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Real-Time Trajectory Generation

for Constrained Nonlinear Dynamical Systems Using

Non-Uniform Rational B-spline Basis Functions

by

Melvin E. Flores

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Abstract

The thesis describes a new method for obtaining minimizers for optimal control problems whose

minima serve as control policies for guiding nonlinear dynamical systems to achieve prescribed goals

under imposed trajectory and actuator constraints. One of the major contributions of the present

work resides in the approximation of such minimizers by piecewise polynomial functions expressed

in terms of a linear combination of non-uniform rational B-spline (NURBS) basis functions and the

judicious exploitation of the properties of the resulting NURBS curves to improve the computational

effort often associated with solving optimal control problems for constrained dynamical systems.

In particular, by exploiting the two structures combined in a NURBS curve, NURBS basis functions

and an associated union of overlapping polytopes constructed from the coefficients of the linear

combination, we are able to separate an optimal control problem into two subproblems — guidance

and obstacle-avoidance, making the original problem tractable. This is accomplished by laying out

the union of overlapping polytopes in such a way that they delineate a section of space that avoids

all obstacles and then manipulating the NURBS basis functions to obtain trajectories that are

guaranteed to remain bounded by this section of space without explicitly including the conjunction

of disjunctions naturally induced from obstacles into the guidance problem.
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In addition, we show how one can construct systematically a feasible region that corresponds to a

NURBS parameterization starting from an ordered union of pairwise adjacently overlapping non-

empty compact convex sets. Specifically, we show how to setup a nonlinear programming problem to

solve for the feasible region in terms of an ordered union of pairwise adjacently overlapping polytopes

with nonempty interiors by maximizing the sum of their volumes and starting from a feasible region

described by an ordered union of pairwise adjacently overlapping nonempty convex compact simi-

algebraic sets. Finally, we show how this strategy can be implemented practically for an autonomous

system traversing an urban environment.

Finally, this work culminated in the filing of patent US20070179685 on behalf of Northrop Grumman

for the Space Technology sector and in the development of the NURBSbasedOTG software package.

This C++ package contains the theoretical results of this thesis in the form of an object-oriented

implementation optimized for real-time trajectory generation.
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Chapter 1

Introduction

1.1 Motivation

Many control policies used for guiding real systems are obtained through the numerical computation

of minimizers to optimal control problems. In general, determining a minimizer to an optimal control

problem consists of computing the control and state evolutions that achieve the lowest value of a cost

functional that captures the effort in the system’s motions (e.g., energy, momentum, entropy) while

taking into account the system’s behavior (e.g., linear, nonlinear, hybrid), boundary conditions (e.g.,

initial and/or final system’s configuration — both position and attitude), trajectory constraints (e.g.,

obstacle avoidance), and actuator constraints (e.g., limits in forces and torques). The appeal for

this paradigm resides, in part, on the ease with which a large number of useful engineering problems

are able to be modeled by using this mathematical framework and on the ever increasing theoretical

and computational resources that are at our disposal for solving them.

The mathematical structure of the optimal control problem dictates how deep we can proceed into

understanding the relevant issues that define it as well as the set of analytical and/or numerical

tools available for obtaining its minimizers. In general, three major issues can be resolved regarding

a posed optimal control problem, depending on its complexity: existence of minima, Cesari [1983];

computation of minimizers, Bryson and Ho [1975], Pontryagin et al. [1962], Pesch [1989], von Stryk

and Bulirsch [1992]; and on-board implementation of control policies for guiding a real system,

Betts [1998], Diehl [2001], Milam [2003]. In particular, if an optimal control problem is made up

of a quadratic cost functional, linear dynamics, and no trajectory nor actuator constraints, one can

obtain minimizers analytically (or numerically with very low computational effort) in the form of

feedback laws, and they can be implemented (if physically realizable) on a real system to guide its

behavior in real time. On the other hand, if the optimal control problem is made up of a non-convex
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cost functional, nonlinear dynamics, non-convex trajectory constraint sets, and compact actuator

constraint sets, our only resort is to pursue numerical computation of open-loop control policies that

may or may not exist. A feedback law can be constructed using the open-loop control policies by

exploiting receding horizon control (RHC) results, Mayne et al. [2000], Chen and Allgower [1998].

However, in this case, implementation on board a real system would require significant computational

effort and sophisticated decision trees to deal with contingencies (e.g., failure to obtain a minimizer).

Numerical methods for generating minimizers to optimal control problems may be classified into

two general approaches: direct and indirect methods. Indirect methods are developed through the

calculus of variations and arise in the form of first-order and second-order necessary and sufficient

conditions of optimality, Bryson and Ho [1975], Pontryagin et al. [1962], Pesch [1989], von Stryk and

Bulirsch [1992]. Direct methods, on the other hand, rely on the direct transcription of the optimal

control problem to a nonlinear programming problem via parameterization of the inputs and states,

followed by a balanced discretization, Betts [1998], von Stryk and Bulirsch [1992], Kraft [1985].

The reader is referred to Betts [1998] for a survey on numerical methods for trajectory generation,

weighing their pros and cons. Finally, a combination of the two approaches above has also been

studied with relative success, Gath [2002], von Stryk and Bulirsch [1992].

Despite the large number of methods developed for trajectory generation, many issues still remain to

be resolved either partially or in their entirety (e.g., existence of minima for optimal control problems

lacking convexity, reachability results for constrained systems, trajectory generation for nonlinear

hybrid systems, real-time system guiding in uncertain environments). Research on overcoming these

and many other new challenges has recently been re-energized by the funding of many efforts targeted

towards the design of autonomous systems. Some of these efforts include: Unmanned Aerial Vehicles

(UAV), Autonomous Terrestrial Vehicles (DARPA Grand Challenge), Mars Explorer Rovers (MER),

and Autonomous Underwater Vehicles, as illustrated in Figure 1.1.

The optimal control problem framework happens to be remarkably well-suited to model guidance

questions for these types of systems. This is evident if we consider some of their salient

characteristics. Mainly, an autonomous system must be highly flexible for operating under ever-

changing conditions (i.e., be able to formulate the state trajectory constraint set), be able to overcome

reasonable failures (i.e., be able to construct control-relevant dynamic and actuator constraint sets),

possess adaptive problem solving capabilities (i.e., be able to modify and pose new cost functionals),

and have on-board, real-time computational resources (i.e., be able to solve the optimal control

problem in real-time).
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Figure 1.1: Research efforts on autonomous systems

However, traditional methods for the solving of optimal control problems when applied to

autonomous systems tend to be either intractable in real-time through computational complexity

or extremely conservative. To illustrate this, consider the use of a traditional numerical method for

generating optimal trajectories for an autonomous system that must traverse an urban environment

(obstacles, without loss of generality, can be modeled in this setting as polytopes). From the onset,

a difficulty arises in the modeling of free space or the trajectory feasible set. This is a direct result

of using an optimization-based approach. In optimization-based approaches, one must model the

feasible set through the intersection of constraints sets. However, in obstacle avoidance problems

the opposite is true: obstacles lead naturally to the trajectory feasible set being described by a

conjunction of disjunctions. There are two different approaches that have been studied in the

literature for overcoming this issue: a) approximating the feasible set with a single convex set,

Faiz et al. [2001] and b) recasting the conjunction of disjunctions in terms of an intersection of

constraint sets, Nemhauser and Wolsey [1988]. As one might expect, depending on the number of

obstacles and their position in space, the first approach, if at all successful, can be very conservative

in approximating the feasible set (e.g., because the feasible set is, generally, highly non-convex). In

the second approach, there are two main ways of recasting the original problem. Namely, one can

model polytopes by ellipses or other basic closed semi-algebraic sets (i.e., sets formed by intersecting

a finite number of polynomial inequalities), or one can use the operations research approach of

modeling disjunctive sets by introducing boolean variables. In both situations, one must deal with

a large number of constraints present in the optimal control problem (nonlinear and/or mixed-

integer), already a dire situation. But in addition, in the former case one trades modeling ease



4

for conservative results (i.e., over-approximation leads to the significant reduction of the trajectory

feasible set, artificially obstructing, in some instances, free sections of space connecting the initial

and final path conditions), while in the latter, the optimal control problem after transcription would

become a nonlinear mixed-integer programming problem for which tools are scarce and, in any event,

would be extremely computationally costly for real-time applications.

Fortunately, partial results for overcoming some of these issues can be found in the literature.

Most notably, in the field of motion planning there has been a detailed study of methods for

characterizing the geometry of the space which complements the one delineated by obstacles (free

space), Latombe [1991]. In general, these methods decompose free space into simpler manageable

regions whose structure can be exploited to determine sections of space that connect the initial

and final configurations of the system and, therefore, are collectively known as cell decomposition

methods. The most general method in this collection is cylindrical algebraic decomposition, Collins

[1975], Canny [1988]. However, this method requires the use of computational algebraic geometry

tools (e.g., Gröbner bases, multivariate polynomial resultants), Cox et al. [2005], which are very

computationally expensive. In practical applications, one usually resorts to some type of compromise

between generality and computational tractability by using approximate cell decomposition methods.

In like manner, the field of control and dynamical systems has infused the literature with methods

targeted to obtaining, in real-time, control policies for guiding dynamical systems with actuator

constraints (trajectory constraints usually neglected or simplified). In particular, methods restricted

to the study of differentially flat systems, Fliess et al. [1995], have been able to reduce the

computational burden often associated with direct methods. This has been possible because for

differentially flat systems there exists a set of flat outputs (equal in number to the control inputs) such

that all states and inputs can be determined from these outputs without integration. Consequently,

one can rewrite the optimal control problem in terms of the flat outputs and then find minimizers in

the flat-output space. Since flat outputs implicitly contain all the information about the dynamics

of the system, by introducing this transformation, no explicit dynamic constraints remain in the

transformed optimal control problem (i.e., removal of dynamic constraints), van Nieuwstadt [1996],

Rathinam [1997], Milam [2003]. Particularly in Milam [2003], the real-time tractability of this

approach was shown by successfully guiding a ducted fan through various useful scenarios. The

reader is referred to his work for more information on these and other results, including numerical

comparisons of this method against other more traditional methodologies such as direct collocation,

shooting, adjoints, and differential inclusions. Finally, we should comment on the severeness of this

restriction. It turns out that at worst, differentially flat systems include controllable linear systems
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and nonlinear systems which are feedback linearizable either by static or dynamic feedback, Fliess

et al. [1995]. In addition, other specific systems such as aircraft in forward flight and some classes

of vertical take-off and landing (VTOL) aircraft have been determined to be differentially flat. In

the end, even if the system is not differentially flat, many times one is able to approximate it by

control-relevant models that are differentially flat.

1.2 Approach

In this thesis, the focus will be on the computation of minimizers for optimal control problems that

model the effort required for nonlinear dynamical systems to evolve across state configurations while

satisfying trajectory and actuator constraints. For the most part, the structure of these optimal

control problems will be such that our only recourse in determining their minimizers will be by

numerical means. Consequently, we will implement for this task a direct method (i.e., transcribe

the original optimal control problem to a nonlinear programming problem). The main distinction

in this implementation from all others previously published resides in the choice of basis functions

used to describe each member of the restricted search space and in the exploitation of the properties

of the resulting curves for modeling feasible constraint regions, leading to significant improvement

of the computational burden required for obtaining minimizers for optimal control problems.

Mathematically, we will describe optimal control problems in the following manner:

min
x(t),u(t)

F0(x(t0),u(t0)) +

tf∫
t0

Ft(x(t),u(t)) dt+ Ff (x(tf ),u(tf )) (1.2.1)

subject to

ẋ(t) = F(x(t),u(t)), t ∈ [t0, tf ] (1.2.2)

`0 ≤ A0x(t0) + B0u(t0) ≤ u0,

`t ≤ Atx(t) + Btu(t) ≤ ut, t ∈ [t0, tf ] (1.2.3)

`f ≤ Afx(tf ) + Bfu(tf ) ≤ uf , and

L0 ≤ c0(x(t0),u(t0)) ≤ U0,

Lt ≤ ct(x(t),u(t)) ≤ Ut, t ∈ [t0, tf ] (1.2.4)

Lf ≤ cf (x(tf ),u(tf )) ≤ Uf ,

where the state and input evolutions are described by the mappings x : [t0, tf ] → X ⊂ Rn and
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u : [t0, tf ] → U ⊂ Rm. Moreover, the cost functional (1.2.1), dynamic constraints (1.2.2), and

trajectory and actuator constraints (1.2.3)-(1.2.4) will be assumed to be sufficiently smooth. In

addition, the cost functional is expressed as a sum of three terms (i.e. initial, trajectory, and final).

Each function F`, ` ∈ {0, t, f} in the cost functional is a scalar-valued function F` : X × U → R.

The linear and nonlinear constraints are also divided into three terms (i.e., initial, trajectory, and

final) and they are vector-valued functions L` : X ×U → RN l` , c` : X ×U → RNn` , ` ∈ {0, t, f}. Each

of these sets of constraints is allowed to be set to equality, one-sided bounded, two-sided bounded,

or unbounded by manipulating the values of the lower and upper bounds. If in specific applications

we are able to exploit available theoretical results, we will impose further structure on some or all

of the components making up the optimal control problem (e.g., convexity). The explicit partition

of linear and nonlinear constraints shown here is simply to emphasize that we are able to exploit

the detailed structure of the posed optimal control problem, including secondary structures such

as sparseness of matrices. Moreover, this optimal control problem formulation also includes time

varying functions. In that case, one simply augments the states vector with time as a state with

zero dynamics, Pontryagin et al. [1962].

Obtaining the true minimizer to the optimal control problem (1.2.1)–(1.2.4) (i.e., computing the

pair x(t), u(t)) is, in general, an intractable problem. This is because, in order to obtain the true

state and input evolutions, one must seek for minimizers in the space of all k times continuously

differentiable functions, which is an infinite-dimensional space. As a consequence, we are forced to

search for approximations to the minimizers in finite-dimensional vector spaces. The most versatile

and useful choice among these is the space of all piecewise polynomial functions with a prescribed

number of polynomial pieces, order, and smoothness. However, this restriction by itself does not

ensure that the problem is tractable since we must still satisfy constraints at an infinite number of

points (minimizers are made up of an infinite number of points, and the constraints are functions of

them). So we proceed with a balanced discretization of the optimal control problem. The result of

the previous search space restriction and subsequent discretization is a transcription of the optimal

control problem (1.2.1)–(1.2.4) to a nonlinear programming problem whose mathematical structure

may be expressed in general as follows:

min
y
f(y)

subject to (1.2.5)

L ≤


y

Ay

c(y)

 ≤ U,
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where all of the functions are, roughly speaking, dependent on the coefficients of the polynomials

only. In addition to the nonlinear programming problem having a simpler structure than the

original optimal control problem, it also has the advantage of having been studied in detail for

the past few decades, giving rise to a large number of efficient solvers, Gill et al. [2005], Byrd et al.

[2006]. In particular, methods using the sequential quadratic programming (SQP) paradigm have

been very successful at solving large-scale nonlinear constrained optimization problems of this type,

Gill et al. [2005]. Additionally, in recent years, newer methods based on sequential linear-quadratic

programming (SLQP) have shown similar solving capabilities of large-scale nonlinear programming

problems at competing efficiency, Byrd et al. [2006]. However, even in this form, the problem might

remain real-time intractable if the number of decision variables and constraints are too many to solve

the problem fast enough. Consequently, it is useful, in general, to reduce the number of constraints

in the optimal control problem as far as possible so as not to overdiscretize the problem or to seek

for piecewise polynomial functions with a large number of coefficients (e.g., high degree). Finally,

in lieu of the structure of the nonlinear programming problems that we will be generating, it is

important to realize that, in general, the methods at our disposal can only guarantee to locate local

minimizers. This is, in general, not a limitation for engineering applications where feasibility usually

is sufficient. In fact, even when considering applications to autonomous systems where sensor data

is only available for the immediate surroundings of the autonomous unit, one is pressed to justify the

use of a computationally expensive global optimization solver, especially since one cannot guarantee

that the global minimizers of the local problems will converge to the global minimizer of the whole

mission.

As mentioned before, we will restrict our search for minimizers to the vector space of all piecewise

polynomial functions with a prescribed set of polynomial pieces of a given order and required

smoothness. We will identify this space by Pb,o,s, where b = {b0, . . . , bNp} are the (Np + 1)

breakpoints (i.e., the sites at which the endpoints of the Np polynomial pieces reside), o is the

order of the polynomial pieces, and s dictates that the resulting curve be at least sth continuously

differentiable. In particular, we will express each member of the vector space Pb,o,s as a linear

combination of non-uniform rational B-spline (NURBS) basis functions. That is,

c(t) =
Nc−1∑
j=0

R(0)
j,d(t, w0, . . . , wNc−1) pj , (1.2.6)

where R(0)
j,d is the jth NURBS function of degree, d, dependent on time, t ∈ R, and weights, wj ∈ R,

and pj ∈ Rd is the jth control point (coefficient of the linear combination).
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Curves described in this manner and their extensions to surfaces and solids have been studied

extensively in the field of computer graphics, where they have become an industry standard for the

representation and design of geometry, de Boor [1978], Piegle and Tiller [1997]. This adoption has

resulted in a proliferation of efficient algorithms for computing every aspect of their makeup. In

this thesis, we will harness their structure to improve upon previous trajectory generation methods.

Even though it is not readily apparent, there are two important structures implicitly combined in

equation (1.2.6) that we will exploit (see Figure 1.2). One of them is provided by the NURBS basis

functions themselves (which after discretization depend only on the weights) with local-support,

non-negativity, and partition-of-unity properties. The other comes from a union of overlapping

polytopes whose vertices are subsets of the coefficients of the linear combination (control points)

with endpoint-interpolation and strong-convex-hull properties. Finally, we remark that this choice

of basis was a very conscious one. From the onset, we realized that by collapsing NURBS basis

functions to B-spline basis functions by manipulating the weights, we were able to recover, with

little effort, the results obtained in Milam [2003], including the real-time capabilities of the method.

This afforded us with a great vantage point from where to start building new results.

+

Figure 1.2: NURBS basis functions and union of overlapping polytopes

In summary, in order to determine minimizers for optimal control problems of the form (1.2.1)–

(1.2.4), we begin by restricting the state and input evolutions to lie in independent vector spaces.

That is, each state and input evolution is allowed to be a member of its own vector space, Pb,o,s.

In the current context, we may search for n+m curves, all in distinct vector spaces. After defining

the search spaces for all the curves and rewriting the optimal control problem accordingly, we

proceed with a balanced discretization along the t parameter. That is, we selectively choose sites at

which all the constraints will be guaranteed to be satisfied. The decision variables of the resulting
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nonlinear programming problem are then the weights and control points pertaining to each of the

state and input curves. Unfortunately, solving optimal control problems in this manner shows little

advantage over previously studied methods at dealing with guidance questions arising in the study

of autonomous systems (e.g., autonomous system traversing an urban environment) because of the

same reasons discussed above (namely, the treatment of intersections of disjunctive constraint sets

and the presence of a large number of constraints and decision variables).

However, by exploiting the structure of both the NURBS basis functions and the union of overlapping

polytopes, we are able in some cases (e.g., the path of the system lies in Rd, d = {2, 3}) to separately

treat the guidance and obstacle-avoidance problems, making the original problem tractable. Recall

that NURBS basis functions, after discretization, depend only on the weights and that the union

of overlapping polytopes are completely defined by the control points (coefficients of the linear

combination). Parametric curves resulting from the combination of these two structures possess

many useful properties. Among them we have that each polynomial piece is guaranteed to be

bounded by a corresponding polytope. This idea extends to the whole piecewise polynomial function

in which case the parametric curve is guaranteed to remain inside the union of a set of overlapping

polytopes. Therefore, if the control points defining such polytopes happen to be fixed in space and

we manipulate the NURBS basis functions by varying the weights, then we are able to obtain an

infinite number of curves, all lying inside the space delineated by the polytopes, regardless of the

values of the weights (see Figure 1.3). As a consequence, if the polytopes delineate a section of space

that is feasible with respect to some set of trajectory constraints, then the resulting parametric curve

will also be feasible with respect to the same set of trajectory constraints.

Figure 1.3: NURBS curves generated by setting weights randomly.
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It is now evident how to proceed to separately treat the guidance and obstacle-avoidance

subproblems. We first design a section of space (in general, non-convex) that is feasible with respect

to trajectory constraints and that contains the initial and final path conditions by judiciously placing

the control points (e.g., to form a union of overlapping polytopes avoiding all obstacles). Then, we

generate paths which minimize the original cost functional and satisfy the dynamic and actuator

constraints (i.e., omit the trajectory constraints), using the active weights and control points as

decision variables (some of the control points having been fixed in the previous phase). The key

observation is that paths generated by solving the latter problem will be guaranteed to be contained

inside the feasible region generated in the former phase (i.e., be feasible with respect to trajectory

constraints) without the need of explicitly writing the trajectory constraints into the optimal control

problem and independent of the discretization. Since in obstacle-avoidance problems the bulk of the

trajectory constraints are used to describe free space, taking advantage of this ability will improve

the computational complexity of the problem. Furthermore, if the dynamical system happens to be

differentially flat, then we are also able to exploit this fact and remove the dynamic constraints from

the optimal control problem, improving further the computational complexity of the problem.

We remark that the above description represents only one of the ways in which we can exploit

the properties of NURBS curves. In general, we are able to remove any set of constraints in Rd,

d = {2, 3} from the optimal control problem so long as these constraints are amenable to being

mutually satisfied by a union of overlapping polytopes and so long as there exists a natural parametric

relationship among the variables of interest. In addition, it is also possible to remove more than one

set of constraints at a time, requiring only that they be consistent.

One of the challenges in the before-mentioned procedure is the design of the feasible region with

respect to trajectory constraints by control point manipulation. This is a relative easy task (but

long and tedious) if one is able to use a computer aided design (CAD) application because, in this

setting, one is able to draw all the obstacles and interactively place the control points until the

desired result is achieved. This is especially useful for those applications where one can afford off-

line computations. In general, though, we are more interested in designing such feasible regions using

some type of automatic procedure where the input is a set of trajectory constraints for a parametric

NURBS curve, and the output is a union of overlapping polytopes which satisfies the given set of

constraints. To determine such a procedure without any further restrictions is complicated by the

following issues: a) a lack of uniqueness of a feasible region unless it is a singleton (in general there

exist many feasible regions connecting the initial and final path conditions), b) must guarantee that

the smallest convex sets containing the relevant control points per polynomial piece are feasible with
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respect to the constraints (the smallest convex set of a set of points is, by definition, the convex hull

of them, and there is no analytical way of expressing this structure ahead of time), c) the feasible

set is described by a conjunction of disjunctions, and d) it is not clear what objective function to use

to drive a desired structure. Consequently, we are forced to determine a pragmatic set of conditions

under which it is possible to construct feasible regions reliably. We address theoretically such a

problem by requiring that a section of space, feasible with respect to trajectory constraints, be given

in the form of an ordered union of pairwise adjacently overlapping non-empty convex compact sets

(see Figure 1.4). Practically, the individual sets making up the union are compact convex semi-

algebraic sets with nonempty interiors (the simplest sets being polytopes). The construction of

such regions can be obtained using a cell decomposition method or constructed online using sensor

information followed by a pairwise adjacently overlapping procedure.

Figure 1.4: Examples of non-empty convex compact semi-algebraic sets

1.3 Thesis Contributions

The contributions of this thesis include the introduction of a new method for numerically computing

minimizers to optimal control problems that model the effort required for nonlinear dynamical

systems to evolve across state configurations while satisfying trajectory and actuator constraints.

In particular, we implement a direct method (i.e. transcription of the original optimal control

problem to a nonlinear programming problem). One of the main distinctions in this implementation

from all others previously published resides in the choice of basis functions used to describe each

member of the restricted search space. Specifically, the restricted search space consist of the space

of all piecewise polynomial functions with a prescribed number of polynomial pieces, order, and

smoothness. This space happens to be finite dimensional and, consequently, each member in the

space is expressed in terms of some set of basis functions. We choose NURBS basis functions for
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this purpose and show how to judiciously exploit the properties of the resulting NURBS curve

to improve the computational effort often associated with solving optimal control problems for

constrained dynamical systems.

More specifically, we show in detail how to exploit the structure of both the NURBS basis

functions and the associated union of overlapping polytopes resulting from the placement in d-

space (d ∈ {2, 3}) of the coefficients of the linear combination of the NURBS curve. One of the

main realizations uncovered through the careful study of these structures is the fact that one can

use the strong convex hull property of NURBS curves to separately treat the guidance and obstacle-

avoidance problems, making the original optimal control problem tractable. This separation is

accomplished by manipulating both the weights and control points; one set of parameters used at a

time to solve one of the problems. That is, we show how one can first design a connected section

of space (in general, non-convex) by judiciously placing the control points in such a way that the

union of the associated polytopes is feasible with respect to trajectory constraints and contains the

initial and final path conditions. Then, generate paths which minimize the original cost functional

and satisfy the dynamic and actuator constraints (omitting the trajectory constraints), using the

active weights as decision variables. The key observation is that paths generated by solving the later

problem are guaranteed to be contained inside the feasible region generated in the former phase,

without the need to explicitly writing the trajectory constraints into the optimal control problem,

and independent of the discretization.

In addition, we show how one can construct systematically a feasible region that corresponds to a

NURBS parameterization starting from an ordered union of pairwise adjacently overlapping non-

empty compact convex sets. Specifically, we show how to setup a nonlinear programming problem to

solve for the feasible region in terms of an ordered union of pairwise adjacently overlapping polytopes

with nonempty interiors by maximizing the sum of their volumes and starting from a feasible region

described by an ordered union of pairwise adjacently overlapping nonempty convex compact simi-

algebraic sets. In addition, we show in simulation how this strategy can be implemented practically

for an autonomous system traversing an urban environment.

Finally, this work culminated in the filing of patent US20070179685 on behalf of Northrop Grumman

for the Space Technology sector and in the development of the NURBSbasedOTG software package.

This C++ package contains the theoretical results of this thesis in the form of an object-oriented

implementation optimized for real-time trajectory generation.
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1.4 Thesis Context

It is important to place the topic of this thesis in context with respect to other ongoing research

directions. In particular, there is an interest in developing algorithms for the control of distributed,

intelligent, multi-agent systems. Some of the most salient research directions include gathering

information through multi-sensor networks, resource-constrained scheduling of tasks to be completed

by multiple heterogeneous/homogeneous agents, rerouting traffic dynamically in the National

Airspace System, and formation flying of spacecraft/aircraft, Pan et al. [2006], Lynch [1996], Wall

[1996], Tomlin [1998], Wooldridge [2002], Murray [2003].

Ultimately, these research directions impose high demands upon the individual agents, requiring

from them higher performance and efficiency. Consequently, research on real-time feedback strategies

(i.e. Receding Horizon Control) that achieve disturbance rejection and tracking under the uncertain

conditions imposed by the new systems is essential. At the heart of modern feedback strategies

resides a reconfigurable optimal control problem that needs to be solved in time to implement the

appropriate forcing to guide the system. Reconfigurability, in this context, is defined as the ability

to modify any of the components (i.e., cost functional, state and inputs constraints, and system

dynamics) making up the open-loop optimal control problem. Figure 1.5 illustrates the flow of

information from sensors to and through the various components making up an intelligent system

being controlled through feedback.

Optimal Control
Problem Factory

Controlled
Subsystem

Optimal Control
Problem Solver

Control 
Strategy

Optimal Control
Problem

Optimal 
Open-Loop

Control

Recon�gurable Receding Horizon Control

Subsystem SensorsEnvironment Sensors

Autonomous System

Environment

Analysis, Decision Making, Learning, and Planning

Control 
Redesign

Optimal Control Problem 
Components

Figure 1.5: Flow of information from sensors to and through the various components making up an

intelligent system being controlled through feedback
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Mathematically, scheduling, routing, formation flying, and distributed networking are problems that

are resolved through the computation of minimizers to either mixed-integer programming problems

or convex optimization problems. However, the complexity of resolving these issues in addition to

the determination of safe trajectories for a multi-agent system is computationally intractable. This

realization has led researchers to pursue for resolution of these problems through the decoupling of

decision-making issues and trajectory generation.

Figure 1.6, illustrates a procedure by which the new approach presented in this thesis can be applied

to an unmanned aerial vehicle (UAV) for terrain avoidance or urban reconnaissance: a) a global solver

(e.g., through convex optimization) is used to determine feasible corridors through trajectory space

and to isolate an optimal corridor with respect to some decision-making objective, b) the corridor

is inner approximated by the union of a set of convex polytopes whose vertices arise from a NURBS

definition c) the inner approximation in b) allows for the removal of explicit trajectory constraints

during trajectory generation, significantly reducing the effort required to solve the optimal control

problem and d) a local optimal trajectory living in the feasible region with respect to trajectory

constraints is generated which is also feasible with respect to dynamic and actuator constraints.

The last step may fail to succeed due to various causes, among them, the infeasibility of the posed

optimal control problem. In this event, apart from reviewing the optimal control problem itself for

inconsistencies, one could re-iterate the above procedure starting from b) and inner approximate

one of the other alternative routes leading to the final position.

a) b)

c) d)

Figure 1.6: Illustration of how method can be applied to UAV with obstacle avoidance
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1.5 Highlights of the Thesis

This thesis is arranged in the following manner: Chapter 2 contains a brief introduction to convex sets

with emphasis on computations for polytopes. Chapter 3 describes piecewise polynomial functions

expressed in terms of a linear combination of B-spline and NURBS basis functions. Moreover, their

most salient properties and trajectory-generation relevant computations are exposed. Chapter 4

describes in detail the transcription of the optimal control problem to a nonlinear programming

problem. Chapter 5 demonstrates the solution of optimal control problems where the decision

variables are restricted to control points only. In particular, we treat optimal control problems

containing explicit dynamic constraints. Chapter 6 is used to expand on some of the most prominent

properties of NURBS curves for trajectory generation purposes. In Chapter 7, we use the full power

of the methodology and apply it to differentially flat systems with obstacle avoidance. In addition, we

present a method for inner-approximating a feasible region by an ordered union of pairwise adjacently

overlapping polytopes. Finally, Chapter 8 summarizes the results and suggests extensions to the

current body of work.
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Chapter 2

Convex Sets

In this chapter, we present a brief introduction to convex sets. The material contained in this chapter

has mostly been obtained from the following references: Boyd and Vandenberghe [2004], Barvinok

[2002], and Webster [1994].

The inner product of two vectors x and y in Rn is expressed by

〈x,y〉 = x1y1 + · · ·+ xnyn. (2.0.1)

The norm of a vector x ∈ Rn is defined by

‖x‖ =
√
〈x,x〉. (2.0.2)

The unit ball in Rn is denoted by Bn:

Bn = {x ∈ Rn | ‖x‖ ≤ 1}. (2.0.3)

Let A ⊂ Rn. The distance function d(·,A) : Rn → R is defined by

d(x,A) = inf{‖x− a‖ | a ∈ A}, x ∈ Rn. (2.0.4)

Let λ ∈ R. Then, put by definition

λA = {λa | a ∈ A}. (2.0.5)

For two sets A and B in Rn their sum is defined by

A+ B = {a + b | a ∈ A,b ∈ B}. (2.0.6)
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The closure cl A and interior int A of A are defined by

cl(A) =
⋂
ε>0

(A+ εBn), and (2.0.7)

int(A) = {a ∈ A | ∃ε > 0,a + εBn ⊂ A}. (2.0.8)

The boundary of A is defined by

bd A = cl A \ int A. (2.0.9)

The support function of a set A ⊂ Rn (A 6= ∅) is defined as

h(u) = sup{uTa | a ∈ A}. (2.0.10)

2.1 Sets and Hulls

Definition 2.1 (Affine set). A set S ⊂ Rn is affine if the line through any two distinct points in S

lies in S, i.e., if for any s1, s2 ∈ S and θ ∈ R, we have θs1 + (1− θ)s2 ∈ S.

Definition 2.2 (Affine Hull). The set of all affine combinations of points in some set S ⊆ Rn is

called the affine hull of S, and it is denoted by aff S; that is,

aff S = {θ1s1 + · · ·+ θksk | θ1 + · · ·+ θk = 1, si ∈ S, θi ∈ R, i = 1, . . . , k}. (2.1.1)

The affine hull is the smallest affine set that contains S, in the following sense: if A is any affine set

with S ⊆ A, then aff S ⊆ A.

Definition 2.3 (Affinely Independent). k + 1 points s0, . . . , sk ∈ Rn are affinely independent if the

points s1 − s0, . . . , sk − s0 are linearly independent.

Definition 2.4 (Convex set). A set S is convex if the line segment between any two points in S lies

in S, i.e., if for any s1, s2 ∈ S and any θ with 0 ≤ θ ≤ 1, we have θs1 + (1− θ)s2 ∈ S.

In particular, the empty set, any single point, and the whole space Rn are convex subsets of Rn. In

addition, the intersection of an arbitrary family of convex sets in Rn is convex.

Definition 2.5 (Convex Hull). The convex hull of a set S, denoted conv S, is the set of all convex

combinations of points in S:

conv S = {θ1s1 + · · ·+ θksk | θ1 + · · ·+ θk = 1, θi ≥ 0, si ∈ S, θi ∈ R, i = 1, . . . , k} . (2.1.2)
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Theorem 2.1. Let V be a vector space and let S ⊂ V be a set. Then, the convex hull of S is a

convex set, and any convex set containing S also contains conv S. In other words, conv S is the

smallest convex set containing S.

In addition, if A ⊂ B, then conv A ⊂ conv B, and conv A ∪ conv B ⊂ conv (A ∪ B).

Definition 2.6. Let S ⊂ Rd be a set. A point s ∈ S is called an interior point of S if there exits an

ε > 0 such that the open ball B(s, ε) = {x | ‖x− s‖ < ε}, centered at s and of radius ε, is contained

in S; that is, B(s, ε) ⊂ S. The set of all interior points of S is called the interior of S and denoted

int S. The set of all non-interior points of S is called the boundary of S and denoted ∂S.

Lemma 2.2. Let S ⊂ Rd be a convex set, and let s0 ∈ int S be an interior point of S. Then, for

any point s1 ∈ S and any 0 ≤ α < 1, the point sα = (1− α) s0 + α s1 is an interior point of S.

Corollary 2.3. Let S ⊂ Rd be a convex set. Then, the int S is a convex set.

Definition 2.7 (Halfspace). A closed halfspace is a set of the form

{x ∈ Rn | aTx ≤ b}, (2.1.3)

where a ∈ Rn, a 6= 0, and b ∈ R.

Halfspaces are convex.

Definition 2.8 (Hyperplane). A hyperplane is a set of the form

{x ∈ Rn | aTx = b}, (2.1.4)

where a ∈ Rn, a 6= 0, and b ∈ R.

A hyperplane divides Rn into two halfspaces. Hyperplanes are affine and convex. In addition, for

both halfspaces and hyperplanes, a is the normal vector.

Theorem 2.4. Let S ⊂ Rd be a convex set with a non-empty interior, and let s ∈ ∂S be a point.

Then, there exists an affine hyperplane H, called a support hyperplane at s, such that s ∈ H and H

isolates S.

Theorem 2.5. Let S ⊂ Rd be a non-empty convex set, and let s /∈ ∂S be a point. Then, there is

an affine hyperplane H ⊂ Rd such that s ∈ H, and H isolates S.

Definition 2.9 (Conic set). A set S is called a cone, or nonnegative homogeneous, if for every s ∈ S

and θ ≥ 0 we have θs ∈ S. A set S is a convex cone if it is convex and a cone, which means that for
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any s1, s2 ∈ S, and θ1, θ2 ≥ 0, we have

θ1s1 + θ2s2 ∈ S. (2.1.5)

Definition 2.10 (Conic Hull). The conic hull of a set S is the set of all conic combinations of points

in S, i.e.,

{θ1s1 + · · ·+ θksk | si ∈ S, θi ≥ 0, i = 1, . . . , k}, (2.1.6)

which is also the smallest convex cone that contains S.

A ray which has the form {s0 + θv | θ ≥ 0}, where v 6= 0 is convex but not affine. It is a convex

cone if its base s0 is 0.

2.2 Polyhedra

Definition 2.11 (Polyhedron). A polyhedron is defined as the solution set of a finite number of

linear equalities and inequalities:

P = {x | aTj x ≤ bj , j = 1, . . . ,m, cTk x = dk, k = 1, . . . , p}, (2.2.1)

where aj ∈ Rn and bj ∈ R for j = 1, . . . ,m and ck ∈ Rn and dk ∈ R for k = 1, . . . , p.

Alternatively, in compact form

P = {x | A x ≤ b,C x = d}, (2.2.2)

where A ∈ Rm×n, C ∈ Rp×n, b ∈ Rm, and d ∈ Rp. A polyhedron is thus the intersection of a finite

number of halfspaces and hyperplanes.

In particular, polyhedra are convex sets.

Polytopes

A bounded polyhedron is called polytope.

Definition 2.12 (V-polytope). A V-polytope is the convex hull of a finite set V = {v1, . . . ,vn} of

points in Rd:

P = conv (V) :=

{
n∑
i=1

λivi ∈ Rd | λi ≥ 0,
n∑
i=1

λi = 1

}
. (2.2.3)
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Definition 2.13 (H-polytope). An H-polytope is a bounded solution set of a finite system of linear

inequalities:

P = P(A,b) :=
{
x ∈ Rd | aTj x ≤ bj , j = 1, . . . ,m

}
, (2.2.4)

where A ∈ Rm×d is a real matrix with rows aTi , and b ∈ Rm is a real vector with entries bi. Here,

boundedness means that there is a constant N such that ‖x‖ ≤ N holds of all x ∈ P.

Definition 2.14. Let P and Q be polytopes in Rn, and let λ ≥ 0 be a real number.

a) The Minkowski sum of P and Q, denoted P +Q, is

P +Q = {p + q | p ∈ P and q ∈ Q}. (2.2.5)

b) The polytope λP is defined by

λP = {λp | p ∈ P}, (2.2.6)

where λp is the usual scalar multiplication on Rn.

Theorem 2.6. Let A,B be polytopes in Rn, and let α ∈ R. Then, A+ B and αA are polytopes.

Corollary 2.7. Let A1, . . . ,Ak be polytopes in Rn and let α1, . . . , αk ∈ R. Then α1A1 + · · ·+αkAk
is a polytope.

Definition 2.15 (Simplex). A simplex is a polytope that is the convex hull of an affinely independent

set of points. That is,

S = conv(v0, . . . ,vk) = {θ0v0 + · · ·+ θkvk | θ ≥ 0,1Tθ = 1}, (2.2.7)

where v0, . . . ,vk are affinely independent.

Lemma 2.8. Let P = conv(v1, . . . ,vm) ⊂ Rd be a polytope and let F ⊂ P be a face. Then,

F = conv({vi | vi ∈ F}). In particular, a face of a polytope is a polytope, and the number of faces

of a polytope is finite.

Definition 2.16. A 0-dimensional face of a polytope is called a vertex. A 1-dimensional face of a

polytope is called an edge. A (d− 1) dimensional face of a d-dimensional polytope is called a facet.

A (d− 2)-dimensional face of a d-dimensional polytope is called a ridge.

Theorem 2.9. Let P ⊂ Rd be a polytope

P = {x | aTj x ≤ bj , j = 1, . . . ,m}, (2.2.8)
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where aj ∈ Rn and bj ∈ R for j = 1, . . . ,m. For p ∈ P let

I(p) = {i | aTj p = bj} (2.2.9)

be the set of the inequalities that are active on p. Then, p is a vertex of P if an only if the set of

vectors {aj | j ∈ I(p)} linearly spans the vector space Rd. In particular, if p is a vertex of P, the

set I(p) contains at least d indices; that is |I(p)| ≥ d.

Theorem 2.10 (Carathéodory). Let S ⊂ Rd be a set. Then, every point s ∈ conv S can be

represented as a convex combination of d+ 1 points from S:

s = α1 y1 + · · ·+ αd+1 yd+1, where
d+1∑
i=1

αi = 1, αi ≥ 0, (2.2.10)

and yi ∈ S for i = 1, . . . , d+ 1.

Theorem 2.11. In Rn, the convex hull of an open set is open, and the convex hull of a compact set

is compact.

Proposition 2.12. Any finite union of closed sets is closed. The intersection of any family of closed

sets is closed.

Corollary 2.13. A finite union of compact sets is compact. The intersection of any family of

compact sets is compact.

Theorem 2.14 (Main Theorem of Polytope Theory). The definition of V-polytope and of H-

polytopes are equivalent. That is, every V-polytope has a description by a finite system of

inequalities, and every H-polytope can be obtained as the convex hull of a finite set of points

(its vertices).

Under some regularity conditions (polyhedron is fully dimensional and contains at least one vertex),

we are able to transform between the two H- to V-polytope representations starting from either

representation. The transformation from H- to V-polytope representation is known as the vertex

enumeration problem, and its counterpart is the facet enumeration problem. The vertex enumeration

problem can be solved by using the Fourier-Motzkin elemination algorithm. This algorithm works

by eliminating variables from a system of linear inequalities over the reals. Alternatively, the facet

enumeration (convex hull) problem could be obtained using the Beneath-Beyond algorithm. In this

thesis, we will use instead the Double Description method, Fukuda and Prodon [1995].
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Definition 2.17. A pair (A,R) of real matrices A and R is said to be a double description pair if

the set P(A) represented by A as

P(A) = {x ∈ Rd | Ax ≥ 0} (2.2.11)

is simultaneously represented by R as

{x ∈ Rd | x = Rλ for some λ ≥ 0}. (2.2.12)

Theorem 2.15 (Minkowski’s Theorem for Polyhedral Cones). For any m× d real matrix A, there

exists some d×n real matrix R such that (A,R) is a double description pair, or in other words, the

cone P(A) is generated by R.

Theorem 2.16 (Weyl’s Theorem for Polyhedral Cones). For any d× n real matrix R, there exists

some m× d real matrix A such that (A,R) is a double description pair, on in other words, the set

generated by R is the cone P(A).

2.3 Volume for Bounded Convex Sets

It will also become indispensable to be able to calculate the volume of polytopes. One issue to keep

in mind is that, in general, computing the exact volume of a polyhedron is NP hard. However, this

might be acceptable for problems with low dimension.

Definition 2.18 (Cell). In R1, a cell is simply a bounded convex subset of the real line (i.e., ∅, {a},

[a, b], [a, b), (a, b], (a, b) for a, b ∈ R with a < b). A cell I in Rn is a set of the form

I = I1 × · · · × In = {(x1, . . . , xn) | x1 ∈ I1, . . . xn ∈ In},

where I1, . . . , In are cells in R1.

Definition 2.19 (Elementary set). An elementary set in Rn is a set which can be expressed as a

finite union of pairwise disjoint cells in Rn.

Theorem 2.17. Let A and B be elementary sets in Rn. Then, A∩B, A \ B, A∪B, and A+ B are

elementary sets.

Corollary 2.18. Every union of a finite number and every intersection of a finite non-zero number

of elementary sets in Rn is an elementary set.

Corollary 2.19. The closure, the interior, and the boundary of an elementary set in Rn are

elementary sets.
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Definition 2.20. The length L(I) of a cell I in R1 is defined to be zero when I is empty or a

singleton and to be b − a when I is a cell of one of the forms [a, b], [a, b), (a, b], (a, b) for a, b ∈ R

with a < b. Suppose next that I is the cell I1× . . . In in Rn, where I1, . . . , In are cells in R1. Then,

the volume v(I) of I is (uniquely) defined by the equation

v(I) = L(I1 )L(I2 ) . . .L(In).

Theorem 2.20. Let I0, I1, . . . , Im, where m ≥ 1 be cells in Rn with I1, . . . , Im pairwise disjoint

and having union I0. Then,

v(I0 ) =
m∑

i=1

v(Ii).

Corollary 2.21. Suppose that I1, . . . , Im and J1, . . . , Ip are partitions of an elementary set A in

Rn into cells. Then,
m∑
i=1

v(Ii) =
p∑

j=1

v(Jj ).

Theorem 2.22. Let A and B be elementary sets in Rn. Then,

v(A ∪ B) + v(A ∩ B) = v(A) + v(B).

Corollary 2.23. Let A1, . . . ,Am be elementary sets in Rn. Then,

v(A1 ∪ · · · ∪ Am) ≤ v(A1 ) + · · ·+ v(Am).

Corollary 2.24. Let A be an elementary set in Rn. Then,

v(int A) = v(A) = v(cl A),

and

v(bdA) = 0 .

Definition 2.21. Let E be the class of elementary sets in Rn. Let A be a bounded set in Rn. Its

inner-volume v(A) is defined by

v(A) = sup{v(B) | B ⊆ A and B ∈ E}. (2.3.1)

Its outer-volume v(A) is defined by

v(A) = inf{v(B) | B ⊆ A and B ∈ E}. (2.3.2)
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Theorem 2.25. Let A and B be bounded sets in Rn. Then,

a) v(A) ≤ v(A)

b) v(A) = v(A) = v(A) when A is an elementary set

c) v(A) ≤ v(B) and v(A) ≤ v(B) whenver A ⊆ B

d) v(A) = v(int A) and v(A) = v(cl A)

e) v(A ∪ B) + v(A ∩ B) ≥ v(A) + v(B) and v(A ∪ B) + v(A ∩ B) ≤ v(A) + v(B)

Theorem 2.26. The set A in Rn has volume if and only if, for each ε > 0, there are elementary

sets E and F in Rn such that E ⊆ A ⊆ F , and v(F \ E) < ε.

Theorem 2.27. Let A and B be sets in Rn which have volume. Then, the sets A ∪ B, A ∩ B and

A \ B have volume.

Corollary 2.28. All unions of a finite number, and all intersection of a finite non-zero number, of

sets in Rn which have volume also have volume.

Theorem 2.29. Let A be a set in Rn which has volume. Then, the sets int A and cl A have volume

with

v(int A) = v(A) = v(cl A).

Theorem 2.30. Let A and B be sets in Rn which have volume. Then,

v(A ∪ B) + v(A ∩ B) = v(A) + v(B).

Corollary 2.31. Let A and B be sets in Rn which have volume and are such that A ⊆ B. Then

v(B \ A) = v(B)− v(A) and v(A) ≤ v(B).

Corollary 2.32. Let A1, . . . ,Am be sets in Rn which have volume. Then,

v(A1 ∪ · · · ∪ Am) ≤ v(A1 ) + · · ·+ v(Am),

with equality holding when v(Ai ∩ Aj ) = 0 for 1 ≤ i < j ≤ m.

Theorem 2.33. A bounded set A in Rn has volume if and only if its boundary bd A has volume

zero.

Theorem 2.34. Every bounded convex set in Rn has volume.

Corollary 2.35. Every bounded subset of a hyperplane in Rn has volume zero.
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Lemma 2.36. Let T : Rn → Rn be the linear transformation given by T (x) = Ax for x ∈ Rn,

where A is an elementary matrix. Then, for each cell I in Rn, the set T (I) has volume |det A|v(I).

Theorem 2.37. Let T : Rn → Rn be the affine transformation given by T (x) = Ax+b for x ∈ Rn,

where A is an n× n real matrix, and b ∈ Rn. Then, for each set S in Rn that has volume, the set

T (S) has volume |det A|v(S).

Corollary 2.38. Let S be a set in Rn which has volume. Then, v(λS + s) = λnv(S) for all λ ≥ 0,

and s ∈ Rn.

Corollary 2.39. Let A and B be congruent sets in Rn, with A having volume. Then, v(B) = v(A).

If two sets F and G are congruent, then there exists an affine transformation T : Rn → Rn given

by T (x) = Ax + b for x ∈ Rn, where A is an n × n orthogonal matrix, and b ∈ Rn, such that

T (F ) = G.

Theorem 2.40. Let A,A1, . . . ,Ak, . . . be non-empty compact convex sets in Rn such that Ak → A

as k →∞. Then, v(Ak )→ v(A) as k →∞.

From now on we will indicate the dependence of v on d the dimension of the space. That is, vd is

the volume function in Rd (length in R1, area in R2, and volume in R3).

Theorem 2.41. Let A be a bounded convex set in Rd. For each real number x, denote by Ax the

intersection of A with the hyperplane x in Rd. Let a and b be real numbers such that a < b, and

Ax is empty whenever x < a or x > b. Then,

vd(A) =

b∫
a

vd−1 (Ax ) dx .

Corollary 2.42. Let A be a bounded convex set in Rd, and let u be a unit vector in Rd. For each

real number x, denote by Ax the intersection of A with the hyperplane 〈u,x〉 = x. Then,

vd(A) =

−∞∫
∞

vd−1 (Ax ) dx .

All known algorithms for exact volume computation decompose a given polytope into simplices, and

thus they all rely, explicitly or implicitly, on the volume formula of a simplex. The volume of a

simplex ∆(v0, . . . ,vd) is expressed as follows:

vd(∆(v0 , . . . ,vd)) =
∣∣∣ 1
d !

det
([

v1 − v0 . . . vd − v0

]) ∣∣∣ =
∣∣∣ 1
d !

det

 v0 . . . vd

1 . . . 1

∣∣∣
(2.3.3)
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Theorem 2.43. Let u1, . . . ,um be the outward unit normals to the facets of an d-polytope P in

Rd corresponding to the facets F1, . . . ,Fm. Let h be the support function of P. Then,

vd(P) =
1
d

m∑
i=1

h(ui)vd−1 (Fi), and

m∑
i=1

vd−1 (Fi)ui = 0 .

Lemma 2.44. Let P1, . . . ,Pm be polytopes in Rd, and let λ1, . . . , λm > 0. Then, λ1P1 + · · ·+λmPm
and P1 + · · ·+Pm have the same dimension, and the sets of outward unit normals to the (d−1)-faces

of the two polytopes are equal.

Definition 2.22 (Monomial). A monomial in a collection of variables x1, . . . , xn is a product

xe = xe11 x
e2
2 . . . xenn , (2.3.4)

where all of the exponents e1, . . . , en are non-negative integers. The total degree of the monomial

xe is the sum of the exponents: |e| = e1 + · · ·+ en.

Definition 2.23 (Polynomial). Let F be any field. We can form finite linear combinations of

monomials with coefficients in F. The resulting objects are known as polynomials in x1, . . . , xn.

Thus, a general polynomial in the variables x1, . . . , xn with coefficients in F has the form

f =
N∑
i=1

ci xei =
N∑
i=1

ci x
e1,i
1 x

e2,i
2 . . . xen,in , ci ∈ F. (2.3.5)

We will denote by F[x1, . . . , xn] the collection of all polynomials in x1, . . . , xn with coefficients in F.

We will use the following terminology in dealing with polynomials:

Definition 2.24. Let f =
N∑
i=1

ci x
e1,i
1 x

e2,i
2 . . . x

en,i
n be a polynomial in F[x1, . . . , xn].

a) We call ci ∈ F the ith coefficient of the monomial xe1,i1 x
e2,i
2 . . . x

en,i
n .

b) If ci 6= 0, then we call ci x
e1,i
1 x

e2,i
2 . . . x

en,i
n a term of f .

c) The total degree of f , denoted deg(f), is the maximum |ei| = e1,i + · · · + en,i such that the

coefficient ci is nonzero.

A polynomial f(x1, . . . , xn) is said to be homogeneous if all the monomials appearing in it with

nonzero coefficients have the same total degree. Each homogeneous polynomial p(λ1, . . . , λm) of
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degree d can be uniquely represented in the form:

p(λ1, . . . , λm) =
d∑

α1=0

· · ·
d∑

αm=0

δd−(α1+···+αm)
(α1 + · · ·+ αm)!

α1! . . . αm!
cα1...αm λα1

1 . . . λαmm (2.3.6)

Lemma 2.45. Let P1, . . . ,Pm be polytopes in Rd. Then vd(λ1P1 + · · · + λmPm) is, for all

λ1, . . . , λm > 0, a homogeneous polynomial of degree d in λ1, . . . , λm with non-negative coefficients.

Theorem 2.46. Let A1, . . . ,Am be compact convex sets in Rd. Then vd(λ1A1 + · · · + λmAm)

is, for all λ1, . . . , λm ≥ 0, a homogeneous polynomial of degree d in λ1, . . . , λm with non-negative

coefficients.

For integers i1, . . . , id lying in 1, . . . ,m, let

νi1...id = cα1...αm and λi1 . . . λid = λα1
1 . . . λαmm (2.3.7)

; then,

a) νi1...id remains unchanged when i1 . . . id are permuted, and

b) p(λ1, . . . , λm) =
m∑
i1=1

· · ·
m∑
id=1

νi1...idλi1 . . . λid .

Moreover, the νi1...id are uniquely determined by a) and b). When

p(λ1, . . . , λm) = vd(λ1A1 + · · ·+ λmAm), (2.3.8)

where A1, . . . ,Am are compact compact sets in Rn, and λ1, . . . , λm ≥ 0, the numbers νi1...id are

called the mixed volumes of A1, . . . ,Am.

Example 2.1. Let d = 3 and m = 2, then

p(λ1, λ2) =

2X
i1=1

2X
i2=1

2X
i3=1

νi1i2i3 λi1λi2λi2

=

2X
i2=1

2X
i3=1

ν1i2i3 λ1λi2λi2 +
2X

i2=1

2X
i3=1

ν2i2i3 λ2λi2λi2

=

2X
i3=1

ν11i3 λ1λ1λi2 +

2X
i3=1

ν12i3 λ1λ2λi2

2X
i3=1

ν21i3 λ2λ1λi2 +

2X
i3=1

ν22i3 λ2λ2λi2

= ν111 λ1λ1λ1 + ν112 λ1λ1λ2 + ν121 λ1λ2λ1 + ν122 λ1λ2λ2 +

ν211 λ2λ1λ1 + ν212 λ2λ1λ2 + ν221 λ2λ2λ1 + ν222 λ2λ2λ2

= ν111 λ
3
1 + (ν112 + ν121 + ν211) λ2

1λ2 + (ν122 + ν212 + ν221) λ1λ
2
2 + ν222 λ

3
2
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Recall that ν112 = ν121 = ν211 and ν122 = ν212 = ν221. Consequently,

p(λ1, λ2) = ν111 λ
3
1 + 3 ν112 λ

2
1λ2 + 3 ν122 λ1λ

2
2 + ν222 λ

3
2

Example 2.2. Let d = 3 and m = 2, then

p(λ1, λ2) =

3X
α1=0

3X
α2=0

δ3−(α1+α2)
3!

α1!α2!
cα1α2 λ

α1
1 λα2

2

=

3X
α2=0

δ3−(0+α2)
3!

0!α2!
c0α2 λ

0
1λ
α2
2 +

3X
α2=0

δ3−(1+α2)
3!

1!α2!
c1α2 λ

1
1λ
α2
2 + (2.3.9)

3X
α2=0

δ3−(2+α2)
3!

2!α2!
c2α2 λ

2
1λ
α2
2 +

3X
α2=0

δ3−(3+α2)
3!

3!α2!
c3α2 λ

3
1λ
α2
2

= δ3−(0+0)
3!

0!0!
c00 λ

0
1λ

0
2 + δ3−(0+1)

3!

0!1!
c01 λ

0
1λ

1
2 + δ3−(0+2)

3!

0!2!
c02 λ

0
1λ

2
2 + δ3−(0+3)

3!

0!3!
c03 λ

0
1λ

3
2 +

δ3−(1+0)
3!

1!0!
c10 λ

1
1λ

0
2 + δ3−(1+1)

3!

1!1!
c11 λ

1
1λ

1
2 + δ3−(1+2)

3!

1!2!
c12 λ

1
1λ

2
2 + δ3−(1+3)

3!

1!3!
c13 λ

1
1λ

3
2 +

δ3−(2+0)
3!

2!0!
c20 λ

2
1λ

0
2 + δ3−(2+1)

3!

2!1!
c21 λ

2
1λ

1
2 + δ3−(2+2)

3!

2!2!
c22 λ

2
1λ

2
2 + δ3−(2+3)

3!

2!3!
c23 λ

2
1λ

3
2 +

δ3−(3+0)
3!

3!0!
c30 λ

3
1λ

0
2 + δ3−(3+1)

3!

3!1!
c31 λ

3
1λ

1
2 + δ3−(3+2)

3!

3!2!
c32 λ

3
1λ

2
2 + δ3−(3+3)

3!

3!3!
c33 λ

3
1λ

3
2

= δ3−(0+3)
3!

0!3!
c03 λ

0
1λ

3
2 + δ3−(1+2)

3!

1!2!
c12 λ

1
1λ

2
2 + δ3−(2+1)

3!

2!1!
c21 λ

2
1λ

1
2 + δ3−(3+0)

3!

3!0!
c30 λ

3
1λ

0
2

=
3!

0!3!
c03 λ

3
2 +

3!

1!2!
c12 λ

1
1λ

2
2 +

3!

2!1!
c21 λ

2
1λ

1
2 +

3!

3!0!
c30 λ

3
1

= c30 λ
3
1 + 3 c21 λ

2
1λ

1
2 + 3 c12 λ

1
1λ

2
2 + c03 λ

3
2

Theorem 2.47. Let A1, . . . ,Am be non-empty compact convex sets in Rd. Then, for all

λ1, . . . , λm ≥ 0:

vd(λ1A1 + · · ·+ λmAm) =
m∑

i1 =1

· · ·
m∑

id=1

V(Ai1 , . . . ,Aid )λi1 . . . λid (2.3.10)

That is, the νi1...id depend only upon the sets Ai1 , . . . ,Aid .

Example 2.3. Let d = 3 and m = 2, and assume all of the compact convex sets are non-empty,

then

p(λ1, λ2) = ν111 λ
3
1 + 3 ν112 λ

2
1λ2 + 3 ν122 λ1λ

2
2 + ν222 λ

3
2

and

ν111 = V(A1,A1,A1)

ν112 = V(A1,A1,A2)

ν122 = V(A1,A2,A2)

ν222 = V(A2,A2,A2).
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Let Cd denote the set of compact, convex subsets of Euclidean d-space, Rd. Let Kd denote the subset

of Cd with non-empty interiors in Rd.

For compact, convex sets A1, . . . ,Am ∈ Cd and real numbers λ1, . . . , λm ≥ 0, the Minkowski linear

combination λ1A1 + · · ·+ λmAm ∈ Cd is defined by

λ1A1 + · · ·+ λmAm = {λ1x1 + · · ·+ λmxm ∈ Rd | xi ∈ Ai}. (2.3.11)

Definition 2.25 (basic properties of the mixed volumes). The following is a list of the basic

properties of the mixed volume functional

V : Cd × · · · × Cd︸ ︷︷ ︸
d

→ [0,∞) (2.3.12)

a) It is symmetric in its arguments.

b) It is linear in each of its arguments with respect to Minkowski linear combinations; i.e., if

A1, . . . ,Ad−1 ∈ Cd and Ã = (A1, . . . ,Ad−1), then for A,B ∈ Cn and λ, µ ≥ 0,

V(Ã, λA+ µB) = λ V(Ã,A) + µ V(Ã,B). (2.3.13)

c) Its diagonal form reduces to ordinary volume; i.e., for A ∈ Cd,

V(A, . . . ,A) = vd(A). (2.3.14)

d) It is continuous (in fact, uniformly continuous) in each argument, with respect to the Hausdorff

metric.

e) It is invariant under independent translations of its arguments; i.e., if Ai ∈ Cd and xi ∈ Rd, then

V(x1 +A1, . . . ,xd +Ad) = V(A1, . . . ,Ad). (2.3.15)

It is well-known that the mixed volume of the convex polytopes P1, . . . ,Pd in Rd, V(P1, . . . ,Pd), is

a non-negative continuous function in d variables on the set of convex polytopes, symmetric in the

variables Pi, and monotonic with respect to the subset partial order on convex polytopes.

The mixed volume function is linear in each of its arguments in some restricted sense.
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Theorem 2.48. Let Ã,A1, . . . ,Ad be non-empty compact convex sets in Rd. Let λ̃, λ1 ≥ 0. Then,

V(λ̃ Ã+ λ1 A1,A2, . . . ,Ad) = λ̃ V(Ã,A2, . . . ,Ad) + λ1 V(A1,A2, . . . ,Ad). (2.3.16)

Lemma 2.49. Let m be a positive integer. For each i = 0, 1, 2, . . . , let

Pi(x) = aimx
m + · · ·+ ai1x+ ai0 (2.3.17)

be a real polynomial. Suppose that for each x ≥ 0, Pi(x) → P0(x) as i → ∞. Then, aij → a0j as

i→∞, for j = 0, 1, . . . ,m.

Theorem 2.50 (Continuity of mixed volumes). For each j = 1, . . . , d, let A1
j , . . . ,Aij , . . . be a

sequence of non-empty compact convex sets converging to a non-empty compact convex set A0
j in

Rd. Then

V(Ai1, . . . ,Aid)→ V(A0
1, . . . ,A0

d) as i→∞. (2.3.18)

Theorem 2.51. Let u1, . . . ,um be the outward unit normals to the (d − 1)-faces of a polytope P

in Rd corresponding to faces F1, . . . ,Fm, respectively. Then, for any non-empty compact convex set

A in Rd with support function h,

lim
λ→0+

vd(P + λA)− vd(P)
λ

=
m∑
i=1

h(ui)vd−1 (Fi). (2.3.19)

Corollary 2.52. Let u1, . . . ,um be the outward unit normals to the (d − 1)-faces of a non-empty

polytope P in Rd corresponding to faces F1, . . . ,Fm, respectively. Then, for any non-empty compact

convex set A in Rd with support function h

V(A,P, . . . ,P︸ ︷︷ ︸
d−1

) =
1
d

m∑
i=1

h(ui)vd−1 (Fi) (2.3.20)

Theorem 2.53. Let P2, . . . ,Pd be non-empty polytopes in Rd (d ≥ 2). Let u1, . . . ,um be the

outward unit normals to the (d− 1)-faces of P2 + · · ·+ Pd. Then, there are scalars α1, . . . , αm ≥ 0

such that, for every non-empty compact convex set A in Rd with support function h,

V(A,P2, . . . ,Pd) =
1
d

m∑
i=1

αih(ui). (2.3.21)

Theorem 2.54. Let A1, . . . ,Ad, B1, . . . ,Bd be non-empty convex sets in Rd with A1 ⊆ B1, . . . ,Ad ⊆

Bd. Then, V(A1, . . . ,Ad) ≤ V(B1, . . . ,Bd).

Theorem 2.55 (Brunn’s Inequality). Let A, B, A+ B be non-empty sets in Rd, all of which have
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volume. Then,

v(A+ B)1/d ≥ v(A)1/d + v(B)1/d . (2.3.22)

Corollary 2.56. Let A, B be non-empty bounded convex sets in Rd. Then, the function f : [0, 1]→

R, defined by the equation

f(t) = v((1 − t)A+ tB)1/d for t ∈ [0 , 1 ], (2.3.23)

is concave.

Theorem 2.57 (Minkowski’s inequality for mixed volumes). Let A and B be convex bodies in Rd.

Then,

V(A, . . . ,A︸ ︷︷ ︸
d−1

,B)d ≥ v(A)d−1 v(B) (2.3.24)

with equality holding if and only if

v(A+ B)1/d = v(A)1/d + v(B)1/d . (2.3.25)

Theorem 2.58 (Brunn-Minkowski). Let A and B be convex bodies in Rd. Then

v(A+ B)1/d ≥ v(A)1/d + v(B)1/d (2.3.26)

with equality holding if and only if A and B are homothetic.

Theorem 2.59. Let A and B be convex bodies in Rd. Then,

V(A, . . . ,A︸ ︷︷ ︸
d−1

,B)d ≥ v(A)d−1 v(B) (2.3.27)

with equality holding if and only if A and B are homothetic.

Theorem 2.60 (Aleksandrov-Fenchel Inequality). Let A1, . . . ,Ad be non-empty compact convex

sets in Rd. Then,

V(A1, . . . ,Ad)r ≥
r∏
j=1

V(Aj , . . . ,Aj︸ ︷︷ ︸
r

,Ar+1, . . . ,Ad). (2.3.28)

For the volume computation performed in this thesis, we will make use of the VINCI software

package, Büeler et al. [2000]. This package contains many useful methods for computing the volume

of a polytope.
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Chapter 3

Piecewise Polynomial Curves and Surfaces

As previously stated, we will restrict our search for minimizers to optimal control problems in the

finite-dimensional space of piecewise polynomial functions with a prescribed number of polynomial

pieces, order and smoothness. This space will be identified by Pb,o,s, where b = {b0, . . . , bNp} are

the (Np + 1) breakpoints, specifying the sites at which the endpoints of the Np polynomial pieces of

order o reside and are being joined with smoothness sj = s, j = 1, . . . , Np − 1.

Let us begin by showing how we intend to use piecewise polynomial pieces to approximate the

minimizers for optimal control problems. Let c(t), t ∈ [t0, tf ], be a real-valued function defined on

the interval I = [t0, tf ]. We want to construct a piecewise polynomial function z(t) that interpolates

c(t) at the breakpoints. As we briefly mentioned before, the breakpoints set is an increasing sequence

of real values representing the endpoints of the Np polynomial pieces

t0 = b0 < b1 < · · · < bNp−1 < bNp = tf . (3.0.1)

On each interval, I` = [b`, b`+1], z(t) is constructed as a polynomial p`(t) of degree d:

p`(t) = c0,`+ c1,`(t− b`) + c2,`(t− b`)2 + · · ·+ cd,`(t− b`)d, t ∈ [b`, b`+1], ` = 0, . . . , Np−1. (3.0.2)

For Np polynomial pieces we have that c(t), t ∈ [t0, tf ] can be expressed as follows:

c(t) =



p0(t) t ∈ [b0, b1]

p1(t) t ∈ [b1, b2]
...

pNp−1(t) t ∈ [bNp−1, bNp ].

(3.0.3)
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Piecewise Constant Piecewise Linear

Piecewise Quadratic Piecewise Cubic

Figure 3.1: Examples of piecewise polynomial functions with polynomial pieces of the same degree.

From the interpolation properties

z(b`) = c(b`), ` = 0, . . . , Np (3.0.4)

we have that

p`(b`) = c(b`), p`(b`+1) = c(b`+1), ` = 0, . . . , Np − 1, (3.0.5)

and, thus, z(t) is guaranteed to be continuous on I:

p`−1(b`) = p`(b`), ` = 1, . . . , Np − 1. (3.0.6)

We continue in this manner matching derivatives until we reach the desired smoothness of the

curve. For example, if we want to ensure C1 continuity we would proceed by imposing the following

conditions to be satisfied in addition to the one above, namely
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ṗ`(b`) = ċ(b`), ṗ`(b`+1) = ċ(b`+1), ` = 0, . . . , Np − 1, (3.0.7)

which leads to C1 continuity of z(t) on I:

ṗ`−1(b`) = ṗ`(b`), ` = 1, . . . , Np − 1. (3.0.8)

The objective is to determine the polynomial coefficients c0,`, c1,`, c2,`, . . . , cd,` for the Np polyno-

mials. In order to obtain unique solutions for the coefficients, there are only a few combinations of

degree and smoothness that can be imposed. In particular, if d = 1 one must impose C0 smoothness,

if d = 3 one must impose C1 smoothness, for d = 5 one must impose C2 smoothness, and so forth.

That is, if a Cs smooth curve is required, one must use a polynomial of degree d = 2s+ 1.

The reader is referred to the work of Kraft [1985] and von Stryk and Bulirsch [1992] for a detailed

discussion on how to use this parameterization to solve optimal control problems using the method

of collocation.

As mentioned before, it will be more convenient to express piecewise polynomial curves as a linear

combination of NURBS basis functions. NURBS basis functions have a large set of useful properties,

which we will exploit for trajectory generation. In particular, NURBS are rational functions of B-

spline basis functions, and many of their properties are inherited from them. Consequently, we will

begin by studying B-splines first.

3.1 B-spline Curves and Surfaces

The vector space Pb,o,s is finite dimensional, and it can be efficiently represented in terms of B-spline

basis functions, de Boor [1978], which, naturally, are piecewise polynomial functions themselves. To

specify a particular piecewise polynomial function c(t) in this representation, one is required to supply

the following parameters: the order of the required polynomial pieces, o, a union set of the position

of the breakpoints or end-points of the polynomial pieces being pasted together, b = {b0, . . . , bNp}

(where Np is equal to the number of polynomial pieces), and the desired smoothness of the curve at

the breakpoints, s = {s0, . . . , sNp} with sj ∈ [−1, d], j = 0, . . . , Np. Then, at each of the breakpoints,

the curve c(t) has the following continuity: c(bj) ∈ Csj , where sj = −1 indicates that the curve

c(t) is discontinuous at that point, sj = 0 indicates that the curve c(t) is continuous at that point,

sj = 1 indicates that the curve c(t) is differentiable at that point, and so on. At all other points c(t)

is C∞.
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The set of all piecewise polynomial functions of order o on the breakpoint set {bj} at which c(bj)

is Csj continuous forms a vector space Pb,o,s. The dimension of this vector space is Nc = dim(Pb,o,s).

To determine the size of this space we must construct the knotpoints set. If no continuity constraints

are imposed (sj = −1 for all j), then the dimension of Pb,o,s is equal to Nc = Np o (that is, the

number of polynomials times their order). Each continuity constraint decreases the dimension by

one; thus

Nc = dim(Pb,o,s) = Np o−
Np∑
j=0

(sj + 1). (3.1.1)

Let us define the multiplicity of the breakpoint j as mj = d − sj . Substituting for sj in the above

definition, we have

Nc = Np o−
Np∑
j=0

(sj + 1) = Np o−
Np∑
j=0

(d−mj + 1) = Np o− (Np + 1)o+
Np∑
j=0

mj =
Np∑
j=0

mj − o

Nc = Nk − o. (3.1.2)

The dimension of the vector space, Nc, for a specific curve is then related to the order of the

polynomials being pieced together and the dimension of the knotpoints vector:

Nk = dim(k) =
Np∑
j=0

mj . (3.1.3)

The knotpoints vector, k, is constructed from the breakpoints vector and the desired smoothness or

continuity at those points. To be more precise, the knotpoints vector contains the breakpoints with

their respective multiplicity, mj . The breakpoints have multiplicity mj = d − sj , where sj is the

desired continuity of the curve c(t) at the breakpoint bj . With this information, one can build the

knotpoints vector:

k =
(
b10, . . . , b

m0
0 , b11, . . . , b

m1
1 , . . . , b1Np−1, . . . , b

mNp−1

Np−1 , b1Np , . . . , b
mNp
Np

)
(3.1.4)

=

k1, . . . , km0 , km0+1, . . . , km0+m1 , . . . , kNp−2P
j=0

mj+1

, . . . , kNp−1P
j=0

mj

, kNp−1P
j=0

mj+1

, . . . , kNpP
j=0

mj

 .

In this thesis, we will make use of a specific type of knotpoints vector known as non-periodic (or

clamped or open). This knotpoints vector is characterized for having the multiplicity of the end

breakpoints to be of multiplicity equal to the order of the polynomial pieces (or by having the end

points be discontinuous); that is, m0 = mNp = o (or s0 = sNp = −1). In this case, we have that
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Nk = 2 o+
Np−1∑
j=1

mj ; consequently,

Nc = o+
Np−1∑
j=1

mj . (3.1.5)

Although one can specify the smoothness or continuity of the curve c(t) at each of the internal

breakpoints independently, in this thesis we will be interested instead in specifying the smoothness

of the whole curve (e.g., c(t) ∈ Cs). In this case we have that s1 = · · · = sNp−1 = s and c(t) ∈ Cs,

s ∈ [−1, d]. Since the smoothness is the same for all breakpoints, we have that the multiplicity is

also constant (say, m) and, therefore, Nk = 2 o+m(Np − 1), and

Nc = o+m(Np − 1) = (d+ 1) + (d− s)(Np − 1). (3.1.6)

As a consequence of the above modifications, the knotpoints vector now reflects the new multiplicity

rules of the breakpoints: end breakpoints have multiplicity equal to o, and the internal breakpoints

have multiplicity equal to m

k =
`
b10, . . . , b

o
0, b

1
1, . . . , b

m
1 , . . . , b

1
Np−1, . . . , b

m
Np−1, b

1
Np , . . . , b

o
Np

´
(3.1.7)

=
`
k1, . . . , ko, ko+1, . . . , ko+m, . . . , ko+m(Np−2)+1, . . . , ko+m(Np−1), ko+m(Np−1)+1, . . . , k2o+m(Np−1)

´
.

That is, the end breakpoints with multiplicity o are repeated o times, and the internal breakpoints

with multiplicity m are repeated m times.

One way in which the breakpoints can be set is by evenly distributing them in the interval [t0, tf ]

(uniformly), i.e., each bj ∈ b is calculated from bj = t0 + jbs, j = 0, . . . , Np, where bs = tf−t0
Np

. This

will be the convention adopted in this thesis unless stated otherwise in a specific application.

In this new context, the set of all piecewise polynomial functions of order o on the uniformly

distributed breakpoint sequence {bj} at which c(bj) is Cs continuous forms a vector space Pb,o,s.

The dimension of the space is obtained by

dim (Pb,o,s) = Nc = Np(o− (s+ 1)) + (s+ 1). (3.1.8)

Consequently, a curve c(t) ∈ Pb,o,s can be expressed in terms of the B-spline basis functions as

follows:

c(t, p0, . . . , pNc−1) =
Nc−1∑
j=0

B(0)
j,d (t) pj , t ∈ [t0, tf ], pj ∈ (−∞,∞), (3.1.9)

where B(0)
j,d (t) is the 0th time derivative of the jth B-Spline basis function of degree d, and pj is the
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corresponding jth control point.

Proposition 3.1. Consider c(t,p) to be a smooth B-spline curve. Then, its rth order partial

derivatives with respect to time and their first- and second-order partial derivatives with respect to

control points are obtained as follows:

c(r)(t,p) =
[
B(r)
d (t)

]T
p

Dp

[
c(r)(t,p)

]
=

[
B(r)
d (t)

]T
Dpp

[
c(r)(t,p)

]
= 0,

with t ∈ [t0, tf ], pj ∈ (−∞,∞),
[
B(r)
d (t)

]
=


B(r)

0,d(t)
...

B(r)
Nc−1,d(t)

 , and p =


p0

...

pNc−1

.

A B-spline surface is obtained by taking a bidirectional net of control points, two knotpoints vectors

and the products of the univariate B-spline functions:

S(x, y) =
Nuc −1∑
i=0

Nvc−1∑
j=0

B(0)
i,p (x) B(0)

j,q (y) pi,j , (3.1.10)

with

kx =
(
b10, . . . , b

p+1
0 , b11, . . . , b

mx1
1 , . . . , b1Np−1, . . . , b

mxNp−1

Np−1 , b1Np , . . . , b
p+1
Np

)
(3.1.11)

ky =
(
d1

0, . . . , d
q+1
0 , d1

1, . . . , d
my1
1 , . . . , d1

Np−1, . . . , d
myNp−1

Np−1 , d1
Np , . . . , d

q+1
Np

)
(3.1.12)

kx has Nx
k knotpoints, and ky has Ny

k knotpoints, and Nx
c = Nx

k − (p+ 1), and Ny
c = Ny

k − (q+ 1).

Let (x, y) be fixed. Generally, one is interested in computing all partial derivatives of S(x, y) up to

and including order o (o > p, q is allowed), that is

∂k+`

∂kx ∂`y
S(x, y), k + ` ∈ [0, o]. (3.1.13)

As for curves, we obtain these derivatives by computing derivatives of the basis functions. In

particular,

∂k+`

∂kx ∂`y
S(x, y) =

Nxc −1∑
i=0

Nyc−1∑
j=0

B(k)
i,p (x) B(`)

j,q(y) pi,j . (3.1.14)
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The B-spline basis functions are computed recursively as follows:

B(0)
j,d (t) =

1, if t ∈ [kj , kj+1)

0, otherwise
, d = 0 (3.1.15)

B(0)
j,d (t) =

t− kj
kj+d − kj

B(0)
j,d−1(t) +

kj+d+1 − t
kj+d+1 − kj+1

B(0)
j+1,d−1(t), d > 0, (3.1.16)

and the rth time derivative of the basis function B(0)
j,d (t) is given by

B(r)
j,d(t) =

d

d− r

(
t− kj

kj+d − kj
B(r)
j,d−1(t) +

kj+d+1 − t
kj+d+1 − kj+1

B(r)
j+1,d−1(t)

)
, r = 0, . . . , d− 1. (3.1.17)

Alternatively, the kth derivative of B(0)
j,d (t)

B(r)
j,d(t) = d

(
1

kj+d − kj
B(r−1)
j,d−1(t)− 1

kj+d+1 − kj+1
B(r−1)
j+1,d−1(t)

)
, r = 1, . . . , d− 1, (3.1.18)

where kj are the non-periodic knotpoints. Figure 3.2 illustrates the B-spline basis for different

degrees.

a)

b)

c)

d)

Figure 3.2: B-spline basis functions of degree 0 through 3: a) B(0)
j,0 , b) B(0)

j,1 , c) B(0)
j,2 and d) B(0)

j,3
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Moreover, Figure 3.3 depicts a piecewise polynomial function and the basis functions that give rise

to the resulting curve.

Figure 3.3: Piecewise polynomial curve expressed in terms of a linear combination of B-spline basis

functions.

In addition, a B-Spline curve possesses a rich set of useful properties.

Property 1: (Local Support) B(r)
`,d(t) = 0 if t is outside the interval [k`, k`+d+1).

Property 2: In any given knot span [k`, k`+1), at most d + 1 of the B(r)
j,d(t) are nonzero, namely

the functions B(r)
`−d,d(t), . . . ,B

(r)
`,d(t).

Property 3: (Nonnegativity) B(0)
j,d (t) ≥ 0 for all j, d, and t.

Property 4: (Partition of Unity) For an arbitrary knot span [k`, k`+1),
∑̀

j=`−d
B(0)
j,d (t) = 1 for all

t ∈ [k`, k`+1) .

Property 5: All derivatives of B(0)
j,d (t) exist in the interior of a knot span. At a knot, B(0)

j,d (t)

is d − m times continuously differentiable, where m is the multiplicity of the knot. Hence,

increasing degree increases continuity, and increasing knot multiplicity decreases continuity.

Property 6: Except for the case d = 0, B(0)
j,d (t) attains exactly one maximum value.
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Property 7: (Strong convex hull property) The curve is contained in the convex hull of its

control polygon. In fact, if t ∈ [k`, k`+1) for ` ∈ [d, d+m(Np − 1)], then c(t) is in the convex

hull of the control points p`−d, . . . , p`.

Property 8: The control polygon represents a piecewise linear approximation to the curve c(t);

this approximation is improved by knot insertion or degree elevation.

Property 9: (Endpoint interpolation) c(t0) = p0 and c(tf ) = pNc−1.

The reader is referred to de Boor [1978] and Piegle and Tiller [1997] for an expanded discussion of

these and many other useful properties of B-spline basis functions, including their respective proves.

In addition, one is able to find in these references efficient algorithms for the computation of B-spline

basis functions.

3.2 NURBS Curves and Surfaces

In this thesis, we will use instead of B-spline basis functions, NURBS basis functions, which are

themselves defined in terms of B-splines. Therefore, we will require all the B-spline definitions

above for their development. As before, we are parameterizing the same vector space Pb,o,s whose

dimension is Nc. A curve c(t) is expressed in terms of NURBS basis functions as follows:

c(t, w0, . . . , wNc−1, p0, . . . , pNc−1) =
Nc−1∑
j=0

R(0)
j,d(t, w0, . . . , wNc−1) pj (3.2.1)

with t ∈ [t0, tf ], wj ∈ (0,∞), and pj ∈ (−∞,∞). In addition, R(0)
j,d(t, w0, . . . , wNc−1) is the 0th time

derivative of the jth NURBS basis function of degree d, and pj are the corresponding jth control

points. The NURBS basis functions are expressed in terms of B-spline basis functions themselves as

follows:

R(0)
j,d(t, w0, . . . , wNc−1) =

B(0)
j,d (t) wj

Nc−1∑
i=0

B(0)
i,d (t) wi

, (3.2.2)

where wj > 0 is the jth weight corresponding to the jth control point. Consequently, we compute

the NURBS basis functions by obtaining first the B-spline basis functions. By introducing NURBS

basis functions, we have increased the number of decision parameters at our disposal: weights in

addition to control points.

In order to use this curve parameterization for trajectory generation, we will be required to obtain

the partial derivatives of the curve with respect to time, weights, and control points.
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Proposition 3.2. Consider c(t,w,p) to be a smooth curve expressed in terms of a linear

combination of NURBS basis functions. Then, its rth order partial derivatives with respect to

time and their first- and second-order partial derivatives with respect to control points and weights

are obtained as follows:

c(r)(t,w,p) = wTGrp−
r∑

k=1

 r

k

Ek c(r−k)(t,w,p)

Dp

[
c(r)(t,w,p)

]
= wTGr −

r∑
k=1

 r

k

Ek
[
R(r−k)
d (t,w)

]T
Dpp

[
c(r)(t,w,p)

]
= 0

Dw

[
c(r)(t,w,p)

]
= −

[(
F0 − I

)
Gr p

]T
+

r∑
k=1

 r

k

[(F0 − I
) (

Hk
)T]T

c(r−k)(t,w,p)

−
r∑

k=1

 r

k

Ek Dw

[
c(r−k)(t,w,p)

]
Dww

[
c(r)(t,w,p)

]
=

(
F0 − I

)
Gr p H0 +

[(
F0 − I

)
Gr p H0

]T
+

r∑
k=1

 r

k

(AB + [AB]T
)

−
r∑

k=1

 r

k

Ek Dww

[
c(r−k)(t,w,p)

]
,

with t ∈ [t0, tf ], wj ∈ (0,∞), pj ∈ (−∞,∞),
[
B(r)
d (t)

]
=


B(r)

0,d(t)
...

B(r)
Nc−1,d(t)

, w =


w0

...

wNc−1

,

p =


p0

...

pNc−1

, diag({B(r)
d (t)}) =


B(r)

0,d(t) . . . 0
...

. . .
...

0 . . . B(r)
Nc−1,d(t)

, H` =

h
B(`)
d (t)

iTh
B(0)
d (t)

iT
w

,

E` = H` w, F` =
(
w H`

)T
, G` = diag({B(`)

d (t)})h
B(0)
d (t)

iT
w

, A = Ek
[
B(0)
d (t)

]
−
[
B(k)
d (t)

]
and

B =
Dw[c(r−k)(t,w,p)]h
B(0)
d (t)

iT
w

−H` c(r−k)(t,w,p)h
B(0)
d (t)

iT
w

.

A detail derivation of Proposition 3.2 can be found in Appendix A.

A NURBS surface of degree p in the x direction and degree q in the y direction is a bivariate

vector-valued piecewise rational function of the form
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S(x, y) =

Nxc −1∑
i=0

Nyc−1∑
j=0

Bi,p(x) Bj,q(y) wi,j pi,j

Nxc −1∑
i=0

Nyc−1∑
j=0

Bi,p(x) Bj,q(y) wi,j

, x ∈ [xi, xf ], y ∈ [yi, yf ]. (3.2.3)

The {pi,j} for a bidirectional control net, the {wi,j} are the weights, and the Bi,p(x) and Bj,q(y) are

the nonrational B-Spline basis functions defined on the knotpoints vectors

kx =
(
b10, . . . , b

p+1
0 , b11, . . . , b

mx1
1 , . . . , b1Np−1, . . . , b

mxNp−1

Np−1 , b1Np , . . . , b
p+1
Np

)
(3.2.4)

ky =
(
d1

0, . . . , d
q+1
0 , d1

1, . . . , d
my1
1 , . . . , d1

Np−1, . . . , d
myNp−1

Np−1 , d1
Np , . . . , d

q+1
Np

)
(3.2.5)

kx has Nx
k knotpoints and ky has Ny

k knotpoints and Nx
c = Nx

k − (p+ 1) and Ny
c = Ny

k − (q + 1).

NURBS curves have many useful properties, which we will exploit.

Property 1: (Nonnegativity) R(0)
j,d(t) ≥ 0 for all j, d, and t ∈ [t0, tf ];

Property 2: (Partition of Unity)
Nc−1∑
j=0

R(0)
j,d(t) = 1 for all t ∈ [t0, tf ];

Property 3: R(0)
0,d(t0) = R(0)

Nc−1,d(tf ) = 1;

Property 4: For d > 0, all R(0)
j,d(t) attain exactly one maximum on the interval t ∈ [t0, tf ];

Property 5: (Local Support) R(r)
`,d(t) = 0 for t /∈ [k`, k`+d+1). Furthermore, in any given knot

span, at most d+ 1 of the R(r)
j,d(t) are nonzero. In general, at most R(r)

`−d,d(t), . . . ,R
(r)
`,d(t) may

be nonzero in [k`, k`+1).

Property 6: All derivatives of R(0)
j,d(t) exist in the interior of a knot span, where it is a rational

function with nonzero denominator. At a knot, R(0)
j,d(t) is d − m times continuously

differentiable, where m is the multiplicity of the knot.

Property 7: If wj = 1 for all j, the R(r)
j,d(t) = B(r)

j,d(t) for all j.

Property 8: (Strong convex hull property) The curve is contained in the convex hull of its

control polygon. In fact, if t ∈ [k`, k`+1) for ` ∈ [d, d+m(Np − 1)], then c(t) is in the convex

hull of the control points p`−d, . . . , p`.

Property 9: (Endpoint interpolation) c(t0) = p0 and c(tf ) = pNc−1.
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Chapter 4

Transcription of Optimal Control Problems to

Nonlinear Programming Problems

In this chapter, we will describe how to compute minimizers to optimal control problems expressed

in the following general form:

min
x(t),u(t)

F0(x(t0),u(t0)) +

tf∫
t0

Ft(x(t),u(t)) dt+ Ff (x(tf ),u(tf )) (4.0.1)

subject to

ẋ(t) = F(x(t),u(t)), t ∈ [t0, tf ] (4.0.2)

`0 ≤ A0x(t0) + B0u(t0) ≤ u0

`t ≤ Atx(t) + Btu(t) ≤ ut, t ∈ [t0, tf ]

`f ≤ Afx(tf ) + Bfu(tf ) ≤ uf (4.0.3)

L0 ≤ c0(x(t0),u(t0)) ≤ U0

Lt ≤ ct(x(t),u(t)) ≤ Ut, t ∈ [t0, tf ]

Lf ≤ cf (x(tf ),u(tf )) ≤ Uf

by a direct method (i.e., by transcription to a nonlinear programming problem). In particular,

let the state and input evolutions be described by the mappings x : [t0, tf ] → X ⊂ Rn and

u : [t0, tf ]→ U ⊂ Rm. In addition, assume the cost functional (4.0.1), dynamic constraints (4.0.2),

and trajectory and actuator constraints (4.0.3) to be sufficiently smooth. In addition, the cost

functional is expressed as a sum of three terms (i.e., initial, trajectory, and final). Each function

F`, ` ∈ {0, t, f} in the cost functional is a scalar-valued function F` : X × U → R. The linear and
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nonlinear constraints are also divided into three terms (i.e., initial, trajectory, and final) and they

are vector-valued functions L` : X × U → RN l` , c` : X × U → RNn` , ` ∈ {0, t, f}. Each of these sets

of constraints is allowed to be set to equality, one-sided bounded, two-sided bounded, or unbounded

by manipulating the values of the lower and upper bounds.

The transcription of an optimal control problem to a nonlinear programming problem is accomplished

by first parameterizing the states and inputs (flat outputs in the case of differentially flat systems) in

terms of piecewise polynomial functions followed by a balanced discretization in the t parameter. In

particular, we will parameterize the states and inputs (flat outputs) in terms of piecewise polynomial

functions using a linear combination of NURBS basis functions. In general, we express a curve and

its derivatives as follows:

z(r)(t, w0, . . . , wNc−1, p0, . . . , pNc−1) =
Nc−1∑
j=0

R(r)
j,d(t, w0, . . . , wNc−1) pj (4.0.4)

with t ∈ [t0, tf ], wj ∈ (0,∞), and pj ∈ (−∞,∞). In particular, we will collect all the states

and inputs (or flat outputs) and their derivatives stacked as follows: z̃ = (z̃1, . . . , z̃No), where

z̃i = (z(0)
i , . . . , z

(Di)
i ), i = 1, . . . , No. Di is the maximum required derivative of the ith z-variable,

and No is the total number of z-variables which, depending on the application, can be the sum of the

states and inputs (flat outputs). Consider the evaluation of the NURBS curve zi and its derivatives

at τ ∈ [t0, tf ]:

z
(0)
i (τ, w̃i, p̃i) =

Nci−1∑
j=0

R(0)
j,di

(τ, w̃i) pij

z
(1)
i (τ, w̃i, p̃i) =

Nci−1∑
j=0

R(1)
j,di

(τ, w̃i) pij

...

z
(Di)
i (τ, w̃i, p̃i) =

Nci−1∑
j=0

R(Di)
j,di

(τ, w̃i) pij .

In matrix form:
z

(0)
i (τ, w̃i, p̃i)

z
(1)
i (τ, w̃i, p̃i)

...

z
(Di)
i (τ, w̃i, p̃i)


︸ ︷︷ ︸

z̃i(τ,w̃i,p̃i)

=


R(0)

0,di
(τ, w̃i) R(0)

1,di
(τ, w̃i) . . . R(0)

Nci−1,di
(τ, w̃i)

R(1)
0,di

(τ, w̃i) R(1)
1,di

(τ, w̃i) . . . R(1)
Nci−1,di

(τ, w̃i)
...

...
...

R(Di)
0,di

(τ, w̃i) R(Di)
1,di

(τ, w̃i) . . . R(Di)
Nci−1,di

(τ, w̃i)


︸ ︷︷ ︸

R̃di (τ,w̃i)


pi0

pi1
...

piNci−1


︸ ︷︷ ︸

p̃i

,(4.0.5)
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or simply z̃i(τ, w̃i, p̃i) = R̃di(τ, w̃i) p̃i, where z̃i ∈ RDi+1, R̃di(τ, w̃i) ∈ R(Di+1)×Nci , w̃i ∈ RNci , and

p̃i ∈ RNci . More generally, we will consider all the z-variables and their derivatives arranged in the

following manner:


z̃ 1(τ, w̃, p̃)

z̃ 2(τ, w̃, p̃)
...

z̃No(τ, w̃, p̃)


︸ ︷︷ ︸

z̃(τ,w̃,p̃)

=


R̃d1(τ, w̃1) 0 . . . 0

0 R̃d2(τ, w̃2) . . . 0
...

...
. . .

...

0 0 . . . R̃dNo (τ, w̃No)


︸ ︷︷ ︸

R̃(τ,w̃)


p̃1

p̃2

...

p̃No


︸ ︷︷ ︸

p̃

(4.0.6)

or simply z̃(τ, w̃, p̃) = R̃(τ, w̃) p̃, where z̃ ∈ RNvT , R̃(τ, w̃) ∈ RNvT×NcT , p̃ ∈ RNcT . We compute the

total number of z-variables and decision variables as follows:

Nv
T =

No∑
i=1

Nv
i =

No∑
i=1

(Di + 1) (z-variables) (4.0.7)

N c
T =

No∑
i=1

N i
p(oi − (si + 1)) + (si + 1) (decision variables). (4.0.8)

There are many types of problems that are possible to setup using the NURBS curve parameteriza-

tion. In particular, we can fix all the weights and solve for all the control points or vice-versa. It is

also possible to fix some of the weights and some of the control points and solve for the remaining

parameters. In any event, we compute the number of total active decision variables as follows:

N c
T =

No∑
i=1

δwi
[
N i
p(oi − (si + 1)) + (si + 1)

]
+

No∑
i=1

δpi
[
N i
p(oi − (si + 1)) + (si + 1)

]
, (4.0.9)

where δwi ∈ {0, 1}, δ
p
i ∈ {0, 1}, 0 if the parameter is fixed, and 1 otheriwse. In addition, we will

construct the active decision variables vector as follows:

y =

 w̃

p̃

 =



w̃1

...

w̃No

p̃1

...

p̃No


∈ RN

c
T . (4.0.10)

At this point, we proceed by substituting the states, inputs, and their derivatives (flat outputs and

their derivatives) in the optimal control problem with the NURBS curve parameterization described
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above. This leads to the following general form:

min
z̃
J [z̃] = G0(z̃(t0)) +

tf∫
t0

Gt(z̃(s)) ds+ Gf (z̃(tf ))

subject to

D(z̃(t)) = 0, t ∈ [t0, tf ]

`0 ≤ A0 z̃(t0) ≤ u0

`t ≤ At z̃(t) ≤ ut, t ∈ [t0, tf ]

`f ≤ Af z̃(tf ) ≤ uf

L0 ≤ C0(z̃(t0)) ≤ U0

Lt ≤ Ct(z̃(t)) ≤ Ut, t ∈ [t0, tf ]

Lf ≤ Cf (z̃(tf )) ≤ Uf .

We have purposely only shown the t parameter dependence of the NURBS curves to make the

discretization of the optimal control problem more readable. The goal of the discretization is to make

the problem finite-dimensional. Moreover, our intent is to make this discretization a specification

that the user has to make ahead of time. The advantage of this decision will become clearer in

the next section, but, suffice it to say, this choice will allow us to perform lengthy computations

outside the convergence loop, reducing the total computational time of the algorithm. Consider

the following uniform time partition (collocation points): t0 = τ0 < τ1 < . . . τNτ−2 < τNτ−1 = tf

where τi = t0 + i∆τ, i = 0, . . . , Nτ − 1, ∆τ = tf−t0
Nτ−1 . Nτ is the total number of collocation points.

In addition, the integral must be approximated by a quadrature formula. We will define for this

purpose the nodes rj = τi + j ∆ri for j = 0, 1, . . . , N , and ∆ri = τi+1−τi
N , where N is the number of

points required by one of the following quadrature formulas:

(N = 1)

τi+1∫
τi

Gt(z̃(t)) dt ≈ ∆ri
2

{
Gt(z̃(r0)) + Gt(z̃(r1))

}

(N = 2)

τi+1∫
τi

Gt(z̃(t)) dt ≈ ∆ri
3

{
Gt(z̃(r0)) + 4 Gt(z̃(r1)) + Gt(z̃(r2))

}

(N = 3)

τi+1∫
τi

Gt(z̃(t)) dt ≈ 3∆ri
8

{
Gt(z̃(r0)) + 3 Gt(z̃(r1)) + 3 Gt(z̃(r2)) + Gt(z̃(r3))

}
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(N = 4)

τi+1∫
τi

Gt(z̃(t)) dt ≈ 2∆ri
45

{
7 Gt(z̃(r0)) + 32 Gt(z̃(r1)) + 12 Gt(z̃(r2)) + 32 Gt(z̃(r3))

+7 Gt(z̃(r4))
}

(N = 5)

τi+1∫
τi

Gt(z̃(t)) dt ≈ 5∆ri
288

{
19 Gt(z̃(r0)) + 75 Gt(z̃(r1)) + 50 Gt(z̃(r2)) + 50 Gt(z̃(r3))

+75 Gt(z̃(r4)) + 19 Gt(z̃(r5))
}

(N = 6)

τi+1∫
τi

Gt(z̃(t)) dt ≈ ∆ri
140

{
41 Gt(z̃(r0)) + 216 Gt(z̃(r1)) + 27 Gt(z̃(r2)) + 272 Gt(z̃(r3))

+27 Gt(z̃(r4)) + 216 Gt(z̃(r5)) + 41 Gt(z̃(r6))
}
.

These quadrature formulas have specific names depending on the value of N : a) trapezoidal rule

(N = 1), b) Simpson’s rule (N = 2), c) Simpson’s three-eighths rule (N = 3), d) Milne’s rule

(N = 4) and e) Weddle’s rule (N = 6). In general, all of these approximations have the following

form:
τi+1∫
τi

Gt(z̃(t)) dt ≈
N∑
j=0

γij Gt(z̃(rj)), γij = ∆riαj

The optimal control problem then becomes

min
z̃
J [z̃] = G0(z̃(τ0, w̃, p̃)) +

Nτ−2∑
i=0

[
N∑
j=0

γij Gt(z̃(rj , w̃, p̃))

]
+ Gf (z̃(τNτ−1, w̃, p̃))

subject to

D(z̃(τi, w̃, p̃)) = 0, i = 0, . . . , Nτ − 1

`0 ≤ A0 z̃(τ0, w̃, p̃) ≤ u0

`t ≤ At z̃(τi, w̃, p̃) ≤ ut, i = 0, . . . , Nτ − 1

`f ≤ Af z̃(τNτ−1, w̃, p̃) ≤ uf

L0 ≤ C0(z̃(τ0, w̃, p̃)) ≤ U0

Lt ≤ Ct(z̃(τi, w̃, p̃)) ≤ Ut, i = 0, . . . , Nτ − 1

Lf ≤ Cf (z̃(τNτ−1, w̃, p̃)) ≤ Uf .

The result of the previous parameterization and discretization is a nonlinear programming problem

where the unknowns are the active weights and control points of all the NURBS curves. The
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structure of a general nonlinear programming problem is as follows:

min
y
f(y)

subject to (4.0.11)

L ≤


y

Ay

c(y)

 ≤ U.

For our setting, y ∈ RN cT , N c
T is the total number of active decision variables, f : RN cT → R is

a smooth real-valued function, A : RN cT → RN
l
T=N li+NτN

l
t+N

l
f is a linear operator, c : RN cT →

RN
n
T=Nni +NτN

n
t +Nnf is a smooth vector-valued function and the lower bounds and upper bounds

are vectors L,U ∈ RN cT+N lT+NnT , where N l
T and Nn

T are the total number of linear constraints and

nonlinear constraints.

In order to solve for the active decision variables, we will make use of a Sequential Quadratic

Programming (SQP) solver. An SQP method obtains search directions from a sequence of Quadratic

Programming (QP) subproblems. Each QP subproblem minimizes a quadratic model of a certain

Lagrangian function subject to linearized constraints. In particular, the structure of the QP

subproblem for the SNOPT solver, Gill et al. [2005], is of the following form:

min
y
Lq(yk,yk, λk)

subject to

L ≤


y

Ay

c(yk) + Dyc(yk)(y− yk)

 ≤ U.

The modified cost function Lq(y,yk, λk) is defined as follows:

Lq(y,yk,λk) = L(yk,yk,λk) + DyL(yk,yk,λk)(y− yk) +
1
2

(y− yk)TDyyL(yk,yk,λk)(y− yk)

This is a quadratic approximation of the modified Lagrangian L(y,yk,λk):

L(y,yk,λk) = f(y)− λTk [c(y)− c(yk)−Dyc(yk)(y− yk)] ,

whose first- and second-order partial derivatives are computed to
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DyL(y,yk,λk) = Dyf(y)− λTk [Dyc(y)−Dyc(yk)]

DyyL(y,yk,λk) = Dyyf(y)−
∑
i

(λk)i Dyyci(y).

In particular, at y = yk we have that

L(yk,yk,λk) = f(yk)

DyL(yk,yk,λk) = Dyf(yk)

DyyL(yk,yk,λk) = Dyyf(yk)−
∑
i

(λk)i Dyyci(yk).

The QP subproblem then becomes

min
y
f(yk) + Dyf(yk)(y− yk) + 1

2 (y− yk)T
[
Dyyf(yk)−

∑
i

(λk)i Dyyci(yk)
]

(y− yk)

subject to

L ≤


y

Ay

c(yk) + Dyc(yk)(y− yk)

 ≤ U.

As a consequence, we will also be required to compute the Jacobians and Hessians of the objective

function and constraint functions. These can be computed analytically if the problem at hand allows

it. Otherwise, solvers typically approximate the Jacobians and Hessians of all functions in the posed

problem numerically at the expense of a slower rate of convergence.

In general, we obtain the Jacobian and Hessian of a function F(z̃(y)) with respect to y using the

chain rule:

DyF(z̃(y)) = Dz̃F(z̃(y)) Dyz̃(y)

DyyF(z̃(y)) = Dyz̃(y)T Dz̃z̃F(z̃(y)) Dyz̃(y) +
NvT∑
i=1

∂F(z̃(y))
∂ẑi

Dyyẑi,

where ẑi is the ith element of the vector z̃ =
(
z

(0)
1 , . . . , z

(D1)
1 , . . . , z

(0)
No
, . . . , z

(DNo )
No

)
∈ N v

T .
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Chapter 5

Solving Optimal Control Problems with Control

Points as Decision Variables

In this chapter, we will describe in detail the structure of the nonlinear programming problem

used to obtain minimizers for optimal control problems that must deal with full or partial explicit

dynamic constraints. We delay the treatment of differentially flat systems until Chapter 7. Moreover,

although we could exploit the polytope structure of NURBS curves to avoid obstacles, we still need

the material in Chapter 6 to formally do so, hence we will apply this technique in Chapter 7. The

inclusion of explicit dynamic constraints in the optimal control problem forces us to obtain a flow

line through the initial and final system configurations in such a way that the tangent vector of the

curve coincides with the vector field everywhere. This set of constraints can only be verified at a

discrete number of points and, therefore, once a minimizer is obtained one should use the input to

integrate the dynamics and confirm that the state evolution actually matches the one found. An

alternative strategy may be employed to deal with dynamic constraints using explicit Runge Kutta

methods to discretize the dynamics, Betts [1998].

The main goal at this stage is to emphasize the generality of the methodology and the ease in which

dynamics and constraints can be modeled. The ease of the formulation resides partly in the fact that

we use a z-variable per state and input. As a result, a problem written on paper can be mapped to a

computer implementation in a straightforward manner. Of course, one trades ease of implementation

for an increase in the computational effort required to solve the formulated optimal control problem

due to the large number of active decision variables and constraints present in the problem. In later

chapters, we will expose an implementation that strives to improve the computational time and

significantly reduce the number of constraints and active decision variables present in the problem

at the expense of off-line analysis and recasting of the optimal control problem through algebraic
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manipulations.

For now we will exploit only the basis functions structure and make use of Property 7 of NURBS

basis functions. That is, we will set all the weight parameters equal to the same value w0 > 0. By

doing so, we will decrease the number of decision variables (i.e. the NURBS curves will not depend

on weights). Moreover, R(r)
j,d(t, w̃0) = B(r)

j,d(t) for all j. In this special case, we will only allow the

control points to be decision variables. The optimal control problem then takes the following form

after discretization and change of basis:

min
z̃
J [z̃] = G0(z̃(τ0, p̃)) +

Nτ−2∑
i=0

[
N∑
j=0

γij Gt(z̃(rj , p̃))

]
+ Gf (z̃(τNτ−1, p̃))

subject to

D(z̃(τi, p̃)) = 0, i = 0, . . . , Nτ − 1

`0 ≤ A0 z̃(τ0, p̃) ≤ u0

`t ≤ At z̃(τi, p̃) ≤ ut, i = 0, . . . , Nτ − 1

`f ≤ Af z̃(τNτ−1, p̃) ≤ uf

L0 ≤ C0(z̃(τ0, p̃)) ≤ U0

Lt ≤ Ct(z̃(τi, p̃)) ≤ Ut, i = 0, . . . , Nτ − 1

Lf ≤ Cf (z̃(τNτ−1, p̃)) ≤ Uf

As previously mentioned, the nonlinear programming problem has the following general structure:

min
y
f(y)

subject to

L ≤


y

Ay

c(y)

 ≤ U

For the current case, the decision variables are the control points of all the NURBS curves. The

objective function f , the linear operator A and the nonlinear constraint function c are constructed

as follows:

f(z̃(y)) = G0(z̃(τ0,y)) +
Nτ−2∑
i=0

 N∑
j=0

γij Gt(z̃(rj ,y))

+ Gf (z̃(τNτ−1,y)) (5.0.1)
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The matrix A is constructed by stacking up the linear constraints as follows:

Az̃(y) =



A0 z̃(τ0,y)

At z̃(τ0,y)
...

At z̃(τNτ−1,y)

Af z̃(τNτ−1,y)


=



A0 R̃(τ0, w̃0, )

At R̃(τ0, w̃0)
...

At R̃(τNτ−1, w̃0)

Af R̃(τNτ−1, w̃0)


y =



A0 B̃(τ0)

At B̃(τ0)
...

At B̃(τNτ−1)

Af B̃(τNτ−1)


y (5.0.2)

Likewise, we stack up the nonlinear constraints in the following way:

c(z̃(y)) =



C0(z̃(τ0,y))

Ct(z̃(τ0,y))
...

Ct(z̃(τNτ−1,y))

Cf (z̃(τNτ−1,y))


(5.0.3)

Finally, the lower bounds an the upper bounds are stacked up in the following manner:

L =



Lc

`0

(`t)0

...

(`t)Nτ−1

`f

L0

(Lt)0

...

(Lt)Nτ−1

Lf



U =



Uc

u0

(ut)0

...

(ut)Nτ−1

uf

U0

(Ut)0

...

(Ut)Nτ−1

Uf



(5.0.4)

where Lc and Uc are the lower and upper bounds for the decision variables. In the problems

considered here the coefficients themselves are not bounded; accordingly, we set the values of the

lower bound and upper bound for each coefficient to −∞ and +∞ correspondingly. Then, we

proceed to compute the Jacobians and Hessians of the objective function and constraint functions.

In particular, we are able to express the Jacobian of the cost function in this form:
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Dyf(z̃(y)) = Dz̃G0(z̃(τ0,y)) Dyz̃(τ0,y) +
Nτ−2∑
i=0

 N∑
j=0

γij Dz̃Gt(z̃(rj ,y)) Dyz̃(rj ,y)


+Dz̃Gf (z̃(τNτ−1,y)) Dyz̃(τNτ−1,y)

Using Proposition 3.1 and the stacking of z-variables and their derivatives as in Equation 4.0.6:

Dyf(z̃(y)) = Dz̃G0(z̃(τ0,y)) B̃(τ0) +
Nτ−2∑
i=0

 N∑
j=0

γij Dz̃Gt(z̃(rj ,y)) B̃(rj)

+

Dz̃Gf (z̃(τNτ−1,y)) B̃(τNτ−1)

In addition, the Jacobian of the linear constraints become

Dy [Az̃(y)] =



A0 B̃(τ0)

At B̃(τ0)
...

At B̃(τNτ−1)

Af B̃(τNτ−1)


Likewise, the Jacobian of the nonlinear constraints become

Dyc(z̃(y)) =



Dz̃C0(z̃(τ0,y)) Dyz̃(τ0,y)

Dz̃Ct(z̃(τ0,y)) Dyz̃(τ0,y)
...

Dz̃Ct(z̃(τNτ−1,y)) Dyz̃(τNτ−1,y)

Dz̃Cf (z̃(τNτ−1,y)) Dyz̃(τNτ−1,y)


=



Dz̃C0(z̃(τ0,y)) B̃(τ0)

Dz̃Ct(z̃(τ0,y)) B̃(τ0)
...

Dz̃Ct(z̃(τNτ−1,y)) B̃(τNτ−1)

Dz̃Cf (z̃(τNτ−1,y)) B̃(τNτ−1)


The Hessians of all the functions computed above then become:

Dyyf(z̃(y)) = B̃(τ0)T Dz̃z̃G0(z̃(τ0,y)) B̃(τ0) +
Nτ−2∑
i=0

 N∑
j=0

γij B̃(rj)T Dz̃z̃Gt(z̃(rj ,y)) B̃(rj)


+B̃(τNτ−1)T Dz̃z̃Gf (z̃(τNτ−1,y)) B̃(τNτ−1)

Dyy [Az̃(y)] = 0

DyyC1
0(z̃(τ0,y)) = B̃(τ0)T Dz̃z̃C1

0(z̃(τ0,y)) B̃(τ0)
...

DyyC
Nni
0 (z̃(τ0,y)) = B̃(τ0)T Dz̃z̃C

Nni
0 (z̃(τ0,y)) B̃(τ0)
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DyyC1
t (z̃(τ0,y)) = B̃(τ0)T Dz̃z̃C1

t (z̃(τ0,y)) B̃(τ0)
...

DyyC
Nnt
t (z̃(τ0,y)) = B̃(τ0)T Dz̃z̃C

Nnt
t (z̃(τ0,y)) B̃(τ0)

...

DyyC1
t (z̃(τNτ−1,y)) = B̃(τNτ−1)T Dz̃z̃C1

t (z̃(τNτ−1,y)) B̃(τNc−1)
...

DyyC
Nnt
t (z̃(τNτ−1,y)) = B̃(τNτ−1)T Dz̃z̃C

Nnt
t (z̃(τNτ−1,y)) B̃(τNc−1)

DyyC1
f (z̃(τNc−1,y)) = B̃(τNτ−1)T Dz̃z̃C1

f (z̃(τNτ−1,y)) B̃(τNτ−1)
...

DyyC
Nnf
f (z̃(τNc−1,y)) = B̃(τNτ−1)T Dz̃z̃C

Nnf
f (z̃(τNτ−1,y)) B̃(τNτ−1)

Example 5.1 (Analytical). Consider the following optimal control problem:

min
u

1
2

tf=10∫
t0=0

u(t)TRu(t) dt, R =

 r11 0

0 r22

 > 0

subject to:

ẋ(t) =


u1(t)

u2(t)

x2(t) u1(t)

 ; x(t0) = x0 =


10

2

20

 , x(tf ) = xf =


27

8

35


The first-order necessary conditions for a minimizer (x∗(t),u∗(t),λ∗(t)) are expressed as follows:

λ̇∗(t) = −DxH(x ∗(t),u∗(t),λ∗(t))T

ẋ∗(t) = DλH(x ∗(t),u∗(t),λ∗(t))T , x∗(ti) = x0, x∗(tf ) = xf

0 = DuH(x∗(t),u∗(t),λ∗(t))T .

The Hamiltonian is defined by H(x(t),u(t),λ(t)) = f0(x(t),u(t)) + λT (t) F(x (t),u(t)) where

f0(x(t),u(t)) = 1
2

[
u1(t) u2(t)

]
R

 u1(t)

u2(t)

 and F(x(t),u(t)) =
[
u1(t) u2(t) x2(t) u1(t)

]T
.

As a consequence, the partial derivatives of the Hamiltonian with respect to the states, adjoint
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variables and inputs are computed as follows:

DxH(x(t),u(t),λ(t)) =
[

0 λ3(t) u1(t) 0
]

DλH(x(t),u(t),λ(t)) =
[
u1(t) u2(t) x2(t)u1(t)

]
DuH(x(t),u(t),λ(t)) =

[
r11 u1(t) + λ1(t) + λ3(t) x2(t), r22 u2(t) + λ2(t)

]
.

Then first-order necessary conditions become

− λ̇∗(t) =


0

λ∗3(t) u∗1(t)

0

 (5.0.5)

ẋ∗(t) =


u∗1(t)

u∗2(t)

x∗2(t)u∗1(t)

 ; x∗(t0) = x0, x∗(tf ) = xf (5.0.6)

0 =

 r11 u
∗
1(t) + λ∗1(t) + λ∗3(t) x∗2(t)

r22 u
∗
2(t) + λ∗2(t)

 . (5.0.7)

In particular, we are able to solve analytically for the inputs using (5.0.7)

u∗1 = − 1
r11

(λ∗1(t) + λ∗3(t) x∗2(t))

u∗2 = − 1
r22

λ∗2(t).

In addition, the second-order strengthened Legendre-Clebsch (or convexity) Condition for a minimizer

(x∗(t),u∗(t),λ∗(t)) are expressed as follows DuuH(x∗(t),u∗(t),λ∗(t)) > 0. In our particular case,

this condition requires the matrix R to be positive definite. Substituting the input expressions in

equations (5.0.5) and (5.0.6) leads to the following two-point boundary problem:


λ̇∗1(t)

λ̇∗2(t)

λ̇∗3(t)

 =


0

λ∗3(t)
r11

(λ∗1(t) + λ∗3(t) x∗2(t))

0



ẋ∗1(t)

ẋ∗2(t)

ẋ∗3(t)

 =


− 1
r11

(λ∗1(t) + λ∗3(t) x∗2(t))

− 1
r22
λ∗2(t)

−x2(t)
r11

(λ∗1(t) + λ∗3(t) x∗2(t))

 ; x∗(t0) =


10

2

20

 , x∗(tf ) =


27

8

35

 .

We begin by computing the solution of this two-point boundary problem numerically. The optimal

trajectory and the optimal input are illustrated in Figure 5.1 and Figure 5.2 respectively.
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Figure 5.1: Optimal State Trajectory

Figure 5.2: Optimal Input Trajectory
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Example 5.2 (Analytical - Revisited using control points as decision variables). Let us now apply

the methodology described in this chapter to obtain a numerical solution to the same problem. That

is, let us express the states and inputs in terms of piecewise polynomial functions expressed in terms

of a linear combination of NURBS basis functions. In particular, we will parameterize the states

and inputs as follows:

xi ∈ Pbi,oi,si , i = 1, . . . 3, with bi =
[

0 3.3333 6.6667 10.0000
]
, oi = 6, si = 2

uj ∈ Pbj ,oj ,sj , j = 1, . . . 2, with bj =
[

0 2.5000 5.0000 7.5000 10.0000
]
, oj = 5, sj = 0

As mentioned at the beginning of this chapter, we will only allow control points as decision variables.

That is, we will exploit Property 7 of NURBS curves to obtain:

x
(ri)
i (t,wi,pi) =

[
B(ri)
di

(t)
]T

pi, i = 1, . . . , 3

u
(0)
j (t,wj ,pj) =

[
B(0)
dj

(t)
]T

pj , j = 1, . . . , 2

We then proceed to choose a uniform time partition (collocation points): t0 = τ0 < τ1 < . . . τNτ−2 <

τNτ−1 = tf where τi = t0 + i∆τ, i = 0, . . . , Nτ − 1, ∆τ = tf−t0
Nτ−1 . Then, at each of these points, τk,

we evaluate the states and inputs as follows:

26666666666666666664

x
(0)
1 (τk,p1)

x
(1)
1 (τk,p1)

x
(0)
2 (τk,p2)

x
(1)
2 (τk,p2)

x
(0)
3 (τk,p3)

x
(1)
3 (τk,p3)

u
(0)
1 (τk,p4)

u
(0)
2 (τk,p5)

37777777777777777775

=

2666666666666666666664

h
B(0)

5 (τk)
iT

0 0 0 0h
B(1)

5 (τk)
iT

0 0 0 0

0
h
B(0)

5 (τk)
iT

0 0 0

0
h
B(1)

5 (τk)
iT

0 0 0

0 0
h
B(0)

5 (τk)
iT

0 0

0 0
h
B(1)

5 (τk)
iT

0 0

0 0 0
h
B(0)

4 (τk)
iT

0

0 0 0 0
h
B(0)

4 (τk)
iT

3777777777777777777775

26666666664

p1

p2

p3

p4

p5

37777777775
.

The collocations points are chosen ahead of time and therefore the states and inputs depend only on

the control points. By substituting these variables back into the optimal control problem, we obtain

an nonlinear programming problem. Moreover, we make use of Proposition 3.1 to obtain the partial

derivatives of all the functions involved in terms of the control points. Finally, we solve the nonlinear

programming problem to obtain the coefficients of the piecewise polynomial parameterization and

obtain a numerical approximations of the optimal minimizer. Figure 5.3 and Figure 5.4 show the

numerical state and input trajectories respectively and they are plotted side-by-side with the the

optimal state and input trajectories found analytically by using the first- and second-order necessary
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conditions obtained through the calculus of variations.

Figure 5.3: Numerical optimal state trajectory with control points only (red), and Analytical optimal

state trajectory (blue).

Figure 5.4: Numerical optimal input trajectory with control points only (red), and Analytical optimal

input trajectory (blue).
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Figure 5.5: Initial guess for states (black), Numerical optimal states with control points only (red),

and Analytical optimal states (blue).

Figure 5.6: Initial guess for inputs (black), Numerical optimal inputs with control points only (red),

and Analytical optimal inputs (blue).
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Example 5.3 (Alice - Caltech’s autonomous system). Consider the following kinematic bicycle

model for the vehicle:

dx(t)

dt
= v(t) cos(θ(t))

dy(t)

dt
= v(t) sin(θ(t))

dv(t)

dt
= a(t)

dθ(t)

dt
=

v(t)

L
tan(φ(t))

with states x = (x, y, v, θ) ∈ R4 and inputs u = (a, φ) ∈ R2. The equilibrium solutions of the system

are xe = (∗, ∗, 0, ∗) and ue = (0, (Γ − 1
2 )π), Γ /∈ Z. The ∗ implies that the value is arbitrary. All

equilibrium solutions are linearly controllable. The Controllability matrix is defined as follows:

C =

26666664
0 0 cos(θ) 0 cos(θ)2 0 cos(θ)3 0

0 0 sin(θ) 0 sin(θ)2 0 sin(θ)3 0

1 0 0 0 0 0 0 0

0 0 1
L

tan(π(Γ− 1
2
)) 0 1

L2 tan(π(Γ− 1
2
))2 0 1

L3 tan(π(Γ− 1
2
))3 0

37777775
In particular, we will be interested in solving the following optimal control problem whose cost

functional penalizes the inputs, the rate of steering and time required to perform a maneuver:

min
tfR
t0

h
a2(t) + φ2(t) + φ̇2(t)

i
dt+ tf

subject to

Dynamic Constraints:

v(t) cos(θ(t))− ẋ(t) = 0

v(t) sin(θ(t))− ẏ(t) = 0

a(t)− v̇(t) = 0

v(t)

L
tan(φ(t))− θ̇(t) = 0

Trajectory Constraints:

0 ≤ v(t) ≤ vmax

amin ≤ a(t) ≤ amax

φmin ≤ φ(t) ≤ φmax

φ̇min ≤ φ̇(t) ≤ φ̇max

− gW
2hcg

≤ v2(t) tan(φ(t))
L

≤ gW

2hcg
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Initial and Final Boundary Conditions:

(x(t0), y(t0), v(t0), θ(t0), a(t0), φ(t0)) = (0, 0, 0, 0, 0, 0)

(x(tf ), y(tf ), v(tf ), θ(tf ), a(tf ), φ(tf )) = (50,−30, 0, 0, 0, 0)

Moreover, assume the following values for the set of parameters:

g = 9.81 m/s2 L = 5.4356 m

W = 2.1336 m hcg = 1.0668 m

vmax = 60 mi/hr vmin = 0.01 m/s

amax = 1.0 m/s2 amin = −3.0 m/s2

φmax = 25.75 ◦ φmin = −25.75 ◦

φ̇max = 75 ◦ φ̇min = −75 ◦

Since we do not know ahead of time the amount of time required to perform a maneuver, we will

dimensionalize the equations of motion with respect to time and allow the final time to vary. In

particular, let τ = t
ξ , v = u

ξ and a = A
ξ2 .

dx(τ)

dτ
= u(τ) cos(θ(τ))

dy(τ)

dτ
= u(τ) sin(θ(τ))

du(τ)

dτ
= A(τ)

dθ(τ)

dt
=

u(τ)

L
tan(φ(τ))

dξ(τ)

dτ
= 0

The optimal control problem then becomes:

min ξ(1) +
1R
0

»“
A(τ)

ξ2(τ)

”2

+ φ(τ)2 +
“
φ̇(τ)
ξ(τ)

”2
–
dτ

subject to

Dynamic Constraints:

u(τ) cos(θ(τ))− ẋ(τ) = 0

u(τ) sin(θ(τ))− ẏ(τ) = 0

A(τ)− u̇(τ) = 0

u(τ)

L
tan(φ(τ))− θ̇(τ) = 0

ξ̇(τ) = 0
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Trajectory Constraints:

0 ≤ u(τ)
vmaxξ(τ)

≤ 1

amin ≤ A(τ)

ξ2
≤ amax

φmin ≤ φ(τ) ≤ φmax

φ̇min ≤ φ̇(τ)
ξ(τ)

≤ φ̇max

− gW
2hcg

≤ u2(τ) tan(φ(τ))

L ξ2(τ)
≤ gW

2hcg

Initial and Final Boundary Conditions:

(x(τ0), y(τ0), u(τ0), θ(τ0),A(τ0), φ(τ0)) = (0, 0, 0, 0, 0, 0)

(x(τf ), y(τf ), u(τf ), θ(τf ),A(τf ), φ(τf )) = (50,−30, 0, 0, 0, 0)

The minimizer of this optimal control problem is shown in Figure 5.7, together with the state and

input evolutions (see Figure 5.8 and Figure 5.9).
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Figure 5.7: optimal trajectory
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Figure 5.8: optimal states evolutions
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Figure 5.9: optimal input evolution
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Chapter 6

Exploiting Properties of NURBS Curves

In this chapter, we will expand on some of the properties of NURBS curves that will be exploited

for trajectory generation. In particular, we will unravel the connection between the two structures

being combined in the NURBS curve definition: NURBS basis functions and the union of overlapping

polytopes.

6.1 Local Support Property

We will begin by expanding on the local support property of NURBS basis functions. It is important

to keep in mind that we are dealing with piecewise polynomial functions and, as a result, only a small

subset of the NURBS basis functions give rise to each of the polynomial pieces. The relevant subset

of NURBS basis functions per polynomial piece is specified through the location of the t parameter

of the parameterization. The value of the t parameter singles out a specific knot span and, according

to the local support property, for any given knot span at most d+ 1 of the R(r)
j,d(t) basis are nonzero.

More specifically, only the basis functions R(r)
`−d,d(t), . . . ,R

(r)
`,d(t) could be nonzero in the knot span

[k`, k`+1), ` ∈ [d, d+m(Np− 1)]. Therefore, by exploiting the local support property of the NURBS

basis functions, we express a NURBS curve as follows:

c(r)(t,w,p) =

∑̀
j=`−d

B(r)
j,d(t) wj pj

∑̀
i=`−d

B(0)
i,d (t) wi

−
r∑

k=1

 r

k


∑̀

j=`−d
B(k)
j,d (t) wj

∑̀
i=`−d

B(0)
i,d (t) wi

c(r−k)(t,w,p), t ∈ [k`, k`+1) .

Alternatively, we may rewrite a NURBS curve in terms of the individual polynomial pieces:
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c(r)n (t,w,p) =

∑̀
j=`−d

B(r)
j,d(t) wj pj

∑̀
i=`−d

B(0)
i,d (t) wi

−
r∑

k=1

 r

k


∑̀

j=`−d
B(k)
j,d (t) wj

∑̀
i=`−d

B(0)
i,d (t) wi

c(r−k)
n (t,w,p), t ∈ [bn, bn+1) ,

where n = 0, . . . , Np − 1, and ` = d+mn, and m is the multiplicity of the inner breakpoints.

This is advantageous computationally because we only have to consider at most (d + 1) NURBS

basis functions instead of Nc NURBS basis functions. Moreover, in later chapters, this property will

give rise to sparse matrices of the first and second-order partial derivatives of the cost and constraint

functions.

In matrix form:

c(r)(t,w,p) =
wTdiag({B(r)

d (t)})p[
B(0)
d (t)

]T
w

−
r∑

k=1

 r

k


[
B(k)
d (t)

]T
w[

B(0)
d (t)

]T
w

c(r−k)(t,w,p), t ∈ [k`, k`+1) ,

where

[
B(r)
d (t)

]T
=
[
B(r)
`−d,d(t) B(r)

`−d+1,d(t) B(r)
`−d+2,d(t) . . . B(r)

`−2,d(t) B(r)
`−1,d(t) B(r)

`,d(t)
]T
.

The active bases for t ∈ [k`, k`+1) and their dependence on lower degree active basis functions with

the same rth derivative give rise to the following triangular expansion:

B(r)
`−d,d(t) B(r)

`−d+1,d(t) B(r)
`−d+2,d(t) B(r)

`−d+3,d(t) . . . B(r)
`−2,d(t) B(r)

`−1,d(t) B(r)
`,d(t)

B(r)
`−d+1,d−1(t) B(r)

`−d+2,d−1(t) B(r)
`−d+3,d−1(t) . . . B(r)

`−2,d−1(t) B(r)
`−1,d−1(t) B(r)

`,d−1(t)

B(r)
`−d+2,d−2(t) B(r)

`−d+3,d−2(t) . . . B(r)
`−2,d−2(t) B(r)

`−1,d−2(t) B(r)
`,d−2(t)

. . .
...

...
...

B(r)
`−2,2(t) B(r)

`−1,2(t) B(r)
`,2 (t)

B(r)
`−1,1(t) B(r)

`,1 (t)

B(r)
`,0 (t).
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Replacing the B-Spline basis definition, we are able to express their actual numerical dependence.

Let us begin by expressing the numerical relation between the basis functions of the first two rows:



B(r)
δ−1,d(t)

B(r)
δ,d(t)

B(r)
δ+1,d(t)

...

B(r)
δ+d−3,d(t)

B(r)
δ+d−2,d(t)

B(r)
δ+d−1,d(t)


=

[
B̄(r)
d,d−1(t)

]



B(r)
δ,d−1(t)

B(r)
δ+1,d−1(t)

B(r)
δ+2,d−1(t)

...

B(r)
δ+d−3,d−1(t)

B(r)
δ+d−2,d−1(t)

B(r)
δ+d−1,d−1(t)


, t ∈ [k`, k`+1), r ∈ {0, 1, . . . , d− 1},

where

h
B̄(r)
d,d−1(t)

i
=

d

d− r

266666666666666666666666666664

− t−kδ+d
∆kδ

0 0 . . . 0 0 0

t−kδ
∆kδ

− t−kδ+d+1
∆kδ+1

0 . . . 0 0 0

0
t−kδ+1
∆kδ+1

− t−kδ+d+2
∆kδ+2

. . . 0 0 0

...
...

...
...

...
...

...

0 0 0 . . .
t−kδ+d−3
∆kδ+d−3

− t−kδ+2d−2
∆kδ+d−2

0

0 0 0 . . . 0
t−kδ+d−2
∆kδ+d−2

− t−kδ+2d−1
∆kδ+d−1

0 0 0 . . . 0 0
t−kδ+d−1
∆kδ+d−1

377777777777777777777777777775

,

with ∆kδ = kδ+d − kδ, δ = ` − (d − 1). In general, we express the recursive numerical relation as

follows:


B(r)
δ−1,d(t)

...

B(r)
δ+d−1,d(t)

 = B̄(r)
d,d−1(t) B̄(r)

d−1,d−2(t) . . . B̄(r)
1,0(t) B(r)

δ+d−1,0(t), r ∈ {0, 1, . . . , d− 1}.

Moreover, the active basis for t ∈ [k`, k`+1) and their dependence on lower degree active basis

functions with decreasing rth derivative give rise to the following expansion:
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B(r)
`−d,d(t) B(r)

`−d+1,d(t) B(r)
`−d+2,d(t) B(r)

`−d+3,d(t) . . . B(r)
`−2,d(t) B(r)

`−1,d(t) B(r)
`,d(t)

B(r−1)
`−d+1,d−1(t) B(r−1)

`−d+2,d−1(t) B(r−1)
`−d+3,d−1(t) . . . B(r−1)

`−2,d−1(t) B(r−1)
`−1,d−1(t) B(r−1)

`,d−1(t)

B(r−2)
`−d+2,d−2(t) B(r−2)

`−d+3,d−2(t) . . . B(r−2)
`−2,d−2(t) B(r−2)

`−1,d−2(t) B(r−2)
`,d−2(t)

. . .
...

...
...

Replacing the B-Spline basis definition, we are able to express their actual numerical dependence.

Let us first determine the dependence between the basis functions in the first and second rows:



B(r)
δ−1,d(t)

B(r)
δ,d(t)

B(r)
δ+1,d(t)

...

B(r)
δ+d−3,d(t)

B(r)
δ+d−2,d(t)

B(r)
δ+d−1,d(t)


=

[
B̄(r,r−1)
d,d−1 (t)

]



B(r−1)
δ,d−1(t)

B(r−1)
δ+1,d−1(t)

B(r−1)
δ+2,d−1(t)

...

B(r−1)
δ+d−3,d−1(t)

B(r−1)
δ+d−2,d−1(t)

B(r−1)
δ+d−1,d−1(t)


, t ∈ [k`, k`+1),

where

h
B̄(r,r−1)
d,d−1 (t)

i
= d

266666666666666666666666666664

− 1
∆kδ

0 0 . . . 0 0 0

1
∆kδ

− 1
∆kδ+1

0 . . . 0 0 0

0 1
∆kδ+1

− 1
∆kδ+2

. . . 0 0 0

...
...

...
...

...
...

...

0 0 0 . . . 1
∆kδ+d−3

− 1
∆kδ+d−2

0

0 0 0 . . . 0 1
∆kδ+d−2

− 1
∆kδ+d−1

0 0 0 . . . 0 0 1
∆kδ+d−1

377777777777777777777777777775
with ∆kδ = kδ+d − kδ, δ = ` − (d − 1) as before. In general, we express the recursive numerical
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relation as follows:
B(r)
δ−1,d(t)

...

B(r)
δ+d−1,d(t)

 = B̄(r,r−1)
d,d−1 (t) B̄(r−1,r−2)

d−1,d−2 (t) . . . B̄(1,0)
d−r+1,d−r(t)


B(0)
δ+r−1,d−r(t)

...

B(0)
δ+d−1,d−r(t)

 , r ∈ {1, 2, . . . , d− 1}.

In summary, the active basis functions for any desired rth derivative are obtained as follows:


B(r)
δ−1,d(t)

...

B(r)
δ+d−1,d(t)

 =
r−1∏
j=0

B̄(r−j,r−(j+1))
d−j,d−(j+1) (t)

d−1∏
j=r

B̄(0)
d−j,d−(j+1)(t), r ∈ {1, 2, . . . , d− 1}, t ∈ [k`, k`+1).

Example 6.1. Consider d = 3, r = 2. Then, δ = `− (d− 1) = `− 2, and the active basis functions

are computed as follows:


B(2)
`−3,3(t)

B(2)
`−2,3(t)

B(2)
`−1,3(t)

B(2)
`,3 (t)

 =
1∏
j=0

B̄(2−j,2−(j+1))
3−j,3−(j+1) (t)

2∏
j=2

B̄(0)
3−j,3−(j+1)(t) = B̄(2,1)

3,2 (t) B̄(1,0)
2,1 (t) B̄(0)

1,0(t), t ∈ [k`, k`+1),

where

B̄(2,1)
3,2 (t) = 3

26666664
− 1

∆k`−2
0 0

1
∆k`−2

− 1
∆k`−1

0

0 1
∆k`−1

− 1
∆k`

0 0 1
∆k`

37777775 , B̄
(1,0)
2,1 (t) = 2

26664
− 1

∆k`−1
0

1
∆k`−1

− 1
∆k`

0 1
∆k`

37775 , B̄(0)
1,0(t) = 1

26664
− t−k`+1

∆k`

t−k`
∆k`

37775

26666664
B(2)
`−3,3(t)

B(2)
`−2,3(t)

B(2)
`−1,3(t)

B(2)
`,3 (t)

37777775 = 3!

26666664
− 1

∆k`−2
0 0

1
∆k`−2

− 1
∆k`−1

0

0 1
∆k`−1

− 1
∆k`

0 0 1
∆k`

37777775
26664
− 1

∆k`−1
0

1
∆k`−1

− 1
∆k`

0 1
∆k`

37775
26664
− t−k`+1

∆k`

t−k`
∆k`

37775 , t ∈ [k`, k`+1).

If we exploit the local property of NURBS basis functions, then we are able to write equation (4.0.5)

more succinctly as follows:
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z̃i(τ, w̃i, p̃i) =

266666666666666664

0 . . . R(0)
`i−di,di(τ, w̃i) . . . R(0)

`i,di
(τ, w̃i) . . . 0

0 . . . R(1)
`i−di,di(τ, w̃i) . . . R(1)

`i,di
(τ, w̃i) . . . 0

... . . .
... . . .

... . . .
...

0 . . . R(Di)
`i−di,di(τ, w̃i) . . . R(Di)

`i,di
(τ, w̃i) . . . 0

377777777777777775

2666666666666666664

pi0
...

pi`i−di
...

pi`i
...

piNci−1

3777777777777777775

,

with `i ∈ {di, di +mi, . . . , di + (N i
p − 1)mi}. That is, the local property of NURBS basis functions

gives rise to sparse matrices.

6.2 Strong Convex Hull Property

Next, we will expand on the strong convex hull property of NURBS curves. This property states that

a NURBS curve is contained in the convex hull of its control polygon. We will be mostly interested

in exploiting this property in the case of d-dimensional space where d ∈ {2, 3}. We begin by stating

precisely the notion of a path or trajectory.

Definition 6.1. A path in Rd is a map σ : [t0, tf ]→ Rd. The points σ(t0) and σ(tf ) are called the

endpoints of the path. If σ is of class Cr, we say σ is an r-th differentiable path.

For these cases, we express a NURBS path in the form:

c(t) =


x1(t)

...

xd(t)

 =



∑̀
j=`−d

R(0)
j,d(t,w) px1

j

...∑̀
j=`−d

R(0)
j,d(t,w) pxdj



= R(0)
`−d,d(t,w)


px1
`−d
...

pxd`−d

+ · · ·+R(0)
`,d(t,w)


px1
`

...

pxd`



=
[
R(0)
`−d,d(t,w) . . . R(0)

`,d(t,w)
]

p`−d
...

p`

 ,

where t ∈ [k`, k`+1). Let us recast the NURBS path emphasizing the polynomial pieces:
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cn(t) =
[
R(0)
`−d,d(t,w) . . . R(0)

`,d(t,w)
]

p`−d
...

p`

 , t ∈ [bn, bn+1) ,

with n = 0, . . . , Np − 1, ` = d+mn. According to the strong convex hull property, the polynomial

piece cn(t) will remain inside the smallest convex set containing the control points p`−d, . . . ,p`;

that is, cn(t) ⊂ conv
(
{p`−d, . . . ,p`}

)
. Moreover, due to the smoothness conditions imposed on the

resulting NURBS curve, adjacent polytopes will share a fixed set of control points. If the NURBS

curve is required to be continuous (s = 0), then the adjacent polytopes will share a single control

point. If we require the NURBS curve to be continuously differentiable (s = 1), then adjacent

polytopes will share two control points. In general, if we require the NURBS curve to be sth

continuously differentiable (e.g., belongs to Cs), then adjacent polytopes will share s + 1 control

points. This set of overlapping polytopes gives rise to a connected region (in general non-convex)

which bounds the path c(t). It is this feature of ensuring that the NURBS path c(t) never leaves

the delineated region trace by the union of adjacently overlapping polytopes which is most useful

for trajectory generation purposes. In later chapters, this feature will be exploited to reduce the

number of trajectory constraints involved in the optimal control problem.

The number of polytopes involved in bounding the NURBS path c(t) is equal in number to the

polynomial pieces, Np. These polytopes are obtained by computing the convex hull of d+ 1 control

points at the time. Finally, smoothness conditions impose that at least (s + 1) control points be

shared between consecutive polytopes, giving rise to a non-empty intersection between them. The

order of the sequence of control points, then, becomes important, and it is computed as follows:

{p0,p1, . . . ,pNc−1} =
Np⋃
i=1

{p(i−1)(d−s), . . . ,pi(d−s)+s}. (6.2.1)

The overlapping polytopes are then obtained using:

Pi = conv
(
{p(i−1)(d−s), . . . ,pi(d−s)+s}

)
, pi ∈ Rd, d = {2, 3}, i = 1, . . . , Np. (6.2.2)

In addition, we define the intersection of adjacent polytopes by

Qj = Pj ∩ Pj+1, j = 1, . . . Np − 1. (6.2.3)
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The sharing control points must lie in these intersection sets. That is,

{pj(d−s), . . . ,pj(d−s)+s} ∈ Qj , j = 1, . . . Np − 1. (6.2.4)

Example 6.2. Let Np = 4, d+1 = 7, s+1 = 5; then, the total number of control points is Nc = 13,

and they are ordered as follows: {p0,p1, . . . ,p12} =
4⋃
i=1

{p2(i−1), . . . ,p2(i+2)}, with the following

overlapping pattern:

p0 p1 p2 p3 p4 p5 p6

p2 p3 p4 p5 p6 p7 p8

p4 p5 p6 p7 p8 p9 p10

p6 p7 p8 p9 p10 p11 p12

, (6.2.5)

with each set of control points used to construct the polytopes Pi, i = 1, . . . , Np. Assume that the
13 control points have the following coordinates:

24 17.7505 19.1365 27.8785 50.0533 57.3028 60.1812 60.2878 73.2942 80.6503 83.5288 90.7783 90.3518 89.0725

21.7011 35.0556 18.0445 22.9730 44.2766 34.8967 55.8824 60.8108 45.3895 65.7393 68.4420 80.0477 87.9968

35 ;

then, the union of overlapping polytopes may be graphically drawn as follows:

Figure 6.1: Union of overlapping polytopes

Note that each of the polytopes is constructed by the convex hull of d+ 1 points. In particular, we

will be interested only on polytopes that have nonzero volume. That is, for d = 2 one starts with

triangles, and for d = 3 one starts with tetrahedrons.
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Chapter 7

Solving Optimal Control Problems with Active

Weights and Control Points as Decision Variables

In this chapter, we will focus on the computation of minimizers for optimal control problems that

model the effort required for differentially flat systems to evolve across state configurations while

satisfying trajectory and actuator constraints. In order to relieve the burden often associated with

direct methods, we will exploit the properties of both differentially flat systems and NURBS curves

to induce a transformation of the original optimal control problem into a simpler, more favorable

numerical computational form. This is accomplished by effectively removing the dynamic, trajectory,

and/or actuator constraints from the original optimal control problem.

As previously determined by other authors Fliess et al. [1995], for differentially flat systems there

exists a set of flat outputs (equal in number to the inputs) such that all states and inputs can

be determined from these outputs without integration. Consequently, one can rewrite the optimal

control problem in terms of the flat outputs and then find a minimizer in the flat-output space.

Since the flat outputs implicitly contain all the information about the dynamics of the system by

introducing this transformation, no explicit dynamic constraints remain in the transformed optimal

control problem (removal of dynamic constraints).

If we further parameterize these flat outputs by piecewise polynomial functions in terms of a

linear combination of NURBS basis functions, then we are able to exploit the fact that NURBS

curves are the result of combining two interrelated structures — NURBS basis functions and a

union of overlapping polytopes constructed from the coefficients of the linear combination. After

discretization, the NURBS basis functions depend only on the weights, and the union of overlapping

polytopes depends only on the control points. If, in particular, d of these flat outputs are related
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parametrically and their respective parametric NURBS path lies in the vector space Pb,o,s, then

we are able to fix the coordinates of the control points in such a way that their control polygon

delineates a region of space that avoids all obstructions in the path space and contains the initial

and final path conditions. Since we are guaranteed that the resulting NURBS path will be bounded

by the control polygon regardless of the values of the weights and independent of discretization,

then we are able to remove these path constraints from the optimal control problem (removal of

constraints).

After these two transformations, the original optimal control problem has been converted into a

modified optimal control problem without dynamic, trajectory, and/or actuator constraints. We

proceed, as in a conventional direct method, by transcribing the modified optimal control problem

to a nonlinear programming problem with the remaining parameters (active weights and control

points) as the decision variables. It is important to note that, in general, only a subset of the flat

outputs is written in parametric form and, therefore, only the corresponding control points will be

fixed in order to remove constraints. The control points of the remaining flat outputs (active control

points) will still be allowed to vary.

In summary, the approach used in this chapter consists of the following steps:

a) Rewrite the original optimal control problem, using the fact that the dynamical system is

differentially flat, in terms of the flat outputs and their derivatives (removal of dynamic

constraints).

b) Parameterize the flat outputs by piecewise polynomial functions using a linear combination of

NURBS basis functions.

c) Fix the control points of parametric NURBS paths in such a way that they delineate regions free

from obstructions in their respective path spaces and contain their own initial and final path

conditions (removal of constraints).

d) Transcribe the modified optimal control problem to a nonlinear programming problem with the

active weights and control points as the decision variables.

Starting from the optimal control problem (4.0.1)-(4.0.3), we partition the constraints into two

groups — removable constraints and non-removable constraints. Removable constraints are those

sets of path constraints that can be mutually satisfied by a union of overlapping polytopes. Non-

removable constraints are simply those sets which are not removable.
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min
x(t),u(t)

F0(x(t0),u(t0)) +

tf∫
t0

Ft(x(t),u(t)) dt+ Ff (x(tf ),u(tf )) (7.0.1)

subject to

ẋ(t) = F(x(t),u(t)), t ∈ [t0, tf ] (7.0.2)

¯̀
0 ≤ Ā0 x̄(t0) + B̄0ū(t0) ≤ ū0

¯̀
t ≤ Āt x̄(t) + B̄tū(t) ≤ ūt, t ∈ [t0, tf ]

¯̀
f ≤ Āf x̄(tf ) + B̄f ū(tf ) ≤ ūf (7.0.3)

L̄0 ≤ c̄0(x̄(t0), ū(t0)) ≤ Ū0

L̄t ≤ c̄t(x̄(t), ū(t)) ≤ Ūt, t ∈ [t0, tf ]

L̄f ≤ c̄f (x̄(tf ), ū(tf )) ≤ Ūf

˜̀
0 ≤ Ã0x(t0) + B̃0u(t0) ≤ ũ0

˜̀
t ≤ Ãtx(t) + B̃tu(t) ≤ ũt, t ∈ [t0, tf ]

˜̀
f ≤ Ãfx(tf ) + B̃fu(tf ) ≤ ũf (7.0.4)

L̃0 ≤ c̃0(x(t0),u(t0)) ≤ Ũ0

L̃t ≤ c̃t(x(t),u(t)) ≤ Ũt, t ∈ [t0, tf ]

L̃f ≤ c̃f (x(tf ),u(tf )) ≤ Ũf

Let the state and input evolutions be described by the mappings x : [t0, tf ] → X ⊂ Rn and

u : [t0, tf ]→ U ⊂ Rm. In addition, assume the cost functional (7.0.1), dynamic constraints (7.0.2),

and trajectory and actuator constraints (7.0.3)–(7.0.4) to be sufficiently smooth. In addition, the

cost functional is expressed as a sum of three terms (i.e., initial, trajectory and final). Each function

F`, ` ∈ {0, t, f} in the cost functional is a scalar-valued function F` : X × U → R. The linear and

nonlinear constraints are also divided into three terms (i.e., initial, trajectory, and final), and they

are vector-valued functions L̄` : X × U → RN̄ l` , L̃` : X × U → RN l`−N̄ l` , c̄` : X × U → RN̄n` and

c̃` : X ×U → RNn` −N̄n` , ` ∈ {0, t, f}. Each of these sets of constraints is allowed to be set to equality,

one-sided bounded, two-sided bounded, or unbounded by manipulating the values of the lower and

upper bounds.
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7.1 Removal of Dynamic Constraints

As mentioned in the introduction, we are interested in a real-time implementation of trajectory

generation. In particular, restricting to differentially flat systems has the computational advantage

of simplifying the optimal control problem by removing the dynamic constraints from the problem.

In addition, as determined by Fliess et al. [1995], for differentially flat systems there exists a set of

flat outputs (equal in number to the inputs) such that all states and inputs can be determined from

these outputs without integration.

Definition 7.1 (Differentially Flat Systems). A system is said to be differentially flat if one can find

a set of variables, called the flat outputs, such that the system is algebraic over the differential field

generated by the set of flat outputs. That is, if the system has states x ∈ Rn and inputs u ∈ Rm,

then the system is differentially flat if and only if we can find outputs y ∈ Rm of the form

y = H(x,u(0),u(1), . . . , ,u(r)) (7.1.1)

such that (7.1.2)

x = F(y(0),y(1), . . . , ,y(q)) (7.1.3)

u = G(y(0),y(1), . . . , ,y(q)). (7.1.4)

That is, one is able to express the flat outputs in terms of the states, inputs, and at most rth time

derivatives of the inputs in such a way that there is a bijection such that the states and inputs can

also be expressed in terms of at most qth time derivatives of the flat outputs.

Although, in general, we do not have a methodology to determine which systems are differentially

flat or a systematic way of computing the flat outputs, there exist results in the literature that let

us answer these questions for some specific cases. In particular, differentially flat systems include

controllable linear systems and nonlinear systems which are feedback linearizable either by static or

dynamic feedback, Fliess et al. [1995]. In addition, other specific systems such as aircraft in forward

flight and some classes of vertical take-off and landing (VTOL) aircraft have been determined to be

differentially flat. In the end, even if the system is not differentially flat, many times one is able to

approximate it by control-relevant models that are differentially flat.

Since the behavior of flat systems is determined by the flat outputs, we can plan trajectories in

flat space and then map these to appropriate inputs. With this transformation, we then rewrite the

original optimal control problem (7.0.1) – (7.0.4) and exclude the dynamic constraints. At this point,

one is justified to inquire if there are any disadvantages in mapping the original set of states and

inputs to the flat outputs. In general, one can expect that any singularities in the original space will
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be mapped to the flat space, but since the mappings (7.1.1)–(7.1.4) are obtained through algebraic

manipulation of the dynamic constraints there might be new singularities or parameter restrictions

that will need to be addressed. Also, it becomes more difficult to reason about the original dynamics

and constraints in flat space, and the degree of the polynomial pieces parameterizing the flat outputs

are usually larger to accommodate the required smoothness. Thankfully, all of these issues can be

addressed off-line.

7.2 Removal of Trajectory Constraints

In the previous section, we were able to express the states and inputs in terms of a set of flat outputs

y : [t0, tf ] → Rm. This produced a significant reduction in the number of unknown variables (i.e.,

from n + m to m). We restrict our search for minimizers to the modified optimal control problem

(dynamic constraints have been removed) in the space of piecewise polynomial functions with a

prescribed number of polynomial pieces, order, and smoothness. This is a finite-dimensional space

and, as a consequence, we are able to express each member in the vector space in terms of a set of

basis functions. In particular, we express each flat output in terms of a linear combination of NURBS

basis functions. The dimension of the vector space of any curve so parameterized is determined by

Nc = dim(Pb,o,s) = Np(o − (s + 1)) + (s + 1). We will make use of the local support property of

NURBS curves, which ensures us that the computation of any value of the curve only requires the

computation of at most d+ 1 NURBS basis functions, to efficiently compute the value of the curve

at any given point. This is a significant savings in computational time because in general d+ 1 is a

much lesser quantity that Nc.

We are now in a position to explore the removal of trajectory and/or actuator constraints from the

optimal control problem (7.0.1) – (7.0.4). As mentioned before, in the definition of a parametric

NURBS curve lying in Rd, d = {2, 3}, there are two important structures being combined to generate

it — NURBS basis functions and a union of overlapping polytopes obtained from the coefficients

of the linear combination. According to the strong convex hull property of NURBS curves, each

polynomial piece is guaranteed to be bounded by a corresponding polytope (i.e., the smallest convex

set containing a subset of the coefficients of the linear combination or control points). This idea

extends to the whole NURBS curve in which case the parametric curve is guaranteed to remain inside

the union of a set of overlapping polytopes. Therefore, if the control points defining such polytopes

happen to be fixed in space, and we manipulate the NURBS basis functions (after discretization they

depend only on the weights), then we are able to obtain an infinite number of curves all lying inside

the space delineated by the polytopes, regardless of the values of the weights. As a consequence,
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if the polytopes delineate a section of space that is feasible with respect to some set of trajectory

constraints, then the resulting parametric curve will also be feasible with respect to the same set of

trajectory constraints.

We will make use of this property to separately treat the guidance and obstacle-avoidance problems

as follows. We first design a section of space (in general, non-convex) that is feasible with respect to

trajectory constraints and that contains the initial and final path conditions by judiciously placing

the control points (e.g., to form a union of overlapping polytopes avoiding all obstacles). Then, we

generate paths that minimize the original cost functional and satisfy the remaining constraints (i.e.,

omit the trajectory constraints), using the active weights and control points as decision variables

(some of the control points having been fixed in the previous step). The key observation is that

paths generated by solving the latter problem will be guaranteed to be contained inside the feasible

region generated in the former phase (i.e., will be feasible with respect to trajectory constraints)

without the need to explicit write the trajectory constraints into the optimal control problem and

independent of the discretization. Since the resulting trajectory, if it exists, is guaranteed to remain

inside the designed region, we effectively can remove these constraints from the optimal control

problem.

One of the main challenges in the application of the above procedure resides on the construction of a

feasible section of space with respect to trajectory constraints starting only from obstacle information

and the initial and final path conditions. In general, the obstructed space is described by the union

of the obstacles, Oi. That is,

T =
M⋃
i=1

Oi = O1 ∨ · · · ∨ OM .

Using de Morgan’s Law, we are able to express free space (the feasible set) as follows:

F = ¬
M⋃
i=1

Oi =
M⋂
i=1

¬Oi = ¬O1 ∧ · · · ∧ ¬OM ,

where the logic operators ∧, ∨, and ¬ stand for ”and”, ”or”, and ”not”, respectively. For practical

reasons, we will only consider obstacles that are basic closed semi-algebraic sets; in particular, those

that are compact convex with nonempty interiors.

Definition 7.2 (Basic closed semi-algebraic set). A basic closed semi-algebraic subset of Rn is a set

of the form

{x ∈ Rn | f1(x) ≤ 0 ∧ · · · ∧ fm(x) ≤ 0}, (7.2.1)
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where f1, . . . , fm ∈ R[x1, . . . , xn], where R[x1, . . . , xn] denotes the collection of all polynomials in

x1, . . . , xn with coefficients in R.

Since we are restricting ourselves to basic closed semi-algebraic sets, we describe the ith obstacle in

the form:

Oi = {x ∈ Rd | f i1(x) ≤ 0 ∧ · · · ∧ f ini(x) ≤ 0}.

The feasible set then becomes

F =
M⋂
i=1

¬Oi

=
M⋂
i=1

¬{x ∈ Rd | f i1(x) ≤ 0 ∧ · · · ∧ f ini(x) ≤ 0}

=
M⋂
i=1

{x ∈ Rd | f i1(x) > 0 ∨ · · · ∨ f ini(x) > 0}

=
M⋂
i=1

{x ∈ Rd |
ni⋃
j=1

f ij(x) > 0}.

That is, the feasible set, in general, is a conjunction of disjunctions. This also elucidates the wide

spread use of ellipses for approximating obstacles in the literature. Since in optimization-based

approaches the feasible set must be specified in terms of intersection of sets, then it is desirable to

approximate the set
ni⋃
j=1

f ij(x) > 0 by a single polynomial inequality, rendering the feasible set to

be a conjunction. However, the outcome of such approximations is unpredictable conservatism. In

addition, one still has to include a large number of nonlinear constraints into the optimal control

problem. Since in obstacle avoidance problems the bulk of the constraints are used to describe the

feasible set, the inclusion of these many nonlinear constraint inequalities can render the problem

real-time intractable. Alternatively, one can use boolean variables to enforce disjunctions. That is, ni⋂
j=1

f ij(x) > Mi bj

⋂ ni∑
j=1

bj ≤ ni − 1, bj ∈ {0, 1}

 =⇒
ni⋃
j=1

f ij(x) > 0. (7.2.2)

Note that if at least one of the boolean variables is 0, then at least one of the original inequalities

is true. In this case, a boolean variable is required per inequality and, depending on how many

inequalities are involved in describing an obstacle, this could be a very large number of extra

decision variables that one must determine. In this case, the optimal control problem after

transcription becomes a mixed-integer nonlinear programming problem with a large set of mixed-

integer nonlinear constraints and a large set of extra boolean variables. As a result, the problem is

very computationally expensive and real-time intractable.
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Example 7.1. Consider an obstructed set which is made up of a single obstacle, O. In particular,

let the obstacle be defined by the following non-empty compact convex semi-algebraic set:

O = {x ∈ R2 | x2
1 + x2

2 ≤ 10 ∧ 0.5 x2
1 + 0.25 x4

2 ≤ 10 ∧ x1 + x2 ≤ 3}.

Figure 7.1: Obstructed Space

The feasible set is correspondingly described as its complement using de Morgan’s Law.

F = {x ∈ R2 | ¬
(
x2

1 + x2
2 ≤ 10 ∧ 0.5 x2

1 + 0.25 x4
2 ≤ 10 ∧ x1 + x2 ≤ 3

)
}

= {x ∈ R2 | ¬
(
x2

1 + x2
2 ≤ 10

)
∨ ¬

(
0.5 x2

1 + 0.25 x4
2 ≤ 10

)
∨ ¬ (x1 + x2 ≤ 3)}

= {x ∈ R2 | x2
1 + x2

2 > 10 ∨ 0.5 x2
1 + 0.25 x4

2 > 10 ∨ x1 + x2 > 3}.

Figure 7.2: Free Space

In particular, note the the feasible set is described in terms of a disjunction.
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Now that we have exposed the structure of the feasible set, we are in a position to appreciate the

difficulties involved in constructing a feasible region of space by control point manipulation. In

general, the choice of the vector space Pb,o,s containing the NURBS path will dictate the number

of control points available for the construction of a section of space that is feasible with respect to

trajectory constraints. In this specification, as noted in Chapter 6, is encoded the ordering of the

control points, their subset partition (i.e., selection of d + 1 points at a time) for putting together

Np polytopes in such a way that they share adjacently s+ 1 points. In addition, we require that the

first and last control points correspond to the coordinates of the initial and final path conditions,

respectively, and that these controls be vertices of their respective polytopes.

In particular, the construction of such a region without any further restrictions is complicated by

the following issues: a) lack of uniqueness of a feasible region unless it is a singleton (in general,

there exist many feasible regions connecting the initial and final path conditions, see Figure 7.3), b)

must guarantee that the smallest convex sets containing the relevant control points per polynomial

piece are feasible with respect to the constraints (the smallest convex set of a set of points is, by

definition, the convex hull of them, and there is no analytical way of expressing this structure ahead

of time), c) the feasible set is described by a conjunction of disjunctions, and d) it is not clear what

objective function to use to drive a desired structure. Consequently, we are forced to determine a

pragmatic set of conditions under which it is possible to construct feasible regions reliably.

Figure 7.3: Cell Decomposition of a UAV trajectory space
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We address such problems by requiring that a section of space, feasible with respect to trajectory

constraints, be given in the form of an ordered union of pairwise adjacently overlapping non-empty

convex compact sets, where the first set contains the initial path condition, and the last set contains

the final path condition. These requirements remove the uniqueness problem because a specific

direction is chosen before hand. This is, in practical terms, the way it occurs in many autonomous

systems applications where a single safe corridor may be constructed from sensor data in the direction

of the moving system. In the case of an autonomous system traversing an urban environment, one

can exploit the structure of the streets and buildings to build safe regions. More structure than

this is required, however, to build the overlapping set of polytopes corresponding to the NURBS

parameterization. In particular, as mentioned above, we require that the original union of safe

regions overlap only pairwise adjacently to avoid ill conditions, that they be ordered, and that

they contain the initial and final path conditions. Since we will proceed this design by solving

for trajectories which must satisfy the modified optimal control problem, it makes sense that we

would like to design the largest region of space contained inside the given ordered union of pairwise

adjacently overlapping safe regions to increase the likelihood of finding such a trajectory. One way in

which this can be accomplished is by maximizing the sum of all the d-volumes of the approximating

polytopes. This is equivalent to maximizing the volume of the ordered union of pairwise adjacently

overlapping polytopes and their pairwise intersection, Theorem 2.30. In general, only non-empty

convex compact sets have non-zero volume, and they are closed with respect to a finite number of

intersections. Moreover, since these sets are convex, then we can also make use of Theorem 2.1 to

ensure that all the computed polytopes lie strictly in the given union of overlapping safe regions

without requiring an analytical description of the convex hull. As a final remark, one can exploit the

fact that there exists more than one feasible region connecting the initial and final path conditions

for those cases where one fails to acquire a trajectory satisfying the remaining constraints in the

modified optimal control problem. In that occurrence, one can attempt to build a polytopal corridor

that inner approximates on of the remaining feasible regions.

7.2.1 Inner Approximation of Feasible Regions

Mathematically, our objective is to develop an optimal inner approximation of a region R that is

feasible with respect to trajectory and/or actuator constraints. The inner approximation I of R

will be defined as the ordered union of pairwise adjacently overlapping polytopes, Pi, i = 1, . . . , Np

I =

Np⋃
i=1

Pi

 ⊆ R. (7.2.3)

The purpose is then to place the control points making up each of the polytopes Pi, i = 1, . . . , Np in
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such a way that the resulting union lies entirely in the feasible region R, and it is the one with largest

volume. Figure 7.4 illustrates the specification of a region R and a possible inner approximation of

this region using five polytopes. Each of the polytopes are the convex hull of eight control points,

and adjacent polytopes share three of these control points to ensure that the resulting curve (not

shown) is at least C2. In general, the choice of vector space Pb,o,s containing the desired NURBS

curve will dictate the specific approximation. Consequently, the set I is not unique, and the same

region R may be inner approximated in many different ways.

R

P2

P3

P4

P5

P1

Figure 7.4: Inner approximation of region R by an ordered union of pairwise adjacently overlapping

polytopes.

Theorem 7.1. Let R be a feasible region with respect to a set of trajectory constraints in Rd,

d ∈ {2, 3}. Assume that this region is defined by an ordered union of pairwise adjacently overlapping

non-empty compact convex sets Si, i = 1, . . . ,N with non-zero volume overlap. That is,

R =
N⋃
i=1

Si such that vd(Sj ∩ Sj+1 ) 6= 0 for j = 1 , . . . ,N − 1 .

In addition, assume that the initial path condition, c(t0), is contained in the interior of the set S1,

and the final path condition, c(tf ), is contained in the interior of the set SN . Furthermore, define

a parametric NURBS curve, c(t) t ∈ [t0, tf ], lying in Rd, d ∈ {2, 3}, respectively, and made up of

N polynomial pieces with order o and sth continuously differentiable (s is not arbitrary; it has a

lower and upper bound, 1 < s < d). If we restrict the ordered set of control points arising from the

specification of the parametric NURBS curve

{p0,p1, . . . ,pNc−1} =
N⋃
i=1

{p(i−1)(d−s), . . . ,pi(d−s)+s}, pk ∈ Rd ∀ k, Nc = N (o− (s+ 1)) + (s+ 1)
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such that {p(i−1)(d−s), . . . ,pi(d−s)+s} ∈ Si, i = 1, . . . ,N and {p(i−1)(d−s), . . . ,pi(d−s)+s} ∈

Sj+1 ∩ Sj , j = 1, . . . ,N − 1, and if the nonlinear programming problem NLP (P1, . . . ,PN ),

min−vd(P1 ∪ · · · ∪ PN )− vd(P1 ∩ P2 )− . . . −vd(PN−1 ∩ PN )

subject to

p0 = c(t0) ∈ Si, i = 1

{p(i−1)(d−s)+1, . . . ,pi(d−s)+s} ∈ S̃i ⊂ Si, i = 1

{p(i−1)(d−s), . . . ,pi(d−s)+s} ∈ Si, i = 2, . . . ,N − 1

{p(i−1)(d−s), . . . ,pi(d−s)+s−1} ∈ S̃i ⊂ Si, i = N

{pj(d−s), . . . ,pj(d−s)+s} ∈ Sj ∩ Sj+1, j = 1, . . .N − 1

pNc−1 = c(tf ) ∈ Si, i = N

vd(Pi) 6= 0, i = 1, . . . ,N

has a solution, then we can determine an inner approximation I of region R in the form of an

ordered union of pairwise adjacently overlapping polytopes I =
( N⋃
i=1

Pi
)
⊆ R, where

Pi = conv
(
{p(i−1)(d−s), . . . ,pi(d−s)+s}

)
, i = 1, . . . ,N .

S1

P2

P3

P4

S2

S3

S4

S5

P5

P1

Figure 7.5: Specification of an ordered union of pairwise adjacently overlapping non-empty compact

convex sets Si and the resulting inner approximation by an ordered union of pairwise adjacently

overlapping polytopes Pi.
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Proof. Assume that the nonlinear programming problem NLP (P1, . . . ,PN ) has a solution. Then,

we have that a set of ordered control points {p0,p1, . . . ,pNc−1} exists and that they satisfy the

condition {p(i−1)(d−s), . . . ,pi(d−s)+s} ∈ Si, i = 1, . . . ,N . Since the sets Si, i = 1, . . . ,N are all

convex, then we have that the polytopes Pi = conv
(
{p(i−1)(d−s), . . . ,pi(d−s)+s}

)
, i = 1, . . . ,N lie,

correspondingly, in Si, i = 1, . . . ,N according to Theorem 2.1. Moreover, since the control points

also satisfy {p(i−1)(d−s), . . . ,pi(d−s)+s} ∈ Sj+1 ∩ Sj , j = 1, . . . ,N − 1, then, pairwise adjacently, the

polytopes must overlap (according to the smoothness conditions on NURBS curves, they must share

at least s+ 1 control points), although not necessarily with a non-zero volume. Since Pi ⊆ Si, then

if pairwise adjacent polytopes overlap they must do so in the intersection of the sets Si; that is,

Pj+1 ∩ Pj ∈ Sj+1 ∩ Sj , j = 1, . . . ,N−1. Consequently,
( N⋃
i=1

Pi
)
⊆
( N⋃
i=1

Si
)

. Figure 7.5 illustrates

the general idea behind the specification of region R and the resulting inner approximation by the

set I.

Finally, since the sets Si are non-empty compact convex sets, they have non-zero volumes, and it

makes sense to expand the ordered union of the pairwise adjacently overlapping polytopes in order

to inner approximate the feasible region with the largest volume possible. Repeatedly applying

Theorem 2.30, we are able to inductively prove that in general the sum of the d-volumes of N

polytopes is determined as follows:

vd(P1 ) + · · ·+ vd(PN ) = vd(P1 ∪ · · · ∪ PN ) +

vd

( N⋃
j=2

(P1 ∩ Pj )

)
+ vd

( N⋃
j=3

(P2 ∩ Pj )

)
+ · · ·+ vd(PN−1 ∩ PN ).

In particular, if the sets only overlap pairwise adjacently, we have that the sum of the d-volumes of

the polytopes can be simplified to

vd(P1 ) + · · ·+ vd(PN ) = vd(P1 ∪ · · · ∪ PN ) + vd(P1 ∩ P2 ) + · · ·+ vd(PN−1 ∩ PN ).

Therefore, using the above result and Theorem 2.47, we have that the cost function of the nonlinear

programming problem NLP (P1, . . . ,PN ) that maximizes the volumes of the whole union of the

polytopes and their pairwise adjacent intersections is equivalent to

vd(P1 ∪ · · · ∪ PN ) + vd(P1 ∩ P2 ) + · · ·+ vd(PN−1 ∩ PN ) = vd(P1 ) + · · ·+ vd(PN )

=
N∑
i1=1

· · ·
N∑
id=1

V(Pi1 , . . . ,Pid),

where V(Pi1 , . . . ,Pid) are the mixed volumes of polytopes Pi1 , . . . ,Pid . In particular, according
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to properties of mixed volumes (see Definition 2.25), the mixed volume of the convex polytopes

P1, . . . ,Pd in Rd, V(P1, . . . ,Pd), is a non-negative continuous function in d variables on the set of

convex polytopes and symmetric in the variables Pi. As a consequence, it suffices to discard the

case when any of the polytope volumes is zero to obtain an ordered union of pairwise adjacently

overlapping polytopes that approximates R with volume vd(P1 ∪ · · · ∪ PN ) + vd(P1 ∩ P2 ) + · · · +

vd(PN−1 ∩ PN ). �

In order to be efficient, we will restrict the search for the coordinates of the control points to the boxes

that circumscribe the sets Si, i = 1, . . . ,N and Sj+1∩Sj , j = 1, . . . ,N −1. We will label these boxes

by Bi, i = 1, . . . ,N and B̃j , j = 1, . . . ,N − 1, respectively. Let the coordinates xij ∈
[
(xij)

`, (xij)
u
]
,

j = 1, . . . , d. In general, we define p`i =
(
(xi1)`, . . . , (xid)

`
)

and pui =
(
(xi1)u, . . . , (xid)

u
)
, i = 1, . . . ,N .

That is, we can add the following set of constraints to the the nonlinear programming problem

NLP (P1, . . . ,PN ).

p`i ≤ {p(i−1)(d−s)+1, . . . ,pi(d−s)+s} ≤ pui , i = 1

p`i ≤ {p(i−1)(d−s), . . . ,pi(d−s)+s} ≤ pui , i = 2, . . . , Np − 1

p`i ≤ {p(i−1)(d−s), . . . ,pi(d−s)+s−1} ≤ pui , i = Np.

In addition, we have deliberately left the initial and final path conditions outside of the set S̃i ⊂ Si
to ensure that they become vertices of the resulting union of polytopes. In general, one can use a

previously generated version of the union of polytopes and modified coordinates of control points

p0 and pN−1 to accommodate other initial and final path conditions, so long as the control points

remain vertices of their respective polytopes and in their corresponding sets Si.

For practical implementations, one can restrict the individual sets Si to be only those that are

compact convex semi-algebraic sets with nonempty interiors (e.g., the simplest sets being polytopes).

The construction of such regions can be obtained using a cell decomposition method or constructed

online using sensor information followed by some type of pairwise adjacent overlapping procedure.

In particular, the simplest sets meeting the above criteria are polytopes, and we will restrict to these

because they give rise to optimization problems that are computationally less expensive (linear

constraints) than their nonlinear counterparts.

Consider the following application of Theorem 7.1. Assume that the we are given the sets shown in

Figure 7.6 that meet the conditions specified in Theorem 7.1, with all the sets Si being polytopes.

Then, by implementing the optimization problem NLP (P1, . . . ,PN ) and solving it, we obtain the

ordered union of pairwise adjacently overlapping polytopes as shown in Figure 7.6.
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a) b)

Figure 7.6: a) Specification of a feasible region in terms of a ordered union of adjacently overlapping

non-empty compact convex sets and b) Inner approximation of feasible region by an ordered union

of adjacently overlapping polytopes

After the removal of dynamic constraints, trajectory, and/or actuator constraints we have the

following discretized optimal control problem:

min
z̃
J [z̃] = G0(z̃(τ0, w̃, p̃)) +

Nτ−2∑
i=0

 N∑
j=0

γij Gt(z̃(rj , w̃, p̃))

+ Gf (z̃(τNτ−1, w̃, p̃))

subject to

˜̀
0 ≤ Ã0 z̃(τ0, w̃, p̃) ≤ ũ0

˜̀
t ≤ Ãt z̃(τi, w̃, p̃) ≤ ũt, i = 0, . . . , Nτ − 1

˜̀
f ≤ Ãf z̃(τNτ−1, w̃, p̃) ≤ ũf

L̃0 ≤ C̃0(z̃(τ0, w̃, p̃)) ≤ Ũ0

L̃t ≤ C̃t(z̃(τi, w̃, p̃)) ≤ Ũt, i = 0, . . . , Nτ − 1

L̃f ≤ C̃f (z̃(τNτ−1, w̃, p̃)) ≤ Ũf .

Note that we have removed the dynamic constraints (7.0.2) and trajectory and/or actuator

constraints (7.0.3) from the original optimal control problem.
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7.3 Nonlinear Programming Problem

The result of the previous parameterization and discretization is a nonlinear programming problem

where the unknowns are the active weights and control points of all the NURBS curves. The

structure of a general nonlinear programming problem is as follows:

min
y
f(y)

subject to

L ≤


y

Ay

c(y)

 ≤ U.

For our current setting, y ∈ RN cT , N c
T is the total number of active decision variables, f : RN cT → R

is a smooth real-valued function, A : RN cT → RÑ
l
T=Ñ li+Ñτ Ñ

l
t+Ñ

l
f is a linear operator, c : RN cT →

RÑ
n
T=Ñni +Ñτ Ñ

n
t +Ñnf is a smooth vector-valued function, and the lower bounds and upper bounds

are vectors L,U ∈ RN cT+Ñ lT+ÑnT , where Ñ l
T and Ñn

T are the total number of linear and nonlinear

constraints, respectively. We construct the objective function f , the linear operator A, the constraint

functions c, and lower and upper bounds as follows:

f(y) = G0(z̃(τ0,y)) +
Nτ−2∑
i=0

 N∑
j=0

γij Gt(z̃(rj ,y))

+ Gf (z̃(τNτ−1,y)) (7.3.1)

L =



Lc
˜̀
i

(˜̀t)0

...

(˜̀t)Nc−1

˜̀
f

L̃i

(L̃t)0

...

(L̃t)Nc−1

L̃f



, c(y) =



Ã0 z̃(τ0,y)

Ãt z̃(τ0,y)
...

Ãt z̃(τNc−1,y)

Ãf z̃(τNc−1,y)

C̃0(z̃(τ0,y))

C̃t(z̃(τ0,y))
...

C̃t(z̃(τNc−1,y))

C̃f (z̃(τNc−1,y))



, U =



Uc

ũi

(ũt)0

...

(ũt)Nc−1

ũf

Ũi

(Ũt)0

...

(Ũt)Nc−1

Ũf



, (7.3.2)

where Lc and Uc are the lower and upper bounds for the active decision variables. In general, we

set the bounds for the active weights to be in the range (0,∞) and the active control points to be

in the range (−∞,∞). Note that it is no longer true that the linear constraints in the optimal
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control problem map to linear constraints in the nonlinear programming problem. This is due to

the nonlinear nature of the NURBS basis functions with respect to the weight parameters. The

Jacobians of the objective function and constraint function are computed as follows:

Dyf(z̃(y)) = Dz̃G0(z̃(τ0,y)) Dyz̃(τ0,y) +

Nτ−2X
i=0

"
NX
j=0

γij Dz̃Gt(z̃(rj ,y)) Dyz̃(rj ,y)

#
+Dz̃Gf (z̃(τNτ−1,y)) Dyz̃(τNτ−1,y)

Dyc(z̃(y)) =

266666666666666666666666664

Ã0 Dyz̃(τ0,y)

Ãt Dyz̃(τ0,y)

...

Ãt Dyz̃(τNc−1,y)

Ãf Dyz̃(τNc−1,y)

Dz̃C̃0(z̃(τ0,y)) Dyz̃(τ0,y)

Dz̃C̃t(z̃(τ0,y)) Dyz̃(τ0,y)

...

Dz̃C̃t(z̃(τNc−1,y)) Dyz̃(τNc−1,y)

Dz̃C̃f (z̃(τNc−1,y)) Dyz̃(τNc−1,y)

377777777777777777777777775

.

Likewise, the Hessian of the objective function and constraint function are computed as follows:

Dyyf(z̃(y)) = Dyz̃(τ0,y)TDz̃z̃G0(z̃(τ0,y)) Dyz̃(τ0,y) +

NvTX
i=1

∂G0(z̃(τ0,y))

∂ẑi
Dyyẑi

+

Nτ−2X
i=0

"
NX
j=0

γij Dyz̃(rj ,y)TDz̃z̃Gt(z̃(rj ,y)) Dyz̃(rj ,y)

#

+

Nτ−2X
i=0

24 NX
j=0

γij

8<:
NvTX
k=1

∂Gt(z̃(rj ,y))

∂ẑk
Dyyẑk

9=;
35

+Dyz̃(τNτ−1,y)TDz̃z̃Gf (z̃(τNτ−1,y)) Dyz̃(τNτ−1,y) +

NvTX
i=1

∂Gf (z̃(τNτ−1,y))

∂ẑi
Dyyẑi

Dyy

h
Ã1

0 z̃(τ0,y)
i

= Dyz̃(τ0,y)T Dz̃z̃

h
Ã1

0 z̃(τ0,y)
i

Dyz̃(τ0,y) +

NvTX
i=1

∂
h
Ã1

0 z̃(τ0,y)
i

∂ẑi
Dyyẑi

...

Dyy

h
ÃÑ

l
i

0 z̃(τ0,y)
i

= Dyz̃(τ0,y)T Dz̃z̃

h
ÃÑ

l
i

0 z̃(τ0,y)
i

Dyz̃(τ0,y) +

NvTX
i=1

∂
h
ÃÑ

l
i

0 z̃(τ0,y)
i

∂ẑi
Dyyẑi

Dyy

h
Ã1
t z̃(τ0,y)

i
= Dyz̃(τ0,y)T Dz̃z̃

h
Ã1
t z̃(τ0,y)

i
Dyz̃(τ0,y) +

NvTX
i=1

∂
h
Ã1
t z̃(τ0,y)

i
∂ẑi

Dyyẑi

...

Dyy

h
ÃÑ

l
t

t z̃(τ0,y)
i

= Dyz̃(τ0,y)T Dz̃z̃

h
ÃÑ

l
t

t z̃(τ0,y)
i

Dyz̃(τ0,y) +

NvTX
i=1

∂
h
ÃÑ

l
t

t z̃(τ0,y)
i

∂ẑi
Dyyẑi
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...

Dyy

h
Ã1
t z̃(τNc−1,y)

i
= Dyz̃(τNc−1,y)T Dz̃z̃

h
Ã1
t z̃(τNc−1,y)

i
Dyz̃(τNc−1,y)

+

NvTX
i=1

∂
h
Ã1
t z̃(τNc−1,y)

i
∂ẑi

Dyyẑi

...

Dyy

h
ÃÑ

l
t

t z̃(τNc−1,y)
i

= Dyz̃(τNc−1,y)T Dz̃z̃

h
ÃÑ

l
t

t z̃(τNc−1,y)
i

Dyz̃(τNc−1,y)

+

NvTX
i=1

∂
h
ÃÑ

l
t

t z̃(τNc−1,y)
i

∂ẑi
Dyyẑi

Dyy

h
Ã1
f z̃(τNc−1,y)

i
= Dyz̃(τNc−1,y)T Dz̃z̃

h
Ã1
f z̃(τNc−1,y)

i
Dyz̃(τNc−1,y)

+

NvTX
i=1

∂
h
Ã1
f z̃(τNc−1,y)

i
∂ẑi

Dyyẑi

...

Dyy

»
Ã
Ñlf
f z̃(τNc−1,y)

–
= Dyz̃(τNc−1,y)T Dz̃z̃

»
Ã
Ñlf
f z̃(τNc−1,y))

–
Dyz̃(τNc−1,y)

+

NvTX
i=1

∂

»
Ã
Ñlf
t z̃(τNc−1,y)

–
∂ẑi

Dyyẑi

DyyC̃1
0(z̃(τ0,y)) = Dyz̃(τ0,y)T Dz̃z̃C̃1

0(z̃(τ0,y)) Dyz̃(τ0,y) +

NvTX
i=1

∂C̃1
0(z̃(τ0,y))

∂ẑi
Dyyẑi

...

DyyC̃Ñ
n
i

0 (z̃(τ0,y)) = Dyz̃(τ0,y)T Dz̃z̃C̃Ñ
n
i

0 (z̃(τ0,y)) Dyz̃(τ0,y) +

NvTX
i=1

∂C̃Ñ
n
i

0 (z̃(τ0,y))

∂ẑi
Dyyẑi

DyyC̃1
t (z̃(τ0,y)) = Dyz̃(τ0,y)T Dz̃z̃C̃1

t (z̃(τ0,y)) Dyz̃(τ0,y) +

NvTX
i=1

∂C̃1
t (z̃(τ0,y))

∂ẑi
Dyyẑi

...

DyyC̃Ñ
n
t

t (z̃(τ0,y)) = Dyz̃(τ0,y)T Dz̃z̃C̃Ñ
n
t

t (z̃(τ0,y)) Dyz̃(τ0,y) +

NvTX
i=1

∂C̃Ñ
n
t

t (z̃(τ0,y))

∂ẑi
Dyyẑi

...

DyyC̃1
t (z̃(τNc−1,y)) = Dyz̃(τNc−1,y)T Dz̃z̃C̃1

t (z̃(τNc−1,y)) Dyz̃(τNc−1,y)

+

NvTX
i=1

∂C̃1
t (z̃(τNc−1,y))

∂ẑi
Dyyẑi

...

DyyC̃Ñ
n
t

t (z̃(τNc−1,y)) = Dyz̃(τNc−1,y)T Dz̃z̃C̃Ñ
n
t

t (z̃(τNc−1,y)) Dyz̃(τNc−1,y)

+

NvTX
i=1

∂C̃Ñ
n
t

t (z̃(τNc−1,y))

∂ẑi
Dyyẑi
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DyyC̃1
f (z̃(τNc−1,y)) = Dyz̃(τNc−1,y)T Dz̃z̃C̃1

f (z̃(τNc−1,y)) Dyz̃(τNc−1,y)

+

NvTX
i=1

∂C̃1
f (z̃(τNc−1,y))

∂ẑi
Dyyẑi

...

DyyC̃
Ñnf
f (z̃(τNc−1,y)) = Dyz̃(τNc−1,y)T Dz̃z̃C̃

Ñnf
f (z̃(τNc−1,y)) Dyz̃(τNc−1,y)

+

NvTX
i=1

∂C̃
Ñnf
t (z̃(τNc−1,y))

∂ẑi
Dyyẑi.

The Jacobian and Hessian of the z variables with respect to the active weights and control

points are obtained by using Proposition 3.2 and by ordering both the z variables and the active

decision variables as described in Chapter 4. Before delving into some examples demonstrating

the methodology described in this chapter, let us summarize the steps described above. Figure

7.7 illustrates the steps required after expressing the optimal control problem in terms of the flat

outputs.

Figure 7.7: a) Feasible region specification, b) inner approximation of feasible region by an ordered

union of adjacently overlapping polytopes, c) removal of trajectory constraints, d) computation of

trajectory

We begin with a specification of a feasible region meeting the requirements spelled out in Theorem

7.1, and then we solve the nonlinear programming problem NLP (P1, . . . ,PN ) arising from the

specification of a parametric NURBS curve. The result is an ordered union of adjacently overlapping
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polytopes. We then fixed these control points and prepare to solve a modified version of the original

optimal control problem which, in addition to omitting dynamic constraints, also omits the trajectory

constraints that are satisfied by the union of polytopes. The result is a minimizer to the original

optimal control problem (7.0.1)–(7.0.4).

Example 7.2 (Analytical - Revisited using active weights and control points as decision variables).

At this point, we will revisit Example 5.1. Previously, we had shown how to use NURBS with control

points only to compute optimal trajectories. Here, we will begin by comparing those results with

the methodology of this chapter. That is, we will consider NURBS with active weights and control

points.

xi ∈ Pbi,oi,si , i = 1, . . . 3, with bi =
[

0 3.3333 6.6667 10.0000
]
, oi = 6, si = 2

uj ∈ Pbj ,oj ,sj , j = 1, . . . 2, with bj =
[

0 2.5000 5.0000 7.5000 10.0000
]
, oj = 5, sj = 0

Based on Proposition 3.2, a NURBS curve and its time derivatives are expressed recursively as

follows:

c
(ri)
i (t,wi,pi) =

wT
i diag({B(ri)

di
(t)})pi[

B(0)
di

(t)
]T

wi

−
ri∑
k=1

 ri

k


[
B(k)
di

(t)
]T

wi[
B(0)
di

(t)
]T

wi

c
(ri−k)
i (t,wi,pi), t ∈ [t0, tf ]

where
[
B(ri)
di

(t)
]

=


B(ri)

0,di
(t)

...

B(ri)
Nci−1,di

(t)

, diag({B(ri)
di

(t)}) =


B(ri)

0,di
(t) . . . 0

...
. . .

...

0 . . . B(ri)
Nci−1,di

(t)

,

wi =


w0
i

...

w
Nci−1
i

, and pi =


p0
i

...

p
Nci−1
i

. More specifically, the states and inputs in the current

example take the following form at a collocation point τk:

x
(0)
i (τk,wi,pi) =

wT
i diag({B(0)

di
(τk)})pi[

B(0)
di

(τk)
]T

wi

, i ∈ {1, 2, 3}

x
(1)
i (τk,wi,pi) =

wT
i diag({B(1)

di
(τk)})pi[

B(0)
di

(τk)
]T

wi

−

[
B(1)
di

(τk)
]T

wi([
B(0)
di

(τk)
]T

wi

)2 wT
i diag({B(0)

di
(τk)})pi, i ∈ {1, 2, 3}

u
(0)
j (τk,wj ,pj) =

wT
j diag({B(0)

dj
(τk)})pj[

B(0)
dj

(τk)
]T

wj

, j ∈ {1, 2}
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Note that in this instance the curves depend nonlinearly on the parameters of the piecewise

polynomial functions (i.e., active weights and control points). Figure 7.8 and Figure 7.9 compare

the minimizer found using this methodology against the one found in Example 5.1.

Figure 7.8: Numerical optimal state trajectory with control points only (black), Numerical optimal

state trajectory with active weights and control points (red) and Analytical optimal state trajectory

(blue)

Figure 7.9: Numerical optimal input trajectory with control points only (black), Numerical optimal

input trajectory with active weights and control points (red) and Analytical optimal input trajectory

(blue)
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Figure 7.10: Initial guess for states (black), Numerical optimal states with control points only

(green), Numerical optimal states with active weights and control points (red) and Analytical optimal

states (blue)

Figure 7.11: Initial guess for inputs (black), Numerical optimal inputs with control points only

(green), Numerical optimal inputs with active weights and control points (red) and Analytical

optimal inputs (blue)
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Example 7.3 (Analytical - Revisited exploiting differential flatness and using active weights and

control points). It turns out, that this system is differentially flat. Consequently, we are able to

map the states and inputs to a lower dimensional space, reducing the number of decision variables.

Consider the following flat parameterization of this dynamical systems by letting z1 = x1 and z2 = x3

serve as flat outputs. In order for this parameterization to be flat we must be able to write the states

and inputs in terms of the flat outputs and some of their derivatives. That is,

x1 = z1

x2 =
ż2

ż1

x3 = z2

u1 = ż1

u2 =
ż1z̈2 − z̈1ż2

ż2
1

Moreover, we should be able to write the flat output variables and their derivatives in terms of the

states, the inputs and some derivatives of the inputs.

z1 = x1

ż1 = u1

z̈1 = u̇1

z2 = x3

ż2 = u1x2

z̈2 = u1u2 + u̇1x2

More succinctly, we are able to write,

(z1, . . . , z̈1, z2, . . . , z̈2) = Ψ(x1, x2, x3, u1, u̇1, u2) = Ψ(ξ)

In particular, note that this mapping is locally invertible, with the exception of the following point:

det (DξΨ(ξ)) = −u2
1

Consequently, we will need to avoid the singularity occurring at u1 = ż1 = 0. Specifically, we will

constraint this input to be positive.
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In terms of the flat outputs, the optimal control problem takes the form:

min
z1,z2

1
2

tf=10∫
t0=0

[
ż1

ż1z̈2−z̈1ż2
ż21

]
R

 ż1

ż1z̈2−z̈1ż2
ż21

 dt

subject to:

z1(t0) = 10
ż2(t0)
ż1(t0)

= 2

z2(t0) = 20

ż1(t) ∈ (0.25,∞)

z1(tf ) = 27
ż2(tf )
ż1(tf )

= 8

z2(tf ) = 35

As before, we proceed to parameterize the flat outputs in terms of piecewise polynomial functions as

a linear combination of NURBS basis functions. The specific parameterization proceed as follows:

zi ∈ Pbi,oi,si , i = 1, . . . 2, with bi =
[

0 2.5000 5 7.5000 10
]
, oi = 6, si = 3

Using Proposition 3.2, a NURBS curve and its time derivatives are expressed in the current example

in the following form at a collocation point τk:

z
(0)
i (τk,wi,pi) =

wT
i diag({B(0)

di
(τk)})pi[

B(0)
di

(τk)
]T

wi

, i ∈ {1, 2}

z
(1)
i (τk,wi,pi) =

wT
i diag({B(1)

di
(τk)})pi[

B(0)
di

(τk)
]T

wi

−

[
B(1)
di

(τk)
]T

wi([
B(0)
di

(τk)
]T

wi

)2 wT
i diag({B(0)

di
(τk)})pi, i ∈ {1, 2}

z
(2)
i (τk,wi,pi) =

wT
i diag({B(2)

di
(τk)})pi[

B(0)
di

(τk)
]T

wi

− 2

[
B(1)
di

(τk)
]T

wi([
B(0)
di

(τk)
]T

wi

)2 wT
i diag({B(1)

di
(τk)})pi +

2

([
B(1)
di

(τk)
]T

wi

)2

([
B(0)
di

(τk)
]T

wi

)3 −

[
B(2)
di

(τk)
]T

wi([
B(0)
di

(τk)
]T

wi

)2

wT
i diag({B(0)

di
(τk)})pi, i ∈ {1, 2}

Figure 7.12 and Figure 7.13 compare the minimizer found by exploiting differential flatness to the
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analytical optimal.

Figure 7.12: Numerical optimal state trajectory by exploiting differential flatness (red) and

Analytical optimal state trajectory (blue)

Figure 7.13: Numerical optimal input trajectory by exploiting differential flatness (red) and

Analytical optimal input trajectory (blue)
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Figure 7.14: Initial guess for states (black), Numerical optimal states by exploiting differential

flatness (red) and Analytical optimal states (blue)

Figure 7.15: Initial guess for inputs (black), Numerical optimal inputs by exploiting differential

flatness (red) and Analytical optimal inputs (blue)
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Example 7.4 (Analytical-Revisited exploiting differential flatness and using active weights and

control points subject to trajectory constraints). Consider adding the following trajectory constraint:

(x1− 25)2 + (x2− 3)2 + (x1− 26)2− 25 > 0. In terms of the flat variables, this trajectory constraint

takes the following form: (z1 − 25)2 + ( ż2ż1 − 3)2 + (z2 − 26)2 − 25 > 0. Note that this constraint is

not in flat space because it also requires the derivatives of the flat outputs.

Figure 7.16: Constrained state trajectory (red) and Analytical optimal state trajectory (blue)

Figure 7.17: Constrained input trajectory (red) and Analytical optimal input trajectory (blue)
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Figure 7.18: Initial guess for states (black), Constrained states by exploiting differential flatness

(red) and Analytical optimal states (blue)

Figure 7.19: Initial guess for inputs (black), Constrained inputs by exploiting differential flatness

(red) and Analytical optimal inputs (blue)
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Example 7.5 (VTOL UAV). In this example, we will use our approach to plan trajectories for a

small four-propeller VTOL UAV.

ZB

FB
FL

FF

FR

ZI

g

XB

XI

YB

YI

Figure 7.20: VTOL UAV Coordinate frames. Arrows around forces depict assumed direction of

propeller rotation.

The translational and attitudinal equations describing the VTOL UAV motion are expressed as

follows: 
ẍ+ g

ÿ

z̈

 =
FL + FR + FF + FB

mB


cos θ cosψ

cos θ sinψ

− sin θ

 (7.3.3)


ṗ

q̇

ṙ

 =


kw
Ix

(FL + FR − FB − FF ) + (Iy−Iz)
Ix

q r

`BF
Iy

(FF − FB) + (Iz−Ix)
Iy

p r

`LR
Iz

(FL − FR) + (Ix−Iy)
Iz

p q

 , (7.3.4)

where (x, y, z) denotes the position of the center of mass of the UAV. The magnitude of applied force

along the XB body axis is denoted F , and all others are zero. The mass of the UAV is mB = 2.0

kg, g is gravity, and p, q, and r are the components of the angular velocity in body coordinates.

Moreover, we have assumed that there are no products of inertia. The principle moments of inertia

are denoted as follows: Ix = 0.25 kg m2, Iy = 0.125 kg m2, and Iz = 0.125 kg m2. The torque

constant of the propeller is kw = 0.5, `FB = 1.0 m is half the distance between the applied force

FF and FB , and `LR = 1.0 m is half the distance between the applied force FL and FR as seen in

Figure 7.20.
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In order to determine the final form of the equations of motion, we take time derivatives of the

components of the angular velocity and obtain:


ṗ

q̇

ṙ

 =


− cos θ ψ̇ θ̇ + φ̈− sin θ ψ̈

cosφ θ̇ + cos θ sinφ ψ̇

−ψ̇
(

cosφ sinφ θ̇ + cos θ sinφ φ̇
)

+ cosφ
(
−θ̇ φ̇+ cos θ ψ̈

)
 (7.3.5)

and replace these expressions in the attitudinal dynamics (7.3.4). Let us consider the minimum time

optimal control problem of taking the VTOL UAV from an initial equilibrium solution to a final

equilibrium solution subject to obstacle constraints and input constraints.

min
x,u

tf (7.3.6)

ẋ = f(x,u) (7.3.7)

(x(t0),x(tf )) ∈ B (7.3.8)

(x(t), y(t), z(t)) ∈ I ⊆ R (7.3.9)

u(t) ∈ U , (7.3.10)

where the states x = (x, ẋ, y, ẏ, z, ż, φ, φ̇, θ, θ̇, ψ, ψ̇), and the inputs u = (FL, FR, FF , FB). In all,

there are 12 states and 4 inputs. The region I specified in the trajectory constraints (7.3.9) is

defined by the ordered union of adjacently overlapping polytopes by using the control points of the

(x, y, z) NURBS curves. This system happens to be differentially flat. Therefore, we will exploit

this fact to obtain a reduce set of variables to describe the full set of dynamics. The flat outputs, in

this case, happen to be z1 = x, z2 = y, z3 = z, z4 = φ. We can write the flat outputs in terms of

the states, inputs, and their derivatives as follows:

z
(1)
1 = ẋ z

(2)
1 = F (cos θ cosψ)− g

z
(1)
2 = ẏ z

(2)
2 = F (cos θ sinψ)

z
(1)
3 = ż z

(2)
3 = −F sin θ

z
(1)
4 = φ̇ z

(2)
4 = f1(ψ, φ, θ, ψ̇, θ̇, φ̇,MXb ,MYb ,MZb)

z
(3)
1 = f2(F, Ḟ , ψ, φ, θ, ψ̇, θ̇, φ̇)

z
(3)
2 = f3(F, Ḟ , ψ, φ, θ, ψ̇, θ̇, φ̇)

z
(3)
3 = f4(F, Ḟ , ψ, φ, θ, ψ̇, θ̇, φ̇)

z
(4)
1 = f5(F, Ḟ , F̈ , ψ, φ, θ, ψ̇, θ̇, φ̇,MYb ,MZb)

z
(4)
2 = f6(F, Ḟ , F̈ , ψ, φ, θ, ψ̇, θ̇, φ̇,MYb ,MZb)

z
(4)
3 = f7(F, Ḟ1, F̈ , ψ, φ, θ, ψ̇, θ̇, φ̇,MYb ,MZb).
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In short,

(z1, . . . , z
(4)
2 , z2, . . . , z

(4)
2 , z3, . . . , z

(4)
3 , z4, . . . , z

(2)) = Ψ(ξ),

where

ξ = (x, y, z, θ, φ, ψ, ẋ, ẏ, ż, θ̇, φ̇, ψ̇,MXb ,MYb ,MZb , F, Ḟ , F̈ ). (7.3.11)

The above relation is locally invertible, with the exception of a few points, since

det(
∂Ψ
∂ξ

) =
−F 6 cos θ
IxIyIz

(7.3.12)

is nonzero. For implementation purposes we need to explicitly write the states and inputs in terms

of the flat outputs. From the flat output definitions, we obtain: x = z1, y = z2, z = z3, φ = z4 and

ẋ = ż1, ẏ = ż2, ż = ż3, φ̇ = ż4. Using the equations of motion, we are now required to write ψ, θ,

F , MBX , MBY , and MBZ in terms of the flat outputs. Using the translational dynamics (7.3.3), in

flat-output space we can solve for ψ, θ, and F analytically,

ψ = tan−1

(
z̈2

z̈1 + g

)
(7.3.13)

θ = tan−1

(
−z̈3

(z̈1 + g) cosψ + z̈2 sinψ

)
(7.3.14)

F = m

√
(z̈1 + g)2 + z̈2

2 + z̈2
3 . (7.3.15)

Likewise, using the attitudinal dynamics (7.3.4) in flat-output space we can solve for the propulsive

moments: MBX , MBY , and MBZ

MBX = Ix ṗ+ (Iz − Iy) q r (7.3.16)

MBY = Iy q̇ + (Ix − Iz) p r (7.3.17)

MBZ = Iz ṙ + (Iy − Ix) p q. (7.3.18)

To write the moments in flat-output space, we write the components of the angular velocity in terms

of Euler angles and their derivatives (7.3.5), and substituting in (7.3.16)-(7.3.18) we obtain

MBX = fBX (Ix, Iy, Iz, θ, φ, θ̇, φ̇, ψ̇, φ̈, ψ̈)

MBY = fBY (Ix, Iy, Iz, θ, φ, θ̇, φ̇, ψ̇, θ̈, ψ̈)

MBZ = fBZ (Ix, Iy, Iz, θ, φ, θ̇, φ̇, ψ̇, ψ̈).

We will require the following variables φ, φ̇, φ̈, ψ, ψ̇, ψ̈, θ, θ̇, and θ̈. Since φ is a flat output we have
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that φ = z4, φ̇ = ż4, φ̈ = z̈4. The other derivatives can be obtained by taking time derivatives of

(7.3.13) and (7.3.14). After these substitutions, the moments will depend only on the flat outputs

and their time derivatives. Moreover, we are able to obtain the individual fan forces FL, FR, FF and

FB by inverting 
MXB

MY B

MZB

F

 =


kw kw −kw −kw
0 0 `FB −`FB
`LR −`LR 0 0

1 1 1 1




FL

FR

FF

FB

 .

The applied thrust forces are fixed in the body, as shown in Figure 7.20.

After this transformation, we are able to remove (7.3.7) from the minimum optimal control problem.

We then proceed to parameterize the flat outputs by NURBS basis functions. In our case, we choose

piecewise polynomial functions Pb,o,s for each flat output. More specifically z1, . . . , z3 are Pb,7,4, with

16 polynomial pieces being pasted at the breakpoints b, where b is constructed by evenly positioning

the end points of the polynomials in the interval [0, 1]. The flat output z4 is also constructed with 16

polynomials and the same breakpoints b except for a different order and curve smoothness: Pb,6,3.

The next step is to construct a corridor in S which avoids all obstacles. This will allow us to remove

(7.3.9) from the optimal control problem. Figure 7.21 shows the corridor that has been designed

for this problem.

0
100
200

0 200 400 600

0

200

400

600

800

x
y

z

Figure 7.21: Feasible corridor with respect to obstacles in trajectory space.
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Figure 7.22: Front View: VTOL UAV trajectory shown with obstacles. Attitude is depicted by the

rotation of the body axis.

The only constraints remaining in our optimal control problem are (7.3.8) and (7.3.10). The body

forces FF , FR, FL, and FB are constrained to be in the interval [0, 0.3 m g]. We further constrained

the angle θ to the interval (−π/2, π/2) to avoid the singularity described in (7.3.12). The optimal

trajectory was found starting from a random initial guess as shown in Figure 7.22 (front view). The

125.6 sec trajectory was solved in real time on a 3 GHz Pentium IV PC. The body forces are shown

in Figure 7.23.
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Figure 7.23: Body Forces: FF , FR, FL and FB .
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Figure 7.24: Euler angles: φ, ψ and θ.
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Example 7.6 (Alice - Caltech’s autonomous system). We are going to revisit Example 5.3. In

particular, this system is differentially flat, and we will take advantage of this fact. Let z1 = x

and z2 = y be flat variables. Then, we use the dimensionalized equations of motion to solve for

u, θ,A, and φ. The states and inputs are expressed in terms of the flat variables as follows:

x(z̃(τ)) = z1(τ)

y(z̃(τ)) = z2(τ)

u(z̃(τ)) =
q
ż2

1(τ) + ż2
2(τ)

θ(z̃(τ)) = tan−1

»
ż2(τ)

ż1(τ)

–
A(z̃(τ)) = u̇(z̃(τ))

φ(z̃(τ)) = tan−1

»
θ̇(z̃(τ)) L

u(z̃(τ))

–
,

where

u̇(z̃(τ)) =
Ψ0(z̃(τ))

u(z̃(τ))

θ̇(z̃(τ)) =
Ψ1(z̃(τ))

u2(z̃(τ))

φ̇(z̃(τ)) =
L u(z̃(τ))2

“
3 Ψ1(z̃(τ)) u̇(z̃(τ))− u(z̃(τ)) Ψ̇1(z̃(τ))

”
u(z̃(τ))6 + L2 Ψ2

1(z̃(τ))

Ψ̇1(z̃(τ)) = z̈2(τ) z̈1(τ)− ż2(τ)
...
z 1(τ)− z̈1(τ) z̈2(τ) + ż1(τ)

...
z 2(τ)

with

Ψ0(z̃(τ)) = ż1(τ) z̈1(τ) + ż2(τ) z̈2(τ)

Ψ1(z̃(τ)) = ż1(τ) z̈2(τ)− ż2(τ) z̈1(τ);

and, letting z3 = ξ we define z̃(τ) = (z1(τ), ż1(τ), z̈1(τ),
...
z 1(τ), z2(τ), ż2(τ), z̈2(τ),

...
z 2(τ), z3(τ)). In

addition, we will add an extra term to our current cost functional to allowed obstacle and terrain

information to be included in a form of cost. For this purpose, we will construct a NURBS surface,

S(x(t), y(t)), and construct the cost functional:

∫
C

S(x(t), y(t)) ds =

tf∫
t0

S(x(t), y(t))
√
ẋ(t)2 + ẏ(t)2 dt. (7.3.19)

Using the flat parameterization, we rewrite the cost functional as follows:

1∫
0

J (z̃(τ) dτ =

1∫
0

S(z1(τ), z2(τ))
√
ż1(τ)2 + ż2(τ)2 dτ. (7.3.20)
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We rewrite the optimal control problem with this parameterization as follows:

min γ0 z3(1) + γ1

1∫
0

[
A(z̃(τ))2

z33(τ)
+ z3(τ) φ(z̃(τ))2 + 1

z3(τ) φ̇(z̃(τ))2
]
dτ + γ2

1∫
0

J (z̃(τ) dτ

subject to

Trajectory Constraints:

0.01 ≤ u(z̃(τ))
z3(τ) ≤ vmax

amin ≤ A(z̃(τ))
z23

≤ amax

φmin ≤ φ(z̃(τ)) ≤ φmax

φ̇min ≤ φ̇(z̃(τ))
z3(τ) ≤ φ̇max

− gW
2hcg

≤ Ψ1(z̃(τ))
u(z̃(τ))z23(τ)

≤ gW

2hcg

Initial and Final Boundary Conditions:

z1(0) = x0, z1(1) = xf

z2(0) = y0, z2(1) = yf

tan−1(
ż1

ż2
) = θ0, tan−1(

ż1

ż2
) = θf

where γj , j = {0, 1, 2} is 0 if not enforce and a nonzero real value otherwise. The cost for Alice

traversing an urban environment can be set by pricing sections of space according to whether or

not the vehicle is to allowed to traverse it, as illustrated in Figure 7.25. For purposes of trajectory

generation using a direct method, we are restricted to cost functions that are at least differentiable.

For this purpose, we will use a NURBS surface approximation of the cost map in the form of a

smooth function (see Figure 7.26) with smooth partial derivatives (see Figure 7.27 and Figure 7.28).

Fortunately, many of the properties of NURBS curves extend to NURBS surfaces such as the local

support property. As in the case of NURBS curves, this property will make it possible to perform

numerical computations on the NURBS surface by using only a subset of the basis functions.
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Figure 7.25: Cost of motion through an urban environment.

Figure 7.26: NURBS smoothing of the cost map.
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Figure 7.27: Partial derivative of cost map with respect to x.

Figure 7.28: Partial derivative of cost map with respect to y

With the NURBS cost function in place, we are ready to determine trajectories for the vehicle that

perform according to the cost of the motion. Figure 7.29 and Figure 7.30 show a left and right
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maneuver, respectively. In addition to embedding safe driving regions, one can also embed obstacle

cost as illustrated in Figure 7.31.

Figure 7.29: Minimum time left-turn maneuver respecting cost function.

Figure 7.30: Minimum time right-turn maneuver respecting cost function.



114

Figure 7.31: Minimum time obstacle avoidance maneuver.

Moreover, we are interested in using Theorem 7.1. There are two way that this was implemented in

Alice: a) using DARPA’s route data definition file (RDDF) and b) using corridor gates. In particular,

Figure 7.32 illustrates the application of Theorem 7.1 starting form the RDDF specification.

Although the RDDF specification meets the criteria of Theorem 7.1, the use of the specification leads

to nonlinear constraints. We remedy this by approximating such regions by very low cost polytopal

approximations (octagons). The result is an ordered union of pairwise adjacently overlapping

polytopes with nonempty interiors, see Figure 7.32b. We proceed by truncating the feasible region

of the first and last polytopes in such a way that the first and last control points are ensured

to be vertices of the resulting approximating polytopes. This is done by finding the hyperplanes

perpendicular to the direction vectors of both the first and last polytopes and then moving them

towards the center of each by some small amount, see Figure 7.32c. Finally, we solve the nonlinear

programming problem NLP (P1, . . . ,PN ) in order to obtain an inner polytopal approximation of

the feasible region that satisfies NURBS parameterization. Lastly, we fixed the coordinates of the

control points according to the optimal solution found in NLP (P1, . . . ,PN ), and we proceed to

solve the modified optimal control problem with the active weights and control points as decision

variables. The results are illustrated in Figure 7.33.
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a) b) c) d)

Figure 7.32: a) RDDF specification, b) Polytopal feasible region with pairwise adjacent, c) Ensure

that initial and final control points are vertices by restricting and d) Approximation of feasible region

by an ordered union of pairwise adjacently overlapping polytopes

Figure 7.33: Consecutive trajectory generation for Alice
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Chapter 8

Final Remarks

8.1 Summary

In this thesis, we have described a new method for numerically computing minimizers for optimal

control problems that model the effort required for nonlinear dynamical systems to evolve across state

configurations while satisfying trajectory and actuator constraints. In particular, we implemented

a direct method (i.e., transcribed the original optimal control problem to a nonlinear programming

problem). One of the main distinctions in this implementation from all others previously published

resides in the choice of basis functions used to describe each member of the restricted search space.

Specifically, the restricted search space consisted of the space of all piecewise polynomial functions

with a prescribed number of polynomial pieces, order, and smoothness. This space happened to be

finite dimensional and, consequently, each member in the space was expressed in terms of some set

of basis functions. We chose NURBS basis functions for this purpose and showed how to judiciously

exploit the properties of the resulting NURBS curve to improve the computational effort often

associated with solving optimal control problems for constrained dynamical systems.

More specifically, we showed in detail how to exploit the structure of both the NURBS basis

functions and the associated union of overlapping polytopes resulting from the placement in d-

space (d ∈ {2, 3}) of the coefficients of the linear combination of the NURBS curve. One of the

main realizations uncovered through the careful study of these structures was the fact that one can

use the strong convex hull property of NURBS curves to separately treat the guidance and obstacle-

avoidance problems, making the original optimal control problem tractable. This separation was

accomplished by manipulating both the weights and control points; one set of parameters used at a

time to solve one of the problems. That is, we showed how one can first design a connected section of

space (in general, non-convex) by judiciously placing the control points in such a way that the union
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of the associated polytopes was feasible with respect to trajectory constraints and contained the

initial and final path conditions. Then, generate paths which minimized the original cost functional

and satisfied the dynamic and actuator constraints (omitting the trajectory constraints), using the

active weights as decision variables. The key observation was that paths generated by solving the

latter problem were guaranteed to be contained inside the feasible region generated in the former

phase, without the need of explicitly writing the trajectory constraints into the optimal control

problem, and independent of the discretization.

In addition, we showed how one can construct systematically a feasible region that corresponds to

a NURBS parameterization starting from an ordered union of pairwise adjacently overlapping non-

empty compact convex sets. Specifically, we showed how to setup a nonlinear programming problem

to solve for the feasible region in terms of an ordered union of pairwise adjacently overlapping

polytopes with nonempty interiors by maximizing the sum of their volumes and starting from a

feasible region described by an ordered union of pairwise adjacently overlapping nonempty convex

compact semi-algebraic sets. In addition, we showed in simulation how this strategy could be

implemented practically for an autonomous system traversing an urban environment.

Finally, this work culminated in the filing of patent US20070179685 on behalf of Northrop Grumman

for the Space Technology sector and in the development of the NURBSbasedOTG software package.

This C++ package contains the theoretical results of this thesis in the form of an object-oriented

implementation optimized for real-time trajectory generation.

8.2 Conclusions

8.2.1 Towards a Real-Time implementation

At the current time, more than any other thus far, research on autonomous system is at its

apogee. In fact, even as I write this, the Defense Advance Research Projects Agency (DARPA)

is conducting the final selection of those teams that will be allowed to participate in the DARPA

URBAN CHALLENGE 2007, taking place at the Southern California Logistics Airport in Victorville,

California. All top universities and companies in the country have been working hard during the

past 18 months to produce entries to this competition in the form of terrestrial vehicles guided purely

by control algorithms written in a hand-full of different languages and running on board the fastest

computers. The goal? To autonomously traverse an urban environment under time constraints while

obeying traffic rules. The prize? Two million dollars to cover some of the expenses and priceless

bragging rights.
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Not surprising, the design of an autonomous system is a multidisciplinary endeavor, requiring

technological advances from the many fields of science and engineering. In designing these types of

systems, it is highly desirable to endow the units with a capability of determining, analyzing, and

posing relevant problems mathematically on-line and solving them on time to implement the required

corrections. The objective to be accomplished by the autonomous unit could be programmed by

humans or could be self imposed. While trying to meet the objective, the autonomous unit will collect

information using monitoring subsystems that sense the environment and its internal subsystems.

This information will be varying constantly (obstacles are in different places, energy reserves are at

different levels, faults might occur and so on). This information will be translated into new sets

of state trajectory and input constraints, new model dynamics and new objectives; consequently,

new problems will have to be assembled on-line using the newly gathered information. Moreover,

the autonomous unit would seek for solutions that are in some way optimal in order to properly

manage the limited resources at its disposal, and it would require that such solutions be obtainable

in real-time. In summary, it is highly desirable to develop a feedback methodology that deals with

online modification of the optimal control problem and that guarantees stability and performance

of the closed-loop system under the added burden of reconfiguration. In line with this thesis’

theme, the author suggests theoretical extensions to Receding Horizon Control (RHC). The biggest

challenge in theoretically extending the RHC results to the setting of autonomous systems lies

on determining a strategy that precludes the system from loosing feasibility after a model and/or

constraint reconfiguration.

A first attempt to practically implement a reconfigurable strategy using the results of this thesis

on an autonomous system was performed during the period of September 2006 - July 2007. The

goal was to provide Alice (Caltech’s autonomous vehicle) with an alternative trajectory generation

strategy for use during the DARPA URBAN CHALLENGE 2007 race. Example 5.3 and Example

7.6 show some of the specifics of the implementation that was tried. In particular, in order to deal

with reconfiguration, an object-oriented (inheritance, polymorphism, etc.) software approach was

chosen. Careful attention was placed on trade-offs between flexibility and time computation, always

favoring speed whenever possible. For the computations required to implement Theorem 7.1; that is,

conversion between H- to V-polytope representations and volume computation, we used the Double

Description method implemented by Fukuda and Prodon [1995] and the VINCI software package

implemented by Büeler et al. [2000], respectively.

Unfortunately, three months short of the race, we realized that the time table for our approach to
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be included in Alice had run its course. There still remained many milestones that needed to be

accomplished before a reliable version could be used on board Alice. One of the major issues was

reliability. Although we could solve many of the posed problems fast enough for real-time purposes,

we could not consistently solve all problems posed, or at least with a reasonable rate of failure. Some

of the reasons for this inconsistency have to do with the inherit nature of the methodology. That is,

a) the rate of convergence and success in finding a solution of a posed nonlinear programming

problems tend to be sensitive to initial guesses — this translates into guessing both the weights

and control points, as supposed to actual points on the NURBS curve. In addition, under

constraint reconfiguration, one cannot reuse previous solutions as guesses to new problems,

which is a very useful strategy in traditional RHC.

b) computing the exact volume of a polyhedron is NP hard (acceptable only for regions made up of

a few sets) — sensing the environment sometimes leads naturally to representing the feasible

space with a large number of overlapping sets and this tends to be a hard problem to solve.

c) not all problems posed have solutions and this cannot be detected ahead of time

d) conversion betweenH- to V-polytope representations are highly dependent on scaling, translation

from the origin and rounding errors

e) SQP problems are only guaranteed to be feasible when an optimal solution is found — if feasibility

was guaranteed throughout, one could stop computation after some time interval and use the

latest feasible solution to guide the system

f) the rate of convergence of an SQP method is sped up when using the exact hessian but this

could be a very expensive computation — using parallel algorithms and exploiting multi-core

processors to split the computation can make these computation less burdensome.

Many of these issues can be overcome given enough time. In general, issues e) and f) could be

overcome by the use of an alternative nonlinear programming solver such as the KNITRO (SLQP

solver). This solver uses an interior point method to determine solutions of the posed problems,

makes use of second-order data and it is able to maintain feasibility throughout. c) could be overcome

by posing problems that are convex in the nonlinear programming problem sense even though they

are not necessarily convex in the optimal control problem sense. b) could be solved by replacing the

exact volume computation of polytopes with an approximate less expensive measure that gives the

same intended result.
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8.3 Future Work

8.3.1 From Cell Decomposition to Pairwise Adjacently Overlapping Cells

In this thesis, we mentioned on passing that one way in which the region R, alluded on Theorem

7.1, could be constructed was by performing a cell decomposition of the trajectory space followed by

a pairwise adjacently overlapping procedure. How this actually is done practically still remains an

open question. However, it seems to the author that this should be possible for those cases where the

trajectory space is decomposed using polytopal cells by constructing the smallest set containing the

centroids of pairwise adjacent cells. Consider the examples shown in Figure 8.1. In both cases, one

begins with a polytopal cell decomposition. Is it possible to produce an overlapping procedure such

that one can move to adjacent cells starting from the pink cell shown in the figure on the left? The

answer seems to be yes. The green polytope constructed using the centroids of the cells produces

an overlapping of the pink cells. Starting from any pink cell and using the green cell to achieve an

overlap, we are able to move to any other pink cell satisfying the conditions of Theorem 7.1. One

of the challenges to overcome is to achieve an overlapping procedure that is complete (i.e., if it fails

no such overlapping is possible) when obstacles are present in the trajectory space.

Figure 8.1: Two examples of polytopal cell decomposition that undergo an overlapping procedure

using the convex hull of the centroids of adjacent cells.
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8.3.2 Exploiting NURBS curve invariance properties

Among the properties of NURBS curves left out in the body of this thesis, we have the Refinability

property. Consider the following NURBS curve:

c(t) =
[
R(0)
`−d,d(t,w) . . . R(0)

`,d(t,w)
]

p`−d
...

p`

 , t ∈ [k`, k`+1).

As mentioned before, the NURBS basis functions are expressed in terms of B-spline basis functions

as follows:

R(0)
j,d(t, w0, . . . , wNc−1) =

B(0)
j,d (t) wj

Nc−1∑
i=0

B(0)
i,d (t) wi

, (8.3.1)

and the NURBS curve expressed in terms of B-splines becomes

c(t,w,p) =

[
B(0)
d (t)

]T
pw[

B(0)
d (t)

]T
w
, (8.3.2)

where

pw =


w`−d p`−d

...

w` p`

 . (8.3.3)

Let us begin by defining the B-spline function of degree 0.

B0(t) =

1, if t ∈ [0, 1)

0, otherwise
. (8.3.4)

In general, we can obtain a B-spline of degree d by using the following convolution

Bd(t) =

∞∫
−∞

Bd−1(s) B0(t− s) ds. (8.3.5)

In addition, we connect these B-spline definitions to the ones in the linear combination using the

following property: B(0)
k,d(t) = B(0)

d (t− k).

The refinement equation for B-splines of degree d is given by
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B(0)
d (t) =

1
2d

d+1∑
k=0

 d+ 1

k

 B(0)
d (2t− k). (8.3.6)

Basically, it states that a B-spline of degree d can be written as a linear combination of translated

(k) and dilated (2t) copies of itself. Expressing the refinement property in matrix form we have that

B(0)
d (t) =

[
B(0)
d (2t) B(0)

d (2t− 1) . . . B(0)
d (2t− (d+ 1))

]


s0

s1

...

sd+1


= B(0)

d (2t) sd

with sk = 1
2d

 d+ 1

k

. Using the refinement property, we are able to write the NURBS curve as

follows:

c(t,w,p) =

[
B(0)
d (2t)

]T
Sd pw[

B(0)
d (2t)

]T
Sd w

, Sd ∈ R(2Nc+d)×Nc . (8.3.7)

The non-zero entries of the matrix Sd are determine as follows:

Sk+2i,i =
1
2d

 d+ 1

k

 , i ∈ {0, . . . , Nc − 1}, k ∈ {0, . . . , d+ 1} (8.3.8)

This way of expressing curves is at the heart of Subdivision. Note that this is still the same NURBS

curve but with a change of basis: B0(t) 7→ B0(2t) and concurrently change of weights and control

points: w 7→ Sd w and pw 7→ Sd pw. Moreover, the support of the basis functions is half as wide,

and they are spaced twice as dense.

Example 8.1. Consider the B-spline of degree 1:

B(0)
1 (t) =

1
2

2∑
k=0

 2

k

 B(0)
1 (2t− k)

=
1
2

 2

0

 B(0)
1 (2t) +

1
2

 2

1

 B(0)
1 (2t− 1) +

1
2

 2

2

 B(0)
1 (2t− 2)

=
1
2
B(0)

1 (2t) + 1 B(0)
1 (2t− 1) +

1
2
B(0)

1 (2t− 2)



124

1/2 1/2

1

Figure 8.2: Refinement applied to B(0)
1 (t).

It is clear from Figure 8.2 that the black curve is constructed by adding the blue, red and green

dilated and translated versions of the B-spline of degree 1 using the coefficients (1/2, 1, 1/2). Consider

the NURBS curve made up of Np = 5 polynomial pieces of degree d = 1 and smoothness s = 0.

The dimension of the vector space is Nc = 5(2− 1) + 1 = 6. The NURBS curve then is expressed as

follows:

c(t,w,p) =

[
B(0)

1 (t)
]T

S1pw[
B(0)

1 (t)
]T

S1 w
. (8.3.9)

Applying the refinement equation to the B-spline matrix
[
B(0)

1 (t)
]T

, we obtain:

[
B(0)

1 (t)
]T

=
[
B(0)

1 (2t)
]T

S1, (8.3.10)

where

[
B(0)

1 (t)
]T

=
[
B(0)

0,1(t) B(0)
1,1(t) . . . B(0)

5,1(t)
]

(8.3.11)

[
B(0)

1 (2t)
]T

=
[
B(0)

0,1(2t) B(0)
1,1(2t) . . . B(0)

12,1(2t)
]
. (8.3.12)

For the sake of simplicity, consider the case when the weights are all set to the same value

w0 = · · · = wNc−1 = ω > 0. That is,

c(t,p) =
[
B(0)

1 (2t)
]T

S1p (8.3.13)
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Let p1 = S1 p = S1 p0. That is,



p1
0

p1
1

p1
2

p1
3

p1
4

p1
5

p1
6

p1
7

p1
8

p1
9

p1
10

p1
11

p1
12


︸ ︷︷ ︸

p1

=



1
2 0 0 0 0 0

1 0 0 0 0 0
1
2

1
2 0 0 0 0

0 1 0 0 0 0

0 1
2

1
2 0 0 0

0 0 1 0 0 0

0 0 1
2

1
2 0 0

0 0 0 1 0 0

0 0 0 1
2

1
2 0

0 0 0 0 1 0

0 0 0 0 1
2

1
2

0 0 0 0 0 1

0 0 0 0 0 1
2


︸ ︷︷ ︸

S1



p0
0

p0
1

p0
2

p0
3

p0
4

p0
5


︸ ︷︷ ︸

p0

. (8.3.14)

The question is how do we exploit this property to our advantage. For example, when constructing

the overlapping set of polytopes one could apply the change of control points to get smaller polytopes

and a larger set of basis functions and weights. Having a larger set of weights is useful in having a

finer control over the curve in order to satisfy all constraints of the optimal control problem. The

challenge resides in the fact that not all subdivisions lead to a scheme where the old control points

keep their coordinates and new ones are added to divide the polytopal space (desired behavior).

Instead, some schemes move all the control points, and in those cases feasibility is lost.
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Appendix A

Derivation of Partial Derivatives of NURBS

Curves

In this appendix, we prove Proposition 3.2.

Proposition A.1. Consider c(t,w,p) to be a smooth curve expressed in terms of a linear

combination of NURBS basis functions. Then its rth order partial derivatives with respect to

time and their first- and second-order partial derivatives with respect to control points and weights

are obtained as follows:

c(r)(t,w,p) = wTGrp−
r∑

k=1

 r

k

Ek c(r−k)(t,w,p)

Dp

[
c(r)(t,w,p)

]
= wTGr −

r∑
k=1

 r

k

Ek
[
R(r−k)
d (t,w)

]T
Dpp

[
c(r)(t,w,p)

]
= 0

Dw

[
c(r)(t,w,p)

]
= −

[(
F0 − I

)
Gr p

]T
+

r∑
k=1

 r

k

[(F0 − I
) (

Hk
)T]T

c(r−k)(t,w,p)

−
r∑

k=1

 r

k

Ek Dw

[
c(r−k)(t,w,p)

]
Dww

[
c(r)(t,w,p)

]
=

(
F0 − I

)
Gr p H0 +

[(
F0 − I

)
Gr p H0

]T
+

r∑
k=1

 r

k

(AB + [AB]T
)

−
r∑

k=1

 r

k

Ek Dww

[
c(r−k)(t,w,p)

]
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with t ∈ [t0, tf ], wj ∈ (0,∞), pj ∈ (−∞,∞),
[
B(r)
d (t)

]
=


B(r)

0,d(t)
...

B(r)
Nc−1,d(t)

, w =


w0

...

wNc−1

,

p =


p0

...

pNc−1

, diag({B(r)
d (t)}) =


B(r)

0,d(t) . . . 0
...

. . .
...

0 . . . B(r)
Nc−1,d(t)

, H` =

h
B(`)
d (t)

iTh
B(0)
d (t)

iT
w

,

E` = H` w, F` =
(
w H`

)T
, G` = diag({B(`)

d (t)})h
B(0)
d (t)

iT
w

, A = Ek
[
B(0)
d (t)

]
−
[
B(k)
d (t)

]
and

B =
Dw[c(r−k)(t,w,p)]h
B(0)
d (t)

iT
w

−H` c(r−k)(t,w,p)h
B(0)
d (t)

iT
w

.

Proof. We begin with the derivation of the rth-order partial derivatives with respect to time of the

NURBS curve and then proceed to derive the first- and second-order partial derivatives of these

with respect to weights and control points.

Partial derivatives with respect to time

The time-derivatives of the NURBS curve parameterization can succinctly be expressed as follows:

c(r)(t,w,p) =
Nc−1∑
j=0

R(r)
j,d(t,w) pj , t ∈ [t0, tf ], wj ∈ (0,∞), pj ∈ (−∞,∞), (A.0.1)

where w =
[
w0 . . . wNc−1

]T
and p =

[
p0 . . . pNc−1

]T
, andR(r)

j,d(t,w) = ∂r

∂tr

[
R(0)
j,d(t,w)

]
.

Clearly, the time dependence is directly related to the NURBS basis functions only. The first four

time derivatives of the NURBS basis functions are expressed as follows:

R(0)
j,d(t,w) =

B(0)
j,d (t) wj

Nc−1∑
i=0

B(0)
i,d (t) wi

R(1)
j,d(t,w) =

B(1)
j,d (t) wj

Nc−1∑
i=0

B(0)
i,d (t) wi

−

Nc−1∑
i=0

B(1)
j,d (t) wj

Nc−1∑
i=0

B(0)
i,d (t) wi

R(0)
j,d(t,w)
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R(2)
j,d(t,w) =

B(2)
j,d (t) wj

Nc−1∑
i=0

B(0)
i,d (t) wi

− 2

Nc−1∑
i=0

B(1)
j,d (t) wj

Nc−1∑
i=0

B(0)
i,d (t) wi

R(1)
j,d(t,w)−

Nc−1∑
i=0

B(2)
j,d (t) wj

Nc−1∑
i=0

B(0)
i,d (t) wi

R(0)
j,d(t,w)

R(3)
j,d(t,w) =

B(3)
j,d (t) wj

Nc−1∑
i=0

B(0)
i,d (t) wi

− 3

Nc−1∑
i=0

B(1)
j,d (t) wj

Nc−1∑
i=0

B(0)
i,d (t) wi

R(2)
j,d(t,w)− 3

Nc−1∑
i=0

B(2)
j,d (t) wj

Nc−1∑
i=0

B(0)
i,d (t) wi

R(1)
j,d(t,w)

−

Nc−1∑
i=0

B(3)
j,d (t) wj

Nc−1∑
i=0

B(0)
i,d (t) wi

R(0)
j,d(t,w).

In general, the time derivatives of the NURBS basis functions take the following form:

R(r)
j,d(t,w) =

B(r)
j,d(t) wj

Nc−1∑
i=0

B(0)
i,d (t) wi

−
r∑

k=1

 r

k


Nc−1∑
i=0

B(k)
i,d (t) wi

Nc−1∑
i=0

B(0)
i,d (t) wi

R(r−k)
j,d (t,w). (A.0.2)

Alternatively, in matrix form

R(r)
j,d(t,w) =

B(r)
j,d(t) wj[
B(0)
d (t)

]T
w
−

r∑
k=1

 r

k


[
B(k)
d (t)

]T
w[

B(0)
d (t)

]T
w
R(r−k)
j,d (t,w). (A.0.3)

Consequently, the time derivatives of the curve become:

c(r)(t,w,p) =
Nc−1∑
j=0

R(r)
j,d(t,w) pj

=
Nc−1∑
j=0

B(r)
j,d(t) wj

Nc−1∑
i=0

B(0)
i,d (t) wi

pj −
Nc−1∑
j=0


r∑

k=1

 r

k


Nc−1∑
i=0

B(k)
i,d (t) wi

Nc−1∑
i=0

B(0)
i,d (t) wi

R(r−k)
j,d (t,w)

 pj

=

Nc−1∑
j=0

B(r)
j,d(t) wjpj

Nc−1∑
i=0

B(0)
i,d (t) wi

−
r∑

k=1

 r

k


Nc−1∑
i=0

B(k)
i,d (t) wi

Nc−1∑
i=0

B(0)
i,d (t) wi

Nc−1∑
j=0

R(r−k)
j,d (t,w)pj

=

Nc−1∑
j=0

B(r)
j,d(t) wjpj

Nc−1∑
i=0

B(0)
i,d (t) wi

−
r∑

k=1

 r

k


Nc−1∑
i=0

B(k)
i,d (t) wi

Nc−1∑
i=0

B(0)
i,d (t) wi

c(r−k)(t,w,p).
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Alternatively, in matrix form:

c(r)(t,w,p) =
wTdiag({B(r)

d (t)})p[
B(0)
d (t)

]T
w

−
r∑

k=1

 r

k


[
B(k)
d (t)

]T
w[

B(0)
d (t)

]T
w

c(r−k)(t,w,p) (A.0.4)

with t ∈ [t0, tf ], wj ∈ (0,∞), and pj ∈ (−∞,∞).

Partial derivatives with respect to control points

Next we will derive the first-order control point derivatives with respect to a NURBS curve.

Dp

[
c(r)(t,w,p)

]
=
[

∂c(r)(t,w,p)
∂p0

∂c(r)(t,w,p)
∂p1

. . . ∂c(r)(t,w,p)
∂pNc−1

]
. (A.0.5)

Let us consider the partial derivative of the NURBS curve with respect to the `th control point.

∂c(r)(t,w,p)
∂p`

=
∂

∂p`

Nc−1∑
j=0

R(r)
j,d(t,w) pj

 =
Nc−1∑
j=0

R(r)
j,d(t,w)

∂pj
∂w`

= R(r)
`,d(t,w).

As a result, the first-order control point derivatives for a NURBS curve becomes:

Dp

[
c(r)(t,w,p)

]
=

[
R(r)
d (t,w)

]T
=

wTdiag({B(r)
d (t)})[

B(0)
d (t)

]T
w

−
r∑
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 r

k


[
B(k)
d (t)

]T
w[

B(0)
d (t)

]T
w

[
R(r−k)
d (t,w)

]T

Partial derivatives with respect to weights

At this point, we will derive the first-order weight derivatives with respect to a NURBS curve

Dw

[
c(r)(t,w,p)

]
=
[

∂c(r)(t,w,p)
∂w0

∂c(r)(t,w,p)
∂w1

. . . ∂c(r)(t,w,p)
∂wNc−1

]
. (A.0.6)

Let us consider the partial derivative of the NURBS curve with respect to the `th weight

∂c(r)(t,w,p)
∂w`

=
∂

∂w`

Nc−1∑
j=0

R(r)
j,d(t,w) pj

 =
Nc−1∑
j=0

∂R(r)
j,d(t,w)
∂w`

pj .

Expanding the partial derivative of the jth NURBS basis function with respect to `th weight we

obtain



131

∂R(r)
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.

Then, the partial derivative of the NURBS curve with respect to the `th weight becomes

∂c(r)(t,w,p)
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=
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In matrix form:

∂c(r)(t,w,p)
∂w`

=
eT` diag({B(r)

d (t)})p[
B(0)
d (t)

]T
w

−
B(0)
`,d(t)[

B(0)
d (t)

]T
w

wTdiag({B(r)
d (t)})p[

B(0)
d (t)

]T
w

+
r∑

k=1

 r

k



[
B(k)
d (t)

]T
w[

B(0)
d (t)

]T
w

B(0)
`,d(t)[

B(0)
d (t)

]T
w
−

B(k)
`,d (t)[

B(0)
d (t)

]T
w

 c(r−k)(t,w,p)

−
r∑

k=1

 r

k


[
B(k)
d (t)

]T
w[

B(0)
d (t)

]T
w

∂c(r−k)(t,w,p)
∂w`

.

As a result, the first-order weight derivatives for a NURBS curve becomes:

Dw

h
c(r)(t,w,p)

i
= −
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0B@
h
B(0)
d (t)

i
wTh

B(0)
d (t)
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w
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d (t)})ph

B(0)
d (t)
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w
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k
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B(0)
d (t)

i
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B(0)
d (t)

iT
w

− I

1CA
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B(k)
d (t)

i
h
B(0)
d (t)

iT
w

375
T

c(r−k)(t,w,p)

−

h
B(k)
d (t)

iT
wh

B(0)
d (t)

iT
w

Dw

h
c(r−k)(t,w,p)

i)
.

Lastly, let us compute the second-order weight derivatives of a NURBS curve:
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Dww

[
c(r)(t,w,p)

]
=



∂2c(r)(t,w,p)
∂w2

0

∂2c(r)(t,w,p)
∂w1 ∂w0

. . . ∂2c(r)(t,w,p)
∂wNc−1 ∂w0
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∂w2

1
. . . ∂2c(r)(t,w,p)

∂wNc−1 ∂w1

...
...

. . .
...

∂2c(r)(t,w,p)
∂w0 ∂wNc−1

∂2c(r)(t,w,p)
∂w1 ∂wNc−1

. . . ∂2c(r)(t,w,p)
∂w2

Nc−1


. (A.0.7)

Let us begin by considering the second-order partial derivative of the NURBS curve with respect to

the nth and `th weight

∂2c(r)(t,w,p)
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Then, the second-order partial derivative of the NURBS curve with respect to the nth and `th

weights becomes
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Consequently, the second-order partial derivatives of a NURBS curve with respect to weights are



135

expressed as follows
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