy of the S“R resonance as
determined from the Argand diagram is consistent with a similar shift
in the probability vs. energy curves (figure 2a), where the maximum
in P 1R occurs at about 0.01 eV higher energy than the maximum in
POi or the minimum on POlR'

Because the Argand diagram depends both on the phase and the
amplitude (probability) of the element of g, it is worthwhile to focus
just on the phase. The variation of the phase of the §_ﬂ_matrix element
has been previously found to be a useful quantity for pinpointing the lo-
cation of a resonance (19). Away from a resonance, the phase de-
creases monotonically with energy; this decrease is clearly related to
the normal clockwise sense of the Argand diagram. Near a resonance,

however, this steady monotonic decrease may be replaced by a less

steep decrease (associated with straight cut formation in the Argand
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diagram), an increase (associated with loop formation), or a small
area of rapid decrease followed by a return to the earlier slope, per-
haps with the formation of a brief region of increasing phase separating

them (associated with half-moon formation). S matrix element phase
- R
S
R R 00 ’ "0t
" SOl , and S11 near the second reso-

vs. energy diagrams are presented in figures 5 (S
R

0

nance). The smooth nature of these curves, along with the steady de-

near the

first resonance) and 6 (S0

crease in phase with energy away from the resonance suggests that a
good way of examining solely the resonant processes would be to sub-
tract out the background behavior, which would be associated with
direct processes. Such an analysis has been performed previously (19).
The near energy independence of the slopes of the phase vs. energy
curves away from the resonance suggests that the energy derivative of
the 2 matrix element phase is also a useful quantity. Away from the
resonance, this quantity should be nearly independent of energy, al-
lowing any effect of the resonance to clearly be seen. The energy
derivative of the S matrix element phase is also of interest because if
one substitutes this quantity for the energy derivative of the phase shift
in eq. 6, one obtains an expression for a delay time. When positive,
this should provide some information as to the lifetime of the resonant
state. In figures 7 and 8 we present plots of the delay time T’ij
given by

ap’ -
T..= 45 ij = hRe(-ih (S.) ~ dS . /dE) (11)
ij ij ij
dE
for the transitions considered above at the first and second resonances,

respectively.

00 is always negative, while TOi becomes

positive, with a maximum value #F 01’ of 0.016 psec. The peak loca-

At the first resonance, T

tion is slightly below that of the maximum in the P vs. energy

01
curve (figure 1). At the second resonance, all three curves (figure 8)

show positive maxima, with values of 0.018, 0.009, and 0.005 psec
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for ¥F 00, o 2 01’ and # i1’ respectively. The large negative dip in
7’01 at the second resonance (and also for 7’00
is due to half-moon formation in the Argand diagram. Because the

at the first resonance)

phase may change rapidly with energy over a fairly broad energy re-
gion, and plots of Tij as a function of energy may have both minima
and maxima, it is somewhat difficult to try to assign a resonance posi-
tion from figures 7 and 8.

Eigenphase shifts have also been shown to be useful in the charac-
terization of resonances (11-14). In figures 9 and 10 we present plots
of the eigenphase shifts as a function of energy near the first and second
resonances, respectively. The eigenphase shifts decouple into sym-
metric and anti-symmetric sets. There are four main features of
these plots. First, the resonances are manifested as rapid changes
of the eigenphase shift with energy; there are, in fact, increases in
two of them for each resonance. Second, the resonance is seen in the
symmetric eigenphase shifts only. This feature has been observed in
other systems and has been explained previously (11-14). Third, there
are a number of avoided crossings involving the anti-symmetric
curves (at 0.855 eV near the first resonance and 1.365 eV near the
second resonance). Avoided crossings have been seen before in eigen-
phase shift analyses of the F + HZ and F + HD systems (14), and seem
to imply the existence of some sort of non-crossing rule. In other
cases however, {(such as near the second resonance at 1.324 eV, and
also in the F + H2 system) (14), the curves do appear to cross.
Finally, just above the opening of a new vibrational state, the symmetric
and anti-symmetric eigenphase shifts are the same and they decrease
extremely rapidly with energy (the lowest portions of these curves are
not shown in the figures).

Next, we wish to consider Smith's collision lifetime matrix (8) Q.

We are interested in three features of this matrix. TFirst, we want to
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know whether any diagonal elements are anywhere positive, and if so,
whether they are sufficiently positive that inequality 8 is satisfied.
We expect an affirmative answer to these questions, as all that can be
gathered from the probabilities, _S‘: matrix element phases, and eigen-
phase shifts indicates that a resonant picture of the scattering is an
appropriate one.

In figures 11 and 12 we present plots of the diagonal elements
an in the region of the first and second resonances, respectively.
As discussed previously (and shown in appendix A), each diagonal
element ing appears twice; hence there are only one or two indepen-
dent diagonal elements near the first resonance, and only two or three
near the second resonance. For both resonances, Qii becomes posi-
tive; QZZ becomes positive near the second resonance, and has a
definite maximum near the first resonance. Near the opening of the

22

creasing rapidly with energy. Near the second resonance Q33 does not

v =1 and v = 2 states, Q_, and Q33 have large negative values, in-

have a maximum, as does sz near the first resonance.

The peak in Q“ near the first resonance occurs at an energy of
0.870 eV (corresponding to a reagent translational energy of 0.596 eV)
and has a value of 0.0075 psec. The left hand side of eq. 8 has a value
of 13.6, which is substantially greater than one. Thus, a resonant
picture of the scattering in this region of energy is justified. Near the
second resonance, the appropriate values for the left hand side of eq.
8 are 36.2 for Q11 and 2.2 for sz. Thus, the use of a resonant pic-
ture of the scattering at this higher energy is also justified. One can-
not use these data to suggest the existence of two resonances at this
higher energy, however. As one moves away from the resonance, the
change in an with energy becomes small. This has been predicted by
Smith (8) for high translational energy collisions.

It should be noted that the largest positive diagonal element of Q
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is fairly similar in magnitude to the largest ’Tij determined from the
energy derivative of the elements of g The largest positive value of
Qliof 0.0075 psec at the first resonance is almost within a factor of
two of the largest Tij of 0.016 psec. Similarly, at the second resonance,

the maximum wvalue of Q1 0.0115 psec, is close to the 0.0175 psec

1’
maximum of :
00

More important than the diagonal elements Q are the eigenvalues
nn
of ), a, (note that there is no direct relationship between the n in
an and the n in q.; the same symbol is simply used for convenience).

It has been seen earlier for the F + H HD, DH, and D, systems (20)

2’ 2

and for the H + H2 system (11, 12) on the scaled SSMK surface (at the
second resonance) that there will be only one positive eigenvalue; this
eigenvalue and its corresponding eigenvector may then be unambiguously
taken as those belonging to the long-lived metastable state. Similar
behavior is seen for this system in figures 13 and 14 (first and second
resonances, respectively). In both figures, only one eigenvalue becomes
positive; the curves are labeled to show that the positive eigenvalues
belong to symmetric lifetime eigenchannels, Near the first resonance
(figure 13) a small maximum does develop in the curve of the second
symmetric eigenvalue,' but the maximum is small and has a peak value
which is negative. As we have done previously for the F + HZ’ Hp, DH,
and D2 systems (20), we define the lifetime as being the difference be-
tween the eigenvalue in the curve containing the positive maximum and
its asymptotic value qnas’ to which it settles at high energy:

as

tﬁ(E) = qn(E) o

where the definition of the lifetime t(E) only applies to the eigenchannel

(12)

m containing the maximum. These lifetime scales are shown on the
right hand ordinates of figures 13 and 14. Since we have not performed
scattering calculations at a sufficiently dense grid of energies for
reliable % matrices to be calculated above 1.35 eV, we have visually

. as
estimated the a. -
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The maximum values qn_ obtained, 0.076 psec for the first re-
sonance and 0.074 psec for the second resonance, corresponding to
lifetimes of 0.091 psec and 0.085 psec, respectively, are substantially
greater than those lifetimes estimated from either the energy derivative
of the §__n1atrix or the diagonal elements an. Above the opening of the
new channel, but below the resonance, the two lowest eigenvalues (one
each of symmetric and anti-symmetric) of Q are very close to the
corresponding diagonal element an.

Finally, we wish to consider the eigenvectors of the Q matrix,
which are complex. Since examination of the behavior of the phase of
individual components showed no unusual variation near the resonance,
we will restrict our attention to the amplitudes of the components, which
do show interesting behavior. We will express these values as ''frac-
tional compositions of the eigenvectors'', which ;a.re defined as the sum
of the squares of the real and imaginary parts of the nth component of
the mth eigenvector of Q. Thus, if an eigenvector of Q has fractional
compositions as follows:

6.30
0,15
0.05
0.30
0.15
0.05

it will be considered to be 60% v=0, 30% v=1, and 10% v=2. Because
of the symmetric or anti-symsinetric nature of the eigenvectors, the
amplitudes in rows 4, 5, and 6 will alway be the same as those in rows
1, 2, and 3, respectively at energies above the opening of the v = 2
state. Below that, a similar relationship holds with only two states
(below the opening of v = 1) or four states present.

The orthogonality of the eigenvectors and the symmetric/anti-
symmetric nature of the eigenvectors combine to reduce the number of

independent eigenvectors. Near the first resonance but above the open-
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ing of the v = 1 level, there are only two independent eigenvectors - one
symmetric and one anti-symmetric. The other one of each type is de-
termined by the orthogonality condition. Thus, we will look only at one
eigenvector of each symmetry type in this energy region. The frac-
tional compositions of the other pair of eigenvectors is just the reverse
of that of the first pair, Near the second resonance but above the open-
ing of the v = 2 level, there are two independent eigenstates of each sym-
metry type. Since the fractional compositions of the third eigenvector
of each type are not immediately obvious from those of the first two
(although their calculation is simple), we will examine all the eigen-
vectors in this energy region.

We present one pair of eigenvectors near the first resonance in the
form of plots of fractional composition vs. energy plots in figure 15.

In figure 16 we show similar plots of the symmetric eigenvectors near
the second resonance, and in figure 17 we do the same for the anti-
symmetric eigenvectors. Our notation for a given component is nmi,
where nﬁi gives the eigenvector number and symmetry type, and corre-
sponds to the similarly labeled eigenvalue in figures 13 and 14. n is
the number of the component.

Two major features are apparent from figure 15. First, near the
first resonance the symmetric eigenvectors undergo a substantial
change with energy. Symrietric eigenvectors which are purely v =20
and v = 1 away from the resonance but above the opening of the v = 1
channel become nearly 50% of each at the center of the resonance
(0.875 eV), and at higher energies revert back to being substantially,
but not entirely, as they were before the resonance. Second, the anti-
symmetric eigenvectors vary only slightly in the region of the resonance,
mixing only about 2% of the v = 1 state into the predominantly v = 0
eigenvector and vice versa. These results are consistent with the
eigenvalue vs. energy plots (figure 13) in which only the eigenvalues

associated with the symmetric states have maxima.
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The eigenvectors near the second resonance show both similarities
and differences from those near the first resonance. The similarity is
that the anti-symmetric eigenvectors are much closer to pure states
than the symmetric ones. For example, eigenvector 1~ contains at
most 7% v = 1, while eigenvector 1Jr contains as much as 53% v = 1.
There are two major differences between these eigenvalues and those
near the first resonance. F¥irst, the fractional comp ositions of the
symmetric eigenvectors show no major variation with energy in
the resonance region. The crossovers between the v =0 and v = 1 frac-
tional compositions are at energies substantially below the resonance
location of 1.310 eV as determined from the peak in the q_ Vs. energy
curve (figure 14). Second, litile v = 2 mixes into the symmetric eigen-
vectors (no more than 10% into the 1+ and 4% into the 2+ eigenvectors).
This is substantially less than the 46% of the v = 1 that mixes into the

+
1 eigenvector at the first resonance.
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IV. DISCUSSION

The existence of resonan ces in the dynamics of the collinear
H + H2 system on the Porter-Karplus surface has been conclusively
demonstrated by examination of re action probabilities, phases of
individual ématrix elements and their energy derivatives, eigenphase
shifts, and the collision lifetime matrix and its eigenvalues and eigen-
vectors. On the basis of the eigenvalues of the collision lifetime
matrix, these resonances are located at 0.877 eV and 1.310 eV total
energy. There are a number of similarities and differences between
the two resonances, and we will discuss these here. We will close
this section with some general statements concerning the utility of the
various quantities used for the characterization of the resonances.

The similarities between the two resonances are fairly obvious.
For both, rapid variations with energy in all of the above mentioned
quantities are observed. Two different types of Argand diagrams
(half-moon and loop) are observed for the various S matrix elements
affected by both resonances. For those __S_:matrix elements which give
rise to loop Argand diagrams, a positive delay time, as defined by
eq. 11, is observed. These values (0.016 psec for 7‘01 at the first

resonance and 0.0175, .0.009, and 0.005 psec for T T

00> Tor Ti1

at the second resonance) are fairly similar in magnitude.

The eigenphase shift vs. energy curves near the resonances are
also similar in their overall structure. In both, the resonance, as
seen by regions of increasing eigenphase shift with energy, is restric-
ted to those eigenvalues related to symmetric eigenvectors of R. The
eigenphase shifts related to anti-symmetric eigenvectors of i_ vary
smoothly with energy, varying at most by avoided crossings with
other anti-symmetric eigenvalue curves. Just above the opening of a
new state, a degenerate pair of eigenphase shifts (one symmetric and
one anti-symmetric) occurs. The eigenvectors associated with these

eigenphase shifts show that they are related to the newly opened state.
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At sufficiently higher energy for both resonances, the two curves be-
come separated, and the symmetric one of the pair goes through the
above mentioned increase with energy.

Additional similarities are seen in the plots of the diagonal elements
an as a function of energy. Near both resonances, the one related to
the newly opened state (QZZ where v = 1 opens and Q__ where v = 2

33
opens) is large and negative and increases rapidly with energy. Q

11
has a single positive maximum in both cases, and the maximum is
sufficiently positive that inequality 8 is satisfied, indicating that a
resonance picture of the scattering is appropriate. In both cases
QZZ achieves a local maximum also. The eigenvalues Do behave fair-
ly similarly in both cases. One (and only one) related to a symmetric
eigenvector of Q becomes positive at both resonances, while those re-
lated to anti-symmetric eigenvalues vary very smoothly with energy.
The lifetimes associated with both peaks, 0.091 psec and 0.086 psec
for the first and second resonance, respectively, are quite similar, as
are the widths (FWHM), 0.021 eV and 0.028 eV.

The differences between the resonances are related mainly in the
extent of participation of the newly opened state in the dynamics.
Near the first resonance, the participation of the v = 1 state is shown
both by the appreciable reaction probabilities to and from that state
(pOI

tional contribution of the v = 1 level to both symmetric eigenvectors

gets as high as 0.28 near the resonance) and the sizable frac-

of Q. In contrast, the v = 2 level contributes almost entirely to only
one symmetric eigenvector of Q near the second resonance.

A fund amental difference between the first two resonances is not
unexpected in the light of various attempts over the years to model
them. Kuppermann (14) has recently discussed the physical interpreta-
tion of these resonances, and has concluded that the first resonance is

due mainly to the trapping of the system's energy in a motion correspon-
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ding to an asymmetric stretch of the saddle point region in the second
symmetric eigenstate. The second resonance, while being shown to
have some of this longitudinal character, has energy trapped in the
third (v = 2) state of the internal motion along the symmetric stretch
line.

In collinear calculations on this system carried out to higher ener-
gy (18) (up to 3.0 eV), it is seen that the resonance structure in the
vibrationally adiabatic reaction probabilities PnnR forn=s 1, 2, 3, 4
is quite similar. This suggests that whatever physical mechanism is
responsible for the second resonance will be similar in nature to those
of all higher resonances. Since the resonance can be seen to some ex-
tent or other in all vibrationally non-adiabatic reaction probabilities
Pnn'R (n # n') (21), it seems reasonable to expect that there will be
some contribution of all states (except perhaps the -most recently
opened one) to the eigenvectors of .Q_

The localization of the resonance to symmetric states (those with
symmetric eigenvectors of __I_%__ and _Q_) has been observed previously
for the H + FH reaction on an unrealistic potential energy surface
(11, 12, 14) and for the I + HI (13) reaction. In both those systems,
however, the resonanceé occurs at an energy below the opening of the
v = 1 state. In those cases, the é, S, P, and _—_Q__ matrices are all
2 x 2; there are only two eigenphase shifts, one symmetric ( Crs) and
one anti-symmetric ( GPA), and the eigenvectors of_.g_ are independent
of energy. Itis found for these systems that a more useful quantity
than the two eigenphase shifts JS and C& is their difference {S - JA
(11, 12, 14). This difference rises fairly sharply from near zero to
some value less than m near the resonance energy. The closeness of
the jump in SS - JA to m is related to the relative importance of

resonant and direct processes near the resonance energy. An increase

of exactly m implies that there are no direct processes at all; the
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smaller the increase, the greater their contribution.

Such an analysis will not work for the two H + H2 resonances,
however, as they occur at energies at which more than one vibrational
state of H2 is open and there is more than one eigenphase shift of
each symmetry type. A result of this is that the eigenvectors of ..B—;
need not be independent of energy; this is indeed the case here. A
similar model might work for resonances in the vibrationally adiabatic
reaction probabilities for reactions of vibrationally excited reagents in
symmetric heavy-light-heavy collisions, where vibrationally non-adia-
batic processes are known to occur with exceptionally low probability
(22). In that case the eigenvectors ofgare essentially independent of
energy: the symmetric and anti-symmetric linear combinations of
each individual open vibrational state, with no mixing from the other
states (21). A similar analysis would apply to the eigenvectors of
in this case.

At energies below the resonance but above the opening of the new
vibrational level, the two eigenphase shifts most closely associated
with the new state are degenerate. As one moves to higher energy and
the symmetric and anti-symmetric curves separate, the appropriate

linear combination to take is not d_ - CYA but is rather some other

S
one that would allow one to go smoothly from one of the affected sym-
metric curves to the other without any avoided crossing. This linear
combination would be energy dependent. A similar conclusion, namely
that some energy dependent linear combination of eigenphase shifts is
needed to obtain maximum information from the eigenphase shift vs.
energy curves was obtained for the F + H2 and F + HD sys tems (14).
At this point we wish to consider the relative advantages and

disadvantages of the various quantities examined here in the charac-
terization of these resonances. The eigenvalues of the collision life-

time matrix appear to give the most unambiguous information about the

resonances.
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Let us first consider the simple matter of the position of the
resonances. These are not uniquely defined by the probability vs.
energy curves. This is best evidenced by the 0.012 eV difference
between the maxima in pOOR and PilR near the second resonance.

A specification of the exact resonance energy does not come from the
Argand diagrams; these show the resonance spread out over a region
of the complex plane. Any definition of the resonance energy from the
Argand diagram would, therefore, have to be fairly arbitrary. A
better definition of the resonance energy might be obtained from the
individual S matrix element time delay plots (figures 5 and 6).
However, even in this case one must decide in the case of half-moon
Argand diagrams whether to choose the resonance location as the
position of the minimum in the time delay plot or that of one of the
adjacent maxima.

The eigenphase shifts also do not provide a clear definition (they
might if there were a clear avoided crossing). The diagonal elements
anprovide a good indication, but for both resonances studied the
two peaks occur at slightly different energies. It is only for the eigen-
values of Q where there is one clearly dominant peak that a unique
assignment of the resonance energy can be made. The width can also
be determined, due to the nature of the peak in the eigenvalue vs.
energy curve. Dete rminations of the resonance position and width
were also made in the F + HZ' HD, DH, and D2 systems by means of
the collision lifetime matrix eigenvalues (20).

The main usefulness of the Argand diagrams appears to be con-
firmatory in nature. Loop or half-moon formation indicates the exis-
tence of a fairly strong resonance (weaker resonances will be reflected
by straight cut formation). The exact nature of the diagram (loop or
half-moon) varies from transition to transition and from resonance to

resonance and thus seems to be of no particular importance.
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The time derivative of individual gmatrix elements does seem to
provide order of magnitude information about the time delay in col-
lisions of particles with well defined internal states, as these are close
in magnitude to the largest diagonal element an. However, different
transitions have different values of Tij’ so one cannot calculate a
unique lifetime associated with the resonance from them (and one is
not guaranteed that a given transition will have a positive Tij)' An
advantage of using these individual delay times rathe r than the
diagonal elements or eigenvalues of Q is that in the latter cases one
must use the entire S matrix (and its energy derivative) rather than
a single element as in the former case. As in the location of the
resonance, the eigenvalues an appear to be the only quantity which
gives the lifetime uniquely, and it turns out that this lifetime is sub-
stantially greater than the diagonal elements an.

The eigenphase shifts also provide confirmatory evidence of the
resonance, and do show that it is related to symmetric eigenvectors
of § . However, some qualitatively different behavior of the eigenphase
shifts and the eigenvalues q has been observed. For example, the
symmetric eigenphase shifts most closely associated with the newly
opened vibrational state are clearly affected by the resonance, but the
corresponding eigenvalues of %do so only slightly (2+ in figure 13) or
not at all (3+ in figure 14). Additional information could be obtained
from the eigenphase shifts if one could relate them and their corres-
ponding eigenvectors in order to construct modified curves in which
the increase in eigenphase shift with energy is restricted to one curve.
Such a procedure has not yet been developed, however.

The existence of positive eigenvalues of _Q_, corresponding to
positive time delays in the bimolecular H + HZ collisions, is a mani-
festation of quantum mechanical resonance effects. Away from the

resonance, all eigenvalues are negative. A classical theory, by which
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the lifetime of a bimolecular collision may be calculated, has been
developed by Brumer, et al (23) and applied to the collinear H + HZ
system on the Porter-Karplus surface. In the energy range from 0
to 4.0 eV, they found the time delay to be everywhere negative, de-
creasing with increasing energy. At a total energy of 1.0 eV they
calculated a time delay of approximately -0.06 psec (23), which is
fairly close to the two lowest eigenvalues of Q near this energy (-0.033
psec). The significance of this comparison is not at all apparent,
however. At energies just above the opening of vibrationally excited
HZ levels, such a comparison would lead to drastic disagreement, as
the lowest eigenvalues of _Q_ are quite large and negative and they in-
crease with energy, unlike the classical time delay, which becomes
more negative with increasing energy. Calculation of the eigenvalues
of_g at higher energy at non-resonance energies might provide suf-
ficient information for a valid comparison between the classical and

quantum theories.
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V. CONCLUSIONS

We have performed quantum mechanical scattering calculations on
the collinear H + H2 system at energies near the first two resonances
and have analyzed and characterized these resonances by a variety of
techniques. These techniques consist of the examination of the energy
dependence of various state-to-state reaction probabilities, gmatrix
element phases and their energy derivatives, eigenphase shifts, and
diagonal elements, eigenvalues, and eigenvectors of Smith's collision
lifetime matrix. The resonances are shown to be reflected in all
quantities to some extent or other; the one best suited for the unique
determination of the position and width of the resonances is the eigen-
value of the collision lifetime matrix. This is due to that fact that
only one eigenvalue of this matrix becomes positive, and, to a good
approximation, is the only one to achieve a local maximum. The
lifetime of the long-lived metastable state associated with the reso-
nance may be obtained from the eigenvalues of the collision lifetime
matrix; values of 0.091 and 0. 085 psec were obtained for the first and
second resonances, respectively.

As a result of our analyses, we have shown that both resonances
are associated with states which are symmetric combinations of the
initial HZ states. The resonances differ in some ways, notably the
absence of contribution of the v = 2 state to the eigenvector of _,9_
associated with the second resonance as opposed to the near 50%
contribution of the v = 1 state to the eigenvector of Q associated with
the first resonance. Differences between the two resonances are
reasonable in the light of various studies which suggest that the first
and second resonance are associated with energy trapped primarily
in asymmetric and symmetric stretching motions, respectively.

The eigenvalues a, obtained have been compared to values for the
delay time in this system calculated by a classical theory, and are

shown to be substantially different.
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APPENDIX A : SYMMETRY CONSIDERATIONS IN SYMMETRIC

COLLISIONS
In this appendix we demonstrate that the eigenvalues and eigenvec-
tors of .Q_for symmetric collisions may be broken up into symmetric
and antisymmetric components.,
Starting from eq. 10, we construct the 2 x 2 block 2 matrix in
terms of g_N, §_R, and their energy derivatives (which will be

N
represented by g ' and §R', respectively.

— - A B
Q = ih
B A
where
& = SN§_‘ N, i §R§1 R,
BogEn L e
From the unitarity of S, we can show that A and B are skew-hermitian:
A= -4
B=-E
so (ihé) = -ihé: = ihA
(thB) = -ihB' = ihB

hence (ithA) and (ihB) are hermitian.

Defining

ihA

[fesH B

= B

we need only to prove that the matrix Q can be diagonalized by one
pair of symmetric and anti-symmetric eigenvectors, or, mathemati-
cally, to show that there exists some matrix T, consisting of equal

numbers of symmetric and anti-symmetric vectors, which diagonalizes

@

A= zlor

where



3B\ [L £\[L ¢
.’:.['—:.. =1 — = - - - -
-1kl b1 otj\o K
and
-1 1 s‘I—i 0 .1_ tc]
=1 .M =
N 0 K g 1
SO
A, 0 a7t oo\t a\/2 EllL dfs e
= 1 oao = - - - - = - - -
o &) 2l gL L)lE AL tile &
-1 =
oo NE-B o \|ao o
o xNo @+®l\loe k
_1— —_
A - B 0
= ko
0 kY& + B)K

Since A and B are hermitian, A

must also be

B
-_.'E_?_ andA:nL

Ho

Pty

hermitian. Thus, there exist matrices J and K which diagonalize

A -B) and (é- + ]g) respectively, and thus in the symmetric case,

Q can be diagonalized by a matrix containing only symmetric and

antisymmetric eigenvectors.
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FIGURE CAPTIONS

R
Tigure 1. Probability Pnn' for the reaction H + Hz(n) —— Hz(n') + H
as a function of energy in the vicinity of the first resonance. Transla-

tional energy scales for both the ground (E_) and first excited (E,)

0 1
states are shown on the lower abscissa; the total energy (E) is shown

on the upper abscissa. The arrow marks the energy at which the
v = 1 state becomes open. Transitions are indicated by different line

B : solid line; P B : dashed line; P 5 : dashed-dotted

types: pOO : o1 i1

line.

R
Figure 2. Probability P |,  as a function of energy in the vicinity of
nn
the second resonance. The total energy scale is shown on the upper
abscissa; the appropriate translational scales are shown on the lower

R R R
abscissas. (a) P : dashed line; PDi : solid line; P11 : dashed-
R R
: ine; s - ine; P :
0 dashed line; P21 dashed-dotted line 22

solid line. The values of PZO and P21 shown have been multiplied

by 4 before plotting. In both figures, the arrow marks the energy at

00
dotted line; (b) P2

which the v = 2 state becomes open.

R R ;
Figure 3. Argand diagram of Im S ot VS Re Snn' near the first
resonance with the total energy E (measured with respect to the bot-

tom of the H2 well) as a parameter. The markers are placed every

R
0.01 eV. The arrows indicate the sense of the curve. (a) SOO . The

shift from a clockwise to a counterclockwise back to a clockwise sense
F . & 5 . 1
indicates a resonance. This Argand diagram is of the ''half-moon’

type. (b) S0 In this figure the resonance is shown by loop forma-

i
tion.

Figure 4. Argand diagrams of Im Snn’ vs. Re Snn, near the second

resonance with the total energy E as a parameter. The symbols nark

every 0.01 ev and the arrows indicate the sense of the curve.
R R R
(a) S

00 ; (b) 801 =) S11 .



198

. R R
Figure 5. Phase Cpnn, of the scattering matrix element S |, as a
nn

function of the total energy E (upper abscissa) and the translational

R
energy EO (lower abscissa) near the first resonance. (a) SOO

R
(the arrow marks the opening of the v = 1 state); (b) : SOi .

. R
Figure 6. Phase 491111' of the scattering matrix element S as a
n

n'

function of the total energy E (upper abscissa) and the translational
energy EO or E1 (lower abscissa) near the second resonance. The

R R
arrow marks the opening of the v = 2 state. (a) SOO ; (b) SOI 5 (&8

SR
11 -

R
Figure 7. Delay time T i @sa function of the total energy E (upper
n
abscissa) and the translational energy EO (lower abscissa) near the
first resonance. The arrow marks the opening of the v = 1 state.
R R
(@) Tog s () 7,7

E
Figure 8. Delay time Tnn' ; as a function of the total energy E {(upper

abscissa) and the translational energy EO or Ei (lower abscissa) near
the second resonance. The arrow marks the opening of the v = 2 state.

R R R
(a) TOO : (b) 701 s (c) Til .

Figure 9. Eigenphase shifts as a function of the total energy E near
the first resonance. Those belonging to symmetric eigenvectors ofg
are drawn with solid lines, those to anti-symmetric eigenvectors are
drawn with dashed lines. The lowest energy portion of the two curves
most closely associated with the v = 1 state is not shown; it is just a
smooth curve which decreases rapidly with increasing energy. Below
approximately 0.845 eV, those two curves lie on top of each other.
The arrow marks the opening of the v = 1 state. Note that integral
multiples of m have been added to or subtracted from the computed
eigenphase shifts in order to generate smooth curves; the absolute
values of the eigenphase shifts were chosen to show the avoided cros-

sings and for convenience.
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Figure 10. Eigenphase shifts as a function of the total energy E near
the second resonance. All markings are as in figure 9. The lowest
energy portion of the two curves most closely associated with the
v = 2 state is not shown; its behavior is similar to that described for

the v = 1 state in figure 9.

Figure 11, The diagonal e lements Q a of Smith's collision lifetime
n
matrix as a function of the total energy E near the first resonance.

The lowest energy portion of the Q curve is not shown; it is just a

22
smooth curve which increases rapidly with increasing energy. The
QZZ curve has been divided by two prior to plotting. The arrow marks

the opening of the v = 1 state.

Figure 12. The diagonal elements Q@ as a function of the total energy
nn

E near the second resonance. Q33 has been divided by two prior to

plotting; its lowest energy portion is not shown. The arrow marks the

opening of the v = 2 state.

Figure 13. The eigenvalues G of the collision lifetime matrix Q) as a
function of the total energy E near the first resonance. The numbers
mark the eigenvector to which the eigenvalue belongs. The notation
is discussed in the text. The eigenvalue of ©2 is given on the left
ordinate of the figure. The lifetime of the long-lived metastable

state associated with the resonance, as defined by eq. 11, is shown on
the right ordinate. The lowest energy portion of the curves marked

+ = - -
2 and 2 is not shown; these portions are essentially superimposable

down to the opening of the v = 1 state, which is marked by an arrow.

Figure 14. The eigenvalues q of the collision lifetime matrix %as a
function of the total energy E near the second resonance. The number-
ing and axis labeling are as in figure 13. The 3Jr and 3~ curves have
been divided by two before plotting. The arrow marks the energy at

which the v = 2 state opens.
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Figure 15, Fractional contribution to eigenvectors of  as a function
of the total energy E near the first resonance. The numbering scheme
is described in the text. Lines are drawn as follows: 11+ : dashed
line; 21+ : solid line; 11 : dashed-dotted line (short dashes); 21 :
dashed-dotted line (long dashes). The 21 curve has been multiplied
by twenty before plotting. The remaining two eigenvectors 2+ and 2
are not shown because their fractional contributions can be easily
inferred from those shown. This is discussed fully in the text. The

arrow marks the opening of the v = 1 state.

Figure 16. Fractional contributions to the symmetric eigenvectors

of g as a function of the total energy near the second resonance. The
numbering scheme is described in the text. Factors in parentheses in-
dicate the values by which the fractional contributions have been multi-
plied prior to plotting. The arrows mark the energy at which the v = 2
state opens. For all plots, the v = 0 component (1) is indicated by a
solid line; the v = 1 component (2) is indicated by a dashed line; the

v = 2 component (3) is indicated by a dashed-dotted line. (a) Eigen-

- + +
vector 1 ; (b) 2 ; (c) 3 .

Figure 17. Fractional contributions to the anti-symmetric eigen-
vectors of Q as a function of the total energy near the second resonance.
All symbols and line types are as in figure 16. (a) Eigenvector 17; (b)

27: (¢) 37
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II-3 CHARACTERIZATION OF THE LOWEST ENERGY
RESONANCES IN THE COLLINEAR F + H2 SYSTEM
AND ITS ISOTOPIC ANALOGUES
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b
Jack A. Kaye ) and Aron Kuppermann

Arthur Amos Noyes Laboratory of Chemical Physics, c)
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(Received )

Collinear quantum mechanical scattering calculations on the
collinear F + HZ’ HD, DH, and D2 systems have been performed
at energies near the lowe st energy resonance. We have examined
the effect of the resonance on reaction probabilities, individual
scattering matrix element phases and their energy derivatives,
eigenphase shifts, and diagonal elements, eigenvalues, and
eigenvectors of Smith's collision lifetime matrix. The eigen-
values of the collision lifetime matrix provide the most sensitive
means for characterizing these resonances, and are particularly
useful in that they localize the resonance into a single eigenchan-

nel. The lifetimes calculated for the FHD, FH_, FD and FDIH

2 2’
systems are 4.8, 0.33, 0.15, and 0.064 psec, respectively. The
eigenvectors associated with the eigenvalues containing the
resonances consist mainly of the highest participating HF -like
state (v=2 for HF formation, v=3 for DF formation) and smaller
contributions from the hydrogenic molecule, and, in the FDZ
and FDH systems, a lower (v=2) state of DF. The limitations
and advantages of each of the characterization techniques used
were discussed. The differences and similarities between the

effects of the resonance in the F + HZ type systems and in the

H + HZ system are discussed.
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1. INTRODUCTION

The reaction of fluorine atoms with hydrogen molecules and

their various deuterium substituted counterparts
F + HZ(HD’ DZ) —» HF(DF) + H(D) (1)

is one of the best studied reactions in chemistry (1). Numerous experi-
mental studies have been performed on the kinetics and dynamics of
this system (1, 2). Theoretical treatments have utilized nearly all
possible methods, including quasi-classical trajectory calculations
(3), exact quantum mechanical calculations (4, 5) (assuming a collinear
model for the reaction), and approximate three-dimensional quantum
mechanical calculations (6), as well as other methods based on detailed
consideration of the properties of the potential energy surface for the
reaction (7). Interest in this system has also been sparked by the exis-
tence of low-lying excited electronic potential energy surfaces for the
FH_ triatomic system due to the small energy gap (404 cm—i) between

2

the ground (ZP ) and excited (ZP ) states of the fluorine atom (8).

3

Because of the s/riall number of elelc/tzrons (11) in the FHZ system, it

is expected that by ab initio methods a chemically accurate potential

energy surface should be obtainable and thus give confidence that the

results of dynamical treatments of the FHZ system are correct (9).
Among the most important results to come from the collinear quan-

tum mechanical treatments of this reaction are the existence and im-

portance of a low energy dynamical resonance (4, 5). This resonance

is found for all possible H and D substituted analogues (FHZ, FHD, ¥DH,

FDZ), although the strength of the resonance has been shown to vary

dramatically with isotopic substitution (4, 10). The influence of changes

in the potential energy surface on the reaction probabilities has been

explored by Connor, et al. (5a).

Attempts have been made to understand what regions and features

of the potential energy surface are most responsible for the existence
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of the low energy resonance. In particular, Babamov and Kuppermann
(11) have developed a model which accurately predicts the location and
strength of the lowest energy resonance in the collinear F + HZ (HD)
reactions and allows for a simple interpretation of the resonance.
Hayes and Walker have also developed a simple model for these
resonances (12). The calculations of Wyatt and co-workers (5b, 6b), in
which probability density and probability current density are examined

have provided additional insight into these reactions.

The approximate (_jz—conserving) three dimensional quantum mecha-

nical calculations performed on this system suggest that the strong
resonances observed in the collinear quantum mechanical calculations

carry over into the real three dimensional world (6a). Indeed, the

molecular beam experiments of Sparks, et al. (13) suggest experimental

evidence for the existence of the resonance. Because of the greater
strength of the resonance for the reaction

F + HD — FH +D
as predicted by the collinear quantum mechanical calculations, it has
been suggested that that system is most likely to display a strong
resonance in the three dimensional world (14).

In order to fully understand these resonances, it is necessary to
examine more than just the reaction probabilities. Near a resonance,
the phase of certain scattering matrix elements and their energy
derivatives, the eigenphase shifts (arc tangents of the eigenvalues of
the reactance matrix), and the eigenvalues of Smith's (15) collision
lifetime matrix all may undergo rapid and unusual changes with
energy (14, 16, 17). The latter quantity has been shown to be an espec-
ially useful indicator of resonances, as it isolates the resonance in a
single channel, allowing for simple observation and characterization
of the resonance (10). After suitable and simple modification, the

eigenvalues of the collision lifetime matrix are directly related to the

(2)
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lifetime of the long-lived metastable state associated with the resonance.
The eigenvector associated with the eigenvalue of the collision lifetime
matrix which contains the resonance should also provide some insight
as to the nature of the long-lived state.

In this work we characterize the lowest energy resonance in the
collinear F + HZ’ HD, DH, and D2 systems by considering the variation
with energy of various quantities obtained in and from the scattering
calculation - reaction probabilities, scattering matrix element phases
and their energy derivatives, eigenphase shifts, and diagonal elements,
eigenvalues, and eigenvectors of the collision lifetime matrix. This
paper is similar in spirit to the previous paper (18), in which we use
the same quantities to characterize the two lowest energy resonances in
the collinear H + H_ system on the Porter-Karplus surface (19). We

2
will consider at some length the differences between the H3 and I'H

2
systems as seen with the various characterization techniques applied.
The outline of this paper is as follows. In section 2 we briefly
discuss the numerical methods used in the scattering calculations and
in subsequent analysis (for a full discussion of the techniques used to
characterize the resonance, the reader is referred to the previous
paper (18)). In section 3 we present as a series of plots the results

obtained. In section 4 we discuss them, and in section 5 we offer

conclusions.
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II. METHOD OF CALCULATION

The coupled channel calculations from which the reactance (R),
scattering (_§_), and probability (_l'i_) matrices were obtained were per-
formed using the method of Kuppermann (20). These calculations are
extensions of those reported previously by Schatz, Bowman, and
Kuppermann (4). Calculations were performed at a sufficiently dense
energy grid near the resonances that the energy derivative of the :_S_
matrix needed in the calculation of the collision lifetime rnatrix____% s

where

Q = fhsz(d*/dlz) (3)

—— i

can be approximated by a three-point finite difference method. The
same approximation was also used to calculate the energy derivative of
the phases of individual S matrix elements. As a result of this approxi-
mation, ‘__g__was not precisely hermitian (given a unitary S and the exact
derivative dé/dE, it can be shown thatg must be hermitian). To avoid
complex eigenvalues, O was forced to be hermitian by taking the average
of it and its hermitian conjugate.

In constructing plots of the eigenphase shifts and the eigenvalues of
£ as a function of energy, the eigenvalues were assigned to their re-
spective eigenchannels by requiring that the eigenvectors, which vary
slowly with energy (except in certain cases in which two of more
eigenvalues are nearly degenerate) vary continuously. At certain of
the energies near where degeneracies occur, the assignment of a given
eigenvalue to its eigenchannel is difficult due to the inaccuracies in the
calculations and the use of a finite energy spacing between adjacent
calculations. This is particularly true in examining the eigenphase
shifts in FD and FDH (see below). In those cases, we have made
what seemszto be the best possible choice, but recognize the ambiguity
and subjectivity inherent in such a process. In order to make a truly

unambiguous assignment, one might require a much finer grid of ener-
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gies than is necessary to adequately describe any of the other proper-
ties of interest, and we therefore made no further effort to remove this
ambiguity. We will comment on this matter further when we show plots
of certain eigenvectors of g_for the FHD and FHZ systems.

The potential energy surface used in the calculations reported here
is the Muckerman V surface (3d,4), which is in the form of an extended
LEPS (21) surface. Plots of the potential energy surfaces for the
reactions ¥ + HD, F + HZ’ F + DZ, and F + DH in the appropriate mass-
scaled Delves (22) coordinate system are drawn in figure 1 (the reason
for this ordering of the systems will become obvious later on). In
these plots, equipotentials are drawn every 0.3 eV. The zero of
energy is the bottom of the hydrogenic well. The saddle point for
each surface is indicated by an ''X'', and the minimum energy path is
indicated by a dashed line. The effect of isotopic substitution is seen
mainly by consideration of the skew angle in each of the systems.

These angles are 37.29°, 46.44°, 47.75°, and 56.69° for the FHD,
FHZ, FDZ, and FDH systems, respectively. An energy level diagram
for the lowest states of the molecules considered here (HF, DF, HZ,

HD, DZ) is shown in figure 2, along with a plot of the minimum energy

path for the F + H2 reaction.



236
III. RESULTS

The reaction probabilities for the four systems studied here at
energies near the first resonance are shown in figure 3. We display
the three largest reaction probabilities for each system. Different
energy regions are used in each of the figures in order to allow for
sufficient bracketing of the resonance region such that at the high ener-
gy end of each plot, the dynamics should be almost entirely due to
direct (as opposed to resonant) processes. Both total energies (E)

and translational energies (E_) are indicated in the plots. The resonant

0
nature of these collisions at the low energies examined here is clearly
suggested by the figures, most strongly so in the F + HD and least so
in the F + DH systems. Besides the existence of rapid variations of
reaction probability with energy, two features on these plots stand
out. First, the resonance is reflected similarly‘in more than one state-
to-state reaction probability in each system. Nearest the resonance
there is one product state whose formation is most probable (v = 2 in
F +HD and F + HZ collisions, v=3in F + D2 and F + DH collisions;
note from figure 2 that these molecular states are nearly degenerate),
but the product state with its quantum number reduced by one from the
most probable product state is also appreciably populated. Second,
with the exception of F + HD, in all systems studied, in the low energy
region examined, the probability of formation of the product state whose
quantum number is one greater than that populated predominantly at the
resonance becomes appreciable.

Argand diagrams (14, 16) for certain of the S matrix elements for

these systems are shown in figures 4-7. In these diagrams, the S

matrix element is plotted in the complex plane. Elements at adjacent
energies are connected, so that a single continuous curve is generated
for each matrix element. Away from a resonance, these figures are
normally clockwise circles or spirals. Near a resonance, this charac-

teristic shape is not observed; the exact appearance of the diagram
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varies from resonance to resonance. Possible appearances of these
diagrams near a resonance and their classification have been discussed
in the previous paper (18). In the limit of an extremely strong reso-
nance, the Argand diagram is a counterclockwise «circle.

In figure 4 we present Argand diagrams for S & and SOIR for the

02
F + HD reaction. The strength of the resonance in this system is seen
by the form of the Argand diagam, which is almost precisely that of a
counterclockwise circle. The similarity between the two Argand dia-
grams is obvious. The Argand diagram for SOZR for the F + H2 reac-
tion is shown in figure 5. In this case, the resonance is substantially
weaker, as evidenced by the formation of only a small counterclockwise
loop instead of the large counterclockwise <circle seen in the FF + HD
reaction. Argand diagrams for 503R and SOZR fqr the ¥ + D2 reaction
are shown in figure 6. The relative weakness of the resonance in this
system is seen in that no region of counterclockwise sense is seen.
Instead, the resonance is reflected by the region from 0.208 eV to
0.216 eV (measured with respect to the bottom of the hydrogenic well),
in which the Argand diagram is essentially linear. In the weakest
resonance studied, that in the F + DH reaction, the Argand diagram for
SOBR (ficure 7a) has a clockwise sense everywhere. In the absence of
the resonance, one might expect the Argand diagram to have much more
the form of a spiral, such as that seen for 504R in figure 7b. Recall
from figure 3d that the probability of reaction to form DF(v=4) increases
monotonically with energy, and can thus be taken as a transition
showing no effects of the resonance.

In order to allow us to focus solely on the phases (and not be distrac-
ted by the probabilities, as one might be in considering the Argand
diagrams), we plot the phase ¢0v'R of the matrix element SOV' as a

function of energy in figure 8 (v' is the quantum number of the HF or

DF molecule formed in the reaction). In this plot, and in most of those
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that follow, we will restrict our attention to energies no more than
50 meV above the zero-point energy of the hydrogenic molecule. This
energy is sufficiently large that the resonance can be considered to be
entirely contained within it. The phase of an S matrix element is only
determined to within an additive constant of 2w, and hence integer mul-
tiples of 2m can be added to or subtracted from a given C#OV'R to insure
continuity of the phase vs. energy curve. The zero of phase in each of
these plots is arbitrary, chosen only for simplicity of plotting.

The phase vs. energy curves show quite clearly the effect of the
resonance in more than one product state. In fact, the similarity be-
tween these curves for a given system for all but the highest product
state is quite remarkable, especially when one considers that the proba-
bilities of populating the various product states may differ by a substan-
tial factor. The highest product state, DF(v = 4), shown for the F + D2
and ¥ + DH systems, has an appreciably different phase vs. energy
curve than that for the other product states. Similar behavior was
seen in the probability vs. energy curves (figure 3).

As discussed in the previous paper, a simple estimate of the life-
time of the long-lived metastable state which must be associated with

the resonance is the delay time

TovtR = h(d <POV]?/dE) (4)
In the single channel case, the delay time of a particle due to the exis-
tence of a potential is given by a similar expression with the phase shift
replacing the phase of the §__matrix element. Because of the similarity

of the phase vs. energy curves shown in figure 8, itis expected that

each of the appropriate delay times for a given system should be
essentially the same. We plot these delay times in figure 9 only for

those transitions having the largest probability at the resonance. We do
also plot the delay time TO4R for the F + DH system to show how the

R
delay times will differ when the dynamics are affected (7"03 ) and
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and unaffected ( 704R) by the resonance.

Two features are evident in these plots. First, all delay times
shown, except TO4R for the F + DH system, have maxima. The maxi-
mum is largest and narrowest for F + HD, and is smallest and broadest
for ¥ + DH. The delay time becomes positive only for ¥ + HD and
F+ HZ. Since it is just proportional to the energy derivative of the
phase of the corresponding gmatrix element, it is clear that it can be
positive only when the phase vs. energy curve has a positive slope, as
was seen only in the ¥ + HD and ¥ + H systems in figure 8. Second, at
energies sufficiently past the resonanc%e (measured by the maximum in
the delay time vs. energy curve), the delay time is essentially indepen-

dent of energy. This suggests that an improved value for the delay time

Tt @ WEY be calculated by subtracting its value at the right hand
as . T . ST
(asymptotic) end of the plot ( Tov' ) from its maximum valae { 7‘0\?' )
R max as
Tov' TOV' = Ty (5)
Results of this subtraction are given in Table 1. The improved delay

R
times ?O , are seen to decrease in the order FHD >>FH2> FD2>
v

FDH, with an overall range of a factor of 100. This does provide a
reasonable estimate for the lifetime of the metastable state associated
with the resonance. e will consider the question of the lifetime again
when we examine the eigenvalues of the collision lifetime matrix.

We next examine the eigenphase shifts as a function of energy, and
these are plotted in figure 10. Away from resonances, the eigenphase
shifts should decrease monotonically with increasing energy; near a
resonance, they may either increase with energy or just decrease
with energy less rapidly than would otherwise be expected. As the
eigemphase shifts are determined to within an additive value of m, inte-
ger multiples of 1 may be added to or subtracted from the eigenphase
shifts to generate smooth eigenphase shift vs. energy curves. The

eigenphase shift origins (each has its own) were chosen both to most
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clearly display the largest possible number of avoided crossings and
for convenience in plotting.

The resonance is seen to be reflected in the eigenphase shifts for
all systems. For FHD, FHZ, and FDZ, regions in which the eigenphase
shifts increase with energy are seen. These regions are not limited to
a single eigenvalue as determined by the method outlined in section 2.
Two other features of these figures merit attention. First, at low
energies one or more of the eigenphase shifts vary unusually rapidly
with energy. From consideration of the eigenvectors, one can show that
these are associated with the states whose energies are closest to the
energy shown. Hence, one of these curves belongs to the hydrogenic

molecule; when another such curve exists, as in FHZ and FD it is

2’
shown to belong to the highest energy HF or DF state. Second, the
eigenphase shift vs. energy curves display a number of crossings and/
or avoided crossings. The difficulty sometimes involved in determining
whether there is a real or an avoided crossing has been discussed
earlier. An important fact is that these avoided crossings can occur

at fairly large energies, where the resonance is essentially over.

Thus, the avoided crossings need not be a manifestation of the reso-
nance.

We next turn our attention to various properties (diagonal elements,
eigenvalues, and eigenvectors) of the collision lifetime matrix Q. In
figure 11, we plot the diagonal elements ij as a function of energy.
These may be thought of as being the average delay time in a collision
described by the wave function of the state associated with the j
column of the S matrix. VWhen ij is positive and sufficiently large that
the inequality

2E,Q;. /A P (6)
is satisfied, where E. isJ tlie initial relative translational energy in the

jth channel, the scattering process may be thought of as being resocnant.
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In all but the FDH system, at least one Q'j becomes positive (three
become positive for the FHD case). In thJe FDH case one of the Q.j
gets very close to zero, and the fact that its value at the high enelj'gy
end of the graph is substantially smaller than zero suggests that some
subtraction such as that performed in eq. 5 could be performed here to
define an improved Q... We will defer such a subtraction till later, when
we consider the eiger;]\‘z}'alues Hee of %. In Table 2, we list the largest
value of Q.j, called Q”ma.x, obtained for each system and its associa-
ted ennszrgy'J in order tgjcalculate the left hand side of the inequality in
(6). From the data in table 2, it is clear that the inequality in eq. 6

is satisfied for the FHD, FHZ, and FDZ collisions. For the FDH sys-

max
tem, the inequality obviously cannot be satisfied because Q.. is

negative; nevertheless, the closeness of the left _hand side cJ)i' the inequali~
ty in 6 to zero suggests that although a resonant picture of the scatter-
ing is not entirely appropriate, it may not be overly inappropriate,
either. Hence, in our analysis of the eigenvalues and eigenvectors of
g , we will examine all four isotopic systems.

We next examine the eigenvalues 9, ofi_)_ , plotting them as a func-
tion of energy. For all four systems, one and only one eigenvalue is
seen to become positive. The maximum value this eigenvalue Uy takes

is seen to be substantially greater than the ijm indicated in table 2
for the FHD, FDZ, and FDH systems. For the FHZ syst;m, the values
are fairly close. As in the case of the delay times TOV' , at energies
sufficiently larger than that of the center of the resonance (again meas-
ured by the position of the peak in the eigenvalue vs. energy curve), the
eigenvalue . is nearly independent of energy (r will be used to indicate

only the eigenvalue containing the resonance). Thus, we define the life-

time t_ by the expression
e as (7)

| tn_(E) = q_n_(.E) =i

' a " - i - - . - - - - -
where 9 ® is the asymptotic value of Yy This lifetime is indicated in
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the right hand ordinates of figure 12. The maximum wvalue of t_n(E) is
called tres. In the ensuing discussion, we will tabulate the lifetimes
and the resonance positions and widths, as well as commment on the
relationship between the eigenvalues 9, and the diagonal elements ij.
Finally, we consider the orthonormal eigenvectors Iin of (% They
are complex, but we will only be concerned with the square of the
absolute values of their components lUinI 2. These absolute values
will be referred to as the ''fractional compositions'' of the eigen~
vectors. We will represent these eigenvectors by plotting as a function
of energy the coefficients ‘Uin[ < associated with the nth eigenvector and
the molecular state i. In Table 3 we give the correspondence between
the values of i and the molecular states for each of the four systems
considered. We will restrict our attention primarily to the eigenvectors
associated with the eigenvalue 9 which contains‘the resonance. Other
eigenvectors will be examined when deemed appropriate.
The first of these is for a4 in the FHD system, which is shown in
figure 13. This is a particularly complicated plot. Two points are
worth mentioning. First, away from the resonance, the eigenvector is
composed almost entirely of component 4, while at the center of the
resonance it is composed of almost equal parts of component 1, with
much smaller contributions from components 2 and 3. Second, at ener-
gies slightly above and below that at the center of the resonance, appreci-
able amounts of components 2 and 3 mix in to the eigenvector. Since
the eigenvectors are normalized
p3 A (8)
1=1 in
the increase in the amount of components 2 and 3 is compensated for by
a reduction in the amount of components 1 and 4. We will discuss the
origin of this complicated behavior in the ensuing discussion section.

In figure 14 we plot two eigenvectors of Q for the FHZ system.
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The first of these (upper panel), eigenvector 4, corresponds to the
eigenvalue -1 containing the resonance. Near the resonance, the frac-
tional compositions change only slightly with energy, as a small amount
of component 1 mixes in to the eigenvector, which at lower energies
was predominantly made up of component 4. At energies substantially
past the resonance ( more than 0.01 ev), there is a brief (~0.03 eV)
energy region in which a large amount of component 3 mixes in to the
eigenvector. No such complicated structure is observed in figure 14b,
in which we plot the fractional components of the eigenvector which is
made up principally of component 1. It is seen that near the resonance,
a small contribution from component 1 is seen, and that at higher
energies, the fractional compositions are essentially independent of
energy. Of particular interest is the fact that there is no contribution
from component 3, which couples strongly in to tine eigenvector displayed
in the upper panel of figure 14. We will comment on the significance of
this later.

Fractional compositions of the eigenvector belonging to the eigen-
value q_ containing the resonance in the FDZ system are shown in
figure ?5. Contributions from three components : 1, 4, and 5 are
observed. At energies below the resonance, components 4 and 5 make
up essentially all the eigenvector, while component { only becomes ap-
preciable near the resonance energy. The shift in the relative contribu-
tions of components 4 and 5 at low energies appears to be unrelated to
the resonance. Since it is this shift, combined with the increasing
growth of component 1, which gives rise to the maximum in the contri-
bution of component 5 below the resonance, this maximum is not a sole
consequence of the resonance.

In figure 16 we show fractional compositions of three eigenvectors of
Qin the FDH system. The first of these (top panel in figure 16) is for
the eigenvalue qIT containing the resonance; the others are for the sec-

ond lowest {center panel) and third lowest (bottom panel) curves for
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FDH in figure 12 . The lowest curve is the one marked as being divi-
ded by two and which is composed almost entirely of component 6.
The most important feature of these plots is the smooth behavior of
the fractional components with energy. At energies near where the
resonance is centered, no unusual or strong dependence on energy of
the fractional compositions occurs. At the lowest energies considered,
the relative contributions of components 4 and 5 do vary with energy,
but as in the FDZ case, that need not be related to the resonance .
More like ly associated with the resonance is the growth of the contri-
bution from component 1 into the eigenvector in figure 16a, as in other
systems, the eigenvector belonging to the eigenvalue containing the
resonance always mixes in some component 1 near the resonance.

Because of inaccuracies in the scattering calculations and the ap-
proximation of the energy derivative of 5, the fractional compositions
of the eigenvectors of Q occasionally scatter somewhat; the curves

drawn then represent a reasonable fit to the compositions determined.
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IV. DISCUSSION

In this section we will do three things. First, we will discuss the
differences between the resonance in each of the isotopic systems as
seen from the results presented earlier, particularly the eigenvalues
and eigenvectors ofg . Second, we will review the information ob-
tained from the various characterization techniques and attempt to draw
conclusions about their utility. Third, we will compare the way in
which the first two resonances in the H + HZ system on the Porter-
Karplus surface (described in detail in the previous paper) and the
resonances in the ¥ + HD, HZ, DZ, and DH systems examined here
manifest themselves in the different characterization techniques used.

A. COMPARISON OF THE RESONANCES IN THE ISOTOPIC SYSTEMS

From the different characterization techniques used, it is quite clear
that the strength of the resonance decreases in the order FHD>») FH2>
FD2> FDH. The best measure of the strength of the resonance appears
to be the lifetime defined in eq. 7. Since this lifetime is obtained from
the eigenvalues of the collision lifetime matrix __(;'2__, the importance of
that quantity in allowing one to obtain a good description of the resonance
is seen. In Table 4 we list a number of useful quantities about the
resonance in the different systems, including the resonance position
as determined from the maximum in the plot of the eigenvalues q vs-
the energy, the lifetime tres, the width (FWHM) of the peak in the plot
of q V8. energy, and the maximum in the plot of the state-to-state
reaction probability vs. energy (for the highest product state participa-
ting in the resonance: v = 2 for HF products, v = 3 for DF products).

There are a number of interesting points to be made about the data
in table 4. First, the lifetimes t7€® can vary substantially; that for
FHD is some 75 times greater than that for FDH. This provides an
estimate of the useful dynamic range of this quantity as an indicator
of resonances. Assuming that the resonance in FHD is about as strong

a resonance as one is likely to see, one could reasonably expect to be
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able to see resonances whose strengths differ by more than a factor of
100, as the FDH resonance does not appear to be at the lower limit of
detection of the method. For analysis of weak resonances, however,
caution must be used, lest small numerical inaccuracies in either the
scattering calculations or the approximation of the derivatives
dSi_/dE produce noise which could obscure the small maximum.

Second, the positions of the maxima in the plots of q, Vs E in
figure 12 are not the same as those of the maxima in the plots of reac-
tion probability as a function of the energy in figure 3. To make this
point more clearly, in figure 17 we replot the state-to-state reaction
probabilities into v = 2 for HF product and v = 3 for DF product in a
manner similar to that in which the eigenvalues q Wwere plotted in
figure 12. The arrows in figure 17 point to the energy at which the
resonance eigenvalue 1 has its maximum in figu're 12. It is clear that
as one moves in the direction of decreasing resonance strength, the
energy difference between these two maxima increases. In table 4
we compare this energy difference to the resonance width. Both
quantities increase -as the resonance strength decreases, but the ener-
gy separation between the maxima increases more rapidly, so their
ratio, listed in the last column of table 4, increases substantially
as the resonance strength decreases. The value of this ratio for
FDH should be examined noting that the position of the maximum in the
probability plot for this system is probably determined not by the
resonance but by a direct process occurring at higher energies than
seen in figure 17 (a feeling for the dynamics at higher energies may
be obtained from the probability vs. energy plot in figure 3).

We would next like to consider the structure of the plots of the
eigenvalues g asa function of energy in figure 12. In particular, we
are interested in the strong similarity between the figures for each of
the systems. Tais similarity is seen in various ways : only one eigen-

value q becomes positive, there are always one (in FHD) or two (in
™
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FHZ, FDZ’ and FDH) eigenvalues which are substantially smaller than
the others at low energies, but which increase rapidly with energy,
and there are always two or more eigenvalues which are essentially
independent of energy. Before considering this similarity, it is
worthwhile to reexamine the plots of the diagonal elements Q.. as a
function of energy, as these allow us to clearly assign molecular
states to each. In addition, any differences between the diagonal ele-
ment ij and the eigenvalues q, must be due to the diagonalization and
can thus be thought of as the effect of taking the right linear combination
of molecular states to get a resonance eigenstate.

The greatest difference between diagonal elements Q.. and eigen-
values qn occurs for FHD. In figure 11, we see that ’cwoJJdiagonal ele-
ments, Q, 6, and Q.44, become large and positive ?‘t the resonance, while

11
a third, Q33, becomes positive but stays quite small. Q__ is more or

2

less independent of energy; it appears to have a small inc?rease at the
resonance energy, but the change is probably within the numerical noise
associated with all the calculations performed. The differences be-
tween this plot and that of the eigenvalues 9, for this system suggest
that the eigenvector associated with the resonance should contain sub-
stantial amounts of components 1 and 4 and a smaller amount of compo-
nent 3, which is indeed what was seen in figure 13. We will return to a
discussion of the origin of the large contributions from components 2
and 3 at energies above and below the resonance shortly.

The differences between the diagonal elements ij and eigenvalues
q are much smaller for FHZ. The major difference is the existence
of a shouider in the Q“ curve near 0.283 eV, while the similar curve
in figure 12 for the eigenvalues increases monotonically. This, coupled
with the energy independence of- QZZ and Q33 and the monotonic in-
crease of Q55 (and the fact that its value is substantially smaller than

that of the other diagonal elements), suggests that at the resonance,

components 1 and 4 should mix together. Again, this is precisely
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what was seen in figure 14. We will comment on the large contribution
of component 3 to the resonance eigenvector shortly.

The FDZ curves differ in a manner similar to that of the FHZ
curves. One additional difference is that Q44 has a small (~0.01 psec)
local maximum which is absent in the eigenvalue plot. We would expect
the resonance eigenvector to mix in some of component 1 and a smaller
amount of compaonent 4 at the resonance. From figure 15 we see that
there is a small contribution of component 1 to the resonance eigenvec-
tor, but that component 4 has mixed in substantially to the eigenvector
at energies below the resonance. The most reasonable explanation for
this mixing is a large inelastic transition probability at low energies
between the states DF(v = 2) and DF(v = 3), which correspond to compo-
nents 4 and 5, respectively. This is indeed the case, as may be seen
from figure 18, in which we plot the transition probability P32V of the
process

D + DF(v=3) — D + DF(v = 2) (8)
as a function of energy in the energy region considered here. The fact

that the inelastic probability P is more than a factor of ten greater

32
than that of any other inelastic transition probability (multi-quantum
probabilities are substantially smaller than the single quantum ones)
suggests that away from the resonance no appreciable coupling between
components 2, 3, and 6, which correspond to the molecular states
DF(v = 0, 1, and 4) respectively, should be observed in the eigenvectors
of_g'P , which is what is observed.

The FDH curves also differ from each other similarly to those of

the FDZ system, although the maxima in Q1 and Q44 become more

1
pronounced than they do for FDZ. The appearance of the curves for Qii’

Q and Q55 and the existence of only one large peak in the plots of the

44’

eigenvalues q_ suggest that the eigenvectors of Q containing compo-
n =

nents 1, 4, and 5 should be strongly mixed (this is observed - see

figure 16), while those containing components 2, 3, and 6 should con-
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sist predominantly of one component. Examination of the eigenvectors
confirms this hypothesis. As in the FD2 case, the mixing of compo-
nents 4 and 5 in the eigenvectors of g shown can be thought of as being

a consequence of the large and rapidly varying P in this energy

region (0.211 at E = 0.2334 eV, 0.0003 at E = 0.3276 eV, and 0.303 at
E = 0.2666 eV). P21V is also fairly large (~0.10), but changes only
by a small amount in the energy range considered (0.106 at E = 0.2334
eV and 0.074 at E = 0.2829 eV). PlOV is small (less than 0.001) in

this energy range, while P becomes moderately large (~0.06).

43
We will now consider the origin of the rapid and somewhat irregular
variation of the resonance eigenvectors in FHD and FHZ seen in figures
13 and 14. The first thing to notice about this variation is that it occurs
away from the center of the resonance. In FHD it occurs at 2 meV both
above and below the center of the resonance, while in FH2 it occurs some
12 meV above the center of the resonance. This variation can be cor-
related with the crossing of the eigenvalue curves in figure 12, as both
the eigenvector crossings and eigenvector variation occur at the same
energy. Itis a bit difficult to discern this for FHD from figure 12 be-
cause in the scale of the figure it is impossible to resolve the three
nearly identical separate eigenvalue curves away from the resonance
(recall that the horizontal line in figure 12 represents two eigenvalues).

It is not immediately clear why in the FD_ case, no rapid variation is

2
seen from the crossings near 0.225 eV or why in the FH2 case only
growth of component 3 is seen. It may be that when the different states
are not directly coupled by inelastic processes, no incorporation of the
component whose eigenvalue (or more precisely, its diagonal element)
is being crossed takes place.

As mentioned in section 2, to obtain an adequate description of the
eigenvectors of _g_(or of the _Bsmatrix) near where the eigenvalues

either cross or undergo an avoided crossing , one might need a sub-

stantially finer energy grid than one needs for an adequate description
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of the eigenvalues qn. Since, in general, these regions of rapid varia-~
tion usually occur away from the center of the resonance, they are
not of fundamental importance. While further examination of these re-
gions of rapid variation of the eigenfunctions of Q might ®nable one to
unambiguously assign eigenvectors to eigenvalues, it would appear to
provide essentially no new information about the dynamics at the reso-

nance.

B. COMPARISON OF DIFFERENT CHARACTERIZATION TECHNIQUES

The existence of a resonance in the low energy dynamics of these
systems is seen in all of the characterization techniques employed.
These techniques - plots of probabilities, scattering matrix element
phases and their derivatives (delay times), eigenphase shifts, and
eigenvalues of the collision lifetime matrix as a function of energy ~ all
reflect the resonance in varying amounts. The quantities most sensitive
to the resonance, the eigenvalues of the collision lifetime matrix, not
only allow one to recognize weak resonances, but they localize the reso-
nance almost completely into one channel, allowing for unambiguous de-
termination of the resonance energy, width, strength (as measured by
the lifetime tres, which is a quantity of interest in its own right), and
character (obtainable from the eigenvector L_I_n associated with the
eigenvalue q. which contains the resonance).

In the cases of weak resonances, where indirect processes contri-
bute substantially to the overall dynamics, the best characterization
technique will be that which best subtracts the effects of the direct pro-
cesses from the overall dynamics, leaving one only with the effects of
the resonant processes. When these subtractions are successfully per-
formed, the quantities of interest will either increase with energy
(such as S matrix element phases and eigenphase shifts) or become
positive (such as delay times, diagonal elements and eigenvalues of g__).

The success of the various characterization techniques is summarized
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in Table 5, in which we indicate whether a quantity does (represented
ty the word '""YES'"') or does not (represented by the word '"NO'') satis-
fy the above conditions. For the state-to-state quantities, the imatri_x
element phases and the delay times, we consider only the transition to
the highest participating state : v = 2 for HF formation, v = 3 for DF
formation. Using the data in Table 5, we see that the sensitivity of the
characterization techniques decreases in the order eigenvalues a, >

R
diagonal elements ij )eigenphase shifts Jn > delay times ’TO A =

g matrix element phases dDOv'R'

We would like to make comments concerning two of these charac-
terization techniques. First, we do not recommendthe use of the
diaganal elements ij for anything other than interpretive purposes.
Once one has gone so far as to calculate Q, one I.nay as well diagonalize
it, and we have seen both here and in the previous paper that there may
be appreciable differences between ij and the eigenvalues q,° We
have shown here that consideration of the differences between plots of
qa and ij as a function of energy can be a useful exercise. Second, we
wish to point out that the eigenphase shifts, which are a reasonably sen-
sitive detector of resonances (two eigenphase shifts for FDZ do increase
with energy near the resonance) are suggestive of some method by which
different curves might be connected to give one ''resonant eigenphase
shift.''" This would involve taking some linear combination of the eigen-
vectors of E_{-a.nd defining new pseudo-eigenvalues which cross from
what is now one eigenphase shift curve to another, removing the avoided
crossing in the process. If such a rearrangement were applied in the
FHD case, the change in the eigenphase shift across the resonance
would be roughly 2.8, which is fairly close to the maximum value of
which it might take.

C. COMPARISON WITH THE RESONANCES IN H + &Z

On the basis of our characterization of the resonances in the F +



252
HD, HZ, DZ, and DH systems and in the H + H2 system in the previous
paper (18), we can make some comments about the differences between
these resonances. Differences between them are not unexpected, given
the differences between the systems. F + HZ and its isotopic counter-
parts are asymmetric systems (end atoms different), while H + HZ is
symmetric. This symmetry difference alone has important implications
in that in H + H2 the eigenvectors of the i and the:C_E matrices will be
decomposed into symmetric and anti-symmetric sets. It is known that
the resonance must be reflected in the symmetric eigenvectors.

A fundamental difference between the resonances may be seen solely
by considering the reaction probabilities (figures 1 and 2 of the previous
paer, figure 3 here). InH + HZ, at the resonance each of the state-to-
state reaction probabilities is quite different. For example, at the

R R
second resonance P goes through a maximumgwhile P goes through

00 01
a minimum. In the F + HZ type collisions, the resonance is manifested
similarly in nearly all reaction probabilities (except PO3 in F + H.Z
R
and P in F + D‘2 and F + DH). These differences are manifested in

04

the Argand diagrams also. Since each transition probability varies dif-
ferently with energy near the resonance in the H + HZ collision, the
Argand diagrams must necessarily be different. Indeed, both loop and
half-moon Argand diagrams may be seen at the two resonances. In the
F+ I—I2 collisions, different Argand diagrams for transitions participa-
ting in the resonance appear quite similar (see figures 4 and 6).

The two collisions differ substantially in the appearance of their
respective curves of the diagonal elements ij as a function of energy.
For H+ H_, two curves have substantial maxima at the resonance ener-

2

gy; at the second resonance, both Qli

is the only case observed so far in which more than one diagonal ele-

and sz become positive. This

ment of Q becomes positive. The curves of the eigenvalues qn vs. E
are more similar, as there is only one eigenvalue which becomes posi-

tive in all cases. Also, there are two eigenvalues Do which are much



253

smaller than the others in all cases except for F + HD. In H + H2
these are the symmetric and anti-symmetric linear combinations of
the newly opened state, while in the ¥ + H2 type collisions they are the
hydrogenic ground state and the highest state of HF or DF. The reason
why only one such eigenvalue is seen in the FHD curve at low energies
is that HF (v = 3) opens up at a slightly higher energy (0.2863 eV) than
considered in figure 12.

The differences between the Q . plots and the similarity between the
Q, plots for the H + HZ and F + HZJJtype collisions imply that the eigen-
vectors of %, especially those associated with the resonance, must be
different for the two types of collisions. This is particularly true for
eigenvector 1+ in the second resonance for the H + HZ collision, in
which there are nearly equal contributions from components 1 and 2
near the resonance. This is the only case in which a resonance eigen-
vector contains nearly equivalent amounts of two components all through
the resonance.

Given the substantial differences between the H + HZ and F + HZ
type systems, none of the sorts of differences observed in Argand dia-
grams, eigenphase shifts, and diagonal elements ij and eigenvalues
a, is surprising. In fact, the collision lifetime matrix analysis suggests
substantial differences between the first two resonances for H + HZ.
A valuable point is to be learned from this however: resonances arising
from seemingly different physical processes may be manifested in sub-
stantially different ways when viewed by an appropriate characterization
technique, such as the variation of the eigenvalues and eigenvectors of
Q with energy. Thus, it may prove possible later to establish a cor-
relation between the characterization of resonances and their underlying
dynamical features such that one might discern the latter from the
former. Such a method would be complementary to the approach

adopted by Babamov and Kuppermann (11) and Hayes and Walker (12)



254
for F + HZ type collisions and by Babamov and Marcus (23) for light

atom transfer reactions. In this work, they are able to simply describe
the resonance by viewing the dynamics in the right coordinate system
wherein a simple property such as a one-dimensional eigenvalue or

phase shift can provide the necessary information about the resonance.
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V. CONCLUSIONS

We have performed detailed coupled«channel » quantum mechanical
reactive scattering calculations on the collinear F + HD, HZ, DZ, and
DH reactions, and have characterized the low energy resonances by
study of the variation of reaction probabilities, gmatrix element
phases, delay times, eigenphase shifts, and diagonal elements, eigen~
values, and eigenvectors of the collision lifetime matrix. The reso-
nance is seen to decrease in strength in the order FHD ) FH2> FD2>
FDH. Using the most sensitive characterization technique, the varia-
tion of the eigenvalues of the collision lifetime matrix with energy, we
have shown that the resonance energy is not the same as the energy at
which the related probability vs. energy curves have their maxima.

The difference between these energies increases as the resonance
weakens, and this increase is more rapid than the increase in the width
of the resonance as it weakens.

By considering the variation with energy of the eigenvector of j*)
containing the resonance, we have shown that the wave function best
describing the long-~lived state associated with the resonance consists
mainly of the highest participating HF or DF state, with a smaller con-~
tribution from the hydrogenic molecule. Lower energy DF states con-
tribute in the F + D2 and F + DH systems. The FHD system is the only
one in which the eigenvector varies rapidly with energy through the
resonances; in the other systems the change is more gradual. In two
systems (F + HD, F + HZ) instances in which the fractional compositions
of the eigenvector of__(% containing the resonance vary rapidly and irregu-
larly with energy away from the resonance were observed. This varia-
tion is believed to occur when two eigenvalues of gbecome nearly de-
generate and the eigenvalue vs. energy curves cross. We argue that
such crossings have little dynamical significance.

The most sensitive quantities for use in detecting resonances are
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the eigenvalues q_ - The fact that only one eigenvalue 4. becomes posi-
tive means that this method localizes the resonance in a single channel.
The importance of looking at the eigenvalue qn rather than the diagonal
elements Q ., may be seen by considering the case of the F + DH col-
lision, in WJliiCh no ij is positive, but one eigenvalue q, is positive.
The variation of the eigenphase shifts with energy is a useful quantity,
as evidenced by its ability to clearly show the resonance in the ¥ + D
system. This technique has the disadvantage of not localizing the
resonance into a single channel, unlike the examination of the eigen-
values q - The delay time provides a useful feel for the lifetime of
the resonance, and has the advantage of requiring the use of only a
single scattering matrix element, rather than the whole matrix, as is
needed for the evaluation of the collision lifetime matrix.

The resonance in the F + I—I2 type systems is quite different from
either of the first two resonances in the H + HZ system. These dif-
ferences are reflected in the various characterization techniques em-
ployed, and suggest that it might be possible to develop a metkod by
which one could obtain - information about the underlying dynamical
features responsible for the resonance from the results of the
characterization techniques used. We offer no suggestions as to

what such a method might be.
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Table 1.Maximum.Asymptotic, and Improved Delay Times

et max a) as b) R «¢)
System Transition TOV' TOV' =
F + HD 0 =y 2 223 -0.08 2.31%
Fr &k H2 0 = 2 0.060 -0.060 0.120
F+D2 0 = 3 -0.014 -0.077 0.063
F + DH 0 — 3 -0.018 -0.040 0.022

R
a) Tov'max is the maximum value of the delay time TOV‘ in psec

=
b) TO\;' g is the value of the delay time 7 . = 50 meV,

0! at an energy E

0
and is in psec.

R
c) "—TO , is defined by eq. 5 in the text and is given in psec.
v
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Table 2. Maximum diagonal elements Q'j and related quantities.
J

System j Product Q..max/psec E. " /ev L.a)
FHD 4 HF(v=2) 2,34 0.4079 2894
FHZ 4 HF (v=2) 0.254 0.4432 342

FDZ 5 DF(v=3) 0.072 0.3590 78.6
FDH 5 DIF(v=3) -0.001 0.3965 -1.2

max max

a)Lj:ZE, Q.. Isa!
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Table 3. Molecular State Labels

System

i FHD FHZ FDZ FDH

| HD(v=0) Hz(v=0) Dz(v=O) HD(v=0)
2 HF(v=0) HFE(v=0) DF(v=0) DF (v=0)
3 HF (v=1) HF (v=1) DF(v=1) DF(v=1)
4 HFE(v=2) HFE(v=2) DF(v=2) DF(v=2)
5 xa) HF(v=3) DF(v=3) DF(v=3)
6 e %™ DF(v=4) DF (v=4)

a) Energy of state is sufficiently high that it does not contribute to

the dynamics at the energies of interest.
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Table 5. Summary of Effectiveness of Characterization Techniques.

R a) R b) c) d) e)
t

e ctDOV' TOV‘ J_; ij 9n

FHD YES YES YES YES YES
FHZ YES YES YES YES YES
FD2 NO NO YES YES YES
FDH NO NO NO NO YES

a) phase of scattering matrix element; v' = 2 for HF formation, v' = 3

for DF formation.
b) delay time using above phase from previous column
c) eigenphase shift
d) diagonal element of g

e) eigenvalue of 9_
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FIGURE CAPTIONS

Figure 1. Contour plot of the potential energy surfaces for the F + HD

(a), F + Hz(b), F + Dz(c), and F + DH(d) reactions plotted in Delves

mass-scaled coordinate system. Equipotentials are drawn every 0.3

eV. The zero of energy is at the bottom of the hydrogenic well. The
11t

saddle point is marked with an '"'x'"'. The dashed line marks the mini-

mum energy path.

Figure 2. Energy level diagram for the molecular states considered in
this work. The zero of energy is at the bottom of the hydrogenic well.
The energy levels are shown on either side of a plot of the potential
energy V along the minimum energy path as a function of the reaction
coordinate s (which has its zero at the saddle point and is measured

along the minimum energy path) in the FHZ system.

Figure 3. State-to-state reaction probabilities for various reactions
as indicated. Numbers in parentheses preceded by a multiplication
sign (x) indicate the values by which the reaction probabilities for

that transition have been multiplied prior to plotting. Vertical arrows
in the F + HD and F + I—I2 plots mark the energies of the v = 3 state

of HF. The lower abscissa shows the value of the translational energy
EO: the upper abscissa shows the value of the total energy E (sum of
the translational energy and the zero-point energy of the hydrogenic
molecule). a) F +HD; b) F + HZ; c) F + DZ; d) ¥ + DH.

R
02 01
(b) for the collinear reaction F + HD - FH + D with the total energy

R
Figure 4. Argand diagrams for the matrix elements S (a) and S

E as the indicated parameter. Arrows mark the sense of the curve.

R .
Figure 5. Argand diagram for the matrix element Soz for the collinear
reaction F + H2 ~—3 FH + H with the total energy E as the indicated
parameter. Arrows indicate the direction of the curve with increasing

energy.
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Figure 6. Argand diagram for the matrix elements 503R (a) and SOZR

(b) for the collinear reaction F + D2 -—3 FD+ D with the total energy
E as the indicated parameter. Arrows indicate the direction of the
curve with increasing energy.

R
03 04
(b) for the collinear reaction F + DH —3 FD + H with the total energy

; R
Figure 7. Argand diagram for the matrix elements S (a) and S
E as the indicated parameter. Arrows indicate the direction of the

curve with increasing energy.

. R R
Figure 8. Phases ¢OV' of the scattering matrix elements S ,° for

the collinear reactions F + HD(v=0) «—9$ FH(v'=0,1,2) + D, F f\;IZ(v:O)
— FH(v'=1,2) +H, F + DZ(v:O) -—3 FD(v'=2,3,4) + D, and F + DH(v=0)
—) FD(v'=2, 3,4) + H as a function of the total energy E with respect to
the bottom of the isolated . hydrogenic molecule \-Nell (lower abscissa)

and of the initial reagent relative translational energy E_ (upper abscis-

0
sa). Phases are determined only modulo 27; the zero for each phase was
chosen to give an ordinate for each plot reasonably symmetric about

zero. Note that the upper abscissa is common to all panels in the figure.

: R
Figure 9. Delay times TOV' for the collinear reactions ¥ + HD(v=0)

— FH(v'=2) + D, F + H,(v=0) =3 FH(v'=2) + H, F + D,(v=0) — FD(v'=3)

+ D, and F + DH(v=0) — FD(v'=3,4) + H as a function c2>f the total
energy E with respect to the bottom of the isolated hydrogenic molecule
well (lower abscissas) and of the initial reagent relative translational
energy EO (upper abscissas). Note that the upper abscissa is common
to all panels. Because .of small numei*ica.l inaccuracies in the scatter-
ing calculations, the actual values of the delay times are scattered a bit

about the curve shown, which is a smooth curve drawn visually to

reasonably well represent the data.

Figure 10. Eigenphase shifts for the collinear collisions F + HD(a),

F + Hz(b), F +D_(c), and F + DH(d) as a function of the total energy E

2
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with respect to the bottom of the isolated hydrogenic molecule well.

The arrow in figure b marks the energy of the v = 3 state of HF. The
eigenphase shift represented by the short dashed line in figure b has
been divided by five prior to plotting. Eigenphase shifts are determined
only modulo w, and the zero for each one was chosen to give an ordinate
for each plot reasonably symmetric about zero and to best show the
avoided crossings. In figure d, the eigenphase shift curve represented

by short dashes is drawn twice to point up all its avoided crossings.

Figure 11. Diagonal elements Q.j of the collision lifetime matrix Q for
the collinear collisions F + HD, JF + HZ, F + DZ, and F + DH as a
function of the total energy E with respect to the bottom of the isolated
hydrogenic moelcule well (lower abscissas) and of the initial reagent
relative translational energy EO (upper abscissas), which is comma to
all panels. The numbers associated with each curve indicate the value

of the index j for that curve.

Figure 12. Eigenvalues B of the collision lifetime matrix Q for the
collinear collisions F + HD, F + HZ’ F + DZ, and ¥ + DH as a function

of the total energy E with respect to the bottom of the isolated hydrogenic
molecule well (lower abscissas) and of the initial reagent relative

translational energy E_ (upper abscissas), which is common to all

0
panels. The left ordinate scale in each panel refers to all the curves
in that panel, whereas the right one refers only to the corresponding
bell-shaped curve. The dashed portion of the lowest curve of the

FIID panel indicates a region of numerical noise associated with the
sharp peak of the top curve. The horizontal straight line of that panel
represents the eigenvalue curves for two distinct eigenchannels. These
curves coincide within the plotting accuracy of the figure, but are
distinguishable on an expanded scale. The divisor in the three lower

panels indicates the number by which the ordinate of the neighboring

curve was divided before plotting. The numbers assigned to each curve



269
provide a label which will be used in figures 13-16, in which the

corresponding eigenvectors are examined. The numbers used as
labels were chosen to point up the similarities between these plots

and those of the diagonal elements ij in figure 11.

: . 2
Figure 13. Fractional compositions lU I of eigenvector 4 of the
n

1
collision lifetime matrix Q for the collinear collision F + HD &s a

function of the total energy E with respect to the bottom of the isolated
hydrogenic molecule well (lower abscissa) and of the initial reagent

relative translational energy E_ (upper abscissa). The two digit

0
numbers for each curve indicate the number of the component i (first
digit) and the eigenvector n(second digit). The number of the eigenvec~
tor refers to the eigenvalue of the s ame number in the top panel of

figure 12.

2
Figure 14. Fractional compositions [Uini of eigenvectors 4 (upper
panel) and 1 (lower panel) of the collision lifetime matrix g for the
collinear collision F + HZ' Energy scales and component labeling is

as in figure 13.

;2
Figure 15. Fractional compositions |Uin| of eigenvector 5 of the
collision lifetime matrix Q for the collinear collision F + DZ. Energy

scales and component labeling are as in figure 13.

2
Figure 16. Fractional compositions IU'nI of eigenvectors 5 (top
i
panel), 4 (center panel), and 1 (bottom panel) for the collinear collision

F + DH. Energy scales and component labeling are as in figure 13.

Figure 17. Probabilities of the collinear reactions F + HD(v=0) —
FH( v'=2)+ D, F + HZ(V':O) —3 FH(v'=2) t H, F + DZ(V'—‘O) —3 FD(v'=3)
+ D, and F + DH(v=0) == FD(v'=3) + H as a function of the total energy
E with respect to the bottom of the isolated hydrogenic molecule well
(lower abscissa) and of the initial reagent relative translational energy

EO (upper abscissa), which is common to all panels. The vertical ar-
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rows indicate the energies at which the resonance collision lifetime
eigenvalues of figure 12 (4 for FHD and FI—IZ systems, 5 for FD2 and

FDH systems) achieve a maximum.

Figure 18. Transition probabilities for the inelastic processes

D + DF(v) =3 D + DF(v-1) in the collinear collision of D with DF for
v=1, 2, 3, 4 as a function of the energy E with respect to the bottom
of the isolated D2 molecule well (lower abscissa) and of the initial
reagent relative translational energy . Note that this translational
energy scale is not the same as that used in previous figures. The
numbers in parentheses are the values by which probabilities have

been multiplied before plotting. For , no multiplication factor is

B
32
shown; these probabilities are plotted as calculated.
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PART III

COLLINEAR ATOM-DIATOMIC MOLECULE COLLISIONS
STUDIED BY HYPERSPHERICAL COORDINATES
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INTRODUCTION

A variety of quantum mechanical methods have been developed
for the study of collinear atom-diatomic molecule reactions.

While these methods have achieved great success in studying a num-
ber of interesting systems, they have been unable to be used for two
important classes of reactions: those in which a light atom is
transferred between two heavy ones (the heavy-light-heavy, or

H-1.-H systems), and those above the threshold for collision-induced
dissociation (CID). In this section we report on the development of a
new method for quantum mechanically treating collinear atom-diatomic
colecule reactions in a manner in which these two classes of reac-
tions may be easily studied. This method, using hyperspherical
coordinates, is applied to a number of these systems. Collinear
quasi-classical trajectory calculations have been performed on a
number of these systems to help understand the importance of quantum
mechanical effects and the existence of classical mechanical explana-
tions for some of the calculated behavior. We include the results of
such quasi-classical trajectory calculations in this section, even
though they of course do not use hyperspherical coordinates.

Paper III. 1 presents the first results of the hyperspherical
coordinate method. These are for the H + H2 reaction, and they are
shown to be in excellent agreement with results obtained previously.
Quantum mechanical resonance effects are shown to persist to high
energies and high reagent vibrational states.

Paper III. 2 presents results for the I + HI reaction. This is an
extreme case of the H-L-H mass combination mentioned above, and
we show that in spite of the small skew angle (~7°) in this system
when viewed in an appropriate mass scaled coordinate system, the
hyperspherical coordinate treatment is quite simple. Reaction

probabilities are seen to oscillate with energy, to show resonance
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effects which depend very strongly on the potential energy surface,
and to be well reflected (except for the resonances) by quasi-classical
trajectory calculations. The low energy resonance structure can be
well represented by a method developed by Babamov and Marcus.

Paper III.3 presents results for a model CID system. Well con-
verged dissociation probabilities can be obtained fairly easily. These
probabilities are found to be fairly similar to those from quasi-
classical trajectory calculations, in spite of the low masses and small
molecular well depth used. CID was shown to be strongly vibrational-
ly enhanced.

Paper III. 4 presents in some detail the results of CID calculations
for the model system considered in paper III.3. Three different
mass combinations, corresponding to light-light-light (IL.-L-L),
heavy-light-heavy (H-L-H) and light-heavy-light (L-H-L) ones, are
studied. CID is shown to be greatest in the L.-H-L system and least
in the H-L-H one. Rate constants for CID and for chemical reaction
are calculated and their temperature dependence is examined.

Paper III. 5 presents some aspects of CID in a quasi-classical
trajectory calculation of the model system studied in papere III.3 and
IIT.4 (L-L-L mass combination). We report the formation of well
defined reactivity bands for CID, and show that the absence of low
energy CID in the ground vibrational state system can be understood
in terms of the absence of the simplest possible dissociative trajec-
tory, which does occur in the vibrationally excited system. Kinetic
energy distributions of the atoms formed in CID are obtained, and
they are shown to possess a number of interesting and unexpected
features, the origin of which may be seen as a consequence of the
existence of well-defined reactivity bands for CID.

Paper III.6 presents preliminary results of the calculation of the

kinetic energy distributions of the atoms formed in CID determined
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by the hyperspherical coordinates method for the system and mass
combination studied in the previous paper. The quantum mechanical
distributions are shown to have a much less irregular structure

than the quasi-classical ones.

Paper III.7 attempts to explain an interesting and unexpected
feature of the dynamics of the collinear Cl + HC1(v) reaction obtained
from a hyperspherical coordinates study. This feature is the near
total equivalence of the probabilities and rates of reactive and non-
reactive deactivating processes in collisions of vibrationally excited
HCl. This explanation is obtained by considering quasi-classical
trajectories for this system. It is found that most vibrational
deactivation occurs near the boundary between regions of reactive
and non-reactive trajectories, and the trajectories involved in these
highly non-adiabatic collisions all more or less follow the symmetric
stretch line for a period of time. It is believed that this equivalence
of reactive and non-reactive deactivating processes will be a feature
in any symmetric H-L-H system.

Paper III. 8 consists of the presentation of probabilities and rate
constants for the system

Br + HCl(v=2, 3,4) =3 Bri(v') + Cl
-—% Br + HCI(v' W)

obtained by a hyperspherical coordinate calculation. Rcmoval of
vibrationally excited HCl is found to occur mainly by reaction to
the nearly degenerate HBr state (v-2). In deactivating collisions,
the probabilities of forming HCl(v') and HBr(v'-2) are nearly identi-
cal. Multi-quantum deactivations are found to be far less likely
than those involving only a single quantum.

Paper III.9 consists of conceptual and numerical analyses of
the implementation of the hyperspherical coordinates method in the

adiabatic representation rather than the diabatic representation, in
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which it has previously been formulated. Two different basis sets

are studied. One is the purely polar coordinate basis set used in

all previous work; the other is a hybrid one which consists of both
linear and circular portions. Analytic properties of the coupling mat-
rix elements are determined, and these matrix elements are evaluated
out to very large (5000 bohr) values of the propagation coordinate in
order to help understand their asymptotic properties. The adiabatic
equations are integrated for a very simple model case, and the results
can be understood in terms of a simple (and analytically solvable) 2x2
model.

Paper III. 10 considers the extraction of physical wave functions
from the hyperspherical coordinate method, and their use in calcula-
ting probability densities, probability current densities, and tunneling
fractions. Preliminary (unconverged) results for these quantities on
the collinear H + H2 reaction are presented. Various difficulties
encountered in this work are discussed, and ideas for their remedy
are discussed.

Paper III. 11 presents a study of the convergence properties of the
hyperspherical coordinate method. In particular, state-to-state
reaction probabilities and scattering matrix element phases are exa-
mined as a function of the number of basis functions and the distance
at which the wave function is projected from a hyperspherical (polar)
coordinate basis set to one in Cartesian coordinates. Probabilities
and phases are found to converge very rapidly with basis set for the
H + H2 reaction and less so for the F + H2 reaction. Reaction
probabilities converge fairly well with projection distance for H + HZ
and less so (but still adequately) for F + Hz. Scattering matrix ele-
ment phases converge slowly with projection distance for H + HZ’
becoming converged to within 1-2° at a projection distance of 12

bohr. The pha ses calculated agree well with those of previous
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calculations. In F + HZ, convergence is slower, and does not

appear to be to the values obtained by a previous method.
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III.1 HYPERSPHERICAL COORDINATES IN QUANTUM
MECHANICAL COLLINEAR REACTIVE SCATTERING

"This paper appeared in Chemical Physics Letters 74, 257 (1980).
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1. INTRODUCTION

Triatomic exchange reactions of the type A + BC — AB + C, with A, B,
and C representing atoms confined to move on a laboratory-fixed straight line,
constitute the simplest reactive processes which present a basic characteristic
of many chemical reactions: the dissolution of a chemical bond and the forma-
tion of a new one. The low mathematical dimensionality of the corresponding
theory permits a straightforward analysis of this system, unencumbered by the
mathematical complexities of molecular rotations. Such a collinear model is
therefore useful for developing insight into the reaction process, especially
for systems which are collinearly dominated, i.e., for which collinear config-
urations have energies considerably lower than corresponding bent ones, For
these reasons, collinear reactions have been the subject of extensive theoretical
studies over the last decade. Reviews of the methods developed for such studies
have been published previously [1-3]. We consider in this paper electronically
adiabatic reactions of this type, although the method described is also applicable,
with straightforward generalizations, to electronically nonadiabatic reactions.

The methods previously developed for studying these collinear processes
are restricted to energies significantly below that for which the A+ BC- A+ B+ C
process is possible. Such breakup collisions, particularly when occurring in
competition with exchange processes, have been particularly resilient to accurate
quantum mechanical treatment [4]. In addition, accurate results for systems
in which the central atom B is significantly lighter than the end atoms, such as
the I + HI -~ IH + I reaction, have not been obtained so far by those methods, for
reasons inherent to their nature (see Section 4). The use of hyperspherical
coordinates, as described in the present paper, was developed in an attempt to
overcome these shortcomings. Extension of these ideas to three dimensions

was also kept in mind.
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2 THEORY

Let r&,R& be, respectively, the BC internuclear distance and the distance
of A to the center of mass GBC of the BC molecule. Let r;,R; be the correspond-
ing distances with the roles of A and C interchanged, as indicated in Figure 1.

We define the Delves scaled coordinates [5] Rk’r)« (A = a,y) by

1
- ¥ R T I = 4
Ry =3B i 5y =a,r i 8 =(m /6, . M

In these equations, Avk is either afy or yBa, - is the reduced mass of m,,

and m,, u,‘\' vk 18 the reduced mass of m, and (my + mx), and m,, m and m_y

ﬁ’
are the masses of A, B, and C, respectively. In terms of R)Urh’ the relative

nuclear motion hamiltonian of the triatomic system is

H=-

— +
2u BR;_ ari

2 2 2
h (a @ )+VA(R)\’rA) A=a,y , (2)

where

o=

u= [mamﬁmy,/(ma+mﬁ+my)] (3)

is a reduced mass of the system and is the same whether A = o or ¥, and
VA (RA, rk) is the electropically adiabatic potential energy surface being consid-
ered, in A coordinates. According to Eq. (2), the internal collinear motion of
the triatomic system is isomorphic with that of a single point P of mass y in
the two-mathematical-dimensional (2MD) RA’ Y configuration space, subject
to the potential VA' The corresponding Porter-Karplus (PK) ground state collinear
potential energy surface for the H + H, system [6] is depicted in Figure 2.
The coupled-equations approach to solving the Schrddinger equation for
the Hamiltonian of Eq. (2) consists in choosing an "internal" variable x and a

"propagation' variable y (transverse to x) which may be different in different
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regions of configuration space. The wavefunction Y/(x, y) is then expanded in a
quasi-complete discrete pseudo-vibrational basis set -{¢>n(x)} of variable x,
and the resulting coupled equations in the coefficients gn(y) of this expansion
are integrated. Enough linearly-independent solutions of this type are obtained
to permit the calculation of the 5 matrix, and from it the S matrix and the
transition probability matrix 3 [1], and care is taken to ascertain their con-
vergence with respect to the number of terms used in this expansion. In the
method developed by Light and co-workers [7], x and y have been chosen to be
natural collision coordinates, whereas in that of Kuppermann [1b, 8], they are
Ty and Ra for the reagent region of configuration space; the circular polar
coordinates r and ¢ (centered on a point P, deeply imbedded in the A + B + C
dissociation plateau) for the strong interaction region; and ry and Ry for the
product region., In both these methods, the wavefunction is assumed to vanish
outside a reaction gulley which excludes the dissociative regions of configuration
space.

In the present method, we use for x,y the circular polar coordinates p, a

(see Figure 2) around the origin O of the R, , r, configuration space (for which origin

A
A, B, and C coincide). Similar coordinates have been previously used by Tang,

Kleinman, and Karplus to study a piece-wise flat potential energy surface sys-
tem [8]. In the generalization to three-dimensional collisions [5,10], p is a

hyperdistance in a 6MD configuration space. The range of o is 0 to O ™

" 1 _
tan l(mﬁM/mamy )¢, where M = m,+ Mg+ m,. At the extremes of this range

(where B coincides with A or C, respectfvely) the potential function V becomes,
for all chemical purposes, infinite and the wavefunction vanishes. The nuclear
motion Hamiltonian in these coordinates is
Pl .12 .1 @

Hjp,a) = - = | = + —=—| + V(a,p) . 4
2ulap® Pap pf e’
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In Figure 3 we depict V as a function a for various constant values p of

p for the PK surface. It can be seen that, because of the divergence of V at

a=0and o = @ hax the eigenfunctions of
2 2
h(@;p) = - —r L 4 V(a,B) (5)
2up” da

form an infinite but discrete set {4)“(0;5)} which samples the entire range of
o, including those values which, for large p,correspond to dissociated A + B + C
configurations. In Figure 4 we display the even (see end of section) eigenfunc-
tions for the PK surface, for p = 6 bohr and n = 0 through 24 (in steps of 2),
as well as the corresponding eigenvalues En(ﬁ). The highest of these is larger
than the dissociation energy 4.75 eV of H,. Since the H, Morse curve included
in the PK surface supports 17 bound states, for large p (larger than 11 bohr,
it turns out), En(E) exceeds 4.75 eV for n = 32. The corresponding eigenfunctions
sample the dissociated plateau region of configuration space, which thereby,
in principle, is made accessible to the system. Whether or not the system
samples that region depends on energetic and dynamic considerations, rather
than it being excluded by a priori considerations. Expanding an eigenfunction
wn(p, a) of H(p, @) according to
N
Vo, = pt L gl (piB)o, (@:F) (6)
n! =0

leads without much difficulty to the following differential equation in the matrix

g(p;p), whose o’ ™ row and n™ column element is glr:':
: d'g(p;p) = - = =
“gn Tt WEPIE(eiP) = ERIg(pi) - @
n

\z and l::;are interaction and energy matrices whose n’ row and n column elements

are given by
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-2
wp (p;B) = (n|Vi@,p) - £~ V(a,p)|n") 8
p
n o, - h’ — N
E(pip) = [E+ = - E (p)6, , (9)
8up

where |n') = ¢n’ (a;p), the integration variable implied in Eq. (7) is a, E is
the total energy of the system, and 62 the Kronecker symbol.
The reactive scattering problem is solved as follows. We choose a set

of p; SN PEMPE, | ). Inthe range p, ; to p; we chose a p. for which we
i

max
calculate the ¢n(a;ﬁi) by a numerical method (such as a finite difference one [11]).
We then integrate numerically the coupled equations (7) from pP;i_1 to p;s setting
g(O;BO) = gand g" (0; po) =é and requiring continuity of wn(g, a) and of its
derivative with respect to p at the boundaries p = Pi between the Pi-1 to Pi and

Py to p;_1 regions. The integration method used in the present calculations was
that of Gordon [12], together with the reorthogonalization procedure of Riley
and Kuppermann [13]. In this manner we obtain the zpn(p,a) for0=a =< L —

andp,<p=p; . We then project numerically these y" onto the bound state
max
eigenfunctions of BC and AB at a large and constant value of Rh’ from which we get by

standard methods [1b] the R, and P matrices defined above for energies below

S.g
the A + B + C dissociation limit. Their convergence with respect to imax‘ Pos
pi‘m , and the number N of terms used in Eq. (6) is established empirically,
as igxthe symmetry of the open channel part of R and the unitarity of the open
channel part of 2. For energies above that dis:ociation limit, the procedure
described for the three-dimensional case by Delves [5b] should be used.

For symmetric reactions of the type A + BA -— AB + A, the potential
energy function V(a, p) is symmetric with respect to the a = amax/z line in
configuration space, and the solutions which are even or odd for reflection
through that line may be obtained separately, thereby decreasing the amount

of numerical effort.
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3. RESULTS

The results of accurate calculations for the H + H, — H, + H reaction on
the PK surface, using the hyperspherical coordinate method just described,
are given in Figure 5, together with those of previous calculations. We plot
in that figure the vibrationally adiabatic distinguishable-atom reaction proba-
bilities Pﬁn from the initial vibrational state n of the reagents to the same
vibrational state of the reaction products. The points in that figure are some
of the present results, which are converged and accurate to about 1% or better.
They have been carried out so far up to total energies of 2. 88 eV (about 60% of
the H, dissociation energy), without any signs of quality deterioration. The
dashed lines are cubic epline fits to these results (which include a larger number
of points than those displayed) for total energies in excess of 1. 75 eV for the PoRo
and PE curves, and for Etr' 0 for the others. For comparison, the solid lines
are cubic spline fits to the results of Schatz and Kuppermann [14], which were
carried out using one of the previous methods 8], up to total energies of 1.75 eV
for P?o and PE. These latter results [14] are essentially indistinguishable from
those of Diestler [15], who performed accurate calculations on the same PK sur-
face at total energies up to 1. 21 eV. For total energies for which other calcula-
tions are available (=1.75 eV), the present results agree with the previous ones
within the computational accuracy of about 1%. This validates the hyperspherical
coordinate method.

An additional useful characteristic of this new calculational procedure
is that convergence with respect to the number of basis functions used is more
rapid than for other methods. For example, for Etr in the range 0. 22 eV to
0.43 eV, and using only two channels (one open and one closed, asymptotically),
the absolute error in PE, is less than 0. 02 in the new method, whereas -for a
previous method [1b, 8] that error is as high as 0.23. If four channels

are used, the hyperspherical coordinate method produces reliable values of Pﬁ
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(to within 0, 02) up to translational energies of 1. 03 eV, whereas that previous
method requires seven or eight channels {or equivalent convergence. This
faster basis set convergence efficiency may make this method particularly
well suited for three-dimensiunal ca'culations, for which high efficiency is
required for calculational feasibility {18,19 ].

It is interesting to note that the PSn curves for n 21 in Figure 5 are very
similar to each other and are nearly identical when plotted as functions of the initial
relative translational energy. This is strongly suggestive that an effective 1MD
potential may be found which duplicates all of them. The POR; curve is also
similar to then 21 Pf:n ones if energies below that of its first resonance
are neglectéd. This comparisor. suggests that the second resonance in PR

00

and the first one in the Pffn (n = 1) have analogous dynamical origins.
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4. DISCUSSION AND CONCLUSIONS

The hyperspherical coordinate method seems capable of tackling reactive
scattering problems at fairly high energies. The present calculations are being
extended to energies above the H, dissociation limit. The method can also be
generalized to electronically nonadiabatic processes in a straightforward
manner [18,19].

The difficulty other methods [1b, 7, 8] have in tackling reactions with a light
middle atom, such as I + HI = IH + I, is related to the very sharp and rapidly
changing curvature of the minimum energy path of these systems, in the strong
interaction region of configuration space. This in turn is due to the smallness
of the corresponding skew angle, o = tan'l(mBM/mamy )%, which in that
system is about 7°. The present method does not suffer from this difficulty,
since the propagation coordinate p is not related to that curvature.

Finally, the hyperspherical coordinate approach seems particularly
suitable to the study of 3D systems [10], since it greatly simplifies the A + BC
bifurcation problem associated with the existence of two kinds of reactive pro-
ducts, AB + C and AC + B. The solution to this problem is contained in the
nature of the p = constant basis sets, which are the 3D generalizations of the
¢n(a;5) eigenfunctions used in the present method. Such calculations are

currently being performed in our laboratory [20].
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Figure Captions
Fig. 1. Distance coordinates for collinear triatomic system.
Fig. 2. Porter-Karplus potential energy surface V for the H + H, system in

Delves scaled coordinates Ra’ r The solid curves are equipotential contours

e
at the total energies (with respect to the bottom of the isolated H, well) indicated
in the lower right side of the figure. The dashed line is the minimum energy

path.  The polar coordinates p, @ of a general point P in this Ra,r configura-

o
tion space are also indicated. The three arcs of circles at p = 2. 00, 3.13, and
6. 00 bohr are cuts along which V is displayed in Figure 3. The second of these
passes through the saddle point, indicated by a cross in the figure.

Fig. 3. Potential energy function V(a,p) of Figure 2 as a function of a for the
following four constant values p of p: 2.00, 3.13, 6.00, and 20. 00 bohr. The
first three of these values correspond to the arcs displayed in Figure 2. The
fourth one is outside of that figure.

Fig. 4. Potential energy function, eigenfunctions, and eigenvalues of the one-
dimensional hamiltonian of Eq. (5), for p = 6 bohr. The double-well curve is

the same as that in Figure 3. The horizontal lines represent the eigenvalues
for the quantum numbers given (for every other eigenvalue) at the right of the
figure, for the even eigenfunctions (i.e., those which are symmetric for
reflection through the @ = 30° line). The latter are the oscillatory curves around
the eigenvalue lines, and have been scaled s0 as not to overlap each other. The
corresponding relative scaling factors are 1.00, 1.12, 1,08, 1.15, 1.18, 1,28,
1.59, 1.69, 1.45, 1.18, 1,01, 0.90, and 0. 87.

Fig. 5. Vibrationally adiabatic reaction probabilities an for the H + H,(n) —
H,(n) + H exchange reaction on the Porter-Karplus potential energy surface,

as a function of initial relative translational energy E.. and total energy E
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(measured with respect to the bottom of the isolated H, well). The points are

the results of the present calculations. The solid POR; and PE curves are cubic
spline fits to the previous results of Schatz and Kuppermann, which were per-
formed up to E = 1.75 eV. The dashed curves are cubic spline fits to the present

points, including some omitted from the plots for reasons of visibility.
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II1.2 COLLINEAR QUANTUM MECHANICAL PROBABILITIES
FOR THEI +HI —> IH +1 REACTION USING
HYPERSPHERICAL COORDINATES

" This paper appeared in Chemical Physics Letters 77, 573 (1981).



329

COLLINEAR QUANTUM MECHANICAL PROBABILITIES FOR THE
I+ HI — IH + I REACTION USING HYPERSPHERICAL COORDINATES*

Jack A. KAYE** and Aron KUPPERMANN

Arthur Amos Noyes Laboratory of Chemical Physics, ¥

California Institute of Technology, Pasadena, California 81125, USA

Received

Calculations of quantum mechanical probabilities for the I+ HI = IH + I
electronically adiabatic exchange reaction were performed using hyperspherical
coordinates. In spite of the small skew angle of 7°, accurate results were
obtained with a small number of channels. These results are compared with

those of quasi-classical trajectory calculations.

* Research supported in paft by the U. S. Air Force Office of Scientific Research
(Contract No. F49620-79-C-0187),

** Work performed in partial fulfillment of the requirements for the PhD in
Chemistry at the California Institute of Technology.

% Contribution No. 6056.



330

i Introduction

Among the most important results to come from quantum mechan-
ical calculztions of the probabilities of chemical reactions are the exist-
ence and significance of resonant processes. Reactive scattering reso-
nances were first found in collinear calculations on the H + H, systeml’ ’
and have been observed in a variety of other collinear atom-diatom cal-

culations, including those on the F + H,, HD, D,, 3,4 Cl + Hz,5 I+ H,, 8

Ba + N,0, ? I+ HI, & and C1 + HCl9 systems. The F + H, system and its
isotopically substituted counterparts are of particular interest because
of their simplicity and relative ease of study by both theoretical and
experimentil techniques. It has recently been proposed that these
systems are prime candidates for experimental observation of resonances.
Approximate jz-conserving three-dimensional calcula-
tions on the F + H, system have been performed, and they suggest that
the resonance found in the collinear calculations exists in the three-
dimensional world, 10 Molecular beam experiments also provide indi-
cations of a resonance in this system. 11
Resconances have been observed in a wide variety of scattering
processes and are known to be associated with the existence of long-lived
metastable states. ke Once a resonance is known to exist in a chemi-
cally reactive system, one desires to know what features of the potential
energy surface are responsible for its existence and what its lifetime is.
The latter is especially important in determining what systems are the
most suitable for the experimental detection of resonances.
Babamov and Kuppermann have recently developed a model that

gives a physical interpretation and predicts the location of the lowest

energy resonance in the collinear F + H, and isotopically substituted
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far [13], 40 channels were required. The small skew angle permits certain
dynamical approximations to be made, however, and a few approximate treat-
ments of these H-L-H systems, both quantum mechanical and classical, have
been developed [14].

In this paper we report the results of accurate coupled-channel electronic-

ally adiabatic quantum mechanical calculations for the collinear reaction,
I+HI — IH+1 , (2)

using hyperspherical coordinates. Two slightly different potential energy sur-
faces were used. We also performed quasi-classical trajectory calculations
on these surfaces. In Section 2 we describe the method and the surfaces, and

in Section 3 we present and discuss the results.
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The quantum mechanical method of hyperspherical coordinates developed
previously [15] presents no particular difficulty when the skew angle is small,
and in the calculations reported here, that method was used without change.

Six even and six odd basis functions were used, and with them convergence of
the transition probabilities to + 0. 005 and of flux to + 0. 0001 was usually
achieved. Standard methods were used for the collinear quasi-classical
trajectory calculations [16,17].

The potential energy surfaces used were of the extended LEPS form [18]
and their parameters and properties are listed in Table I. The Morse oscilla-
tor [18] parameters for one of the surfaces (surface B) were those used previ-
ously [20] for trajectory calculations on the H + I, system. However, we changed
the Sato parameters from zero to 0, 20 for HI and 0. 125 for L, in order to decrease
the barrier height from about 14, 2 kcal/mole to about 1. 5 kcal/mole. Although
the barrier for the IHI system is not known, ab initio calculations on related
systems (F + HF, Cl + HC]) suggest that a barrier of more than a few kcal/mole
is unreasonably high [21]. The other surface (surface A) has the same LEPS
parameters as surface B, except that the HI dissociation energy was increased
by 3 kcal/mole. The main effect of this change is in the saddle point region,
as can be seen by observing the 0. 06 eV equipotential in the contour plots dis-

played in Figure 1.
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3. Results and Discussion

Plots of the quantum probabilities of reaction (2) from the ground vibrational
state of the reagents to the same state of the products, as a function of translational
energy, are given in Figs. 2 and 3 for each of the two surfaces. For the low energy
(0-15 meV) range covered by Figure 3, the curve for surface A displays a
sharp peak followed by a second broader peak, whereas for surface B, the
sharp feature is absent and the other one is much broader and less intense.

In order to assess the nature of these features, we have made an Argand

plot [22] of the corresponding scattering matrix element, SOR;, for surface A

in Figure 4. It can be seen that the sharp peak in Figure 3 is associated with

a loop in Figure 4, along which a representative point moves counterclockwise
with increasing energy, as indicated by the arrow in the upper part of the figure.
This clearly demonstrates a scattering resonance. In the energy region corre-
sponding to the second peak for surface A, the Argand diagram does not display
such behavior, nor does that for surface B (not displayed), which has the
appearance of a smooth clockwise spiral.

It has been shown [23] that for collinear symmetric atom-diatom systems
of the form A + BA, at energies for which vibrationally excited channels of the

BA molecule are closed, the difference, GS - between the symmetric and

OA,
antisymmetric eigenphase shifts increases by ¥ across a narrow isolated reso-
nance. In Figure 5 we display bs, GA, and their difference as a function of
reagent translational energy for surface A. Over the energy range considered,
only the v = 0 state of HI is accessible, and the open part of the R matrix

has dimensions 2 X 2. Its eigenvectors are independent of energy and correspond

to symmetric and antisymmetric scattering states, and its eigenvalues are

tan &g and tan GA, respectively, It can be seen from Figure 5 that OS - :’A
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changes by approximately 2. 6 radians (= 0. 85 » radians) over the energy range
associated with the narrow peak in Figure 3. This is slightly less than x
radians because this resonance is not completely isolated, as is indicated by
the fact that the reaction probability drops to 0. 2 rather than zero after that
peak, before starting to increase again. The time delay associated with this
resonance,

T = Md(bg - 6,)/dE ,

has a maximum value of 2. 04 x 107" sec, which is much larger than the sym-
metric stretch vibration period of 4, 60 x 107** sec for the saddle point config-
uration of surface A. For comparison, across the broad peak in Figure 3 for
surface B, GS - OA increases by 0. 14 ¥ radians only, and the corresponding

~1% gec for the

maximum value of 7 is 4,74 x 10”"° sec, compared with 4, 64 x 10
saddle point symmetric stretch period of that surface. We conclude that the
sharp peak in Figure 3 for surface A is associated with a strong, long-lived
resonance, whereas for surface B, the broad peak in that figure is at most
associated with a very weak resonance. This indicates once more [9a, 24] the
great sensitivity that dynamic resonances on reactive systems can have to
details of the saddle point region of potential energy surfaces. This sensitivity
holds out the enticing possibi‘lity that the experimental measurement of such
resonances may be useful in the determination of the characteristics of that
region of potential energy surfaces.

An interpretation of this resonance can be obtained as follows. The
hyperspherical coordinate method used in the present calculations [15] involves
a radial distance p and a polar angle o associated with the Delves coordinates
BTy of Figure 1. For fixed p, we can calculate the eigenvalues En(p) of the

a motion. A plot of the 12 lowest such eigenvalues versus p is given in Figure
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6, and they show minima for the ones corresponding to symmetric eigenfunc-
tions. Since motion from reagents to products across the strong interaction
region of the surface involves a relatively small change in p and a
relatively large fractional change in a, an a-adiabatic model of resonances
was proposed recently [25]. This model consists of solving the Schrddinger
equation for the quasi-bound one-dimensional p motion on each of the individual
E,(p) curves, in analogy to the Born-Oppenheimer separation of electronic and
nuclear motions. It was shown to work well for the first resonance in H + H,
and its symmetric isotope counterparts, For the n = 0 curve of Figure 6,

this model predicted the position and width of the surface A resonance indicated
by "Model I'" in Table II. The agreement with the exact values is satisfactory.

Babamov and Marcus [26] have recently shown that for ‘I\i—’lf-’l-‘l symmetric
systems, below the opening of the first excited state, the pf}, reaction prob-
ability is related to the phase shifts 6éD and 623, obtained from the one-
dimensional p motion described above, by the expression

PR - sin? (01P - 8;0).
Using this relation, we obtain the peak locations and widths given in the
"Model OI' column of Table II.. The agreement with the accurate values is
about the same as for Model I for the surface A resonance. However, it is
better than Model I in that it also predicts quite well the position and height of
the broad peak for surface B, which is not a resonance, whereas Model I is
not applicable to features that are not resonances.

The difference in the dynamics of the reaction on the two surfaces at
higher energies consists of a shift of the P& curve by about 30 or 35 meV to
the right on going from surface A to surface B. This shift is significantly
higher than either the difference between the corresponding barrier heights
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(7.5 meV) or between the reagent zero-point energies measured with respect

to the corresponding barrier tops (10, 3 meV). The reason for this may be that,
since the reagent ground state energies are significantly greater than the saddle
point energy, the sharp skew angle of the coordinate system makes "corner-
cutting™ quite likely. This suggests that the dominant region of the surface
occurs at larger values of p than that of the saddle point. Additional information
on this matter can be obtained from maps of quantum streamlines of probability
current density or classical trajectories.

The oscillatory nature of the Pﬁ versus energy curves at translational
energies above 10 meV is not of a quantum nature, as it is also present in the
classical trajectory results displayed in Figure 2.

We wish to emphasize the ease with which the method of ‘hyperspherical
coordinates may be applied to collinear H-L-H systems. Applications of
previous methods based on a propagation variable that scans the potential
energy surface from the reagent region through the strong interaction region
to the product region [8, 27,28] are made very difficult by the smallness of
the skew angle. Indeed, these methods involve expansions in eigenfunctions of
cuts of the surface along a direction more or less transverse to the minimum
energy path, and, as a result of that small angle, such cuts are very broad and
support a large number of bound states.

Indeed, for the IHI system considered in this paper, the symmetric stretch cut
through the surface A saddle point supports 50 bound states with energies below
that of the v = 2 state of the isolated HlI molecule, which is open at the highest
energy considered in these calculations. In order to incorporate all such open
local states and a sufficiently large number of closed states in that expansion
Bo as to achieve reasonable convergence of the results would require an
unreasonably large number of channels. By contrast, the present method

requires only six even and six odd channels, as described in Section 2. The
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essential reason for the adequacy of such a small number of channels is that the
hyperspherical coordinates avoid a proliferation of open-channel basis functions.
Indeed, for these coordinates the number of open channels in the strong inter-
action region is about the same as it is in the separated reagent or separated
product regions of the potential energy surface, as shown in Figure 6. This
method is therefore to be preferred for the study of collinear ’I:I-‘I_J-}\{ systems,

whether symmetric or not.
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Table I

Parameters and properties of extended LEPS potential energy surfaces A and B

HI L

B (bohr™) 0. 9260 0.9843
R, (bohr™) 2. 0236 5.0457
D, (eV)  A) 3.3303 1.5567

B) 3.2002 1.5567
A 0.2 0.125
Saddle Point Location (bohr)

A) (3. 366, 3. 366)

B) (3. 370, 3. 370)
Barrier Height (kcal/mole)

A) 1.353

B) 1.526
HI Zero-Point Energy (eV)

A) 0. 14447

B) : 0.14160
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Table I

Calculated and predicted properties of peaks of reaction probability

Versus energy curves

Exact Model 1%/ Model 11

Surface A

Resonance Location (meV) 6. 08 4.7 4.7

Resonance width (meV)

FWHM 0.16 0.12 0.13

Surface B

Peak Location (meV) 8. 00 c) 8.2

Maximum reaction 0.187 c) 0.19

probability

3) Ret. [25).

D) Ref. [26].
c)

Not applicable, since this feature is not a resonance.
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Fipuk Captions

Fig. 1. Equipotential contour plots for I + HI, surfaces A and B, in the region
near the saddle points. The solid curves are the contours and are equally spaced
in increments of 0.02 eV, from 0. 04 eV to 0. 20 eV. The zero of energy is the
bottom of the HI well. The surfaces are plotted in Delves scaled coordinates [15].
The X's mark the saddle points, the dashed lines are the steepest ascent and

descent paths as calculated in Delves scaled coordinates.

Fig. 2. Transition probability for the reaction I+ HI (v=0) = IH (v'= 0) + I

as a function of reagent translational energy. Quantum mechanical results are

indicated by the solid lines; the circles indicate surface A, the squares surface
B. Classical trajectory results are given by the dashed line for surface A and

the dashed-dotted line for surface B. The lowest energy portion of the quantum

curve for surface A has been omitted for reasons of clarity.

Fig. 3. Quantum mechanical transition probabilities as in Figure 2 for the low

translational energy range. No classical trajectory results are shown.

Fig. 4. Argand diagram [22] for the S matrix element SEE corresponding to the
exchange reaction I + HI (v=0) = IH (v = 0) + I on surface A. Circles represent
points spaced by 0. 05 meV,; triangles represent points spaced by 0.1 meV. The
energies indicated are reagent translational energies. Arrows parallel to the

curve indicate direction of increasing energy.

Fig. 5. Symmetric (bs, dashed line) and antisymmetric (6A, dashed-dotted line)
eigenphase shifts as a function of reagent translational energy calculated for
surface A, The difference bs - GA (solid line) is also shown (the right-hand

ordinate scale is the appropriate one for this quantity).
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Fig. 6. Eigenvalues En(p) for surface A as a function of the propagation
coordinate p. These curves are pairwise degenerate at large p, the symmetric
one being always lower than the corresponding antisymmetric one at small p.
Values of n {for the symmetric curves are shown at the top of the figure. The
dashed line in the E (p) curve shows the position of the resonance and lies

slightly above E ().
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1I1.3 QUANTUM MECHANICAL COUPLED-CHANNEL
COLLISION-INDUCED DISSOCIATION CALCULATIONS
WITH HYPERSPHERICAL COORDINATES'K

“This paper appeared in Chemical Physics Letters 78, 546 (1981).
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) Introduction

The collision-induced dissociation (CID) of diatomic molecules has been
the subject of extensive experimental investigation [1-3]. In order to under-
stand and to model this important process [4], it is necessary to obtain the bound-
to-continuum transition probabilities as well as the usual bound-to-bound ones.
Approximate classical [5], semi-classical [6], and quantum [7| techniques have
been created for this purpose. However, the development of accurate quantum
mechanical methods for systems in which CID competes with exchange processes
has been hindered by the difficulty of representing the exchange product bound
states in terms of the reagent bound and continuum states [7,8]. As a result,
systems in which the exchange channel is absent have mainly been considered
in previous calculations [7,9]. A method capable of taking such rearrangement
channels into account, based on a multiple-collision expansion, has recently
been applied for a potential that, however, does not support exchange pro-
ducts [10].

Kulander [11] has included exchange processes by solving numerically
the time-dependent Schrédinger equation for cleverly chosen initial wave packets
and obtained bound-to-céntinuum and bound-tc-bound transition probabilities
in collinear atom-diatom collisions. This conceptually elegant method is,
however, computationally time-consuming and difficult to apply at energies
close to the dissociation threshold.

In this paper we report the first successful time-independent treatment
of CID in a collinear atom-diatom system in which the exchange process is
present. This work uses the method of hyperspherical coordinates [12,13]

which has recently been applied to the collinear exchange reactions

H+H, — H,+H
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and [14]
I+H — IH+1

at energies below dissociation.

In Section 2 we briefly outline the nature and the method of hyperspherical
coordinates, emphasizing those aspects of it which are crucial in the treatment
of CID. The potential energy surface used in these calculations is discussed
in Section 3, and the results obtained are presented, discussed, and compared

with those from quasi-classical trajectory calculations in Section 4.
2 Theory

Let us consider the A + BC system, with A, B, and C representing
distinguishable atoms confined to move on a laboratory-fixed siraight line.
Let r:! and R;! be, respectively, the BC internuclear distance and the distance
of A to the center of mass of BC. Let r; and R_;, be the corresponding distances
with the roles of A and C interchanged. The Delves scaled coordinates [12],
R, and r, are defined as
-1,

e
R, = 8, R, T = B oy B = (-uk,vx/“vx). : (1

In these equations, Awk is either afy or yBea, Hy is the reduced mass of m,

and m is the reduced mass of m, and (mv + mK), and m , mg,

K’ “A,vx
and my are the masses of A, B, and C, respectively. The collinear hyper-

spherical coordinates are defined as

1
. a-= tan"l(ra/Ra); O<cac< % (2)

p = (R; + r;)
and are indicated in fig. 1. The Schrbdinger equation for the internal motion
of the ABC system is the same as that of a single particle P of mass u =

1
[mamﬁm_r/(ma +mg+ my)]‘ moving in the two-dimensional p, a space and

subject to the potential V(a,p) of the triatomic system. The motion of P on a
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circle of constant p = p is described by a set of energy eigenfunctions qbn(a;ﬁ)
and eigenvalues E, (p). The former are called surface functions and constitute
an infinite discrete set which, as p - ©, spans the dissociation continuum.
Expansion of the scattering wavefunction in the ¢n leads to a set of coupled-
channel differential equations that have been derived and are integrated as
described previously [13, 15] out to a sufficiently large value of p.

At energies at which no continuum states (those with positive eigenvalues
with respect to the dissociated configuration A + B + C) need be included in the
calculations, we reexpand, after that integration, the wavefunction y in Ra’ ™
and R'r’r'y coordinates, using the numerically determined eigenfunctions
‘pana(ra) and ¢Yn (ry) of the isolated reagent and product, respectively, as
the new basis functions, In this manner, we obtain y and its R, derivative
along lines of constant R, = ﬁ;\ (A = a,y). We call this procedure a projection
of ¢ on the asymptotic reagent and product states. From the coefficients of
this new expansion, the R, §, and P matrices are calculated by standard tech-
niques [13a,e]. For H + H,, this procedure leads to results converged to 1%
or better for values of ﬁ,\ of about 8 bohr or less [13a]. Alternatively, one can
omit this projection altogether, since as p —  the ¢n(a;B) for negative eigen-
values become the separated reagent or product eigenstates (or their even and
odd linear combinations for symmetric systems). However, this leads to a
large amplitude oscillatory behavior of the reaction probabilities with p, as
found by R8melt [15], which requires integration to appreciably larger values
of p.

At total energies E for which dissociative channels must be included in
the expansion to achieve convergence, as is the case for all collision energies
above the dissociation limit, we have chosen to project the bound state channels

as described above, and not to project the continuum ones at all. Inthe p = @
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limit these results converge to the correct ones, while maintaining the rapid
rate of convergence for the bound-to-bound transition probabilities. Other
projection methods are possible and are being investigated.

The resulting scattering matrix S is discrete, and the scatter-
ing wavefunction wana’ corresponding to the system being initially in bound
state n, of the diatomic target BC, has the asymptotic form (for asymmetric

systems, in which atoms A and C are different)

Piax YR T 1.0 4 expli R,,)
exp(-ik, , ’ ror + 1K 7 ¢ )
p—o X’ nA’ }5\ )\ A nx, xp kk o A -

1 An %Anl
X (o /Varmt, )7, ,. oy, (y) + 52 Eexpuk.o) Yan, /Y8, M glai).

In this expression, the sum over A’n’, extends over all bound states of BC and

g
AB, whereas the sum over n extends over the continuum (En > 0) states. The
several k and v represent, respectively, the appropriate channel wave numbers
and velocities. In terms of the elements of the scattering matrix appearing in
(3), the bound-to-bound and total bound-to-dissociated transition probabilities
are given, respectively, by

A

i

A'Ilit ’Sl nxll “)
A An)t 2
pdn" - §|Sn . (5)

The differential probability for producing dissociated products for which atom

A has a center of mass energy EA is given by

by
odnl(EA) =

AD, , An
cﬁg Re[ ) ¢x(a; )¢, (a;w)(Snn“) Sy, (6)
A nn’
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where a is related to EA by

max

max
cos’a E,

Ep =E, =[(mﬁ+my)/(ma+mﬁ+m7)]}2.(7)

The total dissociation probability is related to the differential one by
max
An E An
A _ A A
Py -({ 04 (EQE, . (8

For symmetric systems, the ¢n(a;co) in Egs. (3) and (6) must be replaced by

appropriate linear combinations of the even and odd surface functions.

3. Potential Energx Surface

In order to test the method described above without excessive emphasis
on bound states, we constructed a model collinear potential energy surface for
which the isolated diatomic reagent or product potential energy curves supported
only two such states, in analogy with weak van der Waals molecules. The
mathematical form chosen for this surface was of the rotating
Morse-cubic spline type [16]. The three atoms considered were identical but
distinguishable (by virtue of their relative position on the line to which they were
confined), and were assigned a mass equal to that of a hydrogen atom. The
corresponding isolated diatomic molecules were chosen to have Morse param-
eters [17], D =0.22eV, p=1.6 bohr™!, and T = 1.40083 bohr. The energies
of the two bound states supported by each of these Morse oscillators was 0. 0817
and 0. 1885 eV above the bottom of the diatom well. The saddle point occurred
at internuclear distances r'AB = r'BC = 1. 6496 bohr, and its height was 0.14 eV.
In fig. 1 we display a contour plot of this potential energy function, and in fig.

2 we indicate schematically its features along the minimum energy path.
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4, Results and Discussion

The results of these calculations as well as those of quasi-classical
trajectory ones as a function of relative translational energy are given in figs.
3 and 4 for reagents in their ground and vibrationally excited states, respect-
ively. Convergence of the transition probabilities to + 0. 02 or better was
achieved with ten even and ten odd basis functions [13a], The maximum value
- — of p needed to achieve this convergence was 64 bohr.

At the same translational energy, enhancement of the CID probabilities

by reagent vibrational excitation is clearly observed, in agreement with a
number of recent studies [10, 11, 18]. Up to translational energies of 0. 10 eV
for vibrationally excited reagents and 0.15 eV for ground state ones, the prob-
ability for the exchange reaction occurring without change of vibrational quantum
number is significantly larger than the one with change in that number. Up to
total energies of 0. 32 eV the nonreactive inelastic process 0 =1 (and 1 - 0)

has probabilities smaller than 0. 03 and is not shown in the figures,

The quasi-classical trajectory results display the same general features
as the accurate quantum ones, giving confidence that classical mechanics
furnishes an adequate qualitative description of the system's dynamics.
However, errors of factors of two or greater are encountered in the quasi-
classical probabilities when compared with the quantum ones.

We wish to emphasize the ease with which these calculations may be
performed. The relatively large value of Prax required for good convergence
of the transition probabilities does not increase the computation time excessively
since in the large p region the integration step is quite large (> 0.1 bohr) and
the calculation time increases only linearly with the number of integration steps.

In addition, a more appropriate asymptotic analysis may permit a decrease in
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Pmax' The relatively small value of the number of En > 0 channels of each
parity needed to provide an adequate discretized representation of the disso-
ciation continuum, namely eight, for the energy range considered, is encourag-
ing, since the computation time varies approximately as the cube of the number
of coupled channels.

This hyperspherical coordinate approach has been shown recently to be
very suitable for handling heavy-light-heavy collinear reactive systems [14].
The present work indicates that it is also suitable for collinear CID calculations.
Extension of the method to encompass electronically nonadiabatic processes
should be straightforward [19, 20]. The treatment of CID in atom-diatom
collisions can, in principle, be extended to the three-dimensional physical
world, since the corresponding generalization of the surface functions still
forms an infinite discrete set [13c -e]. This extension is particularly important,
since it has been observed in classical trajectory calculations [21] that a collinear
model cannot adequately describe the dynamics of CID. However, the large
number of channels involved in such three-dimensional systems will undoubtedly
require the introduction of approximations in the calculation.

In summary, hyperspherical coordinates seem to provide a very useful
language for the description and elucidation of the dynamical processes occurring
in molecular collisions, including collision-induced dissociation and its reverse,

three-body recombination.
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Fgurs Captione,

Fig. 1. Contour plot of the potential energy surface for a model collinear tri-
atomic system in Delves scaled coordinates R, r, The solid curves are equi-
potential contours at the total energies (with respect to the dissociated system)
indicated in the lower side of the figure. The dashed line is the minimum
energy path. The polar coordinates p, o of a general point P in this Ra,ra
configuration space are also indicated.

Fig. 2. Schematic diagram of the potential energy function characteristics
along the minimum energy path in Delves coordinate space, s is the distance
along that path measured from the saddle point configuration, and V(s) the
corresponding potential energy. The horizontal lines indicate _the energy levels
of the bound states (v = 0 and 1) of the isolated diatoms and of the dissociated

configuration.

Fig. 3. Transition probabilities as a function of relative translational energy
and total energy for ground state reagents. (a) Quantum mechanical (QM, solid
line) and quasi-classical (CL, dashed line) total probabilities for reactive (R),
nonreactive (N), and dissociative (D) processes. The arrows on the lower
abscissa labelled E, and Ey indicate the energies of the first vibrationally
excited state of the reagent énd the reagent dissociation energy, respectively.
(b) State-to-state quantum mechanical probabilities for vibrationally adiabatic
(P‘?O , dotted line) and vibrationally nonadiabatic (Pﬁ, dashed-dotted line) reactive
processes. The dissociation probability curve (PP QM, solid line) is included

again for comparison purposes. Arrows in the abscissa have the same mean-

ing as in (a).

Fig. 4. Transition probabilities as a function of relative translational energy
and total energy for the diatom reagent in its first (and only) vibrationally excited

state. Notation is the same as for fig. 3.
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II1.4 MASS EFFECT IN QUANTUM MECHANICAL COLLISION-
INDUCED DISSOCIATION IN COLLINEAR REACTIVE
ATOM-DIATOMIC MOLECULE COLLISIONS.

I. SYMMETRIC SYSTEMS,
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Mass effect in quantum mechanical collision-induced dissociation in
collinear reactive atom-diatomic molecule collisions.

I. Symmetric Systemsa)
Jack A. Kayeb) and Aron Kuppermann

Arthur Amos Noyes Laboratory of Chemical Physics, c)
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Quantum mechanical probabilities for collision-induced dissocia-
tion (CID) and chemical reactions have been obtained for a model

triatomic collinear system,
A+ BC(v) ™ A+ BC(v’"), AB(v')+C, A+B+C

using hyperspherical coordinates. Details of the methodology
used for CID are presented. Calculations were performed for
three different symmetric mass combinations (mA =mp = mg,
m, =mga ?me) corresponding to light-light-light, heavy-light-
heavy, and light-heavy-light systems. CID was found to be
enhanced by reagent vibrational energy and to be most likely

in the light-heavy-light system and least likely in the heavy-

light-heavy system. Vibrationally nonadiabatic processes
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were found to be of only secondary

importance compared with either CID or vibrationally adiabatic
ones. The activation energies for CID were found to be substan-
tially in excess of the energetic threshold. The exchange reac-
tion was found to be vibrationally enhanced, the reagent vibra-
tional excitation being partly effective in lowering the activation
energy of the reaction. Indication of a resonance in the heavy-
light-heavy system has been found in spite of the large barrier
to reaction. Quasi-classical trajectory calculations on the light-
light-light system suggest that classical mechanics furnishes an
adequate representation of the main features of the dynamics in

these systems.
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1. INTRODUCTION
The collision-induced dissociation (CID) of diatomic molecules
A+BC ® A+B+C (1)
and its inverse process three-body recombination
A+B+C — A+B _ (2)

have been of great interest over the years to both experimentalists and
theoreticians. To experimentalists, much of the interest has arisen
from unusual temperature dependence of the rate of these reactions:
the activation energy for CID is frequently less than the dissociation
energy of the diatomic molecule, 1 and the rate of-three-body recom-
bination frequently decreases with increasing temperature. 2

To theoreticians, however, the challenge has been to describe
the dynamics of the collision process itself from first principles.
Because of the double continuum of product states inherent in CID, this
is far more complicated for this process than for the usual inelastic

and/or reactive atom-diatomic molecule collision problem,

A + BC(n) ———s A + BC(n") (3a)
AB(n")+ C , (3b)

where n represents the set of all quantum numbers (electronic, vibra-
tional, and rotational). Extension of the coupled-channel formulation
to exact quantum mechanical calculations of CID, occurring in compe-
tition with exchange processes, has previously not been possible. 8
Information about the CID process (and its inverse process
three-body recombination) has been obtained from models based on

kinematics,4 from quasi-classical trajectory calculations, B from
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semi-classical calculations, 6 and from statistical models. ! Quantum
mechanical treatments have been limited mainly to studies of systems
in which only CID and inelastic nonreactive processes [such as those
represented by Eq. (3a)] occur. 3 Only recently have exact quantum
mechanical methods for CID for systems in which chemical reactions
[Eq. (3b)] may also occur been developed. These techniques consist of
the time-dependent wave-packet approach developed by Kulamder,10
which has been applied to the collinear H + H, system above threshold,
a multiple collision formalism developed by Beard and Micha (but so
far applied only to nonreactive systems), 11 and the time-independent
hyperspherical coordinate methods, developed independently by
Kuppermann et al. 12 2nd Manz ga_l.13 |

The ability to study reactive systems is important, as experi-
ments and quasi-classical trajectory calculations suggest that CID
and its inverse process, three-body recombination, is much more
rapid in reactive systems than in nonreactive ones. & In addition, the
detailed nature of the dissociation or recombination processes may be
different in reactive and nonreactive systems due to the greater
diversity of types of collisions. 9

As accurate quantum studies of CID are relatively new, it is
important to perform studies that help to develop intuition about the
effect on the CID process of changes in the potential energy surface
and in the masses of the atoms involved. Most such studies have been
limited to nonreactive systems, notably the quasi-classical trajectory
calculations of Wong and Burns14 on rare-gas plus bromine collisions
and the collision-induced ion-pair experiments of Tully

et al. on rare gas plus alkali halide s;rstemsl5 and of Parks et al. on
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rare gas plus thallium halide monomer and dimer systems. 16

In this work we will discuss in detail the results of exact collinear
quantum mechanical CID calculations on a model reactive potential
energy surface for three different mass combinations: m, = mpg =
mczl; mAsz:IO, mle; andmAzmcs 1, mp = 35, in units
of the H-atom mass. Results for one of these mass combinations
(and comparisons with collinear quasi-classical trajectory calculations)

12e We will analyze and interpret

have been summarized previously.
the probability versus energy curves and temperature dependence of
the corresponding CID and exchange reaction rate constants for the
three cases studied.

In Sec. II we describe the potential energy surface and different
mass combinations used in these calculations. In Sec. III we briefly
review the application of the hyperspherical coordinate methods to
CID. In Sec. IV we present the results obtained in these calculations,

which are analyzed and discussed in Sec. V. Finally, in Sec. VI we

summarize our results.



376

II1. POTENTIAL ENERGY SURFACE

The potential energy surface V used in the calculations reported

here is of the rotating Morse cubic spline type, 17

12b

and has been briefly
described previously. The three atoms are labeled A, B, and C,
with B always occupying the middle position, and Rap and RBC repre-
senting the distance of the latter to A and C, respectively. For RAB -
7 bohr and RBC < T bohr, the potential energy function is that of a

Morse oscillator
-B(Rg~-R,,)

BC “e 2
V(RppsRge) = Defle To17 -1}, (4)
where D, = 0.22 eV, B=1.6 bohr ', and Req = 1.40083 bohr. For
RBC > 7T bohr and Ryp < 7 bohr, an expression analogous to (4), with
the roles of RAB and RBC interchanged, is used. For both RAp and

RBC greater than 7 bohr, V(RAB, 0. Finally, for R

Rpc) = ip @4 Bpe
both smaller than 7 bohr, V is defined in Ref. 17. It has the form of a

Morse curve,

In this expression, 6 is the swing angle defined in Fig. 1 around the
point S whose coordinates are RAB = RBC = 7 bohr, and £ is the distance
of the point P(RAB,RBC) to S. 6 varies from 0° to 90°, and the 6-
dependent Morse parameters D(6), ﬂeq(e) and B(6#) are symmetric with
respect to 6 = 45° and are defined as follows. D(6) is given by the

Gaussian function

D(6) = D, - b{exp[-c( % - 6)°] - exp[-c( %)z]} 5 (5)

where b = 0.14101 eV and ¢ = 8.00876 rad™’, yielding a classical barrier
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height of 0. 14 eV. The functions J‘Zeq(B) and B(6) are given in Table I
for eight values of @ in the range 0° to 45°. For intermediary values
of 6, they are obtained by a cubic spline interpolation. For 6 in the
range of 45° to 90°, they are obtained by the symmetry condition with
respect to 6 = 45°, A plot of the potential energy surface in Delve.‘s.18
mass scaled coordinates for the mass combination 1 - 1 - 1 is given in
Fig. 2. As described previously, for this mass combination, asymp-
totically the Morse oscillator supports two ground states, with energy
eigenvalues of 0.0817 and 0. 1885 eV above the bottom of the isolated
di atomic well,

In order to help elucidate the nature of the dependence of CID on
masses, we considered, in addition, the mass combinations 10 -1 - 10
and 1 - 35 - 1, These were chosen to broadly scan the possible range
(0° to 90°) of skew angles in Delves 15 mass weighted coordinates, as it
is known that this skew angle plays a major role in determining the
dynamics of a reactive system independent of the nature of the forces

i3 These mass combinations give skew angles of

between the atoms.
24, 62° and 88.41°, respectively, whereas the skew angle for the 1 -1 -1
combination is 60°. Various properties of the different mass combina-
tions are summarized in Table II. Of particular note is the fact that for
the 10 - 1 - 10 and 1 - 35 - 1 mass combinations, there are three bound
states of the isolated diatomic molecules, as opposed to two for the

1 -1-1 combination. Also, the two lowest eigenvalues of the isolated

1 - 10 and 35 - 1 diatomic molecules are quite similar, which suggests

that differences in CID for these two systems cannot be attributed to

differing amounts of reagent vibrational excitation energy.
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III. THE HYPERSPHERICAL COORDINATE METHOD AND ITS
APPLICATION TO CID

The hyperspherical coordinate method has been outlined previous-
1y12a, 20 and we will not repeat the formalism in detail here. We have
also indicated briefly how the method is applied to CID, and will expand
upon that aspect of the treatment.

In the hyperspherical coordinate approach, the primitive wave-

functions xpj(p, @) are expanded in terms of a discrete set of basis

functions,

4 &

j=1

where p and o are, respectively, the distance and angle coordinates of
a point in Delves’' configuration space, and p is the value of p at which
the diabatic basis functions qbi are calculated. The use of a diabatic
basis set gives rise to a parametric dependence of the expansion coeffi-
cients gij on p. N is the number of channels included in the calculation.

134 when p is sufficiently large and the

As indicated previously,
A + BC and AB + C configurations are sufficiently separated from one
another by the dissociative plateau, we may rewrite that portion ’J/;) of
the wavefunction that correlates asymptotically with the BC or AB by

reexpanding it in terms of the eigenfunctions of the corresponding

isolated diatomic molecule [in Delves ie coordinates],

Np©
b, A+BC A+BC B _ A+BC,. .o _
Vi (p,@) = L hi"PCRA R, = 0x{TE(r g iRy = @), (7)
i=1
e . . AB+C : .
a similar expression being used for . Using the orthogonality of
the basis set xA+BC(rA;§X= ®), the pABC coefficients defined above
f i
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can be calculated from

A rA(max) A
+BC el _ +BC e
hi"™ Ry Ry = @) = X (rpgiRy =)
rA(mm)
x y2 ABC0p ajar, (®)

where the integration limits are chosen so that contributions to the
integral from outside their range are negligible. In this expression,
p and o are functions of r, and R, through the relations p = (rrjv RZA)%
and a = tan'l(rA/RA). The derivative of the radial wavefunction matrix
h®*BC with respect to R "
respect to this variable.

is obtained by differentiating Eq. (8) with

In the symmetric systems studied here (where the mass combina-

tion is of the A + BC type), a projection onto the basis functions of the

isolated AB diatomic need not be performed explicitly, as xf”BC =
XAB+C

i when A = C. In this case, we may obtain the corresponding

radial wavefunction matrix elements from the relationship

h‘iAj"LBC(RA;ﬁ_;: ) if ¥; is symmetric
-hij (RA,RA = 00) i 1,(/]. is antisymmetric ,
where the symmetry of d’j is about the line a = amax/2. The derivatives

h’ are similarly related.

The matrix G of the coefficients used in the asymptotic (E and §

matrix) analysis is given by
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1:1A+BC
hAB+C
G = = (10)
-z _un
Po * g
A+BC . " :
where h is evaluated at a large value of RA’ chosen arbitrarily,

and hAB+C is evaluated at RC = RA. The value of p at which the unpro-

jected gun is evaluated can be chosen according to different criteria.
One is to make it equal to R,. Another is to make it equal to [RZA +
rA(max)2 ]%. Still another is to pick [R% + quZ(RA)]%, where riq(RA)
is the value of Ty for which V(RA,rA) has a minimum for a given RA'
Alternate choices are obtained by interchanging the roles of A and C.
In the limit as R, ~ o, all of these should lead to fhe same result. In

the calculations reported here, we selected the second criterion. The

derivative G’ is defined by the expression

hl A+BC

Gr = 1,—1: AB+C (11)
e 3
po 2 §[u.n_ %po 2 gun.

where g’ UM s also calculated at the same value of p as gun.

In the asymptotic analysis, 21,22

the eigenvalues of the bound
states are precisely their asymptotic values due to the invariance of the
potential beyond the RAB’ RBC cut off defined in the previous section.
The eigenvalues of the continuum states decrease continuously with
increasing p, however, and the local wavenumber associated with each
channel is nonzero and unique. At an infinite value of p and p, all

continuum eigenvalues would be zero, however. Thus, stopping integra-

tion short of p = @ leads to approximations in the method, notably the
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assumption that the basis set {x3*BC xAB+C

,®E > 0)} is orthonormal,
which is not true at finite p.

As a result of this approximation, the convergence of state-to-
state reaction probabilities with the stopping point of the integration Do
(where the asymptotic analysis is performed) is not nearly as rapid as
in the bound-bound problem we have studied. For the 1-1-1 mass
combination, plots of dissociation probability versus integration stopping
point displayed what could best be described as damped oscillations.

By carrying integration in that system to p = 76 bohr, all probabilities
seem to be converged to + 0. 01; most probabilities, especially those
involving the v = 0 state, should be even better converged. For the
10-1-10 and 1-35-1 mass combinations, integration was carried out to
p = 90 and p = 45 bohr, which correspond to about the same value RAp =
RBC = 30 bohr at which the 1-1-1 integration was stopped. The differ-
ence in these three values of p is due to the mass scaling inherent in the
Delves coordinate systems. Ten even and ten odd channels were used
in the integration of the coupled equations in the 1-1-1 system; 12 of
each were used for the two others. Flux was conserved to better than
3% in the 1-1-1 calculations, 4.5% in the 10-1-10 calculations, and

12, 5% in the 1-35-1 calculations. These limits were obtained at the
highest energies; at lower energies, the flux conservation was far
better. Since our interests here are mainly qualitative (i.e., to con-
sider general dependence at CID on the initial reagent vibrational state
and on the mass combination), we considered these calculations to be

sufficiently accurate for analysis.
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Rate constants were obtained from the calculated reaction prob-
abilities by straightforward numerical integration, assuming an equilib-
rium (Boltzmann) distribution of relative kinetic energies. For the
1-1-1 system, rate constants were calculated using results obtained
from scattering calculations in which the integration was stopped at
p = 32 bohr, as calculations were performed for far more energies in
these calculations than in those in which the integration was carried out
to p = 76 bohr.

Arrhenius parameters (pre-exponential factors and activation
energies) were obtained by a least-squares fit to the rate constant data
over a region of temperature in which the Arrhenius plots (logarithm of

rate constant versus inverse temperature) were linear.
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IV. RESULTS

We have studied the dynamics of the model system described
above for the mass combinations 1-1-1, 10-1-10, and 1-35-1 up to an
energy 0. 25 eV above the dissociation energy of the isolated diatomic
molecules. Our attention has been focused on the probabilities of
reaction and dissociation as a function of translational energy and of
reagent vibrational excitation. We have looked at the amount of vibra-
tional nonadiabaticity in the exchange reactions, and have calculated
state-to-all and, in some cases, state-to-state rate constants (and
their associated Arrhenius parameters).

Plots of state-to-state reaction probability veérsus reagent trans-
lational energy for the 1-1-1, 10-1-10, and 1-35-1 mass combinations
are shown in Figs. 2, 3, and 4, respectively. The figures are con-
structed such that in any one figure, a vertical line always corresponds
to the same total energy. Hence, the translational origins in each panel
within a figure are shifted to account for the different internal energy in
each reagent vibrational level. In Figs. 5, 6, and 7, similar plots are
constructed for the total reactive, nonreactive, and dissociative prob-
abilities. Reactive and dissociative rate constants in the temperature
range 200°K < T <650°K for the three mass combinations are given in
the form of Arrhenius plots (in °K versus 1/T) in Figs. 8, 9, and 10.
Finally, in Fig. 11, we present Arrhenius plots of state-to-state
reactive (and dissociative) rate constants for the 1-35-1 mass combina-

tion, as that is the one with the greatest amount of vibrational nonadia-

baticity and dissociation.



384

V. __ DISCUSSION

Two main features are evident in the results obtained from these
calculations. First, there is substantial vibrational enhancement of
CID as the reagent vibrational energy is increased, in all of the systems
Studied. Second, there is a major difference in the CID probability ver-
sus energy curves for the three different mass combinations, In addi-
tion, important information is contained in these results about the rela-
tive importance of CID, reaction, and nonreactive processes, the magni-
tude of vibrational nonadiabatic processes, and the possible importance
of resonances in chemical reactions occurring in this model system.

We now proceed to examine these points in greater detail.

The probabilities for reaction and for CID displayed in Figs. 3 to
7 clearly demonstrate the importance of vibrational enhancement of CID.
While this is clearest in the 10-1-10 mass combination, it is still quite
clear in the 1-1-1 mass combination, particularly in the region of the
first peak in the CID versus energy probability curves, in which the
probability for CID from the v = 1 state is some 40 times that from the
v = 0 state. At higher energies, the enhancement is less pronounced.
The vibrational enhancement is smallest for the 1-35-1 mass combina-
tion. In fact, up through about 0. 08 eV above dissociation, the prob-
ability of CID from the v = 0 state is higher than that from the v = 1 state,
although this is reversed at higher energies. The probability of CID
from the v = 2 state is nearly always higher than that from the v = 0 and
v = 1 states for this mass combination, except at the energy of the

minimum in the v = 2 CID probability versus energy curve.
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The vibrational enhancement of CID can also be seen by consider-
ing the rate constants for dissociation (kiD) shown in Figs. 8 to 10.
There is a large increase in the rate constant with reagent vibrational
excitation, much of which can be attributed simply to the decrease in
the energetic threshold for CID with reagent vibrational excitation. An
estimate of the magnitude of this effect can be obtained by consideration
of the Arrhenius pre-exponential factors and activation energies asso-
ciated with the Arrhenius plots in Figs. 8 to 10. Such an analysis for
the dissociation curves is complicated by their nonlinearity, but the
curvature is sufficiently small that we may obtain reasonably good fits
to the calculated rate constants by assuming a linear Arrhenius plot in
the temperature range from 350-650°K. Pre-exponential factors b and
activation energies E, for the exchange reaction and CID are given in
Table III. Considering the CID Arrhenius parameters for the 1-1-1 and
10-1-10 mass combinations, the pre-exponential factors increase and
the activation energies decrease with increasing reagent vibrational
excitation, both effects contributing to an increase of the rates. For the
1-35-1 mass combination, the CID pre-exponential factors are all approxi-
mately equal, and the entire vibrational state dependence of the CID rate
constant stems from decreases in the activation energy with increasing v.

In all cases the activation energy for CID is far greater than the
corresponding classical energetic threshold for this process, the differ-
ence between these quantities lying in the range from 40-70 meV. This
indicates that not all of the reagent vibrational energy is available to
overcome the barrier to dissociation, resulting in an extra amount of

translational energy to do so.
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Vibrational enhancement of CID has been obtained in most previ-
ous calculations of the CID process; the present calculations further

support that result, 10,11, 22

In one previous study, CID had been found
to be inhibited by reagent vibrational excitation, but this is now consid-
ered to be an artifact of the model used (impulsive force between the
incident atom and the target atom of the diatomic molecule in a collinear

collision, 23

The state-to-all exchange reaction probabilities show less varia-
tion with reagent vibrational excitation than do the CID probabilities.
This may be easily seen on examination of Figs. 5 to 7. The overall
similarity of the P? curves on each figure is striking. This particularly
true for the 10-1-10 mass combination in which there are three peaks in
each of the curves, with the energy spacing between the second and third
peaks far greater than that between the first and second peaks. The
vibrational enhancement of the rate of reaction is reflected in the rate
constants for reaction plotted (using solid lines) in Figs. 8-10. The
Arrhenius plots of these i‘ate constants are linear over the entire 200-
650°K temperature range, and this range was used in the calculation of
the Arrhenius parameters, which are included in Table III. An examina-
tion of Table III shows that the pre-exponential factor is essentially
independent of the reagent vibrational state. Thus, as in the case of
CID for the 1-35-1 mass combination, reagent vibrational excitation only
changes the activation energy for the exchange reaction. The decrease
in activation energy with reagent vibrational excitation is substantially

smaller than the added vibrational energy, however.
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One especially noticeable feature of the exchange reaction prob-
ability curves is their different structure for the three different mass
combinations. For the 1-1-1 case, these reaction probabilities reach
their peaks and decrease to zero shortly above the opening of the disso-
ciation channel and increasé slowly at higher energies. For the 1-35-1
case, their decrease after the peak is much slower, and there is no
further increase beyond the first maximum, up to the highest energies
used in these calculations. For the 10-1-10 case, however, reaction
probabilities vary substantially with reagent translational energy, even
at the highest energies considered. It should be noted that oscillatory
behavior in the reaction probability versus energy curves for heavy-

12b 4 ha cr-g-c124

light-heavy systems has been observed in the I-H-I
systems. Thus, this oscillatory behavior appears to be a feature
common to systems with small skew angles.

It is interesting to consider the importance of vibrationally non-
adiabatic processes, both reactive and nonreactive, as they are important
in the collisional vibrational excitation or relaxation relevant to experi-
mental studies of CID, especially shock-tube experiments. We will
restrict our attention here to vibrationally nonadiabatic exchange reactive
processes. In general, the probabilities of inelastic nonreactive processes

of the type
A’ + BA(V) ™ A’ + BA(V'#vV)

have been found to be fairly similar— to those of the corresponding

. 24
reactive processes

A" + BA(v) — A'B(vV =vV) + A,

An examination of the relative importance of vibrationally nonadiabatic
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and CID probabilities is of interest since CID can be considered as an
extreme case of vibrational excitation to a nonbound state. :

In general, nonadiabatic processes are seen from Figs. 2-4 to be
of only secondary importance (as opposed to CID and vibrationally adia-
batic processes). There is a correlation between the magnitude of CID
and vibrationally nonadiabatic processes in that for the case where CID
is the most likely (the 1-35-1 mass combination), the latter processes
are also the most likely. On the other hand, vibrationally nonadiabatic
processes are more likely for the 10-1-10 mass combination than they
are in the 1-1-1 case, however, even though CID is more prevalent in
the latter case than in the former,

To help elucidate the relative importance of the exchange reaction,
both vibrationally adiabatic and nonadiabatic, and of CID, we have
obtained Arrhenius plots of the state-to-state reaction and CID rate
constants for the 1-35-1 case, and these are displayed in Fig. 11, Itis
clear that of all the above mentioned processes, vibrationally adiabatic
reaction is the most likely. Further, it is not always true that CID
rates are smaller than all the other bound-to-bound rate constants, as
has been assumed in some models.

Finally, we wish to consider the possible role of resonance pro-
cesses in this model system. The large barrier to reaction in this
system (relative to the dissociation energy) decreases the likelihood of
resonances in the 1-35-1 and 1-1-1 mass combinations. The reason is
that there will be no wells in the vibrationally adiabatic correlation dia-
grams, which are important mechanisms for the appearance of such

25,26

resonances, This picture is known to be less appropriate for
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heavy-light-heavy systems like the 10-1-10 mass combination being

considered here, 12,26

which still leaves the possibility that there may
be resonances in the 10-1-10 case, in spite of the large barrier.

In fact, the first peak in the P(I)?) versus energy curve for this sys-
tem can be shown to be associated with a resonance by construction of

an Argand diagram, 8, 2

which is displayed in Fig. 12. The switch-
over from a clockwise to counterclockwise sense near 0. 15 eV total
energy (as the diagram is traversed in the direction of increasing

26,27 o

energies) makes the resonant nature of this process evident.
corresponding peak in the Pﬁ versus energy curve does not appear to be
associated with a resonant process on consideration of the appropriate
Argand diagram (Fig. 13). The curve there has a clockwise sense over
the entire range from 0. 18 to 0. 21 eV total energy, signifying that there
is either no resonance at all or that if there is one, it is masked by a
direct process and thus unobservable from an Argand diagram. An
analysis via the collision lifetime matrix eigenvalue technique28 would
help elucidate this point.

We have performed quasi-classical trajectory calculations for the
1-1-1 mass combination and have found their results to be qualitatively
similar to the quantum mechanical ones (the corresponding curves are
plotted in Figs. 3 and 4 of Ref. 12b). The results are quantitatively
sufficiently different, however, that rate constants for CID calculated
using the quasi-classical probabilities were substantially different at
times from those obtained from the quantum mechanical probabilities.

As mentioned in the Introduction, very little work has been done

on the behavior of CID in reactive systems. Most of this work has been
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limited to quasi-classical trajectory calculations on the H + H, system
and its isotopic counterparts, frequently including systems in which

there is an incident tritium atom. 9,29

This case corresponds closely
to that studied in nuclear recoil experiments in which hot tritium atoms
are used. Simple calculations using kinematic (i.e., hard sphere)
models have also been performed, and have in general yielded satisfact-
ory agreement with both experiment and quasi-classical trajectory

calculations. 4

That the masses of the colliding partners could have a major effect
on the CID has been seen for some time in nonreactive systems. Fan30
has performed collinear quasi-classical trajectory.calculations on the
Xe + CsBr - Xe + Cs’ + Br~ system, and found that dissociation is much
more likely in collisions of Xe with Br than of Xe with Cs. A similar
behavior was found both experimentally and in quasi-classical trajectory

calculations by Tully et al. 15

Their results suggest that collisions lead-
ing to dissociative ion pair formation are near-collinear; that is, they
occur with their relative velocity roughly parallel to the alkali halide
axis, but with a small but non-zero impact parameter. Of particular
interest is the fact that the scattering in the Xe-Rbl and Xe-CsBr sys-
tems was very similar, which suggests that it is the masses of the
atoms (mRb ~

m ~mI) and not the details of the intermolecular

Mpy Mg
forces that govern CID behavior. Further, in their experiments, Tully

et al. found that CID rates were found to vary more with changes in the

alkali halide molecule in Kr-MX collisions than in Xe-MX collisions.

Additional evidence of strong mass effects in CID was obtained by

31

Shui et al., who found that a modified phase space theory, which
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normally predicts CID and three-body recombination rates fairly well
for most systems, does not work in the case of HF and HCI dissociation
in Ar. Their method involved the use of trajectories calculated for
systems in which all the atoms and molecules had similar masses, and
they attribute the inaccuracy for these systems to different dynamics
than in most other cases.

In the results obtained here, we have also seen grossly different
dynamics with changes in the atom masses. In particular, the dynamics
of the heavy-light-heavy system are substantially different from those

of the two others, lending support to the hypothesis of Shui et al. el

described above. Because of our restriction to symmetric systems in
the present calculations, we have been unable to consider the dependence

of CID on orientation (i.e., A + BC versus A + CB), as was considered

30

by Fan, but we do hope to do so in the future.
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VI, SUMMARY AND CONCLUSIONS

We have calculated probabilities for CID and exchange reaction
for the collinear triatomic system A + BA on a model potential energy
surface for three different mass combinations, using the hyperspherical
coordinates coupled-channel technique. The mass combinations studied
are of the light-light-light, light-heavy-light, and heavy-light-heavy
types. Substantial vibrational enhancement of CID was seen, and in all
three systems CID was found to be most important for the 1-35-1 mass
combination and least so for the 10-1-10 mass combination. Arrhenius
plots of rate constants for CID are reasonably but not precisely linear,
and over the temperature range 350-600°K give rise to activation ener-
gies for CID which are substantially (normally 40-70 meV) greater than
the energetic thresholds.

Probabilities for the exchange reaction, both vibrationally adia-
batic and nonadiabatic, have also been obtained. In general, the shapes
of the reaction probability versus energy curves vary only slightly with
reagent vibrational excitation. There are substantial differences between
the curves for the different mass combinations, however. Arrhenius
plots of the rate constants for reaction are linear over the entire 200-
650°K range. For each mass combination, the Arrhenius pre-exponential
factors are approximately independent of reagent vibrational state; the
activation energies do decrease with reagent vibrational excitation, but
the magnitude of this decrease is substantially smaller than the added
reagent vibrational energy. Vibrationally nonadiabatic processes are
found to be less important than vibrationally adiabatic processes and

CID. Rate constants for CID are usually smaller than those for the
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exchange reaction, but this is not always true, especially at the upper
end of the range of temperatures considered.

We have shown that resonant processes can be important at ener-
gies not far from dissociation in this system for the heavy-light-heavy
mass combination, although they do not necessarily occur for all
reagent levels,

On the basis of quasi-classical trajectory calculations performed
on the 1-1-1 mass combination, quantum effects, even for the weakly
bound system studied here with the light masses used, are fairly small.
Thus, classical mechanics should be able to give a reasonably good
qualitative picture of the dynamics in these systems, although not
necessarily a quantitative one.

We have recently modified the hyperspherical coordinate scattering
program to allow for the study of asymmetric systems (i.e., three non-
equivalent atoms), and hope to extend our studies of the CID process to

them in the near future.
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Table I. Parameters for rotating Morse cubic spline potential used

(notation is as in Ref, 17).

oy £eq() B(6) .
(bohr) (bohr™ )
0 5.5993 1. 600
15 5.7968 1.544
25 6.1774 1.458
30 6.4636 1.392
35 6.8284 1,321
40 7.2669 1,218
43 7.5047 1.142
45 7.5666 1.121
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Table II. Properties of potential energy surfaces for different mass

combinations.
Case I II I
Masses? 1 nd 10-1-10 1861
Skew Angle 60° 24, 62° 88.41°

b

Reduced Mass®’ 0.5774 2.1822 0. 9726

Eigenvalues of
Isolated Diatomic (eV)

v=10 0.0817 0.0625 - 0. 0606
v=1 0.1885 0.1561 0.1524
y= 2 c 0.2082 0. 2055

2 In units of the hydrogen atom mass.
1
P Defined as fi = [mAmBmC 4 (mA + My + mC)]z.

€ This system only supports two bound states.
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Table III. Arrhenius parameters for rates of reaction and dissociation.?

Mass ¢ Exchange Reaction Dissociation
v
Combinationb on bd Eae on bd Eae
0 11.1 0. 086 8.5 0. 213
1-1-1
1 11,2 0. 025 10.3 0.072
0 10.0 0. 098 3.9 0.208
10-1-10 1 10,1 0. 046 5.7 0.104
2 10.1 0.015 1 7.4 0. 082
0 1L 7 0.014 11,0 0.215
1-35-1 1 11.6 0. 063 10.9 0.133
2 11.4 0. 024 11.2 0. 061

2 From 200 to 650°K for the exchange reaction and 350 to 600°K for
dissociation.

B In units of hydrogen atom masses.

S Reagent vibrational quantum number.

d

. - -1
In units of cm * molec ‘sec .

5 In eV.
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FIGURE CAPTIONS

Figure 1. Schematic plot of the coordinate system (4, 6) for the rotating
Morse cubic spline surface. S is the swing point from which the Morse

oscillator is rotated.

Figure 2. Contour plot of the potential energy surface for the model
collinear triatomic system studied here (1-1-1 mass combination) in

Delves scaled coordinates R,,T The solid curves are equipotential

o
contours at the total energies (with respect to the dissociated system)
indicated at the high side of the figure. The dashed line is the path of
steepest descent from the saddle point, The polar coordinates p, @ of

a general point P in this Ra’ Ty configuration space are also indicated.

Figure 3. State-to-state reaction and CID probabilities for the 1-1-1
mass combination as a function of relative translational energy and total
energy for the reagent vibrational states v = 0 (top panel) and v = 1
(bottom panel). Total energy is indicated by the common horizontal scale
(tic marks are on the top of each panel), while translational energy is
indicated at the bottom of each panel. Curves are for vibrationally
adiabatic reaction (solid line), vibrationally nonadiabatic reaction
(dashed), and CID (dashed-dotted). Arrows are drawn at energies at
which higher vibrational states and dissociation become energetically
allowed, and are labeled on the top figure, e.g., E, for v=1, E, for

v =2, and E4 for dissociation.

Figure 4. State-to-state reaction and CID probabilities for the 10-1-10
mass combination as a function of relative translational energy and total

energy for the reagent vibrational states v = 0 (top panel), v = 1 (center
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panel), and v = 2 (bottom panel). Energies and arrows are as indicated
in Fig. 3. The solid curves always represent the vibrationally adiabatic
reaction probability, the dashed-dotted curves always represent CID,
and the dashed and dotted curves represent vibrationally nonadiabatic

reaction probabilities as indicated in the figure.

Figure 5. State-to-state reaction and CID probabilities for the 1-35-1
mass combination as a function of relative translational energy and total
energy for reagent vibrational states v = 0 (top), v =1 (center), and v =

2 (bottom) panels. All markings are as in Fig, 4.

Figure 6. Probabilities for reactive (solid curve), dissociative (dotted
curve), and nonreactive (dashed curve) processes as a function of rela-
tive translational energy and total energy for the 1-1-1 mass combination
for vibrational states v = 0 (top) and v = 1 (bottom). Arrows and energies

are as in Fig. 3.

Figure 7. Probabilities for reactive, dissociative, and nonreactive
processes as a function of relative translational energy and total energy
for the 10-1-10 mass combination for reagent vibrational states v = 0
(top), v =1 (center), and v = 2 (bottom). Curves are as in Fig. 6;

energies and arrows are as in Fig. 4.

Figure 8. Probabilities for reactive, dissociative, and nonreactive
processes as a function of relative translational energy and total energy
for the 1-35-1 mass combination for reagent vibrational states v =0
(top), v =1 (center),and v = 2 (bottom). Curves are as in Fig. 6;

energies and arrows are as in Fig. 9,

- -1
Figure 9. Arrhenius plot of rate constant (in units of em - molec 'sec )
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versus inverse temperature for reactive and dissociative processes for
the 1-1-1 mass combination. Solid lines are drawn for rate constants for
reaction; dashed lines are used to indicate those for dissociation.

Absolute temperature is indicated at the top of the graph.

Figure 10, Arrhenius plot of rates for reactive and dissociative pro-
cesses for the 10-1-10 mass combination. Lines have the same mean-

ing as in Fig. 9.

Figure 11, Arrhenius plot of rates for reactive and dissociative pro-
cesses for the 1-35-1 mass combination. Lines have the same meaning

as in Fig. 9.

Figure 12. Arrhenius plot of rates of state-to-state reactive and disso-
ciative processes for the 1-35-1 mass combination, with the reagent in
its v = 0 (top panel), v =1 (center panel), and v = 2 (bottom panel).

Lines have the same meaning as in Fig. 9.

Figure 13. Argand diagram for the transition A + BC (v = 0) -~ A®B
(v =0) + C for the 10-1-10 mass combination. Energies are labeled
every 10 meV and correspond to total energies. Points are marked
with an X every 5 meV. Arrows are drawn to indicate the sense of the

curve.

Figure 14. Argand diagram for the transition A’+ BA (v=1) - A'B
(v=1)+ A for the 10-1-10 mass combination. All labeling is as in

Fig. 13.
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III.5 COLLINEAR QUASI-CLASSICAL TRAJECTORY STUDY
OF COLLISION-INDUCED DISSOCIATION ON A MODEL
POTENTIAL ENERGY SURFACE
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Collinear Quasi-Classical Trajectory Study of Collision-Induced

Dissociation on a Model Potential Energy Surface.a)

b)

Jack A. Kaye and Aron Kuppermann

Arthur Amos Noyes Laboratory of Chemical Physics, “

California Institute of Technology, Pasadena, California 91125
(Received )

Quasi-classical trajectory calculations have been carried out at
energies above the threshhold for collision-induced dissociation
fur a model collinear atom-diatomic molecule system. Exact
quantum mechanical calculations have shown that quasi-classical
trajectories give a qualitatively correct picture of the dynamics

in this system. Trajectories leading to dissociation are found to
lie almost entirely in well defined reactivity bands, with the excep-
tion of a few occurring in a small cha.tteriﬁg region in which the
outcome of the trajectory is extremely sensitive to its initial condi-
tions. The probability of dissociation leading to all possible dis-
tributions of the kinetic energy of the resulting atoms is obtained
and is shown to vary substantially with initial conditions (reagent
vibrational and translational energy). The form of these proba-
bility distributions is, to a major extent, determined by the posi-
tion and width of the reactivity bands. The different dissociation
reactivity bands are shown to be composed of different types of
trajectories. Part of the vibrational enhancement of dissociation
arises from the fact that the simplest possible trajectory leading
to dissociation (one which crosses the symm etric stretch line

once prior to the onset of dissociation) is not obtained with

ground state reagents.
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1. _INTRODUCTION

The collision-induced dissociation (CID) of diatomic molecules

A+ BC -9 A+ B + C (1)

is a process of great fundamental interest in chemistry, particularly
in the high temperature chemistry associated with shock waves, both
in the laboratory (1) and in interstellar space (2). The ab initio
calculation of CID rates has proven to be extremely difficult, as one
must have accurate methods for calculating the potential energy sur-
face for the collision, solving for the dynamics, and then integrating
the coupled rate equations to obtain expressions for the rate of disap-
pearance of the diatomic molecule.

The development of accurate methods for solving for the dynamics
has been especially difficult. Kinematic and quasi-classical trajectory
(QCT) calculations have been extensively used to-study CID (3). The

number of studies incorporating quantum mechanical effects, either

by a semi-classical or a purely quantum mechanical approach, is much

smaller (4). Most of these studies have been restricted to collinear
collisions in which reactive collisions of the type
A +BC -3 AB + C

are not permitted. Non-collinear collisions in non-reactive systems
have been studied by the semi-classical method by Rusinek (5). Ex-
ceptions to this are three purely quantum methods in which reaction
and dissociation may compete (these are all restricted to collinear
collisions at this time): the wave packet approach of Kulander (6),
the hyperspherical coordinate coupled-channel method developed in-
dependently by Kaye and Kuppermann (7) and by Manz and Romelt (8),
and the multiple collision approach of Beard and Micha (9) (which has
been applied only to a non-reactive system).

The availability of accurate quantum mechanical (QM) results for
CID nas increased interest in QCT studies. In particular, Kaye and

Kuppermann (7) have shown that for the model system they studied,
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the QCT results were qualitatively similar to the QM ones. Since the
model system involves light masses (three hydrogen atoms) and
weakly bound (0.22 eV) molecules, quantum effects might be expected
to be important. This suggests that QCT calculations might be useful
predictors of the gross features of CID in reactive systems. One must
approach this with some caution, however, as in a non-reactive system,
Gray, et al. (10) have obtained major differences in the dissociation
probability between their QCT results and the QM results of Knapp
and Diestler (11).

In order to help gain a better understanding of the dynamics of
this model system, we have carried out a reactivity band analysis
of the QCT results for this system. Such analyses have been exten-
sively applied to reactive systems below dissociation (12, 13) and have
also been applied to a non-reactive system above dissociation (10a).
We examine bandedness in the plots of trajectory outcome (reaction,
non-reaction, dissociation) as a function of initial vibrational phase of
the diatomic molecule and the relative kinetic energy. We also con-
sider the variation of the vibrational action of the diatomic product of
non-reactive and reactive collisions with initial vibrational phase.
In dissociative collisions we examine how the partitioning of the
energy among the three product atoms varies with initial vibrational
phase and reagent translational energy. We also examine individual
trajectories in order to understand the nature of the trajectories

comprising each of the reactivity bands.
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1I. METHOD OF CALCULATION

The QCT calculations have been performed using standard methods
(14). The model potential enrgy surface used has been described pre-
viously (7); we repeat here its basic features. It is of the rotating
Morse-cubic spline type (15), and has asymptotic Morse oscillator
parameters (16) of De = 0,22 eV, Req = 1.40083 bohr, and B = 1.6
bohrhi. There is a barrier to exchange of 0.14 eV. The surface is
plotted in figure one of reference seven, and is replotted later in
figures 23-31, in which we show selected trajectories . The trajector-
ies are integrated with a time step of 5.41){10-17 sec. Energy is con-
served to four digits in these calculations. Integration of trajectories
began with the distance from the incident atom to the center of mass of
the diatomic molecule at 12 bohr.

To determine dissociation probabilities and rough boundaries for
reactivity bands, we have calculated 100 trajectories per energy at
regularly spaced (n/50 radians) values of the initial vibrational phase.
At selected energies, we have narrowed the phase grid substantially
near the boundaries of the reactivity bands. Below dissociation we
have calculated 50 trajectories per energy at regularly spaced (v/25
radians) values of the initial vibrational phase and successively
narrowed the grid near the band boundaries.

We have also determined the partitioning of kinetic energy among
the atoms after the collision. The quantity of greatest interest is the
fraction fXD(X = A, B, C) of the available kinetic energy E' (the differ-
ence between the total energy E of the collision and the dissociation
energy De of the diatomic molecule) in dissociative collisions in each
of the atoms at the end of the collision. In dissociative collisions, the
collision was defined to be over when both internuclear distances
RAB and RBC were greater than 6.0 bohr and were increasing with

time. The sum of the kinetic and potential energies of the AB and BC

pairs was each required to be greater than De. We have extended
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this calculation to include this ratic for atom A in non-reactive colli-
sions (fAN) and atom C in reactive collisions (fCR). Plots of these
quantities vs. initial vibrational phase will connect smoothly to the

fA and fCD curves across the boundary of the reactivity bands .

From the fractional energy vs. initial vibrational phase data, one may
calculate the probability Cd'vd of the kinetic energy of atom A after
dissociation EA being between EA and EA F dEA for a collision in which
the diatomic molecule is in state v. This may be done by recognizing
that this is related to the width of the region of phase d in which E

A
will lie between E, and E, + dE

A A A
iy
- 3
0O (E,) = (1/2m) ld$/dE , | (3)
The superscript ¢ emphasizes the classical nature of this quantity.
d
The (1/27w) factor is included so that CO"V (EA) will be appropriately
normalized:
max
E
A
c
dE, = 4
S . o, (EA) A 1 (4)
EA
The limits of integration in eq. 4, EAmm. and EAmax’ have been

shown previously (17) to be E'/6 and 2E'/3, respectively, when the
masses of all atoms are equal. To simplify comparison of these par-
titioning probabilities from one energy to the next, we will plot the
dimensionless partitioning probabilities E'-CO"vd(EA) ,» which will be
indicated by a bar over the quantity, vs. fAfor all values of the energy
E', in which case the abscissa will always run from 1/6 to 2/3.

The evaluation ofthederivative in eq. 3 is complicated by the possi-
bility of minima or maxima in the EA vs. curves; hence ¢(EA) may

be a multiply valued function ofd) . e separate those regions in

which d(‘)/dE is positive and negative and then separately obtain the

A
derivatives by a three-point finite difference procedure. The resulting



425

derivatives are then used as an input for a cubic spline procedure wh
which allows us to obtain approximate expressions for the derivatives
as a function of EA. e next sum the absolute values of the deriva-
tives over all separated parts of each dissociative reactivity band and
over all such dissociative reactivity bands, and divide by 2w for norma-
lization. The resulting curve (called a partitioning probability curve)
may contain some numerical Noise associated with the numerical

differentiation procedures; we have visually smoothed out the spline-

induced oscillations.
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11I. RESULTS

Reaction and dissociation both occur in the energy range studied
here (up to 0.25 eV above the dissociation energy of the diatomic
molecule). Plots of the reaction and dissociation probability obtained
from the trajectory calculations are shown for reagent states v = 0 and
v = 1 (the only ones possible) in figures 1 and 2, respectively. For
both reagent states, the reaction probability is zero below a thresh-
hold energy, increases rapidly with energy to a large value (0.86 for
v =20, 0.96 for v = 1) and then decreases to zero {(for v = 0) or a value
just above zero (for v = 1). It then increases monotonically with ener-
gy. The dissociation probabilities for the v = 0 and v = 1 reagents be-
have quite differently from each other, however. In the v = 0 case, no
dissociation is observed until one is substantially (0.08 eV) above its
energetic threshhold; as the energy increases be‘yond that, the proba-
bility increases slowly, reaching a value of 0.27 eV at the highest
energy studied. For the v = 1 case, dissociation sets in at 0.02 eV a
above its energetic threshhold, increases rapidly with energy to a
maximum of 0.33 and then decreases rapidly to 0,02 before again in-
creasing with energy up to a value of 0.39 at the highest energy stu-
died. It should be emphasized that all of these results are qualitative-
ly similar to the exact quantum mechanical results for this system
presented in reference 7.

We next examined bandedness in plots of trajectory outcome vs.
initial vibrational phase and relative translational energy. Flots of
the reactivity bands for this system are shown in figures 3 and 4
for reagent states v = 0 and 1, respectively, for energies above the
threshhold for CID. Unlike reactivity band plots normally used in
studies of reactive atom-diatomic molecule collisions at energies be-
low dissociation, in which there are only two possible outcomes of a

trajectory (reaction or non-reaction), there are three possible outcomes
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here: reaction (R), indicated by the shaded regions of the figures;
dissociation (D), indicated by the speckled regions, and non-reaction
(N), indicated by the clear regions. The dissociative band centered
near 2.0 radians and 0.17 eV translational energy in figure 4 is en-
larged in figure 5.

Fairly well defined bands are seen to exist above dissociation.
When one narrows down the phase grid substantially (to on the order of

0.002 radians), one may find blurring of the boundaries and formation

" L1

of a '""chattering'' region (18), in which the outcome of the trajectory
varies strongly with small changes in the initial phase . This is most
severe below 0.10 eV translational energy in the v = 1 case, where the

""point'' (see

high energy reaction and dissociation bands come to a
figure 4). For example, at 0.085 eV reagent translational energy, be-
tween 2.50 and 2.70 radians initial phase, there are four separate
dissociation zones, two reaction zones, and one non-reaction zone ob-
tained when the grid spacing of 0.002 radians is used. The total width
of all the dissociative zones in this region is 0.52 radians. The disso-
ciation probability produced by this region is only 0.8%, which is far
smaller than the contribution at this energy from the large band cen-
tered at 5.5 radians. Chattering is also seen near the boundary between
reactive and non-reactive bands at energies below dissociation.

We next consider the variation of the vibrational energy of the di-
atomic molecule resulting from reactive or non-reactive collisions.
Normally, to examine this quantity one prepares plots of the action of
the diatomic moledule at the end of the trajectory as a function of ini-
tial phase at a sequence of energies (10a, 12, 19, 20). At energies above
dissociation, one cannot calculate the action in the usual way, and one
is left with gaps in the action ¢s. phase plots. Examples of these plots
are shown in figures 6 and 7 for the highest energies studied (reagent
translational energies of 0.388 eV for v = 0 and 0.2815 eV for v = 1).

Solid lines are used to indicate non-reactive zones and dashed lines
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are used to indicate reactive zones. The shaded regions mark those
regions of initial phase in which the trajectories are dissociative and
hence no action can be defined. In both of these figures, the dissocia-
tion is seen to occur in between regions of high final action in reactive
and non-reactive collisions {(the maximum allowable final action in this
system is'1.981). This is quite reasonable behavior, as for dissociation
to occur, there must be more than the dissociation energy present in
each diatomic molecule, hence, the boundary between reactive or
non-reactive vegions is expected to occur where the final action of
the diatomic molecule equals it maximum value.

A different sort of diagram is shown in figure 8, in which we plot
the final action vs. initial phase in a collision with v = 1 reagent and a
reagent translational energy of 0.1615 eV. Here. there are three disso-
ciative regions. Two are sandwiched between the reactive and non-re-
active regions, and one is in the middle of the large non-~reactive re-
gion. This dissociative region is part of the small dissociative band
located near 2 radians initial phase between 0.15 and 0.20 eV reagent
translational energy in figure 4 (and enlarged in figure 5). As the ini-
tial phase is varied so it closely approached that in the dissociative
region, the final action increases, suggesting that the consideration
of dissociation as a limiting case of vibrational excitation is an appro-
priate concept.

There is a substantial difference between the product state distribu-
tion in collisions with v = 1 reagent at relative energies of 0.2815 eV
(figure 7) and at 0.1615 eV (figure 8). At the higher energy, the likeli-
hood of vibrational deexcitation, as measured by the lar ge region of
initial phase over which the final action is substantially smaller than
one, is much greater than at the lower energy. At the lower energy,
from -0.5 radians to the second dissociative band (at 4.15 radians),

the final action never becomes smaller than 0.8. Thus, increasing
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translational energy seems to lead to increasing vibrational non-
adiabaticity in non-reactive collisions. The small likelihood of reac~
tion in these energy regions makes it difficult to draw any conclusions
concerning that process. A similar trend has been observed in the
exact quantum mechanical calculations on this system (21).

Further evidence of the tendency towards vibrational adiabaticity
at low energies can be seen by considering a collision with v = 0
molecules at an energy (0.178 eV relative translational energy) at
which only non-reactive collisions occur - no dissociation or reaction
was found. A plot of the final action as a function of initial phase for
this collision is given in figure 9. The near adiabaticity may be seen
by noting that the total range of final actions in the figure is from -0.12
to 0.19, corresponding to vibrational energies of 0.0639 eV and 0.1079
eV, respectively (the zero point energy is 0.0818 eV). Hence, at most
15% of the initial translational energy was converted to vibrational
energy in the collision. Another interesting feature of this figure is the
relatively complicated structure. In spite of the fact that all ccllisions
are non-reactive and nearly adiabatic, there is still some systematic
variation in the dependence of the final action on the initial phase.

To give some feeling for what happens when the boundary regions
between the reactivity bands become blurred, we present in figure 10
a plot of final action vs. initial phase for the collision with v = 1 mole-
cule at a relative translational energy of 0.085 eV for initial phases
from 2.40 to 3.10 radians. In this region one sees five separate dis-
sociative regions, four of which are found between 2.50 and 2.70 radi-
ans. These may be thought of as being distinct from the larger disso-
ciative band between 2.90 and 3.10 radians. The latter band is part of
the large dissociative band seen in the lower right hand portion of figure
4. The action vs. phase curves are fairly smooth in between the disso-

ciative regions. Away from the lower tip of the large dissociation and
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reaction band in figure 4, the boundaries are smoother. This figure
seems to represent, then, an upper limit to the complication of such a
diagram.

We next consider the partitioning of kinetic energy among the three
atoms in dissociative collisions and also the amount of kinetic energy
of motion of the free atom in reactive and non-reactive collisions. The
calculation of these quantities has been described earlier. Plots of
these quantities as a function of the initial phase are shown for initial
phases in or near which dissociation occurs for a variety of initial con-
ditions in figures 11 - 16. A few important features are observed in
these figures, and we review these here.

First, the curves are quite smooth in the dissociation region. At
the border between reactive and dissociative collisions, fC smoothly
matches onto the f R curve, and at the border between non-reactive

C

N
and dissociative collisions, f, smoothly matches onto the f curve.

A A
In all cases, the matching occurs at a value of the energy fraction

A
the dissociative region for a system of three equal masses. The

of 2/3; this has been shown to be the maximum value f, or fC can take in

small values of fB are also a requirement of the mass c ombination
(for the case of three equal masses, f_ is required to be smaller than

1 /6

B

Second, two types of partitioning curves are seen. For those dis-
sociative bands sandwiched between one reactive and one non-reactive
band, fA and fc must both have regions where they are large (~2/3)
and small (~1/6). For those bands sandwiched between two non-reac-
tive bands, the fA vs. phase curve must have a minimum. The pre-
sence of such a minimum will have a major effect on the partitioning
probabilities to be presented below. In theory, one might obtain disso-
ciative bands sandwiched between two reactive ones, but such bands

have not bee:1 observed .
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Finally, we present results for the partitioning probability
Cde defined earlier. These are shown in figures 17 - 22 for the six
sets of initial conditions for which energy fractions were shown as a
function of initial phase. They all appear quite different from each
other, and we can rationalize much of their form simply from the re-
action and dissociation probabilities, the kinematics of the system,
and the existence of well defined dissociation bands in the reactivity
band plots (figures 3-5). We will extensively examine this issue in the
discussion section.

There are a few features of figures 17 - 22 which will prove to be
of most interest. First is the tendency of the partitioning probabilities
to have their maxima near the maximum allowable fraction of 2/3, al-
though this is not uniformly true (see particularly figure 21, in which
the partitioning probability diverges at a fractior; of 0.25). Second,
in four out of the six cases studied, the partitioning probability has
divergences (figures 18 and 21) or sharp peaks (figures 19 and 20).
Third, curves of the partitioning probability need not be smooth. If
there is more than one dissociation band at a given energy, each of
which has a very different slope or range of slopes in its correspon-
ding fractional energy vs. phase curve, by summing the contributions
from each band one may be adding one curve which is non-zero in the
range fi( f(f‘2 and another which is non-zero in the range fi' £ f (fz'.
Such a condition would result in a partitioning probability curve which
is discontinuous at f ' and fz'. Normally, this will not be seen, as
f, = fil = 1/6 and £, = fz' = 2/3. 1If this is not true for a given band,
discontinuities will be observed. This may be seen in figure 21, in
which the hump in the region 0.42<f <0.49 is due to the existence of
a narrew dissociative band between 1.9930 and 2.0055 radians (not

shown) in which the fractional energy varies from 0.497 to 0.415.

Two additional narrow dissociative bands located from 1.8710 to
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1.8758 radians and 1.9232 to 1.92825 radi ans make essentially no con-
tribution to the partitioning probability because their narrowness means
that the magnitude of the derivative [d 4>/dEA| will be small (unless, of

course, EA is essentially constant over the band, as is true in the ad-

ditional band mentioned earlier).
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IV, DISCUSSION

In this section we will consider first the implication of the banded-
ness of dissociative trajectories as seen in the reactivity band plots.
In particular, we will focus on how this bandedness, when coupled with
the calculated reaction probabilities and the pure kinematics of the
collision, can be seen to lead to the general structure of the partitioning
probability curves, such as those shown in figures 16 - 21. We will
then consider the origins of the bandedness of the dissociative trajec-
tories, and show that a strong relationship can be established between
the separate bands and different types of trajectories leading to disso-
ciation.

A, IMPLICATIONS OF THE DISSOCIATIVE REACTIVITY BANDS

Trajectories which lead to dissociation have been found to occur,
as a general rule, in well defined bands in the reactivity band plots
(figures 3 - 5}). Exceptions to this trend are found for collisions of a
v = 1 molecule in which the reagent translational energy is in the range
from 0.07 to 0.10 eV. In this region, the trajectory outcome may
vary substantially with small changes in the initial phase of the diatomic
molecule. This is somewhat reminiscent of the observation of chatter-
ing regions in the final action vs. initial phase plots seen in reactive
atom-diatomic collisions (at energies well below dissociation), parti-
cularly the F + I—I2 (18, 20) and C1 + HCl1(22) reactions. Unlike in those
cases, where the outcome of the trajectory appears to be random, by
the use of a sufficiently small grid spacing (0.002 radians), seemingly
smooth (but quite short) curves of final action vs. initial phase can be
obtained. We have found that only a few discrete regions of initial
phase lead to dissociative trajectories. In all cases, the dissociation
probability associated with these regions is quite small (no more than
1 % of all collisions) and can thus be neglected to that accuracy in the

calculations of dissociation probabilities.
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In most cases, dissociative trajectories can be thought of as limi-
ting cases of reactive or non-reactive collisions giving rise to vibra-
tional excitation of products. This is seen in two interrelated ways.
For values of the initial phase only slightly different from those of the
trajectories which lead to dissociation, the diatomic molecules remain-
ing at the end of the collision will be highly vibrationally excited. If
one considers the fractional energy, such as that plotted in figures 10-
15, one sees that the curve for atom A smoothly matches onto that for
atom A in non-reactive collisions and that for atom C smoothly match-
es onto that for atomn C in reactive collisions. This is not necessarily
true for dissociative collisions in the chattering region; as mentioned
earlier, such regions may give rise to discontinuities in the partition-
ing probability curves.

The nature of the dissociative band (defined b-y the type of bands be-
tween which it is sandwiched at a given energy) will play a major role
in determining the appearance of the partitioning probability curves.

If the band is sandwiched between one reactive and one non-reactive
band, the partitioning probability curve should cover essentially all the
accessible region of energy fractions (1/6 to 2/3 in this case). If, on
the other hand, the band is sandwiched between two non-reactive bands,
the partitioning probability curves will cover only a subset of the al-
lowable energy fractions and must have at least one place where they
diverge. There will be no possibility of obtaining energy fractions
lower than that at the lowest divergence. Thus, in such cases the
partitioning probability curves for that dissociation band have the unu-
sual property that they are zero below the diverging value, at which
they jump discontinuously to infinity. At higher energy fractions, the
curve is continuous. Such curves are observed in figures 18 and 21.
These figures demonstrate that the value of the energy fraction at which
the partitioning probability diverges can be quite close to its maximum

or minimum permitted value. Precisely at what values of the energy
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fraction the partitioning probability diverges will depend on the shape
of the dissociation and reaction reactivity bands at the energy being
considered., If, for instance, one is at an energy fairly near the
opening of the reaction band, the minimum in the energy fraction vs.
phase plot will occur at a value of the energy fraction close to 1/6.
This is the case in figure 21 (the important reaction and dissociation
reactivity bands may be seen in figure 4). If the energy is such that
one is not close to the opening of the reaction band, the minimum will
occur atvalues of the energy fraction close to 2/3.

Certain types of curves of energy fraction vs. phase in dissociative
collisions which might occur have not been obtained. For instance, in
no cases were curves with more than one minimum or maximum ob-
served. Hence, the partitioning probability diverges at one and only
one point if it diverges at all. As mentioned eariier, no dissociative
bands sandwiched between two reactive bands were observed. Such
bands would lead to partitioning probability plots opposite to those
in figures 18 and 21 - there would be no possibility of energy fractions
above that at which the partitioning probability diverges of being popu-
lated. There seems to be no reason why such bands should not exist,
so we assume that their absence is a function of the particular poten-
tial and mass combination studied.

The fact that reactive processes are less probable than non-reac-
tive ones at the energies studied suggests that in dissociative collisions
one may be more likely to find kinetic energy distributions in which
atom A has the greatest portion of the available energy. This would
give rise to the partitioning probability being dominated by high energy
fractions. The range of energy fractions allowable is determined sim-
ply by the masses of the colliding particles, which explains why only
certain numerical regions of the energy fraction are allowed (17).
Changing the masses would, therefore, change the partitioning proba-

bilities for two reasons. First, the dynamics of the system would
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change, and second, the ways in which kinetic energy could be distri-
buted in dissociative collisions would be altered.

The structure of the reactivity band plots differs very strongly for
v = 0 and v = 1 molecule collisions, and this fact, coupled with the
definite manner in which the position and width of the reactivity bands
have been shown to determine the partitioning probabilities, suggests
that one might obtain substantially different kinetic energy distributions
from dissociation from the two reagent states at the same total energy.
The same statement applies to translational energy. The simplest way
of obtaining such a case would be to locate an energy at which the dis-
sociation from v = 0 occurs totally from a band which is sandwiched be-
tween two non-reactive bands, while that from v = 1 occurs from one or
more bands sandwiched between one reactive and one non-reactive
band. Thus, not only may the outcome of the collision (reaction, non-
reaction, or dissociation) depend on the initial state, but the intimate
details of dissociation may also be a function of the initial state.

B. ORIGIN OF THE DISSOCIATIVE REACTIVITY BANDS

Formation of reactivity bands in atom-diatomic molecule collisions
has been observed in a variety of systems at energies below dissocia-
tion (12, 13); banding has also been observed in a non-reactive system
studied at energies above dissociation (10a). The present study marxs,
to our knowledge, the first reactivity band study of dissociation in a
reactive system. In studying the origin of reactivity bands, we are
interested in getting a good physical picture as to what sort of trajec-
tories comprise each band. In particular, we focus on two questions.
First, we want to know whether each separate band corresponds to
different types of trajectories. Second, we want to know what happens
near the boundaries between bands, especially in the chattering regions,
such as that shown in figure 10, in which the outcome of the trajectory

is extremely sensitive to the initial conditions of the trajectory.
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Wright and Tan (12c¢) have shown in their study of the collinear
T + HT system on the SSMK surface (23) that the two lowest energy
reaction reactivity bands are comprised of different types of trajec~
tories. In the lower energy band, reactive trajectories cross the sym-
metric stretch line only once, while in the higher energy band, they
cross the symmetric stretch line three times. Representative trajec-
tories are shown in figure 8 of reference 12c. A similar correspon-
dence can be drawn between the two reaction reactivity bands in figure
4 for collisions of v = 1 molecule. For collisions of v = 0 molecule in

figure 3 we show only the high energy reaction reactivity band; there is
R

another band at lower energies respnsible for the large values of PO

at low energy seen in figure 1. Trajectories comprising the lower
reaction reactivity band in the v = 1 case cross the symmetric stretch
line once (figure 23) while those in the higher ban'd cross the symmetric
stretch line three times (figure 24). Reactive trajectories must cross
the symmetric stretch line an odd number of times; thus, these are the
simplest sort of reactive trajectories possible. The importance of
reactive trajectories which cross the symmetric stretch line more
than once indicate that a purely classical transition state theory
would seriously overestimate the rate constant for reaction at high
temperatures when these high energy trajectories become important
(24). The same behavior is seen in collisions of ground state mole-
cules; we do not show them here.

We next consider the nature of trajectories leading to dissociation.
We will focus our attention first on the single dissociation band for
collisions of ground state molecule and the two large bands for collisions
of v = 1 molecules. We will consider the small band for v = 1 isolated
in the large non-reactive band and the overall chattering region later.
Typical dissociative trajectories are shown in figures 25 - 27 for

the large band in v =0 collisions, the first band in v = 1 collision, and
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the second band in v = { collisions, respectively. In figures 25 and
27, the trajectory crosses the symmetric stretch line three times; in
figure 26 the symmetric stretch lines is crossed only once. This sug-
gests that the separate dissociation bands are each comprised of trajec-
tories crossing the symmetric stretch line a different number of times,
just as was seen for reactive transitions. Things are not quite so sim-
ple in the dissociation case, however, as the trajectory need not cross
the symmetric stretch line an odd number of times. In fact, trajectories
which cross it twice have been observed in both v = 1 reactivity bands.
The last crossing of the symmetric stretch line may occur (as does
that in the trajectory shown in figure 26) at large values of the inter-
nuclear coordinates. Whether or not such a crossing takes place will de-
pend on the partitioning of energy in the three atams. The final cros-
sing, then, may be thought to occcur while the atoms are in the process
of dissociating, even if the crossing occurs at fairly small values of the
internuclear coordinates. Thus, the first dissociation reactivity band
in the reactivity band plot (in figure 4) may be thought of as being com-
prised of trajectories which cross the symmetric stretch line once
prior to the process of actually dissociating (during which they may
again cross that line). In the second dissociation band for v = 1 and
the only such band for v = 0, two crossings take place prior to the onset
of dissociation, after which a third crossing may occur.

These observations allow one to make a simply physical picture to
account for the observed vibrational enhancement of CID in this system:
The simplest trajectory which may lead to dissociation does not occur
when the molecule is in its ground state. It occurs only when the mole-
cule is in its excited state. Since more complicated trajectories appear
to contribute only at higher energies, low energy dissociation is pre-
vented in the ground state case. The qualitative agreement between the
gquasi-classical trajectory calculations and the exact guantum ones re-

ported previously (7) indicates that this simple classical picture may
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be a reasonable one to use in attempting to understand the calculated
vibrational enhancement of CID in this system.

We next wish to consider the small dissociation band seen in figure
4 (and enlarged in figure 5) near 2 radians and 0.18 eV reagent transla-
tional energy. A typical trajectory in this band is shown in figure 28.
This trajectory is quite different from the dissociative ones seen in
figures 25 and 27. This should not be surprising, however, as this
small dissociation band is imbedded in a large non-reactive band and
the other dissociation bands tend to be sandwiched between reactive and
non-reactive bands. Examination of non-reactive trajectories near the
boundaries between the non-reaction and dissociation reactivity bands
indicates that differences between the trajectories within them are
quite small and become important only at large values of the inter-
nuclear coordinates. This is a case, then, in which the final outcome
of the trajectory is not determined until well after the collision might
be thought to be finished (R

large and increasing, R fairly small).

AB BC

We finally consider the chattering region indicated in figure 9. In
the region of initial phase from 2.5 to 2.7 radians, the outcome of the
trajectory varies greatly with small changes in the initial phase.

Such regions Im ve been observed in studies of reactions below dissocia-
tion, particularly the H + HZ (13) and F + HZ (18, 20) reactions. In
these regions, the trajectories become very complicated, frequently
bouncing back and forth many times in the strong interaction region of
the potential energy surface. Atom B is said to ''chatter'' between
atoms A and C, hence the name chattering region.

In this case, the trajectories in the chattering region are not overly
complicated. Three such trajectories are shown in figures 29 - 31
corresponding to initial conditions shown in figure 9. The initial phase
differs by 0.01 radians (0.57°) between each trajectory. The dominant

feature of the trajectories is clear : trajectories in this region involve
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motion more or less along the symmetric stretch line. The extreme
sensitivity of the trajectory outcome to the initial phase can, therefore,
be easily understood. Since, in moving along the symmetric stretch
line, the trajectory has, to a first approximation, forgotten from where
it was begun, it is reasonable that a small perturbation to the trajectory
could seriously alter its course.

At energies below dissociation motion exactly along the symmetric
stretch line would constitute that of a trapped trajectory - one which
could oscillate back and forth forever, never leaving the interaction
region of the potential energy surface (25). In the language of Pollak
and Pechukas, such motion constitutes a trapped trajectory of the
first kind (26). These trajectories are frequently found at the boundary
between reactive and non-reactive bands in atom-diatomic molecule
systems at energies below dissociation (12, 13, 20, 22). At energies
above dissociation, trapped trajectories of the first kind (in which the
trajectory oscillates back and forth forever between two different
contours at the total energy) do not exist. A trajectory can change its
character continuously from reactive to non-reactive or vice versa by
going through an intermediate stage of dissociative trajectories. Thus,
the requirement shown.by Pechukas and Pollak that trapped trajectories
must occur at the boundary between reactive and non-reactive bands at
energies below dissociation seems not to apply at energies above dis-
sociation (25). Nothing in these statements here, however, precludes
the possibility of formation of trapped trajectories of the second or
third kinds (26). No such trapped trajectories (or nearly trapped ones)
were observed, although we have not carried out a systematic search

for them.
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V. CONCLUSIONS

We have performed a reactivity band analysis of CID in a model
collinear reactive atom-diatomic molecule system. Quasi-classical
trajectories are believed to provide a reasonable view of the dynamics
in this system because of the qualitative similarity in the reaction and
dissociation probabilities calculated by trajectories and by exact
quantum mechanical calculations (7).

CID is shown to occur almost entirely in well defined bands, the
exception being a small contribution from dissociative trajectories in
a chattering region in which the outcome of the trajectory is extremely
sensitive to the initial phase of the reagent molecule. Dissociation may
be thought of as a limiting case of vibrational excitation, as non-disso-
ciative (reactive or non-reactive) trajectories with initial conditions
only slightly different from those leading to dissociation lead to a dia-
tomic molecule product which is highly vibrationally excited. In most
cases, dissociation reactivity bands are found sandwiched between
one reactive and one non-reactive band; in the rest, they may be
sandwiched between two non-reactive bands. In no instances were
dissociative bands sandwiched between two reactive bands.

We have calculated the partitioning of kinetic energy among the
three atomic products of dissociative collisions and showed that these
quantities vary smoothly throughout the dissociation band. Kinematic
considerations require that most of the available kinetic energy go into
the end atoms (A or C). The fraction of the available kinetic energy in
the end atoms, as a general rulse, matches smoothly onto that of the
free atom in non-dissociative collisions (atom A in non-reactive col-
lisions, atom C in reactive ones).

From the curves of energy fraction vs. initial phase we have been
able to determine the partitioning probability, that is, the likelihood of

the dissociation process to distribute the available energy in a given
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way. We have presented plots of the partitioning probabilities for six
different sets of initial conditions (reagent vibrational state and transla-
tional energy), and found a wide range of appearance of the probability
vs. energy fraction curves. We have shown that the general from of
the partitioning probability curves can be inferred solely by examina-
tion of the reactivity band plots.

The different dissociation reactivity bands found for the reaction of
vibrationally excited (v = 1 ) molecules have been shown to be comprised
of different sorts of trajectories. The band which dominates at low
energies (and shuts off at reagent translational energies above 0.12 eV)
is seen to arise from trajectories which cross the symmetric stretch
line only once prior to the onset of actual dissociation, while the
higher energy band arises from trajectories which cross the symmetric
stretch line twice prior to dissociation., During élissociation, the
trajectories may or may not recross the symmetric stretch line an
additional time. The single dissociation band observed in collisions of
ground state molecules is seen to be made up of trajectories which
cross the symmetric stretch line twice prior to dissociation. Hence,
the vibrational enhancement of CID can be thought of as being due to the
inability of ground state molecules to dissociate by the simplest possible
trajectory; in that case dissociation is only possible by a more complex
procedure, which only becomes important at higher energies.

The chattering region is seen to arise from trajectories which at
some point follow the symmetric stretch line very closely. Since the
available energy is greater than the dissociation energy, motion along
the symmetric stretch line does not constitute a trapped trajectory.

The existence of a dissociation channel allows for a smooth transition
from reactive to non-reactive trajectories via an intermediate region of
dissociative trajectories.

Our analysis here has been restricted to a single model potential
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energy surface for a collinear collision. In reactive systems, changes
in the masses of the atoms have been shown to produce major changes
in the structure of the reactivity bands (12b). Exact quantum mechani-

cal calculations on '

'isotopically' substituted versions of the model
system studied here (mass combinations 10-1-10 and 1-35-1) indicate
that the effect of mass on dissociation is strong (22). Large changes
in the reactivity band structure can be expected. Thus, one must use
caution is attempting to generalize on the basis of the reactivity bands
for one system.

Removal of the restriction to collinearity might be expected to lead
to substantial changes in the reactivity bands (the model potential used
here is defined solely for collinear configurations; we are addressing
the general role of non-collinear collisions). In studies of the two and
three dimensional T + HT reaction, Wright (12e) has shown a disappear-
ance of the bandedness observed in the collinear reaction, which is due
to the diminished importance of multiple collisions (which involve mul-
tiple crossing of the symmetric stretch line) in non-collinear collisions.
Thus, in a more realistic (three-dimensional) system, the rich banded

structure obtained here might be expected to be substantially blurred.
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FIGURE CAPTIONS

Figure 1. Probabilities for reaction POR (solid line) and dissociation
PO (dashed line) in collisions of ground vibrational state molecules
as determined by quasi-classical trajectory calculations as a function
of the collision energy. The reagent translational energy EO is indicated
on the lower abscissa; the total energy E (sum of vibrational and transla-

tional energy) is indicated on the upper abscissa. The arrow points to

the energy at which the molecule dissociates.

- R
Figure 2. Probabilities for reaction P (solid line) and dissociation

1

P1 (dashed line) in collisions of vibrationally excited molecules as a
function of the collision energy. The axes and markings are otherwise as

in figure 1.

Figure 3. Reactivity band plot for reaction and dissociation in collisions
of ground state molecule. Reactive (R) bands are indicated by shading;
dissociative (D) bands are indicated by speckling. The solid white region

is non-reactive (N). Both the translational energy E_ (left ordinate) and

0
the total energy E (right ordinate) are indicated.
Figure 4. Reactivity band plot for reaction and dissociation in collisions
of vibrationally excited molecule. Band type is indicated as in figure 3.
Axis labeling is also as in figure 3. No effort is made to accurately

portray the band structure in the ''chattering'' region.

Figure 5. Enlarged view of the small dissociative band (from figure 4)
in collisions of vibrationally excited molecule. All markings and axes

are as in figure 3.

Figure 6. Final action T BB a function of the initial phase 490 for a col-

lision involving a ground state diatomic molecule at a reagent translational

energy EO of 0.388 eV. A solid line is used to connect results of non-

reactive trajectories; a dashed line is used to connect results of reactive



448
trajectories. The shaded areas indicate those regions of the initial
phase giving rise to dissociative trajectories,in which the action cannot
be defined in the usual way. N, D, and R indicate non-reactive,
dissociative, and reactive regions, respectively. The trajectory was

begun with the distance from atom A to the center of mass of BC being

12 bohr.

Figure 7. Final action Ve as a function of initial phase Cb for a collision
o
involving vibrationally excited molecules at a reagent translational

energy El of 0.2815 eV. All markings are as in figure 6.

Figure 8. Final action Ve as a function of initial phase ¢o for a collision
involving vibrationally excited molecules at a reagent translational

energy E1 of 0.1615 eV. All markings are as in figure 6.

Figure 9. Final action vf as a function of initial phase ‘#’ for a collision
0

involving ground state molecules at a reagent translational energy EO

of 0.178 eV. All markings are as in figure 6. Note the expanded

scale of the ordinate.

Figure 10. Final action veasa function of the initial phase ¢o for a
collision involving vibrationally excited molecules at a reagent transla-
tional energy E  of 0.085 eV. The initial phases are limited to the

chattering region described in the text and the regions to slightly lower

and higher initial phase. All markings are as in figure 6.

Figure 11. Energy fractions { (X = A, B, C) (defined in section II) as a

function of the initial phase CPO}ior the dissociative bands seen in collisions
of ground state molecules at a reagent translational energy Eo of 0.388 eV.
A solid line is used for atom A, a dashed line for atom B, and a dotted line
for atom C. A dashed-dotted line marks the approximate boundary be-

tween bands. The curve for atom A is continued into the non-reactive

region and the curve for atom Cis continued into the reactive region by
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a procedure described in the text. (a) the small band from 0.90 to

1.03 radians initial phase; (b) the large band from 5.10 - 6.60 radians.

Figure 12, Energy fractions fX as a function of initial phase ?50 for
dissociative bands in collisions of ground state molecules at a reagent

translational energy EO of 0.233 eV. All markings are as in figure 11.

Figure 13. Energy fractions fX

dissociative bands in collisions of vibrationally excited molecules at a

as a function of initial phase 45 for
o

reagent translational energy E1 of 0.2815 eV. (a) the small band from
0.25 to 0.31 radians; (b) the large band from 3.20 to 5.50 radians. All

markings are as in figure 11.

Figure 14. Energy fractions f_ as a function of initial phase cpo for

X
dissociative bands in collisions of vibrationally excited molecules at a
reagent translational energy Ei of 0.1815 eV. (a) band from 2.04 to 2.12
radians; (b) band from 4.25 to 4.80 radians; (c) band from 5.32 to 5.36

radians. All markings are as in figure 11.

Figure 15. Energy fractions fX as a function of initial phase C{DO for
dissociative bands in collisions of vibrationally excited moelcules at

a reagent translational energy E1 of 0.1015 eV.

Figure 16. Energy fractions fX as a function of initial phase d)o for
dissociative bands in collisions of vibrationally excited molecules at a
reagent translational energy E1 of 0.0715 eV. All markings are as in

figure 11.

c d : 4 :
Figure 17. Partitioning probability 7o described in section II of the
text for atom A for dissociation in collisions of ground state molecules

at a reagent translational energy EO of 0.388 eV,

c_d : s s
Figure 18. Partitioning probability o) for atom A for dissociation in
collisions of ground state molecules at a reagent translational energy

EO of 0.233 eV. The probability is zero for values of the energy fraction
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fA below that at which it diverges (~0.58).
: d
Figure 19. Partitioning probability CF1 for atom A for dissociation

in collisions of vibrationally excited molecules at a reagent translational

eaergy E1 of 0.2815 eV.

. .. d
Figure 20, Partitioning probability CFi for atom A for dissociation

in collisions of vibrationally excited molecules at a reagent translational

energy El of 0.1815 eV,

Figure 21. Partitioning probability C—d=1d for atom A for dissociation
in collisions of vibrationally excited molecules at a reagent translational
energy of 0.1015 eV. The probability is zero for values of the energy

fraction fA below that at which it diverges (v~0.25).

c d
Figure 22. Partitioning probability Ty for atom A for dissociation
in collisions of vibrationally excited molecules at a reagent translational

energy of 0.0715 eV.

Figure 23. Plot of a typical reactive trajectory in the low energy reaction
reactivity band for collisions of vibrationally excited molecule. Trajec-
tory is for initial conditions of E1 = 0.0715 eV and initial wvibrational
phase of 3.4558 radians. The integration of the trajectory was begun

with R = 12.8952 bohr. The trajectory is superimposed on a plot of the
potential energy surface for the system in Delves mass-scaled coordinate
systemi. Contours are drawn every 0.06 eV starting from 0.02 eV up

to 0.50 eV with respect to a zero of energy at the bottom of the well of

the isolatediatomic molecule. The X marks the saddle point for the
reaction. Note that there is only one crossing of the symmetric stretch

line.

Figure 24. Plot of a typical reactive trajectory in the high energy reaction
reactivity band for collisions of vibrationally excited molecule. Trajec-

tory is for initial condition of Ei =0.2815 eV and initial vibrational
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phase of 6.5649 radians. All markings are as in figure 23.

Figure 25. Plot of a typical dissociative trajectory in collisions

of ground state molecules. Trajectory is for initial conditions of

Eo = 0.388 eV and initial phase of 0.3142 radians. All markings are
as in figure 23.

Figure 26. Plot of a typical dissociative trajectory in the low energy
dissociation reactivity band for collisions of vibrationally excited mole-
cules. Trajectory is for initial conditions of E1 = 0.0715 eV and initial

phase of 5.3407 radians. All markings are as in figure 23.

Figure 27. Plot of a typical dissociative trajectory in the large, high
energy dissociation reactivity band for collisions of vibrationally excited
molecules. Trajectory is for initial conditions o_f E1 =0.2815 eV and
initial phase of 5.3407 radians. All markings are as in figure 23.
Figure 28. Plot of a typical dissociative trajectory in the small
dissociation reactivity band imbedded in the large non-reaction band for
collisions of vibrationally excited molecules. Trajectory is for initial
conditions of E1 = 0.1815 eV and initial phase of 2.12 radians. All
markings are as in figure 23.

Figure 29. Plot of a non-reactive trajectory in the chattering region
shown in figure 10. Trajectory is for initial conditions of a vibrationally
excited molecule, E1 = 0.085 eV, and an initial phase of 2.65 radians.
All markings are as in figure 23.

Figure 30. Plot of a dissociative trajectory in the chattering region
shown in figure 10. Initial conditions are the same as for the trajectory

in figure 29, except that the initial phase is 2.66 radians. All markings

are as in figure 23.

Figure 31. Plot of a reactive trajectory in the chattering region

shown in figure 10. Initial conditions are the same as for the trajectory
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in figure 29, except that the initial phase is 2.67 radians. All markings

are as in figure 23.
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1. Introduction

The distribution of energy among the various possible degrees of
freedom (electronic, vibrational, rotational, and translational) in
collisions of atoms or molecules with other molecules has been a
subject of intense research, both experimental1 and theoretical, 2 over
the past 15 years. Most of this work has been concerned with the
determination of the relative populations of the possible states of the
molecular product; additional work has focussed on the relative rates
of formation of different electronic states of atomic products.

In atom-diatomic molecule collisions at energies above the

threshold for dissociation, collision-induced dissociation (CID)
A+BC—A+B+C (1)

may occur. In CID there are no molecular products; in electronically
adiabatic collisions the only degrees of freedom in the product are
translational. Far less is known about the dynamics of atom-diatomic
molecule collisions at energies above dissociation than at those belcwv;3
in particular, little attention has been paid to the partitioning of the
available energy among the three atoms in dissociative collisions.
This information can in principle be obtained from accurate
calculations on the collision process. Their determination from
classical trajectory calculations of the CID process is straightforward.
One just calculates the kinetic energies of the three atoms when the
collision is over for each trajectory resulting in dissociation, and then

appropriately averages over all trajectories leading to dissociation.

Their determination from quantum mechanical calculations is more
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complicated; they may be obtained from scattering calculations per-
formed by the hyperspherical coordinates method. %0

In this work we present results for the partitioning probabilities,
that is, the probabilities of partitioning of the available energy among
the three atoms in dissociative collisions by both quantum mechanical
(QM) and quasi-classical trajectory (QCT) methods in a model collinear
atom-diatomic molecule collision. We first review the methods by
which these quantities are obtained. We will then compare the QM and

QCT results and will discuss the origins of the difference between the

results fram the two methods.

2. Theory and Numerical Methods
A. Quantum Mechanical Method

The calculation of bound-continuum (dissociation) probabilities

4c

by the hyperspherical coordinate method has been outlined by us ™ and

by Manz and Rtimelt5 previously. The basic formalism for the calcula-
tions of the partitioning'probabilities has also been outlined previouslyfk3 ol
We present it here in more detail, emphasizing details appropriate
to its numerical implementation.

First we recognize that in dissociative collisions, there is only
one degree of freedom in the partitioning of the available energy among
the three atoms. 8 This is best expressed as the angle a, which is
one of the two variables in the hyperspherical coordinate treatment of

45

collinear atom-diatomic molecule collisions. The kinetic energies

of the three atoms are related by the expressions



=t = cos’a (2a)
M

E m 1 m, 1

? " m +bm [« 1\/;1 )2 St ('I-n—c)2 i (2b)
E b+, b
E m m_ L m, 1

(’: = L [ N?)z cosa + (—2)° sine] . (2¢)
E m+m, m,

where E’ is the energy of the collision measured with respect to that

of three infinitely separated atoms and M is the sum of the atomic

masses,
An :
The probability 04 A (a) of dissociating from a bound state AR,

where ) represents the reagent diatomic molecule (AB or BC) and n,

is its vibrational quantum number to an angle @ is given by the ratio

of the total radial flux between o and o +do at some large value of p to

the total incident flux ﬁk;m /u, where kxn is the wavenumber appro-
A

b
priate to the incident state, and p is the Delve37

oje=

mass (mAmBmC/M)

An
o4 Ma,p) = Im[w*(glp)]pda s (3)

AD

where the dissociative part Vg A (the only one of interest here) of the
An

total wavefunction y A (see eq. (3) of ref. 2) may be written (at large

p) as

My s _ an, .
Vg " =p n—:flexrl(llglo)(km)/kn) Sy " @ lasp) . (4)

If numerical integration of the coupled channel equations were carried
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out to p = », the eigenvalues of all continuum states would be identical
(and zero) and all their wavenumbers kn would be equal, and all terms
in eq. (4) having a subscript n could be pulled outside the summation.
In principle, the sum in eq. (4) is infinite; in practice it is truncated
at some value Ny sufficiently large that the sum in eq. ;41)1 has essen-
tially converged to its true value. The dependence of ¢ A 7; non p should
be quite small; if integration were carried out to infinity 04 A would be
independent of p.

Combining eqs. (3) and (4) and performing the necessary algebra,
we obtain the expression, assuming that the only p dependence in (4) is

1
from the p™2 and exp(i.l%p) terms,

Nd An
Al Kk A AR, AR,
0q " la,p) = E, ¢, (a;p) ¢ (0 ;p) —=—< {A - (0)[ReS, "ReS "+
n,n =1 N WE
An An by AN an an
A A
+ ImS A ImS A+ Bnn,(p)[ReSn?) Ims AL ReS, *ImS, 1} da
(5)
where

Appy(p) = = 5= sinl (k- k) p] + keos [(i, = k) o] (62)

Bon(o) = - Elé-cos[(kn-kn,)p] +k_ sin[(k, -k ) p] . (6b)

As mentioned earlier, as p = «, k , — k for alln, n’, so in the limit

of infinite p we have

Apy (p = =) ~ k) (7a)
B y(p— =) ~0. (7b)
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4a,6

In that case, eq. (5) reduces to the form given previously. In all

numerical calculations we will use eq. (5) and not its limit as p — =,
Rather than dealing with ognk(a, p), in which one calculates the

probability of forming products corresponding to a given o, we prefer

to consider the probability ogn)* (E,,p) of dissociation in which atom A

has a center of mass energy EA

An

do
%4

ALl
Epsp) = |dEA|°d (@,0). (8)

A

These partitioning probabilities, when integrated over all possible

values™ of E A give the total dissociation probability

glnax
>\n)k A an,
Pg Mo) = [ 0g " (By,0)dE, (9)
E
A

min max ; B = b 3
E, " and E, are determined by eq. (2a) o = @ ax = tan (mbM/marnc)t2
and o =0, respectively. For convenience's sake we will normally

AD

consider 04 A(EA, p) as a function of the dimensionless quantity

AR
£y = EA/E’ ; to make o >t(EA, p) dimensionless we multiply it by E’

_An
to make a quantity 94 )‘(EA,p)

M ATy
Ud (EA,p) = E' od (EAyp) (10)

Using these dimensionless quantities, the integral in eq. (9) becomes

*In eq. (8, ref. 4c, we mistakenly gave a value of 0 for the lower limit

of integration. This is true only in the limit @, —~7/2; otherwise Ey

is a finite non-zero quantity.
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fma.x
A a _an
Pyro) = [ oy M(E, pai,. (11)

min
fA

B. Quasi-Classical Method

an
The details of the calculation of Ed 3 (EA) by the QCT method
8

have been described elsewhere; we briefly outline them here.” The
C-An
equation for o 2 (EA), where the superscript ¢ indicates classical
mechanics, is
c-)xn

g, = L%t (12
%4 ( A) 21 I:ll ‘de/d‘f)o' )

where ¢, is the initial phase of the vibration of the diatomic molecule
(in radians) and the summation is over all of the separate regions of the
initial phase which lead to dissociation (in which EA varies smoothly
with ¢,). The coefficient (1/2¢) provides for correct normalization of

C-an
oq ME,).

C. Potential Energy Surface

The potential energy surface used is of the rotating-Morse-~cubic

9

spline type, ¥ and has been briefly described previously. o For the

mass combination studied (rnA =Mp =M= 1 in H-atom mass units),

B
asymptotically there are two bound states, with energies of 0.0815 and

0.1885 eV with respect to the bottom of the diatomic molecue well

10

(which is 0.22 eV deep). The Morse parameters™ " of the reagent

molecule are D = 0.22 eV, 8 = 1.6 bohr ™, Rgq = 1.40083 bohr,
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D. Numerical Methods

In the hyperspherical coordinate calculations, six even and six
odd basis functions were used. This is smaller than the basis set of

4c and gave results that

10 even and 10 odd functions used previously,
are qualitatively correct. Unitarity of the § matrix was obtained
approximately, with the deviation from unitarity increasing as the
dissociation probability increases. Integration was carried out to
p = 190 bohr; asymptotic analyses were carried out at 110, 130, 150,
170, and 190 bohr. As discussed above, at finite p, the dissociation
probabilities P;n)‘ and the partitioning probabilities O’:inh will vary
weakly with p. The results we present are means of the values at the
five different projection distances. We also indicate standard devia-
tions of some of these quantities to provide a feeling as to the magnitude
of their p dependence.

The quasiclassical trajectory calculations were carried out using

standard methods. 11

The integration time step was 5.41 x 107" sec.
Energy is conserved to four digits in these calculations. Integration of
trajectories was begun with the distance RA,BC from the incident atom
to the center of mass of the diatomic molecule of 12.0 bohr., Initially
100 trajectories were calculated per energy (and initial state), corre-
sponding to a grid of initial phase of 5 /50 radians. Near the boundary
between dissociative and either non-reactive or reactive regions of
trajectory output the grid was cut down to 0, 01 radians. The derivative
in eq. (12) was evaluated by fitting a parabola to every group of three

points and differentiating analytically; we then interpolated these

derivatives by fitting to a cubic spline.
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3. Results

D as a function of

We have calculated dissociation probabilities P
energy at a number of energies up to 0.25 eV above dissociation when
the reagent molecule is in vibrational state V. Values of dissociation
probabilities, both quantum and quasi-classical are given for four
energies in Table 1. For the quantum results, we also present the
worst unitarities WU (the largest sum of the squares of the elements in
a given row or column of the S matrix). Quantum mechanical results
are all the means (indicated by angular brackets) of the five asymptotic
analyses described above; standard deviations are given for all quanti-
ties (indicated by the letter s). We will focus our‘ attention on the
lowest and highest of the energies in Table 1: 0.04 and 0. 25 eV,
respectively.

Detailed data on the structure of the banding of QCT calculations
are given in Table 2, in which we examine the number, width, and
properties of the separate regions of the initial phase giving rise to
dissociative trajectories. From Table 2 it is clear that there may be
more than one region of initial phase leading to dissociation, and that
these regions may have minima in their plots of fA vs. initial phase.
As has been shown earlier (and maybe seen from eq. (12)), minima in
these plots give rise to divergences in c(;;mh .

In considering the quantum results it is useful to have a feel for
how the individual terms of the sum in eq. (5) will vary with the indices
nand n’. To help establish a feeling for this, we present in Fig. 1 a
plot showing the transition probability Pgn for going from the bound

state v of the reagent diatomic molecule to the nth continuum state.
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In this calculation n,n’ = 8. These probabilities are obtained from the

corresponding S matrix elements by the expression
d _ |d |2
Pvn - ‘Svnl ) (13)

Hence a larger Psn indicates a larger magnitude of Ssn and thus most

likely a larger contribution to the summation in 5. From Fig., 1 we

d
vn

nitude) as n increases from 1 to 8, indicating that to first order, the

see that P_ decreases appreciably (by more than two orders of mag-
truncation of the sum in eq. 5 should provide reasonable results. Note
that in two of the three cases shown, there seems to be a strong prefer-
ence for dissociation to symmetric continuum states (n = odd).

We next present plots of the quantum mechanical partitioning
probabilities 6’3 as a function of fA for E’ = 0.04 eV and 0.25 eV in
Figs. 2 and 3. Because of the simplicity of this symmetric collinear
atom-diatomic molecule system, we may replace the superscript AL,
used previously by v, as that is the only initial quantity which may be
varied. Error bars are used to indicate the standard deviations of the
calculated partitioning probabilities from their mean. We deleted the

portion of the curve nearest to fA = 2 as here the calculations are

unreliable. This is due to the form of the da/dE A term in eq. (8):

d max =3

'df,i = -L[EA(E,  -Ep]7° (14)
When E , = Exax (for this mass combination,when fA = 2), this

factor diverges and the resulting Eg may be large, as may their

deviations.
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In Figs., 4-6 we present plots of the classical partitioning
probability c&g for three sets of initial conditions: E’ = 0,04 eV and
v=0and E' =0.25 eVandv =0andv = 1, respectively. Note that the
vertical scales are different in all the figures (except Figs. 4 and 5 do
have the same vertical scale). Inthe ensuing discussion section we
will discuss the differences in the forms of these curves as well as

their differences from the quantum mechanical ones.

4, Discussion and Conclusions

The plots of the quantum mechanical partitioning probabilities

63 in Figs. 2 and 3 all show the same basic structure. 63 increases

fairly smoothly as f:q increases from its minimum to it@ maximum
value. There does appear to be some structure in these curves as seen
by the existence of shoulders and small maxima. The appearance of
the error bars suggests that these wiggles might be real; from the data
obtained one would certainly not remove the maximum in the Efl curve
near f, = 0.55 in Fig. 3. It is premature to assign too much signifi-
cance to these wiggles for two reasons, First, it has been seen in
earlier calculations that termination of integration at a small value of

p leads to spurious oscillations in the Es curves, which decrease in
magnitude as p is increased. Second, the small basis set used in the
calculations may lead to errors in the calculated values of 63. Since
the higher basis functions have more oscillations than do the lower
ones, their contribution to the summation in eq. (3) may be such that,
while its overall magnitude is smal., it could affect the fine structure
—d

of the curves. We note that in general, the ¢

e and 6‘3 curves have
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the same overall behavior.

The plots of c&s (Figs. 4-6) have a richer structure in that the
various curves are all fairly different. In Fig. 4 we see that cc'rfl
increases fairly smoothly with f A with the exception of a small dip
near 0.52, In Fig. 5 we see that cc'rf,:1 increases rapidly with f,,
reaches a maximum, exercises one fairly rapid oscillation and then
decreases slowly with fA‘ From Table 2 we see that there are two
separate regions of initial phase contributing to dissociation; analysis
of the contribution from each shows that only a small fraction (~ 10%)
of the area under the curve in Fig. 4 comes from the first (narrow)
dissociative region, and its contribution is nearly' independent of f A

59 in Fig. 6 at the same total energy differs

The curve for
appreciably from that for c(—rgl in Fig. 5. The large spike in Fig. 6

arises because the plot of f, vs. initial phase has a broad inflection region
d

1

in which dEA/dgb ~ 0. Thus, by eq. 12, % must become large.
This is a somewhat unusual occurrence; more normally one finds
minima in the plot of E, vs. ¢, giving rise to discontinuous jemps in

the plot of °53. These spikes or discontinuities in 55

are purely a
consequence of the way in which the classical trajectories behave, in
particular the origin of well defined reactivity bands. How the reac-
tivity band structure influences the form of the partitioning probability
curves is discussed in detail elsewhere. 5

Because there is not necessarily any close relationship between
the reactivity band structure for collisions involving different reactant

8

vibrational states, ~ the classical partitioning probabilities for different

reactant states at the same total energies can have substantially
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different forms (i.e., have spikes or discontinuities). The quantum
mechanical partitioning probabilities appear to be fairly similar for the
different reactant states, however. Thus, it may be that classical
mechanics, while giving a reasonable feel for the likelihood of disso-
ciation, gives an incorrect feel for the details for the dissociation
process, It is quite likely that in higher dimensionality, in which
reactivity band structure blurs or disappears altogether, A% more
reasonable behavior might be obtained for classical partitioning proba-
bilities.

In summary then, we feel we have obtained reasonably accurate
(although probably not fully converged) probabilities for the partitioning
of kinetic energy in collinear atom-diatomic molecule collisions by a
quantum mechanical method on a model system. We have compared
these results to those obtained by classical mechanics, and shown that
while the classical ones may have the same overall behavior as the
quantum ones they may have regions in which they behave quite

differently.
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Figgre Cap’gions

FIG. 1,

FIG. 2,

FIG. 3.

FIG. 4.

d

Plot of individual bound-continuum transition probabilities Pey

vS. the index n of the continuum state for three sets of initial
collisions, E’ =0.04 eV, v =1 (circles, solid line), E’ =
0.25 eV, v =1 (squares, dashed line); E' =0.25 eV, v =0
(triangles, dotted line). Values plotted are the means of the
values obtained from five asymptotic anlyses. Error bars
indicate one standard deviation about the mean. Where no
error bars are shown, they are sufficiently small that they
would be within the plotted symbol (circle, square, or triangle).
Plot of the dimensionless quantum mechanical partitioning
probabilities 53 as a function of the fraction fA of the available
kinetic energy going to atom A at an energy E’ = 0.04 eV with
respect to three infinitely separated atoms. Curves are shown
for both the v = 1 (solid line) and v = 0 (dashed line)initial states,
The values of 53 have been multiplied by ten before plotting.
All values plotted are the means of the values obtained from
the five asymptotic analyses; the error bars indicate one
standard deviation about the mean. The plot has been cut off
just above fA = 0. 65 for reasons described in the text.

Plot of the dimensionless quantum mechanical partitioning
probabilities 63 as a function f A of the available kinetic energy
going to atom A at an energy E’ = 0.25 eV with respect to three
infinitely separated atoms. All markings are as in Fig. 2.
Plot of the dimensionless classical mechanical partitioning

srabability "o

y 2asa function f A of the available kinetic energy
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Figure Captions (continued)

FiG. 5,

FIG. 6.

going to atom A at an energy E’ = 0,04 eV with respect to
three infinitely separated atoms.

Plot of the dimensionless classical mechanical partitioning
probability C(-rg as a function fA of the available kinetic energy
going to atom A at an energy E’ = 0.25 eV with respect to
three infinitely separated atoms.

Plot of the dimensionless classical mechanical partitioning
probability C('}cf as a function fA of the available kinetic energy

going to atom A at an energy E’ = 0.25 eV with respect to

three infinitely separated atoms.
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III.7 QUASI-CLASSICAL TRAJECTORY ANALYSIS OF THE
EQUIVALENCE OF REACTIVE AND NON-REACTIVE
DEACTIVATION IN THE COLLINEAR Cl1' + HC1
REACTION
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1. Introduction

Quasi-classical trajectory calculations have served an important
role in the last 20 years in helping one gain insight into the dynamics of
chemical reactions [1]. Information concerning the effect of reagent
vibrational, rotational and translational excitation, and the product
vibrational and rotational distributions has been obtained. In addition,
by looking at trajectories, one is able to get a good physical picture of
the collision process itself.

Such trajectory calculations have been particularly useful in the
development of simple qualitative models for chemical reactions that
allow one to understand how a change in a potential energy surface,
isotopic substitution, or reagent excitation will affect the collision
process [2] These simple models and pictures are particularly useful
in interpreting the results of quantum mechanical calculations [3],
which, by themselves, give good values for reaction probabilities, but
do not provide any insight as to how chemical reactions occur [4].

In this paper, we briefly report the results of quantum mechanical

calculations on the collinear system

Cl'+ HCL (v) = CI'+ HCl (v' <v) (1a)
~ CIH (v" <v) +Cl (1b)

on two potential energy surfaces. We focus in particular on one seem-
ingly surprising aspect of the dynamics: in vibrationally nonadiabatic
collisions, the probabilities, and thus the rates, of the nonreactive (1a)
and reactive (1b) processes are almost equal, although this is not true

for vibrationally adiabatic collisions. We show that this result is
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obtained approximately in collinear quasi-classical trajectory calcula-
tions, and that by analysis of reactivity bands and individual trajectories
we can understand why this should be so.

In Section 2 we briefly describe the method of calculation and the
potential energy surfaces used. In Section 3 we present the results of
the quantum mechanical and quasi-classical trajectory calculations. In

Section 4 we discuss and interpret the results obtained.
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2, Computational Methods and Potential Energy Surfaces

The quantum mechanical calculations on reactions (1) were per-
formed using the method of hyperspherical coordinates [5,6]. This
method allows one to treat heavy-light-heavy mass combinations with-
out difficulty, in spite of the small skew angle (13.59°) between the two
arrangement channels in Delves mass-weighted coordinate system [7].
This technique has previously been used by two different groups to study

the reaction [5b, 6e]
I" + HIl -~ I'H+1 (2)

and similar results have been obtained, giving one substantial faith in
its applicability to these mass combinations. .

In the calculations reported here, eight even and eight odd basis
functions were used at lower energies and 12 even and 12 odd at higher
energies. Convergence of the transition probabilities (estimated by
varying the basis set and integration stopping point) to £ 0. 001 and flux to
+ 0. 0002 was obtained at nearly all energies. The highest energy for
which calculations were performed was 1.24 eV above that of HCI (v =
0). Standard methods were used for the collinear quasi-classical
trajectory calculations [1]. Trajectories were started with the distance
from the Cl’ atom to the HCI center of mass, RCl’,HCl at 12 bohr, and
were terminated when either distance, RCl', HC1 °F RCI, HCl » Was
more than 12 bohr.

Two different LEPS [8] surfaces were used. The molecular
parameters for HCI and CL, were those of Connor et al.[9]. Two values

of the Sato parameter were chosen (0. 138 for surface A; 0.185 for
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surface B). These correspond to surfaces (i) and (ii) of Smith [10],
and have barrier heights of 6.21 and 1. 89 kcal/mole, respectively.
Parameters and properties of the potential energy surfaces are shown
in table 1. The higher barrier height corresponds roughly to the
experimental activation energy [11] and also to the upper limit to the
barrier as predicted in ab initio calculations [12]; the lower barrier
height is close to the predicted lower limit [12], and was found by
Smith to lead to better agreement between quasi-classical trajectory

calculations [10] and experiment [13] for the deactivation process
Cl+ HD)CL(v=1) = Cl+ H(D)CIL (v = 0). (3)

It is expected, then, that the actual barrier height is somewhere within
these two limits. The potential surface is plotted in Delves [7] mass-
weighted coordinates in figs. 4 and 5, where selected trajectories are

plotted.
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3. Results

In fig. 1, we present a plot of the probability versus energy
curves for vibrationally nonadiabatic, nonreactive processes, defined
as process (la), withv=2and vv=0and 1 (P:X, and PX, respectively),
and the corresponding reactive processes Pg and PS for calculations
on surface B. State-to-state rate constants are calculated from the
reaction probability versus energy curves, and these are plotted in the
form of Arrhenius plots for the four transitions in fig. 2. While the
shape of the probability versus energy curves and rate constant curves
are different on surface A, two of the most striking features are seen
there also: the near equality of the corresponding reactive and non-
reactive probabilities and rates, and also the dominance of single-
quantum deactivating transitions. Hence, since the features of the
dynamics of interest here are common to both surfaces, we will
restrict further study to surface B.

The results of the quasi-classical trajectory calculations are
presented in fig. 3 for a series of translational energies (energy above
the v = 2 level). In the figure the final action of the diatomic product
(HCI or HCY') is plotted versus the initial vibrational phase of the HCI
reagent. The reactive or nonreactive nature of the collision is also
indicated. In addition, the duration of the trajectory is plotted.

One can clearly see that the trajectories giving rise to vibration-
ally nonadiabatic trajectories are localized in the two regions at the
boundary between the reactive and nonreactive bands. As the energy
decreases, the boundary region between the bands becomes diffuse,

much more so for the activating transitions than the deactivating ones.
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At the lowest energies, where quantum mechanically nc vibrational
excitation is possible, the actions versus phase curve appears to be a
collection of random points. The near symmetry of the reactive and
nonreactive bands about a vertical line drawn through the center of the
gap between the bands shows that one could expect nearly equal amounts
of reactive and nonreactive products for vibrational deactivation, in
agreement with the quantum mechanical results.

The funnel-shaped nature of the action versus phase curves near
the boundary between the bands demonstrates the classical nature of the
preference for single-quantum deactivations. Multiple quantum deacti-
vations can only occur for a very small range of phases about the center
of the gap. One can also see that the time for completion of the trajec-
tory has a minimum at the deactivation gap (due no doubt to the fast
nature of the exit process when all energy has been converted to trans-
lational energy) and a maximum at the activation gap. The fact that the
trajectory time increases much more rapidly for activating collisions
than it decreases for de‘activating ones, especially at lower energies,
suggests that for classically activating collisions the slowness is not a
purely kinetic energy effect; the trajectories giving rise to vibrational
excitation must be significantly more complex than those leading to

relaxation.
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4, Discussion and Conclusions
B i W

The increase in trajectory time and in the vibrational action of
the diatomic product across a gap in the reactivity bands has been
observed before by various workers in collisions of ground vibrational
state molecules [14,15]. Attention has seldom been directed to these
phenomena in collisions of vibrationally excited molecules, however [16].
Nevertheless, the theory and intuition developed for the ground state
case appears to carry over with some modification to the vibrationally
excited state case considered here [14].

Pechukas and Pollak [17] have shown that the sharp increase of
the final action and trajectory time versus phase plots across the band
gaps is due to the existence of "trapped trajectories' that occur when
the initial phase is quite close to that of the center of the gap. They
have identified three different kinds of trapped trajectories [17], most
importantly the first kind, in which the mass point vibrates forever
between the two contours whose energy is that of the total energy present,
and the second kind, in Which the mass point vibrates in a way such that
it touches only one of the energetically limiting trajectories. It is clear
that motion along the symmetric stretch line would constitute a trapped
trajectory of the first kind.

Our goal, then, is to determine what kind of trajectory, which
must not be terribly different from a trapped trajectory, gives rise to
vibrational deactivation. This trajectory must have the property that
it causes the mass particle to "forget" from which arrangement channel
it entered if there are to be equal reactive anc nonreactive probabilities.

Since the trajectory time associated with vibrational deactivation
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is short, this trajectory cannot have that of an especially long-lived
complex (one spending a far greater time in the saddle point region of
the potential energy surface than a nearby less nonadiabatic trajectory).
Examination of a number of trajectories shows that the limiting trapped
trajectory for vibrational deexcitation is motion along the symmetric
stretch line. In vibrationally deactivating collisi ons at some time the

mass particle, the motion of which in Delves coordinates is equivalent
1

to that of the actual system [the single particle of mass mclmH2 .
L

(2mCl + mH)'z ], lies along the symmetric stretch line beyond the

saddle point, and has its velocity directed along the line towards the

saddle point, (RCI’—H =Ry, cl= R¢). At that time, the trajectory

obeys the equations

4
Roy g ™ Ryg.c1 > R )
dR ~y/ dR ~
_CV-H , THCl _ g, (4b)
dt dt

A fairly typical trajectory resulting in substantial vibrational deactiva-
tion is shown in fig. 4a. Since this trajectory involves motion essen-
tially along the symmetric stretch line, it means that to a good approxi-
mation, the mass particle has forgotten its channel of origin. That this
type of trajectory leads to conversion of vibrational energy to transla-
tional energy has been observed by Wright et al. [15] in their study of
the H + H, reaction. This effect is not observed in adiabatic reactions.
A typical vibrationally adiabatic trajectory is shown in fig. 4b.
Examination of trajectories shows that trajectories leading to

vibrational activation are in some ways the reverse of those leading to
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vibrational deactivation. Early on the trajectory first undergoes near-
periodic motion near the saddle point (similar to a trapped trajectory

of the second kind). At some time later the mass particle climbs the
symmetric stretch line beyond the saddle point with its velocity directed
towards dissociation. At lower energies, especially below the quantum
mechanical energetic threshold for activation, the trajectory may then
become highly complicated, undergoing near-periodic motion character-
istic of motions of trapped trajectories of the first kind. For these
trajectories roughly equal amounts of reactive and nonreactive products
should be obtained. A typical trajectory resulting in vibrational excita-
tion at high energy is shown in fig. 4c.

Three-dimensional trajectories have been calculated for the C1 +
HCl system by a number of workers [10,19]. The calculations show
competitive rates for reactive and nonreactive deactivations. The
uncertainty associated with the assignment of final quantum numbers in
quasi-classical trajectory calculations makes a detailed comparison of
the state-to-state deactivation rates difficult. The trajectory calcula-
tions all indicate that in three dimensions, the dominant pathway for
vibrational relaxation is V =R energy transfer [10,19], rather than
V =T, as is necessarily the case in collinear collisions.

The fact that the same equality of reactive and nonreactive deact-
ivation rates was obtained on the two potential energy surfaces suggests
that this effect is not immensely dependent on the surface used (for a
sufficiently high barrier, of course, the reactive probabilities will go
to zero at low energies). As this near-equality is not obtained for the

H + H, reaction (although as the reagent vibrational state increases,
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the reactive and nonreactive deactivation rates do approach one another
[20]), it seems reasonable that this equality is a mass effect, arising
from the small skew angle. We hope to document this in the future.

In a future publication, we will fully discuss the results of

classical and quantum calculations on these systems [21].

Acknowledgements

The calculations reported here were performed on the Dreyfus-
NSF Theoretical Chemistry Computer (VAX 11/780) which was funded
through grants from the Camille and Henry Dreyfus Foundation, the
National Science Foundation (Grant No, CHE78-20235), and the Sloan
Fund of the California Institute of Technology, and on the IBM 370/158
computer of Ambassador College, Pasadena, California, for which we

express our appreciation.



526

References

[1]

(2]

(4]

R. N. Porter and L. M. Raff, in: Dynamics of Molecular
Collisions, Part B, ed. W. H. Miller (Plenum Press, New
York, 1976) pp. 1-52; D. G. Truhlar and J. T. Muckerman, in:
Atom-Molecule Collision Theory, ed. R. B. Bernstein (Plenum
Press, New York, 1979) pp. 505-565.

J. C. Polanyi and J. L. Schreiber, in: Physical Chemistry, An
Advanced Treatise, Vol. VIA, ed. W. Jost (Academic Press,
New York, 1974), Chap. 6; P. J. Kuntz, in: Dynamics of
Molecular Collisions, Part B, ed. W. H. Miller (Plenum Press,
New York, 1976) pp. 53-120.

A. Kuppermann, in: Theoretical Chemistry: Advances and
Perspectives, Vol. 6A, ed. D. Henderson (Academic Press,
New York, 1981) pp. 79-164.

Some information concerning how the reaction takes place may
be obtained by looking at probability densities and streamlines of
probability currént density that can be calculated from the wave-
functions in quantum mechanical scattering calculations. See,
for example, E. A. McCullough, Jr., and R. E. Wyatt, J. Chem.
Phys. 54 (1971) 3578; A. Kuppermann, J. T. Adams, and D. G.
Truhlar, in: Electronic and Atomic Collisions, Abstracts of
Papers of the 8th International Conference on the Physics of
Electronic and Atomic Collisions, Belgrade, Yugoslavia, eds.
B. C. CYbi¢ and M. V. Kurepa (Institute of Physics, Belgrade,
1973) p. 229; S. L. Latham, J. F. McNutt, R. E. Wyatt, and
M. J. Redmon, J. Chem, Phys. 69 (1978) 3740; J. F. McNutt



(5]

[7]
(8]
[9]
[10]
[11]

[12]

[13]

527

and R. E. Wyatt, in: Potential Energy Surfaces and Dynamics
Calculations, ed. D. G. Truhlar (Plenum Press, New York,
1981) pp. 495-517,

(a) A. Kuppermann, J. A. Kaye, and J. P. Dwyer, Chem. Phys.
Letters 75 (1980) 257;

(b) J. A. Kaye and A. Kuppermann, ibid. 77 (1981) 573,

(c) J. A. Kaye and A. Kuppermann, ibid. 78 (1981) 546,

(a) G. Hauke, J. Manz, and J. R6melt, J. Chem. Phys. 73
(1980) 5040.

(b) J. R6melt, Chem. Phys. Letters 74 (1980) 263.

(c) J. Manz and J. Romelt, ibid. 76 (1980) 333.

(d) J. Manz and J. Romelt, ibid. 77 (1981) 172,

(e) J. Manz and J. Romelt, ibid. 81 (1981) 179.

L. M. Delves, Nucl. Phys. 9 (1959) 391; 20 (1960) 275.

S. Sato, J. Chem. Phys, 23 (1955) 592, 2465,

J. N. L. Connor, W. Jakubetz, J. Manz, and J. C. Whitehead,
J. Chem. Phys. 72 (1980) 6209.

I. W. M. Smith, J. Chem. Soc. Faraday Trans. II 71 (1975)
1970.

F. S. Klein, A. Persky, and R. E. Weston, J. Chem. Phys. 41
(1964) 1799; F. S. Klein and A. Persky, ibid. 59 (1973) 2775.
P. Botschwina and W. Meyer, Chem. Phys. Letters 44 (1976)
449,

R. D. H. Brown, G. P. Glass, and I. W. M. Smith, J. Chem.
Soc. Faraday Trans IT 71 (1975) 1963. See also M. Kneba and
J. Wolfram, J. Phys. Chem. 83 (1979) 69 and R. G. MacDonald



[14]

[15]

[16]

[17]
[18]
[19)

[20]
[21]

528

and C. B. Moore, J. Chem. Phys. 73 (1980) 1681, and refer-
ences therein.

F. T. Wall, L. A. Hiller, Jr., and J. Mazur, J. Chem, Phys.
29 (1958) 255; J. W. Duff and D. G. Truhlar, Chem. Phys. 4
(1974) 1; Chem. Phys. Letters 40 (1976) 251; J. R. Stine and
R. A. Marcus, ibid. 29 (1974) 575; R. E. Howard, A. C. Yates,
and W. A. Lester, Jr., J. Chem. Phys. 66 (1977) 1960; J. S.
Hutchinson and R. E. Wyatt, ibid. 70 (1979) 3509.

(a) J. S. Wright, G. Tan, K. J. Laidler, and J. E. Hulse,
Chem. Phys. Letters 30 (1975) 200.

(b) J. S. Wright, K. G. Tan, and K, J. Laidler, J. Chem.
Phys. 64 (1976) 970.

(c) J. S. Wright and K. G. Tan, ibid. 66 (1977) 104,

(d) K. G. Tan, K. J. Laidler, and J. S. Wright, ibid. 67 (1977)
5883.

N. Sathyamurthy, Chem. Phys. Letters 59 (1978) 95; M. S.
Child and K. B. Whaley, Disc. Faraday Soc. 67 (1979) 57; J. C.
Gray, G. A. Fraser, and D. G. Truhlar, Chem. Phys. Letters
68 (1979) 359.

P. Pechukas and E. Pollak, J. Chem. Phys. 67 (1977) 5976,

E. Pollak and P. Pechukas, J. Chem. Phys. 69 (1978) 1218,

D. L. Thompson, J. Chem. Phys. 56 (1972) 3570; R. L.
Wilkins, ibid. 63 (1975) 534.

J. A. Kaye and A. Kuppermann, unpublished results.

J. A. Kaye and A. Kuppermann, manuscript in preparation.



Table 1

Parameters and properties of LEPS potential energy surfaces A and B.

529

HCl cl,

8/bohr " 0. 9892 1. 0626

R,/bohr 2.4060 3.7791

D /eV 4.6258 2.5169
A A 0.138
B 0.185

saddle point location/bohr

A
B

(1. 459,
(1. 443,

barrier height/(kcal/mole)

A
B

6. 21
1.89

HCl zero point energy/eV

A
B

0.1838
0.1836

1.459)
1.443)

a)

a) Masses used: me) = 34.6974 m

H
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Figure CaEtions

Figure 1. Cubic spline fit to quantum mechanical probabilities of state-
to-state transitions versus reagent translational energy for vibrational
deactivation in collinear collisions of Cl + HCI1 (v = 2): PX) (solid line),
PZY (dashed line), Pg (dotted line), and PR (dashed-dotted line). Note

expanded vertical scale (full scale corresponds to probability of 0. 04).

Figure 2, Arrhenius plots of state-to-state rate constants for vibra-
tional activation in collinear collisions of Cl + HCI (v = 2), The rate
constants were calculated from the quantum mechanical transition

probabilities. The lines represent the same transitions as in fig. 1;

markers represent the points calculated. k20 (0), k21 (A), h (+) k? (x).

Figure 3. Plots of final vibrational action (left ordinate) versus initial
phase of reagent HCI (v = 2) in collinear collisions of Cl + HCI (v = 2).
In the region in which the curves are smooth, a solid line represents
reactive collisions and a dashed line represents nonreactive collisions.
In the non-smooth regions, open circles are used to indicate reactive
collisions and open squares to indicate nonreactive collisions. The
time of the trajectory (the time scale is on the right ordinate) is shown
by a dotted line in its smooth region and by closed circles elsewhere.
Curves are for translational energies of 0.5 eV (top), 0.3 eV (middle),

and 0.1 eV (bottom).

Figure 4. Plots of typical trajectories (dashed-dotted line) superim-
posed on a contour plot of the potential energy surface (surface B) in
Delves mass-weighted coordinate system, Contours are drawn every

0.4 eV from 0.2 to 3.0 eV, measured with respect to the bottom of the
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HCl well. An x is drawn at the saddle point. The trajectories were
started at R = 24. 75 bohr in the entrance channel (at the lower right)
and terminated in the exit channel (upper right), well past the limits of
the plot. Trajectories shown are for a translational energy of 0. 3 eV.
(a) Vibrationally adiabatic trajectory-initial phase = 0. 50 radians, final
action = 1, 981; (b) vibrational deactivating trajectory-initial phase =

2. 9293 radians, final action = -0. 115; (¢) vibrationally activating

trajectory-initial phase = 4. 09 radians, final action = 2. 821,
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I. INTRODUCTION

Reactions of halogen atoms (X) with hydrogen halides (HY)
of the type
X + HY — XH + Y (1)
have been the subject of a great deal of experimental and theoretical
work (1). Exothermic reactions of this type produce inverted popula-
tion distributions of vibrational levels (2} and can thus be used as
the pumping step in chemical lasers (3). The fairly small energy

difference between the ground (ZP ) and first excited (ZPI/Z) state

3/2
of the halogen atom allows one to lo/ok at the possibility of electron-
ically non-adiabatic processes (4). Endoergic reactions of this type
are known to be greatly accelerated by vibrational excitation of the
hydrogen halide reagent (5).

Theoretical treatments of these reactions ar'e more difficult,
however. Not only must one have an accurate potential energy sur-
face in order to perform reliable scattering calculations, but one
must also consider the possibility of multiple-surface collisions.
Single-surface quasi-classical trajectory calculations on these sys-
tems have usually been able to match experimental product state
distributions, but have not had much success in duplicating other
experimental results (isotope effects, temperature dependence, rate
constants) (6).

Quantum mechanical treatments of these reactions have been
limited, because the traditional methods of attacking collinear atom-
diatomic molecule collisions (7, 8) are not well suited to collisions
in which a light atom is transferred between two heavy ones. This
difficulty has recently been overcome by the development of the
collinear hyperspherical coordinates technique (9, 10), which allows
one to perform reactive scattering calculations efficiently for heavy-
light-heavy (H-L-H) systems. Studies of systems of this type using

this method have previously been limited to exchange reactions of
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identical atoms (symmetric systems), such as (9b, 10e)
I' + HI -— I'H + I (2)
In this work we report the results of calculations on the asymmet-

ric system Br + HCI for the processes

Br + HCl(v=2,3,4) — BrH(v') + Cl (3a)

— Br + HCIl(v'¢ v) (3b)

These processes (5, 11) and the reverse reaction (12)

Cl + HBr —9 CIlH + Br (4)
have been studied experimentally and in three dimensional quasi-
classical trajectory calculations (5, 13). A preliminary account of a
collinear quantum mechanical calculation on reaction 4 has been re-
ported previously (14).

In section 2 we briefly discuss the application of the hyperspheri-
cal coordinate method to asymmetric systems and the surface used.
In section 3 we present and discuss the results, and in section 4 we

summarize the results and conclusions.
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II. COMPUTATIONAL METHOD AND POTENTIAL ENERGY SURFACE

We have discussed our hyperspherical coordinate method for
symmetric systems previously (9), and the modification of the
method for asymmetric systems is straightforward. The basic idea
of the method is to express the problem in the polar coordinates p, a,

.and expand the wave function in a set of eigenfunctions of the hamil-
tonian at constant p. Two simple changes are involved in going from
symmetric to asymmetric systems.

a) Whereas in symmetric systems the integration of the coupled
channel equations could be done for the symmetric and antisymmetric
solutions separately, such a decoupling is no longer possible

b) At large values of p, it previously sufficed to project the
wave function onto a basis set of the eigenfunctions of one diatomic
molecule only; two such projections, for HX and HY, are now re-
quired.

We have verified the accuracy of our asymmetric hyperspherical
coordinates program by performing scattering calculations on the
F + HZ system on the F + H2 system on the Muckerman V surface
(15), and achieved agreement with previous results (16) to within
3% or better at energies near the resonance. A plot showing proba-
bilities for the reaction = + HZ(VZO) —3 FH(v=2) + H obtained by
the hyperspherical coordinate method and previous method is shown
in figure 1. The rapid convergence of this technique with respect to
the number of basis functions seen for the H + HZ system (9a) is also
seen for the F + H2 system; with sufficiently frequent changes of
basis functions, results converged to approximately £0.02 in the
low energy region (up to 0.10 eV translational energy) can be obtained
with 7 basis functions (5 open, 2 closed, correlating asymptotically
to one closed state of each of the H2 and HF molecules).

12-14 basis functions were used in all the calculations reported
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here. This is far more than needed in the lowest energy region
(equivalent results were obtained with only 8 channels in this energy
region). Transition probabilities should be good to £0.002 for nearly
all transitions and energies; in many cases they are probably good to
better than £0.001. Small transition probabilities (i.e. those signif-
icantly smaller than 0.001) probably have fairly large relative errors
(~10%) as seen by oscillations in the probability vs. energy curves to
be shown below. Flux was normally conserved to better than £0.001.
Deviation of the scattering matrix from unitarity increased gradually
with energy until at the highest energies studied (1.15 eV above the
HBr ground state) flux was converged to 0. 008,

The potential energy surface used is essentially that of Baer
(14). Itis an LEPS (17) surface, with all Sato parameters set to
0.154. The Morse oscillator parameters are those of Douglas, et
al (5). The surface has a barrier to exhange of 1 kcal/mole. This
surface is not designed to accurately mimic the real one; inadequa-
cies are suggested by the difference between the observed (12) and
calculated (14) vibrational product state distribution for reaction 4.
A plot of the surface in the Delves coordinate system (7c, 9a) is

shown in figure 2.
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III. RESULTS AND DISCUSSION

A plot of the energies of the basis functions as a function of the
propagation coordinate p is shown in figure 3. Transition probabili-
ties for reactions 3a and 3b are presented as a function of reagent
translational energy in figure 4 for v = 2 (figure 4a), v = 3 (4b), and
v = 4 (4c for reaction 3a and 4d for 3b). Corresponding Arrhenius
plots of the thermal rate constants for these transitions are presented
in figure 5.

There are three major features of the dynamics, as may be
readily seen by examination of figures 4 and 5:

a) The only transition probability which can achieve a substan-

tial ' value (greater than 0.1) is that for reaction to the energetical-
ly nearest HBr state. Thus, Br + HC1 (v=2, 3, 4) reacts predominantly
to form HBr(v=0, 1, 2), respectively. The near;degeneracy of HC1(v)
and HBr(v-2) may be seen in figure 3.

b) Transitions involving a large change in vibrational quantum
number are far less likely than those involving a smaller change.
This may be seen especially clearly by considering the state-to-state
rate constants in figure 5, where the large separation between the
curves is indicative of the large difference in rate constants and thus
reaction probabilities.

c) Probabilities and rates of transitions to near-degenerate
product states are nearly equal: this may be seen for three pairs of
reactions:

Br + HCl(v=3) — BrH(v=0) + C1, Br + HCl(v=2)
Br + HCl(v=4) — BrH(v=1) + C1, Br + HCl(v=3)
— BrH(v=0)+ Cl1, PBr + HCl(v=2)

The calculation of the transition probability to the energetically
nearest HBr state as the only one reaching an appreciable value is in
agreement with the results of experimental studies (5) of the removal

of HCl(v=2, 3, 4) by Br atoms; in particular, the observation that the
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greater rapidity of removal of these levels of HCl than of the v=1
level must be due to chemical reaction (process 3a) and not inelastic
non-reactive collisions (process 3b). While we have not extended our
calculations below the HBr(v=0) level, as is necessary to calculate
rates for the deactivation rate from HCIl(v=1), it seems quite reason-
able to expect that that rate would be significantly slower than those
shown here. The relative rates of removal of HCl(v) obtained here
do not agree with those determined experimentally, however. We
calculate HCl(v=3) to be removed more rapidly than either HCl(v=2)
or HCl(v=4); experiments show the rate to increase as v is increased
from 1 to 4 (5).

This disagreement is not surprising, however, as it has been seen
in symmetric collisions that the probability vs. energy curves (rate
constants) for the vibrationally adiabatic exchanée reaction X' + HX(v)
—y X'H(v) + X for X = Cl1 (18) and X = I (10e, 18) vary substantially
and irregularly with reagent excitation. In contrast, for the H + H2
reaction, the differences between successive probability vs. energy
curves for vibrationally adiabatic reaction are much more regular
(9a). The irregularity observed is most likely due to a combination
of the H-L-H mass combination and the restriction to collinearity.
Three-dimensional quasi-classical trajectory calculations performed
on a similar but not identical surface (13b) show no such irregular
behavior, while one-dimensional quasi-classical trajectory calcula-
tions performed on this surface show irregularity roughly similar to
that of the quantum results reported here (19).

A substantial difference between collinear (theoretical) and
experimental results for this system is quite reasonable in the light
of experimental results on various exoergic X + HY reactions, which
suggest that, at least at low energies, the reaction proceeds by attack
of the X atom on the Y end of the HY molecule, with subsequent H

atorm migration and HX bond formation as the HY bond breaks (12, 20).



544

The low probabilities of multi-quantum transitions in non-reactive
collisions and of reactive transitions to all but the near-degenerate
level can be understood classically, as can the near equality of the
probabilities of reactive and non-reactive transitions to near degene-
rate states. This has been demonstrated in studies of the Cl + HCl1
reaction (21). Transitions involving a large change in vibrational
action (analogous to vibrational quantum number) occur at the boundary
between reactivity bands (22) in plots of the final action versus initial
vibrational phase. Near the boundary, the final action varies rapidly
with initial vibrational phase, forming a cusp about some central boun-
dary phase (21}, Transitions involving a large change in quantum num-
ber can only occur for collisions in a very limited range of initial
phase and are thus unlikely. In symmetric systems such as Cl + HCI,
these transitions involved motion essentially along the symmetric
stretch line. T a first approximation, then, the system has ''forgot-

ten'!'

in which channel it began its motion, giving rise to the near
equivalence of reactive and non-reactive transitions to degenerate
energy levels.

One must take great care in relating the results obtained here to
experimental ones. The collinearity restriction is undoubtedly a
severe one and can be expected to lead to qualitatively incorrect re-
sults. The surface used was chosen mainly for its simplicity and
although it displays the correct energetics of the system it need not
otherwise bear a close similarity to the correct one. Indeed, Smith
(13b) performed three dimensional quasi-classical trajectory calcula-
tions on a related potential energy surface (LEPS with Sato parameters
of 0.17) and could not get good agreement with experimental results.
Finally, one must consider the possibility of collisions involving more
than one electronic potential energy surface. Their possible impor-

tance has been considered previously, but the results are inconclusive.



545
IV, CONCLUSIONS

We have shown that the hyperspherical coordinate method is
well-suited to the study of reactions (1) and have applied it to the
Br + HCl(v=2, 3, 4) system. The major features of the dynamics in-
clude the dominance of the removal of vibrationally excited HTI by
reaction to the near-degenerate HBr level, the small probability of
collisions involving a large change in internal energy, and the near-
equivalence of reactive and non-reactive processes to near-degene=~
rate HCI and HBr levels. Because of the restriction to collinear
motion, uncertainty in the potential energy surface, and the possible
role of collisions involving more than one electronic potential energy
surface, these calculations do not have predictive quantitative value,

and comparison with experiment should be done .very cautiously.
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FIGURE CAPTIONS

Figure 1. Probability of the reaction F + HZ(VZO) —3% FH(v=2)+H
on the Muckerman V surface as a function of reagent energy. The
solid line connects results obtained previously; the points represent
results obtained with the method of hyperspherical coordinates using

up to 8 basis functions.

Figure 2. Equipotential contour plot for the Br + HCl system. The
solid curves are the contours and are equally spaced in increments of
0.4 eV from 0.2 to 3.8 eV. The zero of energy is the bottom of the

HCI well. The surface 1is plotted in the Delves coordinate system.

Figure 3. Hyperspherical coordinate eigenvalues En(p) as a function
of the propagation coordinate p. Values of n for the curves are shown
at the top of the figure. The asymptotic states to which each of the

curves correlates is indicated at the right of the figure.

, for the processes

Figure 4. Transition probabilities Pv R and Pv

VT
Br + HCl(v=2, 3,4) — HBr(v') + Cl, Br + HCl(v'¢ v) as a function of
initial relative translational energy. The lines are cubic spline fits

to the points shown. Line types and symbol meanings are indicated in

the figures. a)v =2;b)v =3;c)v =4 - reactive only; d) v=4 -non-

reactive only.

R
Figure 5. Arrhenius plots of state-to-state rate constants kvv' s
v
kvv' for the processes Br + HCl(v) — HBr(v') + Cl, Br + HCl(v'(
v). The four plots are similar to the corresponding four plots in

figure 4 with respect to line and symbol usage.
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III.9 ASYMPTOTIC PROPERTIES OF HYPERSPHERICAL
COORDINATE BASIS FUNCTIONS AND THEIR MATRIX
ELEMENTS IN THE ADIABATIC REPRESENTATION
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ASYMPTOTIC PROPERTIES OF HYPERSPHERICAL COORDINATE
BASIS FUNCTIONS AND THEIR MATRIX ELEMENTS
IN THE ADIABATIC REPRESENTATION'

Jack A. KAYEY and Aron KUPPERMANN

Arthur Amos Noyves Laboratory of Chemical Physics,

California Institute of Technology

Pasadena, California 91125, USA

Asymptotic properties of two different sets of basis functions for
a hyperspherical coordinate treatment of the reac'tive collinear atom-
diatomic molecule collision have been determined by numerical calcula-
tion. One of the basis sets is the one used in previous hyperspherical
coordinate calculations on H + H,, I + HI, and a model problem allowing
for collision-induced dissociation; the other involves a cut through the
potential energy surface consisting of two straight lines connected by
an arc. Eigenvalues of the basis functions and elements of the
matrices which couple the equations when the problem is formulated in
the adiabatic representation have been obtained on two potential energy
surfaces. Analysis of the properties of these matrices yields predic-
tions of properties of the matrices which are verified in the numerical
calculations. Asymptotic behavior of the eigenvalues and matrix

elements of the eigenfunctions and the potential has been studied, as
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have the differences between the matrix elements with the two basis
functions. The implications of the large p behavior observed on the
asymptotic properties of the radial Schrédinger equation will be dis-
cussed. Preliminary results of numerical integration of the adiabatic

equations are presented and interpreted in terms of a simple 2 x 2

model.
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I. Introduction

The method of hyperspherical coordinates has been demonstrated
to be a simple and effective one for the quantum mechanical study of the
collinear reactive collision of an atom with a diatomic molecule. L~
Using this technique, transition probabilities have been determined for

the H + Hz1 and T + HI2» 8 systems, as well as for a model system

above the threshold for collision-induced dissociation (CID). %» 8

One major consideration in using the hyperspherical coordinates
in quantum mechanical studies of reactive scattering is the value of the
radius p to which one must integrate in order for transition probabilities
to converge. If this value is too large, then the calculation becomes
impactical. So far, essentially converged transition probabilities, both
above and below dissociation, have been obtained without the need for
integrating so far out that the value of p becomes inconveniently large.

In considering the CID problem, however, one is interested not
only in transition probabilities, but in partitioning probabilities, that is,
the probability for producing dissociated products for which the center-
of-mass energy of the product is distributed in a given way. At a large
value of p (76 bohr in the mode, CID case) where CID probabilities
essentially converged (the calculated probabilities are probably good to
+ 0.01), these partitioning probabilities have not converged with respect
to the stopping point of the numerical integration. If integration is con-
tinued further (to 110 bohr) they do begin to show signs of convergence.

9

The partitioning probabilities are discussed elsewhere.” The inter-

action between the particles has died off at a much smaller value of p,
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however, hence, the variation in the differential probabilities must be
due to coupling introduced into the equations by the coordinate system
(inaccuracies in the projection of the bound states onto Cartesian
coordinate basis functions could also be partly responsible).

At large values of p, then, the problem to be considered is
essentially that of a particle moving in a potential which varies in a
known way with p. Since this variation with p is fairly simple, one
hopes that either an analytic approach or a numerical one based on
properties of the basis functions used (and their matrix e lements)
could allow one to introduce the correct asymptotic behavior without
integration to large values of p. |

In this paper we consider two different aspects of basis functions
for a hyperspherical coordinate treatment at the reactive collinear
atom-diatom molecule collision., We calculate these basis functions at
large values of p (p = 5000 bohr) and obtain the matrices responsible
for coupling equations when written in the adiabatic representation.
Particular interest is paid to the p dependence of these quantities,

especially when there exist relationships of the form
ka < p

where Q)(k is some quantity (eigenvalue, matrix element) and v is a
limiting exponent of some sort. Finally, of the two different sets of
basis functions studied, we consider whether one is superior in terms
of its asymptotic properties.

The outline of the paper is as follows. In section II we review

the hyperspherical coordinate picture and the equations which the two
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different basis sets satisfy. We then formulate the coupled channel
problem in the adiabatic representation (an earlier description of the
method1 used the diabatic representation) and deduce some properties
of the coupling matrices and some matrices generated in the course of
integrating the coupled equations in the adiabatic representation. In
section III we review the numerical techniques used in all the calcula-
tions reported here, and results of the calculations are given in section
IV. In section V the results are discussed, and section VI consists of

a summary of conclusions.

II. Theory

A. The Hyperspherical Coordinate Picture

The details of the hyperspherical coordinate system have been
given in reference 1 s0 we will only review those portions of it relevant
to the calculation of basis functions. Recall that each solution ;pj of
the Schrodinger equation is expanded in terms of an infinite and discrete
set of orthonormal basis functions qbi(a;E) which are calculated at only

certain values of p = p:

IP] :D-%? d’i(a;lf_’)gij(ﬁ);a) (2)

Each basis function d)i satisfied the equation

2 2
= _2-2:() aix"’ ¢;(aip) + Via;p) ¢5(a;p) =Eip)ds(aip)

(3)

subject to the boundary conditions
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¢;(@ =0;p) = ¢la =@, . :p) =0 (4)

where the value of - — is determined by the masses of a, b, and c.
We will be interested in the appearance of the basis functions ¢>i(a ip)
in the limit of large p. As mentioned earlier at very large p there is
essentially no interaction between at least two of the particles.

In the diabatic picture, the coupled channel equations which

must be integrated are coupled by the potential term - i.e., terms of

the form
Viipip) = f $;(a@:p) Vip,@) ¢;(a:p) da (5a)
> _
and
_ Smax o _
Vij(0) = [ ¢3la;p) V(psa) ¢y(aip)da . (5b)

0

One would expect the Vij (p;p) term to vary discontinuously with
distance because the basis functions change for every new p. This
complicates analysis of the large p (and p) properties of these matrix
elements.

To avoid this complication, one may work instead in the adiabatic
representation, in which basis functions are calculated at all values of
p. These basis functions will solve a form of eq. (3) in which p is every-
where replaced by p. Since the basis functions are now explicit
functions of p, one must differentiate them with respect to p in sub-
stituting an expansion similar to that of eq. (2) info the Schrédinger

equation for the problem (eq. (4) in ref. 1).
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After some algebra one may show that the radial wavefunction

elements gkj(g) satisfy the following equation:

0, e

= -k L JE - Exlp) + 5 " }gk (6)

(1)

where the matrix elements Tkj (p) and TEJ) (p) are defined as follows:

max 3¢,
TL])(,O) = F ¢k(p)a—al(p)da ' (7a)
(4]
®ax 2° ¢,
T(z_)(p) = f Cbk(p)———lz—(p)da " (Tb)
Kkj 0 oo

and E;(p) is the eigenvalue associated with a given qbk(p). In matrix

form equation (6) may be written as
g"+2T g +T g =¢€g (8)

where the matrix é(p) is a diagonal matrix whose elements are given

by the relationships

_ .20 g .
egylp) = |- %2 {E-E;(p) + v

0 i]j
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Hence, the equations to be integrated are coupled by matrix elements
of the basis functions and their p-derivatives. Since in the adiabatic
representation the basis functions vary smoothly with p, the matrices
z(l), Z('), and ¢ should vary smoothly with p, simplifying analysis of
their large p behavior.

B. An Alternative Basis Set

The basis functions ¢, used in section A (and in reference 1), are
calculated along an arc cut through the potential surface at a constant
value of p = constant. It is known that for bound states, at small
values of p, these do not provide a good description of the bound states
of the molecule, which are instead best described by basis functions

1
calculated along cuts of r_ = constant [recall p = (Ri + r";\)2 ]. By

A
projecting the wavefunction onto a set of Cartesian coordinate basis
functions, at a moderate value of p (~ 7 bohr) Kuppermann ﬂ_l.l were
able to converge their H + H, transition probabilities far sooner than
Romelt whose probabilities continued to oscillate at larger values of p.
This suggests that a better basis set than the purely polar ones defined
in eq.(3) might be developed by using, rather than an arc at constant p,
a cut which is at constant R?« and Ry in the a +vk and »v + k arrange-
ment channels, respectively, and an arc at some constant p’ (opera-
tionally defined in Fig. 1) in the intermediate region, corresponding to
the dissociative plateau. This coordinate system is pictured in Fig. 1
(for comparison purposes, an arc at constant p is drawn in also). The

point at which one switches over from a straight line to an arc is

arbitrary; ideally it should be sufficiently close to the dissociation
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limit that its energy is above that of all the bound states of the isolated

molecules.

These basis functions, which will be called xn(R, S) to distinguish
them from the purely polar q’>n(p, a) used above, satisfy the following

equations

- 2 4 vR,r )XY ®,9) = E,® R,

B ar; n
N 9" + Vo', e')] (2)(R S) = E.(R) (2)(R S) (10)
2up® 8a’ P Ay T S SR T

2

9 . (s)
iy +V(R,,1,)] x](n)(R, S) = B, (R) x; (R, S)

where the superscripts (1), (2), and (3) represent the regions at the
potential surface marked in Fig. 1, R is as defined as in Fig. 1, and S
is a transverse variable which is a distance in region 1 and 3 and an
angle (a’) in region 2. |

Across the boundaries the following continuity equations hold:

xl('ll)(RA’r}\ =ro) = XE{Z)({_)=R = Rs, a’ = 0)

() 1 (2)

g¥ Jr=r, R=-R, o@ F.
R=const p =

0
R-r, (11)

Xg)(plzR'Ro’a’: ai )= Xr(ls)(R,’ rKf=r;(o)

max
(s) (2)
*Xn _ .1 (axn )
ory |, -1, R-r, " 60" ' 7o 'ma.x



The boundary conditions are simply

xR, r =0 = xP ®r =0=0. (12)

Alternatively, one may cast the eqs. (10) in terms of a variable s which
is a smoothly varying distance coordinate which is a distance in regions

(1) and (3),andanarclength=(p’ - @’) in region (2).

s = T, for 0 < r, < r)_o (region (1))
= ’ ? : 2

S I, tee for rA>rAO, rK>rK0 (reg. (2))

s = er +p' a;nax"'(rKo'rK) for Q< ¥, € rKO (region (3))

Since s smoothly varies (and is always a distance) there is no need to
impose continuity equations of the form of eqs. (1).
The X, are normalized as follows:
T o'
e ) G) mEE_6) @)

0
’ ' (3) (3) =

!

nn
r.
Ko

(14

The p’ term in the region (2) portion of the normalization integral
becomes important in the calculation of the adiabatic matrix elements
T(l) and T(z) and causes them to have different properties when
calculated using the "hybrid" basis functions Xn(R’ S) than when -
calculated using the ""purely polar' basis functions ‘Pn(a :0). These

differences will be outlined below.
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C. Integrating the Coupled Equations in the Adiabatic Representation

When integrating the coupled second-order differential equations
developed in a coupled-channel calculation, it is frequently convenient
to have no first derivative term. For example, the Gordon integrator10

in which the term multiplying the g term in an equation of the form

g" + L(x)g = 0 (15)

is assumed to be linear in x, allows no first derivative term. When
developed in the adiabatic representation, the coupled channel eqs. 8
do contain a first derivative term, which must be removed if one is to
use an integrator such as Gordon's. The use of such an integrator, in
which one follows the coefficients of the terms in the differential
equation rather than following the wavefunction directly (i.e., by a
brute force numerical integration of the differential equation) is
particularly important in the CID problem at large p, when all channels
are energetically accessible and thus highly oscillatory at sufficiently
high energy.

To remove the first derivative term, one may define a modified

radial wavefunction y by the transformation

(16)

1109
I

=

<

where M is to be determined from the requirement that there be no first
derivative term in the differential equation for y- Substitution of eq. (16)
into eq. (8) and the imposition of this requirement for M give the

following two equations
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M+ T M = 0 (17a)

y’+ M@0 - @y - 7@ pmy -

eMy. (17b)

1<
2
m

All of these matrices depend on p; we suppress this dependence for
convenience. For simplicity, we define the matrix P (not to be con-
fused with the matrix of reaction probabilities) to be the bracketed

term in eq. (17b)

= ~@®y - @y + 1@ (¥e)

g}

hence, eq. (17b) may be rewritten as

-1

+
Iigl
g
2
i<
1]
3
nm
=
i<

(17d)

Thus, inthe limit of large p, we are interested in the behavior of the
matrices 1\=/I'1 PM and M'l ¢M. The matrix M may be obtained by
solution of eq. (17a), which is a first-order matrix differential equation.
Since at sufficiently large p, z(l) is expected to become small
(numerical studies of ';(1), l(z), and P will be presented below), M
might then be expected to become essentially independent of p. Further,
M and P are independent of energy, hence calculation of P and integra-
tion of eq. (17a) to obtain M need only be done once to get a good
understanding of the asymptotic properties of eq. (17d) (we also need

to know the p dependence of ¢, but this may be determined simply from

consideration of the eigenvalues associated with the basis functions d)n

or Xn'
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D. Properties of the Adiabatic Coupling Matrix Elements

Before we attempt to calculate the adiabatic coupling matrix
elements Z(l), z(z), and P, it is useful to consider properties imposed
on them by their definition. In particular, we are interested in funda-
mental differences between the matrices calculated for the purely polar

basis functions cbn and the hybrid basis functions x .

1. Purely Polar Basis Functions

The T*) matrix can be shown to be skew-symmetric, that is, to

have the property

T%) - _Tgli) - (18a)

as a simple consequence of the normalization property of the qbn. We

suppress the p dependence of these quantities. The d)n are real and ortho-

normal: hence

f ¢ 0 da = dyp (19a)
[+]
(8] o o
max 3¢ max 09
so %[f ¢, b dal = [ ap“ ¢ da+ [ ¢, ap“ da =0
0
(19b)
_ pl1) (1) _
TS + Th =0
hence

No similar symmetry condition exists for the T(z) matrix, however.

This may be shown by differentiating eq. (19b) with respect to p:
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@ nax 370 @ 2p_ 3¢, a 2’
max n max 0@, 9@, max n’
’ e = =0
i + DM AAC
(20a)
¢ 3¢
6 I(2) 5 I(2) = -2( n anl) . (20b)
“n'n T nn’ op p
For the diagonal matrix elements 1‘;21)1’ then, one sees that
0¢_ 0¢
() _ -(—B |y (20c)
nn ap ap

where brackets represent integrals over a. Since the integrand on the

right-hand side of eq. (20c) is everywhere positive, the diagonal

elements of T(z) must be negative.
We may also differentiate the equation for _I_(l) to obtain an

expression for (’_I‘_:(l))’ , Which is one of the components of P.

( 00
ang' = <(Pn|_57)2>‘

2

(1) ; —__.Q. Bcbnl B EEE a¢nr 0 (f)nr
Zapd’ = 5 Wpl gl ~lg 2 b el =)
9o oo .,
SO (!g}?l,)' = —ap—n a;)] > + If:lir " (21)

Substitution of eq. (21c) into eq. (17) allows us to write P by the

following expression

e 30 b,
Pan’ = '(I( ))nn’ SETe e

22
50 | 5o (22)
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It is obvious that the second matrix on the right-hand side of

(1)

eq. (22) is symmetric, and (T )* can be shown to be symmetric as a

consequence of the skew-symmetry of !(1):

]

(=(1) E T T(I ( 1) T(l) T( = }_;,( 1) T(l) T(i{ 7‘ T(l)T(l)

ij

(@2 = (O,

TS (29

Hence, since both terms on the right-hand side of eq. (23) are symme-
tric, P is symmetric.

Some properties of the matrix M defined by eq. (16) may be
ascertained by considering the effect of the skew-symmetry of ’;‘(1) in
this coordinate system. This is best seen in the two-state case, in
which an analytic treatment of the differential equation (17a) becomes
possible. In this case, there is only one independent non-zero T(l)
matrix element, which can be represented by the expression f(p). We
will later examine the case where f(p) behaves asymptotically like p~”
where v less than or equal to one, as we are especially interested in

the asymptotic behavior of M. Writing
™™ .- [0 1) (24)
-f(p) ©
We recognize that T(*) may be diagonalized by the transformation
2= a7 1WA, (25)

where the eigenvalues A, are given by the expression
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A, =+ if(p) (26)

and the matrix é has the form

A= (1/N2 142 (27)
i/N2 -i/y2

If we define a new matrix N by the expression

M=AN, (28)
one can show, given the p independence of A,that the differential
equation becomes

N' = -N. (29)

Since ) is diagonal, one had four uncoupled differential equations for

the elements Nij of N. I we start integrating eq. (29) at some value of

p=p, Where Nij(po) = N(i)j , then the solutions of eq. (29) are given by the

equations
-i[ f(p)d
i f(p)d
N, o) = N el PP e g g (30b)

where j =1,2.

Without loss of generality, let us take M(p,) = L. Then

N(po) =A™ = [1/V2 -i/V2 (31)
1/V2  i/N2
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and one can show that

M= fc) -Dlp) (32)
D(p)  C(p)
where
Clp) = F, (p) + F_(p) = cos [f(p)dp (33a)
D(p) = -i[F_ (p) - F_(p)] = sin[f(p)dp (33b)

An important point is to be learned from eqs. (32) and (33):
These elements of M will oscillate with p at a frequency which will vary
with p depending on the way in which the off-diagonal element of T(l)
varies with p.

In the case that f(p) has the form given by eq. (1)
f(p) =ap™” (34)

we may easily evaluate the integral in eqs. (33) a d obtain explicit
expressions for C(p) and D(p). If v is a positive number greater than

one, we may write

C(p) = cosf(p) (35a)
D(p) = sinf(p) (35Db)
where f(p) = i E_‘ - pl‘V (36a)

Thus, as p increases, pl "V decreases and the frequency of oscillations
of C(p) and D(p) will decrease with increasing p. If v equals one, egs.

(35) will hold with f(p) defined by
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f(p) = aln(p) . (36h)

Thus, a plot of the elements of M would be expected to oscillate with p
at a frequency which is independent of aln(p). We will present
numerical results for a more realistic system later.

Let us now briefly consider the behavior of the other matrices in
eqs. (17), in particular ¢, P, and the form in which they appear in
eqs. 17d

=]

e
g g

(37a)
(37b)

-1

g 12

[T-2 2 }=s)
i
g

Note that this R should not be confused with the reactance matrix.
From its definition in eq. (9) we recall that € is diagonal. At the large
values of p at which we are mainly interested, the %’/ 2up® may be

safely neglected. Hence we may write

Eg5 = [~ %% (B ~ Ei(p))]éij . (38)

This matrix may be broken up into two parts: one bound (gb) and one

continuum (€):

(39)

I
nm

o
m
s 10

gb and gc are square matrices of dimensions N; X Ny and N4 X Ng,
respectively, where N, is the number of bound states and Ny is the
number of dissociative states being integrated. We assume that at the

large values of p being considered here, the eigenvalues Ei(p) above
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dissociation will be sufficiently small that they are much less than the
energy E (this assumption will obviously not be correct at energies
very close to the threshold for dissociation). Thus the matrix ¢© is a
constant matrix of a scalar whose elements are given by

¢ . . 2uE

d

(the notation reminds us that e~ is diagonal). For the bound states we

expect that the eigenvalues E,(p) become independent of p at large p

and thus the matrix g_b

b

will become independent of p. Unlike ¢,
however, € is not a matrix of a scalar; its elemgnts are given by
eq. (38). Since €=b is diagonal, we will use only a single subscript as
we did with gd.
For the simple 2 x 2 case considered here, we may evaluate R
in terms of the elements of M and gb (we assume in the 2 X 2 case we
are integrating two bound states). If we define C = c(p) and D = D(p),

we may write

R=M"eM=[cC D\[ef 0)[c -D\=[ePc?+PD” (P-eP)cD

-p c/\o /\p c (el-eo)CD e +elC

(41)

We emphasize that eob and eP are essentially independent of p, so that

the p dependence in R will come entirely from that of M.
We now consider the behavior of Q in the 2 x 2 case. Recalling

that P is symmetric, we write
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::P = t u (42)

and can show that

Q= [tc®+vs +2ucCs (v-t)CS +uC, (43)
(v-t)CS +uC, ts+vC - 2uCs
where C, = cos 21 (p) (44)

Assuming that t, u, and v defined in eq. (42) will all decay fairly
rapidly with p, we expect that the matrix element of Q will also
decrease fairly rapidly. Superimposed on this deéay, however, will

be oscillations produced by the Cz, Sz, and CSterms. While this form
for Q is quite complicated, we note that as g decreases with increasing
s 1; will oscillate with a rate determined by the oscillations in C and

D, and the differential eq. (17d) becomes, at large p

v =

i

y - (45)

This equation will not yield to simple analytic solution in spite of its
being only a 2 X 2 matrix equation, because of the p dependence of R.
Since R derived in eq. (41) is symmetric, it can be diagonalized with
real eigenvalues and eigenvectors which will vary with p. It is this p
variation which makes a simple analytic integration of eq. (45) im-
possible, and we would be forced, even in the 2 X 2 case, to evaluate
y” numerically. Because of the absence of the first derivative term,

standard integrators, such as Gordon's method (10) should be able to
be used with little or no difficulty.
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As a result of the simple form of eq. (45) and the relationship of
R to ¢, we expect that for closed channels y will experience exponen-

tial growth, while for open channels y will undergo oscillations. Thus,

at energies above dissociation, y should grow exponentially when p is
small because the eigenvalues Ei(p) may be greater than the energy,
but at large p, when all channels are open, y should stop growing and

should instead oscillate at some variable frequency.

2. Hybrid Basis Functions

Matrix elements of the hybrid basis functions X must be broken
up into three portions, corresponding to regions (1), (2), and (3) in
Fig. 1 and discussed above. We will use angular brackets to denote
the sum of the three separate integrals. In this notation, the normali-

zation condition in eq. (14a) may be written simply as
<)(rlh(n") = Onn’ - (46)

When working with the hybrid basis functions, the equations for the
radial wavefunction matrix are the same as in the purely polar case
(eq. 8) except that all derivatives are with respect to R rather than p.
Since R, the propagation variable most appropriate in region 1, is
simply related to the more appropriate propagation variables p’ in
region 2 and R’ in region 3, the derivative with respect to R in region 1
can be equated to one with respect to p’ in region 2 and R’ in region 3.
The major differences between the properties of the adiabatic
coupling matrix elements in the purely polar and hybrid basis functions

can be shown to result from the presence of the p’ term in the region 2
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portion of the normalization integral in eq. (46). For example, 1(1)

may be studied by differentiating the normalization eq. (46) as follows:

r)o 1 a;nax 2 “
(xn’xnl> = aaR { f xg)x(:lz dr, +6f XL) C) o da
+Kf° XS) xs)drx} - 0. (47

0

The 'E(l) matrix may be written in the following way:

r (1 (2)
1—_{1111' = <Xn' aax;’) = fho Xl('l) aaR) dr, + rmax (Z)(axn )p'da
0 2 @) ™
+‘f Xn _BI—?T drK . (48)
Ko
hence,
(O o) fmex () ()
Thn! +Tn n- { Xn Xy do. (4)

The integral on the right-hand side of eq. (49) is equal to 1/p’ times
the portion of the normalization integral coming from region 2. For
diagonal terms corresponding to dissociative ) essentially all of the
contribution to the normalization eq. should come from region 2, and
hence the right-hand side of eq. (26) may be replaced by -;1,- for

dissociative states. Hence, for diagonal dissociative terms

(1) L 5 e

nn S 2p diss
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For diagonal bound terms the right-hand side of eq. (26) should be close
to zero, as the bound %iny should be vanishingly small in the region 2.

Therefore the bound diagonal terms Tgr)z’ n<n should be zero,

diss
and their magnitude should decrease as n decreases.

By differentiation of eq. (24), one may obtain the following
expression for the T(z) matrix:

I ’

o
) (2 3Xp (9X e max () 8 Xy
Tfm)l,+Tg)n+2 n| n)+2f (n27-,11da +20( g apn da’= 0.
(51)
For diagonal elements, then
() axn ax *max ()BX(Z)
2 Il 2 n
Thn = ‘ -2 f Xn 37 B (52)
V]

By an argument analogous to that used in obtaining eq. (50), we may

assume for dissociative states that the second integral on the right-hand

)

ooty Using eq. (41),which gives a

side of eq. (52) is given by — p

formula for the dissociative diagonal elements of ’l‘(l), we may write

() dXn |SXn a7‘n

Tnn 3R R

(53)
1
Similarly to Tfn)x’ the bound diagonal elements of '1‘(2) may be expected
to be dominated by the first term on the right-hand side of eq. (53), as
the bound x  are essentially zero in region 2.
Just as an expression relating (T(l))' to '_l_‘(z) was obtained in the

purely polar case (eq. (21)), an analogous expression may be obtained
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for this hybrid case

ol (2)
(Tgllr)l Y 8Xn , aXn > N T(z) {max XS) __a_a_)%}'_ dab. (54)

Hence, one may rewrite the P matrix in the hybrid case by the following
expression:

(2)

8><n|axn " (z)axn

4 n ’
0 a'o

P = - da'. (55)

nn’ n" ~
Since the 1‘(1) matrix in the hybrid case is not skew-symmetric, the
('__Tl_?‘(l))2 matrix is not necessarily symmetric; obvibusly the third term
on the right-hand side of eq. (50) need not give rise to a symmetric
matrix. Hence, the P matrix in the hybrid case need not be symmetric.
The presence of additional terms in the expressions for the Z‘(l),
1‘(2), and P matrices in the hybrid coordinate system implies that the
E ﬁxatrix in this system (and also the M matrix) may have a very
different behavior than in the purely polar system. Which one will
prove superior (earlier onset of simple analytic behavior and/or more
rapid decay of the appropriate matrix elements) will be considered in
the subsequent discussion, Because in this hybrid coordinate system
’1;‘(1) is not skew-symmetric, the simple analysis employed at the end
of the previous section of the p dependence of M does not apply. Since
we will only present numerical results for M and the matrices obtained

from it for the purely polar basis functions, we will not attempt to

perform such an analysis here.
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E. Flat Channel Case in the Purely Polar System

To help provide some guidance for the analysis of the data for the
continuum states obtained, we consider, in the purely polar coordinate
system, the properties of the eigenfunctions ¢ _(p,a) and their associ-
ated eigenvalues En(p) at large values of p for a particle moving in the

one-dimensional potential

V(8=0) = V(S = pa

) = .

max
(5)
V(0<8 < pa,.5) = 0.

This is just the one-dimensional particle-in-a-box problem,
except that the box becomes longer as p increases (in fact, the box
length is directly proportional to p). This model is not as irrelevant
to the problem under consideration here as might first appear. At
sufficiently large p, the wells in the actual potential V(p, @) are
extremely narrow, and might be expected to have only a minor
influence on the dissociative basis functions qbn(p, a). Since the true
potential V(p,a) does gotozeroat o =0and a =« and is essen-

max

tially zero for 6a < a < « - b where da is a small quantity

max
(which decreases as p increases), the flat channel case is a reasonable
model for the continuum states.

We now consider the implications of the flat channel model for the
asymptotic behavior of the eigenvalues En(p). Since the length of the

box, f, in this model is given by

t=p-a (57)
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The well known equation for energy levels of a particle-in-a-box

becomes

E(p) = —-0 . (58)

2 2
8moyaxp

model
n

matrices of the type 1‘(1), ’;‘(2), and P will be zero in this model. The

The eigenfunctions ¢ are, however, independent of p. Hence all

reasonableness of this model will be shown by examining some of the
basis functions cpn(p,a) at moderately large (for this paper) values of
p, as well as by examining the behavior of the eigenvalues En(p) at

large p.

III. Numerical Technigues and Potential Energz Surface Used

A. Numerical Techniques

The second-order differential equations for the basis functions
(i.e., eq. (3) for the purely polar and eqs. (10) for the hybrid) are

solved by a finite difference procedure. Ll

The tridiagonal matrix
obtained by substituting in the second difference for the second deriva-
tive is then treated by a Givens-Householder technique12 in order to
obtain the appropriate set of eigenvalues and eigenvectors. This treat-
ment is particularly simple when a constant grid size is used in the
discretization of the potential and the basis functions, that is, when the
basis functions are to be determined at a set of values X where

X,-, ~ X, =h, a constant, for all n. When this is the case, the second-
order difference used is just
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2 Vnal = 2¥n + Yno
(_d_%) _ n+l n n-1 ’ (59)
dx X=Xy 2h

where Yo = y(xn), etc., and the tridiagonal matrix obtained is
symmetric.

At the large values of p considered in this study, however, a
constant grid size is not an efficient one, as there will be large
numbers of oscillations of the basis functions in the well region with
smaller numbers, if any, in the plateau region. The larger p gets, the
narrower the wells become (viewed as a function of o) and the greater
the difference between the grid size needed in the .-well and the plateau
regions. This may be seen by examination of Fig. 3 of Ref. 1, which
shows cuts of the potential at constant p. At 20 bohr, the largest value
of p for which the potential is pictured, the wells occupy roughly 33%
of the range of «, the potential is zero over roughly 50% of the range of
a. The smallness of the width of the well at large p suggests that at
large p a multi-tiered grid is needed. In the well region, then, a
constant stepsize of h; might be needed, whereas in the plateau region,
a larger step size of h, might be used. The relative ratio of h, to h,
can be expected to increase as p increases. It turns out that numerical
instability appears to result whenever the ratio of step sizes h,/h, gets
too large. To eliminate this problem, we found it necessary to intro-
duce a third, very narrow region of @ space between the well and the
plateau regions in which the step size is the geometric mean of that in

in the two regions. This division of the arc into three regions is

pictured schematically in Fig. 2. A similar division of the discretization
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was performed in calculations of the hybrid basis functions, these
various relationships between the step sizes were tried, with the

general feature that at large R, h > h,

plateau int
is measured in terms of distance [rh in region (1), p’a’ in region 2,

>> hwell’ where each h

r, in region 3].

Once a non-uniform grid has been introduced into the calculation,
two complications occur. First, a new more general finite difference
expression for the second derivative must be used, as eq. (59) only
applies to a regularly spaced grid of points. We choose to appraximate
the basis function by a quadratic in each three-point interval. In the
case of equally space points, the finite difference expression reduces
to eq. (59); when points are not equally spaced, which occurs at the

boundary between the areas of different step size, the following

difference procedure is used:

2

(Q—X ) = 2 [yn+1(xn - xn—l) - Yn(xn—l " Xn-l) *Vn-1 (Xn-l - xn)] )

dx? 'x-
e (®n41~%n) Eny1=Xpop) G -%pop)

(60)

Second, the tridiagonal matrix obtained is no longer symmetric, which
means that one must symmetrize it before using the Givens-Householder
method to obtain the eigenvalues. This symmetrization may be per-
formed providing corresponding sub- and super-diagonal elements are

both zero, both positive, or both negative, L3

Since in this problem,
they are both positive (except in certain cases when the potential is

symmetric and the calculation runs over the entire range of o ; then
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both are zero), so the symmetrization can always be performed. The
transformations necessary are described in reference 13, and computer
programs employing them were obtained from an EISPACK g;uid.e.14

In all calculations reported here, little, if any, attempt was made
to converge all the numbers (eigenvalues, eigenfunctions, adiabatic
coupling matrix elements) to absolutely correct values. Since we are
mainly concerned with rough power-law type behavior, such as that
indicated in eq. (1), we simply chose what seemed to be reasonable
parameters (number of points, relative step sizes, boundary between
step sizes) and performed an entire set of calculations with these param-
eters. It is assumed the the general features of tile dependence of the
quantities of interest are independent of the exact parameters used.
Where information as to sensitivity has been obtained, it will be
commented on.

Adiabatic coupling matrices were obtained by calculating the
eigenfunctions qbn or x, at three closely spaced values of p or R,
respectively. A finite difference form of the derivative with respect to
p was then used to calculate the derivatives of the basis functions with

respect to the propagation variable (p or R).

29 N - -

(ap (p,a) ) = o) (@lp, + 50,) - ¢(p_ - 5p,)) (61a)
3°¢ 1
-~ (p, @) = o (¢(p, + 6p,a) - 20(p, , ) (61b)

0
+ ¢(po - 6p, a@))
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Similar expressions were obtained for ax /oR and azx/aRz. In all
cases, the values of the ';‘(1) and Z‘(z) matrices were found to vary
very weakly with ép . Normally 5() was no more than 0,0025p and was
frequently much smaller. Integrals were evaluated via trapezoidal
rule approximation. Some tests of the accuracy of the numerical
calculations employed were provided by the properties of the adiabatic
coupling matrices outlined in section 2, such is the skew-symmetry of
I(l) and the symmetry of P for the purely polar basis set. We will
comment on the ability of the calculation to obtain these properties

later.

B. Potential Energy Surfaces

Calculations were performed on two different potential energy
surfaces. The first (and the one to which most attention will be paid)

15 This is the surface used

is the Porter-Karplus surface for H + H,.
in the calculations discussed in refs.1and 4 and is typical of realistic
potential surfaces for reactive scattering. The second (""the dissociative'
surface) is the same used in the model study of CID in reference 3.

This surface is of the rotating Morse-cubic spline type, 16 and for the
hydrogen atom masses used here and in ref. 3, supports only two bound .
states in each arrangement channel. A major reason for looking at the
second surface is that we have substantial information on the rate of
convergence of bound-continuum transition probabilities with the stopping
point of the integration, and we hope to be able to relate that to the

relative magnitude of the adiabatic coupling matzix elements. We also

want to learn how, if at all, the limiting exponents of the type in eq. (1)
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depend on the exact surface used. We will use this dissociative

surface in our numerical integration of eqs. (17).

IV. Results

In this section we will present some of the results of the calcula-
tions performed on the two potential energy surfaces using both the
purely polar and the hybrid basis functions. We will emphasize our
work on the p dependence of the adiabatic coupling matrix elements onthe
PK H, surface, and will brief'ly present some of the results obtained on
the dissociative surface. First we will consider the purely polar basis
functions, then we will consider the hybrid ones. " In the ensuing dis-
cussion we will compare some of the properties of the quantities of
interest. For both basis sets, we will consider the eigenvalues as a
function of the propagation variable, and will then consider the adiabatic
coupling matrix elements. We will also show some plots of the purely
polar basis functions, which should help in understanding some of the
results obtained for that set of basis functions. We will close by
presenting results of numerical integration of the adiabatic equations

on this surface.

A. Purely Polar Coordinate Basis Functions

1. Appearance of the basis functions at large p

Intuition tells us that at large p, the bound basis functions should
be localized into the well region of the potential, while the dissociative
basis functions should be spread out over the entire range of . One
question of particular interest is the relative fraction of the dissocia-

tive basis functions located in the well region. If it turns out that the
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dissociative basis functions are small in the well region, then the
particle-in-a-box model for dissociative states outlined above should
be valid.

Plots of the 17th, 19th, and 21st even eigenfunctions for the PK
H, surface at 50 and 100 bohr are presented in Figs. 3 and 4, respec-
tively. The 17th even eigenfunction is the highest even bound eigen-
function. Onlythe 0 < a < @, .. |2 range is plotted due to the
symmetry of the eigenfunction. It is clear for the figures that at large
p the dissociative basis functions are essentially confined to the plateau
region; their amplitude in the well region is quite_e small compared to
that in the plateau region. The small @ part of these basis functions
is blown up and presented in Figs. 5 and 6 for 50 and 100 bohr,
respectively. One can see that the location at the maxima and minima
in the dissociative basis functions shown are independent of quantum
number and that as p increases, their oscillatory part is compressed
into an ever decreasing range of @. Finally, in Figs. 7 and 8, we plot
the basis functions vs. p-. sing at 50 and 100 bohr, respectively. It is
clear that the positions of the minima and maxima at both distances
occur at the same values of p. sina (note that p. sine is just the

distance rl) .

2, Figenvalues at large p

We will be concerned mainly with the eigenvalues End (p) of the
dissociative states n,,but will comment on those of the bound states also.
In Fig. 9, the eigenvalues of the eight lowest even dissociative states are
plotted vs. p in a log-log plot. It is seen that for a given quantum

number, there is a linear relationship between the logarithm of the
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eigenvalue and that of p. Slopes are in the range from -2,06 to -2.11.
Recall for a particle in a box, these would be related by a line with
slope -2, Another test of the validity of the particle-in-a-box model
can be made by examining the relationship between the eigenvalues of
the dissociative states and their derivatives with respect to p. In the
particle-in-a-box model, the energylevels are given by eq. (58).
Differentiation of that expression gives expressions for dEnd(p)/dp and

TE, (p)/dp?

dE,, (p) 2h% n’
d a2
d = = 2 a = - —[En (p)] (623)
¢ 8may,axp p d
2
2 2
dE, (n) 6h”n dE, (p)
d d 6 3 d
. _ S1E, (] =-2 (620)
dp® 8may e’ P d P dp

Values of these derivatives and some of the ratios to each other and to
the eigenvalues are given in Table 1. It may be seen that at large p

(= 500 bohr) eq. (62a) is fairly well obeyed (to 5%): eq. (62b) is less
well obeyed, and the quality of obeying deteriorates once p gets beyond
500 bohr. Some of this deterioration may be due to numerical insta-
bilities, it is clear, however, that eq. (62b) is substantially less well
approximated by the data. In testing the validity of the particle-in-a-box
model, it is also worth checking whether End(n) o nzi for a given p.

The logarithm of End(p) plotted vs. log n, is displayed in Fig. 10, and
the resulting curves for a given p are linear with slopes very close to 2.

We have also looked at the eigenvalues of the seven highest even
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bound states, Plots of the log of the difference between the eigenvalue
for three of these vs. log of p are presented in Fig. 11. There is no
well defined behavior in these curves, although the similarity between
r =10 and n = 13 curves is obvious. It will be seen shortly that the
eigenvalues of the bound states are far more constant in the hybrid
basis set.

3. Adiabatic coupling matrix elements

We next consider the elements of !(1), 1‘(2), and P as a function
of p. Several T%) are plotted vs. p (in a log-log plot) in Fig. 12. The
bound-bound (b-b) T(l) matrix elements form a linear plot for p above
50 bohr with slope close to -1; the bound-continuu'm (b-c) ones are
linear over a fairly broad range of p, although curvature sets in near
p ~ 1000 bohr. The linear ranges of these plots have slopes in the
range -2.3to -2,5, The continuum-continuum (c-c) ones are linear
over a shorter range, and have slopes of roughly -1.9. These data are
summarized in Table 2.

In all cases, the diagonal elements of 1‘(1) are many orders of
magnitude smaller than nearby off-diagonal ones. For example, at
15 bohr, TE;)’IS =1.4x 10™°, while ngzm - 0.34: at 2500 bohr the

“**'and 2.1 x 107°, respectively. Thus, to a very

numbers are 9,6 x 10
good degree of approximation, the diagonal elements of 1‘(‘) are zero,
which is a necessary consequence of the predicted skew-symmetry of -
1‘(1). The skew-symmetry may be checked explicitly by comparing
appropriate matrix elements. For all elements studied at all distances,

approximate skew-symmetry was observed. In some cases, skew-

symmetry to four figures was obtained; in others it was
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only 10%. On the whole, the approximate skew-symmetry obtained
provides a good check in the numerical methods used in the calculation
of TV,

Plots of some b-b and b-c off-diagonal elements of I(Z) are given
in Fig. 13. For b-b and b-c elements, the plots are linear over a
fairly broad range of p, although the deviation from linearity becomes
substantial at large p (Z 1000 bohr). The off-diagonal c-c curves have
no real region of linearity and are not shown. As inthe T(l) case, the
slopes differ depending on the matrix element. The b-b matrix elements
give rise to a line with slope close to -2; the b-d ones lead to a slope in
the range -3.1 to -3.3. The diagonal T(z) matrix elements (not shown)
show similar behavior. The b-b diagonal matrix elements give rise to
plots with slopes very close to -2; their value varies only slightly from
element to element. The c-c diagonal matrix elements behave quite
differently. The slopes on the corresponding plots vary widely (from
-3.85 for n = 22to -5.5 for n = 17), and as a result, at moderate p, the
magnitudes of the matrix elements vary substantially from element to
element, At large p (the exact value of which increases as n increases),
deviation from linearity occurs,

The elements of P behave similarly to those of ’g(z). Their values
and p-dependence are determined largely by the type of matrix element
(b-b, b-c, c-c). This segregation can be seen quite clearly in Fig. 14,
Slopes of the b-b, b-c, and c-c plots are in the range of -1.9, -3.2,
and -4.0 to 4.5, respectively. All of the slope data are summarized in

Table 2.
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B. The Hybrid Basis Functions

Although the propagation variable in the hybrid coordinates is R,
we will plot eigenvalues and matrix elements of the hybrid basis fune-
tions as a function of p’. This should be a more appropriate variable
for the continuum states, which are the ones in which we are most
interested. Recall that in deriving approximate expressions for the
diagonal dissociative terms of T(l) and T(z), p' came into the final
answer in a simple way.

1. Eigenvalues at large p’

The eigenvalues of the hybrid basis functions are calculated to
vary as o (slopes of the appropriate log-log plot ranged from 1,98 to
2.00). This behavior is very similar to that of the eigenvalues of the
purely polar basis functions. Also as in the purely polar case, the eigen-
values obey a relationship of the type En(p’) « n®, where n is the effective
quantum number of the dissociative state (n=1 for the first even
dissociative state, 2 for the first odd dissociative state, etc.) This is
approximately true for all R > 50 bohr; at smaller R, the log E vs.
log n has pronounced curvature at low n. The eigenvalues of the bound
states calculated in the hybrid basis set are far more stable with
respect to a change in the propagation variable than those calculated
with the purely polar basis set. This may be seen in Fig. 15, in which
the log of the energy difference between the eigenvalue at a given p’ and
the corresponding one at p’ = 4989 bohr is plotted vs. the log of p’. For
all but the highest bound state, these curves are essentially flat over

the whole range of p’ considered. The change in eigenvalues at the
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largest values of p’ is probably due to numerical instability resulting
from the large disparity between the step sizes in the three regions
along the cut through the potential (see Fig. 2).

2. Adiabatic coupling matrix elements

The adiabatic coupling matrix elements are plotted vs. p’ as
log-log plots in Figs. 16 through 18. In Fig. 16 various ) matrix
elements are considered and in Fig. 17 the T(z) ones are examined.

In both, three main features are apparent. First, at large values of

p’, the diagonal matrix elements are the largest. Second, there are
only two different classes of lines, as determined. by their slopes.

The b-b matrix elements have slopes close to -1 for () and -2 for

T(®). the b-d and c-c ones have slopes close to -2.5 for T and -3.5
for T, (Some matrix elements, especially for () changed sign once
or twice over the p’ range examined and were not plotted on these plots.)
Third, the b-b matrix elements involving more deeply bound states are
orders of magnitude smaller than those of higher states. For example,
T4 (0’ = 1000) ~ 1000T{Z),, (5’ = 1000 bohr). The diagonal b-b TL)
and Tﬁfg matrix elements have also been examined, and we have found
that in both cases, linear log-log plots are obtained with slopes close to
-1 for TS& and -2 for TS;Z The decreases in the matrix elements as
n decreases are substantial, as was predicted in section II-D. This is
in contrast to the c-c diagonal elements, which for large p are nearly
independent of n. We present the logarithm of the absolute value of
some diagonal elements of T(*) and '1:‘(2) in Table 3. Selected elements
of P are displayed in Fig. 18. Again, two clusters of slopes were

obtained, -2 for the b-b and c-c, and -3.5 for the b-c. The curves are
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linear or nearly linear over the entire range of p’ examined. For the
b-b and b-c elements examined, the same behavior observed for the
T(l) and T(z) was obtained, namely that those matrix elements
involving more deeply bound states are substantially smaller than
those involving lesser bound ones. Also, the magnitude of the c-c

matrix elements decreases as one moves away from the diagonal.

C. Eigenvalues and Matrix Elements on the Dissociative Surface

We have calculated some of the T(l) and T(z) matrix elements
for both the purely polar and hybrid basis functions on the dissociative
surface. Our interest in performing these calculations is twofold.
First, we wish to determine whether the general behavior of the
adiabatic coupling matrix elements is independent of the surface being
used. Second, we wish to use them so that we may integrate eq. 17
(for the purely polar basis set) to calculate 1\=/I, %’ Izt, and Y as defined
earlier. We find that thg p dependences of !‘(1) and g‘(z) are quite
similar for this surface for the purely polar basis set as may be seen
in Figs. 19 and 20, respectively. The only non-zero b-b matrix
element, TS), yields a linear plot with a slope of -0.99, and all the
b-c ';‘(l) elements examined lead to plots with slopes in the vicinity of
-2.5. Again, at large p, the b-b matrix element is much larger than
any of the b-c ones examined. No T(l) c-c matrix elements are plotted,
as they did not lie along straight lines in a log |T%)| vs. log p plot
(some changed sign once of twice in the region of p considered).

A similar behavior was obtained for T*) (see Fig. 20). Two b-b

elements have slopes near -2; four b-c ones have slopes near -3.5.



601

It is seen that linearity for the b-c matrix elements does not set in until
fairly large values of p, the exact value increasing with the quantum
number of the dissociative state.

Analogous calculations have been performed using the hybrid
basis functions, and elements of ';‘(1) and '_I__‘(?') are plotted in Figs. 21
and 22, respectively. The b-b T(l) matrix elements lead to linear
plots with slopes of nearly -1 (see Fig. 30), while the b-c ones give
two different slopes. Those involving the ground state gave slopes near
-1.6, those involving the first (and only excited) state gave slopes near
-2. The one c-c element shown gave a slope of -2; a number of off-
diagonal c-c elements calculated for higher n (10 = n < 23) gave similar
slopes. The diagonal element Tﬁ))’m gave a slope of -1. Log-log plots of
1‘(2) only became linear at very large values of p’ (see Fig. 22). The
b-b matrix elements gave a slope of roughly -2; the b-c elements
involving the n =0 state gave slopes of -2, 6, while those involving the
n=1 state gave slopes closer to -3. In both the T ang T cases,
b-c matrix elements involving n= 0 are much smaller than those
involving n=1, The one c-c element shown gave a slope of -3, other
higher c-c off-diagonal elements give slopes near -2. 8, the diagonal
Tfi)’m element gave a slope of ~1,92,

In general, the behavior observed on this surface is similar to
that observed on the PK surface, The c-c matrix elements on this
surface are less well behaved (i.e., give rise less readily to linear
plots) than on the PK surface. On both surfaces the matrix elements

segregate the same way, i.e., with the purely polar basis functions the

b-b matrix elements become much larger than the b-c ones at large p,
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and with the hybrid basis functions matrix elements involving lower

energy bound states are smaller than those involving higher energy ones.

D. Integration of the Adiabatic Equations on the Dissociative Surface

We have performed some preliminary calculations in which we
numerically integrated the Eqgs. (17) onthe dissociative surface using the
purely polar coordinate basis functions. We will briefly review this
integration here and present the results which were obtained.

The problem which we studied was that of the four lowest energy
even eigenfunctions only, hence the matrices generated were 4 x 4 and
there were 16 coupled differential equations to be -solved. Integration
was begun at p = 1 bohr and carried out to p = 5000 bohr. The inte-
grator used was an Adams-Moulton integrator with a Runge-Katta-Gill
initiation procedure. 17 A cubic spline procedure was used to inter-
polate the various matrices needed for the integration; note in this
interpolation the independent variable was the logarithm of p rather than
p itself.

We examine selected elements of the M, Q, R, and ¥ matrices
defined earlier. As in our treatment of the simple 2 x 2 case, our
initial condition in the integration of eq. (17a) is that M(p,=1) = L
We then plot the elements of M obtained in a semi-log plot of Mij vS.
log,,(p). Plots of seven such matrix elements are shown in Figs. 23
and 24, There are two striking features of these graphs. First, the
curves vary substantially from matrix element to matrix element, and
with distance, although their values are always between minus one and

plus one. Second, one sees at small values of p, the variation of the
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elements with distance is highly irregular, while at larger values of p
(~ 300 bohr) two types of variation set in--either p independence, found
for all elements shown except M,, and M,,, or oscillations which occur
with a magnitude and frequency which is independent of logp. The
elements M,;,, M,,, and M,,, not shown, also oscillate at large p ina
similar manner. These results suggest that oscillatory behavior should
be the rule in rows corresponding to bound states (n this four-channel
case, rows 1 and 2), while those in rows corresponding to continuum
states will become independent of p. We recall that oscillatory behavior
of the type observed (frequency independent of logp) was predicted to
occur in the 2 X 2 case, in which open states only x.ﬁvere included. Thus,
the usefulness of the 2 X 2 model is verified,

We next consider some elements of R. R is, of course, dependent
on the energy, but for simplicity we will show only a few elements of R
at the energy E = 0.10 eV (measured with respect to a zero of energy of
three infinitely separated atoms). Selected diagonal and off-diagonal
elements of R are shown in Figs. 25 and 26, respectively. There are
three major features of Figs. 25 and 26, First, at small values of
p (< 30 bohr), the diagonal elements of R decrease substantially with
increasing p, while its off-diagonal elements vary in a much less
regular way. Second, at moderate values of p (>>30 bohr), all elements
of R have seemed to settle down to some sort of asymptotic values,
about which they may or may not oscillate, and if so, the oscillation
may be smooth as for the diagonal elements R or may have cusps, as is

seen for its off-diagonal elements, Third, at large p, the off-diagonal
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elements are substantially smaller than the diagonal elements.

A number of these observations can be simply explained. For

example, the large decrease in the diagonal elements R; with increas-
ing p at small p is due mainly to the fact that the eigenvalues Ei(p) are
very large at small p and decrease substantially with increasing p.
The difference between the small p dependence of the diagonal and off-
diagonal elements of R is partially due to the initial choice of M (p = 1)
as the unit matrix. Thus, the off-diagonal elements can only grow, at
least initially, as R (p =1) = ¢ (p = 1), and ¢ is diagonal.

The reason for the existence of smooth oscillations in the plots of
the diagonal elements of R and cusps in those of tﬁe off-diagonal ones
can be understood by consideration of the 2 x 2 model. From Eq. (41)
we see that the diagonal terms involve only squares of sine and cosine
terms, while the off-diagonal ones involve products of sine and cosine
terms. Since at energies above dissociation €0b and e? will have the
same sign, the diagonal elements of R will always have the same sign,
while the off-diagonal elements of R may change sign. The cusps in
Fig. 26 come from taking the absolute value of a number whose sign is
changing. We note that the cusps observed in Fig. 26 at large p occur
at regular values of log p; this is consistent with the result in Eq. (4).

We next consider the p dependence of the elements of Q. Selected
diagonal and off-diagonal elements of Q are shown in Figs. 27 and 28,
respectively. There are major features in these graphs. First, all
matrix elements decrease rapidly with increasing p, by a relationship
in the neighborhood of p—z. Second, all the matrix elements change sign

periodically as p increases and the frequency of these sign changes is
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fairly insensitive to log (p). This behavior is very different from that
of R, whose diagonal elements became essentially independent of p at
large p (except for the small oscillations, without cusps, seen in
Fig. 25.

Again, the behavior of the elements of Q may be easily under-
stood. The rapid decrease in the magnitude of the elements of Q will
come from the rapid decrease in those of P. In Table 2 we saw that
the b-b elements of P (on the H + H, surface, but the results presented
earlier indicate that the p dependence of all matrix elements should be
independent of the surface) decrease as p~. Since the elements of M
are everywhere of order unity, the elements of (3 should decay as the
slowest decaying ones of P, and this is what is observed. The reason
for the existence of sign changes in the diagonal elements of 9 (unlike
in R) may be seen by consideration of the 2 X 2 case. In Eq. (43) we
showed that the diagonal elements of Q are composed of two kinds of
terms--those that involve the square of a sine or a cosine term, and
those involving the product. The product term will change sign with p,
so the entire diagonal element may also (depending on the relative
values of t, u, and v). Because the elements of Q decrease so much
more rapidly than those of R, we see that to a good degree of approxi-
mation, eq. (45) is satisfied at large p. Examination of Figs. 25
and 26 indicates that at large p, at the energy shown, the diagonal
elements of Q are roughly one order of magnitude greater than the off-
diagonal ones,and eqs. (45) would approximately decouple. Thus, in
principle the analysis of Y might involve only the solution of uncoupled

differential equations. We will not pursue this line of reasoning,
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showing instead the results of a numerical solution of Eq. 17d.

We present plots of the diagonal elements of y in Figs. 29 and 30
for energies above and below dissociation, respectively. The initial
conditions for the integration were the usual for the integration of a

radial Schrodinger equation

([

(Do) = 2 (633.)

Il

"(Dg)

I~

I (63b)

From the figures we can see that the expectations of section II-D-1 are
correct: at the energy above dissociation (Fig. 29), y grows rapidly at
small p, begins to change sign at moderate p, and settles into some
highly oscillatory but otherwise p independent state at large p. At the
energy below dissociation (Fig. 30), y grows rapidly at all p (disre-
garding small local effects of sign changes) finally running off the scale

of the figure p = 1000 bohr.

Substantial information concerning the p-dependence of the eigen-
values and adiabatic coupling matrix elements has been obtained in these
calculations. In particular we have found the existence of fairly well-
defined asymptotic behavior for these quantities, the exponents associ-
ated with which vary depending on the nature of the quantity. We have
found some major differences between the matrix elements coming from
the purely polar and hybrid basis functions. In this section, we will

review some of the major features of the quantities studied.
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For both basis functions, at moderate and large p, the eigen-
values of the dissociative states are approximately related to p (for
simplicity we will say p, although for the hybrid basis functions the

appropriate quantity is p’) by the expression

Ep (p) ~ng/p (64)

where ngy is the effective quantum number of the dissociative state as
defined earlier. This expression is exactly what would be expected
from a model of a particle in a one-dimensional box. The reason for
the applicability of the model is clear from the appearance of the purely
polar eigenfunctions at large p --they are small in the well region, and
can thus be thought to reside only in the plateau region. Some deviation
of the eigenvalues fromthe particle-in-a-box model is seen. Their p
derivatives obey the particle-in-a-box relationships less well than do
the eigenvalues themselves, The bound eigenvalues change far less
with p for the hybrid basis functions than they do for the purely polar
ones.

The adiabatic coupling matrices T®) and T(®) both have the basic
structure required by their definitions--ex. a skew-symmetric T(l) for
the purely polar basis functions. The asymptotic relationships of the
individual matrix elements are determined largely by the nature of the
matrix element--bound-to-bound, bound-to-continuum, or continuum-to-
continuum. In most cases log-log plots of the matrix element vs. p
give rise to straight lines, although sometimes linearity does not set in

immediately, and is frequently less well obtained for continuum-to-
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continuum matrix elements. Deviation from linearity at very large
values of p (>1000 bohr) is prokably due to numerical error. Similar
behavior for the matrix elements is obtained on both potential energy
surfaces studied,

Major differences were obtained between matrix elements for the
purely polar and hybrid basis functions, however., Most of these, i.e.,
the lack of skew-symmetry, the 1/p’ dependence of the diagonal T(l)
and the observed 1/(p’)2 dependence of the diagonal T(z) matrix elements,
were predicted from a fairly straightforward analysis of the implica-
tions of its definition. Also, the T(l) and T(z) matrix elements for the
hybrid basis functions do not segregate themselve;s into clusters (on
basis of magnitude) depending on their b-b, b-d, or c-c nature. Instead,
they segregate on the basis of their lowest component quantum number--
the lower that becomes, the smaller the matrix element will be.

The P matrix calculated from the '__1_“(1), I(z), and '5(1)' matrices
for the two basis functions differ from each other in the same way as
the ';‘(2) matrices do. This is reasonable enough, as both have the same
units (distance'z). The P matrix, or more precisely the matrix product
Q= 1\=/I'1 PM, will be the crucial factor in determining the asymptotic
properties of the differential equation for the radial wavefunction.
Comparing the P matrices, one sees that the one calculated with the
hybrid basis functions appears to be more linear than that calculated
with the purely polar ones. This suggests that the hybrid basis functions
might be superior to the purely polar ones for the purposes of formu-

lating the asymptotic analysis ofthe radial wavefunction Schridinger
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equation. This superiority may be cancelled out by the slower die-off
with distance of the c-c¢ P matrix elements for the hybrid basis
functions. Also, the different clustering properties of the elements of
P (and also those of ';‘(1), which determine those of M) make the com-
parison between the basis sets less clear. The lack of simple analytic
properties of the coupling matrices (i.e., skew-symmetry of 1‘(1),
symmetry of P) in the hybrid case might make the understanding of the
adiabatic equations more difficult with the hybrid basis than with the
purely polar ones.

We have integrated the adiabatic equations in a preliminary way
on the dissociative surface for the purely polar baéis set. We have
obtained values for the elements of M, R, g, and Y out to very large p.
The bulk of the results obtained are predicted by the analytic 2 x 2
model considered in detail. A result of major importance is that some
elements of M can oscillate between -1 and 1 even at very large p;
these oscillations are found to occur with a frequency that is indepen-
dent of log (p). This introduces oscillations into the elements of R, Q,
and y. We emphasize that all of these oscillations are implied in the
2 x 2 case. The existence of thes oscillations presents a problem in
that it prevents us from being able to simply describe the large p
properties of y. The results of the numerical integration do suggest
that whatever this asymptotic behavior is, it sets in in the neighborhood
of p = 100-300 bohr. This may be an indication that converged parti-
tioning probabilities for dissociation (defined earlier) can only be
ohtained by integrating to a value of p of that magnitude. Preliminary

results do indicate that integration past p = 110 bohr (in the diabatic
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representation) leads to reasoﬁably well converged partitioning

probabilities. These will be presented elsewhere.
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Tablg }. Cakulsied Eigenvakes a0d Thelr Dertvalives for Seven Lowest Symmetric Comtivesm Rates
(PK Surface, purely polar basis fomctions)

. &, »
g By/ev ;:l-v-uu-") e ) #}2(_,“) ;'f;;m,n,

p =100 bohr 1 1.438)(-5) -3 37T7-7 1.2%(-8) -2.38%-2 -3.880(-7)
3 1.297x-4) -3.085(-8) 1187 -2, 388(-2) -3.680(-7)
] 3.6255-4) -8.551(-6) 1180-1 -3.36%-7) -3.850(-7)
1 7.1536(-4) -1.088(-5) 0.13¢(-T ~2.360(-7) -3.854(-1)
® 1.1800(-3 -2.808(-5) 1.01%-8) -2.357(-3 -3.811(-3
11 1.708%-3) ~4.30%-5) 1.807(-8) -2.38%-1 -3.588(-1)
13 2.5048(-1) 5. FTX-B) 1.00%-8) -1 M8(-7) -3.883(-1
m?.‘ B, ~2.000(-7) ~3.000(-2)

&*".‘2‘ 61 1% 9%
p =200 bohr 1 3.212%-8) -3.503(-8) 8. 13K-10) -1.080(-2) -1 TSX(-D
3 2,8021(-5) -3.152(-m) 6.511(-9) -1.080(~) -1, TB-7)
5 £.0392-5) -8, T8%-T) 1.57%-8) -1.000(-7 -1.745(-7
1 1.STTH-4) S1LTIN -8 1.9%91(-8) -1.000(-7) -1.740(-2)
9 2.8101(~4) <2.844(-8) 4.93%-8 -1.000(-D -1.184(-D)
11 3.9038(-4) ~4.253-8) 1.847(-7) -1, 00%(-1) ~1.TTU-2)
13 5.4591(-4) -5, 9458 1.02%-T) -1.08%(-2) -LTne-n
w?‘u“z“‘" -1.000(-2) -1.800(-)

FE28" 62 (X 1
p =500 bokr 1 4.81180-T -2.00%-9) 1.384(-11) -4 104(-37 4.0%-9
3 4.3304(-8) -1.801(-8) 1.277-10) 4 159(-3) -6.01%-3)
] 1.2029(-5) -5.004{-8) 1.407-100 -4.180(-3) -8.808(-3}
T 1.3576(-5) -9.807(-8) 0.8674-10) -4.180(-3) -8.805(-3)
N 1.8073-5) -1.821(-1) 1.102-9) ~4.180(-3) -8.798(-3)
1 5.8218(-5) -2.421(-7 1.844-9) —4.158(-3) -8.791(-3)
13 8.131%-5) -3.381(-7) 2.29%-9) -4.158(-3) -8.78%-3)
oS v id -4.000(-3) -8.000(-3)

ok o 1%
p = 1000 bohr 1 1.1T1(-1 -2.4140-107 8, 287(-19) -2.081(-9 -3.43%-3)
3 1.0694(-8) -2.17%-0) 1.487(-13) -2.080(-3) ~5.43%-9)
5 2.9415(-8) -6.034(-9) 2.0T1(-11) -2.061(-3) -5.432(-3)
7 5.7670(-8) -1.18%-8) 4.058{-11) -2.061(-3) -8.430(-8)
° 9.8324(-8) -1.985(-8) 6.708i-11) -2.081(-9 -3.430(-3)
1 1.4238(-5) ~2.91%-8) 1.001{-10) -2.080(-9) “3AT-Y)
19 1,9884(-5) -4.0T7(-8) 1.397(-10) -1.060(-3) -3.427(-9)
m" by ~2.000(-5) -3.000(-3)

.. 82 1.5 143
p = 1500 bokr 1 5.1938(-8) -1.07M-12) 1.85%-13) -1.963-3) -1.39%(-3)
3 €. 874(-T) -8.368(-10) 1.488-17) -1, 382(-3) -2.357(-9)
] 1.198%-8) -1,788(-9) 4.13(-12) -1.36%-3) -2,387(-8)
1 2. 5445(-8) -3, 485(-9) 8.008(-12) -1.302(-3) -1.3%(-3)
(] 4.2067(-8) -5.T28-9) 1.8380-11) -1.383-3) -2.338(-3)
1 6.3810(-6) -8.558(-9) 1. 0011} -1,36%-3) . 335(-3)
1 8.7TT28(-8) -1.198(-8) 2.788¢-11) -1,982(-9) -1.334(-3)
Preicivd by -1.33%-3) -3,000(-)

:n:clu- trom ] ]
= 2500 bohr i 1. 0884(-8) <1, 818-11) 1.284(-14) ~8.100(4) -1.808(-3)
3 1.6725(-T) -1. 386(-10) 2.085-13) -8, 168(-4) ~1.804-3)
L] 4.8455(-7) -3, T4-10y §.708(-13) ~8.187(-4) -1.504(-3)
1 9.1048(-T) -1.436(-10} [RETESY | -8.187(-4) -1,506(-3)
’ 1. 5048 -8) -1, 230-9) 1.M4-12) -8.187(-4) ~1.504(-3)
1 2.3478-8) -1.0380-9) 2.760-17) -8.168(-4) -1.803-%)
13 3.1390(-6) -2.564-9) 3. 854D -8, 168(-4) 1,508 -3)
L~ -8.000(-4) -1.200(-3)

Srvintion 21% »3

‘Vumbers & parestheses are powers of ten by which cther mmmber should be muktplisd.
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Table 2. Limiting Exponents (v) for Adiabatic Coupling Matrix Elsments

Fov o FeT, T, p. (PK surtace, Bymmetric Eigentunctions Only)

Purely Polar Bybrid
(n,0’} » (n,n') v
T bon 12,16 0.97 (14,14) 1,06
(14,16) 0,83 (16,16) 0.98
(12,14) 1.03
(12,16) 1,09

(14,16) 1.16

bec (14,20 2.38 (14,22) 2,83
(14,18) 2,44 (20,16) 2.43
(18,16) 2.47 (18,16) 2.43
(20,16) 2.33
c-c (20,22) 1.88 (18,22 2,52
(18,22) 1,88 (20,18) 2.08
(20,18) 1.89 (18,18) 1.02
7™ b (16,16 1.97 (14,14) 2.10
(14,16) 1.95 (16,16) 2.0
(12,16) 1.98 (12,14) 1.98
(10,10} 2.00 (12,16) 1.08

(14,16) 1.85

b-c (14,20) 3.18 (20,16) 8.47
(14,18) 3,33 (18,16) 3,47
(18,16) 3.33

(20,16) 3.12

c-¢ (18,18) 4.68 (18,22) 3.30

(20, 20} 4.15 (20,18} 3.40

(23,23) 3.85 (18,18) 2.01

B b-b (16,16) 1.81 (16,16) 1.88
(14,16) 1.82 (14,16) 2.09

(12,16) 2.08

(12,14) 2.13

b-c (20,18) 3.16 (20,186) 3.51
(18,186) 3. 29 (18,16} 3.55

(14,22) 3.60
(14,18) 3,84
(12,18) 3,83
(10, 20)~4. 24

c-c (20, 20) 4.08 (18,18) 2.03
(18,22) 4.24 (20,18} 2,02
(20,18) 4.40 (20,22) 2,08

(18,22) 2.14
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Table 3. Common Logarithm of IT&)‘\ and |T£12:1' for Hybrid Basis
Functions on PK surface at p’ = 2316 bohr (logp’= 2.5). (Note n =17

is first symmetric continuum state.)

n log,, E Tgllrz ] log,, l ng l
17 -2.77 -5.10
16 -2.91 -5, 75
15 -3.68 -6.8

14 -5, 40 -7.85
13 -7.71 . =10.19
12 -10.61 -13.10

11 -13.22 <-14
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Figure Captions

FIG. 1.

FiG. 2.

FIG. 3.

FIG. 4.

Schematic picture of the breakup of the potential energy
surface into subregions for the construction of the hybrid
basis set. Region 1 is the A +BC region in which the hybrid
basis functions are calculated along a line at constant RA;
Region 2 is the dissociative plateau in which they are
calculated along an arc at constant p’, region 3 is the AB+C
region in which they are calculated at a line at constant R, .
For comparison, an arc at constant p, along which the purely
polar basis functions are calculated is pictured also. The
definition of the (p, @) and (p’,a”) coordinate systems is

shown. Note that the angles o and @’ are equal only for the

’

= Xmaxe

= wmd = s
caseof @ =a' =« |2; however - —

max
Schematic representation of the breakup of the grid for the
calculation of the basis functions at large p when a three-
tiered grid must be used. Note that the point density is
highest nearest the ends and lowest in the middle; in the
transition regions, the grid spacing h, is the geometric mean
of that in the end and center regions.

Plot of the symmetric purely polar basis functions d)S) ip =
50 bohr) for H, on the Porter-Karplus surface for N = 16, 18
and 20 (N = 16 is the highest symmetric bound basis function)
as a function of the angle « in the range 0 = @ < /6 radians,
The ¢(§)are normalized over the entire range of ar.

Plot of ¢{¥ (p = 100 bohr) for N = 16, 18, and 20 vs. o as in

Fig. 3.
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Figure Captions (continued)

FIG. 5.

FIG. 6.

Fi1G. 7.

FI1G. 8,

FIG. 9.

FIG, 10.

FiG: 11.

FIG. 12,

s
Plot of cp§q) (p = 50 bohr) for N =16, 18, and 20 vs. « in the

range 0 = a < 6 degrees. Otherwise, plot is as in Fig. 3.
Normalization of cpg) is over all a.

Plot of qb;?) (p = 100 bohr) for N =16, 18, and 20 vs. a as in
Fig. 5.

Plot of '-'PS) (p = 50 bohr) for N =16, 18, and 20 vS. p - sina
in the range 0 < psina < 12 bohr. Otherwise, plot is as in
Fig. 3. Normalization of qu) is over all or.

Plot of qb;?) (p = 100 bohr) for N =16, 18, and 20 vs,

p sina as in Fig. 7.

Log-log plot of eigenvalues End (p) of dissociative purely
polar basis functions on the PK surface as a function of p.
Only eigenvalues of symmetric states are shown; hence

the restriction to odd values of nj.

Log-log plot of eigenvalues End (p) of dissociative purely
polar basis functions on the PK surface as a function of the
index n, at seven different values of p (labeled in bohr).
Log-log plot of the absolute value of the deviation of the
eigenvalue E_ (p) of the nth symmetric bound state of the
purely polar basis functions on the PK surface from its value
at p = 3000 bohr as a function of p for n = 10 (dashed line),

n = 13 (dotted line), and n = 15 (solid line).

Log-log plot of the absolute value of selected elements of the

Matrix ’_L_(l) calculated for symmetric purely polar basis

functions on the PK surface vs. p. Bound-to-bound (b-b)
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Figure Captions (continued)

FIG. 13.

FIG. 14.

FiG. 15,

FIG. 16.

matrix elements are indicated by solid lines; bound-to-con-
tinuum (b-c¢) by dotted lines, and continuum-to-continuum
by dashed lines. Each T;; is represented by a letter code:

)16 C-= T&i) D = Tg;) E = Tg,)zz ’

4209 s18 7

A = Tﬁzls: B= Tg
F = T{),,. Curvature at p > 1000 bohr is probably due to
numerical inaccuracies.

Log-log plot of the absolute value of selected elements of the
matrix ’;‘(z) calculated for symmetric purely polar basis
functions on the PK surface vs. p. Symbols and lines are as
used in Fig. 12. Curvature at p > 1000 bohr is probably due
to numerical inaccuracies,

Log-log plot of the absolute value of selected elements of the
matrix P, calculated for symmetric purely polar basis
functions on the PK surface vs. p. Line types represent
different types of matrix elements as used in Fig. 12, the
letter code for each Pij is as follows: A =Py, 5, B = Py; 10
C =By g D=Pry ey E=Pyozp F=Pya, G =Py -
Log-log plot of the absolute value of the deviation of the
eigenvalue E_(p’) of the nth symmetric bound state of the
hybrid basis functions on the PK surface from its value at

p’ = 4989 bohr as a function of p’ for n = 13 (dashed-dotted
line), n = 14 (dotted line), n = 15 (dashed line), and n = 16
(solid line).

Log-log plot of the absolute value of selected elements of the

matrix T() calculated for symmetric hybrid basis functions



Figure Ca

FIG. 17.

FIG. 18.

FiG, 18,

619

ions (continued)

on the PK surface vs. p’. Line types represent different
types of matrix elements as used in Fig. 12, Where lines
are not extended to the smallest or largest p, deviation from
linearity of the plots was severe. The letter code for each
T%) is as follows: A = Tg),m , B= Tﬁf,),m , C = T,(_;),m ;
D = Tg;,m , B = Tgcla),lsﬂ B = Tgcl)zla! G = Tl(.ill,la’ H = Tgsls),zz'
Log-log plot of the absolute v lue of selected elements of the
matrix g‘(z) calculated for symmetric hybrid basis functions
on the PK surface vs. p’. Line types represent different
types of matrix elements as used in Fig. 12; letter codes
are identical to those used in Fig. 16.

Log-log plot of the absolute value of selected elements of the
matrix P calculated for symmetric hybrid basis functions on
the PK surface vs. p’. Line types represent different types
of matrix elements as used in Fig. 12; the letter codes are
as follows: A =Pyg 150 B =Py 16 C =Py 16 D =Py 4

E = P20,169 F = on,m’ G =Py, H = PlO,ZO’ I=Pp

,18 18,187

J = Pig20-

Log-log plot of the absolute value of selected elements of the
matrix ';‘(1) calculated for symmetric purely polar basis
functions on the dissociative surface vs, p. Line types
represent different types of matrix elements as used in

Fig. 12, the letter codes are as follows: A: ng}, B: Tgl,?;,
£ T((,I,?,, D: Tgl,z,, E: ngg.
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Figure Captions (continued)

FIG. 20.

FIG, 21.

FIG. 22.

FIG. 23.

Log-log plot of the absolute value of selected elements of the
matrix '_I__‘(z) calculated for symmetric purely polar basis
functions on the dissociative surface vs. p. Line types
represent different types of matrix elements as used in

Fig. 12; the letter codes are as follows: A: T,(,'“:t),, B: Tf,f},

c: T, p: T8, E: ).

Log-log plot of the absolute value of selected elements of the
matrix I(l) calculated for symmetric hybrid basis functions
on the dissociative surface vs. p. Line types represent
different types of matrix elements as used in Fig. 12; the
letter codes are as follows: A: Tfl’z, B: 'rgl,}, C: 'r((,ﬁg ;

D: T, E: 18), F: (), 6: 7).

Log-log plot of the absolute value of selected elements of the
matrix 1‘(2) calculated for symmetric hybrid basis functions
on the dissociative surface vs. p’. Line types represent
different types of matrix elements as used in Fig. 12; the
letter codes are as follows: A: sz, B: sz,g, e Tffg

D: T{), E: T(*). The small number of curves at all but the
largest values of p’ reflects irregular variation in the T%)
which would make the plots highly non-linear.

Selected values of elements of the matrix M (defined in eq.
(17a)) as a function of the logarithm of p for the first four
symmetric purely polar eigenfunctions on the dissociative
surface. The initial values of Nij (p =1 bohr) = &;. were

]
used. A different line type is used for each element shown.
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Figure Captions (continued)

FIG. 24,

FIG.

FIG.

FIG .

FIG.

FIG.

FIG. 30.

25.

26.

21.

28.

29.

Additional elements of M as a function of the logarithm of

p for the case treated in Fig. 23.

Absolute values of the diagonal elements of the matrix R
(defined in eq. (37a)) vs. the logarithm of p for the case
treated in Fig. 23 for an energy of E = 0,10 eV (measured
with respect to three infinitely separated atoms).

Absolute values of selected elements of the matrix R vs. the
logarithm of p for the case treated in Fig. 23 at an energy

E =0.10eV.

Absolute values of the diagonal elements of the matrix Q
(defined in eq. (37b)) vs. the logarithm of p for the case
treated in Fig. 23.

Absolute values of selected elements of the matrix Q vs. the
logarithm of p for the case treated in Fig. 23,

Absolute values of diagonal elements of the matrix y (defined
in eq. (17d)) vs. the logarithm of p for the case treated in
Fig. 23 for an energy of E = 0.10 eV (measured with respect
to three infinitely separated atoms). Initial conditions for
the integration of eq. (17d)) were yij (p =1 bohr) = 0;

Y’ij (p =1 bohr) = 51]-.
Absolute values of diagonal elements of the matrix y vs.
the logarithm of p for the case treated in Fig. 23 for an
energy of E = -0.02 eV. Initial conditions and energy origin

are the same as those used in Fig. 29.
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Figure 16
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II1.10 CALCULATION OF PROBABILITY DENSITY,
PROBABILITY CURRENT DENSITY, AND TUNNELING
FRACTIONS USING HYPERSPHERICAL COORDINATES
AND APPLICATION TO THE COLLINEAR H + I—I2 SYSTEM
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CALCULATION OF PROBABILITY DENSITY, PROBAEBILITY
CURRENT DENSITY, AND TUNNELING FRACTIONS USING
HYPFRSPHFRICAL COORDINATES AND APPLICATION

TO THE COLLINEAR H + H, SYSTEM*

Jack A. KAYE** and Aron KUPPERMANN

Arthur Amos Noyes Laboratory of Chemical Physics,

California Institute of Technology

Pasadena, California 91125, USA

We have developed a procedure for generating consistent physical
wavefunctions from hyperspherical coordinate coupled channel calcula-
tions of collinear atom-diatom molecule collisions, Both the formal
and numerical aspects of this procedure are developed in detail. The
procedure is applied to the collinear H +H, reaction on the Porter-
Karplus surface over the energy range in which the probability of the
reaction H+H, (v=0) — H,(v=0) + H increases rapidly with increasing
energy. Using the wavefunctions generated, we calculate preliminary
results of probability densities, probability current densities, and
tunneling fractions. These results, although not converged, do show
qualitatively correct behavior, including delocalization of probability
density with increasing energy, decreased importance of tunneling at
high energies, and the formation of a vortex in the field of streamlines
of probability current density high energies. Possible methods for

improvement in these results are discussed.

*Research supported in part by the US Air Force Office of Scientific
Research (Contract No. F49620-79-C-018T7).
**Work performed in partial fulfilment of the requirements for the

Ph.D. in Chemistry at the California Institute of Technology.
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1. Introduction

Quantum mechanical scattering calculations and quasi-classical
trajectory calculations of chemical reactions have provided a great
deal of information about the dynamics of chemical reactions. L In
addition to allowing one to calculate reaction probabilities as a function
of energy, andthus rate constants as a function of temperature, these
calculations have proven useful by helping to provide answers to some
fundamental questions in chemical dynamics. These questions include
such problems as the effect of small changes in the potential energy
surface on the dynamics, the importance of quantum mechanical effects,
in particular dynamical resonances, and the relative effectiveness of
different kinds of internal energy in promoting reaction.

Reaction probabilities as a function of energy are not all that one
wishes to know about chemical ;eactions, however. One would like to
be able to answer the question v"How does a chemical reaction occur?"
Classical trajectories2 have proven to be very helpful in this regard,
as they allow one to see physically what sort of relative motion leads to
chemical reaction and the importance of multiple crossings of a barrier
to reaction, which has important implications for the application of
classical transition state theory. . Purely classical trajectories cannot
help one to understand quantum mechanical effects, such as tunneling
and dynamical resonances, however,

The additional information desired can be obtained by examination
of the wavefunctions, ‘Vj , generated (in principle if not explicitly) in the
course of quantum mechanical scattering calculations. In particular,

one wishes to examine the probability density4
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everywhere on the potential energy surface (j represents the gnantum
states of the colliding partners and R is a vector including all possible

coordinates) and the probability current denstty4

- A S v
,‘I‘j(?\) = 7 [W]Y L ’-pj Y‘PJ] (2)

(and the streamlines). By consideration of the former quantity, we can
examine the variation of the probability density with energy through a
resonance. Large changes in it should be seen at some position on the
potential energy surface, and these given the "locétion" of the resonance
on the surface, From the latter, by analogy with hydrodynamic stream-
lines, 8 one can see what portions of the potential energy surface are
most sampled in the reaction. One can also get from it a quantitative
measure of the extent of tunneling.

Such calculations have been performed by a number of workers.
Wyatt and coworkers have examined these quantities for the collinear

6 and F + qu reactions and the three-dimensional (J=0) F + H,

8

H +H,
reaction” and found a number of interesting effects: similar observa-
tions were made by Kuppermann et al. 9 in their study of the collinear
H + H, reaction. The most interesting observation was that of vortex
formation. These vortices have been maned "quantum whirlpools."

10 and coworkers have examined

In a series of papers, Hirschfelder
streamlines to the probability current density for various simple
systems.

The methods uysed in the calculation of the scattering wavefunctions
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have had serious limitations. Wyatt and coworkerss'8 obtained their
wavefunctions from coupled channel calculations based on natural

collision coordinates, which do not efficiently permit one to study

systems of the type

H+1LH -~ BHBL+H (3)

where H and I. represent heavy and light atoms, respectively. In the
earliest work, McCullough and Wyatt6 obtained their wavefunctions by
solving the time-~dependent Schrédinger equation. Kuppermann _et_al.9
obtained their wavefunctions from a modified version11 of the finite
difference boundary value method of Diestler and McKoy. 12

The H-L-H case is one of the most interesting ones for the applica-
tion of wavefunction and probability current density analysis as the
nature of the mass combination leads to a large skewing of the axes
when viewed in an appropriate mass-weighted coordinate system. 13
A result of this skewing demonstrated in Fig. 1 or ref. 14 by the

potential energy surface for the reaction
I'+HI—TH+1 (4)

is that the reaction probably does not follow the minimum energy path;
instead it involves crossing from one well to another at substantially
greater distances. This type of motion is permissible at all energies,
as the zero-point energy of HT is far greater than the barrier height.
Another factor adding to the interest in these systems is the existence
of very sharp resonances, which are extremely sensitive to the exact

14,15

details of the potential energy surface. Such reactions can now be
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easily studied (collinearly) by the hyperspherical coordinates method.w’l,7

In this paper we further develop the hyperspherical coordinates
methodlﬁ' L1l to extract the scattering wavefunction so that probability
densities and probability current densities can be calculated (the latter
obtained using a previously developed computer program18 for genera-
ting them from wavefunctions in collinear atom-diatom molecule
collisions). We outline the theory necessary for this advance and
discuss both the theoretical and numerical aspects of its implementation.
We show preliminary results for these quantities as calculated for the
collinear H + H, reaction on the Porter-Karplus19 surface. Numerical
difficulties have made further progress difficult; we discuss possible
methods to get around them. Finally, we discuss some improvements
that may be made in the calculation of the probability current density
from the wavefunction specifically when the wavefunction is generated
by a coupled channel technique (rather than by a finite difference

technique as used previously).
2, Theory

The theoretical questions to be dealt with may be broken down into
a set of interrelated ones. First, one must consider how the wave-

16t0

function is represented in the hyperspherical coordinate approach
reactive scattering. One must then consider how the physical wave-
function, corresponding to the collision of the diatomic molecule in a
specific vibrational state with the incident atom, may be constructed
fromthe wavefunctions generated in the course of the solution of the

scattering equations and the final S matrix. We need to examine both
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the formal and numerical spects of this step. Finally, we must take
these physical wavefunctions and from them obtain the probability
density and probability current densities.

Singe the Hrats 18

and third™ "~ of these have been dealt with else-
where, we will focus our attention on the second. Nevertheless, we
will briefly review the first and third questions for the sake of com-

pleteness.

A. The hyperspherical coordinates wavefunction

The fundamental idea of the hyperspherical coordinates approach
to the collinear reactive atom-diatomic molecule scattering problems
is simple. As the two coordinates necessary to describe the system,
one uses one distance, p, and one angle, «, (this technique is described
more fully in ref. 16, where p and o are defined. The wavefunction is
expanded in terms of a basic set of eigenfunctions ¢, (a,p) of a cut

through the potential at a constant value of p =p.

1 N 3
vilp,a) =p zi?:% g5 (05P) ¢i(q;p) (5)

where the gij (p,p), the so-called radial wave functions, are solutions

of the differential equation (expressed in matrix form)

T 2L — + Wi(p,p)g(p,p) = Elp,p)glp,p)  (6)

where the matrix elements Wij and Eij are given by the expression
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Wy (0,5) = (3|V(e,p) - (£)"V(@,p)]1) ™

Es; (0,0) = [E +%° /8uo - Ei(E)]ai]. (8)
where |j) = ij(a,ﬁ), Ei(E) is the eigenvalue of ¢, (a;p), E is the
total energy of the system measured with respect to the bottom of the
isolated reagent molecular well, and the integration in eq. (7) is over
the angle «.

In solving the differential equation, one starts at a value of p
sufficiently small that all eigenvalues E.1 are much greater than the
energy E. Inthat case, the wavefunction will be sufficiently small

that, to a very good approximation, it will be zero, and we may take

as our initial conditions

(0,p) =Q (9a)

1]

~

(0,p) =1 . (9b)

1109
11—

The matrix differential equation (6) is then integrated numerically
to a value of p sufficiently large that the interaction between the
particles is such that the diatomic molecules only barely feel the
influence of the remaining atom. At that point the 1;/]. are then
numerically projected onto the bound state eigenfunctions of the BC and
AB diatomic molecules; we then obtain the reaction (R), scattering (S),
and probability (g) matrices from these wavefunctions.

A crucial point to be made is that the wavefunctions ‘Pj generated
in the course of integrating eq. (6) do not correspond to the physical

wavefunctions desired. The boundary conditions which insure that one
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is solving the proper problem are only imposed after eq. 6 has been
integrated. Thus, in order to obtain a physical wavefunction, we need
to use both the wavefunctions generated in the course of the integration

and the S matrix determined in the asymptotic analysis.

B. Calculating the Physical Wavefunction— Formal Aspects

The problem of obtaining the physical wavefunction w}j:)hys from the
11!/]. available from the 25 (p,p) determined in the integration of eq. 6
reduces to that of finding the correct linear combination of the L!/j
We will call the ‘l’j the primitive wavefunctions, because they are what
is generated in the program. Mathematically, we want to determine the

coefficient matrix W, where

vp W, l=fj=Ny,=N (10)
where N, the total number of primitive wavefunctions determined, is
greater than the number NOp of asymptotically open vibrational states
(j =1 would correspond to only one state open in either the reagent or
product channel, but not both, with no possibility for other than elastic
scattering).

The quantity of greatest interest in the analysis that follows is the
radial wavefunction matrix h determined in the projection of the wave-

function onto eigenfunctions X of the AB and BC diatomic potentials:
(11)

where we have suppressed the coordinate dependencies of the various
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wavefunctions. Inthe ensuing discussion, we will restrict consideration
to h. Once we have the matrix W, we will then return to considering
the full wavefunction . The asymptotic analysis, which is discussed

20

in detail elsewhere, says that at large values of the distances R?\’Ry

(defined in ref. 20) we may write h in one of the two asymptotic forms

hp = v *(4C+ LD) (12a)
hy = g-é (Za + €B) (12b)
(where hp =hg=h)
where v is a diagonal matrix given by
V. = ann.ﬁlkm I/ (13)

ATy >

where the wavenumber k)‘n is given by the expression

0|

1
kmh = ﬁ[z,l(}s-meﬂ (14)

where ) denotes the arrangement channel (A = A + BC, « = AB + C)
and the E)«n are the vibrational energies of the diatomic molecule in

channel » and

=n, (RA) = exp(-ikAnA RA) for open channels (15)
exp( ,khnh IR)‘) for closed channels

=, (RA) = exp(lkm)l R) ) for open channels (16)
exp(- !km [R)) for closed channels

p)
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=, (R?\) = {sm(khnh RA) for open channels (17
exp(|k. _ |R.) for closed channels
& }\HA A
=An, (R)«) = COS(kAnA R) ) for open channels (18)

exp(- |kAnA1R1) for closed channels

Similar expressions may be derived for the derivatives };i;{ and };’S,
where é, é, ﬁ, and gare replaced by their RA derivatives
é’, L, &, and &, respectively.

The }=1R form is more convenient from a computational point of
view, as thenonly real quantities are involved. The matrices C and D

may be ohtained from hp, l;h, é, ___C_’, é’, and ;’ . The reactance

matrix R is obtained by the expression

[t}

c™. (19)

[lw)

When only reaction probabilities are desired, one may consider only
the "open'' part of the R matrix (Nop S Nop instead of N x N) and
calculate the open part of the § matrix and from that the probabilities
in the usual way.

The }=15 form is closer to the physical wavefunction however, as it
involves incoming and outgoing waves in all states and in all channels.
What we seek is the wavefunction in which there is an incoming wave in
only one state in one channel (but all possible outgoing states in both
channels are allowed). The § matrix may be obtained analogously to

the manner in which R was obtained. The matrices A and B may be

obtained from he, h', &, &, &, and &, and then by the expression
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S=Ba. (20)

Substituting eq. (19) into eq. (12a) and eq. (20) into eq. (12b), we get

il

Vi ERIC (212)
(& -

bp

Ni»-

I

}; v

nm
f>

S (21D)

We may construct a "physical matrix" solution from the primitive

solution by right multiplying by Q__-l S0

phys _ -1
hBS - hpc sy Hd A ED) . (22)
We similarly define the ''physical S matrix' solution
hys i
hg =hgAT =y 3(2- 0. (23)
phys phys . .
We need then relate I;R and hS , we may do this by the matrix
equation
phys  phys
hg ™ =hg ¥ (2%

Substitution of eqs. (22) and (23) into eq. (24) gives us, formally at
least, V and S:

(25)

(& -09 -

tha
Hrs
1]
<

We may get both S and YV because each submatrix (the open and closed
parts) contains two different types of terms: sines and cosines in the
open parts and exp(|x|R) and exp(- |k |R) in the closed parts. We will

return to this later.
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The last step involves conversion of the "'physical S matrix"

solution to the actual physical solution. The solution we have now is

very close to the desired asymptotic form

r_.r ’ r
hvs . ANy . An ., .
Pays g [& A exp(-ik’  R.) +f A exp(ik
YWy amy o oan, Ay xRy AR

R)Ix,, (1))
N T Xam T

(26)

where rh is the internal coordinate of the diatomic molecule in the )

channel. The i and S matrix elements are related in the following way:

V.or.r 1
& o' = x'als -
A 2 o (27)

S
Hence, the desired physical wavefunction h , is related to }l%hys

by the expression

1
phys _ 1l;;hys B (28)

n<

h

Rewriting things in terms of the actual wavefunction

phys phys 3
: = . : 29
¥ Vsi Vi 23}
which, combined with eq. (24), (20), and (10) lets us write
il A .
A=k Xy (30)
so
thS _ )} pr (C-l) V V% (31)
¥ T e Y, A M
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Now we need only evaluate V. To do this, we break eq. (25) up into a

set of four equations

L, 0\ (& 0’\ Roo Bod\ | (Zoo Yod| (& 0\ (S ) Soo Soc

0 £.) |0 & ECOECCJ Voo Yee| |0 2 \© €/ \8co Sec
(32)

From egs. (15)-(18),

4, -3 (33a)
£C & gg - (33b)
g,-2,-14, (330
& -t +id . (330)

By substituting eqs. (33) into eq. (32) and equating the coefficients of

éo and £o’ we get eight equations (we will suppress the fact that all

these quantities, except i, are matrices)

Voo = 1T +8,) (34a)
Ro0Voo * Roc Veo =1~ S0 (32k)
Voe = "184¢ (34c)
RooVoe * Boe Vee = ~Soc (34d)
V.o =0 (34e)
ReoVoe * Bee Veo = ~Sco (95)
Ve =1 (34g)
ReoVoe + ReeVee = -Seo - )
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Combining eq. (34a,b, e) we can show

s -1 .
So0 = (I - iR ) (I +1iR,) (35a)

: . -1
Yon = -2i(I - lROO) : (35b)

It may be shown (Appendix A) that eq. (35a) is equivalent to the usual

formzo
. 3 -1
S00 = (I + 1R00)(I - 1R00) (35¢)
Combining eq. (34c,d,g) we can show
. -1 ’
S5e = -(I - 1R00) R (36a)
. : -1
Voo = iT - 1R00) Roe - (36Db)
We may then write expressions for Sco and Scc:
. n wl
Sop = 2iRo (I - iR, ) (37a)
. -1
Sce = Ree " ReolI - Ry) R - (37b)

Equations (36a and 37) are presented for the sake of completeness; they

will not be needed in what follows. The only part of S actually used is

S from which reaction probabilities are calculated. We need only the

00’
open columns of Y. We will construct the entire ¥ matrix, however.

From eqs. (34e), (34g), (35b) and (36b) we see that it may be written as

-2i(I -iR_)™ i1 -iR_)'R
! - 00 00 ocC . (38)

0 I



667

It is noted that R . Will be needed in the calculation of the closed
columns of V. Evaluation is straightforward in that one must use both
the open and closed columns of h, h’, ,é; L, éi, and £,

At this point, we have expressions for the three matrices z%, X,
and g_l, from which W may be obtained and thus the physical wave-

function may be obtained from the primitive wavefunction.

C. Calculating the Primitive Wavefunctions

The primitive wavefunction wlj)r needed for the construction of the
physical wavefunctions by eq. (10) are in principle available from the
radial wavefunction obtained in the integration of eq. (6), the basis
functions ¢>n(a, p) and the value of the propagation coordinate p by

eq. (5). The successful application of eq. (5) requires that the product

N

1 pr T\
2 . = Do, 39
P 11[/] i—:l Igl] ( )

be continuous., This is not normally the case during the integration of
eq. (6) for two reasons.

First, to maintain the linear independence of the N columns of the
radial wavefunction being integrated, it is necessary to perform some
sort of stabilizing transformation that inhibits the exponential growth
associated with the closed channels, This requirement is really
numerical in origin. Given a computer with infinite precision, no such
transformation would be necessary. The stabilizing transformation
used with the hyperspherical coordinates technique is the reorthogonali-

21

zation procedure of Riley and Kuppermann, In this procedure, the
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radial wavefunction matrix and its derivative are periodically right-
multiplied by the inverse of the current radial wavefunction matrix to

give modified matrices as follows:

- -1 _
%new - §old gold = I: (40a)

'

. -1
Enew ~ Zold Zo1d - (40Db)

In this transformation, the logarithmic derivative (, given by
L=gg , (41)

is unchanged. This transformation, which will not affect the reaction
probabilities, corresponds to a change of the initial conditions for the
integration of eq. (6). Clearly, it does lead to discontinuities in g which
must be corrected for priorto the insertion of g into eq. (5).

Second, to maintain the magnitude of the radial wavefunction matrix

22 "renormalizes' the wave-

elements, the numerical integrator used
function and its derivative after each integration step by right multipli-

cation by a diagonal matrix:

new = Eold” & (42a)

c (42b)

8hew = Eold "

22 Substitution of eqs. (42) into

where ¢ has been defined elsewhere.
eq. (41) shows that the logarithmic derivative { is unchanged by this
transformation. Corrections for this renormalization must be made

prior to the application of eq. (5).
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The problem of construction of a "consistent” g (that which leads
to a continuous w?r) is in principle exactly the same as that faced in
the numerical projection of the wavefunction onto a basis set of BC and
AB diatomic molecule eigenfunctions. In that case, the projection
procedure requires the radial wavefunction over a range of p, which
necessitates the propagation of a consistent wavefunction. Because in
the case of the projection, a consistent wavefunction is needed over
only a small range of p (usually < 1 bohr) where the eigenvalues En(‘ﬁ)
have essentially settled down to their asymptotic values, numerical
difficulties are few. Inthe construction of the consistent g necessary
for the probability density and probability current'density calculation,
numerical difficulties are quite severe, and we discuss these later.

As presently formulated, the program by which we calculate
probability current density from the physical wavefunction wg}hys
requires them at a regular grid of points (in internuclear coordinates).18
In the course of the hyperspherical coordinate program, one does not
obtain the wavefunction on any regular grid, however. The numerical
integrator chooses its own step size in order to meet certain restric-
tions on the error in each step, meaning that before the calculation is
performed, one does not even know at what point the wavefunction will
be available. Another difficulty is that the number of grid points
desired, usually in the range of 1000-5000 (the grid size normally
ranges from 30X 30 to 70 x 70), is sufficiently large that we cannot
force the numerical integrator to explicitly integrate from each grid

point to the next. Rather, it is desired to permit the integrator to

proceed as it would and to obtain the wavefunction at the grid points by



670

an accurate numerical interpolation scheme.

This may be demonstrated by the following example. A typical
step size for the integrator in the collinear H + H, reaction is 0, 03 bohr;
a typical range of p is from 1 to 10 bohr. Hence, a total of 300 steps
for each of the symmetric and antisymmetric solutions will be needed.
A typical grid size for a probability density and probability current
density study of this reaction might require 1600 points, Thus, if one
were to integrate from one grid point to the next, 5 times as many
integration steps would be needed. This requirement would impose an
unsatisfactory computational burden and is, therefore, unacceptable.
The importance of an accurate and efficient numerical interpolation
scheme is clearly seen.

Fortunately, the numerical integrator used:22 provides for an
efficient means of performing such an interpolation. Again, a similar
problem has been faced in the projection of the wavefunction onto the
BC and AB diatomic basis sets, where the wavefunction is needed at a
large number (100-200) of points over a small (< 1 bohr) range of p .
The interpolation method used is the same in both cases. Since the
wavefunction is the product of two parts, one angular (given by the
basis set), and one radial, we must perform two interpolations to
evaluate the wavefunction at an arbitrary grid point.

The angular part of the interpolation is simple. The basis functions
are represented numerically as vectors, each element of which corre-
sponds to a value of the angular coordinate «. To obtain the angular
part of the wavefunction at some intermediate value of @, one may inter-

polate by some simple appreximation scheme, such as assuming that the



671

¢n are piecewise linear (as is done for the grid points), or by approxi-
mating the entire d)n by a cubic spline and then evaluating the derivative
from the spline coefficients at the desired value of o (as is done in the
projection region).

For the radial part of the wavefunction, we take advantage of the

particular nature of the Gordon integrator. =

In this integrator, the
potential is approximated by a series of linear portions. The resulting
differential equations are analytically solvable in terms of the Airy
functions Ai and Bi. Within each integration step, the radial wave-
function matrices may be expressed as linear combinations of Ai and Bi

functions of the appropriate arguments (see ref, 22, for a full descrip-

tion of the method).

(p)

nue
[
>

(p)a(p) + B(p) b(p) (43a)

a9

"(p) = A’(p)a(p) + B'(p) b'(p), (43Db)

where A and B are the matrices of Ai and Bi, respectively, and

a and b are coefficient matrices. It is assumed that the dependence of

oy

and b on p is sufficiently small such that their deviation from a con-

e

stant matrix can be determined by perturbation theory. We then make
the additional assumption that the perturbation corrections P and I_” to

g and g’ are linear over the step. We then write

1aQ

() = Alp)alo,) + B(o)bln,) + Plo) (44a)

1

"(0) = A(p)a’(0e) + B(0) b'(po) + P'(0) (44b)

where p, is the value of p at the beginning of the integration step.
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The evaluation of a, 2, 1:, and 12' is fully described in ref. 22,

Equations (44) provide a relatively simple and efficient means of
interpolating the radial part of the wavefunction. All that is required
for the evaluation of g(p) at a grid point is the evaluation of the matrices
A and B at the value of p appropriate to it and the multiplication of the
perturbation corrections by the ratio of the quantity p-p, to the full
stepsize.

With these methods for the interpolation of the angular and radial
parts of the wavefunction, we have all the necessary data for the con-
struction of an accurate uj?r at any grid point.

To actually generate consistent primitive wavefunctions, we need,
therefore, to undo the stabilizing and normalizing transformations
performed on the radial wavefunction. There is a certain amount of
freedom associated with this consistency establishment: one can force
the wavefunction to be consistent with respect to any given point on the
surface (providing one uses a wavefunction consistent with respect to
the same point in doing the asymptotic analysis described earlier).

The simplest choices are to make it consistent with respect to the
beginning of the integration of eq. (6) (eqs. (9)), or to make it consistent
with respect to the end of the integration of eq. (6). The former method
(forward consistency) is conceptually simpler and requires less compu-
tational effort, but has some numerical difficulties associated with the
consistency generation. The latter method (backward consistency) is
perhaps more elegant, but requires substantially greater computational
effort and may have numerical difficulties of its own. We now describe

both these methods.
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To generate a forward consistent wavefunction one must calculate,
every time a reorthogonalization or renormalization is performed, a

"transformed unit matrix'" by the expressions

-1
Ynew = Yo1d Eold (452)
at reorthogonalizations and
Thew = Zo1a® (45b)

at renormalizations. At the start of integration, U = I (hence the name
transformed unit matrix). To generate a consistent radial wavefunction
from the inconsistent one propagated in the hyperspherical coordinates

program, one need only perform the operation

cons _ gincons -1 ) (46)

e
[

This clearly has the effect of undoing all the transformations associated
with reorthogonalizations and renormalizations.

Numerical difficulties arise mainly from the reorthogonalization
transformations in the following way. Since closed channels lead to
exponential growth in the wavefunction, reorthogonalizations involve
multiplication of the wavefunction by a matrix, the magnitude of whose
elements are less than one. The more closed the channels, the smaller
the elements of the matrix will be. After a number of such transforma-
tions, the matrix will have elements whose magnitudes are much less
than one, and the inversion procedure may prove difficult, Linear

dependence may creep into the transformed matrix U, making inversion
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impossible. In some ways, hyperspherical coordinates are the worst
coordinate system in which to generate a forward consistent wave-
function, as at the smallest values of p, all channels are closed by
many eV. The exponential growth in the wavefunction will, therefore,
be quite rapid, and one will encounter numerical difficulties fairly
early in the integration, even where the wavefunction is small.

A backward consistent wavefunction may also be obtained. To do
this, one must multiply the inconsistent primitive wavefunction by the
product of all reorthogonalization and renormalization transformation
matrices that are used during subsequent integration. If we write the
radial wavefunction g at some value of p =p  as gn and transformation
matrices at each Py s zn' , then the backward consistent wavefunction

at p = p, may be written as

X kK,
cons _ mcecons
%n T 2n 1111 '_T__m-i (47)

where kn is the number of transformations (renormalizations and
reorthogonalizations) remaining. The numerical advantages of this
method are that no inversions are necessary and that the matrices being
multiplied will be small (its elements have magnitude less than one).

As n decreases (n=0 at the start of integration) the matrices Tn will
get smaller, and the worst numerical problem that should develop is
underflows in their product. That may not be a major limitation,
however, as it may be satisfactory in that case to let ggons = _Q

The computational simplicity associated with the forward consistent

wavefunction derives from the fact that it can be constructed from
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previous transformations during the integration procedure. Thus, only
N matrix elements must be stored (recall that at a grid point, each

w?r is given by a single real number) at each grid point. To calculate
a backward consistent wavefunction, one must store not only N incon-
sistent matrix elements at each grid point, but also each transformation
matrix Zn over the entire range of the integration. Only then can one
go about the calculation of the consistent wavefunction.

In the work to be described we have employed the forward con-
sistent method and have had progress seriously impeded by numerical
difficulties, It seems that the deciding factor in the choice of which
type of consistency to use is the nature of the combuter being used, If
the computer represents floating point numbers in a way such that the
maximum exponent available is small or does not carry enough digits to
avoid linear dependence problems in the calculation and inversion of U,
the forward consistent method will not work, and the backward con-
sistent method should be used. If one has a computer with a wide
dynamic range for floating point numbers and sufficient digits for
accurate inversion of U, the forward method seems advisable because
of its simplicity. A s a result of our difficulties, we plan at some future

time to allow for backwards consistency.

D. Calculation of Probability Density and Probability Current Density

The calculation of the probability density, Pjs from the physical
wavefunction is straightforward. One simply substitutes the value of
the physical wavefunction w;j)hys into eq. (1) to calculate p, and then
displays the information in whatever way desired, normally a contour

plot,
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The probability current density calculation is a bit more compli-
cated, and the method used in the calculation is described elsewhere.18
We mention only a few of the most crucial elements of this calculation
here. The objects which are normally plotted are not the current
densfties but their streamlines - curves which are everywhere tangent
to the probability current density vectors. The streamlines are
especially useful because of their similarity to streamlines of fluid
flow and thus the clarity with which the hydrodynamical analogy to
quantum mechanics may be made.

In order to calculate the probability current density J as defined in
eq. (2), one needs to transform the coordinate system so that there is
only one mass in the kinetic energy operator. There are several such
choices for this coordinate system. The one used here is one in which

the variables X; and X, are defined by the relationship:

Ka,be .3 HEbe
X =(——)" (R + — Ry). (48a)
X, = Rpe, (48Db)

where RAB and RBC are the A-B and B-C internuclear distances and

the u are the reduced masses as defined in the usual way. Another

choice for this system might be the usual Delves coordinates. i
a,bc Fbe Hpe &
R=(——) Ryp+——R - X 49a)
— AB * I, pe) = ( Ua,bc) 3 (
1
ubc 4 “bc a
r = ( )" Ry = ( ) X, . (49Db)
Ha,be BC Ha b i
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The skew angle (the angle made in the new coordinate system between
lines of Rop = constant and RBC = constant) in these two coordinate
systems is the same. Plots of streamlines of probability current
density and tunnelling fractions displayed in the results section will be
in the X,,X, coordinate system as defined in eqs. 48.

In addition to plotting the streamlines of probability current
density, we can use the current densities to calculate '"tunneling
fractions’ in the following way. Boundary streamlines may be calcu-
lated which are tangent to the contours whose energy is the same as the
energy of the calculation. The region of the potenj:ial energy surface
between the two boundary streamlines represents a ''classical river",
as a streamline that lies outside this river at any point on the potential
energy surface must go through a classically forbidden region some-
where on the surface. From this definition, it is easy to establish the

tunneling fractions on both the repulsive wall and dissociative plateau

sides.

3. Numerical Results

We will present plots of probability densities and streamlines of
probability current density, and results of calculations of tunneling

fractions for the H + H, reaction or the Porter-Karplus surface19

using
a wavefunction obtained from the hyperspherical coordinates wave-
function. Because of our choice of a forward consistent wavefunction,
numerical difficulties associated with closed channels were a severe

problem, and we were limited to 2 channel (2 symmetric and 2 anti-

symmetric) calculations., Inclusion of an additional closed channel leads
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to fatal numerical errors. It has been shown16

that a 2 channel
calculation of this system gives good reaction probabilities in the low
energy region; we have no information on the convergence of the wave-
function., Reaction probabilities for the energies considered here are
given in Table 1 (these are the probabilities calculated in the 2 channel
runs from which the physical wavefunctions were obtained),

The first step in the calculation of the physical wavefunction after
the performance of the scattering calculation is the construction of the
coefficient matrix W, We emphasize that we are only interested in the
columns of W corresponding to asymptotically open channels; there is
nothing at all physical about the wavefunction associated with the
collision in a channel in which there is insufficient energy for any
collision to occur! Thus, we will consider a non-square W of N rows
and Nop columns. Inthe H + H, collision, the symmetry of the
collision imposes a restriction on W:

w

= (-1l

L i, j

0p+j (50)
A manifestation of this restriction will be seen in the probability
density plots, where thys and q,.f’hys (the only possible ones in the
energy range considered) give probability density plots which are
reflections of each other about the RAB' RBC symmetric stretch line.
Let us first consider the structure of the W matrix for this
system. The exact form of the matrix will depend on the details of the

construction of the physical wavefunction, in particular the choice of

forward or backward consistency. When a forward consistent wave-
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function is used, it will be large at large p where integration is
terminated. Since W is related to the inverse of the final consistent
radial wavefunction and derivative matrices via the matrix (;_1, w

will be small in the forward consistent case. Values of W at a series of
energies are displayed in Table 2. The calculation of W is somewhat
complicated because of the existence of a wide range of exponents
associated with the exp(+ ! K !R) terms in the evaluation of goo and Eoc‘
These difficulties are exacerbated by the use of a forward consistent
wavefunction. A scheme for avoiding potential pitfalls in the evaluation

of W is given in Appendix B.

A. Probability Densities

Contour plots of the probability density are shown for six different
energies in Figs. 1-6 (total energies of 0.4466, 0. 4866, 0.5266, 0.5666,
0.6066, and 0,6466 eV measured with respect to the bottom of the H, well).
These plots are for the physical wavefunction corresponding to an
A +BC collision; the coliision process can be thought of as starting at
the lower right hand corner of the plot. These plots have been made in
internuclear coordinates; for interpretation a plot in Delves coordinates
would be best. Contours are drawn at intervals of 0.25 of the common
logarithm of p. (The wavefunction is normalized to unit incident flux.)
Two features are immediately apparent. First, there are constrictions
in the entrance channel which decrease in severity and move closer to
the saddle point as the energy increases. Between these constrictions
lie regions of increased probability density, which also wash out with

increasing energy. Second, at low energy, there is little amplitude in
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the region of the potential energy surface corresponding to reaction
products. As the energy increases, the probability distribution
becomes almost symmetric about the symmetric stretch line. At these
highest energies, the reaction probability is almost unity. The physical
interpretation of these data, then, is that at high energies, where the
exit channel of the surface is sampled, the probability density will be
uniformly spread along the minimum energy path. At energies where
the reaction probability has not yet become appreciable, the wave-
function is forced tobe localized in the entrance channel, giving rise to
the maxima at the three lowest energies shown. The origin of the con-
strictions is not clear from the plots.

The jagged nature of the contours of constant probability density in
Figs. 1-6 is probably due to the large grid size used (0.1 bohr). With
a smaller distance between grid points, it is expected that smoother
curves would be generated. As the current work is only really at the
preliminary level, we chose not to pursue this particular point. With
this grid size and range used, there are 1024 grid points, which already
requires a fairly substantial computational effort in terms of computer
time and disk usage. With some relatively simple modifications, an
L-shaped grid region rather than a square one as is presently used
might be employed, which would allow for a higher density of points in
the entrance and exit channels and in the saddle point region, and a
lower density of points high upon the dissociative plateau. In the latter
region, the physical wavefunction can clearly have no amplitude in the
energy range considered, as it is classically forbidden (quantum

mechanically one might say that the lowest energy eigenfunctions ¢; have

zero amplitude in this region).
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B. Probability Current Density

In Figs. 7-13 we present plots of the streamlines of probability
current density. The streamlines are broken up into a series of curves,
the head of each of which is marked by an arrow. The length of the
arrow is proportional to the current density at its center. The stream-
line plots are superimposed on a contour diagram of the potential
energy surface in order to display the relationship between the stream-
lines and the surface. These plots are in the (X,,X,) coordinate system
defined in eqs. (48). The minimum energy path is marked by a dashed
line, the saddle point is indicated by a cross. Contours are drawn
every 0.2 eV from 0.2 eV to 1.6 eV, measured with respect to the
bottom of the H, well. An additional contour is drawn at the energy of
the calculation,

The plots for energies of 0.4866, 0.5266, 0.5666, 0.6066, 0,6466,
0.6966, and 0, 7466 eV display a few key features. At the lowest energies,
nearly all of the flux to reaction occurs at greater distances than those
corresponding to the saddle point (Fig. 7, 8), while at the highest energies
there is appreciable flux through and to the left of the saddle point.

At the two highest energies, we can also see the development of a vortex
in the streamline diagram just to the right of the saddle point region.

It appears that at higher energies this vortex might close on itself,
forming a quantum whirlpool. Such whirlpools have been previously

seen for this system. 0

It is clear from these figures that a fair amount of the reaction at
low energies occurs via tunneling, We will try to quantify this in the

next subsection. For example, at 0.5266 eV (Fig. 8), one can see
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three streamlines crossing the contour at that energy, transporting
flux through the dissociative plateau in spite that region's classical in-
accessibility., At the higher energies, it is similarly clear that very
little flux is transported by tunneling. As a result of the vortex, flux
is shifted into smaller values of X, and X,.

There are some unsatisfactory features in these streamline plots
which indicate lack of convergence, instabilities, or outright errors in
the analysis (most likely in the manipulation of the hyperspherical
coordinates wavefunction into a form suitable for the streamlines
program). For example, in Fig. 7, the twostreamlines shown starting
at the smallest values of X, coalesce near X, = 3.5 bohr and remain
essentially indistinguishable until about X, = 2,40 bohr, where they
suddenly separate. Similarly, in Figs. 8-11, the streamline starting
at the smallest value of X, makes a sharp turn to smaller values of X,
before rounding the corner at unusually small values of X, and X,.

It is quite possible that some of this unphysical behavior is a direct
manifestation of the large grid spacing used (0.1 bohr) in these calcula-
tions, and redoing the calculations with a smaller spacing might alle-
viate this problem. Improvement might also be made by using a
partially analytic expression for the derivative of the physical wave-
function based on the derivative of the radial wavefunction which is
available from the scattering calculations. Such a procedure might
provide a better estimate for the partial derivatives of the radial wave-
function than the numerical procedure currently used (it should certainly

be more efficient). We will develop this further in the final section.
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C. Tunneling Fractions

The calculation of the tunneling fraction has been outlined earlier.
To obtain the tunneling fraction, we need to calculate the flux normal
to a set of lines normal to the minimum energy path in the (X;, X,)
coordinate system. The tunneling fraction is the fraction of this flux
which lies outside the boundary streamlines defined earlier. We have
calculated these tunneling fractions along six lines normal to the
reaction path at the energies shown in Figs. 8-13. The values of the
currents normal to each line and the fractions which can be classified
as tunneling through the wall, classical, and tunneling through the
plateau, are presented for each line at each energy in Table 2,

It has been shown18

that when there is no dissociation, given that
the lines extend sufficiently far into the wall and the plateau region, the
current normal to each line should be the same for a given energy.
This will not be true in practice because of errors in the physical wave-
function used and the approximations inherent in the numerical methods
used in the calculation of the current density, most probably the
numerical interpolation and differentiation of the wavefunction. A
measure of how well this condition has been satisfied may be seen by
comparing the various currents in Table 3. These data are summarized
in Table 4, in which we list average currents, their average deviation,
and the % deviation at the seven energies studied.

The current normal to each of the cuts is clearly not equal at a
given energy, as may be seen for the large ¢ deviations in Table 3.

This measure of the relative error seems to be decreasing with energy

at the lower energies dropping from 12. 2% to 8.8%, although at the
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highest energies, it appears to have reached some sort of limiting
value. This deviation is far worse than the normal deviation of < 0.5%
obtained in the study of the H + H, reaction on the scaled SSMK surface

performed previously. 18

The current work differs substantially from
that study in the method of generation of the wavefunction (coupled
channel hyperspherical coordinate method as opposed to finite difference
method). In addition, a large grid spacing was used in these calcula-
tions (0.1 bohr); we have not yet examined how a reduction in this
parameter will influence the results.

A pictorial representation of these tunneling fractions is given in
Figs. 14-20 for the same energies in which the streamlines of proba-
bility current density were examined in Figs. 7-13, respectively. The
lines normal to the minimum energy path are clear. They are numbered
from one to six (see Table 3); 1 being at the lower right-hand portion of
the figure, corresponding to A + BC, while 6 is in the upper center,
corresponding to AB+C. The current normal to the lines is indicated
by the heavy solid curve; the distance from the line along which the
normal current is calculated to the curve is proportional to the magni-
tude of the current at each point along the line. The boundary stream-
lines are indicated by short dashed lines. As in Figs. 7-13, the plots
are superimposed on a contour plot of the potential energy surface.

From Figs. 14-20, a few features are most visible. First, the
classical river defined by the boundary streamlines is very narrow in
the entrance and exit channels at low energies; it widens substantially as
energy increases. At the highest energies (0.6966 and 0.7466 eV) one

can see the distortion related to the vortex formation seen quite clearly
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in the streamlines in Figs. 12 and 13. Inthe entrance channel and the
exit channel, the current normal to the lines is strongly peaked about
the minimum energy path (centered slightly on the plateau side), where-
as in the saddle point region, along the symmetric stretch line, the
distribution is much broader.

The tunneling fractions for each line have been listed in Table 3.
Two major results are evident. First, as the energy increases, the
fraction of reaction occurring by tunneling decreases substantially.

For example, along the symmetric sketch line, 63.6% of the current
lies outside the classical river region defined by the two boundary
streamlines at 0.4866 eV, while only 3.8% goes outside it at 0,7466 eV.
This decrease in the importance of tunneling at high energies is to be
expected; these calculations thus serve to verify our chemical intuition.
Second, the fraction of the current lying outside the classical river
region is usually smallest on the symmetric stretch line; it is always
greatest at the lines farthest in the entrance and exit channel. This can
be seen to arise for the narrowness of the classical river in the entrance
and exit channels, which essentially forces current into the tunneling
regions as the current profile does not change that much in these
channels. Only near the saddle point does the current profile change
substantially, and then the boundary streamlines separate to form a
wider classical river, meaning that more of the current can be in this
classical region. Since a small change in the boundary streamlines in
the entrance and exit channels could produce a fairly large change in the
tunnelling fractions, the absolute values of these numbers should not

have too much significance attached to them. The trend of decreasing
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importance of tunneling with increasing energy should be valid,

however.

4, Discussion and Conclusion

We have successfully calculated the physical wavefunctions from a
coupled channel calculation for the H + H, reaction using the hyper-
spherical coordinates technique. Using these wavefunctions, we have
obtained plots of probability density and of streamlines of probability
current density, and have calculated tunneling fractions over the energy
range from 0.4866 eV to 0.7466 eV. Inthis energy range the reaction
probability rises essentially from zero to unity.

A mumber of results were obtained for this system. Plots of the
probability density show that at low energy, the physical wavefunction
is isolated in the entrance channel and has one or more regions of
maximum amplitude separated by regions of constriction. As the
energy is increased, both become less pronounced, until at the highest
energies considered, théy have disappeared and there is a maximum in
the saddle point region. The streamlines of probability density show
that at low energies a fair amount of the reaction flux will pass over
the edge of the dissociation plateau rather than following the minimum
energy path. As the energy increases, less of the flux goes over the
plateau, and at the highest energies, flux is efficiently routed away
from the plateau by the formation of a vortex in the streamline field.
The formation of this vortex can also be seen in the probability density
plots at these energies.

The tunneling fractions yield two major results, First, as the
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energy increases, the relative importance of tunneling decreases
substantially. Second, the tunneling fraction is least at or near the
symmetric stretch line and highest far out in the entrance and exit
channel. The condition that the current normal to the lines normal to
the minimum energy path is only approximately satisfied (~ 10%), with
the error greatest (~ 12%) at the lowest energy and least (~ 9%) at the
highest energies.

The calculations reported here are, at the very best, preliminary.
We have not yet established convergence of any of the quantities
reported with respect to either the number of channels in the hyper-
spherical coordinate calculation or the grid spacing in the probability
density and probability current density calculation. Testing of the
former can only be performed after the method of consistent primitive
wavefunction calculation is changed from forward consistent to back-
ward consistent. Testing the influence of the grid spacing can be easily
accomplished, however. One must finally consider the accuracy of the
numerical interpolation and differentiation procedures used in the
probability current density calculation. These were found to be
sufficiently accurate in previous calculations; the switch in method of
wavefunction calculation (from finite difference to hyperspherical
coordinate coupled channel) should not alter this conclusion.

One fairly simple improvement which might be made is the pseudo-
analytic calculation of the derivatives necessary in the evaluation of the
current density. Since in a previous application the wavefunction was
generated by a finite difference method, the derivative had to be con-

structed by using a finite difference approximation to the derivative
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operator. Inthe hyperspherical coordinate coupled channel method
used here for the generation of the wavefunctions, one has access not
only to the wavefunction, but the p derivative of the radial wavefunction.
If one approximates the o derivative of the basis function by a finite
difference procedure, one can obtain an expression for the derivative
of the primitive wavefunctions (and hence the physical ones) with
respect to p and «. By appropriate transformation of variables, these
derivatives can be evaluated in any desired coordinate system. This
procedure is developed in detail in Appendix C.

The preliminary results of the work reported_here suggest that
after reprogramming to allow for a numerically less dfficult way of
calculating a consistent wavefunction and after some numerical testing
to establish a maximum grid spacing for convergence of current
densities and tunneling fractions, we will have a general and efficient
means of the calculation of probability densities, current densities,
and tunneling fractions for collinear atom-diatomic molecule reactions.
This method should be applicable to all such reactions, including heavy-
light-heavy reactions, It should also allow the calculation of stream-
lines of probability current density in reactions involving collision-

23, 24

induced dissociation, as these may also be studied by the

hyperspherical coordinate method.
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Appendix A. Demonstration of the Equivalence of Eqs. 35a and 35c.

(We suppress the fact that B.or Boor

We show here that the expression for Soo obtained in eq. (35a) is

and I are matrices.)

equivalent to the usual definition of eq, (35c). This derivation relies
solely on the facts that Roo is real and symmetric and that the inverse
of the transpose of a matrix is equal to the transpose of the inverse of

a matrix.

Roo = Roo (A-1)

(AhH™ = (a™h*. (A-2)
We start with eq. (35a)
- -1 -
Soo = (I = iR )™ (I +iR,,) . (A-3)
The hermitian adjoint of Soo is given by

Soo =1+ iR )T - iR )T,

which by eqs. (A-1) and (A-2) can be shown to be equivalent to

+ _ s ; -1
Sgo = T - 1R (I + iR )

+, -1 x .
So(85p ) =1+ iR, - IR ),

which is the usual form of 860 (eq. (35¢)). Thus, if we can show that

S00 as written in eq. (A-3) is unitary, then we can show that the two

forms of Sop are equivalent,
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. + _ _ i & -1 s -1 4
We write  S,." S, = (I - iR I+ IR )7 (I-iR )7 (I +iR )

= (I - iR _)[(X - iR (I +iR )] ™ (I + iR )

Il

(1 - iR ) (T + R, (1 + iR, )

-1

2 2, -1
(I+Roo) +ROO(I+ROO) R+

(8]0

i1+ Ry, Ry, - Ryl + Ry, )7 1. (A-9)

This equals the unit matrix I if we can show that

2, =1 2, -
(I+R,5) Ry =Ry, (I+ Ry (A=3]

This can be shown quite easily (letting x = ROO)

2, =1

IT+x) 7 x=(xx™" +x) e

x=[xx"+x)] " x=x"+x"'x'x

-1 -1

x +x) ,

and similarly,

-1

x(1+x) =x(x""x + xz)'1 = x[(x™ + x)x] T oxexTMxTH 4 x)

-1

kT M

:(x

Since (A-5) is true, the imaginary part of the right hand side of eq. (A-4)
is zero, and the real part can be simply shown to reduce to the unit

matrix:

2, =1

2y =1 2, =1 2, =1 2
(I+ROO) +ROO(I+ROO) ROO=(I+R00) +ROO(I+ROO)

@ +R I +R,H ™ =1
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Thus S - is unitary and by definition

SO
00

Hence eq. (35a) implies eq. (35c) (and vice versa).
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Appendix B. Scheme for the Evaluation of V=V

We wish to evaluate W by the following expression (all quantities
are matrices)

1
e lz , (B-1)

<
9}
li<!

which on breaking up into its open and closed parts (we suppress the

fact that the quantities considered are matrices)

1
-1 =1 2
WOO WOC (C ) (C )OC VOO VOC V0

-1
WCO WCC (C )

where V is given in eq. (38).

Using this formula for V, one may write the two blocks of W desired

(gOO’ EOO) =B

1
=i %
Woo = (€ o Voo Yo (B-3a)
1
-1 >
Weo = (€ Deo Voo Yo (B-3Db)

and using the equality

% L « 2, =1
I-iR,) =T+iR ) +R,,)
one may write

-1

n -1 . 2
W = -21(CT) (T +iR I +R, ) v (B-5a)

O nf=

4 -1 a 2, =1
W.o= -2i(C )co(I + IROO)(I + R Yy v (B-5b)

Ol
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S0 -1 2. -1 V%
ReWOO = 2C )00 Roo (1 +R00) o
1
= 2,-1 2
ImWOO=-2(C )00 (I+ROO) s
1
B =1 o
ReWco = +2(C )co ROO(I + Ryq ) s

O wjm

-1 2,=-1
ImWCO = -2(C )co (T + Roo ) v

The desired parts of the inverse of C may be constructed from the

blocks of g and their inverses.

(C'1)00= [Co0- Coc (Ccc)“l Ceol - » (B-6a)

=k

-1 -1 -1
(€ eo="(Cee) Ceo [Coo ~Coce(Cec) Ccol

=-(C.)C,(C7hH (B-6D)

ocC 00 °

Difficulty enters in that C has terms which decay exponentially and we
wish to remove the decaying terms prior to inversion. This may be

done in the following way:

Coo Coc 1 S Coo 