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ABSTRACT 

Part I presents several sets of comparisons of semi-classical, 

quasi-classical and exact quantum reactive scattering calculations for 

collinear chemical reactions . The possibility of modifying the standard 

quasi-classical method according to a quantum criterion is investigated. 

The systems studied are H + H2, F + H2, and F + D2. In addition , 

a theoretical investigation of the semi-classical S matrix is made. 

Details of a quasi-classical current density analysis of the 

H + H2 reaction are presented and a comparison with exact quantum 

results is made. 

A direct test of two versions of the vibrationally adiaQatic 

theory of chemical reactions is made in Part II for the H + H, reaction. 

The adiabaticity of the symmetric stretch motion of the H3 transition 

state is focussed upon. In addition , a determination of the completeness 

of adiabatic basis s ets for scattering calculations is made. 

The theory of electronically non-adiabatic chemical reactions 

is presented in Part III. Quantum calculations of the collinear 

H+ + H, -> H2 + H+ r eaction are described. A model and a realistic 

potential energy surface are employed in these calculations. 

_ A fictitious electronically non-adiabatic H + H2 collinear chemical 

reaction is treated quantum mechanically. Two potential energy sur­

faces and a coupling surface are developed for this purpose. 

The reaction Ba('S) + ON2(X~L) -> BaO(X lL) + N2(XIL;+), 
g 

BaO(a3 Il)+ N 2 (X 1L ;) is studied quantum mechanically. The singlet 

and triplet potential energy surfaces are devised as is a spin-orbit 
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coupling surface. Electronically adiabatic and non-adiabatic transi­

tion probabilities are calculated as a function of the initial transla­

tional energy of the reagents. 
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PART I 

THEORETICAL STUDIES OF ELECTRONICALLY ADIABATIC 

CHEMICAL REACTION DYNAMICS 
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INTRODUCTION 
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INTRODUCTION 

A theoretical description of molecular reaction dynamics 

requires two, usually independent, efforts. The first effort is con­

cerned with the construction of the potential energy surface(s) de­

scribing the various molecular reaction channels; this is within the 

domain of molecular quantum mechanics calculations. The second 

effort deals with the solution of the equations of motion of the nuclei; 

this is the .domain of molecular dynamics calculations . 

An ab initio approach to molecular quantum mechanics and 

molecular dynamics calculations does of course lead to predictions 

about the reaction dynamics which will agre(il exactly with experiments. 

However, such an approach is in general not feasible (or perhaps even 

desirable) due to the great numerical difficulties involved in dOing 

exact calculatioris. As a res ult of this, many, varied approximate 

approaches to chemical reaction dynamics calculations have been 

developed. A description, examination, and comparison of several 

approximate approaches to various aspects of molecular dynamics 

calculations (on a single potential energy surface) is presented in this 

part of the' thesis. Also, and most importantly, a comparison between 

calculations based on the approximate methods and the exact quantal 

one is made. 

The format of this part of the thesis consists of a presentation 

of seven manuscripts , four of which have been published, and two 

Appendices. 
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Paper I. 1 presents a comparison between exact quantum and 

quasi-classical reaction probabilities for the collinear H +H2 exchange 

reaction. Also presented is a comparison of thermal rate constants. 

The calculations reported in this paper as well as all others are for 

collinear collisions only. This has been, done, first , so that the many 

calculations reported could be feasibly done. Second, the testing of 

approximate methods for collinear collisions does contain enough 

reality so that the conclusions reached will probably be valid for 

three-dimensional calculations. Third, many atom-molecule reactions 

do proceed through a collinear trans ition state, at least at low collision 

energies. 

Paper I. 2 examines the possibility of making a modification of 

the quasi-classical trajectory method by selecting initial conditions of 

the trajectory ensemble according to a quantal criterion. This sugges­

tion, made by Careless and Hyatt, is shown to be inconsistent with a 

general condition of scattering calculations. 

The semi-classical expressions for transition probabilities 

given in new scattering theories developed by W. H. Miller and R. A. 

Marcus are derived in paper I. 3. The derivation is based on a coor­

dinate representation of the Feynman propagator and is given in terms 

of a general diatom internal coordinate. Also, a new derivation of the 

classical limit of the Feynman propagator is given. 

An extensive comparison of quaSi-classical, semi-classical, 

and exact quantum transition probabilities for the H +H2 exchange 
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reaction is given in paper I. 4. A difficulty associated with the semi­

classical method is revealed and stressed. Also, the idea of reverse 

quasi-classical trajectory calculations is introduced as a means of 

improving the agreement between exact and quasi-classical results. 

A comparison of quantal and classical current density, stream­

line, and current density profile plots is made in paper I. 5 for the H + 

H2 exchange reaction. An examination of the regions of configuration 

space sampled by the classical and quantal current densities, etc . , is 

made for five values of the collision energy. 

In papers I. 6 and I. 7 extensive comparisons are made between 

quasi-classical, uniform semi-classical, and exact quantum reaction 

probabilities for the F+H2 and F+D2 exchange reactions, respectively. 

The utility of reverse quasi-classical trajectory calculations is stressed, 

as is the fact that forward and reverse quasi-classical transition proba­

bilities do not obey microscopic reversibility. 

A symmetry property of a transition probability discussed in 

paper I. 2 is derived in Appendix 1. The analytical continuation of the 

semi-classical S-matrix into the complex plane by means of a simple 

power series representation is discussed in Appendix 2. The expres­

sions obtained are very similar to those given by Miller previously. 

Also, some numerical results are presented. 
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1.1 CLASSICAL AND QUANTUM REACTION PROBABILITIES AND 

THERMAL RATE CONSTANTS FOR THE COLLINEAR H + H2 

* EXCHANGE REACTION WITH VIBRATIONAL EXCITATION 

* This paper appeared in Chemical Physics Letters g, 1 (1971). 
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CLASSICAL AND QUANTUM REACTION PROBABILITIES 

AND THERMAL RATE CONSTANTS FOR THE 

COLLINEAR H + Hz EXCHANGE REACTION 

WITH VIBRATIONAL EXCITATION* 

JOEL M. BOWMAN AND ARON KUPPERMANN 

Division of Chemistry and Chemical Engineering** 

A. A. Noyes Laboratory of Chemical Physics 

California Institute of Technology 

Pasadena, California 91109 

Classical trajectory calculations for the collinear H + Hz 

exchange reaction were performed using the same potential energy 

surface previously adopted for exact quantum mechanical calcula­

tions. Reactions of both ground state and vibrationally excited 

state reagent were conSidered, over a relative kinetic energy range 

sufficient to produce vibrational excitation of products. At energies · 

close to threshold the classical and quantum mechanical reaction 

probabilities differ sufficiently to cause a major difference in the 

corresponding thermal rate constallts at low-temperatures. 

Effective reaction thresholds differ by 0.07 eVfor ground state 

and 0.09 eVfor excited state reagent. At energies substantially above 

threshold the quantum reaction probabilities oscillate around the 

corresponding classical ones. However, some classical curves 

* This work was supported in part by the United States Atomic 

Energy CommissioJ1,Report Code No. CALT-767P4-87. 

**Contribution No. 4330 
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also show oscillatory behavior, suggesting caution in the assign­

ment of oscillations in the quanttun curves to quantum effects. 
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Comparisons between exact classical and quantum mechanical 

calculations for the collinear H + H2 exchange reaction have been 

previously reported. Mortensen [1] studied this collinear reaction 

and three. of its isotopic variations classically and quantum mechani­

cally. McCullough and Wyatt [ 2] reported a time-dependent quantum 

and classical calculation of this collinear reaction at four energies. 

In neither of these comparisons was the energy sufficiently high for 

a detailed comparison of the role of vibrational energy in classical 

and quantum calculations to be made. 

In this paper we present such a comparison. We have per­

formed quasi-classical trajectory calculations [3] and compare the 

results with the exact quantum calculations of Truhlar and 

Kuppermann [ 4]. The corresponding total reaction probability from 

the ground and first excited vibrational states of H2 is compared, 

as well as reaction probabilities into individual vibrational quantum 

states of products. The relative collision energy was varied from 

0.20 to 1.28 eV andO.07toO.70 eVforcollisions of the ground 

and first excited vibrational state of the diatomic reagent, 

respectively. At these energies the first three vibrational states 

of product H2 are accessible. The potential energy surface used, 

. identical in both the classical and quantum calculations, was a 

Wall-Porter [5] type, fit by Truhlar and Kuppermann [4] to 

the ab-initio H3 surface of Shavitt, Stevens, Minn, and Karplus 

[6] and scaled to give the "c·orrect" barrier height of 0.424 eV [7]. 
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In a quasi-classical trajectory calculation one can choose to 

quantize the initial vibrational energy of the reactant diatom, but 

the final diatom energies are not quantized. One can, nevertheless, 

for purposes. of comparison with the quantum mechanical results, 

assign a quantum number to the final diatom in several ways. We 

choose the following one. If AE(n) = E(n+1) - E(n) is the quantum 

mechanical energy difference between vibrational states n + 1 and 

n and E~l is one of a continuum of classical final diatom vibrational 

energies such that E(n) <E; E~l < E(n+1), we assign to this diatom the 

quantum number v = n if E(n) <E; E~l < ~AE(n), or v .= n + 1 if E(n) + 

~ AE(n) < E~l <E; E(n + 1). If E~l <E; E(O), we set v = O. Using this 

assignment we can obtain the probability pn for reaction from the 

ith vibrational state of the reactant to the jth vibrational state of the 

product from the quasi-classical trajectory calculations. This . 

method of assignment optimized the agreement between classical and 

quantum results. 

In Fig. 1 we exhibit the classical and quantum total reaction 

probability, p~, for reactant H2 in its v = 0 vibrational state as 

a function of relative collision energy. In this figure as well as in 

Figs. 2 and 3, the classical points are accurate to Plus or minus 

0.03 or better due to th.e statistical fluctuations associated with 

the trajectory calculation ' method [3]. The T1 and T2 marks on 

the abscissa correspond to relative collision energies at which 

vibrationa1 excitation of H2 to its v = 1 and v = 2 siates respectively 

becomes energetically possible. As the collision energy exceeds 
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0.30 eV, both the classical and quantum reaction probability start to 

decrease with increasing energy. The classical curve drops 

monotonically, whereas the quantum one shows marked oscillatory 

structure and appears to oscillate about the classical curve. At 

energies between 0.28 and 0.30 eV the two curves are in good agree­

ment, but at energies less than 0.28 eV, they diverge slowly. 

The exact threshold energies at which P~ = 0 is zero for 

the quantum case and must equal or exceed 0.151 eV (at which value 

the classical kinetic energy at the saddle point is zero) in the 

classical one. However, if we arbitrarily define an "effective" 

threshold kinetic energy as that corresponding to P~ = 0.01, it is 

. O. 19 eV for the quantum calculation and about O. 26eV for the 

classical one, corresponding to a difference of about 0.07 eV 

(1. 6 Kcal/mole). 

In Fig. 2 we have plotted the classical and quantum total 

reaction probability, p~, for reactant H2 in its v = 1 vibrational state 

as a function of relative collision energy. The mark T2 designates the 

energy at which excitation to the v = 2 vibrational state becomes 

energetically accessible. At collision energies between 0.40 and 

0.70 eV, the classical reaction probability displays, as before, the be­

havior of the oscillation-averaged quantum Gurve. From 0.20 to 

0.40 eV, the two reaction probabilities show ,semi-quantitatively the 

same trend. At energies between 0.13 and 0.20 eV the dip in the 

classical reaction probability is qualitatively similar to, though 

more pronounced than, the one in the quanhml reaction probability. 

We note that this curious oscillation in the reaction probability is 

manifestly not a quantum effect as it appears classically also. Thus, 
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one should be cautious when assigning oscillations in quantmn results 

to quantum effects. At energies less than 0.13 eV the two curves 

show, as for the v = 0 case, a rapid decrease with decreaSing 

energy, but in the present case they differ more from one another. 

In this case the quantum pf = 0.01 effective reaction threshold is 

0.02 eV and the classical one about 0.11 eV, although even at zero 

relative kinetic energy the total energy (0.79 eV) is sufficient for 

the reaction to proceed. Therefore, some kinetic energy is still 

necessary for the reaction probability to be appreciable, more in 

the classical case than in the quantum one. The difference in these 

effective threshold energies for v = 1 is now 0.09 eV, compared to 

0.07 eV for the v = 0 case. 

In Fig. 3 we have plotted four reaction probabilities, P~O' 

pib, pIi, and pr2versus colliSion energy. The P66, p~, and 

Pi\., classical curves show decreasing monotonic behavior with 

increasing energy for collision energies greater than 0.30 eV and 

the corres ponding quantum curves show pronounced oscillatory 

behavior about the classical ones. At the energies just above thresh­

old the classical P[6 and P~ curves show very rapid variation with 

energy . . This indicates a very abrupt variation in the extent of 

non-adiabaticity in the reactive collisions. This effect is not seen 

quantum m echanically: We are uncertain as to how much credence 

should be given to this portion of the classical curves because of 

the way in which quantum numbers were assigned to classical 

vibrators. 
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For example, the classical reaction probability Pf2 is substantial 

at energies less than T2; ' because of this method of assigmnent. 

Again we see threshold diHerences of 0.07 to 0.09 eV. 

Truhlar and Kuppermann [8] have recently calculated the 

thermal rate constant for this collinear reaction from their quantum 

reaction probabilities. Using the same expression for the rate 

constant, but replacing the quantmn reaction probabilities with the 

corresponding classical ones, we calculated the classical thermal 

rate constant. Figure 4 shows a plot of the ratios of the classical 

to quantum rate constants as a function of liT for temperatures 

ranging from 150 to 1200 o K. Table I shows this comparison more 

quantitatively. The classical activation energy, derived from the 

classical rate constant, is 0.30 eV, and the quantmn activation 

energy is 0.299 eV [8]. The quantum results were reported with 

an accuracy of 2% or better and the present classical ones are 

accurate to about 10%. The two rate constants are seen to approach 

each other at high temperatures a.lld to diverge significantly at 

temperatures below 250 oK. The small difference in the quantum 

and classical reaction thresholds is responsible for this marked 

low temperature. difference. 

In summary, we have fouJ'ld that at the higher collision 

energies considered here, there is qualitative agreement between 

the classical and the oscillation-averaged quantum reaction probabilities 

discussed here. Qu&ntitatively, however, a difference of a factor of 

two is not uncommon. In addition, a marked difference exists between 
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classical and quantum rate constants due to the difference between 

the corresponding reaction probabilities near threshold. We feel 

that, although these results were obtained from collinear calculations, 

the qualitative conclusions will still hold for 3-dimensional reactions. 
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FIGURE CAPTIONS 

Figure 1. Classical (open circles) and quantum (full circles) total 

reaction probability, ' p~, for the collinear reaction 

H + H2 (v = 0) - H2(v = 0, 1,2) + Has~ function of 

relative collision energy. EO. 

Figure 2. Classical (open circles) and quantum (full circles) total 

reaction probability, pr, for the collinear reaction 

H + H2 (v = 1) - H2 (v = 0, 1, 2) + H as a function of 

relative collision energy E1. 

Figure 3. Classical (open circles) and quantum (full circles) reaction 

probabilities P~j as a function of relative collision 

energy Ei . 

Figure 4. Ratio of classical to quantum rate constant as a function 

of liT. 
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Table 1. Exact quantum k (T) and class ical k cl (T) rate constants qm . 

incm/(molecule-sec) and their ratio. * 

T(OK) kcl (T) k (T) 
qm k cl(T)/k qm (T) 

200 O. 86( -2) o .201(0) 0.43(-1) 

300 0.19(1) o .585(1) o .32(0) 

400 0.31(2) o .593(2) o .52(0) 

500 0.17(3) o .266(3) o .64(0) 

600 0.52(3) o .752(3) o .69(0) 

700 0.12(4) o .161(4) o .74(0) 

800 0.22(4) o .290(4) o .76(0) 

900 0.37(4) o .463(4) o .80(0) 

1000 0.55(4) o .677(4) o .81(0) 

1100 O~ 77 (4) o .928(4) o .83(0) 

1200 0.10(5) o .121(5) o .83(0) 

* The numbers in parentheses are powers of ten which multiply 

the numbers preceding them. 
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I. 2 QUANTUM INITIAL CONDITIONS IN QUASI-CLASSICAL 

TRAJECTORY CALCULATIONS. * 

* This paper appeared in Chemical Physics Letters !3!., 21 (1973). 
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QUANTUM INITIAL CONDITIONS IN QUASI-~ 

~JECTORY CALCULATIONS.* 

~~~UPPERMANN, and GEORGE C. SCHATZ 

Arthur Amos Noyes Laboratory of Chemical Physicst 

California Institute of Technology, Pasadena, California 911 09, USA 

Received 

The quantum distribution of initial conditions suggested recently by 

Careless and Hyatt as a means of "phase-averaging" classical trajectories 

is shown to lead to reaction probabilities which depend on the initial distance 

between the reagents even when this distance is sufficiently large for the cor­

responding interaction energy to vanish. We used that distribution to calculate 

reaction probabilities for the collinear H + H2 exchange reaction on a potential 

energy surface for which quaSi-classical and exact quantum results had been 

previously obtained. The dependence of the resulting reaction probabilities 

on the arbitrarily chosen value of the initial atom-molecule separation was 

substantial. We conclude that the use of such quantum distributions for initial 

conditions is physically unacceptable. 

* This work was supported in part by the United States Atomic Energy Com­

mission, Report Code No. CALT.-767P4-101. 

** Work performed in partial fulfillment of the requirements for the Ph. D. 

Degree in Chemistry at the California Institute of Technology. 

t Contribution No. 4596. 
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1. INTROOUCTION 
~ 

In a recent paper [ 1], Careless and Hyatt reported reaction probabilities 

from a classical trajectory study of the collinear H + H2 exchange reaction 

on an LEPS surface. In addition to the standard "phase-averaging" (i. e. , 

averaging over the initial reagent molecule's vibrational phase) in which the 

initial internuclear distw:u.::';: uI i·Bagent n2 (tl'ealed a classit..::allla.nuonic o~cil-

lator with zero-pOint vibrational energy) is selected according to the classical 

distribution function (COF), they phase-averaged according to a quantum dis­

tribution function (QOF), the probability density of the ground vibrational 

state. The total reaction probability they obtained from the QOF oscillated 

with energy around the one obtained from the COF. This, as they observed, 

was reminiscent of the oscillations of the exact quantum reaction probability 

curve around the standard quasi-classical one obtained for an If3 surface dif­

ferent than but similar to theirs [ 2], and suggested that the use of the QOF 

may be a way to introduce quantum effects in classical trajectory calculations. 

In this paper we investigate the properties and usefulness of the QOF-clas­

sical trajectory method. 

2. CLASSICAL ANO QUANTUM INlTIAL DISTRIBUTIONS FUNCTIONS 
~~'-

Let F C(r) and F Q (r) be respectively the CDF and QDF of the initial inter­

nuclear distance, r, of a reagent diatomic molecule in a bO'!l1d state having a 

quantized vibrational energy. Let the corresponding classical turning points 

be rmin and rmax' By definition the quantities K+(r) and K-(r) are set 

equal to one if the trajectory corresponding to r is reactive and to zero other­

wise. The superscript +(-) corresponds to the reagent initially expanding 
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(contracting). The COF and QOF total r eaction probabilities of this molecule 

with a third atom in a linear world, Pc and P
Q 

respectively, are given by [3] 

O!= C,Q. (1) 

The COF is normalized according to 

rmax f drFC(r) 1 
rmin 

but due to barrier penetration the corresponding QbF integral for the same 

integration limits is less than unity . 

The COF and QOF total reaction probabilities can also be obtained by 

sampling the initial diatom internuclear separation from the CDF and QOF 

respectively and determining the fraction of trajectories leading to reaction. 

This technique is equivalent to the one given by Eq. (1), and as a consistency 

check of our numerical results both were employed for some calculations. 

3. CONDITIONS~L DISTRIBUTION FUNCTION~ 

Let x stand for an internal coordinate of the diatomic molecule . It can 

pe the internuclear distance, r, or the angle variable, q [ 4]. The distribution 

function F(x, t) of x at time t should satisfy the condition that as long as the 

third atom is not interacting with the molecule this function noes not have an 

explicit time dependence, i. e . , [ aF(x, t)1 at ] x = o. If this is not the case 

the resulting reaction probabilities would in general be a function of the initial 

atom-molecule separation, R, even though at this separation the interaction 
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energy vanishes [5J. Such a result would not be physically meaningful [6]. We 

will show that [ a Fl at] x vanishes if and only if at an arbitrary initial time to 

F(x, to) is the classical distribution function [FC(r) or F C(q)] and therefore 

that any other initial distdbution function, including the quantum one [ F Q(r) 

or FQ(q)], is not acceptable. 

Let Px be the momentum canonically conjugate to x (i. e., either the 

carteSid11 momentum Pr £01- A - :L or the action variable n [4 j fer x .=; q). 

Let p(x, PX' t) be the density function (attime t and point (x, Px) of phase 

space) representing an ensemble of isolated diatomic molecules . The dis­

tribution function F(x, t) in x-configuration space is related to p by 

F(x,t) = JdPxP(x,Px,t) (2) 

where x and Px are taken as usual to be independent. From this we get 

The quantity (aplilt )x, Px" . describing the rate of change of p with time at a 

fixed point in phase space, can be obtained from Liouville's theorem [7] accor­

ding to which dpl dt vanishes. As a result 

It is now convenient to use angle - action variables, i. e., x = q and Px = n. 

The corresponding equations of motion are [4 ] 

(3) 

dq _ w·dn_ O "ar - ' at- (4) 



27 

where w is the positive constant angular frequency of the vibrational motion 

of the molecule. Therefore, 

q=wt+c;n=m (5) 

where c and m are integration constants, the latter being uniquely determined 

by the energy of the molecule [4]. Let the ensemble of molecules being con­

sider,.,d be restricted to iie "on the energy sheil" (L e., have energies in the 

range) E to E + dE. Then, in view of Eq. (5) we may write 

p(q, n, t) = f(q, t) O(n-m) (6) 

From this and Eq. (2) we have that 

F(q, t) = f(q, t) (7) 

and with the aid of Eqs. (4), (6), and (7), Eq. (3) becomes 

(8 ) 

This is the general partial differential equation which any distribution function 

F(q, t) on the energy shell must satisfy. In addition F should be normalized in 

the q-range 0 to 21T corresponding to one vibration period, i. e., 

21T J dq F(q, t) 1 
o 

(9) 

Since we wish to find the conditions under which F(q, to) must be equal 

to FC(q), we first obtain an expression for the latter. By definition FC(q) dq 

is equal to the fraction of time spent by an isolated diatom in the range q 

toq4dq, Le., 
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where T, the molecular vibration period, is related to w by 

211 
T =­

W 

The last three expressions together with Eq. (5) furnish 

(10) 

(11) 

The theorem we wish to prove is that a necessary and sufficient condition 

for [a F(q, t) /a t 1 to vanish for all q and t is that F(q, t;,) be 1/ 211 (i. e., q -

FC(q)). That the condition is necessary follows from Eq. '(8) by setting 

[a F/ atlq equal to zero. According to the resulting expression, F is inde­

pendent of both q and t, i. e., it is a constant whose value, due to the 

normalization conditioh (9), must be 1/211. Therefore, F(q, t) at all times, 

and in particular at time t;" must be equal to 1/ 211. To show that the condition 

is sufficient, we assume that F(q, t;,) = 1/ 211 and\solve Eq. (8) subject to this 

initial condition. It follows that [anF(q, t;, )/a tn lq -VaniShes at t = to for all n. 

Therefore, a power s eries expansion of F(q, t) in the variable t around 

t = to furnishes F(q, t) = F '(q, to) = 1/ 211 from which we conclude that [aF f at lq 
vanishes at all q and t, Q. E. D. 

If we now change from the angle-action variables (q, n) to the cartesian 

ones (r, Pr)' the-distribution function F(q, t) transforms into F(r, t) and it is 

straightforward to prove that a necessary and sufficient condition for 

[a F/atlr to vanish at rand t is that for an arbitrary to we have F(r, to) = FC(r) . 

Indeed, since 

F(r, t) I dr I = F(q, t) dq 
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we get from Eq. (4) 

F(r, t) 
w 

= F(q, t) I v(r) I (12) 

where v is the cartesian velocity given by 

2 1-
v(r) = ± {;:;: [E _ V(r)]}2 , 

fJ. being the reduced mass of the diatom and V(r) its potential energy function. 

(The absolute value signs were introduced to force F(r, t) to be positive.) On 

the energy shell n is a constant and therefore r'is a function of q only. Thus, 

a necessary and sufficient condition for [a Flat lr to vanish is that [a Flat lq 

vanish, i.e., that F(q, to) equal1/21T. Due to Eqs. (12) and (10) this is 

equivalent to 

1 1 
F(r, to) = T 1V1i'T1 . (13) 

Since the classical distribution function Fdr) must, by definition, satisfy 

F (r) dr = dt 
C T 

we get finally that 

Thus, we have proved that the one and only initial distribution leading 

to an F(r, t) which has no explicit time dependence is the classical one, 

Fe (r), and therefore this distribution function is the only physically 

acceptable one. For any other initial distribution, including the quantum 

one, the resulting reaction probabilities will be periodic functions of the 
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atom-molecule separation, R, with period Vr, where V is the initial relative 

velocity. This is an immediate consequence of the fact that the diatom's 

internal motion is periodic with period 7. Furthermore, the function PQ(R) 

will be symmetric about a point R due to the fact that FQ(q) is symmetric 

about the point q = 7f. 

Although these conclusions were derived for the particular case of a 

collinear atom -molecule exchange reaction, their generalization to three 

dimensions and to more complicated reactions is straightforward. 

4. NUMERICAL RESULTS AND DISCUSSION 

In order to determine the magnitude of the dependence of the total 

reaction probability on R for the QDF we computed P Q as a function of the 

initial relative kinetic energy, Eo, for several values of R for the H + H2 

exchange reaction, with the H2 molecule initially in its ground vibrational state. 

The potential energy surface used was a Wall-Porter fit to the scaled SSMK 

surface [8], and was the same one for which exact quantum and quasi­

classical reaction probabilities had previously been obtained [9, 2]. 

We also performed some calculations using the CDF by both the 

sampling method described at the end of Section 2 and by the integration method. 

The latter is a modification of Eq. (1), obtained by replacing the initial H2 

internuclear distance variable r with the angle variable, q. The resulting 

expression is 

(14) 

where the IAq\ represent the lengths of the regions in q -space which lead to 

reaction. Most of the QDF calculations were made using the integration 
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method with Eq. (1) unaltered. For one energy the sampling technique was 

also used. 

For an initial relative kinetic energy, equal to 0.64 eV Pc and P Q 

were obtained by these methods for four values of R between 4.621 bohr and 

4.621 + 'TV bohr (6.592 bohr) and the results are given in Table 1 for a set of· , 
100 trajectories per value of R. As seen the CDF results are independent of 

R as expected whereas the QDF ones depend significantly on this variable . 

Furthermore the latter dependence is periodic with period 'TV and the integration 

and sampling methods of calculation give the same results (to within the 

accuracy of either .calculation), as predicted. In Fig. 1 we have plotted PQ 

(computed from Eq. (1)) as a function of R over the range 4.78 bohr to 

4.78 + .,.Vbohr (6.75 bohr) and for Eo equal to 0.64 eV to illustrate the nature 

and magnitude of the R-dependence . The range of the abscissa has been chosen 

so that the symmetric shape of the curve is clearly displayed. The point of 

symmetry, If, (5.76 bohr in the present example) is calculated from the 

expression R = Ro + ~ [(<10 +q,)/2 -1f 1 where q, and Ch are the limits of the 

q region over which all trajectories are reactive for R = Ro' The range of P
Q 

for this energy is 0.50 to 0.83 compared to the value of 0.65 for PC' This 

is a substantial dependence of PQ on R. 

In Fig. 2 we have plotted, as a function of Eo, the QDF total reaction 

probability at three values of R and the CDF total reaction probability. In 

addition, for comparison purposes, we display the exact quantum curve 

obtained previously for the same surface [9]. The QDF results again clearly 

exhibit a substantial variation with R, even though the range of values of PQ 

for each Eo indicated in the figure is not the maximum one [10]. 
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Depending on the arbitrarily chosen value of R some of the PQ versus 

Eo curves can display an oscillatory behavior. However, the position and 

amplitude of these oscillations are themselves dependent on R, and appear in 

general unrelated to those of the exact probabilities, as displayed in Fig. 2. 

We conclude that, in the absence of a reasonable criterion for choosing 

the initial atom-molecule separation,the use of a quantum distribution of 

initial conditions to phase-average classical trajectories is neither theoretically 

justifiable nor physically acceptable. 
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Table 1 

Classical (CDF), PC' and "quantum" (QDF), PQ, total reaction probabilities 

at four values of the initial atom-molecule separation, n, for an initial 

relative kinetic energy of O. 64 e V . 

FC 
~ 

rQ 
n (bohr) 

Samplingb) ~tegration c) Samplingb) Integrationa) 
, 

4.621 0.65 0.65 0.76 0.76 

5 . 278 0.65 0.66 0.53 0.54 

5.935 0.65 0.66 0.68 0.70 

6.592 0.65 0.66 0.76 0.76 

a) Method using Eq. (14). 

b) Method described at the end of Section 2. 

c) Method using Eq. (1). 



34 

REFERENCES 

[1] P. M. Careless and D. Hyatt, Chem. Phys. Letters 14 (1972) 358. 

[2] J. M. Bowman and A. Kuppermann, Chem . Phys. Letters 12 (1971) 1. 

[3] In the event that K+(r) and K-(r) are non-integrable functions the 

sampling methpd described in the next paragraph can still be used. 

[4] H. Goldstein, Classical mechanics (Addison-Wesley, Reading, Mass., 

1950) pp. 288-294. 

r 5] This dependence results from the fact th~,t as the atom-molecule system 

approaches the region of interaction, i. e., R is decreasing with time, 

the distribution of x is changing. 

[6] Two special cases for which there should not be an R dependence even 

though a F(x, t)/at '" 0 are obviously the ones for which either no trajectory 

or every trajectory leads to reaction. 

[7] Ref. [4], pp . 266-268. 

[8] The potential energy surface is described in detail in [8] and references 

therein. 

[9] D. G. Truhlar and Aron Kuppermann, J. Chem. Phys . 56 (1972) 2232. 

[10] To obtain, at each Eo, the maximum spread in PQ(R) would require 

sampling a finer grid of values of R, in the manner done to obtain the 

results displayed in Fig. 1 for Eo = 0.64 eV. The small spread 

observed for Eo = 0 . 30 eV is due to the fact that for this energy 

essentially all trajectories are reactive (see [5 D. 



35 

FIGURE CAPTIONS 

Fig. 1. "Quantum" (QDF) total reaction J?1"obability, PQ, as a function of 

the initial atom-molecule separation, R, for an initial relative 

kinetic energy of 0.64 eV. The arrow indicates the pOSition of the 

symmetry point, R ~ 5.76 bohr. The error bars are a measure of 

the uncertainties associated with the number of trajectories (100) 

used for each R. 

Fig. 2. Exact quantum (dashed-dotted curve), quasi-classical (CDF) (solid 

curve), and "quantum" (QDF) (triangles, circles, and squares) total 

reaction probabilities as a function of initial relative kinetic energy, 

Eo' The initial atom-molecule separations, R, for the latter are 

given in the figure insert. 
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I. 3 SEMI-CLASSICAL S MATRIX THEORY OF REACTIVE AND 

* NON-REACTIVE ATOM-MOLECULE COLLISIONS. 

This paper appeared in Chemical Physics~, 158 (1973). 
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1: Introduction 

Semi-classical expressions for the scattering matrix pertinent to 

molecular collisions based on exact classical trajectories have been given 

by Miller [I ], Marcus and co-workers [2], Levine, and Johnson [3], and Eu [4]. It 

was argued that such semi-classical expressions would yield results in 

agreement with exact quantum ones for molecular scattering processes. A 

semi-classical scattering theory in which the relative motion is treated 

classically (exactly) and the internal motion quantum mechanically has been 

developed by Pechukas [ 5a] and Pechukas and Davis [ 5b J • 

Miller has dealt mostly with closed forms for the semi-classical S 

matrix which result in a hierarchy of expressions of increasing range of 

validity termed the':classical, " "primitive," and ."uniform" approximations 

[ lb ]. They are appealing in their simplicity and ease of interpretation. 

Applications of these expressions to model non-reactive collisions [ lb, lc ] 

gave encouraging results and stimulated interest in its applications to reactive 

collisions [6,7,8]. Additional results of numerical calculations we. have performed 

for the collinear H +H2 and F+H2 systems will be published elsewhere [9,10]. 

Marcus [2a] and Connor and Marcus [2b] developed their theory by 

focussing attention on the JWKBsolution to the scattering wavefunction and 

extracting the semi -classical S matrix from it. The many points of contact 

with Miller's theory indicate that the two theories are essentially equivalent. 

Wong and Marcus [2c] have applied their theory to the inelastic scattering 

of a particle by a harmonic oscillator and found excellent agreement with the 

quantum results of Secrest and Johnson [ 11] . 

Johnson and Levine [3] gave an expression for the semi-classical' 

S operator and proceeded to give its matrix elements in terms of either 



41 

JWKB or exact wavelunctions for the unperturbed initial and fina l internal 

states of the system. This expression differs from Miller's and Marcus' 

and co-workers' and it r epresents an approximation to the semi-classical 

Eo matrix . 

These previous treatments of the semi-classical S 

matrix have focussed on an action-angle-variables description [ 12a 1 of the 

interna l d iatom! s coordinates and momenta. Miller and co-workers have 

modified their theory to include other coordinates and momenta [ la, 6 1. 
In the present paper we give a unified derivation of a semi -classical 

S matrix for collinear reactive and non-reactive collisions between an atom 

and a diatomic molecule in which a generalized internal coordinate and 

momentum are used to describe the motion of the latter. The uniform, 

primitive, and classical semi-classical approximations for the transition 

probabilities are rederived in terms of these variables. A new integral 

expression for the semi-classical S matrix is also derived. This expreSSion 

is of limited use ;.howeve r, in some cases it is the only-expression having 

some validity. In addition, we give a new derivation of the classical limit 

of the propagator in the Appendix. 

2. Theor.l. 

Let us consider, for convenience, the collinear collision of an atom 

with a diatomic molecule and derive an eJ .... pression for a semi-classical S 

matrix for reactive and non-reactive transitions. This derivation can easily 

be extended to collisions in three physical dimensions. 

The exact S matrix for atom-molecule collisions is [ 13a 1 

S ,,~- lim (y Q(t) I 'l'n+a (t» 
mfJn~ - t-+oo "mfJ a,{3 = 1,2 (2.1) 
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where Xmll(t) is some non-interacting state of the system describing separated 
+ 

collision partners in arrangement channel Il and '!<n" (t') is the scattering 

state whir.h for t' ~ _00 describes the non-interacting reagent state Xndt'). 

For collinear collisions na and mil are, respectively, the vibrational quantum 

numbers of the reactant and product diatoms. 

For arrangement channel 1(2) we define R!(2) as the distance from the 

atom A(C) to the center of mass of the diatom BC(AB) and denote the internal 

diatom coordinate as x' (2) which is left general (i. e., it can be the inter­

nuclear distance, the angle variable or some other convenient internal coor­

dinate) for most of the discussion. In terms of these variables, the time, 

and the propagator K(R~ x~t;R~' x~'t')~ eq. (2.1) can bewritten as 

[13al 

Smllna = lim ffffdRllctxlldRlhctxa, x*rnf3(R~xf t)K(R~xft;R~' x~' t') 
t- +00 
t' -_00 

a,1l = 1,2 (2.2) 

where K is the amplitude for the system to propagate from space-time point 

Ra , xa , t' to space-time point Ril xll t , , , , . 
A semi-classical approximation to (2 . 2) results if semi-classical 

expressions for xrnf3(R~xft), Xn,,(R~' x~' t') and K(R~xft;R~' x~' t') are 

used. The first one can be written as 

(2.3) 

and an analogous expression holds for Xna . The wavefunctions '!<SC and 1j~ 

are defined in eqs . (2.5), (2.12) and (2 . 15) below. Let us now define an 

interaction region which extends from R~ (before collision) to R~ (after col­

lision) such that for Ra , and Ril greater than Roa and R~ respectively the 

interaction between the atom and the diatom is negligible. Let us also define 

~ In reference [13] p. 300, K(R, 1', t;R~ r~ t') = i G+(R, l' t;R' r; t') where 
G+ is the retarded Green's function. K is also called the F'eynman propagator. 
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two times t" and tl which are required to satisfy the "boundary conditions" 

Ra(to) = R~ and Rfl (tl) = R~, where Ra(t) and Rfl (t) are given by the classical 

equations of motion. Thus for times t' < to and t > tl the partners propagate 

freely. We take the semi-classical approximation to Smflna to be 

(2.4) 

X sc( f3 R t a a ) sc ( at) sc( at . a, t') Wsc(Ra , t') K Ru Xi, l;Ro , xo , to 7J a x o ' 0 K Ro ' o,R , 'iT .,. 
n 

In this expression, Ksc(R~, t,, ; R?,' t') describes the propagation associated 

with the relative motion of the separated collision partners before collision, 

KSC(R~, xf, t 1 ; R~, x~ t,,) the propagation associated with the motion occurring 

during the interaction, and Ksc(R~ t; R~, t 1) the propagation associated with 

the relative motion thereafter. Only the second of these semi -classical 

propagators contains the internal coordinates. The finite integration limits 

associated with these coordinates correspond to the classical turning points 

of the diatom before and after collision. The integr ations over R a, and R.B are 

performed with these variables considered independent of t' and t respec­

tively. We stress that in our description the quantities Roa and Rf are 

fixed parameters and the times to and tl are functions of the other paramete rs 

which define the trajectories. Ultimately the semi-classical S matrix must 

not depend in a significant way on the choice of the parameters R~ and Rr 
The wavefunctions -vsc(Ra " t') and -Vsc(R~ t) appearing in the last 

two expressions are normalized over lines of length 1 and are given by 

1 
-vsc(Ra " t') = t-2 exp [i(P~' Ra , - E~iJ, t' )/ti 1 

(2.5) 

¥C(R~ t) = I-t exp [i (P~ R.B - Eg,J3 t) / ti 1 
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where P~ and P~ are the relative momenta of the system before and after 

collision respectively and E~O' and E~1l are the associated kinetic energies. 

The semi-classical propagators Ksc(R~, to ; R~' t') and Ksc(R~ t ; R~, t,), also 

normalized over lines of length £, are given by [ 14b] 

1 

Ksc(R~, to ;R~' t') ~ £2 exp{i[ P~o (R~ - RO") - E~(to -t')] In} 
(2.6) 

KSC(R~ t; R~, t,) ~ £-! exp {i [p~, (Ril - R~) - E~ (t - t,l ] In} 

where p~ 
o 

jugate to RO' 

p~ (to) and p~ ~ p~ (t,) are the momenta canonically con­, 
'and Ril at times to and t, respectively. They are given by 

where 1"(1'2) is the reduced mass of the A + BC (C + AB) system. E~ (E{) 

is the relative kinetic energy of the system before (after) collision. 

According to eq. (2 . 6), IKSc(R~,to;Ra',t')I'and IKSC(RIl,t;R~,t,)I'areconstants. 

The reason for this is that A and BC do not interact ,for distances 

RO' greater than R~ before collision and C and AB do not interact for 

di"tan""" Ril greater than R~ after "nlliAlnn ; hence, the probahititie8 

IKsc(R~, to ;R~' t') 12 and IKsc(R~ t ; R~, t,) 12 for the system to propagate 

from one space-time point to another in these regions are constants. The 

semi-classical propagator associated with the interaction is given by [la, 15, 16] 

KSC(R~,~, t,;R~, x~, to) ~ (zITilif! [ap~/a~r~ exp [i~~(R~,~, t,; R~, x~, to) In] , 
(2.7) 

where [6·] 
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/,dt L [Ra(t), Ra(t), xa(t), ~a(t)J 
to 

(2.8a) 

(2.8b) 

L is the classical Lagrangian of the system and the integrand is associated 

with a classical trajectory of total energy E passing through the space-time 

points (R"a, "oa, to) and (R~, xr, t,), F, is the classical generating function 

which describes the change of coordinates (R~ x~) to (R~, xr) at time t, [ 12b J. 

The partial derivative apCl! /a,!f (in eq. (2 . 7)) involving tbe momentum ca-
xo 

nonically conjugate to xa at time to implies that R~, R~, x~, to, and t, are 

the variables which 'remain constant. A derivation of eq. (2.7) is given in 

the Appendix. 

Let us now perform the integrations indicated in eq. (2.4). It is con­

venient to express th.e Lagrangian in (2. 8b) as 

(2.9) 

where H is the classical Hamiltonian and pg and p~ are functions of R?, ita 

and x?' ~~ We rewrite eq. (2.8b) with the aid of eq. (2.9) (assuming that 

H is time-independent) as 

and define a new quantity .p~; by 

",sc _ 
't'fla -

- E(t,-to) 

(2.10) 
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(2. 11) 

The semi-classical wavefunctions ~'i:, and rf;;f3 of eq. (2.3) can be written as 

~'i:, (~, to) t/I~ci (~) exp [ -i E (nu)to 111] 
(2 . 12) 

where l/I~ci(Xo"') and t/I!~(x~) are the JWKB wavefunctions given by eq. (2.15) 

below. The quantum numbers n'" and m f3 specify the vibrational state of the 

diatom before and after collision respectively and E(n"') and E(mf3) are the 

corresponding semi-classical energy eigenvalues [17]. The total energy of 

the system E can be written as 

InsGrting eqs . (2.5), (2.6), (2.7), and (,2.12) into eq. (2 . 4) we obtain 

.Clexp[i(p~ _P~)Rf3 /ti }/J*Sf3C(),l)(21Tilir~ 
1 m 

X [ap~ lap,]~ eXP[i¢f3S~(R~,),l, t,;R~, ~, to)/ti ]l/Js~(x~) 
o n 

X t-lexp[i(p~'-p~ )R""/lilexp{i[(E~S" E~ t .lc(E:-E~",)t'l/ti} 
. 0 

exp[i(~ R~ - I{ R~)/til (2.13) 
o 1 
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As described previously, the quantity </>~~ in this equation is determined 

by a trajectory of energy E which passes through the space-time points 

lOa a ' ) ( (:J (:J ) '''0, x., , to and R" x" t,. Only four independent variables are needed to 

specify a traj ectory for a two-dimensional configuration space. They can be 

chosen as ~, x.,a, R~ and x~. Alternatively, the total energy E and the three 

variables R.,a, xg' and R~ can be used . The elapsed time t, '- to is determined 

from these conditions and will not be t aken as an independent variable. The 

functions PRa(t), pa(t), P(:JR(t) and p(:J (t) (the momentum canonically conjugate x , x 

to x(:J(t)} are also determined by the same conditions, and therefore so are 
a a 8 (:J 

1lJl.,' Px.,' P'R, and px,' 

It is convenient to replace the set of variables E, ~ x.,a and If. used 

to speeify a trajectory by the equivalent set E, n%" P~ and l{, and to choose 

the latter two variab}es according to a criterion suggested by eq. (2.13). We 

see that the integral of .I.-'exp[i(~ - ~/)Ra, IIi] over Ral appearing in 

that equation is equal to unity if ~ = p~' and zero otherwise. Similarly if 

~ = I{ the analogous integral over 'R(:J is equal to unity but it is zero other-, 
wise. Thus, we require that 

~ = P~' (2. 14a) 

and 

(2.14b) 

f . b a a pa, (:J (:J The set 0 vana les E, RO, PR., ,= R' PR, = PR is then the one to determine 

the trajectory (or trajectories) for which the ~~ of eq. (2.8) is calculated. 

We now focus aUentionon the integrations over xg' and ~ remaining 

in eq. (2.13) and examine the consequences of conditions (2.14). To do this 

we note that t/I:;;(xg') and t/I;;'~ (x~) are given in general by [la, 17] 
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1 
(2.15) 

l2F2(x~,mf3~ "2 f3 fJ 
i:J fl exp[iF2 (x" m )/Ii] 

ax;am 

where F2(X~, nOl) and F2(X~, m(3 ) are generating functions which in this case 

are solutions to the time-independent Hamilton-Jacobi equation [12c 1 for the 

motion of the isolated diatom. These functions have the following important 

property: 

a F2(X~, nOl ) 
pOI = 

ax;' Xo 
(2. 16a) 

a F2(X~, m (3 ) 
pf3 

aXif 
= Xl 

(2.16b) 

where p~ is the internal momentum of the isolated diatom, which depends 
o 

on the latter's vibrational quantum number nOl (or energy E{nOl )) and internal 

coordinate x~ . For example, if x~ is the angle variable q~ then 

F2{~' nOl
) = q~nOlti and pOI becomes independent of q~ and equal to the 

Xo 
action variable nOlti. p~, as yet unspecified, is some value of the momentum 

o 
variable and is related to CP~~ according to 

(2. 17) 

However, condition (2. 14a) coupled with the conservation of energy equation 

requires that 
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(2.18) 

For example, if x': is the diatom internuclear distance r~, and!l a and !l a 

are respectively the reduced mass of the atom-diatom system and the r educed 

mass of the diatom we have 

which together ·with eq. (2. 14a) yield eq. (2.18). If x:," is the diatom internal 

coordinate q~ it can be shown that eq . (2.18) holds with the pos itive sign on 

the right-hand side only. For the case in which both signs are permitted, 

we will exercise our limited r eIllaining freedom of choice of p~ by picking 

the positive sign. The reason is that for this choice. we get from eqs. 

(2. 16a), (2.17) and (2.18) 

a [¢(l~(R~,~, t,;R:,", x~, to ) + F 2 (x:,", na )] = 
ax': 

o , (2.19) 

which is the condition for being able to evaluate the x': integral in eq. (2.13) 

by the method of stationary phase [18]. DOing thiS, and for the moment 

d~.it:l· l· illg the performance of ttlt intcgrativll over Rfj we abtair.. 

Sj3a=lim 
m n i-"" 

(2.20) 
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where'x:;' is the value of x:;' which satisfies eq. (2.l9). It is obviously a 

fWlCtion of xif and the other independent variables appearing in that equation. 

The quantity [aq:;' laxif r!in (2.20) results from the product 
All 1 

[apDl 10",]" [aq:;' lax:;' J2. [ax:;'/ap~ J2 and the fact that [l2b] 
xo -" 

DI( DI DI) =qoxo,n. 

As stated previously, the set of variables E, ~, P~', 11t determine 

the trajectory or trajectories we wish to consider. One way of finding these 

tra jectories is to pick R:;' subject to the conditions given after eq. (2.3), 

P~' to give the desired initial relative translational energy, x:;' anywhere in 

the range x~in to x~ax and P~o to yield the desired total energy. Wethen 

solve the classical equations of motion for the trajectory corresponding to 

these initial conditions. Then, at the time for which Rf3 = R~ (where R~ is 

chosen according to the conditions given after eq. (2.3», we verify whether 

or not eq. (2. 14b) is satisfied. The entire allowed range of x:;' is scanned 

with several possible kinds of results. 

Case a. There may be a continuous range of values x~,fromx:;'ltox~u, 

which lw-ui::;h trajectories satisfying wi.e aUuv,:: conditions. Let th~ cor­

responding range of xif have lower and upper limits xrf and x~u' respectively . 

. These can replace the lower and upper limit of th~ integration range of xr 
in eq. (2.20) which then becomes, after the integral over R~ is perform~d 

(according to the remarks in the paragraph following eq. (2. 14b» 
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[a 01 /a i3]i [. sc ( f3 f3 t· 01 a t )/Il] qo Xl exp 16 H l , Xl' vRo' x o ' 0 1 , (2.21) 

where 

Since x~ can be considered a function of x,! which is a function of q'!, we may 

change the integration variable in eq. (2.21) to q,!. We get the following 

expression for the semi-classical S matrix in terms of the initial angle 

variable. 

(2.22) 

Inpractice, the conditions for this case are expected to be met rarely if at all. 

However, we have found situations for which a large number of values of 

X': (as opposed to a continuous range of such values) exist which furnish 

trajectorIes satisfYing all of tne requITed conditions mentioned above p, & j. 

For such situations, eq. (2.22) may be a useful approximation. 

Case b. There are two trajectories which satisfy the required con­

ditions. In this case we proceed to evaluate the integral over x~ in eq. (2.20) 

by stationary phase in a fashion analogous to the procedure carried out for 

the x': integration. The points of stationary phase are simply those values 

#, of x~ such that P~l ~ P~. At this point we should notice that if only two 

trajectories exist which satisfy the required conditions, then there are only 
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two allowed values of x,! and correspondingly two allo;"ed values of x~. 

Under these conditions, what do the integrals ovcr these variables mean? 

What is really implied is that we are considering an infinitesimal range of 

values of p~ around P~', as well as a similar "shell" of p~ around P~. 
o , 

These shells result in continuous infinitesimal ranges of x~ and x~ around 

the ~ and xI!. Since these are points of stationary phase for the integrals 

over x'; and x~, we are justified in using this technique to obtain these integrals. 

The most !,:eneral stationary phase technique that can be applied in this case 

(two points of stationary phase which mayor may not be coalescent) is the 

uniform method [lb, 1c, 2a, 2b]. This technique consists of expanding the 

phase of integrand about the stationary phase point to third order in the inte­

gration variable. The expression given by Miller [lb, 1c] can be applied here 

with the result that 

where 

and 

, , 
exp{i[a, +a2 + (e, +e2)11 /4]12 }n2Z "{p, [A.( - z) +ieo B. (- z) 

, . 1 

eo sign(a, - "2) 

Q Q-/Ii 
- P"-R"-J R' , 

e
J
" = sign [(am,s /aq';) a ], 

~j 
j = 1,2 

(2.23) 

(2.24) 

(2.25) 
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Ai(-z) and B/-Z) are respectively the regular and irregular Airy functions 

[19]. The ~ (j = 1,2) are the two values of the initial angle variable which 

give rise to the two acceptable trajectories. xl; and ~ are the corresponding 

values of xIf and x~. The square of the absolute value of S u~e £r yields the 
. mn 

following uniform semi-classical (USC) expression for the transition 

probability 

USC 12 212 
P i3 ~ = (p, + P2)211Z2A

1
.(-z) + (p, - P2) 11z2B.(-z) 

m uu. 1, 

In the asymptotic limit of I A, - A21 » 1 the USC expression for the 

scattering matrix becomes the "primitive" one, i. e., 

Sp~e £r =" p, exp[i(A, +e,11 /4)] + p. exp[i(A2 +e211 /4)] 
mn 

(~. 26) 

(2.27) 

This expression can also be obtained from eq. (2 . 22) by using the usual 

primitive stationary phase approximation [18]. From eq. (2.27) we obtain 

the primitive semi-classical (PSe) transition probability 

(2.28) 

A classical semi-classical (eSC) expression for the 
1 

. transition probability results if the "interference term" 2(P,P2)2 cos [(A l +e,11/4) 

- (A. + e.11 /4) 1 is omitted: 

2 2 
p, + P2 (2.29) 

In effect by employing the method of stationary phase we have constructed 

a semi-classical S matrix on the quantum number shells dn£rdmi3 in 
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accordance with the unitarity conditions [la, 20] 

In summary, to obtain ssc" at a given total energy E for given initial and 
m""'na 

final quantnm numbers na and mil, we go through the following steps: 

1. We choose Rg' and R~ according to the criteria given after eq. (2.3) 

2. We calculate the semi-classic:l)"energy eigenvalue E(na ), and from it 

and E the initial relative momentum P~ '. 

3. We pick a value q"a between 0 and 211, obtain the corresponding xg' [12a], 

and from it the potential energy v"(xg'). Then using energy conservation, 

we obtain the initial internal momentum pa (there can be two of these). 
Xo 

4. We integrate the classical equations of motion for initial conditions 
Ci a a-, a a a 

Ro ' PR = PR ' Xo and Px_ = P x . 
o -" 0 

5. At the time for which Ril = R~ we calculate the final internal energy of the 

diatom and from it the corresponding (not necessarily integral) action 

variable Mil. 

6. Using the above procedure we allow q~ to scan the entire range 0 to 211 

and obtain the function MIl(qg') and determine the value(s) ~j of q~ for 

which Mil equals the integer mil. If two such values (j = 1, 2) exist and 

if ~(qg') is continnons and differentiable at these values we calcnlate Pj 

according to eq. (2.25). 

7. We calculate ¢~~ from eqs. (2.8) and F2 as indicated after eq. (2.15). 

From these and eq. (2.24) we calculate Ai" 
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At this point we have all the information needed to calculate the semi-

classical scattering 11latrix elements according to the several expressions 

given. 

Case c. There is one trajectory satisfying the required conditions. 

In this case we have only primitive and classical semi-classical expressions 

for the transition probabilities; both given by 

2 
Pl 

Case d. There are no trajectories which satisfy eqs. (2.14). In this 

case the transition nO! ~ mfJ has be,en te~med "claSSically forbidden" (in the 

semi-classical sense) and the semi-classical S matrix vanishes according to 

the remarks made before eqs. (2.14). We prefer to call the transition "dynamically 

inaccessible." Since we are dealing with reactive and non-reactive collisions it 

is important to distinguish between itwo subcases here. One occurs when 

there are no trajectories starting in arrangement channel 1(2) and ending in 

arrangement channel 2(1). The other occurs when there are such trajectories 
, 

but none for which the initial and final quantum numbers have the desired 

integral values. Relatively simple analytical continuation teclmiques have 

been developed to deal with the laUer case (lb, 1d, 2a, 2b]. These techniques 

involve finding complex root(s) q~ to the equation mfJ = MfJ(q~), where mfJ 

is integral, by analytically continuing the function MI\q~) bY ,means of a 

Taylor se,ies or Fourier series expansion into the complex plane. Such 

analytical continuation is expected to be valid if the complex roots are not 

"too far" from the real axis, i. e., the transition is not "very forbidden". 

They have recently been applied to the F+H2 ~ FH+H and F+D2 ~ FD+D 

reactions [10]. In the event that the transition of interest is highly forbidden 
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or to deal with the former case Miller and George [22a) and Stine and 

Marcus [23) have developed techniques to integrate the classical equations 

of motion in complex space. These techniques have been applied to model 

inelastic collisions [23, 24) and to the H + H2 exchange reaction [22b,25). 

Throughout the present treatment we have implicitly assumed that the 

classical trajectories were real-valued. The inclusion of complex-valued 

trajectories is, however, totally consistent with our treatment of the semi­

classical S matrix. 

Returning now to the expressions (2.22), (2.24), and (2.26) we con­

sider possible choices for the variables xf! and xg'. As pointed out by Rankin 

and Miller [ 6 ) the choice r a (f3) in the reactive case leads to some simplification 

in the expression for tj>~~ since F~(R~, r~, R:.', r:.',) (see eq. (2.8a» is 

identically zero. This follows from the fact that the transformation from the 

(Ra , raj system of coordinates to the (Rf3, r (3 ) one is a point trans-

formation [12b). As a result of this simplification and also because of 

computational convenience we have done all our calculations with x a ({3) equal 

to ra ({3). Thera ({3)-dependent quantities in eqs. (2.24) and (2.26) are given 

by 

i~ ' ., 
= f cit [p~ (t}f?q (t) + P~ (t);.a (t) ) 

to 

= /~ dt[~(t)Rf3(t) + ~(t)rf3(t») 
to 
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where 1l,,(f3) and V"(f3) are r espec tively the diatom's reduced mass and 

internal pot ential function in a rrangement channel " (f3 ). 

il j giv en above in the (n", r"), (nfl, r f3 ) coordinate systems contains 

spurious dis continuities due to tile fact that the functions sign [P~(r~)] and 

sign [p~(r~)] contained in th e F, generating fMctions given above are dis­

continuous functions of r:;' and r~, respectively. 

The value of the jump at the dis continuity is equal to 2F2(r~ax' n") 

which equals (2n" +lhrD. Thus, the effect of the jump is equivalent to one 

extra vibration of the molecule. We can obviate this discontinuous behavior 

if il. is modified as follows: 
J . 

il j = I~' dt[p~(t)R"(t) + p~(t)i·"(t)] + FJr:;'(~), n"] 

- {Sign[~ (1':;') ]- I} (n" +1hrD .- F2[r~(q~), m f3j 

+ {Sign[p~(r~) ]-1 }(mf3 +1)1TD + P~'R:;' - P~R~ 

Comparis on with previous results 

(2.30) 

The USC, PSC and CSC expressions for the transition probabilities 

given by eqs . (2.24), (2.26) ancj (2.27), respectively, had been given pre­

viously by Miller [lb, lc] for non-reactive collisions for which x" = q". 

Their applicability to reactive collisions had also been established [ la , 6]. 

The integral representation of the semi-classical S matrix given by eq. 

(2.22) bears a close resemblance to the ones given by Miller [lb] and Marcus 

and co-worke rs [2a, 2b]. The re are significant differences, however . 

In addition to be ing derived for r eactive as well as non-reactive colliSions, 

our representa tion is ' valid for any choice x" of the 

internal diatom coordinate, be it the inter nuc lear 
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distance r<>, th e angle variable q<>, etc. Furthermore our representation 

is valid so long as every trajectory emanating from within the range q~l. to 

q~u satisfies eq. (2. 14b) (in addition to eq. (2. 14a)). The previously given 

expressions carry no such stipulation. However, Marcus and co-workers note 

that their integral expression is Ril-dependent unless :eq. (2. 14b) is satisfied. 

Johnson aild Levine have also given an approximate integral expression for the 

semi-classical S matrlx [3] but it is substantially different from ours. Their 

expression does not contain the factor [a x~ I a q~] t and eq. (2. 14b) is not 

explicitly required in their treatment. 

In summary, we have rederived the Mitorm, primitive, and classical 

semi-classical express ions for transition probabilities in reactive and non­

reactive collisions of an atom with a diatomic molecule. Our derivation and 

resulting expresSions have been given in terms of a general internal diatom 

ooordinate. In addition to offering additional insight into this semi-classical 

theory the new derivation has unified the treatment of reactive and non-reactive 

collisions. A new integral representation of the semi-classical S matrix, of 

limited applicability, has .also resulted from the present derivation. 

With a semi-classical S matrix theory\ available it remains to extensively 

test it against exact quantum and quasi~classical trajectory calculations. For 

rear-t.ivp ~nlli.Bions such tests haT.re bee,r.. dcr..e f!)!' the collincu..r H -: n2 [7,8,9] 

and F + H2(P2) [10) reaction:>. 
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~p.eendix 

The classical limit of the propagator K(R~, x~, tl;R~, x~, to) 

The usual derivatipn of the classical limit of the propagator K(R~, x~, t,; 
R~, ""Ci, to) starts from the Feynman path integral representation of K [14aJ. 

Since the representation given by eq. (AI) below is more familiar, we derive 

in the present appendix the classical limit o(the propagator from this 

representation. 

First consider the non-reactive case, i. e., Ci ~ fl. The propagator 

is given by [13b, 14c ] 

K(R~, x~, t,;R~, ~,to) ~ L) en(R?,x~)O~(R~, ~)exp[ -i E(t, -to)/I1 ]. (AI) 
n 

The 9 are th e exact eigenfunctions of the total Hamiltonian of the system and n , 

the En are the, corresponding energy eigenvalues which may be discrete and 

continuous. (The summation actually desib'Ilates a summation over the discrete 

values of n and an integration over the continuous values of n'.) We can 

clearly obtain a semi-classical expression for K(R?, x~, t,;R~, x~, to) by 

replacing the en and En by their well-Irnown (JWKB) classical limits {la, 17]. 

For a collision in which E is only continuous we have 

SCI Ci Ci Ci Ci ) J --SC( Ci Ci) *sc( Ci Ci) [. ( ) '" 1 K R,.x,.t,:Ro,xo,to ~ dE tiE ,R"x, .O Ro'xo exp -1Et,-I. • .I"._ 

The eic are given, without normalization, by [17] 

(A3) 

where the phase 17E is a real quantity which is a solution of the time­

independent Hamilton-Jacobi equation [12c]. Defining the quantity 

SE(RCi , XCi, t )'by 

(A ?) 
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S (Ra xa t) TJE(Ra , xa ) -Et E ' , 

we see that 

S(Ra , xa , t), which is a solution of the time dependent Hamilton-Jacobi 

equation, is given by [12c 1 

where L is the Lagrangian for the system. The integration is taken over 

a classical trajectory passing through Ra(t) and x<l'(t). Thus, we have 

_ sc( a a . aa ) 
= ol> aa R, ,x, , t"Ro ,xi> , to 

With this result we can rewrite eq. (A4) as follows: 

(A5) 

Given the space time points (R:;", x:;", to) and (R?, x?, t , ) there mayor may not 

be a classical trajectory which connects them. If no trajectory exists 

KSC 
= 0; however, if such a trajectory exists, there is one value of the total· 

energy E associated with it. Thus, the integrand in eq. (A5) is non-zero only 

on the energy shell E to E + dE with the result that 

(A6) 
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This result is identical to the well-known expression for the classical limit 

of the propagator [14a]. In our application of the semi-classical propagator, 

R:;' and R~ are fixed and x:;' and x? are the quantities which vary. The nor­

malization factor for KSC can be found from a method given by Miller [1a] 

(also see reference [26]) wherein the following is required: 

(A7a) 

(A7b) 

The result is, as given previously [1a] 

(AS) 

Given this expression for the semi-classical propagator for non­

reactive collisions the semi-classical propagator for reactive, collisions can 

be derived directly. For the moment let a and fJ denote different arrange­

ment channels. The propagator describing the reactive collision 

K(R~,~, t,;R:;', x:;', 1;,) can be written symbolically as 

f3 fJ I'" ,_._. 
(R"x, K(t" to) IR;;', x;;'> (A9) 

where K(t" to) is the time-evolution operator. Inserting the identity operator 

1= fJdR?d.x?IR?,x';>(R?,x,!! 

into eq. (A9) we obtain 
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(AID) 

The classical limit of this expression can be fmmd once the classical limit 

of the transformation matrix element <n~, x~ I n:;',,1;") is !mown. Using the 

powerful tools developed previously we have that [26, Ia] 

(All) 

where F, is the classical generating function associated with the change in 

coordinates (R~, x~) to (R~,~) [I2b ]" Thus, performing the integrals in eq. 

(AID) by stationary phase and applying the unitarity conditions analogous to 

the ones given by eqs. (A7a) and (A7b) we obtain 

(AI2) 

where 

(A13) 

If we now let a = 1,2 and f3 = 1; 2 as done in the text, eq. (A12) 

becomes the expression for the semi-classical propagator for reactive and 

non-reactive collisions once we rewrite eq. (A13) as 

(A14) 
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Combining eqs. (AID) and (AI2) and noting that [12b 1 

we have the expression for the semi-classical propagator for reactive and 

non-reactive collision given by eq. (2.7) in the text. 
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1. 4 COMPARISON OF SEMI-CLASSICAL, QUASI-CLASSICAL AND 

EXACT QUANTUM TRANSITION PROBABILITIES FOR THE 

* COLLINEAR H + ~ EXCHANGE REACTION. 

* This paper appeared in the Journal of Chemical Physics~, 6524 (1973). 
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Using the classical (CSC), primitive (PSC) and uniform (USC) semi­

classical expressions for transition probabilities given by Miller and co­

workers, we have calculated the reactive and non-reactive 0- 0 and 

o -1 transition probabilities for the collinear H + Hz ex change reaction. 

Comparison with previously calculated exact quantum and quasi-classical 

results for the l'eactive and non-reactive 0 -0 transitions reveals that the 

semi-classical approximations are not very good, expecially the CSC and 

PSC ones. All three semi-classical probabilities for the reactive 0 - 0 

transition exceed unity in the collision energy range from 0.0 to 0.2 eV 

above the quasi-classical reaction threshold. This feature coupled with 

the failure of any of the semi-classical approximations to produce the marlted 

quantum effects present in this transition causes these results to be less 

accurate than the correspOnding quasi-classical ones. For the reactive and 

non-reactive 0 -1 transitions the USC results are in qualitative agreement 

with the exact quantum ones and are better than the standard quasi-classical 

results. However, the reverse quasi-classical results are almost as good 

as the USC ones for these transitions. A probable reason for the 

inability of the USC expression to produce the strong oscillations 
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.observed In the exact qu:l.ntum results is that the latter 

are due to interference between direct and resonant (I. e., 

compound state) processes whereas the present formulation of the 

semi-classical method dQes nQt encompass such phenomena. A 

comparison of the total reaction probabilities obtained by the USC 

and quasi-classical methQds with the exact quantum .one indicates 

that the USC result is more accurate than the quasi-classical one, 

except at collision energies less than 0.50 eV. This improved 

accuracy is due to a partial cancellation of errors in the contributing 

0- 0 and 0 - 1 USC reactive transition probabilities. 

1. INTRODUCTION ... ~ 

There has recently been much progress in the deveiopment of a semi­

classical theory of reactive and non-reactive atom-molecule scattering. 1-6 

The central theme of this theory is derived from the superposition principle 

of quantum mechanics. One assumes that "quantum effects" in heavy particle 

(e. g., atom-molecule) systems are due primarily, if not solely, to the 

interference of scattering amplitudes. It has been shown that the classical 

limit of the scattering matrix is obtained from information contained in the 

exact classical trajectories describing the atom-molecule scattering. The 

phases of the,§ matrix elements are given by the action accrued along 

trajectories whose boundary conditions correctly describe the scattering 

process bf interest and the absolute values of those elements are obtainable 

from thephases. la 

In.a numerical application of his theory, Miller1b computed the 

transition probabilities for the translational to vibrational energy transfer 
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in collinear collisions of an atom (He) with a harmonic oscillator (H2 ). He 

found, typically, two classical trajectories satisfying the correct boundary 

conditions. This feature gave rise to "uniform" (USC) and "primitive" (PSC) 

semi-classical expressions for the transition probabilities. A "classical" 

(CSC) semi-classical expression also resulted by ignoring the interference 

term in the primitive semi-classical expressions. The agreement between the 

CSC and PSC results and the exact quantum ones of Secrest and Johnson 7 

was not very good. However, the USC results gav.e excellent agreement. 

Furthermore, a "rainbow" phenomenon caused the CSC and PSC results to 

diverge at certain energies, whereas the corresponding USC results were 

well-behaved. Rankin and Miller1e studied the collinear H + Cl, - HCI + Cl 

reaction semi-classically. They found that the final quantum number of the 

product molecule was an anomalously random function of the · initial phase angle 

of the reagent molecule, and this precluded the use of the USC, PSC, and CSC 

expressions. Miller and co-workers lf, 19, lh have treated the collinear and 

three-dimensional H + H, exchange reaction at collision energies below the 

quaSi-classical reaction threshold by employing complex-valued classical 

trajectories. They compared their collinear results with two different "exact" 

quantum calculations. 8, 9 in one8 a porter_KarpluslO potential e~ergy surface 

was used, whereas in the other9 a harmonic-type approximation to this surface 

was employed. These exact quantum calculations differed from One another 

by a factor of two or more over the energy range of interest and therefore the 

most appropriate comparison is with the former calculation. 11 

No extensive compar.ison between semi-Classical, exact quantum 

and quasi-classical transition probabilities for a chemical reaction has yet 

been made. Inthis paper we present such a comparison for the reactive 
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and non-reactive transition probabilities for the collinear H + H2 exchange 

reaction. The"quantum results we compare with are those of 
12 13, 

Truhler and Kuppermann and Schatz and KuppermalUl and the quasl-

classical ones are those of Bowman and Kuppermann. 14 The potential 

energy surface used in all these calculations was a Wall-Porter fit
15 

to a 

scaled SSMK surface
16 

and is described in detail elsewhere.
l2 

The range 

of total energies considered, 0 to 1. 30 eV, includes energies for which 

vibrationally excited reagent and/or product H2 are present. Some of the 

results of the present paper were presented in a preliminary form previously.17 

2. CALCULATIONAL PROCEDUREsl 

2.1 ~Semi-classical Expressi~ 

The theoretical basis for the semi-classical method is described in 

detail elsewhere. la, Ib, Ie, 6 We summarize here the procedure followed in 

our calculations. 

Let us conSider the collinear A +BC - AB +C reaction. We define 

Ra(Jl) to be the distance from the atom to the center of mass of the diatom 

in arrangement channel a(Jl), ,where a, f3 ~ 1, 2. , Arrangement channels 1 

and 2 are A +BC and AB +C, respectivelv. AC +B is excluded by the 

collinear nature of the reaction. The break-up arrangement A +B +C is 

also excluded. The relative momentum variable conjugate to R",(!l) is 

p~(Jl). The internal diatom angle variable is q",(!l) and its conjugate 

momentum is M",(Jl). The diatom internuclear distance coordinate and 

momentum are respectively r",(Jl) and p~(,6). Consider a reactive or 

non-reactive transition from the reagent state M'" ~ n'" to the product 

state Mf3 ~ m~ where nO! and m f3 are given integers. To investigate this 
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transition semi-classically at a given total ener gy E a s ea r ch of classical 

trajectories is carried oilt as follows. At time to the initial atom -molecule 

separation is fixed at s ome large value, R~, s uch that th e inter action 

energy is negligibly small. P~ is obtained from the relative collision 

energy E;:a through the usual expression 

a . Q 1. 
. P

R 
= -[2/L E al 2 

o a n 

where /La is the reduced mas~ of the atom-diatom system in the a 

arrangement channel. E is equal to E aa + E(na ), where E(naj is the semi-. n . 
classical diatom energy eigenvalue. The initial value of the angle variable 

~ is made to scan uniformly the range 0 to 2" and the corresponding 

initial value r~ of r a is obtained from the ~ e·lationship 18a 

For a Morse oscillator an exact analytical expression for the function 

r~ = r~(~a) is available1e and was used in our calculations. F2 (na , raj is 

the classical generating function which is the solution to the time-independent 

Hamilton-Jacobi Equation. 18b The initial momentum P~ can be 
o 

obtained from na , ~, and r:;' using the expression 18a 

from which one obtains 
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where j.La is the reduced mass of the diatom and Va is its intern~ l potential 

energy function.. The quantities R:;r, PR
Cl , r:;r and pa thus chosen furnish 

. 0 ro 
the initial conditions needed to integrate ~amilton's equations of motion. 

This integration is performed and the variables Ri3(Cl), p~(a), r f3 (a) and 

. p~(a) are obtained as a function of time. At time t" when R/l(a) is equal 

to some large value R~(a~ the quantity Mf3 ~ Mf3(%,,;na , E) is calculated 

(for fixed values of nCl and E) and root(s) to the equation 

(1) 

are sought for. Several possible outcomes exist. 

The usual outcome is that there are two isolated, though perhaps 

coalescent, roois to Eq. (1). The uniform semi-classical (USC) expres~ion 

for the reaction probabilitytoform product AB in the m th vibrational state 

from reage·nt BC in the nth vibrational state is given by1b, 1e, 2b, 6 

where 

j ~ 1,2 

and 

z ~ 

The subscript j labels the two values of q~ which give rise to the two 

trajectories such that Mf3. ~ mf3. The ll.j are calculated from the 

corresponding trajectories b/e, 6 

(2) 
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.1.j = i {J~' dt[P~(t) dR~(t) + P~(t) dr~(t) ] (calculated along 

the jth trajectory) + F,(rj(to), na ) + P~(to)R"'(to) 

- F2(rT(t,),mJl) - ~(t')RJl(t,~ (3) 

-Ai(-z) and Bi(-z) are respectively the regular and irregular Airy functions.
19 

This .1. j given by Eq. (3) _ is a discontinuous function of ~ since the function 

sign[P~(r~(q~))] contained in the F2 generating function is a discontinuous 

function. The spurious discontinuities introduced by this feature can be 
- - 6 

eliminated in several ways. The one we adopted is to modify .1. j as follows: 

.1. j = ~ ~t, dt[P~(t) dR~(t) + P~(t) dr~(t) ] + P~(to)R"'(t.,) 

- P~(t,)RJl (t,) + F2(:r:"'(tO), nail - [sign(p~(r~)) - I](n'" +!)1Tti 

- F2(ril(t,), mJl) + [sign(~(r,il)_l)](mil +!)1T0 (4) 

In the limit of 1.1., - .1.2 -I »1, Eq. (2) becomes asymptotically equal 

to the primitive semi-classical (PSe) expression given by 

P Pse p _" _ n' .... ,-} _, (A A ) -Jl a = 1"".t'2 T ""\1'1ll2J - O.1n ~l - l.lo.2 
m n -

'"' \~I 

"-
By omitting the "interference" term 2(p,Po)2 sin(.1., - .1.2) in Eq. (5) the 

classical semi-classical (eSC) expression results, viz., 

pe~e = p, + Po 
m"n'" 

(6) 

In.another case,_ only one trajecto.cy may yield a root to Eq. (1). 

As a consequence the USC, pse and esc expressions all become equal to 
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sc 
P/lC;=Pl 
mn 

(7) 

A third possibility is that no (real-valued) classical trajectory yields 

the desired root. In this case, in the absence of analytical continuation 

techniques Ib, lc, 2bor the inclusion 'of complex-valued tr,ajectories 1f, Ig, Ih; 2f 

it is found that 

pst;; = 0 
m"n'" 

tn the calculations we report in section 3, no attempt to analytically con­

tinue by power series techniques or by employing complex-valued trajectories 

was made. 

A fourth and very rare case is one in which a continuous range of 

values aO/ to qO/ yields roots to Eq. (1 \. In this case we have shown that 
"of ou ' '\ 

the semi-classical §, matriX element is given by6 

(8) 

where 

. "c/l (r~) is the JWKB wavefunction for the diatom in arrangement channel /l. 
m 

The reaction probability is then 

pSC = 
m f3 n'" 
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No calcula tions of reaction probabilities based on Eq. (8) ar e reported in 

the present paper, although we shall see a situation where it approximately 

applies. 

In reporting our results of calculations we adopt the following 

convention: 

pR 
" P 

mf3 nO! 
a <F {3 run 

pV = P {3 a a = {3 run m n 

2 .• 2 Numerical Methods 

R V R V ese, pse, and use Poo' Poo ' POl> and Po' transition probabilities 

were calculated as a function of energy for the collinear H +H2 - Hz +H 

reaction using the same potential energy surface employed bithe exact 
. . . . 12 13 14 

quantum and quasl-classlCal calculatlOllS.' , 

The classical trajectories needed for the semi-classical calculations 

described in section 2 .• i were computed as follows. An initial atom­

molecule separation Ro of 4.6 bohr was chos en, for which the corresponding 

interaction energy vanishes. Typically 100 values of q. uniformly spaced 

in the interval 0 to 2-rr were chosen, thereby generating 100 trajectories per 

energy. The integration of Hamilton's equations was performed using a 

fourth order Runge-Kutta-Gill initiator and an Adams-Moulton fourth order 

predictor, fifth order corrector. 20 The associated action a j (see Eq. (4) J 
was checked by testing its invariance with respect to the initial and final 

integration times t. and t , . The same results to within a few parts in 10' 

were obtaj.ned using either the reagent or product coordinate system. This, 

coupled with the general result that action differences la, -a2 1 for two 
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trajectories were generally less than unity resulted in transition probabilities . 

precise to ± 0.01. Cotnputational time for one trajectory and its associated 

action in double precision arithmetic was 3 to 4 seconds on an IBM 370/ 155. 

In order to illustrate the differences between Il given by Eq. (4) and 

Il given by Eq. (3) we have plotted these two Ils as a function of qo for a total 

energyE of 1. 053 eV in Fig. 1. There, and more quantitatively in Table I, 

the continuity of Il given by Eq. (4) and the discontinuous behavior of Il given 

by Eq. (3) is demonstrated. We always used Eq. (4) to calclilate A 

3. RESULTS 
~~~ 

3.1 General Features of the Setni-Classical Transition Probabilities 
,.......,..............,...,..,..............,..~~ ....................................................... ~"...,..,..~ ...................... ~ 

As discussed in section 2 the location of root(s) to Eq. (1) of section 2.1 

necessary in order to compute the CSC, PSC, and USC transition probabilities 

requires a scan of the final action number m of the product versus the initial 

angle variable qo of the reagent. (For simplicity in presentation we have 

omitteu i..iu~ :superscripts on the variable::> III awl qo and will use lower ca~e 

m in place ·of upper case M.) A typical result of. such a scan is shown in 

Fig. 2 for trajectories computed at a total energy E of 1. 253 eV and for the 

reagent in Its ground vibrational state. Several important features may be 

noted. Firstly, the reactive branch (solid curve) and the 

non-reactive branch (<lashed curve) each have two roots 

to the equati€Jn m = 1, i. e •• two trajectories leading to a final H2 with 

internal energy E(l). Secondly, we note that there are no reactive tra-
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jectories for which m = 0 in spite of! he fact that this state is energetically 

accessible. In this case the semi-classical ese, pse, and use reaction 

probabilities are set equal to zero, as stated in section 2, and the cor~ 

responding transition is usually termed "classically forbidden"lb, 2a at 

this particular energy. The non-reactive transition 0 -0 is "allowed, " 

however, since there are two traj ectories corresponding to it. Another 

feature of interest is the fact that these curves almost reach the value m = 2. 

The reactive and non-reactive transition 0 ~2 are strictly forbidden for 

la ck of sufficient energy. Thus; we prefer to term the 0 -0 reactive transi­

tion dynamically inaccessible and the transition 0 - f (f;, 2) energetically 

inaccessible to stress the fact that the corresponding transition probabilities 

vanish for different reasons. 

3.2 eom\?arison o~~l;.£e~~J--9ua!'~T-, a!'A9uaslSl~:!.~~ 

'!:nt.!'~~~.£!~ 

For the quasi-classical trajectories we define the vibrational quantum 

number of the final If" molecule as follows. 21 Let AE(n) = E(n+1) - E(n) 

and E!. he the continuous classical vibrational energy of that molecule. 
'" If E(n) "'"E~l <E(n) + iAE(n) or E(n) + iAE(n) '> E~l < E(n+1) we set 

v = n or v = n+1, respectively . If Eel ",E(O), we set v = O. The quasi­

classical transition probability to state v is then defined as the fraction of 

the trajectories leading to H2 in that state. 

Fig. 3 shows the use, exact quantum, and quasi-classical P~o 

transition probabilities as a function of the total energy E and the initial 

translational energy Eo. The arrowS on the lower abscissa designate the 
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total energies at which excited vibrational states v = 1,2 become energetically 

accessible. The quasi-classical results have been ,compared to the exact 

quantum ones in some detail elsewhere. 14 The USC values are a better 

approximation at tota l energies greater than 1. 0 eV, but deviate rapidly 

from the exact quantum ones as the energy decreases below 0.85 eV. 

Further, the strong oscillation occurring around E = 0.95 eV in the exact 

quantum curve is barely perceptible in the USC one. In addition, the dramatically 

sharp behavior in the quantum reaction probability at E = 1. 27 eV is not 

produced by the USC result. (This quantum effect was not present in the 

quantum results us ed in our preliminary comparison. 17) No USC results 

are given for tota l energies less than O. 78 eV because the m versus q o curve 

was nearly horizontal at these lower energies and hence preclnde the use of 

the USC, as well as. the esc and PSC, expressions., This feature is illustrated 

in Fig. 4 where aplot of the final action number m versus initial phase angle 

qo is shown for E = 0.553 eV. m is seen to deviate only slightly from zero 

for both the reactive and non-reactive curves. Thus, practically every 

trajectory yields a root for the 0 - 0 transition and hence contributes about 

equally to the corresponding transition probability . As a r esult, the assump­

tions which lead to the USC, PSC, and esc expressions1b, 6 are violated and 

these expressions cannot be used. The oenavior of m(qo) shown in Fig ... 

is approximately like the one for which the integral representation of the S 

matrix given by Eq. (8) of section 2 is valid. Hence, this may be the only 

valid expression of usefulness. By contras t, at this energy the quasi-

classical result is in good agreement with the exact quantum result. In 

Fig. 5 we give the esc and PSC results for the P~o transition probability 

along with'the exact quantum ones. We note a divergent behavior in the esc 
and PSC results at total energies around 1. 25 eV. This behavior is easily 
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understood by inspection of Fig. 2 from which it can be surmised that at an 

energy slightly less than 1. 253 eV the reactive m versus qo curve is tangent 

t'; the line m = 0 and hence I aqo /am I m = 0 - 00. This fact causes the pse 
and esc results to diverge. The USC result, however, is well-behaved and 

in fact is in reasonable agreement with the exact quantum result. This 

rainbow phenomenon has been observed and discussed by Miller. Ib 

In Figs. 6 and 7 we give the USC, exact quantum, quasi-classical 

and esc, pse, and exact quantum PYo transition probabilities, respectively. 

The highly oscillatory nature of the quantum curve is not reproduced by 

the USC curve which in addition deviates from it rapidly as the energy 

decreases below 0.58 eV. The USC results do, however, show an increase 

with energy for E >0.85 eV in agreement with the average trend of the 

exact reSUlts. ' This behavior is also exhibited 'by the quasi-classical results 

which in addition are well-behaved at low energies. The esc and pse curves 

'are even worse approximations to the exact result than the usc one. 

The USC, exact quantum, and quasi-classical P~l transitionprob- ' 

abilities are plotted in Fig. 8. The overall structure of the quantum curve 

is qualitatively reproduced by the USC one but not by the quasi-classical 

one. A dUference of approximately 0.08 eV (1. 9 kcal/mole) in the effective 

threShOld energies of the quantum and U:;C results can be seen. The quasi­

classical curve exhibits an unreasonable threshold behavior, i. e., non-zero, 

P~l at total energies less than E(l) (0.7945 eV). This results from the 

definition of the quaSI-classical transition probability we have used, for which 

the energy at which V= 1 becomes accessible is E(l) - ~ [E(l) - E(O)]. This 

unreasonable thres'hold behavior of the quasi-classical P~l transition probability 

can be removed by introducing the quasi-classical P~ transition probability 

which we can consider as the reverse P~l transition probability. Since the 
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quasi-classical p~\ and P~ transition probabilities are not equal, whereas 

the semi-classical and exact quantum ones are (see next section) we have 

investigated the quasi-classical ~ transition probability also. As seen In 

Fig. 8 this transition probability gives results in substantially better agree­

ment with the exact p~. ones than the quasi-classical P~ transition probability. 

Indeed, the P~ quasi- classical results are only slightly worse than the 
R USC po. ones. 

Fig. 9 shows the USC, exact quantum, and quasi-classical P';:-

transition probabilities. Here again, substantial qualitative agreement is 

found between the USC and the quantum results. As expected, the quasi­

classical curve shows the correct average behavior but none of the structure 

of the quantum one, and shows improper threshold behavior. A difference 

in threshold energies of approximately O. 08 eV is again observed between 

the USC and exact results. We have also plotted the reverse 

P't. (I. e., the P~ transition probability) transition probability and note that 

although the threshold behavior of the P~ result is more reasonable than the 

P't, result with respect to proper threshold behavior, its $pikey behavior 

is grossly incorrect. 

The total reaction probability p~ which is s imply the sum R 
~Pof 
f 

is displayed in Fig. 10 where we compare the USC, the quasi-classical. and 

the exact quantum results. While the quasi-classical curve looks much like 

an averaged quantum one, the USC curve bears some resemblance to the 

exact one for total energies exceeding the v ; 1 threshold. This latter 

behavior is surprising since the strong oscillation present in the exact P~o 

transition probability at energies slightly above the v ; 1 threshold is not 

apparent in the corresponding USC one. Nevertheless the oscillation in 

the exact quantum total reaction probability at energies around 0.90 eV 
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15 

appears in the USC result even though not in the quasi-classical one. This 

seems to be due to a fortuitous cancellation of errors in the uniform 0 - 0 

and 0 -1 reaction probabilities. 

The semi-classical esc, pse, and USC transition probabilities all obey 

microscopic reversibility. 22 The exact quantum ones do also, of course, 

but the quasi-classical ones do not. We illustrate this property numerically 

in Table II where the quasi-classical and USC results are given for two energies. 

The semi-classical collision probabilities in general do not sum up to 

unity and may differ from it by as much as 25 %. In Fig. 11 we have plotted 

the sum of the USC collision probabilities over the total energy range 0.68 eV 

to 1. 28 eV. In some of this .energy range this sum is less than unity. This correlates 

partly with the fact that for certain energies One or more contributing transition 

probabilities is zero since the corresponding transition is dynamically forbidden. 

For example, in the energy range 0.85 eV to 0.91 eV .the reactive and non-

reactive 0 -1 transitions are dynamically forbidden. If the corresponding 

transition probabilities were calculated by the use of complex. traj ectories or 

=':'.!lly·t~:~:!l !!ontinuation' one might guess t!-2.t, in analogy with the p!"~sent !"~at?tif)!1 

threshold behavior, they would increase montonically with increasing energies 

for energies in the above range. This expectation is conSistent with the observed 

monotonic decrease in the present calculations, since we have not included 

such · methods in the present calculations. For E between .91 eV and 
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. 953 eV the rapid rise of the USC sum to a maximum of 1. 34 

is due to the abruptness with which these 0 -I transitions become dynamically 

allowed. The quasi-classical total reaction probabilities are automatically 

normalized and the quantum results are always within 2% of unity or better. 

4·~E 

4. I " The React~~eshold Regio~ 

The threshold behavior of the reactive 0 - 0 transition, important 

for thermal rate constants, is not described properly by any of the semi­

classical expressions used. In section 3 it was shown that at total energies 

around O. 55 eV the USC, PSC, and esc expressions for the P~o transition 

probability did . not apply. However, a possibly more serious shortcoming 

of the form of the semi-classical theory used in the present paper is that it 

furnishes a zero reaction probability at any energy for which no quasi­

classical reactive trajectory exists. This is certainly the case in the H + H2 

surface here considered for total energies less 0.424 eV-- the energy of the 

saddle point. At these energies the reaction proceeds totally by tunneling. 

Recently Miller and Georgelf, Ig have formulated an approach "to this kind 

of tunneling and applied it to the collinear H + H2 reaction at energies below 

. 1f1!!.. " 2f the classlcal threshold for the Porter-Karplus surface. ' "tine and Marcus 

have applied complex-valued trajectories to a model collinear inelastic 

scattering calculation. These approaches make use of complex-valued 

trajectories . Freed
23 

has shown that tunneling can be described semi­

classically by: transforming the classical propagator in space-time variables 

into a space-energy 'representation involving an integration over time which 
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is allowed to be complex. In our calculations no attempt was made to deal 

with such non-classical trajectories. Thus, the USC, PSC, and esc P~o 

probabilities were also set equal to zero for total energies between 0.424, eV 

and 0.52 eV. Similarly, the semi-classical PYa transition probabilities 

vanish in the total energy range 0. 6 eV to 0.7 eV since no non-reactive 

quasi-classical trajectories were found in this range. 

The extension of semi-classical theory, such as the one made by 

George and Miller, to include non-classical trajectories is necessary if the 

reaction threshold behavior is to be better described. In order to acertain 

the accuracy of their approach, we have compared their results for the collinear 

exchange reaction1g with the quantum ones for the Porter-Karplus 

surface. (Whereas all other calculations presented so far were done with 

Wall-Porter fit to SSMK su~face. 12) In Fig. -12 we have plotted the ratio of 

the complex-trajectory semi-classical reaction probabilities P~C to the 

accurate quantum ones 11 P~Q as a function of translational energy Eo. It 

can be seen that over the energy range -of 0.02 to 0.2 eV, of importance for 

tunneling process, the semi-classical reaction probabilities equal in average 

71 % of the accurate ones, -indicating that for this collinear system the complex­

trajectory method used1g underestimates the effect of tunneling. The steep 

rise in the P~c/P~Q ratio: above Eo = 0.2 eV shown In Fig. 12 may be 

indicative of the same kind of divergent behavior as the one shown in Fig. 3 

by the USC P~o curve. 

We have also calculated the collinear rate constants corresponding to 

the P~c and ~Q above by a numerical integration of the approprlate 

expression. 12 The corresponding rate constant ratio kSC(T)/kEQ(T) is 

plotted in Fig: 13 as a function of l / T. It can be seen thatin the temperature 

range from 100 to 300 K this ratio varies from about O. 65 to about 0.73. _. This 

is a significant improvement over the corresponding quasi-classical ratio 

calculated from the same collinear reaction on a slightly different potentlal 
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energy surface. 14 The fact that ti)ese rati()s are less than unity is a 

manifestation of the fact that this complex-trajectory semi-classical method 

under.estimates tunneling; as just pointed out. 

4.2 The Reactive and Non-Reactive 0 -0 Transitions Above the Reaction .....,.. .... -~..........,.. ................................................... .....,..~""""" ...................... ,....-..-..-.. ..... ~ ....................... .....,....,.......,.............-............................... .--. 

It has been noted in section 3 that the reactive 0 -0 transition becomes 

dynamically inaccessible at total energies greater than l. 25 eV. In this case, 

there are no real roots of the equation m : 0, and therefore Eqs. (2), (5), 

and (6) of section 2 are not applicable. Hence the USC, PSC, and CSC 

P~ transition probabilities are equal to zero for these energies, as stated 

in section 2 and qepicted in Figs. 2 and 4. In fact, this result is not a bad 

approximation to the exact quantum values, which at energies between 1. 3 eV 

and 1. 5 eV have an average value of about O. OB . . At total energies Slightly 

below 1. 25 eV the PSC and CSC P~o transition probabilities diverge for the 

reason given in section4. 2, whereas the USC curve shows a behavior quite 

Similar tothatof t he exact quantum one. This is a manifestation of the 

improvement obtained in going to the uniform approximation. 

The oscillations in the exact quantum curves are not well reproduced 

. by ·the semi-classical ones especially for the P;'o transition probabilities, 

as indicated in Figs. 5 and 6. The USC results, however, are in much better 

average agreement with the exact ones than are the PSC and esc results. 

Clearly the attempt by the present semi-classical theory to introduce the 

quantum effects present in these transitions for this collinear reaction 

has not succeeded. Apparently such quantum effects are not of a simple 

interference nature. Indeed, recent life -time calculations done on the same 

. potential energy surface24 indicate that the marked quantum oscillations 
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at total energies of O. 90 eV and 1. 28 eV are due to the interference of 

resonant (compound stale) and direct parts of the pertinent g matrix elements. 

We might say that the present semi-classical theory is aimed at approximating 

the direct part of the exact S matrix. If this is the case an illuminating 
'" ' 

comparison would be one between the present semi-classical transition 

probabilities and quantum transition probabilities modified so as to exclude 

(approximately) the effects of the resonant component of the S matrix elements. 
'" 

We expect that the result of suct! a comparison would show better agreement 

between the USC and such modified quantum transition probabilities. A 

composite theory including an approximate treatment of the resonant Com­

ponent and a semi-classical treatment of the direct component of the scattering 

matrix may be expected to yield a Significant improvement. 

4.3 The Reactive and Non-Reactive 0 -1 Transitions 
~~ ..... .-..-.-.,.. .................. ,...,... ..... ""'"'" ................ ~~'"' ............... ~~.,..,.... 

The USC threshold energies for the 0 -1 reactive and non-reactive 

transition probabilities ate about 0.08 eV higher than those for the exact 

quantum calculations but show a similar steep rise as the energy increases 

above threshold. 

The oscillatory behavior of the exact quantum curves is qualitatively 

displayed by the USC curves especially for the reactive transition, except 

at E ; 1.28 eV where a sharp resonance occurs. There is much better 

overall agreement between the USC and exact quantum results than was the 

case for the 0 -Q transition. 

Whereas for the 0 -0 transitions, the quasi-classical results were 

in better agreement with exact quantum one than the USC results (especially 

for the reactive case), the reverse is true for the 0 -1 transitions. This 
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Is particularly so in the threshold region, due to· the arbitra riness of the 

quasi- classical definition of the final state quantum number, as mentioned 

towards the end of section 4. The reverse p~ quasi-classical results do 

not suffer from this defect, which partially explains the significant improve­

ment in us ing this quantity as an approximation to the accurate quantum p~,. 
However, this does not explain why the p~ QC results are better than the 

p!;l, ones substantially away from threshold. 

5. CONCLUSION 
~~ 

The uniform, primitive, and classical semi-classical reactive and 

non-reactive 0 -0 and 0 - ·1 trans ition probabilities for the collinear 

H + H. -H2 + H reaction do not in general agree closely with the exact quantum 

results. As expected, the USC approximation is better than the PSC and CSC 

ones. The low energy divergent behavior of the reactive and non-reactive 

o -0 USC, PSC, and CSC transition probabilities is greatly in error. By 

contrast, the corresponding quasi-classical trajectory results are generally 

in much better agreement with the exact quantum ones. 

Agreement between the USC and exact quantum results for the 0 -1 

transitions is much better than for the 0 -0 ones. The 0 -1 USC threshold 

energies are about 0.08 eV greater than the correct ones, but as the energy 

increase.s above the respective thresholds the USC and exact quantum curves 

show a similar steep rise. In addition there is qualitative a greement between 

the USC and exact results . The standard quasi-classical results are in poor . 

agreement with the exact ones and as a result the USC results give substantial 

improvement' over the former ones. However, the reverse 
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quasi-classical results also give significant improvement over the usual 

quasi-classical oues and in fact are not much worse than the USC ones. 

A possible explanation for the inability of the semi-classical results 

reported herein to produce the pronounced quantum effects in this reaction 

lies in the importance of resonallt processes for this reaction. These 

processes were found to be present in the exact quantum results and the 

present semi-classical theory does not take such phenomena into account. 
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TABLE I. Action difference t.and final action number m versus 

initial phase angle <lo in vicinity of discontinuities. a 

Type t.b, c Ab, d 
q. of m 

Collision 

0.07359 Reactive 1.057 -10.88 -20.66 

0.07372 Reactive 1. 056 -20.68 -20.68 

3.15995 Reactive 1.141 -17.52 -17.52 

3.16300 Reactive 1.142 - 7.17 -17.49 

4.01125 Non-Reactive 0.9012 -15.75 -24.56 

4.01251 Non-Reactive 0.8994 -24.58 -24.58 

6.21810 Non-Reactive 1.021 -21. 26 -21. 26 

6.23562 Non-Reactive 1.022 -11.69 -21. 25 

~he total energy E is 1. 053 eV. 

bThe action difference t. is in units of Ii. 

cA given by Eq. (3). 

d6 given by Eq. (4). 
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TABLE II. Microscopic Reversibility of Semi-Classical Transition 

Probabilities 

E = 0.953 eV E = 1. 033 eV 

R POI (USC) 0.40 0.37 

R P 'O (USC) 0.41 0.37 

P~ (quasi-classical) 0.18 0.21 

P~ (quasi-classical) 0.38 0.45 

V POI (USC) 0.30 0.19 

p};; (USC) 0.31 0.18 

p.y, (quasi-classical) 0.10 0.17 

p};; (quasi-classical) 0.08 0.07 
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order. This fact coupled with the properties that I aCP(mi3 , nO')1 ana I = CIao' 
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fiGURE CAPTIONS 

Corrected (circies;Eq. (4)) and uncorrected (squares; 

Eq (3» action t; as a function of the initial phase angle qo 

for reactive (R) and non-reactive (V) trajectories. The 

total energy is 1. 053 eV. For initial phases for which only 

circles 'are indicated, Eqs. (4) and (3) furnish the same 

value of A. 

Reactive (solid curve) and non-reactive (dashed curve) 

final action number, m, as a function of initial phase 

angle, qo' The total energy is 1. 253 eV. 

Uniform semi-classical (solid curve), exact quantum 

(dashed curve), and quasi-classical (dashed-dotted 

curve) P~o transition probabilities as a function of total 

energy, E, and initial translational energy, Eo' 

Reactive (solid curve) and non-reactive (dashed-curve) 

final action number, m, as a function of initial phase 

angle, qo' The total energy is 0.558 eV. 

Classical semi-classical (solid curve), primitive semi­

classical (dashed-dotted curve), and exact quantum 

(daShed curve) P~o transition probabilities as a function 

of total energy, E, and initial translational energy, 

Eo' 

Uniform semi-classical (solid curve), exact quantum 

(dashed cill;"ve), and quasi-classical (dashed-dotted 

curve) p;Yo transition probabilities as a function of 

total energy, E" and initial translational energy, Eo' 
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Fig. 8. 

Fig. 9. 

Fig. 10. 
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Classical semi-Classical (solid curve), primitive semi­

classical (dashed-dotted curve) and exact quantum (dashed 

curve) P~o transition probabilities as a function of total 

energy, E, and initial translational energy, Eo. 

Uniform semi-classical (solid curve), exact quantum (dashed 

curve), quasi-classical (dashed-dotted curve) P~ transition 

probabilities and quasi-classical (dotted curve), P~ transition 

probability as a function of total energy E and initial trans­

lational energy Eo. 

Uniform semi-classical (solid curve), exact quantum (dashed 

curve), and quasi-classical (dashed-dotted curve) p;f, transition 

probabilities as a function of total energy E and initial trans­

lational energy Eo' 

Uniform semi-classical (solid curve), exact quantum (dashed 

curve), and quasi-classical (dashed-dotted curve) totalreaction 

probability P~ as a function of total energy E and initial trans-

1ational energy Eo. 

Fig. 11. Total uniform semi-classical collision probabilities as a 

function of the total energy, E. 

Fig. 12. Ratio of complex-trajectory semi-classical reaction probability 

P~C' (taken from Ref. 19) to exact quantum reaction probability 

P~M (taken from Ref. 11) for very low initial translational 

energies Eo. 

Fig. 13. Ratio of complex-trajectory semi-classical rate constant ksdT) . 

to exact quantum rate constant kEQ(T) as a function of l/T 

(lower abcissa) and T (upper abscissa). 
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L 5 COMPARISON OF QUASI-CLASSICAL AND QUANTUM 

PROBABILITY CURRENT DENSITIES, STREAMLINES, 

AND CURRENT DENSITY PROFILES FOR THE COLLINEAR 

H + II:! REACTION. 
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COMPARISON OF QUASI-CLASSICAL AND QUANTUM PROBABILITY 

CURRENT DENSITIES, STREAMLINES, AND CURRENT DENSITY 

PROFILES FOR THE COLLINEAR H + H2 REACTION. 

1. Introduction 
~~ 

Classical and quantal calculations of reactive scattering 

usually focus on quantities which can (at least in principle) be 

observed experimentally, eog. cross-sections, transition rates, 

branching ratios, rate constants, etc. These are "asymptotic" 

quantities, that is they are the results of the chemical reaction 

after it has occurred. The information content of these "asymptotic 

observables" is only a part of the total information that, in 

principle, is available. The complete characterization of a chemical 

reaction, which includes the asymptotic observables as well as infor­

mation about the transition region, is contained in a classical or 

quanta 1 calculation of the chemical reaction. However, only a small 

number of such calculations has made use of all of the available 

information. Mortensen and Pitzer1 in their classic paper on the 

collinear H + H;, reaction presented figures of the probability denSity 

obtained from the wavefunction describing the reaction at the total 

energy of 10 kcal/mole o Dion et a1.2 in a model collinear quantum 

calculation computed the probability denSity and the current denSity 

for the reaction at one energy 0 In a time-dependent treatment 

of the collinear H + Ha reaction, McCullough and Wyatt3 presented 

classical and quantal time-dependent probability densities and 

current densities at several values of the time variable for one energyo 
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In that study, the classical calculation was very different from the 

one we shall describe below. There a quantal wavepacket was 

integrated in time using the classical equations of motion. Although 

such a hybrid classical-quantum technique may yield interesting 

results, it is of questionable validity. 4 

In the study reported here, we compare time-independent 

quanta1 5 and quasi-classical current densities, streamlines, and 

current density profiles for the collinear H + ~ reaction with 

reagent ~ initially in the ground vibrational state. The quantum 

reaction probabilities have been reported previously6 as has a 

comparison with quasi-classical calculations. 7 The potential 

energy surface employed in all the classical and quantum calculations 

is a Wall-Porter8 fit to the scaled SSMK surface9 and is described 

elsewhere. 6 

2. Classical and Quantum Probabili Current Densities 

The generation of the quantum probability current density, i, 
follows directly from the wavefunction, lj.;, according to the well-known 

expression, 10 

However, the expression for the classical probability current density 

is not well known. Therefore, we shall develop the appropriate 

expression for the classical probability current density. 

Let x" and Xg be coordinates defined as follows: 
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I 
/.LA BC "2 mB 

Xg = (~ ) [r AB + m + m . 
C B C 

r BC ], (1) 

where r BC and r AB are the internuclear distances of the A + BC 

collinear configuration. In terms of the coordinates x" and X3 and 

their conjugate momenta, the classical Hamiltonian of the A + BC 

system is given by 
2 2 

H 
p + P 

x" X3 V( ) + x", Xg • 
2J.i3C 

The reduced masses, I-lsc and /.LA, BC' are the usual ones, namely 

mBmC rnA (mB + mc) 
/.L = . /.L = ---=,:'-=-=-,.....,.,.=-=-

BC mB + mc ' A, BC rnA + mB + mc 

(2) 

V is the Born-Oppenheimer potential energy function which describes 

the classical and quantum motion of the A + BC system. The choice 

of coordinates given by eq. (1) was made so that the Hamiltonian 

(eq . (2» would involve a single mass. Hence, we can describe 

the A + BC motion by a single mass point (of mass /.LBC). This is 

important in the concept of the probability current density which 

by definition describes the motion of a single mass point in configu­

ration space. 

Suppose that the entire configuration space encompassing the 

A + BC reaction zone is specified by dimensions 

(3) 

(These dimensions define the area over which the interaction potential , 

VI =V(x",xg ) - V(x" , 00) = V(x",xg) - V(00,x3 ), is not vanishingly smalL) 
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In the ensemble-averaged sense (to be described in detail below) let 

p (x., x 3 ) be the probability density of finding the mass point in the 

interval X. to X. + dx. and X3 to x, + dx" where x2 and x, are restricted 

according to eq . (3). We now introduce a time-independent, 

ensemble-averaged, velocity vector written symbolically as 

where ~ and"X3 are two unit vectors which span the configuration 

space. Then, in terms of p and I,t , the classical probability current 

density vector is defined as 

As an example of the utility and meaning of eq. (5) consider 

the motion of an A + Be system governed by a zero interaction 

potential. In this case V (x., x,) can be written as 

o 
where V (x.) is the diatom potential function describing the internal 

o 
motion of AB. V (x.) can be a harmonic potential or the Morse 

(4) 

( 5) 

(6) 

potential, for example. As a consequence of eq. (6) the X. and X3 motions 

are uncoupled and we have that 

(7a) 

and 

(7b) 

Since the X3 motion is "free, " L e. it is subject to zero force, the 
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probability of finding the coordinate X3 with some particular value 

must be a constant independent of x,. Hence eq. (7a) can be written 

as 

o 
p (x", x 3) = p (x,,) . (8) 

o 
The density p (x,,) describes the distribution of values of x" of a harmonic, 

Morse, etc. oscillator. Thus, from eqs. (5), (7), and (8) for this 

example, 

o A 0 " 1 = p (x,,) tr x" (x,,) x" + p (x,,) lTXg (Xg) Xg , (9a) 

• A. • A 
= lx" x" + lXg Xg . (9b) 

Let us now examine the components of 1, jx" and jxg' separately. 

First, we demonstrate that jx" is identically zero. To do this we stress 

that the distribution function po (x,,) is a non-negative function (single-

valued of course) of x" only. Thus, the scalar function tr2 (x,,) must 

be identically zero if the assertion that jx" is zero is correct. That 

V"x" (x,,) is zero is trivially true if the definition of 1r x" is made clear. 

For the internal motion of molecule AB an ensemble of classical 

trajectories (at a given total energy) can be generated as follows. The 

range of classically allowed coordinates is sampled according to the 
o 

distribution function p (x,,). Then the magnitude of the momentum, Px ' 
2 

is determined by the energy equation and its sign is chosen to be plus 

or minus. With x" and P x" so determined the classical trajectory is 

uniquely specified. In this wayan ensemble of classical trajectories 

(for the isolated AB molecule) is generated. In scanning the set of 



114 

initial conditions it is clear that P and hence tr is a double -valued 
x" x" 

function of x". That is, for eac h value of x" t he r e exists two values of 

Px" (trx,,)' namely P x" ( trx,,) and - Px" ( It'x,,)' Furthermore, it must 

be true that at any and all t imes the ensemble of classical trajectories 

produces a distribution of coordinates identical t o the initial one. 4 

This is due to the periodic motion of t he AB molecule . Thus, t he 

ensemble-averaged value of V' x" (x,,) will be the same as it was 

initially. (This is of course implied by t he fact t hat lYx" is time­

independent.) We have already seen that at a given value of x", tr x" 

takes on two values, V-x" and - V-x,,' Hence, their average is identically 

zero; true for all x". Thus, we have demonstrated that jx" is identically 

zer o and hence 

Finally, since V- (Xg) is a c onstant (due to the force free motion of 
X3 

the Xg coordinate) we have the following simple expression for the 

classical probability current density : 

Several interesting t hings a r e to be noted about eq. (11) . 

(10) 

(11) 

First it indicates that t he bound motion of the AB molecule contributes 

no vector component to the total current density. This is in complete 

agreement with the general r igorous quantum result . Second, the form 

of eq. (11) is identical to the quantum result , if the classical probability 
o 

density function, p (x,,) , is replaced by t he corresponding quantum 

probability density function. Thir d , the probability current density 
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given by eq. (11) obeys a conservation principle. Stated briefly the 

conservation principle requires that the following be true for the 

classical and quantum probability current densities. For any 

closed contour, C, which encirc les the reaction zone, ..i must 

satisfy the following expression :5 

f..i(x",x3) · d~=O (12) 
C 

It is straightforward to show that for che mical reactions for which 

the break-up channel is energetically closed, eq. (12) implies, for 

a certain class of lines (examples of such lines will be given in 

Section 4), the quantity 

J ..i (x", x 3) • Jidl 

is a constant, independent of the particular line. 5 FUrthermore, 

(13) 

the quantity given by (13) is proportional to the total reaction probability. 5 

If the expression for..i given by eq. (11) is substituted into (13) it is 

easily shown that the result is indeed a constant, equal to rr. , for 
X3 

any line (satisfying a criterion to be specified in Section 4) . 

In summary, we have shown, somewhat sketchily, that our 

definition of the classical probability current density (given by eq. (5» 

makes physical sense and obeys a conservation theorem for the 

example of an A + BC collision with no interaction. We shall use the 

fact that the classical probability current density for a chemical 

reaction obeys the same conservation condition, expressed by eq . (12), 

to check the accuracy of our numerical results given in Section 4. 
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3. Numerical Methods and Conver ence Tests 

The calculation of the quantum current density is described in 

detail elsewhere. 5 The calculation of the classical probability current 

density, according to eq. (5), requires the computation of the classical 

probability density, p, and the ensembl e-averaged velocity vector, \to 
The methods used to calculate these quantities and some convergence 

tests of the results are given below. 

The region of (x", x 3) space of interest is given by eq. (3). 

In our calculations 

X 3f = 5.456 bohr; x30 = 0.0 bohr, 

x"f = 4.2 bohr; x" 0 =O.Obohr . 

This region of configuration space is divided into a grid of n rectangles 

(n is typi cally 55), each with dimensions 

The calculation of p and ~at the center coordinates of each rectangle 

is performed as follows. An ensemble of classical trajectories 

(consisting of typically 500 trajectories) is generated by sampling the 

complete set of initial conditions for a chemical reaction (cf. reference 4). 

A large number of points, N, in the (x", x 3) configuration space is 

thereby generated with the time step At a constant. Typically, N "" 105
• 

A trajectory is "followed" as long as it remains within the boundaries of 

the region of configuration space defined by eq. (3). Thus, for the jth 

rectangle, with center coordinates (x3 j' X 2 j)' p(x3 j' X 2 j) is given by 
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where N. is the number of points located within the jth rectangle. 
J 

Associated with each of the N j points is a velocity vector 'l:""ji with 

components lJ': and If:x . The ensemble-averaged velocity at 
X,ji 3ji 

coordinates (x,j' X 3j) is given by 

and 

N. 
1 J 

ltx, (x3j ,x,j) = Ir. L IYX,J'i 
J i =l 

Nj 

lYx(x3j,x,j) -J. L I/'"x3ji ' 
3 J i=l 

(14) 

(15a) 

(15b) 

Thus from eq. (5) the classical probability current density is given by 

where p and It" are given by eqs. (14) and (16) respectively. 

In order to achieve an accurate, converged result for 1 two 

limits must be approached. First, the grid dimensionality, n x n, 

must be made quite large (in principle it must be 0() x .., to yield exact 

results) . However, that is obviously not sufficient to give a converged 

1. In order to get accurate results the number of classical trajectories 

must increase concomitantly with the increase in dimensions of the 

grid. In our calculations a finite grid was used, of course, and the 

number of trajectories performed yielded a probability current denSity 

which had converged to within 10% or better. 
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Clearly, a coarse grid requires fewer trajectories to reach a 10% 

level of convergence. However, coarse grids tend to average results 

more and interesting details in the actual 1 (which we are approximating) 

become "washed out. " 

In Table 1 we give some indication of the nature of the convergence 

properties for the probability density p(x",xg) for batches of 100, 200, 

and 300 trajectories for an initial translational energy Eo of 0.28 eV .. 

It is seen that with 300 trajectories p changes by 10% or less of the p 

calculated with 200 trajectories. The grid dimensions, 30 X 30, are 

somewhat coarse, however. 

A study of the convergence of p for three grids, 20 x 20, 40 X 40, 

and 80 x 80 is made in Table 2 at Eo = 0 . 28 eV. As expected the 

coarsest grid, the 20 x 20 one, shows the best convergence followed 

by the 40 x 40 and the 80 x 80 grids. 

The convergence of the current density at Eo = 0.28 eV is 

investigated in Table 3 for a 30 x 30 grid and with ensembles consisting 

of 200 and 300 trajectories. As can be seen the results change by 10% 

or less in going from 200 to 300 trajectories. 

Thus, the convergence studies given above indicate that 300 

trajectories should yield probability current densities and probability 

densities which are converged to within 10% of the the accurate result for 

30 x 30 and 40 x 40 grids (corresponding to ~Xg '" 0.1 - 0.2 bohr and 

~x" '" 0.05 - 0.1 bohr). In Section 4 where the results are presented, 

we will comment on the extent of the averaging out of the details of the 

classical probability current density. 
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For most of the calculations reported in the next section 

300 - 500 classical traiectories were performed in calculating the 

classical probability current density,and grid dimensions were either 

40 x 40 or 55 x 55. Also, a simple five-point bivariate interpolation 

scheme was devised in order to generate the classical current density 

for all values of x;, and x 3 • A description of this scheme is given below. 

Let ix;, 0x
3

) evaluated at the five points depicted below be denoted 

by i . ,i , iy_ l' iy_ 0' and iy_ 0 0' and let hand k be the "2-1,0 X,aO,-l ..... ,30' ..... ,,1' .. ~ , 

separation distances as indicated. Theni (xo + ph,yo + qk), where 
(0,1) x;, 

r-h~L YL. 
(-1,0) r:'O) (0,1) 

-(0,-1) 

p and q have values between 1 and -1, is given by 

ix;, (xo + ph, Yo + qk) = (l-p)(l-q)(l+p)(l+q)ix;,o, 0 +p(l-g)~+P)(l+g) ix;,v 0 

-t g(1-p)(1+p)(1+g) i J1-g)(1+g)(1-P)p . 
2 x;,O" 2 Jx;,-v 0 

jl+p)(l-p)(l-g)g . 
2 Jx;,O,-1 

In our calculations, the components of j(x;" x3) were interpolated directly 

from the components determined at the appropriate five sets of center 

coordinates. 
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4. Results and Discussion 

There are, in addition to probability current densities, two 

other quantities which we have calculated and which yield some insight 

into the details of chemical reaction. They are streamlines and 

current density profiles. Both quantities are derivable from the 

probability current density. Streamlines, which are used in studies 

of fluid flow are defined as lines which are tangent to the direction of 

the fluid current density vector. 11 They are useful in visualization of 

the "flow" of the system. A detailed discussion of the relationship of 

streamlines to the probability current density vector will be given 

elsewhere. 5 The second quantity, current density profiles, are 

defined by the expression below. For a given line l. in (x",x3) space, 

the current density profile, I n , along the line is given by 

(17) 

The unit vector n is normal to line f. and is oriented to the left of the 

line. A plot of J along a series of lines can reveal a great deal of 

information about the distribution of the probability current density 

vector field. In addition if the end points of the line are deeply 

embedded in classically forbidden regions of space then the total flux, 

j, given by 

f} =j dUn (18) 
- 11. --

is a constant, independent of the location of the line. This is a conse­

quence of the statement that probability (or fluid) is neither created nor 
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destroyed in the chemical reaction. The nature of these lines is 

made clear in the figures . 

Calculations of classical probability current densities, stream­

lines, and current density profiles have been performed at total energies, 

E, of O. 5719 eV, 0.62 eV, 0.7540 eV, and 0.8978 eV. Classical 

current density profiles for the total energy Of 1.0331 eV have also been 

calculated. The results are shown in a series of figures with the 

corresponding quantum results' displayed fOr comparison. 

In Figures la and Ib are exhibited the classical and quantum 

probability current densities respectively, for E = O. 5719 eV. Also, 

shown are some H3 potential energy contours. In contrast to the 

smooth quantum result, the classical result is oscillatory and turbulent. 

Especially striking in the classical result is the "pinching" of the 

classical} in the region near the saddle point (denoted by the plus 

sign in the Figures). At this energy the classical and quantum reaction 

probabilities are 1.0 and 0.94 respectively. The contour lines labeled 

E are the boundaries defining the classically allowed region of configu­

ration space. As can be seen the classical results do remain confined 

to this area as they should. However, the quantum results are not 

restricted to this claSSically allowed region of space, and indeed a 

Significant amount of tunneling is present where the quantum} is 

"cutting the corner." A detailed discussion of this type of quantum 

tunneling is presented elsewhere. 5 In Figures 2a and 2b the 

corresponding classical and quantum streamlines are displayed. Very 

similar information about the classical and quantum flow as seen in 
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Figure 1 is seen here. The classical and quantum current density 

profiles are given respectively in Figures 3a and 3b for five lines 

which are normal to the minimum energy path. Here the great 

contrast in the shapes of the classical and quantum profiles indicates 

that different regions of configuration space are sampled by the two 

sets of results. 

In Figures 4a and 4b the classical and quantum probabil ity 

current densities are given" respectively, for E = 0.62 eV. At this 
, 

energy the classical and quantum reaction prpbabilities are both unity . 

'the "pinching" in the classical result is still present and, as in the 

E = O. 5719 eV result, the "flow" rate through this region of pinching 

is high, as evidenced by the length of the classical probability current 

density vectors. This is a consequence of the conservation principle 

given by expression (18). The same features are also seen in Figures 5a 

and 5b . The differences in the classical and quantum results at 

E = 0.62 eVare striking, and perhaps somewhat surprising since both 

calculations give a unit reaction probability. This means that the 

areas under all of the classical and quantum current density profiles, 

given in Figures 6a and 6b respectively, are the same. Yet, as seen 

from those figures, the distribution of the current density profiles 

are very different. 

Focussing on Figure 6a, the classical current density profile 

along the line X3 = 5. 46 bohr is seen to have a shape very similar to the 

classical probability distribution function for a harmonic oscillator. 12 

Indeed it should (or more precisely it should for a Morse OSCillator), . 
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since for unit reaction probability the current density in the reagent 

asymptotic region (X3 = 5.46 bohr is in this region) is given rigorously 

byeq . (11). Furthermore, the "sharpness" of the numerical result 

gives an indication that the grid we have used in these calculations 

(55 x 55) is not "washing" out important details of the classical 

current density. 

For E = 0.7540 eV the classical and quantum probability 

current densities are given in Figures 7a and 7b respectively. As 

previously (cf. Figures la and 4a) t he classical result exhibits a 

pinching effect, however, it is seen to occur in the product side 

of the saddle point. This contrasts with the classical result at 

E = o. 5719 eV where the effect occurs in the reageht side of the saddle 

point. At E = 0.62 eV the classical pinching occurs essentially at the 

saddle point (displaced somewhat towardS the plateau region) . 

The corresponding classical and quantum streamlines are given 

in Figures 8a and 8b respectively. There the oscillatory structure 

of the classical "flow" is clearly seen. The structure in the reagent 

channel is due to inelastic scattering which, of course, changes the 

vibrational energy of reagent H;, by a continuous amount. No such 

inelastic scattering is possible in the quantum case since the v = 1 state 

of Hz is not energetically accessible for E less than 0.7945 eV. 

The classical and quantum current density profiles, given in 

Figures 9a and 9b respectively, show structure which becomes much 

more pronounced at higher energies. The classical results for the 

lines passing through and in the reagent side of the saddle point reveal 
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that some normal components of the probability current density 

point toward the regeant arrangement channel. This phenomenon is an 

indication of vortices in the probability current density . This behavior 

is also seen (though greatly attenuated) in the quantum result given in 

Figure 9b for the profile along the line passing through the saddle point . 

In Figures 10 - 12 classical and quantum probability current 

densities , streamlines , and current density profiles are given for 

E = 0.8978 eV. At this energy vibrational excitation of reagent and 

product ~ is possible. For this reason, apparently , the classical and 

quantum probability current densities show some similarities, as can 

be seen in Figures lOa, lOb and especially well in lla and llb. In 

Figure lOa a vortex in the classical probability current density has been 

included. This vortex is not accessible to any current density vector 

(or streamline) which originates in the asymptotic region of configuration 

space. That this vortex is present in the classical result can be deduced 

from Figure l2a. There it is seen that the current density profile along 

the line passing through the saddle point reveals a circulation of the 

probability current density vector field . Also, we note the Similarity 

in the quasi-classical and quantum current density profiles given in 

Figures 12a and l2b especially for those lines in the product channel. 

The changing pOSition of the peaks of the classical and quantum profiles 

suggests that the probability flow is "sloshing" through the product 

arrangement channel . 

Classical and quantum current density profiles are presented 

in Figures 13a and 13b, respectively, for E = 1.0331 eV. As can be 
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seen from these figures vortices are present in both the classical and 

quantum results. As previously found for E = 0.8978 eV, the classical 

and quantum resu1ts show similarities for the tines which pass through 

and toward the product side of the saddle point. Of particular interest 

are the results for the line passing through the saddle point. In sharp 

contrast to the quantum and classical results at low energies, 

e.g.,E = O. 5719 eV and E = 0.62 eV,the peak of the profiles is shifted 

towards the hard wall of the potential surface. Previously the peaks 

were located towards the plateau region. Evidently at the high total 

energy of 1.0331 eV the quasi-classical and quantum probability current 

densities are "bob-sledding" high on the repulsive wall. 

The quantum probability current density and streamlines for 

E = 1.0331 eV are presented in Figures 14 and 15 respectively . There 

the vortex in these results is prominently displayed. 

In summary, the comparison of classical and quantum probability 

current densities, streamlines, and current density profiles reveals 

great differences between the two sets of results for energies below 

the threshold for vibrational excitation of product (and reagent) ~. 

Classically such excitation can occur at any energy. This obvious defect, 

inherent in the quasi-classical calculations, seems chiefly responsible 

for the striking differences mentioned above. Substantiation for this 

conclusion is provided by the higher energy comparisons. There, the 

quasi-classical and quantum results show some similarities in overall 

oscillatory structure of the probability current density vector fields. 

Such structure is apparently due to the vibrational excitation of the 
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product (and reagent) H". 

The high energy quasi-classical and quantum results contain 

vortices in the probability current density vector field. Although the 

significance of these vortices, if any, is at present unclear, the fact 

that they appear in both the classical and quantum results has been 

established. Perhaps it can be said that these vortices create turbulence 

in the probability current densities, impeding flow and hence that they 

are responsible for the decline in the total reaction probability 

(quasi-classically and quantum mechanically) at the higher energies. 



127 

Table 1 . · Convergence of classical probability density. a 

X, (bohr) x3(bohr) p (100)° p (200) p (300) 

1.19 5. 456 0.6163(-2)c 0.6625(-2) 0.6730(-2) 

1. 33 5.456 0.5821(-2) 0.6017(-2) 0.6738(-2) 

1. 47 5.456 0.6527(-2) 0.7431(-2) 0.7705(-2) 

1. 61 5.456 0.1637(-1) 0.1552(-1) 0.1449(-1) 

1.19 4.001 0.1000(-1) 0.8892(-2) 0.8216(-2) 

1. 33 4.001 O. 7800( -2) 0.8097(-2) 0.7634(-2) 

1. 47 4.001 0.5958(-2) 0.6894(-2) 0.7383(-2) 

1. 61 4.001 0.1426(-1) o . 1400( -1) 0.1363(-1) 

1. 75 4.001 0 .1585(-1) 0.1630(-1) 0.1511(-1) 

3.43 4.001 o 4548(-4) 0 . 2804(-3) 0.2752(-3) 

3.57 4.001 0.3866(-3) O. 6778( -3) 0.6920(-3) 

3.71 4.001 0 . 1796(-2) 0 . 1776( -2) o . 1627( -2) 

3.85 4.001 0.3343(-2) 0.2734(-2) 0.2595(-2) 

3.99 4.001 0.3525(-2) O. 3809( -2) O. 3609( -2) 

4.13 4.001 0.3752(-2) 0 . 4276(-2) 0.4521(-2) 

1. 47 2.7886 0.4753(-2) 0.4837(-2) O. 4379( -2) 

1. 75 2.7886 0 . 2008(-1) 0.2206(-1) 0.2550(-1) 

2.03 2.7886 0.2706(-2) 0.2524(-2) 0.2052(-2) 

2.31 2.7886 0.1978(-2) 0.2162(-2) 0.1879(-2) 

2.59 2.7886 0.1137(-3) 0.7011(-4) 0.6290(-4) 

alnitial relative kinetic energy is 0.28 eV. The grid is 30 x 30. 

b The numbers in parentheses are the total number of trajectories used 
in calculating p. 

c The numbers in parentheses are powers of ten which multiply the 
preceding number. 
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Table 2. Convergence of classical probability density for three grids . a 

20 x 20 

:x:, (bohr) x 3(bohr) p (100)b p (200) p (300) 

3 . 5 3.522 0.788(-2( 0.912(-2) 0.101(-1) 

3.5 4.215 0.148(-3) 0.759(-4) 0 . 509(-4) 

2 . 9 3 . 406 0.826(-2) 0 . 913(-2) 0.917(-2) 

2.9 3 . 868 0 . 337(-2) 0.378(-2) 0.340(-2) 

1.5 3.291 0 . 128(-1) 0.129(-1) 0 . 130(-1) 

1.5 4.446 0 . 196(-1) 0.197(-1) 0.191(-1) 

40 x 40 

:x:, (bohr) x 3(bohr) p (100) p (200) p (300) 

3.5 3.522 0.692(-3) 0 . 913(-3) 0 . 953(-3) 

3 . 5 4 . 215 0.840(-2) O. 862( -2) 0.820(-2) 

2 . 9 3.406 0.180(-1) 0.168(-1) 0.158(-1) 

2 . 9 3.868 0.180(-1) 0.202(-1) 0.206(-1) 

1.5 3.291 0.619(-3) 0.261(-3) 0.381(-3) 

1.5 4.446 0.626(-2) 0.487(-2) 0.422(-2) 

a The initial translational energy is 0.28 eV 

bThe numbers in parentheses are the total number of classical trajectorie s 
used in calculating p. 

c The numbers in parentheses are powers of ten which multiply the 
preceding numbers. 
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Table 2. (Cont. ) 

80 x 80 

x" (bohr) x 3(bohr) p (100) p (200) p (300) 

3.5 3.522 0.424(-4) 0.976(-4) 0.153(-3) 

3.5 4.215 0.339(-3) 0 . 401(-3) 0.277(-3) 

2.9 3.406 0.614(-3) 0.629(-3) 0.634(-3) 

2.9 3.868 0.256(-2) 0.193(-2) 0.500(-2) 

1.5 3.291 0.466(-3) o. 488( -3) 0.574(-3) 

1.5 4.446 0.176(-2) 0.150(-2) 0.138(-2) 
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Figure 1b: 

Figure 2a: 

Figure 2b: 

• 

Figure 3a: 
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FIGURE CAPTIONS 

Quasi-classical probability current density for 

total energy E = O. 5719 e V (initial translational 

energy Eo = 0.2991 eV) for the collinear H + H;, 

reaction. Minimum energy path is indicated by a 

long:-dashed curve and the plus sign gives the location 

of the potential surface saddle point. Equipotential 

energy contours are given (in eV); contour labeled E 

is one of value equal to the total energy E. The 

coordinates x" and X3 are defined in the text. 

Quantum probability current density for the total 

energy E = O. 5719 eV. See caption of Figure 1a for 

explanation of other symbols used. 

Quasi-classical streamlines for total energy 

E = 0 .. 5719 eV. See caption of Figure 1a for explana­

tion of other symbols used . 

Quantum streamlines for total energy E = O. 5719 eV. 

See caption of Figure 1a for explanation of other 

symbols used. 

QuaSi-classical current density profiles along five 

lines which are normal to the minimum energy path. 

The total energy E is O. 5719 e V . See caption of 

Figure 1a for explanation of other symbols used. 



Figure 3b: 
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Quantum current density profiles along five lines 

which are normal to the minimum energy path. The 

total energy E is 0.5719 eV. See caption of 

Figure la for explanation of other symbols used . 



Figure 4a: 

Figure 4b: 

Figure 5a: 

Figure 5b: 

Figure 6a: 

Figure 6b: 
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Quasi-classical probability current density for total 

energy E = 0.62 eV. See captj.on of Figure 1a for 

explanation of other symbols used. 

Quantum probability current density for the total 

energy E = 0 . 62 eV. See caption of Figure 1a for 

explanation of other symbols used. 

Quasi-classical streamlines for total energy 

E = 0.62 eV. See caption of Figure 1a for explana­

tion Of other ·symbols used. 

Quantum stream lines for total energy E = o. 62 e V . 

See caption of Figure 1a for explanation of other 

symbols used . 

Quasi-classical current density profiles along five 

lines which are normal to the minimum energy path. 

The total energy E is 0.62 eV. See caption of 

Figure 1a for explanation of other symbols used. 

Quantum current density profiles along five lines 

which are normal to the minimum energy path. 

The total energy E is 0.62 eV. See caption of 

Figure 1a for explanation of other symbols used. 



Figure 7a: 

Figure 7b: 

Figure 8a: 

Figure 8b: 

Figure 9a: 

Figure 9b: 
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Quasi-classical probability current density for total 

energy E = 0 . 7540 eV . See caption of Figure la for 

explanation of other symbols used. 

Quantum probability current density for the total 

energy E = O. 7540 e V. See caption of Figure la for 

explanation of other symbols used. 

Quasi-classical streamlines for total energy 

E = O. 7540 e V. See caption of Figure la for explana­

tion of other symbols used. 

Quantum streamlines for total energy E = 0.7540 eV. 

See caption of Figure la for explanation of other 

symbols used. 

Quasi-classical current density profiles along five 

lines which are normal to the minimum energy path. 

The total energy E is 0.7540 eV. See caption of 

Figure la for explanation of other symbols used. 

Quantum current density profiles along five lines 

which are normal to the minimum energy path. The 

total energy E is 0.7540 eV. See caption of Figure la 

for explanation of other symbols used. 



Figure lOa: · 

Figure lOb: 

Figure lla: 

Figure llb : 

Figure l2a: 

Figure 12b: 
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Quasi-classical probability current density for total 

energy E = 0.8978 eV. A vortex is also shown. See 

caption of Figure la for explanation of other symbols 

used . 

Quantum probability current density for the total 

energy E = 0 . 8978 eV. See caption of Figure 1a for 

explanation of other symbols used. 

Quasi-classical streamlines for total energy 

E = O. 8978 e V. See caption of Figure la for explana­

tion of other symbols used . 

Quantum streamlines for total energy E = 0.8978 eV. 

See caption of Figure 1a for explanation of other 

symbols used. 

Quasi-classical current density profiles along five 

lines which are normal to the minimum energy path. 

The total energy E Is 0.8978 eV. See caption of 

Figure 1a for explanation of other symbols used. 

Quantum current density profiles along five lines 

which are normal to the minimum energy path . 

The total energy E is 0.8978 eV. See caption of 

Figure la for explanation of other symbols used. 



Figure 13a: 

Figure 13b: 

Figure 14 : 

Figure 15: 
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Quasi-classical current density profiles along five 

lines which are normal to the minimum energy path. 

The total energy E is 1. 0331 eV . See caption of 

Figure 1a for explanation of other symbols used. 

Quantum current density profiles along five lines 

which are normal to the minimum energy path. 

The total energy E is 1 . 0331 eV . See caption of 

Figure 1a for explanation of other symbols used. 

Quantum probability current density for the total 

energy E = 1.0331 eV. See caption of Figure 1a 

for explanation of other symbols used . 

Quantum streamlines for total energy E = 1. 0331 eV. 

See caption of Figure la for explanation of other 

symbols used. 
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I. 6 EXACT QUANTUM, QUASI-CLASSICAL AND SEMI-CLASSICAL 

REACTION PROBABILITIES FOR THE COLLINEAR F + H2 -+ 

FH + H REACTION. 
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Exact Quantum, Quasi-Classical and Semi-Classical Reaction 

* Probabilities for the Collinear F + H - FH + H Reaction. 

George C. SChatz,t Joel M. Bowman t and Aron Kuppermann 

** Arthur Amos Noyes Laboratory of Chemical Physics 

California Institute of Technology, Pasadena, California 91109 

(Received 

Exact quantum, quasi-classical and semi-classical reaction 

probabilities and rate constants for the collinear reaction F + H2 -

FH + H are presented and compared. The exact quantum results 

indicate a large degree of population inversion in the FH product with 

Po~ and Po~ being the dominant reaction probabilities. The energy 

dependence of these two probabilities at low translational energies are 

quite different. Po~ shows an effective threshold of O. 005eV which 

can largely be interpreted as resulting from tunnelling through a 

vibrationally adiabatic barrier. Po~ has a much larger effective 

threshold (0. 045eV) apparently resulting from dynamical effects. 

Quasi-classical probabilities for the collinear F + H2 reaction were 

calculated by both the forward (initial conditions chosen for reagent 

F + H2 ) and reverse (initial conditions for product H + FH) trajectory 

* Work supported in part by the United States Air Force Office of 

Scientific Research. 

t Work performed in partial fulfullment of the requirements for the 

Ph. D. degree in Chemistry at the California Institute of Technology . 

** Contribution No. 
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methods. The results of both calculations correctly indicate that 

Po~ and Po~ should be the dominant reaction probabilities. However, 

the threshold behavior of the quasi-classical forward Po~ disagrees 

strongly with the corresponding exact quantum threshold energy 

dependence. By contrast, there is good agreement between the re­

versed trajectory results and the exact quantum ones. TIle uniform 

semi-classical results also agree well with the corresponding exact 

quantum ones indicating that the quasi-classical reverse and the 

semi-classical methods are preferable to the quasi-classical forward 

method for this reaction. The important differences between the 

threshold behavior of the exact quantum and quasi-classical forward 

reaction probabilities are manifested in the corresponding rate con­

stants primarily as large differences in their activation energies. 

Additional exact quantum results at higher total energies indicate that 

threshold effects are no longer important for reactions with vibra­

tionally excited H2 • Resonances play an important role in certain 

reaction probabilities primarily at higher relative translational 

energies. 
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~ 
The reactions F + Hz (Dz, DH) - FH (FD) + H (D) have recently 

been the subject of several experimental studies in which very detailed 

rate constants and cross sections for these reactions have been 

measured. Relative rate constants into specific vibrational (and 

sometimes vibrational-rotational) states of the products have been 

measured by both infrared chemiluminescence1 and chemical laser2 

techniques and, quite recently, both methods have been used to study 
If 2e 

. the temperature dependences of these relative rates.' Angular 

distributions for specific product .vibrational states of the F + D2 

reaction have been studied at several incident energies by a crossed 

molecular beam apparat~. 3 In addition, there exist several (usually 

indirect) determinations of the overall bulk rate constants for the 

F + Hz reaction 4 and more recently studies of is otope effects 

for the F + Hz, F + D., F + HD and F + DH series. 5 A very 

important application of these reactions has been to the fluorine­

hydrogen chemical lasers2a ,6, where F + Hz - FH + H serves as the 

main pumping reaction. 

Complementing these experimental studies have been several 

quasi-classical trajectory studies on F + H
2
7,8,9, F + D

2
7,1O,1l and 

F + DH (HD)7, 9 and one recent semi-classical study on collinear 

F + Dz.1 2 The results of the quasi-classical studies have generally 

been in reasonably good agreement with the detailed rate constants 

obtained by infrared chemiluminescence and chemical laser experi­

ments but in much poorer agreement with the angular distributions 

obtained by the molecular beam experiments. There also exists some 
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disagreement between experiment and the classical calculations on the 

rotational distribution of the detailed rate constants, 7b and on isotope 

effects. 5 Additional theoretical developments have been the character­

ization of the product state distributions by temperature-like param-
13 

eters, and the establishment of a relationship between these param-

eters and certain details of the potential energy surface .14 All of 

the classical theoretical studies have employed semi empirical poten-

7-11 tial energy surfaces. An ab initio potential energy surface has 

also been calculated15 and the semi-empirical surfaces are in reaSOil­

able agreement with it. 

Aside from possible defects in the potential energy surface 

used, the most important sources of disagreement between the quasi­

classical trajectory calculations and experiment are: (a) electronically 

non-adiabatic effects, and (b) quantum dynamical effects. The first 

problem has been discussed by various investigators16, 17, 18 but its 

importance is not completely understood at present and we shall not 

consider it here. 

In this paper, we study the importance of quantum dynamical 

effects in the F + Hz - FH + H reaction by comparing the results of 

accurate quantum mechanical solutions to the Schrodinger equation for 

the collinear collisions to the results of the corresponding quasi-

classical and semi-classical calculations. In the following paper 

(hereafter referred to as II), we make the analogous study for the 

F + D2 reaction and also examine exact quantum results for F + HD(DH). 

Results of our preliminary studies19, 20indicated that quantum effects 

were quite important in the collinear F + Hz reaction19 and, in fact, 
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the disagreement between the quasi-classical and exact quantum 

reaction probabilities at low reagent relative translational energies 

was quite large. In the present paper, we give a more detailed 

analysis of the reaction probabilities for F + H2 as calculated by four 

different methods: an exact quantum mechanical solution, the quasi­

classical forward and quasi-classical reverse trajectory methods and 

the uniform semi-classical method. We also present and compare 

the corresponding rate constants obtained from the results of these 

four methods. In addition, we examine resonances, tunnelling and 

energy partitioning in this reaction, and examine the results of exact 

quantum calculations at total energies for which two vibrational states 

of the reagent H2 are accessible. 

In all cases, we restrict our considerations to collinear colli­

sions of a fluorine atom with a hydrogen molecule where the two 

hydrogen atoms are considered to be distinguishable. The resulting 

cross sections are in the form of dimensionless probabilities of 

reaction between specific vibrational states of the reagents to form 

products in specific states and are not directly comparable with 

experiment (although certain other quantities such as final state 

distributions can, with caution, be subject to such a comparison. Our 

justification for studying collinear dynamiCS lies mainly in its use as 

a predictive model for the energy release behavior in actual three 

dimensional colliSions21 and as a testing ground for approximate 

theories of chemical dynamiCS. 22 Exact quantum dynamiCS is cur­

rently feasible for many types of collinear reactions and thus the 

importance of quantum effects in chemical reactions can readily be 
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established within the collinear restriction. How these quantum 

effects will be modified in two or three dimensional systems has not 

yet been fully established but some progress has been made towards 

obtaining exact quantum solutions to these problems23 and better 

converged results will soon be available
24 

for the H + H2 coplanar 

exchange reaction. 

In section 2 the potential energy surface used in our calcula­

tions is described. In section 3 we compare the quantum, quasi­

classical and semi-classical reaction probabilities for F + H2 and in 

section 4 we compare the corresponding rate constants. Reaction 

probabilities for F + H2 in the higher total energy range where two 

reagent vibrational states are open are discussed in section 5 and in 

section 6 is a short summary. 
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2. Potential Ener Surfac~ 

We used the semi-empirical LEPS potential ene r gy surface 

of Muckerman25 (his surface 5). This surface is intermediate in 

character between his surfaces 2 and 3 of reference 7b and was 

chosen to optimize agreement between his three dim ensional 

trajectory results and experiment. 7b Using Muckerman's notation, 

the parameters describing the extended LEPS surface are De (HF) = 

6. 122geV , fJe (HF) = 2 . 2187 A-1
, He (HF) = .9170 A, A (HF) - . 

0 _1 ~ 

0.167, De (H2) = 4. 7462eV,fJe (H2) = 1.9420 A , He (H2) ~ 0.749 A 

and A (H2 ) = 0.106. The exothermicity is 1. 3767eV (31.76 kcal/mole) 

and the barrier height 0 . 0461eV (1. 06 kca l/mole). Figure 1 shows an 

equipotential contour plot of the collinear surface along with the 

minimum energy path. The coordinate system for th e plot (and for 

all calculations) is chosen to diagonalize the kinetic energy with a 

single reduced mass and is defined by:26 

1 

iJ.F HH 4: 
iJ.HH r ) x ' = (rHF + 1 m H HH 

iJ. HF 

1 

ItHH 4: , 
(rHH ) x 2 = 

IlF HH , 

where rHF is the shorter of the two HF bond distances in the H - H - F 

linear geometry. The analogous coordinate system appropriate for 

the product arrangement channel (FH + H) is: 
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f..I.H FH 
1 

f..I.HF) z ' 
.-

(rHH = , + 1 
f..I.HF mH 

1 

f..I.HF .-z I = (rHF ) 2 
f..I.H FH , 

These coordinate systems have the advantage over others27 in that 

the transformation between the (x/, x/) coordinate system appro­

priate for reagents and the (z,', z/) system appropriate for the 

products, is orthogonal. 

Since the vibrational spacing in H2 is about 12 kcal/mole and 

that in HF is 11 kcal/mole, four vibrational states of HF are nor­

mally accessible for thermal distributions of reagent H2 due to the 

exothermicity of the reaction. 
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3. asi-Classical and Semi-Classical Reaction 

Probabilities and Rate Constants for Collinear F + H" -FH + H 
~~~vvvv~~~~~~~~~~~~~~~~~~~~ 

3. 1 Exact Quantum Reaction Probabilities 
3. 1. 1 Numerical Method 

We used the close coupling propagation method of 

Kuppermann28 to solve the Schrodinger equation for the collinear 

system F + H2 • The method involves dividing the configuration 

space depicted in Fig. 1 into different regions and then propagating 

though a given region in a coordinate system appropriate to that 

region. In particular, rectangular coordinates were used in the 

near asymptotic regions appropriate to reagents and products and 

polar coordinates in the strong interaction region with the origin of 

the coordinate syst,em chosen in the classically inaccessible plateau 

area corresponding to dissociation. A basis set of pseudo vibra-

tional eigenfunctions describing motion transverse to the direction of 

propagation was used for expanding the wave functions. These 

eigenfunctions were calculated by a finite difference procedure, 29 

and the basis set was changed often during the propagation to insure 

an efficient representation of the wave function. Contributions from 

continuum vibrational channels are not included in this method. The 

integration of the coupled Schrodinger equation was done with an 

Adams-Moulton 4th order predictor -- 4th order corrector method 

(with a 4th order Runge-Kutta-Gill initiator). The procedure for 

extracting the probability matrices from the asymptotic solutions is 

similar to that used by Truhlar and Kuppermann. 22 Convergence 

of the final reaction probabilities was carefully checked by observing 

the effect of varying the location of the origin of the polar coordinate 
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system, location of the end point of the integration, 30 number of 

closed vibrational channels, number of integration steps, and 

number of grid points in the finite difference eigenfunction deter­

mination. Using 12 to 15 vibrational channels throughout the inte-

gration, we obtained a scattering matrix for which unitarity and 

symmetry were deemed adequate (flux conservation to 0.5% and 

symmetry to 5% or better) in the reagent translational energy range 

(relative to v = 0) Eo = 0.0 to 1. 10eV. The computation time for a 

13 channel calculation on an IBM 370-158 computer was approximately 

32 min. for the initial calculation in which a large amount of energy 

independent information was stored on disk for subsequent use and 

5 min. per energy thereafter. 

3. 1. 2. Results 

We define the probability of reaction from an initial state v 

(of the reagent H2 ) to a final state v' (of the product HF) by the 

symbol P R,. (This symbol will also be used as a shorthand notation 
vv 

for the phrase "v-v' reactive collision. ") The total r eaction 

probability P vR from a given incident state v is the sum of Pv~' over 

all accessible v~ The exact quantum (EQ) reaction probabilities 

Po~' Po~ and poR for F + H2 in the translational energy range 

Eo = 0.0 to 0.4eV are presented in Fig. 2. The reaction prob­

abilities for the transitions Po~ and Po~ , which are also allowed in 

this Eo range, are plotted in Fig. 3. We see that Po~ and Po~ have 

an energy dependence very similar to Po~, but with much smaller 
R -, R R - 2 R 

values (Poo "" 6xlO P02 , POI' "" 1x10 P 02 ). As a result, only 

Po~ and Po~ contribute appreciably to poR in the energy range con-
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As was pointed out previously, 
9 

p o~ and P o~ have remarkably 

different threshold behaviors. We shall define the effective threshold 

energy ET for the v- VI transition as the difference between the (lowest) 

energy for which the corresponding P!I is equal to, say, 1 % of the 

maximum value attained by this quantity and the energy at which the V-VI 

process becomes energetically possible. With this definition, Po~ has an 

effective threshold of O. 005eV while for Po~ (which is energetically for­

bidden until Eo =0.013eV) ET is 0.045. Note that while the barrier 

height is O. 0461eV, the zero point energy of H2 is 0.268eV, so the 

transition P o~ is classically allowed even at zero translational energy. 

Likewise the 0- 3 reactive transition is classically allowed as the 

HF (3) channel opens up at Eo = 0.013eV. One possible explanation 

for why the effective threshold of P o~ is greater than zero is that 

the exchange of energy between motion transverse to the reaction 

coordinate and that along the reaction coordinate is not efficient 

(at least in the entrance channel region of configuration space where 

the saddle point lies). Truhlar and Kuppermann have shown22 that 

a more realistic estimate of the effective barrier height in H + H., 

is obtained from vibrationally adiabatic theory. The vibrationally, 

adiabatic barrier (for zero curvature and USing the harmonic approxi­

mation) for F + H2 is O. 26eV which is still appreciably larger than 

the effective quantum threshold energy for P~ (0. 005eV) although it 

is quite close to the Po~ quasi-classical threshold ener gy (.025eV) 

(see section 3.2.2). This difference between the quantum and quasi-

classical threshold ener~ies could in part be due to tunnelling 

through the one dirrrmsional adiabatic barrier, within the framework 

of an adiabatic description of the quantum dynamics in the neighbor-
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hood of the saddle point. In II we shall see that the results for 

F + D2, F+ HD and F + DH support this conclusion. The high 

threshold energy for Po~ is not easily explained as resulting from 

one dimensional adiabatic barrier tunnelling and is probably due 

to a dynamical effect as will be discussed in section 3. 2. 2. 

The sharp spike in the Po~ curve at energies slightly above 

threshhold is reminiscent of the Feshbach type internal excitation 

resonances observed in the collinear H + H2 reaction. 31 A dis­

cussion of other resonances in the F + H2 reaction is presented in 

section 5. 

Simultaneously with the reactive transition probabilities, we 

have calculated the nonreactive ones corresponding to the collisions 

F + H2(0) - F + H2(0) and FH (v) + H - FH(v') + H. The probabilities 

for the first of these non-reactive processes are simply the difference 

between unity and the total reaction probability poR (as long as v = 1 

of H2 is closed). The transition probabilities for the H + HF(v' ) 

inelastic (v' '* v) processes are all quite small (generally less than 

0.01) up to Eo = O. 4eV and vary relatively slowly with energy. 

Unitarity of the scattering matrix then forces the elastic probabilities 

for H + HF(v) collisions to be roughly equal to the difference between 

unity and the probability for the F + H2 (0)- FH(v) + H reactive 

process. The behavior of the inelastic transition probabilities for 

nonreactive H + HF collisions contrasts strongly with the corres­

ponding inelastic transition probabilities for collinear H + FH 

collisions. 32 In the latter case we find that the probability of an 

inelastic collision is comparable in magnitude to the elastic transition 
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probabilities and, in addition, the probabilities of multiquantum 

jwnp transitions are often greater than the probabilities of single 

quantwn jump transitions. A more complete discussion of the 

results for collinear H + FH will be given in ref. 32. 
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3. 2 Quasi-Classical Reaction Probabilities 

3. 2. 1 Method 

The classical trajectory calculations were carried out in the 

same way as in a previous H + H2 study. 33, 34 The initial phase angle 

variable for the vibration of the ground state of H2 was varied uniform­

ly over a grid of typically 100 points in the interval 0 to 2u. The final 

action number of the product HF was computed for each reactive tra­

jectory and assigned a quantum number by rounding off the action num-
R 

ber to the nea,rest integer. Thus, the transition probability Po v' was 

defined as the fraction of reactive trajectories with final quantum 

number v'. 

When this procedure is carried out in the direction 

F + H2 (v=O)- FH (v') + H we term the quasi-classical transition 

probabilities "Quasi-Classical Forward" (QCF). For the reverse 

reaction the quasi-classical transition probabilities are termed 

"Quasi-Classical Reverse" (QCR). Quantum mechanically, the 

forward and reverse probabilities are rigorously equal at the same 

total energy, but quasi-classically they are not. 20 Therefore, 

either of the two quasi-classical results, QCF or QCR, could be 

used to represent the probabilities for the (forward) reactive 

collisions. Since there is presently no ~ EEiori way of ,deciding 
, 

which of these two procedures will give results closer to the EQ 

ones, we have used them both and corresponding results are 

presented below. 
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3. 2. 2 Results 

In Fig. 4 we plot the QCF and EQ reaction probabilities 

Po~' Po~ and P~ versus the translational energy Eo, as well as 

the corresponding exact quantum ones given in Fig. 2. Out of the 

100 trajectories,none yielded HF with II = 0 or 1 (i.e . ,po~ = Po~ = 0 

probably to within 0.01 or less). There are two important points 

to be noted in comparing the EQ and QCF results. First, both the 

exact quantum and the quasi-classical results predict roughly the 

same amount of vibrational excitation in the HF product on the 

average. Indeed, if we define fvas the fraction of the total ener!!:y 

which ends up as vibrational energy in the product HF, then in Fig. 5 

we see that f is roughly O. 81 a nd nearly independent of Eo in the 
v 

QCF results, and fluctuates between 0.66 and 0.89 with an average 

value of 0.79 in the EQ results. From this, we conclude that the 

quantum and quasi-classical dynamics agree (on the average) with 

respect to partitioning of prpduct energy between translational and 

vibrational degrees of freedom. Second, despite this average 

agreement, there are very Significant differences between the EQ 

and QCF reaction probabilities particularly with respect to the Po~ 

threshold and the Po~ / Po~ ratio. In Fig. 6 this ratio is displayed 

as a function of Eo for both the EQ and QCF results. As has been 

pointed out previously, 19 the lack of agreement between the individual 

transition probabilities Po~ and Po~ can be partially explained as 

arising from the reasonable but nevertheless arbitrary way of 

assigning a discrete quantum number to a continuous product vibra­

tional energy. However, the large differences in the energy 



182 

dependences of the EQ and QCF Po~ (v=2, 3) suggests that this is 

probably not the whole explanation and that other significant 

differences exist between the classical and quantum dynamics in 

this system. In addition, this arbitrariness in the definition of a 

product quantum number is not present in the total reaction prob­

abilities P~ , yet the differences in magnitude and energy dependence 

of the EQ and QCF results are still very significant. 

In Fig. 7 are plotted the QCR and EQ reaction probabilities 

Po~' Po~ and P~ versus Eo. The transition probability Po~ is non­

zero at zero reagent translational energies. This can occur because 

of the convention of rounding classical vibrational quantum numbers 

to the nearest integer. 20, 33, 34 

The QCR results in Fig. 7 are in much better agreement with 

the quantum probabilities than are the QCF results in Fig. 4. This 

is true not only of the total reaction probabilities P~, but also of the 

individual transition probabilities especially Po~. The fact that the 

threshold behavior of the Po~ tranSition can be described correctly 

by a quasi-classical method suggests that the O. 045eV effective 

threshold energy in Po~(EQ) is a dynamical effect related to motion 

through classically accessible regions of configuration space. The 

fact that the reverse rather than the forward trajectory method 

produces the best agreement with the exact quantum results must be 

regarded as an empirical observation at present. It would be 

interesting to further analyze the quasi-classical results from the 

viewpoint of what regions of configuration space are being sampled 

by the QCR and QCF trajectories and with what velocities , and how 
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well the current density fields derived from these trajectories agr ee 

with the corresponding exact quantum current de~sities. 35 The 

good agreement between the QCR and EQ results suggests that the 

QCR procedure shoUld be applied to a three dimensional trajectory 

calculation. If the differences between the one dimensional QCR and 

QCF results are also found in three dimensional calculations, this 

could be indicative of the presence of important quantum dynamical 

effects in the three dimensi ona l reaction. Wilkins 36 has c ompleted 

a three dimensional QCF s tudy of the reaction FH (v) + H - H2 (v') + F 

(v varying from 1 through 6). His r esults can be considered to be 

QCR calculations for the reaction F + Hz (v / )- FH (v) + H. He has 

also published QCF rate constant calculations 9a for the latter reaction 

with v' , = O. It would be very interesting t o compare the correspond­

ing (QCR and QCF) cross s ections. Perry et al37 have recently 

published a three dimensional comparison of the QCR and QCF cross 

sections for the endothermic I + H2 -HI + I reaction at one total 

energy. They found that microscopiC reversibility was approximately 

obeyed at thls energy but made no detailed s tudy of the energy 

dependence of the cros s s ections and did not investigate threshold 

effects . 
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3. 3 Semi-Classical Reaction ProbabilitieS 

3. 3. 1 Method 

For most energies, uniform semi-classical reaction 

probabilities were calculated according to the procedure described 

in reference 34. However, for translatiomil energies Eo greater 

than 0.10eV the transition Po~ was computed by a simple analytical 

continuation technique, 38 similar in spirit to that of Miller. 39 

This was necessary in order to obtain a non-vanishing value of this 

transition probability since in the above energy range, although 

energetically allowed, it is dynamically forbidden. 34, 39 In addition, 

it was found that Po~ was ill-determined near threshhold in that a 

plot of final FH vibrational action number mf versus initial H2 

vibrational phase angle (qo) revealed discontinuous behavior for mf 

near the value 3. 40 , 41 We managed to overcome this difficulty at 

several energies by doing the semi-classical analysis for the reverse 

reaction, i.e. H + HF (v = 3) -H2 (v = 0) + F.42 For this reaction, 

the results were considerable less "ragged" for m f approxinRtely 

equal to 0 than they were for the forward reaction at mf = 3. A 

more complete discussion of this procedure is given in paper II for 

the F + D2 reaction. 
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3. 3. 2 Results 

The semi-classical reaction probabilities Po~ and Po~ for 

F + H2 are presented in Fig. 8 along with the corresponding exact 

quantum probabilities. In the absence of considering complex­

valued trajectories (in complex phase space at complex times), 

vanishing quasi-classical reaction probabilities implies that the 

corresponding semi-classical ones also vanish. Therefore , 

Po~ (USC) = Po~ (USC) = O. From the appearance of the reaction 

probabilities in Fig. 8, we see that the qualitative agreement between 

the EQ and USC results is quite good. There are large differences 

between the magnitudes of the USC and EQ probabilities at certain 

energies, but such differences are not usually too important for the 

resulting collinear rate constants (see section 4). Of more serious 

consequence for such rate constants is the small difference between 

the threshold energies of the Po~ curves. As pointed out in section 

3. 2. 1., this threshold difference of about O. 020eV could be partly 

due to an adiabatic tunnelling effect and it may be possible to improve 

the agreement between the EQ and USC results by using complex 

traj ectories. 43, 44 
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3.4 Comparison of EQ, QCF, QCR, and USC Reaction Probabilities 

In Figs. 9 and 10 we compare the exact quantum, quasi­

classical forward, quasi-classical reverse and semi-classical 

reaction probabilities p!;, P~3 and P~ for F + H2 as a ftthction of the 

reagent translational energy. Note that the QCR results resemble the 

USC ones much more than the QCF results do. Obviously, the USC 

threshold energy must be larger than or equal to both the QCF 

and QCR threshold energies. However , we cannot presently put 

forward an !!. priori reason that would have permitted us to predict 

which of the latter two energies is greater nor which of the quasi­

classical reaction probabilities should be closer to the USC ones. 

It is also very interesting to note that the QCR results resemble 

the EQ ones more than the USC ones do. One should, however, 

be cautious not to generalize this observation. As shown in paper 

II, the reverse behavior is found for the F + D2 reaction. 
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4. EQ, QCF, QCR and US C Rate Constants for F + "2 
The detailed v':"v' rate constant for a one-dimensional bi-

molecular reaction such as F + "2 (v)- FH (v') + " is defined a s 

Vv pR, 
vv 

where V is the initial relative velocity of the reagents F + H2 (v) 
v 

and fT (Vv ) is the one-dimensional Boltzmann relative velocity 

distribution function. Cbanging the integration variable from 

V to the initial relative reagent translational energy E this v v 
expression becomes22 

k~ v,(T) 
1 1 [OD R - Ev/ RT J' 

= (2 kT)2 f p , (E ) e dE. 
1TIlF HH 0 vv v v , 
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Note that for one~dimensional systems, number densities are ex­

pressed in molecule/ em so that a bimolecular rate constant has 

the units em/ (molecule· sec.). 

Using the reaction probabilities presented in Fig. 7, we 

have calculated the rate constants ko~ and ko~ from the EQ, QCF, 

. QCR and USC reaction probabilities. Arrhenius plots of these rate 

constants are presented in Fig. 11. We see that for ko~ all plots 

are nearly linear at high temperatures. Because of the extremely 

small effective threshold energies of P o~, the Arrhenius plots of 

ko~ are only linear at low temperature « 500 K). At high tempera­

ture, the temperature dependence of ko~ approaches Tt which is 

characteristic of a reaction with zero activation energy. Arrhenius 
•• , . ' 02, 03 . 

actIvatwn energIes Ea and Ea and pre-exponentIal factors A02 and 

Ao3 ' which were determined by a least squares fit to the 200-400 K 

results and to the 900-1200 K results, are. given in Table 1. It is 

clear from Fig. 11 and Table I that k~ (QCF) has an activation 

energy which is Significantly lower than the activation energies of 

k~ (EQ, QCR or USC). This is an obvious consequence of the 

different effective threshold energies of the reaction probabilities 

(Fig. 9) and illustrates how these threshold differences can affect 

the detailed rate constants. As might be expected from Fig. 9, 

ko~ (QCR) and k~ (USC) are in quite good agreement with k~ (EQ). 

The relative agreement among the corresponding three ko~ 

rate constants is much less satisfactory at low temperatures, the 
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difference between ~ (EQ) and ko~ (USC) is mainly determined by 

the 0.02 eV difference in the threshold energies of the P~ reaction 

probabilities. Since ~ (QCR) has its effective threshold at zero 

translational energy, ~ (QCR) has a smaller activation energy 

than ko~ (EQ) which in turn has a smaller activation energy than ko~ 

(QCF or USC). The total rate constant koR which is essentially due 

to the contributions of koI,; and ~ does not exhibit simple Arrhenius 

behavior because it is the sum of two Arrhenius expressions which 

are of equal magnitude near T = 1000 K, but which have quite 

different activation energies. Note that the experimental activation 

energy (which is 1.71 kcal/mole)45 seems to represent an average 
02 03 

of the present EQ values of Ea and Ea. 

In Fig. 10 we plot the ratio ko~ / ko~ as a function of tempera-

ture. The large difference between the temperature variation of the 

QCF ratio and that of the EQ, QCR or USC ratios is again a conse­

quence of the difference in the reaction probabilities in Fig. 9. It is 

interesting to note that the three dimensional qUasi-classical forward 

trajectory method yields a rate constant ratio which is nearly 

independent of temperature, 9a in agreement with the one dimensional 

QCF results presented here. An experimental measurement of the 
R R 2e 

temperature dependence of k;i3 / k;i2 seems to agree reasonably well 

with the three dimensional QCF result9a and consequently disagrees 

with our EQ result. This may indicate that the strong difference 

between the activation energies of ~ and ~ observed here are 

largely averaged out in three dimensions. On the other hand, for the 

F + D2 reaction, the agreement between experiment and the quasi-
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classical results is not as consistent as it is for F + H2 (to be discuss­

ed in paper II), so it is possible that the averaging process in three 

dimensions does not completely destroy the important differences 

between the results of quantum and classical mechanics as reported 

in this paper. 

In contrast to the ko~ / ko~ ratio, ko~ (EQ) / ko~ (EQ) is nearly 

constant in the temperature range considered here. This agrees with 

the temperature variations of both the experimental2e and three 

dimensional QCF9a results, although the absolute magnitudes of the 

ratios are quite different ( ~ 90 for 1-D versus ~ for 3-D). We also 

found that ko~ (EQ) / ko~ (EQ) is nearly independent of temperature 

with a value of roughly 210. Therefore ko~ (EQ) and ko~ (EQ) are 

respectively about 2 and 4 orders of magnitude smaller than ko~ (EQ). 
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5. Exact Quantum Reaction Probabilities for Vibration ally Excited 

~ 
In order to observe the effect of vibrational excitation of the 

reagent Hz on the resulting reaction probabilities, we extended the 

range of our exact quantum calculations to total energies of 1. 4 eV. 

In Fig. 13 we plot PoIJ-, Po~ and P,I}, the three largest reaction 

probabilities for F + H2 in this energy range, as a function of energy. 

There are several important points to note about this figure. 

First, the transition p,I} has virtually zero effective threshold 

energy but otherwise has a similar translational energy dependence 

to that of Po~ (which has the same v' - v value as P,I}). The absence 

of a significant threshold energy in P,~ indicates that the dynamical 

effects responsible for the appearance of a significant effective 

energy threshold in Po~ are no longer significant in P II} . 

This will lead to lower activation energies and higher rates of reaction 

for reagents which are initially vibrationally excited. The similarity 

between P,I} and Po~ implies that for the most significant reaction 

probabilities, an increase in the vibrational energy of the reagent 

results in a corresponding increase in the vibrational energy of the 

product. This agrees with experimental observations for F + D2 • 1f 

Second, the reaction probabilities Po~ and p,r; have sharp 

peaks at Eo = O. 425eV and O. 823eV respectively. An analYSis of the 

energy dependence of the scattering matrix elements corresponding 

to similarly shaped reaction probability curves in the H + H2 collinear 

reaction31, 46 showed that narrow peaks (or dips) in the reaction 

probabilities were the result of the presence of internal excitation 
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(Feshbach) resonances. These resonances are associated with 

excitations of virtual states of the intermediate triatomic complex 

(FHH in the present case). From Fig . 13 we see that the contri­

but ions of the direct processes seem to be rather small in regions 

of energy where the resonance processes are important. This 

results in only small interference effects between direct and com­

pound state ccntributirns to the scattering amplitude and the resulting 

reaction probabilities have nearly symmetrical peaks as a function 

of energy near the resonance energies. The resonance widths are 

about. 01eV and only one non-negligible transition probability seems 

to show resonant behavior at either of the two resonance energies. 

There seems to be a correlation between the appearance of an 

internal excitation resonance and the opening of a specific vibrational 

state of the product (as in the resonance at O. 823eV, which is close 

to the opening of the v = 5 channel in HF at O. 83geV). · This indicates 

a correlation of the resonance state with the reaction products rather 

than with the reagents or with the transition state. We shall analyze 

this phenomenon further in paper II when we examine the high energy 

F + D2 reaction probabilities. 

Although the total E in Figure 13 extends to 1. 16eV only, we 

have done calculations up to E = 1. 4eV but found all reaction proba­

bilities in this higher energy range to be less than 0.01. This 

behavior seems to be related to "centrifugal" effects associated to 

the angle between the X'l1 and z; axes (i. e., the skew angle between 

the asymptotic portions of the minimum energy path for the potential 

of Fig. 1) and will be further discussed in paper II. 
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6. Summary 
~ .................... ....... 

Many of the dynamical effects presented in this paper will 

be further examined in paper II to where we will relegate a more 

extensive summary of quantum effects in the F + H2 reaction. In 

this paper we have seen that there are very serious differences 

between the results of quantum and standard quasi- classical mechanics 

for collinear F + H2 , most notably in the energy dependence of the 

reaction probability Po~ near threshold. These differences in the 

behavior of the reaction probabilities result in important differences 

in the detailed thermal rate constants. The fact that the quasi­

classical forward reaction probabilities and rate constants disagree 

quite strongly with the exact quantum results is of great Significance 

since nearly all the trajectory studies done to date on this reaction 

have been of the quasi-classical forward type. For the present re­

action, both the quasi-classical methods provide us with more accurate 

ways of approximating the exact quantum results. This suggests that 

it might be of interest to use these methods in three dimensionS. 

Indeed, it may be possible to use the results of collinear calculations 

such as the ones presented here as a guide line when choosing an 

approximate method for doing three dimensional calculations. 

Additional exact quantum results for F + H2 show that 

threshold effects are no longer important when the reagent H2 is 

initially vibrationally excited. The dominant transitions appear to 

be those which channel additional vibrational energy in the reagents 

into additional vibrational energy in the products. Internal excitation 

resonances are found to play an important role in the reaction prob-
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abilities at certain translational energies. There seems to be a one 

to one correspondence between the energy at which a resonance 

occurs and the energy at which a related product vibrational channel 

opens. 
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TABLE. I. Arrhenius Rate Constant Parameters for F + Hz - FH + H(a) 

02 
Ea 

02 
Ea 

Aoz 

Aoo 

02 
E a 

()3 

Ea 

A02 

A03 

Temp. 
Range EQ QCF QCR 

200-
400 K .411 .791 .230 

200-
400 2.279 .853 2.596 

200-
400 1. 620x10 

4 
2. 424x10 

4 
1. 669x10 

4 

200-
400 2. 667x10 

4 
2. 492x10 

4 
3. 377x10 

4 

900-
1200 .223 .750 .086 

900-
1200 2.628 1.444 2.869 

900-
1200 1. 459xl0

4 
2. 558xlO 

4 
1.628xl0 

4 

900-
1200 4. 433x10 

4 
4. 464x10 

2 
4. 689x10 

4 

(a) koi (T) = Aoi exp (- E~i / RT) where 

EaOi is in keal/mole and Aoi is in 

em/ (molee . sec). 

USC 

.766 

2.495 

1. 486x10 
4 

4.621x10 • 

.390 

2.368 

1. 182xlO 
4 

4.499x10 
4 
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Figure Captions 

1. Equipotential contour plot of the FH. collinear potential energy 

surface used in all calculations r eported here. Energies given 

ar e relative to the minimum in the H. diatomic potential curve. 

Coordinate system is defined in text. Heavy line denotes the 

minimum energy path with saddle point indicated by a cross. 

2. Exact quantum reaction probabilities for collinea r F + H. as a 

function of relative translational energy Eo and total energy E 

(relative to minimum in H. diatomic potential energy curve). 

(a) Total reaction probability P~ from II = 0 of H. (b) Reaction 

probabilities Po~ and Po~ (defined in text). Vertical arrow ih 

abscissa ihdicates the energy at which II = 3 of HF becomes 

accessible. 

3. R R Exact quantum reaction probabilities POl and Poo (similar to 

Fig. 2). 

4. Quasi-classical forward and exact quantum reaction probabilities 

for F + H.: (a) poR, (b) Po~ and Po~. Dashed line indicates QCF 

results with their associated statistical errors indicated by 

vertical bars. Solid line indicates EQ results (as in Fig. 2). 

5. Fraction (fv) of the total reagent ene rgy (in excess of product zero 

point energy) which ends up as vibrational energy in the product 

HF as a function of the reagent translational energy Eo and total 

energy E. Solid line indicates EQ results and dashed line QCF 

results. Other notation analogous to Fig. 2. 
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6. Ratio of reaction probabilities Po~ / Po ~ versus translational 

energy Eo and total energy E. Solid line indicates EQ results 

and dashed line QCF results. Other notation analogous to Fig. 2. 

7. Quasi-classical reverse and exact quantum reaction probabilities 

for F + H.: (a) poR, (b) Po~ and Po~ . Dashed line indicates QCR 

results with their associated statistical errors indicated by 

verticai bars. Solid line indicates EQ results (as in Fig. 2). 

8. Uniform semi-classical and exact quantum reaction probabilities 

for F + H.: (a) poR, (b) Po~ and Po~. Dashed line indicates USC 

results, solid line EQ results as in Fig. 2. 

9. EQ (solid), QCF (short dash), QCR (dash dot) and USC (long dash) 

reaction probabilities Po~ (a) and Po~ (b) for F + H. (from 

Figs. 2,4,7-8). 

10. EQ (solid), QCF (short dash), QCR (dash dot) and USC (long dash) 

total reaction probability poR for F + H. (from Figs. 2,4,7-8). 

11. Arrhenius plot of EQ (solid), QCF (short dash), QC'R (dash dot) 

and USC (long dash) rate constants for F + H.: (a) ko~, (b) ko~. 

12. Ratios of rate constants ko ~ / ko ~ for F + H2 as a function of 

temperature. EQ (solid) , QCF (short dash), QCR (dash dot), and 

USC (long dash). 

13. Exact quantum reaction probabilities Po~' Po~ and Pl~ for F + H. 

at translational energies higher than those in Fig. 2. Arrows near 

Eo = O. 44eV and O. 84eV indicate the opening of v = 4 and 5 respec­

tively of HF while that at O. 51eV indicates the energy Eo at which 

v = 1 of H2 becomes accessible. 
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I. 7 EXACT QUANTUM SEMI-CLASSICAL AND QUASI-CLASSICAL 

REACTION PROBABILITIES FOR THE COLLINEAR F + D2 -> 

REACTION. 
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EXACT UANTUM SEMI-CLASSICAL AND UASI-CLASSICAL 

REACTION PROBABILITIES FOR THE COLLINEAR 

~D2 ~ FD + D REACTION* 

George C. Schatz t, Joel M. Bowman t and Aron Kuppermann 

** Arthur Amos Noyes Laboratory of Chemical Physics 

California Institute of Technology 

Pasadena, California 91109 

(Received ) 

Exact quantum, quasi-classical and semi-classical reaction 

probabilities and rate constants for the collinear reaction F + D2 ~ 

FD + D are presented. In all calculations, a high degree of popula­

tion inversion is predicted with Po~ and p! being the dominant 

reaction probabilities. In analogy with the F + H2 reaction (ref. 1, 

preceding paper), the exact quantum 0 ~3 and 0 ~4 probabilities 

show markedly different energy dependence with Po~ having a much 

smaller effective threshhold energy (ET = 0.014 eV) than Po~ 

(0.055 eV). The corresponding quasi-classical forward probabilities 

Po~ and Po~ are in poor agreement with the exact quantum ones, 

while their quasi-classical reverse and semi-classical counterparts 

provide much better apprOximations to the exact results. Similar 

* Work supported in part by the United States Air Force Office of 
Scientific Research. 

t Work performed in partial fulfillment of the requirements for the 
Ph. D. degree in Chemistry at the California Institute of Technology. 

** Contribution No. 
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comparison~ are also made in the analysis of the corresponding EQ, 

QCF, QCR and USC rate constants. · Additional quantum results at 

higher energies are presented and discussed in terms of threshold 

behavior and resonances. ExaCt quantum reaction probabilities for 

the related F + HD ~FD + H reactions are given and an attempt to 

explain the observed isotope effects is made. 
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1. Introduction 
~ 

In the preceding paper1 (hereafter referred to as I) we 

compared the exact quantum (EQ), quasi-classical forward (QCF), 

quasi-classical reverse (QCR) and uniform semi-classical (USC) 

reaction probabilities for the collinear F + H2 ~ FH + H reaction. 

Tne results of all four methods agreed in their prediction of a high 

degree of population in'llersion in the products of this exothermic 

reaction. However, the QCF probabilities were found to differ 

substantially from the corresponding EQ results in threshold behavior 

and energy dependence. Tnis could have important consequences 

regarding the validity of the standard three-dimensional quasi­

classical method which has been used on F + H" (D2) and wnich is 

the three-dimensional version of the QCF method. We found much 

better agreement between the exact quantum probabilities and both 

the quasi-classical reverse and the uniform semi-classical results 

thus indicating that either of the last two methods might be preferred 

to the quasi-classical forward one in three-dimensional calculations. 

In this paper we present the analogous EQ, QCF, QCR and 

USC results for the collinear F + D2 reaction over roughly the same 

range of translational energies as was used in I. In addition, exact 

quantum probabilities for t he reactions F + HD (DH) ~ FH (FD) + H (D) 

are given. We also study the importance of tunnelling and resonances 

in F + D2 , F + HD and F + DH. These calculations were done in order 

to assess the effect of isotopic substitution on the magnitude of the 

quantum effects and on the validity of the approximate methods. 
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The potential energy surface used in these calcula tions is 

identical to that described in 1. 2 In addition , most of the numerical 

techniques are the same as was used in I and will not be described 

again here except to note changes made. 

In Section 2 we discuss the EQ, QCF, QCR and USC reaction 

probabilities for F + D2 and the corresponding collinear rate c onstants 

are presented in Section 3. Section 4 contains a study of the behavior 

of the reaction probabilities at energies sufficiently high to excite the 

first two vibrational states of reagent D2 • In addition, we discuss 

resonances in this reaction , giving specific comparisons between 

the r e sults of the exact quantum , and approximate methods in the 

vicinity of these resonances. Section 5 contains a description of the 

EQ reaction probabilities for F + HD (DH) and in Section 6 we 

present a summary of conclusions . 

2 . asi-Classical and Semi-Classical Reaction Probabilities 

for Collinear F + D ~ FD + D 
~ 

2. 1 Exact uantum reaction probabilities ....... , . ~ 

Since the vibrational spacing in D2 is roughly 9 kcal / mole 

and that in FD is about 8 kcal / mole , and the reac tion is exothermic 

by 32 kcal / mole approximately, at least five vibrational levels of 

DF are accessible when D2 has an initial quantum number lJ = O. By 

COinCidenc e , the lJ = 3 and 4 vibrational levels of DF have nearly the 

same total energies as the lJ = 2 and 3 vibrational levels of HF, 

respectively. This results in remarkable similarities between the se 

two reactions despite the Significant difference in the corresponding 
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reduced masses (Ily H / /-L F D = o. 548) . As in I, we will designate 
' 2 ' 2 

by P II~' the reaction probability for a reagent initially in state II to 

form product in state If, and by P: the total reaction probability 

from initial state II (i. e., L, P II~'). In Figure 1 we present the exact 
II 

quantum reaction probabilities Po~, Po~ and Po R for F + D2 at 

relative translational energies (Eo) in the range 0.0 to 0.25 eV. The 

corresponding probabilities Po ~ , Po~ and Po ~ are plotted in 

Figure 2. It is apparent from these figures that Po~ and Po~ are the 

most significant contributors to poR in this Eo range. The Po~, Po~ 

and Po~ curves are all very similar in appearance to the Po~ one, but 

with greatly reduced magnitudes (Po~ - 6.8 x 1O-
2
pt;, Po~ - 5 X 10- 4 

Po~, Po~ - 6 X 10-6po~). There is a very significant difference 

between the threshold behavior of Po~ and that of Po~ quite analogous 

to what was observed in I for the reaction probabilities por; and Po~ 

of F + H2 • As in I, it is convenient to define an effective threshold 

energy ET for the II -> II' r eaction as the difference between the 

(lowest) energy for which the corre sponding PII~' is equal , say, to 1% 

of the maximum value attained by this quantity and the energy 'at 

which the II -> II" process becomes energetically possible. Table I 

contains the values of ET for several important reaction probabilities 

for the reactions of F with H2 , D2 , HD and DH as well as the corre spond­

ing vibrationally adiabatic zero curvature barrier heights EVAZC 
(described in I). From it we see that for F + D2 the value of ET for 

Po~ (EQ), 0.014 eV, is appreciably lower than the EVAZC value of 

0.032 eV. This can be interpreted as an indication of the extent of 
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vibrationally adiabatic one-dimensional tunnelling (see paper I) in 

this system. The value of ET for Po~ (QCF) of 0.030 eV is very 

close to EVAZC" This suggests that the chemical motion for this 

system is nearly vibrationally adiabatic in the approach coordinate 

in the sense that the local action number for the motion transverse 

to the reaction coordinate should vary relatively little between the 

separated reagent region and the saddle pOint region. The correspond-

R ( . ing values of ET and EVAZC for P02 EQ) of F + H2 are 0.005 eV and 

0.026 eV, indicating somewhat more tunnelling in this system than 

in the F + D., as expected. The effective threshold energy of Po~ 

(F + D2) ET = 0 . 055 eV is similar to that of Po~ (F + H,) (0.045 eV). 

The near coincidence in energy between the 1I = 3 and 4 vibrational 

levels of FD and 1I = 2 and 3 of FH is probably responsible for the 

very similar appearance of the corresponding EQ reaction probabili­

ties. (Compare Figure 2 of I with Figure 1 of the present paper.) 

There are, however, differ ences in the maximum values of certain 

analogous reaction probabilities especially Po~ (F + D2) and Po~ 

(F + H,) (which have maximum values of 0.66 and 0.44 respectively). 

We shall see in Section 4 that the differences between analogous reac­

tion probabilities for the two reactions become even more important 

for Eo > 0.25 eV. 

2.2 asi-classical reaction robabilities 

In Figure 3 are plotted the QC F and EQ reac tion probabilities 

Po~ , Po~ and P~ for F + D2. No reactive trajectories yield DF with 

II' = 0 or 1 but there is a small probability of reaction to II' = 2 (always 
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< 0.1 and vanishing for Eo > 0.12 eV). The corresponding QCR 

reaction probabilities for the same energy range (0.0 < Eo < 0.12 eV). 

are plotted in Figure 4. In Figure 3 we see that there is a very large 

difference between the threshold behavior of Po~ (EQ) and Po~ (QCF). 

In analogy with the F + :a. Po~ behavior, 1 we find that the quasi­

classical reverse Po~ of F + D2 (Figure 4) has a threshold behavior 

which is much closer to the exact quantum one than is the QCF 

threshold. Unlike Pci~ (F + H2), the energy dependence of Po~ (F + D2) 

is predicted somewhat more accurately by the QC F method than by 

the QCR method. The EQ and QCF total reaction probabilities p? 
(Figure 3) are in somewhat better average agreement than are the 

EQ and QCF total reaction probabilities in F + H2 (Figure 4 of I). 

This seems to indicate that the differences between quantum and 

classical dynamics are less severe for F + D2 than for F + :a.. 
However, at least for collinear reactions, these differences are 

still quite significant. 

In Figure 5 we plot as a function of Eo the fraction fv of the 

total energy which appears as vibrational energy of the DF product 

for the EQ and QCF calculations. It can be seen that fv(QCF) is 

nearly independent of Eo and has an average value of 0 . 79. The 

corresponding EQ curve has a more pronounced Eo dependence but 

about the same average value over the Eo range considered. We find 

that the average value of fv is almost the same for both F + H2 and 

F + D2. This independence of isotopic substitution agrees with the 

corresponding experimental result2 and with the predictions of 
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three-dimensional trajectory calculations 4 although our value of 

fv (0.79) which ignores rotational degrees of freedom is somewhat 

higher than the experimental result (0.66)3. This general average 

agreement between the EQ and QCF fv versus Eo curves indicates 

that the dynamic processes governing the average energy disposal 

between vibrational and translational degrees of freedom of the 

products can be well approximated by the classical trajectory method. 

However, one should keep in mind that this is not so for the distribu­

tion of this vibrational energy among the available vibrational states, 

i. e., that large differences between product state population ratios 

obtained from the EQ and QC F methods do exist, as indicated in 

Figure 6. 

2.3 Semi-classical reaction robabilities 

Figure 7 shows the uniform semi-classical reaction probabili­

ties Po~ and Po~ along with the corresponding EQ results. It was 

noted in paper I (Section 3.3) that'raggedness" in the final action num­

ber f~nction m(qo;l', E) as a function of initial vibrational phase qo 

caused difficulties in calculating USC transition probabilities at the 

threshold of the F + H,,(O) -0 FH(3) + (H) reaction. The same problem 

occurred for the 0 -> 4 transition in the F + D2 reaction. We were 

able to overcome this difficulty by using the reverse final action 

number function, n(qo ;m, E), which was found to be smooth for the 

values n = 0 and m = 4. The justification for using this procedure was 

given in I. The curves for the forward and reverse values of m for 

this 0 -> 4 transition at an energy E = 0.3107 eV (Eo = 0.12 eV) 
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are given in Figure 8. When all the relevant semI-classical quantities 

are well-behaved ("non-ragged") functions of qo, the USC transition 

probabilities obey microscopiC reversibility5 and it is not necessary 

to calculate both the forward and reverse results. However, as the 

example above demonstrates, when "raggedness" exists, it is advis-

able to conSider the forward and the reverse results. In our example, 

the reverse results are the preferred ones since there is no rag-ged-

ness in the region corresponding to D + DF(4) ~ D2(0) + F. These 

were the ones used in calculating Po~ (and Po~ for the F + H2 reaction) 

in its threshold region. The USC Po~ transition probabilities at 

Eo = 0.08 eV and 0.085 eV were calculated in the statistical approxi­

mation. 6 At these energies the reverse reaction showed that the 

4 ~ 0 transition was dynamically forbidden. However, since statis­

tical (i. e., ragged) behavior was evident in the forward reaction we 

did calculate a non-zero value for Po~ at the two energies just 

mentioned. 

The USC probabilities in Figure 7 are in much better agree­

ment with the corresponding EQ results than are the quasi-classical 

ones. As was the case with the QCF Po~ threshold, there is a small 

difference between the Po~ (USC) and Po~ (EQ) threshold energies, 

but the USC result may be improved by using complex trajectories. 7 

The oscillations in P03 (USC) in the Eo range 0.10 eV - 0.25 eV do 

not have any analog in the quantum results. One might expect that 

the raggedness in the plot of final action versus initial phase (see 

Fig-ure 8a) could be an indication of resonant behavior in lhis ene rg-y 
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range, but the quantum results of Figure 1 do not substantiate this. 

In Section 4 we discuss the possible relationship between resonances 

in the EQ results and "raggedness" in the USC ones. 

One significant aspect of the comparison between the USC and 

EQ results in Figure 7 is that the maximum values of the EQ and USC 

reaction probabilities Po~ and Po~ are nearly identical. This con­

trasts with the results of both the QC F and QCR calculations which 

generally tend to underestimate the maximum values of the probabilities 

(Figures 3 and 4). The significant improvement in the quality of the 

results obtained in going from the quasi-classical to the semi-

classical approximation suggests that an equivalent improvement may 

occur for the three-dimensional F + D2 reaction and that the semi­

classical results may be quite reliable for this case. However, we 

must stress that the utilization of uniform rather than primitive semi­

classical techniques is essential to the success of this method for the 

collinear reaction and thus it seems likely that an analogous uniform 

procedure will be required in the three-dimensional problem. 8 

2.4 Com arison of E, F QCR and USC reaction robabilities 

In Figure 9 we compare the reaction probabilities Po~ and Po~ 

of F + D2 as calculated by all four methods EQ, QC F, QCR and USC . 

Figure 10 presents the analogous comparison for the total reaction 

probability ~. It is apparent from both figures that the USC method 

gives the best agreement with the EQ reaction probabilities for this 

reaction. 
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3. E R and USC Rate Constants for F + D 
~~~~~~~~~~~~~~~~~~~~A 

The rate constants k~ and k! obtained from the EQ, QCF, 

QCR and USC reaction probabilities pJ; and p! for F + D2 are 

plotted in Figure 11. The expression for these rate constants is the 

same as the one given in I. 1 The corresponding Arrhenius parameters 

obtained from fits to the rate constants in the 200 to 400 K and 

900to 1200 K temperature ranges are listed in Table II. The 

difference between k! (QCF) and ko~ (EQ) (which results (rom the 

different threshold properties of the po~·s in Figure 9) is quite 

noticeable and leads to a 0.8 kcal difference between the correspond­

ing high temperature activation energies in Table" II. In analogy 

with our F + H2 study, 1 the QCR and USC rate constants ko~ and 

corresponding activation energies Eo~ agree with the EQ ones bette r 

than do the QC F quantities. The similar comparison for the rate 

constants ko~ is much less satisfactory. The low temperature differ­

ences between the various ko~'s are determined to a large extent by 

the different threshold energies of the corresponding reaction proba­

bilities Po~. The transition probability Po~ (QCR) .has zero threshold 

energy and thus the largest rate constant at low temperatures, while 

the EQ, USC and QCF Po~'s have successively higher threshold 

energies and therefore successively lower rate constants. (See 

Figure 9b.) This illustrates that the low energy « 0.03 eV) 

behavior of the reaction probabilities (or cross sections) can be 

exceedingly important in determining the low temperature « 300 K) 

behavior of the corresponding rate constants for these reactions. 
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The ratios k~ /ko~ are plotted as a function of temperature in 

Figure 12. We see that the QCF ratio is nearly temperature inde­

pendent while the EQ, QCR and USC ratios increase monotonically 

with increasing temperature, approaching the QCF ratio at high 

temperatures. These ko~ /kt; ratios ,,\re quite similar in appearance 

to the kt; / kJ; ratios for the F + H2 reaction given in Figure 12 of I, 

but the F + D2 ratios actually increase somewhat more slowly with 

temperature than do the F + H2 ones. 

The QCF ratio ko~ /ko~ is 0.63 at 300 K in approximate 

agreement with the experimental value9 of 0.66. The results of 

three-dimensional classical trajectory calculations indicate that this 

ratio is not strongly temperature dependent. 10 If this is also true 

experimentally then, in analogy with F + H., we would have evidence 

that the collinear model overestimates the effects of threshold differ-

ences on reaction rates to different product vibrational states. We 

. 10 11 mIght note , however, that Lee and coworkers ' have measured the 

ratio of cross sections <1 04/ 0-03 at three different energies and they find 

that it increases rapidly with increasing energy from 0.75 at 

Eo = 0.034 eV to 3.5 at Eo = 0.11 eV. If we consider the analogous 

collinear ratio Po~ /Po~ (Figure 6) we find that it also increases rapidly 

with increasing energy (much more rapidly than Lee's cross section 

ratio) from near zero at zero translational energy to roughly a value 

of 4.3 for Eo - 0.12 eV. The ratios of cross sections from three ­

dimensional QC F trajectory calculations over a family of several 

potential energy surfaces do not reproduce this energy dependence 
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(Ref. 10, Table VI). This may indicate that the differences between 

, quantum and quasi-classical results are still significant in three 

dimensions and, indeed , are observable in experiments which are at 

least partially state selected such as cross section measurements. 

4. Hi her Ener Reaction Probabilities for F + D 

Figure 13 shows the higher energy exact quantum reaction 

probabilities Po~, Po~ , Po~ , Pl~ and Pl~ for F + D2 in the transla­

tional energy range Eo = 0.25 to 0.70 eV. Those transition probabil­

ities not plotted are all small (usually < 0.02). Po~ (QCR) is also 

plotted in Figure 13 ih the energy range 0.25 to 0.42 eV for reasons 

to be discussed in detail below. This figure is analogous in many 

ways to Figure 13 of I, although the close correlation between the 

reaction probabilities of F + H2 and the related F + D2 ones (see 

end of Section 2.1) becomes less important as the energy is increased. 

Nevertheless, many of our remarks concerning the F + H2 reaction 

probabilities described in I are a lso applicable here. We note that 

the transition probabilities Pl~ in Figure 13 and Po~ in Figure 1 have 

similar translational energy dependences except near threshold. This 

confirms our statement in I that reaction probabilities for reagents 

initially in II = 1 are virtually insensitive to the presence of a barrier 

in the F + Hz (D2) reagent channel. " In addition , Pl~ is Significantly 

larger than the other P 1;;' with II' < 5 over the energy range considered. 

This implies that the additional vibrational energy in the reagents is 

being predominantly channelled into additional vibrational energy in 
12 

the products . 
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The transition probability Po~ exhibits a rather unusual energy 

dependence. As shown in Figure 11, it remains quite small « 0.01), 

even though energetically allowed, until the total energy becomes 

high enough to excite lJ = 1 of D2 at which point it rises suddenly to a 

peak value of 0.34 before finally levelling off at about 0.13. It is 

not obvious how simple resonance or t hreshold theories can explain 

this unusual behavior since the effective threshold is apparently 

related to the opening of a vibrational state not involved in the transi­

tion asymptotically. One possible explanation for the influence of the 

lJ ~ 1 state of D2 on this transition probability can be formulated by 

observing that the inelastic 0 -> 1 transition probability for F + D2 

is quite appreciable13 (0.10 to 0.25) and, as noted above, Pl~ is quite 

large. This suggests that the 0 -> 5 reactive transition occurs almost 

exclusively with lJ = 1 as an intermediate state. 1t is also significant 

that it is not sufficient for this state to be accessible via virtual transi-

tions but rather it must be open asymptotically. This seems to indi­

cate that a high degree of vibrational excitation must be maintained 

over a considerable region in configuration space. This would only 

be possible if the lJ = 1 vibrational state is open and hence there is no 

enhancement of Po~ when the state is closed. 

For the transitions Pc?; at Eo = 0.327 eV and Pl~ at Eo = 0.599 eV 

we see peaks in the reaction probabilities suggestive of internal excita­

tion resonances. 14 In contrast to the resonances observed in I in 

F + H2 , the direct processes in F + D2 still seem to be quite important 

in the vicinity of the resonances. The resultant interference between 
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the direct and resonant contributions to the scattering amplitude leads 

to characteristic oscillations in the reaction probabilities in the 

vicinities of the resonance energies quite similar to what was ob­

served in the H + Ii2 reaction~4, 15 As in the F + H2 reaction, we see 

an approximate correspondence between the appearance of a resonance 

and the opening of a specific vibrational state of the product DF . 

(I' = 5 at Eo = 0.29 eV and I' = 6 at Eo = O. 59 eV) . This implies that 

the virtual states of the triatomic complex may have energy levels 

resembling product states more than reagent states. The relation is 

probably complicated, however, since the correspondence between 

the resonance energy and the energy of the associated product vibra­

tionallevel is not always in the same direction (i. e., the resonance 

energy is sometimes greater and sometimes smaller than the corre­

sponding vibrational energy as can be seen in Figure 13 of I and 

Figure 13 in the present paper). 

It is interesting to note that the QCR reaction probability pI; 

depicted in Figure 13 seems to "average out" the quantum oscillations 

in po~ (EQ) in the vicinity of the 0.327 eV resonance. It is also of 

interest to examine the semi-classical results at this energy. Rankin 

and Miller have reported extensive statistical behavior in the final 

action number function, mf , for the H + Cl2 colliSion. 6 From this 

behavior, they inferred that a converged quantum treatment of that 

reaction would yield internal excitation resonances. However , as 

Figure 14 Shows, mf , at the resonance energy, is a smooth function 

of qo with about the same degree of "raggedness" as seen previously 
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away from resonance in Figure 8b. We have also observed non­

statistical behavior of mf 16 atthe energy of the sharp 1. 28 eV 

resonance for the collinear H + H2 reaction. 14 Thus, we can conclude 

that statistical behavior of mf is at best a sufficient but not necessary 

condition for the presence of quantum mechanical internal excitation 

resonances. This conclusion is in qualitative agreement with the one 

reached by Duff and Truhlar17 who found no evidence from their 

semi-classical study of the H + H2 reaction of the resonant behavior 

present in exact quantum calculations . 

5. Exact antum Reaction Probabilities for the Reactions F + HD---. 

FH + D and F + DH ~ FD + H 

We have also calculated the exact quantum reaction probabili­

ties for F + HD ~ FH + D and F + DH ~ FD + H hereafter designated 

F + HD and F + DH respectively. In three dimensions, these two 

reactions represent different product arrangement channels of the 

s arne collision system. In collinear collisions, however, they must 

be considered entirely separately. This implies that coupling between 

these two product arrangement channels is ignored in our collinear 

calculations. 

The largest reaction probabilities for the two reactions are 

plotted in Figure 1518 as a function of the reagent translational 

energy Eo (relative to I' = 0 of HD) in the range 0 to 0.25 eV. For 

F + HD, the only reaction probability greater than 0.025 in the energy 

range studied is Po~ while Po~, Po~ and Po~ are the major contribu­

tors to the total reaction probability in F + DH (p()~ is always less than 
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0.10). From Figure 15 it is apparent that the reaction probabilities 

Po~ and Po~ of F + DH are very similar in shape to the corresponding 

probabilities Po~ and Po~ of F + D2 (Figure 10), although the sharp 

differences between the threshold energies of Po~ and Po~ (F + D2 ) 

are reduced considerably for Po~ and Po~ (F + DH). In contrast, the 

results for F + HD do not show a strong resemblance to those for 

F + H2 (Figure 2 of I). Instead, we see that Po~ (Figure 15) consists 

of one very sharp (width - 0.0005 eV) spike near 0.012 eV and then 

temains quite small « 0.02) for the remainder of the energy range 

studied. Po~, which is energetically forbidden until EQ =.0.039 eV 

is quite small throughout the energy range considered here. The 

rather dramatic differences between the results for F + HD and 

F + DH can probably be explained as resulting from the difference in 

the mass of the atom being exchanged in the collineat triatomic colli-

sion system. The small mass of the H atom in F + HD in comparison 

with that of the D atom in F + DH results in much mote important 

pseudo-centrifugal barriers in "turning the corner" in the former 

reaction than in the latter. That this should be the case is apparent 

from a comparison of the skew angles (defined in I) for these two 

systems. For F + HD, this angle is 37.3 0 while for F + DH it is 56.7,0 

thus indicating that the curvature along t he reaction path should be 

much larger for F + HD than for F + DH. Only at low translational 

energies do the centrifugal effects become small enough to render 

F + HD dynamically allowed . For F + DH, on the other hand, the 

centrifugal effects are not important in the energy range studied and 
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thus we observed very large reaction probabilities throughout that 

energy range. 

From Figure 15, we can also conclude that the rate constant 

for formation of DF is predicted to be greater than that for formation 

of HF (except at very low temperatures « 150°) where the slightly 

smaller effective threshold of F + HD becomes important). This 

disagrees with the experimental result19 that the rate of H atom 

transfer is a factor of 1.45 faster than that for D atom transfer 

at 298 K. The disagreement can probably be explained by noting 

that the distance of the H atom from the center of mass of HD is 

about twice that of the D atom from the same center of mass. This 

means that H sweeps through a larger volume of space than .D when 

HD rotates and thus is more "vi sible" to the attacking F atom. Since 

the barrier height is quite low at most orientations of the reagentslO , 

one would expect that H should be preferentially abstracted. For 

collinear reactions, this three-dimensional effect is ignored and we 

find, instead, that dynamical effects such as pseudo-centrifugal 

barriers are important in the reaction. These centrifugal effects 

favor reaction with the D atom and thus explain why the collinear 

resuits differ from the experimental ones. A similar argument has 

been used to explain the J dependence of three-dimensional quasi­

classical cross sections for the same reactions 4a. One might add 

that for a reaction with a high barrier, which simultaneously favors 

reaction through collinear geometries, the three dimensional effect 

should be less important and the collinear results should be more 
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representative of the experimental results. This has indeed been 

observed for the Cl + HD (DH) reactions. 20 

6. Discussion 
~ 

We shall now summarize the differences between the results 

of the exact quantum, quasi-classical and semi-classical methods 

for studying the F + H2 (paper I) and F + D2 reactions. The most 

important of these differences may be categorized into three divisions: 

vibration ally adiabatic tunnelling, resonances and threshold dynamical 

effects. These effects may, however, be coupled to one another to a 

lesser or greater extent. 

Vibrationally adiabatic tunnelling seems to be most significant 

at very low energies especially for F + H2 and for those transitions [or 

which at threshold there are no strongly restrictive dynamical effects 

(of the type occurring in Po~ for F + H2). Such tunnelling appears 

to be responsible for important differences between EQ and QC Frate 

constants at low temperatures (Figures lla in I and also lla in this 

paper). The semi-classical complex trajectory method (which was not 

studied here) may be able to describe tunnelling quantitatively?' 7 

Excitation resonances seem to be very important at higher translational 

energies and will therefore not be s ignificant in thermal experiments. 

They may be important in beam and hot atom experiments if these reso-

nance effects carryover without s t rong attenuation into three dimensions. 

The current semi-classical theories do not seem to furnish a computa-

tionally practical description of the interference effects associated with 

these resonances. 18 Threshold dynamical effects are very significant 
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for collinear F + H" and F + D2 and this leads to important differences 

between exact quantum and quasi-classical reaction probabilities and 

rate constants for thermal distributions of reagents. These threshold 

effects are partialiy classical in nature since we found that the QCR 

method was capable of describing roughly the proper threshold 

behavior within a completely classical framework. An important 

result of. this paper was the demonstration that the uniform semi­

classical method provides a greatly improved description of threshold 

behavior of the quantum results in comparison with the QCF method. 

How important these threshold effects will be in three dimensions is 

not entirely clear from an analysis of existing experimental and 

theoretical studies, but it appears that the effects are at least 

partially attenuated by the averaging that inevitably occurs in experi­

mental measurements. They may, however, still be important for 

experiments which are sufficiently state selected. 
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Table 1. Effective threshold energies (ET ) for the most significant 

r eaction probabilities in the F + H" F + D" F + DH and 

F + HD reactions. a 

F + H2 F + HD 

R E
T

(P02 (EQ)) 0 . 005 0.010 
R E T (P0 2 (QCF)) 0 . 025 N. C . b 

R E
T

(P03 (EQ)) 0 . 045 0.071 

R E T (P03(QCF)) 0 . 012 N.C. b 

E VAZC 
0 . 026 0.02 8 

F + D2 F + DH 

R E T (P03(EQ)) 0.014 o.oli 
R E T (P03 (QC F)) 0.030 N.C. b 

R E
T

(P04 (EQ)) 0.055 0.022 

R E
T

(P04 (QCF)) 0.030 N. C. b 

E VAZC 
0.032 0.02.8 

a All ene r g ies are in e V. 

b No QCF calculations wer e done for this transition. 
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Table II. Arrhenius rate constant parameters for F + D2 -'FD + D . ::t 

Te mp. Range EQ QCF QCR USC 

03 
E 200 - 400 K 0.676 0.935 0.266 0.852 

a 
04 

Ea 200 - 400 2.167 0.990 2 .576 2.471 
4 4 ~1 1 

A0 3 200 - 400 2.55lxl0 2.443xl0 1. 884xlO 2.340xlO 
4 4 4 ., 

A04 200 - 400 2.775xl0 1.686xl0 2. 502xlO 3.269xlO 
03 

900 - 1200 0.361 0.912 0.416 0.611 Ea 
04 

900 - 1200 2.108 Ea 1. 343 2 . 742 2.344 
4 4 -, ., 

A0 3 900 - 1200 2.104xl0 2. 674xlO 2.402xlO 2.082xlO 
-J -I ., -, 

A04 900 - 1200 3.240xl0 2.604xl0 3.261xl0 3. 365xl0 

a 01 
is in kcal/mole and A _ is in cm/(molec. sec). Ea 01 
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Figure 1: Exact quantum reaction probabilities for F + D2 as a 

function of relative translational energy Eo and total 

energy E (relative to minimum in D2 diatomic potential 

curve). (a) T otal reaction probability poR and (b) Reaction 

probabilities Po~ and Po~. 

Figure 2: Exact quantum reaction probabilities Po~, PIl~ and Po~ 

for F + D2 (similar to Figure 1). 

Figure 3: Quasi-classical forward (dashed curve) and exact quantum 

R (solid curve) reaction probabilities for F + D2 : (a) Po , 

R R (b) P 03 and P 04 • 

Figure 4: Quasi-classical reverse (dashed curve) and exact quantum 

(solid curve) reaction probabilities for 

R R 
(b) PO:J and P 01 • 

Figure 5: Fraction (fv) of the total reagent ener gy (exclusive of 

product zero point energy) which ends up as vibrational 

energy in the product DF plotted as a function of the r eagent 

translational energy Eo and total energy E. Solid line 

indicates EQ results and dashed line QC F ones. Other 
------------------------~---

notation analogous to Figure 1 . 

Figure 6: Ratio of reaction probabilities Po~ IPo~ versus translational 

energy Eo and total e nergy E. Solid line indicates EQ 

results and dashed line QC Fones. Other notation analo-

gou s to Figure 1. 
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Figure 7: Uniform semi-classical (dashed curve) and exact quantulll 

(solid curve) reaction probabilities [or F + D": (a) poR, 

R R (b) P 03 and P 04 • 

Figure 8: (a) mf versus qo for the forward reaction F + DJO) - ~ 

FD(mf) + D, total energy E is 0 . 3107 eV; (b) m
f 

versus 

qo for the rever se reaction D + DF( 4) ~ D2 (mf) + F, 

total energy E is 0 . 3107 eV. 

Figure 9: EQ(solid), QCF (short dash), QCR (dash dot) and USC (long 

dash) reaction probabilities Po~ (a) and Po~(b). (From 

Figures 1, 3-5.) 

Figure 10: EQ(solid), QCF (short dash), QCR (dash dot) and USC (long 

dash) total reaction probabilities poR for F + D2 • (From 

Figures 1, 3- 5. ) 

Figure 11: Arrhenius plot of EQ (solid), QC F (short dash), QCR (dash 

dot) and USC (long dash) rate constants for F + D": 

R (b) k 04 ' 

R 
(a) kO:l' 

Figure 12: Ratios of rate constants ko~ /ko~ for F + D2 ; EQ (solid), 

QC F (short dash), QCR (dash dot), USC (long dash) . 
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Figure 13: Exact quantum reaction probabilities at translational 

energies higher than those in Figure 1. (a) Po~, Po~ 

and Po~ (b) P,~ and P,~, Also shown in (a) is the QCR 

Po~ curve (dashed). Arrows near Eo = O. 29 eV and 

0.59 eV indicate the opening of lJ = 5 and 6 respectively 

of DF while that at 0.37 eV indicates the energy Eo at 

which lJ = 1 of D2 becomes accessible. 

Figure 14: m f versus qo for t he reverse reaction D + DF (4) ~ 

D2 (mf) + F at the resonance energy O. 5107 eV (correspond­

ing to Eo = 0.32 eV). 

Figure 15: Exact quantum reaction probabilities Po~ for F + HD, and 

Po~ and Po~ for F + DH as a function of relative transla­

tional energy Eo and total energy E (relative to minimum 

in HD diatomic potential curve). Arrow near 0.04 eV 

indicates the energy at which lJ = 3 of HF becomes accessible. 
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SUMMARY 

The comparisons between standard forward quasi-classical 

calculations and the exact quantum ones for the H + H2 and F + H2 (D2) 

reactions reveal several important areas of disagreement. Low 

energy tunneling, especially in the H + H2 reaction, is of course not 

reproduced by the classical calculations. This failure of the quas i­

classical method is responsible for the factor of twenty-five difference 

in the corresponding thermal rate cohstants at 200 0 K (with the classical 

result less than the quantum one, of course). Another significant 

difference between the two sets of r esults is in the energy dependences 

of the reaction probabilities. The classical ones tend to be smooth 

and, in general, monotonic functions of the energy. The quantum ones, 

however, oscillate markedly about the corresponding classical ones as 

a function of the energy. In fact, the quasi-classical forward results 

resemble the averaged quantal ones . The arbitrary way of assigning 

final "quantum" states in the quas i-classical method results, in 

several cases, in gross disagreement with quantal results at energies 

in the vicinity of the energetic threshold for a given transition. 

The attempt to reproduce quantum oscillations with the semi­

classical expressions for transition probabilities was largely unsuc­

cessful. The semi-classical interpretation of quantum oscillations as 

simple interference effects apparently does not apply to the reactions 

considered. It has recently been shown that most of the quantum 
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oscillations are due to resonant scattering which interferes with direct 

scattering. Thus, we conc lude that the semi-classical theory used is 

capable of treating the direct scattering but at best it offers only an 

averaged description of resonant scattering. 

The sem i-classical theor y does provide a unique and logically 

consistent way of quantizing initial and final states of the reactants and 

products, respectively. Evidently, t his is responsible for the fact that 

the semi-classical transition probabilities are in qualitative agreement 

(at least) with the quantum ones nea r the threshold energies. This is 

a significant improvement over the quasi-classical forward results. 

An extension of semi-classical utilizing complex-valued trajectories in 

complex time was not incorporated in our calculations. Hence, the 

semi-clasSical results do not show any improvement over the quasi­

classical ones with regard to colliSion processes which proceed by 

tunneling in claSSically forbidden regions of configuration space. 

The investigation of reverse quasi-classical results revealed 

many interesting, 'if not totally understood, results. First, it was 

found that the differences between forward and reverse results could 

be substantial, especially for energies in t he vicinity of energetic 

thresholds for certain transitions. Second, one of the two sets of 

quasi-classical results was in much better agreement with the exact 

ones than the other. The implications of this result for three-dimen­

sional trajectory calculations could be very significant. A comparison 

of the quasi-classical reverse and forward results for the F + H2 
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reaction suggests strongly that the three-dimensional forward trajectory 

calculations are not as accurate as the reverse ones might be. 

The investigation of the possibility of using the quantum proba­

bility distribution function to phase-average classical trajectories 

proved that the procedure is illogical. It was shown that such a sampl­

ing technique resulted in transition probabilities which were (symmetric) 

functions of the initial atom-molecule separation distance. 

A comparison of exact quantum and quasi-classical current 

densities, streamlines, and current density profiles revealed some 

interesting differences and similarities between the two sets of results. 

Due, apparently, to the fact that classically the H2 molecule can be 

vibrationally excited at any collision energy, the classical current 

densities exhibit an oscillatory pattern. In contrast to the classical 

behavior, the quantum current densities are non-oscillatory for total 

energies below the threshold for vibrational excitation of H2 , For total 

energies above this threshold the classical and quantum results do 

show some similarities in structure as well as in the regions of configu­

ration space sampled by the respective current densities. An 

interesting and striking difference between the classical and quantum 

current densities is seen at a tota l energy at which both the classical 

and quantum reaction probabilities are equal to unity. The classical 

result shows a sharp "pinching" near the saddle point of the potential 

surface whereas the quantal results shows no such effect. 
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Appendix 1: Symmetry P r ope "ties of the "Quantum" Total 

Reaction Probability, PQ(R) 

In paper 1. 2 it was noted that the 

"quantum" total reaction probability, P Q(R) , is a symmetric 

function of 1\ (the initial atom-molecule separation) with respect 

to some value of R , denoted by R. It was noted that this symmetry 

resulted from the fact that the quantum distribution function, F Q(q) , 

is symmetric about the point q = 7i. We prove this property in this 

appendix. 

We wish to prove the following theorem. If the quantum 

distribution function, F Q(q) , is symmetric about q = 7i, i. e, , 

then for some value of R, denot ed by R, PQ satisfieS the following: 

(2) 

where a is some arbitrary displacement from R. Without loss in 

generality, let us assume that for a given value of R, R o, there 

corresponds an interval in q-space, q2 - <L., such that every trajectory 

with the initial conditions R = Ro and ql <: q <: q2 is a reactive one. 

In general , the midpoint of this interval, (ql + q2)/2, does not equal 7i 

but differs from it by an amount 6, given by 

Let us now displace the interval q2 - ql by the amount Ii, A new 

interval, q,' - ql', results with the property that 

(3) 
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(4) 

This new interval has a corresponding R, denoted by R, and given by 

R ~ Ro + V'o/w, ( 5) 

where I)' is the initial relative velocity of the atom-diatom system, 

w is the angular frequency of the periodic motion of the isolated diatom 

(with a given internal energy initially). Equation (5) results from the 

fact that asymptotically q(t) and R(t) are given by 

and hence 

and thus 

q(t) ~ qo + wt 

R(t) ~ Ro + ift 

6. q/w ~ 6. t 

which is a general statement of eq. (5). We now show that R given by 

eq. (5) is the point of symmetry of the function P Q(R). By definition 

P Q, in q-space, is given by (see eq . (1) of paper 1.2) 

P Q ~ U dq K'(q) FQ(q) , ;:q K-(q) FQ(~ /2 •. 

At R ~ Ro this expression becomes 
q2 

PQ(R o) ~ J dq F Q(q)/21T, 
ql 
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and for R = R it becomes 
q2 ' 

PQ(R) = l dq FQ(q)/21T. (6) 

Consider now arbitrary displacements fr om R by amount ± a. This 

corresponds to di splacing the interval qz' - ql' by amounts ±1., where 

tJ. = aw/V'. 

Thus, to prove that P Q(R + a) + P Q(R - a) it suffices to show, 

according to eq. (6), that 
q '+tl. q '_6. 

2 2 

f dq FQ(q)/21T = f dq FQ(q)/21T . 
~'+tl. ql'-~ 

To prove the validity of eq. (7), we note that the following 

(7) 

integrals have integration ranges placed symmetrically about q = 1f: 

and thus 

and 

q '-tl. 
2 

f dq FQ(q), 
ql '+6. 

q '+tl. 1f2 

J dq FQ( q) /211" = f dq FQ( q) /21f 
ql'-6. 1f 

(8) 

( 9) 

(10) 

Note that we have made use of the symmetry of the integration range 

of the integrals given by eq. (8) and the fact that FQ(q) is symmetric 
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about 7f to arrive at eqs. (9) and (10). Let us now add the left hand 

side of eq. (10) to the right hand side of eq. (9) and similarly add the 

right and left hand sides of eqs. (10) and (9) respectively to obtain: 

q '-A 
2 

J dq FQ( q) /27f = J dq FQ( q) / 27f . 
ql'+A %'-A 

This equation is identical to eq. (7) and hence we have proved that 

P Q(R) is a symmetric function of R with respect to some value of 

R, R . Indeed , in paper I. 2 (Figure 1) the symmetry of P Q(R) was 

demonstrated numerically. 

(11) 
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Appendix 2: Analytical Continuation of the Semi-Classical 

S Matrix 

In this appendix we describe the analytical continutaion method 

used to calculate certain semi-classical S-matrix elements for the 

F + H2 and F + D2 reactions described in the preceding papers. 

As discussed in the preceding papers (especially see paper 1.3 

the roots to the transcendental equation 

(1) 

are sought in the semi-classical analysis. That is, at fixed values of 

nO! (the action number of the molecule initially) and E (the total energy) 

roots, q~i, are sought; m f3 (the action number of the molecule in 

arrangement channel f3 finally) is a specified integer . An interesting 

situation arises when there are no real roots to eq. (1) at some 

particular E. As discussed in paper 1. 3 the semi-classical S-matrix 

element S f3 Cl! is apparently zero . However, a more interesting and 
mn . 

fruitful alternative is to seek complex roots to eq. (1). This approach 

was first developed by Miller and co-workers1 and Marcus and 

co-workers. 2 In its simplest form, the idea is to make use of the 

properties of the function m f3 (q:,r) (we suppress the nil' and E variables 

hereafter) on the real q~ axis . If there is some value m f3 = ml\q:;) 

which differs from the desired value by a "small" amount then the 

complex root(s) is expected to lie "close" to the real q;; axis. If that 

is the case, then this complex root can be found by simply analytically 

continuing the function m(q~) into the complex q~ - p lane by means of 
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a power series representation. Note that even if the complex 

root(s) lies "far" from the real q~ axis it may be found in general 

by an analytic continuation of m(qoO') (if indeed one exists) . We shall 

not pursue this more general approach which has recently been 

considered by George and Miller1d, le and Stine and Marcus2b 

In Figure 1 we show examples of typical behavior of the 

function m(qoO!) at energies for which no real roots are found (for the 

F + H" and F + D2 reactions). There it is seen that the values mi3 = 2 

and mP = 3 for the respective reactions are dynamically forbidden. 

We now develop the theory for the analytical continuation of 

the semi-classical S-matrix. The expression for the S-matrix for 

a dynamically allowed transition is given byla, 2a 

S i30!= 
mn 

1 
2illl 

I 

"2 exp[ i~(mi3 ;n<l)/Ii 1 (2) 

Thus, the analytical continuation of S i3 a is accomplished by continuing 
m n 

the amplitude and phase of S i3 <l into the complex plane. 
mn 

First we consider the analytic properties of a function of a 

comple,x variable near the real axis . Let f(z) be analytic in a 

neighborhood of z = zo. Then we may write: 

2 
f(z) = f(zo) + f'(zo)(z-zo) + f"(zo)(z-zo) / 2! + ... 

where, as usual 

f'(zo) = lim U(z) - f(zo)] /(z - zo). 

If we take z - Zo along the imaginary axis we have that 
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where U (z) and tr(z) are respectively the real and imaginary parts of 

fez) and where y denotes the imaginary axis. Taking z - Zo along the 

real axis we have that 

Now, we wish to consider .the difference z - Zo to be along the 

imaginary axis, i . e., z - Zo ~ i Cy - Yo). Using the latter expression 

for f'(zo) (and the obvious extension to higher derivatives) we have 

Equating real and imaginary par ts of the right and left hand sides of 

this equation, we have 

U(z) ~ (..l.(zo) - /)'x(zo)(y - Yo) -LLxx(zo)(Y - Yo)2/2 + tf' xxx(zo)(y - Yo)'/6 + 

/fez) ~(J'(zo) +U x(zo)(y - Yo) -V' xx(zo)(y - Yo)2/2 -()..xxx(zo)(y - Yo//6 + 

Now, consider the equation 

fez) ~ m , (3) 

where m is real and where we stipulate that f(zo) is a real number, n. 

Thus, !fez) == 0 and,in addition, we see that Ux(zo) ~ 0 (to second order in 

y - Yo). Thus, from the above equation for U(z), we have the 

following for the first non-vanishing contribution to f(z): 
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Hence, the imaginary part of the root to eq. (3) can be found 

tri viaUy . Letting T = Y - Yo we have that 

and thus, 

2 
f(z) - f(zo) = m - n = - (). T /2 xx 

T =±[2(m - n) / -U ] xx 

1 

" ( 4) 

Let us now consider if what we have done makes sense for our later 

applications. First, the point Zo is to lie on the real axis. Thus, 

Yo = O. The condition Ux(zo) = 0 is s een to be satisfied by our final 

action number function (cf. Figure 1) . Also if U x = 0 occurs at a 

minimum then U xx> 0 and clearly m - n < 0 and if U x = 0 occurs 

at a maximum, then U xx< 0 and m - n > O. Thus, eq. (4) is guaranteed 

to make mathematical sense. We see further that there really are two 

roots to eq. (3); they are comple.x conjugates of each other given by 

* z = Xo + iT and z = Xo - iT. 

This is a consequence of the Schwarz Reflection Principle. 3 

Let us now apply these results to the analytical continuation of 

S f3 or Let m f3 of eq . (1) be f(z), and let m be its desired value. 
m n f3 

Further , let n be the minimum value of the function m which occurs 
a. -a . 

for qo = qo· From eq. (4) we have 
1 

f3 -a " T = ±[2(m - n) / -m qq(qo)] . (5) 
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Thus, according to eq. (2) and the above equation, the amplitude 

of S {3 c\!' J (3 a ' is given by 
m n m n 

1 
f3 -Z 

J f3 C\! = [21Tin m qq(q;,r) 7] . 
m n 

( 6) 

Note that J f3 C\! is the same for each of the two roots qoC\! = CloC\! ± 7. 
mn f3 a 

To analytically continue the phase of S f3 a' ~(m ,n ), we note 
m n 

that ~ will in general be complex in the complex q-plane (of course 

a is real on the real q~ -axis). Making use of the previous results, 

in particular the expansions of U(z) and If'(z) just before eq. (2), 

we have 

Re~ (mf3(~ ± i7), nO) = Ll. (if!) - ~qq(~) / /2 

Im~mf3(~ ± i7),na ) = -~qqq //3! 

(7a) 

(7bl 

Note we have made use of the fact that Ll. q(~) = O. Thus, we have 

established the analytical continuation of the amplitude and phase of 
2 

S f3 a up to order 7. This is expected to be adequate for 7« I . 
m n 

For 7 > I the power series expansion approach becomes inaccurate 

and a more direct method of analytical continuation is required. Ic, Id, Ie, 2b 

To proceed from S f3 C\! to the corresponding transition 
mn 

probability we make use of the "uniform" semi-classical expression 

(for classically allowed transitions)lb, 4,5 given by 

1 1 

USC 2
11

Z 
p f3 C\! = (J1 + J 2 ) 1T X 
mn 

2 2 '2 2 
Ai (-xl + (JC J2) 1T Ix I Bi (-x) . (13) 

J 1 and J 2 are the amplitudes of S f3 C\! corresponding to the two roots, 
mn 

Ai(x) and Bi(x) are respectively the regular and irregular Airy functions lO 
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2 

" x = [ ~ (6.1 - 6. 2 ) J , 

where. 6.1 and 6.2 are the phases of S {3 afor the two roots. As shown 
mn 

previously, J 1 equals J 2 and 6.1 - 6. 2 = 2i 1m 6.1 = 2i 1m 6.2 • Thus, 
2 2 

3 3" .3" 
X = (2"" 1m 6.J 1 

2 
. 3 3" 

= -[ 2"" 1m 6., ] 

Thus, eq. (8) 

1 
2" 2 

= 4J {3 (l 1f Ix I Ai ( Ix I) 
m n 

Note, in the limit Ix 1- ao, 6 

Ai( Ix I) ---I i 
. · x l - """ 

1 
= 1 1 

21f 2" lx 14 

[ 2 3/ 2] exp -3" x 

exp[ -1m 6. , ], 

(9) 

and from this we obtain the "primitive" semi-classical expression for 

the transition probability , 

PSC [] P {3 a = J (3 a exp - 21m6. 1 
mn mn 

(10) 

In our calculations the functions mP(q~) and 6.(q~) were 

determined in the neig hborhood of an approximate q~ at ten or twenty 

points. These "data" pOints were t hen fit by a cubic spline curves. 

These curves were then used to determine the location of the "true" 
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~ and the quantities mqq(q~) and tJ.qqq(~)' 

In the table below (Table1) we give the values for the pertinent 

quantities contained in eqs. (9) and (10) for the energies and 

reactions indicated. From that table we see that the PSC and USC 

transition probabilities differ significantly when 1m tJ.< 1, however, 

they are equal (within error lim its) for ImtJ.> 1 . 
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Table 1. Numerical values of quantities pertinent to the analytic 

continuation of semi-classical transition probabilities 

for the F+H2 and F+D2 reactions. 

T 

-Cl 
mqq(qo) 

:'l.qqq(~ ) 

J {3 (jI 
m n 

Imil. 

pUSC 
{3 (jI 

mn 

3.41711 

2.01638 

0.0896 

4.08±0.04 

14530 ± 3000 

0.660 

1. 74t 0.40 

0.02 ± 0.01 

0.02 ± 0.01 

2.2571 

3.0166 

0.0989 

3.40 ± 0.03 

938 ± 100 

0.688 

0.14 ± 0.01 

0.51 ± 0.02 

0.25±0.01 
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Figure 1: Final action number mf versus initial phase angle qo for 

the F + II" reaction (a) and the F + D2 reaction (b) for 

total energies E of 0.378 eVand 0 . 411 eV r e spec tively. 
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PART II 

A DIRECT TEST OF THE VIBRATIONALLY ADIABATIC 

THEORY OF CHEMICAL REACTIONS 
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INTRODUCTION 
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INTRODUCTION 

The primary source of the great difficulty in solving the 

Schrodinger equation for collinear, coplanar, and three-dimensional 

chemical reactions is the multidimensional nature of the partial 

differential equation to be solved. For the collinear case, the 

Schrodinger equation is a two-mathematical dimensional partial differential 

equation. A great simplification in. this equation results if the two inde­

pendent variables, i. e., two nuclear coordinates can be decoupled from 

each other. If such a decoupling exists then the partial differential 

equation can be rewritten as two uncoupled ordinary differential 

equations; These equations can be solved with comparative ease. 

Unfortunately such a decoupling does not rigorously exist. However, 

with the introduction of so-called natural collision coordinates, R. A. 

Marcus formUlated reactive scattering in a manner suitable to approx­

imate uncoupling of the two degrees of freedom (in collinear collisions). 

The resulting theory borrowed much from the simple ideas of 

Hirschfelder and Wigner on vibrationally adiabaticity in chemical 

reactions. This approximate theory has been cast into two forms; 

one is termed the vibrationally adiabatic zero-curvature theory and the 

other is the vibrationally adiabatic theory. 

In paper 11.1 the vibrationally adiabatic zero-curvature theory 

is tested by making use of exact scattering wavefunctions describing 

the collinear H +H2 exchange reaction. An energy scan of the results 
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is made to ascertain the range of validity (if any) of the approximate 

theory. In addition, the test is performed in several regions of 

configuration space to determine where the theory is reliable. Also, 

the factors which contribute to the failure of the theory are investi­

gated. The work reported in this paper was carried out in collabora­

tion with Dr. John T. Adams, Professor Donald G. Truhlar (and of 

course Professor Aron Kuppermann). 

A test of the vibrationally adiabatic theory including curvature 

is presented in paper II. 2 for the symmetric stretch motion of the 

transition state of H3 • The results are compared with the zero­

curvature ones given in paper II. 1. A numerical difficulty inherent in 

the adiabatic theory including curvature is pointed out and is shown to 

detract significalltly from the potential usefulness of this theory. As 

previously the test makes use of exact scattering wavefunctions for the 

H + Ha reaction. The results are presented as a function of the 

collision energy for reagent Ha in its ground and first excited vibra­

tional state. 
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A DIRECT TEST OF THE VIBRATIONALLY ADIABATIC (ZERO­

CURVATURE) THEORY OF CHEMICAL REACTIONS. 

1. Introduction 
~ 

Numerical techniques have recently been developed to calculate 

exact quantum scattering wavefunctions describing collinear atom­

molecule reactions. With the availability of such wavefunctions it is 

possible to rigorously test old approximate theories of chemical 

reactions and to stimulate the development of new ones. One approxi­

mate theory that has received much attention is the historically impor­

tant vibrationally adiabatic (VA) theory of chemical reactions. The idea 

of vibrational adiabaticity in chemical reactions was first introduced 

in 1939 by Hirschfelder and Wigner. 1 In both the clas!,!ical and quantum 

versions of this theory, it is assumed that the motion of an atom­

molecule system could be described by two separable degrees of 

freedom (for the collinear case) referenced to a "reaction path. " 

Motion transverse to this path was assumed to adjust instantaneously 

so as to maintain its quantum state (or in the classical case to maintain 

its constant of the motion) as the reaction proceeded along this path. 

In the separated reagent and product limits this transverse motion is 

Simply the vibration of the corresponding molecule. More recently, 

this idea was quantified by Marcus2 who introduced "natural-collision 

coordinates" and expressed the quantum and classical hamiltonians in 

terms of these variables. Actual calculations of reaction probabilities 

and cross sections based on the vibrationally adiabatic theory have 

been performed by Child, 3 Wyatt, 4 Truhlar and Kuppermann , 5 and . 
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Diestler and Karplus. 6 In the latter two calculations the vibrationally 

adiabatic zero-curvature (VAZC) results were compared with exact 

quantum ones for the collinear H + H, -> H2 + H reaction. Wu and 

Levine 7 also examined the validity of the VA theory inexact quantum 

calculations using a model potential energy surface. Comparisons 

between exact classical trajectory and classical vibrationally adiabatic 

theory calculations have also been done by Marcus and co-workers8 

and Tweedale and Laidler. 9 McCullough and Wyatt in a time-

dependent wave packet treatment of the collinear H + H, reaction made 

a time-dependent test of the VAZC theory at one energy. 10 In addition 

to its historical significance the VA theory of chemical reactions is 

closely connected with transition state theory. 11,1 It has been shown 

that the validity of VA theory is a sufficient condition for the validity 

of transition state theory. 12 In a more modern context the suitability 

of a VA or VAZC basis set in performing exact quantum reactive 

scattering calculations using close-coupling techniques is also of 

interest. 

A direct test of the VAZC theory is made in the present paper. 

We use exact scattering wavefunctions calculated previously5 for the 

collinear H + H2 -> H2 + H reaction to determine the extent of adiabaticity 

in the reagent, strong interaction, and product regions of configuration 

space. The total energy range considered, 0.2778 eV to 1. 0331 eV, 

allows for ground and first excited vibrational states of the reagent and 

product H,. A preliminary account of some of these results has already 
13 been reported. 
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~ 
Natural-collision coordinates2- 4 (s, x) are defined with 

respect to a curve C which passes smoothly from the reagent configu­

ration, through the strong interaction region, and to the product 

configuration. The two-dimensional configuration space in which C 

is defined can be chosen in a variety of ways. As previously5a, 13 we 

have chosen the transition state normal-mode coordinate space with 

coordinates14,15 

p = .[3 / 2 (r AB + r BC - 2ro), 

q = (1 / 2)(rBC - r AB)' 

where r AB and r BC are internuclear distances in the collinear A-B-C 

system and r AB = r BC = ro is the location of the saddle point of the 

potential energy surface. The potential energy surface employed in our 

calculations is a Wall-Porter16 fit to the SSMK surface17 with a scaled 

barrier height of 0.424 eV. l5 Tbe curve C is the minimum energy path 

in the (p, q) coordinate system, i. e. , it is the path of steepest descent 

from the saddle point p = q = 0 to the reagent and product regions of 

space. The coordinate sis defined as the distance from an origin on 

C to a point Q on C and x is the shortest distance from any point to Q. 

The origin is chosen at the saddle point with the negative sense for s 

in the reagent region and the positive sense in the product region. For 

all pOints lying between the point r AB = r BC = 0 and C the x coordinate 

is positive and negative otherwise. (As usual 0 :$ r AB(BC) < 00.) 

In terms of the variables (s, x) the collinear Schriidinger equation 
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for a total energy E is given by 2a, 4 

- 'li
2 

[")0 1 0 1 0 0 - J -zp: l!i 'd'S (1] dB) + 1] Ox (1) rx) + V(s,x) - E ifJ(x, s) = o. (1) 

The quantity Tj(s, x) is given by 

1) (x, s) = 1 + K(S)X, 

where K (s) is the curvature of C at the pOint (0, s). The reduced mass 

fl is equal to 2/3lVIH in the p, q coordinate system for the H + liz reaction. 

The collinear potential energy function V(s, x) is conveniently decomposed 

as follows2a, 4 

As previously2a, 4 i¥(x, s) is assumed to have the form 

i¥{x, s) = ~(s) ¢(x;s) . (2) 

Substituting (2) into (1), separating the vl\.ril\.ble x anC! s, neglecting 

terms which couple these variable and setting the curvature K(S) equal 

to zero the following VAZC translational and vibrational equations are 

obtained:2a,4 

2 2 

[2~ JS2 + V1(s) + £/s) - EJ~(s) = 0 (3) 

[ 
_ 'li2 d 2 

-zp: Qx2 + V(x, s) - £i(s) 1 ¢(x;s) = 0 ( 4) 

In the translational equation (Eq. (3)) E is the total energy of the system 

and E. i (s) is the local vibrational energy eigenvalue determined by the 
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vibrational equation (Eq. (4)). For s -> _coei is the vibrational energy 

corresponding to the ith vibrational state of the reagent. The approxi-

mate VAZC reaction probabilities as a function of E are obtained from 

the solution to Eq. (3). For the collinear H + H,,(v=O) -> H2 (v=O) + H 

reaction such approximate reaction probabilities have been computed 

and compared with exact results. 5, 6 

In the present paper we present a direct and detailed test of the 

VAZC theory by focussing on the validity of Eq. (4). According to that 

equation for any value of s the exact scattering wavefunction ~xact(x, s) 

is proportional to <P/x;s). Without any approximation, however, we may 

express !Jfxact as follows)8 

0() 

1/I~xact(x, s) = L CiI(s) <Pi(x;s) . 
i = 0 

( 5) 

The superl3cript I references the exact scattering wavefunction to a 

given initial vibrational state of H", namely the Ith vibrational state. 

Considering s as a parameter (according to Eq. (4)) and according to 

the definitions of s and x we can consider Eq. (5) to be a representation 

of lJI~xact along cuts transverse to the minimum energy path. Along these 

cuts it is convenient to normalize lJI~xact and to introduce the real 

quantities ail by 

co 

ads) = IcH(s) 12/ I jcn(s) J" 
i = 0 

Thus, as a consequence of Eq. (5) the VAZC theory predicts that 

(6) 
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VAZC . ail (s) = 0U' 1 = 0, 1, 2 ... (7) 

for all values of s. By making use of previously calculated exact 

scattering wavefunctions for the collinear H + If" reaction we can com­

pare the exactly calculated ail' given by Eq. (6), against the 0. ~ AZC, 

given by Eq. (7), at different values of s and the total energy E. The 

results of this comparison constitute our test of VAZC theory. Prelimi­

nary results for the cut defined by s = 0 (the symmetric stretch motion 

of the transition state) have already been reported. 13 A test of the VA 

theory including the curvature terms is given in paper II.2. 

3. Numerical Methods and Tests 
~ 

The eigenfunctions and eigenvalues of Eq. (4) were computed by 

a finite difference boundary value method (FDBVM). 19 Essentially this 
. · 2 1 

d amounts to replacing the second derivative of CPi' <JXl' ¢i' of Eq. (4) by 

its finite difference approximation and requiring the resulting algebraic 

equation to be satisfied at each of a grid of points which span the physi­

cally allowed domain of the variable x. This set of algebraic equations 

plus appropriate bound state boundary conditions transform Eq. (4) into 

a matrix eigenvalue-eigenvector equation. The eigenvalues and eigen­

vectors of this matrix equation are the approximate eigenvalues and 

eigenfunctions of Eq. (4). In our calculations a 75 point grid which 

corresponded to a step size of 0.05 bohr was used. This step size was 

shown previously to yield eigenvalues accurate to within less than 0.5 per­

cent for a very similar kind of problem. 20 

The lines labeled by -0.15 , +0.15, and the p axis all penetrate 
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deeply into classically forbidden region,s of space and as a result the 

expansion of tP~xact given by Eq. (5) is well-defined since tP~x;l.ct and 

the basis functions ¢>/x;s) satisfy the same boundary conditions. 

However, the lines labeled by -1. 60, +1. 60, -2. 50 and +2. 50 would 

not penetrate deeply into classically forbidden regions of space before 

passing through classically allowed regions of reagent and product 

space. This feature is inconsistent with the spirit of VA theory. As a 

result these lines were truncated at points in the classically forbidden 

regions of the plateau where the potential along these lines was a 

maximum. As seen from Figure 1 the potential energy is greater 

than 2.0 eV at the end points of these as well as the other lines. 

In Table 1 some results for these truncated lines will be compared with 

the corresponding untruncated ones. 

As a numerical test of the expansion of tP~xact given by Eq. (5) 

we used the fact that for a complete set of orthonormal functions 

0() 

<>I{xact II)i~xact) = T leu 12 (8) 

i=O 

The integration is performed along a given line and for regions of the 

line where I)i~xact is non-negligible. For a finite number of functions 

¢>i(x;s), N, we have that 

(9) 

That is, the expansion given by the right hand side of Eq. (5) converges 

(in the mean-square sense) from below its limit. In Table 1 the conver-
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gence of the expansion given by Eq. (5) for l/I;xact is examined for the 

lines labeled by -1.60, -0.15, p-axis, +0.15, +1. 60 for total energies 

E of 0.5080 eV and 0.8978 eV. There it can be seen that the convergence 

property given by Eq. (9) is indeed obeyed and that for N = 7 convergence 
5 

better than 5 parts in 10 has been achieved. Also in Table 1we have 

compared results for the truncated and untruncated lines labeled by 

s = -1. 60 and s = +1. 60. There it can be seen that there are very 

small differences between the two sets of results. 

4. Results and Discussion 

The test of VAZC theory performed consists of an examination 

of the energy dependence of the aU(s) coefficients given by Eq. (6). 

These coefficients are calculated for five lines corresponding to five 

values of s which pass through the reagent, strong interaction, and prod­

uct regions of configuration space. The exactly computed coefficients 

aiI(s) are then compared with the a.~ AZC(s) ones (given by Eq. (7» and 

the results give a test of VAZC theory as a function of the collision 

energy and the distance along the minimum energy path, s. The lines 

labeled by -2.50 and +2.50 have been included in Figure 1 to indicate 

the asymptotic regions of the (p, q) configuration space. The ail 
coefficients were not calculated for these lines since necessarily for 

E < El '" 0.79 eV VAZC theory is rigorously (and trivially) correct. 

For E > 0.7945 eV the exact ~I coefficients for these lines can be 

calculated from the corresponding transition probabilities and S-matrix 

elements . 

Figures 2 - 6 present results for reagent H2 in the ground 
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vibrational state. In Figure 2 the coefficients aDO and a lO are given for 

the cut at s = -1. 60 bohr as a function of the total energy E (lower 

abscissa) and initial relative kinetic energy Eo (upper abscissa). All 

other /l. coefficients are less than 5 x 10- 3 and hence are not included 
1 

in the figure. The (inner) arrows labeled To, T" and Eb designate 

respectively the total energies equal to the ground and first excited 

vibrational energy levels of H2 and the classical barrier height. The 

(outer) arrows labeled T~ and TIs designate rellpectively the total 

energies equal to the ground and first excited vibrational energy levels 

of the potential energy surface along the cut indicated (measured with 

respect to the energy of the separated reagents). As can be seen for 

this cut there is excellent agreement with VAZC theory for E less than 

T,. This is not too surprising since this cut is near the reagent asymp­

totic region and as noted above VAZC is rigorously correct in the 

asymptotic region for E less than T l ' 

The energy qependence of the coefficients 0.00 ,a.o, a 20 , and a30 

is depicted in Figure 3 for the cut at s = -0.15 bohr. The label V(s) 

indicates the value of the potential energy surface at the point 

V(O, s). The coefficient a.oois seen to be greater than 0.8 for E less 

than 0.73 eV. This compares reasonably well with the VAZC coefficient 

a'!oAZC = 1. O. At total energies greater than 0.8 eV, however, the 

VAZC theory is greatly in error . Considerably more non-adiabaticity 

is present in these results for all energies than was found in Figure 1 

for s = -1. 60 bohr. This is expected since the s = -0.15 bohr cut is 

located in the strong interaction region. 
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In Figure 4 the extent of adiabaticity is examined for the 

symmetric stretch motion of the transition state corresponding to the 

cut at s = 0.0 bohr. Here the results show less agreement with VAZC 

theory than the results shown in Figures 2 and 3. However, for E 

between 0.46 eV and 0.75 eV the aoa coefficient is greater than or 

equal to 0.8. As E decreases from the value V(s) (the classical 

barrier height) the extent of non-adiabaticity increases. This fact seems 

to correlate with probability current density calculations21 which reveal 

that in this energy range a substantial amount of tunneling occurs as the 

current density vector! field "cuts the corner. " "Cutting the corner" 

clearly requires several vibrational functions </>..(0, x) in the expansion 1 . 

of l/i,exact(o, x) as seen from the results in Figure 4. 

Figure 5 shows substantial non-adiabaticity in the results for 

s = +0.15 bohr especially for E less than the classical barrier height 

Eb and for E greater than T,s. Here as in the three previous figures 

four coefficients at most (at any given energy) contribute substantially 

to the summation 
00 

L a iI = 1. 
i = 1 

The energy depelllldence of the coefficients aoo and ala is given 

in Figure 6 for the cut at s = +1.60 bohr. The essentially exact adia­

baticity exhibited by aDO for E less than Tl s confirms the expectation 

that in the near asymptotic regions of configuration space the H3 system 

propagates with nearly zero interaction" 

In Figures 7 and 8 coefficients Q'1 are presented as a function 
1 I 
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of energy along five cuts. Here reagent H" is initially in the v = 1 

vibrational state. Although the coefficient all is the dominant one for 

all cuts, a substantial amount of non-adiabaticity is present. For the 

cuts at ± 1.60 bohr the 1201 coefficient is the only significant one in 

addition to the all coeffieicnt. However, in the strong interaction 

region the coefficients a21 , a 3l' and a..1 are non-negligible indicating 

that l/I1exact(x , s) has a significant overlap with the <P 2(x;s) , <P 3(x;s), and 

<P.(x;s) vibrational eigenfunctions for the cuts at ± 0 . 15 bohr and 0.0 

bohr. 

5. Summar and Conclusions 
~ 

The vibrationally adiabatic (zero-curvature) theory of chemical 

reactions has been tested for the collinear H + H" exchange reaction. 

The theory is shown to be qualitatively valid in the sense that the 

coefficients aoo and all (corresponding to H" initially in the v = 0 and 

v = 1 states respectively) are the dominant ones for most energies 

consiaered. lIPwever , ll.t low initial translational energies, where 

tunneling is Significant, a subsmntial amount of non-adiabaticity is 

found. Also, at energies for which vibrationally excited products can 

be formed the adiabatic theory expectedly breaks dowp. 

The expansion of the exact scattering wavefunctions l/Ioexact(x, s) 

and l/I1exact(x, s) in ter:Us of "vibrational" eigenfunctions along any of 

five cuts transverse to the reaction path is converged to better than 
5 2 

1 part in 10 for a seven term expansion and to better than 1 part in 10 

for a four term expansion. This suggests that the VAZC vibrational 
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eigenfunctions might form a good basis set for describing the collinear 

H + II" reaction o 
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Figure 1: 

Figure 2: 

Figure 3: 

Figure 4: 

Figure 5: 

303 

Potential energy contours (solid curves) in normal-mode 

coordinate space p, q of the Wall-Porter fit to the scaled 

SSMK surfac.e. Minimum energy path (thicker solid 

curve) and six normal cuts (long-dashed lines) are also 

shown. The corresponding values of s, in bohr, ranging 

from -2.50 to +2 . 50 are indicated. The p-axis (s = 0) 

is an additional normal cut. r AB andrBC are inter­

nuclear distances tn the linear A-B-C triatomic system. 

Coefficientsa... for the, cut at s = -1. 60 bohr as a 
10 \ 

function of the total energy E and initial relative 

kinetic energy Eo. See text for definition of other 

symbols used in this figure. 

Coefficients aio for the cut at s = -0.15 bohr as a 

function of the total energy E and initial relative 

kinetic energy ~o. See text for definition of other 

symbols used in this figure. 

Coefficients aio for the ' cut at s = 0.0 bohr as a 

function of the total energy E and initial relative 

kinetic energy Eo. See text for definition of other 

symbols used in this figure. 

Coefficientsa· for the cut at s = +0.15 bohr as a 
10 

function of the total energy E and initial relative 

kinetic energy Eo. See text for definition of other 

symbols used in this figure. 



Figure 6: 

Figure 7: 

Figure 8: 
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Coefficients ~o for the cut at s = + 1.60 bohr as a 

function of the total energy E and initial relative 

kinetic energy Eo. See text for definition of other 

symbols used in this figure. 

Coefficients air for the cuts at (a) s = 0.0 bohr, (b) s = 

-0.15 bohr , and (c) s = -1.60 bohr as a function of the 

total energy E and the initial relative kinetic energy E1 • 

Coefficients ai for the cuts at (a) s = + 1.60 bohr, and 
. 1 

(b) s = + 0.15 bohr a s a function of the total energy E 

and the initial relative kinetic energy E1 • 
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II.2 THE EFFECT OF THE CURVATURE CORRECTION ON THE 

VIBRATIONALLY ADIABATIC THEORY OF CHEMICAL 

REACTIONS. 
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THE EFFECT OF THE CURVATURE CORRECTION ON THE VIBRA­

TIONALLY ADIABATIC THEORY OF CHEMICAL REACTIONS. 

1. Introduction 
~ 

In a previous paper, a direct test of the vibrationally adiabatic 

theory of chemical reactions in the zero-curvature l!.pproximation 

(VAZC) WaS made for the collinear H + II;, rel!.ction. 1 In addition to 

this test, comparisons between exact quantum and VAZC reactive 

transition probabilities have been carried out for the collinear H + II;, 

reaction. 2,3 A VAZC analysis was also performed on a time-dependent 

quantal treatment of this reaction. 4 

Much less information is available on the value of the vibra­

tionally adiabatic theory including curvature (VA). 4,5 . This theory is 

internally consistent, making no ad hoc assumptions about the curvature 

of the reaction path as the V AZC theory doe s. It is clear that the 

assumption of zero curvature has peen made for COIPPutational convenience 

only. Indeed non-zero curvature is an essential feature of the theory of 

chemical reactions. A calculation of reaction probabilities and reaction 

cross sections within the VA approximation has been performed by 

Wyatt. 5 This represents the only attempt to use the VA theory in a 

calculation of reaction probabilities. 

In the present paper we make use of exact quantum scattering 

wavefunctions calculated previously2 for the collinear H + II;, reaction 

to test the VA theory and to compare VA and VAZC results. The test 

and comparison are made for the symmetric stretch motion of the H, 
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transition state. 

In Section 2 a review of VA theory is presented and the relevant 

equations are given and discussed. Also, the details of the test of the 

theory are given. The numerical methods employed in our calculations, 

and a numerical examination of the VA vibrational potential are given 

in Section 3. The results and discussion are given in Section 4 and 

conclusions are presented in Section 5. 

~ 
2. 1 The adiabatic e uations 

In terms of the natural-collision coordinates (x, s) introduced 

by Marcus 4 and indicated in Figure 1 and defined in the corresponding 

figure caption, the collinear Schri:idinger equation is given by 

(1) 

V(x, s) if; the Born-Oppenheimer potential energy surface for the 

collinear configuration, J.I. is the reduced mass of the three particle 

system and E is the total energy. The quantity fj is related to the curva­

ture K through the equation 

Tj = 1 + K(S)X. (2) 

The coordinates (x, s) are referenced with respect to a curve C (as shown 

in Figure 1) constructed in some orthogonal coordinate space. The 

coordinate x is the shortest distance from any point P to a point Q on the 

curve C (with the sign convention given in Figure 1) and s is the distance 

from an origin on C to Q (with the sign convention given in Figure 1). 
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, 
The origin of C is taken at t he saddle point of the potential surface. 

As previously, 1,2, 6 we have chosen the normal-mode coordinate 

space (p, q) defined 7,8 

p = (~(rAB + r BC - 2ro), 

q = (1/2)(rBC - r AB)' 

J1. = (2/3) MA 

for a collinear A + BC ---> AB + C reaction. 

It is convenient to decompose the potential energy function as 

4 5 follows ' 

V(x, s) = V, (s) + V2 (x, s), 

V2 (0, s) = 0, 

and to write fi(x, s) as 

'l'(x, s) = ¥-(s)~(x, s) 

Upon substitution of eqs. (3) and (4) into eq. (1) and separating the 

variables the following equations are obtained: 

+ V(x, s) - EJ <r>(x, s) 

= S(x, s) <r>(x, s). 

(3) 

( 4) 

S is the operator which couples the s and x motion and hence is respon-
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sible for non-adiabaticity in this formulation. It is given by 4,5 

2 

S - h (a 2a1nlJ; _ a1n?]) a _ alnlJ; a~ll1i 
- 'iJ J1.'fr (Js + s s (Js -as s . 

By setting S equal to zero we obtain the general adiabatic equations 

(which include the curvature term). 

r:22 22 

[":f/-L SS2 + V1(s) - t: -E(S)] ~(s) = 0, 
2 2 

Gr.21 d d E(S)+\~ -V1(s) J _ L-z-:ur; dx (7/ dx) + (1 + /(X)2 + V(x, s) - E <Pi -0. 

( 5) 

(6) 

The quantity E (s) (tbe "local translational energy,,5) which appears in 

eqs. (5) and (6) is a separation c onstant and enters the theory as a 

parameter upon which the vibrational energy eigenvalue depends (when 

the curvature K(S) '" 0). To see this explicitly the function U(x, s) is 

introduceq;4,5 it is defined as 

2 U (x, s) = V(x, s) + [E(S) - V, (s) 1 /(1 + KX) • 

Also, let Xo be the minimum of U(x, s). Then adding and subtracting 

U(xo , s) to eq. (6) we obtain for the vibrational equation 

E2~ ~ fx- (1) ix) + U(x, s) - U(xo, s) - E~(S)J <Pi = 0, (7) 

where E~(S) is the ith local vibrational energy eigenvalue and the total 

energy is given by 

E = E~(S) + U(xo , s). (8) 

Thus, by inspection of eq. (7) it is evident that this e.quation contains 
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€ (s) as a parameter when K(S) '" O. 

Before proceeding with further manipulation of eq. (7) we note 

that in the asymptotic limits, defined by s -> ± co 

K = 0, Xo = 0, 

and 

U(x, s) = V2 (x, s) - E(s). 

As a res\l.lt of this, eq. (7) becomes 

E 
22 -n d 
~~ + V 2(x, s) - V2(XO , s) - E~(S~ = 0 (9) 

eq. (5) becomes 

(10) 

and the total energy is given by 

E = E~(S) + E(s). 

Eqs. (8) and (9) are the zero-curvature vibrational and translational 

equations, respectively. The assumption that they are valid for all 

value s of s is made in the VAZC theory. 

Returning to the solution of eq. (7) we note that this eigenvalue 

equation can be put into standard Sturm-Liouville form9 by multiplying 
2 

it by -2 J.LTJ Iii. The function TJ (x, s) can be identified as the weight 

function and it is assumed to be positive. 10 With this assumption we 

define the function 1\ by 



319 

(11) 

and then eq. (7) becomes 

(12) 

The real-valued functions </\ and iPi satisfy the following orthonormality 

conditions: 

00 

J dx cf\(x, s) <pj(x, s) = Ii ij' 

- [K(S)r1 

00 

J dx iPi(x , s ) iPj(x , s) 1} (x, s) = Q ij' 

_[ K(S)]-l 

(13a) 

(13b) 

where 0 .. is the standard Kronecker delta function. The lower limit 
1) 

of integration -[ K(S)] -1 is imposed by the requirement that the weight 

function 1/(X, s) be greater than or equal to zero in the range of integra­

tion. From eq. (2) this range is seen to pe -[K(S)] - 1 os x os 00. In 

practice the upper limit of the above integrals is some value of x, xu' 

such that V(Xu ' s) is much greater than the total energy of the H3 

system. We examine the choice for ~ in more detail below. The 

functions <Pi (and hence "\) fo r m a complete orthonormal set of 

functions over the integration range given above. 

To find the eigenvalues and eigenfunctions of eq. (12) for a 

given value of the total energy E requires a numerical search procedure. 

This is so because the function £(s) occurs both in the eigenvalue 

equation (eq. 12) and in the total energy equation (eq. (8». In the 
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following section a description of the search procedure is given. 

2.2 Pro'ection coefficients and the test of vibrational adiabatic it 

According to our assumptions about the completeness of the 

vibrational eigenfunctions l1/x, s=O) (and ¢/x, s=O) we assert that 

the exact scattering wavefunction lP~xact(x, s=O) can be represented as 
co 

lP~xact(x, s =O) = L eiI l1/x, s=O). 

i=l 
(14) 

The subscript I indicates the initial vibrational state of reagent H" 

e. g. for reagent II2 initially in the v = 0 vibrational state I = O. The 

coefficients en are determined in the standard way, namely 

~ 
en = J dx lPlexact(x, s=O) 7, (x, s=O) l1/x, s =O). (15) 

[-K(S=0)r 1 

Making use of eq. (11) we also have that 

Xu 

J exact( t en = dx t/f x, s=O) 1) (x, s =O) ¢.(x, s=O). 
-1 1 I -K(S=O)] . 

(16) 

Expression (16) is the one employed in our calculations. We then define 

the coefficientsCLiI as follows: 

(17) 

According to the vibrationally adiabatic theory outlined in Section 2.1 

(18) 
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and hence 

(19) 

The test we have carried out consists of calculating the exact 

coefficients ail (eq. (17)) fr om t he exact scattering wavefunctions and 

comparing the results to the VA prediction given by eq. (19) as a 

function of the collision energy. In addition, we compare the coefficients 

givep by eq. (17) which have the curvature term properly included in 

the VA SchrOdinger equation to those calculated in the zero-curvature 

approximation. 1 

3. Numerical Methods 
~ . 

3. 1 Solution of the vibrationalei 

To solve the vibrational eigenvalue equation (eq. (12» fora 

given total energy E requires an iterative search procedure. The 

value of E (s=O) is chapgeq w~th e~cl:l iteration uptil the total energy 

equation, eq. (8), is satisfied. As mentioned previously this iteration 

procedure is necessary since the parameter E (s=O) is contained in both 

the eigenvalue equation and the energy equation through the potential 

U(x , s). Typically six iterations were done to find the value of 

ds=O) which yielded equality of eq. (8) to several parts in 10
4

• 

The eigenvalues and eigenfunctions were solved for by a finite 

difference boundary-value method. This method is described briefly 

in paper 11.1 and in greater detail elsewhere " 11 
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3.2 The otential u.(s x) 

By definition 

2 U (x, s) = V(x, s) + [ EO (s) - V, (s)] / (1 + KX) • 

This function has a second order pole at 

JC.-.,.-l-- 1 X=-L"J 

and the singularity is positive if EO (s) > V 1 (s) and negative if 

ds) < V,(s). 

Consider first the case when E (s) > V, (s) and as a relevant 

example let s = O. In Figure 2 the potential U(x, 0) is given for the Hg 

potential surface used in our calculations. This surface, V(x, s), is a 

Wall-Porter fit12 to the scaled SSMK surface13 with a barrier height 
8 

of 0.424 eV. It is described in detail elsewhere. 2 Several values 

of E (s =O) are considered to indicate the nature of the Singularity. 

The total energies which correspond to the values of E (s=O) in 

Figure 2 are included in Table 1. As seen l1.(x,O) becomes very large 

as x --->-[K(S =O)r ' and x > 1. 0 bohr. The value of Xu chosen for 

our calculations was Xu = 2. 07 bohr. Thus, the boundary conditions 

which were imposed in solving the eigenvalue equation (eq. 12) are 

seen to make physical sense for E (s) > V, (s). 

(20b) 

\ 
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For 10 (s=O) = Vt (s=O) U (x, s=O) is equal to V(x, s=O). This case is 

also shown in Figure 2. From Table 1 it is seen that for 10 (s=O) = 

Vt(s=O) = 0.424 eV the corresponding total energy E is 0.549 eV. 

For x = ~ and E(S=O) > Vt(s=O) U(~, s=O) is substantially greater 

than the corresponding total energies. However, for 10 (s=O) = V1 (s=O) 

U.(X=-[K(S) r" 0) = 0.892 eV which is not much greater than the 

corresponding E. Hence , the boundary condition given by eq. (20b) 

is only marginally correct for this case. We see no way to overcome 

this numerical difficulty without choosing for the curve C a path different 

from the minimum energy path. 

The approximate nature of the boundary condition given by 

eq. (20b) mentioned above becomes a serious problem for 

IO(s=O) < V1(s=O) as seen in Figure 3. Clearly, the boundary condition 

given by eq. (20b) seems incorrect. However , as seen from Figure 3 

for € (s=O) greater than O. 35 e V the negative singularity is quite sharp 

and the potential t.t(x,s=O) riseS rapidly to a large positive value relative 

to the total energy. This situation suggests that the correct eigen­

functions oscillate rapidly in the vicinity of the singular point 

x = [ - K(S=O)] -1 and then decay exponentially to zero for x = [ _ K (s =O)] -1_ 1) 

for I) less than 0.15 bohr. Thus there is some justification for eq. (20b) 

for total energies greater than around 0.50 eV. This procedure as 

well as a more detailed justification for it is given in Appendix A of 

reference 5. As implied above, this procedure is expected to be a 

reasonable one for IE(s) - Vt(s) 1 not very large. 
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4. Results and Discussion 

As discussed in Section 2 one boundary condition on 

¢.(x, s=O) was that it equal zero for x = -IK(s=O)] -t. In our calculations 
1 

K(S=O) = 1.76 bohr-to Thus, x = -0 . 568 bohr and the corresponding 

values for r AB and r BC are 2.167 bohr (r AB = r BC for the s =O cut 

for Hs). To investigate the consequences of this imposed boundary 

condition on the completeness of the basis set {¢i(x, s=O)} (and hence 

{<Pi (x, s=O)}) the convergence of the expansion given by eq. (14) was 

examined for all energies considered in our calculations. Some repre­

sentative results are given in Table 2 for total energies E of 0.572 eV 

and 0.852 eV and for reagent H2 initially in the v = 0 vibrational state. 

There it can be seen that although the summation 
N 

I Icio 12 
i = 1 

has essentially converged for N = 10 the representation of l/Ioexact by 

the expansion given in eq. (14) is not very good. Evidently l/Ioexact 

is non-negligible for r AB(rBC) greater than 2.167 bohr . Thus, the 

eigenfunctions {cp.} do not form a complete set of functions over the 
1 , 

space spanned by l/Ioexact . This is in sharp contrast to the result found 

for the VAZC eigenfunctions which wer e seen in Paper II. 1 to give an 

excellent representation of l/Ioexact. The definition ofa...
iI 

given by 

eq. (17) in terms of (l/IIexact, Tll/IIexact) antiCipated the differences 

seen above between l/IIexact and its representation given by eq. (14) ~ 

Thus, the fact that the expansion of l/IIexact is incomplete is manifested 
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in the fact that the summation of ail converges to a number less than 

one o (At some energies the summation ,of ail exceeds unity.) 

In Figure 4 the VA and VAZC coefficients aoo are given as a 

function of the total energy E (lower abscissa) and initial relative 

kinetic energy Eo (upper abscissa). The T~, T~, and V(s) arrows 

indicate the values of the ground and first excited vibrational states of 

the symmetric stretch motion and the value of the potential energy along 

the minimum energy path respectively. The To, Tu and Eo arrows 

correspond to the values of the ground and first excited vibrational 

states of a. and the classical barrier height respectively. For E less 

than 0.6 eV the present VA results and the VAZC ones are quite 

similar in magnitude and energy dependence. As mentioned in 

Section 3.2 the procedure used for handling the negative singularity in 

the potential /..L(x, s=O) was justified for total energies greater than 0.5 eV. 

As seen in Figure 2 calculations have been made for E below 0 05 eV. 

There is no real justification for this otner than to offer some comparison 

with the VAZC results. For E greater than 0.6 eV, however, the VA 

result snows significant improvement over the VAZCresulL This seems 

to indicate that some of the non-adiabaticity present in the VAZC calcu-

lations can be accounted for by the inclusion of the curvature term in 

the correct VA Hamiltonian o That this is reasonable, can be argued 

from inspection of Figure 2 where the potential U(x , s=O) is plotted for 

several values of E (s=O). As E (s=O) incr'easesand hence as E increase s 

,(cL Table 1) the minimum of U(x, s =O) is seen to shift to smaller values 

of r AB(rBC). Thus, the VA eigenfunction <p .. (x, s=O) has its peak shifted 
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in ttmt direction. Thus, the VA description of the scattering wave-

. function shows that as the energy increases the wavefunction increasingly 

samples the hard wall of the potential surface. This description is the 

quantum version of the ''bob sled" effect and is borne out by calculations 

of the quantum probability current density vector .14 (The VAZC theory, 

however, is a "static" one in the sense that the VAZC vibrational 

eigenfunctions do not change with the total energy.) Indeed, as seen 

in Figure 3 the location of the negative singularity in U(x, s=O) for E 

less than 0.54 eV suggests that the correct VA eigenfunction would 

"cut the corner" as the exact E;cattering function does in this energy 

range. The fact t)1at the VA result is worse than the VAZC one in 

this energy range may be due to the mallner in which we Mndled this 

negative sillgularity. 

The VA and V AZC coefficients a.n are compared in Figure 5 as 

a function of the total energy E and the initial translational energy E,. 

The VAZC rpsult shows greater adiapaticity than does the VA one. This 

may be in part due to the fact that the representation of 1/t,exact given by 

eq. (15) is significantly in error as seen from Table 3 where the conver­

gence and completeness of the expansion of 1/t,exact is examined for 

E, = 0.063 eV and 0.144 eV. A comparison of Tables 2 and 3 reveals 

that the representation of 1/t,exact in the basis {<Pi} is worsEt than it is for 

1/toexact• This is due to the imposed boundary condition given by eq. (20b). 

The wavefunction 1/t,exact is probably more diffuse in the (p, q) coordinate 

space than 1/toexact is and hence it is expected that the representation in 

the basis set {<Pi} of the former wavefunction would be worse than the 
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latter one. Thus, although the coefficient Cll might be the dominant 

one in the expansion given by eq. (14) the VA au could still be small 

compared to unity according to its definition and the above discussion. 

5. Conclusions 
~ 

The attempt to improve upon results of a previous test of VAZC 

theory by including the curvature term in the VA vibrational Hamiltonian 

has been mainly unsuccessful. This is due primarily to several numerical 

difficulties present in the VA theory. A negative singularity in the VA 

potential occurring for total energies E less than 0.549 eV make the 

calculation of exact VA vibrational eigenfunctions impossible. In 

addition the boundary condition that 4>/[ -K(S=O)] -1, s=O) = 0 causes 

these VA vibrational eigenfunctions to be an incomplete basis for expan­

sion of the exact scattering wavefunction l/IIexact. This incompleteness 

is more serious for l/I1exact than it is for %exact. 

The adiabatic potential which includes the cllrvature term is 

energy dependent due to the parameter ds). This energy dependence 

which enters through the curvature term causes the VA wavefunction 

to shift towards the hard wall with increasing energy in qualitative 

accord with the exact quantum result. 14 

A possible way to improve the present VA results might be to 

choose a reaction path with less curvature at the saddle point than the 

minimum energy path chosen in this study. This would help to remove 

the incompleteness of the VA vibrational basis set. 
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Table 1. Relationship between the total energy E and 

the "local kinetic energy" € for s = 0.0 bohra 

for reagent H,,(v = 0). 

€(eV) E(eV) 

0.424 0.549 

0.439 0.572 

0.476 0.620 

0.555 0.700 

0.623 0.762 

0.682 0.762 

0.682 0.808 

0.797 0.898 

0.857 0.939 

0.907 0.973 

1.001 1.033 

a This cut corresponds to the symmetric stretch motion of H3 • 
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Figure 1: Reaction path, C, for the Wall- Porter fit to the scaled 

SSMK Hs potential surface in normal-mode coordinate 

space (p, q) 0 Also shown are the natural collision coordi­

nates (x, s) 0 

Figure 2: Potential LL(x, 0) for four values of the local translational 

energy Eas a function of x and one internuclear distance Ro 

For s = 0 Rl = R2 0 Note the positive singularities for these 

values of Eo 

Figure 3: Potential U!.x , O) for four values of the local translational 

energy E as a function of x and one internuclear distance R 0 

For s = 0 Rl = R2 • Note the negative singularities for these 

values of E. 

Figure 4: Curvature and zero-curvature coefficients a." 0 for s = 0.0 

as a function of the total energy E and the ii-dtial transla­

tional energy Eo. The significance of the a.rrows on the 

lower apscissa is given in the text. 

Figure 5: Curvature and zero-curvature coefficients arl for s = 0.0 

as a function of the total energy E and the initial transla­

tional energy E 1 • 
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SUMMARY 

The results of the test of the vibrationally adiabatic zero­

curvature theory presented in paper II. 1 revealed that the theory is in 

qualitative agreement with exact quantum results over a limited range 

of collision energies. For total energies below the energetic threshold 

for vibrational excitation of H2 it was found that the reaction is vibra­

tionally adiabatic in the near asymptotic regions of space. In the 

strong interaction region significant non-adiabaticity was found, 

especially at the very low collision energies where tunneling is sub­

stantial. Thus, we concluded that tunneling is non-adiabatic. For 

energies above the energetic threshold for vibrational excitation the 

adiabatic theory expectedly breaks down. 

An investigation of the use of vibrationally adiabatic zero­

curvature basis sets to represent the scattering wavefunctions along 

five cuts was performed. It was found that convergence of the repre­

sentation was rapid at all the energies considered. 

In paper 11.2 the attempt to improve the zero-curvature results 

of 11.1 by including curvature in the calculations was mainly unsuccess­

ful. The chief reason for this seemed to be due to numerical difficulties 

inherent in the curvature treatment. Depending on the value of the total 

energy the potential function has a positive or negative singularity at 

the local radius of curvature. In addition to presenting some numeri­

cal difficulties in the calculation of the vibrationally adiabatic basis 
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sets (especially for the negative singularity) the domain of the inde­

pendent variable was restricted. This restriction caused the vibra­

tionally adiabatic basis sets to be incomplete over the domain of 

configuration space spanned by the exact scattering wavefunction. 

This contributed to the inability of the curvature correction to improve 

the zero-curvature results. In addition, the representation of the 

exact wavefunction by the vibrationally adiabatic basis sets (including 

curvature) was not very good. At higher collision energies, the 

accuracy of this representation was found to deteriorate substantially 

over tile lower energy results. 
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PART III 

THEORETICAL STUDIES OF ELECTRONICALLY NON­

ADIABATIC CHEMICAL REACTION DYNAMICS 
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ELECTRONICALLY NON-ADIABATIC REACTION DYNAMICS 

1. Introduction 
~ 

The field of electronically non-adiabatic (ENA) reaction dynamics 

is a rapidly developing one. 1 An example of an ENA chemical reaction 

which has been studied extensively experimentally is2- 6 

Many other reactions, expecially chemiluminescent ones, are known 

to be of the ENA type. In particular, reactions with barium atoms 

such as 

(
1 1 + 1 + 

Ba S) + N02 ---+ BaO(A L ) + N2 (x Lg ) 

1 
Ba( s) + C12 ---+ BaC12 + photon 

have recently been studieq under single collision conditions. 7 -9 Many 

oxygen atom reactions may well be of the ENA type. Indeed, it has 

beeri speculated that the reactions 

3 * O( P) + Br2 ---+ OBr + Br 

3 * 02( P) + Ba ---+ BaO + 0 

may involve a singlet as well as the triplet surface. 10, 11, 12 

Theoretically, although much interest is developing towards 

describing ENA reactions, not very much has been done. A classical 

trajectory surface-hopping technique based on semi-classical atom-

atom theory has been developed and applied to the H+ + D2 reaction. 13, 14 

An elegant semi-classical theory of ENA chemical reactions has also 
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been developed15, 16 and recently applied to the H+ + D2 reaction. 17,18 

In addition the possible role of several potential surfaces in the 

F + H2 reaction has been questioned19 and explored within an approxi­

mate classical trajectory surface-hopping method. 20 

The fact that ENA reactions are receiving increasing interest 

has stimulated us to perform exact quantum studies of some model 

collinear ENA chemical reactions. In addition it is quite likely that 

inSight gained in studies of ENA reactions will be applicable to the 

subject of radiation less transitions and unimolecular decay from an 

excited electronic state. 21 

In the next six sections the general quantum theory of ENA 

reactions is presented. Following that are manuscripts describing 

our calculations. The first manuscript presents some results we 

have obtained for the collinear H+ + H2 ~ H2 + H+ reaction in which 

only the ground state surface was considered. The results are of 

sufficient interest to merit their presentation even though the study 

involves only a single potential surface. The second manuscript 
\ 

gives results on model (fictitious) H + H. studies on two potential , 

energy surfaces coupled by a third "spin-orbit" surface. The third 

manuscript contains results for our study of the reaction. 

11* 
Ba( S) + ON2(x ~) ) BaO + N2 

~BaO+N2 

This reaction is of current interest as a possible candidate for an 

electronic transition chemical laser. Details of the relevant two-

state differential equations for the collinear reactions as well as the 
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scattering analysis are given in several Appendices. 

2. The Adiabatic Re resentation of Electronicall Non-Adiabatic 

Chemical Reactions 
~ 

In the fully quantum treatment of the electronic and nuclear 

motion (described by sets of coordinates £ and ~ respectively) the 

complete wavefunction iJ.iis written as follows: 

if;{~, £} = T Xi{£;~ )lPi{~) . . 
i 

(I) 

This expansion assumes that for each value of ~ the x./£;~) form a 

complete set of functions over the space spanned by the wavefunction 

>I-. The 1P. can be thought of as expansion coefficients at a fixed R in 
1 .. -

the expansion of w. As R changes these expansion coefficients change, -
hence 1/1; becomes a function of R. Indeed, the assumption that a com-

1 . -

plete orthonormal set of electronic functions exists for each ~ is a 

non-trivial one. However, if such sets exist then they must be related 

to each other by a \lnitary transformation. The so-called adiabatic 

X .(r;R) are a particular set of electronic wavefunctions which satisfy 
1 -

an eigenvalue equation specified below. The nuclear wavefunctions 

l/I.{R) describe the scattering properties of the system from a given 
1 -

initial quantum state to all possible final quantum states. Since our 

interest is centered on chemical reactions in which the electron 

motion is always bound , only electronic wavefunctions which describe 

such motion are included in expansion (I). This condition further 

assumes that virtual electronic continuum states can be ignored. 
a In this section we focus on electronic eigenfunctions Xi which are 
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the molecular wavefunctions obtained in the Born-Oppenheimer 22 

approximation and they satisfy the following eigenvalue equation: 

el . a (_.. . a 
H (r;R) Xl' (r;R) = E. R) X. (r;R) . ........ ........ 1 ........ 1 ......... ....... 

(2) 

The Hamiltonian WI is the piece of the total electronic and nuclear 

Hamiltonian which describes the -electronic motion for "clamped" 

nuclei. WI depends parametrically on the nuclear coordinates ~ 

(in most cases on R only) due to the nature of the usual electron­

nuclear interactions. In addition, Hel is required to contain all of the 

electron interactions to be considered in the problem, e.g., spin-orbit 

interactions. In a later section the possibility of excluding such 

interactions in Hel but including them in the total Hamiltonian will be 

considered. 

The Xia defined by eq. (2) adjust to the nuclear motion 

(for infinitely slow nuclear motion) and hence are termed adiabatic 

states, Furthermore the eigenvalues E. (R) form a family of adiabatic 
1 " 

potential energy hypersurfaces which govern the nuclear motion 

(cf. below) and obey the "non-crossing" rule .23 Thus, the representa­

tion of Ijjgiven by (1) for the Xi set of functions is termed the adiabatic 

representation . 

To examine some of the consequences of this adiabatic represen­

tation on the equations describing 1/1. (R) we write the full electron 
1 ~ 

nuclear Hamiltonian H in terms of the nuclear kinetic energy operator 

el 
TN and H as 

(3) 
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and note the if! must satisfy the Schrooingerequation fora total energy 

E 

(4) 

Then, inserting expansion (1) for if! into (4) and making use of (2) we 

have that 

A a "J I TN + E.(H) - EJ Xl· (r;H) !/I.(H) = O. 
L..J 1""" -- 1""" 

( 5) 

i 

* To develop coupled equations for the !/Ii we multiply (5) by Xj a and 

integrate with respect to r . Making use of the fact that the X. can be 
~ 1 

taken as orthonormal (since Hel is Hermitian) eq. (5) becomes 24 

I{(xtITNIXia)el+[E/H)-EJOji!/li(~) =0 . (6) 
i 

" H TN is written as 

(7) 

" where r denotes the sum of nuclear momentum operators and where M 

denotes a collective mass (a coordinate system ~ such that (7) is valid 

can constructed), then (6) becomes 

L {(2M)-1 (Xj jP2jXi) el + M-
l 

<Xj I~ IXi) et" f + 
i 

+ [E. (H) - EJ Ii .. } !/I.(H) = o. 
1 Jl 1 ~ 

( _11'2] 
0 .. 2M) P 1/--.(H) 

J1 1 ~ 

(8) 

/'0 "2 
The first two terms of eq. (8) involving matrix elements of rand P 

. are responsible for coupling the l/I. (H). These quantities are called 
1 ~ 
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the Born-Oppenheimer (BO) coupling terms. In the example below 

their explicit form is given. 

A very important point to note is that the BO coupling terms 

are Hermitian with respect to their operation on the nuclear coordi­

nates. Since this is not obvious from their form we shall demonstrate 

this in the example given below. 

Consider now a collinear reactive collision of an atom with a 

diatomic molecule, A + BC ·~AB + C. In the Delves mass-weighted 

coordinate system25 the two nuclear coordinates describing the A, BC 

arrangement channel are denoted by Xl and x2 and their conjugate 
A " momenta are deSignated by P and P . In terms of the internuclear 
~Xl ~x. 

distances r AB and r BC and the nuclear mass MA, MB, and MC these 

coordinates are given by 

J1. 1. M 
Xl = ( 1\., BC ) 4 [r + B 

Ilsc AB MB + MC 

where 

and 

For the product arrangement channel a pair of coordinates, denoted 

by Zl and Z2' are analogously defined. In terms of the variables Xl' X. 
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and their conjugate momenta eq. (8) becomes 

(9) 

Consider now the two-state approximation to eq. (9). That is, 

the summation over i is restricted to two terms. Within this approxi­

mation eq. (9) can be written explicitly as 

2 2 2 
[ - ~ (a~12 + a~2) + Tll"(xV x2) + E1(xV x2)-E]1/Il(XV X 2) 

(lOa) 

2 2 2 

[-~ (a~12 + a~2) + T22"(xu x,) + E2(x" x,)-E] 1/12 (xv x2) 

(lOb) 

where in notation introduced previously 26 

and 

2 

+a~2)Xj~I' i,j = 1,2 

The diagonal terms Tu' and T22 ' are absent from eqs. (lOa) and (lOb) 

since they are rigorously zero. To see that,consider the identity 



_0_ (Xl' I XI'~l~ 0 OXl 

which leads to the result that 

o . 
(X I-Ix ) , ~ O . i oX i ' 1 . 

1 e 
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Equations (9), (lOa), and (lOb) are well known, however, few cal-

culations have actually been carried out with them. This may be 

due in part to the difficulty in obtaining the BO coupling termsTij' . 

and T .. " for atomic and molecular systems by ab ..::i""lll;;.;·tc:,io;:;. methods. 
~ --

Accurate ab initio bound state calculations of the vibrational motion 

of II, + and H2 have beeri carried out utilizing equations analogous to 

eqS. (lOa) and (lOb)~7-29however, to our knowledge no scattering 

calculation has been performed which makes use of these equations. 

Many scattering calculations have been done in the spirit of these 

equations but making semi-classical approximations to them. 

The Hermiticity of the BO coupling terms is undoubtedly 

known, especially by those who have used the above formalism in 

boupd state problems. However, since this property is not self-

evident we prove it for the above collinear example. Consider first 

the identity 

This implies that 

o . 
(Xl lox I X2 ) el 

1 
(lla) 

and similarly 
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. . * 
<x2Ia~lxl>el = - <xlla~ lX2>el' 

For future use it is convenient to define the quantities 

Fij=" (Xi la~, IXj>el' 

G .. =" <x· I"£- Ix ·>'l' i,j = 1,2 • IJ 1 uX2 J e 

The assertion that the BO coupling terms are Hermitian is given 

by the equality 

where the integration is with respect to the variables Xl and x.. 
Consider first the integrals involving the operators T,2 ' ; 

(0/, IT ,/ 111'2> N" By definition 

2 

<11', IT,.' 1lf-2~= - ~ <0/, IF' 2 a!, + G'2 a~ ItP2>N" 

Examining tile term <If-, IF,z a~l ItP2~e have tllat 

(Ub) 

(12a) 

(12b) 

(o/llF,z a~ ItP2>N= jdxz jdx, tP,*(xvxz) F,z(xvx.) a~ lfIz(xvxz) , , 

Since the integrations over x, and x2 are independent we can perform 

the x, integration by parts to obtain , 

J * a * dx,tP, (xv x2) F,2(xV x2) ax, 0/2(X" x.) = 11', (x" x2) F12(x" x2) If-2(XV x.) 

J .[ 0 * * ' of - dx, tP2(X" Xz) F,z(x" Xz) ax ljI, (x" Xz) + .p, (Xi, Xz) ~ 1 . , . , 

The first term on the right hand side of the above equation vanishes 

since the BO coupling term Fl2 vanishes for large values of the 

u x, 
I 1 
x, 
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scattering coordinate Xl U and for small values of the coordinate xII 

either Fl2 or l/II and l/I2 or both vanish due to the repulsive nature 

of the potentials EI (xv x,) and E2(X1 , x,). Thus 

* 
{l/II I Fl2 a~l IJII2)N=- I * 01 * {'If; IOF]2 * (l/I2 Fl2 ax:- !/Il)N- 2 ax Il/II) N . (14a) 

I 

and by similar reasoning 

* 0 * * 
{JIll IGl2 a~ IJII2~=- {1/1 loG]2 * {!/I21G'2 ox, I!/II} N- I!/II)N . (14b) 2 aX, 

Now making use of eqs. (Ha) and (Ub) eqs. (14a) and (14b) can be 

written as 

and 

Thus, we have the important result that 

and hence the operator T,.' is not Hermitian (unless oF21 /oX1 and 

OG21 / 0X, vanish). 

From the definition of F21 

of 0 I a I F. = ox (X2 ox Xl) el I I I 

(15a) 

(16) 

(17a) 
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and similarly 

2 

~G21 = (~l~) + ( 1 0 1 ) 
x" -ox;: ox;- el X2 OXl2 Xl el (17b) 

Thus, eq. (16) can be written as 

2 

(I/II1T,,' llJt2) N = (1/I21 T2.' IlJtl>~- ~ (l#J21 r(~Q: l~~: ) el+ (R21~~) el 

(18) 

To complete the proof of the lIermiticity of the EO coupling terms 

we make use of the following identity 

to establish that 

2 2 2 2 

_ b . 1_0 _ _ 0_1 >. - !..[ (£x...I~)* (£x... I~ * ] 2IL <Xl OX1
2 + Ox,,2 X2 el - f1. OX

I 
OXI el + OX2 ox,,) el 

2 2 2 

b 1 0 0 I * + 2IL (X2 ax." + Ox,,2 Xl> el . (19) 

ThuS, 

2 2 2 2 

- ~ (1/11 I (Xl la:l + a~2 IX2) e111/l2) N = ~ (1/12 I (~Q: Ig~ll > el 

Now we add the left and right hand sides of eq. (20) to the left and 

right hand sides of eq. (18) respectively to secure 
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(21) 

This is the desired result which according to the definitions of T .. " 
"" IJ 

given after eqo (lOb) can be rewritten as 

Thus, we have shown that the BO coupling terms Ti/ + Tij" are 

Hermitian and that separately the quantities T . .' and T .. " are not in 
IJ IJ 

general Hermitian. The latter point is very important for rigorous 

quantum calculations. In semi-classical descriptions of the two-state 

Problem the T .. " term is absent in the formalism 30-32 and hence there IJ "" 

may be a temptation to omit it in the rigorous quantum description.33 

However, "unless its omission is carefully justified it may result 

in a non-Hermitian coupling whicn will produce a non-Unitary 

scattering matrix. 34 

3. The Diabatic Re resentation of Electronicall Non-Adiabatic 

Chemical Reactions 
~ 

In the previous section the adiabatic representation of electroni­

cally non-adiabatic chemical reactions was presented. The crucial 

point which gave rise to this representation is expressed by Eq. (2). 

In other words the electronic wavefunctions xt were required to be 

eigenfunctions of the full and complete electronic Hamiltonian, Hel 

at all internuclear separations. Such eigenfunctions are also termed 

molecular wavefunctions. 
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If instead of using these exact solutions to eq. (2) a different 

set of electronic wavefunctions is employed in the expansion of 

-j[f(~ ,D then the representation is termed diabatic
35 

and these 

electronic wavefunctions are denoted by the symbol ~id. Clearly. 

this description of the diabatic representation is quite vague and 

hence obviates the possibility of a unique diabatic representation. 

For example the Xi d might be chosen in the following ways. They 

might be eigenfunctions of Hel for the isolated atoms (and/ or mole­

cules) and then "frozen"at all other atomic (and/or molecular) 

internuclear distances. Such frozen orbitals would not satisfy 

eq. (2) in generaL Another, more realistic possibility is that the 
. d . . 

Xi are allowed to change somewhat as tbe nuclei are moved, 

however, not so as to be exact eigenfunctions of Uel •36 This diabatic 

picture though not unique does produce a set of coupled equations 

for the diabatic nuclear wavefunctions tYi d(~). 37 The procedure to 

develop these equations is identical to the one used in the previous 

section. However, eq. (2) can no longer be used. Thus, in place 

of eq. (6) we have the following set of coupled equations 

(22) 

where 

el d I ell · d H .. = (X· H X· > • 
)1 . ) 1 el 

The use of approximate electronic wavefunctions has resulted in addi­

. tional coupling (through the matrix elements Hjb in the coupled equa­

tion for the l/I. d when compared with the adiabatic representation 
1 . 
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(cf. eq. (4». At this point, without justification, we assume that 

(23) 

and eq. (22) becomes simply 

(24) 

A justification of eq. (23) has not been made in the literature and the 

fact that this is even assumed (when it certainly is) is given only 

casual notice~l, 3~ possible source of justification might be offered 

if the Xid are frozen orbitals. By definition these atomic orbitals 

change little with f! and hence derivatives of these functions with 

respect to R might be very small. These coupled 

equations are simpler in structure than are ones given by (4), since 

the coupling is of simpler and "cleaner" nature than the one in (4) 

which involves nuclear knietic energy and velocity operators. However, 

tile simplicity of eq. (24) rests on the validity of eq. (23). Indeed it 

might be argued that in the presence of a complete expansion of the 

total wavefunction lJi(R, r) in some diabatic representation by - - . 

introducing some coupling through the Hljl matrix coupling 

<Xjd ITN IXid~lmight be reduced. In the time-dependent impact param­

eter approximation to (22) it is argued that the nuclear velocity 

coupling is negligible for high energy collision.24 Further, eq. (23) 

may serve as a guiding principle in choosing a "good" diabatic 

representation Xid. That is, one seeks the Xid for which eq. (23) is 

best satisfied. In any event, it has recently been shown that a unique 
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diabatic representation can be found such that eq. (23) can be satis­

fied exactly~8 We return to a consider ation of this approach in the 

next section. 

Let us consider. again the example of a collinear A + BC ~ AB + C 

collision described in the previous section. In the two-state approxi­

mation eq. (24) becomes for this example the following 

The functions ~ll and :a:} are called the diabatic potential curves 

(surfaces in the present example) and in many cases of interest 

these curves cross. This is not in violation of the non-crossing rule 

since the di(j.jJatic electronic wavefunctions Aid are not eigenfunctions 

of WI. 
The Bermiticity of the coupling terms in eqs. (25a) and (25b) is 

practically self-evident. By qefinition 

el d , • .ell d 
Bl2 = (Xl 11 X2 > el 

and 

el d I ell d B21 = (X2 B Xl > el 

and since Bel is Bermitian we have that 

Bel _ u el * . . 
12 - .1.-"2 1 0 

Thus , the following matrix e lements are equal 
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I ell I ell * (l/t1 H12 1/12> N = (l/t2 H21 1/11> N 

and thus, Hermiticity is established. 

Another approach to a diabatic representation is to employ the 

adiabatic representations for those regions of space where the BO 

coupling terms Tij' and Tij" are negligible. However, when these 

coupling terms are not small, i.e. , in the vicinity of a pseudocrossing 

point the representation is changed via a unitary transformation to 

some diabatic representation (again perhaps one which best satisfies 

eq. (23)).31 

In concluding this section we reiterate that the coupled diabatic 

equations given by eq. (24) are not rigorous since the approximation 

given by eq. (23) must be introduced in order to obtain the simple 

form for the coupled equations given by (24). Thus, the description 

given in this section of the diabatic representation has shown that 

the adiabatic and diabatic descriptions are not rigorously equivalent, 

witp. the adiabatic description being the exact one. In the next 

section we outline a recent attempt to develop equivalent diabatic 

and adiabatic formalisms.38 

4 , On the E uivalence of the Adiabatic and Diabatic Re resentations 

of Electronicall Non-Adiabatic Chemical Reactions 
~ 

In the previous section the non-uniqueness of the diabatic 

representation proposed was pointed out. Also, it was shown that 

in the absence of a justification of eq. (23) the diabatic formalism was 

not equivalent to the rigorous adiabatic one (outlined in Section 2) . 
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However , recently it has been shown38 that the two representations can 

be made equivalent by a procedure which uniquely determines a 

diabatic representation and in which eq. (23) is essentially satisfied. 

An outline of this procedure is given below. 

Let uS consider a compact notation for the coupled equations 

in an unspecified representation , Le. , adiabatic or diabatic . 
.... 

Let the matrix P be defined as follows: 38 

(26) 

. ~ 

where PN is the nucle4r momentum operator and let P be a 

generalized momentum matrix operator 

where I is the identity matrix. The dimensionality of these momentum 

matrix operators should be large enough to ensure the completeness 

of the set of functions Xk' That i s, for further manipulation it must 

be assumed that 

l, 1Xk) <xkl = '1 
k 

. " where 1 is the identity operator. Finally , a potential matrix U is 

defined, which in our previous notation is given by 

(lO-k = <x_IHell x k) 1-J J . e 
~ . 

(28) . 

(29) 

Then in terms of P and U and the total energy matrix lEthe coupled 

equations can be written as 
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(30) 

In view of eq. (27) the preceding equation can be re-written as 

1/1 in eq. (30) and (31) represents a column vector consisting of the 

nuc lear wa vefunctions ~k. Equation (31) is the rigorous set of coupled 

equations that any diabatic or the adiabatic representation of the !Ilk 

must satisfy. In fact eq. (31) is identical to eq. (22). The matrix 

" !. TN is simply the diagonal nuclear kinetic energy operator matrix, 

(2M) -1 p. Pis a diagonal matrix whose elements are given by 

. . (2 )-1'" -'"' -:t"!> ..... and the coupllllg matriCeS M PN· P and M p. PN are 

[(2M)-1 PN · P]jk = <Xj !TN !Xk)el j ;00 k 

= 0 j = k 

and 

j '" k 

j = k 

The form of the coupled equations given by (30) is very useful 

since it allows for a very transparent adiabatic or diabatic trans­

formation. The requirement that the potential matrix U be diagonal 

for all internuclear distances leads directly and rigorously (as long 

as eq; (28) is satisfied) to the adiabatic representation. In this case 
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eq. (30) (or more clearly eq. (31)) becomes identical to eq. (8) of 
-" 

Section 2. If, however, the requirement that the P matrix operator 

be diagonal for all internuclear distances is made then the U matrix 

will in general remain non-diagonal and the diabatic representation 

results from this procedure. Note that this procedure is somewhat 
..... 

less restrictive than eq. (23) which states that eis identically zero. 

Thus, the coupling in the diabatic representation is solely through 

the potential matrix U. 

The above procedure clearly established that the adiabatic and 

diabatic representations are equivalent rigorous descriptions of 

electronically non-adiabatic coUisions within the framework outlined 

above. In the following section we shall restrict the discussion to the 

two-state :J.pproximation and explore the relationship between the 

adiabatic and diabatic representations within this approximation. 

Specifically, the equivalence of the two methods is examined. 

5. The Adiabatic and Diabatic Re resentations in the Two-State 

For the sake of Simplicity and with no loss in generality for our 

purpose consider a collinear atom-atom electronically non-adiabatic 

collision. We s~ll assume that two adiabatic electronic eigenfunctions 

yield a complete expansion for the electronic coordinates for all 

internuclear distances. The coupled equations for the adiabatic nuclear 

wavefunctions are given, according to eqs. (9), (lOa), and (lOb) 
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2 2 [- h d~2 + El(x) + Tll"(X) - E] lh(X) = -(Tl; + T 12 ")1QI2(X) (32a) 

2 2 

1- h d~2 + E2(x) + T 22"(X) - E]tP2(X) = -(T2/ + T2/')l/tl(X) (32b) 

T i/ and T i{ are the BO coupling terms defined in Section 2, E is the 

total energy, J.L is the reduced mass of the system and x is the inter-

nuclear distance. Explicitly in the two-state approximation 

}}2 d 
Tl.' = - II F12(X) Ox ' (33a) 

112 d 
T2/ = II F12(x) dx ' (33b) 

n2 
d 

Tu" = - 2!i Ox F 12(X) (33c) 

2 

T2." = ~ fx F12(X) (33d) 

and 
2 

T " T" }} F 2( ) 
II =22 = 2IJ. 12 X (33e) 

Eqs. (33c), (33d), and (33e) are valid only withip the two-state 

approximation. They are derived in Appendix 1. Substituting eqs. (33a-

33e) into eqs. (32a) and (32b) and multiplying the latter two equations 
2 

by - 2!!1n we obtain the following two coupled equations 

2 

I d 2. 2] [ d dF] dx2 - Ul(x) - F12 + k tPl(x) = 2F12 dx + Tx tP2' (34a) 

2 

[ d ( 2 20] [ d dF 1 Qx2 - U2 x) - F12 + k tP2(x) = - 2F12 dx + Tx tf,v (34b) 

where 

i = 1 2 , 
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and 

The coupling operators which appear on the right hand sides of eqs. (34a) 

and (34b) are Hermitian. Their Hermiticity has already been established 

in Section 2 for a more general example, i. e., one for which eqs. (33c-

33e) were not assumed. This Hermiticity can also be proved for this 

special example by the same methods employed in the general proof 

given in Section 2. In any event , eqs. (34a) and (34b) are the correct 

and rigorous (within the two state approximation) adiabatic equations. 

Let uS now consider the diabatic representation within t/le two­

state approximation. As in the general discussion of Section 3 we 
. ...... 

assume that the generalized momentum /Pis diagonal and in addition 

for this example it can be shown that adiabatic representationC4D 

be found in which e vanishes for all internuclear distances. 38 Thus, 

the diabatic coupled equations are 

2 

I-~ 
ct" . . d d 

Qx2 + Hll (x) - E J th = - H1 2(X) \ft2 (x) 

According to the equivalence relationship established in Section 4 

(for a complete expansion) diagonalization of the matrix 

(35a) 

(35b) 
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should yield the adiabatic equations (34a) and (34b). In fact it does; 

the details of this diagonalization as well as the explicit relationship 

between the Ud matrix and the BO coupling terms of eqs. (34a) and 

(34b) are given in Appendix 2. 

6. Adiabatic and Diabatic Cou lin Between Electronic States of 

In the absence of spin-orbit, spin-spin, etc. coupling the total 

electron spin of a molecular system is a good quantum number. 

Since the BO coupling terms contain no spin variables the quantities 

Tij' and Ti{ vanish identically when Xct and xt correspond to 

different (orthonormal) spin-states. If the chemical reaction of 

interest involves a transition between these two states then the 

spin-orbit coupling must be introduced. If this coupling is small 

complred with the other te rms in Hel then the rigorous quantum 

calculation may be easier to perform in the diabatic representation 

in the followi'ng sense. Ordinarily, to find the diabatic representation 

equivalent to the adiabatic one requires a knowledge of the BO coupling 
-'" 

terms Tij' and Tij" and then diagonalization of the tEmatrix 

(according to the results of Sections 4 and 5). However , in the 

case of a small spin-orbit coupling VlO it should be a good approxima­

tion to assume a diabatic representation generated by the xt which 

are eigenfunctions of Hel without the spin-orbit coupling. The diabatic 

potential Ud for a two-state expansion would have the general form 

- Ud = ~l~ ~~ 
~2 H2J 
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This direct approach might be particularly useful in chemical reactions 

since BO coupling terms are in general .difficult to calculate ab initio 

as are exact spin-orbit eigenfunctions. Also, in studies of chemical 

reactions for which no ab initio information is available on the rele-

vant electronic states it may be easier to approximate the coupling 

in the diabatic representation. 

In our calculations described in papers IIL2 and III. 3 the diabatic 

representation was choEjen for collinear reaction studies involving 

spin-orbit coupling between a singlet and triplet state. Such an 

approach has also recently been used in calculations of 
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COLLINEAR H+ + H2(Xl ~g +) -> H2(Xl~g +) + H+ 

REACTION. 
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III.1 EXACT QUANTUM CALCULATIONS OF THE COLLINEAR 

H+ + H2(Xl~lg+) --> H2(Xl~g+) + if REACTION. 

1. Introduction 
~ 

Considerable effort has been expended on experimental 1-4 

and theoretical5, 6 studies of the "simplest" chemical reaction, 

H+ + H,(Xl~g +) --> H,,(Xl~g +) + if. This reaction is of interest for 

a variety of reasons. First, s ince it is a two electron problem 

several ab initio potential energy surfaces have been calculated and 

are available for the collinear configuration. 7-9 These surfaces 

contain a well in the saddle point region corresponding to the stable 

H/ molecule. The effect of this well on the reaction should be 

prominent in the experiments as well as the calculations. Second, 

the electronically non-adiabatic channel H/(X
2
Lg +) + H opens for 

collision energies greater than 1.83 eV relative to the ground state 

reaction. Future quantum studies will involve the excited 

state potential surface describing the a. + + H channel and the coupling 

to the ground state H+ + H" channel. In addition the effect of this 

excited state surface on the ground state scattering when the former 

surface is energetically closed is of substantial interest. In order to 

assess this effect requires a calculation of the scattering on the 

ground state potential surface with and without the coupling to the 

virtual excited potential surface. 

In the present study we have calculated the reactive and non­

reactive transition probabilities for the ground state reaction 

if + H,,( v) --> H,,( J) + H+ over a range of initial translational energies 
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of 0.0 to 0.8 eV for one study and 0.0 to 1. 2 eV for another one. 

The reactive transition probabilities are denoted by ~ v'' The 

potential surface used in some of our calculations is the semi­

empirical DIM one of Preston and Tully. 10 This surface is 

depicted as a function of the two internuclear distances in Figure 1. 

The Rl and R2 saddle point i s located at internuclear distance 

Rl = R2 = 1.53 bohr and the energy at this point is -3.391 eV. 

This very deep well supports thirteen symmetric stretch vibrational 

states. This potential surface was modified in a second study by 

adding to it a gaussian function of the form 

The values chosen for D, Oi, and Ro were respectively 2.391 eV, 

0.5 bohr -2, and 1. 53 bohr. The resulting potential surface is 

depicted in Figure 2. A comparison of these potential surfaces is 

made for the line Rl = R2 and along the reaction coordinate s in 

Figures 3 and 4 respectively. A small barrier of around O. 12 e V 

is seen in the entrance and exit channels for the modified potential 

surface. 

Exact quantum calculations were performed using the modified 

and unmodified potential surfaces. The close-coupling method of 

Kuppermann was used6 and :W to 25 expanSions functions were 

required to obtain unitarity of the scattering matrix to better than 

2% and symmetry to better than 5%. 

The reaction probability ~o is displayed in Figure 5 as a 

function of the initial kinetic energy Eo for the modified H/ surface. 
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Several features are of interest~ First, the effect of the 0.12 eV 

barrier in the entrance channel is undoubtedly responsible for the 

low energy threshold behavior. Second, the presence of two sharp 

resonances in the reaction probability at Eo of 0.236 eVand 

0.406 eV is striking. Since these resonances occur well below the 

threshold for excitation of vibrationally excited products, we specu-
. 11 . 

late that these resonances are shape resonances associated to the 

well in the potential surface. Finally, we note that ~o reaction 

probability is always greater than 0.8 in the epergy range studied. 

This means of course that very little product is formed in a vibra­

tionally excited state. This result may be of some interest for the 

coupled H+ + H2 reaction. Based on a trajectory surface hopping 

model Preston and Tully6, 10 concluded that vibrational excitation 

of the ground state products H" would be necessary to surface hop 

with a non-negligible probability. Our results indicate that H2 is 

formed vibrationally unexcited. Since a relatively large cross section 

is found for the HD+ product1 it might be that the quantum mechanism 

for this non-adiabatic transition does not require vibrational excitation 

of the ground state products. 

Results for the unmodified DIM H/ surface are shown in 

Figure 6. There it can be seen that the ~o transition probability 

undergoes many resonances, only some of which are well-resolved. 

In all 153 energies were run in the range 0 < Eo < 0.82 eV. The 

threshold for this reaction is extremely steep. At the lowest transla­

tional energies considered, Eo = 0.004 eV, the reaction probability 

is 0.921. A reasonably accurate characterization of the energy 
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dependence of reaction probability ~o would be to say that it exhibits 

resonant behavior superimposed on a background of unit probability. 

The behavior of the reaction probability is statistical13 , 14 as a 

result of the many resonances. At higher translational energies, 

i. e., Eo greater than 0.6 eV; the reaction probability ~o remains 

large in qualitative agreement with the results found for the 

modified H/ surface. 

The energy range around 0.05 eV has been expanded in 

Figure 7 where it can be seen that ~o exhibits very sharply reso­

nant behavior. Here we may be seeing the effect of several over­

lapping resonances. 
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Figure 1: Equipotential contours of the ground state H/ DIM poten­

tial energy surface for the collinear configuration. RI and 

R2 are the nearest neighbor internuclear distances. 

Figure 2: Equipotential contours for the mOdified ground state H/ 

potential energy surface for the collinear configuration. 

Figure 3: Comparison of the modified (O! = 0.5 bohr- 2) and unmodi­

fied (O!=O) H/ potential surfaces along the cut RI = R2. 

Figure 4: Comparison of the modified (O!=O. 5 bohr-2) and unmodified 

(O! = 0) H/ potential surfaces along the (same) minimum 

energy path. 

Figure 5: Reaction probability Jfo as a function of initial relative 

translational energy Eo for the modified H3+ potential 

surface. TI and T2 indicate the values of Eo for which 

the v' = 1 and v" = 2 vibrational levels of H2 become 

energetically accessible. 

Figure 6: Reaction probability ~o as a function of initial transla­

·tional energy Eo for the unmodified H3+ potential surface. 

TI is defined in Figure caption 5. 
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Figure 7: Reaction probability ~o for the unmodified H/ potential 

surface in the vicinity of Eo = 0.04 eV. 
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Ill.2 MODEL CALCULATIONS OF ELECTRONICALLY 

* NON-ADIABATIC H + ~-.... H2 + H, H2 + H2 

REACTIONS. 
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1lI.2 MODEL CALCULATIONS OF ELECTRONICALLY NON-

* ADIABATIC H + ~ -> H2 + H, H2 + H REACTIONS. 

1. Introduction 
~~ 

The subject of electronically non-adiabatic (ENA) chemical 

reactions is very new and not well understoodo There have been 

several trajectory surface hopping calculations on the reaction 
• .+ + + 1 n + D2 -> HD + D , HD + D as well as an attempt to perform 

difficult collinear semi-classical calculations on this system. 2 

No quantum calculations of a chemical reaction involving more than 

one potential energy surface has been reported. The need for 

such calculations is becoming obvious in view of current experimental 

interest in ENA chemical reactions. 3 

In this paper we present some results of an exact quantum 

study of a model If + If2 ENA chemical reaction. A diabatic repre­

sentation 4 is employed and the c9upling between the two intersecting 

potential surfaces is "I-ffectec! by 3, fictitious spin-orbit coupling 

surface. We examine the effect of the location and strength of the 

coupling surface onthe various branching probabilities. These prob­

abilities are defined as follows. l~ v' is the probability for the 

( 
1> 2 R 

reaction H + H2 (v) -> H2 v' ) + H and It v I is the probability for 

* I * the ENA reaction H + H2(v) -> H2 (v ) + H where H2 denotes the 

electronically excited H2. 

2.. Theor and Calculations 
~ 

In terms of the two mass-weighted Delves coordinates5 
Xl and 

X. the two coupled Schrodinger equations describing the ENA reaction 
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where V, and V2 are respectively the ground and excited electronic 

potential energy surfaces, V,~oiS the spin-orbit coupling surface, 

and E is the total energy. The equations are solved by an extension 

of the close-coupling method of Kuppermann 7, 8 and the details are 

given elsewhere. The total number of expansion functions used in 

the close-coupling solution for W1 and W2WaS 20 to 24. This number 

of functions was required to obtain unitarity of the S-matrix to better 

than 1% and symmetry to 5%. The model H + H2 system was chosen 

in part because this number of expansion functions did not require an 

exorbitant amount of computer time. The first step in which poten­

tial matrix elements are generated and stored on disc required approx­

imately 27 minutes of IBM 370/158 CPU time and thereafter in step 2 

approximately 5 minutes of CPU time was required per energy. 

The initial translational energy range considered is 0.0 < Eo < 1. 0 e V. 

3. Potential Ener Surfaces 

The potential energy surface. V1 is a Wall- Porter9 fit to the 

scaled SSMK H3 surfacelO and is described in detail elsewhere. 11 

V2 is in shape identical to V1 with constant displacements of 0.2 bohr 

in the internuclear distances variables R1 and R2. Also, V2 is 

displaced from V1 in energy by 0.3 eV. The purpose of these displace-
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ments is to produce two potential surfaces which intersect. Equi­

potential contours of these two surfaces are plotted in Figure 1 and 

2. H3 (x) denotes the ground state surface V1 and H3 (a) denotes the 

excited state surface V2 • The curve which crosses an equipotential 

line is the "seam" of intersection along which the two potential 

surfaces cross. From general theoretical considerations it is 

expected that spin-orbit coupling potential will be localized somewhat 

near this crossing seam. 

The mathematical form of the coupling surface V~P we have 

used is given by 

y SO = 12 

2 

Y sech[ f3 (R2o - R2) 1 exp[ -a(R1D - R1) l, R2 > R2D 

o 

a = 8.0 bohr-2 

f3 = 1.1 bohr-1 

y=0.05eV 

R10 = 1.704 bohr 

In Figures 3 and 4 we present equipotential contour plots of VJ!,° for 

R20 = 3.2 bohr and R20 = 2.2 bohr respectively. As seen from these 

figures vf3.° is localized near the crossing seam but in a limited 

region of configuration space. This. choice for V~20 was made to mimic 

the form of a realistic coupling surface for chemical reactions which 

do have strongly interacting potential surfaces, e.g.,F + H2 ~ FH+ H, 

and Ba + N
2
0 ~ BaO + N2. The parameter R20 was given two values 

112_R 
in order that the effect on ~- lJ' of the location of the coupling 
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surface relative to the strong interaction region could be assessed. 

Finally in Figure 5 we present a plot of the potential surfaces 

along a cut of constant R, showing the intersection of the ground and 

excited H" internal potential curves in the asymptotic region of space. 

4. Results and Discussion 

The zero- point energy of the ground and excited II" molecule 

is 0.2728 eV and 0.5728 eV respectively. Thus, relative to the 

energy of the ground state reagents the excited state channel is endo -

thermic by 0.3 eV. Unless otherwise stated, the results presented 

below are for the coupling surface localized in the product exit 

channel. 

In Figure 6 the total reaction probabilities V2~ and '~ 

are plotted as a function of the total energy E and the initial transla­

tional energy Eo for the coupling surface shown in Figure 3. It can 

be seen that U 2p~ rises rapidly from its energetic threshold denoted 

by the inner arrow lapeled O. The inner arrow labeled 1 denotes 

* the energetic threshold for formation of product H2 (v' = 1) and the 

outer arrows labeled 1 and 2 indicate the energetiC thresholds for the 

formation of product H2(v ' = 1) and H2 (v ' = 2) respectively. In addition 
V2_H 

it is seen that the magnitude of the Y"o' transition probability is 

roughly one order of magnitude lower than the electronically adiabatic 

probability '~ . 
: V2_R 

In Figure 7 we present the total reaction probabilities .PC' 

and '~ as a function of E and Eo for the coupling surface shown in 
V2_R 

Figure 4. Here the PO' reaction probability exhibits a striking 
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threshold delay. This is in sharp contrast to the results seen in 

Figure 6. Also in comparing these two figures we note that the 

value of U 2~ in Figure 7 is on the average twice the value of · 
V 2 _R 

Yo- in Figure 6. The differences in threshold behavior in the 

two u 2p~ results may be explained by a semi-classical, time­

dependent mechanism for ENA transitions. The reagents H + H2 

approach on the ground electronic surface and begin to react, 

i. e., Hl "" H2 • Suddenly the effect of the coupling potential is felt. 

Let us suppose that this effect is merely to cause a certain fraction 

of the reagents to "jump" from the ground state surface to the 

excit~d one. After this jump occurs the products exit on the excited 

surface. For the coupling given in Figure 3 it can be guessed that 

this jump occurs for H2 greater than 3.2 bohr and less than say 

4. 0 bohr. An examination of Figure 2 .reveals that the value of the 

potential function for the above region of configuration space is less 

O. 7 e V (in fact it is between O. 4 e V and O. 5 eV). This means that 

for this coupling the system jt;tmps to a classically allowed region of 

configuration space at and above the energetic threshold of o. 573 eV. 

The results for the coupling surface given in Figure 4 show that this is 

obviously not the case. The energy in the region of the jump for that 

coupling is greater than or equal to 0.7 eV as seen from Figure 2. 

This energy does exceed the energetic threshold and hence the system 

must tunnel through a classically forbidden region of space to reach 

* the H2 (v I = 0) product ch"nnel. This is in accord with results of 

Figure 7. 

Another interesting feature of these model two-state calcula-
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tions which can be explained by the above semi-classical, time­

dependent mechanism is seen in Figure 8. There two ENA transition 
· 112_R U2_R 

probabilities 1:'(;'0 and .Pi" are plotted as a function of E and Eo. 

Here, the coupling surface (the one depicted in Figure 3) is located 

in the reagent arrangement channel. In particular we note that the 
l' 2_R 

1:'(;'0 curve has a delayed threshold. This can be accounted for by 

an explanation similar to the one given previously for the delayed 
U2_R 

threshold of the 1:'(;'0 curve of Figure 8. Namely, the reagents 

jump to the excited surface, propagate in a classically allowed 

region of .space until the system nears the saddle point region of the 

upper surface. There the energy is ar·ound 0.7 eV and the system 

* , must tunnel in order to form H, (II = 0) product. 
112_R 

The transition probability .Pi" exhibits a rapid rise from its 

energetic threshold. This is easily understood since the total energy 

available to the H + II" reagent at the threshold, 0.795 eV, permits 

the system to propagate in classically allowed regions of space on the 

* upper surface to form H2 (II = 0) product. As before we note that 

the reactiop probabilities are never greater than 0.05. 

In order to investigate the factors which influence the magni-
11 2 _R 

tude of the ENA transition probability we calculated 1:'(;'0 for the 

coupling surface shown in Figure 3 as a .function of the coupling 

strength y at E = 0.898 eV. The results are shown in Figure 9. 

There it can be seen that as the value of y is increased from 0.005 eV 
112_R 

to 0.05 eV, 1:'(;'0 increases by two orders of magnitude and that when 
V2_R 

y increases from 0.05 eV to 0.15 eV, PO'o increases by almost one 

order of magnitude. This nearly quadratic dependence on y indicates 
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the strong sensitivity of the magnitude of the ENA transition proba­

bility on the coupling strength. We speculate, based on these and 

other similar calculations on a very different system, that the relevant 

parameter with which y correlates is the vibrational energy level 

spacing in the molecule. That is, in order for an ENA transition 

probability to be large, i. e., t he same order of magnitude as an 

electronically adiabatic one, y must be of the same order of magni­

tude as the vibrational energy level spacing of the molecule. 

* For H2 (and H2 of course) this energy spacing is O. 52 eV. 

5. Summar and Conclusions 

We have calculated electronically adiabatic and non-adiabatic 

* reaction pr()babilities for a model fictitious H + H2'~ H2 + H, H2 + H e 

two state reaction. The location and strength of a fictitious spin-

orbit coupling surface was varied to determine the effect on the magni­

tude and energy dependence of several r eaction probabilities. 

It was found that the threshold behavior of certain transition 

probabilities could be understood on the basis of a simple semi­

classical , time-dependent picture of the electronicaJly non-adiabatic 

process. AlSO , based on some limited calculations , it was speculated 

that the coupling strength has to be of the same order of magnitude 

as the vibrational energy level spacing of the product (or reagent) 

molecule in order for t he e lectronically non-adiabatic transition 

probabilitie s to be of the same order of magnitude as the electronically 

adiabatic transition probabilities. 
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Figure 1: Equipotential contour plot of the collinear H3 ground state 

potential energy surface as a function of the two inter­

nuclear distances Hl and H2 • The curve which crosses 

the 0.7 eV contours is the seam of intersection of this 

surface with the excited state H3 potential surface. 

Figure 2: Equipotential contour plot of the collinear H3 fictitious 

triplet excited state potential energy surface as a function 

of the two internuclear distances Hl and H2 • 

Figure 3: Equipotential contour plot of a model spin-orbit coupling 

potential as a function of H, and H2 • 

Figure 4: Equipotential contour plot ofa model spin-orbit coupling 

potential as a function of R, and R2 • 

Figure 5: Ground and excited state H2 potential curves as a function 

of the internuclear distance H. 

Figure 6: Electronically adiabatic and non-adiabatic total reaction 
1 H 1'2 H 

probabilities Po and Po as a function of the total 

energy E and the initial translational energy Eo. Calcula­

tions were done with the coupling surface shown in Figure 3 

and located in the product exit channel. 



393 

Figure 7 : Electronically adiabatic and non-adiabatic total reaction 
1 R 1'2 R 

probabilities Po and Po as a function of E and Eo 

for the coupling surface shown in Figure 4. This surface 

is located in the product exit channel. 

Figure 13 : Electronically non-adiabatic transition probabilities 
1'2 R 1>2 R . 

Po a and PIa as a function of E and J!:o. Calculations 

were done with the coupling surface shown in Figure 3 

and located in the reagent entrance channel. 

Figure 9: Dependence of the electronically non-adiabatic transition 
1>2 R 

probability P o a on the coupling strength y for 

E = O.898eV. 
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III,3 QUANTUM CALCULATIONS OF THE ELECTRONICALLY 

* NON-ADIABATIC REACTION Ba + ON2 -+ BaO + N2, 

BaO + N2' 
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III.3 QUANTUM CALCULATIONS OF THE ELECTRONICALLY 

* NON-ADIABATIC REACTION Ba + ON2 --+ BaO + N2, 

BaO + N2. 

1. futroduction 
~ 

The study of simple bimolecular chemiluminescent reactions 

has recently increased greatly both experimentally and theoretically. 1 

Such reactions can be written schematically as follows: 

* (i) A + BC --+ AB + C 

* (ii) AB --+ AB + hI' 

(iii) A + BC --+ AB + C 

In step (i) atom-molecule reactants A and BC undergo a chemical 

* reaction in which an electronically excited molecule AB is formed 

. * * (reactions yielding AB + C are also well-known); in step (ii) the AB 

molecule relaxes to its ground electronic state by the emission of a 

photon. Step (iii) is included to stress the fact that there are channels 

which corp.pete with step (i). Indeed, the competition between step (i) 

and other processes such as step (iii) is an important factor in the 

development of an electronic transition chemical laser driven by a 

suitable chemiluminescent chemical reaction. This possible develop-

ment is at least partly responsible for the recent vigorous interest 

in chemiluminescent reactions. 

The ab initio calculation of the reaction cross-sections for 

steps (i) and (iii) requires several independent efforts. First, the 

Born-Oppenheimer potential energy surfaces for these reaction 

channels must be known. Ab initio calculations of such surfaces a,re 
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a very time consuming and expensive task. Second, the quantities 

which couple these surfaces together must be calculated. These 

terms are also very difficult to calculate. Finally, the chemical 

dynamics calculations must be carried out in order to obtain the 

reaction cross-sections, rate constants, branching ratios , etc . 

However, ab initio calculations of cross-sections for such reactions, 

i. e., three-dimensional quantum reactive scattering calculations are 

not yet feasible and thus the need for approximate reliable methods 

to calculate the reaction dynamics is clear. 

A classical trajectory surface hopping sCQeme has recently 

been developed and applied to the H+ + D2 --+ HD+ + p reaction. 2, 3 

In addition a semi-classical description of electronically non-adiabatic 

reactions based on the Feynman propagator has been formulated. 4,5 

It also has been applied to the H+ + D2 --+HD+ + D reaction. 6 

As a means of assessing the accuracy of these approximate 

methods a quantum scattering program has been developed to calcu­

late transition probabilities for collinear electronically non-adiabatic 

reactions. Exact quantum calculations for collinear reactions can 

be compared with approximate collinear calculations. TQl.Is , within 

this collinear framework a rigorol.ls test of the approximate theories 

can be carried out. 

We have performed exact quantum calculations of a model 

chemical reaction based on a reaction of much current interest, 

* 1 . 1 + ----"BaO + N2 
Ba( S) + N 20(x 2.. ) __ • 

-">BaO + N2 



406 

Unfortunately there is neither ab initio or accurate semi-empirical 

information about the relevant potential energy surfaces or the 

coupling surface. Thus, within the collinear restriction, our calcula­

tions are ab initio from the dynamics point of view but highly approxi­

mate otherwise. We have developed model potential surfaces and 

coupling for this reaction. 

Chemiluminescence from the reaction of Ba + N20 was first 

reported by Ottinger and Zare 7a and Jonah, Zare, and Ottinger, 7b . 

who performed a crossed-beam experiment and assigned the emitted 

light to the electronic transition BaO * (A ~ +) --> BaO(x ' I;+). However, 

the emission spectrum revealed an underlying complexity which was 

speculated to be caused by a triplet state emission of BaO * .7 

Supportive evidence for this idea was presented by Jones and Broida8 

who monitored the chemiluminescent intensity and spectral character­

istics as a fUnction of the pressure of an inert carrier gas. The 

results were interpreted by Jones and Broida8 and by Field, Jones, 

and Broida 9 who suggest the following mechanism for the reaction : 

Ba(iS) + N20(x'L:+) --> BaO(a31T) + N2 (x 'I;~) (1) 

BaO(a31T) + M --> BaO(A 'I;+) + M (2) 

BaO(A 'I; +) --> BaO(x 'I; +) + hI' (3) 

BaO(a 31T ) --> BaO(x lI; +) + hI" (4) 

This mechanism in addition to accounting for the complex emission 

spectrum also is consistent with the observed pressure dependence 

(on M) of this spectrum. In addition to reaction (1), the competing 

reaction 
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must be considered in a theoretical investigation of this chemilumines-

cent reaction. 

Very recently two groups have observed chemiluminescence 

from the Ba + N20 reaction under low pressure conditions10, 11 and 

have concluded that the observed emission is from the A 1:6+ state. 

Thus, it appears as though the mechanism given by (1) - (4) may be 

somewhat oversimplified. Evidently BaO(A 1:6+) is formed directly 

in the reaction along with BaO(a
3
1T). Our quantum calculations are 

based on the two-surface reaction implied by the Field, Jones, and 

Broida mechanism 

In Section 2 we present and discuss the model potential surfaces 

and coupling surface used in our calculations. Section 3 contains a 

brief description of the two-state theory and equations as well as some 

details regarding the calculations. Results for the coupled two-state 

calculation are presented and compared with those for the uncoupled 

calculations which we have also carried out in Section 4. In addition 

an examination of the non-reactive processes 

BaO(x 1:6+ , v) + N2 ~ BaO(a 31T , v' ) + N2 

is made and discussed. In Section 5 a summary and conclusions are 

given. 
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2. Potential Surfaces and the Cou lin Surface 

2.1 The x'L+ and a3 1J" otential surfaces 

The ground state reaction Ba(l S) + N20(x 'L+) ....... BaO(x 'L+) + 

N2 (x lL;) is exothermic by approximately 4 eV. 12 Due to the large 

reduced mass of BaO this means that at zero collision energy there 

are more than fifty vibrational states open. This many states make 

the present available close-coupling integration schemes unpractical 

even for collinear collisions. In order to achieve feasibility in the 

quantum calculations we have reduced the exothermicity of the reaction 

to 0 . 2 eV. Even with such a drastic reduction in the exothermicity 

there are four vibrational states open at zero initial translational 

energy and six open at 0.1 eV initial translational energy for the 

ground state reaction. Also, we treat the N2 molecule as a mass­

point (with mass of N2). This seems reasonable since apparently N2 

plays a spectator role in the reaction. 

An LEPS13 surface was qeviseq for the singlet ground state 

reaction in accord with the above criterion for exothermicity. The 

dissociation energy of N20 ....... N2(x'L;) + O('D) is 3.64 eV14 and hence 

the dissociation energy of BaO (fictitious) is 3.84 eV. The r e and f3 e 

values of BaO(x'L+) were chosen so that the curve crossing between 

the x'L+ state of BaO and the a3
1J" state would resemble the one computed 

by ab initio methods. 15 We return to this point in the discussion of the 

a3
1J" state. The construction of this ground state potential surface 

assumes that the ground state singlet state of Ba('S) + N,Q(x'L+) 

correlates diabatically with the singlet ground state of BaO(x 'L+) + 

N
2
(x.1Z;).9 The LEPS parameters for this surface are given in Table 1. 
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A three-dimensional perspective plot of this surface is presented in 

Figure 1, however, we defer a discussion of this figure to the discus­

sion of the a ~ surface. 

The a31T state of BaO(a-311) + N2(Ji:'-'l;;) is assumed to correlate 

diabatically with the a 311 state of Ba(lS) + N20(a3 1T). 9 The rand (3 e . e 
values of BaO(a3

11) were estimated to be 2.50 A and 1. 55 A-' respectively15 

and the dissociation energy was estimated to be 2 . 63 eV. 16 These 

estimates do not agree very well with the assignments made recently 

by Fjeld 12 however, since our calculations are essentially of a 

model type we feel that this fact is of minor relevance to our purpose. 

An LEPS surface was constructed for this a3 11 state and the 

parameters are given ill Table 2. As seen from that table a fictitious 

N20(a3
1T) molecule with a dissociation energy of 1 . 0 eV is "created" 

by the surface. This was done for two reasons. First, it facilitated 

the construction of a facsimile of a non-reactive surface (using the 

LEPS expression). Second it was thought that with the scheme used to 

integrate the Schr5dinger equation17 , 18 on this surface would be more 

efficient than on a purely non-reactive one. 

Three-dimensional perspective plots of these LEPS x lz+- and 

a3 11 potential surfaces are given as a function of the Ba - 0 and 0 - N2 

internuclear distances in Figures 1 and 2 respectively. The a3
1T 

surface is displaced in energy by 1. 63 eV above the x-'l;+ surface. 

This was done to create a somewhat realistic curve crossing of the 

surfaces in the asymptotic limits of separated reagents and products. 

We return to this point later. These surfaces do cross along a seam. 

This seam is shown in Figures 3 and 4 where equipotential plots are 
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shown of the model xlL;+ and a 3
jT surfaces as a function of the 0 - N2 

internuclear distance Hl and the Ba - 0 internuclear distance H2. 

The points plotted along this seam indicate a 0.1 eV incremental 

increase in the value of the potential surfaces along the seam relative 

to the value at the crossing point in the BaO + N2 asymptotic limit 

(0.03 eV). It can be seen that the potential energy remains essentially 

constant along the portion of the seam located in the product exit 

channel. The value of the potentials at the "corner" of the seam 

increases rapidly from approximately 0.23 eV to 0.53 eV. The total 

energy considered in our calculations does not exceed 0.16 eV, thus 

the portion of the seam extending from the "corner" to the Ba + ON2 

asymptotic limit is embedded in a classically forbidden region of 

configuration space. This fac t is relevant to the form of the coupling 

surface chosen and described below. Finally, we note that the 

-model a 3jT surface resembles a nonreactive surface (which it should 

rigorously be). 

Plots of the xlL;+ and a 3
jT potential surfaces, hereafter referred 

to as Vl and V2 respectively, in the Ba + ON2 and BaO + N2 asymptotic 

limits are given in Figures 5 and 6 respectively. Both sets of curves 

cross and in a manner qualitatively similar to the correct ones. 13, 14 

In Figure 7 a vibrational energy level diagram for the xl:z;+ 

and a3
jT states of BaO is presented. The zero of energy is referenced 

to the minimum of the potential surface V1 in the Ba + N20 asymptotic 

limit. At zero collision energy of the Ba + N20 reactants the total 

energy is equal to the zero-point vibrational energy of the 
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molecule (according to the model surface V,), 0.0496 eV. Thus, 

as seen from Figure 7,at this energy there are four oPen vibrational 

states for the x 'L+ state of BaO and one open vibrational state for the 

a3 1T state. 

Based on the fact that many more vibrational states are open 

in BaO(x' L+) than in BaO(a3
1T) at all collision energies in the real 

system (and mimicked in our model system) we felt intuitively that 

reactions to produce BaO(a3
1T) efficiently would also produce vibra­

tionally excited ground state products as well. Thus, we tried to 

make the V, surface of the "attractive" or "mixed energy-release 

type,,19 by a suitable variation of the ~ parameters in the LEPS expres­

sion for V1 • We did not succeed in doing this without also introducing 

spurious 0.05 eV to 0.1 eV hollows in the Ba + ON2 entrance channel. 

Thus, as seen from Figure 1 the V, surface is of the "repulsive" type19 

and is not expected to produce vibrationally excited BaO(x 'L+) (for the 

uncoupled calculations). 

2.2 surface 

The coupling between the x'L+ and a3
JT states of the BaON2 system 

is due to a spin-orbit interaction. As a reasonable form for the model 

spin-orbit coupling surface it was assumed (based on first order per­

turbation arguments) that this coupling should be relatively large near 

the crossing seam and that it should decay in the direction transverse 

to the seam. Also, we require that this coupling vanish in the reagent 

and product asymptotic limits. Although this is not rigorously true it 

is assumed for two reasons. First, the uncoupling of the scattering 
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equations is necessary if the usual chemical scattering analysis is to 

be carried out. Second, from a mechanistic point of view we assume 

that the chemical interaction of the reagents coupled with the spin-

orbit interaction is primarily responsible for the formation of product 

BaO(a3 1T). Thus, in this sense it is the spin-orbit interaction in the 

region of chemical interaction that is of interest. Roughly speaking 

then we consider the spin-orbit coupling surface devised as an inter­

action coupling surface, e. g., the spin-orbit interaction produced by 

Ba - 0 - N2 system minus the BaO spin-orbit interaction. 

In Figure 8 we have plotted some equipotential contours of 

the spin-orbit coupling surface VSO used in our calculations. It is 

given by the simple expression 

2 
Y sech[J3(R2 - R2o )]exp[-a(Ri - RiO)], 

o 
(1) 

and the values of the parameters y, J3, X, R2o , and RiO are given in 

Table 3. As seen from Figure 8 this coupling surface does not follow 

the direction of the seam except in the product BaO exit channel. This 

was done for convenience and simplicity. However, as noted earlier, 

the seam penetrates into a classically forbidqen region of space 

immediately after "turning the corner" and entering the reagent 

entrance channel. Thus, the coupling surface shown in Figure 8 is 

probably a reasonable representation of the effective spin-orbit 

coupling. A three-dimensional perspective plot of this surface is shown 

in Figure 9. 
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The value of y chosen, 0.05 eV, is essentially a guess based 

on the strength of the spin-orbit coupling in BaO. 12 Furthermore, 

other studies indicate that in order for the surface coupling to be 

effective 'Y must be of the same order of magnitude as the vibrational 

energy spacing of the product molecule20 (for our model BaO(X1L+ or 

a 31T) this spacing is roughly 0.06 eV). 

3. Theor and Calculations 

3.1 uations 

The two-state coupled "Schrodinger" equations which govern 

the nuclear motion are given in the Delves coordinate system21 by22, 23 

n2 a2 a2
. so 

- Zu/.L(ax 2 + ax 2) + V1(XV X2) - E]1Vl(X"X2) = -v 1V2(XV X2 ) 
· 12 

2 

+ a~ 2) + v 2( X V X2) - E]1V2(XV X2) = - VSOWl (xv x.) 
2 

where 
1 

x = (/1.A,Bc)'f(R + I!sc R) 
1 LI- 1 M 2' . 1:SC B 

1 

I!sc .-
X2 = ( /1. ) R2 , 

J\ , BC 

and 

for the A + BC arrangement channel. For the AB + C arrangement 

channel an analogous set of coordinates Zl and Z2' is defined. The 

procedure used for solving t hese two coupled partial differential equa­

tions is an extension of the close-coupling propagation method of 
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17 Kuppermann. Details regarding this extended method and the R-S 

scattering analysis are given elsewhere. 24 

3.2 Calculations 
~~ 

For the Ba + ON2 calculations typically 16-18 pseudo-vibrational 

states were used in the expansion of 1/11 (Xu x,,) and 8-10 pseudo­

vibrational states in the expansion of 1/12(Xl' x2). The calculations 

were done on an IBM 370 / 155 computer in single precision arithmatic. 

The compute.time for the first step in which energy independent matrix 

elements are calculated and stored on disc was typically 160 minutes. 

Thereafter the time per energy was typically 20 minutes. The results 

were deemed converged when the S-matrix was unitary to better than 

2% and symmetric to within 5%. 

Calculations were done on this system of coupled equations 

with VSO given by (1) and with VSo == O. Results for both sets of 

calculations are reported in the next section. The notation for a 

transition probability and the corresponding process are given as follows: 

Ba + ON2(v) -> BaO(v') + N2 

* Ba + ON2(v) -> BaO (v") + N2 

* BaO(v) + N2 -> BaO (v') + N2 

1 R 
: P vv ' 

U2 R 
Pvv " 

U2 V 
P vv' 

The initial translational energy range scanned relative to the ground 

state reagents was 0.0 to 0.11 eV. 
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4. Results and Discussion 

4.1 Uncou led Ba + ON ---> BaO + N results 

The reaction probabilities lpoIJ, lpO~' and lpO~ are presented 

in Figures 10 and 11 as a function of the total energy E and the initial 

translational energy Eo for the uncoupled surfaces. The inner and 

outer arrows on the lower abscissa indicate the total energies at 

* which the vibrational state v' of BaO and BaO respectively become 

accessible. The reaction probabilities lpO~' lpO~' and lpO~ are all 
-3 less than 3 x 10 over the energy range considered. These uncoupled 

results show that the lpO~ transition is dominant at low collision 

energies and the reactive transitions 0 ---> 1 and 0 ---> 2 become appre­

ciable consecutively with increasing energy. This behavior is 

characteristic of a repulsive energy surface and based on remarks 

in Section 2.1 it is not unexpected. Also, we note that the total 

reaction probability is greater than 0.8 over the collision energy 

range of 0.0 to 0.11 eV. This may be a bit surprising since the 

skew angle for this system is 41 o. 

The energy dependence of these reactive transition probabilities 

exhibits marked OSCillatory structure. Since the reduced mass of this 

system is so large it might be reasonable to assume that these rapid 

oscillations are semi-classical in nature and hence that semi-classical 

theories of reactive scattering could reproduce them. 25 

* 1~~i..~~~~ 
The reaetion probabilities lpO ~, lpO~' and lpo~ are plotted 

as a function ofE and Eo for the coupled system in Figures 12 and 13. 
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1 R 
A comparison of the coupled and uncoupled PO~ results reveals 

striking similarities between them. Evidently the IpO~ transition 

is very weakly coupled to the excited state surface. The IpO~ and IpO~ 

coupled results do, however , appear to be strongly coupled to the 

upper surface as a comparison between Figures 13 and 11 indicates. 

The IpO~ transition is the most strongly coupled transition in two 

senses. First, the attenuation of the magnitude of the coupled IpO~ 

probability over the uncoupled one is largest (in absolute terms). 

Second, the energy dependence of this coupled probability is most 

affected by the coupling. Interestingly, the coupled IpO~ has a lower 

effective threshold energy than does the uncoupled IpO~. 
1'2 R 

The electronically non-adiabatic transition probability Po 0 

is presented in Figure 14. A comparison of this result with the 

coupled and uncoupled IpO~ results shows some striking similarities. 
1'2 R 

,The energy dependence of the Po 0 curve in the range 0.09 eV :s E 

-< 0.12 eV is quite similar in structure and magnitude to the coupled 

IpO~ curve. IIowever, for E between 0.12 eV and 0.15 eV there is a 
1'2 R 

strong resemblance in the energy dependence of the PO~ curve and 

the uncoupled IpO~ one. There is an energy displacement in the peak 

height locationsof these oscillating' curves, however. 

As a result of the similarities noted above and as seen directly 
1'2 R 

from Figure 14, the threshold energy for · the PO~ transition proba-

bility is considerably above its energetic threshold (0.028 eV). The 

magnitude of this transition probability is large indicating that for 

* collision energies greater than 0.05 eV the reaction product BaO is 

formed with approximately the same probability as the ground state 
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product BaO, on the average. That this 'would occur with the 0.05 eV 

spin-orbit coupling strength is not obvious. It was previously found 

in model calculations on a fictitious two-state H + H" reaction that a 

0.05 eV "spin-orbit" coupling strength gave electronically non-adiabatic 

transition prObabilities which were an order-of-magnitude smaller 

than the electronically adiabatic ones. 20 
1'2 R 1'2 R 

The reaction probabilities POl and P 02 are not shown 
1'2 R 

since they are small compared to P OO over the energy range 

considered. 
1'2 R 1'2 R 

POl never exceeds 0.04 and P 02 never exceeds 

0.008. 

* 4.3 Cou led BaO + N ~ BaO + N results 

An interesting process which our calculations can be applied 

to is the vibrational relaxation of BaO in collisions with N2 (treated as 

a structureless mass point) to yield BaO in a lower vibrational state 

* or BaO . We present some results on the relative efficiency of the 

V - T versus V - E (V - T meaning vibration to translation and V - E 

meaning vibration to electronic excitation) transfer of energy in the 

BaO + N2 collisions. 

Consider first the transfer of vibrational energy in the processes 

* -----"BaO (v') + N2 
BaO(v = 4) + N2 

~BaO(v") + N2 

In Figure 15 we have plotted the energy dependence of the transition 

b b Oloto IpV IpV U2pV d U2pV pro a 1 I Ie s 44 , 43 , 41' an 42 . All other transition 



418 

probabilities'P4J'" 1>2p.y>, and 'p.v~" are smaller than 0.03 in the 

energy range shown in this figure except at E = 0.0845 eV where 

the probability 'p.Y equals 0.176. As se"en from this figure either the 

V - T or V - E transfer process is not very efficient for BaO(v = 4). " 

However, the V - E transfer is substantially more likely than the 

V - T one. At higher collision energies the V - E process does 

appear to be increasing in probability. 

Analogous results are seen in Figures 16 and 17 where the 
, V ' V 1>2 V energy dependence of the transition probabilities P 33 , P32 , P 30 , 

1'2 V 1>2 V ' V 
P 3" and P 32 is plotted. The P 32 probability is roughly the 

1'2 V 
same in magnitude as P 30 , although the latter probapility is 

larger at the lower energies. For E greater than 0.12 eV the transi­

tion propabilities 'pX and 1'2pX are both appreciable. However, over 

~ 1'2 V much of the entire energy range considered the sum w P 
. . v' 3V' 

is greater than the sum ['II 'P3;" indicating as before that the V - E 
v 

process is more efficient than the V - T one for this system. 

Finally, we consider V - T and V ~ E processes for the 

transfer of energy in BaO(v = 2). The transition probabilities 'p2Y 
1 V "2 V 

and P2 l are plotted in Figure 18 as a function of E and P 2 0 and 
1> 2 V " 

P2l are plotted in Figure 19. In this case the total transfer of 

vibrational energy is more efficient than for BaO(v = 3 or v = 4). At 
1 V " 1' 2 V 

the lowe r energies P2l and P 20 are large and approximately equal 
l' 2 V 

whereas at the higher energies the transition probabilities P 2l and 

'P2;' (as seen in Figure 16) also become significant contributors to 

the vibrational energy transfer. Thus, in this case both V - T and 

V- E processes contribute about equally and significantly to the 
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vibrational energy transfer of BaO(v = 2) in nonreactive collisions. 

We also note that the reactive transition probability lP2~ (= lpo~ 

given in Figure 13) is significant at the higher energies and hence 

this reaction channel is effective in transferring vibrational energy 

from BaO(v = 2). This is not an important consideration in collisions 

of BaO(v = 3 or v = 4) with N2 because the reaction probabilities lP3~ 

and lP4~ are less than 0.06 over the energy range considered. 

5. Summar and Conclusions 

The electronically adiabatic and non-adiabatic reactions 

and 

have been studied within the collinear framework and with N2 treated 

as a mass pOint. Model LEPS potential energy surfaces coupled by a 

model spin-orbit orbit interaction potential have been employed. 

The ground state potential surface is of the repulsive type. This 

probably accounts for the fact that there is little vibrational excitation 

of the product BaO(xlL;+) in the uncoupled calculations for collision 

energies less than 0.1 eV. The lack of vibrational excitation except 

at collision energies greater than 0.1 eV seems to correlate with the 

threshold energy of approximately 0.1 eV for the formation of 

BaO(a3u, v' =0) in the coupled calculations. That is, vibrational exci­

tation of BaO(xl2:;) and the formation of BaO(a31T) seem to be related 



420 

processes. Also, BaO(a 311", v' = 0) is formed with a substantial 

reaction probability (?: 0.4) at collision energies greater than 0.10 eV. 

This implies that the spin'-orbit coupling strength of 0.05 eV is 

effective in causing large electronically non-adiabatic transitions in 

this system. 

A study of nonreactive vibrational energy transfer in collisions 

of BaO(x ll:+, V = 2, 3,4) + N2 to form BaO(x'L;+, v') + N2 or 

BaO(a3
., v") + N2 was also carried out. The total energy range con­

sidered was the same as the one considered in the Ba + N20 studies. It 

was found that for lJ = 4,vibration to electronic energy transfer was 

more efficient than vibration to translation transfer, For v = 3 and 

lJ = 2, however, the two transfer processes were found to be comparable 

in efficiency. The fact that the ground state surface is reactive also 

enhances the vibration transfer for lJ = 2 since the reaction probability 

to form Ba + N20 is appreciable at the higher energies considered. 

The energy dependence of all the transition probabilities 

studied showed marked oscillatory structure. This feature would 

make a comparison between the exact quantum results and approxi­

mate semi-classical ones very interesting. Much of the motivation 

behind doing exact quantum calculations on model systems is to stimu-

late comparison and development of approximate results and theories. 

This may accelerate progress in obtaining accurate three-dimensional 

cross-section calculations from approximate methods on real chemi-

cal systems. 
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Table 1. LEPS parameters for the singlet ground state Ba - 0 - N2 

potential energy surface. a 

BaO(x
l 

L +) 
1 ;j-

ON2(x 1: ) BaN2 

Di(eV) 3.844 3.644 3.64 

b 

rie(bohr) 4.4598 2.6778 4.4598 

i'li (bohr -1) 0.70856 1.0 0.70856 

~i 0.220 0.08 0.08 

a The expression for the generalized LEPS function is given by 
2 2 2 

V =Q~ + Q~ + Q~ -'- (a~ + a~ + a~ - a~a~ - a~a~ - a~a~), 

where 

Q~ = [D1·/ 4(1+ ~1·)]{(3 + ~ .)exp[ -2f3 .(r. - r. )]-(2 +6~.)expr -i'l.(r.-r . )]} 
I . I . I I Ie I I I Ie 

and where i refers to a given diatom pair. 

b The parameters given in this column are meaningless for collinear 

collisions. 
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Table 2. LEPS parameters for the triplet excited state Ba - 0 - N2 

potential energy surface. 

3 3 
BaO(a'lf) ON2(a 'If) BaN2 

Di(eV) 2.63 1.0 2.63 

rie (A) 4.7244 3.7795 4.7244 

{3.(A- 1
) 0.8202 0.7938 0.8202 

1 

~. 
1 

0.15 0.45 0.15 
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Table 3. Parameters for the model spin-orbit coupling surface. a 

'Y = 0.05 eV 

{3 = 1.1 bohr- I 

a = 8.0 bohr- 2 

RIO = 4.8516 bohr 

R20 =4.0 bohr 

a so [ ] [ 2 V = y sech {3 (R2 - R20 ) exp -a(RI - RIO ) 1 , 
= 0 , 
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~ 

Figure 1: Three-dimensional perspective plot of the ground state 

singlet potential energy surface of BaON2 • 

Figure 2: Three-dimensional perspective plot of the excited state 

triplet potential energy surface of BaON •. 

Figure 3: Equipotential contour plot of the ground state Singlet 

BaON2 potential energy surface. The crossing seam is 

also shown. 

Figure 4: Equipotential contour plot of the excited state triplet 

BaON. potential energy surface. The crossing seam is 

also shown. 

Figure 5: Potential energy curves of N.O as a function of the inter­

nuclear distance R. 

Figure 6: Potential energy curves of BaO as a function of the inter­

nuclear distance R. 
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Figure 7: Vibrational energy spectrum of the BaO(x 
1 

L;+), 

and ON2(X
1 

L;+) molecules. 

3 
BaO(a 17), 

Figure 8: Equipotential energy plot of the model spin-orbit 

coupling potential surface as a function of the two inter-

nuclear distances Rl and R2 • The crossing seam is also 

shown. 

Figure 9: Three-dimensional perspective plot of the model spin-orbit 

coupling potential. 

Figure 10: Reaction probability IpO~ for the uncoupled reaction as a 
I 

function of the total energy E ~nd the initial translational 

energy Eo. The significance of the arrows is given in the 

text. 

Figure 11: Reaction probabilities IpO~ andlpo~ for the uncoupled 

reaction as a function of the total energy E and the initial 

translational energy Eo. 

Figure 12: 
1 R 

Reaction probability Poo for the coupled reaction as a 

function of the total energy E and the initial translational 

energy Eo. 
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Figure 13: Reaction probabilities 'po~ and 'po~ for the coupled 

reaction as a function of the total energy E and the initial 

translational energy Eo. 
1>2 R 

Figure 14: Reaction probability P oo for the coupled reaction as a 

function of the total energy and the initial translational 

energy Eo. 
. • •• 1 V 1 V 1>2 V 1>2 V 

Figure 15: Non-reactIve probabIlItIes .P 44 , P43 , P41 , and P
4 2 

for the coupled system as a function of the total energy E. 

Figure 16: 1 V 1 V 1>2 V 
Non-reactive probabilities P 33 , P 32 , and P 30 for the 

coupled system as a function of the total energy E . 
. 1>2 V 1'2 V 

Figure 17: Non-reactiveprobabilities P 31 and P 32 for the 

coupled system as a function of the total energy E. 

Figure 18: Non-reactive probabilities 'p2Y and l p2Y for the coupled 

system as a function of the total energy E. 
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1>2 V 1'2 V 
Figure 19: Non-reactive probabilities P 2 0 and P 2l for the coupled 

system as a function of the total energy E. 
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A endix 1: Born-O enheimer Cou lin Terms in the Two-State 

In this appendix eqs. (33c) - (33e) are derived. The derivation 

makes use of the assumption that the two-state expansion is complete. 

By definition, 

2 2 

Tij" = - ~ {Xi Id~2 IXj>el' 

Thus, to derive eqs. (33c) and (33d) we must show that 

(AI) 

(A2) 

According to its definition above 

2 

dli 2 = {~~1 Ifx IX2~lt {Xl Id~2 IX2>el' (A3) 

The term {~~1 IdS; >els identically zero in the two-state approximation. 

This follows from the fact that 

which state that fx Xi has a non- zero projection with the state Xj 

only (j ;z! i). Thus, eq. (AI) is proved and eq. (A2) follows from 

(A4) 

eqs. (lla) and (12a). This c ompletes the proof of eqs. (33c) and (33d). 

To prove eq. (33e) we note that from (A4) 
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d~ <Xii! Ixi~t 0 

dX· . dX· ct" 
- ( dx

l lru!-~t (Xi 1dX2lxi~l . 

However, we know that 

and we have the result that 

. Finally making use of eqs. (Ua) and (12a) we have the result that 

and hence 

which is identical to eq. (33e). 

(A5) 

(A6) 
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A endix 2: The Transformation From the Diabatic to the Adiabatic 

Re resentations in the Two-State A roximation 

To transform from the diabatic equations (35a) and (35b) to the 

adiabatic ones (34a) and (34b) requires a unitary transformation, C, 

of the basis functions Xl d and x2d. This matrix transformation can 

be written as 38 

fcos 0' 

tSin 0' 

where the unitary matvix diagonalizes Ud(x) at all x. Hence, the 

quantity 0' is a function of x. Before proceeding, we rewrite the 

diabatic equations in matrix form as follows: 

2 2 
11 d 0 Hl1 Hl2 -2:/1. Qx2 1 o 

+ - E 
2 

0 d 
H,l H22 Ox" 1 o 

(A7) 

= o. 

(A8) 

The unitary transformation of this equation by C leaves the identity 

matrix unchanged and by design it diagonalized the Ud matrix. Thus, it 

remains to investigate its action on the kinetic energy operator matrix. 

By the theorem of representation theory40 the transformed kinetic 

energy operator matrix, T' , i s related to the original one T by 

T' = C TCt (A9) 
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where C t is the adjoint of C. Since C is real , Ct is simply the 

transpose of C, ct. Thus , we have three matrix multiplications to 

perform to obtain T' , namely 

2 

cos a(x) sin a(x) d 0 cos a(x) -sin a(x) 0x2 

i -sin a(x) cos a(x) 0 0x2 sin a(x) cos a(x) 

It is straightforward to show that the resulting matrix is 

~+ 2y...9.. 
dx dx 

1.9Y d -\:Ix + 2y dx) 

2 
2 d 

-Y+dx2 

Thus, the transformed coupled equations are given by 

. h
2 

d
2 

h
2 

2 d h
2 

d d d 
[- 2I:i dx2 + f/i- + El (x) - E] t/{ = 2I:i Wx + 2y dx J 1/.-2 

h
2 i h2 

2 . d fl2 d d · d 
[- 2I:i <lx2 + * + E 2(x) - El~ = - 2I:i[ai + 2Yax1% . 

(A1O) 

(All) 

(A12a) 

(A12b) 

E1(x) and E 2(x) are the eigenvalues of the Ud matrix and within the 

two-state approximation they are identical to the adiabatic potential 

curves of eqs. (32a) and (32b). From inspection of eqs. (A12a) and 

(A12b) and eqs. (32a) and (32b) , in order to establish the equivalence 

of these sets of equations it must be demonstrated that 

(A13) . 

The general proof of eq. (A13) involves much algebra. We shall 
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demonstrate that it is true at the crossing point of the two diabatic 

curves Hll and H22 • 

The function yis related to O! by 

dO! 
'Y = Ox 

where O! is determined by the eigenva lue equation which results from 

the diagonalization of the Ud matrix and is given by 

(AI4) 

Hence, at the crossing point 

(AI5) 

For the two-state approximation it can be shown trivially that 

(AI6) 

and from the ctiagonalization of ud that 

(AI7) 

Thus, at the crossing point 

and hence from eq. (AI6) 

aid ell a ! F12 = <Xl Ox H X2) 2H12 • (AI8) 

From eq. (AI) we can express Xl
a and X2

a in terms of Xl
d and Xld 
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and if we substitute the resulting expressions into (AI8) we obtain 

. d i d el l d i d ell F12 = sm a cosa(Xl dx H Xl> - (X2 ax H X2» 

Making use of the fact that 

we can rewrite (AI9) as 

. d 2 2 dH 
F12 = sin acos adx(Hll-H22) + cos a- sin aF 

From eq. (AI4) , at the crossing point, we have that 

cot2a = O 

which from the identity 

implies that 

2 2 

cos a - sin a = cot 2a 
sin a cos a 

2 2 
cos ct - sin ct = 0 

and further that 

sin a cos a = t 

Hence from (AI5) we have the result that 

(AI9) 

(A21) 
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which is identical to (A15) establishing that at the crossing point 

This equality is valid for all values of the internuclear distance. 

Thus, we have demonstrated that the diabatic and adiabatic 

representations are equivalent in the two-state approximation. 
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A endix 3: The Cou led Differential E uations for the Two-State 

Atom-Molecule Chemical Reaction 

In this appendix we develop the close-coupling technique used 

to solve the coupled partial differential equations (25a) and (25b) for 

the electronically non-adiabatic chemical reaction A + BC -+ AB + C, 

* AB + C. As a relevant example we assume that these equations 

describe the non-adiabatic coupling between a singlet and triplet 

electronic state denoted respectively by the numbers 1 and 2. 

According to the remarks of Section 6 HI2 is the matrix element 

of the spin-orbit coupling ~so in the basis set Xi which are eigen­

functions of Hel without vso . Thus, we rewrite the coupled eqs. (25a) 

and (25b) as 

(A22a) 

(A22b) 

VI and V 2 are the potential energy surfaces corresponding to the 

singlet and triplet electronic states and V~20 is the matrix element 

(xII'VsO 1),2> el· We re:J.uire that in the limit of separated reagents and 

products 

V~20(Xl' x2) ....-- 0 (A23) 
Xl ~ 00 

(A24) 

This means that the equations (A22a) and (A22b) uncouple when the 
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chemical interaction is over. This may not always be rigorously 

true as the discussion in paper III. 3 points out. However, we shall 

assume that it is true in order to avoid complications in the scattering 

analysis of eqs. (A22a) and (A22b) presented in Appendix 4. 

In the asymptotic regions of space describing the separated 

reagents and products eqs. (A22a) and (A22b) become 

Z 2 
h a [ - 2M (ax

1
z =0 (A25a) 

(A25b) 

and analogous equations exist in the (Zl ' zz) coordinates describing the 

rearrangement channel. We have made use of the fact that 

o 
V.(X2,X3)~ V. (xz)' i =1,2 

1 00 1 X3 --> 

o 
as well as eqs. (A23) and (A24). The potentials Vi (Xz) describe the 

unperturbed internal motion of the Be molecule in the ith electronic 

state. Thus, the general solutions to eqs. (A25a) and (A25b) are 

given by 

(ll 
1>i (x2), (A26a) 

00 (1) (1) 

K. Xl -K. Xl (1) 

L [ajel +bje J 11>j (xz) , (A26b) 
j = Nl + 1 
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00 (2 ) (2 ) 

K. Xl - K. Xl " (2) 

L: [cje J + dje J ] 1>j (x2) 

j = N2 + 1 
(A27b) 

(1) ' (2) 

The BC vibrational functions 1>i and 1>j satisfy the following 

eigenvalue equations 

li
2 

d
2 

[ - 'Z/i dX
2

2 (A28a) 

:li
2 ct" 

[ - 'Z/i dx
2

2 

o (2) " (2) 

+ V 2 (X2) - C . ] rp . (X2) = 0 
J J 

(A28b) 

From these equations and eq. (A25a) and (A25b) we have that 

i = l, ... , Nl 

i=Nl+l, ... ,oo 

E = 

i=1, ... ,N2 

i=N2+1, 00 ... , 

The numbers Nl and N2 refer to the number of open vibrational 

channels of BC in electronic state 1 and 2 respectively at the total 

energy E. The number of closed vibr"ational channels is in practice 

finite, not infinite as indicated above. For future use we define Ml 

and M2 as the total number of channels included in the expansion 
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(A26) and (A27) for the BC molecule in electronic states I and 2 

respectively. Thus, the corresponding number of closed channels 

is MI-Nl and M2-N2. An analogous set of equations applies for the 

* rearrangement channels AB + C and AB + C. 

The close coupling approach to the solution of eqs. (A22a) and 

(A22b) proceeds by expanding 0/1 and 0/2 analogously as in eqs. (A26) 

and (A27) as follows 

MI 
It) . (1) 

0/1 = l gi (Xl) t/> i (X2) 
i = I 

Ml + M2 
(2) . (2) 

1/12 = I gj (Xl) t/> j (x,) 
j = Ml + I 

(A29) 

(A30) 

Substitution of eqs. (A29) and (A30) into eqs. (A22a) and (A22b) yields 

MI 2 2 2 n a a . (1) (1) 1[- 2u(~ + ax 2) + Vl (X"X2) - E]gi (X1)<!\ (X2) 
,-. 1 2 

i=1 M1+M2 
so (2) (2) 

= ! - V12 gj (Xl) t/>j (X2) , (A3Ia) 
j = M2+1 

Making use of eqs. (A28a) and (A28b) we rewrite eqs. (A3Ia) and 

(A31b) as follows 
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Ml 2 2 

L {- ~ a~/ 
i=l 

o (C(I)} (1) (1) 
+ [ VI (XU X2) - VI (x2) 1 - E - c: i ) gi <P i 

M1+M2 
\' so (2) ("2) 

= 1 - V12 (XU x2)gj 1>j , (A32a) 
j = Ml+l 

(A32b) 

(1) (2) 

Now we multiply the left hand side of these equations by 1>k and CPl 

respectively and integrate with respect to x2 • Making use of the 
(ll (2) 

orthonormality of the functions {<Pk } and the functions {1)1 } 

eqs. (A32a) and (A32b) become 

Ml 2 

L: -~ 
i=l 

where, 

d2 
( 1 ) I ( 1 ) ( 1) ( 1 ) 

dx 2 g. Ok" + (V1 )k· g · - (E - 6.. )g. 5k · = 
1 1 1 11 1 1 1 

M1+M2 

= /, 

j = l+Ml 

so · (2) 

(-V12 )k· g · 
J J 

(A33a) 

(A33b) 
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I J" (2) 0 (2) 
(V2 )Jj (Xl) = dX2 <Pl (X2)[V,(Xu X2) - V,(x,,)]<Pj (x2), 1, j=1+M1, ... , 

M1+M2 

and 

k = 1, ... ,M1 

j = M1+1, ... , M1+M2 

1 = M1+1, . .. ,M1+M2 

i = 1, ... ,M1 

We now generalize the notation and write the coupled equations 

(A33a) and (A33b) in m;:J.trix form. First, we note that l/t, and l/t2 

given by eqs. (A29) and (A30) are only two of a set of 2(M1 + M2) 

linearly independent solutions to t he coupled "Schrodinger" equations 

(A22a) and (A22b). Indeed, we have in general 

M1 
m (0 (,) 

l/tl (xu x2 ) =!' 1\ (x2) gim (Xl)' m = 1, ... ,M1 (A34a) 
i =l 

M1+M2 
(2) (2) 

l/t~(XUX2) = !' <P j (x2)gjm (xJ, n = lVl1+1, ... ,M1+M2 (A34b) 

j=1+M1 

As usual, we have written down only M1 and M2 of the 2M1 and 2M2 

set of solutions. We generate the full set by performing forward and 

backward integrations. Our remarks to this point apply to both sets 

of integrations independently. We return to this point later. Substi-

tution of eqs. (A34a) and (A34b) into eqs. (A33a) and (A33b) leads to 

the following equations 



462 
M1 2 

" 'h I - 2M 
i =1 

(A35a) 

M1+M2 
h

2 

}' - ~ 
j=1+M1 

M1 
" so (1) 

= L (- V 12 )ligim (A35b) 

i =1 

These equations can be written as a matrix differential equation. 

Indeed, making the following definitions 

2 
[K j .. = 

- 1J 

[LL\ .. = ~ (V~20)1·J· , - 1J 

i, j = 1, ... , M1 

i, j = l+M1, ... , M1+M2 

i,k=1, ... ,M1 

i, j = 1+M1, ... , M1+M2 

i = 1, ... , M1 

j = M1+1, ... , M1+M2 

j = 1, ... , Ml 

i = 1+M1, ... , M1+M2 



and 

(G") .. = 
- IJ 
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d 2 
(,) 

dx, 2 gij °ij , 

d2 (2) 

dx," gij °ij , 

2 . 

d 
dx 2 

1 

( 1 ) 

g . . 
IJ 

( 2 ) 

g .. 
IJ 

eqs. (A35a) and (A35b) can be written as 

2 
G"+(K -~G = O. 

i,j = l, ... ,Ml 

i = Ml+l, ... , M1+M2 

j = 1 , . .. , Ml 

i = 1, ... , M, 

j = l +Ml, ... , M1+M2 

i , j = l+Ml , ... , M1+M2 

i,j =l, ... ,Ml 

i = Ml+l , .. . , M1+M2 

j = 1, ... , Ml 

i = 1, ... , Ml 

j = l +Ml, ... , Ml +M2 

i,j = l+Ml , ... ,Ml+M2 

(A36) 

This matrix differential equation is integrated in the variables 
o 

(xv x2 ) up to a point Xl near the region of strong chemical interaction. 

A standard fourth order Runge-Kutta / Adams-Moulton integrator was 

used for this purpose and the choice of linearly independent initial 

conditions as well as a stabilization of the solution matrix was made 

as described previously . 1 

We now examine the extension of the technique of changing 
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(1) (2) 

basis functions 1\ and 'Pi during the propagation of the solution 

matrix developed for the one state reactive scattering program. 1 
o 

Suppose at some point Xl' (greater than Xl) new basis functions 
(1) (2) 

<Iii and <Iii are used in the expansion of 1/11 and 1/12. These func-

tions are eigenfunctions of the following reference Hamiltonians: 

(A37a) 

(A37b) 

In order for the matrix differential equation (A36) to be integrated 

"new" initial conditions for G and G' must be established. This is 

accomplished by the requirement that at the interface Xl = Xl' the 

total wavefunction and its first derivative must be continuous. Equality 

requires that 

= 

where the (+) and (-) superscripts denote that the approach to x,' is from 

above and below respectively. Since Xl and X2 are electronic functions 

we can multiply eq. (A38) by x~ and integrate with respect to ~el 

to arrive at 

(A39) 

* Similarly, by multiplying (A38) by X2 and integrating with respect to 

reI we secure 
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(A40) 

We note that eqs. (A39) and (A40) are the same for any number of 

coupled electronic states. Substituting into eq. (A39) the appropriate 

expansions of 1/11 in the bases <t>~ 1) and cJ>~ 1) yields 

(A41) 

(1) 

(For convenience we have retained the notation gij in the new expan-

sion of I"' ; this should not lead to any confusion). Multiplying the 
( 1 ) . 

left and right hand sides of eq. (A41) by <Pk (x2) and integrating with 

respect to ,,:!, we obtain 

, k=l, ... , Ml (A42) 

where 

In an exactly analogous manner we have that 

Ml+M2 

(A43) 

where 

Now let us examine the consequences of requiring continuity of the 

total wavefundion at x ~ XL I. Continuity is guaranteed if 
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(A44) 

Thus, according to eqs. (A38) and (A44) 

However, from eqs. (A39) and (A40) this equation becomes 

X ~(x ,(-») + X £!h (x , ( -») = X ~(x ,(+») +' ~(x 11+») 
1 ox 1 2 ox · 1 'ox 1 x'2 ox 1 • 

1 1 1 1 
(A46) 

. * Proceeding as before, we multiply eq. (A46) by X, and integrate with 
el · * 

respect to ~ and then multiply by X2 and integrate with respect to 

rei to arrive at 

(A47a) 

(A47b) 

From these equations and eqs. (34a) and (34b) we have that 

k = 1, . . . , Ml (A 48) 

(A49) 

Eqs. (A42) , (A43), (A48), and (A49) can be cast into matrix form as 

follows 
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where from its definition the matrix ~ is clearly block diagonal. 

(A50) 

(A5l) 

We consider next the change of independent variables at the 

point Xl = x10. Polar coordinates are introducedl and the two coupled 

partial differential equations are given by 

=-V~20 1/12(r, cp), 

li
2 

1 0
2 a2 

1 0 
[- ~ (r2 W + or2 + r Tcp) + V2(r, cp ) - E] 1/12(r, cp) 

Making the usual change of functions, 1 

eqs. (A52a) and (A52b) can be rewritten as 

22_ 2 . 

11 (l £...±t 1 ( ) 1 0 <I> ) ( ) <1>, tr, qi) - ~ ~ Ocp2 + 5/ 2 <P1 r, cp +:::r72"" fu? + V, - E /2 
r 4r r r 

so ( / 1/2 = - V 12 <1>2 r, lfJ) r , 

2 2 2 
Ii 1 0 4>2 1 . 1 a <I> <I> 

- 2u (~ alP" + 5/2 <1>2 + :J72" #) + (V2 - E) ffi 
/-L r 4r r r 

Vso . / 1/ 2 
= - 12 <PI r 

1 

Multiplying these equations by r 2, we obtain 

(A52a) 

(A52b) 

(30) 

(A53a) 

(A53b) 
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(A54a) 

(A54b) 

As usual, we expand <PI and <P2 as follows: 
M1 

m (1) (1) 

<PI (r, qJ) = L cJ>i (r)gim (<p) , (A55a) 

i=1 

if>~(r, tp) = (A55b) 

Inserting (A55a) and (A55b) into (A54a) and (A54b), multiplying through 
2 (1) (2) 

by r and doing the standard multiplying by <Pk (r) and cJ>1 (r) and 

integrating with respect to r we obtain the following coupled differen-
(1) (2) 

tial equations for g. (qJ) and g'm (<p). 1m J . 

M1 2 2 
\' ti. d (1) 

! -"2tJ. d q.>2 gim 
i =1 

We have made use of the following in deriving these equations: 

i = 1, ... , M1 

(A56a) 

(A56b) 
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=0 j = I+Ml, .•. , Ml +M2 

where V1(r, CPo) and V2(r, CPo) are reference potentials referred to a 

particular value of cp, CPo and 

k, i =l, . . . , Ml 

1, j=1+Ml, ... ,M1+M2 

k,1 '" 1, ... , Ml 

1, j = l+Ml, ... , Ml+M2 

k = 1, ... ,Ml 

j = I+Ml, ... , Ml+M2 

1 = Ml+l, ... , Ml+M2 

i = 1, . .. ,Ml 

As previously, this set of coupled differential equations can 

be cast into a matrix equation 

2 
G"(cp) + (K - illG = 0 (A57) 

where all of the matrices are the one analogous to those defined in 
2 

equations preceding eq. (A36) with the exception of the K matrix. 

It is given by 

i, j =I, ... , Ml+M2 . 

. (1 ) 

The procedure for changing expansion functions CPi 
. (2) 

and cpo at a 
J 

value of fJ = ({J' is identical to the one given previously by eqs. (A42) , 
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(A43) , (A48) and (A49). 
o 

The matching of the wavefunction at the boundary x = x, and 

equivalently by cp = 0 proceeds as follows. At this boundary we 

require that 

* Multiplying this equation first by X, and ip.tegrating with respect to 

~el and then multiplying by x: and integrating with respect to {I 
(and r ecalling that (Xl IX 2) e l = 0) we arrive at 

(A58) 

(A59) 

Each of these equations is identical to the equation found in the pre­

vious collinear formulation for electronically adiabatic chemical 

reactions. Inserting the expansions (A34a), (A34b) , (A55a), and (A55b) 

. into eqs. (A58) and (A59) we have 
Ml Ml 1 (t) · (1) (1) · (1) 

~ /' gim (cp=O)<!\ (r) = /' gjm (x, O)<!>j (x20 - r) 
i=1 j =1 

(A60) 

M1+M2 Ml+M2 
1 

;m-
( 2 ) ( 2) ( 2 ) ( 2 ) 

/, gkm (cp=O)<!>k (r) _ . /' glm (XIo) '!)l (X20 - r) . 
k =l+Ml l=l+Ml 

(A61) 
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Note that the origin of the polar coordinate system is the point 
001 

(Xl' x2 ) and we have made use of the fact that 

x. = x20 - r cos <p 

(for <p = 0). 

. (I) 

Proceeding as usual, we multiply eq. (A60) by cf>k (r) and eq. (A61) 
( 2 ) 

by cJ>n (r) and integrate with respect to r , subsequent to multiplying 
1 

both equations by r 2. DOing this, we secure 

(A62) 

(A63) 

where 

k,j=l, ... ,Ml 

n,l=l+Ml, ... ,Ml+M2 

We similarly match the derivatives (being careful with the formula 

x2 = x20 - r cos f/J) and obtain: 

( I ) 

dg 
km (f/J=O) 

d<p 

Ml 

= I - r~{2 
j =l 

(2) Ml+M2 
dgnm 3/2 

d<p (<p =0) = L: -rnl 
l =Ml+l 

(A64) 

(A65) 
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where 

f 
. (1) 3/ 2 " (1) 

dr cf>i (r) r cf>j (r) , i, j =1, ... , M1 

3/2 r.. = 
IJ 

f (2) 3/ 2 " 
. dr <Pi (r) r cf>j(r) , i, j=M1+1 , ... ,M1+M2 

Equations (A62) - (A65) in principle establish the initial conditions 

for propagation of the coupled differential equations (A56). However, 
. (1) 

it is more convenient numerically to use basis functions cf>i and 
(2) 1 

cf>i referenced to a tp > O. Thus, overlap matrices between this 

basis set and the one referenced to qJ = 0 must be computed. With 

this modification the final equations for the initial conditions are 

given by 

M1 
( 1 ) 

gim(CP=O) = f, 
j=l 

i = 1, ... ,M1 
M1 

=;, 
j =l 

M1+M2 M1+M2 
( 2 ) 

gnm(qJ=O) = /, l' 
( 2 ) 

Snl 
1/2 (2) 

rIp gpm (xiO ) 

p =l 1=1 

n=1+M1, . .. , M1+M2 

( 2 ) M1+M2 Ml+M2 (2 ) 

dg 
/. L 

(2) 3/2 dg m 
nm (cp =0) = -Snl rIp -r(xiO ) . dqJ 

p =l 1=1 
1 

With initial conditions established the integration of eq. (A56) 

can be carried out. Details regarding further propagation in the re­

arrangement coordinate system (qJ', r ') and (Zi' Z2) are very similar to 
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the ones given above and are not considered further. The entire 

procedure generates Ml + M2 linearly independent solutions to the 

two-coupled Schro dinger equations (A22a) and (A22b). Another set 

of Ml + M2 linearly independent solutions is generated by performing 

a "back integration." That is, the above procedure is repeated except 

it is begun in the product arrangement channel. Details regarding this 
.. 1 

procedure are given elsewhere. 

In Appendix 4 the asymptotic scattering analysis is presented 

for the two-state problem. Since it is an extension of the single 

state analysis the description is brief. 
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A endix 4: Rand S Matrix Scatter ing Anal sis for the Electronic 

* Two-State A + BC ~ AB + C AB + C Collinear 

Chemical Reaction 
~ 

As discussed in Appendix 3 a total of 2(Ml + M2) linearly 

independent solutions of the SchrOdinger equation are generated for 

* the electronic two- state A + BC ~ AB + C, AB + C collinear 

chemical reaction. The techniques used to obtain the R matrixl and 

from it the S matrixl from this set of solutions are outlined in this 

appendix. 

Since the R-S analysis developed for the electronic two-state 

problem is a straightforward extension of the one-state analysis 

given previously2-4 we give the details only of the modifications of 

the one-state analysis and simply quote one-state results. Also, a 

current density analysis of the two-stat e wavefunction is made and the 

necessity of a complete electron-nuclear uncoupling is pOinted out in 

order for the fOllowing R-S analysis to be valid. 

The G matrix defined by eq. (A36) of Appendix 3 has dimensions 

(Ml + M2) x (Ml + M2). Let us denote the G matrix obtained in the 

forward integration by G+ and in the backward integration by G-. The 

J·th column of G+ ( -), G~ (-) has the following elements asymptotically 
- J 

(in terms of real functions)1-3 



476 

D+
1
.
J
.<-) sin (k!l)X) + 'i).".<-) cos (k!l)X ) 

1 1 1J 1 l ' 

i = l , ... , Nl 

C:.< - ) exp( K! 1 ) X ) + C-.-+: < - ) exp( - K< 1) X ) 
1J 1 1 1J ii' 

i=Nl+l, ... , Ml 

B:.<-)sin(k!2)x) + B.-+:<-) COS(k< 2)X) 
1J 1 1 1J ii' 

i = Ml+l, ... , Ml+N2 

A:.< -) exp( - K.< 2) Xl) + A.': < - ) exp( K ( 2) Xl) 
1J 1 1J J 

i = Ml+N2+1 , ... , Ml+M2 

+ - ' -:;:4-- ' J .. < ) sin(k!l) z) + J .. < )COS(k!l) z) 
1J 1 1 1J 1 1 , 

i = l, ... , Nl' 
, , 

H: .< - ) exp( K! 1 ) z) + H.': < -) exp(- K! 1l z) 
1J 1 1 1J 1 1 , 

i = Nl' +l, ... ,Ml 
, 

F:'<-)sin(k! 2) z) + F.-+:<-)cos(k! 2)f z) 
1J 1 1 1J 1 1 , 

i = Ml +l , .. . , Ml+N2' 
, 

E:.< - ) exp( K! 2) z) + E.-+: ( - ) exp(- K < 2)f Z ) 
1J 1 1 1J 1 2 , 

i = Ml+N2' , ... , Ml+M2 

j = l, ... , Ml+M2 

Nl and N2 are the number of open vibrational states of the r eactant 

molecule Be in electronic states l and 2 respectively and Nl' and N2' 

are the number of open vibrational states of the product molecule AB 

in e lectronic states 1 and 2 respectively. 

1n order to construct the R matrix from the matrice s of c oeffi-

cients given above requires the construction of a super matrix Q.. 
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This matrix consists of an assembly of many submatrices of certain 

of the above coefficients . The submatrices are 

i = l, ... , Nl 

j = l, ... , Ml 

i = l, ... , Nl 

j = Ml+l, ... , Ml+M2 

i.=Nl+l, .. . ,Ml 

j = 1, ... , Ml 

i = Nl+l, ... , Ml 

j = Ml+l, ... , Ml+M2 

i = 1, ... , Nl' 

j = 1, ... , Ml 

i = 1, .•. , Nl' 

j = Ml+l, ... , Ml+M2 

i = Nl' +1, ... , Ml 

j '" 1, ... , Ml 

i = Nl' +1, ... , Ml 

j = Ml+l, ... , Ml+M2 

i = M1+1, ... ,Ml+N2 

j = 1, ... , Ml 

i = Ml+l, ... , Ml+N2 

j = Ml+1, ... , Ml+M2 

i = Ml+N2+1, ... , Ml+M2 

j = 1, ... , Ml 



(E+( - )) . . = E:.(-) 
- 1J 1J 

In terms of these submatrices, 

D+ D -

c+ C 

J+ J -

H+ H -

6 = 
B+ B 

A+ A-

F+ F -

E+ E 
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i = Ml+N2+1, ... , M1+M2 

j = Ml+l, ... , Ml+M2 

i = M1+1, ... ,M1+N2' 

j = 1, .. . , Ml 

i = Ml+l, ... , Ml+N2' 

j = Ml+l, ... , Ml+M2 

i = Ml+N2' , ... ,M1+M2 

j = 1, ... , Ml 

i = Ml+N2' , ... ,Ml+M2 

j = Ml+l, ... , M1+M2 

the ~ matrix is given by 

D'+ D' -

C,+ C' -

J'+ J'-

H'+ H' -

B'+ B' -
(A66) 

A'+ A' -

F' + F'-

E'+ E' -

This matrix has dimensions 2(Ml+M2) x 2(Ml+M2) and for the 

R-matrix analysis its inverse 6-
1 

is required . A matrix, Jt, some­

what analogous to ~ is now defined. It is given by 
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D+ D- D'+ D' -

J+ J- J'+ J' -
li= if+ B- w+ W-

F+ F- F'+ F' -

and has dimensions (Nl + Nl' + N2 +N2P) x 2(Ml + M2). The sub-

matrices are exactly analogous to the ones given above with the 

upper bar inserted. The penultimate step is to form from 6- 1 a 

(A67) 

matrix C which consists of the open columns of !fl only and has dimen­

sions 2(Ml + Ml) x(Nl + "N2 + Nl ' + N2~. Finally , a diagonal 
1 

(Nl + Nl' + N2 + N2') x (Nl + Nl' + N2 + N2') matrix K 2 is defined by 

(A68) 

where, 

i = 1 , ... , Nl 

i = 1, ... , Nl' 

i = Ml+l, ... , Ml+N2 

i = M1+1 , .. . ,Ml+N2' 

and k~r> , k.( 2) are given just after eq. (A28b) of Appendix 3 and k!rl' 
III 

and k.( 2 )' are the analogous quantities for the rearrangement channel. 
1 
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a .. is , in this context, the Kroneker delta function. Then in terms of 
1] 

C , fl., and K! the R - matrix is given by2, 3 

The R-matrix has dimensions (N1 + N1' + N2 + N2') x (N1 + N1' 

+ N2 + N2') and in terms of it the S-matrix is given by1-3 

(A70) 

Finally, the probability matrix P which gives the probability for the 

system of reactants in a given initial state i to undergo a transition 

to a final state f, e.g. reactive and electronically non-adiabatic is 

given by 

(A71) 

We consider now a current density analysis of the scattering 

wavefunction given in the traveling wave representation. Thus , 

-ik(Ox . N1 k(l).! ik (l)X 
( el) a( el )I I 1 (l) ( ) \' (I ) 2 iI 1 WI!: ,xv X, Xl ---> 00 Xl!: ;xl1 x2 e 1>1 X, +.L

1
!0TI SHe 

1= 1 

N1+N1' +N2 k(l) .! ·k( 2) 
() ] a el \' 1...1...... 2 1 iI Xl (2) </>/ (x,) + X2 (!: ;xv x2) l k~ 2') SHe ¢'i (x2) , 

i = N1+N1' +1 1 

(A72) 

where I denotes the initial state of the reactants and i denotes the final 

state of the reactants. Eq. (A72) is the scattered wave for non-

reactive scattering which is sufficient for consideration of the properties 

current density vector l({l,xv x,,). Note we have dropped the closed 
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channels since they necessarily make a zero contribution to 

O( el ) 
1~ ,Xv x" ° 

B d f o °to O( el ) ° ° b 5 Y e InI IOn 1 ~ , Xv X2 IS gIven y 

(A73) 

where in the collinear case 

(A74) 

Ci is a dimensionless mass ratio chosen so that the definition of j 

given by (A73) is correct. We assert that the contributions made by 

a~2 x2 and Ci~l to j are identically zero. This is so because the ~el 

and x2 motions are presumed to be bound. Thus, we need consider 

the Jo- Xl term only. Performing the necessary differentiations and 
oXl 

multiplications yields the following terms; 
N1 N1 

a* a {. ok 1.+.(1)( ) 12 " '\ Ok' (1) Xl Xl -1 1 '1'1 x2 + L I 1 iI 
i=1 j =1 

a* a { 
Xl X2 

a* ~.{ 
X2 ax 

1 

} a* a { 
+ X2 Xl 

* ~ a 
} "" a (Jk r + X2 ox.- l. 

1 
j'l'" 

a 
}" + X~* ~~2 { 

1 
} I " + 

In order to secure the scattering flux, these terms must be integrated 

with respect to :!:el and x". Doing the x2 integration first yields for the 
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t OtO It" ·1" a* a d a* a f "1 " " quan lIes mu IP ymg Xl Xl an X2 X2 very amI lar expresslOns 

for the flux assoc:iated with electronic states 1 and 2 separately and 

we note that the remaining terms are non-vanishing. Finally, we 

consider the ~el integration. Making use of the fact that the X~ form an 

orthonormal set of functions we have t hat 

Nl 
J(x1)=~[_k(1) + \' k<ll 
~ J.l 1/1 

i =1 

h a a a 
jJ: 1m[ (Xl I~> elf 

Nl+Nl' +N2 

lSi! 12 + L kilo) 
j = Nl+Nl' +1 

. ' a 
} " a j~ { + (h 1 ax > el 

1 

aj£.x1 { (X 2 ax > e1 } ' , " + ( a I~> { X2 ax el 
1 

}'''''] . 
1 .. 

Very curiously we see that i!: contains terms in addition to the usual 

expected contributions, i. e., the terms given explicitly; . terms 

which contain Born-Oppenheimer coupling terms (cf. eq. (12a) 

of Section 2). It has been shown previously that the terms 

~ 'a 
ax" a ,aXj 

<X ~ la-.!.. > vanish identically, however, the terms (X" ~ > (i ;0' j) 
I Xl el 1 Xl el 

do not in general vanish. In fact we have that { } , " = { } ' , , , , * 

and from previous results (eq. (lla) of Section 2) that 

a il a * - (X2 lQ.ha >, hence we have that 
Xl el 

Nl Nl+Nl' +N2 

i!: = ~[-kP) + ~ kill lSi! 12 + ;: ki'l ISj1 12] + 
i =1 j=Nl+Nl' +1 

a~ _ 
(Xl laxi ~l -

} , " . 
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a a a 
Thus, we stress that the terms involving (Xl I~> el do not necessarily 

vanish. However, we can argue that they do indeed vanish sinc e if 

they do not this implies that the two-state coupled equations would 

remain coupled asymptotically. This we have assumed does not 

happen and, interestingly, we find here that this assumption must be 

reiterated in order for the scattering analysis we have performed to 
. a 

be valid. Thus, the vanishing of (X~ I~a > asymptotically is not a 
Xl el 

new assumption, although it i s an essential one for our scattering 

analysis . Therefore, :!(xl ) becomes simply 

N1 N1+N1' +N2 

:!(Xl ) Xl ~ co ~ [-ki l ) + I kill ISiI t + I. kIll ISj! 12] 
i=l j=N1+N1' +1 

A similar analysis of :! can be made in the rearrangement channel 

with the result that 

N1+N1' +N2+N2' 

Isk! 12 + l' 
1=N1+N1' +N2+1 

From conservation of flux we must have that 

and as a result that 

N1+N1' +N2+N2' 

I 
i=l 

This confirms one property of the S-matrix. 1 



484 

References 

1. N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions 

(Oxford, London, 1965), pp. 388 - 394. 

2. (a) D. G. Truhlar and A. Kupperrnann, J. Chern. Phys. §, 2232 

(1972); (b) D. G. Truhlar, Ph.D. Thesis, California Institute of 

Technology (Pasadena, California, 1970), pp. 214 - 218. 

3. A. Kupperrnann, to be published. 

4. D. J. Diestler and V. McKoy, J. Chern. Phys. 1l!., 2941, 2951 (1968). 

5. L. M. Delves, Nuclear Phys. ~, 275 (1960). 



485 

PROPOSITION I 

Abstract 

Exact quantum calculations of the collinear H+ + Hz -Hz + H+ 

reaction using a realistic and modified potential energy surface have 

revealed sharp resonant behavior in the reaction probability. We argue 

that the reaction is vibrationally adiabatic, and hence that these 

resonances are due to the presence of a one-mathematical dimensional 

potential well along the reaction coordinate. We propose to calculate 

these resonant energies and widths approximately by making use of 

several bound-state stabilization methods (which have been successfully 

tested previously on one-dimensional well problems) to compute the 

resonant wavefunctions and energies. Some preliminary results are 

presented. 
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Exact quantum calculations of the collinear H+ + H2 ( v = 0) -> 

H2(v' =0) + H+ reaction have revealed striking resonant behavior in 

the energy dependence of the Po~ reaction probability. 1 In one set 

of calculations, using a modified H/ potential energy surface, two 

resonances occur at collision energies of 0.236 eV and 0.406 eV. 

The respective widths are approximately 0.01 eV and 0.005 eV. 

Another set of calculations, making use of the realistic Preston and 

Tully DIM H/ potential surface,2 were performed and many resonances 

were found. The calculation of the reaction probability in both cases 

required much computer time due to the many basis functions used in 

the close-coupling type solution of the two-mathematical dimensiopal 

Schrodinger equation~ Since the H3+ surface (unmodified) contains a 

deep well (-3.39 eV) relative to the separated reagents and products 

it seems reasonable that it i s the major source of the resonant behavior. 

The modified surface has a well depth of 1. 0 eV. 

In natural collision coordinates (for collinear collisions) the 

H/ motion can be decomposed into motion along and transverse to a 

reaction coordinate. 3 In the adiabatic approximation it is assumed 

4-7 that these two degrees of freedom are uncoupled. Thus, the 

two-mathematical dimensional scattering problem can be reduced to 

a one-mathematical dimensional one. Neglecting curvature of the 

reaction path the Schrodinger equation for the scattering motion, given 

in terms of the reaction coordinate s, is 

2 2 

I !. d 
- 'l/i (]S2 + V(s) + eo(s) - Elif.' (s) = 0 . ( 1) 
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V(s) is the potential energy along the reaction coordinate,e.o(s) is the 

local vibrational eigenvalue of the motion transverse to the reaction 

coordinate, J1. is the reduced mass of the H3+ system (in a suitable 

mass-weighted coordinate system) and E is the total energy of the H,+ 

system. The potential V(s) is shown in Figure 1 for the H,+ DIM surface 

(labe led by a = O. 0) and for the modified surface (labeled by ex = O. 5). 

Within the adiabatic approximation we propose to compute the 

resonance energies and widths associated with modified and unmodified 

V(s) potentials given in eq. (1) . Suc h a calculation would represent 

the first attempt to find the resonances and widths associated with a 

Chemical reaction in this way. Before outlining the details of the 

methods proposed to do this, a justification of the adiabatic approxi-

mation is made. 

The reaction probability Po~ for both the modified and unmodi­

fied potential surfaces remained substantial, i. e., greater than 0.6 

and 0.8 for the two surfaces respectively even though other reactive 

channels were open. This , indicates that the reaction is reasonably 

adiabatic asymptotically and hence gives some justification for assuming 

a high degree of adiabaticity in the strong interaction region as well. 

A stabilization method to compute the resonances and widths for 

one-dimensional scattering equations (of which eq. (1) is an example) 

based on the finite-differenc e boundary-value method (FDBVM) has 

r ecently been given by Truhlar. 8 Briefly, the method calls for the 

discretization of the second order differential equation (1) by a finite 

difference apprOximation, making the wavefunction obey an arbitrary 

boundary condition at some value (in our case two values) of the inde-
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pendent variable (typically the boundary conditions are lj; (S1) = "" (S2) = 0) 

and then solving the resulting eigenvalue / eigenvector equation. The 

boundary conditions are then changed a few times and a scan for 

"stable" eigenvalues is made. Such eigenvalues correspond approxi­

mately to resonance energies. Also Hazi and Taylor9 have shown 

that the width associated to a given resonance r (Jan be approximated 

by the following expression: 

(2) 

1 

where Ei is the ith stable eigenvalue and kr = (2 {lE i):2 / Ii. Truhlar has 

made use of (2) with success with the FDBVM. 10 

Another independent method (though related to the above one) to 

calculate resonance energies and widths was proposed by Hazi and 

Taylor. 9 In this method, which we propose to use also, a basis set 
2 

of N1 L functions is chosen appropriately for the problem under con-

sideration. The Hallliltonian is diagonalized within this basis set and 

eigenvalues and eigenfunctions are obtained. The number of functions 

in the basis set is then changed several times and, as before, stable 

eigenvalues are sought. Expression (2) can be used to calculate r . 
2 

For the potentials shown in Figure 1 an appropriate L basis set would 

be harmonic oscillator wavefunctions. 11 

In Table 1 we present some preliminary results on eigenvalue 

stabilization for the unmodified potential V(s). The potential V(s) was 

determined at 150 points and then a spline fit was made at a total of 

700 points. The FDBVM was used to find eigenvalues for four sets of 
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boundary conditions. The step size in the finite difference discretiza­

tion was 0.035 bohr. This should yield accuracy in the eigenvalues 

shown to 2 - 3 significant digits. As seen in the table (and indicated by 

asterisks(*» there are four stable eigenvalues : (0.030, 0.028, 0.027 , 

0.024), (0.041, 0.040,0.043,0 . 043) , (0.106,0.101 , 0.096,0.088), 

and (0.139,0.138, 0.139, 0.139) . Taking the average for the four sets 

we conclude that four resonances should occur in the H/ system at 

collision energies of 0.027 eV, 0.042 eV, 0.098 eV, and 0.139 eV. 

The exact quantum results, though not very well resolved, show 

resonances at approximately 0.014 eV, 0.03 eV to 0.04 eV, 0 . 100 eV, 

0.140 eV, and higher energies. There appears to be sQme encouraging 

agreement between the approximate and exact results. However, we feel 

that more approximate calculations are required, especially on the modi­

fied V(s) potential. In that case there are two very well resolved exact 

quantum oscillations which afford an excellent opportunity for testing 

the approximate methods described above. 
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Figur,e 1: Comparison of the modified (Q! = O. 5) and unmodified (Q! = 0.0) 

H/ potential energy surfaces along the reaction coordinate, 

i.e., the (same) minimum energy path. 
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PROPOSITION II 

Abstract 

It is proposed that a three-body Ar potential energy surface be 

calculated within the Thomas-Fermi-Dirac method as modified and 

extended by Gordon and Kim. This potential energy surface, heretofore 

unavailable, would be useful in assessing the importance of non-separable 

three-body forces in the theory of liquids. 
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It is well-established that for liquid Ar both microscopic as 

well as thermodynamic properties are appreciably affected by a non­

separable three-body potential. This was convincingly demonstrated 

in recent molecular dynamics calcuations by Barker, Fisher, and 

watts. 1 In these calculations several thermodynamic properties of 

liquid Ar were calculated, these included the total energy and pressure 

as a function of temperature and volume. Agreement with experiment 

was good when a three-body potential was included in the calculations. 

Sherwood and Prausnitz2 , 3 in numerical calculations of the third 

virial coefficient for Ar found that three-body contributions were signi­

ficant although they did not obtain very good agreement with experiment. 

To quote from their conclusion section: "The third virial coefficient 

is more sensitive to the shape of the potential function than is the 

second coefficient. . .. The calculated contribution from nonadditive 

attractive forces [the ones considered by Sherwood and Prausnitz] is 

very significant. . .. The size of the correction raises the question 

of the importance of three-body repulsive forces Ii. e., short range 

f ] ,,3 orces .... 

The three-body potential used by Sherwood and Prausnitz and 

Barker et al. is of the Axilrod-Teller form 4 

where r ij are the distances between any two Ar atoms and e i are the 

interior angles of the triangle formed by the three Ar atoms. The 

parameter II is related to the polarizability of the Ar atom a and the 

long range two-body Co parameter by the expression5 
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II = t a C 6 • 

This potential is the long-range three-body potential and cannot be 

expected to be accurate when there is some overlap between any two 

Ar charge densities. Therefore, the potential at short range must be 

calculated from a different approach. A full Hartree-Fock or confi­

guration interaction calculation would be prohibitively costly and 

probably unnecessary. We propose to calculate the short-range 

and the long-range Ar 3 potential energy surface within the Thomas -

Fermi- Dirac (TFD) method6 a s applied by Abrahamson and co-workers 7 

and as recently modified by Gordon and Kim. 8 

In calculations of the short-range Ar2 potential Abrahamson 

assumed that the total electron density p could be written approximately 

as the sum p = p 1 + P 2 where Pi is the (known) charge density asso­

ciated with the ith isolated unperturbed Ar atom. With this assumption 

the application of the TFD method is relatively simple. 9 Comparisons 

with experiments and other potentials indicated that the TFD potential 

with the assumed form for p gives an accurate representation of the 

short-range repulsive part of the Ar2 potential. 7a Recently , Gordon 

and Kim, 8 making the same assumptions as previously about the 

additivity of the densities Pi' extended the TFD idea by including a 

correlation term in P taken from the uniform electron gas model. 10 

The Ar2 potential they obtained included the attractive well and overall 

was in reasonably good agr eement with r .esults from previous semi-

empirical calculations and molecular beam experiments. 

We propose to use the TFD method as extended by Gordon 
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and Kim to calculate the Ars potential energy surface. Briefly, 

to calculate the interaction energy at a given value of the internuclear 

distances. Rl2> R,s' and R23 requires an integration of the energy 

density which can be written as 

Ec ' ET , Eex' and Ecorr are respectively the bulk coulomb, kinetic, 

exchange, and correlation energies. The interaction energy is 

given by 

where r. is the radius vector of the ith Ar nucleus and p.(r.) is the asso-
~l 1 ~l 

ciated electron density. In the expression above for the interaction 

energy the nine-fold integration indicated above can be reduced to at 

most a three-fold integration. Such integrations can be carried out 

efficiently using the quadrature methods of reference 8. To generate 

an extensive Ar3 potential energy surface in this way would not 

require substantial amounts of computer time. Also, an accurate 

Ardensity is available from Hartree-Fock claculations on Ar. 11 

Once the Ar 3 potential is generated the non-separable three­

body term would be determined by subtracting from the Ar3 potential 

the summed two-body potentials. The resulting three-body potential 

could be compared to the Axilrod-Teller one and possibly spliced on 

to it to generate a complete short-range and long-range three-body 

potential. 
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In addition to a re-calculation of the third virial coefficient the 

two- and three-body radial distribution functions g(2) and g( 3) could be 

calculated for liquid Ar. The experiments of Mikolaj and Pings
12 

revealed a linear dependence on the den sity of g< 2). This indicated 

that the three-body potential in liquid Ar was non-negligible. Rushbrooke 

and Silbert13 and Rowlinson14 then extended the hyper-netted chain 

theory and the Perc us- Yevick theories of liquids to include triplet 

potentials. Thus, the ab initio calculations of g < 2) and g < 3) is possible 

given that the three-body potential is known . 



499 

1. J. A. Barker, IL A. Fisher, and R. D. Watts, Mol. Phys. ll, 
657 (1971) . 

2. A. E. Sherwood and J. M. Prausnitz , J. Chern. Phys. g, 413 

(1964). 

3. A. E. Sherwood and J. M. Prausnitz , J. Chern. Phys. g, 429 

(1964). 

4 . B. M. Axilrod and E. Teller, J. Chern. Phys. ll, 229 (1943). 

5. (a) T. 

(b) T. 

Midzuno and T. Kihara, J. Phys. Soc. Japan ll, 1045 (1956) ; 

Kihara, Advan. Chern. Phys. 1, 267 (1958). 
~ 

6 . H. A. Bethe and R. W. Jac kiw, Intermediate Quantum Mechanics 

(W. A. Benajmin, New York, 1968) , 2nd Edition, Chapter 5. 

7. (a) A. A. Abrahamson , Phys. Rev. 130, 693 (1963) ; (b) A . A. 
~ 

Abrahamson, R. D. Hatcher, and G. H. Vineyard , Phys. Rev. 

ill, 159 (1961). 

8. R. G. Gordon and Y. S. Kim, J. Chern. Phys. 56 , 3122 (1972). 
~ 

9. Ordinarily the density p must be found from a non-linear first­

order differential equation, cf. ref. 6 , p. 85. 

10. See , for example, A. L. Fetter and J . D. Walecka, Quantum Theory 

of Many-Particle Systems (McGraw-Hill, New York, 1971), 

Chapters I and IV. 

11. T. L. Gilbert and A . C. Wahl, J. Chern. Phys. ll, 3425 (1967). 

12. P. G. Mikolaj and C. J. Pings, J. Chern . Phys. 46, 1401, 1412 
~ 

(1967). 



500 

13. G. S. Rushbrooke and M. Silbert, Mol.Phys. ]1, 505 (1967). 

14. J. S. Rowlinson, Mol. Phys. 12, 513 (1967). 
~ 



501 

PROPOSITION III 

Abstract 

It is proposed to make use of vIbrational adiabaticity in three­

dimensional classical trajectory calculations to decrease the computer 

time for such calculations by as much as a factor of five. Such a re­

duction is necessary if quasi-classical forward and reverse reaction 

cross-sections are to be calculated efficiently. 
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The classical trajectory method has been used as reliable 

guide to the details of bimolecular reactions, e.g. reaction cross:" 
1 section, vibrational energy distributions, etc. However, the 

expense in computer time is quite large. As an example, consider 

the computer costs of the recently studied reaction F + H2 (D2) --> 

FH (D) + H (D). 2 Typically, for each value of the collision energy and 

for H2 in a given rovibrational state 500 - 1000 trajectories are 

performed. A reasonably complete study including several rotational 

states for the ground vibrational state and a scan of 10 collision 
4 

energies would require'" 2 x 10 trajectories. The time to compute a 

trajectory varies according to the computer llsed. However, the way 

in which trajectory calculations have been carried out has been unvarying 

since 1965. 3 A time of 5 seconds per trajectory on a CDC 6600 has 
2c 2e. been reported. In another study the tIme was 20 seconds per tra-

jectory on a CDC 7600, due mainly to the procedure for calculating the 

FDo potential Sllrface. Taking the former time as typical, a total of 
52 · 

'" 10 seconds'" 3 x 10 hours of CDC 6600 time is required to make an 

adequate study of the F + H2 (D2) reaction. 

There are obviously two factors which cause the computer time 

to be so exhorbitant. The first is the number of trajectories to be 

performed and the second is the time per trajectory. The former factor 

is probably immutable. However , there are several ways to improve 

the second one. The time per trajectory is essentially determined by 

the length of the trajectory. For reactions like F + H2 the integration 

is typically started when the F - H distance is of the order of 10 bohr 



503 

and terminated at roughly the same distance. Thus, a trajectory 

length of say 18 bohr is probably typical. The rationale for choosing 

the initial and final distance is based on there being a negligible inter-

action potential between F and H2 at these distances. 

We propose to reduce the computer time per trajectory by a 

factor of five by decreasing the length of the trajectory by a factor of 

five. We assert and propose to test that the F + H2 reaction is to a good 

approximation vibrationally adiabatic except in a small region of 

configuration space where the curvature of the reaction path is large. 

This region of space is roughly 3 bohr along the reaction coordinate; 

hence a factor of 6 decrease in the length of the trajectory results and 

a concomitant decreaSe in computer time. 

We would perform the trajectory calculations by starting and 

terminating the trajectory just before ane! after the region of strong 

non-adiabaticity. The final vibrational and rotational action variables 

would be calculated. From the fact that the reaction is adiabatic 

away frOm the region of tile numerical integration it would be straight­

forward to perform the asymptotic scattering analysis even though the 

trajectory might be many bohr interior to the actual asymptotic region. 

A speed-up of classical trajectory calculations by a factor of five 

would help to make reverse quasi-classical trajectory calculations3 

feasible. In these calculations perhaps several times as many trajec­

tories would have to be performed as compared with standard forward 

quaSi -classical trajectory calculations. However, as recently shown 

in collinear calculations of the F + H2 and F + D2 reactions4 the differ-

ences between forward and reverse results can be significant and hence 
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both should be done. 

Several studies of vibrational adiabaticity in classical trajectory 

calculations have been carried out for the H + H2 reaction. 5, 6 Although 

the focus was on vibrational adiabaticity of the product H2 some results 

were given as a function of the reaction coordinates. The results 

generally indicated that although the reaction was not very adiabatic 

the vibrational action showed little variation with s outside of a region 

of roughly 2 bohr straddling the saddle point of the potential energy 

surface. 5 Such results are encouraging, however, not necessarily 

applicable to a highly exothermic reaction like F + H2 • Thus, a 

vibrational adiabatic analysis should be carried out for this reaction 

and to determine if a speed-up of a factor of five in performing the 

classical trajectories can be achieved. If it can, we would propose 

to do the reverse three-dimensional quasi-classical trajectory calcu­

lations on the F + H2 reaction by making use of the vibrational adia­

baticity in the reaction except near the saddle-point region of the 

potential energy surface. 

Finally, we note that while the above procedure may be valid 

for the vibrational degrees of freedom it may not be for the rotational 

ones. Depending on the desired output of the calculation this might 

not be very important. However, it should be studied and the extent 

of adiabaticity determined. 
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PROPOSITION IV 

Abstract 

It is proposed to solve the classical equations of motion perti­

nent to electron scattering by H and He at intermediate collision 

energies , i.e. , Ec ~ 30 eV. Such an approach is capable of describing 

direct and exchange collisions. A study of the transitions H(12S) + e - -> 

H(2 2 S) + e -, and He(l'S) + e - ->He(2 ' S) + e -, He(2 3S) + e- is proposed 

and the possibility of utilizing semi-classical quantization of initial 

and final states is explored. 
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The use of classical mechanics in electron scattering by atoms 

has been very limited. Approximate classical impulse treatments of 

the ionization of H(lS) and (2S) by electron impact have been given. 1-3 

Agreement with first-order Born claculations was good for collision 

energies greater than several Rydbergs . To our knowledge no other 

modern classical treatment of electron scattering has been attempted. 

This is a little surprising since there is presently no universally 

applied quantum approach to electron scattering. This is especially 

true for the intermediate collision energy range, e.g. 50 eV - 100 eV 

where first-order Born treatments are not reliable. Recent interest 

in the Glauber 4,5 and other so-called Eikonal approximations6 points 

clearly to the interest in a reliable, efficient means of doing inter­

mediate range electron scattering calculations. Unfortunately for 

a system with more than two electrons , e. g. e - + He these Eikonal 

approximations become rapidly inefficient. 

The de Broglie wavelength of a 50 eV and 100 electron is 3.3 bohr 

and 2.3 bohr respectively. It may be argued that these wavelengths 

are small compared to the distance over which the coulomb potentials 

changes appreciably , i. e., say greater than 10 - 20 eV for much of 

the effective range of these potentials. Thus, a purely classical 

approach to the scattering of electrons might give a reasonably accurate 

description of some aspects of electron scattering in this intermediate 

energy range . This assertion is based on two facts in addition to the 

rough WKB criterion just given! One is that within the classical frame­

work the scattering of the electron by the full and rigorous interaction 

potential can be calculated exactly for all impact energies. This in-
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cludes direct and exchange (reactive) scattering. An exact quantal 

treatment of the scattering has not been carried out except at very 

low energies and for elastic scattering8 because of the great numerical 

difficulties. 

We propose to carry out exact classical trajectory calculations 

of the total and differential cross-sections for the following collision 

processes: 

e - + H(1S) ~ e - + H(2S) (direct and exchange) 

e- + He(11S) ~ e- + He(21S), e- + He(23S) . 

These calculations will be quasi-classical in the sense that the Hand 

He atoms will be initially in approximate semi-classical 1 Sand 11S 

eigenstates respectively. The prescription for forming the H atom 18 

state from the Bohr-Sommerfeld rules is well-known9 as is the fact 

that the resulting energy eigenvalues are in exact agreement with the 

rigorous quantum ones . A description a Iii Bohr-Sommerfeld of the 

He(llS) has recently been given. 10 There it was found that the Bohr-

Sommerfeld energy eigenvalue is 4.3 eV greater than the exact one. 

Quantization of the final state of the H or He atom is not proposed for 

reasons discussed later. A crude assignment of a final state can be 

made in the following way. A classical trajectory which transfers an 

amount of energy Li.Eto the atom contributes to the atomic transition 

closest in energy to the energy of the initial atomic state plus Li.E. 

More sophisticated methods of assignment are possible based on a 

calculation of the action variables n' and kllfor hydrogen and (approxi­

mately) for He also. Since the collision energies we propose to consider 
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are much in excess of the thresholds for the transitions given above, 

we feel that the results of the trajectory calculations will not be very 

sensitive to the scheme used to assign final states. 

Our interest in the collision process e - + He(11S) --> e - + He(21S) 

is motivated by the very interesting experimental results which show a 

rising differential cross-section (DCS) for scattering angles greater 

than 45 °. Between 0 ° and 45 ° the DCS decreases monotonically by 

three orders of magnitude . 12 This striking behavior of DCS is not 

predicted at all by a variety of methods used to calculate the 11S --> 22S 

transition, e. g. Born approximation. The Glauber approximation 

calculations13 does reproduc e the qualitative behavior of the observed 

DCS, however , the quantitative agreement is poor . It is probable 

that the behavior of this DCS is a dynamical effect not associated to a 

quantum effect such as a resonance since the shape of this DCS is seen 

at impact energies of 29.1 e V and 40 eV. Thus, we feel confident that 

the classical approach outlined above will reproduce the experimental 

results, at least qualitatively. 

We have examined the possibility of applying the semi-classical 

theories of Miller and Marcus14 to the electron scattering processes 

given above. These theories provide a rigorous semi-classical 

description of both the initial and final states. Hence, the difficulty 

associated with "quantizing" the final in the quasi-classical approach 

is overcome. However,an investigation of these methods revealed 

a serious conceptual problem associated with the usual Bohr-Sommer­

feld description of the H(lS) state (an analogous problem exists in 

Miller's description of the He(PS) state10 .) To illustrate this difficulty, 
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consider the Bohr-Sommerfeld description of the H(lSj state. As is 

well known this state results from the quantization rulell 

Pli=kli, k=l (1) 

where p Ii is the classical angular momentum of the electron. The 

quantization associated with radial motion is given by15 

where Pr is the radial momentum and 1 signifies an integration over 

one complete oscillation. The trouble is associated with the eq. (2) . 

Since n' = 0 it appears as though the r-motion can be ignored. This is 

the origin of the idea of circular Bohr orbits. In fact it cannot be 

ignored, as a rigorous semi-classical description of the wavefunction 

immediately indicates. The correct semi-classical wavefunction is 

needed in the semi-classical theory. 16 Unfortunately the semi­

classical wavefunction couple<\ with eq. (2) predicts thqt the probability 

of finding the electron with any value of r between its classical turning 

points is a non-zero constant. Clearly, this makes no physical sense. 

Indeed, the source of the problem is the fact that Bohr orbits violate 

the semi-classical uncertainty principle, [p ,r] = ill. According 
. r 

to the Bohr theory [Pr' r] = O. Thus, the quantization condition (2) 

must be modified to take account of the uncertainty principle (perhaps 

by replacing n' by n' + ~ ) if the semi-classical method is to be used 

in electron scattering applications to hydrogen and helium collisions. 
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PROPOSITION V 

Abstract 

An exact quantum study of the collinear reactions 

z 
F( P3 / Z) + Hz -. HF + H 

2 
F( PI / 2) + II:. -. HF + H 

2 2 
F( P I / 2 ) + Hz -. F( P 3 / 2) + H 

is proposed. We intend to make use of our existing quantal program 

to perform the calculations and to compare the results with the approxi­

mate pseudo-semi-classical ones of Tully. Also, an approximate quantum 

factorization of the problem is suggested. 
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The reaction of F with ~ is of great interest since it is the 

pumping reaction in the HF chemical laser. This has stimulated 

much experimental and theoretical work in understanding the details 

of the F + ~ reaction. 

It has recently been pointed out that in the absence of spin­

oribt coupling only one collision in three of F + H2 has a chance of 

leading to reaction. 1 This is due to the fact that only one of the P 

orbitals of flourine bonds with the H atom to give a reactive potential 
2 energy surface. Thus, the reasonable suggestion that rate constants 

and reaction cross-sections computed by trajectory methods should be 

scaled down by a factor of three was made. 1 This statistical argument 

is based on a neglect of spin-orbit coupling in the fluorine atom and 

hence the argument is only approximately valid. 3 

Very recently approximate semi-empirical "diatomics-in-

molecules" calculations of the relevant F + ~ potential energy surfaces 

and the spin-orbit coupling between them have been reported. 4 The 

reactions represented by these surfaces are: 
2 

(i) F( P 3 / 2 ) + ~ ---> FH + H 
2 

(ii) F( P1 / 2) + ~ ---> FH + H . 
2 2 

. (iii) F( P1 / 2 ) + H2 ---> F( P 3 / 2) + H. 

Reaction (i) can proceed (electronically) adiabatically, however , 

reaction (ii) cannot. It must non-adiabatically "jump" to the electronic 

surface associated with reaction (i). The coupling which affects such a 
2 

non-adiahatic transition is the spin-orbit interaction between F( P3/2 ) 

2 
and F( P 1 / 2)' enhanced by collisions with~. Reaction (iii) is included 
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since it represents a non-reactive collision which is nevertheless 

electronically non-adiabatic. 

We propose to calculate, quantum mechanically, the transition 

probabilities for reactions (i) - (iii) for collinear collisions. We shall 

make use of a computer program recently developed 5 to perform the 

calculations. There are several reasons for performing such a 

calculation. First, no quantum calculations of electronically non­

adiabatic reactions have been reported. Second, several approximate 

semi-classical dynamical theories of such reactions have recently 

been developed6- B but remain untested against exact quantum calcula-

tions. An approximate version of one of these theories has been 

applied to reactions (i) - (iii) recently.9 A third reason has to do with 

the nature of the spin-orbit interaction. The coupling is apparently 

strongest in the near asymptotic region of the reagent channel. 4 

This suggests that the quantal description can, to a good approximation, 

be divided into two steps. The first would involve a calculations of 

the "jumping" probability amplitude which would be unrelated to the 

. reaction probability amplitude. Then , given the amplitude to be 

"found" in a particular surface the calculation of the reaction probability 

could be carried out. Symbolically, the amplitude for reaction (ii) 

COllld be written as 

Tfi = ~ T fj tji 
j 

(1) 

where t.. represents the amplitude to make an electronically non­Jl 
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adiabatic transition from the initial state i to any intermediate state 

j, i. e., a vibrational state of H2 and Tfj represents the amplitude for 

reaction to occur from the jth state to the final state f of the product 

HF. Such a factorization could be tested by exact quantum calculations 

and if found valid, would be an extremely useful representation of 

electronically non-adiabatic chemical reactions. 

Another point to be explored by exact quantum calculations is 

the choice of representation, i.e. ,diabatic or adiabatic 10 in which 

the non-adiabatic coupling is to be expressed. The diatomics-in­

molecules approach can be formulated in either representation; the one 

chosen in reference 4 is the adiabatic one. In this representation the 

non-adiabatic coupling is affected by nuclear momentum operators 

acting on the electronic wavefunctions. 11 Such coupling is usually 

difficult to calculate in ab initio molecular quantum mechanics compu­

tations .. of the electronic wavefunctions , whereas the diabatic coupling 

is usually less difficult to calculate. Thus, we propose to do our 

quantum calculations in both representations. A possible difficulty 

in using the diabatic representation arises, however, due to the fact 

that the diabatic coupling does not vanish in the limit of infinite 

separation of the F and H, reagents. In a similar context, Mies has 

argut'ld for a mixed diabatic-adiabatic representation, 12 wherein the 

coupling at infinity does vanish. We propose to investigate the possi­

bility of using such a representation and hence avoid this coupling at 

infinite separation of the reagents. Another motivation for performing 

the quantum calculations in both the adiabatic and diabatic representa-
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tions is to see in which representation eq. (1) is a better approxima­

tion. 
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