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ABSTRACT 

The collinear collision of an atom with a diatomi c mole cule has 

been studied within the fr ameworks of quantum and classical me cha­

nics. Three major topics have been investi g ated. 

In part I, the collinear collision of hydrogen atoms with hydrogen 

fluoride (and s ingly deuterium substituted variants of this system) 

have been studied in the exchange channel by coupled- channel quantum 

mechanical calculations using a realisti c (high barrier) potential 

energy surface. We have also investigated the effe c t oD the dynami c s 

of varying the barrier height of the potential energy surfa c e. 

In part II, we consider the characterization of low energy 

resonan c es in the collinear H +HZ and F + HZ(HD, DH, DZ) systems. 

A variety of characterization te chniques are used; the most useful 

proves to be the variation with energy of the eigenvalues of the col­

lision lifetime matrix. 

In part III, we develop the method of hyperspheri c al coordinates 

for the study of collinear reactive atom-diatomic molecule collisions . 

The method is tested for the H +Hz system, and is a pplied to a model 

system above the threshhold for collision-induced dissociation and to 

reactions in which a light atom (hydrogen) is transferred between two 

heavy ones. Systems of this type studied include I+ HI and Br + HCl; 

we als o consider some aspects of the dynamics in the Cl + HCl sys­

tem. We develop the formalism to extract the physical scattering 

wave fun c tion from the method and pre sent preliminary re suits of 

probability densitie s and prob ability current densities on the H + HZ 

system. We also consider the formul a tion of the method in the 

adiabati c representation and examine both numerically and analytical ­

ly the behavior of the coupling matri ces at large values of the 

propagation variable. Convergence properties of the method are 
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investigated in detail for the H + H and F + H systems. Quasi-
2 2 

classical tr a jectory c al culations have been used to help understand 

the results obtained and to determine the importanc e of quantum 

me chani ca! effects. 
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PART I 

COLLINEAR QUANTUM MECHANICAL STUDY OF THE 

REACTIONS H + FH, D + FH, and H + F D 
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INTRODUCTION 
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INTRODUCTION 

In this se c tion w e p resent the results of quantum mechanical 

coupled - channel calculations on the c ollinear systems 

H' + FH(v) ~ H' F(v' )+ H, H' + FH(v') 

D + FH(v) ~ DF(v') + H, D + FH(v') 

H + FD(v) ---+ HF(v ') + D , H + FD(v') 

Our interest in these systems is derived from two m a jor con ­

siderations. First, it is n ow recognized that the barrier h eight i n 

the exchange reaction in these systems is quite large (over 40 kc al / 

mole), whereas p revious collinear quantum mechanic al c a lculations 

assumed the barrier height t o be much s m aller ("' 1. 2 kcal /mol e). 

Thus, it is worthwhile to restudy these reac tions on a realistic poten­

tial e nergy surface. We use a mod e l surf a ce with a 40 k cal/mole 

barrier to exchange . Second, these processes h a ve been thought to 

b e a possible me chanism for removal of population inversions in the 

HF /D F chemical laser s ystem. A ccurate knowledge of the k inetics 

and dyna mic s of the HF / DF laser system is important i f one is to 

successfully understand (and model) its operation, and the c al cula­

tions performed may shed some light on these kineti c s. 

There are thr ee papers in this section. P ape r I. 1 examines the 

D + FH(v=O, 1, 2) and H + FD(v=O, 1, 2, 3) reactions on a high barrier 

(40 kcal/mole) potential energy surface. We are particularly intere s­

ted in the effe c tiveness of vibrational excitation in promoting reac ­

tion. We show that m any aspe cts of the dynamics of these rea ctions 

can be understood quite easily in terms of a one-dimensional model. 

P aper I. 2 presents results for both reactive and non-rea ctive 

p r oce sses on the 40 kcal/mole b a rrier surface for the H + FH(v) 

and D + FH(v ) s ys tems . A wide variety of dynamical properties of 

these systems, su ch as state-to-sta te transition probabilities, a c ­

tivation energies, and r e a c tion product state distribut ions. Non­

reac tive pro cesses are found to be the predomin a nt ones, and we 
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show that a number of aspects of the non-rea ctive dynamics are 

well understood in terms of the simple L a ndau-Teller model for 

vibrational-to-tran slational energy transfer. 

Paper I. 3 presents results for both reactive a nd non-reactive 

processes on six different potential energy surfaces, which h ave 

barrier heights to exchange of 1. 5, 5, 10, 20, 30, and 40 kcal / 

mole for the H + FH(v) and D + FH(v) systems. Three m ain topics 

are c onsidered: the relative rates and mecha nisms of v ibrational de­

a c tivation on the different surfaces, the effect of reagent vibra-

tional excitation on probabilities for chemical re a ction, in particular 

on the translationa l energy threshhold for rea ction and the vibrational 

state distribution of the reaction product, as a fun ction of the height 

of the barrier in the surfa c e, a nd the rela tive importanc e of quantum 

mechani c al resonances for the different potential energy surfaces 

and the two isotopic systems . 
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1.1 QUANTUM MECHANICAL COLLINEAR CALCULATION 

OF THE REACTIONS D + FH(v=O, 1, 2) --+ DF(v') + H 

AND H + FD(v=O, 1, 2, 3) ~ HF(v') + D ON A 

REALISTIC POTENTIAL ENERGY SURFACE 
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QUANTUM MECHANICAL COLLINEAR CALCULATION 

OF THE REACTIONS D + FH (v = 0, 1, 2)- DF (v') +H AND 

H + FD v = 0 1 2 3) - HF v' + D ON A REALISTIC 

POTENTIAL ENERGY SURFACE* 

Jack A. KAYE,** John P. DWYER,:f and Aron KUPPERMANN 

Arthur Amos Noyes Laboratory of Chemical Physics,* 

California Institute of Technology, Pasadena, California 91125, USA 

Received 

Collinear coupled channel quantum mechanical calculations have 

been performed on the title reactions on a potential energy surface with 

a 40 kcal/mole barrier toe xchange. This barrier height is close to 

that predicted by ab initio calculations and suggested by experiments. 

The relative effectiveness of reagent vibrational and translational exci-

tation to promote reaction is considered. A one-mathematical dimen­

sional (1MD) model for these reactions is constructed and is shown to 

work very well for the D + FH reaction at high temperatures, and less 

well for that reaction at lower temperatures as well as for the H + FD 

reaction. Possible reasons for the breakdowns of the 1MD model are 

discussed. 

* This work was supported in part by a contract (No. F49620-79-C-0187) 

from the Air Force Office of Scientific Research. 

** Work performed in partial fulfillment of the requirements for the 

PhD degree in Chemistry at the California Institute of Technology. 

:f Present address: Supreme Court of the United States, Washington, 

DC 20543, USA. 

*contribution No. 
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1. Introduction 
~ 

The exchange reactions between hydrogen or deuterium atoms 

and hydrogen halides 

H' (D) + HX - H' X(DX) + H (1) 

(X = F, Br, Cl, I) have been among the more studied simple chemical 

reactions [1 ]. These reactions compete with the H(D) atom abstraction 

process 

H' (D) + HX - HH' (HD) + X . (2) 

One of the goals of studies of these systems is the understanding of the 

relative importance of the exchange and abstraction channels. 

Interest in reactions (1) and (2) has been heightened by the recog-

nition of their possible importance in collisional deactivation of vibra­

tionally excited HX in HX chemical lasers , especially when X = F [2] . 

State-to-state rate constants for processes of the type 

H' (D] + HX(v) H' X(v' < v) (DX(v' < v)] + H 

H' H(v") (HD(v'')] + X 

(3a) 

(3b) 

are necessary if one is to successfully model the kinetics of HX lasers. 

The exchange reactions (1) have been extensively studied by 

classical trajectory calculations as well as collinear quantum mechanical 

calculations for X = F (3], Cl (4], and Br [5]. Interest has been greatest 

in the H(D) + FH and H(D) + ClH systems, which have the smallest num­

ber of electrons and are thus candidates for the calculation of accurate 

potential energy surfaces by ab initio techniques. Such calculations 

have been performed on the HFH and HClH systems, and the results 

suggest the existence of large barriers to exchange, in excess of 
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40 kcal/mole for HFH and 20 kcal/mole for HClH [6]. Recent experi­

ments on these systems appear to confirm the existence of a high 

barrier to exchange [7]. 

Most of the early theoretical studies of these systems were 

carried out on potential energy surfaces with a small barrier to 

exchange, and therefore cannot be expected to give even qualitatively 

correct behavior for many important dynamical properties [8]. These 

surfaces were normally obtained by using global semi-empirical 

potential energy functions, such as the extended LEPS form [9], which 

were obtained by optimizing agreement between quasi-classical tra­

jectory calculations and experiments on the reverse of reaction (2). 

In particular, in previous quantum mechanical studies of the HFH 

exchange reaction, both collinear [10] and coplanar [11 ], potential 

energy surfaces with barriers to exchange of 1. 2 kcal/ mole and 1. 8 

kcal/mole, respectively, were used. 

In this work, we report the results of collinear quantum mech­

anical calculations of the reactions 

D + FH {v) 

H + FD (v) 

DF (v') + H 

HF (v') + D 

(4a) 

{4b) 

on a potential energy surface with a barrier to exchange of 40 kcal/mole. 

We will be particularly concerned with the effects of reagent vibrational 

excitation on the rate of reactions (4a, b) as this is a quantity which is 

obtainable by experiment, and has been determined for reaction (4a) [7b]. 

The ability of a one-mathematical dimension (1MD) model to predict 

and explain the results will also be considered. 
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2. Potential Ener Surface and Com utational Model 

The potential energy surface used in these calculations is of the 

rotating Morse-cubic spline type, which has been described elsewhere 

[12]. In its application to this system, we have constrained the energy 

level at the bottom of the local Morse oscillator well as a function of 

the swing angle 8 (defined in ref. [12]) to be a Gaussian, with a maxi­

mum at 8 = w/ 4 radians. The saddle point occurs at RHF = R FH = 

1. 97 bohr. The values of {3( 8) were determined by fitting to the exchange 

channel portion of the semi-empirical (extended LEPS form) Muckerman 

V FH2 potential energy surface [13]. Thus, the position of the minimum 

energy path on this surface is identical to that on the Muckerman V sur­

face. Note that the saddle point on this surface occurs at a shorter RHF 

distance than that predicted by ab initio calculations. A fuller descrip­

tion of the potential energy surface will be given in a forthcoming 

paper [14 ]. This surface is plotted for the D + FH reaction in the 

mass-weighted Delves coordinate system [15] in fig. 1. 

A vibrational correlation diagram [16] for this surface, also 

showing the potential along the minimum energy path, is shown in fig. 

2. The potential energy V n (s) along each curve (except, of course, for 

that showing the minimum energy path) is the sum of the potential 

energy along the minimum energy path Vmep(s) and the appropriate 

eigenvalue Ev(s) of the potential formed by taking a cut perpendicular 

to the minimum energy path (in Delves coordinates) 

(5) 

where s is the distance along the minimum energy path measured from 
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the saddle point, also measured in Delves coordinates. The eigenvalues 

E {s) are determined numerically from the potential by a finite difference v 

procedure [17~. 

The numerical calculations were performed using the coupled­

channel method of Kuppermann, which has been described previously 

[18]. Between 20 and 24 basis functions were used in the calculations, 

and unitarity of the open part of the scattering matrix ~ was obtained to 

with in 3% for all energies used; for most energies it was obtained to 

better than 1%. Calculations were carried out to energies up to 2. 45 eV 

above the isolated HF (v = 0) energy level. At the highest energies 

studied, there were six open HF states and eight open DF states. State­

to-state rate constants were calculated from the reaction probabilities 

P vv' , which are a function of the reagent translational energy Etr by 

the expression 

00 

k (T) = (211' kT)-i f p (Etr)e-Etr/ kTdEtr 
vv' ll a, be vv' ' (6) 

0 

where #J. b is the reduced mass of the a, be collision pair. The exact a, c 
method of evaluating this integral has been discussed by Truhlar and 

Kuppermann [19]. 

Because of the large barrier to reaction, probabilities of reaction 

are extremely small(< 10-12
) at small values of Etr. As the collinear 

reactive scattering program is written in single precision (for use on 

an IBM 370/ 158 computer), we do not entirely trust the exact magnitude 

of these very small probabilities. Hence, we restrict the temperature 

range of our rate constant calculations to those temperatures where the 

major contribution to the integral in eq. {6) comes from energy ranges 
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where the reaction probabilities are larger and thus more reliable. 

3. Results and Discussion 

Reactions (4) only become probable in this system for fairly large 

values of the translational energy. In figs. 3 and 4 , respectively, we 

plot as a function of Etr the total reaction probability for reactions (4a) 

and (4b}, respectively, for a few of the lowest reagent vibrational states. 

While there are some strong similarities between the two figures, such 

as the large threshold to reaction, the relative magnitude of the threshold 

lowering with vibrational excitation, and the approximately parallel 

nature of the probability versus energy curves in the region of greatest 

increase of probability with energy, there are some major differences, 

however. 

In the immediate vicinity of and slightly above the threshold energy, 

there are major differences in figs. 3 and 4 for vibrationally excited 

reagents. For reaction (4a), for the D + FH (v = 1 , 2) reaction, the 

probability of reaction rises smoothly and rapidly in an s-shaped curve 

from 0 to 1, while for reaction (4b}, for the reaction H + FD (v = 1, 2), 

there exist broad shoulders in these curves. It can be seen by examining 

state-to-state reaction probability versus energy curves that the should­

ers seen in fig. 4 are due to reactions of the type 

H + FD(v) - HF(v - 1) + D . (7) 

This is shown graphically for the v = 1 case in fig. 5, where state-to­

state reaction probabilities P~, P~ , and P~ are shown as a function of 

Etr. It is worth noting that at higher translational energies, P~ 

becomes substantially smaller than P~ and P~. 
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One other difference observed between figs. 3 and 4 is that at high 

translational energies, the probability of reaction (4a) stays near unity, 

while that of reaction (4b) is smaller than unity and is highly irregular. 

The vibrational correlation diagram in fig. 2 provides a useful 

way of looking at the DXH systems. A number of conclusions may be 

drawn from a quick examination of this diagram for the DFH system. 

First, because of the large barrier, there are no wells in the vibra­

tionally adiabatic correlation diagram, at least for the first few levels. 

As wells in this diagram have been shown to be related tor esonances 

in reaction probabilities [16], we can conclude that in the energy range 

considered here there should be no resonances, anq, indeed, none has 

been observed in the dynamics. Second, because of the large difference 

between HF and DF vibrational frequencies, the highest point on the 

vibrationally adiabatic correlation diagram moves into the HF reagent 

channel, especially for vibrationally excited reagents. Thus, one may 

interpret, within a vibrationally adiabatic model, reaction (4a) as having 

its saddle point on the reagent side, while reaction (4b) has its on the 

product side. Third, the vibrational frequencies at and near the saddle 

point are fairly large ; hence the magnitude of the vibrationally adiabatic 

barriers decreases with energy by an amount that is substantially 

smaller than the vibrational energy spacing of HF and DF. Thus, for 

example, the translational energy threshold for reactions (4a) should 

decrease by 0. 21 eV on going from the ground to the first excited level 

of HF and 0. 17 eV on going from the first to the second excited state of 

HF; the differences in vibrational energies between these levels are 

0. 49 and 0. 46 eV, respectively. The lowering in threshold energies 
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(defined as the energy at which the probability of reaction first reaches 

0. 02) for reaction (4a) are 0. 22 and 0. 17 eV, respectively. Thus, the 

simple one-dimensional vibrationally adiabatic picture provides a good 

model for the D + FH system at low translational energies. 

For the H + FD reactions one can interpret the low energy non­

adiabatic reaction as occurring due to a crossing from the DF(v) curve 

to the HF(v- 1) curve. If this crossing occurs on the DF side of the 

saddle point (as seems reasonable from examination of fig. 2), the 

apparent barrier to reaction should be much smaller than to vibration­

ally adiabatic reaction. This qualitatively explains the 0. 25 eV separa­

tion in fig. 5 between the center of the ~ flat maximum and that of the 

~maximum. 

Rate constants for reactions (4a) and (4b) are plotted in fig. 6 as 

a function of temperature in the form of an Arrhenius plot (log of the 

rate constant versus inverse temperature). Such plots are frequently 

linear, over a broad temperature range, and linearity or near-linearity 

is seen in all of the plots · shown. In the usual way, Arrhenius pre­

exponential parameters (A) and activation energies (E a) are obtained 

for the linear region of these curves, and the resulting data are sum­

marized in Table 1. The vibrational energy associated with each 

reagent level is also included in Table 1 for comparison. 

The rate constants obtained are quite small in all cases; by 

comparison, the gas kinetic rate constant kgk (that when every 

collision results in reaction) is given by the formula 

1 

= 2. 69 x 103 T2 em ·molec- 1 s ec- 1 (D + FH) (6a) 
3 .!. -1 -1 = 3. 71 x 10 T 2 em· molec sec (H + FD). (6b) 
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Even at the highest temperatures considered, the rate constants 

are five to seven orders of magnitude less than gas kinetic. Thus, the 

large barrier and the resulting large threshold for reaction produce 

small rate constants. 

The activation energies Ea shown in Table 1 decrease as reagent 

vibrational excitation is increased. The lowering of the activation energy 

with reagent vibrational excitation is less than the amount of internal 

energy in the vibrationally excited reagents, however . Recall that a 

similar behavior was observed for the lowering of the threshold energy 

with reagent vibrational excitation. The decrease in activation energy 

with reagent vibrational excitations is, however, greater than the 

corresponding decrease in the vibrationally adiabatic barrier height . 

This difference can be explained by the dominance of vibrationally non­

adiabatic reaction over vibrationally adiabatic reaction in the energy 

region where the reaction probabilities are small ( < 10-
2 

). This energy 

region only makes a substantial contribution to the integral in eq. (5) 

at fairly low temperatures. 

In order to further understand the applicability of the one­

dimensional vibrationally adiabatic model, we have calculated trans­

mission coefficients for the three lowest vibrationally adiabatic barriers 

for reaction (4a) as a function of translational energy. These calcula­

tions, involving a numerical solution of the one-dimensional Schrodinger 

equation, were performed with the method described by Truhlar and 

Kuppermann [20]. We then used these transmission coefficients (equiv­

alent to reaction probabilities in the coupled-channel calculations) to 

calculate rate constants for the D + FH (v = 0, 1, 2) reactions, and the 
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results (labeled lMD for one mathematical dimension) at 500° K and 

1000° K are given in Table 1, along with those obtained in the full two 

mathematical dimension (2MD) coupled-channel calculation. For 

comparison, the gas kinetic rate constants are also included. 

At 1000° K, the results of the lMD and 2MD calculations agree 

quite well (within 5%), while at 500° K, the agreement is less satisfac-

tory, becoming worse as one goes from HF (v = 0) to HF (v = 2). This 

lack of agreement when the HF reagent is vibrationally excited is due 

to the above mentioned dominance of vibrationally nonadiabatic reactions 

at low translational energies. 

The usefulness of the vibrationally adiabatic !-UOdel for the DFH 

system makes it worthwhile to well characterize the potential energy 

surface in the region at the saddle point; in particular , accurate values 

of the local vibrational frequencies (i.e., the symmetric stretch at the 

saddle point) are important, as these, along with the actual barrier 

height itself, combine to give the vibrationally adiabatic correlation 

diagram shown in fig. 2 and found to be so useful. 

A word of caution must be expressed concerning the applicability 

of a collinear model to reactions (4). Ab initio calculations by Wadt 

and Winter [6] suggest that the lowest barrier to exchange occurs not 

for a collinear H- F-H configuration, but rather for one with a 106° 

bond angle, and further that the barrier height is nearly independent of 

the bond angle. Thus, it appears that an accurate dynamical treatment 

of the exchange reaction would require three physical dimensions (3D). 

A 3D calculation on this system would have the advantage of allowing 

one to directly compare the importance of the abstraction and exchange 
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channels. Such a calculation would require a good semi-empirical 

potential energy surface incorporating a large barrier to exchange. 

A method for constructing such a surface has been developed by Baer 

and Last [21 ], and has been applied to all XH2 systems. Their FH2 

surface has a reasonably high barrier (33. 5 kcal/mole), but has much 

stronger dependence of the barrier height on the H-X-H bond angle than 

that predicted by Wadt and Winter [ 6]. 
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4. Conclusions 
~ 

Reaction probabilities and rate constants for reactions (4a) and 

(4b) have been obtained on a realistic potential energy surface by a 

collinear quantum mechanical calculation. Reaction has been shown to 

set in at large values of the translational energy ( > 1 eV) for reagents 

in their first three vibrational states. Vibrational excitation has been 

shown to promote the reaction, although the decrease in the activation 

energy is less than the internal energy added to the reagents on vibra­

tional excitation. A number of aspects of the dynamics, such as the 

translational energy threshold for reaction and the importance of vibra­

tionally nonadiabatic processes near the threshold region for reaction 

(4b), have been shown to be explained by use of vibrationally adiabatic 

correlation diagrams. The overall rate of reaction (4a) has been shown 

to be reproduced quite well at high temperatures by a lMD model based 

on these vibrationally adiabatic correlation diagrams. The results 

obtained help demonstrate the importance of an accurate knowledge of 

the potential energy surface in the immediate vicinity of the saddle point. 

We thank Ambassador College for the generous use of their com­

putational facilities for the scattering calculations. Additional calcula­

tions were carried out at the Dreyfus-NSF Theoretical Chemistry Com­

puter at Caltech, which is funded through grants from the Camille and 

Henry Dreyfus Foundation, the National Science Foundation (Grant No. 

CHE78-20235), and the Sloan Fund of the California Institute of Tech-

nology. 
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Table 1 

Arrhenius parameters for rate constants for reactions (4a, b) 

ln A Ea Internal 
( -1 Energy v T (°K) em· molec (kcal/ of Reagent 

-1 sec ) mole) (kcal/ mole) 

A. D + FH(v) - DF(v' = all) + H 

0 500-950 11.8 36.8 5.8 

1 450-700 9.3 28.3 17.0 

2 450-600 4.8 18.0 27.7 

B. H + FD(v) - HF(v' = all) + D 

0 550-1000 11. 9 38.6 4.2 

1 450-800 9.4 30.3 12.4 

2 450-700 6.8 22.8 20.4 

3 450-700 4.5 16. 5 28.1 
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Table 2 

Rate constants for the reaction D + FH(v) - DF(v' = all) in units 
-1 -1 

em· molec sec 

T (° K) v = O V = l v=2 

2MD 

500 1.16 (-11) 3.91(-9) 8.42(-7) 

1000 1. 29 (-3) 1. 61 (- 2) 1. 07 ( -1) 

lMD 

500 9. 80 (-1 2) 1.43 (-9) 8. 28 (-8) 

1000 1. 23 (-3) 1.57 (-2) 1. 07 (-1) 

Gas Kinetic 

500 6. 02 (4) 6. 02 (4) 6. 02 (4) 

1000 8. 51 (4) 8. 51 (4) 8. 51 (4) 
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Figure 1. Contour plot of the potential energy surface for the reaction 

D + FH - DF + H in Delves scaled coordinates. The solid curves are 

equipotential contours at the total energies measured with respect to 

the bottom of the HF (DF) wells. The dashed line is the minimum energy 

path. The cross indicates the location of the saddle point. 

Figure 2. Vibrationally adiabatic correlation diagram for the reaction 

D + FH(v) - DF(V) + H, v = 0, 1 , 2. The vertical scale is an energy 

scale. The lowest curve is the potential energy along the minimum 

energy path Vmep(s) as a function of the distance s along the minimum 

energy path from the saddle point. Positive values of s take one towards 

separated D + FH, negative values of s towards DF + H. The higher 

curves are plots as a function of s of the potential V (s) defined in eq. v 

(5) of the text for v = 0, 1, 2. 

Figure 3. Probabilities P~+FH(v) of the reactions D + FH(v) - DF(v' = 

all) + H for v = 0, 1, 2 as a function of reagent translational energy Etr. 

The solid line is for v = 0, the dashed line is for v = 1, and the dotted 

line is for v = 2. 

Figure 4. Probabilities P~+ FD(v) of the reactions H + FD(v) - HF(v' = 

all) + D for v = 0, 1, 2, 3 as a function of reagent translational energy Etr. 

The solid line is for v = 0, the dashed line is for v = 1, the dotted line 

is for v = 2, and the dashed line is for v = 3. 

Figure 5. State-to-state reaction probabilities ~+FD(1)-HF(v' )+D of 

the reaction H + FD(v = 1)- HF(v') + D for v' = 0, 1, 2 as a function of 

reagent translational energy E tr. The dashed line is for v' = 0, the 
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solid line is for v' = 1 , and the dotted line is for v' = 2. While the 

HF(v' = 3) product channel is energetically accessible in this energy 

range, the probability of reacting into it is less than 1% in this energy 

range, and is not shown. 

Figure 6. Arrhenius plot of rate constants for the reactions D + FH(v) -

DF(v' = all} + H (dashed line) and H + FD(v) - HF(v' = all)+ D (solid line) 

over a temperature range from 450 to 1500° K. Where the curves are 

not continued to the highest temperatures, the scattering calculations 

were not carried out to sufficiently high energy for the integrand in eq. 

(6) to become sufficiently small. (a) H + FD(v = 0), (b) D + FH (v = 0) , 

(c) H + FD ( v = 1), (d) D + FH ( v = 1) , (e) H + FD ( v = 2) , (f) D + FH 

(v = 2), (g) H + FD (v = 3). 
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I. 2 COLLINEAR QUANTUM MECHANICAL CALCULATIONS 

ON THE SYSTEMS HF(v) + H AND HF(v) + D ON A 

REALISTI C POTENTIAL ENERGY SURFACE 
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Colline ar Quantum Mechanical Calculations on the Systems 

HF(v) + H and HF(v) + D on a Realistic Potential Energy Surface .a) 
b) c ) 

Jack A. Kaye , John P. Dwyer , and Aron Kuppermann 

Arthur Amos Noyes Laboratory of Chemical Physics, d) 

California Institute of Technology, Pasadena, California 91125 

(Received 

The rates of the reactions HF(v) +Hand HF(v) + D as well as 

those of processes resulting in vibrational deactivation of HF have 

been studied by collinear quantum rnechanical calculations on a 

reali stic potential energy surface. The surface used has a 

40 kcal/mole barrier to exchange, far greater than those used in 

previous calculations and in the vicinity of that suggested by 

ab initio calculations and recent experiments . It is found that 

vibrational deactivation of H.,..... in this exchange channel occurs 

almost entirely by non- reactive single -quantum processes, and 

the rate of which varies weakly with reagent vibrational state. 

The rate of chemical reaction, however, is enhanced dramati c al-

ly by reagent vibrational excitation, although vibrational energy 

lowers the threshhold for reaction by far less than a vibrational 

quantum of energy. The relationship between vibrational and 

translational energy in pronwting reaction will be discussed, as 

will the relationship of the results of these calculations to 

experimental data. 
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I. INTRODUCTION 

A knowledge of accurate rate constants for the rea c tions of vibrational ­

ly excited hydrogen flu o ride (HF) m ole cules w i th those atoms and mole­

c ules p re sent in the HF laser system ( 1) (F 
2

, H
2

, HF, H, F) is i m?ortant 

if one is to ac curate ly mod e l the sys t em's behavior . In the HF las e r sys ­

tem, vibrati onally ex cited HF is produced by on e of the highly exoergi c 

rea c tions (2) 

F + H
2 

--+ HF(~3) + H 

H +F
2

--, HF(v~ 1 0)+F 

(1 a) 

( 1 b) 

These pumping rea c ti ons have received a g r e at deal of attention, both 

expe rimentally (3) and theoretically (4) . Of the deacti vating proc esses 

present in the H F laser, the best studied are those due t o ine l astic col­

lisi ons of vibrationally excited HF w ith other diatomi c s ( g round state HF 

and H
2

) (5) . Collisions of v i b r at i onally excit ed HF and H o r F atoms 

have re c eive d les s a ttention. A mong the few studies of these processes 

in clude the experiments of B o tt and Heidner (6) and Bartoszek, et al. (7), 

and the quasi - classical tr aject ory c alculati ons of Wil k ins (8 ) , Thompson 

( 9 ), and Thomrna rs on a nd Berend ( 10). Re c ently, Schatz a nd 

Kuppe rmann ( 11) have studied the HF + H system (a nd its D- sub stitu­

ted counterparts) via a collinear quantum-me chanica! c al culat i on, 

although the barrier to rea c tion 1n the potential energy surface used in 

these c al culations is n ow known t o b e unre asona bly low . Baer ( 12) 

has performed a coplanar quantum mechani c al c al c ulation on the HF 

+ H reac tion, als o on a surf a c e with an un r e as onably l ow b arrie r . 

In thi s paper , we r eport the results of collinear quantum rne chani c al 

cal c ulations on the systems HF(v ) +Hand HF(v) +D . We conside r those 

pro c esses, both r eactive and non -reactive, r esponsibl e for v i brati onal 

d eactivation of HF, whi c h n>ay be represent ed by the reactions 

HF(v) + H' -----7 H F(v') + H' 
--t H + FH 1 

( v ' 1 
) 

(2a) 
( 2b) 
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HF(v) + D~ HF(v') + D 

----) H + FD(v") 

(3a) 

(3b) 

The potential energy surface used in these calculations has a barrier to 

exhange of 40 kcal/mole. This is in line with recent ab initio calculations 

(13) as well as the definitive experiments of Bartoszek, et al. (7). 

No attention will be given t o deactivating processes in the abstraction 

channel 

H' + HF(v)~H (v') + F 
2 

~H' + HF(v'') 

(4a) 

(4b) 

in this paper, although this channel is likely the one in which much of the 

deactivation of HF(v~3) occurs . 

We focus in this work on the relative rates of vibrational deactivation as 

a function of the initial state of the HF r eagent, the fraction of deactivation 

occurring by reaction (proces ses 2b and 3b, respe c tively in the HFH and 

DFH systems), the relative i mportan c e of single and multi - quantum deacti ­

vating processes, and the relative ef fe c tivene s s of translational energy in 

promo ting r eaction. 

A brief outline of this pape r is as follows. In section 2, we consider 

the potential energy surface used in these cal culations and the reasons for 

which we chose to use i t . In section 3, we very briefly dis c uss sorne of 

the important aspects of the calculati on. In se c tion 4, we present our re­

sults, which will be dis cussed in se c tion 5 . In section 6 we summarize 

by reviewing their significan ce . 
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II. POTENTIAL ENERGY SURFACE 

The r e has been a great deal of interest over the last de c ade in deter­

mining the nature of the potential energy surfac e for reactions 2b and 3b. 

A large number of semi-empirical global potential energy surfaces, mainly 

of the extended LEPS type ( 14), have been developed for reaction 1a ( 15). 

The parameters for these surfaces were normally chosen to ma..ximize 

agreement between the results of quasi-classical trajectory c alculations 

and expe riments on reaction 1a (quantities compared are usually rate con ­

stants and distributions of product vibrational and rotational states). 

Since these surfaces are global, the form of the exchange channel is de ­

termined by this optimization procedure (whi ch has taken place in the 

abstraction channel). · Most of these surfaces have a very small barrier t o 

exchange, for example 1. 2 kcal/mole for the well-known Muckerman V 

surface (4d). Su ch low barrier surfaces have been used in m o st dynami c al 

calculations performed so far on reactions 2 and 3 . A notable exception is 

the cal culation done by Thompson (9) , in which a surface with a barrier to 

exchange of 28.6 kcal/mole was used. 

Four high quality ab initio calculati ons on the potential energy surface 

of reactions 2b and 3b yielded barrier heights of 49 .0 (13a), 44.9 (13b), 

47.6 (13c), and 48.3 (13d) kcal/mole, however, and the expe riments of 

Bartoszek, et al. (7) seem to securely resolve this question in favor of a 

high barrier to exchange. In this calculation, therefore , we use a potential 

energy surface with a barrier to exchange of 40 kcal/mole, which seems to 

be within the range of uncertainty of the ab initio cal culations . 

The potential energy surface used in these calculations is of the rota-

ting Morse - cubic spline type (16), made slightly less general by requiring 

that the potential energy along the minimum energy path as a function of 

the angle 9 in reference 16 to be given by a Gaussian: 
2 

D(6 ) = D(&=O)- (A+ B ':' exp(-C':' (Tr/4 -9) )) (5) 

The parameters have values A= 0 . 0168 1 kcal/mole , B = 39 .983 kcal/mole, 
-1 

and C = 33.879 radians . 13(8) and R. (9 ) are defined in reference 16, and 
eq 
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are obtained by cubic spline interpolation between the values given for 

the supplied points listed in Table 1. The profile of the barrier height 

vs. reaction coordinate (distance along the minimum energy path from 

the saddle point as calculated in D e lves mass-s c aled coordinates (17)) 

for H + FH is shown in figure 1, along with the asymptotic eigenvalues for 

HF and DF. A contour plot of the potential energy surface for H + FH 

in Delves coordinates is shown in figure 2. 
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III. DETAILS OF THE CALCULATI ON 

Numerical solution of the Schrodinge r equation for these systems 

was performed using the coupl ed - channel method of Kuppermann (18), 

which has been described elsewhere. This technique has previously been 

applied to a number of systems , including H +HZ and its isotopically 

substituted analogue s (ZO), F +HZ (4d), F + DZ (Z1), H + FH (on a low 

barrier surface) (11), and Be + FH ( ZZ) . ZO - 24 basis fun c tions we re used 

in the calculation, although no more than seven were open asymptotically 

at any of the energies studied. 

Reactions Za and 2b were studied in the energy range up to 2. 94 eV 

above the zero-point energy of HF, while reactions 3a and 3b were studied 

up to Z. 4 5 eV above the HF zero-point energy. The smaller range in the 

latter c ase was due to the smaller vibrational requency of DF, which re­

sults in more open channels at a given energy than in the HF system 

(energy levels of isolated HF and DF are shown in figure 1). In all 

cal culations reported here , flux was conserved to better than 3 o/o ; for 

most e ner gies it was conserved to better than 1 o/o . 

From the transition probabilities obtained in these calculations, 

state -to- state rate constants were calculated by evaluating the usual 

integral -- 1 /2 J tr tr tr k .. (T) = (Zrrj4: b kT) P .. (E )exp(-E /kT)dE 
lJ a, c 0 lJ 

P . . is the probability for the transition from state i to state j, 
lJ 

(6) 

where 
tr 

E is the relative translational energy of the collision, and ~ b is the 
a, c 

reduced mass of the a, b e collision pair . 
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IV. RESULTS 

We have obtained information on many aspects of the dynamics of the 

collinear HFH and DFH systems and will try to present some of the most 

important features of our results in this section. In particular, we will 

consider in this section and the ensuing discussion section questions such 

as the following: 

!)What are the relative rates of deactivation of the vibrationally ex­

cited HF, and how do they vary with initial reagent excitation? 

2) What is the relative importan c e of rea c tive and non-reactive pro ­

cesses? 

3) What is the relative importance of single and multi - quantum 

transitions? 

4) How do all of thes e quantities vary with temperature? 

5) How do the roles of translational and vibra.tional energy in p romo­

ting reac tion compare? 

6) How do the results obtained for non -reactive processes compare 

with those predicted from simple m odels, such as the Landau­

Teller model (23)? 

7) Vvhtt is the natur e and magnitude of the isotope effect on going from 

the HFH to the DFH system? 

A. H + FH 

Rates for state-to-state vibrational deactivation have been calculated 

for tempe rature s in the range 200 K ~T ~ 1000 K . Values of the rate 

constants at three temperatures (300, 650, 1000 K) are contained in 

Table 2. For purposes of comparis on, we also include in Table 2 the 

"gas kinetic" rates for the H + FH system at these three temperature s. 

This rate is that obtained if a transition occurred with unit probability at 

all energies; hence, it represents the surn of all possible state-to-state 

rate constants at a given temperature. It is seen that at all three tempera­

tures, the total rates of deactivation are less that 1 o/o of the gas kinetic 

rate. Thus, vibrational deactivation is a very unlikely process . 
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We display total rate constants for vibrational deac tivation, both 

reactive and non-rea c tive, as a function of initial HF quantun'1 number 

in figure 3. Three important features of the dynan'1ics are clearly evi ­

dent on this plot: 

1) For all initial quantum states at all ternperatures, non-rea ctive 

deactivating processes are much more likely than reactive pro­

cesses, and account for, to a good degree of approximation , all 

the deactivatin g processes. 

2) The variation of the rate of deactivation occurring by non-reactive 

processes with initial HF quantum number is far less than that of 

the reactive processes . 

3) The variation of the rate of deactivation occurrin g by non-reacti ve 

processes with ten1perature is far les s than that of the rea ctive 

processes. 

An additional difference between the dynan1ics of dea c tivating pro-

cesses in non-reactive collisi ons from those occur ring in rea c tive 

ones may be seen in Table 2. Specifically, in non-rea c tive colli sions, 

vibrational deactivation occurs overwhelrr1ingly by single - quantum 

transitions, while in reactive collisions , deac tivation by multi-quantum 

transitions is favored. Further, while the dominan ce of non-rea c tive 

deactivating processes by single -quantum transitions occurs over the 

whol e tern?erature range considered, in reactive deactivating pro:::esses, 

as temperatu r e i ncreases, the single -quantum processes be come more 

important than they are at lower ten'1peratures. This may be seen 

graphically in figure 4, in which f o ur state-to-state rate constants 
N N R R 

(k
20 

, k
21 

, k
20 

, k
21 

, where the super scripts N and R refer to 

non- reactive an d reac tive proc esses, respectively) are plotted vs. 

temperature as Arrhenius p l ots , that is, ln k vs. 1/T. We will con­

sider in some detail the vibrational state distribution of the products 

of reactions 2b and 3b later on. 

In c onsidering the temperature dependen c e of the rate constants 
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obtained, it is frequently useful to make Arrhenius plots (defined above) 

of the rate c onstants as a function of temperature. It is known that for a 

wide variety of chemical reactions, such p lots yield straight lines, al­

though curved Arrhenius plots are also common (24). In the systems 

studied, it is frequently seen that Arrheniu s p l ots for state-to-state 

rate constants are linear at high temperatures (~ 7 00 K ), but are non­

linear at lower temperatures. Frequently, they have linear re gi ons at 

high (700 - 1000 K) and low temperatures (200 - 400 K), but are curved in 

between. 

Reactions yielding linear Arrhenius plots obey the relationship 

k = Aexp(-E /k T) 
a b 

where A is the Arrhenius pre-exponential fa c tor, E is the activation 
a 

(7) 

energy for the reaction, and kb is Boltzmann's constant. These quanti-

ties correspond to the y intercept and slope of th~ Arrhenius plots , re­

spe c tively. For ground vibrational state reagents, the activation energy 

of a reaction is usually fairly close to the barrier h e i ght to the r eaction 

in the potential energy surfa c e; when the reagents are vibrationally exci­

ted, it is frequently less. We examine plots of activation energies vs . 

initial quantum states for n-quantum non-rea c tive and reactive deac tiva-

ting processes in figures 5 and 6, respe ctively. 

In figure 5, it is seen that there is no well-defined relationship 

between the activation energies for the non- reactive processes and 

reagent vibrational state. There does seem to b e a cle ar difference in 

the magnitudes of the activation energies for deactivation from v = 4 and 

5 and those from v ~ 3. Further, for deactivation from the higher vibra -

tional state, the activation increases drastically for large multi-quantum 

transitions. Much more regular (and different) behavior is observed in 

figure 6, in which we consider a c tivation energies for reactive dea ctiva­

ting processes. In this case , one may clearly see that the activation 

energies decrease substantially with reagent vibrational excitation, and 

in general, de c rease as one goes from single-quantum to multi-quantum 
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transitions. This is another example of differing dynamics between non­

reac tive and r eactive collisions. This subject will be further explored 

later on . 

Because of the large barrier to exchange (40 kcal/mole) in the 

potential energy surface used in these calculations, it is reasonable that 

reaction should only occur at high translational energies. This may be e 

easily seen in figure 7, in which the total probability of r e a ction P R is 
v 

plotted vs . translational energy for initial reagent vibrational states 

v = 0-3. Reaction becomes appreciable at successively smaller values of 

the trans lational energy as the vibrational level of the HF reagent is 

increased. The decrease in translational energy requirement for rea c ­

tion threshhold is in the vicinity of 0.15 - 0. 20 eV per vibrational quantum, 

which is substantially smaller than the vibrational quantum of 0. 45 - 0. 4 9 

eV. This difference will be considered more fully later . It is also 

evident that as the initial HF vibrational state is increased, the probability 

for reaction vs. translational energy curve becomes more irregular, not 

increasing smoothly to one as the v = 0 curve does. 

In studying the dynamics of the reactive processes in general, it is 

worthwhile to consider the distribution of product vibrational states, for 

deactivating, vibrationally adiabati c (involving no change in quantum 

number) and exciting (involving an in c rease in the quantum number) pro-

cesses. We conside r son1e of these distributions for the HF reagent in 

its v = 1 and v = 2 states at differing translational energies in figures 

8 and 9, 

given in 

respectively . In these figures, the product state distribution is 
R 

te rn1s of F 1 , the fraction of rea ction products going into the 
vv 

product state v' 

F 
vv' 

R 
= 
~max 

~· =o 
R 

p vv' 

where v is the maximum quantum number permitted by energy con -
max 

(8) 

servation. It is seen that at lower translational energies (but high enough 
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for a large probability for reacti on), vibrationally adiabatic reaction is 

far more likely to occur than either deactivating or exciting reaction. 

This preference for vibrational adiabaticity decreases as translational 

ene rgy increases. At the highest translational energies considered, the 

distribution of product states is fairly flat for v = 2 reagent and shows 

some evidence of bimodality for v = 1 reagent. 

One good measure of the distribution of product states is the average 

fra ction of available energy going into product vibration, which is defined 

by the formula 

v 
~maxpR 

v'=O vv' Ev' 

(Etr + Ev~max 
v'=O 

R 
p I 

vv 

where energies are measured with respect to the. bottom of the product 

(9) 

well. This quantity is displayed in figure 10 for the H + FH(v-!=3) reac ­

tions. No data are presented for the v= 4 and 5 initial reagent states 

be cause the calculations were not carried out to sufficiently high energy 

for there to be appreciable reaction. Lines are drawn to represent the 

value this quantity would have if all reac tions proceeded adiabatically 

(with no change of quantum num~e r). For v = 0 and v = 1 reagents, at 

low translational energies (but still high eneough for appreciable reac ­

tion), this quantity is fairly close to that expected if all reaction pro­

ceeded adiabatically, but at higher translational energies, it increases. 

Thus, at high translational energies, vibrational excitation is more likely 

than deactivation in reactive collisions. For v = 2 and v = 3 reagents, 

the calculated points lie below the lines; hence, in the energy range con­

sidered, the net effect of the reactive collisions is a deactivating one. 

B. D + FH 

In considering the deactivation processes in this system, we have 

elected to look mainly at the processes which represent deactivation in 

an "absolute quantum number" sense, that is, for reactive deactivating 
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processes, only those of the type 

D + FH(v} ---7 DF(v'< v) + H ( 10) 

Due to the smaller vibrational energy spac ing in DF than in HF, it is 

possible, as may be seen from figure 1, for some DF(v) levels to a c ­

tually have less internal energy than some HF(v-n} level, where n is an 

intege r that is 0 for v = 0, 1, 2, 3, 1 for v = 4 , and which increases ir-

regularly with v the reafter . Further, since all vibrationally adiabati c 

reactions of the type 3b (where v'' = v} have the DF product containin g 

less internal energy than the reagent HF, they might be defined as de-

activating processes in the ''strict energeti c '' s ense . 

State -to- state rate constants for the deactivating processes 4a and 4b 

are given in Table 3, at 300, 6 50, and 1000 K along with the correspon­

ding gas kineti c rate constants . Again, the overwhelming dominance of 

non- reactive processes (and single-quantum deaCtivating ones} is seen. 

A few reactive processes n o t satisfying the strict quantum number d efi ­

nition for deactivation are also included in Table 3. These processes 

be come more impo rtant relative t o the total set of reac tive dea c tivating 

processes a s temperature increases. As in the H + FH c ase, the net 

contribution of r eactive p ro cesses to the total deactivation of vibrational-

l y excited HF may be n egl ected. 

On the whole, the deactivation rates for HF by collisions with Dis 

smaller than that for deactivation by H. Some of this difference is to be 

expected by consideration of the gas kineti c rate constants, which are 

related by the expression 
GK 

k D+FH = 
GK 

0. 724k H+FH 

(the superscript GK refers to gas kinetich the magnitude of the dif­

ference observed is greater than this, however. 

( 11) 

Because of the similarity between the dynamics of the non-reactive 

dea ctivating processes in the H + FH and D + FH systems, we will focus 

our attention on the reactive ones, particularly because these are most 

easily amenable to experimental study. We first consider the total proba-
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bility for reaction as a fW1ction of translational energy for initial HF 

states v = 0, 1, 2. This is plotted in figure 11 in a manner analogous to 

that used in figure 7 for the H + FH system. We see large tre sh ol ds, 

very similar in magnitude to those o bserved in the H + FH c ase. The 

spa cings between the c urves are on the order of 0. 15 and 0. 22 e V be ­

tween the v = 1 and 2 and the v = 0 and 1 curves. This is very c l ose to 

the 0. 1 5 - 0. 20 e V spa cings observed in the H + FH system. One dif­

feren ce between the tw o system s is that the reac tion probabilities seem 

to rise more smoothly t o one (and t o stay there) for reagent states 

v = 1 and 2 in D + FH(v) collisions than in the corresponding H + FH 

one s . 

Wehave also examined the distribution of product (DF) vibrational 

states for initial reagent states HF(v = 1, 2) at a few translational e ner­

gies, some of whi ch were the san1e as in the correspondin g H + FH 

cases. These are soown in figures 12 and 13 for v = 1 and 2, respec ­

tively. It is observed that there is slightly less tenden cy t )ward s vib ­

rational adiabaticity than in H + FH. As in the H + FH case , the product 

distribution bro adens as one goes to higher translational energies, and 

there is some evidence for bimodality in the distribution at high energies. 

Finally, we have c alculated the average fracti on of product energy 

going into vibration. This is displayed in figure 14 for HF initial 

state s v = 0, 1, 2 (this is analogous t o figure 10 for H + FH). Agai n, 

lines are drawn tJo- t" ough the points representing the value of < f ) if 
v 

the rea c tion proceeded adiabati c ally . Sin ce the DF vibrational spacing 

is smaller than that of HF, ( f ) for the D + FH reacti on should be 
v 

smaller than for the H + FH one. By comparing figures 10 and 14, it 

can be seen that this is indeed the case. 
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V. DISCUSSION 

The overwhelming dominance of non - reactive processes in accoun­

ting for vibrational deactivation of HF in collisi ons with H and D atoms 

in the exchange channel makes it useful to dis cuss the non- reactive 

processes separately from the reactive ones. Also, we have shown 

that the dynamics of the reactive and non-reactive processes are very 

different {for example in their preference for single or multi-quantum 

transitions, and in their activation energies). We will consider first the 

non-reactive deactivating processes, focusing on the variation of the 

deactivation rate with reagent vibrational state and the degree to which 

the calculated deactivation rates obey predictions of the approximate 

Landau-Teller theory. We will then consider the reactive processes, 

particularly the relative ability of translational and vibrational energy 

to promote reaction. We will also examine the r~sults of our calcula­

tions in the light of experimental studies of the vibrational deactivation 

of HF by Hand D atoms to show that deactivation of HF(v=i, 2, 3) must 

be dominated b y processes occurring in the abstraction channel 4 . 

A. NON -REACTIVE PROCESSES 

The calculations show that, in general, the rate of vibrational de ­

activation increases as reagent vibrational excitation increases. This 

is true for HF(v= 1, 2, 3) + H and D. In the HF(v=4, 5) + H cases one 

does see lower deactivation rates than for HF(v=3) + H, although the 

decrease be comes smaller at higher temperatures. Because of the 

large barrier to exchange present in the potential energy surface, it 

may be reasonable to consider whether the key featu res in the r esults 

obtained here might have been obtained by a model based on a purely 

non- reactive system, i.e. one in which reactions 2b and 3b cannot 

occur. 

Such a model is the Landau-Teller model (described in reference 

23) for ene r gy transfer in non-reactive collisions . The chief predic­

tions of this model (that of a collision of a particle with a harmonic 



47 

oscillato r governed b y a repulsive exponential potential) 

are as follows: 

1) All deactivations occu r b y single quantum transitions . 

2) The rate constants for deactivating processes between different 

vibrational leve l s are related to the 1 4 0 deactivation rates 

by the expression 

kN 
v, v-1 

3) The rate constant f o r the 

N = vk 
1, 0 

deac tivating process is related t o the 

temperature T by the expression: 

ln k N = A - B T 
1 I 3 

v ,v-1 
where 

B = 3 l 2;~pYl. )
1

/
3 

\ Q kb 

where )J- i s the reduced mass of the collision partners, )) is the 

vibrational frequency of the harmonic oscillator, and a i s related 

to the steepness of the assumed expon ential intera ction potential 

V(r) = V e xp( - a r) 
0 

whe r e r is the d i stance fr om the center of mass of the harm oni c 

oscillator t o that of the second particle. 

Landau-Teller plots (plots of ln kNv,v-
1 

vs. T-
1

/
3

) for H + FH 

and D + FH ar e sh own in fi gure s 1 5 and 16, respective ly. The plots 

are all reasonably linear (me anin g equation 13 is appr oximat e l y 

obeyed b y the data), especially at l ower temperatures. Further, the 

slopes of the v = 1 , 2, 3 curves f o r H + FH are all r oughl y the same, 

as are tho se for the v = 4 and 5 curves f o r HF and those for v = 1, 2, 3 

forD + FH. The major deviation in behavior fr om that predic ted by 

Landau-Teller theory, then, is the smalle r value of the rate constants 

for deactivation fr om v = 4 and 5 in H + FH(v) collisions, and the dif ­

ferent slope from the v = 1, 2, 3 curves (notice that acco rding to eq. 1 3 

the slopE· of the L andau-Teller plot should b e independent of the ini ­

tial vibrational state ). 

( 12) 

( 13) 

( 14) 

(1 5) 
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The effect of substituting D for Has one of the collision partners 

may also be examined in light of the pre :lictions of the Landau-Teller 

model. From equation 13, one sees that the slope of the Landau-Tel­

ler plot should be proportional to the one -third power of the reduced 

mass of the collision. Since this mass forD + FH is roughly twi ce its 

value for H + FH, the slopes forD + FH dea c tivations should be great-
1 / 3 

er than for H + FH deactivations by a factor of 2 or roughly 5/4 . 

It is difficult t o calculate exact ratios of slopes due to the non-linearity 

in the Landau-Teller plots in figures 15 and 16 at high temperature. 

Using crude estimates, however, one c an find that the slopes are in­

deed greater for the D + FH deactivations than for H + FH by a number 

that varies between 20% and 45%. Thus, the Landau-Teller model does 

predict the general behavior and magnitude of the effect of isotopic sub­

stitution on the temperature dependen ce of the si~gle-quantum non-

reactive deactivating processes. 

The main failin g of the Landau-Teller theory, then, is its inability 

to predict the differen ce in the temperature dependence and thus the 
N N 

magnitude of the rate constants k 
43 

and k 
54

. It is tempting t o attri-

bute this failing to the fact that the total vibrational energy associated 

with the v = 4 and 5 levels is greater than the 40 kcal/mole barrier. 

Since there is always sufficient energy in collisions involvin g these 

states to overcome the classical barrier, one might expect different dy­

namics than in c ases (i.e. v~ 3) where a substantial amount of transla­

tional energy is needed. There is no strong evidence for this interpre-

tation, however. 

One might be able to verify such a hypothesis by reducin g the barrier 

height of the surface somewhat such that it is between the v = 2 and 

v = 3 levels. In that case, one might expect different dynamics in col ­

lisions involving HF(v = 2) and HF(v = 3). We have carried out scat-

tering cal culation 3 for this reaction on a variety of surfaces with r e­

duced barriers (25) but otherwise identical to that used here (the para-
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meters A, B, and C defined in eq. 5 giving the energy along the minimum 

energy path as a function of the an gle f) differ; the functions 1 ((J ) and 
eq 

13(9 ) as defined in ref. 16 are identical), and will conduct similar Lan-

dau-Teller analyses of the dynamics on those surfaces. 

A dynamical reason for this difference might be obse rvable in colli­

near quasi- c lassical trajectory calculations. However, the small frac­

tion of collisions resulting in vibrational deac tivation might make such 

a study difficult . 

B. REACTIVE PROCESSES 

As has been mentioned repeatedly, the net contribution of rea c tive 

processes to vibrational deactivation is essentially negligible over the 

temperature range studied . Thus, the interest in rea ctive pro cesses 

centers around the effe c t of reagent vibrational excitation on reaction 

rate and the distribution of produ c t vibrational states. For reac ti on 

3b b o th of these quantities should be fairly easily a ccessible to experi­

mental study (the experiments of Bartoszek, et al. (7) include3 a study 

of the former) . 

From table 2 and figure 3 , the enhancement in the rate of reaction 

with vibrational excitation for reac ti on 2b is clear; table 3 si1nilarly 

show s the effect for r eaction 3b . F o r reac ti on 2b at 3 00 K, for e x am-

ple , the relative rate s of reaction for v = 1, 2 , 3 , 4, 5 are approximate l y 

1:10
4

:10
11

:10
13

:10
1 5 

In spite of this large vibrational enhan c ement, 

we c an show that the efficien cy of vibrational excitation in promoting 

reac tion is quite small. This c an be seen in a variety of ways . 

First, one may consider the threshold energy for reaction. We d e ­

fine this quantity as the translational ene rgy at which the probability 

f o r vibrationally adiabati c reac tion first reaches 0. 01. This quantity 

is plo tted as a fun c tion o f vibrational energy in figure 17 for b oth reac ­

tions 2b (for v = 0, 1, 2, 3, 4) and 3b (for v = 0, 1, 2, 3). If vibrational 

energy and translational energy were equally effective in promo ting re­

action, the lines in figure 17 would have slopes of -1, as the t otal 
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energy threshold for reaction would be independent of reagent vibra-

tional state. Instead, the curves are non-linear, although they can be 

fairly well approximated by straight lines whose slopes are approxi­

matley -0.31 for reaction 2b and -0 . 36 for reaction 3b. Thus, only 

some 1/3 of the vibrational energy goes towards promoting reaction. 

This fact c an also be seen in the plots of total reaction probability vs. 

translational energy for reactions 2b and 3b (figures 7 and 11, respe c ­

tively) in which it is seen that each quantum of reagent excitation lowers 

the region of rapid increase of probability with translational energy by only 

0.15-0 . 20 eV, less than half the vibrational spacing ofHF of 0.4 5 -

0.50 eV. This inefficiency of vibrational energy is also seen in figure 

6, in which even in the v = 5 state, where the reagent has some 2. 4 e V 

of vibrational energy above the zero-point energy, the activation 

energies for reaction 2b may be as high as 13 kcal/mole. Since this 

amount of vibrational energy is far in excess of the 40 kcal/mole clas si­

cal barrier height, one can see that vibrational energy is not entirely 

useful in promoting reaction. 

In comparing threshold energies for different reagent vibrational 

states, it is important n ot to n eglect the contributions of the vibrational 

energies for the H-- F- -H configuration occurring at the saddle point 

t ' . (R , r ) on the potential energy surface. Because the surface does 

not appreciably widen near the saddle point region these energies 

will be fairly large, and thus the vibrationally adiabatic barrier hei ght 

.D. v•' defined by the expression 
v 

.D.V :t = E (R:t , r ~ ) - E (R =- ) (15) 
v v v 

will decrease only gradually ·JIIith increasing v. 

Wehave calculated the .D. V~ for reaction 2b, and plotted the reac-
v 

tion thre sh_old vs. them in figure 18. The re suiting plot is approxi-

mately linear with a slope of 0 . 8. Thus, as the reagent vibrational 

state is increased (de creasing .D. V :t ), the reaction thre sh.old does not 
v 

de crease as quickly as .D.V =+- , although the two decreases are fairly 
v 
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close in magnitude. Thus, much of the inefficiency of vibrational ex­

citation in producing reaction is due to the persistence of a large vibra­

tionally adiabatic barrier height to large quantum numbers. Because 

the vibrationally adiabatic barrier heights can be expected to be slight­

ly sn1aller for r eaction 3b than for Zb due to the heavier D atom being 

substituted for one of the H atoms at the saddle point, vibrational ener­

gy should be slightly more effective at promoting reaction 3b than Zb. 

This is observed in figure 15, where the slope of the threshold energy 

vs. vibrational energy curve is some 10% higher for reaction 3b than 

for 2b. 

This i eature of the dynamics might be particularly sensitive to the 

exac t nature of the potential energy surface near the saddle point, as 

a smaller vibrational frequency at the saddle point v.o uld decrease .6 v* , 
v 

thus inc reasing the efficiency of vibrational energy in promoting reac-

tion. Similarly, in c reased curvature in the nlinimum energy path pro­

duced, for example, by moving the saddle point to large v alues of RHF' 

might better couple translational and vibrational energy, thus leading to 

inc reased efficiency of reagent vib rational excitation . 

C. RELA TI0:0!SHIP TO EXPERIMENT 

In analyzing the vib.rational deactivation of HF by H and D, one must 

be careful in relating the results of collinear quantum mechanical c al­

culations to experiment. The calculations reported here do not include 

the abstraction channel, which may be where most of the d eactivation 

occurs, and include only the collinear portion of the exchange channel, 

possibly eliminating important non-collinear reactions of the overall 

potential energy surface. We will attempt in what follows t o deal with 

these two limitations. 

The experiments most relevant to the study of HF vibrational de­

activation by H and D atoms are those of Bartoszek, et al. (7) and of 

Batt and Heidner ( 6) . Additional experirnEnts have been performed by 

Quigley and Wo~.ga (26). Bartoszek, et al. (7) showed that DF forma-
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tion via the reaction 3b only b ecomes appreciable when the initial vibra-

tional s tate of HF was five or greater . They also showed that disappear­

ance of HF(v = 3, 4} was due to the abstraction reaction (the D analogue 

of reaction 4a) . In their kinetic work, Batt and Heidner (6) found rela­

tive rate constants for removal of HF(V = 1, 2, 3) by collision with H 

atoms of1 :4:400, and determined that the abstraction reaction 4a can 

contribute only some ZO o/a of the observed rem oval rate of HF(v = 3) at 

295 K. This latter result seems to contradict that of Bartoszek, et al. 

(7 ), who r elate the increase in deactivation of HF(v = 3) by D atoms to 

the opening up of the abstraction channel. 

In our calculations in the exchange channel, we see nothing remotely 

resembling the 1:4:400 ratio for deactivation of HF(v = 1, 2, 3) by H 

atoms observed by Batt and Heidne r (6). Instead, as mentioned earlier, 

the deactivation rate increases nearly linearly with reagent vibrational 

state for v ~ 3. Unless these results were to change drasti c ally on 

going to a full three -dimensional calculation, it seems reasonable to 

attribute the results of Batt and Heidner (6) to deactivating processes 

occurring in the abstraction channel. Our rate constants for reactions 

2b and 3b do show a very dramati c increase with reagent vibrational 

excitation, and support the interpretation of Bartoszek, et al. (7) tha t 

the bar r ier to exchange for reactions 2b and 3b must be large (over 

40 kcal /mole). 

The usefulness of the calculations for reactions 2b and 3b depends 

to some extent on the accuracy of the potential energy surface, and in 

particular, the requirement of collinearity implicit in these calculations. 

While it has long been assumed that the transition states for the ex­

change reactions 2b and 3b are collinear, ab initio calculations (13c) 

suggest that the transition state should instead have an HFH angle of 

106 °, although the height of the barrier should be relatively insensitive 

to that a n gle, increasing from 47. 1 kcal/mole at 106 o to 47.6 kcal/mole 

at 180 o. Including these non-collinear configurations could easily in-
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fluence the observed dynamics of the exchange reactions. 

Further, the exact form of the potential energy surface used here 

was chosen mainly for its flexibility. There is no reason to believe 

that the appearance of the minimum energy path is exactly that shown 

in figures 1 and 2; in fact, it is quite possible that the 40 kcal/mole 

barrier is a few kcal/mole less than the correct one, and that the 

position of the saddle point used (RHF = 1. 97 5 bohr) is smaller than 

the correct value (for example, Bender, Garrison, and Schaefer (13a) 

calculated it to occur at 2.15 bohr). Thus, the results obtained for the 

exchange reactions should n ot be taken to be more than qualitatively 

correct. 
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VI. CONCLUSIONS 

Vk have studied on a realistic (high barrier) potential e_r.. ergy 

surface the dynamics of vibrational deactivation of HF in collision with 

H and D atoms in the exchange channel and also the dynamics of the 

H + FH and HF + D exchange reactions. The important features of the 

dynamics are as follows: 

1) Vibrational deactivation in the exchange channel o c curs almost 

entirely by single-quantum, non-reactive processes. The rate 

of this deactivation varies only weakly with temperature, and, in 

general, increases weakly with reagent vibrational excitation . 

The overall dynamics of the deactivation processes are in line 

with the predictions of Landau-Teller theory. 

2) The rate of the exchange reactions is increased dramatically by 

reagent vibrational excitation, although the effective lowering 

of the thresh.old to reacti on is less than half the extra energy 

associated with e a ch vibrational quantum. R ates of exchang e 

reactions are characterized by large temperature dependences, 

and at high translational energies, broad product state distribu­

tions. The relative inefficiency of vibrational energy in promoting 

reaction can be related to the large symmetric stretch vibrational 

frequency at the H--F--H saddle point, resulting in a vibra­

tionally adiabatic barrier height which decreases only weakly 

with an increase in the reagent vibrational quantum numbe r . 

3) The relationship of the calculated results to experimental ones 

on these systems is complicated because of the collinear nature of 

the theory; nevertheless, the results do support interpretations 

that the deactivation of HF(v!:,.. 3) by H at oms must be occurring 

by processes in the abstraction channel and also support interpreta­

tions of experimental results that the barrier to exchange is quite 

high ( ~ 40 kcal/rnole). 



55 

A fuller understanding of the dynamics in this system awaits a 

study of the dynamics of the abstraction channel (preliminary work on 

the H + HF system has been performed (27) ) and the relation of the 

results of the two channels by some technique (i.e . information theoretic 

one dimensional to three dimensional transformation (28) ) . Finally, 

additional information from ab initio calculations on the potential energy 

surface for the exchange calculation would be useful in insuring a more 

accurate description of the saddle point region. 
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Table 1. Parameters for Rotating Morse cubic spline surface for 

H + FH ~ H F +H 

R
1 0 

= R 
2 0 

= 7 • 0 bohr 

8 (deg) 

0 

6 

15 

30 

39 

45 

5 1 

60 

75 

84 

90 

1 (8) (bohr) 
eq 

5.267 

5.296 

5.453 

6 . 079 

6 . 742 

7. 106 

6.742 

6. 07 9 

5 . 453 

5 . 296 

5 . 267 

1. 16 3 

1.149 

1. 122 

1. 0 12 

0 . 90 22 

0 . 8194 

0 . 9022 

1. 012 

1. 122 

1. 149 

1. 163 
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Table 2. Selected State -to -State and Summed Deactivation Rate 

Constant s for the Processes H F (v) + H' -+ HF (v' ( v) + H' (NR ) 

and HF(v) + H ' --t H + FH'(v' < v) (R) 
* -1 -1 

All rate constants are in units of cm*mole cule *sec 

T = 300 K T = 650 K T = 1000 K 

v--v' NR R NR R NR R 

0 1. 185 (2 ) 4.120(-16) 2. 065(2) 1.821(-7) 2. 782(2) 3 . 768( -4) 

2 0 2. 854(0) 5. 172( -1 0) 4. 192(0) 5. 392( - 5) 5.437(0) 5.097(-3) 

2 1 1. 189(2) 7 . 983(-13 ) 2 . 657(2) 2. 108(-5) 3. 780(2) 1. 640(-2) 

3 0 1.082( -1) 1.1 95( - 4 ) 1. 741(-1) 3 .1 98( - 3) 2. 210(-1) 2. 50 1 (-2) 

3 1 6. 322(0) 3 . 548( -7) 1. 098(1) 1.957(-3 ) 1. 549(1 ) 9. 502(-2 ) 

3 2 3 . 992(2) 8. 586( - 9) 5. 5 5 2(2) 5. 4 54(-4) 7. 4 12(2 ) 1.706(- 1) 

4 0 1. 546(-3) 3 . 705( - 3) 5 . 533 ( - 3 ) 1.522( - 2) 2. 5 16( - 2) 8. 998( - 2) 

4 1 1.849( -1) 1. 649( -2 ) 4. 567(-1) 1.226(- 1) 8 . 098(-1) 4.982(-1) 

4 2 5. 746(0) 8. 555(- 5) 1. 612(1) 3 . 034 (-2) 2. 595( 1) 7.082(-1) 

4 3 6. 039( 1) 2. 946( -6) 2.621(2) 4. 648(-3) 5. 269(2) 6. 20 5(- 1) 

5 0 6. 393 (-4) 1. 625(-2) 5 . 21 1(-3 ) 7. 784(- 2 ) 3. 764(-2) 3.378 (-1 ) 

5 1. 727(-2) 1. 045(-1) 6. 570(-2) 3. 626(-1) 2.498(-1) 1. 280(0) 

5 2 4.121(-1) 3 .043( -1 ) 1. 345(0) 1.1 03(0) 3. 083(0) 3 . 054 (0 ) 

5 3 1.151(1) 2. 854 ( - 3) 3.588(1) 4. 064(-1) 5 . 840(1) 3 . 595(0) 

5 4 1.098(2) 1. 043(-4) 4. 46 5(2) 1. 528(-2) 7.91 9(2) 4. 774 (-1 ) 

all 1.1 85(2) 4. 120 (-1 6) 2. 065(2) 1. 821 (- 7) 2. 782(2) 3. 7 68( -4 ) 

2 all 1.1 97(2) 5 .180( -10) 2. 6 99(2 ) 7 . 500(-5) 3. 834(2) 2 .1 50 (- 2) 

3 all 4. 056(2) 1.1 99(-4) 5.664(2 ) 5. 701 (-3) 7. 569(2) 2.906 (-1) 

4 all 6. 60 5( 1) 2 . 0 28(-2 ) 2. 7 86(2 ) 1. 728(-1) 5. 537(2) 1. 9 17 (0) 

5 all 1. 217(2) 4 . 279(-1) 4. 838(2) 1. 965(0 ) 8. 537(2) 8 . 7 4 4(0 ) 

gas kin. 6. 433(4) 9.469(4) 1. 174(5) 

* Numbers in parentheses represent p owers of 10 by which the written 

numbe r shculd be multiplied. 
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Table 3. Selected State- t o-State Rate Constants fo r the Processes 

HF(v) + D ---+ HF(v'<, v) + D (NR) 

HF(v) + D --i H + FD(v' ) (R) 
* -1 -1 All rate constants are in units of cm,~mole cule >~sec 

v -tv ' NR R NR R NR R 

1 0 3.421(1) 1.265( -14) 6.267(1) 5 . 584( - 7) 8 . 42 5( 1) 1. 266(-3) 

2 0 9 . 141(-1) 6.015(-12) 1.812(0) 6. 574( - 6) 2.537(0) 4.635(-3) 

2 1 6.476(1) 3.548(-13) 1. 123(2) 1.454(- 5) 1. 556(2) 1.437(-2) 

3 0 6 . 875( - 2) 4 . 113(-5) 1.149( -1) 1. 041(-3) 1.439 (- 1) 7. 8 12 (-3) 

3 1 7.950(0) 3 . 5 14(-6) 1. 0 4 4( 1) 7 . 205(-4) 1.178( 1) 1. 997(-2) 

3 2 9 . 057 (1) 1. 441 (- 7) 1. 59 2(2) 1. 944( -4) 2. 106(2) 1. 950(- 2) 

3 3 2 . 8 37 (- 9 ) 6 . 343(-5) 1. 705{ -2) 

3 4 1. 356 (-10) 1.426( - 5 ) 5 . 357 {-3) 

gas kin. 4.656(4) 6. 855(4) 8.499(4) 

;'< Numbers in parenthese s represent powers of 10 by which the w ritte n 

numbe r should be multiplied. 
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FIGURE CAPTIONS 

~~igure 1. Plot of the p otential energy V along the minimum energy path 

as a fun ction of the reaction coordinate s for the reaction H 1 + FH ~ 

H 1 F +H. s = 0 at the barrier (along the H--F--H symmetric stretch 

line). The energy levels of the isolated HF reagent molecule are shown 

on the left side of the plot. For comparison purposes, those of the 

isolated DF molecule are shown at the right. 

Figure 2. Contour plot of the potential energy surface for the reaction 

H 1 + FH --i H 1 F + H in the Delves coordinate system. Equipotentials 

are drawn every 0.3 eV. The ori gin of energy is the bottom of the 

isolated HF well. A eros s is drawn at the saddle point, and the mini­

mum .energy path is indicated by a dashed line. 

Figure 3. Plot of rate constants k 1 for total reactive (R) and 
v~v (v 

non-reactive (N) deactivation in the collision H + FH(v) ~ H + FH(v1
( v) 

at T = 300, 650, and 1000 K as a functi on of the vibrational state v of the 

reagent molecul e . All curves for reactive collisions are indicated by 

solid lines; those for non- reactive ones are indicated by dashed, dotted, 

and dashed-dotted line s, respectively, for T = 300, 650, and 100 0 K. 

Figure 4. Arrhenius plot of state-to-state rate constants k 1 for the 
vv 

reactive (superscript R) and non-reactive (superscript N) collisions 

H + FH(v = 2 ) --+ H + FH(v 1 =0, 1). Curves for non-reactive transitions 

are indicated by solid lines; those for reactive ones are indicated by 

dashed lines. 

Figure 5. Plot of high temperature (700 - 1000 K) Arrhenius activation 

energies E N (v-.v-n) for n-quantum non-reactive deac tivating collisions 
a 

HF(v= 1- 5) + H 1 ~ HF(v-n) + H 1 as a function of the internal energy E. t 
ln 

of the HF(v) reagent. The quantum number of each reagent state is 

indicated on the upper abscissa. Different line types are used to connect 

each of the data points: n=1- solid line; n =2- dashe d line ; n =3- dotted 

line ; n=4- dashed-dotted line. For n =5 , only one data point exists; it 
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is marked by a plus sign. 

Figure 6. Plot of high temperature (700-1000 K) Arrhenius activation 
R 

energies E (v~v-n} for n-quantum reactive deactivating collisions 
a 

HF(v= 1- 5) + H' --+ H + FH' (v-n} as a functi on of the internal energy 

E. t of the HF(v) reagent. All line types and markings are as in 
1n 

figure 5. 

Figure 7. 
R 

Plot of the probability P HF(v) + H of the reaction HF(v) + H' 

___, H + FH' as a function of the initial translational e n ergy of the reagents 
tr . 

E forv=0,1,2,3. 

Figure 8. 
R 

Histogram p l ot of the fraction of reaction product F vv' 

for all possible product states v' for the reacti on HF(v= 1) + H' ---t 

H + FH'( v' ) at three values of the initial reagent translational ene rgy 
tr tr 

E • Bars marked a, b, and care forE = 1. 536 1 eV, 1_. 9443 eV, 

and 2.4068 eV, respectively . 

Figure 9. Histogram p lot of the fraction of reaction pro::iuct FR , 
vv 

for all possible product states v' for the reaction HF(v=2) + H' ~ 

H + FH' (v') at three values of the initial reagent translational energy 
tr tr 

E • Bars r.1arked a, b, and care forE = 1.3161 eV, 1.6154, eV, 

and 1. 9964 eV, respe ctive ly. 

Figure 10. Plot of the average fraction of product energy going into 
R 

vibration < f ) as a function of the initial reagent translational energy 
t v 

E r for v = 0, 1, 2, 3. Results for different values of v are indicated by 

different symbols: v=O - open circles; v=1 - open squares; v=2 - open 

triangles; v=3 - filled circles. Lines correspond to the value expected if 

the reaction were vibrationally adiabatic. Results are shown only for 

energies where the probability of reaction is significantly g reater than 

zero. 
R 

Figure 11. Plot of the probability P D ) of the reaction HF(v) + + FH(v 
D --+ DF + H as a function of the initial reagent translational energy 

tr 
E for v = 0, 1, 2. The solid line is for v = 0; the dashed line is for 

v = 1; and the dotted line is for v = 2. 
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R 

Figure 12. Histogram plot of the fraction of reaction produc t F , 
vv 

for all possible product states v' for the reaction HF(v= 1) + D ~ H + 
tr 

FD(v') at three values of the initial reagent translational energy E . 
tr 

Bars marked a, b, and c are for E = 1. 5361 eV, 1. 7 538 eV, and 

1. 9 443 eV, respectively. 

Figure 13. Histogram plot of the fraction of reaction product FR 
vv' 

for all possible product states v' of the reaction HF(v=Z ) + D ~ 
tr 

H .t FD(v') at two values of the initial reagent translational energy E • 
tr 

Bars marked by a and b are for E = 1. 3161 eV and 1. 5066 eV, 

respectively. 

Figure 14. Plot of the average fraction of product energy going into 

fR as a function of the initial reagent translational energy 
v 

vibration 

Etr for v = 0,1,2. Symbols and lines have their same meaning as in 

figure 10. 
N 

Figure 1 5 . Landau-Teller plot of rate constants k 
1

(HF + H') for 
v,v-

single-quantum non-reactive deactivating c ollisions HF(v) + H' ~ 

HF(v-1) + H' for v= 1-5. The temperature is indicate d on the upper 

abscissa. Different line types are used for each v: v = 1 - solid line; 

v=Z - dashed line (large dashed); v=3 - d otted line; v=4 - dashed­

dotted line; v=5 - dashed line (small dashes). 

Figure 16. Landau-Teller plot of rate constants kN (HF +D) for 
v, v -1 

single-quantum non-reactive deac tivating collisions HF(v) + D --+ 
HF(v-1) + D for v = 1, 2, 3 . The temperature is indicated on the upper 

abscissa. Different line types are used for each v: v = 1 - solid line; 

v = 2 - dashed line; v= 3 - dotted line. 
th 

Figure 17. Plot of the threshhold energy E for the vibrationally 
v 

adiabatic reactions HF(v) + H' ---t H + FH' (v) (solid line) and HF(v) + 
1.nt 

D ~ H + FD(v) (dashed line) as a function of the internal energy E 

of the r eagent HF molecule. Open circles and squares, respectively, are 

used to plot the original data points fer the HF + H' and HF + D systems, 
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respectively. The quantum number of the reagent HF state is indica­

ted on the upper abscissa. 

Figure 18. 
th 

Plot of the thre shhold energy E for the vibrationally 

adiabatic reaction HF(v) + H' ~ H + FH' (v) as a function of the 

vibrationally adiabatic barrier height~ v• ' defined in eq . 15 of the 
v 

text for v = 0-4. The open circles mark the actual data points. The 

values of v are indicated on the upper abscissa. 
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I. 3 BARRIER HEIGHT DEPENDENCE OF DYNAMICS IN THE 

COLLINEAR H + FH(v) AND D + FH(v) SYSTEMS 
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Barrier Height Dependence of Dynamics in the Collinear H + FH(v) 
a) 

a..."l.d D + FH(v) Syste ms. 
b) c) 

Jack A. Kaye , John P. Dwyer , and Aron Kuppermann 

Arthur Amos Noyes Laboratory of Chemical Physics d) 

California Institute of Technology, Pasadena, California 91125 

(Receive d 

Collinear c oupled-channel quantum mechanical calculations 

have been performed on the title systems on potential energy 

surfaces with barriers to reaction of 1. 5, 5, 10, 20, 30, and 

40 k c al/mole. We have examined the differen ces in the dyna­

mic s on the different surf a c es, emphasizing the rate and me ch­

anism of v ibrational deactivation of HF in H + FH(v) collisions 

and the influenc e of reagent vibrational ex c itation on reaction 

probabilities and product state distributions in the D + FH(v) 

reaction. The rate of vibrational deactivation d ec reases as 

the barrier height is increased for low barrier height surfaces, 

but be c omes relat ively insensitiv e to barrier height at highe r 

barrier heights at the temperatures studied. On the lower 

barrier surfac es vibrati onal dea ctivation occurs mainly in 

multi-quantum reactive transitions, while for higher barrier 

surfaces it occurs in single -quantum non- rea ctive transitions . 

In the D + FH(v) reaction, reagent vibrational excitation re­

duces the translational ene rgy threshhold by an amount smaller 

than the vibrational quantum and c an l e ad to different product 

state distributions depending on the potential energy surface . 

Quantum mechanical resonances obse rved on the low barrier 

surfaces c an be understood by referenc e to 

adiabati c correlation diagrams. 

vibrationally 
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I. INTRODUCTION 

The dependence of the dynamics of chemical reactions on the 

potential energy surface governing the motion of the nuclei has been 

the subject of substantial attention. In a pioneering series of papers, 

Polanyi and collaborators used the classical trajectory technique to 

study how the dynamics of the general class of reactions 

A+ BC(v,J) --t AB(v',J') + C 

varied with changes in the potential energy surface ( 1 ). Features of 

particular interest have been how the disposal of energy in exoergic 

reactions or the usefulness of various forms of internal energy in 

endoergic reactions depends on the position of the saddle point on 

the surface. Other workers have also explored the relationship be­

tween the potential energy surface and the dynaf!lics obtained from 

classical mechanical calculations for both reactive and non-reactive 

pro c esses (Z). 

For quantum mechanical calculations, such studies have been 

(1) 

far fewer in number. As new potential energy surfac es are developed 

over the years, dynamical calculations are frequently performed, 

providing information on the sensitivity of dynamics to surfa c e 

parameters. For example, for the H +Hz system and its D sub sti.tu­

ted analogs, in exact and approximate quantum calculations (in one, 

two, and/or three dimensions) (3), surfaces studied include the 

scaled SSMK(4), the Porter-Karplus (5), and the SLTH (6) ones, 

among others. For the F +Hz system, a variety of potential energy 

surfaces, both semi-empirical (7) and ab initio (8) have been used in 

collinear quantum mechanical calculations (7b, 9). Similar studies 

have been carried out on the I + HZ (1 0), 0 + HZ ( 11 ), and I + HI 

(1Z) systems, among others. 

In most of this work, attention has been fo cused on the dynami c s 

of chemically reactive processes. If one is to understand the full 

dynamics of potentially reactive chemical systems, however, one 
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must also understand how the dynamics of non- reactive processes 

depend on the nature of the assumed potential energy surface. For 

example, in studying the dynamics of the collisional deac tivation of 

a vibrationally excited molecule (such as that present in a chemi cal 

laser system), the quantitres most of interest are the rates of vibra­

tional deactivation and the number of quanta transferred . Rabitz 

and co-workers ( 13) have studied the sensitivity of energy transfer 

processes to the nature of the assumed potential ener g y surfac e 

in non- reactive collisions. 

In this work we study the dynami c s of the collinear systems 

HF(v) + H' __.., HF(v') + H' 

H + FH'(v '') 

HF(v) + D ~ HF(v') + D 

H + FD(v'') 

by coupled-channel quantum mechanical calculations on SlX related 

potential energy surfaces. These surfa ces are identi c al except for 

their profile along the minimum e nergy path, and have barriers o f 

1. 5, 5, 10, 20, 30, and 40 kcal/mole. The first is close to the barrier 

of the Muckerman V surfac e ( 7b) used in a pre v ious c ollinear quan­

tum mechani c al study of these systems (14); the last is closest to the 

barrier heights indicated by the most re c ent experiments (15) and 

also by ab initio calculations ( 16). The re suits of the calculation on 

this surface have been pre sen ted separately ( 17 ). 

In our calculations we will ex amine the effe c ts of the change of 

barrier height on various features of the H or D atom induced col­

lisional deactivation of HF(v), including the overall rate of deactiva­

tion, the fraction of deactivation occurring by reactive and non­

reactive processes, the relativ e importanc e of single and multi­

quantum transitions, and the temperature dependenc e of these 

quantities. We will also consider the general class of reactive 

processes (2b and 3b) and the role of quantum me chanical resonan c es 

(Za) 

(Zb) 

(3a) 

(3b) 
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on the different surfaces. 

The outline of this paper is as follows. In section 2 we discuss 

potential energy surfaces used in the calculations, and in section 3 

we briefly review some important aspects of the c alculations per­

formed. The results obtained will be presented in se c tion 4, and 

their significance will be discussed in section 5. Finally, in section 

6 we will summarize the results and conclusions obtained. 
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II. POTENTIAL ENERGY SURFACES 

The potential energy surfaces used in this study are all of the 

highly flexible rotating Morse-cubi c spline form (18), in which the 

potential energy as a function of the internuclear coordinates R AB 

and RBC is given by the expression 
2 

V(RAB' RB C ) = D(8)((1- exp(-13(8 )(Jeq(tJ) -~))) - 1) + D(61 =0) (4) 

where 

B= -1 0 0 
tan ((RAB- RAB )/(RBC- RBC ) 

and 

11 o 2 _ 0)2)1/2 
~ = ((RAB - RAB ) + (RBC RBC 

0 0 
(R AB , RB C ) is the point from which one swings the Morse oscil-

lator, whose parameters are thus functions of the angle ;when RAB 
0 0 

) RAB or when RBC) RBC , 

oscillator. Normally, the point 

the potential is · just that of a Morse 

(RAB 
0

, RBC
0

) is far up the dissocia-
o 0 

tive plateau, that is, both RAB and RB C are large. The coordinate 

( 5 ) 

(6) 

system and definition of terms are indi c ate d s chem ati c ally in fi gure 1. 

The Morse parameters £.. (G) and 13(8) are given at a small num-
eq 

ber of values of the swing angle , and a cubic spline interpolation is 

then performed. A similar interpolation could be performed for 

D(6);. however, in this case we assume it to be given by a Gaussian 

D(8) = :0(8=0) - (A + Bexp(-C(rr/4 - B )2
)) (7) 

Values of the constants A, B, and C for each of the surfaces used 

are given in Table 1; values of 1.. (6) and 13(6) have been presented 
eq 

elsewhere (17). 

The values of£ (6) and 13(6) were obtained by numerically 
eq 

finding their values on the Muckerman V surfac e (?b) in the exchange 

channel and then splining together ; the values for A, B, and C were 

first obtained from the Muckerman V surface at 3 values of 6 (0 o, 

22 o, and 45 o ). To increase the barrier height, only parameters 

B and C in eq. 7 were changed. 



92 
0 0 

For RAB ") RAB (RB C small) or RB C ) RB C (R AB small), the 

potential energy was taken to be independent of RAB and RB C' 

respectively. This produced a slight upward shift ("'0. 0168 kcal /mole) 

in the bottom of the HF diatomic well relative to its dis so dation energy. 

For use in the calculations reported here, we have constructed 

surfaces with barrier heights of 1. 5, 5, 10, 20, 3 0, and 40 k c al /mole. 

We have plotted the 40 kcal/mole barrier surfac e i n the Delves mass 

scaled coordinate system (19) for the HFH system in figure 2. In 

figure 3 we display the vibrational energy levels of HF and DF along 

with the energies of the barriers on the six surfa ces used. 
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III. NUMERICAL ASPECTS 

Numerical soll1tion of the Schr~dinger equation has been performed 

by the coupled-channel method of Kuppermann (20). 20 - 24 basis 

functions were used in these calculations, and unitarity of the 

scattering matrix was obtained to better than 3 o/o at nearly all energies 

studied; at most it was obtained to better than 1 o/o . For those c al cula­

tions where unitarity was not obtained to 3o/o, we do not include the 

results in our analysis. 

Reac tions 2a and 2b were studied in the energy range up to 2. 94 

eV above the zero-point energy of HF, while reactions 3a and 3b 

were studied up to 2. 4 5 eV above the HF zero-point energy. The 

smaller range in the latter calculation was due to the smaller vibra­

tional energy spacing of DF (see figure 3) than ~F, which gives rise 

to more open channels at a given total energy than at the same total 

energy in the HF + H system. 

State-to- state rate c onstants have been calculated from the transi-

tion probabilities obtained in the scattering c al culations by the 

relationship 

k .. (T) = 
l.J 

(2n k T)-i/2 
.P-a, be b Joe tr tr tr 

O Pi/E )exp(-E /kb T)dE 

where P .. 1.s the probability for the transition from state i to state j, 
tr lJ 

E is the initial reagent relative translational energy of the c ollision, 

)A. is the reduc ed mass of the a, be collision pair, and kb is 
a,bc 

Boltzmann's c onstant. 

(8) 
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IV. RESULTS 

We have studied a number of aspects of the dynamics of the col­

linear HFH and DFH systems on six different, but related, potential 

ene rgy surfaces, and will try to pre sent some of the most important 

features of our results in this section. We will consider the following 

questions: 

1) What are the relative rates of collisional deactivation of 

vibrationally excited HF and how do they depend on the surfac e used 

and on the reagent vibrational state? 

2) How do deactivating processes occur (single vs . multi­

quantum, reactive vs. non-reactive) on the different surfac es? 

3) How do these quantities vary with temperature? 

4) How do the dynamics of the reactive processes (energy 

thresholds, produ c t vibrational state distribution, effect of reagent 

vibrational excitation) depend on the surfac e ? 

5) What is the nature and magnitude of the isotope effect on 

going from the HFH to the DFH system? 

6) How important are quantum mechanical resonan c es on the 

different surfaces, and how do their position and strength vary as 

the barrier height is in c reased ? 

A. VIBRATIONAL DEACTIVATION 

The rate of vibrational deactivation varies significantly as the 

barrier height of the potential energy surface varies. This may be 

seen in figures 4 and 5, in which the overall rate of vibrational deac ­

tivation in the H + FH(v) system is plotted as a function of the barrier 

height of the surfac e for v = 1 -5 at 300 and 650 K, respectively. 

There are three important features of these figures. First, for 

low barrier height surfaces, the rate of d$&o'Uv.at\on de c reases 

rapidly as the barrier height of the surface inc reases. For example, 

in figure 4 one sees that as the barrier height increases from 1. 5 to 
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10 kcal/mole, the overall deactivation rates decrease by nearly two 

orders of magnitude. As the barrier height is further increased be­

yond 10 kcal/mole, however, the deactivation rates no longer continue 

to decrease; instead, they remain relatively constant. Second, the 

variation in the dea ctivation rates with reagent vibrational excita-

tion differs on the low and high barrier surfaces. In the former 

region, the deactivation rate in general increases as the reagent HF 

molecule excitation is increased, while in the latter region there ap­

pears to be no clear correlation b etween reagent excitation and de­

a cti v ation rate. Third, the barrier height at which the transition be­

tween low barrier and high barrier behavior occurs is temperature 

d ependent . In comparing figures 4 and 5, for example, we c an see 

that at 300 K the division seems to occur at 10 k.cal/mole; at 650 Kit 

occurs at 20 kcal/mole. 

This behavior is also seen to be independent of isotopi c substitu­

tion. In figure 6 we present a plot of deactivation rates in the 

HF(v) + D system a t 300 K . In this figure we only include FD states 

whose quantum number v" is smaller than that of the reagent HF(v) 

molecule. 

We nex t consider the details of the deactivation process (those 

features mentioned in item 2 above) in the HF(v) + H system. Plots 

of the f raction f ( 
1

) of deactivation occurring by single -quantum transi-
v 

tions as a function of the barrier height of the surface are shown in 

figure 7 for v = 2-5(for v= 1 all deactivation occurs by single quantum 

transitions) at 300 K . Clearly this quantity varies substantially as 

the barrie r height is increased although when the barrier is above 

20 kcal/mole, the fraction for v=2 and 3 is close to unity and thus 

n e arly independent of the bar rier height. In general, as the barrier 

h eight increases, the importance of single -quantum deactivation in­

creases substantially till on the 40 kcal/mole surface, it a ccounts 
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for more than 80 % of the deactivation, even in collisions of v = 

4 and 5. 
R 

In figure 8 we plot the fraction f of deactivation occurring by 
v 

reactive processes (that is, those of the type Zb rather than Za de-

fined above) as a function of the barrier height for v = 1 to 5 at 300K . 

At low barrier heights, reactive deactivation is clearly the rule, as 

for all initial states considered, over 7 5 o/o of the deactivation rate on 

the 1. 5 kcal/mole barrier surface occurs by reaction. On high 

barrier surfaces, the deactivation occurs totally by non-rea ctive 

processes. From the arrows in figure 8showing the vibrational ener­

gy of the isolated HF(v) molecule, one can see that the v = 4 and 5 

lev els of HF already have suffic ient energy to overcome any of the 

barriers studied here. Thus, the absenc e of reac tive deactiv ation 

here indicates one of two things: either translational and vibrational 

energy are so weakly coupled that the latter is not useful in promo­

ting reac tion, or that reaction is possible but that it occurs over-

whelmingly by a vibrationally adiabati c proce s. Examination of 

state -to- state reaction probabilities indi cates that the former expla­

nation must be the c orrect one, as at all but very high translational 

energies the vibrationally adiabatic reaction probability is smaller 

than the deactivating ones. For example, on the 40 k c al/mole sur­

fa ce, just above the opening of the HF(v=4) level, the state-to-state 

rea ction probabilities P Rand P
41

R are over 10
5 

times greater than 
R 40 R 4 

P
44 

; at some 0.4 eVabove the opening, P
42 

is nearly 10 times 
R 

greater than P 
44 

Only at translational energies above 1. 0 eV 

does P 
44 

R become the greatest of the reactive probabilities. 

While figure 7 gives some feeling as to the importance of multi­

quantum transitions, it does not provide an indication of the relative 

importanc e of the different possible multi-quantum transitions. To 

aid in assessing their importance, in figure 9 we plot the average 
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number (An ) of vibrational quanta lost in deactivating collisions, 
v de 

both reactive and non-reactive, as a function of the barrier height 

for v = 2 - 5 at both 300 K (solid lines) and 1000 K (dashed lines). 

This quantity is given by the formula 

v-1 

v~O (An) = 
v de 

v.-1 

v?-;0 
T 

T 
(v-v 1 )k vvl 

T 
k I 

vv 

where k 1 is the total (sum of reactive and non-reactive) deactiva­
vv 

tion rate constant for the v --+ v 1 transition. Since the rate constants 

vary with temperature, so will (An )d . For a given reagent 
v e 

vibrational level v, the maximum value this quantity may have is also 

( 9) 

v, as would be the case when all deactivation occurred by a v-quantum 

process, in which only ground state molecules were formed. 

From figure 9 we see four main features. First, this average 

number of quanta lost is always less than its maximum value, by an 

amount ranging from almost 4 quanta for v = 5 on the 40 kcal /mole 

barrier surface to 1/2 quanta for v = 2 on the 1. 5 kcal/mole barrier 

surface. Second, this quantity decreases as the barrier height of the 

surface increases, till it is very close to 1 for all reagent states on 

the 30 kcal/mole barrier surface. Third, this quantity is strongly 

temperature dependent, with the temperature dependence in the 300 -

1000 K range having its greatest value for the intermediate (10 - 20 

kcal/mole) barrier surfaces. Fourth, this quantity increases with 

v. Thus, we see that on low barrier surfaces, not only are multi­

quantum transitions likely, but those multi-quantum transitions which 

transfer more than 2 quanta of vibrational energy are quite likely. 

Finally, we wish to consider the temperature dependence of the 

rate constants for single-quantum deactivation as a function of the 

reagent vibrational state and the barrier height of the potential 

energy surface. To show this temperature dependence, we calculate 



98 
. v, v-1 

Arrhenius activation energies (E ) for these rate constants in 
a 

the high temperature (700- 1000 K) and plot them as a function of 

reagent internal energy in figure 10. These are the slopes of the 

corresponding Arrhenius plots (logarithm of rate constant vs. inverse 

temperature), which have been found normally to be reasonably linear 

in the low (200 - 400 K) and high (700 - 1000 K ) temperature regions, 

but curved in between. The a ctivation energies calculated increase as 

the barrier height of the potential energy surface in c reases and, in 

general, decrease as the vihrational excitation of the reagent in­

creases. This de crease is far less than the increase in internal ener-

gy, however. For example, the activation energy on the 40 kcal I 

mole barrier surface decreases only by some 16 kcal/mole as one 

adds over 40 kcal/mole of internal energy. This is another manifes­

tation of the relative inefficiency of vibrational energy in promoting 

rea ction. 

B. REACTIVE PROCESSES 

In this section we will examine a few aspects of the dynamics of 

reactive processes in the HF(v) + D system. This system is a bet­

ter one for experimental study than the HF(v) + H system, as the 

reactive and non-reactive processes can be easily differentiated. 

In fa ct, experiments on this system taking advantage of the mass 

difference between the H and D atoms have already been performed 

( 1 5 ). The aspects of the d ynamics of the reactive processes which we 

will mainly consider are the gross features of the reaction proba­

bility and the vibrational state distribution of the DF produ c t formed 

in the reaction. 

We examine the threshold regi an of the total reaction probability 

for reaction of ground state HF with D atoms on the six surfaces in 

figure 11. In this figure, we plot the reaction probability vs. energy 

curves only in the threshold region, in which the probability increases 
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rapidly and smoothly from zero to one . We also indi c ate in the figure 

the translational energy equal to the classical barrier height of the 

six surfaces studied. Note that this quantity is measured with respe ct 

to the bottom of the HF well, while the translational energy is measured 

with respect to the HF zero-point energy. The important points to 

be learned from the figure are as follows. First, for all surfaces the 

reaction probability does rise smoothly from zero to one over a fairly 

narrow range of energy. Second, the threshold energy (the energy at 

which the probability of reaction first becomes large , say 0. 02) is 

always smaller than the classical barrier height by an -amount which 

increases as the barrier height increases (some 0. 04 eV for the 1. 5 

k c al/mole barrier surface to some 0. 23 eV for the 40 kcal/mole 

barrier surface ). Third, the width of the threshold region also in­

creases as the barrier height increases (from some 0. 03 eV for the 

1. 5 kcal/mole barrier surface to some 0. 25 eV for the 40 kcal/mole 

barrier surface). 

In figure 12 we plot the total reaction probability for reaction of 

HF(v= 1) with D atoms vs. energy in the thre sh.old region on the 

six surfaces. While this plot is fairly similar to that in figure 11, 

there are two major differences. First, the probability vs. energy 

curves have shifted to lower energy . This is reasonable, as the 

vibrational energy should be at least partially effe c tive in reducing 

the translational energy threshold for reaction. One sees that its 

effectiveness is limited, however, as the translational energy thresh­

old has been redu ced by no more than 0. 2 e V on vibrational excitation, 

even though the vibrational quantum is 0. 49 e V. Second, the behavior 

of the probability vs. energy curves at the high energy t-nd of the 

threshold region is different than it is in figure 11 for the lower 

barrier (1. 5, 5, 10 k cal/mole) surface s. In these cases, we see 

that the reaction probabilities do not stay near unity as they do in 



100 

figure 11; instead, they reach a maximum somewhat less than unity 

and then decrease with increasing energy. On the higher barrier sur­

faces, behavior is similar to that in figure 11. We will discuss later 

possible explanations for the more complicated nature of the dynamics 

on the low barrier surfaces. 

The next aspect of the reactive processes whi ch we will c onsider 

is the vibrational state distribution of the DF formed in the reacti on, 

and how it varies with the barrier height of the potential energy sur­

face and with reagent v ibrational excitation. The quantity which we 

will frequently consider in order to avoid having to look at the entire 

product state distribution is the average fra c tion ( f ) of product 
v 

energy going into product vibration 
v 
max 

R 
~0 E ,P I 

<f) = v vv 
v 

v 
R max p 

~0 vv' 

In fi gure 13 we plot for energie s at whi ch the reaction probability 

is appreciable (more than 60 %) this quant ity for reactions of ground 

state HF on the 1. 5 , 20, and 40 kcal/mole barri er surfaces. From 

this figure we see that the barrier hei ght of the surfa c e has a major 

influen c e not only on the translational energy thre shhold for rm ction, 

but also on the product state distribution. As the barrier height in­

creases, there is less vibrational excitation of the DF produc t. We 

also note that (f ) is a much smoother function of the energy for the 
v 

higher barrier surfaces (20, 40 kcal/mole) than it is for the low 

(1. 5 kcal /mole) barrier surface. Some of the lack of smoothness 

in the plot for that surface c an be attributed to a t most very small 

translational energy thresholds for vibrational excitation into newly 

opened states. The arrows on the abscissa of figure 13 indicate the 

energies at which DF product states be come open, and we see that 

( 10) 
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the curve for the 1. 5 kcal /mole barrier surface rises rapidly at 

almost identically those energies. This is particularly true at the 

energies where the DF(v= 1, 2, and 3) state become open . No such 

rapid increases are seen for (f ) on the high barrier surfaces, sug-
v 

ge sting that reaction to higher vibrational energy produ c t states 

o c curs with a large translational energ y threshold. 

To determine how reagent vibrational excitation influenc es the 

vibrational state distribution of the DF product, we examine < f ) 
v 

for v = 0-4 at a variety of energies on the different potential ener gy 

surfaces. The values obtained are giv en in Table 2. In this table 

we only consider those combinations of potential energy surfac e, 

energy, and reagent vibrational state for which the reaction probabili­

ty has gone through its initial rise; on the high liarrie r surfaces we 

will only be able to examine the few lowest reagent vibrational states, 

as the translational energy thresh.olds for reac tion are too great 

for reac tion to oc cur in the energy range studied . 

From the dat a in table 2, we c an see that the influenc e of reag ent 

vibrational excitation on the product state distribution depends strong ­

ly on the total energy and on the barrier height of the potential surface. 

On high barrier surfaces, reagent vibrational excitation leads to a 

higher fraction of the product energy going into vibration, whereas on 

low barrier surfaces, it leads to no particular behavior. In a number 

of cases one actually sees less product vibrational excitation in c ol­

lisions of vibrationally excited reagents (see for example the 2. 410 

eV results on the 1. 5 kcal/mole barrier surface and the 2. 002 eV 

results on the 5 kcal/mole barrier surface). On the intermediate 

barrier surfaces, one can see both types of behavior . For example, 

on the 10 kcal/mole barrier surface, reac tion of vibrationally ex c ited 

HF leads to a more highly excited DF distribution than does that of 

ground state HF at low energy (1. 186 eV), but leads to a less highly 
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excited one at higher energy (2. 410 eV). 

We can also obtain additional information about how the produ c t 

state distribution depends on the potential energy surface from the 

data in table 2, especially for reactions of vibrationally excited 

molecules (in figure 13 we considered only reaction of ground state 

species). It appears that this dependence is itself energy dependent. 

At the lowest energy considered (1. 186 eV), while (f
0

) de c reases 

as the barrier height is increased, (f
1

) increases. At most other 

combinations of energy and reagent vibrational state, < f ) is essen-
v 

tially independent of the barrier height (or more precisely, depends 

on the barrier height in no easily recognizable way) on low barrier 

height surfaces, but decreases substantially as the barrier height 

further inc reases. 

The distribution of the DF product states for reaction from HF(v= 

0, 1,and 2) at a total energy of 2.410 eV is shown in figure 14 in the 

form of histogram plots. In these plots, the height of the bar is pro­

portional to the rea ction probability to the indi c ated product state. 

We note here the most important features of these plots. For the 

ground reagent state, as the barrier height in c reases, the product 

state distribution as a whole shifts to lower vibrational states, until 

on the 40 kcal/mole barrier surfac e, 7 So/o of the rea ction occurs by a 

vibrationally adiabati c process. On the low barrier surfa c es the 

product state distribution is quite broad, being spread out over 3-5 

product states. For the v= 1 reagent state, the product distribution 

also shifts to lower vibrational states as the barrier height increases, 

but the shift is not as dramatic as for ground state reac tions. This is 

true for two reasons. First, on the 40 kcal/mole barrier surfac e the 

reaction is primarily vibrationally adiabati c ; hence the distribution 

for that surface is peaked about v = 1 and not about v=O as in the ground 

state reaction. Se c ond, the product state distributions on the low 
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barrier surfaces are wider than for ground state reaction, so that 

there is appreciable population of the DF(v'=2) state on all surfaces. 

An interesting feature is that at this energy, the probability of vibra­

tionally adiabatic reaction on the 30 kcal/mole surface is significantly 

smaller than the probability for reaction with an inc rease or decrease 

of one in the vibrational quantum number. Thus, one c annot simply 

assume that the reaction is vibrationally adiabatic on high barrier sur­

faces at all energies. The product stat e distributions in reactions of 

HF(v=2 ) are even broader than those for reactions of HF(v= 1 ), and 

are also somevh at irregular (they are not smoothly peaked a bout one 

quantum state). We note that some of the state -to- state reaction 

probabilities on the low barrier surfaces vary fairly rapidly with 

energy at high energy; it is this variation that gives rise to the 

irregular structure of the plot of <.£
0

) in figure 13 . 

C. QUANTUM MECHANICAL RESONANCES 

The existence of l ow energy resonances in the collinear HFH 

system (Muckerman V surface) has been noted previously (14), and 

here we consider s ome aspects of the res onance structure on the 

surfac es used. We are particularly interested in how the resonances 

change in position and intensity as the barrier height is raised. In 

figures 15-18 we present plots of state - to -state probabilities of 

rea ction 3b on the 1. 5, 5, 10, and 20 kcal/mole barrier surfaces, 

respectively, in the region of energy containing the threshold for 

reaction from v = 0 and continuing up some 0. 4 eV above that. The 

plots strongly suggest the existence of a resonance in these systems. 

The resonance is strongest on the 1. 5 kcal/mole barrier surface, and 

is substantially weaker on the 10 kcal /mole barrier surface. On the 

20 kcal/mole barrier surface it has almost totally disappeared; it is 
R R 

seen only by the formation of a small shoulder in the P 
00 

and P 
01 
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curves. There is no minimum in P
00 

as there is on each of the 

lower barrier surfaces. It is also interesting to consider the effect 

of isotopic substitution on the strength of the resonance. To do this, 

we plot state-to-state probabilities for reaction 2b on the 10 kcal/mole 

barrier surface in figure 19. It is quite clear that the resonance is 

much stronger in this system than it is in the D substituted system. 

There are two other interesting features of figure 19. First, there 

is a small dip in the reaction probability shortly after it first reaches 

unity. At higher energies the probability does return to one, and stays 

there until the resonance. Second, the resonance occurs at a transla-

tional energy of 0. 735 eV, which is some 0.1 eV greater than the 

energy of the weaker and broader resonance in the D + FH system. 

We will discuss these features of the dynami c s in the ensuing dis-

cussion section. 



105 
V. DISCUSSION 

The dynamics of the collinear HFH and DFH systems are shown 

to depend substantially on the barrier height of the potential energy 

surface used. As the barrier height is increased a number of im­

portant changes in the dynamics take place. In collisions of vibra­

tionally excited HF molecules, the overall rate of vibrational deacti­

vation of the HF decreases for a while as the barrier height increases; 

further increase of the barrier height makes little change in the deacti­

vation rate. The value of the barrier height at which this takes place 

is a function of temperature (increasing as the temperature is in­

creased). On low barrier surfaces, the bulk of the deactivation oc­

curs by reactive (and multi-quantum) processes; on high barrier sur­

faces, it occurs by non- reactive (and single -quantum) processes. 

On the lowest barrier surfaces (1. 5 and 5 kcal/mole), what non­

reactive deactivation there is occurs from both single and multi-quan­

tum transitions at 300 K; the higher the reagent vibrational state, the 

greater the contribution of multi-quantum non-reactive deactivation 

processes. On the highest barrier surfaces (30 - 40 kcal/mole), 

reactive deactivation occurs mainly by multi-quantum transitions at 

300 K, for example two quantum processes in collisions of HF(v= 3) 

with H and 3 and 4 quantum ones in collisions of HF(v= 5) + H. We 

have shown elsewhere (17) that as the temperature increases, the 

relative importance of single quantum reactive deactivating processes 

increases. On the highest barrier surface studied (40 kcal/mole) the 

deactivation of vibrationally excited HF can be th oo.ght of, to a good 

approximation, as occurring entirely in single-quantum non-reactive 

processes. 

On this class of surfaces, vibrational energy is not spectacularly 

effective at promoting reaction. This is seen in two ways: the fairly 

small decrease (0. 10 to 0. 22 eV) in translational thresholds for 
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reaction on the mode rate and high barrier surfaces to the vibrational 

quantum (0.49 eV), and the calculation of large activation energies for 

reactive single-quantum deactivation processes at high temperatures 

(700 - 1000 K). Elsewhere, we have shown that this partial effective­

ness of vibrational energy can be explained on the 40 kcal/mole surfa c e 

by a vibrationally adiabatic model ( 17 ). The feature of the potential 

energy surface which is greatly responsible for this partial effective­

ness is the relative narrowness of the reaction channel in the saddle 

point region (see figure 2). This narrowness produ ces a large vibra­

tional frequency for symmetric stretch motion at the saddle point, 

meaning that the vibrationally adiabati c barriers will be fairly large, 

even when there are a few quanta of vibrational excitation. 

For the surfac es with low or only moderate barriers, a vibra­

tionally adiabati c model provides useful insight into the dynamic s of 

the reac tion. In figure 20 we plot a vibrationally adiabatic co rrela­

tion diagram for the DFH reaction on the 1. 5 kcal/mole surface. In 

this figure, the energy V (s) of the vibrational staten everywhere 
n 

along the reaction coordinate s is plotted. We also plot the energy 
mep 

V (s) along the minimum energy path. In this case, one can see 

that there are wells in. the vibrationally adiabati c correlation diagram 

for all reagent states, and the wells be come deeper as the vibrational 

state increases. Since it is known that wells in the vibrationally 

adiabatic correlation diagram can lead to reactive scattering reso­

nances (21 ), the existence of resonances in this system is not unex­

pected. Indeed, in figure 15 we s ee a very strong resonanc e in the 

reaction probability P 
00 

Rat E
0 

= 0. 3 eV. We indi cate this energy on 

figure 20 with a dotted line. The correlation between resonances and 

bound states of the wells in the vibrationally adiabatic correlation 

diagram is obvious. For higher vibrational states the wells are 

quite deep and wide, suggesting that large numbers of bound states 
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of the curves might exist, producing numerous resonances and hence 

quite complicated dynamics. We also note that the curves for the dif­

ferent states come quite c lose to each other, suggesting that c rossing 

from one to another should occur fairly easily, especially between 

states with n greater than 1. 

If this picture is co rre ct, it mu s t explain both the decrease in 

resonance intensity as the barrier height is increased and the greater 

strength and higher energy of the resonance in the 10 kcal/mole bar­

rier surfac e fo r H + FH than for D + FH. In figu re 21 we present the 

vibrationally adiabati c c orrelation diagram for the DFH system on the 

10 kcal/mole barrie r sur fa ce. The main differences between this fig­

ure and figu re 20 are the absenc e of the small well in the n=O curve 

and the much smaller depth of the well in the n = 1 curve. Because of 

this small well depth, the resonance is expected to be substantially 

broadened. The vibrationally adiabatic correlation diag ram for the 

HFH system on the 10 kcal/mole barrier surfac e is shown in figure 

22. As in figure 20, the energy of the resonan c e is indicated by a 

dotted line. We note two major differenc es between figures 21 and 22. 

First, in the HFH system, the well in the v = 1 curve is f airly deep 

("-'0. 1 eV); the resonanc e energy is seen to lie about halfway between 

the bottom and top of the well. Second, the vibrationally adiabatic 

correlation diagram curves for HFH are symmetri c about s = 0. 

Thus, the formation of a flat shoulder-like area on the curves , such 

as that seen for n = 1 in figure 21, cannot occur in the HFH case ; any 

well must be symmetri c about the saddle point. The gre ater depth 

of the well in the HFH c ase than for the DFH one is responsible for 

the greater strength and smaller width of the resonan c e in the form e r 

s ys t em. Because the vibrational frequencies near the saddle point 

are g reater for HFH than they are for DFH, the curves in the vibra­

tionally adiabati c c orrelation diagram for HFH will be at higher ener-
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gy in the saddle point region than are those for DFH. Thus, the 

vibrationally adiabatic correlation diagrams produ c e the c orre ct 

dependence of the resona n c e strength and energy on isotopic substi­

tution. 
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VI. CONCLUSIONS 

On the basis of the scattering calculations performed, we are able 

to answer the questions posed at the beginning of section 4 about the 

dynamics of the collinear HFH and DFH systems and how those dy­

namics depend on the barrier height of the potential energy surfa c e 

used. We briefly summ arize what we have learned in r egard to 

each question. 

1) The relative rates of c ollisional deactivation of vibrationally 

excited HF decrease substantially with increasing barrier height for 

small barrier height surfa ces; on larger barrier surfac es they are 

relatively independent of the barrier height. The barrier height at 

whi ch this transition o c curs in c reases with temperature. 

2) On low barrier surf a ces vibrational de·a c tivation occurs 

primarily by reactiv e multi-quantum proc esses, while on high bar '­

rie r surfac es it o ccurs primarily by non-reactive single-quantum 

proc esses. 

3) Vibrational deactivat ion rates inc rease with temperature. 

On the high barrier surfaces the rate of reactive deactivation in­

c reases with temperature much more rapidly than that of non-rea c ­

tive deactivation. As the temperature in c rease s, multi-quantum 

deactivations increase in importance. 

4) As the barrier height of the surfac e inc reases, both the 

translational energy threshold for rea ction in c reases and the average 

fraction of energy going into product vibration de c reases. On the high 

barrier surfaces reag ent vibrational excitation leads to a higher fra c ­

tion of energy going into product vibration; on the low-barrier sur­

fa c es this is not always true. 

5) The gross features of the non-reactive dynamics are not 

affected by isotopic substitution; the reac tive dynami c s differ sub­

stantially in their resonance behavior. This difference may be under-
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stood in terms of the vibrationally adiabatic correlation diagram for 

the HFH and DFH systems. 

6) Quantum mechanical resonances are strongest on the low 

barrier surfac es and significantly weaker or absent on the higher 

barrier ones . They move to higher energy as the barrier height of 

the surfac e in c reases. Consideration of the vibrationally adiabatic 

correlation diagram helps one understand this dependen c e. 
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Table 1. Parameters for Minimum Energy Path (Eq. 7) 

Surface Barrier A B c 
kcal/mole kcal/mole kcal/mole radians 

- 1 

1.5 0.01681 1. 4832 1 .3434 

5 0.01681 4.9832 20.955 

10 0.01681 9.9832 25.268 

20 0.01681 19.983 29. 57 5 

30 0.01681 29.983 32.093 

40 0.01681 39.983 33.879 
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Table 2. ( !v) for Different Energies, Reagent Vibrational States, 

and Potential Energy Surfaces 

E eV 

Surface 
a b 

v 1. 186 1.594 2.002 2.410 2. 655 

1. 5 0 0.555 o. 652 0.716 0. 692 0. 705 

0.259 0. 532 0.583 0.549 0.530 

2 
c 

0 . 637 0.461 0 . 511 0.5 5 2 

3 0.501 0.460 0.554 

4 0.394 0.480 

5 o. 585 

5 0 0.49 4 0 . 543 0.627 0.647 NA 

0.350 0.378 0.504 0.513 NA 

2 0.41 5 0. 457 0.488 NA 

3 0. 447 0. 47 5 NA 

4 0 . 604 NA 

10 0 0 . 357 0. 473 0.508 0.620 0.64 8 

0 . 508 0.433 0.377 0.507 0 . 528 

2 0. 399 0.381 0 . 477 0.492 

3 0.46 5 0.455 0.485 

4 0 .52 1 

5 0.621 

20 0 0 . 159 0.222 0.330 0.412 0.4 56 

0.348 0.344 0.422 0 . 448 

2 0.335 0.401 0.444 

3 0.434 0.427 

4 0. 522 

30 0 0 . 116 0. 149 0 . 2 33 NA 

0.267 0.300 NA 

2 0 . 379 NA 

40 0 0. 107 :0.112 0. 143 

0.230 0.240 

2 0.3 3 2 

a) Number indicated is the barrier height of the potential energy 

surfa ce in kcal/mole 

b) Reagen t Vibrational State 

c) There is insuffi cient (below"" 60 %) reaction for this c ombination 

of potential energy surface, reagent vibrational state and total ene rgy 

d) Cal culations performed on this potential energy surfa ce fo r this 

energy gave scattering matric es which were not unitary to within 

3 % so we did not use the results (NA = not available) 
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FIGURE CAPTIONS 

Figure 1. Schematic diagram of coordinate system for rotating 

Morse-cubic spline potential energy surface . 

Figure 2. Potential energy surface for the collinear H + FH system 

on the 40 kcal/mole barrier surfac e in the mass-scaled Delves 

coordinate system. Equipotentials are drawn every 0. 3 eV from 0. 3 

eV with respe ct to the bottom of the HF well up to a maximum of 3 . 0 

e V. The minimum energy path is indicated by a dashed line; the sad­

dle p oint is marked by an 11 x 11
• 

Figure 3. Energy level diagram of the energy V of the various 

HF(right) and DF (left) states and the barrier heights of the surface s 

(center). 

Figure 4. Plot of the total rate constant (sum of reactive and non­

reactiv e) k de for deactivation in the collision H + FH(v) --t H + 
v 

FH(v' ( v) at 300 K for v = 1-5 as a function of the barrier height 

Eb of the potential energy surfac e. Arrows mark the internal 
arr 

energies of the four lowest HF states. Line types are as follows: 

v= 1 : solid line; v =Z : dashed line; v=3 :dashed-dotted line; v =4 : 

dotted line; v =5 :dashed-triple-dotted line. 

Figure 5 . Plot of the total rate constant for deactivation k de in the 
v 

c ollision H + FH(v ) --+ H + FH(v'( v) at 650 K for v = 1- 5 as a fun c -

tion of the barrier height Eb of the potential energy surfac e. 
arr 

Arrows and line types are as in figure 4. 

Figure 6. Plot of the total rate constant for deac tivation k de in the 
v 

collision D + FH(v) --t D + FH(v' <. v), DF(v" ( v) + H at 3 00 K fo r 

v = 1-3 as a fun c tion of the barrier height Eb of the potential 
arr 

energy surface . Arrows a,nd line types are as in figure 4. 
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Figure 7. Plot of the fraction f ( 
1

) of dea c tivation occurring by 
v 

single quantum transitions in the collision H + FH(v) ~ H + FH(v-1) 

(both reactive and non-reactive) at 300 K for v = 2-5 as a function of 

the barrier height E of the potential energy surface. Arrows and 
barr 

line types are as in figure 4. 

Figure 8. 
R 

Plot of the fraction f of deactivation oc curring by reac -
v 

tion in the collision H + FH(v) ---+ HF(v' < v) + H at 300 K for v = 1-5 

as a fun c tion of the barrier height Eb of the potential energy sur-
arr 

face. Arrows and line types are as in figure 4. 

Figure 9. Plot of the average number (.6-n ) of vibrational quanta 
v de 

lost in deactivating c ollisions in H + FH(v) --+ H + FH(v' ( v) (both 

reactive and non-reac tiv e) at 300 K (solid line) ~nd 1000 K (dashed 

line) ~or v = 2-5. Arrows are used as in figure 4. Symbols used 

are as follows: v = 2 : circles; v = 3 : squares; v = 4 :triangles; 

v = 5 :diamonds. \-\here no line is shown, (.6-n ) may be taken as 
v de 

being on e . 

Figure 10. Plot of Arrhenius activ ation energie s E v, v-i for the 
a 

single -quantum deactivation reac tions H + FH(v) --t HF(v -1) + H 

for v = 1-5 as a function of the internal energy E. o f the HF(v) 
1nt 

reagent state on the six potential energy surfaces studied . The 

barrier height Eb of these surfac es is indicated on the right side 
arr 

of the plot. Internal energies of the v = 2- 5 states are indic ated by 

arrows. 

Figure 11. 
R 

Plot of probability P D+FH(O) of the reaction D + F H(O) 

-+ DF +Has a function of the reagent translational energy E in the 
0 

threshold region on the six potential energ y surfac es studied, the 

barrier heights of whi ch are indi c ated. The arrows indic ate the 

energies corre spending to the heights of the barriers. 
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Figure 12. 
R 

Plot of probability P D+FH(
1

) of the reaction D + FH(1) 

--+ DF + H as a function of the reagent translational energy E 
1 

in the 

threshold region on the six potential energy surfaces studied. 

All labeling is as in figure 11. The arrows on the abscissa indicate 

the energies of the surface barrier heights. 

Figure 13. Plot of the average fraction of available energy(f
0

) 

going into product vibration in the reaction D + FH(O) --t DF + H 

as a function of the reagent translational energy E
0 

on the 1. 5 

(triangles), 20 (squares) and 40 (circles) kcal/mole barrier surfaces. 

Energies of the various DF product states are indicated on the abs c issa. 

Figure 14. Histogram plot showing product state distributions for the 

reaction D + FH(v)--+ DF(v') +Hat a total energy of 2.410 eV for 

v' up to and including 6 on the 6 potential energy surfaces, the barrier 

height of which is indicated in the upper right corner of each strip. 

The height of the bar is proportional to the magnitude of the state -to­

state reaction probability P D+FH(v) ~ DF(v' )+H. a) v=O; b) v= 1; c) 

v =2. 

Figure 15. Plot of the state-to- state reac tion probability 

p D+FH(O) --t DF(v' )+H for the reaction D + FH(v=O) ---} DF(v') + H 

as a function of the reagent translational energy E
0 

on the 1. 5 kcal/ 

mole barrier surface. The arrow marks the energy at which the DF 

(v= 1) state becomes accessible. A solid line is used for the v'=O 

transition; a dashed one is used for the v'= 1 transition. 

Figure 16. Plot of the state -to- state reaction probability 

P D+FH(O) --+ DF(v' )+H defined for fig. 15 as a function of the rea­

gent translational energy E on the 5 kcal/mole barrier surface. 
0 

Arrows mark the energies at which the indicated states become acces-

sible. Line types are as in figure 15. 



120 

Figure 17. Plot of the state-to-state reaction probability 

PD+FH(O) --+ DF(v' )+H defined for figure 15 as a function of the 

reagent translational energy E
0 

on the 10 kcal /mole barrier surface. 

Arrows and line types are as in figure 16. 

Figure 18. Plot of the state-to-state reaction probability 

P D+FH(O) --+ DF(v' )+H defined for figure 15 as a function of the 

reagent translational energy E
0 

on the 20 kcal/mole barrier surfac e. 

Arrows and line types are as in figure 16. 

Figure 19. Plot of the state-to- state reaction probability 

P H+FH(O) ~ HF(v') + H for the reaction H + FH(v=O) ~ HF(v') + H 

as a fun c tion of the reagent translational energy E
0 

on the 10 kcal I 

mole barrier surfac e. Arrows and line types ar.e as in figure 16. 

Figure 20. Vibrationally adiabatic correlation diagram showing the 
th 

energy V along the minimum energy path (MEP) and of the n local 

vibrational state as a function of the reaction c oordinat e s measured 

along the minimum energy path for the 1. 5 kcal/mole barrier surface 

for the D + FH reaction. The dotted line marks the energy at whic h 

the resonance seen in figure 15 is observed. 

Figure 21. Vibrationally adiabatic correlation diagram for the 10 

kcal/mole barrier surface for the D + FH reaction. 

Figure 22. Vibrationally adiabatic correlation diagram for the 10 

kcal/mole barrier surface for the H + FH rea ction. 
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PART II 

CHARACTERIZATION OF LOW ENERGY RESON A N CES 

IN THE COLLINEAR H + H
2 

AND F + H
2 

SYSTEMS 
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INTRODUCTION 

Dynamical resonan ce s have been found to be one of the most 

inte resting results of colline ar quantum mechani c al c al culations on 

the dynamics of atom-diatomic molecule reactions . Knowledge of 

the features of the potential ene r gy surfaces responsible for thei r exis­

tence is important if one is to be able to understand their dependen c e 

on the potential energy surface, reagent vibrational excitation, and 

isotopi c substitution. Similarly, it is important that one be able to 

adequately recognize and characterize dynami cal resonances, 

espe c ially when they are partially m asked by dire c t pro cesses o ccur­

ring in tre same energy re gion. 

In this section we c onsider v arious characterization te chniques 

f o r the recognition and characterization of dynarpical resonan ces for 

two different systems: th e c ollinear H + H
2 

and the colline ar F + H
2 

(HD, DH, D
2

) ones. Cha racterization te chniques include studies of 

the variation with energy of the s tate-to- state reac tion probabilities, 

s c attering matrix element phases and their energy derivativ es, 

eigenphase shifts, and diagonal elements, ei genvalues, and eigen ­

ve c tors of the collision lifetime matrix of Smith. 

Paper II. 1 presents results of a collision lifetime m atrix analysis 

o f the low energy resonances in the collinear F + H
2

(HD, DH, D
2

) s y s­

tems. The strength of the resonan c es is shown to de c rease in the 

order F1-ID )) FH
2

) FD 
2

) FDH. Because the c ollision lifetime m a t ­

rix localizes the r esonanc e into a single eigenchannel, it allows one 

to determine the resonan c e position, width, a nd lifetime with a mini ­

mum of ambiguity. The peak in the reaction probability vs. energy 

curve for each system is shown to occur at higher energy than the 

peak in the eigenvalue of the c ollision lifetime matrix vs. energy 

curve f o r the same system, with the energy difference increasing 

as the resonan ce weakens. 

Paper II. 2 consists of a detailed study of the two lowest energy 
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resonan ces in the collinear H + H
2 

system on the Porter-Karplus 

potential energy surface. All of the characterization techniques men­

tioned above are utilized. The resonances are found to be reflected 

in all of these methods, most notable the eigenvalues of the c ollision 

lifetime matrix. Again, the resonances are almo st entirely loc alized 

in a single eigenchannel of this matrix . The effect of the symmetry 

of the syste m in the results of the charac terization procedures is 

discussed. There appear to be substantial differences between the 

two resonances as seen by the eigenvectors of the c ollision lifetime 

matrix near the resonan ce energies. 

Paper II. 3 includes a detailed study of the resonanc es studied in 

paper II. 1. As in paper II. 2, all of the above mentioned characteriz a­

tion te chniques are utilized . The de g re e t o whic;h the resonan ce s are 

r efle cted by the different techniques in e a ch of the systems is dis-

cussed. 
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II. 1 COLLISION LIFETIME MATRIX ANALYSIS OF THE FIRST 

RESONANCE IN THE COLLINEAR F + H
2 
RE~,CTION AND 

ITS ISOTOP I CALLY SUBSTITUTED ANALOGS 

~:; 

This paper a ppeared in Journal of Physical Chemistry~. 1 96 9 (1 98 1) . 
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f_ollisio~ Life time Matrix Analysis of the First Res~~anc e in the Collinear 

~H2 Reaction and Its Isotopically Substituted Analogs • 

Aron Ku e rmann and J ack A. Ka e•• 

Arthur Amos Noyes Laborator y of Chemical Phys ic s, t 

California Institute of Technology , Pasadena , California 91125 

(Received 

A collision-life time matrix analysis of the first resonance in the 

collinear F + ~ reaction and its D-substituted analogs shows that 

near the resonance only one of its eigenvalues is positive and 

displays a maximum . This indicates that the resonance is asso­

ciated with a single lifetime eigenchannel. The observed lifetime 

order is FHD » FH2 > FD2 > FDH. 

* This work was supported in part by a grant (No. CHE77-26515) from 

the National Science Foundation. 

•• Work performed in partial fulfillment of the requirements for the 

Ph. D. degree in Chemistry at the California Institute of Technology. 

t Contribution No. 6420. 
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1. Introduction 
~ 

Among the most important results to come from quantum mechan­

ical calculations of the probabilities of chemical reactions are the exist­

ence and significance of resonant processes. Reactive scattering reso-

1 2 nances were first found in collinear calculations on the H + H
2 

system ' 

and have been obse rved in a variety of other collinear atom-diatom cal­

culations, including those on the F + H2 , HD, D
2

, 
3• 4 Cl + H

2
, 

5 I + H
2

, 
6 

7 8 9 
Ba + N 20, 1 + HI, and Cl + HCl systems. The F + Hz system and its 

isotopically substituted counterparts are of particular interest because 

of their simplicity and relative ease of study by both theoretical and 

experimental techniques. It has recently been proposed that these 

systems are prime candidates for experimental observation of resonances . 

Approximate j
2
-conserving three-dimensional calcula­

tions on the F + H2 system have been performed, and they suggest that 

the resonance found in the collinear calculations exists in the three -

dimensional world. 10 Molecular beam experiments also provide indi-

t . f . th ' t 11 ca wns o a resonanc e m 1s sys em. 

Resonances have been observed in a wide variety of scattering 

processes and are known to be associated with the existence of long-lived 
12 

metastable states . Once a resonance is known to exist in a chemic -

ally reactive system, one desires to know what features of the potential 

energy surface are responsible for its existence and what its lifetime is. 

The latte r is especially important in determining what s ystems are the 

most suitable for the experimental detection of resonances. 

Babamov and Kuppermann have recently developed a model that 

gives a physical interpretation and predicts the location of the lowest 

energy resonance in the collinear F + Hz and isotopically substituted 
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systems. 13 Hayes and Walke r have also recently developed simple 

models for the lowest collinear F + ~ resonance. 14 Here we consider 

the lifetime of the metastable state using the formalism of the collision 

lifetime matrix developed by Smith. 15 This approach was previously 

applied to the second resonance in the collinear H + H2 reaction. 16 

In section 2 we briefly review Smith •s collision lifetime matrix 

approach; in section 3 we present results obtained for the collinear 

F + ~, HD, DH, and D2 systems; and in section 4 we discuss their 

significance. 

The definition of a lifetime of a metastable state in a quantum 

mechanical molecular scattering problem is not unique . For scattering 

. eli . •t . ll k 17 1n one mens1on, 1 IS we nown that the delay time T of a particle 

due to the existence of a potential is associated with the phase s hift TJ of 

the transmitted wave according to 

T = ~ .Q!1_ 
v ap 

(1) 

where v, p, and E are, respectively, the initial velocity , momentum, 

and energy of the partie le . 

In the multichannel case, such as reactive scattering, there exists 

a set of quantum numbers , j, which describes the internal states of both 

colliding partners. Smith, in a seminal paper, 15 has shown that the 

corresponding delay times are given by the diagonal elements Qjj of the 

hermitian collision lifetime matrix~ defined by 

dS t 
i fi s 

dE 
(2) 
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where Sis the scattering matrix for the system. A resonance picture of 

the scattering process in collision channel j is useful when the inequality 

» 1 (3) 

holds, where Ei is the initial relative translational energy in that channel. 

In those cases, one may diagonalize the ~ matrix and associate the 

eigenvalues q (which are real because Q is hermitian), when large 
n = 

and positive, with the exponential decay times of long-lived metastable 

states. Further, the wavefunction describing this state, called a lifetime­

eigenchannel state, may be obtained from the nth eigenvector, U , of Q . 
~ n = 

In general, ~, its eigenvalues, and eigenvectors are a function of the 

energy. 

The exact connection between the lifetime t of the metastable state 
n 

a nd the eigenvalue qn is not obvious because away from resonances , qn 

may be negative. In the rest of this paper we will determine the nature 

of the variation of q
0 

with energy across a resonance for the collinear 

F + HD, F + ~' F + D2 , and F + DH systems and suggest a definition tn. 

3. Results 
~ 

The coupled-channel calculations performed to generate the ~ 

matrices use the method of Kuppermann18 and are additions to the 

calculations performed on these systems by Schatz, Bowman, and 

Kuppermann. 3• 4 They were performed at a sufficiently dense energy 

grid to obtain the energy derivative of the ~matrix by a three-point 

finite difference method. As a result of this three-point approximation, 

the ~ matrix was almost but not precisely hermitian. To avoid complex 
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eigenvalues, ~ was then forced to be hermitian by replacing it by the 

average of it and its hermitian conjugate. Diagonalization of the result­

ing matrix was performed by a standard EISPACK routine. 19 Its eigen­

values were calculated a s a function of energy and were associated with 

a given lifetime-eigenchanne l by requiring that its eigenvectors, which vary 

slowly with energy , be continuous within the accuracy of the calculations . 

Plots of the eigenvalues qn versus the total energy E of the system 

(measured with r espec t to the bottom of the hydrogenic m olecule well) 

are presented in figure 1. Three main features of the curves are worthy 

of notice. First, in each of the four isotopic s ystem s , only one of the 

curves displays a positive maximum , and for only this curve does q 

acquire positive values. Second , at values of E sufficiently 

above the resonant energy, all eigenvalues q are negative and nearly 

independent of energy. Third, there i s usually at least one curve sub­

stantially removed from the others (the bottom one or two curves in the 

FH2 , FD2 , and FDH panels of figure 1~ and examination of the corres­

ponding eigenvectors indicates that these are usually due to higher energy 

HF or DF states that do not contribute signific antly to the reaction 

dynamics in the energy range conside red. 

We conc lude from these properties that the resonance is as s oc iated 

with a single eigenchannel n of the collision lifetime matrix; namely, the 

one for which the corresponding qn (E) curve has a positive maximum. 

In view of the bell-shaped nature of this curve, we choose to define the 

lifetime tn of a collision associated with the r esonance lifetime eige n­

channel n by the expression 

(4) 
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where q~s is the value of q- at an asymptotic energy sufficiently large 
n n 

with respect to the resonance energy for qn to have become essentially 

independent of energy. The values of t 11 for the resonance lifetime­

eigenchannels of the systems being considered are given by the right­

hand-side ordinates of fig . 1. This definition has the convenient property 

that it makes t 11 (E ) be greater than or equal to ze ro for all energies 

considered. We define the resonance lifetime t~es as the maximum value 

of tn and the energy at which it occurs the resonance energy E~es. 

Although for long-lived resonances, such as the FHD one, the difference 

between t~es and q-(E:_es) is rather small; for short-lived ones, n n n 
sue h as for FDH, t~es can be significantly larger than q n (E~es ). 

The shape of the q 11 (E) curve, for each of the four isotopic s ystems, is 

approximately Lorentzian over a 1 to 2 FWHM energy range. We define 

that FWHM as the resonance width aE~es 
As can be seen from fig . 1, the resonance lifetimes 

clearly decrease in the order FHD » FH2 > FD2 > FDH. This is to be 

expected on examination of the width of the peaks in the plots of reaction 

probability versus energy for these systems given in fig. 2. However, 

even weak resonances, such as those in the FD2 and FDH systems, which 

do not show up as clearly resolved peaks in the probability versus energy 

plots, do exhibit distinct resonant behavior in the plots of fig. 1. This is 

par ticularly important since in those two systems direct processes con­

tribute in a major way to the probability versus energy curves. 

For each value of E, the components Un'n of the eigenvector lln of S 
furnish the contribution to the eigenchannel wavefunction ~Pn of each of 

the reagent or product molecule eigenstates. Those change significantly 

with energy across a resonance eigenchannel and will be discussed 

elsewhere . 
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4. Discussi on and Conclusions 

The q (E) and t (E ) curves of fig. 1 clearly demonstrate the useful­

ness of the eigenvalues of Smith's collision lifetime matrix 15 for the 

recognition and lifetime characterization of reactive scattering reso ­

nances. Of particula r interest is the fact that in the four isotopic s ys-

terns considered, the presence of the resonance manifests itself in only 

one of the lifetime eigenchannels, in contrast to an eigenphase shift 

analysi s, in which several of the scattering matrix eigenchannels are 

affected by the r esonance . 20 Thus, this kind of analysis seems specially 

well suited for separating resonance processes, even very weak ones , 

from direc t reaction mechanisms, even when the latter are dominant , 

as seems to be the case for the FD2 and FDH s ystems. 

The localization of the resonance in a single 

lifetime eigenchanne l implies that a single linear combination of 

reage nt and product asymptotic states, at the resonance energy, leads to 

an effective trappi ng of the energy in internal degrees of freedom of the 

compound system. This eigenchannel should play an important role in 

modeling resonances. Whether or not resonances are normally con-

fined to a single lifetime eigenchannel is not clear at the present tim e, 

and further work is required to elucidate this point. 

A comparison of figs. 1 and 2 indicates that the resonance ener gy 

Eres, as defined in section 3, is always lower than the energy E~ax at 

which the reaction probabi lity curves of fig. 2 achieve a maximum. The 

vertical arrows in the latter figure indicate the corresponding Eres 

positions. This shift appears to be at least in part due to the concomi­

tant occurrence of a direct mechanism. Table I furnishes several 

quantities of interest for the systems being considered. From the last 



1 57 

. . res P 
column 1n that table we see that the shift between E and Emax ' in 

units of the resonance width llEres, increases in the order FHD, FH2 , 

FD2 , FDH. We conc lude that for weak resonances superimposed on 

direct processes the identification of the resonance energy with the 

energy at which a trans ition probability has a maximum may be 

inappropriate. 

Other tec hniques used for the characterization of resonances, such 

as Argand diagram s, 21 the derivative of the phases of the g matrix 

eleme nts with respec t to energy, 21 or the energy-dependence of its 

eigenphase shifts m entioned above, all manifest the presence of the 

resonance to some degree, bu t not as clearly as the collision lifetime 

matrix eigenvalues. This is particularly true in the FDH and FD2 

s ystems for which this resonance is quite weak. 

The results in the sixth column of Table I and in Fig. 1 show that 

the FHD resonance is about 75 times longer-lived than the FDH one. 

This gives an indication of the dynamic range of the lifetime matrix 

analysis technique . These results lend further support to the recent 

suggestionlBc, 20 that the F + HD system is a particularly promising one 

for the experimental detection of resonances. In that s ystem, the 

F + HD (v = 0) - HF (v' = 2) + D channe l should show sharp resona~t behavior, 

whereas the F + DH (v = 0) - DF (v' = 3 , 4) + H channels should show 

little, if any, such behavior. A furthe r discussion of these resonances 

will be presented in a future publication. 
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Figure Cae_tions_ 

Fig. 1. Eigenvalues q of the collision lifetime matrix~ and collision 

lifetime t as a function of energy for the collinear FHD, FH2 , FD2 , and 

FDH systems. The bottom abscissa in each panel (E) denotes the total 

energy with respect to the bottom of the isolated hydrogenic molecule 

well, whereas the top common abscissa (E0 ) denotes the energy measured 

with respect to the zero point energy of that molecule. The left ordinate 

scale in each panel refers to all the curves in that panel, whereas the 

right one refers only to the corresponding bell-shaped curve. The 

dashed portion of the lowest curve of the FHD panel ind.icates a region 

of numerical noise associated with the sharp peak of the top curve. The 

horizontal straight line of that panel represents the eigenvalue curves 

for hl.•o distinct eigenchannels. These curves coincide within the plotting 

accuracy of the figure but are distinguishable on an expanded scale. 

The divisor in the three lower panels indicates the number by which the 

ordinate of the neighboring curve was divided before plotting. 

Fig. 2. Probabilities of the collinear reactions F + HD (v = 0) -

FH (v' = 2) + D, F + H2 (v = 0) - FH (v' = 0) + H, F + D2 (v = 0) -

FD (v' = 3) + D, and F + DH (v = 0) - FD (v' = 3) + H as a function of 

total energy E with respect to the bottom of the isolated hydrogenic 

molecule well and of the initial reagent relative translational energy E 0 • 

The vertical arrows indicate the energies at which the resonance collision 

lifetime eigenvalues of fig . 1 achieve a maximum. 
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II. 2 CHARACTERIZATION OF THE TWO LOWEST ENERGY 

RESONANCES IN THE COLLINEAR H + H SYSTEM 
2 
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Characte rization of th e Two Lowest Ene rgy R e sonanc es in the 
a) 

Collinear H + H System . 
~ b) 

J ack A. Kaye and Aron Kuppermann 

Arthur Amos Noyes Lab o ratory o f Chemical Physi cs . 
c ) 

Califo rnia In stitute o f Te chnology, Pasadena, California 9 112 5 

(Received 

We have perfo r med quantum me chani ca! s c atterin g cal c ulations 

on the collinear H + H
2 

reac tion on the Porter - Kar plu s surface 

at energie s in the v i c inity of the t wo l owest e ner gy resonances . 

We hav e examined the effe c t of the res onances on the e ner gy 

depe nde n ce of the state-to-state r ea c ti on probabilitie s, individual 

S m atrix e l ement phas es and thei r e n ergy d eri vatives, eigen-
= 
phase shifts, a nd d iagonal e l ements , eigen values, and eigenve c ­

tors of Smith ' s collision lifeti me m atrix . T h e eigenvalue s of the 

collision lifetime matrix provid e the most unarnbi gu ous n 1eans 

for ch ara c t e rizing the res onances and a ll ow G':'le t o o btain th e 

r esonance position and w idth, as well as th e li feti me of th e l on g ­

lived metastable state asso c iated w ith the r es onan ce . Ihe t wo 

res onan ces , l ocated at 0.875 e V a nd 1. 3 10 eV t o t a l ene r gy , have 

widths (Fw.HM) o f 0 . 021 eV and 0. 028 eV and life time s of 0 . 0 9 1 

psec and 0 . 0 85 psec, r espective l y . Vv11 .ile both r esonan ces are 

shown t o be asso c iated with symmetri c collision life time e i gen ­

charu1els, the t wo resonan ce s diffe r marked ly in the fracti onal 

compositions of the eigenvectors of the collision lifetirne m a trix. 

The limitations and advantage s of ea ch of the chara c t e riz a t i on 

t echniques u se d w a s di s cuss e d . The e i genvalues o f the colli s i on 

lifet i me matrix a r e compared t o the results of a classical th eo r y 

f o r the time delay . 
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I. INTRODUCTION 

The reaction of atomic hydrogen with molecular hydrogen 

H + + H ( 1) 

has been th e object of numerous theoreti cal studies, parti cularl y in 

the last twenty years w hen the existence of large computers has made 

numeri cal cal culations on this reaction feasible (1). The extensive 

study of this r ea c tion is due mainly to it s simpli c ity: the s m all numbe r 

of electrons and nuclei makes the calculation of a chemically accurate 

p otential energy surfa c e possible, the absence o f l ow-lying excited 

electroni c states makes a single - surface calculation satisfac tory, and 

the small masses and l arge spe c tr o s copi c c onstants o f H
2 

make quan­

tum mechanical c alculations of this reacti o n simpler (and l ess expen­

sive ) than tho se of reactions involving heavier at?m s . 

Although a large num~e r o f thr ee -dimensi ona l clas sica! traje c t o ry 

cal c ulati ons have been performed on r e a c ti on 1 at energies be low and 

above dissociation, where th e rea c tion 

H + H 
2 

H + H + H 

be comes e nergetically allowed (1, 2), the num~er of exact three dimen -

sional quantum mechani c al cal c ulati ons is much smaller and has been 

restricted t o ener gi es w ell below dissbc iation. Most of the exact 

quantum me chani cal c al c ulations on reaction 1 have been r estricted t o 

(2) 

collinear geometries , in which the three hydr ogen atoms are restricted 

t o forever lie on a straight line (4). 

One of the crucial result s to come out of th e c ollinear cal c ulati ons 

on reaction 1 i s the presen ce of dynamical r esonances in this syste m 

(4) . These resonan ces may be seen as rapid chan ges in the state-to ­

state reac tion probabilities with energy, altho ugh other results fr om 

the c al culation ( such as the phase of an~ matri x eleme nt) also chan ge 

rapidly with energy near a resonance. The three-dimens ional e x a c t 

quantum mechani c al c alculations that have been perfo rmed already 
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suggest that these resonances carry ove r, albeit broadened and dimin­

ished somewhat in intensity, to the three-dimensional world (5). 

An understanding of what features of the potential energy surface 

are responsible for the observed resonances is important, especially 

if one is to use reactive scattering resonances as a ''spectros copy '' of 

potential energy surfaces. Since it is known that a resonance in a 

s cattering problem usually implies the existence of some lon g -lived 

metastable state (6), one wants to kn ow what its nature is (i.e. doe s 

it involve e xcitation to a hi ghe r state in some internal degree of free­

d om ). Finally, one Vv ants to know the life time of this metastable state. 

If this lifetime is sufficiently large that, after allowing for the expe c ted 

de c rease on going fr o m on e dime nsion t o three dimensions, it is sig-

nifi cantly greater than the r o tati onal period of th.e molecule, it i s rea­

sonable to expect that the resonance might make itself vis ible in the 

variati on of the differential c r o ss s ection for the reaction with energy 

(given an experiment o f sufficient r esolution ). 

In this paper, we attempt to cha,racterize the first two res onances 

for the collinear H + H
2 

r eacti on (on the P o rter-Karplus surface ) (7 ). 

We c onsider various ways in which the res onance manifests itself, in­

cluding changes in probability and.§_ matrix e l ement phase with energy . 

To help determine the lifetime of these res onant states, we cal c ulate 

Smith's collision lifetime matrix (8), positive e i genvalues of which 

co rre spond rou ghly to the lifetimes of the resonant state. By con­

side ring the variation of the eigenvectors of the matrix with energy, 

we help determine the nature of the two res onances and show that the 

first two resonances are quite different from each other . 

The outline of this paper is as follows: In se ction II we review the 

definitions and origins of the vari ous quantities we have studied, in­

cluding Smith's (8) collision lifetime matrix. We then briefly d escribe 

the numerical procedures empl oyed in these c alculations. In section 
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III, we present as a series of plots the results obtained. T hese are 

dis cus sed in sectio n IV. In section V we offer conclusions . 
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II. THEORY A ND NUMERI CAL P ARAMET E RS 

The dire c t result o f the colline ar quantum me chanica! cal c ulati ons 

i s the scatte ring matrix~ that relates th e incoming and outgoing wave 

states associ ated with i sol ated reagents and products. A detailed des ­

c ription of the theo ry behind ~ and h ow one goes a bout cal c u l ating i t 

i s presented e lsewh ere (9 ). S should be unitary and symmetri c ( 10) ; 

deviat i ons from these c onditi ons r eflect ina ccuracies i n the scat tering 

calculati on. H encefor th, we shall conside r S to be b oth unitary and 

symmetri c . The probability fo r reaction from state i t o state j i s 

just the abs o lute magnitude of th e corresponding ~ matrix e lement (9 , 

1 0 ): 

p = 
i j 

2 
IS . . j (3) 

l J 
Be c au se Sis symmetri c , S . . = S .. so P = P . .• as must be true to 

- lJ Jl ji lJ 
s a tisfy microscopi c rever s ibility. Since Sis unitary, 

N 

~ 
2 

Is .. I = 1 (4) 
lJ 

which must be true i f probabilities are t o be normalized to one . The 

amplitude and phase of the e l en'lents of S are both fun c ti o ns of the ene r­

gy . The variation of these quantiti es w i th ener g y w ill be the initial in­

dicator of the presence of absenc e of res onan ce s . 

Sis r e l ated t o the rea ctan ce matrix ~' which is symn1etri c (9 , 10) 

b y the re l ationship 

(5) 

The e i genphas e shifts ( 11) are define d as the angl es whose tan gent s are 

the eigenvalues of ~(which are real, d u e to the symmetry of ~. These 

e i genphase shift s lie in the range from - TT /2 t o TT /2 ; hen ce inte g r a l 

multiples of TT may b e added to o r subtra cted fr~m the e i genphase shifts to in ­

sure continuity of eige npha se shift v s. energy c urves. The eigenphase 

shifts have been shown t o have unusual energy dependen ce in the re gi on 

of a r eson ance ( 11-14). They may be th ought of a s being a generaliza -
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tion of the phase shift in single particle scattering. 

The definition of the lifetime is not so clear, however. In single 

particle, one dimensional scattering, the delay timer of a particle 

(the time spent by the particle in some region of space in excess of 

the time it would have spent there if there were no potential) is related 

to the phase shift ~ of the transmitted wave (15): 

= (6) 

where v, p, and E are the initial velocity, momentum, and energy of 

the particle, respe c tive ly. 

In the multi-channel case, instead of having a single equation (and 

thus a single phase shift and a single delay tin1e ), there is a set of 

equations, each of which may be thought to be related to an initial 

state j of th e colliding particles. Smith (8 ) has shown that in this 

multi - channel c ase, the correspondin g delay times of these states are 

given by the diagonal elements Q .. of the collision lifetime matrix Q, 
JJ 

which is defined by 

Q = in§~ 
dE 

Since S is unitary, _g_ will be hermitian. 

A positive value for Q . . , then, suggests a positive time delay. If 
JJ 

Q .. is sufficiently p os itive, a resonan ce picture of the scattering pro­
JJ 

cess is appropriate. Smith (8) has shown that a good definition of 

''sufficiently positive'' is when the inequality 

ZE.Q .. ffi. >> 1 
J JJ 

is satisfied, where E. is the initial relative translational energy for 
J 

channel j (the total energy minus the internal energies of the colliding 

particles in internal state j ). 

Vv'hen inequality 8 is satisfied, Q may be diagonalized (since Q is 

hermitian, its eigenvalues must be real), and any positive eigenvalues 

may be interpreted as the lifetime of the long -lived metastable states· 

(7) 

(8) 
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The wave function describing these states, known as a lifetime eigen­

channel state, may b e obtained from the corre spending e i genvector of 

Q . In general, Q, its e i genvalues, and its eigenvectors are a fun ction 

of the energy. 

As a rule, for an N channe l scattering problem, all the matrices 

(£>, Q, ~ ~ will beN x N , and there will beN independent quantities, 

such as the diagonal elen1ents Qo 0. In the case of syn11netric systems , 
JJ 

that is, those o f the type 

A + BA --t AB + A (9 ) 

there are onl y N /2 different diagonal elements Qo 
0

• This is due to the 
JJ 

symmetric b l ock struc ture of Sin the symmetri c collision case : 

s 

where the superscripts N and R refer to the non - reactive and reactive 

blocks of the~ matrix, respectively. In this sym :-,1etri c c2se, the 

eigenv ecto rs and eigvenvalues of Q may be broken up into two classes: 

symmetric and anti - symmetric, as is shown in appendix A . The 

eigenvalues and eigenvectors of R (and thus the eigenphase shifts) -
may be similar l y categorized. 

The coupled channel cal culations from which the R, S, and ]2 

matri c es were obtained were performed using the method of Kupper ­

mann {16), and are additions to the calculations performed previously 

on this system (5) . Thirteen basis fun c tions we re u sed in all cal cula­

tions. Calculations were performed at a sufficiently dense energy 

grid so that the energy derivative of~ needed in the constructi on of Q 

could be approximated by a three-point finite differenc e procedure . 

:<'o r example, near th e res onances, scattering calculations were per -

formed every 2. 5 meV . Because of the approximate nature of the 

diffr! rentiation, the Q obtained was only nearly hermitian. For the 

sake of simplicity, this approximate Q was repla ced by the average of 

( 1 0) 
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it and its hermitian conjugate. The resulting matrix was diagonalized 

by a standard EISPA CK routine ( 17) . The eigenvalue s were cal culated 

as a function of energy and were associated w ith a particular lifetime 

eigen channel by requiring that the corresponding eigenvectors, which 

vary only slowly with energy, be continuous within the accuracy of the 

cal culati ons. A similar procedure is used to associated the eigenphase 

shifts with a particular eigenstate of R. The assi gnment of c olli s i on 

lifetime matrix eigenvalues to their co rre sponding e i genvectors is sim ­

plified in symmetri c systen1s because of the afo rementioned sepa r ation 

of the e i genvectors and eigenvalue s of Q into symmetric and anti -

symmetric sets . 
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III . RESULTS 

The reac tion probabilities in the vicinity of the first and second 

res onan ces are plotted as a function of energy in figures 1 and 2, r e ­

spectively. A better feel for how the res onan ces fit in with the overall 

dynamics in the H + H
2 

system may be obtained by examining figure 5 

of referen ce 18, in which the r e a cti on probabilities (for vibrationally 

adiabatic reacti on, that is, that occurring with n o ch an ge in vibrational 

state) are sho\vn over a broad energy ran ge (up to 3 . 0 e V) . The 

resonances are seen as rapid changes in the reaction probabilities 
R R 

vs. energy. P 
00 

and, t o a lesser extent, P 
1 

at the first res onance 
R R R O 

(figure 1) and P 
00 

, P 
01 

, and P 
11 

at the second res onance (figure 

2a) show such variati on . Reactions involvin g the v = 2 state are un­

likely near th e res onance and sho w no rapid variation with energy 

(figure Zb), although the energy dependence of the probabilities of 

non-adiabatic r eacti on is somewhat unusual. 

Next, we wish to consider the phases of th ose elements of S 

mentioned above, whi ch vary rapidly w ith energy and thus are most in­

dicative of the existen c e of a res onance. In figure 3, we display 
R R 

Ar gand diagrams (1 9 ) for the s
00 

and s
01 

matrix elements. In the 

Argand dia g ram, th e matrix element is plotted in the complex p lane. 

Points at successive ene r gies are connected and a c urve tracing out 

the m.otion of the elen1ent in the complex plane is generated. Away 

from a r esonance, the diagram usually consist3 of a smooth clockwise 

curve . Near a r esonance , h oweve r, the curve frequently shifts t o a 

counter clockwise dire ction, possibly 11 turnin g over 11 on i tself to form 

a l oop, as has been seen in the F + H , F + HD ( 14), I+ HI (13), and 
2 

H + H (19) (se cond resonance on the scaled SSMK surface ) systems. 
2 

In cases whe re res onant and direct process es are both i mportant, 

the cu rve may just cut a c ros s a region of the complex plane rather 

than smoothly following a circular or spiral- shaped curve, as has 

been seen in the F + D
2 

case (14) . 
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The Argand diagrams for th ese two tran s iti ons near the fi rst r e ­

sonan ce are quite different. Th e Argand diagram for s
00 

R shows no 

loop formation; the curve doe s acquire a ''half-moon'' shape with a 

distinct region of counterclockwis e dire c ti on running fro m approxi ­

mate ly 0.86 to 0.8 9 eV (all energies given are total ene r gies, that i s , 

with respect to the bottom of the is ola ted H well ). The diagram for 
R 2 

s
0 1 

d oes show l oop fo r mati on, a l so in the re gion from 0 . 86 t o 0. 89 

eV. 

In fi gure 
R 

S 
11 

matrix 

R R 
4 we display Argand diagrams f o r the s

00 
, s

0 1 
, and 

e len>ents n e ar the se cond resonance . A gain, t wo kinds 
R R 

of behavi or can be seen . s
00 

(figure 4a) a nd s
1
k (figur e 4c) show 

l oop f o r mati on, where the loop forrned in the s
00 

diag ram i s mu ch 

larger than that in the s
11

R diag ram. S R' on the other hand , shows 
R 01 · 

half - m o on fo rn>ati on. In the S 
0 

curve, the loop occur s in the energy 
0 R 

range f r om 1. 2 8 t o 1. 32 eV, while in the s
11 

courve it is from 1. 30 
R 

to 1. 34 eV. The half- moon formation in the s
0 1 

curve i s from 1. 2 8 
R 

t o 1. 33 e V . The slight shift to hi gher energy of the s
11 

r esonance as 

determined from the Argand diagram is consistent w ith a s i m ilar shift 

in the probability vs. energy curves (figure 2a ), where the maximum 

in P~ 1 R occurs at about 0.01 ;v higher ener gy than the maximum in 

P 
0 1 

o r the mini m urn on P 
0 1 

. 

B ecause the Argand diagram depends b oth on the phase and the 

amplitude (probability) of the elernent of~· it i s worthwhile to :ocus 

just on the phase. The variation of the phase of the S matrix element 
= 

has been previously f ound t o be a u seful quantity for pinpointing the l o ­

cation of a resonan ce (1 ') ). A way from a r esonance, the phase de­

crease s monotoni cally with energy; this decrease i s cl.carly r elated to 

the n o r mal clockwise sens e of the Arg and diagram. Near a r esonanc e , 

however , this steady m on o toni c decrease may be replaced by a le ss 

steep de c r ease (a ssociated with straight c ut formation in the Argand 
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diagram), an increase (associated with l oop formation}, or a small 

area of rapid decrease followed by a return to the earlier slope, per ­

haps with the formati on of a brief r egion of increasing phase separating 

them (ass ociated with half-moon formati on). S matrix 
- R 

vs . energy diagrams are presented in figures 5 (S
00 

, 
. R R R 

element phase 
R s

0 1 
near the 

fl r st resonance) and 6 (S , S , and s
11 00 01 

near the se cond res o -

nan ce ). The smooth nature of these c urves, alo n g with th e steady de ­

crease in phase with energy away from the resonance suggests that a 

good way o f examining solely the resonant processes would be to sub ­

tract out the background behavior, whi ch would be associated w ith 

dire ct proce sses. Such an analysis has be e n p erformed previously (19 ). 

The n ear energy independence o f the slopes of the phase vs . energy 

curves away from the r esonance suggests that th_e energy derivat ive of 

the§. matrix element phase is also a us eful quantity . Away frorn the 

res onance , this quantity should be n early independent of energy, al ­

l owing any effect of the resonan ce to clearl y b e seen . The energy 

derivative of the§. matrix e lement phase is also of interest because i f 

one substitutes thi s quantity for the energy d e rivative of the phase shift 

in eq. 6, one obtains an expression for a delay tin1e . Vv'hen positive , 

this sh ould provide some inform.at i on as to th e lifeti me of the resonant 

state. In fi gures 7 and 8 we p r e sent p l ots of the delay time {-' .. 
lJ 

given b y 

...,. = 11 
ij 

d i:> R_. 
1) 

dE 

-1 = hRe(-ih (S . . ) dS .. /dE) (11) 
lJ lJ 

for the transitions considered above at the first a n d se cond re sonances , 

respectivel y . 

At the first resonance, ( OO is always ne gative, while l 
0 1 

bec omes 

positive, with a maximum val ue 'J" 
01

, of 0.0 16 psec . T he peak l oca-
R 

tion is s lightly below that of the maximum in the P 
0 1 

vs. energy 

curve (figure 1). At the second resonance, all three curves (figure 8 ) 

show p o sitive maxima, with values of 0 . 01 8 , 0 . 009 , and 0.005 pse c 
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for T OO, "f 01 , and 7' 
11

, respectively. The large negative dip in 

I 
01 

at the se cond resonance (and also fori 
00 

at the first resonance) 

is due t o half-moon formation in the Argand diagram . Because th e 

phase may change rapidly with energy over a fairly broad energy r e ­

gion, and plots of/ . . as a function of energy may have b oth minima 
lJ 

and maxima, it is s omewhat diffi c ult t o try to assign a resonance posi-

ti on from fi gures 7 and 8. 

Eigenphase shifts have also been shown to be useful in the charac ­

terization o f resonan ces (11-14). In f igures 9 and 10 we present plots 

of the eigenphase shifts as a function of e nergy near the firs t and s econd 

resonances, respective ly. The eigenphase shifts de cou ple into sym-

metric and anti-sym:netri c sets. There are four main features of 

these plots. First, the resonances are manifested as rapid changes 

o f the eigenphase shift with energy; there are, in fact, increases in 

t wo of them fo r each res onance . Second, the resonance is seen in the 

symmetric eigenphase shifts only. This fea ture has been obse r ved in 

other systems and has been explained previously (11-14). Third, the r e 

are a number of avoided c r 8ss ings involving the anti- symmetric 

curves (at 0. 855 eV near the first resonance and 1. 365 eV near th e 

second res onance ). Avoided c r ossings have been seen before in e i gen -

phase shift analyses of th e F +HZ and F + HD systems (14), and seem 

t o i mply the existence of some s ort of non- c rossing rule . In o the r 

cases however, (such as near the second resonance at 1. 3Z4 eV, and 

als o in the F + Hz system) ( 14), the curves do appear t o e r os s. 

Finally, just above the opening of a new vibrational state, the symmet ric 

and anti-symmetric eigenphase shifts are the same and they decrease 

extremely rapidly with energy (the lowest portions o f the se curves are 

n ot shown in the figur es ) . 

Next, we w ish to con s ider Smith's collision lifetirne matrix (8 ) Q. -
We are interested in three features of this matrix. First, we want to 
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know whether any diagonal elements are anywhere positive , and if so, 

whethe r they are sufficiently positive e1at inequality 8 i s satisfied. 

'Ne expe c t an affirm.ative answer to these question s , as all that can be 

gathered from th e probabilities, S matrix element phases, and eigen­

phase shifts indicates that a resonant picture of the scattering is an 

appropriate one . 

In figures 11 and 12 we pre sent plots of th e diagonal elements 

Q in the region of the first and second r esonances , respectively . 
nn 

A s dis cus sed previously (and shown in appendix A), each diagonal 

e l ement in Q appears twi ce; hence there are only one o r t wo i ndepen ­

dent d i agon a l e l ements near the fi r st resonan ce, and only two or thre e 

near the se c ond resonan ce . For both resonances, Q 
11 

b e comes posi ­

tive; 0
22 

becomes positive near the second res o~ance , and has a 

definite maximum near the first re sonance . Near the opening of the 

v = 1 and v = 2 states, 0
22 

and a
33 

have large ne gative values, in­

creasing rapidly with energy . Near the second res onance a
33 

d oes n o t 

have a maximum, as does Q near the first resonance. 
22 

The peak i n Q near the f ir st r esonance occurs at an energy of 
11 

0. 870 eV {corresp:mding to a r eagent translational e nergy of 0. 596 eV ) 

and ha s a value of 0.0075 psec. The left hand side of eq. 8 has a value 

of 13. 6 , whi ch is substantially greater than one . Thus , a resonant 

picture of the scattering i n this re gion of energy is justified. Nea r the 

second resonance, the appropriate values for the left han d side of eq. 

8 are 3 6 • 2 for Q 
11 

and 2 . 2 for Q 
2 2 

. Thus, the use of a resonant pi c -

ture of the scattering at this highe r energy i s also j ustified. One c an­

n ot us e these data t o suggest the existence of two r esonances at thi s 

hi gher energy, however. As one n1oves away f rom the resonance, the 

change in Q with energy b ecome s small. This has been predic t e d by 
nn 

Sm ith (8) for high translational energy collisions . 

It should be noted that the largest positive diagonal element of Q 



180 

is fairly similar in magnitude to the largest{ .. determined from the 
lJ 

energy d e rivative of the elements of S. The largest p ositive value of 

o
11

of 0.0075 psec at the first resonance is almost within a factor of 

two of the largest T .. of 0. 016 psec. Similarly, at the second resonance, 
lJ 

the maximum value of Q , 0.0115 psec, is close to the 0.017 5 psec 
11 

maximum of 
00 

More important than th e diagona l elements Q are the eigenvalue s 
nn 

of 0., qn (note that there is no direct relationship between the n in 

Q and th e n in q ; the same symbol is simply used for conve nience ). 
nn n 

It has been seen earlier for the F + HZ, HD, DH, and DZ systems (ZO) 

and for the H +HZ system (11, 1Z) on the scale d SSMK surface (at the 

se cond resonan ce } that there will be only one positive eigenvalue; this 

eigenvalue and its corresp onding eigenve cto r may then be unambig uously 

taken as those belonging to the long-lived metastable state. Similar 

b ehavio r is seen for thi s system in figures 13 and 14 (first and second 

resonances, respectively). In both figures, only one eigenvalue becomes 

positive; the curves are labeled to show that th e positive eigenvalues 

belong to symmetric lifetime eigenchannels . Near the first r esonance 

(figure 13} a smallmaximum does develop in the curve of the second 

symmetric eigenvalue, but the maximum is small and has a peak value 

which is n egative. As we have don e previously for the F +Hz' HD, DH, 

and D
2 

systems (ZO), we define the lifetime as being the difference be­

tween the eigenvalue in the curve containing the positive maxin-mm and 
as 

its asymptotic value ~ , to which it settles at high energy; 
as 

t (E) = q (E) - q ( 1Z) 
rr rr rr 

where the definition of the lifetime t(E) only applies to the ei genchanne l 

rr containing the maximum. These lifetirne scales are shov:n on the 

right hand ordinates o f figures 13 and 14. Since we have not performed 

scattering cal culations at a sufficie ntly dens e grid of energies for 

reliable Q matr.ices to b e calculated above 1. 35 eV, we have visually 
as 

estimated the q • 
rr 
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The maximum values q obtained, 
rr 

0. 076 psec for the fir s t r e -

sonance and 0. 074 psec for the second resonance, corresponding to 

lifetimes of 0.091 psec and 0.085 psec, respe c tively, are substantially 

greater than those lifetimes estimated from either the ene r gy derivative 

of the S rna trix or the diagonal elements Q • Ab ove the opening of the 
~ nn 

new channel, but below the resonance, the two lowest eigenvalues (one 

each of symmetric and anti-symmetric) of g_ are very close t o the 

corresponding diagonal element Q 
nn 

Finally, we w ish to consider the eigenvectors of the Q matrix, 

which are complex. Since examination of the behavior of the phase of 

individual components showed n o unusual variation near the resonance, 

we will restri ct our attention to th e amplitudes of the components, which 

do show interesting behavior. We will express these values as " f rac ­

ti onal com position s of the e i genvectors", which ar e defined as the sum 
th 

of the squares of the real and i maginary parts of the n compon en t of 
th 

the n1 eigenvector of Q . Thus, if an eigenvector of Q has fractional 

compositions as follows: 

0.30 
0. 1 5 
0. 03 
0.30 
0. 1 5 
0.05 

it will be considered to be 60 % v=O, 30% v= 1, and 10 o/o v=2. Because 

of the symmetric or anti-sym:-net ri c nature of the eigenvectors, the 

a mplitudes in rows 4, 5, and 6 will alway be the same as those in r ows 

1, 2, and 3, respectively at energies above the opening of the v = 2 

state. Below that, a similar relationship holds with only two states 

(below the opening of v = 1) or four states pre sent. 

The orthogonality of the eigenvectors and the symmetric /anti­

symmetric nature of the eigenvectors combine to reduce the number of 

independent eigenvectors. Near the first resonan ce but above the open-
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ing of the v = 1 level, there are only two independent eigenvectors - one 

symmetric and one anti-symmetric. The other one of each type is de­

termined by the orthogonality condition. Thus, we will look only at one 

eigenvector of each symmetry type in this energy region. The frac­

tional compositions of the other pair of eigenvectors is just the r everse 

of that of the first pair. Near the second resonance but above the open­

ing of the v = 2 level, there are two independent e i genstate s of each sym-

metry type. Since th e fractional compositions of the third eigenvector 

of each type are not i n1mediately obvious from those of the first two 

(although their calculation is simple), we will examine all the eigen-

vectors in this energy region. 

\\-t· present one pair of eigenvectors n ear the first resonance in the 

form of plots of fractional con1position vs. energy p lots in figure 1 5 . 

In figure 16 we show similar plots of the symmet~ic eigenvectors n ear 

the second res onance, and in figure 17 we do the same for the anti-
± 

syn1metri c eigenvectors. Our notation for a given cornponent is nm 
± 

where m gives the eigenvector number and syn1n1etry type, and corre-

sponds to the similarly labeled eigenvalue in figures 13 and 14. n i s 

the number of the component . 

Two major features are apparent from figure 15. First, near the 

first resonance the syrnmetric eigenvectors undergo a substantial 

change with energy. Symr.1etric eigenvectors which are purely v = 0 

and v = 1 away fron1 the resonance but above the opening of the v = 1 

channel become nearly 50 o/o of each at the cente r of the resonance 

(0. 87 5 eV), and at higher energies revert back to being substantially, 

but not entirely, as they were before the resonan ce . Second, the anti­

symmetric eigenvectors vary only slightly in the region of the resonance, 

mixing only about 2 o/o o f the v = 1 state into the predominantly v = 0 

eigenvector and vice versa. These results are consistent with the 

eigenvalue vs. energy plots (figure 13) in which only the eigenvalues 

associated with the symmetric states have maxima. 
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The eigenvect ors near the second resonan ce show both similarities 

and differences from those near the first resonance. The similarity is 

that the anti- symmetri c eigenvectors are much close r to pure states 

than the symmetri c ones . For exan1ple, eigenvector 1 contains at 
+ 

most 7 % v = 1, while eigenvector 1 contains as much as 53 % v = 1. 

There are two maj or differences between these eigenvalues and thos e 

near the first resonan c e. First, th e fractional camp ositions of the 

symmetric eigenvectors show no major va riation with e n ergy in 

the resonance regi on. The crossovers between the v = 0 and v = 1 frac ­

tional compositions are at energies substantially below the res onanc e 

l ocation of 1. 310 e V as detern1ined from the peak in the q vs . energy 
rr 

curve (figure 14). Second, liLle v = 2 mixes into the symrnetric eigen-
+ + 

vectors (no more than 10% into the 1 and 4 o/o into the 2 eigenvectors) . 

This is substantially l ess than the 46 % of the v = l that mixes into the 
+ 

1 eigenvector at the first r esonance . 
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I V. DIS CUSS I ON 

The existe n ee of resonan ces in the dynamics of the collinear 

H + H
2 

system on the Po rte r- Karplus surface has been conclusively 

dem onstrated by examinati on of r eaction probabilities, phases of 

individual~ matrix e l ements and the ir energy derivatives, eigenphase 

shifts , and the collisi on l ifetime rna t rix and its e i genval ues and e igen­

vectors. On th e basis of the eigenvalues of the collisi on l ifetime 

matrix , these res onan ces are l ocated at 0 . 877 eV and 1. 3 10 eV t otal 

energy . There are a number of s imil arities and differen c es b etween 

the two resonances, and we will dis cuss these here . We w ill close 

this section with s ome general statements concerning the utility of the 

various quantities use d for the characterization of the resonances . 

The similarities betvveen the two r esonances are fair l y obvious. 

For both, r api d vari ations with energy in a ll of the above mentioned 

quantitie s are observed . Two different types o f Argand diagrams 

(half-n1oon and l oop ) a r e obse r ved fo r the various S matrix e le ments 

affe c ted by both r esonances . For those~ matrix e lements which give 

ris e to l oop Argand diagrams , a positive delay time , as defined by 

e q . 11 , i s o b s e r v e d . The s e v a 1 u e s ( 0 . 0 1 6 p s e c for I 
0 1 

r esonan ce and 0 . 017 5, 0.009, and 0.005 psec for ?'
00

, 

at the first 

at the second re sonance ) are fairly sim.ilar in magnitude. 

The e i genphase shift vs . energy curves near th e resonances are 

a ls o similar in their ove rall struc ture . In both, the resonan ce , as 

seen by r egions of increasing e i genphase shi ft with energy, is re stric ­

ted to tho se eigenvalues r e lated t o symmetri c eigenvec t ors of ~· The 

eigenphase shifts r e lated to anti-symmetric e i genvector s of R vary 
= 

smoothl y with energy, varying at most by avoided crossings w i th 

other anti-symmetri c eigenvalu e curves . Just above the opening of a 

new state , a degenerate pai r of eige nphase shifts (one symmetric and 

one anti- symmetri c ) occurs . Th e eigenvectors associated w i th these 

eigenphase shifts show that they are related t o the n ewl y open ed state. 
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At sufficiently higher energy for both resonances, the two curves be ­

come separated, and the symmetric one of the pair goes thro u gh the 

above m e nti oned in c rease w ith energy . 

Additional similarities are seen in the plots of the diagonal elements 

Q as a fun c tion o f energy. Near both res onance s, the on e related to 
nn 

the newly opened state (Q
22 

where v = 1 opens and Q
33 

where v = 2 

opens) is lar g e and ne gati ve and in c rease s rapidly with energy . Q
11 

has a sing l e positive maximum in both c ases, and the maximum 1s 

sufficiently positive that inequality 8 is sati sfi ed , indi c ating that a 

r esonan ce p i c ture of the s c attering is appr opriate. In b o th cases 

Q
22 

achieves a l ocal maximum al so . Th e eigenvalues qn behave fa ir­

l y s i milarly in both c ases. One (and only one ) related to a symme t ric 

ei gen v e c tor of g_ be comes posi t i ve at both reson<l:nces , while those re ­

lated t o anti- symmetri c eigenvalues vary very sm oothly w ith e ner gy . 

The lifetimes ass ociate d w ith both peaks, 0. 0 9 1 psec and 0. 086 psec 

for the first and se cond r esonance , respectively , a r e quite simil ar, as 

are the w idths (FVVHM), 0.021 eV and 0.028 eV . 

The diffe ren ee s between the r esonan c es are related mainly in the 

extent of p a rticipati on of the new l y o pened state in the dynami cs . 

Nea r the first r esonan ce , the parti c ipati on of the v = 1 state is sh own 

b oth b y the a ppreciable rea c tion p r o babilities to and from that state 

(P R gets as hi gh as 0. 28 near th e res onan ce ) and the sizable fra c -
01 

ti onal contrib uti on of the v = 1 level to both symmetri c ei genvecto r s 

of_Q. In contrast, the v = 2 level contributes almost e ntirely t o onl y 

one symmetric eigenvector o f Q n ear the se cond res onance . 

A fun d a mental differen ce between the fir st two resonan ces i s n o t 

unexpected in the li ght of v a ri ous attempts over the years t o model 

the m. Kuppe r m ann ( 14) has re cently dis cus sed the phy si cal inte r preta ­

tion of the se resonances , and has concluded that the first res on a n ce i s 

due mainly t o the trapping of the system 's energy in a rnotion co rre spon-
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din g t o an asymmetric stretch of the saddle point region in the se c ond 

syn1me tric eigenstate. The se cond resonance, while being shown t o 

have some of this l ongitudinal characte r, has energy trapped in the 

third (v = 2) state of the inte rnal motion along the symmetric stretch 

line . 

In collinear cal c ulations on this system c arried out to higher ener-

gy (1 8) (up to 3. 0 eV), 

v ibrati on a lly adiabatic 

it is seen that the res onance structure in the 
R 

rea c tion p r obabilities P for n = 1, 2 , 3, 4 
nn 

is quite simi lar. This suggests that whatever phys i cal me chanism is 

r esponsible f o r the second res onan c e w ill be similar in nature t o tho se 

of all higher re sonances . Since the res onan c e c an be seen t o some e x ­

tent o r other in a ll vibrationally n on-adiabati c reaction probabilities 
R 

P , (n f. n') (21), it seems reas onable to expect that there will b e 
nn 

some contributi on of a ll states (except perhaps the .most re c ently 

o pened one) to the ei genvectors of Q . 

The l o c alization o f the resonan ce to s ymmetri c states (th o se with 

symmetric eigenve c t o rs of .R and Q ) has been o bserved previ ously 

for the H + F H rea c tion on an unrealistic potential energy surfac e 

(11, 12, 14 ) and for the I+ HI (13) reaction. In b o th those systems , 

h owever , the re sonan c e occurs at an energy below the openin g of the 

v = 1 s t a te. In th o s e c ases, the B· S, !:_, and g matri c es are all 

2 x 2 ; there are onl y two e i genph:-se shifts, one symmetri c ( d r) and .._, 

one anti- symmetric ( d A), and the e i genve cto r s of .B. are independent 

of energy. It is found for these systems that a m o re useful quantity 

than the t wo eigenphase shifts d S and ~ is their difference dS - dA 

(11, 12, 14). This difference rises fairly sharply from near zer o t o 

some value l ess than TT n ea r the r esonan ce energy. The c l oseness o f 

the jump in dS- d'A torr is related to the relativ e i mportan c e of 

re sonant and direct processes n e ar the resonance energy. An inc reas e 

of exac t l y TT i mpli es that there are no direct proc esses at all; the 
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smaller the increase, the greater their contribution. 

Such an analysis will n ot wo r k for the two H + HZ resonances, 

h oweve r, as they occu r at energies at which more than one vibrational 

state of Hz is open and there is more than one eigenphase shift of 

each symmetry type. A result of this is that the eigenvectors of R 

nee d not be independent of energy; this is indeed the case here. A 

similar mode l might work for res onan ces in the vibrationally adiabatic 

reaction probabilities for reactions of vibrationally excited r eagents in 

sy1nmetric heavy -light-heavy collisions, whe re vibrationally non-adia­

bati c processes are known to occu r w ith exceptionally l o w probability 

(Z2). In that case the eigenvectors of Rare essentially independent of 

energy: the symmetric and anti-symmetri c linear combinations of 

each individual open vibrational state, with no mixing from the other 

states (21). A similar analjsis would apply to the eigenvectors of 9 

in thi s c a s e . 

At e n e r gies belo w the resonance but above the opening of the new 

vibrational level, the two eigenphase shifts most closely associated 

w ith the new state are de gene rate. As one moves to higher ene r gy and 

the symmetric and 

linear combination 

anti- syn1metric curves separate, the appropriate 

to take is not d - d but is rather some other 
· S A 

one that would allow one to go sn1oothly from one of the affected sym­

metri c curves to the other wi thout any avoided c r o ssing. This linear 

combination would be energy dependent. A simJla r conclusion, namely 

that some energy dependent linear combination of e igenphase shifts is 

needed to obtain maximum info r mati on from the eigenphase shift v s . 

energy curves was obtained for the F + H and F + HD sys terns (14). z 
At this point we wish to consider the relative advantages and 

disadvantages of the various quantities examined here in the charac ­

terization of these res onances . The eigenvalues of the collisi on life ­

time mat rix appear to ·give the most unambi guous information about the 

resonances . 
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Let us first consider the simple matter of the position of the 

resonances. These are not uniquely defined by the probability vs. 

energy curves. This is best evidenced by the 0. 012 eV difference 

between the maxima in P Rand P R near the second resonance. 
00 11 

A specifi c ation of the exact resonance energy does not come from the 

Argand diagrams; these show the res onance spread out over a region 

of the complex p l ane. Any definition of the resonance energy £rom the 

Argand diagram would, ther efo r e , have to be fairly arbitrary. A 

better definition of the resonance energy might be obtained from the 

individual S matrix element time delay p l ots (fi gures 5 and 6) . 

However, even in this ca se one must de cide in the case of half - moon 

Argand diagrams whe th e r to choose the r esonance l ocati on as the 

p osition of the minimum in the time delay plot or: that of one of the 

adjacent maxin-:ta. 

The eigenphase shifts als o do not provide a clear definition (they 

might if there were a clear avoid e d crossing). The diagonal elements 

Q provide a good indi c ation, but for both resonan c es studied the 
nn 

tw o peaks occur at slightly different energies . It is onl y for the eigen-

values of Q where there is one clearly dominant peak that a unique 

assignment of the res onance energy can be made. The w idth can als o 

be determined, due to the nature of the peak in the e i genvalue vs . 

energy curve. D ete r nl.inations of the resonance position and width 

were also made in the F + H
2

, HD, DH, and D
2 

systems by means of 

the collision lifetime matrix eigenvalues (20). 

Th e main usefulnes s of the Argand diag ranl.s appears to be con ­

firmato ry in nature . L oop or half- moon formation indicates the exi s ­

ten ce of a fairly strong resonance (weake r resonances will be reflected 

by strai ght cut formation) . The exact n ature of th e diagram (l oop or 

half-moon) varies from transition to transition and from resonanc e to 

resonan ce and thus see1ns t o b e of no particular impurtance . 
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The time derivative of individual S matrix elements does seem to 

provide order of magnitude information about the time delay in col­

lisions of particles with well defined internal states, as these are close 

in magnitude to the largest diagonal element Q • H oweve r, diffe r ent 
nn 

transitions have different values of f .,, so one cannot cal culate a 
lJ 

unique lifetime ass ociated w ith the res onance from them (and one is 

not guaranteed that a given transiti on will have a positive/ . . ). An 
lJ 

advantage of using these individual delay times rathe r than the 

diagonal elements or eigenvalues of Q is that in the latter cases one 

must use the entire S matrix (and its energy derivative) rather than 

a single e l ement as in the former case . As in the locati on of the 

res onan ce , the eigenvalue s Q appear to be the onl y quantity which 
nn 

gives the lifetime uniquely, and it turns out that this lifetime is sub -

stantially greater than the diagonal e l ements Q . 
nn 

The eigenphase shifts also provide confirmatory evidence of the 

res onance, and do show that it is related to symmetric eigenvectors 

of R . However, some qualitatively different behavior of the eigenphase 

shifts and the eigenvalues q has been observed. For example, the 
n 

symmetric eigenphase shifts most close l y associated with the new ly 

opened vibrational state are clearly affected by the resonance, but the 
+ 

corresponding eigenvalues of Q do so onl y slightly (2 in figure 13 ) or 
+ 

not at all (3 in figure 14). Additional information could be obtained 

fr om the eigenphase shifts if on e could relate them and their corre s ­

p onding eigenvectors in o rd e r to construct modified c urves in which 

th e in c r ease in eigenphase shift with energy is restricted to one curve . 

Su ch a procedure has not yet been de veloped, however . 

The existence of positive eigenvalues of Q , corresponding to 

positive time delays in the bimolecular H + H
2 

colli s i ons, is a mani­

festation of quantum mechanical resonan ce effects . Away from the 

r esonance , all eigenvalues are n€:gative. A classical the ory, by whi ch 
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the lifetime of a bim olecular collision may be c alculated, has been 

developed by Brumer, et al (Z3) and applied to the collinear H + HZ 

system on the Porte r-Karplus surface. In the ener gy range from 0 

to 4 . 0 eV, they found the time d e lay to be everywhe r e n egative, d e ­

c reasing with increasing en e r gy . At a total energy o f 1. 0 eV they 

c al culate d a time delay of approximatel y - 0 . 06 psec (Z3), which is 

fairly close t o th e tv.· o l owe st eigenvalues of Q near this energy ( - 0 . 033 

psec) . The signifi can ce o f this comparison is n o t at all apparent, 

h oweve r . At en e r g i es just a bove th e opening of v ibrati onall y excited 

HZ l eve l s, such a con1parison would lead to drastic disa g reement, as 

the l owest eigenval ues of Q are quite large and ne gative and they in ­

creas e w ith e nergy, unlike the classi c al time delay, whi ch becomes 

more n egative with in c r easing e n e r gy . Cal culation of the e i genvalue s 

o f_Q at hi gher energy at non - resonance energi es might p r ovide suf­

ficient info rmation for a valid comparison between the classical and 

quantum theories . 
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V. CONCLUSIONS 

W~ have performed quantum mechani c al scattering cal c ulations on 

the collinear H +HZ syste m at energies near the first t wo res onances 

and have analyzed and chara c t e riz e d these resonances b y a v ariety of 

te chniques. These techniques consist of the examinati on of the ener gy 

d ependen ce of various state - to - state rea c tion probabilities, S matrix 
-

element phases and their energy deri vati ve s, eigenphase s hift s, and 

diagonal e l ements, ei gen values, and eigenvectors of Smith's collision 

lifeti me matrix . The r esonances a re shown t o be r e fl ect ed i n all 

quant ities t o some extent o r o t he r ; the one best suite d for the unique 

d e termination of the position a n d w idth of the resonances is the eigen-

value of th e collisi on life time matrix . This is due t o that fact that 

onl y o n e e i genvalue of this n1atrix b ecomes posit~ve, and, to a good 

approximaCon, is th e only one to achieve a l ocal maxi mum . The 

life time of the l ong-lived metas table state a ssociated with the r eso ­

nan ce may b e obtained from the e i genvalues of the colli s i on life time 

mat rix; va lues of 0. 0 9 1 and 0. 085 psec were obtained for the first and 

se cond resonan c es, r espective ly. 

As a r e sult of our analyses, we have sh own that both r esonan ce s 

are associated w i th states w hi ch are symmetric com:,inations o f the 

initial Hz s tates . The r esonan c es differ in some w·ays , notably the 

abs ence of con t ributi on of the v = 2 stat e t o the eigenvector o f Q 

ass ociated with the second r esonan ce as opposed to the near 50 o/o 

contributi on of the v = 1 state to the eigenvector o f Q as sociated with 

the first resonance. Differences between the two resonan ces are 

r e asonable in the li ght of various studies which suggest that the first 

and se cond resonan ce are associated with ener gy trapped primarily 

i n asymmetric and symmetri c stretchin g motions, r espective l y . 

The eigenvalues q o b taine d have been compared to values for the 
n 

d e l ay time in this system c al culated by a class i cal th eo r y , and are 

shown to be substantially different. 
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APPENDIX A SYMMETRY CONSIDERATIONS IN SYMMETRIC 

COLLISIONS 

In thi s appendix we demonstrate that the eigenvalues and eigenvec ­

tors of Q for symmetric collisions may be broken up into symmetric 

and antisymmetric components. 

Starting frorn eq . 10, we construct the 2 x 2 block Q matrix in 

t e rms of §.N, e_R, and their energy derivatives (which will be 

represent~d b; ('and ~R,, respe c tively. 

~sym = H i~ (AB AB ) 

where 

From the unitarity of §., we can show that A and B are skew-hermitian: 

~ = A "t 

B = ~t 

so (il'l6) = -ihA1 = ihA 

(ihB) = -ihB+ = ihB .__ 

hen ce (ihA) and (ihB) are hermitian. 

Defining 

A = ihA 
== 

B = ihB 

we need only to prove that the matrix Q can be diagonalized by one 

pair of symmetri c and anti-syn>metric eigenvectors, or, mathemati ­

cally, to show that there exists some matrix T, consisting of equal 

numbers of syrnrne tri c and anti- symrne tri c vectors, which diagonalize s 

where 



so 

and 

1 
2 
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= c-
1 

:-~t~ ~- ~)(A +g B)l\ ~ ~~ 
= { 

I - 1 <.A 

f)_ 

- ~)I_ 

K-
11: + i3)~ ~ 

Since A and B are hermitian, A - B and A + B must also be 

hermitian. Thus, there exist matrices .I. and K which diagonalize 

~ - ,!?) and (A + B ) respectively, and thus i n the symmetri c case, -- - - -
9_ can be diagonalized by a matri-x containin g only symmetric and 

antisymmetric eigenvectors. 
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FIGURE CAPTIONS 
R 

~igure 1. Probability P 
nn' 

as a function of energy in the 

for the reaction H + HZ (n) --t HZ (n') + H 

vi cinity of the first resonan c e . Transla -

t ional energy scal es for both the ground (E
0

) and first excite d (E
1

) 

states are shown on the lower abs cissa; the total energy (E) is shown 

on the upper abscissa . The arrow marks the ene r g y at whi ch the 

v = 1 state b e come s o p e n . Tran sitions are indi c ate d by diffe r e nt line 

types: P
00

R: sol id line; P
0 1

R: dashed l ine; P
1 1

R: dashed - dotted 

line. 

Figure 2. Probability P R as a function of en e r g y in the vi c inity of 
nn' 

the second resonance . The total energy scale is shown o n the upper 

abscissa; the appropriate translational scales are sho wn on the l ower 
R R R 

abscissas. (a) P
00 

: dashed line; P : s o lid line; P :dash ed-
R 0 1R 1 1 R 

dotted line ; (b) PZO :dashed line; P
21 

:dashed-dotted line ; P Z
2 

R R 
sol id line. The value s of P 

20 
and P 

2 1 
sh own have b e en multiplied 

by 4 b e f o r e plotting . In both figur e s, the arrow marks th e ener gy at 

w hi ch the v = 2 state become s o p e n . 

R R 
Figu r e 3. Argand diagran1 of Irn S 1 vs . R e S 1 near th e first 

nn nn 
resonance with the total energy E (measured with respect to the bot-

tom o f the H
2 

well) as a paran1eter. The marke rs are placed eve r y 
R 

0 . 01 e V . The arrow s indi c ate th e sense of the curve. (a) s
0 0 

Th e 

shift fr o m a cloc kwise to a counter c l ockwise back to a clo c k wise sen se 

i n d icates a resonan ce . This Ar g and diag ram is of the ''half- m o on" 
R 

type . (b) S 
0 1 

In this figure the resonan c e is sh o\.\rn b y loop forn1a-

tion . 

F i gure 4 . Argand diag rams o f Im S , vs. Re S 1 near the second 
nn nn 

res onan c e with the total energy E as a parame t e r . The symbols rra r k 

every 0. 0 1 ev and the arrows indicate the sense o f the curv e. 
R R R 

(a) SOO ; (b) S01 ; ( c ) S1 1 
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R R 
Figure 5. Phase cp 1 of the scattering matrix elementS 

1 
as a 

nn nn 
function of the total energy E (upper abs c issa) and the translational 

R 
energy E

0 
(lowe r abscissa) near the first resonance. (a) s

00 
R 

(the arrow marks the opening of the v = 1 state); (b) : s
0 1 

Figure 6. Phase cf> 1 R of the scattering matrix element S 
1 
R as a 

nn nn. 
function of the total energy E (upper abscissa) and the translational 

energy E
0 

or 

arrow marks 
R 

E
1 

(l owe r abscissa) near the second resonan ce . The 
R R 

the opening of the v = 2 state. (a) s
00 

; (b) s
01 

; (c) 

s11 

R 
Figure 7. Delay time f 1 as a fun ction of the total energy E (uppe r 

nn 
abscissa) and the translational energy E

0 
(lower abscissa) near the 

first resonance. The arrow marks the opening of the v = 1 state. 
R R 

(a) I oo ; (b) (o 1 • 

Figure 8. Delay time T 1 R as a function of the total energy E (upper 
nn 

abscissa) and the translati onal energy E
0 

or E
1 

(lower abscissa) near 

the second resonan ce . The arrow marks th e opening of th e v = 2 state. 

(a) l R; (b) l R; (c) l R 
00 01 11 

Figure 9 . Eigenphase shifts as a functi on of the total energy E near 

the first res onanc e . Those belonging to symmetric eigenvectors of R 

are drawn with solid lines, thos e to anti-syn1metri c eigenvectors are 

drawn with dashed lines . The lowest energy portion of the two curves 

most closely associated with the v = 1 state is not shown; it is just a 

smooth curve which decreases rapidly with increasing energy. Below 

approximately 0. 845 eV, those two c urves lie on top of each other. 

The arrow marks th e opening of the v = 1 state. Note that integral 

nmltiple s of ,. have been added to or subtracted from the computed 

eigenphase shifts in order to generate sn1ooth curves; the absolute 

values of the eigenphase shifts were chosen to show the avo ided eros-

sings and for convenience. 
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Figure 10 . Eigenphase shifts as a function of the total energy E near 

the second resonance . All markin gs are as in f i gure 9 . The lowest 

energy portion of the two c urve s most closely ass oci a t e d with the 

v = 2 state is not sh own; its behavi o r is s i m ilar t o that descr ibed f or 

the v = 1 state in fi gure 9 . 

Figure 11 . The d i agonal e lements Q of Smith 's colli sion lifetime 
nn 

n1atrix as a functi on of the t o tal energy E near the first resonan ce . 

The l owes t ene r gy porti on of the o
22 

cu r ve i s not shown; it is just a 

smooth curve whi ch inc r eases rapidly with in c r easing ene r gy. The 

0
22 

cu rve has been divided by two prior to plotting . T he arrow marks 

the opening of the v = 1 state. 

Figu r e 12 . The diagonal e l ements 0 as a f u nction of the t o tal energy 
nn 

E near the second resonan ce . o
33 

has been d i vid ed by two pri or to 

plo tting ; its l owest energy portion is not shown. The arr ow ma rks th e 

opening of t he v = 2 state . 

Figure 13 . The ei gen values c:n of th e collision lifetime mat r ix £. as a 

fun c tion of the total ener gy E near the fi rst r esonance . The numb ers 

mark the e i genvector t o w hi c h the eigen value be l on gs . The n o tation 

is dis cussed in th e text. The eigenval ue of ·~2 is gi ven on the l eft 

ordinate of the fi gure. The lifetime of the long -lived metastable 

state associ ated with the r esona nce , as defined by eq . 1 1, i s shown on 

the ri ght o rdinate. The lowest energy portion of the c urves n1arked 

+ 2 and 2 i s not shown; these portions are essentially superimposab l e 

do¥.rn to the opening of th e v = 1 stat e , whi ch is mar keel by an a rr ow . 

Figure 14 . The eigenvalues q of the calli si an lifetime matrix 0 as a 
n 

fun c tion of the total e n ergy E near the second r esonan ce . The numbe r-
+ 

ing and axis labeling are as in figure 13 . The 3 and 3 cu r ves have 

been divided by t wo before plotting . The arrow marks the energy at 

whi ch the v = 2 state opens . 
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Figure iSo Fra c ti onal contribution to eigenvectors of _Q_ as a function 

of the total energy E near the first resonance . The nun1bering schen1e 
+ 

is d esc ribed in th e text. 
+ 

Lines are drawn as follo w s: 11 : dashed 

line ; 21 : solid line; 11 :dashed-dotted line (short dashes ) ; 21 

dashed-dotted line (long dashes). The 21 curve has been multiplied 
+ 

by t wenty b efo r e plotting . The remaining two eigenvectors 2 and 2 

ar e not shov-rn because their fractional contributi ons can b e e asily 

infe rred from th ose shown. This is dis cussed fully in the text . The 

arrow marks the opening of the v = 1 state. 

Figure 16. Frac ti onal contribution s to the symmetric eigenvectors 

of Q as a fun c tion of the total energy near the second resonance. The 

numbe ring scheme i s des c ribed in the text. Factors in parentheses in­

di cate the values by whi c h the fractional contributions have been m ulti­

p lie d prior to plotting . The arrows mark the e n e r gy at which the v = 2 

sta te opens. For all plots, the v = 0 component (1) is indi c ated b y a 

solid line; the v = 1 compon e nt (2) is indicated by a dashed line ; the 

v = 2 component (3) i s indi c ated by a dashed-dotted line . (a) Eigen-
+ + + 

vector 1 ; (b) 2 ; ( c ) 3 

Figu re 17. Frac ti onal contributions to the anti- symmetri c eigen­

ve c tors of 9 as a fun c ti on of the total energy n ear th e second r esonance. 

All symbols and line types are as in figure 16. (a ) Eigenvector 1- ; (b) 

2 ; (c) 3 • 
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Characterization of the Lowest Energy Resonances in the Collinear 

F + Hl System and its Is o topic Analogues . • a) 
b) 

Jack A. Kaye and Aron Kuppermann 

Arthur Amos Noyes Laboratory of Chemical Physics, 
c ) 

California Ins titute of Te chnology, Pasadena, California 9 1125 

(Received 

Collinear quantun1 me chanica! scattering calculations on the 

collinear F + H
2

, HD, DH, and D
2 

systems have been perfor~-ned 

at energies n ear the l ov.e st energy r esonance . We have examine d 

the effect of the resonance on reaction probabilities, individual 

scattering n1atri..x element phases and their energy derivatives, 

eigenphase shifts, and diagonal elements, -eigenvalues, and 

e i genvectors of Smith 1 s collision lifetime matrix. The eigen­

values of th e collision lifetime matrix provide the most sensitive 

means for characte rizing these resonan ces, and are particularly 

useful in that they localize the resonance into a single e i genchan-

nel. The lifetimes c alculated for the FHD, FH
2

, FD
2

, and FDH 

systems are 4. 8, 0. 33, 0. 1 5, and 0. 064 psec, respectively. The 

eigenvecto rs associated with the eigenvalues containing the 

resonances consist mainly of the highest participating HF-like 

state (v=Z for HF formation, v=3 for DF formation) and smaller 

contributions fr om the hydrogenic molecule, and, in the FD 2 

and FDH systems, a l owe r (v=Z) state of DF. The limitation s 

and advantages of each of the charac terization techniques used 

were discussed. The diffe rences and similarities between the 

effects of the r esonance in the F + H
2 

type systems and in the 

H + H system are discussed. 
2 
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I. I N TRODU CTION 

T h e rea c ti on o f flu o rine atoms with hydro gen mole c ules an ::l 

their vari o us deuterium substituted c ounterp::nt s 

F + H
2

(HD, D
2

) --4 HF(DF) + H(D) (1) 

is on e of the best stud i ed reacti ons in chemistry ( 1). Nume r o u s experi ­

mental studie s have b een perform e d on the kine ti c s and dynam i cs of 

this syste m (1, 2) . The o r e ti c al treatments have u tilized n e arly all 

p o ssible m e tho ds, including qua si- classi c al trajector y c al c ulati ons 

(3 ), e x a ct quantum mech a ni cal c a l culati ons (4, 5 ) ( a ssuming a collinea r 

m odel f o r the reacti on), and a p proxi m ate three -dimensi on a l q u antum 

me chani c al c alculation s (6), as w e ll as other m e th ods based on detailed 

con side rati on o f the p r ope rti es o f the p o tential e ne r g y surf a c e f o r the 

rea c tion (7 ). Inte r e s t in this syste m has als o be~n sparked by th e exi s ­

t e n c e of l ow-ly ing exc ite d e le ct r oni c p o t e n t ial ene r gy surfa c es fo r the 
- 1 

FH
2 

triatomi c s y ste m due t o the sma ll energ y g a p (40 4 e m ) be tween 

the g r o und (
2

P
3 12

) and e xcited (
2

P
112

) states o f th e fluo rine ato m (8 ). 

Be c aus e o f th e sma ll num')e r of e l ect r ons (11) in the FH
2 

sys tem, i t 

is e x pe c t e d that b y ab initio metho d s a chemi c ally a ccurate pot e nti al 

energ y surfa c e should b e o btainable and thus g iv e c onfide n ce that the 

r e sult s o f d ynamical tre a t m ents of th e FH
2 

s ys t em are cor re c t (9 ) . 

A mon g the m o st itnpo rtant r e sults t o com e fr om the c o lline ar quan ­

tum m ech a ni c a l treatments of thi s r e a c tion are the existe n ce and i m -

portan c e of a low ene r gy dynami c al resonan c e (4, 5). Thi s r esonan ce 

is f o und fo r all p o ssible Hand D s u bstituted anal ogues (FH
2

, FHD, FDH, 

FD
2

), a lthou gh the streng th of the resonan c e h a s b e en s h o w n t o v a ry 

dramati c ally with is o t o pi c substituti on (4, 10). The influen ce o f ch anges 

in the p o t e ntial ene r gy surface on the reaction probabilities ha s be en 

explo red b y Conno r, et al. (Sa) . 

Atte mpts have been made to understand what re gions and featur e s 

of the potential ener gy sur fa c e are m os t responsible f o r the exi s ten ce 
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of the low energy resonance. In particular, Babamov and Kuppermann 

( 11) have developed a model which accurately predicts the location and 

strength of the lowest energy res onan ce in the collinear F + H (HD) 
2 

reactions and allows for a simple interpretati on of thE:! resonan ce . 

Hayes and Walker have als o developed a simple model fo r these 

resonances (12). Th e calculations of Wyatt and co-workers (Sb , 6b), in 

which probability density and probability current density are examined 

have provided additional insight into these reacti ons. 

The approximate (j - conservin g ) three dim e nsional quantum me cha­
z 

nical c alculations performed on this system s u ggest that the strong 

res onances observed in the collinear quantum mechanical calculati ons 

carry over into the real thre e dimensional world (6a). Indeed, the 

molecular beam experiments of Sparks , et al. ( 1 3) suggest experi mental 

evidence for the existence of the resonance. Because of the greater 

stren gth of the resonance for the reaction 

F + HD ---t FH + D 

as predicted by the collinear quantum mechani cal calculation s, it has 

been s u ggested that that systen'"l is most likel y to dis p lay a strong 

re son an ce in the three dimensional world ( 14). 

In order to fully understand these resonanc es, it is necessary to 

examine m o re than just the reaction probabilities . Near a r esonance , 

th e phase of cer tain scattering matrix elements and thei r energy 

derivatives, the eigenphase shifts (ar c tangents of the eigenvalues of 

the r e actance matrix), and the eigenvalues of Smith's (15) collision 

life time matrix all may undergo rapid and unusual changes with 

energy (14, 16, 17). The latter quantity has been shown to be an espec -

ially useful indicator of resonances, as it is o lates the resonance in a 

sin g l e channel, allowing for s imple obse rvati on and characterization 

of the resonance (10). After suitable and simple m o dification, the 

eigenvalues of the collision lifetime matrix are dire ctly related to th e 

(2) 
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lifetime of the l ong-lived metastable state associated with the resonan ce . 

The eigenvector associated with the e igenvalue of the collisi on lifetime 

matrix which contains the res onan ce should also provide some insight 

as to the nature of the l ong-lived state . 

In this work we characterize the l owest energy resonance in the 

collinear F + H
2

, HD, DH, and D
2 

systems by considering the va riation 

with energy of various quantities obtained in and from the scattering 

calculation - r eaction probabilities, scattering matrix element phases 

and their energy derivatives, e igenphase shifts, and diagonal e le ments, 

eigenvalues, and eigenvectors of the collisi on lifetime matrix . This 

paper is similar in spirit to the previous paper (18 ), in which we use 

the same quantities t o character i ze the two lowest energy resonances in 

the collinear H + H
2 

system on the Porter-Karp!~ s surface ( 19 ) . We 

w ill consider at some l ength the differ ences between the H
3 

and FH
2 

systems as seen with the various characterizati on techniques applied. 

The outline of this paper is as follows . In section 2 we briefly 

dis c uss the nun1erical methods used in the scattering c al culations and 

in subsequent analysis (for a full di scussion of the te chniques used to 

characterize the res onance , the reade r is referred to the previous 

paper (1 8 )). In secti on 3 we present as a series of p l ots the results 

obtained . In section 4 we discuss them, and in section 5 we offer 

conclusions. 
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II. METHOD OF CALCULATION 

The coupl ed channel cal c ulations from which the rea c tance (R), 
=-

scattering (§), and probability (P) matrices were obtained were per­

formed using the method of Kuppermann (20} . These calculations are 

extensions of those reported previously by S chatz, B owman, and 

Kuppermann (4) . Cal culati ons were performed at a sufficiently dense 

energy grid near th e resonan c es that the ener gy derivative of the§. 

matrix n eeded in the cal culation of the collision lifetime matrix Q , 

where 

Q = i'h~dS:t /dE) 

can be approximated by a three -point finite differen ce method . The 

(3) 

same appr oximation was also used t o calculate the energy derivative of 

the phases of individual §.matrix elements . As <?- result of this approxi­

rnation, Q was not precisel y hermitian (given a unitary Sand the exac t 

d e rivative dS/dE, it c an be shown that Q must be hermitian). To avoid = -= 
complex eigenvalues, Q was forced to be h e rmitian by t aking the average 

=-
of it and its hermitian conjug ate . 

In constructing plots of the eigenphase shifts and the eigenvalue s of 

a a s a function of energy, the eigenvalues were assigned t o thei r re­

spective eigenchannels ·by requiring that the eigenvectors, w hi ch vary 

sl owly w ith energy (except in c ertain cases in which two of more 

eigenvalues are nearly de gene rate) vary continuous l y . At certain of 

the energi es near where de generacies occur, the assignment of a given 

eigenvalue to its eigenchanne l is diffi cult due to the inaccuracies in the 

calculations and the use of a finite energy spacing between adjacent 

calculations. Thi s is particularly true in examining the eigenphase 

shifts in FD and FDH (see below). In those cases, we have made 
2 

what seems t o be the best possibl e choice, but re cognize the ambiguity 

and subjectivity inherent in such a process. In o rder to make a truly 

unambiguous assignment, one might require a much finer grid of ener -
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gies than is necessary to adequately describe any of the other proper ­

ties of interest, and we therefore made n o further effort to remove this 

ambiguity. We will comment on this matter further when we show plots 

of ce rtain eigenvectors of Q for the FHD and FH
2 

systems . 

The potential energy surface us ed in the calculations repo rted here 

is the Muckerman V surface (3d, 4), which is in the form of an e xtended 

LE PS (Z1) surface . Plots of the p otential ener gy surfaces f o r the 

reactions F + HD, F +HZ, F + DZ, and F + DH in the appr opriate mass­

s c aled Delves (ZZ) coo rdinate system are drawn in figure 1 (the reas on 

for this orde ring of the systems w ill become obvious later on). In 

these plots, equipotentials are drawn every 0. 3 eV. The zero of 

energy i s the bottom of the hydrogenic well. The saddle point f o r 

each surface is indi cated by an ''X'', and the minimum energy path 1s 

indi cated by a dashe d line . The effect of isotopi c substitution is s een 

mainly by consideration of the skew angle in each of the systems. 

These angles are 3 7.2 9° , 46.44°, 47 . 75°, and 56 . 6 9° for the FHD, 

FH
2

, FD
2

, and FDH systems , r espec tively . An energy leve l diag ram 

for th e lo-:ve st states of the molecule s considered here (HF, DF, HZ, 

HD, D ) i s shown in figure 2, alon g with a plot of the n1inimum energy 
2 

path for the F + H
2 

r eaction. 
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III. RESULTS 

The reaction probabilities for the four systems studied here at 

energies near the first resonance are shown in figure 3. We display 

the three largest reaction probabilities for each system. Different 

energy regions are used in each of the figures in order to a llo w for 

sufficient bracketing o f the resonanc e region such that at the high ener ­

gy end of each plot, the dynamics should be almost entirely due to 

direct (as opposed to resonant) processes. Both total energies (E) 

and translational energies (E
0

) are indicated in the plots. The resonant 

nature of these collisions at the low ene r gies examined here is clearly 

suggested by the figures, most strongly so in the F + HD and least s o 

in the F + DH systems. Besides the existen c e of rapid variations of 

reaction probability with energy, two features on these plots stand 

out. First, the resonance is reflected similarly in more than one state­

to- state reaction probability in each system. Nearest the resonance 

there is one product state whose formation is m o st p r obable (v = 2 in 

F + HD and F + H
2 

c o llisions, v = 3 in F + D
2 

and F + DH collisions; 

note from fi gure 2 that the se m ole cular states are nearly d e generate ), 

but the product state with its quantum number reduced by one fro m the 

most probable product .state i s also appreciably populat ed . Second, 

with the ex ce ption of F + HD, in all systems studied, in the low ener g y 

r egion examined, the probability of formati on of the product state whose 

quantum number i s one greater than that populated predominantly at the 

res onance becomes appreciable. 

Ar gand diagrams (14, 16) for certain of the~ matrix elements for 

these systems are shown in fi gures 4-7 . In these diagrams, the§. 

matrix element is plotted in the complex plane . Elements at adjacent 

energies are conne cted, so that a sin gle continuous curve is generated 

for each matrix element . Away from a resonanc e, these figures are 

normally clockwise circles or spirals. Near a resonance , this charac ­

teristic shape is not observed; the exact appearance of the diagram 
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varies fro m resonan ce t o r esonance. Possible appearances of these 

diagran1s near a r e sonan ce and their classifi c ati on have been dis cussed 

in the previous paper (18). In the limit of an extremely strong r e s o ­

nance, the Argand diagram is a counte r c lo ckwise circle . 
R R 

In figure 4 we present Argand diag rams for s
02 

and s
0 1 

fo r the 

F + HD r eaction. The strength of th e r esonan ce in this systen1 is s een 

b y th e fo rm of the Argand diagam, which i s almos t precisely that of a 

counterclockwise c ircle . The similarity between the t wo Argand dia-

g rains is obvi ous . 
. R 

T he Argand d1agram f o r s
02 

for the F + H r eac -
2 

tion is shown in fi gure 5 . In this case , the r esonance is substantially 

weaker, as evidenced by the fo r n1ation of only a small counte rclockwise 

loop in stead of th e lar ge counterclo ckwise circle seen in the F + H D 
. R R 

reacti on . Ar gand d1ag r an1s for S 
3 

and S 
2 

for the F + D r eaction 
0 0 . 2 

are shov.rn in figure 6 . T he r e lative weakn ess of the resonan ce in this 

syste m i s s e en in that n o r egi on of counterclockwise s e nse is seen . 

Instead, the resonan ce is reflected by the r egi on from 0 . 208 eV to 

0. 216 eV (measured with r e spe c t t o the bottom of the h yd r ogeni c we ll), 

in whi ch th e Argand d iagram is essenti a lly linear . In th e weakest 

resona n ce studied, that in the F + DH reaction, th e Argand diag ram for 
R s

03 
(figure 7a) h as a clockwise sense everywhere. In the absen ce of 

the r esonance , one might expect the Argand diagram to have much mo r e 
R 

the form of a spiral , su ch as that seen for s
04 

in fi gure 7b. Recall 

from figur e 3d that th e probabili ty of r e a c ti on to f o rm DF(v=4 ) inc r eases 

mon otonically w i th energy, and can thus be taken as a transition 

showing no effects of the r e s onance . 

In o rder t o allow us t o focus sol e l y o n the phases (and n o t be distrac ­

ted by the probabilities, as one mi ght b e in con s idering the Argand 
,..._ R . R 

diagrams), we p l o t th e phase '¥ , of the matnx e lement s
0 

, as a 
Ov v 

functi on of energy in fi gure 8 (v' is the quantum numbe r o f the HF o r 

DF molecule fo r med in the r eacti on). In this plot, and in m ost of those 
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that foll ow, we will r estri c t our atte nti on to ene r gie s no more than 

50 meV above the zero - point energy of the hydrogenic mol ecule . Thi s 

energy is suffi c i e ntly l arge that the resonanc e can be conside red t o be 

entirely contai ned within it. The phas e of an S matrix element is only 
= 

d e termin ed to within an additive constant of Zrr, and hen ce intege r mul­

tiples of Zrr c an be added t o o r subtracted from a gi ven cp
0

v, R to insure 

continuity of the phase vs . energy curve . The zero of phase in each of 

these plots is arbitrary, chos en onl y for simplicity of p l o ttin g . 

The phase vs. energy curves show quite clearly the effe c t of the 

resonan ce in mo re than one product state . In fact , the sin'1ilarity be ­

t wee n these curves for a g ive n system fo r all but the hi ghest p r oduct 

state i s quite r en'1arkable, espe c ially when one considers that the proba­

bilities of populatin g the va r ious product states q1ay diffe r by a substan­

ti a l factor . The highest produ ct state, DF(v = 4), shown for the F + D
2 

and F + DH sy stems, has an a ppreciabl y different phase vs . energy 

c urve than that f o r t he othe r product states . Similar b ehavior was 

seen in the p r obability vs . ene r gy c u rves (fi gu r e 3 ). 

As discussed in the previous pape r, a sin'1ple estimate of the life ­

time of th e lon g -lived metastable s tate which must be associated w i th 

the r esonance is t he delay time 

= h( d <:fJ ~/dE) 
ov 

( 4) 

In the single channel case , the de lay time of a particle due t o the exis ­

t ence of a pot ential i s given b y a sin'1i lar expression with the phase shift 

r eplacing the phase of the §_ matr ix e l ement. Because o f the simi l arity 

of th e phase vs. ener gy curves shown in f i gure 8 , it is expected that 

each of the approp riate delay t i mes for a gi ven syst em shoul d be 

essentially the same . We p l ot these delay t i mes in figu r e 9 only fo r 

those transitions having the l arge st probability at the resonan ce · >Ne d o 

al so plot the d e lay time T R for the F + DH system to sh ow h o w the 
04 H 

delay times will differ when the dynamics are affected ( r 03 ) and 
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R 

and unaffected ( 1 ) by the resonance. 
04 

T wo f e atures are evident in these plots . First, all delay time s 
R 

shov.r:n, except /
04 

for the F + D H system, have maxima. The maxi-

mum is larges t and narrowe st for F + HD, and is sma lles t and br o a dest 

for F + DH . The delay time b ecomes positive only f o r F + HD and 

F + H
2

• Since it i s jus t propo rtional to the energy d e rivative of the 

p!-lase of the corresponding S matrix elen1ent, it is clear that it c an be 

p o sitive only when the phase vs . energy curve has a positive slope, as 

was seen only in th e F + H D a nd F + H systems in figure 8 . Second, at 
2 

energies sufficiently past the resonance (measured by th e maxi nmm in 

the d e lay time Ys. e n ergy curve ), the delay tim e is essentially indepen­

d ent of ene r gy . This suggest s that an improved val ue for the d e l ay tirne, 
R 

T ov' 
, may be cal cu l ated b y s ubtracting its value at the ri ght hand 

(asymptotic) end of t he 1 ( ~ as ) , ,' ~ : n a .. :-: } p ot 1 1 f r o rn its ma.:-: i 'T'J:..ll11 v.~u .l'o! t 
ov · Ov' 

R max as 
Y ov' = 7 ov' l ov' ( 5 ) 

Results of this subt ra c ti on are gi ven in T able 1. T he i mproved de l ay 
R 

times T ov' are seen to decrease in the order FHD )) FH
2

) FD
2

) 

FDH, with an overall range of a fac t or of 100 . This d oes provide a 

reasonable estimate for the life time of the metas table s tate associated 

with the resonance . ·we w ill c onsider the question of the lifetime a g ain 

when we examine th e eigenvalues of the collision lifeti me matrix . 

We nex t examin e the ei genphase shifts as a function of ene rgy, and 

these are p l o t ted in figure 10 . A way from resonances , the e i gen phase 

shifts should de c rease m on otoni c a lly with in c reasing e n e r gy; near a 

r esonance, th ey may e ithe r in c r ease with e ner gy or just de c reas e 

with e n ergy l ess rapidly than would o therwi se be expected . As the 

eigenphase shifts are dete r m i ned to within an additive value of TI, inte­

ge r multip l es of n may be added t o o r s ubtrac ted f r om the e i genphase 

shift s to generat e smooth e ige nphase shift vs . energy curves . The 

e i genphase shift origins (each has i ts own) we r e chosen both to n wst 
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clearly display the largest possible number of avoided eros s ings and 

for c onvenience in plo tting . 

The resonance is seen t o be refle cted in the eigenphase shifts f o r 

all systen1s . For FHD, FH
2

, and FD
2

, re gi ons in which the eigenphase 

shifts in crease with energy are seen. These regi on s are not limite d to 

a singl e ei gen value as determined b y the m e thod outline d in section 2 . 

Two othe r features of the s e fi gures merit attenti on. First, at l ow 

ene r g i es one o r m o re of the eigenphase shifts vary unusually rapidly 

with energy . From considerati on of the eige n vector s, one can sh ow that 

these are as sociated with the s tate s w h ose energi es ar e c l oses t t o the 

energy sho\.vn. H e nce , one of the s e curves belong s to the hydrogeni c 

molecule; whe n ano ther s u ch curve exi s ts, as in FH
2 

and FD
2

, it i s 

sh own to ~elong t o the highest energy HF or DF state . Second, the 

eigenphase shift vs . energy curves display a num b e r of e ros s ings and I 

o r avoided eros sings . The diffi c u lty sometimes involved in determining 

whether there is a real o r an avoided c r ossin g has been d i scus sed 

e arli e r . An i mpor tant fa c t is that thes e avoided c r o ssings can occur 

a t fairly large e n e r gi es , where the resonan ce is essenti ally ove r. 

Thu s , the avoi ded c r ossings ne ed not b e a rnanifestation of the r eso -

nan c e . 

We nex t turn our attention t o vari ous properties (diagonal e l ements , 

eigenvalues, and e i genvec t ors ) of the colli s i on life time m atrix 0. In 

fi gure 11, we plot the diagonal e l ements Q .. as a fun ction of e n ergy . 
JJ 

The se may be thought of as b e ing the ave r age delay t i me in a colli sion 
th 

des c ribed by the w a ve function of the state ass o ciated w ith the j 

column of the S matrix . 

the inequality 

VV'hen Q . . is positive and sufficiently l arge that 
JJ 

ZE.Q . . /-!1. )) 1 (6) 
J JJ 

15 sati sfi ed , where E. i s the initial relative trans l ational ener gy in the 
J 

/h channel, the s c attering process n::~ay b e thou ght of as b e ing resonant . 
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In all but the FDH system, at l east one Q . be comes positive (three 
j] 

become positive for the FHD case) . In the FDH case one of the Q .. 
JJ 

gets very close to zero, and the fact that its value at the high energy 

end of the graph i s substantially smaller than zero suggests that som e 

subtraction such as that perfor med in eq . 5 could be performed h e re to 

define an improved Q ..• 
JJ 

We w ill defer such a subtraction till later, when 

we consider the eigenvalue s q of Q • 
n = In Table 2 , we list the largest 

max 
value of Q. ·' called Q.. , 

JJ JJ 
obtained for each system and its as so cia-

ted energy in order t o cal culate th e left hand side of the inequality in 

(6). From the data in table 2, it is clear that the inequality in eq . 6 

i s satisfied for the FHD, FH , and FD collisions . For the FDH sys-
2 2 max 

ten1, th e inequality obviously cann ot be satisfied because Q.. is 
JJ 

negative; neve rtheless, the closeness of the left hand side of th e inequali-

ty in 6 to zero suggests that although a res onant picture of the scatter ­

ing is not entirely approp riate, it rnay not be ove rly inappropriate, 

e ither. Hen ce , in our analysis of the eigenvalues and eig envectors of 

9, we will e x amine all four isotopic systems. 

We n ext exan1ine the eigenvalues q of Q , plotting them as a func­
n = 

ti on of energy . For all four systems , one and only one eigenvalue i s 

seen to become positive. The n1aximum value thi s eigenvalue q!! takes 

is seen to be substantially greater than the Q . . max indicated in table 2 
JJ 

for the FHD, FD
2

, and FDH systems. For the FH system, the values 
2 

are fairly c l ose . 7 
R . 

As in the case of the delay times 1 , at ene r g t es 
Ov 

suffi ciently larger than that of the c enter of the resonan ce (again meas ­

ured by th e position of the pe ak in the eigenvalue vs . energy cur ve ), the 

eigenvalue q is nearly independe nt of energy (rr will be u sed t o indi cate 
IT 

only the eigenvalue containing the r esonance) . Thus, we define the life -

tin1e t by the expression 
-n 

t (E) 
r: . 

as = q (E) - q 
If rr 

· as · 1 f Th1' s l1'fet1·me1·sindicatedin where~ is the asymptotl c va u e o qrr. 

(7) 
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the right hand ordinates of figure 12. The maximum value of t (E) is 
"11 

res 
called t . In the ensuing discussion, we will tabulate the lifetimes 

and the resonance positions and widths, a s well as comment on the 

relationship between the eigenvalues q and the diagonal elements Q . . • 
n JJ 

Finally, we conside r the orthonormal eigenve c tors U of Q. They 
11 = 

are complex , but we will only be concerned w ith the square of th e 

absolute values of th e ir cornponents Ju in j 2 . These abs olute values 

will be referred to as the ''fractional compositions '' of the eigen ­

vectors. We will represent these e i genve c tors by plotting as a function 

of energy the coefficients juinr 
2 

associated with the nth eigenvector and 

the mol ecula r state i. In Table 3 we give the correspondence b etween 

the values of i and the molecular states for each of the four systen1s 

considered. \Ve will r estrict our attention prim arily to the e i genvectors 

associated with the eigenvalue q which contains the resonan ce . Other 
rr 

e i genvectors will be examined when deemed appropriate. 

The first of thes e is for q in the FHD system, which is shown in 
rr 

fi gure 13 . This is a particularl y compli cated plot. Two points are 

w orth mentioning. First, away from the r esonan ce, the e i genvect or is 

composed almost entirely of component 4, while at the center of the 

resonan ce it is composed of almost equal parts of component 1, with 

much srnaller contributions f r om components 2 and 3 . Second, at ener ­

gies slightly above and below that at the center of the resonan ce , appreci­

able amounts of compone nts 2 and 3 mix in to the e igenvecto r. Since 

the eigenve c tors are norn1alized 

the in c rease in the am.ount of components 2 and 3 is com.pensated for by 

a reduction in the amount o f com?onents 1 and 4. We will discuss the 

or i gin of this complicated behavior in the ensuing discussion section . 

In figu r e 14 we plot two eigenvectors of g. f o r the FH
2 

system . 

( 8) 
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The first of these (upper panel), eigenvector 4, corresponds to the 

eigenvalue ~containing the resonance. Near the resonance, the frac­

tional compositions change only slightly with energy, as a small amount 

of component 1 mixes in to the eigenvector, which at lower energies 

was predon1inantly made up of component 4. At energies substantially 

past the resonance (more than 0. 01 ev), there is a brief ("-'0. 03 eV) 

energy region in which a large amount of component 3 mixes in to the 

eigenvector. No such complicated structure is observed in figure 14b, 

in which we plot the fractional components of the eigenvector which is 

made up principally of component 1. It is seen that near the resonan ce, 

a small contributi on from component 1 is seen, and that at higher 

energies, the fracti onal con1positi ons are essentially independent of 

energy. Of parti cular interest is the fact that there is no contribution 

from c omponent 3, which couples strongly in to the eigenvector di splayed 

in the upper panel of figure 14. We will comment on th e s i gnificance of 

this later. 

Fractional compositions of the eigenvector belonging to the eigen­

value q_ containing the resonance in the FD
2 

system are shown in 
n 

figure 15. Contributions fron1 three compon e nts : 1, 4, and 5 are 

observed. At energies b e low the resonance, components 4 and 5 make 

up essentially all the eigenvector, while s:::>mponent 1 only becomes ap­

preciable near the resonance energy. The shift in the relative contribu­

tions of components 4 and 5 at low energies appears to be unrelated to 

the resonan ce . Since it is this shift, combined with the increasing 

growth of component 1, which gives rise to the maximum in the contri­

bution of component 5 below the resonance, this maximum is not a sole 

consequence of the resonance. 

In figure 16 we show fractional compositions of three eigenvectors of 

Qin the FDH system. The first of these (top panel in figure 16) is for 
= 
the eigenvalue q containing the resonance; the others are for the see­

n-
and lowest (center panel) and third lowest {bottom panel) curves for 
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FDH in figure 12 . The lowest curve is the one marked as being divi­

ded by two and which is composed almost entirely of component 6. 

The most important feature of these plots is the smooth behavior of 

the fractional con1ponents with energy. At energies near where the 

resonance is centered, no unusual or strong dependence on energy of 

the fractional compositions occurs. At the lowest energies considered, 

the relative contributions of components 4 and 5 do vary with energy, 

but as in the FD
2 

case, that need not be related to the resonance . 

More likely associated with the resonance is the growth of the contri ­

bution from component 1 into the eigenvector in figure 16a, as in other 

systems, the eigenvector belonging to the eigenvalue containing the 

resonance always mixes in some component 1 near the res onance . 

Because of inaccuracies in the s cattering calculations and the ap­

proximation of the energy derivative of S, the fractional compositions 

of the eigenvectors of Q occasionally scatter somewhat; the c urves 

drawn then represent a reasonable fit to the compositions dete rmine d. 
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IV. DISCUSSION 

In this section we will do three things. First, we will discuss the 

differences between the resonance in each of the isotopic systems as 

seen from the results presented earl ier, particularl y the eigenvalues 

and eigenve c tors of Q. Second, we will review the information ob ­

tained from the various characterization techniques and attempt to draw 

conclusions about their utility. Third, we will compare the way in 

which the first two r esonances in the H + H
2 

system on the Porter­

Karplus surfac e (des c ribed in detail in the previous paper} and the 

r esonances in the F + HD, H
2

, D
2

, and DH systems examined here 

manifest themselves in the different characterization techniques used. 

A. COMPARISON OF THE RESONANCES IN THE ISOTOPIC SYSTEM S 

From the different characterization techniques used, it is quite clear 

that the strength o f the resonance de c reases in the order FHD)) FH
2

) 

FD
2

) FDH. The best measure of the strength of the resonanc e appears 

to be the lifetime de fine d in eq . 7 . Sin c e this lifetime is obtained fr o m 

the ei genvalues of the c ollision life time matrix Q, the importance of 

that quantity in allow ing one to obtain a good description of the resonanc e 

is seen. In Table 4 we list a number of useful quantities ab out the 

resonance in the different systems, including the resonan c e position 

as determine d from the maximum in the plot of the eigenv alue s q vs . n 

the energy, the lifetime tres, the width (FVVHM} of the peak in the plo t 

of q vs. energy, and the maximum in the plot of the sta te -to- state 
rr 

reaction probability vs. energy (for the hi ghest product state partic ipa-

ting in the resonance : v = 2 for HF products, v = 3 for DF produ c ts}. 

There are a number of interesting points to be made about the data 

in table 4 . First, the life times tres can vary substantially ; that f o r 

FHD is some 7 5 times g reater than that for FDH . This provide s a n 

estimate of the useful dynamic range of this quantity as an indi c ator 

of resonan ces . Assuming that the resonanc e in FHD is ab out as strong 

a resonan c e as one is likely to see, one could reasonably expect t o b e 
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able to see resonances whose strengths differ by more than a factor of 

100, as the FDH resonance does not appe ar to be at the l ower lin>it of 

detection of the method. For analysis of weak resonances, however, 

caution must be used, lest sn>all numerical inac c uracies in either the 

scattering calculations o r the approximation of the derivatives 

dS . . /dE produce noise which could obscure the small maximum. 
lj 

Second, the positions of the maxima in the plots of q vs. E in 
n 

figure 12 are not the same as th ose of the maxima in the plots of reac -

tion probability as a function of the energy in figure 3. To make this 

point more clearly, in figure 17 we replot the state-to- state reaction 

probabilities into v = 2 for HF product and v = 3 for DF product in a 

manner similar to that in which the eigenvalues q were plotted in 
n 

figure 12. The arrows in figure 17 point to the energy at whi ch the 

resonance eigenvalue q has its maximum in figure 12. It is clear that 
rr 

as one moves in the direction of decreasing resonance strength, the 

energy difference between these two maxima in creases . In table 4 

we compare this energy difference to the resonan ce width. Both 

quantities increase · 3..S the resonance strength decreases, but the ener­

gy separation between the maxima increases more rapidly, so their 

ratio. listed in the last column of table 4, increases substantially 

as the resonance strength de c reases . The value of this ratio for 

FDH should be examined noting that the position of the maximum in the 

probability plot f o r this system is probably determined n ot by the 

resonance but by a dire ct process occurring at higher energies than 

seen in fi gure 17 (a feeling for the dynami cs at higher energies may 

be obtained from the probability vs. energy plot in figure 3 ). 

We would next like to consider the structure of the plots of the 

eigenvalues q as a function of energy in figure 12. In particular, we 
n 

are interested in the strong similarity between the figures for each of 

the systems. T:1is similarity is seen in various ways : only one e i gen­

value q becomes positive, there are always one (in FHD) or two (in 
rr 
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FH
2

, FD
2

, and FDH) eigenvalues which are substantially smalle r than 

the others at l ow energies, but which increase rapidly with energy, 

and there are always two or more eigenvalues which are essentially 

independent of energy. Before considering this similarity, it is 

worthwhile to reexamine the plots of the diagonal elements Q .. as a 
JJ 

function of energy, as these allow us to clearly assign molecular 

states to each . In addition, any diffe renee s between the diagonal ele­

ment Q .. and the eigenvalues q must be due to the diagonalization and 
JJ n 

can thus be thought of as the effect of taking the right linear combination 

of molecular states to get a resonance eigenstate . 

The greatest difference between diagonal elements Q .. and eigen­
JJ 

values q occurs for FHD. In figure 11, we see that two diagonal e l e -
n 

ments, Q 
11 

and Q 
44

, be come large and positive ~t the resonan ce, while 

a third, a
33

, becomes positive but stays quite small. a
22 

is more or 

less independent of energy; it appears to have a small increase at the 

resonance energy, but the change is probably within the numeri cal n oise 

associated with all the calculations performed . The differences be­

twe e n this plot and that of the eigenvalues q for this system suggest 
n 

that the eigenvector asso ciated with the resonance should contain sub-

stantial amounts of components 1 and 4 and a smaller amount of compo ­

nent 3 , which is indeed what was seen in figure 13. We will return to a 

discussion of the origin of the large contributions from components 2 

and 3 at energies above and below the resonan ce shortly. 

The differences between the diagonal elements Q .. and eigenvalues 
JJ 

The major difference is the existence q are mu ch smaller for FH
2

. 
n . 

of a shoulder in the a
11 

curve near 0. 283 eV, while the similar curve 

in figure 12 for the eigenvalues increases monotonically. This, coupled 

with the energy independence of . Q 3..nd Q and the monotonic in-
22 33 

crease of Q (and the fact that its value is substantially smaller than 
55 

that of the other diagonal elements), suggests that at the r esonance, 

components 1 and 4 should mix together. Again, this is precisely 
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what was seen in figure 14. We will comment on the large contribution 

of component 3 to the resonance eigenvector shortly. 

The FD
2 

curves differ in a manner similar to that of the FH
2 

curves. One additional difference is that 0
44 

has a small ("-'0. 01 psec) 

local maximum which is absent in the eigenvalue plot. We would expect 

the resonance eigenvector to mix in some of component 1 and a smaller 

amount of comp cment 4 at the resonance. From figure 15 we see that 

there is a small contribution of component 1 to the resonance eigenvec­

tor, but that component 4 has mixed in substantially to the eigenvector 

at energies below the resonance. The most reasonable explanation for 

this mixing is a large inelastic transition probability at low energies 

between the states DF(v = 2) and DF(v = 3), which correspond to compo-

nents 4 and 5, respectively. This is indeed the case, as may be seen 
. v 

from figure 18, in which we plot the transition probability P 
32 

of the 

process 

D + DF(v = 3) ----7 D + DF(v = 2) 

as a function of energy in the energy region considered here. The fact 

that the inelastic probability P 
32 

V is more than a factor of ten greater 

than that of any other inelastic transition probability (multi-quantum 

probabilities are substantially smaller than the single quantum ones) 

suggests that away from the resonance no appreciable coupling between 

components 2, 3, and 6, which correspond to the molecular states 

( 8) 

DF(v = 0, 1, and 4) respectively, should be observed in the ei g envectors 

of Q, which is what is observed. 
= 

The FDH curves also differ from each other similarly to those of 

the FD
2 

system, although the maxima in 0
11 

and 0
44 

become more 

pronounced than they do for FD
2

. The appearance of the curves for 0 11 , 

Q , and Q and the existence of only one large peak in the plots of the 
44 55 

eigenvalues q suggest that the eigenvectors of Q containing compo-
n -

nents 1, 4, and 5 should be strongly mixed (this is observed - see 

figure 16 ), while those containing components 2, 3, and 6 should con-
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sist predominantly of one component. Examination of the eigenvectors 

confirms this hypothesis. As in the FD
2 

case, the mixing of compo­

nents 4 and 5 in the eigenvectors of Q shown can be thought of as being 
- v 

a consequence of the large and rapidly varying P 
32 

in this energy 

region (0 . 211 atE= 0.23 34 eV, 0.0003 atE= 0.2476 e V, and 0 . 303 at 
v 

E = 0. 2666 eV). P 
21 

is also fairly large ('-'-'O. 10), but changes only 

b y a small amount in the energy 

eV and 0. 074 atE= 0. 2829 eV). 

range considered (0. 106 atE= 0. 2 334 
v 

P 
10 

is small (less than 0. 001) in 

this energy range, while P 
43 

b ecomes moderately large ("' 0. 06). 

We will now consider the o rigin of the rapid and somewhat irregular 

variation of the resonance eigenvectors in FHD and FH
2 

seen in figures 

13 and 14. The first thin g to notice about this variation is that it occurs 

away from the center of the resonance. In FHD it occurs at 2 meV both 

above and below the center of the resonance, while in FH
2 

it occurs some 

12 n>eV above the center of the r esonance. This variation c an be cor-

related with the crossing of the eigenvalue curves in figure 12, as both 

the eigenvector crossings and eigenvector variation oc cur at the same 

energy . It is a bit difficult to discern this for FHD from figure 12 be­

cause in the scale of the fi gure it is impossible to res olve the three 

nearly identical separate eigenvalue c urves away from the resonance 

(re c all that the horizontal line in figure 12 represe nts two eigenvalues). 

It is not immediately clear why in the FD
2 

c ase, no rapid v ariation is 

seen from the crossings near 0. 22 5 eV or why in the FH 2 case only 

growth of component 3 is seen. It may be that when the different states 

are not directly coupled by inelasti c processes, no incorporation of the 

component whose eigenvalue (or more precisely, it s diagonal e lement) 

is being crossed takes place. 

As mentioned in section 2, to obtain an adequate description of the 

ei genvectors of Q (or of the ~matrix) near where the eigenvalues 

either cross or undergo an avoided crossing , one might nee-:1 a sub­

stantially finer energy grid than one needs for an adequate d e scription 
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of the eigenvalues q . Since, in general, these regions of rapid varia-
n 

tion usually o ccur away from the center of the resonance, they are 

not of fundamental importance. While further examination of these r e ­

gions of rapid variation of the eigenfunctions of Q might -enable one to 

unambiguously as sign eigenvectors to eigenvalues, it would appear to 

provide essentially no new information about the dynami cs at the res o -

nance. 

B. COMPARISON OF DIFFERENT CHARACTERIZATION TECHNIQUES 

The existence of a r esonance in the low energy dynamics of these 

systems is seen in all of the characterization techniques employed. 

These techniques - plots of probabilities, scattering matrix element 

phases and their derivatives (d e lay times), eigenphase shifts, and 

eig envalues of the collision lifetim e matrix as a function of energy- all 

refle ct the resonance in varying amounts. The quantitie s most sensitive 

to the re sonan ce, the eigenvalues of the calli sion lifeti me matrix, not 

only allow one to recognize weak resonances, but the y lo c alize the r e so­

nance almost completely into one channel, allowing for unambiguous de­

terminati on of the resonanc e energy, width, strength (as measured by 

the life tim.e tres, which is a quantity of interest in its own right), and 

character (obtainable from the eigenvector U associated with the 
--n 

eigenvalue q which contains the resonance). 
IT 

In the cases of weak re sonances, where indirect processes contri-

bute substantially to the overall dynamics, the best characterization 

technique will be that which best subtracts the effects of the direct pro­

cesses from the overall dynamics, leaving one onl y with the effects of 

the resonant processes. Wh .en these subtractions are successfully per­

formed, the quantities of interest will either increase with energy 

(such as§. matrix e l ement phases and eigenphase shifts) o r become 

positive (such as delay times, diagonal elements and eigenvalues of Q ). 

The success of the various characterization techniques is summarized 
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1n Table 5, in which we indicate whether a quantity d oes (represented 

ty the word "YES") or d oe s not (represented by the word "NO'') satis­

fy the above conditions. For the state-to-state quantities, the S mat rix 

element phases and the delay times, we consider only the transition to 

the highest participating state : v = 2 for HF formation, v = 3 for DF 

formati on. Using the d a ta in Table 5, w e se e that the sensitivity of the 

charact e rization te chniques d ec reases in the o rder eigenvalues q > 
Rn 

shifts d ) d e lay times l {"\ , diagonal elements Q .. ) e i genphase 
JJ 

S matrix elemen t phases 4'
0 

, R. 
- v 

= 
n ·.:~ v 

We would like t o make comments c oncerning two of these charac ­

t erization te chniques. F ir st, we d o not re commendthe use of the 

diag cmal e lements Q .. for anything other than interpretive purposes. 
JJ 

On ce one has gon e s o fa r as to cal culate Q, one may as we ll diagonalize 

i t , and we have seen both here and in the previous paper that the re may 

b e appreciabl e diffe renc es b etween Q .. and the eigenval ues q . We 
JJ n 

have shown here that con sideration of the differences be tween plots of 

q and Q .. as a fun ction of e n e r gy can be a u seful exe r cise . Second, we 
n JJ 

wi sh t o point out that the eigenphase shifts, which a r e a r easonably sen-

sitive detecto r o f re sonan ces (two e igenphase shifts for FD
2 

d o in c rease 

w ith energy near the r eson ance ) are suggesti ve of some method by whi ch 

diffe rent cur ves might b e connected t o gi ve one "resonant eigen phase 

shift.'' This would involve taking s ome linear combination of the eigen ­

vectors of Rand defining n ew pseudo-eigenvalues which c r oss from 

w hat is now one eigenphase shift curve to anoth e r, r emoving the a voided 

e r os sing in the process. If such a rearrangement we r e applied in the 

FHD case , the change in th e eigenphase shift a c ross the resonan ce 

would b e r oughly 2. 8 , which is fairl y close to the maximum value of rr 

which it might take . 

C . C OMPARISON VVTTH THE RESONANCES IN H + H 2 

On the basis o f our charac t erization o f the resonances in the F + 
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HD, H , D , and DH systems and in the H + H system in the previous 
z z z 

paper (18), we can make some comments about the differences between 

these resonances. Differences between them are not unexpected, given 

the differences between the systems. F + H and its is otopic counter­z 
parts are asym1netric systems (end atoms different), while H + H is z 
symmetric. This sym1netry difference alone has important implications 

in that in H +Hz the eigenvectors of the R and the 9 matrices will be 

decomposed into symmetric and anti- symmetric sets. It is known that 

the resonance must be reflected in the sym1netric eigenvectors. 

A fundamental difference between the resonances may be seen solely 

by considering the reaction probabilities (figures 1 and Z of the previous 

pep er, figure 3 here). In H +HZ, at the resonance each of the state-to­

state reaction probabilities is quite different. For example, at the 
R R 

second resonance P 
00 

goes through a n1~ximum,while P 
01 

goes through 

a minimum. In the F +Hz type collisions, the resonance is manifested 

similarly in nearly all reaction probabilities (except P 
03 

R in F + Hz 
R. 

and P
04 

1n F + Dz and F + DH). These differences are manifested in 

the Argand diagrams also . Since each transition probability varies dif­

ferently with energy near the resonance in the H +HZ collision, the 

Argand diagrams must necessarily be different. Indeed, both loop and 

half-moon Argand diagrams may be seen at the two resonances. In the 

F +HZ collisions , different Argand diagrams for transitions participa­

ting in the resonance appear quite similar (see figures 4 and 6). 

The two collisions differ substantially in the appearance of their 

respective curves of the diagonal elements Q .. as a function of energy. 
JJ 

For H +Hz, two curves have substantial maxima at the resonance ener -

gy; at the second r esonance, both Q and Q become positive. This 
11 zz 

is the only case observed so far in which more than one diagonal ele-

ment of g becomes positive. The curves of the eigenvalues q v s. E 
n 

are more similar, as there is only one eigenvalue which becomes posi ­

tive in all cases. Also, there are two eigenvalues q which are much 
n 
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smaller than the others in all cases except f o r F + HD. InH +H z 
these are the symmetri c and anti-symmetric linear combinations of 

the newly opened state, while in the F + H type collisions they are the z 
hydrogenic ground state and the highest state of HF or DF. The reason 

why only one such eigenvalue is seen in the FHD curve at low energies 

is that HF(v = 3} opens up at a slightly higher energy (0. 2863 eV) than 

considered in figure 1Z. 

The differences between the 0 .. plots and the similarity between the 
JJ 

qn plots for the H +HZ and F +HZ type collisions imply that the eigen-

ve ctors of Q, especially those associated with the resonance , must be 

different for the two types of collisions . This is particularly true for 
+ 

eigenvector 1 in the second resonan c e for the H +HZ collision, in 

which there are nearly equal contributions from components 1 and Z 

near the resonance . This is the only case in which a resonance eigen­

vector contains nearly equivalent amounts of two components all through 

the res onance . 

Given the substantial differences between the H +HZ and F +HZ 

type systems, none of the sorts of differences obse rved in Argand dia ­

grams, eigenphase shifts, and diagonal elements Q .. and eigenvalues 
JJ 

q is surprising. In fact, the collision life time matrix analysis suggests 
n 

substantial differences between the first two resonances for H + H . z 
A valuable point is to be learned from this however: resonan ces arising 

from seemingly different physical processes may be manife sted in sub ­

stantially different ways when viewed by an appropriate characterization 

technique, such as the variation of the eigenvalues and eigenvectors of 

Q with energy. Thus, it n1ay prove possible later to establish a cor­

relation between the charact-erization of resonances and their underlying 

dynamical features such that one might dis cern the latter from the 

former. Such a method would be complementary to the approach 

adopted by Babamov and Kuppermann (11} and Hayes and Walker (12} 
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for F + H type collisions and by Babamov and Marcus (23 ) for light 
2 

atom transfer reactions. In this work, they are able to simply de scribe 

the resonance by viev.ring the dynamics in the right coordinate system 

wherein a simple property such as a one-dimensional eigenvalue o r 

phase shift can prov ide the ne cessary information about the resonanc e . 
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V. CONCLUSIONS 

We have performed detailed coupled-channel ~quantum mechanical 

reactive scattering calculations on the collinear F + HD, H , D , and 
2 2 

DH reactions, and have characterized the low energy resonances by 

study of the variation of reaction probabilities, S matrix elen1ent 

phases, delay times, eigenphase shifts, and diagonal elements, eigen­

values, and eigenvectors of the collision lifetime matrix. The reso-

nance is seen to decrease in strength in the order FHD ))FH
2

) FD
2

) 

FDH. Using the most sensitive characterization technique, the varia­

tion of the eigenvalues of the collision lifetime matrix with energy, we 

have shown that the resonance energy is not the same as the energy at 

which the related probability vs. energy curves have their maxima. 

The difference between these energies increases as the resonance 

weakens, and this increase is more rapid than the increase in the width 

of the resonance as it weakens. 

By considering the variation with energy of the eigenvector of Q 

containing the resonance, we have shown that the wave function best 

describing the long-lived state associated with the resonance consists 

mainly of the highest participating HF or DF state, with a smaller con­

tribution from the hydrogenic molecule. Lower energy DF states con­

tribute in the F + D
2 

and F + DH systems. The FHD system is the only 

one in which the eigenvector varies rapidly with energy through the 

resonances; in the other systems the change is more gradual. In two 

systems (F + HD, F + H
2

) instances in which the fractional compositions 

of the eigenvector of Q containing the resonance vary rapidly and irregu­

larly "\vith energy away from the resonance were observed. This varia­

tion is believed to occur when two eigenvalues of Q become nearly de­

gene rate and the eigenvalue vs. energy curves eros s. We argue that 

such crossings have little dynamical significance. 

The ·most sensitive quantities for use in detecting resonances are 
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the eigenvalues q • The fa c t that only one eigenvalue q becomes posi-
n rr 

tive means that this method localizes the resonance in a single channel. 

The importance of looking at the eigenvalue q rather than the diagonal 
n 

elements Q,. may be seen by conside ring the case of the F + DH col­
JJ 

lision, in which no Q .. is poi;itive, but one eigenvalue q is positive. 
JJ n 

The variation of the eigenphase shifts with energy is a useful quantity, 

as evidenced by it s a bility to clearly show the resonan ce in the F + D 
2 

system. This technique has the disadvantage of not l ocalizing the 

resonance into a single channel, unlike the exarrrination of the eigen -

values q . 
n 

The delay time provides a useful feel for the lifetime of 

the resonan ce, and has the advantage of requiring the use of only a 

single scattering matrix element, rather than the whole matrix, as is 

needed for the evaluation of the collision lifetime matrix. 

The resonance in the F + H
2 

type systems is ·quite different from 

either of the first two resonances in the H + H
2 

system. These dif­

ferences are reflected in the various characterization techniques ern-

ployed, and suggest that it might be possible to develop a mett.od by 

which one could obtain · information about the underlying dynamical 

features responsible for the resonance from the results of the 

characterization te chniques used. We offer no suggestions as to 

what such a method might be. 
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Table 1.1v~aximum, Asyrnptotic, and Improved Delay Times 

System Transition 

F + HD 0 --t 2 

F+H 
2 

0 -+ 2 

F+D 
2 

0 ~ 3 

F + DH 0 --7 3 

-,.. max a) 
1 Ov' 

2.23 

0 . 060 

-0.01 4 

-0.01 8 

r as b) 
Ov' 

-0.08 

-0.060 

-0.077 

-0.040 

R c) 

iov' 

2 . 31 

0 . 120 

0.063 

0.022 

) I max h i R . a Ov' is t e maximum value of the delay time Ov' 1n pse c 

as . R 
b) T Ov' i s the value of the delay t1me J'Ov' at .an ene r gy E 0 = 50 meV, 

and is in psec. 
R 

c) / Ov' is defined b y eq. 5 in the text and is given in psec. 
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Tabl e 2. Maximum diagonal e l ements Q .. 
JJ 

and r e l ated q u anti ties. 

max max L_a) System j P r odu c t Q.. /psec E. / eV 
Stat e JJ J J 

FHD 4 H F (v= 2) 2 . 34 0 . 407 9 28 94 

FH
2 

4 HF(v= 2) 0.254 0 . 4432 342 

FD
2 

5 DF(v=3 ) o. 072 0 . 3590 78 . 6 

FDH 5 DF(v= 3 ) -0 . 00 1 0 . 3 9 65 - 1.2 

max max JL 
a ) L . = 2E. Q. . t il 

J J JJ 
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Table 3. Molecular State Labels 

System 

i FHD FH
2 

1 HD(v=O) H
2 

(v= 0) 

2 HF(v=O ) HF(v=O ) 

3 HF(v= 1) HF(v= 1) 

4 HF(v=2 ) HF(v=2 ) 

5 
a) 

HF(v=3 ) X 

6 
a) a) 

X X 

FD
2 

FDH 

D
2 

(v=O) HD(v=O ) 

D F(v=O) DF(v=O) 

DF(v= 1) DF(v= 1) 

D F(v= 2) DF(v= 2) 

DF(v=3) D F(v=3 ) 

DF(v=4 ) DF(v=4) 

a) Energy of state is sufficiently high that it does not contribute to 

the dynamics at the energies of interest. 
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Table 5 . Summary of Effectiveness of Characterization Techniques. 

System cpOv' 
R a) 

/ Ov' 
R b) { c) d) e) 

Q .. qn 
J JJ 

FH:D YES YES YES YES YES 

FH
2 

YES YES YES YES YES 

FD
2 

NO NO YES YES YES 

FDH NO NO NO NO YES 

a) phase of scattering matrix element; v' = 2 for HF formation, v' = 3 

for DF form.ation. 

b) delay time using above phas e from previous column 

c ) eigenphase shift 

d) diagonal element of Q 
= 

e) eigenvalue of Q -
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FIGURE CAPTIONS 

Figure 1. Contour plot of the :?otential energy surfaces for the F + HD 

(a), F + HZ(b), F + DZ(c), and F + DH(d) reactions plotted in Delves 

mass-scaled coordinate system. Equipotentials are drawn every 0 . 3 

eV. The zero of energy is at the bottom of the hydrogenic well. The 

saddle point is marked with an 1 1x 1 1
• The dashed line marks the mini­

mun1 e nergy path. 

Figure Z. Energy level diagram for the molecular states considered in 

this work. The zero o f energy is at the bottom of the hydrogenic well. 

The energy levels are shown on either side of a plot of the potential 

energy V a l ong the n1inimum energy path as a function of the reac tion 

coordinate s (which has its zero at the saddle point and is measured 

along the minimum energy path) in the FH s y s tem . z . 
Figure 3. State - to-state reaction probabilities for various reactions 

as indicated. Numbers in parentheses preceded by a multiplication 

sign (x) indicate the values by which the reaction probabilities for 

that transition have been multiplied prior to plotting . Vertical arrows 

in the F + HD and F + H plots mark the ener gies of the v = 3 state 
2 

of HF. The lower abscissa shows the value of the translational energy 

E
0

: the upper abscissa shows the value of the total energy E (sum of 

the translational energy and the zero-point ene rgy of the hydrogeni c 

molecule) . a) F + HD; b) F +HZ; c) F + DZ; d) F + DH. 

R R 
Figure 4 . Argand diagrams for the matrix elements s

02 
(a) and S

0 1 

(b) for the collinear reaction F + HD ~ FH + D w ith the t otal energy 

E as the indicated parameter. Arrows mark the sense of the curve . 

Figure 5. Argand diagram for the matrix element s
02 

R for the collinear 

reaction F +HZ -i FH + H with the total energy E as the indicated 

parameter. Arrows indicate the dire c tion of the curve with increasing 

energy. 
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Figure 6. R R 
Argand diagram for the matrix elements s

03 
(a) and s

02 
(b) for the collinear re action F + D

2 
--t FD + D with the total energy 

E as the indicated parameter. Arrows indicate the direction of the 

curve with increasing energy. 

Figure 7. 
R R 

Argand diagram for the matrix elements s
03 

(a) and s
04 

(b) for the collinear reaction F + DH ~ FD + H with the total energy 

E as the indicated parameter. Arrows indicate the direction of the 

curve with increasing energy. 

~ R R 
Figure 8 . Phases 't"'Ov' of the scattering matrix elements SOv' for 

the collinear reactions F + HD(v=O) ~ FH(v'=O, 1, Z) + D, F + H
2

(v=O) 

~ FH(v' = 1, 2) + H, F + D (v=O} ~ FD(v'=Z, 3, 4) + D, and F + DH(v=O) 
2 

~ FD(v'=2, 3 , 4) + H as a function of the total energy E with respect to 

the b o ttom of the isolated . hydrogenic molecule well (lower abscissa) 

and of the initial reagent relative translational energy E
0 

(upper abscis­

sa). Phases are determined only modulo Z1r; the zero for each phase was 

chosen to give an ordinate for each plot reasonably symmetric about 

zero. Note that the upper abscissa i s common to all panels in th e fi gure . 

R 
Figure 9 . Delay times /Ov' for the collinear reactions F + HD(v=O) 

~ FH(v'=2) + D, F + H
2

(v=O) ~ FH(v 1=2) + H, F + D
2

(v=O) ~ FD(v'=3) 

+ D, and F + DH(v= 0) ~ FD (v' = 3, 4) + H as a function of the total 

energy E with respect t o the bottom of the isolated hydrogenic mol ecule 

well (lower abscissas) and of the initial reagent relative translational 

energy E
0 

(upper abscissas). Note that the upper abscissa is common 

to all panels. Because of small numerical inaccuracies in the scatter ­

ing c alculations, the actual values of the delay times are s cattered a bit 

about the curve shown, which is a smooth curve drawn visually to 

reasonably well represent the data. 

Figure 10. Eigenphase shifts for the collinear collisions F + HD(a), 

F + H
2

(b}, F + D
2

(c), and F + DH(d) as a function of the total energy E 
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with respect to the bottom of the isolated hydrogenic molecule well. 

The arrow in figure b marks the energy of the v = 3 state of HF. The 

eigenphase shift represented by the short dashed line in figure b has 

been divided by five prior to plotting. Eigenphase shifts are determined 

only modulo rr, and the zero for ea ch one was chosen to give an ordinate 

for each plot reasonably symmetric about zero and to best sh ow the 

avoided crossings. In figure d, the eigenphase shift curve represented 

by short dashes is drawn twice to point up all its avoided eros sings. 

Figure 11. Diagonal elen1ents Q .. of the collision lifetin"le matrix Q for 
JJ 

the collinear collisions F + HD, F + HZ, F + DZ, and F + DH as a 

function of the total energy E with respe c t to the bottom of the isolated 

hydrogenic moelcule well (lower abs c issas} and of the initial reagent 

relative translational energy E
0 

(upper abscissas), which is common to 

all panels. The numbers associated with each curve indi c ate the value 

of the index j for that curve. 

Figure 12. Eigenvalues q of the collision life time matrix Q for the 
n = 

collinear collisions F + HD, F +HZ, F + D
2

, and F + DH as a function 

of the total energy E with respect to the bottom of the isolated hydro geni c 

molecule well (lower abscissas} and of the initial reagent relative 

translational energy E
0 

(upper abscissas), which is common to all 

panels. The left :>r::linate scale in each panel refers to all the curves 

in that panel, whereas the right one refers only to the corresponding 

bell- shaped curve. The dashed portion of the lowest curve of the 

FHD panel indicates a region of numerical noise associated with the 

sharp peak of the top curve. The horizon tal straight line of that panel 

represents the eigenvalue curves for two distinct eigenchannels. These 

curves coincide within the plotting accuracy of the figure, but are 

distinguishable on an expanded scale. The divisor in the three lower 

panels indicates the number by which the ordinate of the neighboring 

curve was divided before plotting. The numbers assigned to each curve 
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provide a label which will be used in figures 13-16, in which the 

cor responding eigenvectors are examined. The numbers used as 

labels were chosen to point up the similarities between these plots 

and those of the diagonal e lements Q .. in figure 11. 
JJ 

Figure 13 . Fractional compositions lu. I 2 
of eigen vector 4 of the 

lm 
collision lifetime matrix Q for the collinear collision F + HD es a 

function of the total energy E with respect to the bottom of the isolated 

hydrogenic molecule well (lower abscissa) and of the initial reagent 

relative translational energy E
0 

(upper abs cissa). The two digit 

numbers for each curve indicate the numbe r of the component i (first 

digit) and the eigenvector n(second digit). The number of the eigenvec ­

tor refers to the eigenvalue of the s an1e nun1ber in the top pane l of 

figure 12. 

Figure 14. Fractional compositions [uinl 
2 

of eigenvectors 4 (upper 

panel) and 1 (lower panel} of the collision lifetime matrix Q for the 

collinear collision F + H
2

. Ene rgy scales and component la!Jeling is 

as in figure 13. 

2 
Figure 15 . Fractional compositions I U in,. of eigenvector 5 of the 

collision lifetime matrix Q for the collinear collision F + D
2

• Energy 

scales and component labeling are as in figure 13 . 

Figure 16. Fractional compositions Juinj 
2 

of eigenvecto rs 5 (top 

panel), 4 (center panel), and 1 (bottom panel) for the collinear colli sion 

F + DH. Energy scales and component labeling are as in figure 13. 

Figure 17. Probabilities of the collinear reactions F + HD(v=O) -7 

FH( v ' =Z ) + D, F + H
2

(v=O) --i FH(v ' = Z) + H, F + D
2

(v=O) --t FD(v' =3 ) 

+ D, and F + DH(v=O) --t FD(v'=3) + Has a function of the total energy 

E with respect to the bottom of the isolated hydrogenic mol ecule well 

(lower abscissa) and of the initial reagent relative translational energy 

E
0 

(upper abscissa), which is common to all panels. The vertical ar-
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rows indicate the energies at w hi ch the resonance collision lifetime 

eigenvalues of figure 12 (4 for FHD and FH
2 

systems, 5 for FD
2 

and 

FDH systems) achieve a maximum . 

Figure 18. Transition probabilities for the inelastic processes 

D + DF(v) ~ D + DF(v-1} in the collinear collision of D with DF for 

v = 1, 2, 3, 4 as a function of the energy E with respe c t to the bottom 

of the isolated D
2 

mole cul e well (lower abscissa} and of the initial 

reagent relative translational energy . Note that this translational 

energy scale is not the same as that used in previous figures. The 

numbers in parentheses are the values by which probabilities have 
v 

been multiplied before plotting. For P 
32 

, no multiplication factor i s 

shown; these probabilities are plotted as calculated . 
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PART III 

COLLINEAR ATOM-DIATOMIC MOLECULE COLLISIONS 

STUDIED BY HYPERSPHERICAL COORDINATES 
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INTRODUCTION 

A variety of quantum mechanic al methods have been developed 

for the study of collinear atom-diatomic molecule reactions. 

Vlhile these methods have a chieved great succes s in studying anum­

ber of interesting systems, they have been unable to be used for two 

important classes of reactions: those in whi ch a light atom is 

transferred between two heavy ones (the heavy-light-he avy, or 

H-L-H systems), and those above the threshold for collision -indu c ed 

dissoc iation (CID). In this section we report on the developme nt of a 

n ew method for quantum mechani c ally treating collinear atom-diatomi c 

colecule reactions in a manner in which these two classes of reac-

tions may be easily studied. This method, using hyperspheri c al 

coordinates, is applied to a number of these sys_tems. Collinear 

quasi-classical trajectory c alculations have been performed on a 

number of these systems to help understand the importance of quantum 

me c hanical effects and the existenc e of classical mechanical explana­

tions for some of the c al culated behavior. We include the results of 

such quasi-classical traje cto r y c alculation s in this se c tion, even 

though they of course do not use hyperspherical coordinates. 

Paper III. 1 presents the first results of the hyperspheri c al 

coordinate m e thod. These are for the H + H
2 

rea c tion, and they a re 

shown to b e in excellent agreement with results obtained previ ously. 

Quantum mechanical resonance effects are shown to persist to high 

energies and high reagent vibrational states. 

P a per III. 2 presents results for the I +HI reacti on. This is an 

extreme case of the H-L-H mass combination mentioned ab ove, and 

we show that in spite of the small skew angle (-v7 o ) in this system 

when viewed in an appropriate mass scaled coordinate system, the 

hyper spheri cal coordinate treatment is quite simple. Reaction 

probabilities are seen to oscillate with energy, to show resonan c e 
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effects which depend very strongly on the potential energy surface, 

and to be well reflected (except for the resonances) by quasi-classical 

trajectory calculations. The low energy resonan c e structure c an be 

well represented by a method developed by Babamov and Mar cus. 

Paper III. 3 presents results for a model CID system. Well con­

verged dissociation probabilities can be obtained fairly easily. These 

probabilities are found to be fairly similar to those from quasi­

classical traje c tory calculations, in spite of the low masses and small 

mole cular well depth used. CID was shown to be strongly vibrational­

ly enhanced. 

Paper III. 4 presents in some detail the results of CID c alculations 

for the model system considered in paper III. 3. Three diffe rent 

mass combinations, corresponding to light-light.-light (L-L-L), 

heavy -light-heavy (H-L-H~ and light-heavy-light (L-H-L) ones, are 

studied. CID is shown to be g reatest in the L-H-L system and least 

in the H-L-H one. Rate constants for CID and for chemical reaction 

are calculated and their temperature dependenc e is examined. 

Paper III. 5 presents some aspe cts of CID in a quasi-classical 

trajectory calculation of the model system studied in papere III. 3 and 

Ill. 4 (L- L- L mass combination). We report the formation of well 

defined reactivity bands for CID, and show that the absence of low 

energy CID in the ground vibrational state system can be under stood 

in terms of the absence of the simplest possible dissociative traje c ­

tory; which does occur in the vibrationally excited system. Kinetic 

energy distributions of the atoms formed in CID are obtained, and 

they are shown to possess a number of interesting and unexpe c ted 

features, the origin of which may be seen as a consequence of the 

existenc e of well-defined reactivity bands for CID. 

Paper III. 6 presents preliminary results of the calculation of the 

kineti c energy distributions of the ato ms formed in CID determined 
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by the hyperspherical coordinates method for the s y stem and mass 

combination studied in the previous paper. T he quantum mechani c al 

distributions are shown to have a much less irregular structure 

than the quasi- classical ones. 

Paper III. 7 attempts to explain an inter e s ting and unexpe c t ed 

feature of the dynamic s of the collinear Cl + HC l (v) reac tion ob t ained 

f rom a hype rspheri c al coordinates study. This fe ature is the near 

total equivalence of the probabilities and rates of reactive and n on­

reactive deactivating pro cesses in c ollisions of vibrationally exc i ted 

H Cl. This explanation is obtaine d b y conside ring quasi-classical 

traj ecto ries for this s ystem. It is found that mo st vibrational 

dea ctivation occurs near the boundary between r egions of reactive 

and non-reactive traje ctories, and the trajector~es involved in these 

highly n on-adiabati c c ollisions a ll more o r less follow the sym1netric 

stretc h line for a period of time . It is believed that this equivalen c e 

of reactive and n on-re a c tive deactivating processes will be a fe a ture 

in any sym1netri c H- L-H system. 

P a per III. 8 consists of the presentation o f probabilities and rate 

constants for the system 

Br + HCl(v=2, 3 , 4) .,_. BrH(v') + Cl 

~ Br + HCl(v' v) 

o btained by a h yperspherical c oordinate c alculation . R rcmoval of 

vibrationally excited HCl is found to occur mainly by reaction to 

the nearly de generate H B r state (v - 2) . In deac tivating c o llis ions , 

the probabilities of foriTiing HCl(v') and HB r(v'- 2) are nearly ident i ­

cal. Multi-quantum deactivations are found to be far l ess likel y 

than those involving only a single quantum. 

Paper III. 9 consists of c onc eptual and numerical ana l y ses o f 

the implementation of the hyperspherical coordinates method in the 

adiabati c represent ation rather than the diabati c representation, in 
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which it has previously been formulated. Two different basis sets 

are studied. One is the purely polar coordinate basis set used in 

all previous work; the other is a hybrid one which consists of both 

linear and circular portions. Analytic properties of the coupling mat-

rix e lements are determined, and these matrix elements ar e evaluated 

out to very large (5000 bohr) values of the propa g a tion coordinate in 

order to help understand their asymptotic properties. The a diabati c 

equations are integrated f e r a very simple model case, and the results 

can be understood in terms of a simple (and analyti c ally solvable) 2x2 

model. 

Paper III. 10 c onsiders the extra c tion of physic al w a ve functions 

from the hyper spherical coordinate method, and their use in calcula­

ting proba bility densities, probability current d~nsities, and tunneling 

fractions . Preliminary (unconverged) results for these quantities on 

the c ollinear H + H
2 

reac tion are presented . V a rious diffi culties 

encountered in this work are discussed, and ideas for their remedy 

are discussed. 

Paper III. 11 presents a study of the c onvergence properties of the 

hyperspherical coordinate method . In particular , state-to-state 

reacti on probabilities and s cattering matrix element phases are exa­

mined as a function of the number of basis functions and the distanc e 

at which the wave function is proj e cted from a hyperspherical (polar) 

coordinate basis set to one in Carte sian c oordinates. Probabilities 

and phases are found to c onverge very rapidly with basis set for the 

H + H reaction and less so for the F + H reaction. Reaction 
2 2 

probabilities converge fairly well with projection distance for H + H
2 

and less so (but still adequately) for F + H
2

. Scattering matrix ele­

ment phases converge slowly with proje c tion distance for H + H 2 , 

be c orning converged to within 1-2 o at a projection distance of 12 

bohr. The pla ses calculated agree well with those of previous 
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In F + H , c onvergenc e 1s slower, and does not 
2 

appear to be to the values obtained by a previous method. 



308 

Ill. 1 HYPERSPHERICAL COORDINATES IN QUANTUM 

_._ 
•r 

-·-
MECHANICAL COLLINEA R REACTIVE SCATTERING··-

This paper appeared in Chemical Physics Letters 74, 257 (1 98 0). 
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1. INTRODUCTION 

Triatomic exchange reactions of the type A + BC - AB + C, with A, B, 

and C representing atoms confined to move on a laboratory-fixed straight line , 

constitute the simplest reactive processes which present a basic characteristic 

of many chemical reactions: the dissolution of a chemical bond and the forma­

tion of a new one. The low mathematical dimensionality of the corresponding 

theory permits a straightforward analysis of this system, unencumbered by the 

mathematical complexities of molecular rotations. Such a collinear model is 

therefore useful for developing insight into the reaction process, especially 

for s ystems which are collinearly dominated, i.e. , for which collinear config­

urations have energies considerably lower than corresponding bent ones. For 

these reasons, collinear reactions have been the subject of extensive theoretical 

studies over the last decade. Reviews of the methods developed for such studies 

have been published previously [1-3). We consider in this paper electronically 

adiabatic reactions of this type, although the method described is also applicable, 

with straightforward generalizations, to electronically nonadiabatic reactions. 

The methods previously developed for studying these collinear processes 

are restricted to energies significantly below that for which the A + BC -A+ B + C 

process is possible. Such breakup collisions, particularly when occurring in 

competition with exchange processes, have been particularly resilient to accurate 

quantum mechanical treatment [ 4 ]. In addition, accurate results for systems 

in which the central atom B is significantly lighter than the end atoms, such as 

the I+ m- IH +I reaction, have not been obtained so far by those methods, for 

reasons inherent to their nature (see Section 4). The use of hyperspherical 

coordinates, as described in the present paper, was developed in an attempt to 

overcome these shortcomings . Extension of these ideas to three dimensions 

was also kept in mind. 
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2. THEORY 
~ 

Let r~, R~ be, respectively , the BC internuclear distance and the distance 

of A to the center of mass GBC of the BC molecule. Let r~,R~ be the correspond­

ing distances with the roles of A and C interchanged, as indicated in Figure 1. 

We define the Delves scaled coordinates [5] RA, r A (A = a, y) by 

(1 ) 

In these equations, A IlK is either af3y or y{Ja, JliiK is the reduced mass of m 
11 

and mK , ~.IlK is the reduced mass of mA and (m
11 

+ mK), and rna, mfJ' and my 

are the masses of A, B, and C, respectively. In terms of Rx•rA, the relative 

nuclear motion hamiltonian of the triatomic system is 

H t/ a2 a2 

- - ( -- + --) + V (R , r ) 
2Jl ClR~ ar~ A A A 

A= a,y , (2) 

where 
I 

Jl = [mamfl my / (ma + m 13 + my)]2 (3) 

is a reduced mass of the system and is the same whether A = a or y, and 

V >.. (R>.., r >..) is the electronically adiabatic potential energy surface being consid­

ered, in A coordinates. According to Eq. (2}, the internal collinear motion of 

the triatomic system is isomorphic with that of a single point P of mass Jl in 

the two-mathematical-dimensional (2MD) RA, r A configuration space, subject 

to the potential VA. The corresponding Porter-Karplus (PK) ground state collinear 

potential energy surface for the H + liz system (6] is depicted in Figure 2. 

The coupled-equations approach to solving the Schrl5dinger equation for 

the Hamiltonian of Eq. (2} consists in choosing an "internal" variable x and a 

"propagation" variable y (transverse to x) which may be different in different 
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regions of configuration space. The wavefunction !Jt(x, y) is then expanded in a 

quasi-complete discrete pseudo-vibrational basis set { <Pn(x)} of variable x, 

and the resulting coupled equations in the coefficients gn(y) of this expansion 

are integrated. Enough linearly-independent solutions of this type are obtained 

to permit the cakulation of the R matrix, and from it the S matrix and the = ::: 
transition probability matrix ~ [1], and care is taken to ascertain their con-

vergence v.ith respect to the number of terms used in this expansion. In the 

method developed by Light and co-workers [7], x and y have been chosen to be 

natural collision coordinates, whereas in that of Kuppermann [lb, 8), they are 

r a and Ra for the reagent region of configuration space; the circular polar 

coordinates r and cp (centered on a point P 0 deeply imbeddetl in the A + B + C 

dissociation plateau) for the strong interaction region; and r and R for the 
'Y 'Y 

product region. In both these methods, the wavefunction is assumed to vanish 

outside a reaction gulley which excludes the dissociative regions of configuration 

space. 

In the present method, we use for x, y the circular polar coordinates p, a 

(see Figure 2) around the origin 0 of the R~, r~ configuration space (for which origin 

A, B, and C coincide). Similar coordinates have been previously used by Tang, 

Kleinman, and Karplus to study a piece-wise fiat potential energy surface sys-

tem [9). In the generalization to three-dimensional collisions [5, 10), pis a 

hyperdistance in a 6MD configuration space. The range of a is 0 to amax = 
-1 ~ 

tan (m..M/ m m ) 2 , where M = m + mn + m . At the extremes of this range 
~ a 'Y a ~ 'Y 

(where B coincides with A or C, respectively) the potential function V becomes, 

for all chemical purposes, infinite and the wavefunction vanishes. The nuclear 

motion Hamiltonian in these coordinates is 

H(p,a) = -- -+-- + -- +V(a,p). ti
2 

[ a
2 

1 a 1 a
2 J 

2j..t ap2 P ap p2 aa2 
{4) 
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In Figure 3 we depict V as a function a for various constant values p of 

p for the PK surface. It can be seen that, because of the divergence of V at 

a = 0 and a = a max' the eigenfunctions of 

(5) 

form an infinite but discrete set {<l>n(a;p)} which samples the entire range of 

a, including those values which, for large p,correspond to dissociated A+ B + C 

configurations. In Figure 4 we display the even (see end of section) eigenfWlc­

tions for the PK surface, for p = 6 bohr and n = 0 through 24 (in steps of 2), 

as well as the corresponding eigenvalues En(p). The highest of these is larger 

than the dissociation energy 4 . 75 eV of J4. Since the J4 Morse curve included 

in the PK surface supports I 7 bound states, for large p (larger than 11 bohr, 

it turns out), En(p) exceeds 4. 75 eV for n ~ 32. The corresponding eigen!Wlctions 

sample the dissociated plateau region of configuration space, which thereby, 

in principle, is made accessible to the system. Whether or not the system 

samples that region depends on energetic and dynamic considerations, rather 

than it being excluded by a priori considerations. Expanding an eigenfunction 
n . 

l/1 (p,a) of H(p,a) according to 

N 
l/;n(p,a) = p-t L; g~,(p;p)<f>n,(a;p) (6) 

n' =0 

leads without much difficulty to the following differential equation in the matrix 

1, ( p ; p ), whose n' th row and nth column element is g~, : 

ti' d2£ ( p ; p) 
§! 2 + ~(p;p)f_<p;p) = ~(p;p)t(p ; p) 

2J.L dp 
(7) 

W and E are interaction and energy matrices whose n' row and n column elements 
111:1 &::$ 

are given by 
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-2 

( n I V (a, p ) - L V (a, :p) I n' ) 
p2 

(E+ ti22- En(p))O~,, 
6Jlp 

(8) 

(9) 

where In' ) = 4> n' ( o ; p), the integration variable implied in Eq. (7) is a , E is 
n' the total energy of the system, and 0 the Kronecker symbol. 
n 

The reactive scattering problem is solved as follows. We choose a set 

of p. (i = 0, 1, ... , i ). In the range p . 1 top . we chose a p for which we 
1 max 1- 1 i 

calculate the cp (o; p.) by a numerical method (such as a finite difference one (11)). n 1 

We then integrate numerically the coupled equations (7) from p . 1 top . , setting 
1- 1 

g (0; p 0 ) = 0 and g' (0; p0 ) = I and requiring continuity of 1/1 ( p, o) and of its 
f:::: R~ ~ f:::: n . 

derivative with respect top at the boundaries p =pi between the pi_1 to pi and 

p . top . 1 regions. The integration method used in the present calculations was 
1 1-

that of Gordon [12), together with the reorthogonalization procedure of Riley 

and Kuppermann (13]. In this manner we obtain the IJ;n(p, a) for 0 ~a~ amax 

and Po ~ p ~ p . . We then project numerically these 1/;n onto the bound state 
1m a x 

eigenfunctions of BC and AB at a large and constant value of RA , from which we get by 

standard methods [1b] the R , §, and P matrices defined above for energies below 
Rl ... Rl 

the A + B + C dissociation limit. Their convergence with respect to imax• Po, 

pi , and the number N of terms used in Eq. (6) is established empirically, 
max 

as is the symmetry of the open channel part of R and the unitarity of the open 
~ 

channel part of S. For energies above that dissociation limit, the procedure 
R:l 

described for the three-dimensional case by Delves [5b] should be used. 

For symmetric reactions of the type A+ BA - AB +A, the potential 

energy function V(o, p) is symmetric with respect to the o = ama/2 line in 

configuration space, and the solutions which are even or odd for reflection 

through that line may be obtained separately , thereby decreasing the amount 

of numerical effort. 
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3. RESULTS 
~ 

The results of accurate calculations for the H + ~ - ~ + H reaction on 

the PK surface , using the hyper spherical coordinate method just described, 

are given in Figure 5, together with those of previous calculations. We plot 

in that figure the vibrationally adiabatic distinguishable-atom reaction proba­

bilities P~n from the initial vibrational state n of the reagents to the same 

vibrational state of the reaction products. The points in that figure are some 

of the present results , which are converged and accurate to about 1% or better. 

They have been carried out so far up to total energies of 2. 88 eV (about 60% of 

the ~ dissociation energy), without any signs of quality deterioration. The 

dashed lines are cubic spline fits to these results (which include a larger number 

of points than those displayed) for total energies in excess of 1. 75 eV for the ~ 
and P~ curves, and for Etr ~ 0 for the others. For comparison, the solid lines 

are cubic spline fits to the results of Schatz and Kuppermann [14], which were 

carried out using one of the previous methods (8] , up to total energies of 1. 75 eV 

for ~and P~. These latter results (14] are essentially indistinguishable from 

those of Diestler (15] , who performed accurate calculations on the same PK sur­

face at total energies up to 1. 21 eV. For total energies for which other calcula­

tions are available (s 1. 75 eV), the present results agree with the previous ones 

within the computational accuracy of about 1%. This validates the hyperspherical 

coordinate method. 

An additional useful characteristic of this new calculational procedure 

is that convergence with respect to the number of basis functions used is more 

rapid than for other methods. For example, for Etr in the range 0. 22 eV to 

0. 43 eV, and using only two channels (one open and one closed, asymptotically), 

the absolute error in P~ is less than 0. 02 in the new method, whereas .for a 

previous method (1b, 8] that error is as high as 0. 23. If four channels 

are used, the hyperspherical coordinate method produces reliable values of~ 
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(to within 0. 02) up to translational energies of 1. 03 eV, whereas that previous 

method requires seve n or eight char.nels for equivalent convergence. This 

faster basis set convergence effici(;ncy may make this method particularly 

well suited for three-climensivnal calcul2.tions, for which high efficiency is 

required for calculational feas ibi!.ity [ 18, 19 ) . 

It is interesting to note that the P~ curves for n >.> 1 in Figure 5 are very 

similar to each other and are nearly identical when plotted as functions of the initial 

relative translational energy. This is strongly suggestive that an effective 1MD 

potential may be found which duplicates all of them. The P~ curve is also 

similar to the n ~ 1 pR ones if energies below that of its first resonance nn . 

are neglected. This comparisor. suggests that the second resonance in ~ 

and the first one in the ~ (n >-> 1) h ::lVe analogous dynamical origins. 
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4. DISCUSSION AND CONCLUSIONS 

The hyperspherical coordinate method seems capable of tackling reactive 

scattering problems at fairly high energies. The present calclililtions are being 

extended to energies above the H2 dissociation limit. The method can also be 

generalized to electronically nonadiabatic processes in a straightforward 

manner [18, 19]. 

The difficulty other methods [1b, 7, 8] have in tackling reactions with a light 

middle atom , such as I + HI- rn + I, is related to the very sharp and rapidly 

changing curvature of the minimum energy path of these systems, in the strong 

interaction region of configuration space. This in turn is due to the smallness 

of the corresponding skew angle, a max= tan-
1
(m13M/ mamy )t, which in that 

system is about 7° . The present method does not suffer from this difficulty, 

since the propagation coordinate pis not related to that curvature . 

Finally, the hyper spherical coordinate approach seems particularly 

suitable to the study of 3D systems [10], since it greatly simplifies the A + BC 

bifurcation problem associated with the existence of two kinds of reactive pro­

duc ts , AB + C and AC + B. The solution to this problem is contained in the 

nature of the p = constant basis sets, which are the 3D generalizations of the 

¢n(a; p) eigenfunctions used in the present method. Such calculations are 

currently being performed in our laboratory (20]. 
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Fig. 1. Distance coordinates for collinear triatomic system. 

Fig. 2. Porter-Karplus potential energy surface V for the H + 14 system in 

Delves scaled coordinates R
0

,r
0

. The solid curves are equipotential contours 

at the total energies (with respect to the bottom of the isohlted 14 well) indicated 

in the lower right side of the figure. The dashed line is the minimum energy 

path. The polar coordinates p, a of a general point P in this Ra, r a configura-

tion space are also indicated. The three arcs of circles at p = 2. 00, 3.13, and 

6. 00 bohr are cuts along which V is displayed in Figure 3. The second of these 

passes through the saddle point, indicated by a cross in the figure. 

Fig . 3. Potential energy function V(a,p) of Figure 2 as a fUnction of a for the 

following four constant values p of p: 2. 00, 3.13, 6. 00, and 20.00 bohr. The 

first three of these values correspond to the arcs disphlyed in Figure 2. The 

fourth one is outside of that figure. 

Fig. 4. Potential energy function, eigenfunctions, and eigenvalues of the one­

dime nsional hamiltonian of Eq. (5), for p = 6 bohr. The double-well curve is 

the same as that in Figure 3. The horizontal lines represent the eigenvalues 

for the quantum numbers given (for every other eigenvalue) at the right of the 

figure , for the even eigenfunctions (i.e. , those which are symmetric for 

reflection through the a = 30° line). The latter are the oscillatory curves around 

the eigenvalue lines, and have been scaled so as not to overlap each other . The 

corresponding relative scaling factors are 1. 00, 1.12, 1. 08, 1.15, 1.18, 1. 28, 

1.59, 1.69, 1.45, 1.18, 1.01, 0.90, and 0. 87. 

Fig . 5. Vibrationally adiabatic reaction probabilities P~n for the H + H2(n) -

~(n) + H exchange reaction on the Porter-Karplus potential energy surface, 

as a function of initial relative translational energy Etr and total energy E 
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(measured with respect to the bottom of the isolated J4 well) . The points are 

the results of the present calculations. The solid ~ and P~ curves are cubic 

spline fits to the previous results of Schatz and Kuppermann, which were per­

formed up toE = 1. 75 eV. The dashed curves are cubic spline fits to the present 

points, including some omitted from the plots for reasons of visibility. 
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Figure 2. 
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III. 2 COLLINEAR QUAN TUM MECHANICAL PROBABILITIES 

FOR THE I+ HI ~ IH +I REACTION USING 
.,_ 

HYPERSPHERICAL COORDINATEs"' 

;:~ 

This paper appeared in Chemic al Physi c s Letters 7.]_, 5 7 3 (1 9 8 1). 
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Among the most important rest.:lts to come from quantum mec han­

ical calculc>tions of the probabilities of chemical reactions are the exist-

ence and sitinificance of resonant processes. Reac tive scatter~ng reso­

nances were first found in collinear calculations on the H + 14 system1' 2 

and have been observed in a variety of other collinear atom-diatom cal­

culations, including those on the F + H2 , HD, D2 , 
3 , 4 Cl + H

2
, 
5 I + H

2
, 

6 

7 8 9 
Ba + N20, I + HI, and Cl + HCl systems. The F + 14 system anC: its 

isotopically substituted counterparts are of particular interest bec:1use 

of their simp~icity and relative ease of study by both theoreti<:al ::md 

experiment:-..1 techniques. It has recently been proposed that these 

systems are prime candidates for experimental observation of r esonances. 

Approximate jz-conserving three-dimensional calcula­

tions on the F + 14 system have been performed, and they suggest that 

the resonance found in the collinear calculations exists in the three-

dimensional world. 10 Molecular beam experiments also provide indi-

cations of a resonance in this system. 11 

Resonances have been obse rved in a wide variety of scattering 

processes and are known to be associated with the existence of long-lived 
12 

metastable states. Once a resonance is known to exist in a chemi-

cally reactive system, one desires to know what features of the potential 

energy surface are responsible for its existence and what its lifetime is. 

The latter is espec ia lly important in determining what systems are the 

most suitable for the experimental detection of resonances. 

Babamov and Kuppermann have recently developed a model that 

gives a physical interpretation and predicts the location of the lowest 

energy resonance in the collinear F + 14 and isotopically substituted 



331 

far (13), 40 channels were required. The small skew angle permits certain 

dynamical approximations to be made , however, and a few approximate treat­

ments of these!!-!:-!! systems , both quantwn mechanical and classical, have 

been developed (14 ]. 

In this paper we report the results of accurate coupled-channel electronic­

ally adiabatic quantum mechanical calculations for the collinear reaction, 

I+ID-lli+I, (2) 

using hyperspherical coordinates . Two slightly different potential energy sur­

faces were used. We also performed quasi-classical trajectory calculations 

on these surfaces. In Section 2 we describe the method and the surfaces, and 

in Section 3 we present and discuss the results. 
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2. Com,eutational Method and Potential Ener~,l Surface~ 

The quantum mechanical method of hyperspherical coordinates developed 

previously [15] presents no particular difficulty when the skew angle is small, 

and in the calculations reported here , that method was used without change . 

Six even and six odd basis functions were used, and with them convergence of 

the transition probabilities to ± 0. 005 and of flux to :t 0. 0001 was usually 

achieved. Standard methods were use d for the collinear quasi-classical 

trajectory calculations [16, 17]. 

The potential energy surfaces used were of the extended LEPS form [18] 

and their parameters and properties are listed in Table I. The Morse oscilla-

tor (19] parameters for one of the surfaces (surface B) were those used previ­

ously (20] for trajectory calculations on the H + 1z system. However, we changed 

the Sato parameters from zero to 0. 20 for Ill and 0. 125 for 1z in order to decrease 

the barrier height from about 14. 2 kcaljmole to about 1. 5 kcaljmole. Although 

the barrie r for the IHI system is not known, ab initio calculations on related 

s ystems (F + HF, Cl + HCl) suggest that a barrier of more than a few kcal/ mole 

is unreasonably high [21]. The other surface (surface A) has the same LEPS 

parameters a s surface B , except that the m dissociation energy was increased 

by 3 kcal/ mole. The main effect of this change is in the saddle point region, 

as can be seen by obse rving the 0. 06 eV equipotential in the contour plots dis­

played in Figure 1. 
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3. Results and Discussion 

Plots of the quantum probabilities of reaction (2) from the ground vibrational 

state of the reagents to the same state of the products, as a func tion of translational 

energy , are given in Figs. 2 and 3 for each of the two surfaces. For the low energy 

(0-15 meV) range covered by Figure 3, the curve for surface A displays a 

sharp peak followed by a second broader peak, whereas for surface B, the 

sharp feature is absent and the other one is much broader and less intense. 

In order to assess the nature of these features, we have made an Argand 

plot [22) of the corresponding scattering matrix element, ~, for surface A 

in Figure 4. It can be seen that the sharp peak in Figure 3 is associated with 

a loop in Figure 4' along whic h a representative point moves counterclockwise 

with increasing energy , as indicated b y the arrow in the upper part of the figure . 

This clearly demonstrates a scattering resonance. In the energy region corre­

sponding to the second peak for surface A, the Argand diagram does not display 

such behavior, nor does that for surface B (not displayed), which has the 

appearance of a smooth clockwise spiral. 

It has been shown [23] that for collinear symmetric atom-diatom systems 

of the form A+ BA, at energies for which vibrationally excited channels of the 

BA molecule are closed, the difference, 68 - (>A' between the symmetric and 

antisymmetric eigenphase shifts increases b y • across a narrow isolated reso-

nance. In Figure 5 we displa y 68 , (>A' and their difference as a function of 

reagent translational energy for surface A. Over the energy range considered, 

only the v = 0 state of m is accessible , and the open part of the~ matrix 

has dimensions 2 x 2. Its eigenvectors are independent of energy and correspond 

to symmetric and antisymmetric scattering states, and its eigenvalues are 

tan 68 and tan(> A' respectively. It can be seen from Figure 5 that 68 - ~A 
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changes by approximately 2. 6 radians ("" 0. 85 1r radians) over the energy range 

associated with the narrow peak in Figure 3. This is slightly less than • 

radians because this resonance is not completely isolated, as is indicated by 

the fact that the reaction probability drops to 0. 2 rather than zero after that 

peak, before starting to increase again. The time delay associated with this 

resonance, 

has a maximum value of 2. 04 x 10-11 sec, which is much larger than the sym­

metric stretch vibration period of 4. 60 x 10-13 sec for the saddle point config­

uration of surface A. For comparison, across the broad peak in Figure 3 for 

surface B, liS - li A increases by 0. 14 1r radians only, and the corresponding 

maximum value ofT is 4. 74 x 10-1 3 sec, compared with 4. 64 x 10-19 sec for the 

saddle point symmetric stretch period of that surface. We conclude that the 

sharp peak in Figure 3 for surface A is associated with a strong, long-lived 

resonance , whereas for surface B, the broad peak in that figure is at most 

associated with a very weak resonance. This indicates once more (9a, 24] the 

great sensitivity that dynamic resonances on reactive systems can have to 

details of the saddle point region of potential energy surfaces. This sensitivity 

holds out the enticing possibility that the experimental measurement of such 

resonances may be useful in the determination of the characteristics of that 

region of potential energy surfaces. 

An interpretation of this resonance can be obtained as follows. The 

hyperspherical coordinate method used in the present calculations (15] involves 

a radial distance p and a polar angle a associated with the Delves coordinates 

Ra, r a of Figure 1. For fixed p, we can calculate the eigenvalues En(p) of the 

a motion. A plot of the 12 lowest such eigenvalues versus pis given in Figure 
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6, and they show minima for the ones corresrx:>nding to symmetric eigenfunc­

tions. Since motion from reagents to products across the strong interaction 

region of the surface involves a relatively small change in p and a 

relatively large fractional change in a, an a-adiabatic model of resonances 

was proposed recently (25 ]. This model consists of solving the SchrtXiinger 

equation for the quasi-bound one-dimensional p motion on each of the individual 

En(p) curves, in analogy to the Born-Oppenheimer separation of electronic and 

nuclear motions. It was shown to work well for the first resonance in H + ~ 

and its symmetric isotope counterparts. For the n = 0 curve of Figure 6, 

this mode l predicted the tx>Sition and width of the surface A resonance indic ate d 

by "Model I" in Table II. The agreement with the exact values is satisfactory. 

Babamov and Marcus (26] ha ve recently shown that for~-!--~ s ymmetric 

systems, below the opening of the first excited state, the P~ reaction prob­

ability is related to the phase shifts o~D and olD, obtained from the one­

dimens iona l p motion describe d above, by the expression 

R . 2 lD lD 
P 00 = sm (OS - OA ). 

Using this relation, we obtain the peak locations and widths give n in the 

"Model ll" column of Table II. · The agreement with the accurate values is 

about the same as for Model I for the surface A resonance. However, it i s 

better than Model I in that it also predicts quite well the IX>Sition and height of 

the broad peak for surface B, which is not a resonance, whereas Model I is 

not applicable to features that are not resonances. 

The difference in the dynamics of the reaction on the two surfaces at 

higher energies consists of a shift of the ~curve by about 30 or 35 meV to 

the right on going from surface A to surface B. This shift is significantly 

higher than either the difference between the corresponding barrier heights 
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(7. 5 meV) or between the reagent zero-point energies measured with respect 

to the corresponding barrier tops (10. 3 meV). The reason for this may be that, 

since the reagent ground state energies are significantly greater than the saddle 

point energy, the sharp skew angle of the coordinate system makes "corner­

cutting" quite likely. This suggests that the dominant region of the surface 

occurs at larger values of p than that of the saddle point. Additional information 

on this matter can be obtained from maps of quantum streamlines of probability 

current density or classical trajectories. 

The oscillatory nature of the P~ versus energy curves at translational 

energies above 10 meV is not of a quantum nature, as it is also present in the 

classical trajectory results displayed in Figure 2. 

We wish to emphasize the ease with which the method of ·hyperspherical 

coordinates may be applied to collinear~-!:-~ systems. Applications of 

previous methods based on a propagation variable that scans the potential 

energy surface from the reagent region through the strong interaction region 

to the product region [8, 27, 28] are made very difficult by the smallness of 

the skew angle. Indeed, these methods involve expansions in eigenfunctions of 

cuts of the surface along a direction more or less transverse to the minimum 

energy path, and, as a result of that small angle, such cuts are very broad and 

support a large number of bound states. 

Indeed, for the IHI s ystem considered in this paper, the symmetric stretch cut 

through the surface A saddle point supports 50 bound states with energies below 

that of the v = 2 state of the isolated Ill molecule , which is open at the highest 

energy considered in these calculations. In order to incorporate all such open 

local states and a sufficiently large number of closed states in that expansion 

so as to achieve reasonable convergence of the results would require an 

unreasonably large number of channels. By contrast, the present method 

requires only six even and six odd channels, as described in Section 2. The 
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essential reason for the adequacy of such a small number of channels is that the 

hyperspherical coordinates avoid a proliferation of open-channel basis functions. 

Indeed, for these coordinates the number of open channels in the strong inter­

action region is about the same as it is in the separated reagent or separated 

product regions of the potential energy surface, as shown in Figure 6. This 

method is therefore to be preferred for the study of collinear!!-};-!! systems, 

whether s ymmetric or not. 
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Table I 

Parameters and properties of extended LEPS potential energy surfaces A and B 

HI ~ 

f3 (bohr -I) 0.9260 0.9843 

Re (bohr-1
) 2.0236 5. 0457 

De (eV) A) 3.3303 1.5567 

B) 3.2002 1. 5567 

tJ. 0.2 0.125 

Saddle Point Location (bohr) 

A) (3. 366, 3. 366) 

B) (3. 370, 3. 370) 

Barrier Height (kcal/ mole ) 

A) 1. 353 

B) 1. 526 

Ill Zero-Point Energy (eV) 

A) 0. 14447 

B) 0.14160 
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Table II 

Calculated and predicted properties of peaks of reaction probability 

versus energy curves 

Surface A 

Resonance Location (meV) 

Resonance width (meV) 

FWHM 

Surface B 
~ 

Peak Location (meV) 

Maximum reaction 
probability 

a) Ref. (25). 

b) [ Ref. 26]. 

Exact 

6.08 

0.16 

8.00 

0. 187 

Model Ia) 

4. 7 

0. 12 

c) 

c) 

c) Not applicable, since this feature is not a resonance. 

Model lib) 

4.7 

0. 13 

8. 2 

0. 19 
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~ 

Fig. 1. Equipotential contour plots for I + HI, surfaces A and B, in the region 

near the saddle points. The solid curves are the contours and are equally spaced 

in increments of 0. 02 eV, from 0. 04 eV to 0. 20 eV. The zero of energy is the 

bottom of the HI well. The surfaces are plotted in Delves scaled coordinates (15]. 

The X's mark the saddle points , the dashed lines are the steepest ascent and 

descent paths as calculated in Delves scaled coordinates. 

Fig. 2. Transition probability for the reaction I + HI (v = 0) - IH (v' = 0) + I 

as a function of reagent translational energy. Quantum mechanical results are 

indicated by the solid lines; the circles indicate surface A, the squares surface 

B. Classical trajectory results are given by the dashed line for surface A and 

the dashed-dotted line for surface B. The lowest energy portion of the quantum 

curve for surface A has been omitted for reasons of clarity. 

Fig . 3. Quantum mechanical transition probabilities as in Figure 2 for the low 

translational energy range. No classical trajectory results are shown. 

Fig. 4. Argand diagram [22] for the ~ matrix element ~ corresponding to the 

exchange reaction I + HI (v = 0) - IH (v' = 0) + I on surface A. Circles represent 

points spaced by 0. 05 meV; triangles represent points spaced by 0. 1 meV. The 

energies indicated are reagent translational energies. Arrows parallel to the 

curve indicate direction of increasing energy. 

Fig. 5. Symmetric (08 , dashed line) and antisymmetric {0 A' dashed-dotted line) 

eigenphase shifts as a function of reagent translational energy calculated for 

surface A. The difference OS - 0 A {solid line) is also shown {the right-hand 

ordinate scale is the appropriate one for this quantity). 
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Fig . 6. Eigenvalues E (p) for surface A as a function of the propagation 
n 

coordinate p. These curves are pairwise degenerate at large p, the symmetric 

one being always lower than the corresponding antisymmetric one at small p. 

Values of n for the symmetric curves are shown at the top of the figure. The 

dashed line in the E 0 ( p ) curve shows the position of the resonance and lies 

slightly above E 0 (c:o) . 
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III. 3 QUANTUM MECHANICAL COUPLED- CHANNEL 

COLLISION-INDUCED DISSOCIATION CALCULATIONS 
··-

"WITH HYPERSPHERICAL COOR DINATES··· 

~~ 

This paper appeared in Chemi c al Physi c s Letters~. 546 (1981). 
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Received 

A time-independent coupled-channel method, using hyperspherical 

coordinates, has been developed for calculating quantum mechanical collision­

induced dissociation probabilities for collinear atom-diatom systems in which 

the exchange reaction can also occur. The results for a model potential 

energy surface are compared with quasi-classical trajectory calculations 

and discussed. 
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1. Introduction 
~ 

The collision-induced dissociation (CID) of diatomic molecules has been 

the subject of extensive experimental investigation (1-3]. In order to under­

stand and to model this important process [ 4 ], it is necessary to obtain the bound­

to-continuum transition probabilities as well as the usual bound-to-bound ones. 

Approximate classical [5], semi-classical [6], and quantum [7] techniques have 

been created for this purpose. However, the development of accurate quantum 

mechanical methods for systems in which CID competes with exchange processes 

has been hindered by the diffic ulty of representing the exchange product bound 

states in terms of the reagent bound and continuum states [7, 8). As a res ult , 

systems in which the exchange channel is absent have mainly been considered 

in previous calculations [7 , 9]. A method capable of taking s uch rea rrangement 

channels into account, based on a multiple-collision expansion, has rec ently 

been applied for a potential that, however, does not support exchange pro-

ducts [10]. 

Kulander [11] has included exchange processes by solving numerically 

the time-dependent Schrodinger equation for cle verly chosen initial wave pac kets 

and obtained bound-to-continuum and bound- to-bound transition probabilities 

in collinear atom-diatom collisions. This c onceptually elegant method is, 

however , computationally time-consuming and difficult to apply at e ne r gies 

close to the dissociation thres hold. 

In this paper we report the first successful time-independent t r eatment 

of CID in a collinear atom-diatom system in which the exchange proces s i s 

present. This work uses the method of hype rspherical coordinates [12, 13] 

which has recently been applied to the collinear exchange reactions 
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and [14 J 

I+ In - IH +I 

at energies below dissociation. 

In Section 2 we briefly outline the nature and the method of hyperspherical 

coordinates, emphasizing those aspects of it which are crucial in the treatment 

of CID. The potential energy surface used in these calculations is discussed 

in Section 3, and the results obtained are presented, discussed, and compared 

with those from quasi-classical trajectory calculations in Section 4. 

L Theory 

Let us consider the A + BC system, with A, B, and C representing 

distinguishable atoms confined to move on a laboratory-fixed straight line. 

Let r~ and R~ be, respectively, the BC internuclear distance and the distance 

of A to the center of mass of BC. Let r' and R' be the corresponding distances 
y y 

with the roles of A and C interchanged . The Delves scaled coordinates (12], 

RA and rA are defined as 

(1) 

In these equations, A ilK is either af3y or y{3a, 1-LvK is the reduced mass of mil 

and m", J.LA,VK is the reduced mass of rnA and (mil+ mK ) , and rna, m 13 , 

and m are the masses of A, B, and C, respectively. The collinear hyper-
Y 

spherical coordinates are defined as 

(2) 

and are indicated in fig. 1. The SchrlSdinger equation for the internal motion 

of the ABC system is the same as that of a single particle P of mass J.L = 
.t 

[mamf3my/(rna + mf3 + m.,.,)]2 moving in the two-dimensional p, a space and 

subject to the potential V(a, p) of the triatomic system. The motion of P on a 
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circle of constant p =pis described by a set of energy eigenfunctions ¢n(a;p) 

and eigenvalues En(p ). The former are called surface functions and constitute 

an infinite discrete set which, as p - lXI, spans the dissociation continuum. 

Expansion of the scattering wavefunction in the ¢n leads to a set of coupled­

channe l differential equations that have been derived and are integrated as 

described previously [13, 15) out to a sufficiently large value of p. 

At energies at which no continuum states (those with positive eigenvalues 

with respect to the dissociated configuration A + B + C) need be included in the 

calculations, we reexpand, after that integration, the wavefunction lj; in Ra, r a 

and R , r coordinates, using the numerically determined eigenfunctions y y 

<Pan (ra) and¢ (r ) of the isolated reagent and product, respectively, as 
a yny Y . 

the new basis func tions. In this manner, we obtain lj; and its R). derivative 

along lines of constant R). = R). (). = a, y ). We call this procedure a projection 

of lj; on the asymptotic reagent and product states. From the coefficients of 

this new expansion, the ~, ~, and !: matrices are calculated by standard tech­

niques [13a, e). For H + ~, this procedure leads to results converged to 1% 

or better for values ofRA. of about 8 bohr or less [13a). Alternatively, one can 

omit this projection altogether, since asp- lXI the ¢n(a;p) for negative eigen­

values become the separated reagent or product eigenstates (or their even and 

odd linear combinations for symmetric systems). However , this leads to a 

large amplitude oscillatory behavior of the reaction probabilities with p, as 

found by R15melt [15) , which requires integration to appreciably larger values 

of p. 

At total energies E for which dissociative channels must be included in 

the expansion to achieve convergence, as is the case for all collision energies 

above the dissociation limit, we have chosen to project the bound state channels 

as described above, and not to project the continuum ones at all. In the p- lXI 
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where a is related to E A by 

max 2 
EA = EA cos a ; max [( )] E A = m 13 + my) I (ma + m 13 + my E. (7) 

The total dissociation probability is related to the differential one by 
max 

~n~ EA ~nA 
p d = f ad (E A )dE A • 

0 

(8) 

For symmetric systems, the cf>n(a ;co) in Eqs. (3) and (6) must be replaced by 

appropriate linear combinations of the even and odd surface functions. 

3. Po~tial Ener~ Surface 

In order to test the method described above without excessive emphasis 

on bound states, we constructed a model collinear potential energy surface for 

which the isolated diatomic reagent or product potential energy curves supported 

only two such states, in analogy with weak van der Waals molecules. The 

mathematical form chosen for this surface was of the rotating 

Morse-cubic spline type [16]. The three atoms considered were identical but 

distinguishable (by virtue of their relative position on the line to which they were 

confined), and were assigned a mass equal to that of a hydroge n atom. The 

corresponding isolated diatomic molecules were chosen to have Morse param­

eters [17], De= 0. 22 eV, f3 = 1. 6 bohr-\ andre= 1.40083 bohr. The energies 

of the two bound states supported by each of these Morse oscillators was 0. 0817 

and 0. 1885 eV above the bottom of the diatom well. The saddle point occurred 

at internuclear distances rJ.8 = rBC = 1. 6496 bohr, and its height was 0.14 eV. 

In fig. 1 we display a contour plot of this potential energy function, and in fig. 

2 we indicate schematically its features along tbe_minimum energy path. 
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4. Results and Discussion 

The results of these calculations as well as those of quasi-classical 

trajectory ones as a function of relative translational energy are given in figs. 

3 and 4 for reagents in their ground and vibrationally excited states, respect­

ively. Convergence of the transition probabilities to± 0. 02 or better was 

achieved with ten even and ten odd basis functions (13a ]. The maximum value 

Pmax of p needed to achieve this convergence was 64 bohr. 

At the same translational energy, enhancement of the CID probabilities 

by reagent vibrational excitation is clearly observed, in agreement with a 

number of recent studie s (10, 11 , 18). Up to translational energies of 0.10 eV 

for vibrationally excited reagents and 0. 15 eV for ground state ones, the prob­

ability for the exchange reaction occurring without change of vibrational quantum 

number is significantly larger than the one with change in that number. Up to 

total energies of 0. 32 eV the nonreactive inelastic process 0 -1 (and 1 - 0) 

has probabilitie s smaller than 0. 03 and is not shown in the figures. 

The quasi-classical trajectory results display the same general feature s 

as the accurate quantum ones , giving confidence that classical mechanic s 

furnishes an adequate qualitative description of the system •s dynamics. 

However , errors of factors of two or greater are encountered in the quasi­

classical probabilities when compared with the quantum ones. 

We wish to emphasize the ease with which these calculations may be 

performed. The relatively large value of Pmax required for good convergence 

of the transition probabilities does not increase the computation time excessively 

since in the large p region the integration step is quite large (> 0. 1 bohr) and 

the calculation time increases only linearly with the number of integration steps. 

In addition, a more appropriate asymptotic analysis may permit a decrease in 
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Pmax· The relatively small value of the number of En > 0 channels of each 

parity needed to provide an adequate discretized representation of the disso­

ciation continuum, namely eight, for the energy range considered, is encourag­

ing, since the computation time varies approximately as the cube of the number 

of coupled channels. 

This hyperspherical coordinate approach has been shown recently to be 

very suitable for handling heavy-light-heavy collinear reactive systems [14). 

The present work indicates that it is also suitable for collinear CID calculations. 

Extension of the method to encompass electronically nonadiabatic processes 

should be straightforward [19, 20]. The treatment of CID in atom-diatom 

collisions can, in principle, be extended to the three-dimensional physical 

world, since the corresponding generalization of the surface functions still 

forms an infinite discrete set (13c -e). nus extension is particularly important, 

since it has been observed in classical trajectory calculations (21] that a collinear 

model cannot adequately describe the dynamics of CID. However, the large 

number of channels involved in such three-dimensional systems will undoubtedly 

require the introduction of approximations in the calculation. 

In summary, hyperspherical coordinates seem to provide a very useful 

language for the description and elucidation of the dynamical processes occurring 

in molecular collisions, including collision-induced dissociation and its reverse, 

three-body recombination. 
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Fig. 1. Contour plot of the potential energy surface for a model collinear tri­

atomic system in Delves scaled coordinates Ra,ra'" The solid curves are equi­

potential contours at the total energies (with respect to the dissociated system) 

indicated in the lower side of the figure. The dashed line is the minimum 

energy path. The polar coordinates p, a of a general point P in this R , r a a 
configuration space are also indicated. 

Fig. 2. &hematic diagram of the potential energy function characteristics 

along the minimum energy path in Delves coordinate space. s is the distance 

along that path measured from the saddle point configuration, and V(s) the 

corresponding potential energy. The horizontal lines indicate the energy levels 

of the bound states (v = 0 and 1) of the isolated diatoms and of the dissociated 

configuration. 

Fig . 3. Transition probabilities as a function of relative translational energy 

and total energy for ground state reagents . (a) Quantum mechanical (QM, solid 

line) and quasi-classical (CL, dashed line) total probabilities for reactive (R), 

nonreactive (N), and dissociative (D) processes. The arrows on the lower 

abscissa labelled E
1 

and Ed indicate the energies of the first vibrationally 

excited state of the reagent and the reagent dissociation energy, respectively. 

(b) State-to-state quantum mechanical probabilities for vibrationally adiabatic 

(~, dotted line) and vibrationally nonadiabatic (~, dashed-dotted line) reactive 

processes. The dissociation probability curve (P~ QM, solid line) is included 

again for comparison purposes. Arrows in the abscissa have the same mean-

1ng as in (a). 

Fig. 4. Transition probabilities as a function of relative translational energy 

and total energy for the diatom reagent in its first (and only) vibrationally excited 

state. Notation is the same as for fig. 3. 
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III. 4 MASS EFFECT IN QUANTUM MECHANI CAL COLLISION­

INDUCED DISSOCIATION IN COLLINEAR REACTIVE 

ATOM-DIATOMIC MOLECULE COLLISIONS. 

I. SYMMETRIC SYSTEMS. 
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Mass effect in quantum mechanical collision-induced dissociation in 

collinear reactive atom-diatomic molecule collisions. 

I. Symmetric systemsa) 

Jack A. Kayeb) and Aron Kuppermann 

~ 

Arthur Amos Noyes Laboratory of Chemical Physics, c) 

California Institute of Technology, Pasadena, California 91125 

(Received 

Quantum mechanical probabilities for collision-induced dissocia­

tion (CID) and chemical reactions have been obtained for a model 

triatomic collinear system, 

A+ BC(v) ---.. A+ BC(v' ), AB(v'') + C, A+ B + C 

using hyperspherical coordinates. Details of the methodology 

used for CID are presented. Calculations were performed for 

three different symmetric mass combinations (m A = mB = me, 

m A = me ~ mB) corresponding to light-light-light, heavy-light­

heavy, and light-heavy-light s ystems. CID was found to be 

enhanced by reagent vibrational energy and to be most likely 

in the light-heavy-light system and least likely in the heavy­

light-heavy system. Vibrationally nonadiabatic processes 

a) This work was supported in part by a contract (No. F49620-79-C-

0187) from the Air Force Office bf Scientific Research. 

b) Work performed in partial fulfillment of the requirements for the 

Ph. D. degree in Chemistry at the California Institute of Technology. 

c) Contribution No. 
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were found to be of only secondary 

importance compared with either CID or vibrationally adiabatic 

ones. The activation energies for CID were found to be substan­

tially in excess of the energetic threshold. The exchange reac­

tion was found to be vibrationally enhanced, the reagent vibra­

tional excitation being partly effective in lowering the activation 

energy of the reaction. Indication of a resonance in the heavy­

light-heavy system has been found in spite of the large barrier 

to reaction. Quasi-classical trajectory calculations on the light­

light-light system suggest that classical mechanics furnishes an 

adequate representation of the main features of the dynamics in 

these systems. 
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I. INTRODUCTION 

The collision-induced dissociation (CID) of diatomic molecules 

A + BC -+ A + B + C (1) 

and its inverse process three-body recombination 

A+B+C- A+B (2) 

have been of great interest over the years to both experimentalists and 

theoreticians. To experimentalists, much of the interest has arisen 

from unusual temperature dependence of the rate of these reactions: 

the activation energy for CID is frequently less than the dissociation 

energy of the diatomic molecule, 1 and the rate of -three-body recom­

bination frequently decreases with increasing temperature. 2 

To theoreticians, however, the challenge has been to describe 

the dynamics of the collision process itself from first principles. 

Because of the double continuum of product states inherent in CID, this 

is far more complicated for this process than for the usual inelastic 

and/ or reactive atom-diatomic molecule collision problem, 

A + BC(n) -. A + BC(n') 

~ AB(n")+ C , 

(3a) 

(3b) 

where n represents the set of all quantum numbers (electronic, vibra­

tional, and rotational). Extension of the coupled-channel formulation 

to exact quantum mechanical calculations of CID, occurring in compe­

tition with exchange processes, has previously not been possible. 3 

Information about the CID process (and its inverse process 

three-body recombination) has been obtained from models based on 

kinematics, 4 from quasi-classical trajectory calculations, 5 from 
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semi-classical calculations, 6 and from statistical models. 7 Quantum 

mechanical treatments have been limited mainly to studies of systems 

in which only CID and inelastic nonreactive processes [such as those 

represented by Eq. (3a)] occur. 3 Only recently have exact quantum 

mechanical methods for CID for systems in which chemical reactions 

[Eq. (3b)] may also occur been developed. These techniques consist of 
10 the time-dependent wave-packet approach developed by Kulander, 

which has been applied to the collinear H + ~ system above threshold, 

a multiple collision formalism developed by Beard and Micha (but so 

far applied only to nonreactive systems), 11 and the time-independent 

hyperspherical coordinate methods, developed independently by 
12 13 Kuppermann et al. and Manz et al. 

The abjlity to study reactive systems is important, as experi­

ments and quasi-classical trajectory calculations suggest that CID 

and its inverse process, three-body recombination, is much more 

rapid in reactive systems than in nonreactive ones. 8 In addition, the 

detailed nature of the dissociation or recombination processes may be 

different in reactive and nonreactive systems due to the greater 

diversity of types of collisions. 9 

As accurate quantum studies of CID are relatively new, it is 

important to perform studies that help to develop intuition about the 

effect on the CID process of changes in the potential energy surface 

and in the masses of the atoms involved. Most such studies have been 

limited to nonreactive systems, notably the quasi-classical trajectory 

calculations of Wong and Burns14 on rare-gas plus bromine collisions 

and the collision-induced ion-pair experiments of Tully 

et al. on rare gas plus alkali halide systems15 and of Parks et al. on 
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rare gas plus thallium halide monomer and dimer systems. 16 

In this work we will discuss in detail the results of exact collinear 

quantum mechanical eiD calculations on a model reactive potential 

energy surface for three different mass combinations: m A = mB = 

me = 1; rnA = me = 10, mB = 1; and rnA = me= 1, mB = 35, in units 

of the H-atom mass. Results for one of these mass combinations 

(and comparisons with collinear quasi-classical trajectory calculations) 

have been summarized previously. 12c We will analyze and interpret 

the probability versus energy curves and temperature dependence of 

the corresponding ern and exchange reaction rate constants for the 

three cases studied. 

In Sec. II we describe the potential energy surface and different 

mass combinations used in these calculations. In Sec. III we briefly 

review the application of the hyper spherical coordinate methods to 

eiD. In Sec. IV we present the results obtained in these calculations, 

which are analyzed and discussed in Sec. V. Finally, in Sec. VI we 

summarize our results. 
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II. POTENTIAL ENERGY SURFACE 

The potential energy surface V used in the calculations reported 

here is of the rotating Morse cubic spline type, 17 and has been briefly 

described previously. 12b The three atoms are labeled A, B, and C, 

with B always occupying the middle position, and RAB and RBC repre­

senting the distance of the latter to A and C, respectively. For R AB > 

7 bohr and RBC < 7 bohr, the potential energy function is that of a 

Morse oscillator 

(4) 

where De = 0. 22 e V, {3 = 1. 6 bohr-\ and Req = 1. 40083 bohr. For 

RBC > 7 bohr and R AB < 7 bohr, an expression analogous to (4), with 

the roles of RAB and RBC interchanged, is used. For both R AB and 

RBC greater than 7 bohr , V(RAB' RBC) = 0. Finally, for RAB and RBC 

both smaller than 7 bohr, V is defined in Ref. 17. It has the form of a 

Morse curve, 

In this expression, 8 is the swing angle defined in Fig. 1 around the 

point S whose coordinates are R AB = RBC = 7 bohr, and £ is the distance 

of the point P(R AB' RBC) to S. 8 varies from oo to 90° , and the 8-

dependent Morse parameters D(8), £ (8) and {3(8) are symmetric with eq 

respect to 8 = 45° and are defined as follows. D(B) is given by the 

Gaussian function 

(5) 

where b = 0. 14101 eV and c = 8. 00876 rad- 1
, yielding a classical barrier 
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height of 0. 14 eV. The functions ..e.eq(B) and {3(6) are given in Table I 

for eight values of B in the range oo to 45 o. For intermediary values 

of 6, they are obtained by a cubic spline interpolation. For Bin the 

range of 45° to 90° , they are obtained by the symmetry condition with 

respect to f) = 45 o. A plot of the potential energy surface in Delves 
18 

mass scaled coordinates for the mass combination 1 - 1 - 1 is given in 

Fig. 2. As described previously, for this mass combination, asymp­

totically the Morse oscillator supports two ground states, with energy 

eigenvalues of 0. 0817 and 0. 1885 eV above the bottom of the isolated 

diatomic well. 

In order to help elucidate the nature of the d_ependence of CID on 

masses, we considered, in addition, the mass combinations 10- 1 - 10 

and 1 - 35 - 1. These were chosen to broadly scan the possible range 

(0° to 90° ) of skew angles in Delves 18 mass weighted coordinates, as it 

is known that this skew angle plays a major role in determining the 

dynamics of a reactive system independent of the nature of the forces 

between the atoms. 19 These mass combinations give skew angles of 

24.62 ° and 88.41 ° , respectively, whereas the skew angle for the 1- 1-1 

combination is 60° . Various properties of the different mass combina­

tions are summarized in Table II. Of particular note is the fact that for 

the 10 - 1 - 10 and 1 - 35 - 1 mass combinations, there are three bound 

states of the isolated diatomic molecules, as opposed to two for the 

1 - 1 - 1 combination. Also, the two lowest eigenvalues of the isolated 

1 - 10 and 35- 1 diatomic molecules are quite similar, which suggests 

that differences in CID for these two systems cannot be attributed to 

differing amounts of reagent vibrational excitation energy. 
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III. THE HYPERSPHERICAL COORDINATE METHOD AND ITS 
APPLICATION TO CID 

The hyperspherical coordinate method has been outlined previous­

ly12a, 20 and we will not repeat the formalism in detail here. We have 

also indicated briefly how the method is applied to CID, and will expand 

upon that aspect of the treatment. 

In the hyperspherical coordinate approach , the primitive wave­

functions IJ;j ( p, a) are expanded in terms of a discrete set of basis 

functions, 

tN 
IJI/p, a) = p-2 ~ gij(p,p) cf'i(a;p) 

j=l 
(6) 

where p and a are, respectively, the distance and angle coordinates of 

a point in Delves' configuration space, and p is the value of p at which 

the diabatic basis functions 4>i are calculated. The use of a diabatic 

basis set gives rise to a parametric dependence of the expansion coeffi­

cients gij on p. N is the number of channels included in the calculation. 

As indicated previously, 12a when p is sufficiently large and the 

A + BC and AB + C configurations are sufficiently separated from one 

another by the dissociative plateau, we may rewrite that portion IJ;f of 

the wavefunction that correlates asymptotically with the BC or ABby 

reexpanding it in terms of the eigenfunctions of the corresponding 

isolated diatomic molecule [in Delves 18 coordinates], 

NBC 
b 
\' A+BC . - A+BC( .- ) (7) 
LJ hij (R A' RA = oo)xi r A'RA = oo , 

i=l 

a similar expression being used for IJ;.(\B+C. Using the orthogonality of 
] 

the basis set xA+BC(r A;RA = oo), the h~+BC coefficients defined above 
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can be calculated from 

A+BC( .-
hij R A, R A = oo) 

r A(max) 

J A+BC( .- ) 
= Xi r A' RA = oo 

r A (min) 

x 1J-'f' A+BC(p' a)dr A (8) 

where the integration limits are chosen so that contributions to the 

integral from outside their range are negligible. In this expression, 
1 

p and a are functions of r A and R A through the relations p = (rA_ + RA_)2 

and a = tan- 1(rA/RA). The derivative of the radial wavefunction matrix 

~A+BC with respect to R A is obtained by differentiating Eq. (8) with 

respect to this variable. 

In the symmetric systems studied here (where the mass combina­

tion is of the A+ BC type), a projection onto the basis functions of the 

isolated AB diatomic need not be performed explicitly, as x f+BC = 

xtB+C when A = C. In this case, we may obtain the corresponding 

radial wavefunction matrix elements from the relationship 

{ 

hA+BC( - ) ·f ,,, · t · · · RA;RA = oo 1 y . lS symme r1c lJ J 

A+BC - · · · · -hij (RA;R A = oo) 1f lJ-'j 1s anhsymmetnc , 

where the symmetry of lJ-'j is about the line a = amax/ 2. The derivatives 

h' are similarly related. 
= 

The matrix G of the coefficients used in the asymptotic (~ and ~ 

matrix) analysis is given by 
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G = (10) 

where hA+BC is evaluated at a large value of R A, chosen arbitrarily , 

and hAB+C is evaluated at Rc = RA. The value of p at which the unpro­

jected gun is evaluated can be chosen according to different criteria. 

One is to make it equal toR A" Another is to make it equal to [R~ + 
1 2 1 

r A (max)2 l2 . Still another is to pick [RA + r~q (R A)]2 , where r~q(RA) 

is the value of rA for VJhich V(RA,rA) has a minimum for a given RA. 

Alternate choices are obtained by interchanging the roles of A and C. 

In the limit as R A - oo, all of these should lead to the same result. In 

the calculations reported here, we selected the second criterion. The 

derivative Q' is defined by the expression 

G' = (11) 
1 3 

-2 ,un 1 -2 un 
- 2Po g 

where ~' un is also calculated at the same value of p as ~un· 

I~ the asymptotic analysis, 21 ' 22 the eigenvalues of the bound 

states are precisely their asymptotic values due to the invariance of the 

potential beyond the R AB' RBC cut off defined in the previous section. 

The eigenvalues of the continuum states decrease continuously with 

increasing p, however, and the local wavenumber associated with each 

channel is nonzero and unique. At an infinite value of p and p , all 

continuum eigenvalues would be zero, however. Thus, stopping integra­

tion short of p = oo leads to approximations in the method, notably the 
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assumption that the basis set {xA+BC, xAB+C, 4>(E > 0)} is orthonormal, 

which is not true at finite p. 

As a result of this approximation, the convergence of state-to­

state reaction probabilities with the stopping point of the integration Pas 

(where the asymptotic analysis is performed) is not nearly as rapid as 

in the bound-bound problem we have studied. For the 1-1-1 mass 

combination , plots of dissociation probability versus integration stopping 

point displayed what could best be described as damped oscillations. 

By carrying integration in that system to p = 76 bohr, all probabilities 

seem to be converged to± 0. 01; most probabilities, especially those 

involving the v = 0 state, should be even better conyerged. For the 

10-1-10 and 1-35-1 mass combinations, integration was carried out to 

p = 90 and p = 45 bohr, which correspond to about the same value RAB = 

RBC = 30 bohr at which the 1-1-1 integration was stopped. The differ­

ence in these three values of p is due to the mass scaling inherent in the 

Delves coordinate systems. Ten even and ten odd channels were used 

in the integration of the coupled equations in the 1-1-1 system; 12 of 

each were used for the two others. Flux was conserved to better than 

3% in the 1-1-1 calculations, 4. 5% in the 10-1-10 calculations, and 

12 . 5% in the 1-35-1 calculations. These limits were obtained at the 

highest energies; at lower energies, the flux conservation was far 

better. Since our interests here are mainly qualitative (i.e., to con­

sider general dependence at CID on the initial reagent vibrational state 

and on the mass combination), we considered these calculations to be 

sufficiently accurate for analysis. 
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Rate constants were obtained from the calculated reaction prob­

abilities by straightforward numerical integration, assuming an equilib­

rium (Boltzmann) distribution of relative kinetic energies. For the 

1-1-1 system, rate constants were calculated using results obtained 

from scattering calculations in which the integration was stopped at 

p = 32 bohr, as calculations were performed for far more energies in 

these calculations than in those in which the integration was carried out 

top = 76 bohr. 

Arrhenius parameters (pre-exponential factors and activation 

energies) were obtained by a least- squares fit to the rate constant data 

over a region of temperature in which the Arrhenius plots (logarithm of 

rate constant versus inverse temperature) were linear. 
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IV. RESULTS 

We have studied the dynamics of the model system described 

above for the mass combinations 1-1-1, 10-1-10, and 1-35-1 up to an 

energy 0. 25 eV above the dissociation energy of the isolated diatomic 

molecules. Our attention has been focused on the probabilities of 

reaction and dissociation as a function of translational energy and of 

reagent vibrational excitation. We have looked at the amount of vibra­

tional nonadiabaticity in the exchange reactions, and have calculated 

state-to-all and, in some cases, state-to-state rate constants (and 

their associated Arrhenius parameters). 

Plots of state-to-state reaction probability versus reagent trans­

lational energy for the 1-1-1, 10-1-10, and 1-35-1 mass combinations 

are shown in Figs. 2, 3, and 4, respectively. The figures are con­

structed such that in any one figure, a vertical line always corresponds 

to the same total energy. Hence, the translational origins in each panel 

within a figure are shifted to account for the different internal energy in 

each reagent vibrational level. In Figs. 5, 6, and 7, similar plots are 

constructed for the total reactive, nonreactive, and dissociative prob-

abilities. Reactive and dissociative rate constants in the temperature 

range 200° K < T < 650° K for the three mass combinations are given in 

the form of Arrhenius plots (in oK versus 1/ T) in Figs. 8, 9, and 10. 

Finally, in Fig. 11, we present Arrhenius plots of state-to-state 

reactive (and dissociative) rate constants for the 1-35-1 mass combina­

tion, as that is the one with the greatest amount of vibrational nonadia­

baticity and dissociation. 
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V. DISCUSSION 
~ 

Two main features are evident in the results obtained from these 

calculations. First, there is substantial vibrational enhancement of 

CID as the reagent vibrational energy is increased, in all of the systems 

studied. Second, there is a major difference in the CID probability ver-

sus energy curves for the three different mass combinations. In addi­

tion, important information is contained in these results about the rela-

tive importance of CID, reaction, and nonreactive processes, the magni­

tude of vibrational nonadiabatic processes, and the possible importance 

of resonances in chemical reactions occurring in this model system. 

We now proceed to examine these points in greater ·detail. 

The probabilities for reaction and for CID displayed in Figs. 3 to 

7 clearly demonstrate the importance of vibrational enhancement of CID. 

While this is clearest in the 10-1-10 mass combination, it is still quite 

clear in the 1-1-1 mass combination, particularly in the region of the 

first peak in the CID versus energy probability curves, in which the 

probability for CID from the v = 1 state is some 40 times that from the 

v = 0 state. At higher energies, the enhancement is less pronounced. 

The vibrational enhancement is smallest for the 1-35-1 mass combina­

tion. In fact, up through about 0. 08 eV above dissociation, the prob­

ability of CID from the v = 0 state is higher than that from the v = 1 state, 

although this is reversed at higher energies. The probability of CID 

from the v = 2 state is nearly always higher than that from the v = 0 and 

v = 1 states for this mass combination, except at the energy of the 

minimum in the v = 2 CID probability versus energy curve. 
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The vibrational enhancement of CID can also be seen by consider­

ing the rate constants for dissociation (k~) shown in Figs. 8 to 10. 
1 

There is a large increase in the rate constant with reagent vibrational 

excitation, much of which can be attributed simply to the decrease in 

the energetic threshold for CID with reagent vibrational excitation. An 

estimate of the magnitude of this effect can be obtained by consideration 

of the Arrhenius pre-exponential factors and activation energies asso­

ciated with the Arrhenius plots in Figs. 8 to 10. Such an analysis for 

the dissociation curves is complicated by their nonlinearity, but the 

curvature is sufficiently small that we may obtain reasonably good fits 

to the calculated rate constants by assuming a linear Arrhenius plot in 

the temperature range from 350-650°K. Pre-exponential factors b and 

activation energies Ea for the exchange reaction and CID are given in 

Table ill. Considering the CID Arrhenius parameters for the 1-1-1 and 

10-1-10 mass combinations, the pre-exponential factors increase and 

the activation energies decrease with increasing reagent vibrational 

excitation, both effects contributing to an increase· of the rates. For the 

1-35-1 mass combination, the CID pre-exponential factors are all approxi­

mately equal, and the entire vibrational state dependence of the CID rate 

constant stems from decreases in the activation energy with increasing v. 

In all cases the activation energy for CID is far greater than the 

corresponding classical energetic threshold for this process, the differ­

ence between these quantities lying in the range from 40-70 meV. This 

indicates that not all of the reagent vibrational energy is available to 

overcome the barrier to dissociation, resulting in an extra amount of 

translational energy to do so. 
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Vibrational enhancement of CID has been obtained in most previ­

ous calculations of the CID process; the present calculations further 
10 11 22 . support that result. ' ' In one preVIous study, CID had been found 

to be inhibited by reagent vibrational excitation, but this is now consid­

ered to be an artifact of the model used (impulsive force between the 

incident atom and the target atom of the diatomic molecule in a collinear 

ll. . 23 co 1s10n. 

The state-to-all exchange reaction probabilities show less varia­

tion with reagent vibrational excitation than do the CID probabilities. 

This may be easily seen on examination of Figs. 5 to 7. The overall 

similarity of the P~ curves on each figure is striking. This particularly 
1 

true for the 10-1-10 mass combination in which there are three peaks in 

each of the curves, with the energy spacing between the second and third 

peaks far greater than that between the first and second peaks. The 

vibrational enhancement of the rate of reaction is reflected in the rate 

constants for reaction plotted (using solid lines) in Figs. 8-10. The 

Arrhenius plots of these rate constants are linear over the entire 200-

6500K temperature range, and this range was used in the calculation of 

the Arrhenius parameters, which are included in Table III. An examina­

tion of Table III shows that the pre-exponential factor is essentially 

independent of the reagent vibrational state. Thus, as in the case of 

CID for the 1-35-1 mass combination, reagent vibrational excitation only 

changes the activation energy for the exchange reaction. The decrease 

in activation energy with reagent vibrational excitation is substantially 

smaller than the added vibrational energy, however. 
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One especially noticeable feature of the exchange reaction prob­

ability curves is their different structure for the three different mass 

combinations. For the 1-1-1 case, these reaction probabilities reach 

their peaks and decrease to zero shortly above the opening of the disso­

ciation channel and increase slowly at higher energies. For the 1-35-1 

case, their decrease after the peak is much slower, and there is no 

further increase beyond the first maximum, up to the highest energies 

used in these calculations. For the 10-1-10 case, however, reaction 

probabilities vary substantially with reagent translational energy, even 

at the highest energies considered. It should be noted that oscillatory 

behavior in the reaction probability versus energy curves for heavy­

light-heavy systems has been observed in the I-H-I12b and Cl-H-c124 

systems. Thus, this oscillatory behavior appears to be a feature 

common to systems with small skew angles. 

It is interesting to consider the importance of vibrationally non­

adiabatic processes, both reactive and nonreactive, as they are important 

in the collisional vibrational excitation or relaxation relevant to experi­

mental studies of CID, especially shock-tube experiments. We will 

restrict our attention here to vibrationally nonadiabatic exchange reactive 

processes. In general, the probabilities of inelastic nonreactive processes 

of the type 

A'+ BA(v) ---+ A' + BA(v'~ v) 

have been found to be fairly similar- to those of the corresponding 

t
. 24 

reac 1ve processes 

A' + BA(v) ---+ A' B(v' ~ v) + A. 

An examination of the relative importance of vibrationally nonadiabatic 
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and CID probabilities is of interest since CID can be considered as an 

extreme case of vibrational excitation to a nonbound state. 1 

In general, nonadiabatic processes are seen from Figs. 2-4 to be 

of only secondary importance (as opposed to CID and vibrationally adia­

batic processes). There is a correlation between the magnitude of CID 

and vibrationally nonadiabatic processes in that for the case where CID 

is the most likely (the 1-35-1 mass combination), the latter processes 

are also the most likely. On the other hand, vibrationally nonadiabatic 

processes are more likely for the 10-1-10 mass combination than they 

are in the 1-1-1 case, however, even though CID is more prevalent in 

the latter case than in the former. 

To help elucidate the relative importance of the exchange reaction, 

both vibrationally adiabatic and nonadiabatic, and of CID, we have 

obtained Arrhenius plots of the state-to-state reaction and CID rate 

constants for the 1-35-1 case, and these are displayed in Fig. 11. It is 

clear that of all the above mentioned processes, vibrationally adiabatic 

reaction is the most likely. Further, it is not always true that CID 

rates are smaller than all the other bound-to-bound rate constants, as 
1 

has been assumed in some models. 

Finally, we wish to consider the possible role of resonance pro­

cesses in this model system. The large barrier to reaction in this 

system (relative to the dissociation energy) decreases the likelihood of 

resonances in the 1-35-1 and 1-1-1 mass combinations. The reason is 

that there will be no wells in the vibrationally adiabatic correlation dia­

grams, which are important mechanisms for the appearance of such 

resonances. 25 ' 26 This picture is known to be less appropriate for 
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heavy-light-heavy systems like the 10-1-10 mass combination being 

considered here, 12c, 26 which still leaves the possibility that there may 

be resonances in the 10-1-10 case, in spite of the large barrier. 

In fact, the first peak in the P~ versus energy curve for this sys­

tem can be shown to be associated with a resonance by construction of 

an Argand diagram, 26, 27 which is displayed in Fig. 12. The switch-

over from a clockwise to counterclockwise sense near 0. 15 eV total 

energy (as the diagram is traversed in the direction of increasing 

energies) makes the resonant nature of this process evident. 26 , 27 The 

corresponding peak in the ~ versus energy curve does not appear to be 

associated with a resonant process on consideration of the appropriate 

Argand diagram (Fig. 13). The curve there has a clockwise sense over 

the entire range from 0. 18 to 0. 21 e V total energy, signifying that there 

is either no resonance at all or that if there is one, it is masked by a 

direct process and thus unobservable from an Argand diagram. An 

analysis via the collision lifetime matrix eigenvalue technique 28 would 

help elucidate this point. · 

We have performed quasi-classical trajectory calculations for the 

1-1-1 mass combination and have found their results to be qualitatively 

similar to the quantum mechanical ones (the corresponding curves are 

plotted in Figs. 3 and 4 of Ref. 12b). The results are quantitatively 

sufficiently different, however, that rate constants for CID calculated 

using the quasi-classical probabilities were substantially different at 

times from those obtained from the quantum mechanical probabilities. 

As mentioned in the Introduction, very little work has been done 

on the behavior of CID in reactive systems. Most of this work has been 
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limited to quasi-classical trajectory calculations on the H + ~ system 

and its isotopic counterparts, frequently including systems in which 

there is an incident tritium atom. 9 ' 29 This case corresponds closely 

to that studied in nuclear recoil experiments in which hot tritium atoms 

are used. Simple calculations using kinematic (i.e. , hard sphere) 

models have also been performed, and have in general yielded satisfact­

ory agreement with both experiment and quasi-classical trajectory 

calculations. 4 

That the masses of the colliding partners could have a major effect 

on the CID has been seen for some time in nonreactive systems. Fan30 

has performed collinear quasi-classical trajectory .calculations on the 

Xe + CsBr- Xe + Cs+ + Br- system, and found that dissociation is much 

more likely in collisions of Xe with Br than of Xe with Cs. A similar 

behavior was found both experimentally and in quasi-classical trajectory 

calculations by Tully et al. 15 Their results suggest that collisions lead­

ing to dissociative ion pair formation are near-collinear; that is, they 

occur with their relative velocity roughly parallel to the alkali halide 

axis, but with a small but non-zero impact parameter. Of particular 

interest is the fact that the scattering in the Xe-Rbl and Xe-CsBr sys­

tems was very similar, which suggests that it is the masses of the 

atoms (mRb "' mBr' mcs ...... m1) and not the details of the intermolecular 

forces that govern CID behavior. Further, in their experiments, Tully 

et al. found that CID rates were found to vary more with changes in the 

alkali halide molecule in Kr-MX collisions than in Xe-MX collisions. 

Additional evidence of strong mass effects in CID was obtained by 

Shui et al. , 31 who found that a modified phase space theory, which 
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normally predicts CID and three-body recombination rates fairly well 

for most systems, does not work in the case of HF and HCl dissociation 

in Ar. Their method involved the use of trajectories calculated for 

systems in which all the atoms and molecules had similar masses, and 

they attribute the inaccuracy for these systems to different dynamics 

than in most other cases. 

In the results obtained here, we have also seen grossly different 

dynamics with changes in the atom masses. In particular, the dynamics 

of the heavy-light-heavy system are substantially different from those 

of the two others , lending support to the hypothesis of Shui et al. 31 

described above. Because of our restriction to symmetric systems in 

the present calculations, we have been unable to consider the dependence 

of CID on orientation (i.e., A + BC versus A + CB), as was considered 

by Fan, 30 but we do hope to do so in the future. 
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VI. SUMMARY AND CONCLUSIONS 

We have calculated probabilities for CID and exchange reaction 

for the collinear triatomic system A + BA on a model potential energy 

surface for three different mass combinations, using the hyperspherical 

coordinates coupled-channel technique. The mass combinations studied 

are of the light-light-light, light-heavy-light, and heavy-light-heavy 

types. Substantial vibrational enhancement of CID was seen, and in all 

three systems CID was found to be most important for the 1-35-1 mass 

combination and least so for the 10-1-10 mass combination. Arrhenius 

plots of rate constants for CID are reasonably but not precisely linear, 

and over the temperature range 350-600° K give rise to activation ener­

gies for CID which are substantially (normally 40-70 meV) greater than 

the energetic thresholds. 

Probabilities for the exchange reaction, both vibrationally adia­

batic and nonadiabatic, have also been obtained. In general, the shapes 

of the reaction probability versus energy curves vary only slightly with 

reagent vibrational excitation. There are substantial differences between 

the curves for the different mass combinations, however. Arrhenius 

plots of the rate constants for reaction are linear over the entire 200-

6500K range. For each mass combination, the Arrhenius pre-exponential 

factors are approximately independent of reagent vibrational state; the 

activation energies do decrease with reagent vibrational excitation, but 

the magnitude of this decrease is substantially smaller than the added 

reagent vibrational energy. Vibrationally nonadiabatic processes are 

found to be less important than vibrationally adiabatic processes and 

CID. Rate constants for CID are usually smaller than those for the 
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exchange reaction, but this is not always true, especially at the upper 

end of the range of temperatures considered. 

We have shown that resonant processes can be important at ener­

gies not far from dissociation in this system for the heavy-light-heavy 

mass combination, although they do not necessarily occur for all 

reagent levels. 

On the basis of quasi-classical trajectory calculations performed 

on the 1-1-1 mass combination, quantum effects, even for the weakly 

bound system studied here with the light masses used, are fairly small. 

Thus, classical mechanics should be able to give a reasonably good 

qualitative picture of the dynamics in these systems, although not 

necessarily a quantitative one. 

We have recently modified the hyperspherical coordinate scattering 

program to allow for the study of asymmetric systems (i.e. , three non­

equivalent atoms), and hope to extend our studies of the CID process to 

them in the near future. 
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Table I. Parameters for rotating Morse cubic spline potential used 
~ 

(notation is as in R ef. 1 7). 

8 (deg.) 

0 

15 

25 

30 

35 

40 

43 

45 

.£eq(8) 

(bohr) 

5.5993 

5.7968 

6.1774 

6.4636 

6.8284 

7.2669 

7. 5047 

7.5666 

{3(8) 

(bohr- 1
) 

1.600 

1.544 

1. 458 

1.392 

1. 321 

1. 218 

1.142 

1. 127 
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Table IT. Properties of potential energy surfaces for different mass 
~ 

combinations. 

Case I II 

Masse sa 1-1-1 10-1-10 

Skew Angle 60° 24.62 ° 

Reduced Massa, b 0.5774 2. 1822 

Eigenvalues of 
Isolated Diatomic (eV) 

V = O 0.0817 0.0625 

V = 1 0.1885 0.1561 

v = 2 c 0.2082 

a In units of the hydrogen atom mass. 

b Defined as Jl = [m A mBmC I (m A+ mB +me)]-!-. 

c This system only supports two bound states. 

Ill 

1-35-1 

88.41 ° 

0.9726 

0. 0606 

0.1524 

0.2055 
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~ Arrhenius parameters for rates of reaction and dissociation. a 

Mass c Exchange Reaction Dissociation 

Combinationb 
v 

.e.n bd E e .e.n bd E e 
a a 

0 11. 1 0.086 8.5 0.213 
1-1-1 

1 11. 2 0.025 10. 3 0.072 

0 10.0 0.098 3.9 0.208 

10-1-10 1 10. 1 0.046 5.7 0. 104 

2 10.1 0.015 7.4 0.082 

0 11. 7 0.014 11.0 0.215 

1-35-1 1 11. 6 0.063 10.9 0.133 

2 11.4 0.024 11. 2 0.061 

a From 200 to 650°K for the exchange reaction and 350 to 600° K for 

dissociation. 

b In units of hydrogen atom masses. 

c Reagent vibrational quantum number. 

d -1 -1 
In units of em · molec sec . 

e In eV. 
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FIGURE CAPTIONS 

Figure 1. Schematic plot of the coordinate system (1., 8) for the rotating 

Morse cubic spline surface. Sis the swing point from which the Morse 

oscillator is rotated. 

Figure 2. Contour plot of the potential energy surface for the model 

collinear triatomic system studied here (1-1-1 mass combination) in 

Delves scaled coordinates R , r . The solid curves are equipotential a a 
contours at the total energies (with respect to the dissociated system) 

indicated at the high side of the figure. The dashed line is the path of 

steepest descent from the saddle pointo The polar coordinates p , a of 

a general point P in this Ra, r a configuration space are also indicated. 

Figure 3. State-to-state reaction and CID probabilities for the 1-1-1 

mass combination as a function of relative translational energy and total 

energy for the reagent vibrational states v = 0 (top panel) and v = 1 

(bottom panel). Total energy is indicated by the common horizontal scale 

(tic marks are on the top of each panel), while translational energy is 

indicated at the bottom of each panel. Curves are for vibrationally 

adiabatic reaction (solid line), vibrationally nonadiabatic reaction 

(dashed), and CID (dashed-dotted). Arrows are drawn at energies at 

which higher vibrational states and dissociation become energetically 

allowed, and are labeled on the top figure, e. g., E 1 for v = 1, E 2 for 

v = 2, and Ed for dissociation. 

Figure 4. State-to-state reaction and CID probabilities for the 10-1-10 

mass combination as a function of relative translational energy and total 

energy for the reagent vibrational states v = 0 (top panel), v = 1 (center 
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panel), and v = 2 (bottom panel). Energies and arrows are as indicated 

in Fig. 3. The solid curves always represent the vibrationally adiabatic 

reaction probability, the dashed-dotted curves always represent CID, 

and the dashed and dotted curves represent vibrationally nonadiabatic 

reaction probabilities as indicated in the figure. 

Figure 5. State-to-state reaction and CID probabilities for the 1-35-1 

mass combination as a function of relative translational energy and total 

energy for reagent vibrational states v = 0 (top), v = 1 (center), and v = 

2 (bottom) panels. All markings are as in Fig. 4. 

Figure 6. Probabilities for reactive (solid curve), dissociative (dotted 

curve) , and nonreactive (dashed curve) processes as a function of rela­

tive translational energy and total energy for the 1-1-1 mass combination 

for vibrational states v = 0 (top) and v = 1 (bottom). Arrows and energies 

are as in Fig. 3. 

Figure 7. Probabilities for reactive, dissociative, and nonreactive 

processes as a function of relative translational energy and total energy 

for the 10-1-10 mass combination for reagent vibrational states v = 0 

(top), v = 1 (center), and v = 2 (bottom). Curves are as in Fig. 6; 

energies and arrows are as in Fig. 4. 

Figure 8. Probabilities for reactive, dissociative, and nonreactive 

processes as a function of relative translational energy and total energy 

for the 1-35-1 mass combination for reagent vibrational states v = 0 

(top), v = 1 (center), and v = 2 (bottom). Curves are as in Fig. 6; 

energies and arrows are as in Fig. 5. 

Figure 9. Arrhenius plot of rate constant (in units of em· molec-
1 

sec-
1

) 
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versus inverse temperature for reactive and dissociative processes for 

the 1-1-1 mass combination. Solid lines are drawn for rate constants for 

reaction; dashed lines are used to indicate those for dissociation. 

Absolute temperature is indicated at the top of the graph. 

Figure 10. Arrhenius plot of rates for reactive and dissociative pro­

cesses for the 10-1-10 mass combination. Lines have the same mean­

ing as in Fig. 9. 

Figure 11. Arrhenius plot of rates for reactive and dissociative pro­

cesses for the 1-35-1 mass combination. Lines have the same meaning 

as in Fig. 9. 

Figure 12. Arrhenius plot of rates of state-to-state reactive and disso­

ciative processes for the 1-35-1 mass combination, with the reagent in 

its v = 0 (top panel), v = 1 (center panel), and v = 2 (bottom panel). 

Lines have the same meaning as in Fig. 9. 

Figure 13. Argand diagram for the transition A + BC (v = 0) - A 2 B 

(v = 0) + C for the 10-1-10 mass combination. Energies are labeled 

every 10 meV and correspond to total energies. Points are marked 

with an X every 5 me V. Arrows are drawn to indicate the sense of the 

curve. 

Figure 14. Argand diagram for the transition A'+ BA (v = 1) -A' B 

(v = 1) +A for the 10-1-10 mass combination. All labeling is as in 

Fig. 13. 
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III. 5 COLLINEAR QUASI- CLASSICAL TRAJECTORY STUDY 

OF COLLISION-INDUCED DISSOCIATION ON A MODEL 

POTENTIAL ENERGY SURFACE 
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Collinear Quasi-Classical Traje c t ory Study of Collision - Induced 

Dissociati on on a M o d e l Potential Energy Surface . a) 
b) 

Jack A. Kaye and Aron Kuppermann 

Arthur A mos Noy es Lab oratory of Chemical Physi c s, 
c ) 

Califo rnia Institute of T echnol ogy, Pasadena, California 9 11 25 

(Received 

Quasi -cla ssical trajecto ry calculati ons have been carried out at 

ene rgie s above the threshhold f o r collision -induced dissociation 

f.t.>r a mode l collinear atom - diatomic mol ecul e system. Exact 

quantum mechanical cal culations have shown that quasi- classical 

trajectories give a qualitative ly correct picture of the dynamics 

in this system . Traje c t ori es leading to dissociation are foun d t o 

lie almost entirely in well defined reactivity bands, with the excep -

tion of a few occurring in a small chatte ring re gion in whi ch the 

outcome of th e trajectory is extremely sensitive to its initial condi­

tions. The probability of disso ciation l eading to all possible dis -

tributions of the kine ti c e ne r gy of the resulting at oms i s obtained 

a..."1d is shown to vary substantially with initial conditions (reagent 

vibrational and translational energy). The form of these proba ­

bility distributio;ns is, t o a major extent, determine d by the posi ­

tion and width of the r eactivity bands . The different dissociati on 

r eactivity bands are shown t o be composed of different type s of 

traj ec t ories. Part of the vibrational enhancement of diss ociation 

arises from the fact that the simplest pas sible trajectory leading 

t o dissociation (one which crosses the symmetri c stretch line 

once prior to the onset of dissociation) is not obtained with 

g round state reagents . 

a)This work was supported in part by a contract (No. F496 20 -7 9 - C -

0187) from the Air Force 0ffice ')f Scientific Research. 
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I. I N TR ODUCTI ON 

The collision-induced dissociation (CID) of diatomic molecules 

A + BC ~ A + B + C ( 1) 

i s a process of great fundamental interest in c h emistry , particularly 

in the high temperature chemi stry associated w ith sh ock waves, b oth 

in the laborato r y (1) and in interste llar space (2). The ab init i o 

c al culation o f CID rates ha s proven to be extremel y difficult, as one 

mus t have accurate 1nethods f o r cal c ulating the potential energy sur ­

fa ce for the collision , solving for t he dynamics , and then integratin g 

the coupled rate equati on s t o o btain expressions for the rate of disap­

pearan c e of the diatomic mol ecule . 

The d eve l o pment of a ccurate methods for solving for the dynamics 

has be en especially diffi c ult. Kinematic and quasi - class i c al traj ~ctory 

(QCT) cal cula tions have been extensively used to study CID (3) . The 

numbe r of s tudies in c o rporating quantum mechani cal effects, either 

b y a semi- classical o r a pure l y quantum me chani cal approach, is much 

smalle r (4) . M ost of the se studies have been restri c ted t o collinear 

colli sions in whi ch reacti ve collisions of the t ype 

A + BC --t AB + C 

are not permitted. Non - collinear colli s i on s in non- reactive systems 

have been studied by the semi-classical method by Rusinek (5 ). Ex­

ceptions t o this are three pure l y quantum methods in whi ch reaction 

and dissociation may compe t e (these are all r estri c ted to collinear 

collisi on s at thi s time}: the wave packet approa ch of Kulander (6) , 

t he hype rspheri c al coo rdinate couple d- channe l method d e veloped in­

d ependently b y Kaye and Kuppe rmann (7 ) and by Manz and Romelt (8 ), 

and the multipl e c olli sion approac h of Beard and Micha (9 ) (whi ch has 

been applied only to a non-reac tive syste m ). 

The a vailability of a ccurate quantum me chani cal (Q M) results for 

CID :'las in c reased interest in QCT studie s. In particular, Kaye and 

Kuppermann (7) have shown that f o r the model system the y studied, 

(Z) 
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the QCT results were qualitatively similar t o the QM ones. Since the 

m o del system invo lves light masses (three hydrogen atoms) and 

weakly bound (0. 22 e V) molecules, quantum effe c ts might be expe c ted 

to be impo rtant. This suggests that QCT cal culati ons might b e useful 

predic tors of the gross features of CID in reac tive systems. One must 

approac h this with some c aution, h oweve r, as in a non-reactive sys tem, 

Gra y, et al. (10) have obtained major diffe ren c es in the dissociation 

probability between th e ir QCT r esults and the QM re.sults of Knapp 

and Diestle r (11). 

In order to help gain a better understanding of the dynamics of 

this model system, we have carried out a reac tivity band analysis 

of the QCT result s for this systcrn . Su ch analyses have b een exten­

sively applied to rea c tive systems b e low diss oci?-tion (12, 13 ) and have 

also been applied t o a n on-reactive system above dissociation (10a}. 

We examine handedness in the plots of trajectory outcome (reaction, 

non-reaction, dissociation} as a function of initial vibrational phase of 

the diatomic molecule and the r e lative kineti c energy . We also con ­

sider the variation of the vib rational action of the diatomic product of 

non-reactive and reactive c ollisions with initial vibrational phase. 

In diss ociative collisions we examine how the partitioning of the 

energy among the three produc t ato ms varies with initial vibrational 

phase and reagent translational energy. We als o examine individual 

trajectories in order to understand the nature of the traje c t o ries 

comprising each of the reactivity bands. 
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II. METHOD OF CALCULATION 

The Q CT ca l c ulations have been performed using standard methods 

(14) . The model potential enrgy surface used has been described pre ­

viously (7 ); we repeat here its basi c features. It is of the rotating 

Morse - cubi c spline type ( 1 5), and has asymptoti c Morse os c illator 

parameters ( 16) of D = 0. 22 eV, R = 1. 40083 bohr, and f3 = 1 . 6 
-1 e eq 

b oh r . There is a barrier t o exchange o f 0 .1 4 eV . The surface i s 

plotted in figure one of reference seven, and is r eplotted later in 

figures 23 - 31, i n which we show selected traj ec t o ries The trajector -
-17 

ies are i nteg r ated with a time step of 5 .41x10 s ec . Ener gy is con-

served t o four di git s in these c alc ulations . Integrati on of t r ajectories 

began with the distance from the in c ident atom t o th e center of mass of 

the diatomic m ole c ule at 12 bohr. 

To determine dissociation probabilities and rough boundaries for 

reac tivity bands , we have c al c ulated 100 trajectories per ene rgy at 

regularly spaced (n/ 50 radians) values of the initial vibrational phase . 

At se l ected ene r gies, we have narrowed th e phase grid substantially 

n ear the boundarie s of the reactivity bands . Below dissociation we 

have ca l culated 50 traje c t ories p e r energy at regularly spaced (TI/25 

radians) values of the initial vibrati onal phas e and s u ccessively 

narrowed th e grid near the band b o undaries. 

We h ave a l so determined the partiti oning of kineti c energy among 

the atoms after the c olli sion . The quantity o f greatest inte rest is the 
D 

fraction fX (X =A, B, C ) of th e available kinetic energy E' (the differ -

en ce between the to t a l energy E of the colli sion and the dissociati on 

energy D of the diatomic mol ecul e ) in d is sociative collisions in each 
e 

of the atoms at the end of th e collision . In disso c iative colli sions, the 

collision was d efined to be ove r when both internuclear distan ce s 

RAB and RBC were greater than 6.0 bohr and were in c reasing w ith 

time . The sum of the kinetic and potenti al energi es of the AB and B C 

pairs was each required to b e greater than D . We have extended 
e 
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this c alculation to include this rati c for atom A in n :m- r eactive colli­

sions (fAN) and atom C in reactive collisions (fC R). Plots of these 

quantities vs. initi al vibrational phase w ill connect smoothl y to the 
D D 

fA and fC c urves across the b o undary of the rea c tivity bands . 

Fro m the fractional energy vs. initial vibrational phase data, one may 
c d 

cal c ulate the probability () of the kineti c energy of atom A afte r 
v 

diss oci ati on EA being b etween EA and EA + dEA f or a colli sion in which 

the diatomic mole c ule i s in state v. This may be done by re cogni zing 

t hat this is related to the w idth of the region of phase d in which E A 

will lie between E A and E A + dE A 

c (jv d(E A ) = ( 1/Zn) ld <f:> /dEA I 

The superscript c emphasi ze s the class i cal nature o f this quantity . 

The (1/Zn) fac t or i s included so that c c;-vd(EA ) w i-ll b e ap~ropriately 
norn1alized : 

1 

E 
min max 

The limits of inte gration in eq . 4, A and EA , have been 

shov.rn previousl y (17) to be E ' /6 and 2E' /3, respe c tive l y , when the 

masses of a ll atoms are equal. T o s i mplify compari son of the se par ­

titioning probabilities from on e ene rgy to the next, we will plo t the 
c d 

dim en sionle s s partiti oning probabilities E' · (Jv (E A) , which will be 

indicated b y a b ar over th e quantity, vs . £Afar all values of th e energy 

E', in which case the abs c issa will always run fr om 1/6 to 2/3 . 

( 3 ) 

(4) 

The evaluation ofthederivative in eq . 3 is c ompli c ated by the pos s i ­

bility of m i nima o r maxima in the EA vs . curves ; hence f>< EA ) rnay 

be a nmltiply valued fun c tion of cP . VTe separate those re g i ons in 

whi ch d<f'/dEA is p o sitive and ne gative and then separatel y o btain the 

derivatives by a th ree - point finite difference procedure . The re suiting 
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derivatives are then used as an input fo r a c ubi c spline proc edure wh 

which allows us t o obtain approximate expressions for the derivatives 

as a function of EA. We next sum the absolute values of the deriva-

tives ove r all separated parts of each disso c iative reactivity band and 

over all such dissoc iative reactivity bands, and divide by ZiT for norma­

liz ation. The resulting c urve (called a partiti oning probability curve ) 

may contain some nume ri c al n o ise associated w ith the num e r i cal 

differentiation procedures; we have visually smoothed out the spline ­

induced oscillations . 
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III. RESULTS 

Reaction and dissociation both occur in the energy range studied 

here (up to 0. 25 eV above the dissociation energy of the diatomic 

molecul e). Plots of the reac tion and dissociation probability obtained 

from the trajectory c al culations are shown for reagent states v = 0 and 

v = 1 (the only ones possible) in figures 1 and 2, respectively. For 

both r eagent states, the reac tion probability is zero below a thresh­

hold energy, in c reases rapidly with energy to a large value (0. 86 for 

v = 0, 0. 96 for v = 1) and then de c reases to zero (for v = 0) or a value 

just above zero (for v = 1). It then increases monotonically with ener­

gy. The dissociation probabilities for the v = 0 and v = 1 reagents be­

have quite differently from each other , however. In the v = 0 c ase, no 

dissociation is observed until one is substantially (0. 08 eV) above its 

e nergetic threshh:)ld; as the energy increases beyond that, the proba­

bility increases slowly, rea chin g a value of 0. 27 e V at the highest 

energy studied. For the v = 1 c ase, disso ciation sets in at 0. 02 eVa 

above its energetic threshhold, increases rapidly with energy to a 

maximum of 0. 33 and then de crea ses rapidly to 0. 02 before again in ­

creasing with energy up to a value of 0. 39 at the h i ghest energy stu­

die d. It should be emphasized that all of these results are qualitative ­

l y sirnilar to the exa c t quantum mechani cal results for this system 

pre sen ted in refe renee 7. 

We next examined bandedn ess in plots of trajectory outcome vs. 

initial vibrational phase and relative translational energy. Plots of 

the r e activity bands for this system are shown in figures 3 and 4 

for reagent states v = 0 and 1, respectively, for energies above the 

threshhold for CID. Unlike reactivity band plots normally used in 

studie s of re:active atom-diatomic molecule collisions at energies be­

l ow dissociation, in which there are only two possible outcomes of a 

trajectory (reaction or non-reaction), there are three possible outcomes 
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here: reaction (R), indi c ated by the shaded regions of the figures; 

diss ociation (D), indicated by the speckl ed r egions, and non-reaction 

(N), indicated by the clear regions. The dissociative band centered 

near 2. 0 radians and 0. 17 e V translational energy in fi gure 4 is e n­

larged in fi gure 5. 

Fairly well d efined bands are seen to exist ab :::>ve dissociation. 

'Nhen on e narrows down the pha se grid substantially (to on th e o rder of 

0. 002 radians), one may find blu rring of the bound aries and formation 

of a " chattering " region ( 18), in whi ch th e outcome of the traj ect o r y 

varies strongly with s m all changes in the initial phase This is most 

seve r e below 0. 10 eV translational e ner gy in the v = 1 c a se , where the 

high ene r gy re action and disso c i a ti on ~and s com e t o a " point" (see 

figure 4) . F o r example , at 0. 085 eV :i: e<'. gent translati onal en e r gy, b e ­

tween 2. 50 and 2. 70 radians initial phase, there ·are four separate 

dis sociation z one s , b.vo r eaction z on es , and one n on- r eaction z one ob ­

tained wh e n the gri d s pac ing of 0. 002 radian s is use d. The t o t a l width 

o f all the di ssociativ e zone s in this region i s 0. 52 radians. The d i ss o ­

ciation probability produced b y thi s region is only 0 . 8 %, which i s far 

smalle r than the cont ribution at this ene r gy from the l arge band c en­

tered at 5. 5 radians. Chattering is a l s o seen near the b oundary b e t ween 

r eactiv e and non-reactive bands at energies be l ow d is sociation . 

We next conside r the variation o f the vibrati onal ene r gy of the di ­

ato:-ni c molecule r e s uitin g f r om reac tive o r n on- reactive c ollisions . 

No rma lly , to examine this quantity on e prepares p l o ts of the action of 

the d iatomi c mole dule at the end of the trajectory as a fun c tion of ini ­

tial phase at a sequen ce o f ener gie s (10a, 12, 19, 20) . At energies ab ove 

diss ociati on, one c ann ot cal culate the a c tion in th e usual w ay, and one 

is left with gaps in the action vs . phase p l o ts. Examples of these plots 

are shown in figures 6 and 7 for the hi ghest e ner gies studied (re a gent 

tran s lati on a l energ i es of 0. 388 e V f o r v = 0 a nd 0. 28 1 5 eV fo r v = 1). 

Solid lines are used t o indicate non-reactive zones and dashed line s 
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are used to indicate reactive zones. The shaded regions n1ark those 

regions of initial phase in which the trajectories are dissociative and 

hence no action can be defined. In both of these figures, the dissocia­

tion is seen to occur in between regions of high final action in reactive 

and non-reactive collisions (the maximum allowable final action in this 

system is ·1. 98 1). This is quite reasonable behavior, as for dissociation 

to occur, there must be more than the dissociation energy present in 

each diatomic mol ecul e, hence, the boundary between reactive or 

non-reactive regions is expe c ted to occur where the final action of 

the diatomic molecule equals it maximum value. 

A different sort of diagram is shown in figure 8, in which we plot 

t he final action vs. initial phase in a colli sion with v = 1 reasent and a 

reagent translational energy of 0.1615 eV. Here_ there are three diss o ­

ciative regions. Two are sandwiched between the rea c tive and non-re­

active regions, and one is in the middle of the large non-rea ctive r e ­

gion . This dis sociative re gion is part of the small diss ociative band 

located near 2 radians initial phase between 0.15 and 0 . 20 eV reagent 

translational energy in figure 4 (and enlarged in figure 5). As th e ini­

tial phase is varied so it closely approached that in the dissociative 

re g ion, the final action in c r e ases, sugges ting that th e consideration 

of dissociation as a lin1iting case of vibrational excitation is an appro ­

priate concept. 

The re is a substantial difference between the product state distribu­

tion in colli sions with v = 1 reagent at relative energies of 0. 281 5 eV 

(figure 7) and at 0.1615 eV (figure 8). At the higher energy, th e like li­

h ood of vibrational deexcitation, as measured by the lar ge region of 

initial phase over which the final action is substantially smaller than 

one, i s much greater than at the lower energy . At the l ower energy, 

from -0.5 radian s to the second dissociative band (at 4. 1 5 radian s), 

the final action never be comes s-rnalle r than 0. 8 . Thus, increasing 
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translational energy seems to lead to increasing vibrational non­

adiabati c ity in non-reactive colli sions . T he small likelihood of rea c ­

ti on in these energy regi ons makes it difficult to draw any c onclus i ons 

con ce rning that pro ce ss. A similar trend has been obs erved in the 

e x a c t quantum mechanical c alculations on this system (21 ). 

Further evidence of the t e ndency towards vibrati onal adiabaticity 

at l o w e n ergies can be seen by considering a collision v.rith v = 0 

m o l ecules at an energy ( 0. 178 eV relative translational energy) at 

whi ch only non-reac tive collisi ons occur -no dissociation or reaction 

was f ound. A plot o f the final action as a fun c tion of initial phase for 

this collisi on is gi ven in figure 9 . T he near adiabaticity may be seen 

by n otin g that the t otal ran ge of f inal acti on s in the f i gure is f r om - 0 . 12 

t o 0.1 9, co rre spondin g t o v ibrational energ i es o£ 0 . 063 9 eV and 0.107 9 

eV, respectively (the zero point energy is 0.08 18 eV ). H e n ce , at most 

1 5 % of the initial translati onal energy wa s converted t o vibrational 

energy in the collision . Another inte resting fe ature o f this fi gure is the 

r e latively compli cated stru c ture . In s p ite of the fa c t that all colli s i on s 

are non-reactive and nearly adiabati c , ther e i s still some systernati c 

variation in the d ependence of the final action on the initial phas e . 

T o give some fee ling for what h appens w h e n the b o undary r egi on s 

between the rea c tiv ity band s be come b lur red, we p re sen t in fi gure 10 

a plo t o f fin a l acti on vs . initial phase for the colli sion wi th v = 1 mol e ­

cule at a relative translational energy of 0. 085 eV fo r initial phase s 

fron1 2. 4 0 t o 3. 10 radian s . In this re gion on e sees five separate dis ­

s o ciative re gi ons, four of whi ch are found b etween 2 . 50 and 2 . 7 0 radi ­

ans . These may b e th ou ght of as being distin c t fr o m the large r d is so ­

ciative band between 2. 9 0 and 3 . 10 radians. The latte r band i s pa rt of 

t he lar ge di ssociative band seen in the l ower ri ght hand ;>Ortio n of fi gure 

4. The a c tion vs. phase curves are fai rly s mooth in between the diss o ­

ciative r egi ons. A way fr om the l ower tip of the large diss ociation and 
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reaction band in figure 4, the boundaries are smoother. This figur e 

seems to represent, then, an upper limit to the complication of such a 

diag ram. 

VIe next consider the partitioning of kinetic energy among the thre e 

atoms in dissociative collisions and also the amount of kineti c energy 

of motion of the free atom in reactive and non-reactive collisions. The 

calculation of these quantities has been described earlier. Plots of 

these quantities as a fun ction of the initial phase are shown for initial 

phases in or near which dissociation occurs for a v ari e ty of initial con­

diti ons in figures 11- 16. A few important features are observed in 

these figures, and we review these here . 

First, the curves are quite smooth in the dissociation r egion . At 

the border between rea c tive and dissociative collisions, fC smoothly 
R . 

matches onto the f c urve , and at the border between n on-reactive 
C N 

and dissociative collisions, fA smoothly matches onto the fA curve . 

In all c ases, the matching oc c urs at a value of the energy fraction 

of 2/3 ; this has been shown to be the maximun1 value fA or f C can take in 

the dissociative region for a system of three equal n1asses. The 

sn1all values of fB are also a requirement of the mass combination 

(for th e case of three equal masses, fB is required to be smaller than 

1 /6). 

Second, two types of partitioning curves are seen. For those dis­

s ociative bands sandwiched between one reactive and one non-reactive 

band, fA and fC must both have re g ions where they are large ("-'2/3) 

and small ("-' 1 /6). For thos e bands sandwiched b e tween two non-reac­

tive bands, the fA vs. phase c urve must have a minimum. The pre­

sence of such a minimum will have a major effect on the partitioning 

probabilities to be presented below. In theory, one might o btain disso­

ciative bands sandwi ched b e tween two reac tive ones, but such bands 

have not bee:1 observed • 
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F inally , we pre sent results for the partiti oning probability 
c d 

C'v defined earlier. These are shov.m in figures 17 - 22 f o r the six 

sets of ini ti a l con d itions f o r whi ch energy fractions were shown as a 

function of initial phase. Th ey all appear quite different from e a ch 

othe r, and we can rationalize m u ch of their form s i mply from th e re ­

action and dissociati on probabilities, the k inemati cs of the system, 

and the existen ce of we ll defined dissociat i on bands i n the r eacti v i ty 

band p l ots (figures 3 - 5 ). We w ill extensive l y examine this i ssue in the 

dis cuss i on section. 

There are a fe w features of figures 17 - 22 whi ch w ill prove t o be 

of mos t inte r est. F irs t i s the tendency of the parti tioning probabilities 

t o have their n1axi ma n ear the maxi mum allowabl e f r action of 2/3 , al -

th ough thi s is n ot uniformly true (see particularl y fi gur e 2 1, in which 

the partit ioning p r o bability diverges at a fra c tion of 0. 25) . Se c ond, 

in four out o f the six c ases studi ed, the partiti oning p r obability has 

divergenc es (figures 18 and 2 1 ) or sharp peaks (figures 19 and 20) . 

Third, curves of the partitioning probability n eed n o t be s mooth . If 

the r e is more than one dissociation b and at a given ene r gy, each of 

which ha s a very diffe rent s l ope or range of slopes in it s cor r espon-

din g fra c tional energy vs . phase c urve , b y summing the contri buti ons 

fro n1 each band one may b e adding one curve which is n on - zero in th e 

r ange £
1

( f<f
2 

and another whi ch is n on-zero in the range f
1

' ( f ( f
2
'. 

Su ch a condition would result in a partitioning probability c urve whi c h 

i s discontinuous at f
1

' and f
2
'. Normally, this will not be seen, as 

f = f ' = 1/6 and f = f 1 = 2 / 3 If thi s is not true for a given ~and, 
1 1 2 2 • 

di scontinuities w ill be observed . This may be seen in figure 2 1, i n 

w hi ch th e hump in th e r egi on 0.42 <. r <0. 49 is due to the existence of 

a n ar r .Jw dissociative band b e tween 1. 993 0 an d 2 . 00 55 r a dians (n ot 

shov.rn) in which the fra ctional energy varies f r om 0.497 t o 0 . 4 1 5 . 

Two additional narr ow diss ociative bands l ocated from 1 . 87 10 to 
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1. 87 58 radians and 1. 9 232 to 1. 92825 radians make essentially n o c on -

tribution t o the part iti oning probability b ecause their narro wne ss means 

that the magnitude of th e derivative rd cp /dE AI will b e s m all (unless, of 

course , E A is esse ntially constant over th e band, as is true in the ad­

ditional band mention e d earlier). 
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IV. DISCUSSION 

In this section we will consider first the implication of the banded­

ness of dissociative trajectories as seen in the reactivity band plots. 

In particular, we will focus on how this bandedness, when coupled with 

the calculated reaction probabilities and the pure kinematics of the 

calli sian, can be seen to lead to the general structure of the partitioning 

probability curves, such as those shown in figures 16 - 21. We will 

then con sider the origins of the bandedness of the dissociative trajec­

tories, and show that a strong relationship can be established between 

the separate bands and different types of trajectories leading to disso-

c i ation. 

A. IMPLICATIONS OF THE DISSOCIATIVE REACTIVITY BANDS 

Trajectories which lead to dissociation have ~een found to occur, 

as a general rule, in well defined bands in the reactivity band plots 

(figures 3- 5). Exceptions to this trend are found for collisio:1s of a 

v = 1 molecule in which the reagent translational energy is in the range 

from 0.07 to 0 .10 eV. In this region, the trajectory outcome n1ay 

vary substantially with small changes in the initial phase of the diaton1ic 

molecule. This is s omewhat r emini scent of the observation of chatter -

in g regions in the final action vs. initial phase plots seen in reactive 

atom-diatomic collisions (at energies well below dissociation), parti -

cularl y the F + H
2 

(18, 20) and Cl + HC1(22) reactions. Unlike in th ose 

cases, where the outcome of the trajectory appears to be random, by 

the use of a sufficiently small grid spacing (0. 002 radians), seemingly 

sm ::Joth (but quite short) curves of final action vs. initial phase can be 

obtained. We h ave found that only a few discrete regions of initial 

phase lead to dissociative trajectories. In all cases, the dissociation 

probability associated with thes e regions is quite small (no more than 

1 o/o of all collisions) and can thus be ne glected to that accuracy in the 

calcul a ti ons of dissociation probabilities . 
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In most cases, dissociative trajectories can be thought o f as limi ­

ting cases of reac tive o r non-reactive collisions giving rise to vibra­

tional excitation o f products. This is seen in two interrelated ways. 

For values of the initial phase onl y slightly different from those of the 

trajectories which l ead to dissociation, the diatomic molecul es rernain­

ing at the end o f the collisi on will be highly vibrationally excited . If 

one considers the fractional energy, su ch as that p l otted in figures 10 -

1 5, one sees that the c urve for atom A smoothl y n1atche s onto that for 

atom A in non-reactive collisions and that for atom C smoothly match ­

es onto that for atom C in reactive collisions. This is not ne ces sarily 

true for disso ciative collisi ons in the chattering r egion; as menti oned 

earlier, such re gi ons may give rise to discontinuities in the partition­

in g probability curves . 

The nature of the dissociative band (defined by the type o f bands be ­

tween whi ch it is sandw i ched at a given energy ) w ill play a m aj o r role 

in determining the appearance of the partitioning probability curves. 

If the band is sandwiched between o ne reactive and one non-reactive 

band, the partitioning probability curve should cove r essentially all t he 

a cce ssible region of energy fra c tions (1 /6 to 2/3 in this case ). If, on 

the other hand, the band is sandwiched between two non-rea c tive bands, 

the partitioning probability curves will cover only a subset of the al­

l owable energy fractions and must have at least one place where they 

diver ge. There will be n o possibility of obtaining energy fra cti ons 

l ower than that at the lowest divergence . Thus, in such cases the 

partitioning pro!Jability cur ves for that dissociation band have the unu ­

sual property that they are zero below the diverging value, at which 

they jump discontinuously to infinity . At higher energy fractions, the 

curve is continuous . Such curves are observed in figures 18 and Z 1. 

These figures demonstrate that the value of the energy fraction at which 

th e partitioning probability diverges can be quite close to its max:imum 

or minimum permitted value . Precisely at what values of the energy 
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fraction the partitioning probability diverges will depend on the shape 

of the dissociation and reac tion r eactivity bands at the energy being 

conside r ed . If, for instance , one is at an energy fairly near the 

opening of the r eaction band, the minimum in the energy fraction vs. 

phase p l ot will occur at a value of the energy fraction c l ose to 1 /6. 

This is the c ase in figure 21 (the important reaction and dissociation 

reactivity bands may be seen in fi gure 4) . If the energy is such that 

one i s not close to the opening of the reaction band, the minin1u1n will 

occur atvalues of the energy fra c tion close to 2/3. 

Certain t ypes of c urves of energy fraction vs . phase in dissociative 

collisions which might occur have not been obtained . F o r instance, in 

no cases were cu rve s w ith more than one minimum or maximum ob -

served. Hence, the partitioning probability diverges at one and onl y 

one point if it diverges at all. As mentioned earlier, no dissociative 

bands sandwiched between t wo react.ive bands were observed . Such 

bands would l ead to partitioning probability plots opposite to those 

in figures 18 and 21 - there would be no possibility of e n ergy fractions 

above that at which the partitioning probability diver ges of being popu­

l ated . There seem s t o be no reason why such bands should not exist, 

so we assume that thei;r absence is a function of the particular poten ­

tial and mass combinati on studied . 

The fact that reac tive processes are less probable than non - r e a c ­

tive ones at the energies studied sugges t s that in disso c iative collisions 

one may be more li kely to find kineti c energy distributions in which 

atom A has the greatest portion of the available energy . This would 

give rise to the partitioning probability being d ominated by high energy 

fra c tions. The r ange of ene r gy fractions allowable is detertnined sim ­

ply by the masses of the colliding particles, which expl ains why onl y 

certain numeri cal regions of the energy fraction are allowed (17) . 

Changing the masses would, therefore, change the partition.ing proba­

bilities for two reasons. First, the dynamics of the system would 
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change, and second, the ways in whi ch kinetic energy could be distri­

bute d in dissociative collisions would be altered. 

The structure of the rea c tivity band plots differs very strongly for 

v = 0 and v = 1 molecule collisions, and this fact, coupled with the 

definite manner in which the position and width o f the reac tivity bands 

have been shown t o determine the partitioning probabilities, suggests 

that one might obtain substantially different kinetic energy distributions 

from diss ociation from the two reagent states at . the same total energy . 

The same stateme nt applies to translational energy . The simplest way 

of obtaining such a case would be t o lo c ate an energy at which the dis­

s ociation from v = 0 occurs totally from a band which is sandwiched be­

tween two non-reac tive bands, while that f r on1 v = 1 occurs from one or 

more bands sandwiched betwe e n one reactive and one non-reactive 

band. Thus, not only may the outcome of the collision (reac ti on, n on ­

r eaction, or dissociation) depend on the initial state, but the intimate 

details of dissociation may also be a function o f the initial state. 

B . ORIGIN OF THE DISSOCIATIVE REACTIVITY BANDS 

Formation of reac tivity bands in atom-diatomic molecule collisions 

has been observed in a variety of systems at e ner gies below dissocia­

ti on (12, 13); banding has also been obse rved in a non- reactive system 

studied at energies above diss ociation (10a). The present study mar~s, 

to ou r know ledge, th e first reac tivity band study of dissociatio n in a 

rea c tive systen1 . In studying the origin of reactivity bands, we are 

interested in ge tting a good physi c al pi cture as to what sort of traje c ­

tories comprise each band. In parti c ular, we focus on two question s . 

First, we want to know whether each separate band corresponds to 

different types of trajectories. Second, w e want to know what happens 

near the boundaries between bands, especially in th e chatterin g regions, 

such as that shown in figure 10, in which the outcome of the trajectory 

is extremely sensitive to the initial conditi ons of the trajecto ry . 
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Wright and Tan (12c) have shown in their study of the collinear 

T + HT system on the SSMK surface (23) that the two lowest energy 

reaction reactivity bands are comprised of different types of trajec­

tories. In the lower energy band, reactive trajectories cross the sym­

metric stretch line only once, while in the higher energy band, they 

cross the symmetric stretch line three times. Representative traje c ­

tories are shown in figure 8 of reference 12 c . A similar correspon­

dence can be drawn between the two reaction reactivity bands in figure 

4 for collisions o f v = 1 mCJlecule. For collisions of v = 0 molecule in 

figure 3 we show only the high energy rea c tion reactivity band; there is 
R 

another band at lower energies resp:msible f o r the large values of P
0 

at low energy seen in figure 1. Trajectories comprising the lower 

rea c tion reactivity band in the v = 1 case cross the symrnetric stretc h 

line once (fi gure 23) while those in the higher band c ross the symmetric 

stret ch line three times (figure 24}. Reactive trajectories must cross 

the sym:netric stretch line an odd number of times; thus, these are the 

sim?lest sort of reactive trajectories possible. The im po rtance of 

reactive trajectories which cross the syn1metric stretch line n1ore 

than once indicate that a purely classical transition state theory 

would seriously overestimate the rate constant for reaction at high 

ternperature s when these high energy trajectories be come in1portant 

(24). The same behavior is seen in collisions of ground state mole-

cule s; we do not show them here. 

We next consider the nature of traje c tories leading to dissociation. 

We will focus our attention first on the single dissociation band for 

collisions of ground state molecule and the two large bands for collisions 

of v = 1 molecules. We will consider the small band for v = 1 isolated 

in the large non-reactive band and the overall chattering region later. 

Typical dissociative trajectories are sho wn in figures 25 - 27 for 

the large band in v =0 collisions, the first band in v = 1 collision, and 
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the second band in v = 1 collisions, respectively. In figures 25 and 

27, the trajectory crosses the symmetric stretch line three times; in 

figure 26 the symmetric stretch lines is crossed only once. This sug ­

gests that the separate dissociation bands are each comprised of trajec­

tories eros sing the symmetric stretch line a different number of times, 

just as was seen for reactive transitions. Things are not quite so sim ­

ple in the dissociation c ase, however, as the trajectory need not cross 

the symmetric stretch line an odd number of times. In fa:t, trajectories 

which cross it twice have been observed in both v = 1 reactivity bands . 

The l ast crossing of the symmetric stretch line may occur (as does 

that in the trajectory shown in figure 26) at large values of the inter­

nuclear coordinates . \Vhether or not such a crossing takes place will de­

pend on the partitioning of energy in the three atoms. The final eros­

sing, then, may be thought to occur while the atoms are in the process 

of dissociating, even if the crossing occurs at fairly small value s of the 

internuclear coordinates . Thus, the first dissociation reactivity band 

in the reactivity band plot (in figure 4) may b e thought of as being c om ­

prised of trajectories which cross the syn1rnetric stretch line once 

prior to the process of actually dissociating (during which they may 

again cross that line). In the second dissociation band for v = 1 and 

the only such band for v = 0, two crossings take plac e prior to the onset 

of dissociation, after which a third crossing may occur. 

These observations allow one t o make a simply physical picture to 

account for the observed vibrational enhancement of CID in this system: 

The simplest trajectory which may lead to dissociation does not oc cur 

when the molecule is in its ground state. It occurs only when the mole­

cule is in its excited state. Since n1ore cornplicated trajectories appear 

to contribute only at higher energies, low energy dissociation is pre­

vented in the ground state case . The qualitative agreement between the 

quasi- classical traje c tory calculations and the exact quantum ones re­

ported previously (7) indicates that this simple classical picture may 
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be a reasonable one to use in attempting to under stand the calculated 

vibrational enhancement of CID in this systen1. 

\Ve next wish to consider the small dissociation band seen in figure 

4 (and enlarged in figure 5) near 2 radians and 0. 18 eV reagent transla­

tional energy. A typical trajectory in this band. is shown in fi g ure 2 8 . 

This trajectory is quite different from the dissociative ones seen in 

fi gu res 2 5 and 27. This sho uld not be surprising, howeve r, as this 

sn"lall dissociati on band is imbedded in a large non-reac tive band and 

the other disso c iation bands tend t o be sandw i ched between r e active and 

n on-re a c tive bands. Examination of non-reac tive traj ectories n e ar the 

b oWldarie s between the n on- reacti on and disso ciation reactivity bands 

indi cates that diffe renee s between th e traj ec t o ries within them are 

quite small and be come i mportant only at large v_:alue s of the inter­

nuclear coordinates . Thi s is a case , then, in wh i ch the final o ut come 

of the traj ectory is n ot determined until well after th e collision might 

b e thought to be fini she d (R AB large and in c reasing, RBC fairly small). 

We finally consider the chatterin g region indicated in figure 9 . In 

th e r egi on of initial phase f rom 2. 5 to 2. 7 radians, the outcome of th e 

trajectory varies greatly w ith small changes in the initial phase. 

Su ch regions m ve been observed in studies of rea c tions below diss ocia­

tion, parti cularly the H + H
2 

(13) and F + H
2 

(1 8 , 20) rea c tions . In 

these r egions, the trajectories be come v e ry compli c ated, frequently 

boun cing back and f o rth many times in the strong interacti on r egion of 

the potential energy surface. Atom B is said to '' chatter' ' between 

atoms A and C, hen c e the name chattering r egi on. 

In this case, the trajecto ries in the chattering regi on ar e n ot over l y 

con"lpli c ated. Three such trajectories are sh own in fi gures 2 9 - 31 

cor r e sponding t o initial conditions shown in fi gure 9 . The initial phase 

differs by 0.01 radians (0. 57°) betwe en each trajectory . The dominant 

feature of the trajectories is clear : trajecto ries in this r egion involve 
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motion more or le ss along the symmetric stretch line. The extreme 

sensitivity of the trajectory outcome to the initial phase can, therefo re, 

be easily understood. Since, in moving along the symmetric stretch 

line, the trajectory has, to a first approximation, forgotten from where 

it was begun, it is reasonable that a small perturbation to the trajectory 

coul d seriously alter its course . 

At energies below dissociation motion exactly along the sym.metri c 

stret ch line would constitute that of a trapped trajectory - one which 

could oscillate back and forth forever, never leaving the intera c tion 

r egion of the potential energy surface (25). In the language of Pollak 

and Pechukas, such m o tion constitutes a trapped trajectory of the 

first kind (26). These traje c tories are frequently found at the boundary 

between reac tive and non-reactive bands in atom~diatomi c molecule 

systems at energies below dissociation (12, 13 , 20, 22). At en e r g i es 

above diss ociation, trapped trajectories of the first kind (in which the 

trajectory oscillates back and forth forever between two diffe rent 

contours at th e total energy) d o not exist. A traje c tory c an chang e its 

chara c ter continuously from reactive to non-reactive or vice versa by 

going through an intermediate stage of dissociative trajectories. Thus, 

t he requireme nt sh ov.n by Pechukas and Pollak that trapped trajectories 

must occur at the bound ary between reactive and non-reactive bands at 

energies below dissociation s eems n ot to app l y at ene r g i es above dis­

sociation (2 5 ). Nothing in these staten1ents here, h oweve r, preclude s 

the possibility of formation of trapped trajectories of the s econ d o r 

third kinds (26). No such trapped trajectories (or nearly trapped ones) 

were observed, although we have not carried out a systematic search 

for then1 . 
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V. CONCLUSIONS 

We have p erformed a reactivity band analysis of CID in a model 

collinear rea c tive atom-diatomic molecule system. Quasi- c lass i cal 

trajectories are believed to provide a r e as onable view of the dynamics 

in this system because of the qualitative sim ilarity in the rea c ti on and 

dis sociation probabilities calculated b y trajectories and by exact 

quantum mechanical cal c ulations (7). 

CID is shown to occu r almost e ntirely in well defined band s, the 

exception being a small contrib u tion from dissociative traje c t ori es in 

a chatte ring r egion in which the outcome o f th e t raj ectory is extremely 

sensitive t o the initial phase of the reagent molecule. Dissoc iation may 

be thought of as a li miting case of vibrational excitation, as non-disso­

ciative (reactive or non-reactive) traject orie s w~th initial conditions 

only slightly different f r om those leading to dissociation l ead to a dia­

tomic molecule product which i s highly v ibrationally excited. In mos t 

c ases , diss ociati on r e a ctivity band s are found sandwiched between 

on e reactive and one n on- re active band; in the rest, the y may b e 

sandwiched between two non-reactive bands . In no in stances we r e 

diss o ciative bands sandw i ch ed between two r eactive band s . 

We have c alculat ed the partitioning of kine ti c ener gy a mon g the 

th r ee atomic products of dissociative collisions and showed that these 

quantities vary smoothly thr o u ghout the dissociation band. Kinematic 

considerations require that most of the a v ailab l e kinetic energy go into 

the e nd atoms (A or C ). The fra c tion of the available kinetic energy in 

the e n d atom s, as a general rulse, matches smoothly onto that of the 

free atom in non-dissociative collisi ons (atom A in non-reactive col­

lisions , atom C in rea c tive ones). 

From the curves of energy fraction v s . ini tial phase we have been 

able to d e termine the partitioning p r obability, that is, the like lihood of 

the dissociation process to distribute the available energy in a g i ven 
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way. We have pre sen ted plots of the partitioning pro~abilitie s for six 

different sets of initial conditions (reagent vibrational state and transla­

tional energy), and found a wide range of appearance of the probability 

vs. energy fra::tion curves . We have shown that the general from of 

the partitioning probability curves can b e infe rred sol ely by examina­

tion of the r eactivity band plots. 

The different dissociati on reactivity bands found for the reaction of 

vibrationally excited (v = 1 ) molecul es have been shown to be comprised 

of different sorts of trajectories. The band which dominates at l ow 

energies (and shuts off at reagent translational energies above 0 .1 2 eV) 

is seen to arise f r om trajectories which cross the symmetric stretch 

line only once prior to the onset of actual dissociation, while the 

higher ener gy band arises from trajectories which e ros s the symmetric 

stretch line t w i ce prior to dissociation. During dissociation, the 

trajectories may or n1ay not recross the syn11netric stretch line an 

additional time. The single dissociation band observed in collisions of 

g round state molecules is seen to b e made up of trajectories which 

cross the symmetric stretch line twi ce prior t o dissociation . Hence, 

the vibrational enhancement of CID can be thought of as being due to the 

inability of g r ound state mole cules to dissociate by the simplest possible 

trajectory; in that case dissociation i s onl y possible by a more compl ex 

procedure, which onl y be comes important at hi g:1er energies. 

The chattering region is seen to arise from trajectories which at 

some point follow the symrnetric stre tch line very closely . Since the 

available energy is greater than the dissociation energy, motion along 

the symmetric stretch line does not constitute a trapped trajectory. 

The existence of a diss ociation channel allows for a smooth transiti on 

from reactive to non- reactive trajectories via an intermediate region of 

disso ciative traje ctories. 

Our analysis here ha s been restri cted to a single mode l potential 
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ene r gy surfa ce for a collinear collision . In reacti ve systems , changes 

i n the masses of the atoms have been shown to produce major chan ges 

in the str u c ture of the reactiv ity bands (12b) . Exact quant um mechani­

cal calculations on " is o topi c ally' substitute d v er sions of the n10de l 

system studied h e re (mass combinations 10 - 1-10 and 1-3 5 - 1) indi cate 

that the e ffect of mass on diss ociation is s tr on g (22). Large changes 

in the r eactivity band structure can be expected. Thus, one must u se 

caution is attemptin g to gene raliz e on the basis of the reac tivity bands 

f o r one system . 

Removal of the restri ction t o collinearity might be expected to l ead 

t o substantial changes in th e reactivity bands (the mode l potential us ed 

h e re is defined solely for collinear configurations; we are addressing 

the gene ral role of non- collinear collisi on s ) . In studies of th e t wo and 

three dimensional T + HT reaction, Wri ght ( 12 e ) has shown a disappear­

an ce of the handednes s o bs e rved in the collinear rea c tion, which is due 

t o the d irnini shed i m;>Ortan ce of m ultip l e collisi ons (which invo l ve mul ­

tiple c r ossing of the symmetric s tretch l ine) in n on - collinear colli sions . 

Thus , in a more realistic (three - dimen s i onal) system, th= ri c h banded 

structure obtained here mi gh t b e e x pected to be substantially blur re d . 
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FIGURE CAPTIONS 

Figure 1. Probabilities for r eaction P R (solid line ) and dissociation 
D 0 

P 
0 

(dashed line) in collisions of ground vibrational state molecules 

as determined by quasi-classical trajectory calculations as a function 

of the collision energy. The reagent translational energy E
0 

is indicated 

on the lower abscissa; the total energy E (sum of vibrational and transla­

tional energy ) is indicated on the u ppe r abscissa. The arrow points to 

the energy at which the mol ecul e dissociates. 

Figure 2. 
D 

p i 

Probabilities for re ac tion P 
1 

R (solid line) and dissociation 

(dashed line) in collision s of vibrationally excited molecules as a 

function of the collision ene rgy. The el{e S and markings are othe rwi se as 

in figure 1. 

Figure 3. Reactivity band plot for r e action and dissociation in collisions 

of ground state mole cul e. Reactive (R) bands are indi c ated by shading; 

dissociative (D) bands are indi c ated by speckling. The soli d white re gion 

is non-reactive (N). Both the translational energy E
0 

(left ordinate ) and 

the t o tal energy :S (right ordinate) are indicated . 

Figu r e 4. Reactivity band plot for r eaction and dissociation in collisions 

of vibrationally excited molecule . Band type is indi c ated as in figure 3 . 

Axis l abeling is also as in figure 3. No effort is made to accurately 

portray the band structure in the 11 chattering'' r egion . 

Figu r e 5 . EI1larged view of the small diss ociative band (from fi gure 4) 

in collisions of vibrationally excited molecule. All markings and a xes 

are as in figu re 3 . 

Figure 6. Final action v f as a function of the initial phase f>0 for a col­

lisi on involving a ground state diatomic molecule at a reagent translational 

energy E
0 

of 0.388 eV. A solid line is us ed to connect r esults o£ non-

reactive trajectories; a dashed line is used t o connect results of reactive 
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trajectori es . The shaded a r eas indicate those r egions of the ini tial 

phase giving rise t o dissociative trajectories,in which the action cannot 

be defined in the usual way . N, D, and R i ndicate non-reactive, 

dissociative, and reactive regions, r espectivel y . The traj ectory was 

begun with the distance fron1 atom A to t he cente r of mass of BC being 

12 bohr . 

Figure 7. Final action v as a function of initial phase cp for a colli sion 
f 0 

involving vibrationally excited molecules at a reagent translational 

energy E
1 

of 0 . 281 5 eV . All markings are as in figure 6 . 

Figure 8 . Final a ction vf as a function of initial phase cp
0 

for a collision 

involving vibrationally excited molecul es at a rea5ent translational 

energy E
1 

of 0 .1 615 eV . All markings are as in figure 6 . 

Figure 9 . Final action v as a function of initial phase ..h f or a collision 
f Y o 

involving g r ound state mol ecule s at a reagent translational energy E 
0 

of 0 . 17 8 e V . All markings are as in figure 6 . Note the expan ded 

scale of the ordinate . 

Figure 10. F inal action vf as a function of the initial phase cp
0 

for a 

collision invol ving vibrationally excited mol ecules at a r eagent transla­

ti onal energy E
1 

of 0 . 085 eV . The initial phases are limited to the 

chattering region described in the text and the region s to s li ghtly l ower 

and h i gher i nitial phase . All markings are as in figure 6 . 

Figure 11 . Energy fractions fX(X = A, B, C) (defined in section II) as a 

fun ction of the initial phase cp
0 

f o r the diss ociative bands s een in collisions 

of ground state molecules at a re agent translati onal energy E of 0 . 383 eV . 
0 

A solid line is used for atom A, a dashed line for atom B, and a d otted line 

for atom C. A da shed - dotted line marks the approximate b oundary b e ­

t ween bands. The curve for atom A is continued into the non - reactive 

r egion and the curve for atom Cis continued i nto the reactive region by 
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a procedure described in the text. (a) the small band from 0. 90 to 

1. 03 radians initial phase; (b ) the large band from 5 . 10 - 6. 60 radians . 

Figure 12. Energy fracti ons fX as a function of initial phase rp
0 

for 

dissociative bands in collisions of ground state molecules at a reagent 

tr a nslationa l energy E
0 

of 0 . 233 eV . All markings are as in figure 11. 

Figure 13 . Energy fractions fX as a function of initial phase ¢
0 

for 

dissociative bands in colli sions of vibrationally excited molecules at a 

r eag e nt translational ene r gy E of 0 . 28 15 eV . (a) th e small band from 
1 

0.25 t o 0 . 3 1 radians; (b) the l arge band fr om 3 . 20 to 5 .50 radians . All 

markings are a s in figure 11. 

Figure 14 . Ener gy f raction s fX as a fu n ction of initial phase <fJ
0 

f o r 

di ssociative bands in colli sions of vib rationally excited mol e cule s at a 

reagent translational energy E
1 

of 0.1815 eV. (a) band from 2.04 to 2.12 

radians; (b) band from 4 . 2 5 to 4 . 80 radians; (c ) band from 5 . 32 t o 5 . 3 6 

radians . All markings are as in figu r e 11 . 

Figure 15 . Ener gy fracti ons f as a fun c tion of initial phase cp for 
X o 

dissociative bands in collisions of vibrationally excited moelcules at 

a r eagent translati onal energy E
1 

of 0.1015 eV . 

Figure 16 . Ene r cry fractions f as a function of initial phase .J.. for 
o X ~o 

disso ciative bands in collisions of vibrationally excited mole cules at a 

r eage nt t ranslational energy E
1 

of 0.0715 eV . All markings are a s i n 

fi gure 11. 

Figu r e 17 . Partitioning p r o b ability c o-o d d e s c ribed in section II of the 

t ext for atom A for dissociation in calli sions of g r ound state mol e c u l e s 

at a reagent tran s lational e n e r gy E
0 

of 0 . 388 e V. 

c d 
Figure 18 . Partitioning probability OO for a tom A fo r d is so c i ation in 

collision s of g round state molecules at a reagent translational energy 

EO of 0. 233 e V. The probability i s zero for v alues of the energy fracti on 
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fA below that at which it diverges ('-vO. 58) . 

Figure 19. Partitioning probability c o-
1 

d for atom A for dissociation 

in collisions of vibrationally excited mol ecules at a reagent translati onal 

e.oergy E
1 

of 0.2815 eV . 

Figure 20. 
c d 

Partitioning probability c;=-
1 

for atom A for dissociation 

in collisions of vibrationally excited mol ecules at a reage nt translational 

energy E 
1 

o f 0 . 18 1 5 e V . 

Figure 21. Partitioni ng probability c~1 d for atom A for dissociation 

in collisions of vibrationally excited rnolecules at a reagent translational 

energy of 0 .101 5 eV . The probability is zero for values of the energy 

fraction fA below that at which it diverges ("-'0. 25). 

Figure 22. 
c d 

Partitioning probability o=
1 

for atom A for dissociation 

in collisions of vibrationally ex cited mol ecul es at a reagent translational 

energy of 0. 07 1 5 e V . 

Figure 23. Plot of a typical r e active trajectory in the l ow energy reacti on 

reactivity band for collisions of vibrationally excited mole cul e. Trajec­

t o ry is for initial conditions of E
1 

= 0. 071 5 eV and initial vibrati onal 

phase of 3. 4558 radians. The integration of the trajectory was begun 

with R = 12.8952 bohr. The trajectory is superim?osed on a plot of the 

potential energ y surface for the system in Delves mass- scaled coordinate 

system. Contours are drawn every 0. 06 eV starting from 0. 02 eV up 

to 0. 50 e V w ith respect to a zero of ene r gy at the bottom of th e well of 

the isolatediatomic mol ecul e . The X mar ks the saddle point for the 

r eaction. Note that there is only one crossing of the symme tri c stre tch 

line. 

F i gure 24. Plot of a typi c al r eactive trajectory in the high energy reaction 

reactivity band for collisions of vibrationally excited molecul e . Trajec­

t ory is for initial condition of E = 0. 28 15 eV and initial vibrational 
1 
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phase o.f 6. 5649 radians. All markings are as in figure 23. 

Figure 25 . Plot of a typical dissociative traj ectory in collisions 

of ground state molecules . Trajectory is for initial conditi ons of 

E 0 = 0 . 388 eV and initial phase of 0 . 3142 radians. All markings are 

as in figure 23. 

Figure 26. P l ot of a typical dissociative trajectory in the l ow e n e r gy 

dissociation reactivity band for collisions of vibrationally excited mole ­

cules. Trajectory is f or initial conditions of E
1 

= 0 .071 5 eV a nd initial 

phase of 5. 3407 radians . All markings are as in figure 23. 

Figure 27. Plot of a typical dissociative trajectory in the large, high 

energy dissociation reactivity band for collisions of vibrationally exc ited 

molecules. Traj ector y is for initial conditions of E = 0. 2815 eV and 
. 1 

initial phase of 5 . 3407 radians . All markings are as in figure 23 . 

Figure 28. P l ot of a typical dissociative trajectory in the small 

di ssociation reactivity band imbedded in the large non- reaction band for 

collisions o f vibrati onally excited mol ecul e s . Traje c t ory is for initial 

condition s of E
1 

= 0.1815 eV and initial phase of 2.12 radians . 

markings are as in figure 23 . 

All 

Figure 29. Plot of a n on-reactive trajectory in t he chattering region 

shown in figure 10. Traj ectory is for initial conditions of a v ihrationally 

excited molecule, E
1 

= 0. 085 eV, and an initial phase of 2 . 65 radians. 

All markings ar e as in figure 23 . 

Figure 30 . Plot of a dissociative trajectory in the chattering r egion 

shown in figure 10. Initial conditions are the same as for the traj ectory 

in figure 29, except that the initic:. l phase is 2. 66 radians. All markings 

are as in figure 23. 

Figure 31. Plot of a reactive trajectory in the chattering r egi on 

shown in figure 10. Initial conditions are the same as for the trajectory 
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1n figure 29, ex cept that the initial phase is 2 . 67 radians. All mar k ings 

are as in f i gure 2 3 . 



0 v 
d 

L[) 

1'0 
>d 
~ 
w 

0 
1'0 
d 

L[) 

C\.1 

d 

0 
C\.1 

0 

0 

o::o 
CL 

CX) 

0 

4 53 

\ 
\ 
\ 
\ 
\ 
\ 

0 0\ a..:, 
\ 
\ 
\ 
\ 

(,£) v 
0 0 

A~!l!qDqOJd 

Figu r e 1 

\ 
\ 
\ 
l 
\ 
\ 

' ' ' 

0 

0 
v 
d 

L[) 
1'0 
d 

0 
1'0 
d 

L[) 

C\.1 

0 

0 
C\.1 

d 

0 

0 

0 

> 
Q) 

........... 
0 

w 



454 

0 
1"0 
0 

\ 
I[) \ 
~ \ 0 \ 

I[) 

N 

' 0 
' o_', 

0 0... ' 
~ ' ' 0 \ 0 

\ N 
\ 0 

> \ > \ 
Q) I[) \ 

(]) 

""" 1"0 """ d \ 
w \ I[) w 

~ 
. 

0 

0 
r0 ---0 -- 0 

<.. . 
0 

I[) 

N 

0 I[) 

0 . 
0 

0 co w ~ . . 0 0 0 0 

A~!I!QDQOJd 

Figure 2 



L() 

~. 
0 
~. 

455 

Figure 3 

0 
f"() 

L() 

(f) 

c 
0 

u 
rno 

0::: 
-............ 

-f? 
N 



z 

456 

L{) 
1'0 

~ -' 

0 
1'0 . 

0 L{) 0 
C\J 

f\8 /
1
3 

Figu re 4 

L{) 

C\J 

(f) 

c 
0 

""'0 
0 

0::: 
'--.__ 

~ 



4 57 

f\2Jj 3 
(l) ,..._ ~ l.{) 

r0 r0 r0 r0 . 
0 0 0 0 

0 OJ CD ,..._ <..0 
C\J . . . . 
0 0 0 0 0 

/\a/ 13 

Figure 5 

~ r0 
r0 r0 . 
0 0 

l.{) ~ r0 
-. . . 

0 0 0 

C\J 
C\J 

. 
C\J 

0 . 
C\J 

CJ) 

c 
0 

mu 
-.:o 

<.0. 

0::: 
~ 

-e-0 



458 

~ 

> (f) 

a.> c 
ro 0 
ro ""0 
r0 z 0 

0 r0 0::: 
II 0 .......... 
0 II -e-0 

w > 

---------~ ~ -0:::: ---------

0 1.[) 0 1.[) 0 1.[)0 
. . . 

(\j - 0 0 
ll\ 

Figure 6 



0 
N 

> 
Q) 

L() 

ro 
N 

0 
II II 

w > 

L() . 

--

z 

0 

459 

---
..... --

J" 

l[) 

0 

Figure 7 

0 

(/) 
c 
0 

"'0 
0 

r00::: 
......... 

0 
-B-

N 

l[)o . 
0 



460 

~ 

> (/) 

Q) c 
l.() 0 ---
lO z "'0 

0 r<) 
0::: 
......... 

0 
-B-

z 

0 l.() 0 l.() 0 lDO . . 
N 

l" 
0 0 

F i gure 8 



C\J . 
0 

> 
<1.) 

co 
1'-
- . 
0 0 
II II 

0 
w > 

z 

461 

. 
0 

Figure 9 

L.() 

N 

Cf) 

c 
0 ·-"0 
0 

0:: 
'o 
-B-



4 6 2 

0:: 

0 
~~~~~~~~~~~~~~~~~~~ 

01 
C\J 

> 
Q) (/) 

LD 
ro c 
0 ro 0 . z . 

""0 
0 C\J 0 
II ..-- 0::: -II 

w > ........ 
0 

r- -e-. 
C\J 

lO . 

L{) . 
C\J 

z 

~ . 
0 L{) 0 L{) 0 L{)C\J . . . 
C\J 

J" 
0 0 

F i gure 10 



z 

> 
Cl> 

CD 0 CD 
r<) . 
0 
II 0 

0 II 

w > 

46 3 

·- ·- ·- ·- ·- ·-·- ·- ·- ·- ·-·- · 

. . 
. . 
. 
. . . . . . 

. 
' \ 

\ 
\ 
\ 
\ 

L{) 

0 . 

. . . . 

. . . 
\ 
\0 

. 
. . 
: 

. . 

: ' • I 
U : I 
II I ~ : m 

• II I 
: ~I . 

: I 
: / . / 

0 

(j') 

c 
0 
-o 
0 

0::: 
L{) """ 

d-4' 

0 
(j) 

0 
· - · - · - · -·- · -:- - -·-·-·- ·- · - · - ·- ·- - -·~·- · - · 

: . . . . 

. . . 

L{) 

~--------~--:----~~------~--------~--------~~ 
0 . CD . 

0 
<.0 
c5 

v. 
0 

F i gure 11 a 

N oo . 
0 



464 

·- · - · - · -·1·- · -J·~.-·- · - ·- ·-·- ·- ·- ·-· 

0 . 

:ru 
OJ 
OJ 
f"() 

0 
II 0 

0 II 

w > 

0:::: 

0 

OJ 
0 

. . . . . . . . . . . . . . . . . . 
u: 
II : 

)( ~ 

<.D 
d 

. . . . 

. . . . . . 
. 
. 
. . 

<;j"" . 
0 

Figure 11 b 

. . . . 
. . ·. . . . . . . 

N 
0 

/ 

m 
II 

>< I 
I 

I 
I 

- -~--- · 

<.D . 

~ . 
<.D 

N 
U) 

q (f) 

<.D c 
0 
-o 
0 

roO::: 
LD"--0 

. 
L[) 

N 
lD 

0 

-6-



> Q) 

r<) 
r<) 

N 

d 
II 0 
0 II 

z 

0 

465 

c::t 
II 

>< 

. 
. . . . . 

u: 
II : 

>< : . 

. . . . 

. . 
. . . 

0 
r<) . 
~ 

. w > 
. . . .~ 

0 

. 
• . . . . . . . . . . . . . . . . . . . . 

I , 
en' 
II I 
></ 

I 
I 

I 
/ . - ·- ·- ·-·-·- ·- ·- ·-·-·- ·-·-·-·- ·-·-·- ·- · 

z 

ro <.D N . 
d d 

. 
0 

Figure 12 

0 

L[) . 
~ 

0 . 
~ 

L[) 

0 
~ 



466 

N 
~------~~~~--~--------~--------~--------~ ~ 

> 
Q) 

z 

1.[) 0 
CD 
N . 
0 
II 

- II 

w > 

·-·- ·-·-·- ·- ·-·- ·? ·- ·, ·-· 

I I 

>< 

u 
II : 

x: 

.. 

. 

. ' .. ·· \ 
\ 
\ 

m 

\ 
\ 
\ 
\ 

II I 
><t 
I 

I 
I 

/ 

0 

0 
~ 

0 

(f) 

c 
0 

CD-o 
N 0 
00::: 

tO 
N . 
0 

-......... 

,f> 

· - · - · -·- · - ---~·- ·- ·- · - · - · - · - · - · - ·- · - · - · 

0::: 
o:;t 

~------~~--~--~--------~--------_._________ N 
CD 
0 

tO 
0 

o:;t 

0 

F igure 13a 

N 

0 
oo 



0 

467 

n:: 
·- ·- ·- ·-·- ·-·-·- ·-·- ·- ·-·- ·- · 

~ 
L.() 

CD 
C\J 

0 
II 

II 

w > 

. 

0 

. . 
u··. 
II : 

. . 
. 

.. 

. - .,.- · L.() 

' \ L.() 

\ 
\ 
\ 
\ 

I 
I 
I 

CDI 
I I I 
>(I 

I 
/ 

I 
I 
I 

\ 

I 
I 
I 

0 
L.() 

L.() 

<;;t 

0 . 
<;;t 

·. / _____ __ .. ___ _____ ~ --~--- · 

CD 
0 

<.0 
d 

v 
0 

Figure 13b 

N 
0 

(f) 

c 
0 

""'0 
0 
a: 
............ 

-tf 



468 

I I I I 
. 

N 

z 
~ - - ·- ·- · - ·-·- ·- ·-·-·- ·- ·-·-·-·-·- ·-·-·-

> (1.) 

L[) 
-
CX) 

~ 
0 
II 

w 

0 . 

II 

> 

0 

z 
I 

CX) . 
0 

<! 
II 

>< 

. 
u: 
II • 
x:· 

. . 

. . . . . 

' \ 
\ 
\ 
\ 
\ 
\ 
I 
I 
I 
I 
I 
I 

ml 
II I 
><I 

I 
I 
I 
I 
I 
I 
I 
I 

I 

I 

N 

0 
- . 

N (f) 

c 
0 

-o 
0 n::: 

CD' - q 0 
N--B-

<.0 
- q 

N 

I ~ 
. I - 0 

-·-·- ·-·-·-·-·-·- · - · -·-·- N 

I 

<.0 
0 

I 

F i gu r e 14a 

J 

N 
d 

0 



0 . 

46 9 

· -·- · - · - ·- · ·~ · -·- ·- ·- ·- ·- · -· 

. 

> 
Q) 

l[) 
0 -CD . 

0 
II 

II 

w ::> u·. . 
II • 

X • 

. . . . . . 
. . 

CD . ·- ·- ·- · ~ 
' 

. I 

\ 
\ 
\ 
\ 1'­

,~ 

\ 

I 
I 
I 
I m, 

~ I 
I 

I 
I 

I 
I 

· -·- · - ·-·- · - - - - ~ - -L·- · 
z 

CD 
0 

~ 
0 

Figure 14b 

C\J 

0 



470 

,._ 
r---~~--~--~r---~---r--~----~--~--~----~ 

I{') 

z 

0 

I 
I 

I 

I 
I 

I 

I 
I 

I 
I 

I 
I 

I 

U I 
I 

II 
)'(I 

I 
I 

I 
I 

I 
I 

I 
I 

- ------ -- -- -- -,---- -- -- -- -- -

0::: I 
I 

I 
I 

1 
I 

I 

/ 

/ 
/ 

/ 

,. 

CD 

I ____ __ ___ .)__ 

<.D 
1'0 . 

I[) 
1'0 . 
I{') 

v 
1'0 . 
I{') 

r0 
r0 . 
I{') 

N 
1'0 . 
I{') 

I 

~--~--~-L~--~~--~--~--~--~----~~ ~ 
0 W <.D ~ N QIO 

• c5 c5 c5 c5 c5 

Figure 14 c 

(J) 

z 
<( 

0 
<( 
0::: 
.......... 

-ff> 



> <l.> 
l[) 0 -
0 

0 
II 

II 

w > 

z 
·- ·- ·- ·- ·+ ·-

0 CD . d 

471 

. . . 
: . . . . . . 

u . . . 
II 

x: 
. . 
. . . . . . . . . . . . . . 

. .. 
.. 

. 
. . 

I I 

X 

. . . 

I 
I 
I 
I 

m I 
II I 
X/ 

I 
I 
I 
\ 
\ 
\ 

\ 
\ 

... ~ ... . . . . .-" ·- .- .- .-.- . - . ~ ··~ . -. -----. 
(J) <::j"" N 0 
0 0 0 

)(! 

Fi gure 1 5 

l[) 

l[) 

0 
l[) 

l[) . 
<::!"" 

0 

(/) 

c: 
0 

'""0 
0 

0::: 
......... 

-B-



0 . 

z 

> 0 Q) 
l{) 

1'-
0 
0 

" 0 " w > 

ro 
0 

472 

·-·-·-·-·-·- ·- ·- ·- ·- · ...... ·- · ro 

u . . " . x: 

. . 

. . 

<..0 . 
0 

: 
: 

II 

X 

Figure 16 

. . 

o;j 

0 

. . 
.· ' 

' 

I 

\ 
\ 
\ 
\ 
\ 
\ 

\ 
I 

I 
I 

m' 
'I I 
x/ 

I 
I 
I 

I 
I 

· - · .L. · - · 

. 
l() 

<..0 
l() 

o;j . 
l{) 

N . 
l{) 

N 0 
d 

<f) 

c 
0 

"'D 
0 

0:: 

' 0 
--s-



> 
<1> 
(I) 
(I) 
r0 . 
00 
II 

0 
II 

w > 

0 (I) 

• . 
0 

473 

v . 
0 

Figure 17 

N 

d 
0 
d 

~ 
0 

I{) 

d 

~ . 
0 

r0 . 
0 

N 

d 

._.<!.. 



474 

I I I I I I I I I I 
~ -

1.0 - 0 

0 

-

L() - 0 

0 

~ -

~ <l: -- . 
0 

> 
1- Q) -,.., ,.., 

C\J . ,.., 
0 - . 
II 0 0 

0 
II 

w > 

- -

C\J 
- - 0 

0 

I I I I I I 1 1 j_ 

~ f'(') C\J 0 
0 

p .D :> 

Figure 18 



475 

c.D 
d 

'Q'" 
.._4. 

. 
0 

> 
Cl) 

lD -
CD 
C\J 

• 
0 r<') . 
II 0 

II 

w > 

C\J . 
0 

0 

Figure 19 



476 

I I I 

1-

1- > 
Q) 

L(') 

Cl) 
1- . 

0 
II 

II 

- w > 

-
_l j _l 

C\J 

I 
p .f? :> 

Figu r e 20 

' ' 

_l I 

-

(.!) 

-0 

-

L(') - . 
0 

-

- ~ 0 

-

,-r<) 

0 

C\J - . 
0 

0 

<X: 
'+-



47 7 

I I I I I I I I I I I 

\ 
I I 

1- -

- ~ 
0 

-

li) -
0 

- -
> 
Q) 

<t 
li) -c;t 

1- 0 - . 
0 

0 
II II 

~ -
w > 

r0 - . 
0 

-

C\J - - c) 

I I _l I I I I I I I I I I ,.._ U) I{) c;t r0 N 0 

pb~ 

Figu r e 2 1 



478 

0 

!o 
p-::> 

F i gu r e 22 

0 
0 



479 

> >>> 
11) 11) 11)11) 

0 V"CDN 
N -00 . . . 

N 
. ' 

; 1: ,. 
,J 

_m · 
0 

·i1r 
Iii 

:il 
' I 

I i ,. ~ 
I ,iii I f:l ,, r. CD 

I I 
I 
I 

lo-

..c. 
l.D 0 

.0 
'-..... 
0:: 

LD 
-
1'-
0 . 
0 
II II 

N 

w > 

~--~----~----~--~~--~----~----L---~----~--~0 
0 N 0 

J~Oq I J 

Figure 23 



480 

> Cl) 

0 ~ (I) (\J 
(\J 0 0 

~----------------------------------.----r-r-r~.---~N 

, 

I 0 

....... 
' I 

' ...... I 
...... 

...... (I) 

~ 

> 
Q) 

L() 
-
ro 
N . 
0 N 
II II 

w > 

0 (I) 
L---~--~~--~--~----~--~----~--~----~--~0 

0 (\J 

Figu re 24 

~ 

L 
0 

...0 

............. 
0::: 



4 8 1 

> -.> 
0 V a:> N 
N -00 

N 
I 

I 
' ... 

' .. 
' ' 0 ... 

' ' ' ... \ 

' ... 

' ... 

' ... 

' ... 

' ... 

' ' ~ 

L 
lD 0 

...0 
"-.. 
(L 

> 
Q) 

ro 
ro 
1"0 

0 0 
N 

II II 
0 

w > 

~--~--~~--~--~----~--~----~--~----~--~0 
0 lD V N 0 

.JL!Oq I .J 

Figure 2 5 



4 82 

> 
Q.) 

0 V CD C\J 
C\J -. qq . 

' 
C\J 

' II 
' II ' ' I 

' I I I 0 ' I ,,, 

' 11
1 

' \ 

' ' II' 

' 
\ I,! 

' \ 1\\' CD \ , I 
\ 1. . 

\ il 
I ,._ 

..c. 
<.0 0 

...0 

............. 
0::: 

> 
Q) 

L[) 
-
1'-
0 . 
0 
II II C\J 

w > 

F i gure 26 



483 

> 
Cl> 

0 V Q)N 

r----~::--------------------------~N~--~~0~0~~--~ ,, • • • N 

> 
Q) 

LD 

ro 
(\j 

0 
II 

w 

' 

1·1 

> 

' ' ' ' ' ' ' ' ' ' ' ' ' 

..a~oq / ..a 

Figure 27 

I 

' I 
' I 

' I 

I 0 

-_c. 
0 

w..D 
"-.._ 

0::: 

N 



484 

N 

0 

N 

w 

0~--~--~~--~--~----~--~----~--~----~--_jo 
W ~ N 0 

Figure 28 



> 
<l) 

0 
L[) 

CD 
0 . 
o-
Il 11 

w > 

485 

C\J 

Figure 29 

C\J 

0 
0 



4 86 

> >>> ., ., CIJ Q) 

0 ~ CD C\J 
C\J -: q~ 

C\J 
\ 

' 
\ \ 

' \ \ 
\ 

\ 0 
\ 

\ 

\ 
\ 

\ I 
\ 

\ ~ 

....c::: 
0 

<!> .D 

"'-.. 
0:: 

> 
Q) 

0 
L() 

CD 
0 . 
0 
II II 

C\J 

w > 

0 co <!> 
0 

v 0 

.a~oq / J 

Figure 30 



48 7 

> > >> 
Q) Q) Q) Q) 

0 V CON 
N -00 . . . . 

C\J 

' II \ 
' \ 

1.! 

~I 0 

~. 
, 

'I' 
I' 
' ' 

I 
I !. 

I 
l\ 

co 

I 
I 

lo.... 

..r=. 
0 

<.D ..0 
'-...... 

I 
0::: 

I 
I 
I > 
I Q) 

0 
L() 

ro 
0 . 
0 

I II II 

I w > 

I 
0 

0 U) ~ C\J 0 

J4oq I J 

Figure 3 1 



488 

III. 6 PARTITIONING OF KINETIC ENERGY AMONG REACTION 

PRODUCTS IN COLLISION -INDUCED DISSOCIATION 

IN COLLINEAR ATOM-DIATOMIC MOLECULE COLLISIONS 

FROM QUANTUM MECHANICAL AND CLASSICAL 

MECHANICAL CALCULATIONS 



48 9 

PARTITIONING OF KINETIC ENERGY AMONG REACTION PRODUCTS 

IN COLLISION INDUCED DISSOCIATION IN COLLINEAR ATOM­

DIATOMIC MOLECULE COLLISIONS FROM UANTUM 

AND CLASSICAL MECHANICAL CALCULATIONS* 

Jack A. KAYE** and A ron KUPPERMANN 

Arthur Amos Noyes Laboratory of Chemical Physics, t 

California Institute of Technology, 

Pasadena, California 91125, USA 

(Received ) 

Results for the kinetic energy distributions of atomic products of 

the collision-induced dissociation 

A + BC __. A + B + C 

on a model reactive collinear system have been obtained by both quantum 

mechanical coupled channel and quasi-classical trajectory calculations. 

The results from the two methods are compared and discussed. 

*This work was supported in part by a contract (No. F49620-79-C-

0187) from the Air Force Office of Scientific Research. 

**Work performed in partial fulfillment of the requirements for the 

Ph. D. degree in Chemistry at the California Institute of Technology. 

t Contribution No. 



4 90 

1. Introduction 
~ 

The distribution of energy among the various possible degrees of 

freedom (electronic, vibrational, rotational, and translational) in 

collisions of atoms or molecules with other molecules has been a 

subject of intense research, both experimental1 and theoretical, 2 over 

the past 15 years. Most of this work has been concerned with the 

determination of the relative populations of the possible states of the 

molecular product; additional work has focussed on the relative rates 

of formation of different electronic states of atomic products. 

In atom-diatomic molecule collisions at energies above the 

threshold for dissociation, collision-induced dissociation (CID) 

A + BC -+ A + B + C (1) 

may occur. In CID there are no molecular products; in electronically 

adiabatic collisions the only degrees of freedom in the product are 

translational. Far less is known about the dynamics of atom-diatomic 

molecule collisions at energies above dissociation than at those below; 3 

in particular, little attention has been paid to the partitioning of the 

available energy among the three atoms in dissociative collisions. 

This information can in principle be obtained from accurate 

calculations on the collision process. Their determination from 

classical trajectory calculations of the CID process is straightforward. 

One just calculates the kinetic energies of the three atoms when the 

collision is over for each trajectory resulting in dissociation, and then 

appropriately averages over all trajectories leading to dissociation. 

Their determination from quantum mechanical calculations is more 
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complicated; they may be obtained from scattering calculations per­

formed by the hyperspherical coordinates method. 4 ' 5 

In this work we present results for the partitioning probabilities, 

that is, the probabilities of partitioning of the available energy among 

the three atoms in dissociative collisions by both quantum mechanical 

(QM) and quasi-classical trajectory (QCT) methods in a model collinear 

atom-diatomic molecule collision. We first review the methods by 

which these quantities are obtained. We will then compare the QM and 

QCT results and will discuss the origins of the difference between the 

results from the two methods. 

2. Theor and Numerical Methods 

A " Quantum Mechanical Method 

The calculation of bound-continuum (dissociation) probabilities 

by the hyperspherical coordinate method has been outlined by us 4c and 

by Manz and Romelt 5 previously. The basic formalism for the calcula­

tions of the partitioning probabilities has also been outlined previously~'b 
We present it here in more detail, emphasizing details appropriate 

to its numerical implementation. 

First we recognize that in dissociative collisions, there is only 

one degree of freedom in the partitioning of the available energy among 

the three atoms. 8 This is best expressed as the angle a, which is 

one of the two variables in the hyperspherical coordinate treatment of 

collinear atom-diatomic molecule collisions. 4a The kinetic energies 

of the three atoms are related by the expressions 
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(2a) 

EB mb 1 me .!. rna 2 
= [( M ) cosa - (-)

2 sinal 
E' mb +me mb 

(2b) 

Ec me rna .!. m .!. 

= [(-)
2 cosa + (~)

2 sina] . 
E' mb +me M mb 

(2c) 

where E' is the energy of the collision measured with respect to that 

of three infinitely separated atoms and M is the sum of the atomic 

masses. 
An . 

The probability ad ,:\(a) of dissociating from a bound state AnA, 

where A represents the reagent diatomic molecule (AB or BC) and nA 

is its vibrational quantum number to an angle a is given by the ratio 

of the total radial flux between a and a+ da at some large value of p to 

the total incident flux tikAn I IJ., where kAn is the wavenumber appro-
;\ ;\ 7 1 

priate to the incident state, and ll is the Delves mass (mAmBmc/ M) 2 

(3) 

An 
where the dissociative part 'l/Jd A (the only one of interest here) of the 

,:\.n 
total wavefunction \fJ A (see eq. (3) of ref. 2) may be written (at large 

p) as 

( 4) 

If numerical integration of the coupled channel equations were carried 
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out top =co, the eigenvalues of all continuum states would be identical 

(and zero) and all their wavenumbers k would be equal, and all terms n 
in eq. ( 4) having a subscript n could be pulled outside the summation. 

In principle, the sum in eq. (4) is infinite; in practice it is truncated 

at some value Nd sufficiently large that the sum in eq. ( 4) has essen-
An 

tially converged to its true value. The dependence of ad A on p should 
.xn 

be quite small ; if integration were carried out to infinity ad A would be 

independent of p. 

Combining eqs . (3) and (4) and performing the necessary algebra, 

we obtain the expression, assuming that the only p dependence in ( 4) is 
1 

from the p-2 and exp(~p) terms, 

(5) 

where 

As mentioned earlier, as p -+ co , k , _. k for all n, n', so in the limit n n 

of infinite p we have 

A , (p __. oo) ,..., k 
nn n 

Bnn' (p _, co) ,..., 0 . 

(7a) 

(7b) 



494 

In that case, eq. (5) reduces to the form given previously. 4a, 6 In all 

numerical calculations we will use eq. (5) and not its limit as p -+ oo • 

_xn 
Rather than dealing with ad A( a, p), in which one calculates the 

probability of forming products corresponding to a given a, we prefer 
.xn 

to consider the probability ad .A (E A, p) of dissociation in which atom A 

has a center of mass energy E A 

These partitioning probabilities, when integrated over all possible 

values* of E A give the total dissociation probability 

(8) 

(9) 

ETin and E_Tax are determined by eq. (2a) a = amax = tan-1 (mbM / mamc)t 

and a = 0, respectively. For convenience's sake we will normally 
.xn 

consider ad .A(E A' p) as a function of the dimensionless quantity 
.An 

fA = E A/E'; to make ad .A(E A' p) dimensionless we multiply it by E' 
.xn 

to make a quantity ad .A(E A,p) 

(1 0) 

Using these dimensionless quantities, the integral in eq. (9) becomes 

*In eq. (8~ , ref. 4c, we mistakenly gave a value of 0 for the lower limit 

of integration. This is true only in the limit omax-7T / 2; ctherwise E~in 
is a finite non-zero quantity. 
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fmax 
a 

f. 
fmm 
A 

B. Quasi-Classical Method 

(11) 

;xn 
The details of the calculation of ad A (E A) by the QCT method 

have been described elsewhere ; we briefly outline the m h~re. 8 
The 

c-:,\.n 
equation for a ft. (E A), where the superscript c indicates classical 

mechanics, is 

(12) 

where ¢ 0 is the initial phase of the vibration of the diatomic molecule 

(in radians) and the summation is over all of the separate regions of the 

initial phase which lead to dissociation (in which E A varies smoothly 

with c/>0 ). The coefficient (1 / 2n) provides for correct normalization of 
c-:,\.n 

ad A(EA). 

C. Potential Energy Surface 

The potential energy surface used is of the rotating-Morse-cubic 

spline type, 9 and has been briefly described previously. 4c For the 

mass combination studied (m A= mB =me= 1 in H -atom mass units), 

asymptotically there are two bound states, with energies of 0. 0815 and 

0.1885 eV with respect to the bottom of the diatomic molecue well 

(which is 0. 22 eV deep). The Morse parameters10 of the reagent 
-1 

molecule are De = 0. 22 eV, {3 = 1. 6 bohr , Req = 1. 40083 bohr. 
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D. Numerical Methods 

In the hyperspherical coordinate calculations, six even and six 

odd basis functions were used. This is smaller than the basis set of 

10 even and 10 odd functions used previously, 4c and gave results that 

are qualitatively correct. Unitarity of the ~ matrix was obtained 

approximately, with the deviation from unitarity increasing as the 

dissociation probability increases. Integration was carried out to 

p = 190 bohr; asymptotic analyses were carried out at 110, 130, 150, 

170, and 190 bohr. As discussed above, at finite o, the dissociation 
~n ~n 

probabilities P d ~ and the partitioning probabilities ad .X will vary 

weakly with p. The results we present are means of the values at the 

five different projection distances. We also indicate standard devia­

tions of some of these quantities to provide a feeling as to the magnitude 

of their p dependence. 

The quasiclassical trajectory calculations were carried out using 

standard methods. 11 The integration time step was 5. 41 x 10-17 sec. 

Energy is conserved to four digits in these calculations. Integration of 

trajectories was begun with the distance RA BC from the incident atom 
' 

to the center of mass of the diatomic molecule of 12.0 bohr. Initially 

100 trajectories were calculated per energy (and initial state), corre­

sponding to a grid of initial phase of 1T / 50 radians. Near the boundary 

between dissociative and either non-reactive or reactive regions of 

trajectory output the grid was cut down to 0. 01 radians. The derivative 

in eq. (12) was evaluated by fitting a parabola to every group of three 

points and differentiating analytically; we then interpolated these 

derivatives by fitting to a cubic spline. 
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3. Results 
~ 

We have calculated dissociation probabilities pD as a function of 

energy at a number of energies up to 0. 25 eV above dissociation when 

the reagent molecule is in vibrational state V. Values of dissociation 

probabilities, both quantum and quasi-classicai,are given for four 

energies in Table 1. For the quantum results, we also present the 

worst unitarities WU (the largest sum of the squares of the elements in 

a given row or column of the § matrix) . Quantum m echanical results 

are all the means (indicated by angular brackets) of the five asymptotic 

analyses described above ; standard deviations are given for all quanti­

ties (indicated by the letter s). We will focus our attention on the 

lowest and highest of the energies in Table 1: 0. 04 and 0. 25 eV, 

respectively. 

Detailed data on the structure of the banding of QCT calculations 

are given in Table 2, in which we examine the numbe r , width, and 

properties of the separate regions of the initial phase giving rise to 

dissociative trajectories. From Table 2 it is clear that there may be 

more than one region of initial phase leading to dissociation, and that 

these regions may have minima in their plots of fA vs. initial phase. 

As has been shown earlier (and maybe seen from eq. (12)), minima in 
c-xn 

these plots give rise to divergences in ad X . 

In considering the quantum results it is useful to have a feel for 

how the individual terms of the sum in eq. (5) will vary with the indices 

nand n'. To help establish a feeling for this, we present in Fig. 1 a 

plot showing the transition probability P~n for going from the bound 

state v of the reagent diatomic molecule to the nth continuum state. 
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In this calculation n, n' :s; 8. These probabilities are obtained from the 

corresponding § matrix elements by the expression 

d I d 
1

2 
pvn = 8vn . (13) 

Hence a larger P~n indicates a larger magnitude of S~n and thus most 

likely a larger contribution to the summation in 5. From Fig. 1 we 

see that P~n decreases appreciably (by more than two orders of mag­

nitude) as n increases from 1 to 8, indicating that to first order, the 

truncation of the sum in eq. 5 should provide reasonable results. Note 

that in two of the three cases shown, there seems_ to be a strong prefer­

ence for dissociation to symmetric continuum states (n = odd). 

We next present plots of the quantum mechanical partitioning 

probabilities a~ as a function of fA for E' = 0. 04 eV and 0. 25 eV in 

Figs. 2 and 3. Because of the simplicity of this symmetric collinear 

atom-diatomic molecule system, we may replace the superscript ;\n;\ 

used previously by v, as that is the only initial quantity which may be 

varied. Error bars are used to indicate the standard deviations of the 

calculated partitioning probabilities from their mean. We deleted the 

portion of the curve nearest to fA = j as here the calculations are 

unreliable. This is due to the form of the dod dE A term in eq. (8) : 

1 

da _ 1 [E (Emax E )] - 2 CIEA - -2 A A - A (14) 

When EA = E~ax (for this mass combination, when fA= ~), this 

factor diverges and the resulting a~ may be large, as may their 

deviations. 
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In Figs. 4-6 we present plots of the classical partitioning 
e-v 

probability ad for three sets of initial conditions: E' = 0. 04 eV and 

v = 0 and E' = 0. 25 eV and v = 0 and v = 1, respectively. Note that the 

vertical scales are different in all the figures (except Figs. 4 and 5 do 

have the same vertical scale). In the ensuing discussion section we 

will discuss the differences in the forms of these curves as well as 

their differences from the quantum mechanical ones. 

4. Discussion and Conclusions 

The plots of the quantum mechanical partitioning probabilities 

~ in Figs. 2 and 3 all show the same basic structure. ~ increases 

fairly smoothly as fA_ increases from its minimum to its maximum 

value. There does appear to be some structure in these curves as seen 

by the existence of shoulders and small maxima. The appearance of 

the error bars suggests that these wiggles might be real; from the data 

obtained one would certainly not remove the maximum in the a? curve 

near fA = 0. 55 in Fig. 3. It is premature to assign too much signifi­

cance to these wiggles for two reasons. First, it has been seen in 

earlier calculations that termination of integration at a small value of 

p leads to spurious oscillations in the ~ curves, which decrease in 

magnitude as o is increased. Second, the small basis set used in the 

calculations may lead to errors in the calculated values of ~- Since 

the higher basis functions have more oscillations than do the lower 

ones, their contribution to the summation in eq. (3) may be such that, 

while its overall magnitude is smaL, it could affect the fine structure 

of the curves. We note that in general, the a<;! and ac: curves have 
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the same overall behavior. 

The plots of ca~ (Figs. 4-6) have a richer structure in that the 

various curves are all fairly different. In Fig. 4 we see that ca~ 

increases fairly smoothly with fA with the exception of a small dip 

near 0. 52. In Fig. 5 we see that ca~ increases rapidly with fA, 

reaches a maximum, exercises one fairly rapid oscillation and then 

decreases slowly with fA. From Table 2 we see that there are two 

separate regions of initial phase contributing to dissociation; analysis 

of the contribution from each shows that only a small fraction (-- lOo/0) 

of the area under the curve in Fig. 4 comes from the first (narrow) 

dissociative region, and its contribution is nearly independent of fA. 

The curve for ca~ in Fig. 6 at the same total energy differs 

appreciably from that for co-~ in Fig. 5. The large spike in Fig. 6 

arises because the plot of fA vs . initial phase has a broad inflection region 

in which dE A / d cp "" 0. Thus, by eq. 12, ca~ must become large. 

This is a somewhat unusual occurrence; more normally one finds 

minima in the plot of EA vs. ¢, giving rise to discontinuous }'amps in 

the plot of co-e. These spikes or discontinuities in co-~ are purely a 

consequence of the way in which the classical trajectories behave, in 

particular the origin of well defined reactivity bands. How the reac­

tivity band structure influences the form of the partitioning probability 

curves is discussed in detail elsewhere. 8 

Because there is not necessarily any close relationship between 

the reactivity band structure for collisions involving different reactant 

vibrational states, 8 the classical partitioning probabilities for different 

reactant states at the same total energies can have substantially 
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different forms (i.e., have spikes or discontinuities). The quantum 

mechanical partitioning probabilities appear to be fairly similar for the 

different reactant states, however. Thus, it may be that classical 

mechanics, while giv ing a reasonable feel for the likelihood of disso­

ciation, gives an incorrect feel for the details for the dissociation 

process. It is quite likely that in higher dimensionality , in which 

reactivity band structure blurs or disappears altogether, 12 more 

reasonable behavior might be obtained for classical partitioning proba­

bilities. 

In summary then, we feel we have obtained reasonably accurate 

(although probably not fully converged) probabilities for the partitioning 

of kinetic energy in collinear atom-diatomic molecule collisions by a 

quantum mechanical method on a model system. We have compared 

these results to those obtained by classical mechanics, and shown that 

while the classical ones may have the same overall behavior as the 

quantum ones they may have regions in which they behave quite 

differently. 

~ 
The calculations reported here were performed on the Dreyfus-

NSF Theoretical Chemistry Computer which was funded through grants 

from the Camille and Henry Dreyfus Foo.ndation, the National Science 

Foundation (Grant No. CHE78-20235) and the Sloan Fund of the California 

Institute of Technology. 
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~ 

FIG. 1. Plot of individual bound-continuum transition probabilities P~n 

vs. the index n of the continuum state for three sets of initial 

collisions. E' = 0.04 eV, v = 1 (circles, solid line), E' = 

0. 25 eV, v = 1 (squares, dashed line); E' = 0. 25 eV, v = 0 

(triangles, dotted line). Values plotted are the means of the 

values obtained from five asymptotic anlyses. Error bars 

indicate one standard deviation about the mean. Where no 

error bars are shown, they are sufficiently small that they 

would be within the plotted symbol (circl~, square, or triangle). 

FIG. 2. Plot of the dimensionless quantum mechanical partitioning 

probabilities a~ as a function of the fraction fA of the available 

kinetic energy going to atom A at an energy E' = 0. 04 eV with 

respect to three infinitely separated atoms. Curves are shown 

for both the v = 1 (solid line) and v = 0 (dashed line) initial states. 

The values of a~ have been multiplied by ten before plotting. 

All values plotted are the means of the values obtained from 

the five asymptotic analyses ; the error bars indicate one 

standard deviation about the mean. The plot has been cut off 

just above fA = 0. 65 for reasons described in the text. 

FIG. 3. Plot of the dimensionless quantum mechanical partitioning 

probabilities <\! as a function fA of the available kinetic energy 

going to atom A at an energy E' = 0. 25 eV with respect to three 

infinitely separated atoms. All markings are as in Fig. 2. 

FIG. 4. Plot of the dimensionless classical mechanical partitioning 

probability ca~ as a function fA of the available kinetic energy 
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~(continued) 

going to atom A at an energy E' = 0. 04 eV with respect to 

three infinitely separated atoms. 

FIG. 5. Plot of the dimensionless classical mechanical partitioning 

probability ca~ as a function fA of the available kinetic energy 

going to atom A at an e.nergy E' = 0. 25 eV with respect to 

three infinitely separated atoms. 

FIG. 6. Plot of the dimensionless classical mechanical partitioning 

probability co-~ as a function fA of the available kinetic energy 

going to atom A at an energy E' = 0. 25 eV with respect to 

three infinitely separated atoms. 
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III. 7 QUASI- CLASSICAL TRAJECTORY ANALYSIS OF THE 

EQUIVALENCE OF REACTIVE AND NON-REACTIVE 

DEACTIVATION IN THE COLLINEAR Cl' + HCl 

REACTION 
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1. Introduction 
~ 

Quasi-classical trajectory calculations have served an important 

role in the last 20 years in helping one gain insight into the dynamics of 

chemical reactions [1 ]. Information concerning the effect of reagent 

vibrational, rotational and translational excitation, and the product 

vibrational and rotational distributions has been obtained. In addition, 

by looking at trajectories, one is able to get a good physical picture of 

the collision process itself. 

Such trajectory calculations have been particularly useful in the 

development of simple qualitative models for chemical reactions that 

allow one to understand how a change in a potential energy surface , 

isotopic substitution, or reagent excitation will affect the collision 

process [2]. These simple models and pictures are particularly useful 

in interpreting the results of quantum mechanical calculations [ 3], 

which, by themselves, give good values for reaction probabilities, but 

do not provide any insight as to how chemical reactions occur [ 4 ]. 

In this paper, we briefly report the results of quantum mechanical 

calculations on the collinear system 

Cl' + HCl (v) Cl' + HCl (v' < v) 

Cl'H (v" < v) + Cl 

(la) 

(lb) 

on two potential energy surfaces. We focus in particular on one seem­

ingly surprising aspect of the dynamics: in vibrationally nonadiabatic 

collisions, the probabilities, and thus the rates, of the nonreactive (la) 

and reactive (lb) processes are almost equal, although this is not true 

for vibrationally adiabatic collisions. We show that this result is 
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obtained approximately in collinear quasi-classical trajectory calcula­

tions , and that by analysis of reactivity bands and individual trajectories 

we can understand why this should be so. 

In Section 2 we briefly de scribe the method of calculation and the 

potential energy surfaces used. In Section 3 we present the results of 

the quantum mechanical and quasi-classical trajectory calculations. In 

Section 4 we discuss and interpret the results obtained. 
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2. Com utational Methods and Potential Ener y Surfaces 

The quantum mechanical calculations on reactions (1} were per­

formed using the method of hyperspherical coordinates [5, 6]. This 

method allows one to treat heavy-light-heavy mass combinations with­

out difficulty, in spite of the small skew angle (13. 59°) between the two 

arrangement channels in Delves mass-weighted coordinate system [7]. 

This technique has previously been used by two different groups to study 

the reaction [5b, 6e] 

I' + HI - I' H + I (2) 

and similar results have been obtained, giving one substantial faith in 

its applicability to these mass combinations. 

In the calculations reported here, eight even and eight odd basis 

functions were used at lower energies and 12 even and 12 odd at higher 

energies. Convergence of the transition probabilities (estimated by 

varying the basis set and integration stopping point) to ± 0. 001 and flux to 

± 0. 0002 was obtained at nearly all energies. The highest energy for 

which calculations were performed was 1. 24 eV above that of HCl (v = 

0). Standard methods were used for the collinear quasi-classical 

trajectory calculations [1 ]. Trajectories were started with the distance 

from the Cl' atom to the HCl center of mass, RCl', HCl at 12 bohr, and 

were terminated when either distance, RCl', HCl or Rcl, HCl', was 

more than 12 bohr. 

Two different LEPS [8] surfaces were used. The molecular 

parameters for HCl and C~ were those of Connor et al. (9]. Two values 

of the Sato parameter were chosen (0. 138 for surface A; 0. 185 for 
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surface B). These correspond to surfaces {i) and {ii) of Smith [10], 

and have barrier heights of 6. 21 and 1. 89 kcal/mole, respectively. 

Parameters and properties of the potential energy surfaces are shown 

in table 1. The higher barrier height corresponds roughly to the 

experimental activation energy [11] and also to the upper limit to the 

barrier as predicted in ab initio calculations [12]; the lower barrier 

height is close to the predicted lower limit [12), and was found by 

Smith to lead to better agreement between quasi-classical trajectory 

calculations (10) and experiment [13] for the deactivation process 

Cl + H(D)Cl (v == 1) - Cl + H(D)Cl (v == 0). (3) 

It is expected, then, that the actual barrier height is somewhere within 

these two limits. The potential surface is plotted in Delves [7] mass­

weighted coordinates in figs. 4 and 5 , where selected trajectories are 

plotted. 
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3. Results 
~ 

In fig. 1, we present a plot of the probability versus energy 

curves for vibrationally nonadiabatic, nonreactive processes, defined 

as process (1a), with v = 2 and v' = 0 and 1 (P;;: and PX, respectively), 

and the corresponding reactive processes P~ and P~ for calculations 

on surface B. State-to-state rate constants are calculated from the 

reaction probability versus energy curves, and these are plotted in the 

form of Arrhenius plots for the four transitions in fig. 2. While the 

shape of the probability versus energy curves and rate constant curves 

are different on surface A, two of the most striking features are seen 

there also: the near equality of the corresponding reactive and non­

reactive probabilities and rates, and also the dominance of single­

quantum deactivating transitions. Hence, since the features of the 

dynamics of interest here are common to both surfaces , we will 

restrict further study to surface B. 

The results of the quasi-classical trajectory calculations are 

presented in fig. 3 for a series of translational energies (energy above 

the v = 2 level). In the figure the final action of the diatomic product 

(HCl or HCl') is plotted versus the initial vibrational phase of the HCl 

reagent. The reactive or nonreactive nature of the collision is also 

indicated. In addition, the duration of the trajectory is plotted. 

One can clearly see that the trajectories giving rise to vibration­

ally nonadiabatic trajectories are localized in the two regions at the 

boundary between the reactive and nonreactive bands. As the energy 

decreases, the boundary region between the bands becomes diffuse, 

much more so for the activating transitions than the deactivating ones. 
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At the lowest energies, where quantum mechanically nc vibrational 

excitation is possible, the actions versus phase curve appears to be a 

collection of random points. The near symmetry of the reactive and 

nonreactive bands about a vertical line drawn through the center of the 

gap between the bands shows that one could expect nearly equal amounts 

of reactive and nonreactive products for vibrational deactivation, in 

agreement with the quantum mechanical results. 

The funnel-shaped nature of the action versus phase curves near 

the boundary between the bands demonstrates the classical nature of the 

preference for single-quantum deactivations. Multiple quantum deacti­

vations can only occur for a very small range of phases about the center 

of the gap. One can also see that the time for completion of the trajec­

tory has a minimum at the deactivation gap (due no doubt to the fast 

nature of the exit process when all energy has been converted "to trans­

lational energy) and a maximum at the activation gap. The fact that the 

trajectory time increases much more rapidly for activating collisions 

than it decreases for deactivating ones, especially at lower energies, 

suggests that for classically activating collisions the slowness is not a 

purely kinetic energy effect; the trajectories giving rise to vibrational 

excitation must be significantly more complex than those leading to 

relaxation. 
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4. Discussion and Conclusions 

The increase in trajectory time and in the vibrational action of 

the diatomic product across a gap in the reactivity bands has been 

observed before by various workers in collisions of ground vibrational 

state molecules (14, 15). Attention has seldom been directed to these 

phenomena in collisions of vibrationally excited molecules, however [16]. 

Nevertheless, the theory and intuition developed for the ground state 

case appears to carry over with some modification to the vibrationally 

excited state case considered here (14 ]. 

Pechukas and Pollak [17] have shown that the sharp increase of 

the final action and trajectory time versus phase plots across the band 

gaps is due to the existence of "trapped trajectories" that occur when 

the initial phase is quite close to that of the center of the gap. They 

have identified three different kinds of trapped trajectories [17], most 

importantly the first kind, in which the mass point vibrates forever 

between the two contours whose energy is that of the total energy present, 

and the second kind, in which the mass point vibrates in a way such that 

it touches only one of the energetically limiting trajectories. It is clear 

that motion along the symmetric stretch line would constitute a trapped 

trajectory of the first kind. 

Our goal, then, is to determine what kind of trajectory, which 

must not be terribly different from a trapped trajectory, gives rise to 

vibrational deactivation. This trajectory must have the property that 

it causes the mass particle to "forget" from which arrangement channel 

it entered if there are to be equal reactive anc nonreactive probabilities. 

Since the trajectory time associated with vibrational deactivation 
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is short, this trajectory cannot have that of an especially long-lived 

complex (one spending a far greater time in the saddle point region of 

the potential energy surface than a nearby less nonadiabatic trajectory). 

Examination of a number of trajectories shows that the limiting trapped 

trajectory for vibrational deexcitation is motion along the symmetric 

stretch line. In vibrationally deactivating collisions at some time the 

mass particle, the motion of which in Delves coordinates is equivalent 
1 

to that of the actual system [the single particle of mass mClmH 2 • 
1 

(2mCl + mHf2 ], lies along the symmetric stretch line beyond the 

saddle point, and has its velocity directed along the line towards the 

saddle point, (RCl' -H = RH + Cl = R:f ). At that time, the trajectory 

obeys the equations 

dRCl'-H 

dt 

dRH-Cl ;:::::: < 0 • 
dt 

(4a) 

(4b) 

A fairly typical trajectory resulting in substantial vibrational deactiva­

tion is shown in fig. 4a. Since this trajectory involves motion essen­

tially along the symmetric stretch line, it means that to a good approxi­

mation, the mass particle has forgotten its channel of origin. That this 

type of trajectory leads to conversion of vibrational energy to transla­

tional energy has been observed by Wright et al. [15] in their study of 

the H + ~ reaction. This effect is not observed in adiabatic reactions. 

A typical vibrationally adiabatic trajectory is shown in fig. 4b. 

Examination of trajedories shows that trajectories leading to 

vibrational activation are in some ways the reverse of those leading to 
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vibrational deactivation. Early on the trajectory first undergoes near­

periodic motion near the saddle point (similar to a trapped trajectory 

of the second kind). At some time later the mass particle climbs the 

symmetric stretch line beyond the saddle point with its velocity directed 

towards dissociation. At lower energies, especially below the quantum 

mechanical energetic threshold for activation, the trajectory may then 

become highly complicated, undergoing near-periodic motion character­

istic of motions of trapped trajectories of the first kind. For these 

trajectories roughly equal amounts of reactive and nonreactive products 

should be obtained. A typical trajectory resulting in vibrational excita­

tion at high energy is shown in fig. 4c. 

Three-dimensional trajectories have been calculated for the Cl + 

HCl system by a number of workers [10, 19]. The calculations show 

competitive rates for reactive and nonreactive deactivations. The 

uncertainty associated with the assignment of final quantum numbers in 

quasi-classical trajectory calculations makes a detailed comparison of 

the state-to-state deactivation rates difficult. The trajectory calcula­

tions all indicate that in three dimensions, the dominant pathway for 

vibrational relaxation is V - R energy transfer [1 0, 19], rather than 

V - T, as is necessarily the case in collinear collisions. 

The fact that the same equality of reactive and nonreactive deact­

ivation rates was obtained on the two potential energy surfaces suggests 

that this effect is not immensely dependent on the surface used (for a 

sufficiently high barrier, of course, the reactive probabilities will go 

to zero at low energies). As this near-equality is not obtained for the 

H + H2 reaction (although as the reagent vibrational state increases, 
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the reactive and nonreactive deactivation rates do approach one another 

(20]), it seems reasonable that this equality is a mass effect, arising 

from the small skew angle. We hope to document this in the future. 

In a future publication, we will fully discuss the results of 

classical and quantum calculations on these systems [21 ]. 

Acknowledgements 
~ 

The calculations reported here were performed on the Dreyfus­

NSF Theoretical Chemistry Computer (VAX 11/ 780) which was funded 

through grants from the Camille and Henry Dreyfus Foundation, the 

National Science Foundation (Grant No. CHE78-20235), and the Sloan 

Fund of the California Institute of Technology, and on the IBM 370/ 158 

computer of Ambassador College, Pasadena, California, for which we 

express our appreciation. 



526 

References 

[1] R. N. Porter and L. M. Raff, in: Dynamics of Molecular 

Collisions, Part B, ed. W. H. Miller (Plenum Press, New 

York, 1976) pp. 1-52; D. G. Truhlar and J. T. Muckerman, in: 

Atom-Molecule Collision Theory, ed. R. B. Bernstein (Plenum 

Press, New York, 1979) pp. 505-565. 

[2] J. C. Polanyi and J. L. Schreiber, in: Physical Chemistry, An 

Advanced Treatise, Vol. VIA, ed. W. Jost (Academic Press, 

New York, 1974), Chap. 6; P. J. Kuntz, in: Dynamics of 

Molecular Collisions, Part B, ed. W. H. Miller (Plenum Press, 

New York, 1976) pp. 53-120. 

[3] A. Kuppermann, in: Theoretical Chemistry: Advances and 

Perspectives, Vol. 6A, ed. D. Henderson (Academic Press, 

New York, 1981) pp. 79-164. 

[ 4] Some information concerning how the reaction takes place may 

be obtained by looking at probability densities and streamlines of 

probability current density that can be calculated from the wave-

functions in quantum mechanical scattering calculations. See, 

for example, E. A. McCullough, Jr., and R. E. Wyatt, J. Chern. 

Phys. 54 (1971) 3578; A. Kuppermann, J. T. Adams, and D. G. 

Truhlar, in: Electronic and Atomic Collisions, Abstracts of 

Papers of the 8th International Conference on the Physics of 

Electronic and Atomic Collisions, Belgrade, Yugoslavia, eds. 

B. C. C~bic and M. V. Kurepa (Institute of Physics, Belgrade, 

1973) p. 229 ; S. L. Latham, J. F. McNutt, R. E. Wyatt, and 

M. J. Redmon, J. Chern. Phys. 69 (1978) 3740; J. F. McNutt 



527 

and R. E. Wyatt, in: Potential Energy Surfaces and Dynamics 

Calculations, ed. D. G. Truhlar (Plenum Press, New York, 

1981) pp. 495-517. 

[5] (a) A. Kuppermann, J. A. Kaye, and J. P. Dwyer, Chern. Phys. 

Letters 75 (1980) 257; 

(b) J. A. Kaye and A. Kuppermann, ibid. 77 (1981) 573. 

(c) J. A. Kaye and A. Kuppermann, ibid. 78 (1981) 546. 

[6] (a) G. Hauke, J. Manz, and J. Romelt, J. Chern. Phys. 73 

(1980) 5040. 

(b) J. Romelt, Chern. Phys. Letters 74 (1980) 263. 

(c) J. Manz and J. Romelt, ibid. 76 (1980) 333. 

(d) J. Manz and J. Romelt, ibid. 77 (1981) 172. 

(e) J. Manz and J. Romelt, ibid. 81(1981)179. 

[7] L. M. Delves, Nucl. Phys. 9 (1959) 391; 20 (1960) 275. 

[8] S. Sato, J. Chern. Phys. 23 (1955) 592, 2465. 

[9] J. N. L. Connor, W. Jakubetz, J. Manz, and J. C. Whitehead, 

J. Chern. Phys. · 72 (1980) 6209. 

[10] I. W. M. Smith, J. Chern. Soc. Faraday Trans. II 71 (1975) 

1970. 

[11] F. S. Klein, A. Persky, and R. E. Weston, J. Chern. Phys. 41 

(1964) 1799; F. S. Klein and A. Persky, ibid. 59 (1973) 2775. 

[12] P. Botschwina and W. Meyer, Chern. Phys. Letters 44 (1976) 

449. 

(13) R. D. H. Brown, G. P. Glass, and I. W. M. Smith, J. Chern. 

Soc. Faraday Trans II 71 (1975) 1963. See also M. Kneba and 

J. Wolfram, J. Phys. Chern. 83 (1979) 69 and R. G. MacDonald 



528 

and C. B. Moore, J. Chern. Phys. 73 (1980) 1681, and refer­

ences therein. 

(14] F. T. Wall, L. A. Hiller, Jr. , and J . M azur, J. Chern. Phys. 

29 (1958) 255; J. W. Duff and D. G. Truhlar, Chern. Phys. 4 

(1974) 1; Chern. Phys. Letters 40 (1976) 251 ; J. R. Stine and 

R. A. Marcus, ibid. 29 (1974) 575; R. E. Howard, A. C. Yates, 

and W. A. Lester, Jr., J. Chern. Phys. 66 (1977) 1960; J. S. 

Hutchinson and R. E. Wyatt, ibid. 70 (1979) 3509. 

(15] (a) J. S. Wright, G. Tan, K. J. Laidler, and J. E. Hulse, 

Chern. Phys. Letters 30 (1975) 200. 

(b) J. S. Wright, K. G. Tan, and K. J. Laidler, J. Chern. 

Phys. 64 (1976) 970. 

(c) J. S. Wright and K. G. Tan, ibid. 66 (1977) 104. 

(d) K. G. Tan, K. J. Laidler, and J. S. Wright , ibid. 67 (1977) 

5883. 

(16] N. Sathyamurthy, Chern. Phys. Letters 59 (1978) 95; M. S. 

Child and K. B. Whaley, Disc . Faraday Soc. 67 (1979) 57; J. C. 

Gray, G. A. Fraser, and D. G. Truhlar, Chern. Phys. Letters 

68 (1979) 359. 

[17] P . Pechukas and E. Pollak, J . Chern. Phys. 67 (1977) 5976. 

(18] E. Pollak and P. Pechukas, J. Chern. Phys. 69 (1978) 1218. 

(19] D. L. Thompson, J. Chern. Phys. 56 (1972) 3570; R. L. 

Wilkins, ibid. 63 (1975) 534. 

(20] J. A. Kaye and A. Kuppermann, unpublished results. 

(21] J. A. Kaye and A. Kuppermann, manuscript in preparation. 



52 9 

Table 1 

Parameters and properties of LEPS potential energy surfaces A and B. a) 

HCl 

,S/ bohr- 1 0.9892 

Re/ bohr 2. 4060 

De/ eV 4.6258 

A A 0.138 

B 0.185 

saddle point location/ bohr 

A 

B 

(1. 459, 1. 459) 

(1. 443, 1. 443) 

barrier height/ (kcal/mole) 

A 

B 

6.21 

1. 89 

HCl zero point energy/ eV 

A 

B 

0.1838 

0.1836 

a) Masses used: mCl = 34. 6974 mH. 

c~ 

1. 0626 

3.7791 

2.5169 
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Figure 1. Cubic spline fit to quantum mechanical probabilitie s of state-

to-state transitions versus reagent translational energy for vibrational 

deactivation in collinear collisions of Cl + HCl (v = 2): P;;: (solid line), 

P 2Y (dashed line), P~ (dotted line), and P~ (dashed-dotted line). Note 

expanded vertical scale (full scale corresponds to probability of 0. 04). 

Figure 2. Arrhenius plots of state-to-state rate constants for vibra­

tional activation in collinear collisions of Cl + HCl (v = 2). The rate 

constants were calculated from the quantum mechanical transition 

probabilities. The lines represent the same transitions as in fig. 1; 

markers represent the points calculated. kz~ (0 ) ~ kz~ (.6.), h~ (+), ~ (x). 

Figure 3. Plots of final vibrational action (left ordinate) versus initial 

phase of reagent HCl (v = 2) in collinear collisions of Cl + HCl (v = 2). 

In the region in which the curves are smooth, a solid line represents 

reactive collisions and a dashed line represents nonreactive collisions. 

In the non-smooth regions, open circles are used to indicate reactive 

collisions and open squares to indicate nonreac tive collisions. The 

time of the trajectory (the time scale is on the right ordinate) is shown 

by a dotted line in its smooth region and by closed circles elsewhere. 

Curves are for translational energies of 0. 5 eV (top), 0. 3 eV (middle), 

and 0. 1 eV (bottom). 

Figure 4. Plots of typical trajectories (dashed-dotted line) superim­

posed on a contour plot of the potential energy surface (surface B) in 

Delves mass-weighted coordinate system. Contours are drawn every 

0. 4 eV from 0. 2 to 3. 0 eV, measured with respect to the bottom of the 



5 3 1 

HCl well. An x is drawn at the saddle point. The trajectories were 

started at R = 24. 75 bohr in the entrance channel (at the lower right) 

and terminated in the exit channel (upper right), well past the limits of 

the plot. Trajectories shown are for a translational energy of 0. 3 e V. 

(a) Vibrationally adiabatic trajectory-initial phase = 0. 50 radians, final 

action = 1. 981 ; (b) vibrational deactivating trajectory-initial phase = 

2. 9293 radians, final action = -0. 115; (c) vibrationally activating 

tra je ctory-initial phase = 4. 09 radians , final action = 2. 821. 
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III. 8 COLLINEAR QUANTUM MECHANICAL PROBABILITIES 

AND RATE CONSTANTS FOR THE Br + HCl(v=Z, 3 , 4) 

REACTION USING HYPERSPHERICAL COORDINATES 
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I. INTRODUCTION 

Reactions of halogen atoms (X) with hydrogen halides (HY) 

of the type 

X+HY~XH+Y 

have been the subject of a great deal of experimental and theoretical 

work (1). Exothermic reactions of this ty-pe produce inverted popula­

tion distributions of vibrational levels (2) and can thus be used as 

the pumping step in chemical lasers (3). The fairly small energy 

difference between the ground (
2

P 
3 12

) and first excited (
2

P 
1 

/2) state 

of the halogen atom allows one to look at the possibility of electron­

ically non-adiabatic processes (4). Endoe rgi c reactions of this type 

are known to be greatly accelerated by vibrational excitation of the 

hydrogen halide reagent (5). 

Theoretical treatments of these reac tions are more difficult, 

however. Not only must one have an accurate potential energy sur­

face in order to perform reliable scattering calculations, but one 

must also consider the possibility of multiple- surface collisions. 

Single-surface quasi-classical trajectory calculations on these sys­

tems have usually been able to match experimental product state 

distributions, but have not had much success in duplicating other 

experimental results (isotope effects, temperature dependence, rate 

constants) (6). 

Quantum mechanical treatments of these reactions have been 

limited, because the traditional methods of attacking collinear atom­

diatomic molecule collisions (7, 8) are not well suited to collisions 

in which a light atom is transferred between two heavy ones. This 

difficulty has recently been overcome by the development of the 

collinear hyper spherical coordinates technique (9, 10 ), which allows 

one to perform reactive scattering calculations efficiently for heavy­

light-heavy (H-L-H) systems. Studies of systems of this type using 

this method have previously been limited to exchange reactions of 

( 1 ) 
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identi cal atoms (symmetric systems), such as (9b, 10e) 

I I + HI --+ I I H + I ( 2 ) 

In this work we r epo rt the results of calculations on the asymmet ­

ri c system Br + H C l for the processes 

Br + HCl(v=2, 3, 4) ~ BrH(v') + Cl (3a) 

--t Br + HCl(v'( v) (3b) 

These processes (5, 11) and the reverse reaction (12) 

Cl + HBr ~ ClH + Br (4) 

have been studied experi mentally and in three dimensional quasi­

c lassical trajectory c alculations (5 , 13 ). A preliminary a ccount of a 

collinear quantum me chanica! c al culation on reaction 4 has been r e ­

ported previously (14). 

In s ection 2 we briefly dis cuss the a pplicatiop of the hyperspheri­

cal coordinate method to asymmetri c s ystems and the surface used. 

In se c tion 3 we present and dis cuss the results, and in se c tion 4 we 

summ arize the results and c onclusions. 
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II. COMPUTATIONAL METHOD AND POTENTIAL ENERGY SURFACE 

We have discussed our hyperspherical c oordinate method for 

symmetric systems previously (9), and the modifi c ation of the 

method for asymmetric systems is straightforward. The basic idea 

of the method is to express the problem in the polar coordinates p, a , 

, and expand the wave fun c tion in a set of eigenfunctions of the hamil­

tonian at constant p. Two simple changes are involved in going from 

symmetri c to asymmetri c systems. 

a) "Whereas in symmetric systems the integration of the coupled 

channel equations could be done for the symmetric and antisymmetric 

solutions separately, such a decoupling is no longer possible 

b) At large values of p, it previously suffi c ed to project the 

wave fun c tion onto a basis set of the eigenfunctions of one diatomi c 

molecule only; two such projections, for HX and HY, are now re­

quired. 

We have verified the accuracy of our asymmetri c hyperspheri c al 

coordinates program by performing s c attering c alculations on the 

F + Hz system on the F + HZ system on the Muckerman V surface 

(15), and achieved agreement with previous results (16) to within 

3% or better at energies near the resonance. A plot showing proba-

bilities for the reaction ? + HZ(v= O) __, FH(v=Z) + H obtained b y 

the hyperspherical c oordinate method and previous method is shown 

in figure 1. The rapid convergence of this technique with respect to 

the number of basis functions seen for the H +HZ system (9a) is als o 

seen for the F + H system; with sufficiently frequent changes of 
z 

basis fun c tions, results converged to approximately ± 0. OZ in the 

low energy region (up to 0.10 eV translational energy) can be obtained 

with 7 basis functions (5 open, Z closed, c orrelating asymptoti c ally 

to one closed state of each of the Hz and HF mole cules). 

1Z-14 basis functions were used in all the calculations reported 
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here. This is far more than needed in the lowest energy region 

(equivalent results were obtained with only 8 channels in this energy 

region) . Transition probabilities should be good to ±0. 002 for nearly 

all transitions and energies; in many cases they are probably good to 

better than ± 0. 001. Small transition probabilities (i.e. those signif­

i c antly smaller than 0. 001) probably have fairly large relative errors 

("-10 o/o ) as seen by oscillations in the probability vs. energy curves to 

be shown below. Flux was normally conserved to better than ±0.001. 

Deviation of the scattering matrix from unitarity in c reased gradually 

with energy until at the highest energies studied ( 1. 15 e V above the 

HBr ground state) flux was converged to ±0. 008. 

The potential energy surface used 1s essentially that o f Baer 

(14). It is an LEPS (17) surfa c e, with all Sato parameters set to 

0. 154. The Morse oscillator parameters are those of Douglas, et 

al (5). The surface has a barrier to exhange of 1 kcal/mole . This 

surfac e is not designed to a ccurate ly mimic the real one; inadequa­

cies are suggested by the difference between the observed (12) and 

calculated (14) vibrational product state distribution for reaction 4. 

A plot of the surface in the Delves coo rdinate system (7 c , 9a) is 

shown in figure 2. 
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III. RESULTS AND DISCUSSION 

A plot of the energies of the basis functions as a fun c tion of the 

propagation coordinate pis shown in figure 3. Transition probabili­

ties for reactions 3a and 3b are presented as a function of reagent 

translational energy in figure 4 for v = 2 (figure 4a), v = 3 (4b), and 

v = 4 (4c for reaction 3a and 4d for 3b). Corresponding Arrhenius 

plots of the thermal rate constants for these transitions are presented 

in figure 5. 

There are three major features of the dynamics, as may be 

readily seen by examination of figures 4 and 5: 

a) The only transition probability which can a chieve a sub stan-

tial value (greater than 0. 1) is that for reac tion to the energeti c al-

ly n earest HBr state. Thus, Br + HCl (v=2, 3, 4) reacts predominantly 

to form HBr(v=O, 1, 2), respectively. The near-degeneracy of HCl(v) 

and HBr(v-2) may be seen in figure 3. 

b) Transitions involving a large change in vibrational quantum 

number are far les s likely than those involving a smaller change . 

This may be seen espe c ially clearly by considering the state-to-state 

rate constants in figure 5, where the large separation between the 

curves is indi c ative of the large differenc e in rate constants and thus 

reaction probabilities. 

c) Probabilities and rate s of transitions to near-degenera te 

product states are nearly equal: this may be seen for thre e p airs of 

reactions: 

Br + HCl(v=3 ) ---7 BrH(v=O) + Cl, 

Br + HCl(v=4) -4 BrH(v= 1) + Cl , 

----+ B r H ( v= 0 ) + Cl , 

Br + H Cl (v= 2) 

Br + HCl(v=3) 

Er + H Cl(v=2) 

The c alculation of the transition probability to the energetically 

nearest HBr state as the only one reaching an appre ciable value is in 

agreement with the results of experimental studies (5) of the removal 

of HCl(v=Z, 3, 4) by Br atoms; in particular, the observation that the 
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greater rapidity of removal of these levels of HCl than of the v= 1 

level must be due to chemical reaction (process 3a) and not inelastic 

non-reactive collisions (process 3b). While we have not extended our 

calculations below the HBr(v= O) level, as is necessary to calculate 

rates for the deactivation rate from HCl(v=1), it seems quite reason­

able to expect that that rate would be signifi c antly slower than those 

shown here. The relative rates of removal of H Cl(v ) obtained h e re 

do not agree with those determined experimentally, however. We 

calculate HCl(v=3) to be removed more rapidly than either H Cl(v =2 ) 

or HCl(v=4); experiments show the rate to increase as vis increased 

from 1 to 4 (5). 

This disagreement is not surprising, however, as it has been seen 

in sym1netric collisions that the probability vs. energy curves (rate 

constants) for the vibrationally adiabati c ex change reaction X' + HX(v) 

~ X'H(v) +X for X= Cl (18) and X= I (10e, 18) vary substantially 

and irregularly with reagent excitation. In contrast, fo r the H + H
2 

reaction, the differe n ce s between successive probability vs. energy 

curves for vibrationally adiabati c reaction are much more regular 

(9a). The irregularity observed is most likely due to a combination 

of the H-L-H mass combination and the restri ction to c olline arity. 

Three -dimensional quasi- classical trajectory c al culations performed 

on a similar but not identi c al surface ( 13b) show no su ch irregular 

behavio r, while one-dimensional quasi-classic al trajectory c alcula­

tions performed on this surface show irregularity roughly similar to 

that of the quantum results repo rted here ( 19 ). 

A substantial diffe renee b e tween collinear (theoretical) and 

experimental results for this system is quite reasonable in the ligh t 

of experimental results on various exoe rgi c X + HY reac tions, which 

suggest that, at least at low energies, the reaction proceeds by attack 

of the X atom on the Y end of the HY rnole cule, with subsequent H 

atom migration and HX bond formation as the HY bond break s (12, 20). 
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The low probabilities of multi-quantum transitions in non-reactive 

collisions and of reactive transitions to all but the near-degenerate 

level can be understood classically, as c an the near equality of the 

probabilities of reactive and non-reactive transitions to near degene­

rate states. This has been demonstrated in studies of the Cl + HCl 

reaction (21 ). Transitions involving a large change in vibrational 

action (analogous to vibrational quantum number) oc cur at the boundary 

between reactivity bands (22) in plots of the final a c tion versus initial 

vibrational phase. Near the boundary, the final a c tion varies rapidly 

with initial vibrational phase, forming a cusp about some central boun­

dary phase (21). Transitions involving a large change in quantum num­

ber can only occur for c ollisions in a very lirnited range of initial 

phase and are thus unlikely. In symmetri c syst~ms such as Cl + H Cl, 

these transitions involved motion essentially along the symmetric 

stretch line. 'I) a first approximation, then, the system has 11 forgot­

ten' 1 in which channel it began its motion, giving rise to the near 

equivalence of rea ctive and non-reactive transitions to degenerate 

energy levels. 

One must take great c are in relating the results obtained here to 

experimental ones. The collinearity restri c tion is undoubtedly a 

severe one and can be expe cted to lead to qualitatively incorrect re­

sults. The surface used was chosen mainly for its simplicity and 

although it displays the correct energetic s of the system it need not 

otherwise bear a close similarity to the c orrect one. Indeed, Smith 

(13b) performed three dimensional quasi-classical trajectory calcula­

tions on a related potential energy surface (LEPS with Sato parameters 

of 0. 17) and could not get good agreement with experimental results. 

Finally, one must consider the possibility of c ollisi ons invo lving m o re 

than one electroni c potential energy surfac e. Their possible impor­

tance has been considered previously, but the re suits are inconclusive. 
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IV. CONCLUSIONS 

We have shown that the hyper spherical coo rdinate method is 

well- suited to the study of reactions ( 1) and have applied it to the 

Br + HCl(v=Z, 3, 4) system. The major features of the dynamics in­

clude the dominance of the remov al of vibrationally excited HC:l b y 

reaction to the near-degenerate HBr level, the small probability of 

collisions involving a large change in internal energy, and the near­

equivalence of rea ctive and non-reactive processes to near-degene­

rate HCl and HBr levels. Be c ause of the restriction to collinear 

m otion, un ce rtainty in the potential energy surfa ce , and the possible 

role of c ollisions involving more than one electronic potential energy 

surface , these c alc ulations do not have predictive quantitative value, 

and c omparison with experiment should be done .very c autiously. 
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FIGURE CAPTIONS 

Figure 1. Probability of the reaction F + H
2

(v=O) --+ FH(v=2 ) + H 

on the Muckerman V surface as a function of reagent energy. The 

solid line connects results obtained previously; the points represent 

results obtained with the method of hyperspherical coordinates using 

up to 8 basis functions. 

Figure 2. Equipotential contour plot for the B r + H Cl system. The 

solid curves are the contours and are equally spac ed in increments of 

0.4 eV from 0.2 to 3.8 eV. The zero of energy is the bottom of the 

HCl well. The surface 1s plotted in the Delves coordinate system. 

Figure 3. Hyperspherical coordinate eigenvalues E (p) as a function 
n 

of the propagation coordinate p. Values of n for the curves are shown 

at the top of the figure. The asymptotic states to which each of the 

curves correlates is indi c ated at the right of the figure. 

Figure 4. Transition probabilities P , Rand P ,v for the processes 
vv vv 

Br + HCl(v=2 , 3, 4) ~ HB r(v') + Cl, Br + HCl(v 1 <. v) as a fun c tion of 

initial relative translational energy. The lines are cubic spline fits 

to the points shown. Line types and symbol meanings are indic a ted in 

the figures. a) v = 2; b) v = 3; c ) v = 4 - reactive only; d) v = 4 -non-

reactive only. 

Figure 5. 

k V for 
vv' 

R 
Arrhenius plots of state-to -state rate constants k , 

vv 
the processes Br + HCl(v) --t HBr(v') + Cl, Br + HCl(v'( 

v). The four plots are similar to the corresponding four plots in 

figure 4 with respect to line and symbol usage. 
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III. 9 ASYMPTOTIC PROPERTIES OF HYPERSPHERICAL 

COORDINATE BASIS FUNCTIONS AND THEIR MATRIX 

ELEMENTS IN THE ADIABATIC REPRESENTATION 
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ASYMPTOTIC PROPERTIES OF HYPERSPHERICAL COORDINATE 

BASIS FUNCTIONS AND THEIR MATRIX ELEMENTS 

IN THE ADIABATIC REPRESENTATIONt 

Jack A. KA YEt and Aron KUPPERMANN 

~rthur Amos Noyes Laboratory of Chemical Physics, 

California Institute of Technology 

Pasadena, California 91125, USA 

Asymptotic properties of two different sets of basis functions for 

a hyperspherical coordinate treatment of the reactive collinear atom­

diatomic molecule collision have been determined by numerical calcula­

tion. One of the basis sets is the one used in previous hyperspherical 

coordinate calculations on H + H2 , I +HI, and a model problem allowing 

for collision-induced dissociation; the other involves a cut through the 

potential energy surface consisting of two straight lines connected by 

an arc. Eigenvalues of the basis functions and elements of the 

matrices which couple the equations when the problem is formulated in 

the adiabatic representation have been obtained on two potential energy 

surfaces. Analysis of the properties of these matrices yields predic­

tions of properties of the matrices which are verified in the numerical 

calculations. Asymptotic behavior of the eigenvalues and matrix 

elements of the eigenfunctions and the potential has been studied, as 

tThis work was supported in part by a Contract (No. F49620-79-C0187) 

from the US Air Force Office of Scientific Research. 

twork performed in partial fulfillment of the requirements for the 

Ph.D degree in Chemistry at the California Institute of Technology. 
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have the differences between the matrix elements with the two basis 

functions. The implications of the large p behavior observed on the 

asymptotic properties of the radial Schrodinger equation will be dis­

cussed. Preliminary results of numerical integration of the adiabatic 

equations are presented and interpreted in terms of a simple 2 x 2 

model. 
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I. Introduction 
~ 

The method of hyperspherical coordinates has been demonstrated 

to be a simple and effective one for the quantum mechanical study of the 

collinear reactive collision of an atom with a diatomic molecule. l-
8 

Using this technique, transition probabilities have been determined for 

1 2 8 the H + H2 and I + HI ' systems, as well as for a model system 

above the threshold for collision-induced dissociation (CID). 2' 6 

One major consideration in using the hyperspherical coordinates 

in quantum mechanical studies of reactive scattering is the value of the 

radius p to which one must integrate in order for transition probabilities 

to converge. If this value is too large, then the calculation becomes 

irnpactical. So far, essentially converged transition probabilities, both 

above and below dissociation, have been obtained without the need for 

integrating so far out that the value of p becomes inconveniently large. 

In considering the CID problem, however, one is interested not 

only in transition probabilities, but in partitioning probabilities, that is, 

the probability for producing dissociated products for which the center­

of-mass energy of the product is distributed in a given way. At a large 

value of p (76 bohr in the mode, CID case) where CID probabilities 

essentially converged (the calculated probabilities are probably good to 

± 0. 01), these partitioning probabilities have not converged with respect 

to the stopping point of the numerical integration. If integration is con­

tinued further (to 110 bohr) they do begin to show signs of convergence. 

The partitioning probabilities are discussed elsewhere. 9 The inter­

action between the particles has died off at a much smaller value of p, 
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however, hence, the variation in the differential probabilities must be 

due to coupling introduced into the equations by the coordinate system 

(inaccuracies in the projection of the bound states onto Cartesian 

coordinate basis functions could also be partly responsible). 

At large values of p, then, the problem to be considered is 

essentially that of a particle moving in a potential which varies in a 

known way with p. Since this variation with p is fairly simple, one 

hopes that either an analytic approach or a numerical one based on 

properties of the basis functions used (and their matrix elements) 

could allow one to introduce the correct asymptotic behavior without 

integration to large values of p. 

In this paper we consider two different aspects of basis functions 

for a hyperspherical coordinate treatment at the reactive collinear 

atom-diatom molecule collision. We calculate these basis functions at 

large values of p (p ~ 5000 bohr) and obtain the matrices responsible 

for coupling equations when written in the adiabatic representation. 

Particular interest is paid to the p dependence of these quantities, 

especially when there exist relationships of the form 

-v 
Q;\k a: p 

where Q.>tk is some quantity (eigenvalue, matrix element) and v is a 

limiting exponent of some sort. Finally, of the two different sets of 

basis functions studied, we consider whether one is superior in terms 

of its asymptotic properties. 

The outline of the paper is as follows. In section II we review 

the hyperspherical coordinate picture and the equations which the two 
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different basis sets satisfy. We then formulate the coupled channel 

problem in the adiabatic representation (an earlier description of the 

method1 used the diabatic representation) and deduce some properties 

of the coupling matrices and some rna trices generated in the course of 

integrating the coupled equations in the adiabatic representation. In 

section III we review the numerical techniques used in all the calcula­

tions reported here, and results of the calculations are given in section 

IV. In section V the results are discussed, and section VI consists of 

a summary of conclusions. 

A o The HYPerspherical Coordinate Picture 

The details of the hyperspherical coordinate system have been 

given in reference 1 so we will only review those portions of it relevant 

to the calculation of basis functions. Recall that each solution lflj of 

the Schrodinger equation is expanded in terms of an infinite and discrete 

set of orthonormal basis functions cpi(ex ;o) which are calculated at only 

certain values of p = o: 

, r,. = p -~ 0 cp . (ex ; p) g .. (p ; p) 
~] i 1 1] 

(2) 

Each basis function cp i satisfied the equation 

ti2 a2 
- ~ - ¢

1
. (ex ; /)) + V(a ; p) ¢

1
· (ex; p) = E

1
.(o) ¢

1
.(a ;p) 

21J.p oex 2 

(3) 

subject to the boundary conditions 
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(4) 

where the value of amax is determined by the masses of a, b, and c. 

We will be interested in the appearance of the basis functions cf>i (a ;p) 

in the limit of large p. As mentioned earlier at very large p there is 

essentially no interaction between at least two of the particles. 

In the diabatic picture, the coupled channel equations which 

must be integrated are coupled by the potential term - i.e. , terms of 

the form 

a max 
Vij(p;p) = { cf>i(a ;p)V(p,a) cf> j(a ;p)da (5a) 

0 

and 

Offiax 
Vij(p) = { cf>i(a;p) V(p;a)cf>j(a;p)da. (5b) 

0 

One would expect the V ij (p; p) term to vary discontinuously with 

distance because the basis functions change for every new p. This 

complicates analysis of the large p (and p) properties of these matrix 

elements. 

To avoid this complication, one may work instead in the adiabatic 

representation, in which basis functions are calculated at all values of 

p. These basis functions will solve a form of eq. (3) in which pis every­

where replaced by p. Since the basis functions are now explicit 

functions of p, one must differentiate them with respect top in sub­

stituting an expansion similar to that of eq. (2) into the Schrodinger 

equation for the problem (eq. (4) in ref. 1). 
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After some algebra one may show that the radial wavefunction 

elements gk.( o) satisfy the following equation: J . 

2 
d gk. " (1) dgij ~ (2) 
d p2 J (p) + 2 { : .! Tk. (p) (p) + ~I Tk. (p) g .. (p) 

1 1 d p 1 1 1) 

(6) 

(1) (2) 
where the matrix elements Tkj (p) and Tkj (p) are defined as follows: 

(1) ~ax a cfJ. 
T kj (p) = r cpk (p) ~(p) da (7a) 

0 

~ax 
2 

T(2) (p) 
a cfJ. 

= r cpk (o) --ij- (p) d a 
kj 0 

(7b) 

and Ek(p) is the eigenvalue associated with a given cpk(p). In matrix 

form equation (6) may be written as 

(1) (2) 
g" + 2 T g' + T ~ = E g (8) 

where the matrix ~ (p) is a diagonal matrix whose elements are given 

by the relationships 

i = j (9) 

i ;r j 



570 

Hence, the equations to be integrated are coupled by matrix elements 

of the basis functions and their p-derivatives. Since in the adiabatic 

representation the basis functions vary smoothly with p, the matrices 

T(1
), T(•), and~ should vary smoothly with p, simplifying analysis of 

- - -

their large p behavior. 

B. An Alternative Basis Set 

The basis functions ¢ , used in section A (and in reference 1), are 

calculated along an arc cut through the potential surface at a constant 

value of p =constant. It is known that for bound states, at small 

values of p, these do not provide a good description of the bound states 

of the molecule, which are instead best described by basis functions 
1 

[ ( 
2 2 2] calculated along cuts of r A = constant recall p = RA + r A.) . By 

projecting the wavefunction onto a set of Cartesian coordinate basis 

functions, at a moderate value of o ("' 7 bohr) Kuppermann et al.1 were 

able to converge their H + H2 transition probabilities far sooner than 

Romelt whose probabilities continued to oscillate at larger values of p. 

This suggests that a better basis set than the purely polar ones defined 

in eq.(3) might be developed by using, rather than an arc at constant p, 

a cut which is at constant RA. and Rk in the A+ vK and A.v + K arrange­

ment channels, respectively, and an arc at some constant p' (opera­

tionally defined in Fig. 1) in the intermediate region, corresponding to 

the dissociative plateau. This coordinate system is pictured in Fig. 1 

(for comparison purposes, an arc at constant pis drawn in also). The 

point at which one switches over from a straight line to an arc is 

arbitrary; ideally it should be sufficiently close to the dissociation 
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limit that its energy is above that of all the bound states of the isolated 

molecules. 

These basis functions, which will be called xn (R, S) to distinguish 

them from the purely polar ¢ n (p, a) used above, satisfy the following 

equations 

112 02 ( ) r-- -- + V (R r ) l X 
1 

(R S) = 
2/l 2 A' A n ' arA. 

+ V(p',a')l X(
2
)(R,S) = 

n 
(10) 

where the superscripts (1), (2), and (3) represent the regions at the 

potential surface marked in Fig. 1, R is as defined as in Fig. 1, and S 

is a transverse variable which is a distance in region 1 and 3 and an 

angle (a') in region 2. 

Across the boundaries the following continuity equations hold: 

a'=a' max 
p' = R-R0 =R' -R~ 

(11) 
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The boundary conditions are simply 

X(1
) (R r = 0) = x(3

) (R' r = 0) = 0 • 
n ' ~ n ' K 

(12) 

Alternatively, one may cast the eqs. (1 0) in terms of a variable s which 

is a smoothly varying distance coordinate which is a distance in regions 

(1) and (3),andanarclength=(p'. a') in region (2). 

s = r.\ for 0 < r-. < r (region (1)) 
1\ ~- 0 

for r-. > r-. , r > r (reg. (2)) 
1\ Ao K K 0 

s = r ... + p' a~ax+(rK -rK) for 0 < r~ < rK (region (3)) 
1\0 0 0 

Since s smoothly varies (and is always a distance) there is no need to 

impose continuity equations of the form of eqs. (1). 

The Xn are normalized as follows: 

(14 

The p' term in the region (2) portion of the normalization integral 

becomes important in the calculation of the adiabatic matrix elements 

T(1
) and T(2

) and causes them to have different properties when 

calculated using the "hybrid" basis functions Xn (R, S) than when 

calculated using the "purely polar" basis functions ¢n (a :o). These 

differences will be outlined below. 
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C. Integrating the Coupled Equations in the Adiabatic Representation 

When integrating the coupled second-order differential equations 

developed in a coupled-channel calculation, it is frequently convenient 

to have no first derivative term. For example, the Gordon integrator10 

in which the term multiplying the g term in an equation of the form 

!i" + ~ (x) ~ = ~ (15) 

is assumed to be linear in x, allows no first derivative term. When 

developed in the adiabatic representation, the coupled channel eqs. 8 

do contain a first derivative term, which must be -removed if one is to 

use an integrator such as Gordon's. The use of such an integrator, in 

which one follows the coefficients of the terms in the differential 

equation rather than following the wavefunction directly (i.e., by a 

brute force numerical integration of the differential equation) is 

particularly important in the CID problem at large p, when all channels 

are energetically accessible and thus highly oscillatory at sufficiently 

high energy. 

To remove the first derivative term, one may define a modified 

radial wavefunction ~ by the transformation 

(16) 

where M is to be determined from the requirement that there be no first 

derivative term in the differential equation for ~. Substitution of eq. (16) 

into eq. (8) and the imposition of this requirement for M give the 

following two equations 
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(17a) 

(17b) 

All of these matrices depend on p; we suppress this dependence for 

convenience. For simplicity, we define the matrix P (not to be con­

fused with the matrix of reaction probabilities) to be the bracketed 

term in eq. (17b) 

(17c) 

hence, eq. (17b) may be rewritten as 

(17d) 

Thus, in the limit of large p, we are interested in the behavior of the 

matrices ~-1 ~M and M-1 ~M. The matrix M may be obtained by 

solution of eq. (17a), which is a first-order matrix differential equation. 

Since at sufficiently large p , T(1
) is expected to become small 

(numerical studies of T(1
), T (2

) , and P will be presented below), M 

might then be expected to become essentially independent of p. Further, 

M and g are independent of energy, hence calculation of g and integra­

tion of eq. (17a) to obtain M need only be done once to get a good 

understanding of the asymptotic properties of eq. (17d) (we also need 

to know the p dependence of e, but this may be determined simply from 

consideration of the e igenvalues associated with the basis functions <Pn 

or Xn· 
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D. Properties of the Adiabatic Coupling Matrix Elements 

Before we attempt to calculate the adiabatic coupling matrix 

elements T(1
), !(2

), and P, it is useful to consider properties imposed 

on them by their definition. In particular, we are interested in funda­

mental differences between the matrices calculated for the purely polar 

basis functions cpn and the hybrid basis functions Xn· 

1. Purely Polar Basis Functions 

The T(1
) matrix can be shown to be skew-symmetric, that is, to 

have the property 

(18a) 

as a simple consequence of the normalization property of the ¢ n. We 

suppress the p depend~nc e of these quantitie s. The ¢ n a r e r eal and ortho­

normal: hence 

(19a) 
0 

so 

(19b) 

hence 

No similar symmetry condition exists for the T(2
) matrix, however. 

This may be shown by differentiating eq. (19b) with respect top: 



(20a) 

so (20b) 

For the diagonal matrix elements 'J~~' then, one sees that 

(20c) 

where brackets represent integrals over a. Since the integrand on the 

right-hand side of eq. (20c) is everywhere positive, the diagonal 

elements of T(
2

) must be negative. 

We may also differentiate the equation for '!_(1
) to obtain an 

expression for (1:(1
))' ' which is one of the components of r. 

so 

T (1) I acpn 
=nn' = (¢ -) 

n ap . 

2 

( ) ~ a¢ , a¢ a¢ , a ¢ , 
(T 1 ,)' = _u ( 1> ,_n_ ) = ( ____g 1-n ) + ( </> 1 n ) 
- nn a p n a p a p 0 p n 0 p 

Substitution of eq. (21c) into eq. (17) allows us to write f by the 

following expression 

rnn' 

(21) 

(22) 
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It is obvious that the second matrix on the right-hand side of 

eq. (22) is symmetric, and ('.!(
1

\
2 can be shown to be symmetric as a 

consequence of the skew-symmetry of T(1
\ 

(23) 

Hence, since both terms on the right-hand side of eq. (23) are symme-

tric, p is symmetric. 

Some properties of the matrix M defined by _eq. (16) may be 

ascertained by considering the effect of the skew-symmetry of 1'(1
) in 

this coordinate system. This is best seen in the two-state case, in 

which an analytic treatment of the differential equation (17a) becomes 

possible. In this case, there is only one independent non-zero T(1
) 

matrix element, which can be represented by the expression f(p). We 

will later examine the case where f(p) behaves asymptotically like p - v 

where v less than or equal to one, as we are especially interested in 

the asymptotic behavior of M. Writing 

( 0 f(p)\ 

~f(p) 0). 
We recqsnize that T(1

) may be diagonalized by the transformation 

where the eigenvalues :\ are given by the expression 
± 

(24) 

(25) 
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:\±=±if{p) 

and the matrix ~ has the form 

~ = (1/[2 
i / [2 

1 /~2\ 
-i/-[2) 

If we define a new matrix N by the expression 

one can show, given the p independence of /1, that the differential 

equation becomes 

(26) 

(27) 

(28) 

(29) 

Since :\ is diagonal, one had four uncoupled differential equations for 

the elements Nij of~· If we start integrating eq. (29) at some value of 

p=p0 where Nij(p0 ) = N~j, then the solutions of eq. (29) are given by the 

equations 

NlJ.(p) = No. e -iJ f(p)dp = N~. F (p) 
1] 1] -

(30a) 

N2J.(p) = N ~. e i { f(p)d p = N~. F (p) 
1) 1] + (30b) 

where j = 1, 2. 

Without loss of generality, let us take M(p0 ) = I.. Then 

-i/~2) 
i/[2 

(31) 
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and one can show that 

where 

M = {c(o) 
\D(p) 

-D(p)) 
C(p) 

C(p) = F + (p) + F _ (p) = cos ( f(p) dp 

D(p) = -i [ F + (p) - F _ (p)] = sin {f(p) dp 

An important point is to be learned from eqs. (32) and (33): 

(32) 

(33a) 

(33b) 

These elements of M will oscillate with p at a frequency which will vary 

with p depending on the way in which the off-diagonal element of T(1
) 

varies with p. 

In the case that f(p) has the form given by eq. (1) 

f(p) = ap-v (34) 

we may easily evaluate the integral in eqs. (33) a d obtain explicit 

expressions for C(p) and D(p). If v is a positive number greater than 

one, we may write 

C(p) = cos f(p) (35a) 

D(p) = sin f(p) (35b) 

- a 1-v where f(p) = p (36a) 
1 - lJ 

Thus, asp increases, p1-v decreases and the frequency of oscillations 

of C(p) and D(p) will decrease with increasing p. If v equals one, eqs. 

(35) will hold with f (o) defined by 
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f (p) = a ln (p) • (36b) 

Thus, a plot of the elements of M would be expected to oscillate with p 

at a frequency which is independent of a ln(p). We will present 

numerical results for a more realistic system later. 

Let us now briefly consider the behavior of the other matrices in 

eqs. (17), in particular ~' ~, and the form in which they appear in 

eqs. 17d 

R = M-1 
€. M (37a) 

- --
g = M-

1 
PM . (37b) 
--

Note that this R should not be confused with the reactance mat:rix. 

From its definition in eq. (9) we recall that f is diagonal. At the large 

values of p at which we are mainly interested, the n2 I 2Jlp2 may be 

safely neglected. Hence we may write 

E> · ~ [- ~ ( E - E · (p)) 1 o · · • 
1] fi2 1 1J 

(38) 

This matrix may be broken up into two parts: one bound (~~ and one 

continuum (~c): 

£ .. 
=1] 

(39) 

~b and ~c are square matrices of dimensions Nb x Nb and Nd x Nd, 

respectively, where Nb is the number of bound states and Nd is the 

number of dissociative states being integrated. We assume that at the 

large values of p being considered here, the eigenvalues Ei(p) above 
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dissociation will be sufficiently small that they are much less than the 

energy E (this assumption will obviously not be correct at energies 

very close to the threshold for dissociation). Thus the matrix €.c is a 

constant matrix of a scalar whose elements are given by 

c ~ 
E· ~ - 2 

1 n (40) 

(the notation reminds us that Ed is diagonal). For the bound states we 

expect that the eigenvalues Ei(p) become independent of p at large p 

and thus the matrix ~ b will become independent of p. Unlike ~ c, 

however, ~b is not a matrix of a scalar; its elements are given by 
- . 

eq. (38). Since E b is diagonal, we will use only a single subscript as 

we did with Ed. 

For the simple 2 x 2 case considered here, we may evaluate ~ 

in terms of the elements of M and ~b (we assume in the 2 x 2 case we 

are integrating two bound states). If we define C = c(p) and D = D(p), 

we may write 

(41) 

We emphasize that E;> and E~ are essentially independent of p, so that 

the p dependence in R will come entirely from that of M. 
We now consider the behavior of g in the 2 x 2 case. Recalling 

that f is symmetric, we write 
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and can show that 

where 

Q = (t C2 
+ v S

2 

+ 2u cs 
(v -t) CS + uC2 

C2 = cos 2 f (p) 

(v-t)CS +UC2 ) 

t ~ + v C
2 

- 2u c s 

Assuming that t, u, and v defined in eq. ( 42) will all decay fairly 

( 42) 

(43) 

(44) 

rapidly with p, we expect that the matrix element of Q will also 

decrease fairly rapidly. Superimposed on this decay, however, will 

be oscillations produced by the c\ S
2

' and cs terms. While this form 

for Q is quite complicated, we note that as ~ decreases with increasing 

p, R will oscillate with a rate determined by the oscillations inC and 

D, and the differential eq. (17d) becomes, at large p 

y" = Ry ( 45) 
= 

This equation will not yield to simple analytic solution in spite of its 

being only a 2 x 2 matrix equation, because of the p dependence of R. 

Since R derived in eq. (41) is symmetric, it can be diagonalized with 

real eigenvalues and eigenvectors which will vary with p. It is this p 

variation which makes a simple analytic integration of eq. (45) im­

possible, and we would be forced, even in the 2 x 2 case, to evaluate 

y" numerically. Because of the absence of the first derivative term, 

standard integrators, such as Gordon's method (10) should be able to 

be used with little or no difficulty. 
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As a result of the simple form of eq. (45) and the relationship of 

R to~, we expect that for closed channels ~ will experience exponen­

tial growth, while for open channels ~ will undergo oscillations. Thus, 

at energies above dissociation, ~ should grow exponentially when p is 

small because the eigenvalues Ei(p) may be greater than the energy, 

but at large p, when all channels are open, ~ should stop growing and 

should instead oscillate at some variable frequency. 

2. Hybrid Basis Functions 

Matrix elements of the hybrid basis functions Xn must be broken 

up into three portions, corresponding to regions (1 ), (2), and (3) in 

Fig. 1 and discussed above. We will use angular brackets to denote 

the sum of the three separate integrals. In this notation, the normali­

zation condition in eq. (14a) may be written simply as 

(46) 

When working with the hybrid basis functions, the equations for the 

radial wavefunction matrix are the same as in the purely polar case 

(eq. 8) except that all derivatives are with respect to R rather than p. 

Since R, the propagation variable most appropriate in region 1, is 

simply related to the more appropriate propagation variables p' in 

region 2 and R' in region 3, the derivative with respect toR in region 1 

can be equated to one with respect to p' in region 2 and R' in region 3. 

The major differences between the properties of the adiabatic 

coupling matrix elements in the purely polar and hybrid basis functions 

can be shown to result from the presence of the p' term in the region 2 



58 4 

portion of the normalization integral in eq. (46). For example, T(
1

) 

may be studied by differentiating the normalization eq. (46) as follows: 

The T(
1

) matrix may be written in the following way: 

hence, 

0 

+J 
r 

Ko 

(3) 
(3) a Xn' 

X -- dr 
n aR' K 

(48) 

(49) 

The integral on the right-hand side of eq. (49) is equal to l / p' times 

the portion of the normalization integral coming from region 2. For 

diagonal terms corresponding to dissociative Xn' essentially all of the 

contribution to the normalization eq. should come from region 2, and 

hence the right-hand side of eq. (26) may be replaced by -~ for 
p 

dissociative states. Hence, for diagonal dissociative terms 

n > ndiss (50) 
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For diagonal bound terms the right-hand side of eq. (26) should be close 

to zero, as the bound Xn should be vanishingly small in the region 2. 

Therefore the bound diagonal terms T~~' n < ndiss should be zero, 

and their magnitude should decrease as n decreases. 

By differentiation of eq. (24), one may obtain the following 

expression for the T(2) matrix: 

a' a' 
() () ax ax' max ()oX max (2)oXn' , 

T 
2 

I +T ~ + 2(--n ,_n_> + 2 r X 
2
, ____!! da.' + 2 r Xn --, da = 0. 

nn n n oR aR n op' op 
0 0 

(51) 

For diagonal elements, then 

, (2) 
T(2) = - <oXn I oXn > - 2 ramax (2) oXn d ' 

nn oR oR Xn a(;' a . 
0 

(52) 

By an argument analogous to that used in obtaining eq. (50), we may 

assume for dissociative states that the second integral on the right-hand 

side of eq. (52) is given by _!, T(
1

) • Using eq. ( 41), which gives a 
p =nn 

formula for the dissociative diagonal elements of r(l)' we may write 

(53) 

Similarly to T(
1

), the bound diagonal elements of T(2) may be expected 
nn = 

to be dominated by the first term on the right-hand side of eq. (53), as 

the bound Xn are essentially zero in region 2. 

Just as an expression relating ('!'(1
))' to 1'(2) was obtained in the 

purely polar case (eq. (21)), an analogous expression may be obtained 
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for this hybrid case 

Hence, one may rewrite the p matrix in the hybrid case by the following 

expression: 

(55) 

Since the T(
1

) matrix in the hybrid case is not skew-symmetric, the 

<I(1
))

2 matrix is not necessarily symmetric; obvi~usly the third term 

on the right-hand side of eq. (50) need not give rise to a symmetric 

matrix. Hence, the :p matrix in the hybrid case need not be symmetric. 

The presence of additional terms in the expressions for the 'I(1
), 

T(2
), and f matrices in the hybrid coordinate system implies that the 

f matrix in this system (and also the ~ matrix) may have a very 

different behavior than in the purely polar system. Which one will 

prove superior (earlier onset of simple analytic behavior and/ or more 

rapid decay of the appropriate matrix elements) will be considered in 

the subsequent discussion. Because in this hybrid coordinate system 

'J(1
) is not skew-symmetric, the simple analysis employed at the end 

of the previous section of the p dependence of M does not apply. Since 

we will only present numerical results for M and the matrices obtained 

from it for the purely polar basis functions, we will not attempt to 

perform such an analysis here. 
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E. Flat Channel Case in the Purely Polar System 

To help provide some guidance for the analysis of the data for the 

continuum states obtained, we consider, in the purely polar coordinate 

system, the properties of the eigenfunctions <Pn (p, a) and their associ­

ated eigenvalues En(p) at large values of p for a particle moving in the 

one-dimensional potential 

V(S = 0) = V(S = pamax) = oo. ) 

V(O < S < pamax) = 0. 

(5) 

This is just the one-dimensional particle-in-a-box problem, 

except that the box becomes longer asp increases (in fact, the box 

length is directly proportional top). This model is not as irrelevant 

to the problem under consideration here as might first appear. At 

sufficiently large p, the wells in the actual potential V(p, a) are 

extremely narrow, and might be expected to have only a minor 

influence on the dissociative basis functions <t>n(p, a). Since the true 

potential V(p, a) does go to zero at a = 0 and a =a max and is essen-

tially zero for 6a < a < a - oa where oa is a small quantity max 
(which decreases asp increases), the flat channel case is a reasonable 

model for the continuum states. 

We now consider the implications of the flat channel model for the 

asymptotic behavior of the eigenvalues En(p). Since the length of the 

box, l, in this model is given by 

l = p. amax' (57) 
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The well known equation for energy levels of a particle-in-a-box 

becomes 
2 2 

h n (58) 

The eigenfunctions <P~odel are, however, independent of p. Hence all 

matrices of the type I(1
), I(2

), and f will be zero in this model. The 

reasonableness of this model will be shown by examining some of the 

basis functions <Pn(p, a) at moderately large (for this paper) values of 

p, as well as by examining the behavior of the eigenvalues En(p) at 

large p. 

III. Numerical Techni ues and Pocential Ener Surface Used 

A. Numerical Techniques 

The second-order differential equations for the basis functions 

(i.e., eq. (3) for the purely polar and eqs. (10) for the hybrid) are 

solved by a finite difference procedure. 11 The tridiagonal matrix 

obtained by substituting in the second difference for the second deriva­

tive is then treated by a Givens-Householder technique12 in order to 

obtain the appropriate set of eigenvalues and eigenvectors. This treat­

ment is particularly simple when a constant grid size is used in the 

discretization of the potential and the basis functions, that is, when the 

basis functions are to be determined at a set of values xn, where 

xn_
1 

- xn = h, a constant, for all n. When this is the case, the second­

order difference used is just 
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Yn-t1 - 2Yn + Yn-1 
2h 

where y n = y(xn), etc. , and the tridiagonal matrix obtained is 

symmetric. 

(59) 

At the large values of p considered in this study, however, a 

constant grid size is not an efficient one, as there will be large 

numbers of oscillations of the basis functions in the well region with 

smaller numbers, if any, in the plateau region. The larger p gets, the 

narrower the wells become (viewed as a function of a) and the greater 

the difference between the grid size needed in the .well and the plateau 

regions. This may be seen by examination of Fig. 3 of Ref. 1, which 

shows cuts of the potential at constant p. At 20 bohr, the largest value 

of p for which the potential is pictured, the wells occupy roughly 33% 

of the range of a, the potential is zero over roughly 50% of the range of 

a. The smallness of the width of the well at large p suggests that at 

large p a multi-tiered grid is needed. In the well reg ion, then, a 

constant stepsize of h1 might be needed, whereas in the plateau region, 

a larger step size of h2 might be used. The relative ratio of h2 to h1 

can be expected to increase as p increases. It turns out that numerical 

instability appears to result whenever the ratio of step sizes hz / h1 gets 

too large. To eliminate this problem, we found it necessary to intro­

duce a third, very narrow reg ion of a space between the well and the 

plateau regions in which the step size is the geometric mean of that in 

in the two regions. This division of the arc into three regions is 

pictured schematically in Fig. 2. A similar division of the disc ret izat ion 
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was performed in calculations of the hybrid basis functions, these 

various relationships between the step sizes were tried, with the 

general feature that at large R, h lat » h. t » h 11, where each h p eau m we 
is measured in terms of distance [r in region (1), p' a' in region 2, 

A 

r K in region 31 . 

Once a non-uniform grid has been introduced into the calculation, 

two complications occur. First, a new more general finite difference 

expression for the second derivative must be used, as eq. (59) only 

applies to a regularly spaced grid of points. We choose to approximate 

the basis function by a quadratic in each three-point interval. In the 

case of equally space points, the finite difference ·expression reduces 

to eq. (59); when points are not equally spaced, which occurs at the 

boundary between the areas of different step size, the following 

difference procedure is used : 

= 2 [Yn+1 (xn- xn-1) - Yn(xn-1- xn-1) + Yn-1 (xn-1- xn) l 
(xn+l- xn) (~+1- xn-1) (~- xn-1) 

(60) 

Second, the tridiagonal matrix obtained is no longer symmetric, which 

means that one must symmetrize it before using the Givens-Householder 

method to obtain the eigenvalues. This symmetrization may be per­

formed providing corresponding sub- and super-diagonal elements are 

both zero, both positive, or both negative. 13 Since in this problem, 

they are both positive (except in certain cases when the potential is 

symmetric and the calculation runs over the entire range of a; then 
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both are zero), so the symmetrization can always be performed. The 

transformations necessary are described in reference 13, and computer 

programs employing them were obtained from an EISPACK guide. 
14 

In all calculations reported here, little, if any, attempt was made 

to converge all the numbers (eigenvalues, eigenfunctions, adiabatic 

coupling matrix elements) to absolutely correct values. Since we are 

mainly concerned with rough power-law type behavior, such as that 

indicated in eq. (1), we simply coose what seemed to be reasonable 

parameters (number of points, relative step sizes, boundary between 

step sizes) and performed an entire set of calculations with these param­

eters. It is assumed the the general features of the dependence of the 

quantities of interest are independent of the exact parameters used. 

Where information as to sensitivity has been obtained, it will be 

commented on. 

Adiabatic coupling matrices were obtained by calculating the 

eigenfunctions cpn or Xn at three closely spaced values of p or R, 

respectively. A finite difference form of the derivative with respect to 

p was then used to calculate the derivatives of the basis functions with 

respect to the propagation variable (0 or R). 

= 1 
(<P(po+ oo,a)- cf>(po- op,a)) 

2(0p) 
(61a) 

(6lb) 
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2 I 2 Similar expressions were obtained for ox /o R and o X oR . In all 

cases, the values of the 'J(1
) and 'J(2

) matrices were found to vary 

very weakly with o . Normally o was no more than 0. 0025 p and was 
p p 

frequently much smaller. Integrals were evaluated via trapezoidal 

rule approximation. Some tests of the accuracy of the numerical 

calculations employed were provided by the properties of the adiabatic 

coupling matrices outlined in section 2, such is the skew-symmetry of 

'J(1
) and the symmetry of R for the purely polar basis set. We will 

comment on the ability of the calculation to obtain these properties 

later. 

B. Potential Energy SUrfaces 

Calculations were performed on two different potential energy 

surfaces. The first (and the one to which most attention will be paid) 

is the Porter-Karplus surface for H + H2 • 
15 This is the surface used 

in the calculations discussed in refs. 1 and 4 and is typical of realistic 

potential surfaces for reactive scattering. The second ("the dissociative" 

surface) is the same used in the model study of CID in r eference 3. 

This surface is of the rotating Morse-cubic spline type, 16 and for the 

hydrogen atom masses used here and in ref. 3, supports only two bound . 

states in each arrangement channel. A major reason for looking at the 

second surface is that we have substantial information on the rate of 

convergence of bound-continuum transition probabilities with the stopping 

point of the integration, and we hope to be able to relate that to the 

relative magnitude of the adiabatic coupling mat!'ix elements. We also 

want to learn how, if at all, the limiting exponents of the type in eq. (1) 
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depend on the exact surface used. We will use this dissociative 

surface in our numerical integration of eqs. (1 7). 

IV. Results 
~ 

In this section we will present some of the results of the calcula­

tions performed on the two potential energy surfaces using both the 

purely polar and the hybrid basis functions. We will emphasize our 

work on the p dependence of the adiabatic coupling matrix elements on the 

PK H3 surface, and will briefly present some of the results obtained on 

the dissociative surface. First we will consider the purely polar basis 

functions, then we will consider the hybrid ones. · In the ensuing dis­

cussion we will compare some of the properties of the quantities of 

interest. For both basis sets, we will consider the eigenvalues as a 

function of the propagation variable, and will then consider the adiabatic 

coupling matrix elements. We will also show some plots of the purely 

polar basis functions, which should help in understanding some of the 

results obtained for that set of basis functions. We will close by 

presenting r esults of numerical integration of the adiabatic equations 

on this surface. 

A. Purely Polar Coordinate Basis Functions 

1. Appearance of the basis functions at large p 

Intuition tells us that at large p, the bound basis functions should 

be localized into the well region of the potential, while the dissociative 

basis functions should be spread out over the entire range of a. One 

question of particular interest is the relative fraction of the dissocia­

tive basis functions located in the well region. If it turns out that the 
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dissociative basis functions are small in the well region, then the 

particle-in-a-box model for dissociative states outlined above should 

be valid. 

Plots of the 17th, 19th, and 21st even eigenfunctions for the PK 

H3 surface at 50 and 100 bohr are presented in Figs. 3 and 4, respec­

tively. The 17th even eigenfunction is the highest even bound eigen­

function. Only the 0 < a < a max !2 range is plotted due to the 

symmetry of the eigenfunction. It is clear for the figures that at large 

p the dissociative basis functions are essentially confined to the plateau 

region; their amplitude in the well region is quite small compared to 

that in the plateau region. The small a part of these basis functions 

is blown up and presented in Figs. 5 and 6 for 50 and 100 bohr, 

respectively . One can see that the location at the maxima and minima 

in the dissociative basis functions shown are independent of quantum 

number and that as p increases, their oscillatory part is compressed 

into an ever decreasing range of a. Finally, in Figs. 7 and 8, we plot 

the basis functions vs. p. sina at 50 and 100 bohr, respectively. It is 

clear that the positions of the minima and maxima at both distances 

occur at the same values of p. sina (note that p. sina is just the 

distance r A). 

2. Eigenvalues at large p 

We will be concerned mainly with the eigenvalues En (p) of the 
d 

dissociative states nd, but will comment on those of the bound states also. 

In Fig. 9, the eigenvalues of the eight lowest even dissociative states are 

plotted vs. p in a log-log plot. It is seen that for a given quantum . 

number, there is a linear relationship between the logarithm of the 
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eigenvalue and that of p. Slopes are in the range from -2.06 to -2.11. 

Recall for a particle in a box, these would be related by a line with 

slope -2. Another test of the validity of the particle-in-a-box model 

can be made by examining the relationship between the eigenvalues of 

the dissociative states and their derivatives with respect to p. In the 

particle-in-a-box model, the energy levels are given by eq. (58). 

Differentiation of that expression gives expressions for dE (p) / dp and 
nd 

d
2 

En (p) I do2 

d 

dEn (p) 2h
2 n~ 2 d (62a) = 2 =-- [E (p)] 

dp SmamaxP 
3 P nd. 

2 
dEn (p) dEn (p) 2 2 

d 6h nd 6 3 d (62b) = = - [E (p) 1 = --
dp2 8ma2 p4 Pz nd p dp max 

Values of these derivatives and some of the ratios to each other and to 

the eigenvalues are given in Table 1. It may be seen that at large p 

(> 500 bohr) eq. (62a) is fairly well obeyed (to 5%); eq. (62b) is less 

well obeyed, and the quality of obeying deteriorates once o gets beyond 

500 bohr. Some of this deterioration may be due to numerical insta­

bilities, it is clear, however, that eq. (62b) is substantially less well 

approximated by the data. In testing the validity of the particle-in-a-box 

model, it is also worth checking whether End(p) ex n~ for a given p. 

The logarithm of End(p) plotted vs. log nd is displayed in Fig. 10, and 

the resulting curves for a given p are linear with slopes very close to 2. 

We have also looked at the eigenvalues of the seven highest even 
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bound states. Plots of the log of the difference between the eigenvalue 

for three of these vs. log of p are presented in Fig. 11. There is no 

well defined behavior in these curves, although the similarity between 

r = 10 and n = 13 curves is obvious. It will be seen shortly that the 

eigenvalues of the bound states are far more constant in the hybrid 

basis set. 

3. Adiabatic coupling matrix elements 

We next consider the elements of 'J(1
), 'J(2

), and P as a function 

of p. Several T~~) are plotted vs. p (in a log-log plot) in Fig. 12. The 
1) -

bound-bound (b-b) T(1
) matrix elements form a linear plot for p above 

50 bohr with slope close to -1 ; the bound-continuum (b-e) ones are 

linear over a fairly broad range of p, although curvature sets in near 

p ~ 1000 bohr. The linear ranges of these plots have slopes in the 

range -2.3 to -2. 5. The continuum-continuum (c-c) ones are linear 

over a shorter range, and have slopes of roughly -1. 9. These data are 

summarized in Table 2. 

In all cases, the diagonal elements of T(1
) are many orders of 

magnitude smaller than nearby off-diagonal ones. For example, at 

15 bohr T(1
) = 1. 4 x 10-5 while T(1

) = 0. 34; at 2500 bohr the 
' lB,lB ' 20,18 

numbers are 9. 6 x 10-
11 

and 2.1 x 10-\ respectively. Thus, to a very 

good degree of approximation, the diagonal elements of '!'(1
) are zero, 

which is a necessary consequence of t~ predicted skew-symmetry of · 

'J(1
). The skew-symmetry may be checked explicitly by comparing 

appropriate matrix elements. For all elements studied at all distances, 

approximate skew-symmetry was observed. In some cases, skew­

symmetry to four figures was obtained; in others it was 
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only 10%. On the whole, the approximate skew-symmetry obtained 

provides a good check in the numerical methods used in the calculation 

of T(1
). 

Plots of some b-b and b-e off-diagonal elements of 1'(2
) are given 

in Fig. 13. Forb-band b-e elements, the plots are linear over a 

fairly broad range of p, although the deviation from linearity becomes 

substantial at large p (,2' 1000 bohr). The off-diagonal c-c curves have 

no real region of linearity and are not shown. As in the T(1
) case, the 

slopes differ depending on the matrix element. The b-b matrix elements 

give rise to a line with slope close to -2; the b-d ones lead to a slope in 

the range -3.1 to -3. 3. The diagonal T(2
) matrix elements (not shown) 

show similar behavior. The b-b diagonal matrix elements give rise to 

plots with slopes very close to -2; their value varies only slightly from 

element to element. The c-c diagonal matrix elements behave quite 

differently. The slopes on the corresponding plots vary widely (from 

-3.85 for n = 22 to -5.5 for n = 17), and as a result, at moderate p, the 

magnitudes of the matrix elements vary substantially from element to 

element. At large p (the exact value of which increases as n increases), 

deviation from linearity occurs. 

The elements of f behave similarly to those of I(2
). Their values 

and p-dependence are determined largely by the type of matrix element 

(b-b, b-e, c-c). This segregation can be seen quite clearly in Fig. 14. 

Slopes of the b-b, b-e, and c-c plots are in the range of -1. 9, -3. 2, 

and -4.0 to 4.5_, respectively. All of the slope data are summarized in 

Table 2. 
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B. The Hybrid Basis Functions 

Although the propagation variable in the hybrid coordinates is R, 

we will plot eigenvalues and matrix elements of the hybrid basis func­

tions as a function of p'. This should be a more appropriate variable 

for the continuum states, which are the ones in which we are most 

interested. Recall that in deriving approximate expressions for the 

diagonal dissociative terms of T(1
) and T(2

), p' came into the final 

answer in a simple way. 

1. Eigenvalues at large p' 

The eigenvalues of the hybrid basis functions are calculated to 

vary as o'-2 (slopes of the appropriate log-log plot ranged from 1. 98 to 

2. 00). This behavior is very similar to that of the eigenvalues of the 

purely polar basis functions. Also as in the purely polar case, the eigen­

values obey a relationship of the type En (p') a: n2
, where n is the effective 

quantum number of the dissociative state (n = 1 for the first even 

dissociative state, 2 for ·the first odd dissociative state, etc.) This is 

approximately true for all R > 50 bohr; at smaller R, the logE vs. 

log n has pronounced curvature at low n. The eigenvalues of the bound 

states calculated in the hybrid basis set are far more stable with 

respect to a change in the propagation variable .than those calculated 

with the purely polar basis set. This may be seen in Fig. 15, in which 

the log of the energy difference between the eigenvalue at a given p' and 

the corresponding one at p' = 4989 bohr is plotted vs. the log of p'. For 

all but the highest bound state, these curves are essentially flat over 

the whole range of p' considered. The change in eigenvalues at the 
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largest values of p' is probably due to numerical instability resulting 

from the large disparity between the step sizes in the three regions 

along the cut through the potential (see Fig. 2). 

2. Adiabatic coupling matrix elements 

The adiabatic coupling matrix elements are plotted vs. p' as 

log-log plots in Figs. 16 through 18. In Fig. 16 various T(1
) matrix 

elements are considered and in Fig. 17 the T(2
) ones are examined. 

In both, three main features are apparent. First, at large values of 

p', the diagonal matrix elements are the largest. Second, there are 

only two different classes of lines, as determined. by their slopes. 

The b-b matrix elements have slopes close to -1 for T(1
) and -2 for 

T(2
); the b-d and c-c ones have slopes close to -2.5 for T(1

) and -3.5 

for T(2
). (Some matrix elements, especially for T(1 ) changed sign once 

or twice over the o' range examined and were not plotted on these plots.) 

Third, the b-b matrix elements involving more deeply bound states are 

orders of magnitude smaller than those of higher states. For example, 

T~:~16 (p' = 1000) ~ 1000T~~~16 (p' = 1000 bohr). The diagonal b-b T~~ 
and T~~ matrix elements have also been examined, and we have found 

that in both cases, linear log-log plots are obtained with slopes close to 

-1 for T(
1

) and -2 for T(2
) The decreases in the matrix elements as nn nn· 

n decreases are substantial, as was predicted in section II-D. This is 

in contrast to the c-c diagonal elements, which for large p are nearly 

independent of n. We present the logarithm of the absolute value of 

some diagonal elements of !(1
) and !(2

) in Table 3. Selected elements 

of f are displayed in Fig. 18. Again, two clusters of slopes were 

obtained, -2 for the b-b and c-c, and -3.5 for the b-e. The curves are 
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linear or nearly linear over the entire range of p' examined. For the 

b-b and b-e elements examined, the same behavior observed for the 

T(1
) and T(2

) was obtained, namely that those matrix elements 

involving more deeply bound states are substantially smaller than 

those involving lesser bound ones. Also, the magnitude of the c-c 

matrix elements decreases as one moves away from the diagonal. 

C. Eigenvalues and Matrix Elements on the Dissociative Surface 

We have calculated some of the T(1
) and T(2

) matrix elements 

for both the purely polar and hybrid basis functions on the dissociative 

surface. Our interest in performing these calculitions is twofold. 

First, we wish to determine whether the general behavior of the 

adiabatic coupling matrix elements is independent of the surface being 

used. Second, we wish to use them so that we may integrate eq. 17 

(for the purely polar basis set) to calculate ~' ~' ~' and X as defined 

earlier. We find that the p dependences of 'J'(1
) and 'J'(2

) are quite 

similar for this surface for the purely polar basis s et as may be seen 

in Figs . 19 and 20, respectively. The only non-zero b-b matrix 

element, T(1
), yields a linear plot with a slope of -0. 99, and all the 

01 

b-e 'J(1
) elements examined lead to plots with slopes in the vicinity of 

-2. 5. Again, at large p, the b-b matrix element is much larger than 

any of the b-e ones examined. No T(
1

) c-c matrix elements are plotted, 

as they did not lie along straight lines in a log I Tij)l vs. log p plot 

(some changed sign once of twice in the region of p considered}. 

A similar behavior was obtained for 1;(2
) (see Fig. 20) . Two b-b 

elements have slopes near -2; four b-e ones have slopes near -3. 5. 



601 

It is seen that linearity for the b-e matrix elements does not set in until 

fairly large values of p, the exact value increasing with the quantum 

number of the dissociative state. 

Analogous calculations have been performed using the hybrid 

basis functions, and elements of 'J(1
) and J(z) are plotted in Figs. 21 

and 22, respectively. The b-b T(1
) matrix elements lead to linear 

plots with slopes of nearly -1 (see Fig. 30), while the b-e ones give 

two different slopes. Those involving the ground state gave slopes near 

-1. 6, those involving the first (and only excited) state gave slopes near 

-2. The one c-c element shown gave a slope of -2; a number of off-

diagonal c-c elements calculated for higher n (10 ~ n :$ 23) gave similar 

slopes. The diagonal element T(1
) gave a slope of -1 .. Log·log plots of 

10,10 

T(z) only became linear at very large values of p' (see Fig. 22). The 

b-b matrix elements gave a slope of roughly -2; the b-e elements 

involving the n = 0 state gave slopes of -2. 6, while those involving the 

n = 1 state gave slopes closer to -3. In both the T(1
) and T(z) cases, 

b-e matrix elements involving n = 0 are much smaller than those 

involving n = 1. The one c-c element shown gave a slope of -3, other 

higher c-c off-diagonal elements give slopes near -2. 8, the diagonal 

T~~:10 element gave a slope of -1. 92. 

In general, the behavior observed on this surface is similar to 

that observed on the PK surface. The c-c matrix elements on this 

surface are less well behaved (i.e., give rise less readily to linear 

plots) than on the PK surface. On both surfaces the matrix elements 

segregate the same way, i.e., with the purely polar basis functions the 

b-b matrix elements become much larger than the b-e ones at large p, 
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and with the hybrid basis functions matrix elements involving lower 

energy bound states are smaller than those involving higher energy ones. 

D. Integration of the Adiabatic Equations on the Dissociative Surface 

We have performed some preliminary calculations in which we 

numerically integrated the Eqs. (17) on the dissociative surface using the 

purely polar coordinate basis functions. We will briefly review this 

integration here and present the results which were obtained. 

The problem which we studied was that of the four lowest energy 

even eigenfunctions only, hence the matrices generated were 4 x 4 and 

there were 16 coupled differential equations to be solved. Integration 

was begun at p = 1 bohr and carried out to p = 5000 bohr. The inte­

grator used was an Adams-Moulton integrator with a Runge-Katta-Gill 

initiation procedure. 17 A cubic spline procedure was used to inter­

polate the various matrices needed for the integration; note in this 

interpolation the independent variable was the logarithm of p rather than 

p itself. 

We examine selected elements of the M, ~' ~' and ~ matrices 

defined earlier. As in our treatment of the simple 2 x 2 case, our 

initial condition in the integration of eq. (17a) is that M(p0 =1) =I. 

We then plot the elements of M obtained in a semi-log plot of Mij vs. 

log10 (p). Plots of seven such matrix elements are shown in Figs. 23 

and 24. There are two striking features of these graphs. First, the 

curves vary substantially from matrix element to matrix element, and 

with distance, although their values are always between minus one and 

plus one. Second, one sees at small values of p, the variation of the 
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elements with distance is highly irregular, while at larger values of p 

( ........ 300 bohr) two types of variation set in--either p independence, found 

for all elements shown except M14 and M24 , or oscillations which occur 

with a magnitude and frequency which is independent of log p. The 

elements M1u M12 , and M13 , not shown, also oscillate at large p in a 

similar manner. These results suggest that oscillatory behavior should 

be the rule in rows corresponding to bound states (n this four-channel 

case, rows 1 and 2), while those in rows corresponding to continuum 

states will become independent of p. We recall that oscillatory behavior 

of the type observed (frequency independent of log p) was predicted to 

occur in the 2 x 2 case, in which open states only were included. Thus, 

the usefulness of the 2 x 2 model is verified. 

We next consider some elements of R. R is, of course, dependent 

on the energy, but for simplicity we will show only a few elements of R 

at the energy E = 0.10 eV (measured with respect to a zero of energy of 

three infinitely separated atoms). Selected diagonal and off-diagonal 

elements of~ are shown in Figs. 25 and 26, respectively. There are 

three major features of Figs. 25 and 26. First, at small values of 

p (< 30 bohr), the diagonal elements of~ decrease substantially with 

increasing p, while its off-diagonal elements vary in a much less 

regular way . Second, at moderate values of p (> 30 bohr), all elements 

of B. have seemed to settle down to some sort of asymptotic values, 

about which they may or may not oscillate, and if so, the oscillation 

may be smooth as for the diagonal elements R or may have cusps , as is 

seen for its off-diagonal elements. Third, at large p, the off-diagonal 
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elements are substantially smaller than the diagonal elements. 

A number of these observations can be simply explained. For 

example, the large decrease in the diagonal elements Ri with increas­

ing p at small p is due mainly to the fact that the eigenvalues Ei(p) are 

very large at small p and decrease substantially with increasing p. 

The difference between the small p dependence of the diagonal and off­

diagonal elements of R is partially due to the initial choice of M (p = 1) 

as the unit matrix. Thus, the off-diagonal elements can only grow, at 

least initially, as ~ (p = 1) = ~ (p = 1), and ~ is diagonal. 

The reason for the existence of smooth oscillations in the plots of 

the diagonal elements of~ and cusps in those of the off-diagonal ones 

can be understood by consideration of the 2 x 2 model. From Eq. (41) 

we see that the diagonal terms involve only squares of sine and cosine 

terms, while the off-diagonal ones involve products of sine and cosine 

terms. Since at energies above dissociation E~ and E~ will have the 

same sign, the diagonal .elements of R will always have the same sign, 

while the off-diagonal elements of~ may change sign. The cusps in 

Fig. 26 come from taking the absolute value of a number whose sign is 

changing. We note that the cusps observed in Fig. 26 at large p occur 

at regular values of log p; this is consistent with the result in Eq. (4) . 

We next consider the p dependence of the elements of g. Selected 

diagonal and off-diagonal elements of Q are shown in Figs. 27 and 28, 

respectively. There are major features in these graphs. First, all 

matrix elements decrease rapidly with increasing p, by a relationship 

in the neighborhood of p - 2
• Second, all the matrix elements change sign 

periodically as o increases and the frequency of these sign changes is 
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fairly insensitive to log (p). This behavior is very different from that 

of R, whose diagonal elements became essentially independent of p at 

large p (except for the small oscillations, without cusps, seen in 

Fig. 25. 

Again, the behavior of the elements of g may be easily under­

stood. The rapid decrease in the magnitude of the elements of Q will 

come from the rapid decrease in those of p. In Table 2 we saw that 

the b-b elements off (on the H + H2 surface, but the results presented 

earlier indicate that the p dependence of all matrix elements should be 

independent of the surface) decrease asp -z. Since the elements of M 
are everywhere of order unity, the elements of g should decay as the 

slowest decaying ones of ~, and this is what is observed. The reason 

for the existence of sign changes in the diagonal elements of 9 (unlike 

in R) may be seen by consideration of the 2 x 2 case. In Eq. ( 43) we 

showed that the diagonal elements of Q are composed of two kinds of 

terms--those that involve the square of a sine or a cosine term, and 

those involving the product. The product term will change sign with p, 

so the entire diagonal element may also (depending on the relative 

values oft, u, and v). Because the elements of~ decrease so much 

more rapidly than those of~' we see that to a good degree of approxi­

mation, eq. (45) is satisfied at large p. Examination of Figs. 25 

and 26 indicates that at large p, at the energy shown, the diagonal 

elements of 9 are roughly one order of magnitude greater than the off­

diagonal ones,and eqs. (45) would approximately decouple. Thus, in 

principle the analysis of ~ might involve only the solution of uncoupled 

differential equations. We will not pursue this line of reasoning, 
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showing instead the results of a numerical solution of Eq. 17d. 

We present plots of the diagonal elements of y in Figs. 29 and 30 

for energies above and below dissociation, respectively. The initial 

conditions for the integration were the usual for the integration of a 

radial Schrodinger equation 

(63a) 

(63b) 

From the figures we can see that the expectations of section II- D-1 are 

correct: at the energy above dissociation (Fig. 29), ~ grows rapidly at 

small p, begins to change sign at moderate p, and settles into some 

highly oscillatory but otherwise p independent state at large p. At the 

energy below dissociation (Fig. 30), y grows rapidly at all p ( disre­

garding small local effects of sign changes) finally running off the scale 

of the figure p = 1000 bohr. 

V. Discussion and Conclusions 

Substantial information concerning the p-dependence of the eigen­

values and adiabatic coupling matrix elements has been obtained in these 

calculations. In particular we have found the existence of fairly well­

defined asymptotic behavior for these quantities, the exponents associ­

ated with which vary depending on the nature of the quantity. We have 

found some major differences between the matrix elements coming from 

the purely polar and hybrid basis functions. In this section, we will 

review some of the major features of the quantities studied. 
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For both basis functions, at moderate and large p, the eigen­

values of the dissociative states are approximately related to o (for 

simplicity we will say p, although for the hybrid basis functions the 

appropriate quantity is p' ) by the expression 

(64) 

where nd is the effective quantum number of the dissociative state as 

defined earlier. This expression is exactly what would be expected 

from a model of a particle in a one-dimensional box. The reason for 

the applicability of the model is clear from the appearance of the purely 

polar eigenfunctions at large p --they are small in the well region, and 

can thus be thought to reside only in the plateau region. Some deviation 

of the eigenvalues from the particle-in-a-box model is seen. Their p 

derivatives obey the particle-in-a-box relationships less well than do 

the eigenvalues themselves. The bound eigenvalues change far less 

with p for the hybrid basis functions than they do for the purely polar 

ones. 

The adiabatic coupling matrices T(1 ) and T(2 ) both have the basic 

structure required by their definitions--ex. a skew-symmetric T(1) for 

the purely polar basis functions. The asymptotic relationships of the 

individual matrix elements are determined largely by the nature of the 

matrix element--bound-to-bound, bound-to-continuum, or continuum-to­

continuum. In most cases log-log plots of the matrix element vs. p 

give rise to straight lines, although sometimes linearity does not set in 

immediately, and is frequently less well obtained for continuum-to-
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continuum matrix elements. Deviation from linearity at very large 

values of p (> 1000 bohr) is probably due to numerical error. Similar 

behavior for the matrix elements is obtained on both potential energy 

surfaces studied. 

Major differences were attained between matrix elements for the 

purely polar and hybrid basis functions, however. Most of these, i.e., 

the lack of skew-symmetry, the 1/ p' dependence of the diagonal T(1
) 

and the observed 1/ (p')
2 

dependence of the diagonal T(z) matrix elements, 

were predicted from a fairly straightforward analysis of the implica­

tions of its definition. Also, the T(1
) and T(z) matrix elements for the 

hybrid basis functions do not segregate themselves into clusters (on 

basis of magnitude) depending on their b-b, b-d, or c-c nature. Instead, 

they segregate on the basis of their lowest component quantum number-­

the lower that becomes, the smaller the matrix element will be. 

The ;p matrix calculated from the T(1
), T(2

), and T(1 
)' matrices 

- = = = 
for the two basis functions differ from each other in the same way as 

the I(z) matrices do. This is reasonable enough , as both have the same 

units (distance-2
). The ~ matrix, or more precisely the matrix product 

9 = M-
1 ~ M, will be the crucial factor in determining the asymptotic 

properties of the differential equation for the radial wavefunction. 

Comparing the ~ matrices, one sees that the one calculated with the 

hybrid basis functions appears to be more linear than that calculated 

with the purely polar ones. This suggests that the hybrid basis functions 

might be superior to the purely polar ones for the purposes of formu­

lating the asymptotic analysis ofthe radial wavefunction Schrodinger 
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equation. This superiority may be cancelled out by the slower die-off 

with distance of the c-c E matrix elements for the hybrid basis 

functions. Also, the different clustering properties of the elements of 

E (and also those of T(1
), which determine those of M) make the com­

parison between the basis sets less clear. The lack of simple analytic 

properties of the coupling matrices (i.e., skew-symmetry of 'J'(1
), 

symmetry of f) in the hybrid case might make the understanding of the 

adiabatic equations more difficult with the hybrid basis than with the 

purely polar ones. 

We have integrated the adiabatic equations in a preliminary way 

on the dissociative surface for the purely polar basis set. We have 

obtained values for the elements of M, ~' Q, and ~ out to very large p. 

The bulk of the results obtained are predicted by the analytic 2 x 2 

model considered in detail. A result of major importance is that some 

elements of M can oscillate between -1 and 1 even at very large p; 

these oscillations are found to occur with a frequency that is indepen­

dent of log (p). This introduces oscillations into the elements of ~' ~' 

and X· We emphasize that all of these oscillations are implied in the 

2 x 2 case. The existence of thes oscillations presents a problem in 

that it prevents us from being able to simply describe the large p 

properties of ~· The results of the numerical integration do suggest 

that whatever this asymptotic behavior is, it sets in in the neighborhood 

of p = 100-300 bohr. This may be an indication that converged parti­

tioning probabilities for dissociation (defined earlier) can only be 

attained by integrating to a value of p of that magnitude. Preliminary 

results do indicate that .integration past p = 110 bohr (in the diabatic 
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representation) leads to reasonably well converged partitioning 

probabilities. These will be presented elsewhere. 
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Iabl• 2. Llmttln!; E:rp<>nent• (v) lor Adiaballc Coupling Matrix Elemert• 

Fnn' • F • T< >l, T(•l, P . (PK 9lrlace, Symmetric J:lgenfunctton• Only) 

Pure lv Polar Bybrld 

(n,n'l (n,n' ) 

t (> ) b- b (12, 16) 0 . 97 (14,14 1 1.06 

(14, 16) 0 . 93 (16 , 16) 0 . 88 

(12,14 ) 1.03 

(12 , 16) 1.09 

(14, 16) 1.16 

b -e (14, 20) 2. 38 (14, 22 1 2. 83 

(14,18) 2. 4-4 (20, 16) 2. 43 

(18 , 16) 2. 47 (18,16) 2. 43 

(20, 16) 2. 33 

c-c (20, 22) I. 88 (18, 22) 2 . 52 

(18 , 22) I. 88 (20, 18) 2. 08 

(20,18) I. 89 (18,181 1_. 02 

1 (') b-b (1 6, 16) 1.97 (14,14 ) 2. 10 

(14,16) I. 85 (16,16) 2. 01 

(12,16) 1,88 (12,14) I. 98 

(10,10) 2.00 (12,16 ) I. 98 

(14, 16) I. 85 

b-e (14,20) 3,18 (20, 16) 3 . 47 

(14,18) 3,33 (18,16) 3, 47 

(18, 16) 3.33 

{20, 16) 3 . 12 
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b-e (20, 16) 3.16 (20,16 ) 3. 51 
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(12 , 18) 3 . 83 

(10, 201-4.24 

c-c (20,20) 4.08 (18,18) 2.03 

(1 8 , 22) 4. 24 {20, 18) 2 . 02 

(20,18) 4. 40 (20, 22) 2. 09 

(18,22) 2 . 14 
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~- Common Logarithm of IT~ I and IT~~~ for Hybrid Basis 

Functions on PK surface at o' = 2316 bohr (log p' = 2. 5). (Note n = 17 

is first symmetric continuum state.) 

n 

17 

16 

15 

14 

13 

12 

11 

log1o I T~ I 

-2.77 

-2.91 

-3.68 

-5.40 

-7.71 

-10.61 

-13.22 

I (z) I loglo Tnn 

-5.10 

-5.75 

-6.8 

-7.85 

-10.19 

-13.10 

< -14 
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Figure Captions 

FIG. 1. Schematic picture of the breakup of the potential energy 

surface into subregions for the construction of the hybrid 

basis set. Region 1 is the A +BC region in which the hybrid 

basis functions are calculated along a line at constant RA; 

Region 2 is the dissociative plateau in which they are 

calculated along an arc at constant p' , region 3 is the AB + C 

region in which they are calculated at a line at constant RK. 

For comparison, an arc at constant p, along which the purely 

polar basis functions are calculated is pictured also. The 

definition of the (p, a) and (p', a') coordinate systems is 

shown. Note that the angles a and a' are equal only for the 

case of a =a' = amax j2; however amax = a~ax· 
FIG. 2. Schematic representation of the breakup of the grid for the 

calculation of the basis functions at large p when a three­

tiered grid must be used. Note that the point density is 

highest nearest the ends and lowest in the middle; in the 

transition regions, the grid spacing h2 is the geometric mean 

of that in the end and center regions. 

FIG. 3. Plot of the symmetric purely polar basis functions ¢~) (p = 

50 bohr} for H3 on the Porter-Karplus surface for N = 16, 18 

and 20 (N = 16 is the highest symmetric bound basis function) 

as a function of the angle a in the range 0 ~ a ~ 1r / 6 radians. 

FIG. 4. 

The if>~) are normalized over the entire range of a. 
's) Plot of <PN (p = 100 bohr) for N = 16, 18, and 20 vs. a as in 

Fig. 3. 
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Figure Captions (continued) 

(s) 
FIG. 5. Plot of cf>N (p =50 bohr) for N = 16, 18, and 20 vs. a in the 

FIG. 6. 

FIG. 7. 

FIG. 8. 

range 0 ~ a ~ 6 degrees. Otherwise, plot is as in Fig. 3. 

Normalization of ¢~) is over all a. 

Plot of ¢~) (p = 100 bohr) for N = 16, 18, and 20 vs. a as in 

Fig. 5. 
(s) 

Plot of cf>N (p = 50 bohr) for N = 16, 18, and 20 vs. p • sina. 

in the range 0 < p sina < 12 bohr. Otherwise, plot is as in 

Fig. 3. Normalization of ¢~) is over all a. 
(s) 

Plot of cf>N (p = 100 bohr) for N = 16, ~8, and 20 vs. 

p s ina. as in Fig. 7. 

FIG. 9. Log-log plot of eigenvalues En (p) of dissociative purely 
d 

polar basis functions on the PK surface as a function of p. 

Only eigenvalues of symmetric states are shown; hence 

the restriction to odd values of nd. 

FIG . 10. Log-log plot of eigenvalues En (p) of dissociative purely 
d 

polar basis functions on the PK surface as a function of the 

index n, at seven different values of p (labeled in bohr). 

FIG. 11. Log-log plot of the absolute value of the deviation of the 

eigenvalue En (p) of the nth symmetric bound state of the 

purely polar basis functions on the PK surface from its value 

at p = 3000 bohr as a function of p for n = 10 (dashed line), 

n = 13 (dotted line), and n = 15 (solid line). 

FIG. 12. Log-log plot of the absolute value of selected elements of the 

Matrix I_(1
) calculated for symmetric purely polar basis 

functions on the PK surface vs. o. Bound-to-bound (b-b) 
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~(continued) 

matrix elements are indicated by solid lines; bound-to-con­

tinuum (b-e) by dotted lines, and continuum-to-continuum 

by dashed lines. Each T . . is represented by a letter code: 
lJ 

A - (1 ) • - T(1) C - T(l) D- T(1 ) E - T(1
) ' - T 14,16 ' B - 12,16' - 1412o' - 14,1s' - 20,22 

F = T~~22 • Curvature at p > 1000 bohr is probably due to 

numerical inaccuracies. 

FIG. 13. Log-log plot of the absolute value of selected elements of the 

matrix T(
2

) calculated for symmetric purely polar basis 

functions on the PK surface vs. p. Sym_bols and lines are as 

used in Fig. 12. Curvature at p > 1000 bohr is probably due 

to numerical inaccuracies. 

FIG. 14. Log-log plot of the absolute value of selected elements of the 

matrix f, calculated for symmetric purely polar basis 

functions on the PK surface vs. p. Line types represent 

different types of matrix elements as used in Fig. 12, the 

letter code for each P . . is as follows: A = P 14 16 , B = P 12 16 , 
lJ ' ' 

C = B2o 16 , D = p1s 16' E = P2o 20, F = P1s 22, G = P2o 1a • 
' ' ' ' ' 

FIG. 15. Log-log plot of the absolute value of the deviation of the 

eigenvalue En(p') of the nth symmetric bound state of the 

hybrid basis functions on the PK surface from its value at 

p' = 4989 bohr as a function of p' for n = 13 (dashed-dotted 

line), n = 14 (dotted line), n = 15 (dashed line), and n = 16 

(solid line). 

FIG. 16. Log-log plot of the absolute value of selected elements of the 

matrix 'J'(1
) calculated for symmetric hybrid basis functions 
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~(continued) 

on the PK surface vs. p'. Line types represent different 

types of matrix elements as used in Fig. 12. Where lines 

are not extended to the smallest or largest p, deviation from 

linearity of the plots was severe. The letter code for each 

(1) . . - (1) - (1) - (1) T 1.1
. 1s as follows. A - T 16 1 6 , B - T14 14 , C - T 12 1 6 , 

' ' ' 
- (1) - ( 1) - ( 1) - ( 1) - ( 1) 

D - T 12 14' E - T 20 1s' F - T 20 1s, G - T 1a 1a, H - T 1a 22· 
' ' ' ' ' 

FIG. 17. Log-log plot of the absolute v lue of selected elements of the 

matrix 'J(2
) calculated for symmetric hybrid basis functions 

on the PK surface vs. p'. Line types r~present different 

types of matrix elements as used in Fig. 12; letter codes 

are identical to those used in Fig . 16. 

FIG. 18. Log-log plot of the absolute value of selected elements of the 

matrix R calculated for symmetric hybrid basis functions on 

the PK surface vs. p' • Line types represent different types 

of matrix elements as used in Fig. 12; the letter codes are 

as follows: A = P16,16' B = p14,16' C = p12,16' D = P12,14 ' 

E = P2o 116 , F = P2o,1s' G = P12 ,1s' H = P1o,2o' I = P1a,1s' 

J = pl8,22• 

FIG. 19. Log-log plot of the absolute value of selected elements of the 

matrix 1'(1
) calculated for symmetric purely polar basis 

functions on the dissociative surface vs, p. Line types 

represent different types of matrix elements as used in 

. 12 (1) (1) F1g. , the letter codes are as follows : A : T 0 17 B: T 1 6 , , ' 
(1) (1) (1) C : T 0 , 9 , D: T 0 , 3 , E: T 0 , 2 • 
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FIG. 20. Log-log plot of the absolute value of selected elements of the 

matrix 'J(2
) calculated for symmetric purely polar basis 

functions on the dissociative surface vs. p. Line types 

represent different types of matrix elements as used in 

Fig. 12; the letter codes are as follows: A: T~2~, B: T~2{, 
' ' 

C: Ti~L D: Ti~L E: Ti~~-
FIG. 21. Log-log plot of the absolute value of selected elements of the 

matrix 'J(1
) calculated for symmetric hybrid basis functions 

on the dissociative surface vs. p. Line: types represent 

different types of matrix elements as used in Fig. 12; the 

1 tt d f 11 · A· T(1 ) B· T(1 ) C· T(1 ) e er co es are as o ows. . 1 , 1 , . 0 , 1 , . 0 , 0 , 

D: T~1L E: T~1L F: T~1L G: T~1g) • 

' ' ' ' 
FIG. 22. Log-log plot of the absolute ·value of selected elements of the 

matrix 'J(2
) calculated for symmetric hybrid basis functions 

on the dissociative surface vs. p'. Line types represent 

different types of matrix elements as used in Fig. 12; the 
(2) (2) (2) letter codes are as follows: A: T111 B: T 1 5 , C: T1 2 
' ' ' 

D: T~2~, E: T~2~. The small number of curves at all but the 
' ' 

largest values of p' reflects irregular variation in the Tg) 
which would make the plots highly non-linear. 

FIG. 23. Selected values of elements of the matrix M (defined in eq. 

(17a)) as a function of the logarithm of p for the first four 

symmetric purely polar eigenfunctions on the dissociative 

surface. The initial values of N .. (p = 1 bohr) =() .. were 
1) 1) 

used. A different line type is used for each element shown. 
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FIG. 24. Additional elements of Mas a function of the logarithm of 

p for the case treated in Fig. 23. 

FIG. 25. Absolute values of the diagonal elements of the matrix~ 

(defined in eq. (37a)) vs. the logarithm of p for the case 

treated in Fig. 23 for an energy of E = 0.10 eV (measured 

with respect to three infinitely separated atoms). 

FIG. 26. Absolute values of selected elements of the matrix B. vs. the 

logarithm of p for the case treated in Fig. 23 at an energy 

E = 0.10 eV. 

FIG. 27. Absolute values of the diagonal elements of the matrix~ 

(defined in eq. (37b)) vs. the logarithm of p for the case 

treated in Fig. 23. 

FIG. 28 . Absolute values of selected elements of the matrix Q vs. the 

logarithm of p for the case treated in Fig. 23 . 

FIG. 29. Absolute values of diagonal elements of the matrix~ (defined 

in eq. (17d)) vs. the logarithm of p for the case treated in 

Fig. 23 for an energy of E = 0.10 eV (measured with respe ct 

to three infinitely separated atoms). Initial conditions for 

the integration of eq. (17d)) were yij(p = 1 bohr)= 0; 

Y~-(p = 1 bohr)= oi .. 
1] J 

FIG. 30. Absolute values of diagonal elements of the matrix ~ vs. 

the logarithm of p for the case treated in Fig. 23 for an 

energy of E = -0.02 eV. Initial conditions and energy origin 

are the same as those used in Fig. 29. 
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CALCULATION OF PROBABILITY DENSITY PROBABILITY 

CURRENT DENSITY AND TUNNELING FRACTIONS USING 

HYPERSPHFRICAL COORDINATES AND APPLICATION 

TO THE COLLINEAR H + H2 SYSTEM* 

Jack A. KAYE** and Aron KUPPERMANN 

Arthur Amos Noyes Laboratory of Chemical Physics, 

California Institute of Technology 

Pasadena, California 91125, USA 

We have developed a procedure for generating consistent physical 

wavefunctions from hyperspherical coordinate coupled channel calcula­

tions of collinear atom-diatom molecule collisions. Both the formal 

and numerical aspects of this procedure are developed in detail. The 

procedure is applied to the collinear H + H2 reaction on the Porter­

Karplus surface over the energy range in which the probability of the 

reaction H +H2 (v = 0) - H2 (v = 0) + H increases rapidly with increasing 

energy. Using the wavefunctions generated, we calculate preliminary 

results of probability densities, probability current densities, and 

tunneling fractions. These results, although not converged, do show 

qualitatively correct behavior, including de localization of probability 

density with increasing energy, decreased importance of tunneling at 

high energies, and the formation of a vortex in the field of streamlines 

of probability current density high energies. Possible methods for 

improvement in these results are discussed. 

*Research supported in part by the US Air Force Office of Scientific 

Research (Contract No. F49620-79-C-0187). 

**Work performed in partial fulfilment of the requirements for the 

Ph.D. in Chern istry at the California Institute of Technology. 
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1. Introduction 
~ 

Quantum mechanical scattering calculations and quasi-classical 

trajectory calculations of chemical reactions have provided a great 

deal of information about the dynamics of chemical reactions. 1 In 

addition to allowing one to calculate reaction probabilities as a function 

of energy, and thus rate constants as a function of temperature, these 

calculations have proven useful by helping to provide answers to some 

fundamental questions in chemical dynamics. These questions include 

such problems as the effect of small changes in the potential energy 

surface on the dynamics, the importance of quantum mechanical effects, 

in particular dynamical resonances, and the relative effectiveness of 

different kinds of internal energy in promoting reaction. 

Reaction probabilities as a function of energy are not all that one 

wishes to know about chemical reactions, however. One would like to 

be able to answer the question ''How does a chemical reaction occur?" 

Classical trajectories2 have proven to be very helpful in this regard, 

as they allow one to see physically what sort of relative motion leads to 

chemical reaction and the importance of multiple crossings of a barrier 

to reaction, which has important implications for the application of 

classical transition state theory. 3 Purely classical trajectories cannot 

help one to understand quantum mechanical effects, such as tunneling 

and dynamical resonances, however. 

The additional information desired can be obtained by examination 

of the wavefunctions, 1/lj, generated (in principle if net explicitly) in the 

course of quantum mechanical scattering calculations. In particular, 

one wishes to examine the probability density4 
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* p.(R) = ll; . (R)tL;.(R) 
J ~ ]"" ' ) -" 

(1) 

everywhere on the potential energy surface (j represents the qnant11m 

states of the colliding partners and ~ is a vector including all possible 

coordinates) and the probability current density 4 

J. ( r) = ...!L [ ''' · \l 1u '!' - '''·* \1 ''' ·l "" J "" 2m '+' J ---- "1" J '+' J .--. '+' J 
(2) 

(and the streamlines) . By consideration of the former quantity , we can 

examine the variation of the probability density with energy through a 

resonance. Large changes in it should be seen at some position on the 

potential energy surface, and these given the "location" of the resonance 

on the surface. From the latter, by analogy with hydrodynamic stream­

lines, 5 one can see what portions of the potential energy surface are 

most sampled in the reaction. One can also get from it a quantitative 

measure of the extent of tunneling . 

Such calculations have been performed by a number of workers. 

Wyatt and coworkers have examined these quantities for the collinear 

H + H2 
6 and F + H2 

7 
reactions and the three-dimensional (J = 0) F + H2 

reaction8 and found a number of interesting effects : similar observa­

tions were made by Kuppermann et al. 9 in their stndy of the collinear 

H + H2 reaction. The most interesting observation was that of vortex 

formation. These vortices have been maned "quantum whirlpools . " 

In a series of papers, Hirschfelder10 and coworkers have examined 

streamlines to the protability current density for various simple 

systems. 

The methods used in the calculation of the scattering wavefunctions 
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have had serious limitations. Wyatt and coworkers6- 8 obtained their 

wavefunctions from coupled channel calculations based on natural 

collision coordinates, which do not efficiently permit one to study 

systems of the type 

H + LH- HL + H (3) 

where H and L represent heavy and light atoms, respectively. In the 

earliest work, McCullough and Wyatt6 obtained their wavefunctions by 

solving the time-dependent Schrodinger equation. Kuppermann et al. 9 

obtained their wavefunctions from a modified version11 of the finite 

difference boundary value method of Diestler and McKoy. 12 

The H-L-H case is one of the most interesting ones for the applica­

tion of wavefunction and probability current density analysis as the 

nature of the mass combination leads to a large skewing of the axes 

when viewed in an appropriate mass-weighted coordinate system. 
13 

A result of this skewing demonstrated in Fig. 1 or ref. 14 by the 

potential energy surface for the reaction 

I' + HI -+ I' H + I (4) 

is that the reaction probably does not follow the minimum energy path; 

instead it involves crossing from one well to another at substantially 

greater distances. This type of motion is permissible at all energies, 

as the zero-point energy of HI is far greater than the barrier height. 

Ancther factor adding to the interest in these systems is the existence 

of very sharp resonances, which are extremely sensitive to the exact 

details of the potential energy surface. 14, 15 Such reactions can now be 
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easily studied (collinearly) by the hyperspherical coordinates method.16 ,17 

In this paper we further develop the hyperspherical coordinates 

method16 , 17 to extract the scattering wavefunction so that probability 

densities and probability current densities can be calculated (the latter 

ottained using a previously developed computer prograrn18 for genera­

ting them from wavefunctions in collinear atom-diatom molecule 

collisions). We outline the theory necessary for this advance and 

discuss both the theoretical and n11merical aspects of its implementation. 

We show preliminary results for these quantities as calculated for the 

collinear H + H2 reaction on the Porter-Karplus19 surface. Numerical 

difficulties have made further progress difficult; we discuss possible 

methods to get around them. Finally, we discuss some improvements 

that may be made in the calculation of the probability current density 

from the wavefunction specifically when the wavefunction is generated 

by a coupled channel technique (rather than by a finite difference 

technique as used previously). 

The theoretical questions to be dealt with may be broken down into 

a set of interrelated ones. First, one must consider how the wave­

function is represented in the hyperspherical coordinate approach16 to 

reactive scattering. One must then consider how the physical wave­

function, corresponding to the collision of the diatomic molecule in a 

specific vibrational state with the incident atom, may be constructed 

from the wavefunctions generated in the course of the solution of the 

scattering equations and the final § matrix. We need to examine both 
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the formal and numerical spects of this step. Finally, we must take 

these physical wavefunctions and from them obtain the probability 

density and probability current densities. 

Since the first16 and third18 of these have been dealt with else-

where, we will focus our attention on the second. Nevertheless, we 

will briefly review the first and third questions for the sake of com­

pleteness. 

A. The hy-perspherical coordinates wavefunction 

The fundamental idea of the hyperspherical coordinates approach 

to the collinear reactive atom-diatomic molecule scattering problems 

is simple. As the two coordinates necessary to describe the system, 

one uses one distance, p, and one angle, a, (this technique is described 

more fully in ref. 16, where p and a are defined. The wavefunction is 

expanded in terms of a basic set of eigenfunctions </J i (a, p) of a cut 

through the potential at a constant value of p = p. 

(5) 

where the gij (p, p), the so-called radial wave functions, are solutions 

of the differential equation (expressed in matrix form) 

(6) 

where the matrix elements Wij and Eij are given by the expression 
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(7) 

(8) 

where jj) = ¢j (a,p), Ei (p) is the eigenvalue of ¢ i (a;p), E is the 

total energy of the system measured with respect to the bottom of the 

isolated reagent molecular well, and the integration in eq. (7) is over 

the angle a. 

In solving the differential equation, one starts at a value of p 

sufficiently small that all eigenvalues E . are much greater than the 
1 

energy E. In that case, the wavefunction will be ~ufficiently small 

that, to a very good approximation, it will be zero, and we may take 

as our initial conditions 

~(O,p) = Q 

g:' (O,p) =! . 

(9a) 

(9b) 

The matrix differential equation (6) is then integrated numerically 

to a value of p sufficiently large that the interaction between the 

particles is such that the diatomic molecules only barely feel the 

influence of the remaining atom. At that point the tj;j are then 

numerically projected onto the bound state eigenfunctions of the BC and 

AB diatomic molecules; we then obtain the reaction (~), scattering(§) , 

and probability (P) matrices from these wavefunctions. 

A crucial point to be made is that the wavefunctions tj;j generated 

in the course of integr ating eq. (6) do not correspond to the physical 

wavefunctions desired. The boundary conditions which insure that one 
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is solving the proper problem are only imposed after eq. 6 has been 

integrated. Thus, in order to obtain a physical wavefunction, we need 

to use both the wavefunctions generated in the course of the integration 

and the ~matrix determined in the asymptotic analysis. 

B. Calculating the Physical Wavefunction- Formal Aspects 

The problem of ol:taining the physical wavefunction wfhys from the 

lflj available from the gij (p, p) determined in the integration of eq. 6 

reduces to that of finding the correct linear combination of the tf;j 

We will call the lflj the primitive wavefunctions, because they are what 

is generated in the program. Mathematically, we ·want to determine the 

coefficient matrix W, where 

N 
phys _ L; pr 

lf-'j - i=1 Wi wij' (1 0) 

where N, the total number of primitive wave functions determined, is 

greater than the number N of asymptotically open vibrational states op 
(j = 1 would correspond to only one state open in either the reagent or 

product channel, but not both, with no possibility for other than elastic 

scattering). 

The quantity of g reatest interest in the analysis that follows is the 

radial wavefunction matrix IJ determined in the projection of the wave­

function onto eigenfunctions x. of the AB and BC diatomic potentials: 
1 

(11) 

where we have suppressed the coordinate dependencies of the various 
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wavefunctions. In the ensuing discussion, we will restrict consideration 

to Q· Once we have the matrix W, we will then return to considering 

the full wavefunction w. The asymptotic analysis, which is discussed 

in detail elsewhere, 20 says that at large values of the distances RX, R'Y 

(defined in ref. 20) we may write ~ in one of the two asymptotic forms 

1 

Qs = ~--z (fJ~ + ~) 

(where QR = Qs = Q) 

where y is a diagonal matrix given by 

VAn = ~nn' n I kAn II J.l 
A A 

where the wavenumber k>..n is given by the expression 
A. 

(12a) 

(12b) 

(13) 

(14) 

where A. denotes the arrangement channel (,\ =A + BC, K = AB +C) 

and the EAn are the vibrational energies of the diatomic molecule in 
A 

channel A and 

~ { exp( -ik)n R)) for open channel!~> (15) =>..n (R>..) = 
A 

exp( lkAn I R) ) for closed channels 
,\ 

cr 
{ exp(ik)n R)) (16) = A.nA (RA) = for open channels 

exp( - I k): ~) ) for closed channels 
A 
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{ 

sin(kAn RA) for open channels 

_exp(lkA: IRA) for closed channels 
A 

{

cos(k., R ) for open channels 
1\nA ~ 

exp( - I k I R ) for closed channels 
AnA -A. 

(17) 

(18) 

Similar expressions may be derived for the derivative.s gR and gs, 
where .J, -', ~' and (J"' are replaced by their R>.. derivatives 

.J_, , !:' , ~' , and .fl, respectively. 

The gR form is more convenient from a computational point of 

view, as then only real quantities are involved. The matrices C and D 

may be oltained from gR, gR, J, ~, J:', and 1:' . The reactance 

matrix R is obtained by the expression 

-1 
R = QQ . (19) 
- --

When only reaction probabilities are desired, one may consider only 

the "open'' part of the ~ matrix (N
0
p x N

0
p instead of N x N) and 

calculate the open part of the §matrix and from that the probabilities 

in the usual way . 

The g8 form is closer to the physical wavefunction however, as it 

involves incoming and outgoing waves in all states and in all channels. 

What we seek is the wavefunction in which there is an incoming wave in 

only one state in one channel (but all possible outgoing states in both 

channels are allowed). The ~ matrix may be oltained analogously to 

the manner in which B was obtained. The matrices ~ and~ may be 

obtained from g8 , g' , fl._, ,ft!, .ft., and ~, and then by the expression 
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(20) 

Substituting eq. (19) into eq. (12a) and eq. (20) into eq. (12b), we get 

gR = v-! ( J: + ~ ~) C. 

gs = v -! ( ~ - c:9'~) ~ 

We may construct a 11physical matrix" solution from the primitive 
-1 

solution by right multiplying by C so 

We similarly define the 11physical S matrix" solution 

phys _1 _!. n It¥ 

~s = ~s ~ = ~ 2 < ~ - ~ ~) · 

(21a) 

(21b) 

(22) 

(23) 

We need then relate ~~hys and g~hys, we may do this by the matrix 

equation 

phys phys 
~s = ~ Y. (24) 

Substitution of eqs. (22) and (23) into eq. (24) gives us, formally at 

least, V and S; 

(25) 

We may get both § and V because each submatrix (the open and closed 

parts) contains two different types of terms: sines and cosines in the 

open parts and exp(IK !R) and exp(-lt< !R) in the closed parts. We will 

return to this later. 
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The last step involves conversion of the "physical S matrix" 

solution to the actual physical solution. The solution we have now is 

very close to the desired asymptotic form 

(26) 

where r A. is the internal coordinate of the diatomic molecule in the ~ 

channel. The ! and Q matrix elements are related in the following way: 

(27) 

Hence, the desired physical wavefunction ~phys, is related to ~~hys 
by the expression 

= 
h

phys .!. v 2 
:S = 

Rewriting things in terms of the actual wavefunction 

phys 
tJ!· J 

phys 
= tJ; sj 

1 
2 v . 
J 

which, combined with eqo (24), (20), and (1 0) lets us write 

so 
1 

phys " , pr -1 2 
tJ;J· = /..J tJ; (C L · v .v .. 

KJ. l .l.K K] J 

(28) 

(29) 

(31) 
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Now we need only evaluate y. To do this, we break eq. (25) up into a 

set of four equations 

(32) 

From eqs. (15)-(18), 

.Jc = ~c (33a) 

e = &' (33b) 
=C =C 

~0 = t - i.J: (33c) 
=0 -0 

~ = t:o + i jo (33d) 

By substituting eqs. (33) into eq. (32) and equating the coefficients of 

:tfo and ~0, we get eight equations (we will suppress the fact that all 

these quantities, except i, are matrices) 

V oo = -i (I + Soo) 

Roo V oo +Roc V co= 1 - 8oo 

V oc = -iSoc 

Roo Voc +Roc Vee= -Soc 

vco = 0 

Reo V oc + Rcc Vco = -sco 

Vee= I 

Reo V oc + Rcc V cc = - 8co · 

(34a) 

(34b) 

(34c) 

(34d) 

(34e) 

(34f) 

(34g) 

(34h) 
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Combining eq. (34a, b, e) we can show 

S = (I - i R ) -
1 

(I + i R ) 
00 00 00 

(35a) 

(35b) 

It may be shown (Appendix A) that eq. (35a) is equivalent to the usual 

form 20 

Combining eq. (34c, d, g) we can show 

Soc = -(1 - iRoo) -1 Roc 

V oc = i(I - i Roo) -1 Roc . 

We may then write expressions for Sco and Sec: 

(35c) 

(36a) 

(36b) 

(37a) 

(37b) 

Equations (36a and 37) are presented for the sake of completeness; they 

will not be needed in what follows. The only part of § actually used is 

S
00

, from which reaction probabilities are calculated. We need only the 

open columns of y. We will construct the entire Y matrix, however. 

From eqs. (34e), (34g), (35b) and (36b) we see that it may be written as 

Y = (-2i (I : iR00) -
1 

i(I - i~00)-1 
R00 

(38) 
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It is noted that R
0

c will be needed in the calculation of the closed 

columns of V. Evaluation is straightforward in that one must use both 

the open and closed columns of g, ~,, J, t , ,b, and ~, . 
1 

At this point, we have expressions for the three matrices y 2 , X, 
and ~-1 , from which W may be obtained and thus the physical wave­

function may be obtained from the primitive wavefunction. 

C. Calculating the Primitive Wavefunctions 

The primitive wavefunction 1./Jf!r needed for the construction of the 
J 

physical wavefunctions by eq. (1 0) are in principle available from the 

radial wavefunction obtained in t he integration of eq. (6), the basis 

functions cf>n(a, p) and the value of the propagation coordinate p by 

eq. (5). The successful application of eq. (5) requires that the product 

N 
1_ pr ~ 

p 2 i/J· = :_./ ¢.g .. 
J i=1 1 1) 

(39) 

be continuous. This is not normally the case during the integration of 

eq. (6) for two reasons. 

First, to maintain the linear independence of the N columns of the 

radial wavefunction being integrated, it is necessary to perform some 

sort of stabilizing transformation that inhibits the exponential growth 

associated with the closed channels. This requirement is really 

numerical in origin. Given a computer with infinite precision, no such 

transformation would be necessary. The stabilizing transformation 

used with the hyperspherical coordinates technique is the reorthogonali­

zation procedure of Riley and Kuppermann. 21 In this procedure , the 
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radial wavefunction matrix and its derivative are periodically right­

multiplied by the inverse of the current radial wavefunction matrix to 

give modified matrices as follows: 

(40a) 

(40b) 

In this transformation, the logarithmic derivative g, given by 

I -1 £ = g g (41) 

is unchanged. This transformation, which will not affect the reaction 

probabilities, corresponds to a change of the initial conditions for the 

integration of eq. (6). Clearly, it does lead to discontinuities in g which 

must be corrected for priortothe insertion of g into eq. (5). 

Second, to maintain the magnitude of the radial wavefunction matrix 

elements, the numerical integrator used22 "renormalizes'' the wave­

function and its derivative after each integration step by right multipli­

cation by a diagonal matrix: 

~new = ~old · c (42a) 

~new = gold · ; (42b) 

where ~ has been defined elsewhere. 22 Substitution of eqs. (42) into 

eq. ( 41) shows that the logarithmic derivative g_ is unchanged by this 

transformation. Corrections for this renormalization must be made 

prior to the application of eq. (5). 
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The problem of construction of a "consistent" g (that which leads 

to a continuous tj;T?r) is in principle exactly the same as that faced in 
J 

the numerical projection of the wavefunction onto a basis set of BC and 

AB diatomic molecule eigenfunctions. In that case, the projection 

procedure requires the radial wavefunction over a range of p, which 

necessitates the propagation of a consistent wavefunction. Because in 

the case of the projection, a consistent wavefunction is needed over 

only a small range of p (usually ~ 1 bohr) where the eigenvalues EnCP) 

have essentially settled down to their asymptotic values, numerical 

difficulties are few. In the construction of the consistent g necessary 

for the probability density and probability current density calculation, 

numerical difficulties are quite severe, and we discuss these later. 

As presently formulated, the program by which we calculate 

probability current density from the physical wavefunction t/Jfhys 

requires them at a regular grid of points (in internuclear coordinates).18 

In the course of the hyperspherical coordinate program, one does not 

obtain the wavefunction on any regular grid, however. The numerical 

integrator chooses its own step size in order to meet certain restric­

tions on the error in each step, meaning that before the calculation is 

performed, one does not even know at what point the wavefunction will 

be available. Another difficulty is that the number of grid points 

desired, usually in the range of 1000-5000 (the grid size normally 

ranges from 30 x 30 to 70 x 70), is sufficiently large that we cannot 

force the numerical integrator to explicitly integrate from each grid 

point to the next. Rather, it is desired to permit the integrator to 

proceed as it would and to obtain the wavefunction at the grid points by 
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an accurate numerical interpolation scheme. 

This may be demonstrated by the following example. A typical 

step size for the integrator in the collinear H + H2 reaction is 0. 03 bohr; 

a typical range of p is from 1 to 10 bohr. Hence, a total of 300 steps 

for each of the symmetric and antisymmetric solutions will be needed. 

A typical grid size for a probability density and probability current 

density study of this reaction might require 1600 points. Thus, if one 

were to integrate from one grid point to the next, 5 times as many 

integration steps would be needed. This requirement would impose an 

unsatisfactory computational burden and is, therefore, unacceptable. 

The importance of an accurate and efficient numerical interpolation 

scheme is clearly seen. 

Fortunately, the numerical integrator used22 provides for an 

efficient means of performing such an interpolation. Again, a similar 

problem has been faced in the projection of the wavefunction onto the 

BC and AB diatomic basis sets, where the wavefunction is needed at a 

large number (100-200) of points over a small ( S 1 bohr) range of p. 

The interpolation method used is the same in both cases. Since the 

wavefunction is the product of two parts, one angular (given by the 

basis set), and one radial, we must perform two interpolations to 

evaluate the wavefunction at an arbitrary grid point. 

The angular part of the interpolation is simple. The basis functions 

are represented numerically as vectors, each element of which corre­

sponds to a value of the angular coordinate a. To obtain the angular 

part of the wavefunction at some intermediate value of a, one may inter­

polate by some simple approximation scheme, such as assuming that the 
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cf>n are piecewise linear (as is done for the grid points), or by approxi­

mating the entire ct>n by a cubic spline and then evaluating the derivative 

from the spline coefficients at the desired value of a (as is done in the 

projection region). 

For the radial part of the wavefunction, we take advantage of the 

particular nature of the Gordon integrator. 22 In this integrator, the 

potential is approximated by a series of linear portions. The resulting 

differential equations are analytically solvable in terms of the Airy 

functions Ai and Bi. Within each integration step, the radial wave­

function matrices may be expressed as linear combinations of Ai and Bi 

functions of the appropriate arguments (see ref. 22, for a full descrip­

tion of the method). 

(43a) 

g'(p) = A'(p) ~ (p) + B'(p) ~'(p), (43b) 

where ~ and B. are the matrices of Ai and Bi, respectively, and 

~and g are coefficient matrices. It is assumed that the dependence of 

~ and ~ on p is sufficiently small such that their deviation from a con­

stant matrix can be determined by perturbation theory. We then make 

the additional assumption that the perturbation corrections P and P' to 
- -- -

g and g' are linear over the step. We then write 

!l (o) = A (p) a(o0 ) + B (c) b (o0 ) + ~ (o) (44a) 
- -

g'(o) = A(p)a'(o6 ) + B(o)b'(p0 ) + ~'(p) (44b) 

where p0 is the value of p at the beginning of the integration step. 
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The evaluation of ~' ~' ~' and~, is fully described in ref. 22. 

Equations (44) provide a relatively simple and efficient means of 

interpolating the radial part of the wavefunction. All that is required 

for the evaluation of g(p) at a grid point is the evaluation of the matrices 

~ and ~ at the value of p appropriate to it and the multiplication of the 

perturbation corrections by the ratio of the quantity p-p0 to the full 

stepsize. 

With these methods for the interpolation of the angular and radial 

parts of the wavefunction, we have all the necessary data for the con­

struction of an accurate t~;~r at any grid point. 
J 

To actually generate consistent primitive wavefunctions, we need, 

therefore, to undo the stabilizing and normalizing transformations 

performed on the radial wavefunction. There is a certain amount of 

freedom associated with this consistency establishment: one can force 

the wavefunction to be consistent with respect to any given point on the 

surface (providing one uses a wavefunction consistent with respect to 

the same point in doing the asymptotic analysis described earlier). 

The simplest choices are to make it consistent with respect to the 

beginning of the integration of eq. (6) (eqs. (9)), or to make it consistent 

with respect to the end of the integration of eq. (6). The former method 

(forward consistency) is conceptually simpler and requires less compu­

tational effort, but has some numerical difficulties associated with the 

consistency generation. The latter method (backward consistency) is 

perhaps more elegant, but requires substantially greater computational 

effort and may have numerical difficulties of its own. We now describe 

both these methods. 
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To generate a forward consistent wavefunction one must calculate, 

every time a reorthogonalization or renormalization is performed, a 

"transformed unit matrix" by the expressions 

-1 

!lnew = !lold ~old 

at reorthogonalizations and 

u = u b =new =old = 

(45a) 

(45b) 

at renormalizations . At the start of integration, ~ = ! (hence the name 

transformed unit matrix). To generate a consistent radial wave function 

from the inconsistent one propagated in the hyperspherical coordinates 

program, one need only perform the operation 

~cons incons -1 = g u (46) 

This clearly has the effect of undoing all the transformations associated 

with reorthogonalizations and renormalizations. 

Numerical difficulties arise mainly from the reorthogonalization 

transformations in the following way. Since closed channels lead to 

exponential growth in the wavefunction, reorthogonalizations involve 

multiplication of the wavefunction by a matrix, the magnitude of whose 

elements are less than one. The more closed the channels, the smaller 

the elements of the matrix will be. After a number of such transforma-

tions, the matrix will have elements whose magnitudes are much less 

than one, and the inversion procedure may prove difficult. Linear 

dependence may creep into the transformed matrix U, making inversion 
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impossible. In some ways, hyperspherical coordinates are the worst 

coordinate system in which to generate a forward consistent wave­

function, as at the smallest values of p, all channels are closed by 

many eV. The exponential growth in the wavefunction will, therefore, 

be quite rapid, and one will encounter numerical difficulties fairly 

early in the integration, even where the wavefunction is small. 

A backward consistent wavefunction may also be obtained. To do 

this, one must multiply the inconsistent primitive wavefunction by the 

product of all reorthogonalization and renormalization transformation 

matrices that are used during subsequent integration. If we write the 

radial wavefunction g at some value of p = p as gn and transformation 
- n = 

matrices at each Pn' as T n', then the backward consistent wavefunction 

at p = Pn may be written as 

kn 
gcons = incons 

n gn IT Tn+l. 
- = i=l 

(47) 

where kn is the number of transformations (renormalizations and 

reorthogonalizations) remaining. The numerical advantages of this 

method are that no inversions are necessary and that the matrices being 

multiplied will be small (its elements have magnitude less than one). 

As n decreases (n = 0 at the start of integration) the matrices T n will 

get smaller, and the worst numerical problem that should develop is 

underflows in their product. That may not be a major limitation, 

however, as it may be satisfactory in that case to let gcons = 0. 
=n = 

The computational simplicity associated with the forward consistent 

wavefunction derives from the fact that it can be constructed from 
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previous transformations during the integration procedure. Thus, only 

N matrix elements must be stored (recall that at a grid point, each 

lJ;T?r is given by a single real number) at each grid point. To calculate 
] 

a backward consistent wavefunction, one must store not only N incon-

sistent matrix elements at each grid point, but also each transformation 

matrix T n over the entire range of the integration. Only then can one 

go about the calculation of the consistent wavefunction. 

In the work to be described we have employed the forward con­

sistent method and have had progress seriously impeded by numerical 

difficulties. It seems that the deciding factor in the choice of which 

type of consistency to use is the nature of the computer being used. If 

the computer represents floating point numbers in a way such that the 

maximum exponent available is small or does not carry enough digits to 

avoid linear dependence problems in the calculation and inversion of U, 

the forward consistent method will not work, and the backward con­

sistent method should be. used. If one has a computer with a wide 

dynamic range for floating point numbers and sufficient digits for 

accurate inversion of U, the forward method seems advisable because 

of its simplicity. As a result of our difficulties, we plan at some future 

time to allow for backwards consistency. 

D. Calculation of Probability Density and Probability Current Density 

The calculation of the probability density, Pj' from the physical 

wavefunction is straightforward. One simply substitutes the value of 

the physical wavefunction lJ;I?hys into eq. (1) to calculate p, and then 
J 

displays the information in whatever way desired, normally a contour 

plot. 
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The probability current density calculation is a bit more compli­

cated, and the method used in the calculation is described elsewhere.18 

We mention only a few of the most crucial elements of this calculation 

here. The objects which are normally plotted are not the current 

densities but their streamlines - curves which are everywhere tangent 

to the probability current density vectors. The streamlines are 

especially useful because of their similarity to streamlines of fluid 

flow and thus the clarity with which the hydrodynamical analogy to 

quantum mechanics may be made. 

In order to calculate the probability current density J as defined in . ,.. 

eq. (2), one needs to transform the coordinate system so that there is 

only one mass in the kinetic energy operator. There are several such 

choices for this coordinate system. The one used here is one in which 

the variables X3 and X2 are defined by the relationship: 

(48a) 

(48b) 

where R AB and RBC are the A-B and B-C internuclear distances and 

the 1-L are the reduced masses as defined in the usual way. Another 

choice for this system might be the usual Delves coordinates. 13 

1-L .! J..L 1-Lbc 
1 

R = ( a, be ) 4 (R + ~ R ) = ( )4 Xs J..Lbc AB llb BC lla, be 
(49a) 

1 1 

( llbc ) 4 R ( llbc ) 4 
r = = Xz 

1-La be BC lla be ! ' 
(49b) 
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The skew angle (the angle made in the new coordinate system between 

lines of RAB = constant and RBC = constant) in these two coordinate 

systems is the same. Plcts of streamlines of probability current 

density and tunnelling fractions displayed in the results section will be 

in the X3 , X2 coordinate system as defined in eqs. 48. 

In addition to plotting the streamlines of probability current 

density, we can use the current densities to calculate "tunneling 

fractions" in the following way. Boundary streamlines may be calcu­

lated which are tangent to the contours whose energy is the same as the 

energy of the calculation. The region of the potential energy surface 

between the two boundary streamlines represents a "classical river", 

as a streamline that lies outside this river at any point on the potential 

energy surface must go through a classically forbidden region some­

where on the surface. From this definition, it is easy to establish the 

tunneling fractions on both the repulsive wall and dissociative plateau 

sides. 

3. Numerical Results 

We will present plots of probability densities and streamlines of 

probability current density , and results of calculations of tunne ling 

fractions for the H + H2 reaction or the Porter-Karplus surface19 using 

a wavefunction obtained from the hyperspherical coordinates wave­

function. Because of our choice of a forward consistent wavefunction, 

numerical difficulties associated with closed channels were a severe 

problem, and we were limited to 2 channel (2 symmetric and 2 anti­

symmetric) calculations. Inclusion of an additional closed channel leads 
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to fatal numerical errors. It has been shown16 that a 2 channel 

calculation of this system gives good reaction probabilities in the low 

energy region; we have no information on the convergence of the wave­

function. Reaction probabilities for the energies considered here are 

given in Table 1 (these are the probabilities calculated in the 2 channel 

runs from which the physical wave functions were obtained). 

The first step in the calculation of the physical wavefunction after 

the performance of the scattering calculation is the construction of the 

coefficient matrix W. We emphasize that we are only interested in the 

columns of W corresponding to asymptotically ope!l channels; there is 

nothing at all physical about the wavefunction associated with the 

collision in a channel in which there is insufficient energy for any 

collision to occur! Thus, we will consider a non-square Y;j of N rows 

and N
0
p columns. In the H + H 2 collision, the symmetry of the 

collision imposes a restriction on W: 

W. N . 
I, op +J (50) 

A manifestation of this restriction will be seen in the probability 

density plots, where lJiihys and lJ;~hys (the only possible ones in the 

energy range considered) g ive probability density plots which are 

reflections of each other about the RAB- RBC symmetric stretch line. 

Let us first consider the structure of the W matrix for this 

system. The exact form of the matrix will depend on the details of the 

construction of the physical wavefunction, in particula r the choice of 

forward or backward consistency . When a forward consistent wave-
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function is used, it will be large at large p where integration is 

terminated. Since W is related to the inverse of the final consistent 

radial wavefunction and derivative matrices via the matrix C -I, W 

will be small in the forward consistent case. Values of W at a series of 

energies are displayed in Table 2. The calculation of W is somewhat 

complicated because of the existence of a wide range of exponents 

associated with the exp(± I K I R) terms in the evaluation of R and R . 
=00 =OC 

These difficulties are exacerbated by the use of a forward consistent 

wavefunctiono A scheme for avoiding potential pitfalls in the evaluation 

of W is given in Appendix B. 

A. Probability Densities 

Contour plots of the probability density are shown for six different 

energies in Figs. 1-6 (total ener gies of 0. 4466, 0. 4866, 0. 5266, 0. 5666, 

0. 6066, and 0. 6466 eV measured with respect to the bottom of the H2 well). 

These plots are for the physical wavefunction corresponding to an 

A+ BC collision; the collision process can be thought of as sta rting at 

the lower right hand corner of the plot. These plats have been made in 

internuclear coordinates; for interpretation a plot in Delves coordinates 

would be best. Contours are drawn at intervals of 0. 25 of the common 

logarithm of p. (The wavefunction is normalized to unit incident flux. ) 

Two features are immediately apparent. First, there are constrictions 

in the entrance channel which decrease in severity and move closer to 

the saddle point as the energy increases. Between these constrictions 

lie regions of increased probability density, which also wash out with 

increasing energy. Second, at low energy, there is little amplitude in 
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the region of the potential energy surface corresponding to reaction 

products. As the energy increases, the probability distribution 

becomes almost symmetric about the symmetric stretch line. At these 

highest energies, the reaction probability is almost unity. The physical 

interpretation of these data, then, is that at high energies, where the 

exit channel of the surface is sampled, the probability density will be 

uniformly spread along the minimum energy path. At energies where 

the reaction probability has not yet become appreciable, the wave­

function is forced to be localized in the entrance channel, giving rise to 

the maxima at the three lowest energies shown. The origin of the con­

strictions is not clear from the plots. 

The jagged nature of the contours of constant probability density in 

Figs. 1-6 is probably due to the large grid size used (0.1 bohr). With 

a smaller distance between grid points, it is expected that smoother 

curves would be generated. As the current work is only really at the 

preliminary level, we chose not to pursue this particular point. With 

this grid size and range used, there are 1024 grid points, which already 

requires a fairly substantial computational effort in terms of computer 

time and disk usage o With some relatively simple modifications, an 

L- shaped grid region rather than a square one as is presently used 

might be employed, which would allow for a higher density of points in 

the entrance and exit channels and in the saddle point region, and a 

lower density of points high upon the dissociative plateau. In the latter 

region, the physical wavefunction can clearly have no amplitude in the 

energy range considered, as it is classically forbidden (quantum 

mechanically one might say that the lowest energy eigenfunctions <Pi have 

zero amplitude in this region). 
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B. Probability Current Density 

In Figs. 7-13 we present plots of the streamlines of probability 

current density. The streamlines are broken up into a series of curves, 

the head of each of which is marked by an arrow. The length of the 

arrow is proportional to the current density at its center. The stream­

line plots are superimposed on a contour diagram of the potential 

energy surface in order to display the relationship between the stream­

lines and the surface. These plots are in the (X3 , X2 ) coordinate system 

defined in eqs. (48). The minimum energy path is marked by a dashed 

line, the saddle point is indicated by a cross. CoJ?.tours are drawn 

every 0. 2 eV from 0. 2 eV to 1. 6 eV, measured with respect to the 

bottom of the H2 well. An additional contour is drawn at the energy of 

the calculation. 

The plots for energies of 0. 4866, 0. 5266, 0. 5666, 0. 6066, 0. 6466, 

0. 6966, and 0. 7466 eV display a few key features. At the lowest energies, 

nearly all of the flux to reaction occurs at greater distances than those 

corresponding to the saddle point (Fig. 7, 8), while at the highest energies 

there is appreciable flux through and to the left of the saddle point. 

At the two highest energies, we can also see the development of a vortex 

in the streamline diagram just to the right of the saddle point region. 

It appears that at higher energies this vortex might close on itself, 

forming a quantum whirlpool. Such whirlpools have been previously 

seen for this system. 6 

It is clear from these figures that a fair amount of the reaction at 

low energies occurs via tunneling . We will try to quantify this in the 

next subsection. For example, at 0. 5266 eV (Fig. 8), one can see 
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three streamlines crossing the contour at that energy, transporting 

flux through the dissociative plateau in spite that region's classical in­

accessibility. At the higher energies, it is similarly clear that very 

little flux is transported by tunneling. As a result of the vortex, flux 

is shifted into smaller values of X3 and X2 • 

There are some unsatisfactory features in these streamline plots 

which indicate lack of convergence, instabilities, or outright errors in 

the analysis (most likely in the manipulation of the hyperspherical 

coordinates wavefunction into a form suitable for the streamlines 

program). For example, in Fig. 7, the two streamlines shown starting 

at the smallest values of X2 coalesce near X3 = 3. 5 bohr and remain 

essentially indistinguishable until about X2 = 2. 40 bohr, where they 

suddenly separate. Similarly, in Figs. 8-11, the streamline starting 

at the smallest value of X2 makes a sharp turn to smaller values of X2 

before rounding the corner at unusually small values of X3 and X2 • 

It is quite possible that some of this unphysical behavior is a direct 

manifestation of the large grid spacing used (0.1 bohr) in these calcula­

tions, and redoing the calculations with a smaller spacing might alle­

viate this problem. Improvement might also be made by using a 

partially analytic expression for the derivative of the physical wave­

function based on the derivative of the radial wavefunction which is 

available from the scattering calculations. Such a procedure might 

provide a better estimate for the partial derivatives of the radial wave­

function than the numerical procedure currently used (it should certainly 

be more efficient). We will develop this further in the final section. 
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C. Tunneling Fractions 

The calculation of the tunneling fraction has been outlined earlier. 

To obtain the tunneling fraction, we need to calculate the flux normal 

to a set of lines normal to the minimum energy path in the (X3 , X2 ) 

coordinate system. The tunneling fraction is the fraction of this flux 

which lies outside the boundary streamlines defined earlier. We have 

calculated these tunneling fractions along six lines normal to the 

reaction path at the energies shown in Figs. 8-13. The values of the 

currents normal to each line and the fractions which can be classified 

as tunneling through the wall, classical, and tunn_eling through the 

plateau, are presented for each line at each energy in Table 2. 

It has been shown18 that when there is no dissociation, given that 

the lines extend sufficiently far into the wall and the plateau region, the 

current normal to each line should be the same for a given energy. 

This will not be true in practice because of errors in the physical wave­

function used and the approximations inherent in the numerical methods 

used in the calculation of the current density, most probably the 

numerical interpolation and differentiation of the wavefunction. A 

measure of how well this condition has been satisfied may be seen by 

comparing the various currents in Table 3. These data are summarized 

in Table 4, in which we list average currents, their average deviation, 

and the %deviation at the seven energies studied. 

The current normal to each of the cuts is clearly not equal at a 

given energy, as may be seen for the large % deviations in Table 3. 

This measure of the relative error seems to be decreasing with energy 

at the lower energies dropping from 12. 2% to 8. 8%, although at the 
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highest energies, it appears to have reached some sort of limiting 

value. This deviation is far worse than the normal deviation of~ 0. 5% 

obtained in the study of the H + H2 reaction on the scaled SSMK surface 

performed previously. 18 The current work differs substantially from 

that study in the method of generation of the wavefunction (coupled 

channel hyperspherical coordinate method as opposed to finite difference 

method). In addition, a large grid spacing was used in these calcula­

tions (0.1 bohr); we have not yet examined how a reduction in this 

parameter will influence the results. 

A pictorial representation of these tunneling fractions is given in 

Fig~. 14-20 for the same energies in which the streamlines of proba­

bility current density were examined in Figs. 7-13, respectively. The 

lines normal to the minimum energy path are clear. They are numbered 

from one to six (see Table 3) ; 1 being at the lower right-hand portion of 

the figure, corresponding to A + BC, while 6 is in the upper center, 

cor responding to AB +C. The current normal to the lines is indicated 

by the heavy solid curve; the distance from the line along which the 

normal current is calculated to the curve is proportional to the magni­

tude of the current at each point along the line. The boundary stream­

lines are indicated by short dashed lines. As in Figs. 7-13, the plots 

are superimposed on a contour plot of the potential energy surface. 

From Figs. 14-20, a few features are most visible. First, the 

classical river defined by the boundary streamlines is very narrow in 

the entrance and exit channels at low energies; it widens substantially as 

energy incr.eases. At the highest energies (0. 6966 and 0. 7466 eV) one 

can see the distortion related to the vortex formation seen quite clearly 
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in the streamlines in Figs. 12 and 13. In the entrance channel and the 

exit channel, the current normal to the lines is strongly peaked about 

the minimum energy path (centered slightly on the plateau side), where­

as in the saddle point region, along the symmetric stretch line, the 

distribution is much broader. 

The tunneling fractions for each line have been listed in Table 3. 

Two major results are evident. First, as the energy increases, the 

fraction of reaction occurring by tunneling decreases substantially. 

For example, along the symmetric sketch line, 63.6% of the current 

lies outside the classical river region defined by the two boundary 

streamlines at 0.4866 eV, while only 3.8% goes outside it at 0.7466 eV. 

This decrease in the importance of tunneling at high energies is to be 

expected; these calculations thus serve to verify our chemical intuition. 

Second, the fraction of the current lying outside the classical river 

region is usually smallest on the symmetric stretch line; it is always 

greatest at the lines farthest in the entrance and exit channel. This can 

be seen to arise for the narrowness of the classical river in the entrance 

and exit channels, which essentially forces current into the tunneling 

regions as the current profile does not change that much in these 

channels. Only near the saddle point does the current profile change 

substantially, and then the boundary streamlines separate to form a 

wider classical river, meaning that more of the current can be in this 

classical region. Since a small change in the boundary streamlines in 

the entrance and exit channels could produce a fairly large change in the 

tunnelling fractions, the absolute values of these numbers should not 

have too much significance attached to them. The trend of decreasing 



686 

importance of tunneling with increasing energy should be valid, 

however. 

4. Discussion and Conclusion 

We have successfully calculated the physical wavefunctions from a 

coupled channel calculation for the H + H2 reaction using the hyper­

spherical coordinates technique. Using these wavefunctions, we have 

obtained plots of probability density and of streamlines of probability 

current density, and have calculated tunneling fractions over the energy 

range from 0. 4866 eV to 0. 7466 eV. In this energy range the reaction 

probability rises essentially from zero to unity. 

A number of results were obtained for this system. Plots of the 

probability density show that at low energy, the physical wavefunction 

is isolated in the entrance channel and has one or more regions of 

maximum amplitude separated by regions of constriction. As the 

energy is increased, both become less pronounced, until at the highest 

energies considered, they have disappeared and there is a maximum in 

the saddle point region. The streamlines of probability density show 

that at low energies a fair amount of the reaction flux will pass over 

the edge of the dissociation plateau rather than following the minimum 

energy path. As the energy increases, less of the flux goes over the 

plateau, and at the highest energies, flux is efficiently routed away 

from the plateau by the formation of a vortex in the streamline field. 

The formation of this vortex can also be seen in the probability density 

plots at these energies. 

The tunneling fractions yield two major results. First, as the 
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energy increases, the relative importance of tunneling decreases 

substantially. Second, the tunneling fraction is least at or near the 

symmetric stretch line and highest far out in the entrance and exit 

channel. The condition that the current normal to the lines normal to 

the minimum energy path is only approximately satisfied (~ 10%), with 

the error greatest (~ 12%) at the lowest energy and least ("" 9%) at the 

highest energies. 

The calculations reported here are, at the very best, preliminary. 

We have not yet established convergence of any of the quantities 

reported with respect to either the number of channels in the hyper­

spherical coordinate calculation or the grid spacing in the probability 

density and probability current density calculation. Testing of the 

former can only be performed after the method of consistent primitive 

wavefunction calculation is changed from forward consistent to back­

ward consistent. Testing the influence of the grid spacing can be easily 

accomplished, however. One must finally consider the accuracy of the 

numerical interpolation and differentiation procedures used in the 

probability current density calculation. These were found to be 

sufficiently accurate in previous calculations; the switch in method of 

wavefunction calculation (from finite difference to hyperspherical 

coordinate coupled channel) should not alter this conclusion. 

One fairly simple improvement which might be made is the pseudo­

analytic calculation of the derivatives necessary in the evaluation of the 

current density. Since in a previous application the wavefunction was 

generated by a finite difference method, the derivative had to be con­

structed by using a finite difference approximation to the derivative 
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operator. In the hyperspherical coordinate coupled channel method 

used here for the generation of the wavefunctions, one has access not 

only to the wavefunction, but the p derivative of the radial wavefunction. 

If one approximates the a derivative of the basis function by a finite 

difference procedure, one can obtain an expression for the derivative 

of the primitive wavefunctions (and hence the physical ones) with 

respect top and a. By appropriate transformation of variables, these 

derivatives can be evaluated in any desired coordinate system. This 

procedure is developed in detai 1 in Appendix C. 

The preliminary results of the work reported here suggest that 

after reprogramming to allow for a numerically less dfficult way of 

calculating a consistent wavefunction and after some numerical testing 

to establish a maximum grid spacing for convergence of current 

densities and tunneling fractions, we will have a general and efficient 

means of the calculation of probability densities, current densities, 

and tunneling fractions for collinear atom-diatomic molecule reactions. 

This method should be applicable to all such reactions , including heavy ­

light-heavy reactions. It should also allow the calculation of stream­

lines of probability current density in reactions involving collision­

induced dissociation, 23 , 24 as these may also be studied by the 

hyperspherical coordinate method. 
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~· Demonstration of the Equivalence of Eqs. 35a and 35c. 

(We suppress the fact that R
00

, §
00

, and~ are matrices.) 

We show here that the expression for S
00 

obtained in eq. (35a) is 

equivalent to the usual definition of eq. (35c). This derivation relies 

solely on the facts that R is real and symmetric and that the inverse 
00 

of the transpose of a matrix is equal to the transpose of the inverse of 

a matrix. 

(A-1) 

(A-2) 

We start with eq. (35a) 

(A-3) 

The hermitian adjoint of S
00 

is given by 

S + = (I + iR ) + ((I - iR ) - 1 t 
00 00 00 ' 

which by eqs. (A-1) and (A-2) can be shown to be equivalent to 

S + = (I - iR )(I + iR ) - 1 

00 00 00 

which is the usual form of S (eq. (35c)). Thus, if we can show that 
00 

8
00 

as written in eq. (A -3) is unitary, then we can show that the two 

forms of S
00 

are equivalent. 
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We write = (I - iR )(I + iR ) -
1 

(I - iR ) -
1 

(I + iR ) 
00 00 00 00 

·r( 2-1 ( 2) + 1 1 I + Roo ) Roo - Roo I + Roo . (A-4) 

This equals the unit matrix I if we can show that 

( 
2 -1 ( 2 -1 1 +Roo ) Roo = Roo I+ Roo ) · (A-5) 

This can be shown quite easily (letting x = R
00

) 

( 2 -1 ( -1 2 -1 [ ( -1 ] -1 ( -1 )-1 -1 I +X ) X = XX +X ) X = X X +X) X = X +X X X 

-1 -1 
= (x + x) , 

and similarly, 

2 -1 -1 2 -1 [ -1 1-1 -1 ( -1 ) -1 x (I + X ) = x(x X + X ) = X (X + X)X = X • X X + X 

-1 -1 = (x + x) . • 

Since (A-5) is true, the imaginary part of the right hand side of eq. (A-4) 

is zero, and the real part can be simply shown to reduce to the unit 

matrix : 

( 2)-1 ( 2 -1 ( 2)-1 2( 2)-1 1 + Roo + Roo I + Roo ) Roo = 1 + Roo + Roo I + Roo 

2 2 -1 = (I + Roo )(I +Roo ) = I. 
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Thus S
00 

is unitary and by definition 

so 

( +) -1 8oo = 8oo . 

Hence eq. (35a) implies eq. (35c) (and vice versa). 
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~- Scheme for the Evaluation of W. 

We wish to evaluate W by the following expression (all quantities 

are matrices) 
1 

w = C-1 v v2 
= = = ' 

(B-1) 

which on breaking up into its open and closed parts (we suppress the 

fact that the quantities considered are matrices) 

= (B-2) 

where ~ is given in eq. (38). 

Using this formula for ~' one may write the two blocks of W desired 

(Woo' Woo) as 

1 
-1 2 

w 00 = ( c ) oc v 00 v 0 (B-3a) 

1 

W (C-
1

) v2 
co= co v 00 0 (B-3b) 

and using the equality 

one may write 

1 

Woo= -2i(C-1)oo(I + iRoo)(I + Roo2)-1 v~ (B-5a) 

(B-5b) 
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so 1 
-1 2 -1 2 

ReWoo= 2(C )ooRoo(l+Roo) vo 

1 
-1 2 -1 2 

Irn Woo = -2(C )oo (I+ Roo) v o 

1 
-1 2 -1 2 

ReW co= +2(C )co Roo(I +Roo) v o 

The desired parts of the inverse of ~ may be constructed from the 

blocks of ~ and their inverses. 

(B-6a) 

(B-6b) 

Difficulty enters in that ~has terms which decay exponentially and we 

wish to remove the decaying terms prior to inversion. This may be 

done in the following way: 

= (B-7) 

where e -I K I R is a diagonal matrix whose elements are given by the 

expression 

(B-8) 
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On substituting the expressions obtainable from (B-7) for Ceo and 

Ccc in terms of f~~ and f~~) and eqs. (B-6) into eqs. (B-5), one 

obtains the expressions 

(B-9a) 

(c) -1 (c) 
~ W co = - (fcc ) ( f co) I m Woo • (B-9b) 

A word should be said about the evaluation of R
00

• A formula for the 

entire matrix ~ is given in eq. (19), and on breaking it up into its 

submatrices we can see easily that 

The matrix !2 has terms which grow exponentially only in the rows of 

D corresponding to asymptotically close d channels (subblocks Dco' Dec). 

Hence, it is not necessary to define a modified~ as was done for ~ in 

eq. (B-7) and we can use eq. (B-6b) to write 

(B-9) 

which may be substituted in eqs. (B-5) and (B-9) to evaluate W 
00 

and 

W co· The evaluation of R
00 

then, should have no difficulties other than 

those produced by the presence of large values of the radial wave ­

functions going into the calculation of C , C , r<c), f(c), D
00

, and 
00 oc co cc 

Doc' and these can be removed by making the substitution 

D = DN 

C = CN, 

(B-1 Oa) 

(B-1 Ob) 
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where the elements of N are sufficiently small that the elements of 

~ are close to unity. A convenient choice is to make N diagonal so that 

- ---1 -1 -1 -1 
R = DC = DN • N C =DC = R • 

If N is diagonal, then we may write 

£(c) = f N 
co co 0 

so 

(B-lla) 

(B-llb) 

(B-11 c) 

(B-lld) 
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~- Construction of Pseudo-Analytic Derivative of the 

Wa vefunct ion. 

In the evaluation of the derivatives of the physical wavefunction 

required by eq. (2) for the probability current density, we wish to use 

the fact that we are propagating not only the radial wavefunction ~ but 

its derivative ~' . Starting with eq. (5) for the primitive wavefunction: 

pr _.!. ~ - -
tJ; . = P z _.J cp . (a; P) g .. (p ; P ) 

) i 1 1] 

and eqs. ( 49) relating the (X3 ~) coordinate system to the Delves 

coordinates (R, r) which are simply related to the hyperspherical 

coordinates 

2 2 1 1 
p = (R + r ) 2 = a (X~ + x: ) 2 

we may write 

1 

( llbc )4 wher.e a = 
lla be 

' 

(C-1) 

(C-2a) 

(C-2b) 

(C-3a) 
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(C-3b) 

The a derivative of the basis functions cf> .(a; p) may be approxi-
1 . 

mated by any convenient technique. In that case, to evaluate eqs. (C-3), 

one needs only to determine expressions for the partial derivatives of 

panda, which are given below: 

(C-4a) 

(C-4b) 

(C-4c) 

a~ 2 I 2 (-) = a X3 p • 
ax2 x 

3 

(C-4d) 

Combining eqs. (C-3) and (C-4), we may obtain an expression for 

(att;fr / 2X3)x
2 

and (a tt;rr /oX2)x
3 

(
att;fr) = ap_.!2 "'i'"'' [- _c-=o:--'sa= a :p i agij 1 - u cf> . g . . - sina(-)g . . + pcosa4J .( ) oX3 ·x i 2 1 1J aa 1J 1 ap 

2 

(C-5a) 

(att;~r) 3 . acp . ag .. 
-=--:.L = ap --z ~ [- -51

-
2
n_a cf> .g .. + cosa(-1 )g .. + psinacf>.(~)l 

aXs .x
2 

1 J 1J aa IJ 1 ap 
(C-5b) 
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If one vranted to obtain a higher order approximation to the primitive 

vravefunction tJ;r_>r, one could evaluate higher order derivatives using 
J 

the second derivative of the radial vravefunction, which may be 

obtained from the radial wavefunction by substitution into the Schrodinger 

eq. which it satisfies (eq. (6)). An additional derivative of the basis 

functions 1>i could be obtained by another numerical approximation. 

One would then expand the vravefunction in a Taylor series about each 

grid point. 

Numerical testing of these modifications to the differentiation and 

interpolation procedures used seems in order, although the success of 

previous calculations of the current density suggests that they should not 

be necessary. Nevertheless, they do seem more elegant, and the 

differentiation procedure should result in a time savings in these steps. 
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Table 1. Reaction probabilities obtained in the scattering calculations 
~ 

(2 even and 2 odd channels) from which the wavefunctions were obtained. 

Energies are with respect to the bottom of the H2 well. 

E (eV) 
R 

Poo 

0.4466 0.0360 

0.4666 0.1588 

0.4866 0.4004 

0.5066 0.6923 

0. 5266 0.8527 

0.5466 0.9445 

0.5666 0.9828 

0.6066 0.9994 

0.6466 0.9998 

0.6966 0.9947 

0.7466 0.9851 
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• 
~: Values of the elements of the matrix W 

0.4766 

0.5266 

0.5666 

0. 6066 

0.6466 

0.6966 

0.7466 

-1. 6734( -16)-1 . 6734( -16) 

-6. 3208( -19) 6. 3208( -19) 

-1. 5705( -17)-1. 5705( -17) 

-6. 7711 (-20) 6. 7711 (-20) 

-2.6546(-16)-2.6546(-16) 

-3.4571 (-19) 3.4571(-19) 

-2. 4897( -17) -2. 4897( -17) 

-3. 7002(-20) 3 . 7002(-20) 

-2. 9972( -16)-2. 9972( -16) 

9. 4603( -19)-9. 4603( -19) 

-2. 8091 ( -17) -2. 8091 ( -17) 

1. 0117(-19)-1. 0117(-19) 

-2.2044(-16) -2.2044(-16) 

3.1179( -18)-3 .1179( -18) 

-2. 0645( -17) -2. 0645( -17) 

3. 3313(-19)-3. 3313(-19) 

2.9423(-17) 2.9423(-17) 

5. 4057( -18) -5. 4057( -18) 

2. 7537(-18) 2. 7537(-18) 

5.7707(-19) -5.7707(-19) 

5.8046(-16) 5.8046(-16) 

6. 0622( -18)-6. 0622( -18) 

5. 4278( -17) 5. 4278( -17) 

6 . 4605( -19)-6. 4605( -19) 

1. 2884(-15) 1. 2884(-15) 

1. 3619( -18)-1. l3619(-18) 

1. 2037(-16) 1. 2037(-16) 

1.4506(-19)-1.4506(-19) 

*Numbers in parentheses indicate the power of 10 

by which the non-enclosed number should be multiplied. 
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~ Data on Twu>elln!' Fractioos • 

line f 
1 

currenf: (au) %wall % claoolcal 'f, plateau "tum>ellng 

E • 0.4866 
1. 549( - 2) 18. 06 18 . 81 84 .H ao. ~9 

2 I . 742( -2) 8 . 86 15. 74 75 . 40 84.26 

1. 563( -2 ) ~ - 73 ~3 . 00 U.28 87.00 

8. e22(-3) 8 . 13 36.36 51.51 8 3.64 

1.637(-2) 8. ~5 18. 81 72. 04 80.39 

1. 657( -21 12.52 ll. e6 75.52 88 . 04 

E • 0 . 5266 
' · 498(-2) 20. 18 35. e o 44.22 84 . 40 

3.839(-2) 14. 07 43 . 88 42.26 56.32 

3 .846(-2) 3. 59 51 . 79 44.82 48.21 

2.41 7( -2) 5 . 33 50. 04 44.63 48.96 

3. V44( -2) 4 . 32 46 . 48 48. 20 53. 52 

6 3. 729(-2) 16 . 82 4<1 . 63 42.55 59.37 

r; • 0. 5666 
4. 296(-2) 25. 71 39.88 34.31 eo. 02 

2 4.874(-2) 16.23 51.49 32.28 48.51 

4 . 540( -2) 3 . 11 89 .43 27 . 46 30.57 

3.180( -2) 3 . 88 8?.53 28.59 32. 47 

5.04()( -2) 4. 43 85.50 30.07 34.50 

4. 512( -21 21 . 85 45 . 29 30 .06 . 54 . 71 

B • 0 . 8066 
4.6621- 2) 28. 01 46 . 89 25. 10 53. 11 

5. 000( -2) 18.29 U.20 24.51 40.80 

4 . 830(-2) 2 . 87 eo . 33 Ie.70 18.87 

3. 594( -2) 2 . 76 81.83 15. 41 18.17 

5.588(- 2) 5.08 77.37 17.55 22.63 

4. 918(- 2) 23. 88 52. 51 23.61 47. 49 

E • 0.6466 
4.9421-2) 25 . 38 57.74 16. 88 42.26 

5. 361 (-2) 14. 81 72. 56 12.86 27 . 47 

5 . 176(-2 ) 3. 41 89 .35 7. 24 10.65 

3. 880( -2) 2 .67 82. 59 4 . 74 7 . 41 

5. 888(- 2) 5. 89 85. 31 8. 80 14.89 

6 5 . 263( -2 ) 20. 91 84 . 11 14. 97 35 . 89 

E • 0.6966 
5. 255(-2) 22. 87 e3 . es 13 . 36 36.04 

2 5 . 835(-2) 14. 00 77 . 36 8 . 64 22.64 

5. 378( -2) 4. 02 81.62 4 . 36 8. 38 

4 . 122(- 2) 2 . 83 84 . 16 3. 01 5.84 

6 . 205(-2) 8 . 51 89 . 12 e . 37 12. 88 

e 5 . 57()( -2) 18. 87 89 . 86 11 . 47 30.14 

J: • 0 . 7466 
5. 534(-2) ZS . 84 &6 . 02 10.04 13. 98 

2 8.188(-2) 18.16 77.34 8.51 12.86 

5. 543(-2) 4. 85 81.27 3. 88 8. 73 

4. 286(-2) 3.18 86 . 14 0.85 3. 83 

8. 385( - 2) 8.84 &6 . 77 8 . 59 IS. 23 

8 5 . 384(-2) 18.83 72. 01 8 . 06 27. 89 

"Nwnbero Ill parelltheoeo repr .. eDI tbe power • of 10 by which tbe ...,.Dc looed 
awnher llbould be multiplied . 

lu,... are awnber.cl -.quell! Ially alcolg the m!Dlmom •""rrY path: 

1 • A +BC; 8 • AB +C . 
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Table 4. Average Currents and Deviations 
~ 

E / eV Avg. Current Avg. Dev. Curr. % Dev. 

0.4806 1.519(-2) 1. 854( -3) 12. 21 

0.5266 3. 529( -2) 3. 808( -3) 10.79 

0.5666 4. 375( -2) 4. 245( -3) 9.70 

0. 6066 4. 782( -2) 4. 362( -3) 9.12 

0.6466 5. 093( -2) 4. 551( -3) 8.94 

0.6966 5. 394( -2) 4.760(-3) 8.82 

0.7466 5. 619( -2) 4. 976( -3) 8.86 
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Figure Capt ions 

FIG. 1. Plot of the probability density (t/J* tf;) of the physical wave­

function corresponding to the collision H + H2 (v = 0) at 

FIG. 2. 

FIG. 3. 

FIG. 4. 

FIG. 5. 

FIG. 6. 

E = 0.4466 eV in internuclear (RAB, RBc) coordinates. 

Contours are plotted at equally spaced increments (0. 25) of 

the common logarithm. The lowest contour is at 0. 0; the 

highest is at 1. 75. The wavefunction is normalized to unit 

incident flux. A 32 x 32 grid was used in the calculations 

generating the physical wavefunction whose amplitude is 

pictured here. Most of the irregular features of the graph 

should be due to the use of this large grid size, as well as the 

nature of the contour plotting routine used. 

Plot of probability density as in Fig. 1 for E = 0. 4866 eV. 

The contours run from 0. 00 to 2. 0. 

Plot of probability density as in Fig. 1 forE = 0. 5266 eV. 

The contours run from 0. 0 to 1. 75. 

Plot of probability density as in Fig. 1 forE= 0. 5666 eV. 

The contours run from 0. 0 tp 1. 50. 

Plot of probability density as in Fig. 1 for E = 0. 6066 eV. 

The contours run from 0. 0 to 1. 50. 

Plots of probability density as in Fig. 1 forE= 0.6466 eV. 

The contours run from 0. 0 to 1. 50. 

FIG. 7. Plot of streamlines of probability current density for the 

collision at H + H2 (v = 0) at E = 0. 4866 eV. The arrows point 

in the direction of the current density vector; the length of the 

arrows is proportional to the magnitude of the current density 
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Figure Captions (continueci) 

at its midpoint. The streamlines are superimposed on a 

contour plot of the potential energy surface; contours are 

drawn every 0. 2 eV from 0. 2 eV to 1. 6 eV, measured with 

respect to the bottom of the H 2 well. Contours are a lso drawn 

at the energy E of the collision. The minimum energy path is 

indicated by a dashed line ; the saddle point is marked by a 

cross. The coordinate system is the (X3 , X 2) system defined 

in eqs. (48) . 

FIG. 8. Plot of streamlines of probability current density as in Fig . 7 

for E = 0. 5266 eV. 

FIG. 9. Plot of streamlines of proability current density as in Fig. 7 

for E = 0. 5666 eV. 

FIG. 10. Plot of streamlines of probability current density as in F ig . 7 

forE= 0.6066 eV. 

FIG . 11. Plot of streamlines of probability current density as in Fig . 7 

forE= 0.6466 eV. 

FIG. 12. Plot of streamlines of probability current density as in F ig . 7 

forE = 0. 6966 eV. 

FIG. 13. Plot of streamlines of probability current density a s in Fig . 7 

forE = 0. 7466 eV. 

FIG. 14. Plot showing the boundary streamlines defined in the text, six 

lines normal to the minimum energy path, and the magnitude 

of the current normal to these lines at E = 0. 4866 eV. The 

boundary streamlines are shown by short dashes. The plot is 

superimposed on a contour plot of the potential energy surface 
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Figure Captions (continued) 

as was used in Fig. 7. The magnitude of the currents is 

proportional to the distance from the line to the corresponding 

curve. 

FIG. 15. Plot showing boundary streamlines and currents in direction of 

minimum energy path for E = 0. 5266 eV. 

FIG. 16. Plot showing boundary streamlines and currents in direction of 

minimum energy path for E = 0. 5666 eV. 

FIG. 17. Plot showing boundary streamlines and currents in direction of 

minimum energy path for E = 0. 6066 eV. 

FIG. 18. Plot showing boundary streamlines and currents in direction of 

minimum energy path for E = 0. 6466 eV. 

FIG. 19. Plot showing boundary streamlines and currents in direction of 

minimum energy path for E = 0. 6966 eV. 

FIG. 20. Plot showing boundary streamlines and currents in direction of 

minimum energy path for E = 0. 7466 eV. 
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3 

2 

2 3 4 

R AB/bohr 

Figure 4 



~ 

...c 
0 

...0 
"-... 

u 
en 

0::: 

7 12 

3 

2 

E =0.6066eV 

2 3 4 

Fi gure 5 



~ 

...c 
0 

...0 
---...... 

u 
m 

0.:::: 

3 

2 

713 

E = 0.6466eV 

2 3 4 

Figure 6 



. 
:::> 

. 
a: 

...... 
X 

d 
111 

7 14 

~.---------------------------------------------------~ 

1'--
tri 

0 
111 

r-.: 

,., 
CD -

d 
111 

~~--on-------2-r6-i------3~.-B-3------~~~-~------~~6i-------sr.-33------~6.00 

X 3 lA. U. l 

Figure 7 



d 
Vl 

7 1 5 

~~----------------------------------------------------~ 

M , 

I 
I 

r- . 
- ' 

c 
• I./': I 

cr ,.._; l 

"" X 
I 
I 

rr. I 
cr · 

~1 
~ I 

d 
Vl 

• H.2 IY•O l -11.2 !w•Ol • H 

EV 

--------------------1. 00 

ck~ .. -Q-Q------2.r.6-,------3~.-~-3------~r-QQ------~~6-,------Sr. -,-3-----6~.QO 

X3 l~. u. 1 

F i gu r e 8 



d 
Vl 

7 16 

~T-------------------------------------------~ 

0 
• IJ1 

a: . 
~ N 

N 

X 

C"l 
CP 

r--

d 
In 

EV 

------------'1, OD 

~~--~-----~~6-7-----3~. 3-3-----L~~----~L~S-7-----5~. -33----~6-~ 

x, ll!t. u. l 

Figur e 9 



0 
In 

.... 

('I') 

lD 

<Yl 

. 
=> 

0 
.tn 

crl"'i 

N 
X 

('I') 

lD 

. -
c:i 
In 

717 

<§' 
lb ..... 

+ H2(yzQ) -H2:(Y=0) + H 

EV 

----------1.~00 

E PATH 

··~------~~------r-----~----~-----~---~ Clz.:.oo 2.s1 3.-33 4. 0o 4.67 s.33 s.oo 

X3 (~. U. ) 

Figure 10 



c 
U"l 

71 8 

~~----------------------------------~ 

I 

I 
rr, : 
11" j 

rr1 l 
I 

- sj 
• I 

=- I c 
• L.'. i 
~ " l 

>~ I 
(",I 
c- . 
_:-1 

d 
VI 

+ H2 IY•Ol -H2 lv•Ol +H. 

EY 

--------1. 00 

~~- ~-o----~~~----!~ .. -~3----~~~~-----~~6-,----s~.B-3--~6.~ 

X3 UL U. l 

Fig ure 11 



. 
~ 

. 
a: 

N 

X 

Cl 
lfl 

7 19 

~~----------------------------------------------~ 

l"'l ' I 

C:J 
trl 

r--
Pi 

Cl 
l.r. 

N-, 

l"'l 
cc 

-

;, -

d 
lfl 

EV . 

-------------1. 00 

f I'ATH 

~+_-on-----~~~-------sT.-!-3-----~~u-o-----~T.-~------~s.~. !-3----~s. on 

X s lf!t. U .. l 

Figure 12 



720 

d 
Vl 

I .... 

~ 
~ • 

In 
cc 

cri 

r-

cri 
.+ H~ (yzQl -H~ !v•Ol +.H. 

·Ev . 
:::::> 

0 . Vl 
a: N 

N --------------------1. 00 
X 

In 
cc 

-
f PRtH. 

d 
Vl 

~~--u-u------,r.S£-------s~.~. g-3------~~ou-------~~6£-------s~. -~-3----~s.un 

X3 lf:l. u. 1 

F igure 13 



=:l 

. 
cr 

('.1 

X 

0 
Ll' . ... 

I"'> 
CD 

rr-i 

['"-

rr-i 

0 
If' 

r.: 

t"l 
cc 

0 
Ll' 

72 1 

~ 
'" 

.. H2 (v .. Ql -H2 lv• Ol .. H 

.E V 

----- -----1. oc 

ck~.-~-o------2·. -67------3~.-3-3------,_r-~o------4~ .. -s-,------s~.-33----~s - ~o 

x3 rA . u. 1 

Figure 14 



0 
VI . .... 

1"'1 
co 
,..; 

0 
.VI 

a:,_: 

. -
c 
VI 

722 

~ 
~ 

rJ' 
40 

. EV 

------------1. 00 

E f'~Tti 

·~--------r------~---------r------~-------r-------i 
~- GO 2. 5·7 3. '3 4- (}(} 4.. 67 5. 33 6. GO 

x3 lA. u. l 

Fi g u r e 15 



::l 

. 
a: 

r.. 
>< 

0 
Ill ... 

f"1 

:I 
,..; 

0 

"' ~ 

f"1 
Q:) 

0 
In 

d2. 00 

7 23 

~0 

2.67 3. 33 •• oo •. 67 5 . 33 6.00 

x3 fA. u. l 

Figu r e 16 



. 
::J 

. 
a: 

N 
X 

0 
Ill 

• 
P'l 
CXl 

cri 

!"' 

cri 

0 
Ill 

N 

P'l 
CXl -

0 
Ill 

~.00 2.67 

7 2 4 

.§' 
40 .... 

+ H2 !v=Ol - H2 !v=O l + H 

EV 

----------------------1. 00 

3 . 33 4. 00 4. 67 5 . 33 6.00 

X3 (~. u. 1 

Fi gure 17 



:::> 

. 
a: 

r... 
X 

0 .., . .. 
"" cc . 
"" 

r--. 
l"l 

0 .., 
~ 

"" cc 

...: 

c .., 

72 5 

~· .. 

.. H2 £\'•O_l -H2 lv•Ol .. ti 

EV 

- -1.00 

~~.-o-o-----2~.-5-7------3 •. 3-3------.r.-oo------.~.-57------s~.-S-3-----6~.00 

x, (~. u. ) 

Figure 18 



726 

c 
V> . ... , o · , 
fl') 

e 
M 

r-

fPi 
EV . 

~ 

c . Ill 
a: . 

C\1 

r.o ~----------1. 00 
X 

fl') 

o:> 
• 

c 
&ll 

~~.-o-o-----,~.~6-7------,.~s-3------.~.-oo------.T.-6-7-----s~.-s-3-----s~.oo 

x3 tA. u. l 

F i g ure 19 



=::l 

. 
(I 

"' X 

0 
V> 

727 

~~--------------------------------------------------------~ 

r-

,..; 

0 
1/') 

,.,; 

n 
cr 

r-

0 
1/') 

). 

. ·800 

0. 200 

.·200 

00 

£ I'RTH 

·~--------~--------~--------,---------,---------~------~ ~. 0.0 2. 67 3 . 33 4. 00 4. 61 5. 33 6. 00 

X3 !A. u. 1 

Figure 20 



728 

III. 11 HYPERSPHERICAL COORDINATES IN COLLINEAR 

ATOM-DIATOMIC MOLECULAR COLLISIONS: 

CONVERGENCE PROPERTIES 



72 9 

HYPERSPHERICAL COORDINATES IN COLLINEAR ATOM-DIATOMIC 

MOLECULE COLLISIONS: CONVERGENCE PROPERTIESa) 
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Arthur Amos Noyes Laboratory of Chemical Physicsd) 

California Institute of Technology, Pasadena, California 91125, USA 
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The hyperspherical coordinates method for studying the collinear 

reactions of atoms and diatomic molecules is presented in some detail. 

We apply the method to the low energy H + H2 and F + H2 reactions, and 

focus on the behavior of the reaction probabilities· and scattering matrix 

element phases with the number of basis functions and the projection 

distance (essentially termination point of integration). For H + H2 

probabilities and phases converge quite rapidly with the number of basis 

functions; the convergence of F + H2 is less rapid. In H + H2 one must 

integrate to ~ 10 bohr to get nearly converged absolute phases which 

agree well with those obtained from another method; relative phases 

are obtained accurately at much smaller p. The phases for F + H2 

appear to be converging (slowly) with projection distance, but not to the 

values obtained from another method. 
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1. Introduction 
~ 

Quantum mechanical studies of chemical reactions have provided 

substantial insight into the dynamics of chemical reactions, particularly 

reactions of systems containing hydrogen atoms, in which quantum 

mechanical effects are expected to play a major role . 1- 3 Exact three ­

dimensional quantum mechanical calculations are quite difficult to 

perform, however, and have been limited to the reaction 

(1) 

at low energy. 4- 6 Approximate three-dimensiona_l quantum mechanical 

calculations have been performed on both this system 7 and the reaction8 

F + H 2 - FH +H. (2) 

A far more tractable problem is that of a collinear collision of 

an atom and a diatomic molecule. In such a collision, . the atoms are 

constrained to lie on a single straight line, which vastly simplifies the 

formalism and reduces the numerical effort in solving the appropriate 

Schrooinger equation compared to the three-dimensional case. 1- 3 

A number of methods have been developed to study collinear atom­

diatomic molecule collisions within the framework of quantum mechanics, 

including coupled channel methods based on natural collision coordinates9 

and on the hybrid Cartesian coordinate/ modified polar coordinate 

method of Kuppermann. 10 In addition, the two-dimensional partial 

differential equation has been solved directly by finite element methods 

(without expansion ci. the wavefunction in terms of some orthonormal 

basis set). 11 
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.While the coupled channel techniques have been used quite 

· successfully for a number of chemical reactions, they cannot be used 

to study two interesting classes of reaction: Heavy-light-heavy (H-L-H) 

reactions in which a light atom is transferred between two heavy ones, 

and collision induced dissociation: (CID). 

A + BC --+ A + B + C (3) 

in which the reagent molecule is dissociated by the collision with the 

incident atom. H-L-H reactions are difficult to treat because the large 

amounts of skewing introduced into the potential energy surface by con-

version to an appropriate set of mass-scale d coordinates causes an un­

desirably large numbe r of basis functions to be needed. For example, 

Baer12 reported needing 40 states in his calculations on the reaction 

Cl + HBr --+ ClH + Br o ( 4) 

CID has been difficult to treat because the previous couple d channel 

m ethods have expanded the wavefunction in terms of a basis set which 

is z ero in the dissociative (A + B +C) region of the potential ene rgy 

surface . Quantum mechanical studies of CID have been performe d in 

non-reactive systems, in which chemical r eaction of the type 

A + BC --+ AB + C (5) 

does not compet e with crn13 (process 3). The finit e element m ethod 

m e ntioned earlier has been applied to CID in non-reactive systems. 14 

ThE. first successful treatm ent of CID in r eactive systems was the 

wave -packet approach of Kulande r, who solved the tim e -depende nt 
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Schrodinger equation for the collision. 15 

We have recently shown that collinear atom-diatomic molecule 

collisions can be studied easily and efficiently by the methods of hyper­

spherical coordinates, 16 and that this method can be applied without 

difficulty to both the H-L-H17 and crn18 systems which have previ­

ously defied easy treatment. A similar approach has been deve loped 

by Manz et a1.19 ' 20 and applied to the H-L-H21 ' 22 and Crn23 problem. 

Our work16- 18 has shown that not only is the hyperspherical coordi­

nates method desirable because of its ability to treat heretofore diffi­

cult problems, but that for certain problems which can be treated by 

the previous methods, fewer basis functions are needed when using 

hyperspherical coordinates. 

In this paper we will review the formalism of the hyper spherical 

coordinates method, emphasizing those aspects of the method which 

differ from the treatment of Manz et al. We will then present results 

(reaction probabilities and scattering matrix element phases) for 

reactions 1 and 2 and, in particular, how these results depend on . 

certain aspects of the numerical procedures . Finally, we will give an 

assessment of the method in light of the results obtained. 

In the hyperspherical coordinates approach to collinear atom­

diatomic molecule collisions, the two independent coordinates are the 

polar coordinates p, a, which are related to the usual Delves24 coor­

dinates R, r by the transformation 
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a = tan-
1 
(r / R ), 

a 'Y 

(6a) 

(6b) 

where the indices a and y refer to the A + BC and AB + C arrange­

ment channels, respectively . The Delves coordinate s R , r are a a 
related to the r~ , the distance between the two atoms in the bound 

molecular pair , and R' , the distance from the free atom to the cente r a 
of mass of the diatomic molecule by the relationship 

where 

R = aR' a a 

r =a - 1 r' 
a a 

(7a) 

(7b) 

(8) 

where ~ represents the reduced mass defined in the usual way. Similar 

expressions to (7) hold for R and r with the roles of a andy in 
')' 'Y 

Eq. 8 reversed. 

In Delves coordinates, the hamiltonian for nuclear motion is 

given by 

). = a,y 

where 

(9) 

(lOa) 
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where 

M = 

is a reduced mass and is independent of arrangement channel. 

VA (RA, r ;\.) is the electronically adiabatic potential energy surface for 

the triatomic system in ;x coordinates. 

In hyperspherical coordinates, the hamiltonian becomes 

ti
2 a2 

1 a 1 a2 

H(p,a) =- -
2 

[ ~ +--;--- + 2 ;-----2] + V(a,p). 
J.L vp P up p veL 

(11) 

We desire a set of independent solutions { lj;n (p, a}} to the Schrodinger 

equation 

n( n H (p, CL) lJ; p, a ) = E 'lj; (p, a ) . (12) 

To solve this equation we proceed to expand the wavefunction lj;n(p, a) 

in terms of a set of orthonormal eigenfunctions {<Pnr(a;p)} of the 

potential along the line p = p 

(13) 

1 
where the p -2 term is included to remove the first derivative term 

seen in eq. (11) from the hamiltonian, and N is the number of states 

included in the calculation. Because the potential V(p,a) becomes 

infinite at a = 0 and a =a = tan-
1 

(m
13 

M/ m m )~, (these corre-max a y 

spond to the interatomic distances RBC and RAB being zero, respec-

tively) the eigenfunctions <f.>n,(a; p) satisfy the boundary conditions 
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(14) 

and the differential equation 

(15) 

As a result of these boundary conditions, this set of eigenfunctions is 

infinite and discrete. It is this property of the basis set that allows one 

to treat CID with no artificial "discretization of the continuum", as the 

basis set is already discrete, even at energies above dissociation. Of 

course, we use only a finite number (N) of these basis functions. These 

are calculated numerically by a finite difference procedure. 25 

The differential equation to be solved then is, in matrix form, 

2 

ti 2 d ~ ( - - - ( - ( -) - 21-l dp2 P; p) + W ( p; p) g ( p; p) = E p; p ) g p; p , (16) 

where 

where 

W~,(p;p) ={n!V(a;p)- (p 2/p2
)V(a,p)!n' ) 

E~, ( p ; p) = (E + ti
2 
/ 8 t-!P2 

- En( p) l o~, 

(17a) 

(17b) 

In' ) = cj> , (a; p) and the angular brackets represent integration n 

over the angle a, and En( p) is the eigenvalue associated with the basis 

function cj> n' (a ;p). 

Integration of the eq. (16) begins from some value of p = Po which 

is sufficiently small that all the eigenvalues of the eigenvectors 

c!>n(a; p0 ) are sufficiently greater than the total energy E of the collision. 

In this case we may assume the following initial conditions: 
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(18a) 

(18b) 

Given these initial conditions, eq. (16) is numerically integrated 

by any convenient procedure (we have chosen to use the method of 

Gordon) 26 . Eq. (16) is formulated in the diabatic representation. One 

can formulate the problem in the adiabatic representation, in which the 

basis functions vary continuously with p; in that case an equation very 

different from (16) is developed ; we have derived these equations in the 

adiabatic representation elsewhere. 27 

Two points concerning the numerical integration should be 

mentioned. First, since closed channels [states whose eigenvalue 

En(p) is greater than the total collision energy E] are normally included 

in the calculation (except in calculations of CID at large p, when all 

states are open), one must prevent the exponential growth associated 

with the closed channels. This is particularly severe in the hyper­

spherical coordinates approach at small p, when all channels are 

closed. This growth is prevented by the reorthogonalization procedure 

of Riley and Kuppermann. 28 Second, since we are working in a diabatic 

representation, we must modify the radial wavefunction g when changing 

basis functions in order to maintain continuity of v.P(p ;a) and its deriva­

tive tJ;' n(p, a) across the boundary. This is accomplished by the trans­

formation 

(19a) 

(19b) 
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where the overlap matrix g is defined by the expression 

(20) 

Ideally Q should be an orthogonal matrix; deviations from orthogonality 

which will prodcue a loss of flux, are produced by use of a finite basis 

set. 

At large values of p, at which the regions of the potential energy 

surface corresponding to bound AB and BC diatomic molecules are 

localized to small and large a, respectively, we may project the bound 

wave function v.P(p, a) onto basis tunctions approp:riate to the diatomic 

molecules. These basis functions {xn(r~;R~)} are solutions of the 

differential equation 

In terms of this basis set, the wavefunction 'tf.;n may be written 

The matrix elements h~, are evaluated from eq. (22) by taking 

advantage of the orthogonality of the { x~ (r A; R~)} and assuming that 

the basis sets { cp} and {x} are orthogonal. This is a very good approxi­

mation when only bound states are considered; it is less good when 

considering continuum states. The h~" are obtained from the expres­

sion 
rmax 

n { ~ A - _.!. ~ n ( - ( -) d hn" = . Xn"(r,;R.Je 2 '::1gn' p;p)<Pn' a;p rA mm 1\ 1\ n 
r~ 

(23) 
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where p, r A' and RA are related by eqs. 6. 

We have discussed elsewhere27 the methods by which a g suitable 

for use in eq. (23) is generated (one must correct for reorthogonaliza­

tions and renormalizations by the Gordon integrator). In many cases 

the width of the channel r~in < r A < r~ax is sufficiently large that 

one needs to use more than one polar coordinate basis set ¢ ,(a ; p ) n K 

in order to accurately represent the "Wave function \f;n(p, a). In that 

case, the integral in eq. (23) must be broken up into m parts, where m 

is the number of basis sets used in the integration from Pmin to Pmax 

in polar coordinates, where 

(24a) 

2 -2 max 2 
Pmax = R;>. + (r A ) • (24b) 

The new form of eq. (23) is 

(25) 

where r~in and r~ax now depend on the index K. Note that the overlap 

matrix defined in eqs. (19) and (20) above insures that the integrand in 

eq. (25) is continuous across the boundaries between basis sets. 

An equation similar to (23) (or 25) is needed for the derivative 

h' of the matrix h. This is obtained by differentiating eq. 23 with 

respect to RA ; the result is 
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rx 

= J . 
rmm 

X 
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:>. • - 1 -t ~ n . - . -X ,(r .... ,R...){--zp . ....J gn,(p,p)cf>n,(a,p) 
n ~ ~ n' 

"")"' _.!. dg~, - an - "" _ _l n - dcpn,(a; {)) a 
+ 'J p 2 -- (p;p) (~) ¢n' (a;p) + /1 p 2 gn' (p;p) d ( ~Ra )}dr .... 

n' dp un.:>. n a v ;\ " 

(26) 

When more than one basis set is used in the projection region, the 

integral in eq. (26) may be simply broken up into portions as in eq. (25). 

The matrices lJ and IJ' are used in the asymptotic analysis and calcula­

tion of the lJ, §, and e. matrices by the usual procedure. 3 ' 29 

When including "continuum" states, that is those whose asymp­

totic eigenvalues are greater than the dissociation energy of the di­

atomic molecules, the continuum states are treated differently from 

the bound states. This case is described in detail elsewhere. 

In symmetric collisions (where atom C is identical to atom A), 

the potential energy function V(a, p) is symmetric about the line 

a = amax/2, and one can separately integrate symmetric and anti­

symmetric eigenfunctions, as there is no coupling between these two 

sets of eigenfunctions. One could then project onto symmetric and 

anti-symmetric linear combinations of the diatomic molecule basis 

functions x~ (r x;R>.) and evaluate symmetric and antisymmetric 

scattering matrices could be evaluated and then combined to get reac­

tive and non-reactive ones. Instead, we have projected separately onto 

bound states in each channel and evaluated a scattering matrix only once. 

We note that Manz et al.19 - 23 perform no such projection, using 

instead their polar coordinate radial wavefunctions (the equivalent of 
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our ~) directly in their asymptotic analysis . 

3. Results 
~ 

We have extensively tested the hyperspherical coordinate method 

on reactions 1 and 2 on the Porter-Karplus30 and Muckerman v 31 

surfaces respectively. Calculations on these systems have been per­

formed previously in this laboratory32 ' 33- 36 and we compare our 

results with these previous results. A number of other workers have 

performed calculations on reactions 1 and 2 also (referred to in refs. 

1 and 2). The quantities on which we will focus our attention are 

certain state-to-state reaction probabilities (P~ for the H + H2 

reaction; P~ (for the F + H2 reaction) and scattering matrix element 

phases (cp~ for the H + H2 reaction; cp~ for the F + H2 reaction). We 

note that scattering matrix element phases are determined only modulo 

2,r, and we make no effort to assign absolute values to any of the phases. 

We will examine these reaction probabilities and scattering matrix 

element phases as a function of two parameters; the number of basis 

functions being included in the calculation and the stopping point of the 

integration (essentially the value of R.A defined earlier). 

A . The H + H2 Reaction 

In Table 1 we present results for the reaction probability P! 

in the energy range from 0. 25-1.75 eV with respect to the bottom of 

the H2 well. We have results for 2 ~ N ~ 6, where N is the number of 

symmetric (and of anti-symmetric) basis functions used in the calcula­

tion. Results from a previous calculation (10 basis functions) are also 

included. Numerical parameters used in the integration of eq. (16) are 
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given in Table 2. 

We have also obtained P~ as a function of the projection distance 

Ppr' which is related to the distance R:\ by the equation 

eq2 
2 -2 

Ppr = R:\ + r:\ (27) 

where 

(28) 

These calculations were made with four even and four odd basis 

functions for 5 ~ p ~ 12 bohr. These probabilities are tabulated in pr 

Table 3, along with the previous results. Averages and standard 

deviations of the probabilities are given in Table 4. Both Tables 1 and 

3 contain only a fraction of the energies at which we have calculated 

probabilities and phases. The dependence of the scattering matrix 

element phase cp~ on the number of basis functions is indicated by the 

data in Table 5, and on projection distance in Table 6. Additionally, 

we have plotted cp~ over a range of energies for the different projection 

distances in Fig. 1, and in Figs. 2 and 3 we compare the pha ses 

obtained here at energies near the first and second resonance with 

those from extensions of the previous calculations on this system. 

B . The F + H2 Reaction 

In Table 7 we present results for the reaction probability P~ in 

the energy range from 0. 0-0. 5 eV with respect to the zero-point energy 

of H F, with points concentrated near the low energy resonance in this 

system. We have results for 7 ~ N ~ 9, where N is now the total 

number of basis functions used in the calculations. Results from 
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previous calculations on this system (13 basis functions) are also in­

cluded. Numerical parameters used in the integration of eq. (16) are 

given in Table 2. In Table 8 we present results for P~ as a function 

of the projection distance p for a calculation with nine basis functions. pr 
We have examined p = 10, 12, and 14 bohr. Note in the asymmetric pr 
case req * rrq, for simplicity we require req = req so R = R • 

a y .,., a a y 

Tables of the phase <P~ of the scattering matrix element ~ as a 

function of basis set and projection distance are given in Table 9 and 

Table 10, along with their values from calculations by the previous 

method. 

4. Discussion and Conclusions 

From the results in the tables and figures, it is clear that 

reaction probabilities and scattering matrix element phases converge 

quite rapidly with basis set for the H + H2 reaction, while similar con­

vergence has not yet set in for the F + H2 system. Convergence in the 

former system is quite remarkable (and fast) at certain energies above 

the threshold region, the probabilities sometimes vary by less than 

± 0. 0001 on addition of basis functions. The general conclusions from 

Tables 1 and 5 is that in the H + H2 system, with two closed channels 

of each symmetry type one should have an adequate basis set, given the 

frequency of basis set calculations (every 0.10 bohr) used. 

Convergence of the reaction probabilities with projection distance 

is less rapid. The results scatter about an average value ; the scatter 

is fairly narrow, as we see from Table 4 that the largest standard 

R deviation of the P00 is 0. 007 (and that occurs essentially in the center 
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of the first resonance, where data scatter might be expected to be 

large). This convergence is impressive when compared to the results 

of Romelt20 for this reaction on the Porter-Karplus surface. He 

ol:tained good reaction probabilities by interpolating between the limits 

of a highly oscillatory P~ vs. integration stopping point (he did no 

projection). For example, at an energy of 0. 0404 au even at p = 

14 bohr, P~ is oscillating with amplitudes of± 0. 075 about the correct 

probability. Since the major conceptual difference between his work 

and our work is our inclusion of a projection;16 ' 19, 20 it appears that 

it must be the projection which causes our transition probabilities to 

reach their accurate values so rapidly. 

While the reaction probabilities for H + H2 become more or less 

independent of the projection distance at fairly small p, we see that the 

same is not true for the scattering matrix element phases. These 

approach a limiting value as the projection distance increases, and 

approach it uniformly from above (see Fig. 1). As with the proba­

bilities, the phases compare quite well with those of the previous 

method (see Figs. 2 and 3). The probabilities for F + H2 behave fairly 

well in terms of basis set and projection distance convergence (though 

not as well as those for H + H2). The phases (Tables 9 and 1 0) also 

converge fairly well with respect to basis set, but do not appear to 

converge rapidly as the projection distance increases. Further, they 

do not appear to be approaching the correct phases (as determined in 

the previous calculations). In particular, the small region of increasing 

phase with energy seen by the previous method is not reflected when 

Ppr = 10-12 bohr, and is only minimally reflected when Ppr = 14 bohr. 
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We have no reason why the phases for FH2 should not be converging to 

the seemingly correct answer. 

The rapid convergence of the reaction probabilities and phases 

with basis set bodes well for future development of hyperspherical 

coordinate methods for three-dimensional reactive scattering, 37 as it 

is hoped that in that case a smaller number of basis functions might be 

needed to treat 3D H + H2 than in the previous calculations. 5 

The calculations reported here were performed on the Dreyfus­

NSF Theoretical Chemistry Computer which was funded through grants 

from the Camille and Henry Dreyfus Foundation, the National Science 

Foundation (Grant No. CH 978-20235), and the Sloan Fund of the 

California Institute of Technology, and or the IBM 370/ 158 Computer 

of Ambassador College, Pasadena, California, for which we express 

our appreciation. 
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Table 1. H + H2 Reaction Probabilities as a Function of Basis Set. 

Ra) 
Poo 

N= 2 3 4 5 6 prev. 
E/au. method 

0.0120 0.1802( -6) 0. 3468(-6) 0. 2467( -6) 0. 2620(-6) o. 1390( -6) 0. 1985( -6) 

0.0140 0. 3526( -3) 0. 3179( -3) o. 3183( -3) o. 3070(-3) 0.3142(-3) 0. 3256( -3) 

0.0160 o. 3135(-1) o. 3103(-1) o. 3103(-1) 0. 3101 (-1 ) 0. 3107( -1) 0. 3052( -1 ) 

0.0170 0.1589 0.1569 0. 1569 0. 1568 0.1569 0.1554 

0.0180 0.4740 0.4596 0.4596 0.4596 0.4596 0.4597 

0. 0190 0.8059 0.7842 0.7843 0.7843 0. 7843 0.7876 

0.0210 0. 9902 0.9838 0. 9836 0.9836 0. 9836 0.9860 

0. 0240 0.9959 0.9968 0. 9969 0.9969 0.9970 0.9976 

0. 0300 0. 9096 0. 9289 o. 9301 0. 9302 0.9302 0.9306 

0.0320 
__ b) 

0.1797 0.1768 0.1765 0.1770 0. 1738 

0.0340 0. 7110 o. 7121 0. 7115 0. 7115 0.7127 

0.0380 0.5187 0.5219 0.5222 0.5218 0.5210 

0.0420 0.2991 0.299 0. 3010 o. 3011 0.2998 

0.0450 0.2496 0.2251 0.2254 0.2253 0.2208 

0.0470 0. 3516 0.3557 0.3558 0.3546 

0.0480 0.7050 0. 7120 0.7120 0.7037 

0.0490 0.1329 0.1331 0. 1328 0.1 288 

0.0500 0.1131 0. 1153 0.1155 0.11 58 

0.0530 0.1339 0.1330 0.1329 0. 1361 

0.0570 0.1157 0. 1161 0.1160 0.1217 

0. 0610 0. 6369(-1) 0.6383(-1) 0. 6452(-1) 

0.0640 0.1193 0.1206 0. 1161 

a) The number enclosed in parentheses is the power of 10 by which the non-enc losed 

number should be multiplied. 

b) Lack of unitarity of the scattering matrix indicated that this calculation was unreliable. 
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Table 2. Numerical Parameters for Integration of Eq. 16. 

H +Hz F +Hz 

Ppr = 10 bohr 10 bohr 

rmin = 0. 25 bohr 0. 3 bohr 
A 

rmax = 4. 0 bohr 3. 3 bohr 
A 

Po = 1. 5 bohr 2. 0 bohr 

-b) D.p = 0.1 bohr 0.1 bohr 

Nc) 250 300-380 

NBPTd) 150 150 

) 
2 (R2 + req

2
) where req = -l ,eq 

a Ppr = A A A a r A · 

b) Distance between successive basis set calculations. 

c) Minimum number of points in eigenfunctions <Pn(a ; /)). 

d) Number of points in eigenfunctions x~ (r A; RA) 
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Table 4. Average and standard Deviation of H + H2 Reaction 

Probabilities. (From Table 3.) 

std. dev. 

€/au. R 
(Poo > std. dev. (Poo) 

0.012 2. 826( -7) 8. 127( -8) 28.8% 

0.014 3. 204( -4) 6.193(-6) 1. 93% 

0.016 0.03044 0.00049 1.61% 

0.017 0.1557 0.0024 1. 55% 

0.018 0.4659 0.0052 1.12% 

0.019 0.7853 0.0057 0. 72% 

0.021 0.9858 0.0020 0. 20% 

0.024 0.9976 0.0007 0. 07% 

0.030 0.9324 0.0029 0. 32% 

0.032 0.1792 0.0070 3. 89% 

0.034 0. 7116 0.0015 0. 21% 

0.038 0.5249 0.0038 0. 72% 

0.042 0. 3018 0.0014 0.46% 

0.045 0.2213 0.0025 1.12% 

0.047 0.3523 0.0012 0. 33% 

0.048 0. 7071 0.0026 0. 37% 

0.049 0.1315 0. 0024 1. 86% 

0.050 0.1124 0.0010 o. 90% 

0.053 0.1254 0.0014 1. 08% 
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Table 5. H + H2 Phases as a Function of Basis Set 

cp ~ / radians 

N= 2 3 4 5 6 

E/au. 

0.021 8.149 8.083 8.082 8.082 8.082 

0.024 5.787 5.787 5.784 5.784 5.785 

0.026 4.338 4.323 4.319 4.319 4.319 

0.028 2.949 2.950 2.946 2.946 2.946 

0.030 1. 717 1.705 1. 701 1.700 1.700 

0.0305 1. 506 1. 427 1.423 1.422 l; 423 

0.031 1.197 1.183 1.180 1.180 1.180 

0.0315 o. 675 1. 021 1. 022 1. 021 1.021 

0.032 0.196 0.715 0.577 0.581 0.579 

0.0325 a) -0.291 -0.259 -0.260 -0.259 

0.033 -0.454 -0.442 -0.443 -0.443 

0.0335 -0.608 -0.664 -0.664 -0.664 

0.034 -0.916 -0.913 -0.914 -0.914 

0.035 -1.431 -1.431 -1. 431 -1.431 

Oo036 -1. 958 -1.960 -1.961 -1. 961 

0.038 -2.971 -2.977 -2.989 -2.989 

0.040 -3.999 -3.998 -4.000 -4.000 

a) Lack of unitarity of the scattering matrix indicated that 

this calculation was unreliable. 
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Table 7. F + H2 Reaction Probabilities as a Function of Basis Set 

Ra) 
Poz 

previous 
N = 7 8 9 

method 
e: / au. 

0.010 0.1290( -2) 0. 1286( -2) 0. 1357( -2) 0. 1245( -2) 

0.0102 0. 4354( -1) 0. 4363( - 1) o. 4363( -1) 0. 4457( -1) 

0.0103 0.1834 0.1843 0.1962 0.2038 

0.0104 0.3856 0.3882 0.402 0.4108 

0.0105 0.3752 0.3765 0.3744 0.3550 

0.0108 0.2611 0.2621 0.2666 0.2630 

0.011 0.2537 0.2545 0.2602 0.2562 

0.012 0.2438 0.2453 0.2404 0.2338 

0.013 0.1497 0.1476 0.1456 NAc) 

0.014 --b) 
0. 7077( -1) o. 6927( -1) NA 

0.015 0. 5563(-1) o. 61 06( -1) 0. 6029( -1) 0. 5717( -1) 

0.0175 0. 5529( -1) 0. 5738( -1) 0. 5477( -1) 

0.020 o. 3539{ -1) o. 3623( -1) 0. 3493( -1) 

0.025 0.1162( -2) 0.1154(-2) 0.1101(-2) 

a) The number enclosed in parentheses is the power of 10 by which the 

non-enclosed number should be multiplied. 

b) Lack of unitarity of the scattering matrix (> 10%) indicated that this 

calculation was unreliable. 

c) Not available. 
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Table 8. F + H2 Reaction Probabilities as a Function of 

Projection Distance 

pRa) 
02 

Ppr 10 12 14 previous 
E: / au. method 

0. 010 o. 1357( -2) 0.1205( -2) 0. 1151( -2) 0.1245(-2) 

0.0101 o. 8221( -2) 0. 7622( -2) 0. 7897( -2) 0. 8036( -2) 

0.0102 0.4363(-1) 0. 4445( -1) 0.4128(-1) 0. 4457( -1) 

0.01025 0.9666(-1) 0. 9895(-1) 0. 9666( -1) 0. 9690( -1) 

0.0103 0.1962 0.1969 0.2010 0.2038 

0.010335 0.2870 0.2842 0.2908 0.3044 

0.010365 0.3560 0.3502 0.3560 0.3711 

0.0104 0.4025 0.3941 0.3963 0.4108 

0.0105 0.3744 0.3719 0.3701 0.3777 

0.0106 0.3176 0.3199 0.3197 0.3081 

0. 017 0.2839 0. 2825 0.2786 0.2709 

0.0108 0.2666 0.2641 0.2659 0.2630 

0.011 0.2602 0.2660 0.2621 0.2562 

0.0114 0.2608 0.2623 0.2618 0.2597 

0.0118 0.2517 0.2475 0.2528 0.2461 

000122 0.2231 0.2264 0.2269 0.2183 

0.0125 0.1978 0.1961 0.193 0.1933 



7 57 

Table 9. F + H2 Phases as a Function of Basis Set. 

R 
¢ 02/ radians 

Ppr 7 8 9 previous 
method 

£ / au. 

0.010 7.664 7.645 7.754 5.748 

0.0102 5.233 5.240 5.246 4.180 

0.0103 4.764 4.746 4.769 4.003 

0.0104 4.652 4.637 4.681 4.157 

0.0105 4.448 4.432 4.477 4.157 

0.0108 3.251 3.234 3.237 3.420 

0.011 2.377 2.359 2.387 2.854 

o. 0115 0.550 0.529 0.533 NAa) 

0.012 -1.063 -1.089 -1.086 0.400 

0.0125 -2.544 -2.576 -2.553 -0.701 

0.013 -3.875 -3.924 -3.928 -1.762 

a) Not available. 
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Table 10. F + H2 Phases as a Function of Projection Distance 

¢ 2 / radians 
02 

Ppr 10 12 14 previous 
results 

E: / au. 

0.010 7.754 7.246 6.692 5.748 

0. 0101 6.209 5. 511 5.434 4.760 

0.0102 5.246 4.765 4.558 4.180 

0.01025 4.942 4. 411 4.297 4.034 

0.0103 4.769 4.276 4.179 4.003 

0.010335 4.718 4.242 4.160 4.028 

0.010365 4.701 4.235 4.161 4.090 

0.01004 4.681 4.226 4.158 4.157 

0.0105 4.477 4.048 3.983 4.157 

0.0106 4.104 3.708 3.650 3.972 

0.0107 3.676 3.367 3.248 3.649 

0.0108 3.237 · 2.878 2.816 3.420 

0.011 2.387 2.065 2. 028 2.854 

0.0114 0.885 0.590 0.563 1. 826 

0.0118 -0.460 -0.720 -0.748 0.859 

0.0122 - 1.456 -1. 921 -1.953 -0. 700( -1) 

0.125 -2.558 -2.783 -2.811 -0.701 
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~ 

FIG. 1. Phase ¢~ of the scattering matrix element s! for the H + H2 

reaction as a function of the tctal energy E for different values 

of the projection distance p • Data for p = 11,12 bohr are pr pr 
not plctted because of their similarity to the 10 bohr results. 

Scattering calculations were performed with four even and 

four odd basis functions; other numerical parameters have 

their values in Table 2. 

FIG. 2. Phase ¢~ of the scattering matrix element S~, for the H + H2 

reaction as a function of the total energy ~n near the first 

resonance by the previous method (line) and present method 

(circle). Scattering calculations used Ppr = 10 bohr; all other 

parameters are as in Fig. 1. 

FIG. 3. Phase ¢~ of the scattering matrix element S~ for the H + H2 

reaction as a function of the total energy E near the second 

resonance. Symbols are as in Fig. 2. 
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