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Abstract 

To fully exploit new technologies for response mitigation and structural health moni­

toring, improved system identification and controller design methodologies are desir­

able that explicitly treat all the inherent uncertainties. In this thesis, a probabilistic 

framework is presented for model selection, identification and robust control of smart 

structural systems under dynamical loads, such as those induced by wind or earth­

quakes. First, a probabilistic based approach is introduced for selecting the most 

plausible class of models for a dynamical system using its response measurements. 

The proposed approach allows for quantitatively comparing the plausibility of differ­

ent classes of models among a specified set of classes. 

Then, two probabilistic identification techniques are presented. The first one is for 

modal identification using nonstationary response measurements and the second one 

is for updating nonlinear models using incomplete noisy measurements only. These 

methods allow for updating of the uncertainties associated with the values of the 

parameters controlling the dynamic behavior of the structure by using noisy response 

measurements only. The probabilistic framework is very well-suited for solving this 

nonunique problem and the updated probabilistic description of the system can be 

used to design a robust controller of the system. It can also be used for structural 

health monitoring. 

Finally, a reliability-based stochastic robust control approach is used to design the 

controller for an active control system. Feedback of the incomplete response at earlier 

time steps is used, without any state estimation. The optimal controller is chosen by 

minimizing the robust failure probability over a set of possible models for the system. 

Here, failure means excessive levels of one or more response quantities representative 

of the performance of the structure and the control devices. 'When calculating the 

robust failure probability, the plausibility of each model as a representation of the 

system's dynamic behavior is quantified by a probability distribution over the set of 
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possible models; this distribution is initially based on engineering judgement, but it 

can be updated using the aforementioned system identification approaches if dynamic 

data become available from the structure. Examples are presented to illustrate the 

proposed controller design procedure, which includes the procedure of model selection, 

identification and robust control for smart structures. 
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Chapter 1 Introduction 

The goal of this work is to develop a complete probabilistic procedure for robust 

controller design for smart structures that treats all the inherent uncertainties, and 

includes new system identification techniques that allow the robust controller design 

to be improved if dynamic data from a structure is available. 

1.1 System Identification 

The problem of system identification of structural or mechanical systems USlllg 

dynamic data has received much attention over the years because of its importance 

in response prediction, control and health monitoring (:\fatke and Yao 1988; Housner 

et a!. 1997; Ghanem and Sture (Eds.) 2(00). 

The first question is: 'Which structural model class should be used for identifica­

tion? In practice, it is not possible to use directly the finite-element model from the 

structural drawing for identification because there are too many uncertain parameters, 

which will lead to an unidentifiable case (Beck and Katafygiotis 1998; Katafygiotis 

and Beck 1998). However, the problem of model class selection has not been well 

explored in system identification. It is obvious that a more complicated model can 

'fit' the data better than a less complicated one which has fewer adjustable (uncer­

tain) parameters. Therefore, if the optimal model class is chosen by minimizing some 

measure of the error between the data and the corresponding predictions of the opti­

mal model in each class, the optimal model class will always be the most complicated 

one. For example, in modal identification, using a 20-mode model would always be 

better than using a H)-mode model because the former one would fit the data bet­

ter, although the improvement might be negligible. This approach therefore leads to 

over-fitting the data. 'When an over-fitted model is used for future prediction, it will 

very likely lead to poor results because the model depends too much on the details of 
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the data and the noise in the data might have an important role in the data fitting. 

Therefore, in model class selection, it is necessary to penalize a complicated model. 

This was recognized early on by Jeffreys (1961) who did pioneering work on the 

application of Bayesian methods. He pointed out the need for a quantitative expres­

sion of the very old philosophy of 'Ockham's razor' which in this context implies that 

simpler models are more preferable than unllt'cessarily complicated ones, that is, the 

selected class of models should accurately describe the behavior of the system but be 

as simple as possible. Box and Jenkins (1970) also emphasize the same principle when 

they refer to the need for parsimonious models in time-series forecasting, although 

they do not give a quantitative expression of their principle of parsimony. Akaike 

(1974) recognized that maximum likelihood estimation is insufficient for model order 

selection in time-series forecasting using ARlVIA models and came up with another 

term to be added to the logarithm of the likelihood function that penalizes against 

parameterization of the models. This was later modified by Akaike (1976) and by 

Schwarz (1978). 

In recent years, there has been a re-appreciation of the work of Jeffreys (1961) on 

the application of Bayesian methods, especially due to the expository publications 

of Jaynes (1983). In particular, the Bayesian approach to model selection has been 

further developed by showing that the evidence for each model class provided by 

the data, i.e., the probability of getting the data based on the whole model class, 

automatically enforces a quantitative expression of a principle of model parsimony 

or of Ockham's razor (Gull 1988; lVlackay 1992; Sivia 1996). There is no need to 

introduce ad-hoc penalty terms as done in some of the earlier work on model selection. 

In Chapter 2, the Bayesian approach is expounded and applied to select the most 

plausible class of dynamic models representing a structure from within some specified 

set of model classes by using its response measurements. The model class selection 

procedure is explained in detail. Examples are presented using a single-degree-of­

freedom bilinear hysteretic system, a linear two-story frame and a linear ten-story 

shear building, all of which are subjected to seismic excitation. 

Chapter 3 is devoted to the modal identification using nonstationary response 
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measurements. ,VIuch attention has been devoted to the identification of modal pa­

rameters of linear systems without measuring the input time history, such as in the 

case of ambient vibrations. In an ambient vibration survey, the naturally occurring vi­

brations of the structure (due to wind, traffic, micro-tremors, etc.) are measured and 

then a system identification technique is used to identify the small-amplitude modal 

frequencies and modeshapes of the lower modes of the structure. The assumption usu­

ally made is that the input excitation is a broadband stochastic process adequately 

modeled by stationary white noise. ,VIany time-domain methods have been developed 

to tackle this problem. One example is the random decrement technique (Asmussen 

et a!. 1997) which is based on curve-fitting of the estimated random decrement func­

tions corresponding to various triggering conditions. Several methods are based on 

fitting directly the correlation functions using least-squares type of approaches (Beck 

et a!. 1994). Different AR,VIA based methods have been proposed, e.g., Gersch and 

Foutch (1974); Gersch et a!. (1976); Pi and ,VIickleborough (1989); and Andersen and 

Kirkergaard (1998). ,VIethods based on the extended Kalman filter method have been 

proposed to estimate dynamic properties such as natural frequencies, modal damping 

coefficients and participation factors, of a linear multiple-degree-of-freedom (lVIDOF) 

system (Gersch and HJUtch 1974; Beck 1978; Hoshiya and Saito 1984; Quek et a!. 

1999; Shi et a!. 2(00). 

A common assumption in modal identification using response measurements only 

is that the responses are stationary. However, there are many cases where the re­

sponse measurements are better modeled as nonstationary, e.g., a series of wind gusts 

or in the case of measured seismic response. In the literature, there are very few 

approaches which tackle modal identification using nonstationary response data, e.g., 

Safak (1989); Sato and Takei (1997). These methods rely on a forgetting factor for­

mulation, which has been demonstrated to be difficult to choose. A bad choice of this 

forgetting factor will lead to poor results. 

The results of system identification studies are usually restricted to the "optimal" 

estimates of the model parameters, whereas there is additional information related 

to the uncertainty associated with these estimates which is very important. For ex-
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ample, how precisely are the values of the individual parameters pinned down by the 

measurements made on the system? Probability distributions may be used to describe 

this uncertainty quantitatively and so avoid misleading results (Beck and Katafygiotis 

1998). Also, if the identification results are used for damage detection, this proba­

bility distribution for the identified model parameters may be used to compute the 

probability of damage (Vanik et a!. 2(00). 

A Bayesian probabilistic system identification framework has been presented for 

the case of measured input (Beck and Katafygiotis 1998). In Chapter 3, a Bayesian 

time-domain approach is presented for the general case of linear lVIDOF systems 

using nonstationary response measurements. The proposed approach allows for the 

direct calculation of the probability density function (PDF) of the modal parameters 

which can be then approximated by an appropriately selected multi-variate Gaussian 

distribution. The importance of considering the response to be nonstationary is also 

discussed. 

System identification using linear models is appropriate for the small-amplitude 

ambient vibrations of a structure that are continuously occurring. There is, however, 

a number of cases in recent years where the strong-motion response of a structure has 

been recorded but not the corresponding seismic excitation. In some cases this is be­

cause of inadequate instrumentation of the structure and in other cases it is because 

the free-field or base sensors malfunctioned during the earthquake. Fm' example, 

the seismic response was recorded in several steel-frame buildings in Los Angeles 

which were damaged by the 1994 :\forthridge earthquake, but analysis of these im­

portant records has been hampered by the fact that the input (base motions) were 

not recorded and also because of the strong nonlinear response. 

A literature search reveals relatively few papers that deal with system identifi­

cation using nonlinear models (Hoshiya and Saito 1984; Loh and Tsaur 1988; Peng 

and Iwan 1992; Loh and Chung 1993; Roberts et a!. 1995; Zeldin and Spanos 1998). 

In Chapter 4 this subject is tackled using a stochastic model for the uncertain in­

put and a Bayesian probabilistic approach to quantify the uncertainties in the model 

parameters. This Bayesian probabilistic system identification framework is an exten-
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sion of the case of measured input (Beck and Katafygiotis 1998; Katafygiotis et a!. 

1998). The proposed spectral-based approach utilizes important statistical proper­

ties of the Fast Fourier Transform (FFT) and their robustness with respect to the 

probability distribution of the response signal, e.g., regardless of the stochastic model 

for this signal, its FFT is approximately Gaussian distributed. The method allows 

for the direct calculation of the probability density function (PDF) for the param­

eters of a nonlinear model conditional on the measured response. The formulation 

is first presented for single-degree-of-freedom (SDOF) systems and then for multiple­

degree-of-freedom systems. Examples using simulated data for a Dulling oscillator, 

an elasto-plastic system and a four-story yielding structure are presented to illustrate 

the proposed approach. 

1.2 Structural Control 

Because complete information about a dynamical system and its environment are 

never available, system and excitation parameters can not be determined exactly but 

can be given probabilistic descriptions which give a measure of how plausible the 

possible parameter values are (Cox 1961; Beck 1996; Beck and Katafygiotis 1998). 

Classical control methods based on a single nominal model of the system may fail to 

create a controller which can provide satisfactory performance for the system. Robust 

control methods, e.g., ?i2 , ?iN and It-synthesis, etc., were therefore proposed so that 

the optimal controller can provide robust performance and stability for a set of 'pos­

sible' models of the system (Doyle et a!. 1989; Doyle et a!. 1992; Paganini 1996; Zhou 

and Doyle 1996; Johnson et a!. 1998). In the proposed probabilistic robust control 

approach, an additional "dimension" is introduced by using probabilistic descriptions 

of all the possible models when selecting the controller to achieve optimal perfor­

mance; these probability distributions are obtained from engineering judgement or 

system identification techniques. Specifically, a more probable model is given a high 

weighting for calculating the optimal gains, which is in contrast to standard robust 

control algorithms which give equal weighting to all possible models. 
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Over the last decade, there has been increasing interest in probabilistic, or stochas­

tic, robust control theory. ,VIonte Carlo simulations methods were used to synthesize 

and analyze control systems for uncertain systems (Stengel and Ray 1991; "-'Larrison 

and Stengel 1995). In Spencer and Kaspari (1994); Spencer et a1. (1994); Field 

et a1. (1994); and Field et a1. (1996), first- and second-order reliability methods were 

incorporated to compute the probable performance of linear-quadratic-regulator con­

trollers (LQR). On the other hand, an efficient asymptotic expansion (Papadimitriou 

et a1. 1997a) was used to approximate the probability integrals that are needed to 

determine the optimal parameters for a passive tuned mass damper (Papadimitriou 

et a1. 1997b) and the optimal gains for an active mass driver (May and Beck 1998) 

for robust structural control. In May and Beck (1998), the proposed controller feeds 

back output measurements at the current time only, where the output corresponds 

to certain response quantities that need not be the full state vector of the system. 

However, there is additional information from past output measurements which may 

improve the performance of the control system. 

In Chapter 5, the reliability-based methodology proposed in May and Beck (1998) 

is extended to allow feed back of the output (partial state) measurements at previous 

time steps. It is noted that in traditional linear-quadratic-Gaussian (LQG) control 

with partial state measurements, the optimal controller can be achieved by estimating 

the full state using a Kalman filter combined with the optimal LQG controller for full 

state feedback. However, in our case the separation principle does not apply and no 

state estimation is needed. The method presented for reliability-based robust control 

design may be applied to any system represented by linear state-space models but 

the focus here is on robust control of structures (Soong 1990; Housner et a1. 1997; 

Caughey (Ed.) 1998). 

In Chapter 5, the augmented vector formulation is presented for treating the 

output history feedback. Then, the statistical properties of the response quantities are 

calculated using the Lyapunov equation in discrete form. The robust control method 

is introduced which is based on choosing the feedback gains to minimize the robust 

failure probability (Papadimitriou et a1. 20(Jl). Examples using a shear building 
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model and a benchmark structure are given to illustrate the proposed approach. 

1.3 Overview of this Thesis 

1. Chapter 2 introduces a probabilistic approach for selecting the most plausible 

class of models for a structure using dynamic data. 

2. Chapters 3 and 4 introduce two identification techniques for linear systems using 

nonstationary response measurements and for nonlinear systems with uncertain 

input. 

3. Chapter 5 introduces a stochastic robust control methodology, with considera­

tion of modeling uncertainty, structure-actuator interaction and time delay of 

the controller. 

4. Chapter 6 illustrates the proposed robust controller design framework using a 

2()-DOF four-story structural frame. 

5. Chapter 7 concludes this thesis and indicates possible future work. 
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Chapter 2 Model Selection 

2.1 Overview 

A Bayesian probabilistic approach is presented for selecting the most plausible 

class of models for a structure within some specified set of model classes, based on 

structural response data. The crux of the approach is to rank the classes of structural 

models based on their probabilities conditional on the response data which can be 

calculated based on Bayes' Theorem and an asymptotic expansion for the evidence 

for each model class. The approach provides a quantitative expression of a principle 

of model parsimony or of Ockham's razor which in this context can be stated as 

simpler models are to be preferred over unllt'cessarily complicated ones. Examples are 

presented to illustrate the method using a single-degree-of-freedom bilinear hysteretic 

system, a linear two-story frame and a ten-story shear building, all of which are 

subjected to seismic excitation. 

2.2 Model Class Selection 

Let 1) denote the input-output or output-only dynamical data from a structure. 

The goal is to use 1) to select the most plausible class of models representing the 

structure out of NM given classes of models jlv/ I, jlv/2, ... ,jlv/"'M' Since probability 

may be interpreted as a measure of plausibility based on specified information (Cox 

1961), the probability of a class of models conditional on the set of dynamic data 1) 

is required. This can be obtained by using Bayes' Theorem as follows: 
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where p(VIU) = LJ:~ p(VIA1j,U)P(A1jIU) by the theorem of total probability and 

U expresses the user's judgement on the initial plausibility of the model classes, 

expressed as a prior probability P(A1 j IU) on the model classes A1j, j = 1, ... , N M , 

where LJ:~ P(A1jIU) = 1. The factor p(VIA1j,U) is called the evidence for the 

model class A1j provided by the data V. :\fote that U is irrelevant in p(VIA1j, U) and 

so it can be dropped in the notation because it is assumed that A1j alone specifies 

the probability density function (PDF) for the data, that is, it specifies not only a 

class of deterministic structural models but also the probability descriptions for the 

prediction error and initial plausibility for each model in the class A1j (Beck and 

Katafygiotis 1998). Eqn. 2.1 shows that the most plausible model class is the one 

that maximizes p(VIA1j)P(A1jIU) with respect to j. 

:\fote that P(A1jIV,U) can be used not only for selection of the most probable 

class of models, but also for response prediction based on all the model classes. Let 

u denote a quantity to be predicted, e.g., first story drift. Then, the PDF of u 

given the data V can be calculated from the theorem of total probability as follows: 

p(uIV, U) = LJ:~ p(uIV, A1j)P(A1j IV, U), rather than just using only the best model 

for prediction. However, if P(A1bestlV, U) for the best model class is much larger than 

others, then the above expression is approximated by p(uIV, U) = p(uIV, A1best) and 

it is sufficient to just use the best model class. 

The evidence for A1j provided by the data V is given by the theorem of total 

probability: 

where OJ is the parameter vector in a parameter space E>j C lRNj that defines each 

model in A1j, the prior PDF p( OJ IA1j) is specified by the user and the likelihood 

p(VIA1j, OJ) is calculated using the methods introduced in Section 2.3, Chapter 3 

and Chapter 4. 

In globally ident'(fiable cases (Beck and Katafygiotis 1998), the updated (posterior) 

PDF for OJ given a large amount of data V may be approximated accurately by a 
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Gaussian distribution, so p('DIAij) can be approximated by using Laplace's method 

for asymptotic approximation (Papadimitriou et a!. 1997a): 

where N j is the number of uncertain parameters for the model class Aij, the op­

timal parameter vector OJ is the most probable value (it is assumed to maximize 

p((Jjl'D, Aij) in the interior of E>j) and Hj(Oj) is the Hessian matrix of the function 

-In[p('Dl9j, Aij)p((JjIAij)] with respect to (Jj evaluated at OJ. For nnident'(fiable 

cases (Beck and Katafygiotis 1998), the evidence p('DIAij) can be calculated by us­

ing an extension of the asymptotic expansion used in Eqn. 2.3 (Beck and Katafygiotis 

1998; Katafygiotis et a!. 1998) or by using a :VIarkov chain :VIonte Carlo simulation 

technique (Beck and Au 2(02) on Eqn. 2.2. The discussion here will focus on the 

globally ident'(fiable case. 

The likelihood factor p('DIOj, Aij) in Eqn. 2.3 will be higher for those model classes 

Aij that make the probability of the data 'D higher, that is, that give a better 'fit' 

to the data. For example, if the likelihood function is Gaussian, then the highest 

value of p('DIOj, Aij) will be given by the model class Aij that gives the smallest 

least-squares fit to the data. As mentioned earlier, this likelihood factor favors model 

classes with more uncertain parameters. If the number of data points N in 'D is 

large, the likelihood factor will be the dominant one in Eqn. 2.3 because it increases 

exponentially with N, while the other factors behave as N- I
, as shown below. 

. . -~ _!'!...i -~ j. _ 

The remaIllIllg factors p((JjIAij)(21f) 2 IHj((Jj)I-' III Eqn. 2.3 are called the Ock-

hom factor by Gull (1988). The Ockham factor represents a penalty against param­

eterization (Gull 1988; :VIackay 1992), as we demonstrate in the following discussion. 

\Ve wish to show that the Ockham factor decreases exponentially with the number 

of uncertain parameters in the model class. For this purpose, consider an alternative 

expression for it, derived as follows. It is known that for a large number N of data 

points in 'D, the updated (posterior) PDF p((Jjl'D, Aij) is well approximated by a 

Gaussian PDF with mean OJ and covariance matrix given by the inverse of the Hessian 
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matrix H j (9j ). The principal posterior variances for (Jj, denoted by O},i with i = 

1,2, ... ,Nj , are therefore the inverse of the eigenvalues of this Hessian matrix. The 
• l 

determinant factor IHj((Jj)I-' in the Ockham factor can therefore be expressed as 

the product of all the OJ,i for i = 1,2, ... ,Nj . Assume that the prior PDF p((JjIAij) 

is Gaussian with mean (most probable value a priori) OJ and a diagonal covariance 

matrix with variances P],i with i = 1,2, ... ,Nj • The logarithm of the Ockham factor 

for the model class Aij, denoted by 3 j , can therefore be expressed as 

(2.4) 

Since the prior variances will always be greater than the posterior variances if the 

data provides any information about the model parameters in the model class Aij, 

all the terms in the first sum in Eqn. 2.4 will be positive and so will the terms in 

the second sum unless the posterior most probable value OJ,i just happens to coincide 

with the prior most probable value OJ,i' Thus, the log Ockham factor 3 j will decrease 

if the number of parameters N j for the model class Aij is increased. Furthermore, 

since the posterior variances are known to be inversely proportional to the number of 

data points N in 1), the dependence of the log Ockham factor on N is 

3j = - ~ In N N j + Rj (2.5) 

where the remainder Rj depends primarily on the choice of prior PDF and is 0(1) 

for large N. It is not difficult to show that this result holds for even more general 

forms of the prior PDF than the Gaussian PDF used here. 

It follows from Bayes' Theorem that we have the exact relationship: 

(2.6) 

A comparison of this equation and Eqn. 2.3 shows that the Ockham factor is approxi­

mately equal to the ratio p(9j IAij)!p(9j 11), Aij) which is always less than unity if the 
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data provides any information about the model parameters in the model class Aij. 

Indeed, for large N, the negative of the logarithm of this ratio is an asymptotic approx­

imation of the information about OJ provided by data V (Kullback 1968). Therefore, 

the log Ockham factor 3j removes the amount of information about OJ provided by 

V from the log likelihood Inp(VIOj, Aij) to give the log evidence p(VIAij). 

The Ockham factor may also be interpreted as a measure of robustness of the 

model class Aij. If the updated PDF for the model parameters for the given model 

class is very peaked, then the ratio p(OjIAij)!p(OjIV,Aij), and so the Ockham fac­

tor, is very small. But a narrow peak implies that response predictions using this 

model class will depend too sensitively on the optimal parameters OJ. Small errors 

in the parameter estimation will lead to large errors in the results. Therefore, a 

class of models with a small Ockham factor will not be robust to noise in the data 

during parameter estimation, that is, during selection of the optimal model within 

the class. :\fote that Inp(VIOj, Aij) and the log Ockham factor 3j are approximately 

proportional to N and In N, respectively, where N is the number of data points in V. 

Therefore, as N becomes larger, the contribution of the log Ockham factor becomes 

less important. This is reasonable because the uncertainty in the values of the model 

parameters becomes smaller as the number of data points grows, that is, the param­

eters can be estimated more precisely if more data points are available. In this case, 

the model class can be less robust since we are more confident about the values of 

the parameters of the model class. 

To summarize, in the Bayesian approach to model selection, the model classes are 

ranked according to p(VIAij)P(AijIU) for .i = 1, ... ,NM , where the best class of 

models representing the system is the one which gives the largest value of this quantity. 

The evidence p(VIAij) may be calculated for each class of models using Eqn. 2.3. 

The prior distribution P(Aij IU) over all the model classes Aij, .i = 1, ... ,NM , must 

be specified. In this work, a uniform prior distribution is chosen, leaving the Ockham 

factor alone to penalize model classes with increased numbers of parameters. 
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2.2.1 Comparison with Akaike's Approach 

In the case of Akaike's information criterion (Akaike 1974), the best model class 

among the Aij for .i = 1,2, ... ,NM is chosen by maximizing an objective function 

AIC(Aij IV) over .i that is defined by 

(2.7) 

where the log-likelihood function is roughly proportional to the number of data points 

N in V, while the penalty term is taken to be N j , the number of adjustable parameters 

in the model class Aij. (Akaike actually stated his criterion as minimizing -2(AIC) 

but the equivalent form is more appropriate here). 'When the number of data points is 

large, the first term will dominate. Akaike (1976) and Schwarz (1978) later developed 

independently another version of the objective function, denoted BIe, that is defined 

by 

(2.8) 

where now the penalty term increases with the number of data points N. 

BIe can be compared directly with the logarithm of the evidence from Eqn. 2.3: 

(2.9) 

where the logarithm of the Ockham factor 3j is given by Eqn. 2.4 or Eqn. 2.5. The 

latter shows that for large N, the BIe agrees with the leading order terms in the 

logarithm of the evidence and so in this case it is equivalent to the Bayesian approach 

using equal priors for all of the P(AijIUj ). 

2.3 Model Updating Using a Bayesian Framework 

A general Bayesian framework for structural model updating was proposed III 

Beck and Katafygiotis (1998) and Katafygiotis et a!. (1998). It was originally pre-
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sented using input-output measurements. In this section, this Bayesian approach for 

linear/nonlinear model updating is presented. Fm' details, see Beck and Katafygiotis 

(1998). The case of using output only measurements is covered later in Chapter 3 

(linear models) and Chapter 4 (nonlinear models). 

Consider a system with Nd degrees of freedom (DOFs) and equation of motion 

(2.10) 

where M E lR"" X "" is the mass matrix, f" E lR"" is the nonlinear restoring force 

characterized by the structural parameters (J,,, T E lR"" X"! is a force distributing 

matrix and f(t) E lR"! is an external excitation, e.g., force or ground acceleration, 

which is assumed to be measured. 

Assume now that discrete response data are available for No(~ Nd) measured 

DOFs. Let::"t denote the sampling time step. Because of measurement noise and 

modeling error, referred to hereafter as prediction error, the measured response y(n) E 

lR"o (at time t = n::"t) will differ from the model response Lox(n) corresponding to 

the measured degrees of freedom where Lo denotes an No x Nd observation matrix, 

comprised of zeros and ones. Herein, it is assumed that this difference between the 

measured and model response can be adequately represented by a discrete zero-mean 

Gaussian white noise vector process 'T/ (n) E lR"o: 

y(n) = Lox(n) +'T/(n) (2.11 ) 

where the discrete process 'T/ satisfies 

(2.12) 

where E[.] denotes expectation, <lnp denotes the Kronecker delta function, and I;'1 

denotes the No x No covariance matrix of the prediction error process 'T/. 

Let (J denote the parameter vector for identification and it includes the following 

parameters: 1) the structural parameters (J,,; 2) parameters defining the structural 
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mass distribution; 3) the elements of the force distributing matrix T; and 4) the 

elements of the upper right triangular part of the prediction-error covariance matrix 

I;~ (symmetry defines the lower triangular part of this matrix). Herein, it is assumed 

that the mass distribution can be modeled sufficiently accurately from structural 

drawings and so it is not part of the model parameters to be identified. 

If the data 1) consists of the measured time histories at N discrete times of the 

excitation and observed response, then it is easily shown that the most probable 

values iJ of the model parameters are calculated by minimizing the mean square 

error between the measured and computed model response at the observed DOFs 

because of the assumed probability model for the prediction error. Assuming that 

the prediction errors have equal variance (J~ but are independent for different channels 

of measurements, the updated PDF of the model parameters (J given dynamic data 

1) and model class jlv/ is given by 

(2.13) 

where Cl is a normalizing constant and p( (Jljlv/) is the prior PDF of the model param­

eters (J expressing the user's judgement about the relative plausibility of the values 

of the model parameters before data is used. The objective function J 1 ((JI1), jlv/) is 

given by 

(2.14) 

where x(k::"t; (J, jlv/) is the calculated response based on the assumed class of models 

and the parameter set (J and y(k::"t) is the measured response at time k::"t, respec­

tively. Furthermore, 11.11 denotes the 2-norm of a vector. The most probable model 

parameters iJ are obtained by maximizing p((JI1),jlv/) in Eqn. 2.13. For large N, this 

is equivalent to minimizing J 1 ((JI1), jlv/) in Eqn. 2.14 over all parameters in (J that it 

depends on, because this factor dominates in Eqn. 2.13. The most probable value of 

the prediction-error variance in iJ is;~ = min J 1 ((JI1), jlv/). In the globally identifiable 
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Figure 2.1: Relationship between the restoring force and the displacement of the 
bilinear hysteretic system (Example 2-1). 

case (Beck and Katafygiotis 1998), it turns out that p(9IV,A-t) is well approximated 

by a Gaussian distribution with mean 9 and covariance matrix equal to inverse of the 

Hessian of -In[p(9IV, M)] at 9. 

2.4 Illustrative Examples 

2.4.1 Example 2-1: Single-degree-of-freedom Nonlinear Oscillator 

under Seismic Excitation 

In this example, a bilinear hysteretic oscillator with linear viscous damping is 

considered: 

(2.15) 

where Tn is the mass, c is the damping coefficient and !h (x; kl' k2' Xy) is the hysteretic 

restoring force, whose behavior is shown in Fig. 2.1. Here, Tn = 1kg is assumed known. 

The parameters 9 = [2, k" k2' xyf used to generate the data are: (" = 0.02 :\fs/m, 
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Figure 2.2: Response measurements of the oscillator for the three levels of excitation 
(Example 2-1). 

1.0 :-J/m, k2 = O.n/m, Xy 0.02 m, which gives a small-amplitude natural 

frepuencv of -2' Hz. 
'1 '-' 1T 

The oscillator is assumed to be excited by 10%, 15% and 20% of the 1940 El 

Centro earthquake record. The duration of measurement is T = 40 sec with sampling 

frequency 60Hz, so that the number of data points is N = 2400. It is assumed 

that the earthquake excitation and response displacement are measured to give the 

data 1) where 5% rms noise is imposed on the structural response measurements, 

i.e., the measurement noise is 5% of the rms of the noise-free response. Fig. 2.2 

shows the measurements for the three levels of excitation and Fig. 2.3 shows the 

corresponding hysteresis loops. It can be seen that the oscillator behaved linearly 

(did not yield) when subjected to 10% of the El Centro earthquake record. Three 

classes of models are considered. They all use zero-mean Gaussian discrete white 

noise as the prediction-error model. 

"'lodel Class 1 (Ai,): Linear oscillators with damping coefficient c > 0, stiffness 

parameter k, > 0 and predictive-error standard deviation (J~; 

Model Class 2 (Ai2): Elasto-plastic oscillators, i.e., bilinear hysteretic but with 
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Figure 2.3: Hysteresis loops of the oscillator for the three levels of excitation (Example 
2-1 ). 

k2 = 0, with stiffness parameter kl > 0, yielding level Xy and predictive-error standard 

deviation (J~; and no viscous damping. 

"'lodel Class 3 (Ai:)): bilinear hysteretic oscillators with pre-yield stiffness kl > 0, 

after yielding stiffness k2 > 0, yielding level Xy and predictive error parameter (Jw 

:-Jote that this class of models does not include the exact model since linear viscous 

damping is not included. 

Independent uniform prior distributions are assumed for the parameters c, k1, k2 , 

Xy and (J~ over the range (O,O.5):-J sec/m, (O,2):-J/m, (O,O.5):-J/m, (O,O.I)m, (O,O.01)m, 

respectively. Table 2.1 shows the optimal parameters of each class of models for the 

three levels of excitation. 'U:-J' indicates that the parameter is unidentifiable. Fm' 

example, in jVj2 with 10o/r; El Centro earthquake, Xy is unidentifiable because the 

oscillator behaves perfectly linearly (Fig. 2.3). In fact, the optimal parameters of 

jVj I are very close to their target values in this level of excitation. Fm' higher levels 

of excitation, the optimal linear model in jVj I has lower stiffness and higher values 

of its damping coefficient to represent the increased flexibility and energy dissipation 
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Excitation Level "'lodel Class c kl k2 Xy (J~ 

1 0.0204 1. 000 0.0005 
10% El Centro earthquake 2 1.019 U)J 0.0013 

3 1.019 U)J U)J 0.0013 
1 0.0902 0.989 0.0020 

15% El Centro earthquake 2 un 79 0.0214 0.0017 
3 1.001 (J.108 0.0197 0.0007 
1 0.1928 0.956 0.0098 

20% El Centro earthquake 2 0.9936 0.0211 0.0051 
3 0.9942 0.0924 0.0200 0.0011 

Table 2.1: Optimal (most probable) parameter values in each model class representing 
the oscillator (Example 2-1). 

Excitation level P(A'qD,U) P(M 2 11J ,U) P(Ml l1J,U) 
10% El Centro earthquake 1.0 3.1 x 10 1217 3.1 x 10 1217 

15% El Centro earthquake 4.4 x 10 1174 3.2 x 10 957 1.0 
20% El Centro earthquake 6.4 x 10 2l0l 5.7x10 IG09 1.0 

Table 2.2: Probabilities of different model classes based on data (Example 2-1). 

due to yielding. 

Table 2.2 shows the values of P(A1jl1J,U),.i = 1,2,3 for the three levels of excita­

tion that are calculated from Eqn. 2.1 using the evidence for each model from Eqn. 2.3 

and equal priors P(A1jIU) = 1. :\fote that in all three cases, the optimal model class 

has probability near 1.0, implying that the other model classes can be discarded for 

response prediction. In the case of 10% scaling of the El Centro earthquake record, it 

is not surprising that P(A1 d1J, U) is the largest since the oscillator behaves linearly 

(Fig. 2.3). However, for higher levels of excitation, P(A1ll1J, U) is the largest. Al­

though A1l does not include linear viscous damping, the hysteretic behavior can be 

captured well by this model. More interestingly, jVj2 out-performs jVj I at these two 

levels of excitation. Although jVj2 can not capture the viscous damping mechanism, 

the energy dissipated by the hysteretic behavior for 15% and 20% scaling of the El 

Centro earthquake record is much more significant than the contribution from the 
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Figure 2.4: Linear two-story structural frame (Example 2-2). 

viscous damping, as can be seen by the large increase in the optimal damping ratio 

for the corresponding "equivalent" linear systems Ai, in Table 2.1. Furthermore, the 

restoring force behavior for ;\12 is more correct than for ;\1" although it is still not 

exact. 

This example illustrates an important point in system identification. In reality, 

there is no exact class of models for a real structure and the best class depends on 

the circumstances. If we wish to select between the linear models (;\1,) and the 

elasto-plastic models (;\12), then ;\12 is better for high levels of excitation while ;\1, 

is better for lower levels of excitation. 

2.4.2 Example 2-2: Linear Two-story Frame under Seismic Excita-

tion 

The second example refers to a 6-DOF two-story structural frame with story 

height H = 2.5m and width W = 4.0m, as shown in Fig. 2.4. All the chosen model 

classes are linear. All members are assumed to be rigid in their axial direction. Fm' 

each member, the mass is uniformly distributed along its length. The rigidity-to-mass 

ratio is chosen to be i:'i: = i:'i 2 = i:'ia = i:'i 4 = 2252m4 sec-2 where Tn denotes the 
Tn Tn 10m 10m ' 
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mass per unit length of all members. As a result, the first two natural frequencies 

of this structure are 2.000Hz and 5.144Hz. Furthermore, a Rayleigh damping model 

is assumed, i.e., the damping matrix C = exM + 3K, where M and K are the mass 

and stiffness matrices, respectively. In this case, the nominal values of the damping 

coefficients cl; and j are chosen to be 0.182 sec- I and 0.442 x 1O-:l sec so that the 

damping ratios for the first two modes are l.OOo/r;. 

Three classes of structural models are considered. Independent zero-mean discrete 

Gaussian white noise is used for the prediction-error model, with spectral intensity 

Snl = O.027m2 sec:l and Sn2 = O.059m2 sec:l at the two observed degrees offreedom. 

In order to have better scaling, the damping parameters are parameterized as follows: 

ex = (;)Ji and 3 = (;)23. 

"'lodel Class 1 (A11): Assumes a class of two-story shear buildings with nominal 

interstory stiffness kl = k2 = 2 x I~f:'. In order to have better scaling, the stiffness 

are parameterized as follows: kj = (ljkj,.i = 1,2. Therefore, the uncertain parameters 

are (lj, (;)j, Snj, .i = 1,2. 

Model Class 2 (A12): Assumes the actual class of models except that due to 

modeling error, Ell = (lIEl l , Eh = (l2El2, El:l = O.5(1IEl:l and El4 = O.5(12El4, 

where the nominal values were given earlier. Therefore, the uncertain parameters are 

(lj, (;)j and Snj, .i = 1,2. 

Model Class 3 (A1:l): Assumes that Ell = (lIEl l , Eh = (l2El2 and Elj = 

(I:lElj,.i = 3,4. Therefore, the uncertain parameters are: (II, (12, (I;), (;)1, (;)2, Snl and 

Sn2. :\fote that the true model lies in this set. 

The structure is assumed to be excited by a white noise ground motion, which 

is not measured. The spectral intensity of the ground motion is taken to be So = 

1.0 x 1O-5m2 sec3 The data 1) consists of the absolute accelerations with 10o/r; 

measurement noise at the 1"t and 2nd DOFs over a time interval of 100 sec, using a 

sampling interval of (J.(ll sec. Identification was performed using the Bayesian spectral 

density approach of Chapter 4 with the same set of data for each of the three classes 

of models. 

The prior distributions p( 9j IA1j),.i 1,2,3 are assumed to be an independent 
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uniform distribution over the interval (0,2) for (I" (12, (I:), (;)" (;)2 and over the interval 

(0, O.5)m2 sec3 for Sn' and Sn2. 

Parameter Ct'l (;'2 (I, (12 (13 8n1 8n2 

Case 1 1.131 1.007 0.913 0.879 0.158 0.159 
Case 2 1.057 1.536 1.130 1.130 0.150 0.063 
Case 3 1.027 1.093 0.988 1.0(Jl 1.024 0.085 0.080 

Table 2.3: Optimal (most probable) structural parameter values in each model class 
representing the structural frame (Example 2-2). 

"'lode 1 2 
Actual 2.000 5.144 
Case 1 2.048 5.009 
Case 2 2.000 5.323 
Case 3 1.995 5.142 

Table 2.4: :\fatural frequencies (in Hz) of the best model in each class (Example 2-2). 

Table 2.3 shows the optimal structural parameters in each class of models. It is 

not surprising that both (I, and (12 in Case 1 are less than unity because the shear 

building models assume a rigid floor but the floors of the actual structure are not. 

Table 2.4 shows the associated natural frequencies with the actual frame and the op­

timal models. :\fote that the optimal model in Ai3 can fit both frequencies very well 

since the exact model is in this class. On the other hand, Ai, and jVi 2 can not fit the 

frequency of the second mode as well as jVi 3 . Fig. 2.5 - 2.7 show the estimated spec­

trum using the measurements (zigzag curve) with the best fitting spectrum (smoother 

curve) for the three classes of models, respectively. One can see that the best model 

in jVi 2 provides a better fit to the first mode than jVi" but it is the opposite for the 

second mode. The best model in jVi 3 gives excellent matching with the estimated 

spectrum for both modes. 

Table 2.5 shows the values of P(jVi j IV, U) for .i = 1,2,3, calculated from Eqn. 2.1 

using the evidence for each model from Eqn. 2.3 and equal priors P(jVijIU) = :\. 
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Figure 2.5: Response spectrum estimated by the measurements and the best fitting 
curve using "'lode! Class 1 (Example 2-2). 
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Figure 2.6: Response spectrum estimated by the measurements and the best fitting 
curve using Mode! Class 2 (Example 2-2). 
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Figure 2.7: Response spectrum estimated by the measurements and the best fitting 
curve using "'lodel Class 3 (Example 2-2). 

As expected, P(A13IV,U) is the largest among the three classes of models because 

it contains the actual model. On the other hand, P(A1 IIV, U) is the smallest one. 

Although it gives a better fit for the second mode than ;\12, it does not fit the first 

mode as well as the best model in ;\12 and the contribution of the first mode to the 

structural response is one order of magnitude larger than the second mode. This 

implies that although ;\12 has significant modeling error for the beams (about 50%), 

it is still a better class of models than the shear building models. 

P(MIIV,U) P(M 2 IV ,U) P(M3IV ,U) 
2.6 x 10 23 1.7xl0 15 1.0 

Table 2.5: Probabilities of different model classes based on data (Example 2-2). 
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Figure 2.8: Ten-story shear building (Example 2-3). 
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2.4.3 Example 2-3: Ten-story Shear Building under Seismic Excita-

tion 

The third example uses response measurements from the ten-story building shown 

in Fig. 2.8. The Bayesian approach is applied to select the optimal number of modes 

for a linear model. It is assumed that this building has a uniformly distributed floor 

mass and storv stiffness over its height. The stiffness to mass ratios kj,'j = 1, ... ,4, ,/ n~j .! 

are chosen to be 1500 sec2 so that the fundamental frequency of the building is 

0.9213 Hz. Rayleigh damping is assumed, i.e., the damping matrix C is given by 

C = exM +[)K, where ex = 0.0866 seC I and [) = 0.0009 sec. The structure is assumed 

to be subjected to a wide-band random ground motion, which can be adequately 

modeled as a Gaussian white noise with spectral intensity Sio = 0.02m2 sec3 :\fote 

that the matrix T in Eqn. 2.10 is equal to the matrix -[ml, ... ,mlOf in this case. 

Each model class Ai) Ci = 1, ... ,8) consists of a linear modal model (Beck 1996) 

with j modes and the uncertain parameters are the natural frequency, damping ratio 

and modal participation factor for each mode; and the spectral intensity Sn of the 

prediction error at the measured degree of freedom. 

The data 1) consists of the absolute accelerations at the top floor with 5% mea-

surement noise over a time interval T = 30 sec, using a sampling interval ::"t = 

(J.(ll sec. The measurement noise is simulated using a spectral intensity Sn = 1.94 x 

1O-4m2 sec3 The Bayesian spectral density approach of Chapter 4 is used for the 

identification. The number of data points N is taken to be 600 because only the 

estimated spectrum up to 20.0 Hz is used. 

Independent prior distributions for the parameters are taken as follows: Gaussian 

distribution for the natural frequencies with mean 5.5(2j -1) rad/sec and coefficient of 

variation 0.05 for the jth mode. Furthermore, the damping ratios, modal participation 

factor and the spectral intensity of the modeling error are assumed to be uniformly 

distributed over the range (0,0.05), (0,2) and (0, 0.(1)m2 sec:l, respectively. 

Table 2.6 shows the identified (most probable) natural frequencies for considering 

one mode to eight modes. Table 2.7 shows the values of the log-evidence Inp(1)!Aim), 
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:-lumber of modes WI 0)2 W:J 0)4 W5 WG 0)7 W8 

Exact 5.789 17.24 28.30 38.73 48.30 56.78 64.00 69.79 
1 6.946 
2 5.799 20.68 
3 5.814 17.16 33.96 
4 5.842 17.18 27.94 43.82 
5 5.848 17.19 27.97 38.06 50.58 
6 5.849 17.19 27.97 38.09 48.10 56.72 
7 5.849 17.19 27.97 38.09 48.13 56.34 64.18 
8 5.849 17.19 27.97 38.09 48.13 56.34 64.18 69.41 

Table 2.6: Identified natural frequencies in rad/sec of the building (Example 2-3). 

:-lumber of modes Tn 1 2 3 4 
Inp(VIA1m) 1.894 x 1():l 2.251 X 1():l 2.511 X 1():l 2.619 X 1():l 

In .Bra -43.7 -56.4 -68.9 -69.2 
P(MmIV,U) 3.0 x 10 TW 2.2 x 10 18G 6.4 x 10 79 2.4 x 10 :l2 

:-lumber of modes Tn 5 6 7 8 
Inp(VIA1m) 2.682 x 1():l 2.714 X 1():l 2.723 X 1():l 2.723 X 1():l 

In .Bra -75.9 -91.2 -109 -121 
P(MmIV,U) 1.0 x 10 7 1.0 1.7x10 4 1.3 x 10 9 

Table 2.7: Probabilities of models with different number of modes based on data 
(Example 2-3). 

the log-Ockham factor In 3m and P(A1jIV,U) Ci = 1, ... ,8) for the cases of model 

classes with one mode to eight modes, calculated from Eqn. 2.1 using the evidence 

for each model from Eqn. 2.3 and equal priors P(A1jIU) = t. It implies that using 

six modes is optimal. It is found that the seven-mode and eight-mode models give 

poor estimation of the damping ratios although the estimated natural frequencies are 

satisfactory, as shown in Table 2.6. The estimated (most probable) damping ratios of 

the seventh mode are 15.3% and 17.2%, using the seven-mode and eight-mode models, 

respectively. The eight-mode model gives 25.9% for the most probable damping ratio 

for the eighth mode. :-lote that the actual values of the damping ratios of the seventh 

and eighth mode are 2.86% and 3.10%, respectively. 

Fig. 2.9 shows the estimated spectrum from the data (zigzag curve) and the best 
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Figure 2.9: Response spectrum estimated by the measurements and the best fitting 
curve using six modes (Example 2-3). 

fitting curve using six modes (smoother curve). One can see that the optimal model 

using six modes can fit the measured spectrum very well. Furthermore, all the six 

identified natural frequencies are very close to their target values, which is not the 

case for using two to five modes. It was found that if ArC is used, eight modes is 

optimal because the penalty term is too small compared to the changing of the log 

likelihood term in Eqn. 2.7. On the other hand, if BrC in Eqn. 2.8 is used, then six 

modes are optimal, agreeing with the Bayesian approach using the evidence for the 

various modal models. 

2.5 Conclusion 

A Bayesian probabilistic approach for model selection is presented and numerical 

examples are given to illustrate the method. The optimal class of models is taken to be 

the most plausible one based on the data, that is, it possesses the largest probability 

conditional on the data among the model classes. This probability depends on the 
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evidence for the model class provided by the data and the user's choice of prior 

probability distribution over the classes of models. The methodology can handle 

input-output and output-only data for linear and nonlinear dynamical systems. This 

is further illustrated in Chapters 3, 4 and 6. 

The optimal class of models is taken to be the most plausible one based on the 

data, that is, it possesses the largest probability conditional on the data among the 

model classes. This probability depends on the evidence 
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Chapter 3 Modal Identification Using 

N onstationary Noisy Measurements 

3.1 Overview 

This chapter addresses the problem of identification of the modal parameters for 

a structural system using measured nonstationary response time histories only. A 

Bayesian time-domain approach is presented which is based on an approximation of 

the probability distribution of the response to a nonstationary stochastic excitation. 

It allows one to obtain not only the most probable values of the updated modal pa­

rameters and stochastic excitation parameters but also their associated uncertainties 

using only one set of response data. It is found that the updated probability dis­

tribution can be well approximated by a Gaussian distribution centered at the most 

probable values of the parameters. Examples are presented to illustrate the proposed 

method. 

3.2 Formulation for Modal Identification 

3.2.1 Random Vibration Analysis 

Consider a system with Nd degrees of freedom (DOF) and equation of motion: 

Mi + C x +Kx = ToF(t) (3.1) 

where M, C and K are the mass, damping and stiffness matrices, respectively; To E 

jR"dX"F' is a force distributing matrix; and F(t) E jR"F' is a zero-mean Gaussian 
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nonstationary stochastic process which is modeled by 

F(t) = A(t)g(t) (3.2) 

where g( t) is a Gaussian stationary stochastic process with zero mean and spectral 

density matrix Sg(w) E lR"F' X"F' and A(t) E lR is a modulation function. Then, the 

autocorrelation function of F is given by 

R/.(t, t + 7) = A(t)A(t + 7)Rg(7) (3.3) 

where Rg(7) is the autocorrelation function for the stationary process g(t). 

Assuming classical damping, i.e., CM-'K = KM-'C (Caughey and O'Kelly 

1965), the uncoupled modal equations of motion by using modal analysis are given 

by 

r = 1, ... ,Nd (3.4) 

where q(t) = [ql (t), ... , q",,(t)f and f(t) = [II (t), ... , tv" (t)f are the modal coordi-

nate vector and the modal forcing vector, respectively. The transformation between 

the original coordinates (forces) and the modal coordinates (forces) is given by 

x(t) = iP, q(t) and f(t) = (MiP)-'Tog(t) (3.5) 

where iP is the modeshape matrix, comprised of the modeshape vectors ljJ(T) which 

are assumed to be normalized so that 

A,(T) = 1 
o/1r ' r = 1, ... ,Nd (3.6) 

where iT is a measured DOF which is not a node of the rth mode. The modal forcing 

vector f(t) is a Gaussian stationary stochastic process with zero mean, spectral density 
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matrix 

(3.7) 

and autocorrelation matrix function 

(3.8) 

It is known that the response x(t) is a Gaussian process with zero mean, correlation 

function between Xj and Xl (Lutes and Sarkani 1997): 

(3.9) 

and with spectral density 

(3.10) 

where hT (.) denotes the modal unit impulse response function for the displacement of 

the rth mode. Here, it is assumed that only Nm lower modes contribute significantly 

to the displacement response. 

Assume that discrete data at times tk = k!'lt, k = 1, ... ,N, are available at No(~ 

N d ) measured DOFs. Also, assume that due to measurement noise and modeling error 

there is prediction error, i.e., a difference between the measured response y(k) E lRNo 

and the model response at time tk = k!'lt corresponding to the measured degrees of 

freedom. The latter is given by Lox(k!'lt) where Lo is an No x Nd observation matrix, 

comprised of zeros and ones, that is, 

y(k) = Lox(k!'lt) +n(k) (3.11 ) 

It is assumed that the prediction error can be adequately represented by discrete 
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zero-mean Gaussian white noise n(k) E IRN
o with the following No x No covariance 

matrix 

T . -E[n(m)n (p)] = I;n')m,p ( 3.12) 

where <lm,p is the Kroneker Delta function. 

:\fote that y(k) is a discrete zero-mean Gaussian process with autocorrelation 

matrix function Ry given by 

Ry(m,p) = E[y(m)yT(p)] 
(3.13) 

where Rx denotes the autocorrelation matrix function of the model response x(t) 

given by Eqn. 3.9, and I;n is the noise covariance. 

3.2.2 Parameter Identification Using Bayes' Theorem 

Since it is assumed that only Nm lower modes contribute significantly to the 

response, only the modal parameters corresponding to these modes are identified. 

Specifically, the parameter vector a for identification is comprised of: 1) the modal 

parameters Wn (n r = 1, ... , Nm in Eqn. 3.4; 2) the modeshape components C;);r) at the 

observed DOF .i = 1, ... ,No for the modes r = 1, ... ,Nm , except those elements 

which were used for the normalization of the modeshapes (which are assumed constant 

and equal to one); thus, a total of Nm(No - 1) unknown modeshape parameters are 

to be identified; 3) the parameters prescribing the spectral density matrix Sg(w) and 

the modulation function A(t) and 4) the elements of the upper right triangular part 

of I;n (symmetry defines the lower triangular part of this matrix). 

Recall that here the scaling of each modeshape is chosen such that one of its 

components corresponding to a measured DOF is equal to unity. However, such 

scaling is arbitrary and therefore the above vectors can be identified only up to a 

constant scaling factor. A different modeshape normalization will cause all identified 
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components of the rth modeshape to be scaled by some constant tT; at the same time 

the values of the elements sy's) of the modal forcing spectral density matrix will be 

scaled by (tTCs )-1. 

Let the vector Ym,p denote the zero-mean random vector comprised of the response 

measurements from time m;:"t to p;:"t (m S; p) in a time-descending order, that is, 

m S; p (3.14 ) 

Using Bayes' theorem, the expression for the updated PDF of the parameters a 

given some measured response Y I,N is 

(3.15 ) 

where C2 is a normalizing constant such that the integral of the right-hand side of 

Eqn. 3.15 over the domain of a is equal to unity. The factor pta) in Eqn. 3.15 

denotes the prior PDF of the parameters and is based on previous knowledge or 

engineering judgement; in the case where no prior information is available, this is 

treated as a constant. plY I,N !a) is the dominant factor in the right-hand side of 

Eqn. 3.15 reflecting the contribution of the measured data in establishing the posterior 

distribution. This can be expanded into a product of conditional probabilities as 

follows: 

N 

P(YI,N!a) = P(YI,Np!a) II p(y(k)!a;Y"k-l) ( 3.16) 
k=:Vf>+1 

In order to improve computational efficiency, the following approximation is in­

troduced: 

N 

P(YI,N!a) ~ P(YI,Np!a) II p(y(k)!a;Yk-Np,k-l) (3.17) 
k=:Vp+l 

The conditional probability factors depending on more than Np previous data points 

are approximated by conditional probabilities depending on only the last Np data 
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points. The sense of this approximation is that data points belonging too far in the 

past do not have a significant effect on the statistical behavior of the present point. Of 

course, one expects this to be true, especially if Np is so large that all the correlation 

functions have decayed to very small values. However, it is found that a value for Np of 

the order of ~'t is sufficient, where Tl is the fundamental period of the system and ::"t is 

the sampling time step. Fm' example, assuming a time step ::"t = doT" it follows that 

a value of Np "" 25 is sufficient. The explanation for this behavior can be understood 

with the following simple example. Consider three random variables x, y and z and 

assume that one is interested in the conditional probability p(xly, z) (so p( zly) > 0). 

Obviously, if x is independent of z given y, one can write p(xly, z) = p(xly) (because 

in general, p(x, z Iy) = p(xly, z )p( z Iy) but for independence, p(x, zly) = p(x Iy )p( zI!I))' 
:\fow, let x be dependent on z. If y and z are fully dependent, then one can still write 

the above equation p(xly, z) = p(xly). If y and z are almost fully dependent, then this 

equation still holds approximately. The point of this example is that when considering 

conditional probabilities, some of the conditioning information may be redundant 

and can be omitted without significantly affecting accuracy. This argument can be 

applied to our case since measurements one period apart are highly correlated. Using 

larger values of Np leads to significant increase of the computational effort without 

significantly further improving the accuracy of the identification. This was verified 

by numerous simulations. 

The factor P(Yl,Npla) follows an NoNp-variate Gaussian distribution with zero 

mean and covariance matrix I;\",Np : 

(3.18) 

where each of the submatrices rm,p, 1 S; nt, P S; Np, has dimension No x No. Based 
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on Eqn. 3.13, the (j, /) element of the matrix rm,p is given by 

No 

= L L~'T) L~") R~")(m!:"t,p!:"t) + E~,1)8m,p 
(3.19 ) 

r)s=l 

where 8m ,p is the Kronecker Delta function, Rill) denotes the (j, /) element of the 

auto-correlation function Rx (tl, t 2 ) of the model response x(t) given by Eqn. 3.9, and 

E~,l) is the (j, /) element of the noise covariance matrix defined in Eqn. 3.12. 

Therefore, the joint probability distribution plY I,Np la) is given by 

(3.20) 

:\fext, the general expression for the conditional probability involving ex previous 

points p(y( k) la; Y k-n,k-I) in Eqn. 3.17 is derived, where it is assumed that k > ex ;:,. 1. 

First, note that the covariance matrix I;Yk_".k of the random vector Y k-n,k is given 

by 

rk-o;k-o 

where each of the submatrices rm,p, k - ex S; m,p S; k, is given by Eqn. 3.19. 

:\fext, the matrix I;Yk_".k is partitioned as follows: 

(3.21) 

(3.22) 

Since the measured response is assumed to have zero mean, the best estimator 
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en(k) ofy(k) given Yk-n,k-I (k> n) is (Brockwell and Davis 1991) 

en(k) == E[y(k)IYk-n,k-J 
(3.23) 

and the covariance matrix I;"n(k) of the prediction error €n(k) = y(k) - en(k) IS 

given by 

I;"n(k) == E[€n(k)€:,'(k)] 

= I;II (k, n) - I;12(k, n)I;221 (k, n)I;':~(k, n) 
(3.24) 

In conclusion, the conditional probability p(y( k) la; Y k-n,k-I) follows an No-variate 

Gaussian distribution with mean en(k) given by Eqn. 3.23 and covariance matrix 

I;,,n (k) given by Eqn. 3.24: 

(3.25) 

The proposed modal identification approach can be summarized as follows: Eqn. 3.15 

is utilized with plY I,N la) being calculated through the approximation in Eqn. 3.17. 

The factor P(YI,Np la) can be calculated using Eqn. 3.20 along with Eqn. 3.18 and 3.19 

and each conditional probability factor in Eqn. 3.17 can be calculated from Eqn. 3.25 

along with Eqn. 3.21 - 3.24. 

The most probable parameter values a are obtained by minimizing J(a) = 

-In[p(aIYI,N )]. It is found that the updated PDF of the parameters a can be well 

approximated by a Gaussian distribution N(a, H(a)-') with mean a and covariance 

matrix H(a)-', where H(a) denotes the Hessian of J(a) calculated at a = a. 

Although the above formulation was presented for the particular case where the 

measured response is assumed to consist of displacement histories, it can be easily 

modified to treat velocity or acceleration measurements by using the corresponding 

modal impulse response functions for velocity or acceleration in Eqn. 3.9. 
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Figure 3.1: :VIeasured time history (Example 3-1). 

f( 

:\fote that if the right-hand side of Eqn. 3.2 is replaced by LAk(tI9A)gk(t), the 
k=l 

proposed methodology can handle excitations having different modulation functions, 

e.g., ambient vibrations with a series of wind gusts. 

3.3 Numerical Examples 

3.3.1 Example 3-1: Transient Response of SDOF Linear Oscillator 

In this example, the identification of a SDOF system from simulated noisy tran­

sient displacement response data shown in Fig. 3.1 is considered. Here, in Eqn. 3.4, 

A(t) = U(t), the Heaviside unit step function, and I(t) is white-noise with spectral 

intensity Sfo- The parameters a = [w", {:, iif ", CTnf used to generate the simulated 

data are: w" = 3.0 rad/sec, {: = 0.04, iif " = 1.0 cm2 sec:! and CTn = 0.0959 cm2
• The 

chosen value of CTn corresponds to a 10o/r; rms prediction-error level, i.e., the noise is 

10o/r; of the rms of the noise-free response. The time step used to generate the data is 

(J.(ll sec. However, a much larger sampling time step was chosen (::"t = 0.1 sec) and 

the total time interval is T = 50 sec, so that the number of data points is N = 500. 
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Parameter Actual Ii Optimal il Standard Deviation (f I~I 3 = LO}l 

Wo 3.0000 2.9525 0.0585 0.020 0.81 
( 0.0400 0.0566 0.0210 0.371 0.79 

Sf" 1. 0000 0.8543 0.1168 0.137 1.25 
(fn 0.0959 0.0891 0.0038 0.042 1.81 

Table 3.1: Identification results for one set of data and Np = 20 (Example 3-1). 
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Figure 3.2: Contour of the updated joint PDF of frequency w" and damping ratio ( 
(Example 3-1). 

Table 3.1 refers to the identification results usmg a single set of displacement 

measurements YI,N' It shows the most probable values a = [w",(,i'if",iTnF', the cal­

culated standard deviations (f",o' (f" (fSfo and (fOn' the coefficient of variation for each 

parameter and the value of a "normalized error" 3 for each parameter. The parameter 

3 represents the absolute value of the difference between the identified optimal value 

and exact value, normalized with respect to the corresponding calculated standard 

deviation. Here, the value Np = 20 (corresponding to one period of the oscillator) 

was used in Eqn. 3.17. Repeating the identification with a value of Np = 40 yielded 

identical results, verifying that using Np = ~'t is sufficient. 

Fig. 3.2 shows contours in the (w", () plane of the marginal updated PDF p(w", (IY I,N) 
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Figure 3.3: lVlarginal updated joint PDFs of the damping ratio C and the spectral 
intensity Sf" (Example 3-1). 

calculated for the set of simulated data used for Table 3.1. Fig. 3.3 shows contours in 

the ((, Sf") plane of the marginal updated PDF p( (, Sf"IY I,N) calculated for the set 

of simulated data used for Table 3.1. One can see that the estimates of the damping 

ratio and the spectral intensity are quite correlated, as expected, because a larger 

value of the spectral intensity with a larger value of the damping ratio corresponds 

to a similar autocorrelation function and hence a similar probability given the data. 

On the contrary, as seen in Fig. 3.2, the estimates of w" and C can be considered as 

being uncorrelated. 

Fig. 3.4 shows a comparison between the conditional PDFs p(W"IYI,N,(,gf",iTn ) 

and p(CIYI,N,W",gf",iTn ), respectively, obtained from: i) Eqn. 3.15 (crosses) and ii) 

the Gaussian approximation N (a, H (a) -I) described in Section 2.3.2 (solid line). It 

can be seen that the proposed Gaussian approximation is very accurate. Thus, the 

inverse Hessian matrix H(a)-I can be used to calculate the covariance matrix for the 

uncertainty in the value of the parameter a, given the data Y I,N; in particular, this 

gives the variance (T2(a;IY I,N) for each parameter a; of a. 

:\fext, one hundred sets of independent time histories were generated using the 
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Figure 3.4: Conditional PDFs of the natural frequency and damping ratio obtained 
from: i) Eqn. 3.15 - cross; and ii) Gaussian approximations - solid. The remaining 
parameters are fixed at their optimal values (Example 3-1). 

Parameter Actual Ii a var(il) q2 /)2 

Wo 3.0000 3.0027 0.0037 0.0039 0.9596 
( 0.0400 0.0409 0.0004 0.0004 1.0610 

Sio 1. 0000 0.9932 0.0164 0.0168 0.9767 
(fn 0.0959 0.0964 1.52x 10 5 1.68x 10 5 0.9573 

Table 3.2: Identification results using 100 sets of data and Np = 20 (Example 3-1). 

same parameters as discussed in the beginning of this example. The optimal (most 

probable) parameter values a(m) , m = 1, ... ,100 using each set of data were calculated 

separately. Then, the mean value and the covariance matrix of the optimal parameters 

were calculated from the set {a(m),m = 1, ... , 100}. The obtained mean values and 

variances of the optimal parameters are shown in the third and fourth columns, 

respectively, of Table 3.2. The fifth column in this table shows the mean value of the 

one hundred different variances where each variance is calculated using the inverse 

Hessian matrix H(a)-l derived from each set of data separately. Finally, based on the 

100 samples, the mean square values of the normalized error parameter 3, described 
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.... ----------.. !J(t) 

Figure 3.5: Eight-story shear building model (Example 3-2). 

earlier for Table 3.1, are shown in the last column. It can be seen that the fourth 

and the fifth columns look similar, implying that the uncertainties calculated from 

a single sample are representative of the uncertainties of the optimal parameters 

obtained from several independent sets of data of equal length. Furthermore, the 

values in the last column are all approximately equal to unity. This verifies that 

the calculated uncertainties from our proposed approach using one set of data are 

reasonable and representative of the true uncertainties in the identification process. 

3.3.2 Example 3-2: Eight-story Shear Building Subjected to Non­

stationary Ground Excitation 

The second example uses simulated response data from the shear building shown 

in Fig. 3.5. It is assumed that this building has a uniformly distributed floor mass 
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and story stiffness over its height and the stiffness to mass ratio is chosen to be 1160 

sec2 so that the first four modal frequencies are 2.0000 Hz, 5.9318 Hz, 9.6616 Hz 

and 13.0624 Hz. The damping ratio is assumed to be 2% for all modes. It is assumed 

that the displacements at the 4th and 9th floor were measured over a time interval 

T = 40 sec, using a sampling interval ::"t = 4'0 sec. Therefore, the total number of 

measured time points is N = 1600 and corresponds to 80 fundamental periods. :\fote 

that a much smaller time interval (460 sec) was used for the data simulation so that 

the signal contains high frequency content which simulates a realistic situation. The 

structure is assumed to be subjected to a base acceleration given by stationary white 

noise of spectral intensitv Sgo = 0.25 m2 sec:! modulated bv A(t) = -tt ,,1- t;n U(t), 
,/ ,/ 1ft 

where U(t) denotes the Heaviside unit step function. :\fote that the envelope function 

has its maximum at t = tm equal to unity. The measurement noise for the response 

is taken to be 10%, i.e., the rms of the measurement noise for a particular channel of 

measurement is equal to 10% of the rms of the noise-free response at the corresponding 

DOF. lVlodal identification using the proposed approach is carried out for the lowest 

three modes of the structure. A value of Np = 20 was used which corresponds to using 

previous data points over one fundamental period as the conditioning information at 

each time step in Eqn. 3.17. 

Fig. 3.6 shows the Fourier amplitude spectra of the displacements measurements at 

the 4th and 9th floor. Table 3.3 shows the identification results. The second column 

in this table corresponds to the actual values used for generation of the simulated 

measurement data; the third and fourth columns correspond to the identified optimal 

parameters and the corresponding standard deviations, respectively; the fifth column 

lists the coefficient of variation for each parameter; and the last column shows the 

normalized error 3 described in Example 3-1. The first group of rows in the table 

corresponds to modal frequencies, followed by the modal damping ratios, the ratios 

of the modeshape components between the 4th and the 9th floor, the elements of the 

modal forcing spectral matrix S fo, the elements of the prediction error covariance 

matrix I;n and finally the time of maximum input intensity. :\fote that in this case, 

')(j,l) - ')(j,j) ,)(1,1) .j I = 1 'If Therefore onlv the diagonal elements of Sf "/0 - "/0" /0 '.n ' , ... ,.J. Tn' - - -, ,/ - - - -, 0 
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Figure 3,6: Displacement spectral density estimates for the 4th and 9th floor (Exam­
ple 3-2), 

are identified, The modeshapes are normalized so that the modeshape components 

at the 9th floor are equal to unity for each of the modes considered, 

It is worth noting that in all cases the coefficients of variation for the frequencies 

are much smaller than those of the damping ratios, indicating that frequencies are 

identified much better than dam pings, An additional result observed, but not tabu­

lated here, is that the modal damping ratios exhibit significant correlation with the 

corresponding modal forcing spectral intensities, 

Fig, 3,7 shows the contours in the (WI, W2) plane of the marginal updated PDF 

of WI and W2' One observes that in all cases the actual parameters are at reasonable 

distances, measured in terms of the estimated standard deviations, from the identified 

optimal parameters, i.e" the values of 3 are around zero to two, This shows the 

calculated uncertainties are consistent. 

Fig, 3,8 is a typical plot showing comparisons between the conditional PDFs of 

WI and W2 (keeping all other parameters fixed at their optimal values) obtained from: 

i) Eqn, 3,15 (crosses) and ii) the Gaussian approximation N(a,H(a)-I) described 
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Parameter Actual ii Optimal il S.D. (f I~I 3 = La IT bi 

WI 2.0000 1.9903 0.0135 0.007 0.71 
0)2 5.9318 5.9507 0.0257 0.004 0.74 
W:J 9.6616 9.8400 0.1460 0.015 1.22 

C! 0.0200 0.0200 0.0062 0.312 0.01 
(2 0.0200 0.0199 0.0029 0.145 0.04 
(l 0.0200 0.0362 0.0144 0.398 1.12 

r;)~l) N~l) 0.5287 0.5312 0.0020 0.004 1.25 
(2) I (2) 

(;'>4 (;')9 -1.0353 -1.0653 0.0575 0.054 0.52 
. (3) I . (3) 

(;'>4 (;')9 0.4035 0.3731 0.1310 0.351 0.23 
,{l,l) 
"'.ro 0.3996 0.3856 0.0335 0.087 0.42 

;(2.2) 
Sf" 0.0396 0.0345 0.0047 0.119 1.09 
,(3,3) 
'" [0 0.0112 0.0227 0.0127 1.136 0.91 

(fAI
) (4th floor) 0.0035 0.0036 0.0001 0.028 0.37 

(f},2) (9th floor) 0.0067 0.0066 0.0002 0.023 0.49 

tm I 10.0000 I 10.1049 I 0.2991 I 0.030 I 0.35 

Table 3.3: Identification results for the eight-story shear building using nonstationary 
approach (Example 3-2). 

at the end of Section 2.3.2 (solid line). It can be seen that the proposed Gaussian 

approximation is very accurate. 

Another identification was performed using absolute acceleration measurements 

with the same structure and the same excitation. The identification results are sum-

marized in Table 3.4. Again, the proposed approach successfully identified the first 

three modes of the structure. Furthermore, the actual parameters are at reasonable 

distances from the optimal parameters, compared to the calculated standard devia-

tions. 
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Figure 3,7: lVlarginal updated joint PDF of natural frequencies WI and W2 (Example 
3-2), 

Parameter Actual ii Optimal il S,D, (f I" I 3 = La bi 

WI 2,0000 2,0095 0,0182 0,009 0,52 
0)2 5,9318 5,9612 0,0252 0,004 1.17 
W:J 9,6616 9,7049 0,0224 0,002 1.93 

C! 0,0200 0,0167 0,0020 0,099 1.67 
(2 0,0200 0,0239 0,0036 0,179 1.09 
(l 0,0200 0,0224 0,0012 0,061 1.97 

r;)~I) N~I) 0,5287 0,5268 0,0086 0,016 0,22 
2 2 r;)~") N~") -1.0353 -1.0385 0,0062 0,006 0,52 

. (3) I . (3) 
(;'>4 (;')9 0,4035 0,3970 0,0135 0,033 0,49 

,{l,I) 
'" [0 0,3996 0,4482 0,0499 0,125 0,97 
)~~,2 ) 8

0 
0,0396 0,0433 0,0028 0,071 1.34 

,(3,3) 
'" [0 0,0112 0,0105 0,0004 0,035 1.86 

(f~I) (4th floor) 0,0137 0,0139 0,0004 0,026 0,72 
(f},2) (9th floor) 0,0096 0,0090 0,0003 0,029 2,18 

- , 
" 

, .-tm I 10,0000 I 10,390{ I 0,2340 I 0,024 I 1.6{ 

Table 3,4: Identification results for the eight-story shear building using nonstationary 
approach with acceleration measurements (Example 3-2), 
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Figure 3.8: Conditional PDFs of the lower two natural frequencies obtained from: 
i) Eqn. 3.15 - cross; and ii) Gaussian approximations - solid. The remaining param­
eters are fixed at their optimal values (Example 3-2). 
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Parameter Actual ii Optimal il S.D. (f I~I 3 = La IT bi 

WI 2.0000 1.9759 0.0135 0.007 1.79 
0)2 5.9318 6.0226 0.0141 0.002 6.46 
W:J 9.6616 8.0513' :-l.A. :-l.A. :-l.A. 

C! 0.0200 0.0199 0.0069 0.347 0.01 
(2 0.0200 0.0020' :-l.A. :-l.A. :-l.A. 
(l 0.0200 0.7000' :-l.A. :-l.A. :-l.A. 

r;)~l) N~l) 0.5287 0.5312 0.0023 0.004 1.08 
(2) I (2) 

(;'>4 (;')9 -1.0353 -1.1162 0.0695 0.062 1.17 
. (3) I . (3) 

(;'>4 (;')9 0.4035 0.0035' :-l.A. :-l.A. :-l.A. 
,{l,l) 
"'.ro 0.3996 0.1235 0.0034 0.028 81.37 

;(2.2) 
Sf" 0.0396 0.0088 0.0013 0.150 23.10 
,(3,3) 
d [0 0.0112 0.0900' :-l.A. :-l.A. :-l.A. 

(fAI
) (4th floor) 0.0035 0.0042 0.0001 0.024 7.39 

(f},2) (9th floor) 0.0067 0.0084 0.0002 0.018 11.40 

Table 3.5: Identification results for the eight-story shear building using stationary 
approach (Example 3-2). 

Importance of explicitly treating the response as nonstationary The same set of 

data for Example 3-2 was analyzed assuming that the response is stationary, i.e., 

using fixed A(t) = I," t E [0, TJ during the identification. Results are shown in Ta­

ble 3.5. The identified values which are marked with an asterisk ('*') do not converge 

and hit the boundaries of the optimization. For example, none of the parameters 

corresponding to the 3Td mode converge. This is not surprising since Fig. 3.6 shows 

that the Fourier spectrum does not have any obvious peak at the frequency of the 

third mode of the structure. Furthermore, there are many model parameters with 

3 values much larger than unity (Table 3.5) implying that the estimation of such 

parameters is biased. Therefore, consideration of the nonstationarity of the response 

is important. 
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3.4 Conclusion 

A Bayesian time-domain approach for identification of the modal parameters and 

stochastic excitation parameters of lVIDOF linear systems using nonstationary noisy 

response data was presented. The updated PDF of the parameters can be accurately 

approximated by a multi-variate Gaussian distribution. The calculated mean and 

covariance matrix of this distribution offer an estimate of the most probable values of 

the parameters and their associated uncertainties. The uncertainties in the identified 

modal parameters are useful, for example, if one plans to proceed with the updating 

of a theoretical finite element model. 

The presented methodology simultaneously utilizes the response histories at all 

measured DOFs, although only one observed degree of freedom is necessary to iden­

tify the modal frequencies and damping ratios. The approach proceeds without any 

difficulty by directly using the noisy measured response data. The calculation of 

the uncertainties does not require calculating parameter estimates from a number of 

different data sets and then calculating the statistics of these estimates. Instead, it 

follows directly from the methodology applied to a single set of measurements. Fi­

nally, the proposed methodology is expected to lead to improved modal identification 

using ambient vibration data where nonstationarity is evident. 
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Chapter 4 Updating Properties of Nonlinear 

Dynamical Systems with Uncertain Input 

4.1 Overview 

A spectral density approach is presented for the identification of nonlinear dy­

namical systems using only incomplete noisy response measurements. A stochastic 

model is used for the uncertain input and a Bayesian probabilistic approach is used 

to quantify the uncertainties in the model parameters. The proposed spectral-based 

approach utilizes important statistical properties of the Fast Fourier Transform and 

their robustness with respect to the probability distribution of the response signal in 

order to calculate the updated probability density function for the parameters of a 

nonlinear model conditional on the measured response. This probabilistic approach 

is well suited for the identification of nonlinear systems and does not require huge 

amounts of dynamic data. The formulation is first presented for single-degree-of­

freedom systems and then for multiple-degree-of freedom systems. Examples using 

simulated data for a Dulling oscillator, an elasto-plastic system and a four-story yield­

ing structure are presented to illustrate the proposed approach. 

4.2 Introduction 

Roberts et a!. (1995) introduces a spectral method for identification of single­

degree-of-freedom nonlinear dynamical systems using response measurements only. 

It was found that the parameters estimated from a single set of response measure­

ment might be very unreliable. Fm' example, consider a Dulling oscillator with linear 
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damping with random excitation: 

( 4.1) 

Assume that a group of many sets of response measurements corresponding to the 

same level of excitation are available and identification is performed for each of these 

sets. Fig. 4.1(a) shows the distribution for these estimates in the (kl' k:l) plane 

schematically. It can be seen that it is unable to give an "optimal" estimation for 

kl and k:l since these individual estimates are very scattered. :\fote that the slope 

of the best fitting line is approximately -30-; because the equivalent linear system 

has linear stiffness kl + 30-;k:h where o-x is the standard deviation of the structural 

response. 

Therefore, Roberts et a!. (1995) suggested that if another group of data, which 

corresponds to another level of excitation, can be obtained and identification is per­

formed for each of these sets (circles in Fig. 4.1 (b)). Then, least squares fit can 

be performed for the two groups of data. Finally, the optimal parameters can be 

obtained by finding the intersection of the two lines. 

One of the main drawbacks of this approach is that it requires huge amount of data. 

First, many sets of data are needed for the least squares fit. Second, all sets of data 

corresponding to the same group have to correspond to the same level of excitation. 

Another main drawback is that the proposed approach gives equal weighting to the 

two groups of data. However, they might correspond to different number of data 

sets, different duration of observation and/or different level of noise, etc. In order 

to overcome these difficulties, a probabilistic approach is introduced in this chapter. 

This approach requires a reasonable amount of data, e.g., it requires only two sets of 

data in this case. Furthermore, the weighting of different sets of data is taken care 

of automatically by the probabilistic framework. The associated uncertainty of the 

model parameters can be directly computed by the proposed approach. 
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Figure 4.1: Schematic plots for identification of Dulling oscillator using the approach 
by Roberts et a!. (1995): (a) Data from same level of excitation; and (b) Data from 
two different levels of excitation (+ as in (a) and 0 new level). 
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4.3 Single-degree-of-freedom Systems 

4.3.1 Bayesian System Identification Formulation 

Consider a structural or mechanical system whose displacement response x IS 

modeled using a SDOF oscillator with equation of motion: 

( 4.2) 

where Tn, Os and fs(x, x; Os) are the mass, the model parameters and the nonlinear 

restoring force of the oscillator, respectively. Furthermore, the uncertain system input 

is modeled as a zero-mean stationary Gaussian random process f with spectral density 

function Sf(w; Of), where Of denotes the parameters of the stochastic process model 

for the excitation f (t). The observed system response y is assumed to be stationary 

and is modeled by 

y(t) = x(t) + 1)(t) ( 4.3) 

where the prediction error I) accounts for modeling errors (differences between the sys­

tem behavior and the model) as well as measurement noise. The uncertain prediction 

error is modeled as independent zero-mean Gaussian white noise, so 

( 4.4) 

where Sy, Sx and S~o are the spectral densities for the system response, model response 

and the prediction error. The spectral density function Sx, or the corresponding 

autocorrelation function Rx , can be approximated by equivalent linearization methods 

(Roberts and Spanos 1990; Lutes and Sarkani 1997) or by simulations. 

Let Y" = [Y(O),Y(l), ... ,y(N - l)f denote a vector consisting of observed re­

sponse data sampled at a time step ;:"t, wherey(n) = y(n;:"t) , n = 0, ... ,N - 1. 

Herein, updating the uncertainty regarding the values of the model parameters a = 

[0::', if}', CT~of by using the data Y" is concerned, where CT~o = 't:tS~O' From Bayes' 
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Theorem, the updated (posterior) PDF of the model parameters a given the data Y" 
IS 

( 4.5) 

where c, is a normalizing constant and pta) denotes the prior PDF describing our 

initial belief about the uncertain parameter values. :\fote that p(a!Y,,) can be used 

to give the relative plausibility between two values of a based on measured data Y" 

which does not depend on the normalizing constant c,. Also, the most probable 

value of a, denoted by a (the "optimal" parameter values), is given by maximizing 

p(a)p(Y" !a). For large N, p(Y" !a) is the dominant factor on the right-hand side of 

Eqn. 4.5. 

A difficulty with implementing this approach is establishing the joint distribution 

p(Y" !a) for the response of the nonlinear system. :\fote that the response is not 

Gaussian distributed but the FFT of the response is approximately. This property is 

utilized to obtain a response PDF in the next section. 

4.3.2 Bayesian Spectral Density Approach 

Consider the stationary stochastic process y(t) and the discrete estimator of its 

spectral density Sy (w): 

?V-I 2 

L exp( -iwkn;:,.t)y(n) ( 4.6) 
n=O 

where Wk = k;:"w, k = 0, ... ,N, - 1 with N, =I:\fT(N/2), ;:"w = ~;, and T = N ;:"t. 

Here, I:\fT denotes integer part. It can be shown that the estimator Sy,,, (Wk) is 

asymptotically unbiased, that is, 

(4.7) 
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where E[.] denotes expectation (Yaglom 1987). However, for finite N, this estimator 

is biased. Calculating the expectation of the estimator in Eqn. 4.6 yields 

( 4.8) 

where Rx is the autocorrelation function of the response x(t) and 'Yn is given by 

"'Yn = lV, n=O 
( 4.9) 

'Yn = 2(N - n), 

:\fote that the right-hand side of Eqn. 4.8 can be calculated using the FFT of the 

sequence 'YnRx(n;:"t), n = 0,1, ... ,N - l. 

Based on the Central Limit Theorem, the real and imaginary part of the FFT are 

Gaussian distributed as N -t :)(). Therefore, the estimator Sy,N(Wk), k = 1, ... ,N, -

1, has the following asymptotic behavior: 

(4.10) 

where X2 is a random variable having Chi-square distribution with two degrees offree­

dom (Yaglom 1987). Therefore, the PDF of the random variable Y(Wk) = lim Sy,N(Wk) 
?v --+00 

is asymptotically given by 

(4.11 ) 

In the case of finite N, it can be shown using simulations that for k < < N, the PDF 

of Sy,N (Wk) can be accurately approximated by a Chi-square distribution in analogy to 

Eqn. 4.11 except that the mean Sy(Wk) is replaced by E[Sy,N(Wk)] given by Eqn. 4.8. 

:\fote that this approximation is very accurate even if IJ(n;:"t), n = 1, ... ,N, is not 

Gaussian distributed. This is due to the robustness of the probability distribution of 

the FFT with respect to the probability distribution of the response signal. 

Furthermore, it is shown in Appendix A that the random variables Sy,N (Wk) and 
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Sy,N (wtl with k f I and k, I < < N 1, are uncorrelated asymptotically as N -t :)(). 

:\fote that uncorrelated Chi-square random variables are independent (Yaglom 1987). 

For large N, this property is approximately correct in a certain frequency range. 

In particular, for a sufficiently small number K < N 1, one can assume that the 

random vector S~;N = [Sy,N(WI),'" ,Sy,N(WI()j'i' has all its elements approximately 

independently Chi-square distributed. Therefore, its joint PDF can be approximated 

as follows: 

( 4.12) 

In practice, WI( can be chosen in range of [1.5wp, 2.0wp] where wp is the frequency at 

which the peak of the spectral estimates Sy,N (Wk) occurs. A more detailed discussion 

will be given in the numerical examples. 

Given the observed data Y N, one may substitute it in Eqn. 4.6 to calculate the 

corresponding observed spectral estimate S~;N = [gy,N (WI), ... ,gy,N (w I( ) j'i'. Using 

Bayes' Theorem, the updated PDF of the model parameters a given the data S~;N 

follows from an analogy to Eqn. 4.5: 

(4.13) 

where 1.'2 is a normalizing constant, and P(S~;N la) is given by Eqn. 4.12 where each 

Sy,N(Wk) is replaced by ,S'y,N(Wk), E[Sy,N(Wkla)] is calculated from Eqn. 4.8 and 

Rx(n;:"t) = Rx(n;:"tla) may be calculated by equivalent linearization methods or 

by simulation. The optimal parameters a are obtained by minimizing an objective 

function J(a) = -In[p(a)p(S~;N la)]. For the results in this chapter, this optimization 

is done using a lVIATLAB function 'fmins'. 

In the case where several independent time histories yV, ... , Y~'1) are available, 

the estimation can proceed by calculating the corresponding estimates S~::~l), ... ,S~::~M) 
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and then calculating the updated PDF 

,14 

( IS 
A /(,(1) SA /(,(M») _ " ( ) II' (sA /(,(n) I ) pay,,, , ... , y," - (:lP a p y," a (4.14 ) 

n=l 

:\fote that in the proposed approach, each set of data can be corresponding to 

a different time duration T and different sampling time interval ::"t and Eqn. 4.14 

automatically takes care of the weighting for different sets of data. 

4.4 Multiple-degree-of-freedom Systems 

4.4.1 Model Formulation 

Consider a system with Nd degrees of freedom (DOFs) and equation of motion: 

(4.15 ) 

where M E lR"" X "" is the mass matrix, f" E lR"" is the nonlinear restoring force 

characterized by the structural parameters (J,,, T E lR"" X"! is a force distribution 

matrix and f(t) E lR"! is an external excitation, e.g., force or ground acceleration, 

modeled by a stationary Gaussian process with zero mean and spectral density matrix 

function characterized by the excitation parameters (J f: 

( 4.16) 

Assume now that discrete response data are available for N" (<;, N d ) observed 

DOFs. Let::"t denote the sampling time step. Because of measurement noise and 

modeling errors, the measured response y(n) E lR'" (at time t = n::"t) will differ from 

the model response q(n), e.g., model displacement or model acceleration, calculated 

at the observed DOFs from Eqn. 4.15. This difference between the measured and 

model response, called prediction error, is modeled as a discrete zero-mean Gaussian 
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white noise vector process 'T/(n) E IR'" so 

y(n) = q(n) + 'T/(n) ( 4.17) 

where the discrete process 'T/ is independent of q and satisfies 

(4.18) 

where E[.] denotes expectation, <lnp denotes the Kronecker delta function, and I;'1 

denotes the Ns x Ns covariance matrix of the prediction-error process 'T/. 

Let a denote the parameter vector for identification; it includes the following 

parameters: 1) the structural parameters (Js; 2) the excitation parameters (J f; and 

3) the elements of the upper right triangular part of I;'1 (symmetry defines the lower 

triangular part of this matrix). As in the SDOF case, Bayes' Theorem is applied to 

update the uncertainty regarding the values of the model parameters a based on the 

spectral density estimates. 

4.4.2 Spectral Density Estimator and its Statistical Properties 

Consider the stochastic vector process y(t) and a finite number of discrete data 

Y" = {y(n),n = 0, ... ,N - I}. Based on Y", one can calculate the following 

discrete estimator of the spectral density matrix of the stochastic process y(t): 

(4.19 ) 

where z denotes the complex conjugate of a complex variable z and 1lN (Wk) denotes 

the (scaled) Fourier Transform of the vector process y at frequency Wk, as follows: 

(4.20) 
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where Wk = k!'lw, k = 0, ... ,N, - 1 with N, = I:\fT(N/2), !'lw = ~;, and T = N !'It. 

:\fote that Eqn. 4.6 is a special case of Eqn. 4.19 and 4.20. 

Using Eqn. 4.17 and taking expectation of Eqn. 4.19 (noting that q and 'T/ are 

independent) yields 

(4.21 ) 

where Sq,N(Wk) and S'1,N(Wk) are defined in a manner similar to that described by 

Eqn. 4.19 and 4.20. It easily follows from Eqn. 4.18 and 4.19 that 

( 4.22) 

The term E[Sq,N(wk)la] in Eqn. 4.21 can be also easily calculated by noting that 

Sq,N(Wk) has elements 

. !'It N-' 
,(],l)(_ .. ) = __ '. '" q,(n)q (p' )c-iwk(n-p)i!.t 
• q/i Wk 211 N L... J I 

n;p=O 

( 4.23) 

Grouping together terms having the same value of (p - n) in Eqn. 4.23, and taking 

expectation, one obtains the following expression: 

?V-I 

E[S~;.~ (Wk) la] = 4~1~ L 'Yn[R~,I) (n!'ltla)c-iwkni!.t + R~,l)( _n!'ltla)ciwkni!.t] (4.24) 
n=O 

where 'Yn is given by Eqn. 4.9 and R~,l) is the cross-correlation functions between the 

j1h and lth component of the model quantity q. However, it is usually not possible 

to obtain the correlation functions theoretically. In this case, for given a, one can 

simulate samples of the response using Eqn. 4.15 and 4.16 and hence calculate their 

spectral density estimates in a similar manner to that described in Eqn. 4.19 and 4.20. 

Then, rather than using Eqn. 4.24, the expected values of the spectral estimates can 

be approximated by the average of the spectral density estimators obtained from the 

samples. 
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:\fext, the statistical properties of the estimator Sy,N (Wk) are discussed. Denote 

by 1lN,Il(Wk) and 1JN,r(Wk) the real and imaginary part, respectively, of 1JN(Wk), 

that is, 1JN(Wk) = 1JN,Il(Wk) + i1JN,r(Wk). Since 1JN is a zero-mean Gaussian pro­

cess, both 1JN,Il(Wk) and 1JN,r(Wk), k = 1, ... ,Nl - 1 are zero-mean Gaussian vec-

tors. Furthermore, in the limit when N -t :)(), the covariance matrix of the vector 

( 4.25) 

Eqn. 4.25 states that the real and imaginary part of 1JN (Wk) have equal covari­

ance matrices C N, 1 (Wk) for k = 1, ... ,Nl - 1, i.e., excluding the zero and :\fyquist 

frequencies. Also, it states that the cross-covariance between the real and imag­

inary part has the property C'~,2(Wk) = -CN,2(Wk), i.e., E[1JY;Il(Wk)1J~r(Wk)] = 

-E[1J~Il(Wk)1JY;r(Wk)]' The latter property implies also that the diagonal elements of 

C N,2 are equal to zero, i.e., E[1JY;Il(Wk)1JY;r(Wk)] = 0, for every .i and Wk. Because of 

Eqn. 4.25 the complex vector 1JN(Wk) is said to have a complex multivariate :\formal 

distribution (Krishnaiah 1976) as N -t :)(). 

Assume now that there is a set of independent, identically distributed, time histo­

ries y~), ... ,Y~'1) As N -t :)(), the corresponding HJUrier Transforms 1J~) (Wk), n = 

1, ... "VI are independent and follow an identical complex N,,-variate :\formal distri-

lJUtion with zero mean. Then, if ,VI ;:,. N,,, the average spectral density estimate 

,14 ,14 

M (" ) _ 1 '\" (n) (" ) _ 1 '\" u(n)(" )u(n)T(" ) Sy,N Wk - ,VI L... Sy,N Wk - ,VI L... ON Wk ON wk ( 4.26) 
n=l n=l 

follows a central complex 'Wishart distribution of dimension N" with ,VI degrees of 

freedom and mean E[S~;N(Wk)] = E[Sy,N(Wk)] = 2[C N,l(Wk) - iC N,2(Wk)] as N -t:)() 

(Krishnaiah 1976). The PDF of this distribution is given by 

( 4.27) 
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where 1.'4 is a normalizing constant and IAI and tr[AJ denote the determinant and the 

trace, respectively, of a matrix A. :\fote that this approximation is very accurate even 

if y(n!:.t), n = 0, ... ,N - 1, is not Gaussian. Again, this is due to the robustness of 

the Gaussian approximation of the FFT irrespective of the probability distribution 

of the response signal. 

Also, note that in the special case of a SDOF oscillator or in the case of a lVIDOF 

system with only one set of data at one measured DOF (,VI = 1, N" = 1), the distri­

Imtion in Eqn. 4.27 becomes a Chi-square distribution with two degrees of freedom 

and so reduces to Eqn. 4.1l. 

Furthermore, when N -t 30, the vectors [1{~,Il(Wk)' 1J'~,l(Wk)F' and [1J'~,Il(wtl, 1J'~,r(wtlF' 

with Wk f WI are independent (Appendix A). This causes the complex vectors 1J,,(Wk) 

and 1J,,(wtl to be independent (as N -t 30). As a result, the matrices S~;,,(Wk) and 

S~;" (wtl are independently Wishart distributed for k f I: 

( 4.28) 

where the two right-hand factors are given by Eqn. 4.27. Although Eqn. 4.27 and 4.28 

are correct only asymptotically as N -t 30, it was shown by simulations that these 

are indeed very accurate approximations in a certain bandwidth of frequencies for 

the case where N is finite. In the case of displacements (or accelerations), such range 

of frequencies corresponds to the lower (or higher) frequency range Wk E [w I, W rd (or 

[Wf(,w",-d)· 

4.4.3 Identification Based on Spectral Density Estimates 

Based on the above discussion regarding the statistical properties of the average 

spectral estimator S~;,,(Wk)' a Bayesian approach for updating the PDF of the un­

certain parameter vector a is proposed as follows: Given ,VI ;:,. N" independent sets 

of observed data Y~), n = 1, ... "VI, one may calculate the corresponding observed 

spectral estimate matrices S~7L n = 1, ... "VI using Eqn. 4.19 and 4.20. :\fext, one 

can calculate the average matrix estimates S~;" (Wk) using Eqn. 4.26 and then form 
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the set SyJ" = {S~;N(kj.w), k 1, ... ,K}. Using Bayes' Theorem, the updated 

PDF of the model parameters a given the data S;:,{ is then given by 

( 4.29) 

where 1'5 is a normalizing constant such that the integral of the right-hand side of 

Eqn. 4.29 over the domain of a is equal to one. The factor pta) in the above equation 

represents the prior PDF, which expresses the relative plausibilities of different values 

of a based on prior information and engineering judgement. The factor p(S;:,{ la) 

expresses the contribution of the observed data. Based on Eqn. 4.27 and 4.28, this 

factor can be calculated as follows: 

I( ISM ( .. ) I M - N, 

(S' M,I( I ) ~ '. II y,N wk,. (- "T "{E[S . ( .. ) I ]-1 S· M ( •• )}) (4 3(J) 
p y,N a - (6 k=l IE[Sy,N(Wk)la]I M cxp :\1 tl y,'V wk a y,N wk '., 

where E[Sy,N (Wk) la] is given by Eqn. 4.21 and 4.22 with E[Sx,N (Wk) la] estimated by 

simulation as explained earlier. It is suggested to choose WI( such that the frequency 

range just includes all the peaks of the spectral density estimates. A more detailed 

discussion will be given in the third example. 

The most probable parameters a are obtained by minimizing an objective function 

J(a) = -In[p(a)p(S;:{la)]. Furthermore, the updated PDF p(aIS;:{) can be ap­

proximated by a Gaussian distribution centered at the optimal point a ifit is globally 

identifiable (Beck and Katafygiotis 1998). The corresponding covariance matrix I;a 

is equal to the inverse of the Hessian matrix of the function J(a) = -In[p(aIS;:,{()] 

calculated at a = a i.e. I; = H(a)-l where HI(a) = 02J(a) I . For the presented , , a J {)OJ{)Ot ~ 
a=a 

results, this Hessian matrix is calculated using a finite difference method. This prop-

erty provides a very efficient way for the quantification of the uncertainty for the 

model parameters without evaluating high dimensional integrals. However, it is not 

always a very accurate approximation, e.g., in unidentifiable cases. One check is to 

assume that the Gaussian approximation is accurate and calculate some lower dimen-

sional conditional PDFs and compare with the values calculated from Eqn. 4.29. If 
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they match well, then the approximation can be used. If they do not match, simu­

lation methods may be used, e.g., Beck and Au (2002), to calculate the associated 

uncertainties for the parameters. 

4.5 Numerical Examples 

4.5.1 Example 4-1: DufIing Oscillator 

In this example, a SDOF Duffing oscillator of known mass is considered, which is 

subjected to zero-mean stationary Gaussian white noise I(t) with spectral intensity 

m i (t) + ci(t) + klx(t) + klxl(t) = I(t) (4.31 ) 

The simulated stationary response history yV was generated with parameters 

ii = [I" kl kl ~(l) iT(I)]T where m = 1 kg (" = 01 kgls kl = 4.0 :.JIm, kl = 1.0 , " , " /0' 1]0 - - ,---., , -

:.J/ml, ,~;:! = O.OlN2
8 and iT~;) = O.0526m (20o/r; noise). The sampling interval is 

::"t = 0.1 sec, with total time T = 1000 sec, so N = 10000. 

lVlultiplying Eqn. 4.31 with x(t - r) and taking expectation yields 

( 4.32) 

where Rx(r) == E[x(t-r)x(t)J, Vt E R The term E[x(t-r)xl(t)] can be approximated 

by neglecting the fourth cumulant term, that is, E[x(t - r)xl(t)] "" 31Y;Rx(r), where 

IY; = Rx(O) is the variance of the response (Lutes and Sarkani 1997). Therefore, a 

differential equation for an approximation of the response autocorrelation function 

can be readily obtained: 

Eqn. 4.33 is a second-order ODE with constant coefficients, which can be solved 
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analytically. Then, E[Sy,N(Wk)] can be obtained for a given parameter vector a by us­

ing Eqn. 4.8. Finally, the updated PDF p(aIS~::~I») is readily obtained using Eqn. 4.6, 

4.12 and 4.13, where pta) is taken as constant over the region where p(S~::~I) la) IS 

large, i.e., a locally non-informative prior PDF (Box and Tiao 1973). 

4.5 

ka 3.5 

Fig. 4.2 shows the conditional posterior PDF p( kl' k:lIS~::~'), (\ g;::, iT~;)) normal­

ized in such a way that the peak value is unity, which is obtained by utilizing only 

the spectral estimates up to frequency WI( = l.OHz (K = 1(00). :\fote that the small­

amlllitude natural frepuencv of the oscillator is 1 Hz "" O.32Hz. It is obvious that this 
~ ~ " 

case is unidentifiable, i.e., given one set of dynamic data, the estimates of kl and k:l 

suffer from large uncertainty as there are infinitely many combinations of kl and k:l 

which give similar values for the posterior PDF. 

Another time history data set Y~) was generated for the same oscillator (same 

c, k, and k:l) but with /';;7: = O.04N2
8 and iT~7) = O.1092m (20o/r; noise). This case 

is, again, unidentifiable. However, if one plots these two posterior PDFs together 
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4.5 

3.5 

Figure 4.3: Conditional updated PDFs P(k" k:lIS~::~n), 2, g;~), iT~~»),n = 1,2 (Example 
4-1 ). 

(shown in Fig. 4.3), the peak trajectories in the (k" k:l) plane have different slope. By 

Eqn. 4.33, the equivalent linear system has stiffness kl + 3(f;k:l' Therefore, the auto-

correlation coefficients depend on (fx and hence the level of excitation Sfo, showing 

that different levels of excitation lead to different slopes of the peak trajectories in 

the (k" k:l) plane. Since the coefficient 3(f; is always positive, the slope of the peak 

trajectories in the (k" k:l) plane is always negative. This is expected because a larger 

value of kl can compensate for a smaller value of k;j, and vice versa. 

Fig. 4.3 suggests that if one uses the two dynamic data sets y~) and y~) to­

gether, uncertainty in kl and k:l can be significantly reduced. Table 4.1 shows the 
.···(1)·(2).(1).(2) ., 

estimated optimal values a = [1', kl' k;j, Sfo' Sfo' (f~o, (f~o F and the calculated stan-

dard deviations (f", (fkp (fk,,, (f,,(l) , (f,,(2) , (f (l) and (f (2) obtained using both data sets 
')(0 ')(0 IJf)O IJf)O 

yV and y~) It also gives the coefficient of variation (COV) for the parameter 

estimates and a "normalized error" 3. This normalized error parameter represents 

the absolute value of the difference between the identified optimal value and exact 
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value, normalized with respect to the corresponding calculated standard deviation. 

The COY s in Table 4.1 are all quite small, showing the parameter values are pinned 

down rather precisely by the data. The normalized errors 3 in Table 4.1 are the order 

of 2 or less, suggesting that the procedure is not producing "biased" estimates, that 

is, the errors are not unusually large. 

Parameter Actual ii Optimal il Standard Deviation (J COY ex = Q: 3 = La bl 

c 0.1000 0.1021 0.0108 (1.108 0.20 
kl 4.0000 3.9420 0.0463 0.012 1.25 
k:l 1. 0000 0.9868 0.1295 0.130 (1.1 0 
,(I) ,,) [0 0.0100 0.0098 0.0005 0.046 0.41 

(2) 
Sfo 0.0400 0.0454 0.0020 0.051 2.64 

(J~;l 0.0526 0.0514 0.0022 0.042 0.55 
(2) 

CTTlo 0.1092 0.1025 0.0045 0.041 1.49 

Table 4.1: Comparison of the actual parameters versus the optimal estimates and 
their statistics for the Duffing oscillator (Example 4-1) . 

. , •• , •. ,. ". .".,.' 1(,(1) '1(,(2),'.'(1)'(2), (I), (2) FIg. 4.4 shows the conditlOnal updated PDFs p(kIISy,N ,Sy,N ,I, k:h Sfo' Sfo' (J~o, (J~o ) 

. ,. '1(,(1) '1(,(2), '~'(I)'(2),(I),(2) .. ,.'.. .." ",. and p(k:ll Sy,N ,Sy,N ,I, k I, S fo , S fo ,(J~o , (J~o ), obtallled f101I1. (1) Eqn. 4.14 (C1 osses) 

and (ii) the Gaussian approximation (solid line). It can be seen that the Gaussian 

approximation is very accurate. This property provides a very efficient way for the 

quantification of the uncertainty for the model parameters without evaluating high 

dimensional integrals. 

Fig. 4.5 shows nearly elliptical contours (solid lines) in the (kl' k:l) plane of the 
• ". .,,', . . '1(,(1)'1(,(2),'(1)'(2),(1),(2) .... , .', conditlOnal updated PDF P(kl' k:lISy,N ,Sy,N ,I, Sfo' Sfo' (J~o, (J~o ) calculated USlllg 

Eqn. 4.14 (keeping all the other parameters fixed at their optimal values). These 

contours correspond to the parameter sets, which give 80%,60%,40%,20%,10% and 

5% of the conditional PDF values at its peak. Furthermore, by using the Gaussian 

approximation, the one standard deviation and two standard deviations contours can 

be calculated, which are shown by a dotted line and a dashed line, respectively. One 

can see that the orientation of the ellipses is the same for the two groups of contours, 

showing that the Gaussian approximation is very accurate in this case. :\fote that 
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Figure 4.4: Conditional PDFs of kl and k:l calculated using: i) Eqn. 4.14 - crosses; 
and ii) Gaussian approximation - solid. The remaining parameters are fixed at their 
optimal values (Example 4-1). 
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Figure 4.5: Contours in the (k 11 k:l) plane of conditional updated PDF P(kll k:lIS~::~') I 
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the optimal parameter values seems to be more than two standard deviations away 

from their actual values because this figure shows the conditional PDF but not the 

marginal PDF. 

:\fote that the estimation of the model parameters Os is not sensitive to the choice 

of the cutoff frequency WI( as long as it is larger than the frequency at which the peak 

of the response spectral density estimates occurs. Identification using the same sets 

of data was also carried out with WI( = 5.0Hz (the :\fyquist frequency in this case). 

The results were virtually the same as those using WI( = l.OHz except that there were 

significant reductions in the uncertainty of the noise levels, i.e., utilizing a larger WI( 

gives better estimates for the noise level only. Therefore, it is suggested to choose 

an WI( ranging from 1.5wp to 2wp where wp is the frequency at which the peak of the 

spectral estimates Sy,N(Wk) occurs. It is computationally efficient to use such values 

of W I( without sacrificing the quality of the identification for the model parameters 

Os· 

4.5.2 Example 4-2: Elasto-plastic Oscillator 

In this example, an elasto-plastic SDOF oscillator of known mass is considered, 

which is subjected to zero-mean stationary Gaussian white noise I(t) with spectral 

m i: (t) + !s(x(t)) = I(t) ( 4.34) 

where Is (x(t)) is the restoring force of the system. The restoring force-displacement 

relationship is shown in Fig. 4.6. The simulated stationary response history Y N 

was generated with parameters iio = [kl,XY"S'fo,iT~orr where m = 1 kg, kl = 16.0 

:\f/m, Xy = 1.0 m, gfo = O.15N2
8 and iT~o = O.1206m (20o/r; noise). The sampling 

rate interval is ::"t = 0.05 sec, with a total time T = 200 sec, that is, N = 4000. The 

hysteresis loops of the simulated data are shown in Fig. 4.7. :\fote that these hysteresis 

loops are not assumed to be measured; they are shown here only for illustrative 

purposes. 
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Figure 4.6: Relationship between the restoring force and the displacement of the 
system (Example 4-2). 
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Figure 4.7: Hysteresis loops of the simulated data (Example 4-2). 
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Parameter Actual ii Optimal il Standard Deviation CJ COY ex = ~ 3 = LO/l 

kl 16.000 15.827 0.1162 0.007 1.49 
Xy 1. 0000 1.3493 0.4818 0.482 0.72 
CJx 0.6029 0.5762 0.1437 0.238 0.19 

CTTlo 0.1206 0.1376 0.0209 0.173 0.82 

Table 4.2: Identification results for the elasto-plastic system with the theoretical 
spectrum estimated by equivalent linearization (Example 4-2). 

The equivalent linear system has the following equation of motion: 

( 4.35) 

where iiI and li2 are given by (Iwan and Lutes 1968; Lutes and Sarkani 1997) 

( 4.36) 

:\fote that the calculation of iiI and li2 reqUIres CJ;, the vanance of the response. 

Although CJx can be determined from the spectral intensity of the excitation Sf", it 

will be computationally more efficient to include CJx directly instead of Sf" in the 

parameter set a. Therefore, the parameter set a = [k"xy,CJx,CJ~"rr is identified 

instead of a" in this case. Then, E[Sy,N (Wk)] can be obtained given a parameter set 

a by using Eqn. 4.8 where Rx(n;:"t) is approximated by the autocorrelation function 

for the equivalent linear system given by Eqn. 4.35 and 4.36. Finally, the updated 

PDF p(aIS~;N) is readily obtained using Eqn. 4.6, 4.12 and 4.13. :\fote that a locally 

noninformative prior distribution is used, as in Example 4-1. 

Table 4.2 shows the estimated optimal values a = [k" xv' o-x, o-~"rr and the cal-

culated standard deviations CJk CJ CJ and CJ obtained using the single data , -, 'j' Xii' IJx IJf)O -, ., 

set Y N • Fig. 4.8 shows contours in the (k"Xy) plane of the marginal updated PDF 

P(kl,XYIS~;N) calculated for one set of simulated data using Eqn. 4.14 (keeping all 



71 

25~---,----,----.----.----:,====~==~ 

1 5 

05 

755 

; , 

i 

, 

/ , ,. 
j"" . 

'-
'. ' . 

.... .... ::.":-

". 
'. , 

o 
x 

Optimal 
Actual 
1 SD 
2 SDs ...... :., L-__ ------' 

... .-;: .. 

16 

, , 
\ 

"'T" 

, , 

16 1 162 

Figure 4.8: Contours of marginal updated PDF P(kl' Xy IS~;N) with the theoretical 
spectrum estimated by equivalent linearization (Example 4-2). 

the other parameters fixed at their optimal values) and utilizing only the spectral 

estimates up to frequency WI( = 1.25Hz (K=250). :\fote that the small-amplitude 

frequency of the oscillator is ~Hz "" O.63Hz. Again, WI( can be chosen between 1.5wp 

and 2.0wp, as in Example 4-1, where from Fig. 4.9, wp "" O.65Hz. 

Fig. 4.10 shows a similar plot of Fig. 4.8 but in the (xy,O"x) plane. It can be seen 

that the contours are very thin lying on the line o"x = ClIXy +Cl2, where ClI "" 0.28 and 

Cl2 "" 0.2, showing that the estimates of these parameters are very correlated. This 

is because iiI and li2 in Eqn. 4.35 depends on Tn, kl and xy/O"x only. The only factor 

that makes Xy and o"x identifiable comes from the amplitude of the spectrum, which 

is proportional to 0";. This also explains why the uncertainty for Xy and o"x is so large 

when utilizing equivalent linearization. :\fote that although the actual values of the 

parameters Xy and (Yx are within two standard deviations from their optimal values 

Xy and (Yx, respectively, the actual parameters in the (xy,O"x) plane lies far outside 

the two standard deviations contour, showing that this estimate is biased. 

Table 4.3 shows the identification results using the same set of data with the 
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Figure 4.9: Spectral estimates using the measurements (Example 4-2). 
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Figure 4.10: Contours of marginal updated PDF P(XY1 CTx IS~;N) with the theoretical 
spectrum estimated by equivalent linearization (Example 4-2). 
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Figure 4.11: Contours of marginal updated PDF P(k11 Xy IS~;N) with the theoretical 
spectrum estimated by simulation (Example 4-2). 
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Figure 4.12: Contours of marginal updated PDF P(XY1 SfoIS~;N) with the theoretical 
spectrum estimated using simulation (Example 4-2). 
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Parameter Actual ii Optimal il Standard Deviation (J COY ex = ~ 3 = LO/l 

kl 16.000 15.984 0.0433 0.003 0.36 
Xy 1. 0000 1.0918 0.0732 0.073 1.25 

Sfo 0.1500 0.1376 0.0136 0.091 0.91 
CTTlo 0.1206 0.1359 0.0201 0.166 0.76 

Table 4.3: Identification results for the elasto-plastic system with the theoretical 
spectrum estimated by simulation (Example 4-2). 

theoretical spectrum estimated by simulation, rather than by using Eqn. 4.35 and 

4.36. :\fote that in this case, the uncertain parameter set is a o = [kl,Xy,Sfo,(J~oJ, i.e., 

it includes the spectral intensity of the excitation instead of the rms of the response, 

because this is more efficient for the simulation of the system response. Here, one 

hundred samples of spectral estimates are simulated and the theoretical spectrum is 

approximated by the average of them. One can see that it gives more precise optimal 

parameter values than those in Table 4.2 by comparing the respective COVs. This 

is because the equivalent linear system can not capture completely the dynamics of 

the nonlinear oscillator. Therefore, the results obtained by using an equivalent linear 

system lose some information from the data, suggesting that for the identification of 

highly nonlinear systems, the simulation approach is the preferred one. 

Fig. 4.11 and Fig. 4.12 show contours of the marginal updated PDF P(kl' Xy IS~;N) 

and p(Xy, SfoIS~;N)' respectively. It can be seen that the optimal parameter set is 

within two standard deviations away from the actual parameter set in both (kl' xv) 

and (XY' Sfo) plane. 

4.5.3 Example 4-3: Four-story Yielding Structure 

The third example uses simulated response data for a four-story yielding structure 

shown in Fig. 4.13. The nonlinear springs have the same behavior as described in 

Fig. 4.6 in Example 4-2. The structure has a uniformly distributed floor mass and 

story stiffness over its height. The linear stiffness to mass ratios 1~:".i = 1, ... ,4, 
J 

are chosen to be 1310 sec2 so that the small amplitude fundamental frequency is 
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Tn, ======;====1---" X, (t) 

Tn:) ==='====;==1---" x:)(t) 

Tnl ======;=::::'=1---" x I (t) 

.. 
Figure 4.13: HJUr-story yielding structure (Example 4-3). 

2.00Hz. Furthermore, the yielding level is chosen to be Xy = O.015m for each story, 

which corresponds to 0.5% drift if the story height is 3.0m. Fm' better scaling in 

the identification process, the stiffness and yielding parameters are parameterized by 

kj = (ljkj,.i = 1, ... ,4 and Xy = (lyXy, where k j = 2.10 x 100k:\f/m and Xy = O.015m 

are the nominal values for the linear stiffness of the j1h story and the nominal yielding 

level for all four stories. Displacements at the 2nd and 5th floor were measured over 

a time interval T = 25 sec, using a sampling interval ::"t = (J.(ll sec. Therefore, 

the total number of measured time points is N = 2500. The structure is assumed 

to be subjected to a white noise base acceleration f with spectral intensity Sfo = 

0.006 m2 sec3 :\fote that the matrix T in Eqn. 4.15 is equal to the 4 x 1 matrix 

- [ntl nt2 nt:l nt4f in this case. The noise added to the simulated response has a 

noise-to-signal ratio of 10%, i.e., the rms of the noise for a particular channel is equal 

to 10% of the rms of the noise-free response at the corresponding DOF. 

Fig. 4.14 shows the simulated measured model displacement time histories at the 
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Figure 4,14: Displacement measurements at the 2nd and 5th floor (Example 4-3), 

2nd and 5th floor and Fig, 4,15 shows the hysteresis loops for the fourth story, that 

is, the restoring force fs4 (t) normalized by nt4 versus the interstory displacement 

X4(t) - X:l(t), :\fote that these hysteresis loops are not assumed to be measured; they 

are shown only for the purpose of illustrating the level of nonlinearity, :\fote also 

that the nonlinearity in the other stories is even higheL The time histories were 

separated into five segments (1VI = 5) with equal length in order to obtain five sets of 

spectral estimates, The expected value of the spectral density estimator is obtained 

by simulatiOlL Fig, 4,16 shows the comparison between the spectral estimates Sy,N 

(solid lines) and their expected values E[Sy,NJ (dashed lines) for the 2nd and 5th flooL 

One can see that E[Sy,NJ fits all the peaks of the measurements for both floors, :\fote 

that E[Sy,N J is obtained by the following procedure, First, simulate one hundred 

system responses, Then, by using EqIL 4,19 and 4,20, one hundred samples of the 

spectral estimates can be obtaine(l By averaging these hundred samples for each 

discrete frequency, one obtains an estimate of the expected spectrum E[Sy,N J, 

Table 4A shows the identification results utilizing the spectral estimates up to 
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Figure 4.15: Hysteresis loops for the fourth story (Example 4-3). 
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Figure 4.16: Spectral estimates and their expected values (Example 4-3). 
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Parameter Actual ii Optimal il Standard Deviation Cf COY ex = ~ 3 = LO/l 
(I, 1. 0000 1.0122 0.0097 0.010 1.26 
(12 1. 0000 0.9907 0.0089 0.009 1.04 
(13 1. 0000 0.9903 0.0103 0.010 0.95 
(14 1. 0000 0.9947 0.0078 0.008 0.69 

1. 0000 --0.9511 0.0533 0.053 -0.19 

0.0060 0.0076 0.0008 0.132 2.03 

Cf'l' 0.0022 0.0022 0.0001 0.047 0.03 

Cf'l2 0.0063 0.0062 0.0002 0.040 0.41 

Table 4.4: Identification results for the four-story yielding building (Example 4-3). 

WI( = 16.0Hz (K = 80). Again, a noninformative prior distribution for the model 

parameters is used. The second column in this table corresponds to the actual val­

ues used for generation of the simulated measurement data; the third and fourth 

columns correspond to the identified optimal parameters and the corresponding stan­

dard deviations, respectively; the fifth column lists the coefficient of variation for each 

parameter; and the last column shows the normalized error 3, which is the difference 

between the actual and optimal parameters normalized by the calculated standard 

deviation. The first group of rows in the table corresponds to the stiffness parameters 

(lj,.i = 1, ... ,4, followed by the yielding parameter (ly, the forcing spectral intensity 

Sfo and the standard deviations of the prediction error, Cf~j,.i = 1,2, for the noise in 

the 2nd and 5th floor measured displacements. As shown by the small COY s, all the 

parameter values are pinned down rather precisely by the data. Also, the normalized 

errors 3 are the order of 2 or less, suggesting that the procedure is not producing 

"biased" estimates. 

Fig. 4.17 shows the contours in the ((I" (12) plane of the marginal updated PDF of 

(I, and (12 (keeping all other parameters fixed at their optimal values). One observes 

that the actual parameters are at a reasonable distance, measured in terms of the 

estimated standard deviations, from the identified optimal parameters. 
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Figure 4.17: Contours of marginal updated PDF in the ((II, (12) plane (Example 4-3). 

4.6 Conclusion 

A Bayesian system identification approach is presented for updating the PDF of 

the model parameters for nonlinear systems using response data only. The proposed 

spectral-based approach relies on the robustness of the Gaussian approximation for 

the Fast Fourier Transform with respect to the probability distribution of the response 

signal in order to calculate the updated probability density function for the parameters 

of a nonlinear model conditional on the measured response. It does not require huge 

amounts of dynamic data, which is in contrast to most other published system iden­

tification methods for nonlinear models and unknown input. The approach provides 

not only the optimal estimates of the parameters but also the relative plausibilities 

of all values of the parameters based on the data. This probabilistic description is 

very important and can avoid misleading results, especially in unidentifiable cases. 

For the examples presented, the updated PDFs for the model parameters are well ap­

proximated by a multi-variate Gaussian distribution and so the precision with which 

the parameters are specified by the system response data are readily calculated. 
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Chapter 5 Stochastic Robust Control 

5.1 Overview 

A reliability-based output feedback control methodology is presented for control­

ling the dynamic response of systems that are represented by linear state-space mod­

els. The design criterion is based on a robust failure probability for the system. This 

criterion provides robustness for the controlled system by considering a probability 

distribution over a set of possible system models with a stochastic model of the ex­

citation so that robust performance is expected. The control force can be calculated 

using incomplete response measurements at previous time steps without requiring 

state estimation. Examples of robust structural control using a shear building model 

and a benchmark structure are presented to illustrate the proposed method. 

5.2 Stochastic Response Analysis 

Consider a linear model of a structural system with Nd degrees-of-freedom (DOFs) 

and equation of motion: 

M(9,)x(t) + C(9,)x(t) + K(9,)x(t) = T· f(t) + T,' f,(t) (5.1) 

where M(9,), C(9,) and K(9,) are the Nd x Nd mass, damping and stiffness matrix, 

respectively, parameterized by the structural parameters 9, of the system; f(t) E lR"r 

and f,(t) E lR" re' are the external excitation and control force vector, respectively, 

and T E lR""x"r and T, E lR""x"re' are their distribution matrices. A control law is 

given later that specifies f, by feedback of the measured output. 

The uncertain excitation f(t) could be earthquake ground motions or wind forces, 

for example, and it is modeled by a zero-mean stationary filtered white-noise process 
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Wf(t) = AWf(9f )wf(t) + BWf(9f )w(t) 

f(t) = Cwf ( 9 f)w f(t) 
(5.2) 

where w(t) E IRN", is a Gaussian white-noise process with zero mean and unit spectral 

intensity matrix (here, spectral intensity is defined in the manner as in Eqn. 4.19); 

w f(t) E IRN"J is an internal filter state and AWf( 9 f) E IRN"J XN"J, B wf ( 9 f) E IRN"J xN", 

and Cwf ( 9 f) E IRN r x N"J are the parameterized filter matrices governing the properties 

of the filtered white noise. A vector 9 is introduced, which combines the structural 

parameter vector and the excitation parameter vector, i.e., 9 = [0:',9}f E IRNo. The 

dependence on 9 will be left implicit hereafter in this section. 

Denote the state vector as: y(t) = [x(tf,x(tff. Eqn. 5.1 can be rewritten in 

the state-space form as follows: 

(5.3) 

'1 ,'., A - [ONdXNd LVd] B _ [ONd XNr ] . j B [ONd XNr,.] H'" W lelf y - , y - aIle yc . Clf, 
-M-1K -M-1C M-1T M-1Tc 

Oaxb and Ia denote the II x Ii zero and II x II identity matrix, respectively. 

In order to allow more choices of the output to be fed back or to be controlled, 

an output vector y f E IRN"r is introduced that is modeled by the following state 

equation: 

(5.4) 

where Ayf E IRN"r xN"r, Byf E IRN"rx2Nd are the matrices that characterizes the 

output filter. :\fote that the output vector can represent many choices of feedback. 

For example, it can handle displacement, velocity or acceleration measurements if the 

matrices Ayf and B yf are chosen appropriately (Ivers and ,Vliller 1991). Accelerations 

can be obtained approximately by passing the velocities in the state vector through 



a filter with the transfer function Hd(8): 
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(0 0) 0.0 

This filter can approximate differentiation if Wo is chosen larger than the upper limit 

of the frequency band of interest. On the other hand, one can model the sensor 

dynamics for displacements or velocities measurements by using a low-pass filter with 
2 

the transfer function HI (8) = . <Co •• Another advantage of introducing the 
S2+VM US+w6 

output vector y! is that it allows for the modeling of the actuator. "'lore details are 

given in the next chapter. 

If the full state vector v(t) = [W!(t)'i', y(t)'i', y!(t)'i'F' is introduced, then Eqn. 5.2 

- 5.4 can be combined as follows: 

v(t) = Av(t) + Bw(t) + Befe(t) 

where the matrices A, B and Be are given by 

Aw! Oy 2Y ! icfX ! d Oy Y ! icfX! ilf Bw! 

A== Byew! Ay 02Y Y ! (iX! ilf B== O2 ,, " !¥(iX ;ViC 

Oy y 
! ii/X: lcl By! Ay! ONi1fX:ViC 

(5.6) 

0" " !¥icfX!¥fc 

(5.7) 

By treating w as constant over each subinterval [kj,t, kj,t + j,t), where j,t is the 

sampling time interval that is small enough to capture the dynamics of the structure, 

Eqn. 5.6 yields the following discrete-time equation: 

v[k + 1J = Av[kJ + Bw[kJ + Befe[kJ (5.8) 

where v[kJ == v(kj,t), A == eA"t, B == A-I (A - LY,,[+2Nd+ N ,,[)B and Be == A -I (A­

LY"J+2Nd+ N ,,[ )B", and w[kJ is Gaussian discrete white noise with zero mean and co­

variance matrix I;w = ~Ly",. 
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Assume that discrete-time response data, with sampling time interval ::"t, is avail­

able for No components of the output state, that is, the measured output is given 

by 

z[kJ = Lov[kJ + n[kJ (5.9) 

where Lo E lRNo x(N"J+2N,,+N,d) is the observation matrix and n[kJ E lRNo is the uncer­

tain prediction error which accounts for the difference between the actual measured 

output from the structural system and the predicted output given by the model 

defined by Eqn. 5.8; it includes both modeling error and measurement noise. The 

prediction error is modeled as a stationary Gaussian discrete white noise process with 

zero mean and covariance matrix I;n; this choice gives the maximum information en-

tropy (greatest uncertainty) in the absence of any additional information about the 

unmodeled dynamics or output noise. 

:\fow, choose a linear control feedback law using the current and the previous Np 

output measurements, 

:Vp 

fe[kJ = L Gpz[k - p], (5.10) 
p=o 

where G p, p = 0,1, ... ,Np are the gain matrices, which will be determined in the 

next section. It is worth noting that if the matrices G p, p = 0, ... ,N; (N; < Np) are 

fixed to be zero, the controller at any time step only utilizes output measurements 

from time steps that are more than N;::"t back in the past. Furthermore, by choosing 

a value of N; such that N;::"t is larger than the reaction time of the control system 

(data acquisition, online calculation of the control forces and actuator reaction time), 

it is possible to avoid the instability problem caused by time-delay effects. 

Substituting Eqn. 5.10 into Eqn. 5.8 

:Vp 

v[k + 1J = (A + BeGoLo)v[kJ + Bw[kJ + Be L Gpz[k - pJ + BeGon[kJ (5.11 ) 
p=l 
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:-low define an augmented vector U Np [k] as follows: 

Then, Eqn. 5.11 can be rewritten as follows: 

where 

f[k] == [w[kr n[krr 

and A,o Bn and Bne are given by 

O(:Vicr+2Nd+:Vilf)X :Vp:Vo 

ONOX:ViC 

0" "" !¥oX!¥f>!¥Q 

(5.12) 

(5.13) 

(5.14) 

(0 10) 0. 0 

(5.16) 

(5.17) 

Therefore, the covariance matrix I;n == E[UNp[k]UNp[kr] of the augmented vector 



85 

U Np is readily obtained: 

(5.18) 

where I; J denotes the covarIance matrix of the vector f III Eqn. 5.14. :\fote that 

Eqn. 5.18 is a standard stationary Lyapunov covariance equation in discrete form. 

In summary, the original continuous-time excitation, structural and output equa­

tions are transformed to a linear discrete-time state-space equation for an augmented 

vector U Np ' The system response is a stationary Gaussian process with zero mean and 

covariance matrix that can be readily calculated using Eqn. 5.18. These properties 

are used to design the optimal robust controller for the structure. 

5.3 Optimal Controller Design 

The optimal robust controller is defined here as the one which maxHlnzes the 

robust reliability (Papadimitriou et al. 20(Jl) with respect to the feedback gain ma­

trices in Eqn. 5.10, that is, the one which minimizes the robust failure probability for 

a structural model with uncertain parameters representing the real structural system. 

Failure is defined as the situation in which at least one of the performance quantities 

(structural response or control force) exceeds a given threshold level. This is the clas­

sic 'first passage problem', which has no closed form solution (Lin 1976). Therefore, 

the proposed method utilizes an approximate solution bases on Rice's 'out-crossing' 

theory (Lin 1976). 

5.3.1 Conditional Failure Probability 

Use q[kJ E lRNq to denote the control performance vector of the system at time 

k!'lt. Its components may be structural interstory drifts, floor accelerations, control 
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force, etc. The system performance is given by 

q[k] = pou\dk] + m[k] (5.19) 

augmented vector U Np from Eqn. 5.12 to give the corresponding performance vector of 

the model. In order to account for the unmodeled dynamics, the uncertain prediction 

error m E IRNq in Eqn. 5.19 is introduced because the goal is to control the system 

performance, not the model performance; it is modeled as discrete white noise with 

zero mean and covariance matrix I;,,,. 

Fm' a given failure event Fi = {Iqi(t) I > 3i for some t E [0, T]}, the conditional 

failure probability P(Fi 19) for the performance quantity qi based on the structural 

model and excitation model specified by 9 can be estimated using Rice's formula if 

l/p; « 1 (Lin 1976): 

P(Fil9) "" 1 - exp[-I/p;(9)T] (5.20) 

where l/p; (9) is the mean out-crossing rate for the threshold level 3i and is given by 

(5.21 ) 

where Cfq; and Cfif; are the standard deviation for the performance quantity qi and its 

derivative qi, respectively. In implementation, qi must be included in Y f in Eqn. 5.4 

if it is not already part of y. 

:-low consider the failure event F Fi, that is, the system fails if any Iqi I 

exceeds its threshold 3i . Since the mean out-crossing rate of the system can be 
v approximated by: 1/ = L;~l l/p; (Veneziano et al. 1977), the probability of failure 

P(FI9) of the controlled structural system is given approximately by 

:Vq 

P(FI9) "" 1 - exp[- I>rJ;(9)T] (5.22) 
1=1 
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where N q denotes the number of performance quantities considered. 

5.3.2 Robust Failure Probability 

:\fo matter what technique, e.g., finite-element method or system identification, is 

used to develop a model for a structural system, the structural parameters are always 

uncertain to some extent. Furthermore, the excitation model is uncertain as well. 

Therefore, a probabilistic description is used to describe the uncertainty in the model 

parameters (J defined earlier. Such probability distributions can be specified using 

engineering judgement or they can be obtained using system identification techniques. 

This leads to the concept of the robust failure probability given by the theorem of 

total probability (Papadimitriou et al. 2()(1l): 

P(FIE» = r P(F!(J)p((JIE»d(J 
Je 

(5.23) 

which accounts for modeling uncertainties in deriving the failure probability. This 

robust failure probability is conditional on the probabilistic description of the pa­

rameters which is specified over the set of possible models E>. :\fote that this high 

dimensional integral is difficult to evaluate numerically, so an asymptotic expansion 

is utilized (Papadimitriou et al. 1997a). Denote the integral of interest by 

where I( (J) is given by 

I = r el(O) d(J 
Je 

I((J) = In[P(F!(J)] + In[p((JIE»] 

(5.24) 

( " '2") 0. 0 

The basic idea here is to fit a Gaussian density centered at the 'design point' at which 

el(O), or I ((J), is maximized. It is assumed here that there is a unique design point; 
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see (Au et al. 1999) for a more general case. Then, this integral is approximated by 

1== P(FIE» "" (21f)"f P(FI9*)p(9*1E» 
JdetL(9*) 

(5.26) 

where 9* is the design point at which 1(9) has a maximum value and L( 9*) is the Hes­

sian of -1(9) evaluated at 9*. The optimization of 1(9) to find 9* can be performed, 

for example, by using lVIATLAB subroutine 'fmins'. 

The proposed control design can be summarized as follows: By solving Eqn. 5.18, 

the covariance matrix of the structural response can be obtained. Then, the ro­

bust failure probability can be calculated using the asymptotic expansion formula in 

Eqn. 5.26 along with Eqn. 5.20 - 5.22. The optimal robust controller is obtained by 

minimizing the robust failure probability over all possible controllers parameterized 

by their gain matrices, which again can be performed, for example, using lVIATLAB 

subroutine 'fmins'. 

The optimal controller can be readily updated when dynamic data 1) is available 

from the systems (Beck and Katafygiotis 1998; Papadimitriou et al. 20(Jl). In this 

case, Bayes' Theorem is used to get an updated PDF p(911), E» that replaces p(91E» 

in Eqn. 5.23 and hence the updated robust failure probability p(FI1), E» (Papadim­

itriou et al. 20(Jl) is minimized to obtain the optimal control gains. 

5.4 Illustrative Examples 

5.4.1 Example 5-1: Four-story Building under Seismic Excitation 

The first example refers to a four-story building under seismic excitation with an 

active mass driver and a sensor on each floor above the ground level. In this example, 

the stochastic ground motion model is fixed during the controller design but the shear­

building model of the structure (Fig. 5.1) is uncertain. The nominal model of the 

structure has a floor mass and interstory stiffness uniformly distributed over its height. 

The stiffness-to-mass ratios '~;;' i = 1, ... ,4 is 1309.3 sec2
, where ,Hi is the mass of 

floor i. The nominal damping-to-mass ratios '~;;' i = 1, ... ,4 are all chosen to be equal 
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Figure 5.1: Four-story shear building with active mass driver on the roof (Example 5-1). 

to 2.0 sec-I. As a result, the nominal modal frequencies of the uncontrolled structure 

are 2.00 Hz, 5.76 Hz, 8.82 Hz and 10.82 Hz and the nominal damping ratio of the first 

mode is 1.00%. In order to take into account the uncertainty in the structural model 

parameters, all the stiffness and damping parameters are assumed to be Gaussian 

distributed, truncated for positive values of the stiffness and damping, with mean at 

their nominal values and coefficients of variation 5% (stiffness) and 20% (damping), 

respectively. To provide more realism, the structure to be controlled is defined by 

model parameters sampled from the aforementioned probability distributions rather 

than being equal to the nominal structural model. This gave stiffness-to-mass ratios of 

1253 sec2
, 1177 sec2

, 1304 sec2 and 1344 sec2 for the pt to 4th floor, respectively. 

The corresponding damping-to-mass ratios are 2.50sec- 1
, 2.16sec- 1

, 1.68 sec- 1 and 

2.22sec 1
• 

4 

The ratio It of the actuator mass ,H" to the total structure mass ,H" = I:: ,Hi IS 
1=1 

chosen to be 1%. The natural frequency w" and the damping ratio C of the actuator 

may be chosen according to the following expressions which give the optimal passive 

control system for the first mode of the nominal structure under white-noise excitation 



(Warburton and Ayorinde 1980): 

c= 

90 

2 - It 

2(lt + 1)2 
(5.27) 

where WI is the fundamental frequency of the nominal uncontrolled structure. Then, 

the stiffness-to-mass ratio .!£. and the damlling-to-mass ratio J£ of the actuator 
;H$ ;H$ 

are given bv: .!£. = --""-- = w2 and J£ = --""- = 2(w. In this examllle, '~1·'... = 
,/ ;H$ ft!Ho S ;H$ ft!Ho SST ., 

1.540 X 1()2 sec2 and ,~;, = 2.473 seC I are the optimal parameters based on Eqn. 5.27. 

However, they are assumed to be ft = 1.60 X 1()2 sec2 and -Rt; = 2.0 seC I in the 

following since it might not be possible to build a controller with the optimal values of 

,~;, and ,~;, in reality; these parameters are assumed to be known during the controller 

design. 

The controller design is based on maximizing the robust reliability or, equivalently, 

minimizing the robust failure probability, calculated for the structure with uncertain 

parameters subject to an uncertain white-noise ground excitation with spectral inten­

sity of (J.(ll m2sec :l for a 20 sec interval. The threshold level for the interstory drifts, 

actuator stroke and the control force inc = ic!;H" (normalized by the actuator active 

mass) are chosen to be 2.0 cm, 2.0 m and 10 g, respectively. The failure event F of 

interest is the exceedence of anyone of these threshold levels. For simplicity, it is 

assumed that displacements are measured at specified floors using a sampling interval 

::"t = 0.01 sec. In the next example, acceleration measurements will be assumed. 

HJUr robust controllers are designed using the proposed methodology, each using 

different control feedback: 

Controller 1: Displacement measurements at every floor at the current time step. 

Controller 2: Displacement measurements at the 4th floor at the current time step. 

Controller 3: Displacement measurements at the 4th floor at the current and previous 

two time steps. 

Controller 4: Displacement measurements at the 4th floor at the previous two time 
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steps. 

Gain Controller 1 Controller 2 Controller 3 Controller 4 
Go(l) 14.08 
Go (2) 11.87 
Go (3) 49.46 
Go (4) 32.66 86.15 134.58 

-26.63 -231.45 

-20.98 -150.72 

Table 5.1: Gain coefficients of the optimal controllers (Example 5-1). 

Passive Controller 1 Controller 2 Controller 3 Controller 4 
P(FIE» 0.56 0.0013 0.0014 0.0008 0.0009 

Table 5.2: Robust failure probability (Example 5-1). 

Table 5.1 shows the optimal gain parameters GpU) for Controllers 1 - 4 where in­

dex p and index i correspond to the number of time-delay steps and the floor number, 

respectively. Table 5.2 shows the robust failure probability of the interstory drifts and 

the stroke for passive control (all gain coefficients are fixed at zero) and for Controllers 

1 - 4. The active controllers give a much better design performance objective than the 

passive mass damper. All controllers give similar design performance objectives but 

Controller 3 is the best, followed by Controllers 4 and 1, and then 2. Although the 

number of measured degrees of freedom is different in Controllers 1 and 2, the perfor­

mance of the controlled structure is almost the same. This is because the motion of 

the structure is dominated by the first mode in the case of ground shaking. Therefore, 

the measurements at one DOF contain almost all of the information regarding the 

motion of the structure. However, Controller 3 gives a better performance objective 

than Controller 1 even though Controller 3 uses only one sensor because measuring 

displacements at consecutive time steps gives more information, which corresponds 

to the structural velocities in this case. 
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Fig. 5.2 - 5.5 show the time histories of the interstory drifts using Controllers 1 

- 4, respectively. The dashed and solid lines show the response of the uncontrolled 

and controlled structure, respectively, during simulated operation under the same 

ground motion sampled from the stochastic ground motion model. It can be seen 

that the interstory drifts are significantly reduced by the controllers. Furthermore, 

Table 5.3 shows the statistical properties (standard deviations and maximum) of 

the performance quantities (interstory drifts, strokes and controller accelerations) 

for the uncontrolled structure, passive control and Controllers 1 - 4. By comparing 

Controllers 1 and 2 in Table 5.2, one observes that the robust failure probabilities 

are very similar. Furthermore, Table 5.3 shows that the statistical properties of the 

responses in these two cases are almost the same. This implies that the performance 

of using feedback from one or four (all) degrees of freedom are virtually the same. As 

mentioned before, this is because the motion of the structure is dominated by the first 

mode in the case of ground shaking and so using the measurements at one degree of 

freedom is sufficient to characterize the motion of the structure. :\fote that although 

Controller 3 gives the smallest probability of failure in Table 5.2, the performance 

quantities in Table 5.3 are almost the same for all optimal controllers. 

Controller 4 is the case in which the controller feeds back the measurements at 

past time steps only. Although its robust failure probability is slightly larger than 

Controller 3 in Table 5.2, the performance quantities in Table 5.3 are virtually the 

same as Controller 3. lVloreover, this controller does not suffer from time-delay in-

duced stability problems if the time-delay of the controller ;:"td is less than ;:"t. If ;:"td 

is larger than ;:"t, one can choose Np > ~ and fix all the matrices Go,··· ,G1NT(*) 

at zero. Here, I:\fT denotes the integer part of a number. The controller feeds back 

the measurements far back enough that the control system has enough time to com­

pute and apply the control force to the structure. Fig. 5.6 and 5.7 shows the similar 

control force (normalized by the actuator mass) and stroke time histories respectively 

for Controllers 1 - 4. 

In order to test the robustness of the proposed controller to the excitation, the 

structural responses are calculated for the uncontrolled structure and the controlled 
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Performance quan1 i1y Thre::>hold Uncon1rolled Pa&:>ive Con1roller I Con1roller 2 Con1roller 3 Con1roller 4 
qx, (m) ..... O.OI4:J 0.0075 0.0042 0.0042 0.0040 0.0040 

erXj ~X::l (m) ..... O.Ol:JS 0.0072 o.oo:m O.OO:J9 o.oo:n O.OO:l7 
(TX::l~X3 (m) ..... 0.0095 0.0050 0.0029 0.0028 0.0027 0.0028 
O"x ~X4 (m) ..... O.OO5:J 0.0029 0.0021 0.0020 0.0019 0.0020 

moxlxl I (m) 0.02 O.O:lTJ O.02l:J 0.0120 0.0122 0.0114 0.0115 
moxlxl x21 (m) 0.02 O.O:l74 0.0197 0.0117 O.OllG 0.01 n 0.0114 
moxlx2 xal (m) 0.02 0.0257 O.OI4:J 0.0088 0.0088 O.OO8G 0.0087 
moxlxa - x41 (m) 0.02 O.Ol:J4 0.0085 0.0059 0.0058 0.0059 O.OOGO 

IJ x, (m) ..... ..... 0.1019 OA05G 0.3934 OAIOI 0.1071 

IJ r~" (g) I ..... I ..... I ..... I 2.-77G4 I 2.GG5G I 2.7785 I 2:7905 

moxlx.sl (m) I 2.0 I 
..... I 0.2984 I I.075G I I.O:J74 I 1.0897 I 1.0895 

maxlfml (g) 10.0 ..... ..... 8.0942 "/.9589 8.:JGG9 8.509 

Table 5.3: Statistical properties of the performance quantities (Example 5-1). 

structure (using Controller 3) subjected to the 1940 El Centro earthquake record. 

In Fig. 5.8, the dashed line and the solid line show the first story drifts for the 

uncontrolled structure and the controlled structure, respectively. It can be seen that 

the structural response is significantly reduced by using the proposed controller. In 

this case, the peak control force normalized by the actuator mass is 7.1g and the peak 

actuator stroke is l.08m. 

I 

I 
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Figure 5.2: Simulated interstory drifts for the uncontrolled (dashed) and controlled struc-
ture using Controller 1 (solid) (Example 5-1). 
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Figure 5.3: Simulated interstory drifts for the uncontrolled (dashed) and controlled struc-
ture using Controller 2 (solid) (Example 5-1). 
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Figure 5.4: Simulated interstory drifts for the uncontrolled (dashed) and controlled struc-
ture using Controller 3 (solid) (Example 5-1). 
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Figure 5.5: Simulated interstory drifts for the uncontrolled (dashed) and controlled struc-
ture using Controller 4 (solid) (Example 5-1). 
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Figure 5.6: Controller stroke time histories using Controllers 1 - 4 (Example 5-1). 
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Figure 5.7: Controller force (normalized by the actuator mass) time histories USlllg 
Controllers 1 - 4 (Example 5-1). 
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5.4.2 Example 5-2: Control Benchmark Problem 

The proposed control strategy is applied to the well-known control benchmark 

problem with an active mass driver (Spencer et a!. 1998). The benchmark problem 

is based on a three-story, single-bay laboratory test structure (Dyke et a!. 1996). 

It is a steel frame with 158cm height. The natural frequencies of the first three 

modes are 5.81Hz, 17.68Hz and 28.53Hz, respectively. The associated damping ratios 

are 0.33%, 0.23% and 0.30%. In this example, the structural system is assumed 

known (an accurate dynamic model is given in the benchmark, but the stochastic 

excitation model is treated as uncertain). The controllers are designed and tested 

under the excitation of a Kanai-Tajimi filtered white noise, and further tested using 

a scaled 1940 El Centro earthquake record and a scaled 1968 Hachinohe earthquake 

record. The sampling time intervals is ::"t = 0.001 sec, as specified by the benchmark. 

The threshold levels for the interstory drifts, actuator displacements and actuator 

accelerations are 1.5cm, 9.0cm and 6.0g, respectively. As the delay time of the control 

force is ::"td = 0.0002 sec, the controllers in this study are chosen to feedback only the 

response measurements from one and two time steps back, that is, Go is fixed to be 

zero and G i , i = 1,2 are the design parameters. Two feedback cases were investigated 

as follows: 

Controller 1: Feedback of acceleration from all floors at the previous two time steps, 

i.e., G i , i = 1,2 are the design parameters. 

Controller 2: Acceleration measurements from all floors are passed through the same 

second order filter, with transfer function w,2/( _w2 + 2i(ewew + w~). Then, the con­

troller feeds back the filtered measurements at the previous two time steps. Here, (e 

is chosen to be 11 V2 and We is included in the design parameter set. This case has 

been previously studied using only output of the filter at the current time ("-lay and 

Beck 1998). 

HJllowing the benchmark guidelines (Spencer et a!. 1998), the controllers are 

used to control a high-fidelity linear time-invariant state-space representation of the 

structure which has 28 states. Quantization, saturation and time delay of the control 
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force are considered in this model. In order to test the robustness of the controllers 

with respect to modeling errors, a reduced 10-state model is used in the design process, 

which is provided by the official benchmark web site at http://www.nd.edu/~quake;' 

Furthermore, the excitation is assumed to be a stationary zero-mean Gaussian process 

with a spectral density defined by an uncertain Kanai-Tajimi spectrum: 

(5.28) 

where wg , (g are assumed to be log-normally distributed with mean 50 rad/sec and 

0.5, respectively. Furthermore, their logarithm standard deviations are assumed to 

be CTlogwy = 0.2 and CTlog(y = 0.2. The spectral intensity parameter So is given by 

O.03(g 2 
So = g sec 

1IWg (4(# + 1) , 
(5.29) 

such that CTxy = O.12g regardless of the values of Wg and (g. 

Gain \ Controller 1 2 
GI (l) 0.0062 0.0930 
GI (2) 0.0014 0.0959 
GI (3) 0.0228 0.0931 

G2 (1) 0.0319 0.1268 
G2 (2) 0.0494 0.1056 
G2 (3) 0.0838 0.1047 

We (rad/sec) I 44.993 I 

Table 5.4: Design parameters of the optimal controllers (Example 5-2). 

Table 5.4 shows the optimal gains and the optimal filter parameter for Controllers 

1 and 2. One can see that the control gains increase significantly when using the filter. 

Table 5.5 shows the performance quantities JI to JIO defined in Spencer et al. (1998) 

for Controllers 1 and 2, for the controller obtained by "-lay and Beck (1998) and also 

for the sample controller provided in Spencer et al. (1998). All the controllers pro­

vide satisfactory performance. :\fote that the controller obtained by May and Beck 
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Excitation 
Performance 

Controller 1 Controller 2 May and Beck Spencer et aL quantity 
.11 0.183 0.205 0.207 0.283 
.h 0.301 0.310 0.345 0.440 

Filtered white .l:J 0.366 0.736 0.851 0.510 
noise .11 0.363 0.738 0.832 0.513 

.15 0.606 0.676 0.683 0.628 

.1r; 0.492 0.380 0.380 0.456 
Maximum response ." 0.811 0.694 0.684 0.681 
of Hachinohe 1968 .18 0.812 1.39 1.64 0.669 
and El Centro 1940 .19 0.847 1.35 1.56 0.771 

.110 1.64 1.16 0.936 1.28 

Table 5.5: Performance quantities for the benchmark problem (Example 5-2). 

is similar to Controller 2 except that they only feed back the response measurements 

at the current state. Their optimal gains are Go(l) = 0.431, Go(2) = 0.291, and 

Go(3) = 0.235 and the optimal filter parameter is we = 33.1rad/sec. J 1 to J5 cor­

respond to the case of uncertain excitation for 300 sec. J 1 and h correspond to the 

standard deviations of the maximum R,VIS drifts and the maximum R,VIS absolute 

acceleration of the controlled structure over all of the floors, normalized by the corre­

sponding values for the uncontrolled structure. h, J4 and J5 correspond to the R,VIS 

actuator displacement relative to the third story, the R,VIS relative actuator velocity 

and the R,VIS absolute actuator acceleration. Again, they are normalized by their 

corresponding values for the uncontrolled structure. Jr; to JIO represent the peak 

values of the same response quantities for the deterministic response of the controlled 

structure to the two scaled earthquake ground motions, the north-south component 

of the 1940 El Centro earthquake record and the north-south component of the 1968 

Hachinohe earthquake record. Again, these quantities are normalized by the peak 

response quantities of the uncontrolled structure for each earthquake. 

"-lay and Beck (1998) showed that directly feeding back the accelerations at the 

current time without a compensator leads to an unstable controlled system due to 

the delay-time imposed in the model of the system to be controlled (Spencer et a1. 

1998). However, Controller 1 provides satisfactory performance using direct feedback 
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of delayed accelerations because the delay-time is explicitly taken into consideration 

in the formulation, as described in Section 5.2. In "-lay and Beck (1998), a filter was 

used in the feedback loop to produce stability. 'When a filter is used here (Controller 

2), the control system is not as efficient as in Controller 1 when subjected to ran­

dom excitation because certain information, especially the high frequency content, 

is filtered out. However, Table 5.5 shows it provides better performance for the El 

Centro and the Hachinohe earthquake records, which do not follow the Kanai-Tajimi 

spectrum closely. 

Fig. 5.9 shows the 1st story drift for both earthquakes using Controller 2 which 

has the filter (solid lines). For comparison purposes, the dashed lines show the cor­

responding 1st story drifts of the uncontrolled structure. It can be seen that the 

1st story drifts are significantly reduced by using the proposed control methodology. 

Fig. 5.10 shows the actuator displacements for both earthquakes. It can be seen that 

they are much smaller than the threshold values. 
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Figure 5.9: Structural response of the uncontrolled (dashed) and controlled structure using 
Controller 2 (solid) to the El Centro and Hachinohe earthquake records (Example 5-2). 
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5.5 Conclusion 

A reliability-based robust feedback control approach was presented for dynamical 

systems adequately represented by linear state space models. The response covari­

ance matrix is first obtained from the discrete Lyapunov equation using an augmented 

vector for the system. The optimal controller is then chosen from a set of possible 

controllers so that the robust reliability of the controlled system is maximized or, 

equivalently, the robust failure probability is minimized. An asymptotic approxima­

tion is utilized to evaluate high dimensional integrals for the robust failure probability. 

The feedback of the past output provides additional information about the system 

dynamics to the controller. It can also be used to avoid stability problems due to 

time-delay effects. The proposed approach does not require full state measurements 

or a Kalman filter to estimate the full state. The robust failure probability criterion 

provides robustness of the control for both uncertain excitation models and uncertain 

system models. Furthermore, it can give different weighting to the different possible 

values of the model parameters by using a probability description of these parameters 

based on engineering judgement or obtained from system identification techniques. 

This is in contrast to most current robust control methods which split the values 

for the system parameters into only two groups (possible or impossible). Although 

the proposed approach was presented here for linear models of dynamical systems, 

it can be extended to nonlinear models. The only difference is that the second or­

der moments can not be obtained by solving the Lyapunov equation, but this can 

be replaced by approximate numerical techniques; for example, simulations can be 

utilized to obtain the response covariance matrix. \Ve are currently investigating this 

extension to robust control of nonlinear structural behavior. 
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Chapter 6 Illustrative Example of Robust 

Controller Design and Updating 

6.1 Problem Description 

In this chapter, a 20-DOF three-bay four-story structural frame (Fig. 6.1) is used 

to demonstrate the probabilistic procedure of robust controller design and updating. 

The stiffness-to-mass ratio is taken as ElcI/Tn, = 1.25 x 100m4 sec-2
, where 

Tnl is the mass of the first floor. Furthermore, Tnl = Tn2 = Tn:) = 1.2Tn4 and 

[Elc2,Elc:l,Elc4] = [0.9, 0.8, 0.7]E1c" The rigidity of the beams is taken to be 

Eh/Tn, = 2.00 x 1OGm4 sec2. The first four natural frequencies of the structure 

are 4.108Hz, l1.338Hz, 17.26Hz and 21.50Hz. Rayleigh damping is assumed, so the 

damping matrix C is given by C = Cl",M + ClkK, where M and K are the mass and 

stiffness matrices of the system; and Cl", = 0.376 seC l, Clk = 2.07 X 10-4 sec, which 

gives 1.0o/r; damping for the first two modes. 

6.2 Model Selection and Identification 

Two candidate classes of models, with the same height and width of the system, 

are considered as shown in Fig. 6.2: 

Class A: Eight-DOF structural frame models, with four rigidity parameters. The 

nominal rigidity of the beam is assumed to be its exact values but the nominal rigidity 

of the columns are taken to be 2Elcl , twice the exact values of the columns at the 

first story. The rigidity of the beam and columns at the jth story is equal to the 

product of the rigidity parameter (lj and its corresponding nominal value. 

Class B: HJUr-DOF shear building models, with four rigidity parameters. The 

nominal values of the rigidity of the columns are taken to be 2E1cl , 2Elc2 , 2E1c:l 
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Figure 6.1: Four-story structural frame (Example 6-1). 
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Figure 6<2: Candidate model classes (Example 6-1)< 

and 2Elc4 for the pt to 4th floor, respectively< :\fote that the nominal values in this 

case do not affect the identification results because they are only scaling, but not 

constraints, of the parameters< 

Assume that measurements of the absolute accelerations are available at the 2nd 

and 4th DOFs for 30 sec with a sampling frequency 200 HL These data are simulated 

using the actual model with 10o/r; rms noise adde(l Furthermore, assume that the 

system is subjected to a white noise ground motion with spectral intensity Sio = 

LO x 1O-:lm2 sec3 

:\fote that although the model selection and identification approaches were pre-

sented in separate chapters, they have to work togetheL Here, the identification ap-

proacll presented in Chapter 3 is utilized to update the rigidities and damping ratios 

of the structure< Although the approach in Chapter 3 is presented for modal updating 

for linear systems, it can be applied directly for updating the model parameters of 

a linear structure< In order to have better scaling, the rigidities are parameterized 

as follows: Elj = (I)flj,.i = 1,2,3,4, where Elj denotes the j1h story rigidity and 

Elj is its nominal value< The rigidity parameters (lj are considered unknown and are 
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determined by identification. 

Table 6.1 shows the exact values and the identified rigidity parameters and damp­

ing ratios for the two classes of models. :\fote that the damping ratios are presented 

in percentages. Table 6.2 shows the corresponding frequencies for the actual and the 

optimal models. One can see that the optimal model in "'lodel Class A fails to fit the 

natural frequency of the third mode. Furthermore, the identified fourth mode of this 

model is not close to an actual mode of the system. Therefore, the damping ratio of 

this mode is much larger than others. 

Parameter (I, (12 (13 (14 C! (2 (l (4 

Exact 1. 000 1. 000 1.296 1.537 
Model Class A 1.061 2.542 0.551 0.480 1.286 0.395 1.436 9.964 
Model Class B 0.908 0.987 0.881 1.040 1.128 0.563 2.342 0.623 

Table 6.1: Optimal (most probable) structural parameters in each model class repre­
senting the structural frame (Example 6-1). 

Mode J, h h J4 
Actual 4.108 11.34 17.26 21.50 

Model Class A 4.064 11.31 22.71 33.14 
Model Class B 4.158 11.35 17.40 21.02 

Table 6.2: :\fatural frequencies (in Hz) of the optimal model in each class (Example 
6-1 ). 

Fig. 6.3 and 6.4 show the updated PDFs (solid) for the rigidity parameters (I),j = 

1,2,3,4 for Model Class A and Model Class B, respectively. The crosses correspond 

to the Gaussian approximation. It can be seen that the Gaussian approximation is 

very accurate. 

Here, P(A(lIU) = P(A1/JIU) = 0.5 is assumed, implying that there is no prior 

preference between these two classes of models. By using the model selection ap-

proacll presented in Chapter 2, it is found that P(A(lIV, U) = 5.8 X 10-25 and 

P(A1/J IV, U) = 1.0. Therefore, it is suggested that Model Class B is much better 
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Figure 6.3: Updated PDFs of the rigidity parameters for "'lode! Class A obtained 
from: i) Eqn. 3.15 - cross; and ii) Gaussian approximations - solid (Example 6-1). 
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than "'lodel Class A. Therefore, Model Class B is used for the controller design. Fur­

thermore, the updated PDF of the rigidity parameters is used for calculating the 

robust failure probability in the controller design. 

6.3 Controller Design 

The updated PDF of the rigidity parameters and the damping ratios of Model 

Class B (Fig. 6.4) is used for calculating the robust failure probability in the con­

troller design. First, the fundamental mode of the identified model (Model Class B 

in Table 6.1) is used to design the stiffness and damping of the AMD (active mass 

damper), i.e., I = 4.158Hz and C! = 1.128%. The AMD mass :Us is chosen to be 1% 

of the mass of the building. By using Eqn. 5.27, the controller stiffness and damping 

parameters are given by ksl:V{ = 663.7sec-2 and ('sl:V{ = 5.13sec- 1
• However, these 

are rounded so that ksl:V{ = 670 sec2 and ('sl:V{ = 6.0 seC I to give a natural fre­

quency and damping ratio approximately equal to that of the identified fundamental 

mode of the structure. 

In Dyke et a!. (1995), hydraulic actuators are modeled as follows: 

(6.1) 

where fe is the control force applied by the actuator; xa is the actuator velocities; u 

is the signal given to the actuator; and A j , B j and B jn are given by 

(6.2) 

where 3 is the bulk modulus of the fluid; ka and kq are the controller constants; V is 

the characteristic hydraulic fluid volume of the actuator; and A is the cross-sectional 

area of the actuator. Schematically, the structure-actuator is shown in Fig. 6.5. 

The output vector Y j in Eqn. 5.4 is comprised of: Y j = [fn ln fer!', where fe 

and fe are the state vectors for a low-pass filter with input fe that approximates 

differentiation of fe. :\fote that fe is used to estimate the out-crossing rate of the 
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Figure 6.5: Structure-actuator model (Example 6-1). 

control force and it is not used in the control system feedback. 

The full state vector equation is given by 

v = Av + Hw + Bcu (6.3) 

where v = [XF,xF,y}f;w is the ground motion; and u is the signal given to the 

actuator and it will be discussed in more detail later. The matrices A, B and Be are 

given by 

T B = -[0,0,0,0,0,1,1,1,1,1,0,0, OJ 

(6.4) 
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where AI2 and A21 and A22 are given by 

O:lX:l 

Bf] ,A22 = 
Af 

[OIX8 -Bf 
AI2 = -1 0 0 ,A21 = 0 

02XIO . ,2 1 0 0 We 

o 0 

o 1 

(6.5) 

where We = 10.0Hz is used. 

Using an analogy ofEqn. 5.6, Eqn. 6.3 can be transformed to the following discrete-

time augmented state equation: 

v[k + 1J = Av[kJ + Bw[kJ + Bcu[kJ (6.6) 

where A == eA"t, B == A-'(A - Il:l)B and Be == A-'(A - I13)Be. 

Absolute accelerations measurements are available at the 2nd and 4th DOF, which 

is given by 

(6.7) 

where L" is an observation matrix which is given by 

_ [0 1 0 0 0] Lo -
00010 

(6.8) 

and n[kJ is a discrete white noise, with zero mean and standard deviations O.OOlg, 

which models the prediction error, i.e., measurement noise, the differentiator errors 

and modeling error. 

The signal given to the Al\ID actuator is given by 

(6.9) 

so the controller feeds back only the current and the previous time step. Here G p E 
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]Rl X2, P = 0,1 are design parameters. Substituting Eqn. 6.7 and 6.9 into Eqn. 6.6, 

one can obtain the following augmented vector equation: 

(6.10) 

where f = [w[k], n[kff; and An and Bn are given by 

[A - BeGoLo[M-'K M-'C Ol:lX:l] BeGl] An= 
-L M-'K - L M-'C 02X:l 02X2 o 0 

[O~l 
(6.11 ) 

Bn = BeGo] 
12 

Then, the covariance matrix I;n of the augmented vector is the solution of the fol-

lowing Lyapunov's equation in discrete form 

( 6.12) 

where I; J is the covariance matrix of f. 

The threshold levels for the performance reliability of the interstory drifts, actua­

tor stroke and the actuator acceleration are 1.0cm, LOrn and 109, respectively. Two 

controllers are designed. A pre-test controller is found by using the following pre­

test prior distribution of the structure: Gaussian distribution, truncated for positive 

values only, with mean 1.1 and 1.0% and standard deviation 0.2 and 0.5% for the 

stiffness parameters and damping ratios, respectively. Also, a post-test controller is 

found by using the updated PDF of the parameters obtained in Section 6.2. 

Tables 6.3 and 6.4 show the performance quantities of standard LQG, with the 

mass matrix and the identified stiffness matrix as the weighting matrices, and the two 

aforementioned controllers, including the interstory drifts, Al\ID actuator stroke (x s ) 

and control force (fen), for the cases of a random excitation sample and twice the 1940 

El Centro earthquake record, respectively. In these tables, (J denotes the rms value of 
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Performance quantity Threshold 1; ncontrollcd LQG Pre-test (lOg) Post-test (lOg) 
(J,(1 (Ill) 0.0072 0.0024 0.0023 0.0019 

(7,(1 ~,(::l (Ill) 0.0074 0.0024 0.0023 0.0019 
(T'(::l~,q (Ill) 0.0062 0.0022 0.0020 0.0017 
(T,(3~,(4 (Ill) 0.0037 0.0016 0.0015 0.0013 

111,,,:1"11 (m) 0.01 0.0222 0.0107 0.0085 0.0072 

111,,,:1"1 - "21 (m) 0.01 0.0217 0.0094 0.0082 0.0070 

111,,,:1"2 "" 1 (m) 0.01 0.0212 0.0084 0.0079 0.0068 
111,,,:1,,,, - "41 (m) 0.01 0.0133 0.0067 0.0066 0.0057 

(lx, (m) 0.1533 0.0482 0.0501 

(llc>' (g) 6.7633 0.7863 1.3642 

111,,,:1,,,1 (m) 1.0 0.6545 0.1656 0.1739 

II"": I!", 1 (g) 1O.O 28.059 3.1912 5.5509 

Table 6.3: Statistical properties of the performance quantities under random excita­
tion (Example 6-1). 

a quantity. It can be seen that the interstory drifts are significantly reduced in both 

cases when the Al\ID is installed. The LQG controller gives comparable structural 

performance to the robust reliability controllers but it requires much larger control 

forces. Furthermore, the post-test controller gives better performance than the pre­

test controller because it incorporates the updated PDF of the structural parameters. 

Fig. 6.6 and 6.7 show the interstory drifts for the uncontrolled and controlled structure 

using the post-test controller under twice the El Centro earthquake. Furthermore, 

the corresponding stroke and normalized control force are shown in Fig. 6.8 and 6.9, 

respectively. 

A parametric study is performed to investigate the effect of the control force limit. 

Post-test controllers are designed using the following threshold levels for the control 

force: 2g, 5g, 20g and also for unlimited control force (but retaining the constraint 

of l.Om for the actuator stroke). The controller gains for these controllers as well 

as the aforementioned ones are shown in Tables 6.5. Furthermore, the performance 

quantities for these control systems are shown in Tables 6.6 under random excitation. 

It is intuitive that a controller with a higher level of control force performs better but 

the improvement saturates when this level is large enough, so there is a kind of law 

of diminshing return as larger actuators are provided. 
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Performance quantity Threshold 1; ncontrolled LQG Pre-test (lOg) Post-test (lOg) 
(J,(1 (Ill) 0.0030 0.0011 0.0010 0.0009 

(7,(1 ~,(::l (Ill) 0.0030 0.0011 0.0010 0.0009 
(T'(::l~,q (Ill) 0.0025 0.0009 0.0008 0.0008 
(T,(3~,(4 (Ill) 0.0014 0.0006 0.0005 0.0005 

111,,,:1"11 (m) 0.01 0.0135 0.0069 0.0069 0.0068 
111,,,:1"1 - "21 (m) 0.01 0.0145 0.0070 0.0069 0.0069 

111,,,:1"2 - "" I (m) 0.01 0.0127 0.0055 0.0058 0.0055 
maJ:IJ':a "41 (m) 0.01 0.0078 0.0045 0.0037 0.0046 

(lx, (m) 0.0683 0.0203 0.0211 
(llc>' (g) 1.9145 0,4871 0.5494 

111,,,:1,,,1 (m) 1.0 0.5099 0.1319 0.1388 

II"": I!", I (g) 10.0 15.661 3.8865 4,4003 

Table 6.4: Statistical properties of the performance quantities under twice the 1940 
El Centro earthquake (Example 6-1). 

Gain LQG Pre-1€::>1(IOg) PooHe::>1 (2g) Po::>He::>1 (5g) POO1-1€::>1(IOg) Poo1-1e::>1 (20g) POK1-1€::>1(no jimi1) 

Go(l) -4.2332 -O.G82:J -0.1998 -O.90:JO -O.G478 -0.0102 -3.31 
00(2) -17.251 -2.2:J05 -0.1710 -O.890G -2.:J554 -G.2100 -:J8.5:J 
Gj(l) ..... -0.0708 0.0224 0.0157 -O.O:J91 0.0489 -14.19 
Gj (2) ..... -1.l744 O.:J995 0.8092 l.l 090 1.8500 15.G5 

Table 6.5: Gain coefficients of the optimal controllers (Example 6-1). 

Performance quantity Threshold Post-test (2g) Post-test (5g) Post-test (20g) Post-test (no limit) 
(7,(1 (Ill) 0.0025 0.0022 0.0017 0.0015 

(T'(1~'(::l (Ill) 0.0025 0.0022 0.0017 0.0016 
(T,(::l~,(3 (Ill) 0.0022 0.0019 0.0015 0.0013 
(T,(3~,(4 (Ill) 0.0015 0.0014 0.0011 0.0010 

111,,,:1"11 (m) 0.01 0.0095 0.0082 0.0068 0.0068 
111,,,:1"1 "21 (m) 0.01 0.0086 0.0075 0.0067 0.0066 
111,,,:1"2 - ""I (m) 0.01 0.0082 0.0077 0.0065 0.0064 
mo,;t:IJ':a "41 (m) 0.01 0.0060 0.0056 0.0045 0.0040 

(lx, (m) 0.0273 0.0354 0.0587 0.1268 
(llc>' (g) 0.3304 0.7889 3.7039 13.317 

lIIa"I", I (m) 1.0 0.0863 0.1149 0.2209 0.5998 
ilia" I!", I (g) As labeled 1.1426 2.9848 17.109 57.548 

Table 6.6: Statistical properties of the performance quantities under random excita­
tion with different control force constraints (Example 6-1). 
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Figure 6.6: Interstory drift time histories of the uncontrolled structure under twice 
the 1940 El Centro earthquake record (Example 6-1). 
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Figure 6.7: Interstory drift time histories of the controlled structure under twice the 
1940 El Centro earthquake record (Example 6-1: post-test controller). 
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Figure 6.8: Controller stroke time histories under twice the 1940 El Centro earth­
quake record (Exam pIe 6-1: post-test controller). 
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Figure 6.9: Controller force (normalized by the actuator mass) time histories under 
twice the 1940 El Centro earthquake record (Example 6-1: post-test controller). 
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Chapter 7 Conclusion and Future Work 

7.1 Conclusion 

Chapter 1 introduces the general idea of identification and robust control for smart 

structures and the organization of this thesis. 

Chapter 2 introduces a probabilistic approach for choosing the most plausible class 

of models representing a physical structure based on its response measurements. The 

most plausible class of models has to compromise between its accuracy and complex­

ity. For example, a more complex model might be able to capture the dynamics of 

the system more precisely but it introduces more parameters, which might over-fit 

the data. Therefore, the most plausible class of models should have enough, but not 

redundant, complexity in order to optimize this tradeoff. Examples using linear and 

nonlinear systems are used for demonstration. 

Chapter 3 describes a Bayesian time-domain approach for modal updating us­

ing nonstationary incomplete noisy measurements. This time-domain approach is 

based on an approximate expansion of the updated probability density function. The 

proposed approach allows for direct calculation of the associated uncertainty of the 

identified modal parameters. :\fumerical examples verify the accuracy of the identified 

modal parameters and their associated uncertainty by simulations. The importance 

of treating nonstationary response is also addressed. 

Chapter 4 introduces a Bayesian spectral density approach for updating nonlin­

ear systems using incomplete noisy measurements. This frequency-domain approach 

is based on the statistical properties, shown in Appendix A, of the spectral den­

sity estimator. The proposed probabilistic framework is very well-suited for solving 

such a nonunique problem. Again, the proposed approach allows for direct calcula­

tion of the associated uncertainty of the identified model parameters using response 

measurements only. :\fumerical examples verify the accuracy of the identified model 
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parameters and their associated uncertainty using simulated response time histories. 

Chapter 5 introduces a stochastic robust control method. The proposed method 

provides exact treatment for the delay time (including the buffer time for data collec­

tion, computation, and signal delivery and the internal dynamics of the actuator), so 

the controller can avoid the instability problems induced by time delays. :\fumerical 

examples are used to provide some insights into the proposed method. The proposed 

approach is also applied to a control benchmark problem with satisfactory results. 

Chapter 6 uses a 20-DOF building to demonstrate the procedures for identification 

and robust control for smart structures. First, the model selection and identification 

approaches presented in Chapters 2 and 3 are used for optimally selecting the model 

class to be used for the controller design. Two model class candidates are assumed, 

which are a class of four-story structural frames and a class of four-story shear build­

ings. It turns out that the class of four-story shear buildings is more plausible based 

on the data. Furthermore, the optimal parameters and the updated PDF for the 

parameters are obtained. By using this information, the robust control approach pre­

sented in Chapter 5 can be performed to obtain the optimal controller. The control 

system (the 20-DOF building with the actuator) is tested under random excitation 

and twice the 1940 El Centro earthquake record. The structural response was sig­

nificantly reduced, and the actuator stroke and control force did not exceed their 

threshold levels. 

7.2 Future Work 

This thesis introduces a complete framework for the identification and robust 

control for smart structures. However, it is desirable to extend the framework to 

allow for a real-time adoptable controller in order to capture changes in structural 

behavior. This is very important since the structural properties might be changing 

during large earthquakes or strong wind excitation. 

The proposed robust control methodology was demonstrated using examples with 

an active mass driver. Further work can be done using semi-active devices (Kobori 
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et a!. 1993; Iwan and Wang 1996; Dyke et a!. 1996; Spencer and Sain 1997; Johnson 

et a!. 1999; Zhang and Iwan 2(02), which have very low power requirements and have 

been proved to be very efficient. Also, the proposed methodology can be extended to 

nonlinear dynamical systems. In this case, the failure probability might be obtained 

by simulations (Au and Beck 20(Jl). 

Cost-benefit analysis (Irfanoglu and Beck 20(Jl) can be used with the proposed 

control framework for selecting the most cost-effective strategy of response reduction 

(e.g., choosing from passive control device or active mass driver). 

Finally, the proposed system identification techniques based on output-only data 

can be applied for damage detection. They can also applied to past seismic response, 

especially in the case where the base motion time histories are unavailable to serve 

as input, as occurred in some damaged steel-frame buildings in the 1994 :\forthridge 

Earthquake in Los Angeles (Carlson 1999). 
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Appendix A 

Asymptotic Independence of the Spectral Density Estimator 

In this appendix it is shown that the spectral density estimators are independent 

at any two different frequencies wand w' as N -t :)(). 

First, define the following scaled real and imaginary parts of the spectral density 

estimator 

urn) ( .. ) - I' [Urn) ( .. )] 
(IN;IWk - lHaN Wk 

(A.l) 

where 1lN (Wk) is given by Eqn. 4.20 and I(n) denotes the j1h element of a vector f. 

:\fote that E[1J~~)Il(Wk)] = 0 and E[J~})(Wk)] = o. 

A.I ;,J(,;l (w) with ;,J(~l (Wi) 
~.R ~.R 

Taking mathematical expectation on both sides of Eqn. A.l, one can easily obtain 

the following: 

E[(u(n) ( .. ) E[u(n) ( .. )]) (uU!J (. i) E[UU!J (. i)])] '(IN)n w - '(1N)n w (IN)n w - '(1N)n w 

- E[u(n) ( .. )uUJ) (. i)] E[u(n) (. ')]E[UU!J (. i)] 
- '(1N)n W (1N)n w - '(1N)n w '(1N)n w 

(A.2) 
N-I N-I 

= 2~1~ L L(E[y(n) Cij,t)yU!J(Ij,t)] -II(n)IP») cosCiwj,t) cos(lw'j,t) 
)=0 1=0 

Let S~n'(!J(n), which is assumed to be finite vn E iR, be the cross spectral density 

between y(n) and yUJ) at frequency n. By using the fact that the cross covariance 
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E[(u(n) (. ,) E[u(n) (. ,)]) (uUJ) (. i) E[UUJ) (. i)])] '(IN)n w - '(1N)n w (IN)n w - '(1N)n w 

00 ~ N-I N-I 

= r _·_t_, '\' '\' ei!l(j-l)i!.t ,),(n,p) (D) [eijwi!.t + e-ijwi!.t] [ei1w' i!.t + e-i1w'i!.t]dD 1- 81flV L..t L..t " ~ y 
-00 )=0 [=0 

00 ~ N-I N-I 
= r _·_t_, '\' '\'[eij(ll+w)i!.t+il(w'-ll)i!.t + eij(ll+w)i!.t+il(-w'-ll)i!.t + eij(ll-w)i!.t+il(w'-ll)i!.t 

1- 811N L.. L.. 
-00 J=O [=0 

+ eij(ll-w)i!.t+il( -w' -ll)i!.t]s~n,p) (D)dD 

= roo H~},(J)(D;w,w')dD+ roo H~},P)(D;w,-w')dD+ roo H~},P)(D;-w,w')dD 
J-oo J-oo J-oo 
+ roo H~},P)(D; -w, -w')dD 

1-00 
(A.3) 

where HN (D; w, WI) is defined as 

(n,p) , N-l N-l 

H(n'P)(D" , ,i) = Sy (D)j.t L eij(ll+w)i!.t L ei1(w'-Il)i!.t 
?v '1 W, W ~ 8" 

1f 1\ 
j=O 1=0 

(A.4) 

If IDI f wand IDI f WI, 

,i(N-l)i!.t)(w+w')/2.· [(Il+w)Ni!.t] .. [(w'-Il)Ni!.t] 
(nJJ) ,I SIll 2 SIll 2 (0). 

HN (D;w,w) = 8 " . [(ll+w)i!.t] . [(w'-ll)i!.t] Syn, (D)j.t (A.5) 
11 1\ SIll 2 SIll 2 

Then, the following inequality can be obtained since leiT I = 1 and I sin(1') I S; 1 (1' E JR): 

I I I 
')'(n,p) (") At I 

H(n,(J) D'" ,i < ' y " ,-" 
,'i (,w,w) - 8 ".' [(ll+w)i!.t] .. [(w'-ll)i!.t] 

111\ SIll 2 SIll 2 

(A.7) 
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By taking the limit as N -t 30, 

if IDI f wand IDI f w' (A.8) 

Similarly, H,~},(J) (D; -w, w'), H,~},(J) (D; w, -w') and H,~},(Jl (D; -w, -w') also tend to 

zero as N -t 30, if IDI f wand IDI f w'. 

:\fow, we consider H,~},(Jl (D; w, w') at IDI = w or IDI = w'. First, at D = -w, 

(n,(J) • N-I 

H (n'(J)(" .•. • ,I) _ Sy (D)j.t '" 1,',il(w'-lll2.t 
:y 1l,w,w - 8 L.. ' 11 

1=0 

S~:~{J)(D)j.t[l _ eiBt(w'-lll] 

811[1 - edt(w' -Ill] 

(A.9) 

which is finite. Similarly, it can be shown that H,~},(Jl (D; w, w') is finite at D = w'. 

:\fext, consider D = worD = -w', 

'J [1 - eiN2.t(ll+wl][l - eiN2.t(w'-lll] . 
H(n" l(D'" • ,I) - S'(n,;3l(D)j.t 

N ,,"","" - 811N[1-edt(ll+wl][1-edt(w'-lllry , , (A.10) 

As N -t 30 and D = w or -w', 

(A.ll) 

Therefore, H,~},(J) (D; w, w') is finite at D = and D = ±w'. Similarly, it can be 

shown that H,~},(J) (D; w, -w'), H~},(Jl (D; -w, w') and H,~},(J) (D; -w, -w') are finite at 

D = and D = ±w'. 

Therefore, H,~},(J) (D; w, w'), H,~},(J) (D; w, -w'), H,~},(Jl (D; -w, w') and H~},(Jl (D; -w, -w') 

tend to zero as N -t 30 if IDI f wand IDI f w' and they are finite as N -t 30 if IDI = 

wor IDI = w'. It can be concluded that fCXJoo H~},(Jl(D; w, w')dD, fCXJoo H,~},(J)(D; w, -w')dD, 

fCXJooH,~},(Jl(D; -w,w')dD and fCXJooH,~},(J)(D; -w, -w')dD tend to zero as N -t 30 and 
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so from Eqn. A.3: 

1'· E[(u(n) ( .. ) E[u(n) ( .. )]) (uUJ) (. i) E[UUJ) (. i)])] - () N~r~, (IN)n w - '(1N)n w (IN)n w - '(1N)n w -, if w f w' 

(A.12) 

A.2 ;,J(,;l (w) with ;,J(~l (Wi) 
1\.I 1\.I 

() as follows: 

N-I N-I 

= 2~1~ L L (E[y(n) Ci j,t)yUJ) (lj,t)] - It(n) IPJ)) sin Ciw j,t) sin (lw' j,t) 
j=O 1=0 

~ ooN-IN-l 

= _ _ ·_t_, r '\" '\" ei!l(j-l)"t s(n,(J) (n)[eijw"t _ e-ijw"t][eilw' "t _ e-i1w' "t]dn 
81fN 1- L.. L.. y 

-00 )=0 [=0 

00 ~ N-IN-l 
= _ r _·_t_, '\" '\" [eij(ll+w)"t+il(w' -!l)"t _ eij(ll+w)"t+il( -w' -!l)"t _ eij(!l-w )"t+il(w' -!l)"t 

1- 81fN L.. L.. 
-00 )=0 [=0 

+ eij(!l-w)"t+il( -w' -!l)"t]s~n,(J) (n)dn 

= _ r j,t [~eij(Il+W)"t ~ ei1(w'-!l)"t _ ~ eij(ll+w)"t ~ ei1(-w'-!l)"t 
1- ~N L.. L.. L.. L.. 

-00 J=O [=0 J=O [=0 

_ ~ eij(!l-w)"t ~ ei1(w'-!l)"t + ~ eij(!l-w)"t ~ ei1(-W'-!l)"t] s~n,(J)(n)dn 
j=O 1=0 j=O 1=0 

= _ roo H~},(J)(n;w,w')dn+ (YOO H~},(J)(n;w,-w')dn+ roo H~},(J)(n;-w,w')dn 
J -00 J -00 J -00 

_ roo H~},(J)(n; -w, -w')dn 
1-00 

(A.13) 

where H.~}.rJ) is given by Eqn. A.4. 

As shown in Section A.l, JCXJ
oo 

H.~}.rJ)(n; w,w')dn, JCXJ
oo 

H.~}.rJ)(n; w, -w')dn, 
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lim E[(1J(n) (w) - E[1J(n) (w)])(1JUJ) (w') - E[1JUJ) (w')])] = 0, 
N--+oo :vJ :v)1 :v)1 :v)1 if w f w' (A.14) 

A.3 ;,J(,;l (w) with ;,J(~l (Wi) 
1\.R 1\.[ 

N-I N-I 

= 2~1~ L L(E[y(n)Cij,t)yUJ)(Ij,t)] -ll(n)IP») cosCiwj,t) sin(lw'j,t) 
j=o 1=0 

00 ~ N-IN-l 

= r _. _t_. '\' '\' ci!l(j-l)"t s(n,(J) (51) [cijw"t + c-ijw"t][cilw' "t _ c-i1w' "t]d51 
J- 811N, L.. L.. y 

-00 )=0 [=0 

00 ~ N-IN-l 

= r ~ L L[cij(!l+w)"t+il(w'-!l)"t _ cij(!l+w)"t+il(-w'-!l)"t + cij(!l-w)"t+il(w'-!l)"t 
J-oo 8111\ t - j=o 1=0 

_ cij(!l-w )"t+il( -w' -!l)"t]s~n,(J) (51 )d51 

= roo j,t,. [~cij(Il+W)"t ~ ci1(w'-!l)"t _ ~ cij(ll+w)"t ~ ci1(-w'-!l)"t 
J- 8111\ t 

-00 )=0 [=0 )=0 [=0 

+ ~ cij(!l-w)"t ~ ci1(w'-!l)"t _ ~ cij(!l-w)"t ~ ci1(-W'-!l)"t] S~n,(J)(51)d51 
j=o 1+0 j=o 1+0 

roo H~},(J) (51; w, w')d51 + i roo H~},(J) (51; w, -w')d51 _ i roo H~},(J) (51; -w, w')d51 
J-oo J-oo J-oo 

+ i roo H~},(J) (51; -w, -w')d51 
J-oo 

(A.15) 

where H,~},(J) is given by Eqn. A.4. 

~gain IN H(n,(J)(51·'· "')d51 IN H(n,(J) (51' " -, ,l)d51 IN H(n,(J)(51· -" "')d51 
.L '-oo?v ',w,w '" -00 ?v ',w, w '" -00 ?v '1 W,W 

and 

JCXJoo H,~},(J) (51; -w, -w')d51 tend to zero as N --t :)0, so 

1'· E[(u(n) ( .. ) E[u(n) ( .. )]) (uUJ) (. i) E[UUJ) (. i)])] - () N~r~, (IN)n w - '(1N)n w (IN)lw - '(1N)lw -, if w f w' (A.16) 
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\Ve conclude that anv element in the set {urn) (w) urn) (w) uU!J (w) uUJ) (w)} with ,/ - - - -, - (1?v;U ,(1?v;1 ,(1?v;U ,(1?v;1 

any element in the set {1J~;Il(w'), 1J~;I(W'), 1J~:Il(w'), 1J~:I(W')} gives an uncorrelated 

pair, where (x, 3, 'I, 8 = 1,2, ... ,N" and w f w'. Furthermore, 1J~};Il(5}) and 1J~~)I(n) 

are Gaussian distributed vn E IR and (X = 1,2, ... ,N" as N -t :)() even if the stochas-

tic process y is not Gaussian. Since un correlated Gaussian random variables are in­

dependent, as N -t:)() each element in the set {1J~};Il(w), 1J~};I(W), 1J~;Il(w), 1J~;I(W)} is 

statistically independent of each element in the set {1J~;Il(w'), 1J~;I(W'), 1J~:Il(w'), 1J~:I(W')}, 

where (x, 3, 'I, 8 = 1,2, ... ,N" and w f w'. By using Eqn. 4.19, the following can be 

obtained: 

C'(n,(J)(,.) = u(n)(, .)uU!J'(,.) 
I.-Jy;!V W (1?v W (1?v W 

- [urn) ( .. )uUJ) ( .. ) + urn) ( .. )uU!J (. ')l + ,,'[u(n) ( .. )uUJ) ( .. ) urn) ( .. )uUJ) (. ')l 
- (IN)U W (IN)U W (IN)l W (IN)l W ' (IN,! W (IN)U W - (IN)U W (IN,! W 

(A.17) 

Therefore, s~~~4J) (w) and S~;.~) (w') are statistically independent if (x, 3, '(,8 = 1,2, ... ,N", 

w f w' and () < w, w' < ::'[1 the :\fyquist frequency. 
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