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Abstract

To fully exploit new technologies for response mitigation and structural health moni-
toring, improved system identification and controller design methodologies are desir-
able that explicitly treat all the inherent uncertainties. In this thesis, a probabilistic
framework is presented for model selection, identification and robust control of smart
structural systems under dvnamical loads, such as those induced by wind or earth-
quakes. First, a probabilistic based approach is introduced for selecting the most
plausible class of models for a dynamical system using its response measurements.
The proposed approach allows for quantitatively comparing the plausibility of differ-
ent classes of models among a specified set of classes.

Then, two probabilistic identification techniques are presented. The first one is for
modal identification using nonstationary response measurements and the second one
is for updating nonlinear models using incomplete noisy measurements only. These
methods allow for updating of the uncertainties associated with the values of the
parameters controlling the dynamic behavior of the structure by using noisy response
measurements only. The probabilistic framework is very well-suited for solving this
nonunique problem and the updated probabilistic description of the system can be
used to design a robust controller of the system. It can also be used for structural
health monitoring,.

Finally, a reliability-based stochastic robust control approach is used to design the
controller for an active control system. Feedback of the incomplete response at earlier
time steps is used, without any state estimation. The optimal controller is chosen by
minimizing the robust failure probability over a set of possible models for the system.
Here, failure means excessive levels of one or more response quantities representative
of the performance of the structure and the control devices. When calculating the
robust failure probability, the plausibility of each model as a representation of the

system’s dvnamic behavior is quantified by a probability distribution over the set of



A%
possible models; this distribution is initially based on engineering judgement, but it
can be updated using the aforementioned system identification approaches if dvnamic
data become available from the structure. Examples are presented to illustrate the
proposed controller design procedure, which includes the procedure of model selection,

identification and robust control for smart structures.
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Chapter 1 Introduction

The goal of this work is to develop a complete probabilistic procedure for robust
controller design for smart structures that treats all the inherent uncertainties, and
includes new system identification technigues that allow the robust controller design

to be improved if dynamic data from a structure is available.

1.1 System Identification

The problem of system identification of structural or mechanical systems using
dynamic data has received much attention over the vears because of its importance
in response prediction, control and health monitoring {Natke and Yao 1988; Housner
et al. 1997; Ghanem and Sture (Eds.) 2000).

The first question is: Which structural model class should be used for identifica-
tion? In practice, it is not possible to use directly the finite-element model from the
structural drawing for identification because there are too many uncertain parameters,
which will lead to an unidentifiable case {Beck and Katafvgiotis 1998; Katafygiotis
and Beck 1998). However, the problem of model class selection has not been well
explored in svstem identification. It is obvious that a more complicated model can
‘fit” the data better than a less complicated one which has fewer adjustable {uncer-
tain) parameters. Therefore, if the optimal model class is chosen by minimizing some
measure of the error between the data and the corresponding predictions of the opti-
mal model in each class, the optimal model class will always be the most complicated
one. For example, in modal identification, using a 20-mode model would alwayvs be
better than using a 10-mode model because the former one would fit the data bet-
ter, although the improvement might be negligible. This approach therefore leads to
over-fitting the data. When an over-fitted model is used for future prediction, it will

very likely lead to poor results because the model depends too much on the details of
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the data and the noise in the data might have an important role in the data fitting.
Therefore, in model class selection, it is necessary to penalize a complicated model.

This was recognized early on by Jeffreys {1961) who did pioneering work on the
application of Bayvesian methods. He pointed out the need for a quantitative expres-
sion of the very old philosophy of ‘Ockham’s razor” which in this context implies that
simpler models are more preferable than unnecessarily complicated ones, that is, the
selected class of models should accurately describe the behavior of the system but be
as simple as possible. Box and Jenkins {1970) also emphasize the same principle when
they refer to the need for parsimonious models in time-series forecasting, although
they do not give a quantitative expression of their principle of parsimony. Akaike
(1974) recognized that maximum likelihood estimation is insufficient for model order
selection in time-series forecasting using ARMA models and came up with another
term to be added to the logarithm of the likelihood function that penalizes against
parameterization of the models. This was later modified by Akaike {1976) and by
Schwarz (1978).

In recent years, there has been a re-appreciation of the work of Jeffreys (1961) on
the application of Bayesian methods, especially due to the expository publications
of Jaynes {1983). In particular, the Bayesian approach to model selection has been
further developed by showing that the ewvidence for each model class provided by
the data, i.e., the probability of getting the data based on the whole model class,
automatically enforces a quantitative expression of a principle of model parsimony
or of Ockham’s razor (Gull 1988; Mackay 1992; Sivia 1996). There is no need to
introduce ad-hoc penalty terms as done in some of the earlier work on model selection.

In Chapter 2, the Bayesian approach is expounded and applied to select the most
plausible class of dynamic models representing a structure from within some specified
set of model classes by using its response measurements. The model class selection
procedure is explained in detail. Examples are presented using a single-degree-of-
freedom bilinear hysteretic system, a linear two-story frame and a linear ten-story
shear building, all of which are subjected to seismic excitation.

Chapter 3 is devoted to the modal identification using nonstationary response
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measurements. Much attention has been devoted to the identification of modal pa-
rameters of linear systems without measuring the input time history, such as in the
case of ambient vibrations. In an ambient vibration survey, the naturally occurring vi-
brations of the structure {due to wind, traffic, micro-tremors, etc.} are measured and
then a system identification technique is used to identify the small-amplitude modal
frequencies and modeshapes of the lower modes of the structure. The assumption usu-
ally made is that the input excitation is a broadband stochastic process adequately
modeled by stationary white noise. Many time-domain methods have been developed
to tackle this problem. One example is the random decrement technique (Asmussen
et al. 1997) which is based on curve-fitting of the estimated random decrement func-
tions corresponding to various triggering conditions. Several methods are based on
fitting directly the correlation functions using least-squares type of approaches {Beck
et al. 1994). Different ARMA based methods have been proposed, e.g., Gersch and
Foutch (1974}); Gersch et al. {1976); Pi and Mickleborough {1989); and Andersen and
Kirkergaard {1998). Methods based on the extended Kalman filter method have been
proposed to estimate dynamic properties such as natural frequencies, modal damping
coefficients and participation factors, of a linear multiple-degree-of-freedom {(MDOF)
system (Gersch and Foutch 1974; Beck 1978; Hoshiya and Saito 1984; Quek et al
1999; Shi et al. 2000).

A common assumption in modal identification using response measurements only
is that the responses ave stationary. However, there are many cases where the re-
sponse measurements are better modeled as nonstationary, e.g., a series of wind gusts
or in the case of measured seismic response. In the literature, there are very few
approaches which tackle modal identification using nonstationary response data, e.g.,
Safak {1989); Sato and Takei {1997). These methods rely on a forgetting factor for-
mulation, which has been demonstrated to be difficult to choose. A bad choice of this
forgetting factor will lead to poor results.

The results of system identification studies arve usually restricted to the “optimal”
estimates of the model parameters, whereas there is additional information related

to the uncertainty associated with these estimates which is very important. For ex-
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ample, how precisely are the values of the individual parameters pinned down by the
measurements made on the svstem? Probability distributions may be used to describe
this uncertainty quantitatively and so avoid misleading results {Beck and Katafygiotis
1998). Also, if the identification results are used for damage detection, this proba-
bility distribution for the identified model parameters may be used to compute the
probability of damage (Vanik et al. 2000).

A Bayesian probabilistic system identification framework has been presented for
the case of measured input (Beck and Katafygiotis 1998). In Chapter 3, a Bayesian
time-domain approach is presented for the general case of linear MDOF systems
using nonstationary response measurements. The proposed approach allows for the
direct calculation of the probability density function (PDF) of the modal parameters
which can be then approximated by an appropriately selected multi-variate Gaussian
distribution. The importance of considering the response to be nonstationary is also
discussed.

System identification using linear models is appropriate for the small-amplitude
ambient vibrations of a structure that are continuously occurring. There is, however,
a number of cases in recent vears where the strong-motion response of a structure has
been recorded but not the corresponding seismic excitation. In some cases this is be-
cause of inadequate instrumentation of the structure and in other cases it is because
the free-field or base sensors malfunctioned during the earthquake. For example,
the seismic response was recorded in several steel-frame buildings in Los Angeles
which were damaged by the 1994 Northridge earthquake, but analysis of these im-
portant records has been hampered by the fact that the input (base motions) were
not recorded and also because of the strong nonlinear response.

A literature search reveals relatively few papers that deal with system identifi-
cation using nonlinear models {Hoshiya and Saito 1984; Loh and Tsaur 1988; Peng
and Iwan 1992; Loh and Chung 1993; Roberts et al. 1995; Zeldin and Spanos 1998).
In Chapter 4 this subject is tackled using a stochastic model for the uncertain in-
put and a Bayestan probabilistic approach to quantify the uncertainties in the model

yarameters. This Bayesian probabilistic svstem identification framework is an exten-
I A I )
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ston of the case of measured input {Beck and Katafvgiotis 1998; Katafvgiotis et al
1998). The proposed spectral-based approach utilizes important statistical proper-
ties of the Fast Fourier Transform {FFT} and their robustness with respect to the
probability distribution of the response signal, e.g., regardless of the stochastic model
for this signal, its FFT is approximately Gaussian distributed. The method allows
for the direct calculation of the probability density function (PDF) for the param-
eters of a nonlinear model conditional on the measured response. The formulation
is first presented for single-degree-of-freedom {SDOF} systems and then for multiple-
degree-of-freedom svstems. Examples using simulated data for a Duffing oscillator,
an elasto-plastic system and & four-story vielding structure are presented to illustrate

the proposed approach.

1.2 Structural Control

Because complete information about a dynamical system and its environment are
never available, system and excitation parameters can not be determined exactly but
can be given probabilistic descriptions which give a measure of how plausible the
possible parameter values are {Cox 1961; Beck 1996: Beck and Katafvgiotis 1998).
Classical control methods based on a single nominal model of the system may fail to
create a controller which can provide satisfactory performance for the svstem. Robust
control methods, e.g., Hy, Ho and p-synthesis, ete., were therefore proposed so that
the optimal controller can provide robust performance and stability for a set of ‘pos-
sible” models of the system {Doyle et al. 1989; Doyle et al. 1992; Paganini 1996; Zhou
and Dovle 1996; Johnson et al. 1998). In the proposed probabilistic robust control
approach, an additional “dimension” is introduced by using probabilistic descriptions
of all the possible models when selecting the controller to achieve optimal perfor-
mance; these probability distributions are obtained from engineering judgement or
svstem identification techniques. Specifically, a more probable model is given a high
weighting for calculating the optimal gains, which is in contrast to standard robust

control algorithms which give equal weighting to all possible models.
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Over the last decade, there has been increasing interest in probabilistic, or stochas-
tic, robust control theory. Monte Carlo simulations methods were used to svnthesize
and analyze control systems for uncertain systems (Stengel and Ray 1991; Marrison
and Stengel 1995). In Spencer and Kaspari (1994); Spencer et al. ({1994); Field
et al. {1994); and Field et al. {1996}, first- and second-order reliability methods were
incorporated to compute the probable performance of linear-quadratic-regulator con-
trollers {LQR). On the other hand, an efficient asymptotic expansion {Papadimitriou
et al. 1997a) was used to approximate the probability integrals that are needed to
determine the optimal parameters for a passive tuned mass damper {Papadimitriou
et al. 1997b) and the optimal gains for an active mass driver {May and Beck 1998}
for robust structural control. In May and Beck (1998}, the proposed controller feeds
back output measurements at the current time only, where the output corresponds
to certain response quantities that need not be the full state vector of the system.
However, there is additional information from past output measurements which may
improve the performance of the control system.

In Chapter 5, the reliability-based methodology proposed in May and Beck {1998)
is extended to allow feed back of the output {partial state) measurements at previous
time steps. It is noted that in traditional linear-quadratic-Gaussian (LQG) control
with partial state measurements, the optimal controller can be achieved by estimating
the full state using a Kalman filter combined with the optimal LQG controller for full
state feedback. However, in our case the separation principle does not apply and no
state estimation is needed. The method presented for reliability-based robust control
design may be applied to any system represented by linear state-space models but
the focus here is on robust control of structures {(Soong 1990; Housner et al. 1997;
Caughey {Ed.) 1998).

In Chapter 5, the augmented vector formulation is presented for treating the
output history feedback. Then, the statistical properties of the response quantities are
calculated using the Lyapunov equation in discrete form. The robust control method
is introduced which is based on choosing the feedback gains to minimize the robust

failure probability {Papadimitriou et al. 2001). Examples using a shear building
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model and a benchmark structure are given to illustrate the proposed approach.

1.3 Overview of this Thesis

[0 4

. Chapter 2 introduces a probabilistic approach for selecting the most plausible

class of models for a structure using dynamic data.

Chapters 3 and 4 introduce two identification techniques for linear systems using
nonstationary response measurements and for nonlinear systems with uncertain

input.

Chapter 5 introduces a stochastic robust control methodology, with considera-
tion of modeling uncertainty, structure-actuator interaction and time delay of

the controller.

Chapter 6 illustrates the proposed robust controller design framework using a

20-DOF four-story structural frame.

Chapter 7 concludes this thesis and indicates possible future work.



Chapter 2 Model Selection

2.1 Overview

A Bayestan probabilistic approach is presented for selecting the most plausible
class of models for a structure within some specified set of model classes, based on
structural response data. The crux of the approach is to rank the classes of structural
models based on their probabilities conditional on the response data which can be
calculated based on Bayes” Theorem and an asymptotic expansion for the evidence
for each model class. The approach provides a quantitative expression of a principle
of model parsimony or of Ockham’s razor which in this context can be stated as
simpler models are to be preferred over unnecessarily complicated ones. Examples are
presented to illustrate the method using a single-degree-of-freedom hilinear hysteretic
system, a linear two-story frame and a ten-story shear building, all of which are

subjected to seismic excitation.

2.2 Model Class Selection

Let D denote the input-output or output-only dyvnamical data from a structure.
The goal is to use D to select the most plausible class of models representing the
structure out of Ny, given classes of models M, My, ... ,My,,. Since probability
may be interpreted as a measure of plausibility based on specified information {Cox
1961), the probability of a class of models conditional on the set of dyvnamic data D

is required. This can be obtained by using Baves” Theorem as follows:

P(M,|D,U) = DD }
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where p(D|U) = Z;’;{ DM, UYP{M,|U) by the theorem of total probability and
U expresses the user’s judgement on the initial plausibility of the model classes,
expressed as a prior probability P{M;|U{) on the model classes M, j = 1,..., Ny,
where Z;‘g P{M;iUd) = 1. The factor p(DiM;, U) is called the ewvidence for the
model class M; provided by the data D. Note that I/ is irrelevant in p{D| M, U} and
so it can be dropped in the notation because it is assumed that M, alone specifies
the probability density function (PDF) for the data, that is, it specifies not only a
class of deterministic structural models but also the probability descriptions for the
prediction error and initial plausibility for each model in the class M; (Beck and
Katafvgiotis 1998). Eqn. 2.1 shows that the most plausible model class is the one
that maximizes p{D|M;)P{M;|U) with respect to j.

Note that P{M;[D,U) can be used not only for selection of the most probable
class of models, but also for response prediction based on all the model classes. Let
u denote a quantity to be predicted, e.g., first story drift. Then, the PDF of u
given the data D can be calculated from the theorem of total probability as follows:
plu|D,U) = Z;ﬁ plulD, M;)P{M;|D,U), rather than just using only the best model
for prediction. However, if P{ M| D, ) for the best model class is much larger than
others, then the above expression is approximated by p{u|D,U) = p{u|D, My} and
it is sufficient to just use the best model class.

The evidence for M, provided by the data D is given by the theorem of total

probability:

pDIM;) = /O p(DI0;, M)pl0,|M,)d0;, §=1,2,... Ny (2.2)

i

where @; is the parameter vector in a parameter space ©; ¢ R that defines each
model in AM;, the prior PDI p(@;iM,) is specified by the user and the likelihood
p(DIM,,0y) is caleulated using the methods introduced in Section 2.3, Chapter 3
and Chapter 4.

In globally identifioble cases (Beck and Katafvgiotis 1998}, the updated {posterior)

PDF for 8, given a large amount of data D may be approximated accurately by a
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Graussian distribution, so p{D|M;) can be approximated by using Laplace’s method

for asymptotic approximation {Papadimitriou et al. 1997a):

i

N N Ny N
p(DIM,) 7 p(DI0,;, MO)p(0;| M) (20) 7 [H{0,) 77, j=1,2,..., Ny  {2.3)

where N is the number of uncertain parameters for the model class M;, the op-
timal parameter vector QJ is the most probable value (it is assumed to maximize
p(0;1D, M;) in the interior of ©;) and H; (QJ,) is the Hessian matrix of the function
~In[p(D\@;, M;)p(@;|M,)] with respect to @; evaluated at QJ, For wunidentifioble
cases (Beck and Katafygiotis 1998), the evidence p(D|M;) can be calculated by us-
ing an extension of the asymptotic expansion used in Eqn. 2.3 {Beck and Katafvgiotis
1998; Katafvgiotis et al. 1998) or by using a Markov chain Monte Carlo simulation
technique {Beck and Au 2002) on Eqn. 2.2. The discussion here will focus on the
globally identifiable case.

The likelihood factor p(@l@j, M) in Eqn. 2.3 will be higher for those model classes
M that make the probability of the data D higher, that is, that give a better "hit’
to the data. For example, if the likelihood function is Gaussian, then the highest
value of p(@[@j,;’vij) will be given by the model class M; that gives the smallest
least-squares fit to the data. As mentioned earlier, this likelihood factor favors model
classes with more uncertain parameters. If the number of data points N in D is
large, the likelihood factor will be the dominant one in Eqn. 2.3 because it increases
exponentially with N, while the other factors behave as N !, as shown below,

The remaining factors p(@i [;‘/ij)(E?f)%i [HJ(GJ,) 2 in Eqn. 2.3 are called the Ock-
hom foctor by Gull (1988). The Ockham factor represents a penalty against param-
eterization {Gull 1988; Mackay 1992}, as we demonstrate in the following discussion.

We wish to show that the Ockham factor decreases exponentially with the number
of uncertain parameters in the model class. For this purpose, consider an alternative
expression for it, derived as follows. It is known that for a large number N of data
points in D, the updated (posterior) PDI" p(0;iD, M) is well approximated by a

Graussian PDF with mean @; and covariance matrix given by the inverse of the Hessian
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matrix HJ(QJ) The principal posterior variances for @;, denoted by o7, with i =
1,2,..., N;, are therefore the inverse of the eigenvalues of this Hessian matrix. The
determinant factor IHJ(BJ,)I_% in the Ockham factor can therefore be expressed as
the product of all the oy ; for ¢ = 1,2,... | N;. Assume that the prior PDI p{8,|M;)
is Gaussian with mean (most probable value o priori) éj and a diagonal covariance
matrix with variances p;‘i{ with i =1,2,..., N,. The logarithm of the Ockham factor

for the model class M, denoted by [;, can therefore be expressed as

N N

N i 5 2
[ J— pjtf 1 ﬁj:f - Qj}i 3
he- iy (B 2

P famt

Since the prior vartances will always be greater than the posterior variances if the
data provides any information about the model parameters in the model class M,
all the terms in the first sum in Eqn. 2.4 will be positive and so will the terms in
the second sum unless the posterior most probable value 93;;; just happens to coincide
with the prior most probable value éjﬂu Thus, the log Ockham factor 3; will decrease
if the number of parameters N, for the model class M is increased. Furthermore,
since the posterior vartances are known to be inversely proportional to the mumber of

data points NV in D, the dependence of the log Ockham factor on N is
Ix 1 NT NT P T
3 = 5 InNN,; + R; {2.5)

where the remainder R; depends primarily on the choice of prior PDI and is O(1)
for large N. It is not difficult to show that this result holds for even more general
forms of the prior PDF than the Gaussian PDF used here.

It follows from Bayes’ Theorem that we have the exact relationship:
P(DIM;) = p(D18;, M;)pl8;| M) /pl0;D, M) (2.6)

A comparison of this equation and Eqn. 2.3 shows that the Ockham factor is approxi-

mately equal to the ratio p(éjl,’vi it/ p(QJ ‘D, M) which is always less than unity if the
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data provides any information about the model parameters in the model class M.
Indeed, for large N, the negative of the logarithm of this ratio is an asvmptotic approx-
imation of the information about @; provided by data D {Kullback 1968). Therefore,
the log Ockham factor 5; removes the amount of information about @; provided by
D from the log likelihood In p(@[éj, M) to give the log evidence p(D|AM;).

The Ockham factor may also be interpreted as a measure of robustness of the
model class M. If the updated PDF for the model parameters for the given model
class is very peaked, then the ratio p(éjlﬁwij)/ 9(91 ‘D, M), and so the Ockham fac-
tor, is verv small. But a narrow peak implies that response predictions using this
model class will depend too sensitively on the optimal parameters E?j Small errors
in the parameter estimation will lead to large errors in the results. Therefore, a
class of models with a small Ockham factor will not be robust to noise in the data
during parameter estimation, that is, during selection of the optimal model within
the class. Note that In p(@léj} M) and the log Ockham factor 5, are approximately
proportional to N and In N, respectively, where N is the number of data points in D,
Therefore, as N becomes larger, the contribution of the log Ockham factor becomes
less important. This is reasonable because the uncertainty in the values of the model
parameters becomes smaller as the number of data points grows, that is, the param-
eters can be estimated more precisely if more data points are available. In this case,
the model class can be less robust since we are more confident about the values of
the parameters of the model class.

To summarize, in the Bavesian approach to model selection, the model classes are
ranked according to p(D|M;)P{M;|U) for j = 1,..., Ny, where the best class of
models representing the system is the one which gives the largest value of this quantity.
The evidence p(DjM;) may be calculated for each class of models using Eqn. 2.3.
The prior distribution P{M,|if) over all the model classes M, 7 =1,... , Ny, must
be specified. In this work, a uniform prior distribution is chosen, leaving the Ockham

factor alone to penalize model classes with increased numbers of parameters.
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2.2.1 Comparison with Akaike’s Approach

In the case of Akaike’s information criterion {Akaike 1974), the best model class
among the M; for § = 1,2,..., Ny is chosen by maximizing an objective function

AIC{M,|D) over j that is defined by
AIC{M,|D) = lnp(Di0;, M) — N, (2.7)

where the log-likelihood function is roughly proportional to the number of data points
N in D, while the penalty term is taken to be N;, the number of adjustable parameters
in the model class M. (Akaike actually stated his criterion as minimizing -2(AIC)
but the equivalent form is more appropriate here). When the number of data points is
large, the first term will dominate. Akaike (1976} and Schwarz (1978) later developed
independently another version of the objective function, denoted BIC, that is defined

by
_ . 1
BIC{M;|D) = Inp(Di@,, M;) - 2 In NN, {2.8)

where now the penalty term increases with the number of data points N.

BIC can be compared directly with the logarithm of the evidence from Eqn. 2.3:
Inp{DIM,) = Inp(D|0;, M) + 5, {2.9)

where the logarithm of the Ockham factor /¥ is given by Eqn. 2.4 or Eqn. 2.5. The
latter shows that for large NV, the BIC agrees with the leading order terms in the
logarithm of the evidence and so in this case it is equivalent to the Bayesian approach

using equal priors for all of the P{A;U;).

2.3 Model Updating Using a Bayesian Framework

A general Bavesian framework for structural model updating was proposed in

Beck and Katafygiotis (1998) and Katafygiotis et al. {1998). It was originally pre-
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sented using input-output measurements. In this section, this Bayesian approach for
linear/nonlinear model updating is presented. For details, see Beck and Katafvgiotis
(1998). The case of using output only measurements is covered later in Chapter 3
(linear models} and Chapter 4 (nonlinear models).

Consider a system with N, degrees of freedom {DOFs) and equation of motion
Mx + f,(x,x; 8,) = Tf(¢) (2.10)

where M € RYX%¢ ig the mass matrix, f, € RY is the nonlinear restoring force
characterized by the structural parameters @,, T € RY*¥r is a force distributing
matrix and £{¢) € RY/ is an external excitation, e.g., force or ground acceleration,
which is assumed to be measured.

Assume now that discrete response data are available for Ny,{< Ny) measured
DOFs. Let Af denote the sampling time step. Because of measurement noise and
modeling error, referred to hereafter as prediction error, the measured response y(n) €
RY {at time ¢ = nAt) will differ from the model response Lpx{n) corresponding to
the measured degrees of freedom where Ly denotes an N, x Ny observation matrix,
comprised of zeros and ones. Herein, it is assumed that this difference between the
measured and model response can be adequately represented by a discrete zero-mean

Gaussian white noise vector process n{n) € R¥:

vin) = Lox(n) +nin) (2.11)
where the discrete process i satisfies

Eln(mn’ (p)] = Zuydn, (2.12)

where E[.} denotes expectation, d,, denotes the Kronecker delta function, and X,
denotes the N, x N, covariance matrix of the prediction error process n.
Let @ denote the parameter vector for identification and it includes the following

parameters: 1) the structural parameters 8,; 2) parameters defining the structural
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mass distribution; 3) the elements of the force distributing matrix T; and 4) the
elements of the upper right triangular part of the prediction-error covariance matrix
¥, {symmetry defines the lower triangular part of this matrix). Herein, it is assumed
that the mass distribution can be modeled sufficiently accurately from structural
drawings and so it is not part of the model parameters to be identified.

If the data D consists of the measured time histories at N discrete times of the
excitation and observed response, then it is easily shown that the most probable
values @ of the model parameters are calculated by minimizing the mean square
ervor between the measured and computed model response at the observed DOFs
because of the assumed probability model for the prediction error. Assuming that
the prediction errors have equal variance o, but are independent for different channels
of measurements, the updated PDF of the model parameters @ given dyvnamic data

D and model class M is given by

pl@D, M) = c;p(@lﬂ/ﬁ)(ih)’%aa;x% exp (—%L (01D, ;‘/Z)) (2.13)
7

where ¢ is a normalizing constant and p{@/.M) is the prior PDF of the model param-
eters @ expressing the user’s judgement about the relative plausibility of the values
of the model parameters before data is used. The objective function J,{8|D, M) is
given by

J(OD, M) = ——%"

NN
[ fi 1

2

Lox{kAt; 0, M) — y{kA?) (2.14)

where x{kAf; @, M) is the calculated response based on the assumed class of models
and the parameter set @ and y{kAt) is the measured response at time kA%, respec-
tively. Furthermore, ||.|| denotes the 2-norm of a vector. The most probable model
parameters @ are obtained by maximizing p(0/D, M) in Eqn. 2.13. For large N, this
is equivalent to minimizing J, (@D, M) in Eqn. 2.14 over all parameters in @ that it
depends on, because this factor dominates in Eqn. 2.13. The most probable value of

the prediction-error variance in @ is 02 = min J,{@D, M). In the globally identifiable
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e

Figure 2.1: Relationship between the restoring force and the displacement of the
bilinear hysteretic system (Example 2-1).

case (Beck and Katafygiotis 1998), it turns out that p(@D, M) is well approximated
by a Gaussian distribution with mean € and covariance matrix equal to inverse of the

Hessian of — In[p(@D, M)] at 0.

2.4 Illustrative Examples

2.4.1 Example 2-1: Single-degree-of-freedom Nonlinear Oscillator
under Seismic Excitation
In this example, a bilinear hysteretic oscillator with linear viscous damping is
considered:

Mmook 4+ frla by ke, xy) = f(1) (2.15)

where m is the mass, ¢ is the damping coeflicient and [, (ir; kv, ko, 2,,) is the hysteretic
restoring force, whose behavior is shown in Fig. 2.1. Here, m = lkg is assumed known.

The parameters @ = [ &y, ko, 77 used to generate the data are: & = 0.02 Ns/m,
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Figure 2.2: Response measurements of the oscillator for the three levels of excitation
{(Example 2-1).

ko= 1.0 N/m, ky = 0.IN/m, &, = 0.02 m, which gives a small-amplitude natural

L Hy.

2

frequency of

The oscillator is assumed to be excited by 10%, 15% and 20% of the 1940 Ei
Centro earthquake record. The duration of measurement is 7' = 40 sec with sampling
frequency 60Hz, so that the number of data points is N = 2400. It is assumed
that the earthquake excitation and response displacement are measured to give the
data D where 5% rms noise is imposed on the structural response measurements,
i.e., the measurement noise is 5% of the rms of the noise-free response. Fig. 2.2
shows the measurements for the three levels of excitation and Fig. 2.3 shows the
corresponding hysteresis loops. [t can be seen that the oscillator behaved linearly
(did not yield) when subjected to 10% of the El Centro earthquake record. Three
classes of models are considered. They all use zero-mean Gaussian discrete white
noise as the prediction-error model.

Model Class 1 {M): Linear oscillators with damping coeflicient ¢ > 0, stiffness
parameter £y > () and predictive-error standard deviation oy;

Model Class 2 {My): Elasto-plastic oscillators, i.e., bilinear hysteretic but with
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Figure 2.3: Hysteresis loops of the oscillator for the three levels of excitation (Example
2-1).

ko = 0, with stiffness parameter k; > 0, yielding level i, and predictive-error standard
deviation o,; and no viscous damping,.

Model Class 3 {M3): bilinear hysteretic oscillators with pre-yield stiffness &, > 0,
after yielding stiffness &k, > 0, yielding level 2, and predictive ervor parameter o,
Note that this class of models does not include the exact model since linear viscous
damping is not included.

Independent uniform prior distributions are assumed for the parameters ¢, &y, ko,
xy and g, over the range (0,0.5)N sec/m, {0,2)N/m, {0,0.5)N/m, {0,0.1)m, {0,0.01)m,
respectively. Table 2.1 shows the optimal parameters of each class of models for the
three levels of excitation. ‘UN’ indicates that the parameter is unidentifiable. For
example, in M, with 10% El Centro earthquake, x, is unidentifiable because the
oscillator behaves perfectly linearly (Fig. 2.3). In fact, the optimal parameters of
M are very close to their target values in this level of excitation. For higher levels
of excitation, the optimal linear model in M, has lower stiffness and higher values

of its damping coefficient to represent the increased flexibility and energy dissipation
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Excitation Level Model Class ¢ ko ko &y oy
1 0.0204 | 1.000 | — | — 0.0005
10% El Centro earthquake 2 | — 1.019 | — UN | 0.0013
3] — 1.019 UN UN | 0.0013
1 0.0902 | 0989 | — | — 0.0020
15% El Centro earthquake 2 | — 1.0179 | — 0.0214 | 0.0017
3 - 1.001 | 0.108 | 0.0197 | 0.0007
1 0.1928 | 0956 | — | — 0.0098
20% El Centro earthquake 2| — 0.9936 | 0.0211 | 0.0051
3 0.9942 | 0.0924 | 0.0200 | 0.0011

Table 2.1: Optimal (most probable} parameter values in each model class representing
the oscillator {Example 2-1}.

Excitation level P{M,\|D.U) | PIMo|D,U) | P{M;D,U)
10% El Centro earthquake 1.0 3.1 x 1071 [ 3.1 x 10 1=
15% El Centro earthquake | 4.4 x 107174 | 3.2 x 10797 1.0
20% El Centro earthquake | 6.4 x 10759 | 5.7 x 1071609 1.0

Table 2.2: Probabilities of different model classes based on data (Example 2-1).

due to vielding.

Table 2.2 shows the values of P{M;|D, U}, j =1, 2,3 for the three levels of excita-
tion that are calculated from Eqn. 2.1 using the evidence for each model from Eqgn. 2.3
and equal priors P{AM,|If) = % Note that in all three cases, the optimal model class
has probability near 1.0, implying that the other model classes can be discarded for
response prediction. In the case of 10% scaling of the El Centro earthquake record, it
is not surprising that P(M,|D,U) is the largest since the oscillator behaves linearly
(Fig. 2.3). However, for higher levels of excitation, P{M3|D,U) is the largest. Al-
though Mj does not include linear viscous damping, the hysteretic behavior can be
captured well by this model. More interestingly, M, out-performs M| at these two
levels of excitation. Although M, can not capture the viscous damping mechanism,
the energy dissipated by the hysteretic behavior for 15% and 20% scaling of the El

Centro earthquake record is much more significant than the contribution from the
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Figure 2.4: Linear two-story structural frame (Example 2-2}.

viscous damping, as can be seen by the large increase in the optimal damping ratio
for the corresponding “equivalent” linear systems M in Table 2.1, Furthermore, the
restoring force behavior for My is more correct than for My, although it is still not
exact.

This example illustrates an important point in system identification. In reality,
there is no exact class of models for a real structure and the best class depends on
the circumstances. If we wish to select between the linear models (A} and the
elasto-plastic models (M.}, then A, is better for high levels of excitation while A1,

is better for lower levels of excitation.

2.4.2 Example 2-2: Linear Two-story Frame under Seismic Excita-
tion

The second example refers to a 6-DOF two-story structural frame with story
height H = 2.5m and width W = 4.0m, as shown in Fig. 2.4. All the chosen model
classes are linear. All members are assumed to be rigid in their axial direction. For
each member, the mass is uniformly distributed along its length. The rigidity-to-mass

Ely

vy 1 Yo o Fa s g’h _ _ g}g _ 1}?}4
ratio is chosen to be Th= st ek =t

= 2252m? sec~?

, where m denotes the
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mass per unit length of all members. As a result, the first two natural frequencies
of this structure are 2.000Hz and 5.144Hz. Furthermore, a Rayleigh damping model
is assumed, i.e., the damping matrix C = oM + JK, where M and K are the mass
and stiffness matrices, respectively. In this case, the nominal values of the damping
coefficients & and /7 are chosen to be 0.182sec™! and 0.442 x 10 sec so that the
damping ratios for the first two modes arve 1.00%.

Three classes of structural models are considered. Independent zero-mean discrete
Gaussian white noise is used for the prediction-error model, with spectral intensity
Sp1 = 0.027m?sec ™ and S, = 0.059m?sec ™ at the two observed degrees of freedomm.
In order to have better scaling, the damping parameters are parameterized as follows:
o= ¢i and = gl
Model Class 1 (M, ): Assumes a class of two-story shear buildings with nominal

interstory stiffness k), = ky = 2 X u;f L. In order to have better scaling, the stitfness

are parameterized as follows: k; = 0, Fu:‘j, 4 = 1,2, Therefore, the uncertain parameters
are ;, ¢, Spj, J = 1,2.

Model Class 2 {(My): Assumes the actual class of models except that due to
modeling ervor, EI, = 6, ET,, El, = 8,E,, EIy = 0.56,ET; and El, = 0.56,E1,
where the nominal values were given earlier. Therefore, the uncertain parameters are
f;, ¢ and S, 7 =1,2.

Model Class 3 {M3): Assumes that KT, = Hgfh, El, = §,F7T, and El;, =
33,@“} i»§ = 3,4. Therefore, the uncertain parameters are: &y, 6y, b5, ¢, ¢, Sy and
Sps. Note that the true model lies in this set.

The structure is assumed to be excited by a white noise ground motion, which
is not measured. The spectral intensity of the ground motion is taken to be S5 =
1.0 x 10 °m?sec™®. The data D consists of the absolute accelerations with 10%
measurement noise at the 1°° and 2 DOF's over a time interval of 100 sec, using a
sampling interval of 0.01 sec. Identification was performed using the Bayesian spectral
density approach of Chapter 4 with the same set of data for each of the three classes
of models.

The prior distributions p{@;|M;), 7 = 1,2,3 are assumed to be an independent
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uniform distribution over the interval (0, 2) for 8,, 8., 85, ¢, ¢b» and over the interval

(0,0.5)m%sec™? for S,,; and Sz

Parameter | oy o ) &, s Sp1 S
Case 1 1.131 | 1.007 | 0.913 | 0.879 | - 0.158 | (.159
Case 2 1.057 | 1.536 | 1.130 | 1.130 | - (0.150 | 0.063
Case 3 1.027 | 1.093 | 0,988 | 1.001 | 1.024 | 0.085 | 0.080

Table 2.3: Optimal {most probable) structural parameter values in each model class
representing the structural frame {(Example 2-2).

Mode 1 2

Actual | 2.000 | 5.144
Case 1 | 2.048 | 5.009
Case 2| 2.000 | 5.323
Case 3 | 1.995 | 5.142

Table 2.4: Natural frequencies (in Hz} of the best model in each class (Example 2-2).

Table 2.3 shows the optimal structural parameters in each class of models. 1t is
not surprising that both #; and #, in Case 1 are less than unity because the shear
building models assume a rigid Hoor but the floors of the actual structure are not.
Table 2.4 shows the associated natural frequencies with the actual frame and the op-
timal models. Note that the optimal model in M3 can fit both frequencies very well
since the exact model is in this class. On the other hand, M, and M, can not fit the
frequency of the second mode as well as My, Fig. 2.5 - 2.7 show the estimated spec-
trum using the measurements (zigzag curve) with the best fitting spectrum (smoother
curve) for the three classes of models, respectively. One can see that the best model
in M, provides a better fit to the first mode than M, but it is the opposite for the
second mode. The best model in My gives excellent matching with the estimated
spectrum for both modes.

Table 2.5 shows the values of P{M;D, U) for j = 1,2, 3, calculated from Eqn. 2.1

using the evidence for each model from Eqn. 2.3 and equal priors P{M;|if) = i}
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Figure 2.5: Response spectrum estimated by the measurements and the best fitting
curve using Model Class 1 {Example 2-2).
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Figure 2.6: Response spectrum estimated by the measurements and the best fitting
curve using Model Class 2 {(Example 2-2).
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Figure 2.7: Response spectrum estimated by the measurements and the best fitting
curve using Model Class 3 {(Example 2-2).

As expected, P(M;|D,U) is the largest among the three classes of models because
it contains the actual model. On the other hand, P{M,|D,U) is the smallest one.
Although it gives a better fit for the second mode than M, it does not fit the first
mode as well as the best model in M, and the contribution of the first mode to the
structural response is one order of magnitude larger than the second mode. This
implies that although M, has significant modeling error for the beams {about 50%),

it is still a better class of models than the shear building models.

PIMLD, U) | PIMD. U) | P(M,D,U)
2.6 x 1074 1.7 x 1071° 1.0

Table 2.5: Probabilities of different model classes based on data (Example 2-2).
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Figure 2.8: Ten-story shear building (Example 2-3}.
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2.4.3 Example 2-3: Ten-story Shear Building under Seismic Excita-
tion

The third example uses response measurements from the ten-storv building shown
in Fig. 2.8. The Bavesian approach is applied to select the optimal number of modes
for a linear model. Tt is assumed that this building has & uniformly distributed floor

<oy . . . . ks
mass and story stiffness over its height. The stiffness to mass ratios -, 7 =1,... ,4,
¥

are chosen to be 1500sec™ so that the fundamental frequency of the building is
0.9213 Hz. Rayleigh damping is assumed, i.e., the damping matrix C is given by
C = oM+ K, where o = 0.0866 sec™* and 7 = 0.0009sec. The structure is assumed
to be subjected to a wide-band random ground motion, which can be adequately
modeled as a Gaussian white noise with spectral intensity Sy = 0.02m?sec™>. Note
that the matrix T in Eqn. 2.10 is equal to the matrix —[my,...,mpp]" in this case.
Each model class M; (j = 1,...,8) consists of a linear modal model {Beck 1996}
with j modes and the uncertain parameters are the natural frequency, damping ratio
and modal participation factor for each mode; and the spectral intensity 5, of the
prediction errvor at the measured degree of freedom.

The data D consists of the absolute accelerations at the top floor with 5% mea-
surement noise over a time interval 7 = 30sec, using a sampling interval Al =
0.01 sec. The measurement noise is simulated using a spectral intensity S, = 1.94 x
107*m?sec®. The Bayesian spectral density approach of Chapter 4 is used for the
identification. The number of data points N is taken to be 600 because only the
estimated spectrum up to 20.0 Hz is used.

Independent prior distributions for the parameters are taken as follows: Gaussian
distribution for the natural frequencies with mean 5.5(27—1) rad/sec and coefficient of
variation 0.05 for the j® mode. Furthermore, the damping ratios, modal participation
factor and the spectral intensity of the modeling error are assumed to be uniformly
distributed over the range (0,0.05), (0,2) and {0,0.01)m?sec™?, respectively.

Table 2.6 shows the identified {most probable) natural frequencies for considering

one mode to eight modes. Table 2.7 shows the values of the log-evidence In p{D|M,,},



Number of modes a4 &y @y 4y &y @ @y Wy
Exact 5.789 | 17.24 | 28.30 | 38.73 | 48.30 | 56.78 | 64.00 | 69.79

1 6.946 | — | — | o | | e ] e [ e

2 5.799 | 20068 | | e | e ] e ] e e

3 5.814 | 17.16 | 33.96 | -~ | — | e ] e | e

4 5.842 | 1718 | 27.94 | 43.82 | — | e | e | e

5 3.848 | 17.19 | 27.97 | 38.06 | 50.58 |~ | e | e

6 5.849 | 17.19 | 27.97 | 38.09 | 48.10 | 56.72 | - | o

7 5.849 | 17.19 | 27.97 | 38.09 | 48.13 | 56.34 | 64.18 | -~
3 5.849 | 17.19 | 27.97 | 38.09 | 48.13 | 56.34 | 64.18 | 69.41

Table 2.6: Identified natural frequencies in rad/sec of the building (Example 2-3).

Number of modes m 1 2 3 4

In p(D[M,,) 1.894 x 107 | 2.251 x 10° | 2.511 x 10° | 2.619 x 10°
In 3, —~43.7 —56.4 —68.9 —69.2
P{M,,|D,U) 30x107% | 22 x 1078 | 6.4 x 10777 | 2.4 x 107
Number of modes m H 6 7 b
In p(D[M,,) 2.682 x 10° | 2.714 x 10° | 2.723 x 10° | 2.723 x 107
In 3, - 75.9 -91.2 - 109 —~121
P(M|D,U) LOx 107 1.0 Lix10 7 | 1.3x10°7

Table 2.7 Probabilities of models with different number of modes based on data
{(Example 2-3).

the log-Ockham factor In /4, and P{M,;D.U) (j = 1,...,8) for the cases of model
classes with one mode to eight modes, calculated from Eqgn. 2.1 using the evidence
for each model from Eqn. 2.3 and equal priors P{M,|U) = {. Tt implies that using
stx modes is optimal. Tt is found that the seven-mode and eight-mode models give
poor estimation of the damping ratios although the estimated natural frequencies are
satisfactory, as shown in Table 2.6. The estimated {most probable) damping ratios of
the seventh mode are 15.3% and 17.2%, using the seven-mode and eight-mode models,
respectively. The eight-mode model gives 25.9% for the most probable damping ratio
for the eighth mode. Note that the actual values of the damping ratios of the seventh
and eighth mode are 2.86% and 3.10%, respectively.

Fig. 2.9 shows the estimated spectrum from the data {zigzag curve) and the best



28

g T T T T T

Using 6 modes

[ !
0 l l‘ E

|I‘ l'[”l i i I'I' fﬂmll '”l'" | XWH

10’5 1 1 1 ! 1
0 20 40 60 80 100 120
w {rad/sec)

Figure 2.9: Response spectrum estimated by the measurements and the best fitting
curve using six modes (Example 2-3).

fitting curve using six modes {smoother curve). One can see that the optimal model
using six modes can fit the measured spectrum very well. Furthermore, all the six
identified natural frequencies are very close to their target values, which is not the
case for using two to five modes. It was found that if AIC is used, eight modes is
optimal because the penalty term is too small compared to the changing of the log
likelihood term in Eqn. 2.7. On the other hand, if BIC in Eqn. 2.8 is used, then six
modes are optimal, agreeing with the Bayvesian approach using the evidence for the

various modal models.

2.5 Conclusion

A Bayesian probabilistic approach for model selection is presented and numerical
examples are given to illustrate the method. The optimal class of modelsis taken to be
the most plausible one based on the data, that is, it possesses the largest probability

conditional on the data among the model classes. This probability depends on the
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evidence for the model class provided by the data and the user’s choice of prior
probability distribution over the classes of models. The methodology can handle
input-output and output-only data for linear and nonlinear dynamical systems. This
is further illustrated in Chapters 3, 4 and 6.
The optimal class of models is taken to be the most plausible one based on the
data, that is, it possesses the largest probability conditional on the data among the

model classes. This probability depends on the evidence
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Chapter 3 Modal Identification Using

Nonstationary Noisy Measurements

3.1 Overview

This chapter addresses the problem of identification of the modal parameters for
a structural svstem using measured nonstationary response time histories only. A
Bayesian time-domain approach is presented which is based on an approximation of
the probability distribution of the response to & nonstationary stochastic excitation.
It allows one to obtain not only the most probable values of the updated modal pa-
rameters and stochastic excitation parameters but also their associated uncertainties
using only one set of response data. It is found that the updated probability dis-
tribution can be well approximated by a Gaussian distribution centered at the most
probable values of the parameters. Examples are presented to illustrate the proposed

method.

3.2 Formulation for Modal Identification

3.2.1 Random Vibration Analysis

Consider a system with Ny degrees of freedom {DOF) and equation of motion:
Mx + C x +Kx = T,F(f) {3.1)

where M, C and K are the mass, damping and stiffness matrices, respectively; T, €

RYe*Ne g5 a force distributing matrix; and F(#) € RY" is a zero-mean Gaussian
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nonstationary stochastic process which is modeled by

F(1) = Alt)g(!) (3.2)

where g(t) is a Gaussian stationary stochastic process with zero mean and spectral
density matrix S,(w) € RY"*%r and A(f) € R is a modulation function. Then, the

autocorrelation function of F is given by
Rpl(t, t +7) = ABA{t + )R, (7) {3.3)

where R {7} is the autocorrelation function for the stationary process g{t).
Assuming classical damping, i.e., CM™'K = KM™!'C {Caughey and O'Kelly
1965), the uncoupled modal equations of motion by using modal analysis are given

by

G, (£) + 2Gw, €, (8) + wig (t) = Al (), r=1,... Ny {3.4)

where q(t) = [q:{£), ..., qx, ()] and £{#) = [f1{£),..., fx, (6)]" arve the modal coordi-
nate vector and the modal forcing vector, respectively. The transformation between

the original coordinates (forces) and the modal coordinates {forces) is given by
x(t) =®-q{t) and f{t) = (MI) "T,git) {3.5)

where @ is the modeshape matrix, comprised of the modeshape vectors ¢ which

are assumed to be normalized so that

d =1, r=1,..Ny (3.6)

r

where 4, is a measured DOF which is not a node of the r* mode. The modal forcing

vector £{#) is a Gaussian stationary stochastic process with zero mean, spectral density
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matrix
S{w) = (M®)'T,S,{w)T! {(M®) " {3.7)
and autocorrelation matrix function

R,(r) = / 8w dw (3.8)

0

It is known that the response x(?) is a Gaussian process with zero mean, correlation

function between x; and ; {Lutes and Sarkani 1997):

RID (it +7) :Yf iio( Yt / / JA R — u)h (t+ 7 — L’)R(T T, — v)dudv
el gl
{3.9)
and with spectral density
SUDE w) o %/ RUDE 4 1)e ™ dr (3.10)

where h,r(.) denotes the modal unit impulse response function for the displacement of
the » mode. Here, it is assumed that only N, lower modes contribute significantly
to the displacement response.

Assume that discrete data at times ¢, = kAL k= 1,... , NV, are available at N, (<
Ny measured DOFs. Also, assume that due to measurement noise and modeling error
there is prediction error, i.e., a difference hetween the measured response v{k) € R
and the model response at time f; = kAt corresponding to the measured degrees of
freedom. The latter is given by L,x(kAt) where L, is an N, x N; observation matrix,

comprised of zeros and ones, that is,

(k) = Lyx(kA#) +n{k) (3.11)

It is assumed that the prediction error can be adequately represented bv discrete
i 3 A
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zero-tnean Gaussian white noise n(k) € R with the following N, X N, covariance

matrix

N

E[n(m)n’i (p)] - gn&m,p (3.12)

where ép, , is the Kroneker Delta function.
Note that y{k) is a discrete zero-mean Gaussian process with autocorrelation

matrix function R, given by

R, {m,p) = Ely(m)y"{(p)]

) (3.13)
= LR {mAt, pAt)LL + Xpdmp

where R, denotes the autocorrelation matrix function of the model response x{f)

given by Eqn. 3.9, and 3, is the noise covariance.

3.2.2 Parameter Identification Using Bayes’ Theorem

Since it is assumed that only N, lower modes contribute significantly to the
response, only the modal parameters corresponding to these modes are identified.
Specifically, the parameter vector a for identification is comprised of: 1) the modal

parameters wy, (p, 7 = 1, ..., Ny, in Eqn. 3.4; 2) the modeshape components r,é(r) at the

i
observed DOF § = 1,... N, for the modes r = 1,..., N,,, except those elements
which were used for the normalization of the modeshapes {which are assumed constant
and equal to one); thus, a total of N, (N, — 1) unknown modeshape parameters are
to be identified; 3) the parameters prescribing the spectral density matrix 8,{w) and
the modulation function A(#) and 4) the elements of the upper right triangular part
of 3, {symmetry defines the lower triangular part of this matrix).

Recall that here the scaling of each modeshape is chosen such that one of its
components corresponding to a measured DOF is equal to unity. However, such

scaling is arbitrary and therefore the above vectors can be identitied only up to a

constant scaling factor. A different modeshape normalization will cause all identified
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components of the r* modeshape to be scaled by some constant ¢,; at the same time
the values of the elements S}T’S) of the modal forcing spectral density matrix will be
scaled by {ce)7 0

Let the vector 'Y denote the zero-mean random vector comprised of the response
nLp

measurements from time mA¢t to pAt {m < p) in a time-descending order, that is,
Yo, = )y ()], m<p (3.14)

Jsing Bayes’™ theorem, the expression for the updated PDF of the parameters a

given some measured response Y|y is
MalYin) = cop(a)p(Yi,via) (3.15)

where c; is a normalizing constant such that the integral of the right-hand side of
Eqn. 3.15 over the domain of a is equal to unity. The factor p{a) in Eqgn. 3.15
denotes the prior PDF of the parameters and is based on previous knowledge or
engineering judgement; in the case where no prior information is available, this is
treated as a constant. p(Y, y/a) is the dominant factor in the right-hand side of
Eqn. 3.15 reflecting the contribution of the measured data in establishing the posterior
distribution. This can be expanded into a product of conditional probabilities as

follows:

Y ) =p(Yinla) [] ploik)laYoe ) (3.16)

ko Ny +1
In order to improve computational efliciency, the following approximation is in-
e

troduced:

P(Yixia) = p(Yix,a) [ ply(o)ia Yoo s ) (3.17)

ke=Np+1

The conditional probability factors depending on more than N, previous data points
i ) P

are approximated by conditional probabilities depending on only the last N, data



points. The sense of this approximation is that data points belonging too far in the
past do not have a significant effect on the statistical behavior of the present point. Of
course, one expects this to be true, especially if N, is so large that all the correlation
functions have decayed to very small values. However, it is found that a value for N, of
the order of iTja is sufficient, where T} is the fundamental period of the systerm and At is
the sampling time step. For example, assuming a time step Af = ZL}T 1, it follows that
a value of N, =z 25 is sufficient. The explanation for this behavior can be understood
with the following simple example. Consider three random variables o, 4 and z and
assume that one is interested in the conditional probability pla|y, 2} (so plzly) > 0).
Obviously, if & is independent of z given y, one can write plxly, z) = plaly) (bec&use
in general, p(x, z|y) = plx|y, 2)p{z|y) but for independence, plx, z|y) = p(:r[y)p(z[y))‘
Now, let x be dependent on z. If y and z are fully dependent, then one can still write
the above equation p(xly, 2} = plx|y). If y and z are almost fully dependent, then this
equation still holds approximately. The point of this example is that when considering
conditional probabilities, some of the conditioning information may be redundant
and can be omitted without significantly affecting accuracy. This argument can be
applied to our case since measurements one period apart are highly correlated. Using
larger values of N, leads to significant increase of the computational effort without
significantly further improving the accuracy of the identification. This was verified
by numerous simulations.

The factor p{Y, y,|a) follows an N,N,-variate Gaussian distribution with zero

mean and covariance matrix Xy :
e — . yT
Ty, = E[Y15,Y 5]
Py v, - DIy
Np ¥y Nyl (318)
Fif.f\zp F.I,E

where each of the submatrices Ty, ,, 1 < m, p < N, has dimension N, x N,. Based
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on Eqn. 3.13, the (j,/) element of the matrix I, ;, is given by

o = Elysmn(p)]
Yoo _ (3.19)
= > LML R mAt pAT) + X005,

el

. . il
where 4, , is the Kronecker Delta function, .;U

denotes the {j,!) element of the
auto-correlation function R, {¢,, £2) of the model response x(#} given by Eqn. 3.9, and
Y s the (4,1) element of the noise covariance matrix defined in Eqn. 3.12.
Therefore, the joint probability distribution p{Y v, |a) is given by
1

p(Y.E:;\jﬁ'a)ﬁ  RNghgp ]
(27)7 2 By, |2

| _ )
s;%xp(—§Yf:%§3yi\ij[:Nﬁ) (3.20)

Next, the general expression for the conditional probability involving o previous
points ply (k) |a; Yi_ar—1) in Eqn. 3.17 is derived, where it is assumed that £ > o > 1.

First, note that the covariance matrix Xy, of the random vector Y, is given

by
Skao,k = E?[.Ykaﬂ‘kn&r}f‘_&'k:l
| A (3.21)
I‘kfa,k' e I‘kfu}kfa
where each of the submatrices T'yy, p, & — o < m, p << k, is given by Eqn. 3.19.
Next, the matrix Xy, , is partitioned as follows:
Tulk, o) Dolka) N
SYRMQ,F‘: - g (3‘22)
Yplk, ) Xolk o)

where Xy, (k, o), Eolk, o) and Lk, o) have dimensions N, x N,, N, x Ny and
Nyox X Nyex, vespectively.

Since the measured response is assumed to have zero mean, the best estimator
3
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e, (k) of y{k) given Yy_p1 (k> ) is (Brockwell and Davis 1991)

€a (}”) = E[y(}”) [kaa,kf.l:l
= ok, o) T0) (k, ) Yo p1

(3.23)

and the covariance matrix X, (k) of the prediction error €,(k}) = y{k) — e (k) is
given by

Eealk) = Fle, (k)ef(k)]

x

_ B {3.24)

=2k, a) = Sk, 0)Dy (b, o)Lk )
In conclusion, the conditional probability p(y()|a; Yj_ax—1) follows an N,-variate
Gaussian distribution with mean e, (£} given by Eqn. 3.23 and covariance matrix

Y olk) given by Eqn. 3.24:

1
(20) 2| B 0 (K))]

p(y(k)[a; Yk—a,kt—l) - E‘X}}{—%[y(k) — €q (k)]jg:ti(k)[y(k) - ea(k)]}

(3.25)

(=31

The proposed modal identification approach can be summarized as follows: Eqn. 3.15
is utilized with p{Y »|a) being calculated through the approximation in Eqn. 3.17.
The factor p{Y v, ia) can be calculated using Eqn. 3.20 along with Eqn. 3.18 and 3.19
and each conditional probability factor in Eqn. 3.17 can be calculated from Eqgn. 3.25
along with Eqn. 3.21 - 3.24.

The most probable parameter values & are obtained by minimizing J{a) =
—In[p(alY; ~). It is found that the updated PDF of the parameters a can be well
approximated by a Gaussian distribution N{&, H{a) ') with mean a and covariance
matrix H{a)~!, where H{a) denotes the Hessian of J{a) calculated at a = a.

Although the above formulation was presented for the particular case where the
measured response is assumed to consist of displacement histories, it can be easily
modified to treat velocity or acceleration measurements by using the corresponding

modal impulse response functions for velocity or acceleration in Eqn. 3.9.
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Figure 3.1: Measured time history {Example 3-1).

K

Note that if the right-hand side of Eqn. 3.2 is replaced by Y Ap(#16@.4)gi{t), the
F==1

proposed methodology can handle excitations having different modulation functions,

e.g., ambient vibrations with a series of wind gusts.

3.3 Numerical Examples

3.3.1 Example 3-1: Transient Response of SDOF Linear Oscillator

In this example, the identification of & SDOF system from simulated noisy tran-
stent displacement response data shown in Fig. 3.1 is considered. Here, in Eqn. 3.4,
A(t) = U{t), the Heaviside unit step function, and f{#) is white-noise with spectral
intensity Sy, The parameters a = [, f, S’f(,,t}nyf used to generate the simulated
data are: &, = 3.0 rad/sec, { = 0.04, §;, = 1.0 em®sec™® and &, = 0.0959 cm?. The
chosen value of &, corresponds to a 10% rms prediction-error level, i.e., the noise is
10% of the rms of the noise-free response. The time step used to generate the data is
0.01sec. However, a much larger sampling time step was chosen (Af = 0.1sec) and

the total time interval is 7' = 50 sec, so that the number of data points is N = 500.
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Parameter | Actual @ | Optimal @ | Standard Deviationo | |7 | J= ga;a;
We 3.0000 2.9525 .0585 0.020 0.81
{ 0.0400 1.0566 (.0210 0.371 0.79
S'to 1.0000 0.8543 (.1168 0.137 1.25
O {.0959 0.0891 0.0038 0.042 1.81

Table 3.1: Identification results for one set of data and N, = 20 (Example 3-1).

T ! ! ! T T
: ; : * Actual
O AT e AR T T i o] Optimal Point [ 7
: : | : 15D
[T SRV e _';':3'.'_‘ ........... T 2 SDs .
: o : T : :
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0.08F ‘ : 3 E W B -
007k ceeeennn, , .............. ............. ............. s \ ......... ............ u
e : f ‘ : S :
.06 - L PR & Lo CRIEETETRR Fed Foeeenee froeeies -
[SX0i] S .............. e .............. ............. ..... IS ............ 4
00df oot [CERRRPPPRPRR: N 7 2cl. IXTTRIRRIRIeS R P .
0.08F <N T b B L. B -
002_ ........... \ ........... ! ...... T ............. ............ -
0.01 1 1 | 1 1 1
28 285 29 295 3 305 31 315
mD(radfs)

Figure 3.2: Contour of the updated joint PDF of frequency w, and damping ratio ¢
{(Example 3-1).

Table 3.1 refers to the identification results using a single set of displacement
measurements XA’_[:;\;A It shows the most probable values a = {&,, C , S 0. 0], the cal-
culated standard deviations o, o¢, 0g,, and o, the coefficient of variation for each
parameter and the value of a “normalized error” 3 for each parameter. The parameter
4 represents the absolute value of the difference between the identified optimal value
and exact value, normalized with respect to the corresponding calculated standard
deviation. Here, the value N, = 20 (corresponding to one period of the oscillator)
was used in Eqn. 3.17. Repeating the identification with a value of N, = 40 yielded
identical results, verifying that using N, = i—; is sufficient.

Fig. 3.2 shows contours in the {(w,, {) plane of the marginal updated PDF p{w,, { [’i";\,)
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Figure 3.3: Marginal updated joint PDFs of the damping ratio { and the spectral
intensity Sy, (Example 3-1).

calculated for the set of simulated data used for Table 3.1. Fig. 3.3 shows contours in
the ({, Syo) plane of the marginal updated PDI p((, Sﬂ}[iﬂ} w) caleulated for the set
of stmulated data used for Table 3.1. One can see that the estimates of the damping
ratio and the spectral intensity arve quite correlated, as expected, because a larger
value of the spectral intensity with a larger value of the damping ratio corresponds
to a similar autocorrelation function and hence a similar probability given the data.
On the contrary, as seen in Fig. 3.2, the estimates of w, and { can be considered as
being uncorrelated.

Fig. 3.4 shows a comparison between the conditional PDFs p(wol’i’;}_f\;, C ; S’f@,r}n)
and p(Clﬂi’-gjg\;}d:o,S; 0,0}, Tespectively, obtained from: i) Eqn. 3.15 {crosses) and ii}
the Gaussian approximation N{a, H(a) '} described in Section 2.3.2 (solid line). It
can be seen that the proposed Gaussian approximation is very accurate. Thus, the
inverse Hessian matrix H{a) ' can be used to calculate the covariance matrix for the
uncertainty in the value of the parameter a, given the data Y;: ~1 in particular, this
gives the variance Jz(aﬂili’h w) for each parameter a; of a.

Next, one hundred sets of independent time histories were generated using the
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I
0 0.02 0.04 0.06 0.08 0.1 012

Figure 3.4: Conditional PDFs of the natural frequency and damping ratio obtained
from: 1) Eqn. 3.15 - cross; and ii) Gaussian approximations - solid. The remaining
parameters are fixed at their optimal values (Example 3-1}.

Parameter | Actual @ & var(é) o2 4z
Wy 3.0000 | 3.0027 0.0037 0.0039 .9596
C 0.0400 | 0.0409 0.0004 0.0004 1.0610
Sro 1.0000 | 0.9932 0.0164 0.0168 0.9767
On 0.0959 | 0.0964 | 1.52x 1077 | 1.68x 1077 | 0.9573

Table 3.2: Identification results using 100 sets of data and N, = 20 {(Example 3-1).

same parameters as discussed in the beginning of this example. The optimal {most
probable) parameter values a7, m = 1, ... , 100 using each set of data were calculated
separately. Then, the mean value and the covariance matrix of the optimal parameters
were calculated from the set {é‘}l(m}, m =1,...,100}. The obtained mean values and
variances of the optimal parameters are shown in the third and fourth columns,
respectively, of Table 3.2. The fifth column in this table shows the mean value of the
one hundred different variances where each variance is calculated using the inverse
Hessian matrix H{a) ! derived from each set of data separately. Finally, based on the

100 samples, the mean square values of the normalized ervor parameter 3, described
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Figure 3.5: Eight-story shear building model {Example 3-2).

earlier for Table 3.1, are shown in the last column. It can be seen that the fourth
and the fifth columns look similar, implyving that the uncertainties calculated from
a single sample are representative of the uncertainties of the optimal parameters
obtained from several independent sets of data of equal length. Furthermore, the
values in the last column are all approximately equal to unity. This verifies that
the calculated uncertainties from our proposed approach using one set of data are

reasonable and representative of the true uncertainties in the identification process.

3.3.2 Example 3-2: Eight-story Shear Building Subjected to Non-

stationary Ground Excitation

The second example uses simulated response data from the shear building shown

in Fig. 3.5. It is assumed that this building has a uniformly distributed floor mass
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and story stiffness over its height and the stiffness to mass ratio is chosen to be 1160
sec™? so that the first four modal frequencies are 2.0000 Hz, 5.9318 Hz, 9.6616 Hz
and 13.0624 Hz. The damping ratio is assumed to be 2% for all modes. It is assumed
that the displacements at the 4% and 9% floor were measured over a time interval
T = 40sec, using a sampling interval At = %sec‘ Therefore, the total number of
measured time points is N = 1600 and corresponds to 80 fundamental periods. Note
that a much smaller time interval (ﬁ sec) was used for the data simulation so that
the signal contains high frequency content which simulates a realistic situation. The
structure is assumed to be subiected to a base acceleration given by stationary white
noise of spectral intensity S, = 0.25 m*sec™ modulated by A{f) = ifﬂ“#(ﬁ(ﬁ),
where U {¢) denotes the Heaviside unit step function. Note that the envelope function
has its maximum at ¢ = ¢, equal to unity. The measurement noise for the response
is taken to be 10%, i.e., the rms of the measurement noise for a particular channel of
measurernent is equal to 10% of the rms of the noise-free response at the corresponding
DOF. Modal identification using the proposed approach is carried out for the lowest
three modes of the structure. A value of N, = 20 was used which corresponds to using
previous data points over one fundamental period as the conditioning information at
each time step in Eqn. 3.17.

Fig. 3.6 shows the Fourier amplitude spectra of the displacements measurements at
the 4" and 9% floor. Table 3.3 shows the identification results. The second column
in this table corresponds to the actual values used for generation of the simulated
measurement data; the third and fourth columns correspond to the identified optimal
parameters and the corresponding standard deviations, respectively: the fifth column
lists the coetlicient of variation for each parameter; and the last column shows the
normalized error 7 described in Example 3-1. The first group of rows in the table
corresponds to modal frequencies, followed by the modal damping ratios, the ratios
of the modeshape components between the 4% and the 9% floor, the elements of the
modal forcing spectral matrix Sy, the elements of the prediction error covariance
matrix 3, and finally the time of maximum input intensity. Note that in this case,

S‘.(.{;U = 3/ J{;Zf ) }i;“ sl =1,...,Ny. Therefore, only the diagonal elements of Sy,
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Figure 3.6: Displacement spectral density estimates for the 4% and 9% floor (Exam-
ple 3-23.

are identified. The modeshapes are normalized so that the modeshape components
at the 9% floor are equal to unity for each of the modes considered.

It is worth noting that in all cases the coeflicients of variation for the frequencies
are much smaller than those of the damping ratios, indicating that frequencies are
identified much better than dampings. An additional result observed, but not tabu-
lated here, is that the modal damping ratios exhibit significant correlation with the
corresponding modal forcing spectral intensities.

Fig. 3.7 shows the contours in the {(w,,ws) plane of the marginal updated PDF
of w, and wy. One observes that in all cases the actual parameters are at reasonable
distances, measured in terms of the estimated standard deviations, from the identified
optimal parameters, i.e., the values of 5 are around zero to two. This shows the
calculated uncertainties are consistent.

Fig. 3.8 is a typical plot showing comparisons between the conditional PDFs of
wy and wy {keeping all other parameters fixed at their optimal values) obtained from:

i) Eqn. 3.15 {crosses) and ii) the Gaussian approximation N{&, H{A)™") described



Parameter Actual @ | Optimal @ | 8.D. o | [2] | = @
wn 2.0000 | 1.9903 | 0.0135 | 0.007 | 0.71

wy 59318 | 59507 | 0.0257 | 0.004| 0.74

wy 9.6616 | 9.8400 | 0.1460 | 0.015 | 1.2

(i 0.0200 | 0.0200 [0.0062 ] 0312 0.01

G2 0.0200 | 0.0199 | 0.0029 | 0.145 | 0.04

G 0.0200 | 0.0362 | 0.0144 | 0.398 | 1.12

o oy 0.5287 | 0.5312 | 0.0020 | 0.004 | 1.25
o ol -1.0353 | -1.0653 | 0.0575 | 0.054 | 0.52
o fosY 0.4035 | 03731 |0.1310 0351 | 0.23
Sy 0.3996 | 0.3856 | 0.0335 | 0.087 | 0.42
St 0.0396 | 0.0345 | 0.0047 | 0.119 | 1.09
S 0.0112 | 00227 | 00127 | 1.136 | 091
ot (4th floor) | 0.0035 | 0.0036 | 0.0001 | 0.028 | 0.37
ow (9th floor) | 0.0067 | 0.0066 | 0.0002 | 0.023 | 0.49
| b | 10.0000 | 101049 |0.2991 [0.030] 035

Table 3.3: Tdentification results for the eight-story shear building using nonstationary
approach (Example 3-2).

at the end of Section 2.3.2 {solid line). It can be seen that the proposed Gaussian

approximation is very accurate.

Another identification was performed using absolute acceleration measurements
with the same structure and the same excitation. The identification results are sum-
marized in Table 3.4, Again, the proposed approach successfully identified the first
three modes of the structure. Furthermore, the actual parameters are at reasonable

distances from the optimal parameters, compared to the calculated standard devia-

tions.
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Figure 3.7: Marginal updated joint PDF of natural frequencies w, and w, (Example

3-2).

Parameter Actual @ | Optimal @ | 8.D. o | [2] | = @
wn 2.0000 | 20095 | 0.0182 ] 0.009| 0.52

Wy 59318 | 59612 | 0.0252 | 0.004 | 1.17

wy 9.6616 | 9.7049 | 0.0224 | 0.002 | 1.93

G 0.0200 | 0.0167 [0.0020 | 0.099 ] 1.67

G 0.0200 | 0.0239 |0.0036 | 0179 | 1.09

G 0.0200 | 0.0224 | 0.0012 | 0.061 | 1.97

o o) 0.5287 | 0.5268 | 0.0086 | 0.016 | 0.22
o7 oy -1.0353 | -1.0385 | 0.0062 | 0.006 | 0.52
o fosY 0.4035 | 03970 | 0.0135 0.033| 0.49
Sty 0.3096 | 0.4482 | 0.0499 | 0.125 | 097
S 0.0396 | 0.0433 | 0.0028 | 0.071 | 1.34
G 0.0112 | 0.0105 |0.0004 | 0.035 | 1.86
o) (4th floor) | 0.0137 | 0.0139 | 0.0004 | 0.026 | 0.72
ow (9th floor) | 0.0096 | 0.0090 | 0.0003 | 0.029 | 2.18
b | 10.0000 | 10.3907 |0.2345 [0.024 [ 167

Table 3.4: Identification results for the eight-story shear building using nonstationary
approach with acceleration measurements (Example 3-2).
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Figure 3.8: Conditional PDFs of the lower two natural frequencies obtained from:
i) Eqn. 3.15 - cross; and ii) Gaussian approximations - solid. The remaining param-
eters are fixed at their optimal values (Example 3-2).
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Parameter Actual @ | Optimal @ | 8.D. o | [2] | = @
o 2.0000 | 19759 | 0.0135 | 0.007| L.79

Wy 59318 | 60226 | 0.0141 | 0.002| 6.46

wy 90.6616 | 8.0513° | N.A. | NA. | NA.

(, 0.0200 | 0.0199 | 0.0069 | 0.347 [ 0.01

G 0.0200 | 000200 | NA. | NA. | NA,

G 0.0200 | 0.7000° | NA. | N.A. | NA

o oy 0.5287 | 0.5312 | 0.0023 | 0.004 | 1.08
o ol -1.0353 | -L1162 | 0.0695 | 0.062 | 117
o fosY 0.4035 | 0.0035* | N.A. | NA. | NA.
Sy 0.3996 | 0.1235 | 0.0034 | 0.028 | 81.37
St 0.0396 | 0.008%8 | 0.0013 | 0.150 | 23.10
S 0.0112 | 0.0900° | N.A. | N.A. | NA.
o) (4th floor) | 0.0035 | 0.0042 | 0.0001 | 0.024] 7.39
o (9th floor) | 0.0067 | 0.0084 | 0.0002 | 0.018 | 11.40

Table 3.5: Tdentification results for the eight-story shear building using stationary
approach (Example 3-2).

Importance of explicitly treating the response as nonstationary The same set of
data for Example 3-2 was analyzed assuming that the response is stationary, i.e.,
using fixed A{f) = 1,"¢ € [0,7] during the identification. Results are shown in Ta-
ble 3.5. The identified values which are marked with an asterisk {*+’) do not converge
and hit the boundaries of the optimization. For example, none of the parameters
corresponding to the 377 mode converge. This is not surprising since Fig. 3.6 shows
that the Fourier spectrum does not have any obvious peak at the frequency of the
third mode of the structure. Furthermore, there are many model parameters with
7 values much larger than unity {Table 3.5} implying that the estimation of such
parameters is biased. Therefore, consideration of the nonstationarity of the response

is important.
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3.4 Conclusion

A Bavesian time-domain approach for identification of the modal parameters and
stochastic excitation parameters of MDOF linear systems using nonstationary noisy
response data was presented. The updated PDF of the parameters can be accurately
approximated by a multi-variate Gaussian distribution. The calculated mean and
covariance matrix of this distribution offer an estimate of the most probable values of
the parameters and their associated uncertainties. The uncertainties in the identified
modal parameters are useful, for example, if one plans to proceed with the updating
of a theoretical finite element model.

The presented methodology simultaneously utilizes the response histories at all
measured DOFs, although only one observed degree of freedom is necessary to iden-
tify the modal frequencies and damping ratios. The approach proceeds without any
difficulty by directly using the noisy measured response data. The calculation of
the uncertainties does not require calculating parameter estimates from a number of
different data sets and then calculating the statistics of these estimates. Instead, it
follows directly from the methodology applied to a single set of measurements. Fi-
nally, the proposed methodology is expected to lead to improved modal identification

using ambient vibration data where nonstationarity is evident.
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Chapter 4 Updating Properties of Nonlinear

Dynamical Systems with Uncertain Input

4.1 Overview

A spectral density approach is presented for the identification of nonlinear dy-
namical systems using only incomplete noisy response measurements. A stochastic
model is used for the uncertain input and a Bayvesian probabilistic approach is used
to quantify the uncertainties in the model parameters. The proposed spectral-hased
approach utilizes important statistical properties of the Fast Fourier Transform and
their robustness with respect to the probability distribution of the response signal in
order to calculate the updated probability density function for the parameters of a
nonlinear model conditional on the measured response. This probabilistic approach
is well suited for the identification of nonlinear systems and does not require huge
amounts of dvnamic data. The formulation is first presented for single-degree-of-
freedom systems and then for multiple-degree-of freedom systems. Examples using
stmulated data for a Duffing oscillator, an elasto-plastic system and a four-story yvield-

ing structure are presented to illustrate the proposed approach.

4.2 Introduction

Roberts et al. (1995} introduces a spectral method for identification of single-
degree-of-freedom nonlinear dyvnamical systems using response measurements only.
It was found that the parameters estimated from a single set of response measure-

ment might be very unreliable. For example, consider a Duffing oscillator with linear



damping with random excitation:
m I e d dhr 4 kst = f(t) {4.1)

Assume that a group of many sets of response measurements corresponding to the
same level of excitation are available and identification is performed for each of these
sets. Fig. 4.1{a) shows the distribution for these estimates in the (&, &) plane
schematically. It can be seen that it is unable to give an “optimal” estimation for
ki and ks since these individual estimates are very scattered. Note that the slope
of the best fitting line is approximately —302 because the equivalent linear system
has linear stiffness ky + 30%ks, where oy is the standard deviation of the structural
response.

Therefore, Roberts et al. {1995) suggested that if another group of data, which
corresponds to another level of excitation, can be obtained and identification is per-
formed for each of these sets {circles in Fig. 4.1(b)}. Then, least squares fit can
be performed for the two groups of data. Finally, the optimal parameters can be
obtained by finding the intersection of the two lines.

One of the main drawbacks of this approach is that it requires huge amount of data.
First, many sets of data are needed for the least squares fit. Second, all sets of data
corresponding to the same group have to correspond to the same level of excitation.
Another main drawback is that the proposed approach gives equal weighting to the
two groups of data. However, they might correspond to different number of data
sets, different duration of observation and/or different level of noise, etc. In order
to overcome these difficulties, a probabilistic approach is introduced in this chapter.
This approach requires a reasonable amount of data, e.g., it requires only two sets of
data in this case. Furthermore, the weighting of different sets of data is taken care
of automatically by the probabilistic framework. The associated uncertainty of the

model parameters can be directly computed by the proposed approach.
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Figure 4.1: Schematic plots for identification of Duffing oscillator using the approach
by Roberts et al. {1995): (a} Data from same level of excitation; and (b) Data from
two different levels of excitation (+ as in {a) and o new level).



4.3 Single-degree-of-freedom Systems

4.3.1 Bayesian System Identification Formulation

Consider a structural or mechanical system whose displacement response x is

modeled using a SDOF oscillator with equation of motion:
ma +f (e, 08 = f(1) {4.2)

where m, @, and fi{x,2;6;) are the mass, the model parameters and the nonlinear
restoring force of the oscillator, respectively. Furthermore, the uncertain system input
is modeled as a zero-mean stationary Gaussian random process f with spectral density
function S{w; @), where @; denotes the parameters of the stochastic process model
for the excitation f{£). The observed system response y is assumed to be stationary

and is modeled by

ult) = () + i) (4.3)

where the prediction error 7 accounts for modeling ervors (ditferences between the sys-
tem behavior and the model) as well as measurement noise. The uncertain prediction

error is modeled as independent zero-mean Gaussian white noise, so
Sylw) = Sp{w) + 5p {4.4)

where 5, S, and Sy, are the spectral densities for the system response, model response
and the prediction error. The spectral density function S, or the corresponding
autocorrelation function R,, can be approximated by equivalent linearization methods
(Roberts and Spanos 1990; Lutes and Sarkani 1997} or by simulations.

Let Yy = G(0), (1), ..., (N — 1)]" denote a vector consisting of observed re-
sponse data sampled at a time step Af, where §{n) = §{nAt), n = 0,... ,N - L.
Herein, updating the uncertainty regarding the values of the model parameters a =

2

[9\5 , 9:;}@,?0]7‘ by using the data Yy is concerned, where ¢2 = 22

a0 = arone. From Bayes’



Theorem, the updated {posterior) PDF of the model parameters a given the data Yy

is
plalY y) = crpla)p(Y yia) {4.5)

where ¢ is a normalizing constant and p{a) denotes the prior PDE describing our
initial belief about the uncertain parameter values. Note that p(al?;\;) can be used
to give the relative plausibility between two values of a based on measured data Y y
which does not depend on the normalizing constant ¢;. Also, the most probable
value of a, denoted by a {the “optimal” parameter values}, is given by maximizing
p(a)p(?,\;[a). For large N, p(“Y\, |a) is the dominant factor on the right-hand side of
Eqn. 4.5.

A difficulty with implementing this approach is establishing the joint distribution
p(Y\,la) for the response of the nonlinear system. Note that the response is not
Gaussian distributed but the FEF'T of the response is approximately. This property is

utilized to obtain a response PDF in the next section.

4.3.2 Bayesian Spectral Density Approach

Consider the stationary stochastic process y(#) and the discrete estimator of its

spectral density S, {w):

At = ’
Sy w{we) = Efﬁ;’[\{’" }:exp(wéwknﬁt)y(n) {4.6)
sl

where wy = kAw, k= 0,..., Ny — 1 with N =INT{N/2), Aw = ‘Zf—f", and T = NA{.
Here, INT denotes integer part. It can be shown that the estimator 5, y{wg) is
asviuptotically unbiased, that is,

lim E[S, n(wy)] = Sy(ws) {4.7)

N—oo



where E|] denotes expectation (Yaglom 1987). However, for finite N, this estimator
is biased. Calculating the expectation of the estimator in Eqn. 4.6 vields
Nl

2N 2 VB (nAL) cos(nwy Af) + Sy, {4.8)

E[L . N (*"'}k)] -

where R, is the autocorrelation function of the response x(f) and -, is given by

Yy = N, n =

Y = 2(N — nj, n>1

(4.9)

Note that the right-hand side of Eqn. 4.8 can he calculated using the FFT of the
sequence vl (nAl),n=0,1,... ,N - 1.

Based on the Central Limit Theorer, the real and imaginary part of the FFT are
Gaussian distributed as N — oc. Therefore, the estimator Sy y{wi), A =1,... , Ny —
1, has the following asymptotic behavior:

) 1
E:H;OL yNlwe) = 551,(%))(2 (4.10)

where v is a random variable having Chi-square distribution with two degrees of free-
dom {Yaglom 1987). Therefore, the PDE of the random variable Y {wy) = éim Sy.viwe)
N—oo T
is asvmptotically given by
1

p{Y {wy)la) = 5y (o) exp {m ;y((iiﬂ (4.11)

In the case of finite N, it can be shown using simulations that for £ << Ny the PDF
of 5y v{wk) can be accurately approximated by a Chi-square distribution in analogy to
Eqn. 4.11 except that the mean S, {wy) is replaced by E[S, y{wy)] given by Eqn. 4.8.
Note that this approximation is very accurate even if y{nAt), n = 1,... N, is not
Gaussian distributed. This is due to the robustness of the probability distribution of

the FF'T with respect to the probability distribution of the response signal.

Furthermore, it is shown in Appendix A that the random variables 5, v{wi) and
3 PE U, k



Sy vlw) with & # 1 and k1 << Ny, are uncorrelated asymptotically as N — oc.
Note that uncorrelated Chi-square random variables are independent {Yaglom 1987).
For large N, this property is approximately correct in a certain frequency range.
In particular, for a sufficiently small number K < Ny, one can assume that the
random vector S;(\, =[Sy v{wi), ... y}_f\;(wg()yp has all its elements approximately
independently Chi-square distributed. Therefore, its joint PDF can be approximated
as follows:

K

K 1 oxp | — Sy, n{wk) 41
rsivi) =1 gy “( B[S, (e ]) (4.12)

k=1

In practice, wy can be chosen in range of [1.5w,, 2.0w,] where w, is the frequency at
which the peak of the spectral estimates Sy: wl{wy) oceurs. A more detailed discussion
will be given in the numerical examples.

Given the observed data Yy, one may substitute it in Eqn. 4.6 to calculate the
corresponding observed spectral estimate Sy N = [:y‘,\;(mg)}. .. }:y,,\;(w;()]”‘. Using
Bayes’ Theorem, the updated PDF of the model parameters a given the data Sy N

follows from an analogy to Eqn. 4.5
plaiS, ) = copla)p(§Xy|a) (4.13)

where ¢y 15 a normalizing constant, and p(S;(\,la) is given by Eqn. 4.12 where each
S, wlwe) is replaced by S, v{wi), FIS, v{wela)] s calculated from Eqn. 4.8 and
R.{nAt) = R,{nAt|a) may be calculated by equivalent linearization methods or
by simulation. The optimal parameters a are obtained by minimizing an objective
function J{a) = — In[p(a)p (SK,\, |a)]. For the results in this chapter, this optimization
is done using a MATLAB function ‘fmins’.

In the case where several independent time histories Y( ) .. ,i"gﬂ are available,

<(1) (M)

the estimation can proceed by calculating the corresponding estimates Sy NAERRRI e
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4

and then calculating the updated PDF

MBS, E5) i) [[ (S ) (414)

i ¥, N
Tz}

Note that in the proposed approach, each set of data can be corresponding to
& different time duration T' and different sampling time interval At and Eqn. 4.14

automatically takes care of the weighting for different sets of data.

4.4 Multiple-degree-of-freedom Systems

4.4.1 Model Formulation

Consider a system with Ny degrees of freedom {DOFs} and equation of motion:
Mx + f (x,x: 6,) = Tf(¢t) (4.15)

where M € RY*% ig the mass matrix, f, € RY is the nonlinear restoring force
characterized by the structural parameters 8,, T € RY%¥ ig g force distribution
matrix and £{¢) € RY/ is an external excitation, e.g., force or ground acceleration,
modeled by a stationary Gaussian process with zero mean and spectral density matrix

function characterized by the excitation parameters @ :
Spiw) = Sp{w; 6y) (4.16)

Assume now that discrete response data are available for N(< Ny) observed
DOFs. Let A# denote the sampling time step. Because of measurement noise and
modeling errors, the measured response y{n) € R™ (at time ¢ = nAt) will differ from
the model response g{n), e.g., model displacement or model acceleration, calculated
at the observed DOFs from Eqn. 4.15. This difference between the measured and

model response, called prediction error, is modeled as a discrete zero-mean Gaussian



white noise vector process n{n) € R™ so
yin) = qln) +nin) (4.17)
where the discrete process i is independent of q and satisfies
En(nin’ (p)] = ybn, (4.18)

where E[.] denotes expectation, 4, denotes the Kronecker delta function, and X,
denotes the N, x N, covariance matrix of the prediction-error process n.

Let a denote the parameter vector for identification; it includes the following
parameters: 1) the structural parameters @,; 2) the excitation parameters @ and
3) the elements of the upper right triangular part of X, (symmetry defines the lower
triangular part of this matrix). As in the SDOF case, Baves” Theorem is applied to
update the uncertainty regarding the values of the model parameters a based on the

spectral density estimates.

4.4.2 Spectral Density Estimator and its Statistical Properties

Consider the stochastic vector process y{¢}) and a finite number of discrete data
Yy = {y(n),n = 0,... ,N — 1}. Based on Yy, one can calculate the following

discrete estimator of the spectral density matrix of the stochastic process y{¢):
o
Sy, v {wy) = Ynlw) Py (wn) (4.19)
where Z denotes the complex conjugate of a complex variable z and Yy {wy) denotes
the (scaled) Fourier Transform of the vector process y at frequency wy, as follows:
N1
E y(’f'L)f;f“"“”At (4.20)

=)




59
where w, = kAw, £ =0,..., Ny — 1 with N} = INT{N/2), Aw = ZTT', and T = NAt.
Note that Eqn. 4.6 is a special case of Eqn. 4.19 and 4.20.
Using Eqn. 4.17 and taking expectation of Eqn. 4.19 {noting that q and n are

independent) vields
E[S, vlweilal = E[Sg nlwy)lal + E[S, v {ws)|a] (4.21)

where 8, yv{wg) and 8, v{wy) are defined in & manner similar to that described by

Eqn. 4.19 and 4.20. Tt easily follows from Eqn. 4.18 and 4.19 that

At N
ESy v{wk)ia] = ggn = Byo (4.22)

The term E[S, y(wy)ial in Eqn. 4.21 can be also easily calculated by noting that

S v {wy) has elements

; Al = ) |
(J~£) s _ iy . ,;_’w“( — )_}t A
Sst\f (wk) - IrN QEPWLGQJ(“)@(E})L RRRTP (423)

Grouping together terms having the same value of {p — n) in Eqn. 4.23, and taking

expectation, one obtains the following expression:

At ; ien ; s ‘
E[SY () a] = MNZ%[R;M)(mma)ﬁ wndt L RUD(—nAtja)e™ ™A (4.24)
=)

where 7, is given by Eqgn. 4.9 and Réj ) is the cross-correlation functions between the
3% and 1™ component of the model quantity gq. However, it is usually not possible
to obtain the correlation functions theoretically. In this case, for given a, one can
simulate samples of the response using Eqn. 4.15 and 4.16 and hence calculate their
spectral density estimates in a similar manner to that described in Eqn. 4.19 and 4.20.
Then, rather than using Eqn. 4.24, the expected values of the spectral estimates can
be approximated by the average of the spectral density estimators obtained from the

samples,
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Next, the statistical properties of the estimator 8, y{wy) ave discussed. Denote
by Yy rlws) and Yy {wy) the real and imaginary part, respectively, of YWxy{wy),
that is, Yx{we) = Yy plwr) + Yy {we). Since Yy is a zero-mean Gaussian pro-
cess, both YWy plwy) and Yu (wi), b = 1,... , Ny — 1 are zero-mean Gaussian vec-
tors. Furthermore, in the Hmit when N — oo, the covariance matrix of the vector
Yk slwn), Y (@r)]” has the form (Yuen 1999):

Crlon) - v, {wr) v2{ws) (4.25)

—Q:\z‘,z(iﬁk) C:V,'E (Wk)

Eqn. 4.25 states that the real and imaginary part of Yy {wi) have equal covari-
ance matrices Cy {wy) for £ = 1,... ,N; — 1, i.e., excluding the zero and Nyquist
frequencies.  Also, it states that the cross-covariance between the real and imag-
inary part has the property Cf,{wi) = —Cnalwn), te, E[%g\f)iﬁ(%)%i};(%)} =
—F [}4{@ plwr) <\f} {wp)l. The latter property implies also that the disgonal elements of
Cyyo are equal to zero, ie., E [%(\f) alwre) {j) H{wi)] = 0, for every § and wy. Because of
Eqn. 4.25 the complex vector Yy {wy) is said to have a complex multivariate Normal
distribution {Krishnaiah 1976) as N — oo.

Assume now that there is a set of independent, identically distributed, time histo-
ries Y U Y M) As N = 00, the corresponding Fourier Transforms %3( )(wk) n =
1,..., M are independent and follow an identical complex N,-vartate Normal distri-

bution with zero mean. Then, if M > N.. the average spectral densitv estimate
b iy &Y v

M
1« i N
Syl "‘\IZ Syarln) = M S oYV @)Y () (4.26)

Pz | Pz ]

follows a central complex Wishart distribution of dimension N, with M degrees of
freedom and mean E[SY\{(wy)] = E[Sy v (wi)] = 2[Crafwn) — iCrhofwn)} as N — oo
(Krishnaiah 1976). The PDI of this distribution is given by

|SM ( s [Mf.f\is

PSIIvlen) = eaet o (=M ElSyn ] S (427
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where ¢4 is a normalizing constant and |A| and £r[A] denote the determinant and the
trace, respectively, of a matrix A. Note that this approximation is very accurate even
if y(nAt), n=0,...,N 1, is not Gaussian. Again, this is due to the robustness of
the Gaussian approximation of the FFT irrespective of the probability distribution
of the response signal.

Also, note that in the special case of a SDOF oscillator or in the case of & MDOF
system with only one set of data at one measured DOF {M =1, N, = 1), the distri-
bution in Eqn. 4.27 becomes a Chi-square distribution with two degrees of freedom
and so reduces to Eqn. 4.11.

Furthermore, when N — 20, the vectors [Y} q(wi), Yy, (we)]” and [Y glwn), Y fwn)]”
with wy # wy are independent {Appendix A). This causes the complex vectors Yy {wy)
and Yy {w) to be independent {as N — o0). As a vesult, the matrices 8}y (wi) and

SJ’\, {w) are independently Wishart distributed for £ # I:

PISy i lwn). Sylvlen)] = p[Sy v (wn)lp[Syly ()] (4.28)

where the two right-hand factors are given by Eqn. 4.27. Although Eqgn. 4.27 and 4.28
are correct only asymptotically as N — oc, it was shown by simulations that these
are indeed very accurate approximations in a certain bandwidth of frequencies for
the case where N is finite. In the case of displacements {or accelerations), such range
of frequencies corresponds to the lower {or higher) frequency range wy € [wi, wi| (or

Wics Wy —1])-

4.4.3 Identification Based on Spectral Density Estimates

Based on the above discussion regarding the statistical properties of the average
spectral estimator Sy v{wg), a Bayesian approach for updating the PDI of the un-
certain parameter vector a is proposed as follows: Given M > N, independent sets
of observed data Y ‘f h=1,..., M, one may calculate the corresponding observed
spectral estimate matrices Sy v.no=1,..., M using Eqn. 4.19 and 4.20. Next, one

can caleulate the average matrix estimates Sy”\, {wy) using Eqn. 4.26 and then form
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the set S;\f{ {SJ’\,(kfiw),k =1,... . K} Using Bayes’ Theorem, the updated

PDF of the model parameters a given the data Sy \; * is then given by

MKy _ o nta)p(§MK
plaiS) ) = epla)p(8,4 ) (4.29)
where ¢; is a normalizing constant such that the integral of the right-hand side of
Eqgn. 4.29 over the domain of a is equal to one. The factor p{a} in the above equation
represents the prior PDF, which expresses the relative plausibilities of different values

M.
of a based on prior information and engineering judgement. The factor p( Lola)

a
expresses the contribution of the observed data. Based on Eqgn. 4.27 and 4.28, this

factor can be caleulated as follows:

X K| a SM w {w k)[wi%
PiS, v 1a) “f)H S ST exp(—M tr{E[Sy n{wy) |a}’ESy vl b)) (4.30)
17,

where E[S, v{wy)la] is given by Eqn. 4.21 and 4.22 with E[S, y(wi)|a] estimated by
simulation as explained earlier. It is suggested to choose wg such that the frequency
range just includes all the peaks of the spectral density estimates. A more detailed
discussion will be given in the third example.

The most probable parameters a are obtained by minimizing an objective function

lf K

J{a) = —In[p{a)p(S v [@a)]. Furthermore, the updated PDI plal8. ) can be ap-

%, '\'
yroximated by a Gaussian distribution centered at the optimal point & 1f 1t is globally
¥ A )\

identifiable (Beck and Katafygiotis 1998). The corresponding covariance matrix X,

. . . . . iy
is equal to the inverse of the Hesstan matrix of the function J{a) = — Infp (alsyf\f( |
o tenlatod s — 3 ia — AT where H.(d) — 22/ v the Treconto
calculated at a = a, i.e, ¥, = H{a)” where H;{a) = 9a;0a, . For the presented

results, this Hessian matrix is calculated using a finite difference method. This prop-
erty provides a very eflicient way for the quantification of the uncertainty for the
model parameters without evaluating high dimensional integrals. However, it is not
always a very accurate approximation, e.g., in unidentifiable cases. One check is to
assume that the Gaussian approximation is accurate and calculate some lower dimen-

sional conditional PDFs and compare with the values calculated from Eqn. 4.29. If
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they match well, then the approximation can be used. If thev do not match, simu-
lation methods may be used, e.g., Beck and Au (2002}, to calculate the associated

uncertainties for the parameters.

4.5 Numerical Examples

4.5.1 Example 4-1: Duffing Oscillator

In this example, a SDOF Dutling oscillator of known mass is considered, which is
subjected to zero-mean stationary Gaussian white noise f{#) with spectral intensity

Stor

m 2 () + eirlt) + k() + kg® (1) = f{6) (4.31)

. . . Yo .
The simulated stationary response history Yf\;) was generated with parameters

= [¢, k;,fx;,S(g,Gm} where m = 1 kg, & = 0.1 kg/s, by = 4.0 N/m, ks = 1.0
N nf, S 0.01N% and &4 = 0.0526m {20% noise). The sampling interval is
fo #
At = 0.1sec, with total time T' = 1000 sec, so N = 10000.

Multiplying Eqn. 4.31 with x{f — 7) and taking expectation yields
BRI 7Y 4+ eR(7) + ke Re{7) + ks Ee{t — ) (#)] = 0 (4.32)

where R, (7) = Fla{t—7)x{t)],¥t € R. The term Elxz(t—7)x*(#)] can be approximated
by neglecting the fourth cumulant term, that is, Elz(t — 7)2°{£)] & 302 R, (7), where
o2 = R,{0) is the variance of the response {Lutes and Sarkani 1997). Therefore, a
differential equation for an approximation of the response autocorrelation function

can be readily obtained:
mRIT) + eRL(7) + {ky + 302ks) R, (1) = 0 with R,(0) = o2 and RL(0) =0 (4.33)

Egn. 4.33 is a second-order ODE with constant coeflicients, which can be solved
1 s
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analytically. Then, E[S, y{ws)] can be obtained for a given parameter vector a by us-

ing Eqn. 4.8. Finally, the updated PDF p(alS } is readily obtained using Eqn. 4.6,

%, \z
. Xt .
4.12 and 4.13, where p{a) is taken as constant over the region where p(Syé-) a) is

large, i.e., a locally non-informative prior PDF (Box and Tiao 19730,
g2e, s )

1; i
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Figure 4.2: Conditional updated PDF p{k, & ;IS;,(\,E), e, G’fa ,0’;?(;) (Example 4-1).

Fig. 4.2 shows the conditional posterior PDEF p(k,, & ;[S;(\E[} Gy S’E«i}) , c&;o) normal-

ized in such a way that the peak value is unity, which is obtained by utilizing only
the spectral estimates up to frequency wy = 1.0Hz (K = 1000). Note that the small-
amplitude natural frequency of the oscillator is %Hz 7z 0.32Hz. 1t is obvious that this
case is unidentifiable, i.e., given one set of dvnamic data, the estimates of &y and #;
suffer from large uncertainty as there are infinitely many combinations of A& and k&
which give similar values for the posterior PDF.

Another time history data set i’%} was generated for the same oscillator (same
&, P:[ and P:;) but with S’}? = 0.04N%s and Eré? = 0.1092m (20% noise). This case

is, again, unidentifiable. However, if one plots these two posterior PDFs together
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Figure 4.3: Conditional updated PDFs p(k:, & ;IS;(\?), &, f?, Gy =1,2 (Example

41).

(shown in Fig. 4.3}, the peak trajectories in the (%, k3) plane have ditferent slope. By
Eqn. 4.33, the equivalent linear system has stiffness &y + 302k;. Therefore, the auto-
correlation coeflicients depend on ¢, and hence the level of excitation Sy, showing
that different levels of excitation lead to different slopes of the peak trajectories in
the {ki,k;) plane. Since the coefficient 302 is always positive, the slope of the peak
trajectories in the (&4, k3) plane is always negative. This is expected because a larger
value of &y can compensate for a smaller value of k3, and vice versa.

Fig. 4.3 suggests that if one uses the two dynamic data sets Y{é) and i’gf) to-
gether, uncertainty in &y and A3 can be significantly reduced. Table 4.1 shows the

(1) (2077

estimated optimal values & = [¢, ki, ks, Sfo , Sfo , Uno , om0 |7 and the calculated stan-

dard deviations o, ok, , O, Uq\ia, Uq(zu o o and o ¢ obtained using both data sets
e 0o

(1 (2 . . - i

YE\,,} and “Yf\i) . 1t also gives the coefficient of variation {COV) for the parameter

estimates and a “normalized error” 3. This normalized ervor parameter represents

the absolute value of the difference between the identified optimal value and exact
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value, normalized with respect to the corresponding calculated standard deviation.
The COVs in Table 4.1 ave all quite small, showing the parameter values are pinned
down rather precisely by the data. The normalized errors /7 in Table 4.1 are the order
of 2 or less, suggesting that the procedure is not producing “biased” estimates, that

is, the errors are not unusually large.

Parameter | Actual @ | Optimal @ | Standard Deviationo | COVa =% | = §é;a§

¢ 0.1000 0.1021 0.0108 0.108 0.20
fq 4.0000 3.9420 0.0463 0.012 1.25
kg 1.0000 .9568 {.1295 0.130 0.10
5 ;L) 0.0100 0.0098 0.0005 0.046 0.41
£ }i) 0.0400 0.0454 0.0020 0.051 2.64
Ony) 0.0526 | 0.0514 0.0022 0.042 0.55
U,%i? .1092 .1025 0.0045 0.041 1.49

Table 4.1: Comparison of the actual parameters versus the optimal estimates and
their statistics for the Dutfing oscillator (Example 4-1).

Fig. 4.4 shows the conditional updated PDFs p{£, |S,;(\,E}} S;(\E‘Z), ¢, ks, S;} S;Iff} Ono s 0%?)

!
and plhs |S§\,E} . S,;(\,‘Z)} ke, ng, Sﬁ?,@a ,6va), obtained from: {i) Eqn. 4.14 {crosses)
and (ii) the Gaussian approximation (solid line). It can be seen that the Gaussian
approximation is very accurate. This property provides a very efficient way for the
quantification of the uncertainty for the model parameters without evaluating high
dimensional integrals.

Fig. 4.5 shows nearly elliptical contours {solid lines} in the (&, k) plane of the
conditional updated PDI p(#,, & ;|S§\f} , S;(é‘z) N ;E}) i ;‘? ; crf?f)} , cr?(w ) calculated using
Eqn. 4.14 {keeping all the other parameters fixed at their optimal values). These
contours correspond to the parameter sets, which give 80%, 60%, 40%, 20%, 10% and
5% of the conditional PDF values at its peak. Furthermore, by using the Gaussian
approximation, the one standard deviation and two standard deviations contours can
be calculated, which are shown by a dotted line and a dashed line, respectively. One
can see that the orientation of the ellipses is the same for the two groups of contours,

showing that the Gaussian approximation is very accurate in this case. Note that
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the optimal parameter values seems to be more than two standard deviations away
from their actual values because this figure shows the conditional PDF but not the
marginal PDF.

Note that the estimation of the model parameters @, is not sensitive to the choice
of the cutoff frequency wy as long as it is larger than the frequency at which the peak
of the response spectral density estimates occurs. Identification using the same sets
of data was also carried out with wy = 5.0Hz (the Nyquist frequency in this case).
The results were virtually the same as those using wy = 1.0Hz except that there were
significant reductions in the uncertainty of the noise levels, i.e., utilizing a larger wy
gives hetter estimates for the noise level only. Therefore, it is suggested to choose
an wye ranging from 1.5w, to 2w, where w, is the frequency at which the peak of the
spectral estimates Sy: v{wy) occurs. It is computationally efficient to use such values
of wg without sacrificing the quality of the identification for the model parameters
g..

&

4.5.2 Example 4-2: Elasto-plastic Oscillator

In this example, an elasto-plastic SDOF oscillator of known mass is considered,
which is subjected to zero-mean stationary Gaussian white noise f(#) with spectral

intensity Sy,
m i (1) + fule) = F(1) (4.31)

where fi{x{t}) is the restoring force of the system. The restoring force-displacement
relationship is shown in Fig. 4.6, The simulated stationary response history Yy
was generated with parameters a, = [Z‘-g,;’i‘y,gﬁ},&%}yf where m = 1 kg, k= 16.0
N/m, &, = 1.0 m, S’;O = 0.15N?s and d,, = 0.1206m (20% noise). The sampling
rate interval is Af = 0.05sec, with a total time 7" = 200sec, that is, N = 4000. The
hysteresis loops of the simulated data are shown in Fig. 4.7. Note that these hysteresis
loops are not assumed to be measured; they are shown here only for illustrative

purposes.
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Figure 4.6: Relationship between the restoring force and the displacement of the
system (Example 4-2).
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Figure 4.7: Hysteresis loops of the simulated data (Example 4-2).
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Parameter | Actual @ | Optimal ¢ | Standard Deviation 0 | COV o =2 | J = ga:&g
ko 16.000 15.827 0.1162 0.007 1.49
Ty 1.0000 1.3493 (.4818 0.482 0.72
Gy 0.6029 0.5762 0.1437 (1.238 0.19
o 0.1206 0.1376 0.0209 0.173 0.82

Table 4.2: Identification results for the elasto-plastic system with the theoretical
spectrum estimated by equivalent linearization (Example 4-2).

The equivalent linear system has the following equation of motion:

m o {£) 4 bode(t) + bixe(t) = f{1) {4.35)
where b; and b, are given by {Iwan and Lutes 1968; Lutes and Sarkani 1997)
] >l sz LEZZZ
b =k 1——/ — + Lz — lexp(—-L)|dz
2 202z 202 (4.36)

m kyry, Ty
o == 1 R o
be 2uhy oy l: erf{ V20, )}

Note that the calculation of &, and by requires o2, the variance of the response.
Although o, can be determined from the spectral intensity of the excitation Sy, it
will be computationally more efficient to include o, dirvectly instead of Sy, in the
parameter set a. Therefore, the parameter set a - [Pﬁ[,;ry,%,am}"" is identified
instead of a, in this case. Then, E[S, y{wy)] can be obtained given a parameter set
a by using Eqn. 4.8 where R,(nAt) is approximated by the autocorrelation function
for the equivalent linear system given by Eqn. 4.35 and 4.36. Finally, the updated

PDF plalSK

) 1s readily obtained using Eqn. 4.6, 4.12 and 4.13. Note that a locally
noninformative prior distribution is used, as in Example 4-1.
Table 4.2 shows the estimated optimal values & = [k, &y, 6,,0p]" and the cal-

culated standard deviations oy, 0., 04, and o, , obtained using the single data

&£

set Yy Fig. 4.8 shows contours in the {k,2,) plane of the marginal updated PDF

p(k;,xylsgi(\,) calculated for one set of simulated data using Eqn. 4.14 {keeping all
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Figure 4.8: Contours of marginal updated PDF p(kg,xylé;(\,

spectrum estimated by equivalent linearization {Example 4-2).

} with the theoretical

the other parameters fixed at their optimal values) and utilizing only the spectral
estimates up to frequency wy = 1.25Hz {K=250). Note that the small-amplitude
frequency of the oscillator is fH; = 0.63Hz. Again, wy can be chosen between 1.5w,
and 2.0w,, as in Example 4-1, where from Fig. 4.9, w, ~ 0.65Hz.

Fig. 4.10 shows a similar plot of Fig. 4.8 but in the (,, 0,) plane. It can be seen
that the contours are very thin lving on the line o, = a2y + oy, where o 22 0.28 and
ap =2 (0.2, showing that the estimates of these parameters are very correlated. This
is because b and by in Eqn. 4.35 depends on m, k; and x, /o, only. The only factor
that makes x,, and ¢, identifiable comes from the amplitude of the spectrum, which
is proportional to 0%, This also explains why the uncertainty for z, and o, is so large
when utilizing equivalent linearization. Note that although the actual values of the
parameters 7y, and ¢, are within two standard deviations from their optimal values
&, and &,, vespectively, the actual parameters in the {x,,0,) plane lies far outside
the two standard deviations contour, showing that this estimate is biased.

Table 4.3 shows the identification results using the same set of data with the
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Figure 4.9: Spectral estimates using the measurements {Example 4-2).
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spectrum estimated by equivalent linearization (Example 4-2).
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Figure 4.11: Contours of marginal updated PDF p(ﬁl,xylgé(\g) with the theoretical
spectrum estimated by simulation {(Example 4-2).
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Figure 4.12: Contours of marginal updated PDF plx,, Sf(}[ééf;\;) with the theoretical
spectrum estimated using simulation (Example 4-2).
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Parameter | Actual @ | Optimal ¢ | Standard Deviation 0 | COV o =2 | J = ga:&g
ko 16.000 15.984 0.0433 1.003 0.36
Ty 1.0000 1.0918 0.0732 0.073 1.25
Sro (1.1500 (1.1376 0.0136 (1.091 0.91
o 0.1206 0.1359 0.0201 0.166 0.76

Table 4.3: Identification results for the elasto-plastic system with the theoretical
spectrum estimated by simulation {(Example 4-2).

theoretical spectrum estimated by simulation, rather than by using Eqn. 4.35 and
4.36. Note that in this case, the uncertain parameter set is a, = [k, 2y, Spe. O, 100,
it includes the spectral intensity of the excitation instead of the rms of the response,
because this is more efficient for the simulation of the system response. Here, one
hundred samples of spectral estimates are simulated and the theoretical spectrum is
approximated by the average of them. One can see that it gives more precise optimal
parameter values than those in Table 4.2 by comparing the respective COVs. This
is because the equivalent linear system can not capture completely the dynamics of
the nonlinear oscillator. Therefore, the results obtained by using an equivalent linear
system lose some information from the data, suggesting that for the identification of
highly nonlinear systems, the simulation approach is the preferred one.

Fig. 4.11 and Fig. 4.12 show contours of the marginal updated PDF p{k,, xy[S;f\,)
and plx,, S f(;|é,é{:1\;), respectivelv. It can be seen that the optimal parameter set is
within two standard deviations away from the actual parameter set in both {(k,2,)

and {x,, Ss,) plane.

4.5.3 Example 4-3: Four-story Yielding Structure

The third example uses simulated response data for a four-story yielding structure
shown in Fig. 4.13. The nonlinear springs have the same behavior as described in

Fig. 4.6 in Example 4-2. The structure has a uniformly distributed floor mass and

story stiffness over its height. The linear stiffness to mass ratios :;Tf,} =1,....4,
7

2

are chosen to be 1310sec = so that the small amplitude fundamental frequency is
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Figure 4.13: Four-story yielding structure {Example 4-3).

2.00Hz. Furthermore, the yielding level is chosen to be &, = 0.015m for each story,
which corresponds to 0.5% drift if the story height is 3.0m. For better scaling in
the identification process, the stiffness and yielding parameters are parameterized by
ki = 0k, § =1,... 4 and x, = 8,7, where k; = 2.10 x 10°kN/m and &, = 0.015m
are the nominal values for the linear stiffiness of the j* storv and the nominal vielding
level for all four stories. Displacements at the 27¢ and 5% floor were measured over
a time interval T = 25sec, using a sampling interval Af = 0.01sec. Therefore,
the total number of measured time points is N = 2500. The structure is assumed
to be subjected to a white noise base acceleration [ with spectral intensity Sy, =
0.006 m?sec™. Note that the matrix T in Eqn. 4.15 is equal to the 4 x 1 matrix
—[my mg my ﬁlg:[’f‘ in this case. The noise added to the simulated response has a
noise-to-signal ratio of 10%, i.e., the rms of the noise for a particular channel is equal
to 10% of the rms of the noise-free response at the corresponding DOF.

Fip. 4.14 shows the simulated measured model displacement time histories at the
g i
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Figure 4.14: Displacement measurements at the 2" and 5% floor {Example 4-3).

274 and 5% floor and Fig. 4.15 shows the hvsteresis loops for the fourth story, that
is, the restoring force f.4{f} normalized by m; versus the interstory displacement
x4(t) — x3{t). Note that these hysteresis loops are not assumed to be measured: they
are shown only for the purpose of illustrating the level of nonlinearity. Note also
that the nonlinearity in the other stories is even higher. The time histories were
separated into five segments {M = 5) with equal length in order to obtain five sets of
spectral estimates. The expected value of the spectral density estimator is obtained
by simulation. Fig. 4.16 shows the comparison between the spectral estimates S, y
(solid lines) and their expected values E[S, v] (dashed lines) for the 2" and 5% floor.
One can see that E[S, y] fits all the peaks of the measurements for both floors. Note
that E[S, »| is obtained by the following procedure. First, simulate one hundred
svstem responses. Then, by using Eqn. 4.19 and 4.20, one hundred samples of the
spectral estimates can be obtained. By averaging these hundred samples for each
discrete frequency, one obtains an estimate of the expected spectrum E[S, y].

Table 4.4 shows the identification results utilizing the spectral estimates up to
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Figure 4.15: Hysteresis loops for the fourth story (Example 4-3).
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Figure 4.16: Spectral estimates and their expected values {Example 4-3}.
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Parameter | Actual @ | Optimal ¢ | Standard Deviation 0 | COV o =2 | J = ga:&g
2 10000 | 1.0122 0.0097 0.010 1.26
0 10000 | 0.9907 0.0089 0.009 104
03 10000 | 0.9903 0.0103 0.010 0.95
04 L0000 | 0.9947 0.0078 0.008 0.69
.6, | 10000 | 09577 | 0.0533 | 0083 | 079 |
| Spe | 00060 | 0.0076 | 0.0008 | 0132 [ 203 |
Tyt 0.0022 [ 0.0022 0.0001 0.047 0.03
T2 0.0063 | 0.0062 0.0002 0.040 0.41

Table 4.4: Identification results for the four-story yielding building {Example 4-3).

wi = 16.0Hz (K = 80). Again, a noninformative prior distribution for the model
parameters is used. The second column in this table corresponds to the actual val-
ues used for generation of the simulated measurement data; the third and fourth
columns correspond to the identified optimal parameters and the corresponding stan-
dard deviations, respectively; the fifth column lists the coefficient of variation for each
parameter; and the last column shows the normalized exrror &, which is the ditference
between the actual and optimal parameters normalized by the calculated standard
deviation. The first group of rows in the table corresponds to the stitfness parameters
05,5 =1,...,4, followed by the yielding parameter 8, the forcing spectral intensity
Sto and the standard deviations of the prediction exror, oy;, 4 = 1,2, for the noise in
the 2™ and 5" floor measured displacements. As shown by the small COVs, all the
parameter values are pinned down rather precisely by the data. Also, the normalized
ervors [ are the order of 2 or less, suggesting that the procedure is not producing
“biased” estimates.

Fig. 4.17 shows the contours in the {f,,#.) plane of the marginal updated PDF of
, and @, {keeping all other parameters fixed at their optimal values). One observes
that the actual parameters are at a reasonable distance, measured in terms of the

estimated standard deviations, from the identified optimal parameters.
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Figure 4.17: Contours of marginal updated PDF in the {(#,, ;) plane (Example 4-3).

4.6 Conclusion

A Bayesian system identification approach is presented for updating the PDF of
the model parameters for nonlinear systems using response data only. The proposed
spectral-based approach relies on the robustness of the Gaussian approximation for
the Fast Fourier Transform with respect to the probability distribution of the response
signal in order to calculate the updated probability density function for the parameters
of a nonlinear model conditional on the measured response. It does not require huge
amounts of dyvnamic data, which is in contrast to most other published system iden-
titication methods for nonlinear models and unknown input. The approach provides
not only the optimal estimates of the parameters but also the relative plausibilities
of all values of the parameters based on the data. This probabilistic description is
very important and can avoid misleading results, especially in unidentifiable cases.
For the examples presented, the updated PDF's for the model parameters are well ap-
proximated by a multi-variate Gaussian distribution and so the precision with which

the parameters arve specified by the system response data are readily calculated.
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Chapter 5 Stochastic Robust Control

5.1 Overview

A reliability-based output feedback control methodology is presented for control-
ling the dynamic response of systems that are represented by linear state-space mod-
els. The design criterion is based on a robust failure probability for the svstem. This
criterion provides robustness for the controlled system by considering a probability
distribution over a set of possible systerm models with a stochastic model of the ex-
citation so that robust performance is expected. The control force can be calculated
using incomplete response measurements at previous time steps without requiring
state estimation. Examples of robust structural control using a shear building model

and a benchmark structure are presented to illustrate the proposed method.

5.2 Stochastic Response Analysis

Consider a linear model of a structural system with Ny degrees-of-freedom (DOFs)

and equation of motion:
M0, )%(t) + CLO,)x(t) + K{0)x(t) = T - £(t) + T, - £{1) (5.1)

where M(8,), C(@,) and K(8,) are the Ny x Ny mass, damping and stiffness matrix,
respectively, parameterized by the structural parameters @, of the system; f() € R/
and f.{t) € RY/¢ are the external excitation and control force vector, respectively,
and T € RYNr and T, € RY*Nre gre their distribution matrices. A control law is
given later that specifies £, by feedback of the measured output.

The uncertain excitation f(f) could be earthquake ground motions or wind forces,

for example, and it is modeled by a zero-mean stationary filtered white-noise process
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described by

Wilt) = Aus(Op)wylt) + By p{0,)wit)
£{t) = Co {07 )w )

where w{t) € RY* is a Gaussian white-noise process with zero mean and unit spectral
intensity matrix (here, spectral intensity is defined in the manner as in Eqn. 4.19);
w(t) € R/ is an internal filter state and A, (@) € RYer*Nur B, (0,) € RVwr=do
and C,,4{@;) € RYrYer are the parameterized filter matrices governing the properties
of the filtered white noise. A vector @ is introduced, which combines the structural
parameter vector and the excitation parameter vector, i.e., @ = [Bf, 9}‘17 "€ R, The
dependence on @ will be left implicit hereafter in this section.

Denote the state vector as: y(#) = [x(#)7,x(1)7]". Eqn. 5.1 can be rewritten in

the state-space form as follows:

V() = Ay(l) + B,E(E) + B, L) (5.9
0,‘ N I,‘- 0,‘ N O: N

where A, = NaxNa Na , By = Nax Nl and B, = Fax e ] Here,
-M'K -M'C M'T M™IT,

0,.; and I, denote the ¢ x b zero and a x ¢ identity matrix, respectively,
In order to allow more choices of the output to be fed back or to be controlled,
an output vector y, € R/ is introduced that is modeled by the following state

equation:

Yi(t) = Aysyp(t) + Byyy (1) (5.4)

where Ayy € RMroNr B, € RYMPY gre the matrices that characterizes the
output filter. Note that the output vector can represent many choices of feedback.
For example, it can handle displacement, velocity or acceleration measurements if the
matrices Ay and B,y are chosen appropriately (Ivers and Miller 1991). Accelerations

can be obtained approximately by passing the velocities in the state vector through
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a filter with the transfer function Hy{s):

P
wl}é?

Hys) = ‘
a(5) %+ v/ 2ws + wi

——
[0 4
W

[

This filter can approximate differentiation if wy is chosen larger than the upper limit
of the frequency band of interest. On the other hand, one can model the sensor
dynamics for displacements or velocities measurements by using a low-pass filter with
o
had}
s2vRegstwh
output vector yy is that it allows for the modeling of the actuator. More details are

the transfer function H;(s) Another advantage of introducing the

given in the next chapter.
If the full state vector v(#) = [w,{t)", y{6)", ¥, (6)"]" is introduced, then Eqn. 5.2

- 5.4 can be combined as follows:
“{r(t) = Av(t) + Bw{t) + B.L.{{) {5.6)

where the matrices A, B and B, are given by

Awf ONQE FH2NG 0 Ny r Ny Bzf,f O!‘\’w PR N
A= B,C,y A, Oovgun,; |+ B= [Oyun, | and Be= By
Ofw‘f'gffx-"fa.:f B?ff Ayf Of""f"'g;f"XfVa-: Ofu\fsffx-’*‘;f"c
(5.7)

By treating w as constant over each subinterval [AAZL AAL + Af), where At is the
sampling time interval that is small enocugh to capture the dynamics of the structure,

Eqn. 5.6 vields the following discrete-time equation:

vik+ 1] = Av[k] + Bwlk] + B.f.[k] {5.8)
where v[k] = v{kAl), A=A B = A"YA — Iy, son4n,,)B and B = A7 A -
Iy, FHINGEN, ;)Bc, and wik] is Gaussian discrete white noise with zero mean and co-

variance matrix B, = 221y .
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Assume that discrete-time response data, with sampling time interval Af, is avail-
AT

able for N, components of the output state, that is, the measured output is given

by
zlk} = Lyvik] + nlk] {5.9)

where L, € RYe*{Nur 280t Nr) i5 the observation matrix and n[k] € R™ is the uncer-
tain prediction error which accounts for the difference between the actual measured
output from the structural system and the predicted output given by the model
defined by Eqgn. 5.8; it includes both modeling error and measurement noise. The
prediction error is modeled as a stationary Gaussian discrete white noise process with
zero mean and covariance matrix ¥,; this choice gives the maximum information en-
tropy (greatest uncertainty) in the absence of any additional information about the
unmodeled dynamics or output noise.

Now, choose a linear control feedback law using the current and the previous N,

output measurements,

f‘vﬁ
f.lk] = E Gpzlk — pl, (5.10)
p=0
where G,,p = 0,1,... N, are the gain matrices, which will be determined in the
o ooort Yo TV H - . ¥ T - o — N* [ NTE AT o
next section. It is worth noting that if the matrices G, p = 0,... | NJ (N < N} are
fixed to be zero, the controller at any time step only utilizes output measurements
from time steps that are more than NJAt back in the past. Furthermore, by choosing
a value of N} such that NJAL is larger than the reaction time of the control system
(data acquisition, online calculation of the control forces and actuator reaction time),
it is possible to avoid the instability problem caused by time-delay effects.
Substituting Egn. 5.10 into Egn. 5.8

vik +1] = (A + B, GL,)v[k] + Bwlk] + B, Z G,zlk — p] + B,Gonlk]  (5.11)

p=l
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Now define an augmented vector Uy, [£] as follows:
Uy, k] = vk 2l - 10" 2l - N7 (5.12)
Then, Eqn. 5.11 can be rewritten as follows:
Uy, [k + 1 = (A, + B, Uy, [£] + B,f[A] (5.13)

where

and A,, B, and B, are given by

A O(N'mﬁtz.f\z(ﬁ?i'y;)x Ny Ny
A — =4 |4
A, = L, On,xv,n, (5.15)

Ony Dot przngt N, ) Liv,-0ne Oy, 18,

= g(?GDL(} g(:@E U gt{:}‘vﬁ
B, = (5.16)

O, 5, (v, 2NN, N NG)

g BCGD
B,= | Oun, I, (5.17)

Orv,—yv, ey Oiv,—ningxv,

Therefore, the covariance matrix X, = E[Uy [k|Uy, [k]"] of the augmented vector



Uy

- is readily obtained:

Su - (Au + guc)gu(ﬁ-u + gut:)T + ﬁzﬁﬂfﬁfz

T Zun (5.18)
Sr=_
E‘U)TL E'R'

where %7 denotes the covariance matrix of the vector f in Eqn. 5.14. Note that
Eqn. 5.18 is a standard stationary Lvapunov covariance equation in discrete form.
In summary, the original continuocus-time excitation, structural and output equa-
tions are transformed to a linear discrete-time state-space equation for an augmented
vector Uy,. The system response is a stationary Gaussian process with zero mean and
covariance matrix that can be readily caleulated using Eqn. 5.18. These properties

are used to design the optimal robust controller for the structure.

5.3 Optimal Controller Design

The optimal robust controller is defined here as the one which maximizes the
robust reliability {Papadimitriou et al. 2001} with respect to the feedback gain ma-
trices in Eqgn. 5.10, that is, the one which minimizes the robust failure probability for
a structural model with uncertain parameters representing the real structural system.
Failure is defined as the situation in which at least one of the performance quantities
{(structural response or control force) exceeds a given threshold level. This is the clas-
sic ‘first passage problem’, which has no closed form solution {Lin 1976). Therefore,
the proposed method utilizes an approximate solution bases on Rice’s ‘out-crossing’

theory (Lin 1976).

5.3.1 Conditional Failure Probability

Use qlk] € RY to denote the control performance vector of the system at time

AL Tts components may be structural interstory drifts, Hoor accelerations, control
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force, etc. The system performance is given by
s 3 i S

qlk] = PyUy, [k} + mik] (5.19)

where Py € RVeX(Nur £2Nat N, (880 Ne) i o performance matrix which multiplies the
augmented vector Uy, from Eqn. 5.12 to give the corresponding performance vector of
the model. In order to account for the unmodeled dynamics, the uncertain prediction
error m € RY in Eqn. 5.19 is introduced because the goal is to control the svstem
performance, not the model performance; it is modeled as discrete white noise with
zero mean and covariance matrix 3.

For a given failure event F; = {|g;{t)] > 5 for some ¢ € [0, T}, the conditional
failure probability P{F;|@) for the performance quantity ¢; based on the structural
model and excitation model specified by @ can be estimated using Rice’s formula if

vg << 1 (Lin 1976}):

P{F|0) =~ 1 — exp|—13{0)T) (5.20)

where 4 (@) is the mean out-crossing rate for the threshold level 3; and is given by

T4 37 -
vg,(0) = P expl— 2o ) (5.21)
i '

where ¢, and o, are the standard deviation for the performance quantity ¢; and its
derivative ¢;, respectively. In implementation, ¢; must be included in ¥4 in Eqn. 5.4

if it is not already part of y.

Now consider the fatlure event F = % F:, that is, the system fails if anv |g;
P i s B J T

exceads its threshold 5;. Since the mean out-crossing rate of the system can be

. N, . - ipe .
approximated by: v = > .7 vy (Veneziano et al. 1977), the probability of failure

P{F|@) of the controlled structural system is given approximately by

P{F|@) =~ 1 — exp[~ Z vg ()T (5.22)

L
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where N, denotes the number of performance quantities considered.

5.3.2 Robust Failure Probability

No matter what technique, e.g., finite-element method or svstem identification, is
used to develop a model for a structural system, the structural parameters are always
uncertain to some extent. Furthermore, the excitation model is uncertain as well.
Therefore, a probabilistic description is used to describe the uncertainty in the model
parameters @ defined earlier. Such probability distributions can be specified using
engineering judgement or they can be obtained using system identification techniques.
This leads to the concept of the robust failure probability given by the theorem of
total probability (Papadimitriou et al. 2001):

P(FI©) = / PLF|0)p(6]©)d8 (5.23)

which accounts for modeling uncertainties in deriving the failure probability. This
robust failure probability is conditional on the probabilistic description of the pa-
rameters which is specitied over the set of possible models ®. Note that this high
dimensional integral is ditficult to evaluate numerically, so an asymptotic expansion

is utilized (Papadimitriou et al. 1997a). Denote the integral of interest by
I = / 9d0 (5.24)
&
where /(@) is given by
(@) = In{P(F|0)] + In[p{@|©))] (5.25)

The basic idea here is to fit a Gaussian density centered at the ‘design point’ at which

¢!®or 1(8), is maximized. Tt is assumed here that there is a unique design point;
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see {Au et al. 1999) for a more general case. Then, this integral is approximated by

w0 P(FI07p(0°1©)
det L{0")

I = P{F|©®) =~ (27) (5.26)
where @ is the design point at which 1{#) has a maximum value and L(8") is the Hes-
stan of —1{@) evaluated at 8°. The optimization of /(@) to find @ can be performed,
for example, by using MATLAB subroutine ‘“fining’.

The proposed control design can be summarized as follows: By solving Eqn. 5.18,
the covariance matrix of the structural response can be obtained. Then, the ro-
bust failure probability can be calculated using the asyvmptotic expansion formula in
Eqn. 5.26 along with Eqn. 5.20 - 5.22. The optimal robust controller is obtained by
minimizing the robust failure probability over all possible controllers parameterized
by their gain matrices, which again can be performed, for example, using MATLAB
subroutine ‘fmins’.

The optimal controller can be readily updated when dynamic data D is available
from the systems (Beck and Katafygiotis 1998; Papadimitriou et al. 2001). In this
case, Bayes” Theorem is used to get an updated PDF p{@|D, @) that replaces p(0|©)
in Eqn. 5.23 and hence the updated robust failure probability p{F|D, ©) {Papadim-

itriou et al. 2001) is minimized to obtain the optimal control gains.

5.4 Illustrative Examples

5.4.1 Example 5-1: Four-story Building under Seismic Excitation

The first example refers to a four-story building under seismic excitation with an
active mass driver and a sensor on each floor above the ground level. In this example,
the stochastic ground motion model is fixed during the controller design but the shear-
building model of the structure {Fig. 5.1) is uncertain. The nominal model of the
structure has a Hoor mass and interstory stitfness uniformly distributed over its height.
ko

The stiffness-to-mass ratios {;,7 = 1,... ,4is 1309.3 sec™?, where M; is the mass of

floor . The nominal damping-to-mass ratios {,7 = 1,... , 4 are all chosen to be equal
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Figure 5.1: Four-story shear building with active mass driver on the roof {Example 5-1}.

to 2.0sec . As a result, the nominal modal frequencies of the uncontrolled structure
are 2.00 Hz, 5.76 Hz, 8.82 Hz and 10.82 Hz and the nominal damping ratio of the first
mode is 1.00%. In order to take into account the uncertainty in the structural model
parameters, all the stiffness and damping parameters are assumed to be Gaussian
distributed, truncated for positive values of the stiffness and damping, with mean at
their nominal values and coeflicients of variation 5% (stiffness) and 20% {damping),
respectivelv. To provide more realism, the structure to be controlled is defined by
model parameters sampled from the aforementioned probability distributions rather
than being equal to the nominal structural model. This gave stifiness-to-mass ratios of
1253 sec™2, 1177sec™2, 1304sec™? and 1344 sec™? for the 1 to 4% floor, respectively.
The corresponding damping-to-mass ratios are 2.50sec™!, 2.16sec™ ", 1.68sec™ ' and
2.22sec !,
4
The ratio g of the actuator mass M to the total structure mass M, = Y M; is
e
chosen to be 1%. The natural frequency w, and the damping ratio {; of the ':zctu&tor
may be chosen according to the following expressions which give the optimal passive

control system for the first mode of the nominal structure under white-noise excitation
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(Warburton and Ayorinde 1980):

2—p
2{p+1)2

((3pe -+ 4)
20+ 1){pe+2)

where w; is the fundamental frequency of the nominal uncontrolled structure. Then,

the stiffness-to-mass ratio ‘ffTé and the damping-to-mass ratio {2 of the actuator
e ey Lok ke 2 Ca G __ DL, N ke
are given by: M, T ogan T Ws and T VAl 2(ws. In this example, M, =

1.540%x 10% sec™ and A = 2473 sec™ ! are the optimal parameters based on Eqn. 5.27.
However, they are assumed to be %ﬁ; = 1.60 x 10%sec™ and W= 2.0sec™! in the
following since it might not be possible to build a controller with the optimal values of
%1 and {—i in reality; these parameters are assumed to be known during the controller
design.

The controlier design is based on maximizing the robust reliability or, equivalently,
minimizing the robust failure probability, calculated for the structure with uncertain
parameters subject to an uncertain white-noise ground excitation with spectral inten-
sity of 0.01 mZsec™ for a 20 sec interval. The threshold level for the interstory drifts,
actuator stroke and the control force f,. = f./M; (normalized by the actuator active
mass) are chosen to be 2.0 cm, 2.0 m and 10 g, respectively. The failure event F' of
interest is the exceedence of any one of these threshold levels. For simplicity, it is
assumed that displacements are measured at specified floors using a sampling interval
At = 0.01 sec. In the next example, acceleration measurements will be assumed.

Four robust controllers are designed using the proposed methodology, each using
different control feedback:

Controller 1: Displacement measurements at every floor at the current time step.
Controller 2: Displacement measurements at the 4" floor at the current time step.
Controller 3: Displacement measurements at the 4% floor at the current and previous
two time steps.

Controller 4: Displacement measurements at the 4™ floor at the previous two time
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steps.
Gain | Controller 1 | Controller 2 | Controller 3 | Controller 4
Go{l) H4os | - 1 - | -
Gol2) st | — | = | =
(o(3) 49.46 | e e e
Goi{d) 32.66 86.15 134.58 |  —
ErE -26.63 23745 |
Gy | - | -2098 | -150.72 |
Table 5.1: Gain coefficients of the optimal controllers (Example 5-1).
Passive | Controller 1 | Controller 2 | Controller 3 | Controller 4
P(F[@) (.56 0.0013 (0.0014 (.0008 (.0009

Table 5.2: Robust failure probability (Example 5-1).

Table 5.1 shows the optimal gain parameters G, (i) for Controllers 1 - 4 where in-
dex p and index ¢ correspond to the number of time-delay steps and the floor number,
respectively. Table 5.2 shows the robust failure probability of the interstory drifts and
the stroke for passive control {all gain coeflicients are fixed at zero) and for Controllers
1- 4. The active controllers give a much better design performance objective than the
passive mass damper. All controllers give similar design performance objectives but
Controller 3 is the best, followed by Controllers 4 and 1, and then 2. Although the
nuimber of measured degrees of freedom is different in Controllers 1 and 2, the perfor-
mance of the controlled structure is almost the same. This is because the motion of
the structure is dominated by the first mode in the case of ground shaking. Therefore,
the measurements at one DOF contain almost all of the information regarding the
motion of the structure. However, Controller 3 gives a better performance objective
than Controller 1 even though Controller 3 uses only one sensor because measuring
displacements at consecutive time steps gives more information, which corresponds

to the structural velocities in this case.
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Fig. 5.2 - 5.5 show the time histories of the interstory drifts using Controllers 1
- 4, respectively. The dashed and solid lines show the response of the uncontrolled
and controlled structure, respectively, during simulated operation under the same
ground motion sampled from the stochastic ground motion model. It can be seen
that the interstory drifts are significantly reduced by the controllers. Furthermore,
Table 5.3 shows the statistical properties {standard deviations and maximum) of
the performance quantities {interstory drifts, strokes and controller accelerations)
for the uncontrolled structure, passive control and Controllers 1 - 4. By comparing
Controllers 1 and 2 in Table 5.2, one observes that the robust failure probabilities
are very similar. Furthermore, Table 5.3 shows that the statistical properties of the
responses in these two cases are almost the same. This implies that the performance
of using feedback from one or four (all) degrees of freedom are virtually the same. As
mentioned before, this is because the motion of the structure is dominated by the first
mode in the case of ground shaking and so using the measurements at one degree of
freedom is sufficient to characterize the motion of the structure. Note that although
Controller 3 gives the smallest probability of failure in Table 5.2, the performance
quantities in Table 5.3 are almost the same for all optimal controllers.

Controller 4 is the case in which the controller feeds back the measurements at
past time steps only. Although its robust failure probability is slightly larger than
Controller 3 in Table 5.2, the performance quantities in Table 5.3 are virtually the
same as Controller 3. Moreover, this controller does not suffer from time-delay in-
duced stability problems if the time-delay of the controller Af, is less than Af. If Aty
is larger than Af, one can choose N, > "3_%‘ and fix all the matrices G, ..., (}.[N,[X{%)
at zero. Here, INT denotes the integer part of a number. The controller feeds back
the measurements far back enough that the control system has enough time to com-
pute and apply the control force to the structure. Fig. 5.6 and 5.7 shows the similar
control force (normalized by the actuator mass) and stroke time histories respectively
for Controllers 1 - 4.

In order to test the robustness of the proposed controller to the excitation, the

structural responses are calculated for the uncontrolled structure and the controlled
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Performance quantity | Threshold | Uncontrolled | Passive | Controller 1 | Controller 2 | Controller 3 | Controller 4

Gy (m} | e 0.0143 0.0075 0.0042 00042 0.0040 0.0040
Tpymmy (1} | 0.0138 0.0072 0.003% 00039 B.0037 0.0037
Tpompy b} | 3.00%5 0.0050 0.002% L0028 30027 0.0028
Opampg I} | 00053 0.002% 0.0021 00020 0.0019 0.0020
mazjz| (m} 0.02 0.0373 0.0213 0.0120 00122 00114 0.0115
mazjry — a2 (m) 0.02 00374 0.01%7 0.0117 0.01186 00113 D.0114
maxiez — az] (m) 002 30257 0.0143 0.0088 LOUSSE 0086 0.0087
maz|es — 2] (m) 0.02 00134 0.0085 0.005% 00058 30059 0.0060
ag, My | e e 0.101% 0.4056 .3%34 34101 0.4071

P ¢ T e 2.7764 2.6656 2.7785 2.7905
mazizs] (m) 20 | e 0.2984 1.0756 1.0374 1.0897 1.0895
maz| feon] () wo | e e 8.0942 79589 8.3669 8.509

Table 5.3: Statistical properties of the performance quantities {Example 5-1).

structure {using Controller 3) subjected to the 1940 El Centro earthquake record.

In Fig. 5.8, the dashed line and the solid line show the first story drifts for the

uncontrolled structure and the controlled structure, respectively. It can be seen that

the structural response is significantly reduced by using the proposed controller. In

this case, the peak control force normalized by the actuator mass is 7.1g and the peak

actuator stroke is 1.08m.
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Figure 5.2: Simulated interstory drifts for the uncontrolied {dashed) and controlled struc-
ture using Controller 1 {solid} {Example 5-1}.



Figure 5.3: Simulated interstory drifts for the uncontrolied {dashed) and controlled struc-
ture using Controller 2 {solid} {Example 5-1}.
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Figure 5.4: Simulated interstory drifts for the uncontrolied {dashed) and controlled struc-
ture using Controller 3 {solid} {Example 5-1}.



Figure 5.5: Simulated interstory drifts for the uncontrolied {dashed) and controlled struc-
ture using Controller 4 {solid} {Example 5-1}.
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Figure 5.6: Controller stroke time histories using Controllers 1 - 4 {Example 5-1).
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Figure 5.7 Controller force {normalized by the actuator mass) time histories using

Controllers 1 - 4 {Example 5-1).
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Figure 5.8: Structural response of the uncontrolled {dashed) and controlled structure using
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5.4.2 Example 5-2: Control Benchmark Problem

The proposed control strategy is applied to the well-known control benchmark
problem with an active mass driver {Spencer et al. 1998). The benchmark problem
is based on a three-story, single-bay laboratory test structure {Dyvke et al. 1996).
It is a steel frame with 158cm height. The natural frequencies of the first three
modes are 5.81Hz, 17.68Hz and 28.53Hz, respectively. The associated damping ratios
are 0.33%, 0.23% and 0.30%. In this example, the structural svstem is assumed
known (an accurate dynamic model is given in the benchmark, but the stochastic
excitation model is treated as uncertain). The controllers are designed and tested
under the excitation of a Kanai-Tajimi filtered white noise, and further tested using
a scaled 1940 El Centro earthquake record and a scaled 1968 Hachinohe earthquake
record. The sampling time intervals is At = 0.001 sec, as specified by the benchmark.
The threshold levels for the interstory drifts, actuator displacements and actuator
accelerations are 1.5cm, 9.0cm and 6.0g, respectively. As the delay time of the control
force is Aty = 0.0002 sec, the controllers in this study are chosen to feedback only the
response measurements from one and two time steps back, that is, Gy is fixed to be
zero and Gy, = 1, 2 are the design parameters. Two feedback cases were investigated
as follows:

Controller 1: Feedback of acceleration from all floors at the previous two time steps,
Le., Gyt = 1,2 are the design parameters.

Controller 2: Acceleration measurements from all Hoors are passed through the same
second order filter, with transfer function w?2/{—w? + 2i(.wew + w?). Then, the con-
troller feeds back the filtered measurements at the previous two time steps. Here, (.
is chosen to be 1/ V2 and w, is included in the design parameter set. This case has
been previously studied using only output of the filter at the current time (May and
Beck 1998).

Following the benchmark guidelines {Spencer et al. 1998), the controllers are
used to control a high-fidelity linear time-invariant state-space representation of the

structure which has 28 states. Quantization, saturation and time delay of the control
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force are considered in this model. In order to test the robustness of the controllers
with respect to modeling errors, a reduced 10-state model is used in the design process,
which is provided by the official benchmark web site at http:/ /www.nd.edu/~quake/.
Furthermore, the excitation is assumed to be a stationary zero-mean Gaussian process

with a spectral density defined by an uncertain Kanai-Tajimi spectrum:

5

g g g

(5.28)

where w,, (, are assumed to be log-normally distributed with mean 50 rad/sec and
0.5, respectively. Furthermore, their logarithm standard deviations are assumed to
be 014, = 0.2 and 0195¢, = 0.2. The spectral intensity parameter Sy is given by

0.03,

Sy = ——— 2 oZgae 5.29
v ﬁwg(chjmiml)g hee (5.29)

such that oy = 0.12g regardless of the values of w, and (.

Gain\ Controller 1 2
G {1} 0.0062 | 0.0930
1(2) 0.0014 | 0.0859
G1{3) 0.0228 | 0.0931
Go(1) 0.0319 | 0.1268
Go{2) 0.0494 | 0.1056
({3} 0.0838 | 0.1047

| w (rad/sec) | | 44.993 |

Table 5.4: Design parameters of the optimal controllers {Example 5-2}.

Table 5.4 shows the optimal gains and the optimal filter parameter for Controllers
1 and 2. One can see that the control gains increase significantly when using the filter.
Table 5.5 shows the performance quantities J, to Jy; defined in Spencer et al. {1998)
for Controllers 1 and 2, for the controller obtained by May and Beck (1998) and also
for the sample controller provided in Spencer et al. {1998). All the controllers pro-

vide satisfactory performance. Note that the controller obtained by May and Beck
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Excitation P{—zrform‘a.z, nee Controller 1 | Controller 2 | May and Beck | Spencer et al.
gquantity Y

Jt (.183 {(.205 .207 0.283
2 {(1.301 {1.310 {1.345 0.440
Filtered white J3 {1.366 {(.736 .851 0.510
noise J4 .363 {(.738 .832 0.613
Jx {(.606 (.676 {(.683 0.628
Jg (.492 .380 {.380 0.456
Maximum response Jy (1.811 1.694 (1.684 0.681
of Hachinohe 1968 Jz (.812 1.39 1.64 0.669
and El Centro 1940 Jg {.847 1.35 1.56 0.771
Jio 1.64 1.16 (.936 1.28

Table 5.5: Performance quantities for the benchmark problem (Example 5-2).

is similar to Controller 2 except that they only feed back the response measurements
at the current state. Their optimal gains are Gp{l) = 0.431, Gy(2) = 0.291, and
Go{3) = 0.235 and the optimal filter parameter is w, = 33.1rad/sec. J; to J; cor-
respond to the case of uncertain excitation for 300sec. J; and J; correspond to the
standard deviations of the maximum RMS drifts and the maximum RMS absolute
acceleration of the controlled structure over all of the floors, normalized by the corre-
sponding values for the uncontrolled structure. J3, J; and J5 correspond to the RMS
actuator displacement relative to the third story, the RMS relative actuator velocity
and the RMS absolute actuator acceleration. Again, they are normalized by their
corresponding values for the uncontrolled structure. Jg to Jyp represent the peak
values of the same response quantities for the deterministic response of the controlled
structure to the two scaled earthquake ground motions, the north-south component
of the 1940 El Centro earthquake record and the north-south component of the 1968
Hachinohe earthquake record. Again, these quantities are normalized by the peak
response quantities of the uncontrolled structure for each earthquake.

May and Beck {1998} showed that directly feeding back the accelerations at the
current time without a compensator leads to an unstable controlled svstem due to
the delay-time imposed in the model of the system to be controlled {Spencer et al.

1998). However, Controller 1 provides satisfactory performance using direct feedback
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of delayed accelerations because the delay-time is explicitly taken into consideration
in the formulation, as described in Section 5.2, In May and Beck (1998), a filter was
used in the feedback loop to produce stability. When a filter is used here {Controller
2}, the control system is not as eflicient as in Controller 1 when subjected to ran-
dom excitation because certain information, espectally the high frequency content,
is filtered out. However, Table 5.5 shows it provides better performance for the El
Centro and the Hachinohe earthguake records, which do not follow the Kanai-Tajimi
spectrum closely.

Fig. 5.9 shows the Ist story drift for both earthquakes using Controller 2 which
has the filter {solid lines). For comparison purposes, the dashed lines show the cor-
responding 1st story drifts of the uncontrolled structure. It can be seen that the
1st story drifts are significantly reduced by using the proposed control methodology.
Fig. 5.10 shows the actuator displacements for both earthquakes. It can be seen that

thev are much smaller than the threshold values.
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Figure 5.9: Structural response of the uncontrolled {dashed) and controlled structure using
Controller 2 (solid} to the El Centro and Hachinohe earthquake records (Example 5-2).
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Figure 5.10: Actuator displacement using Controller 2 to the El Centro and Hachinohe
earthquake records {Example 5-2).
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5.5 Conclusion

A reliability-based robust feedback control approach was presented for dynamical
systems adequately represented by linear state space models. The response covari-
ance matrix is first obtained from the discrete Lyapunov equation using an augmented
vector for the system. The optimal controller is then chosen from a set of possible
controllers so that the robust reliability of the controlled system is maximized or,
equivalently, the robust failure probability is minimized. An asyvmptotic approxima-
tion is utilized to evaluate high dimensional integrals for the robust failure probability.
The feedback of the past output provides additional information about the system
dynamics to the controller. It can also be used to avoid stability problems due to
time-delay effects. The proposed approach does not require full state measurements
or a Kalman filter to estimate the full state. The robust failure probability criterion
provides robustness of the control for both uncertain excitation models and uncertain
svstem models. Furthermore, it can give different weighting to the different possible
values of the model parameters by using a probability description of these parameters
based on engineering judgement or obtained from system identification techniques.
This is in contrast to most current robust control methods which split the values
for the system parameters into only two groups (possible or impossible). Although
the proposed approach was presented here for linear models of dynamical systems,
it can be extended to nonlinear models. The only difference is that the second or-
der moments can not be obtained by solving the Lyvapunov equation, but this can
be replaced by approximate numerical techniques; for example, simulations can be
utilized to obtain the response covariance matrix. We are currently investigating this

extension to robust control of nonlinear structural behavior.
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Chapter 6 Illustrative Example of Robust
Controller Design and Updating

6.1 Problem Description

In this chapter, a 20-DOF three-bay four-story structural frame (Fig. 6.1) is used
to demonstrate the probabilistic procedure of robust controller design and updating.

The stifiness-to-mass ratio is taken as El,/m; = 1.25 x 10%m* sec™2, where
my is the mass of the fivst floor. Furthermore, my = me = my = 1.2my and
Bl Els Elg) = [0.9,0.8,07E1y. The rigidity of the beams is taken to be
Elyfmy = 2.00 x 10°m*sec™. The first four natural frequencies of the structure
are 4.108Hz, 11.338Hz, 17.26Hz and 21.50Hz. Ravleigh damping is assumed, so the
damping matrix C is given by C = ,,,M + oy K, where M and K are the mass and
stiffness matrices of the system; and e, = 0.376sec™!, ay, = 2.07 x 107% sec, which

gives 1.0% damping for the first two modes.

6.2 Model Selection and Identification

Two candidate classes of models, with the same height and width of the system,
are considered as shown in Iig. 6.2:

Class A: Eight-DOF structural frame models, with four rigidity parameters. The
nominal rigidity of the beam is assumed to be its exact values but the nominal rigidity
of the columns are taken to be 2I7,, twice the exact values of the columns at the
first storv. The rigidity of the beam and columns at the §% story is equal to the
product of the rigidity parameter ¢; and its corresponding nominal value,

Class B: Four-DOF shear building models, with four rigidity parameters. The

nominal values of the rigidity of the columns are taken to be 2FE1,, |, 2F1,, 2F1 4
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Figure 6.2: Candidate model classes (Example 6-1).

and 214 for the 1% to 4% floor, respectively. Note that the nominal values in this
case do not aflect the identification results because they are only scaling, but not
constraints, of the parameters.

Assume that measurements of the absolute accelerations are available at the 277
and 4" DOFs for 30 sec with a sampling frequency 200 Hz. These data are simulated
using the actual model with 10% rms noise added. Furthermore, assume that the
system is subjected to a white noise ground motion with spectral intensity Sy =
1.0 x 107 m? sec™3.

Note that although the model selection and identification approaches were pre-
sented in separate chapters, they have to work together. Here, the identification ap-
proach presented in Chapter 3 is utilized to update the rigidities and damping ratios
of the structure. Although the approach in Chapter 3 is presented for modal updating
for linear svstems, it can be applied directly for updating the model parameters of
a linear structure. In order to have better scaling, the rigidities are parameterized
as follows: EI; = ﬁjgf id =1,2,3,4, where EI; denotes the j% story rigidity and

ET; is its nominal value. The rigidity parameters #; are considered unknown and are
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determined by identification.

Table 6.1 shows the exact values and the identified rigidity parameters and damp-
ing ratios for the two classes of models. Note that the damping ratios are presented
in percentages. Table 6.2 shows the corresponding frequencies for the actual and the
optimal models. One can see that the optimal model in Model Class A fails to fit the
natural frequency of the third mode. Furthermore, the identified fourth mode of this
model is not close to an actual mode of the system. Therefore, the damping ratio of

this mode is much larger than others.
B

Parameter i & s &4 e (o (3 (4
Exact | - | e | e | e 1.000 | 1.000 | 1.296 | 1.537
Model Class A | 1.061 | 2.542 | 0.551 | 0.480 | 1.286 | 0.395 | 1.436 | 9.964
Model Class B | 0.908 | 0.987 | 0.881 | 1.040 | 1.128 | 0.563 | 2.342 | 0.623

Table 6.1: Optimal {most probable) structural parameters in each model class repre-
senting the structural frame (Example 6-1).

Mode fi fo I fa

Actual 4,108 | 11.34 | 17.26 | 21.50
Model Class A | 4.064 | 11.31 | 22.71 | 33.14
Model Class B | 4.158 | 11.35 | 17.40 | 21.02

Table 6.2: Natural frequencies {in Hz) of the optimal model in each class {Example
6-1).

Fig. 6.3 and 6.4 show the updated PDFs {solid) for the rigidity parameters #;,§ =
1,2, 3,4 for Model Class A and Model Class B, respectively, The crosses correspond
to the GGaussian approximation. It can be seen that the (Gaussian approximation is
very accurate,

Here, P{M4|U) = P{Mplid) = 0.5 is assumed, implying that there is no prior
preference between these two classes of models. By using the model selection ap-
proach presented in Chapter 2, it is found that P{MA|D,U) = 5.8 x 107% and
P(Mpg|D,Ud) = 1.0. Therefore, it is suggested that Model Class B is much better
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than Model Class A. Therefore, Model Class B is used for the controller design. Fur-
thermore, the updated PDF of the rigidity parameters is used for calculating the

robust failure probability in the controller design.

6.3 Controller Design

The updated PDF of the rigidity parameters and the damping ratios of Model
Class B ({Fig. 6.4} is used for calculating the robust failure probability in the con-
troller design. First, the fundamental mode of the identified model {Model Class B
in Table 6.1) is used to design the stiffness and damping of the AMD {active mass
damper), te., f; = 4.158Hz and ¢, = 1.128%. The AMD mass M, is chosen to be 1%
of the mass of the building. By using Eqn. 5.27, the controller stiffness and damping
parameters are given by k,/M, = 663.7sec % and ¢, /M, = 5.13sec™!. However, these
are rounded so that k,/M, = 670sec™® and ¢,/M, = 6.0sec”! to give a natural fre-
quency and damping ratio approximately equal to that of the identified fundamental
mode of the structure.

In Dvke et al. (1995}, hydraulic actuators are modeled as follows:
& * %

f(:: jiffc""jf""Bfila ""&""Bfuu (61)

where f. is the control force applied by the actuator; i, is the actuator velocities; u
is the signal given to the actuator; and Ay, By and By, are given by
25k 24 A% 20 Ak,

"if - % an - —Tan‘zb - v

(6.2)

where /7 is the bulk modulus of the fluid; £, and £, are the controller constants; V' is
the characteristic hvdraulic fluid volume of the actuator; and A is the cross-sectional
area of the actuator. Schematically, the structure-actuator is shown in Fig. 6.5,

The output vector yy in Eqn. 5.4 is comprised of: y; = [f., ﬂjc}’f‘, where f:
and }C are the state vectors for a low-pass filter with input f. that approximates

differentiation of f.. Note that f_ is used to estimate the out-crossing rate of the



[ 1
n.f('f
| [SOIION w4 ()

fy

23(%)
&5

22(t)
éy

a2y (#)
&

dy (%)
Figure 6.5: Structure-actuator model {Example 6-1}.

control force and it is not used in the control system feedback.

The full state vector equation is given by

v=Av+Buw+Bu {6.3)
where v = [x", %", ¥1]"; w is the ground motion; and v is the signal given to the
actuator and it will be discussed in more detail later. The matrices A, B and B, are

given by

Osus I Os.3
A= |-M'K -M'C M A,
Ay Ay {6.4)

B = -{0,0,0,0,0,1,1,1,1,1,0,0,0]"
B(: = [lelﬂf Bf’ih? O: 0]1
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where Ay, and Ay and Ay are given by

0503 Ay 0 0
O'Exg ‘—Bf Bf
Ao=1-1 0 0].Ay= Aw=10 0 1
02><.ID ; ) _
1 0 0 W —w? —w,

(6.5)

where w, = 10.0Hz is used.
Using an analogy of Eqn. 5.6, Eqn. 6.3 can be transformed to the following discrete-

time augmented state equation:
vik + 1] = Avik] + Buwlk] + B.ulk] (6.6)

where A = ¢ B = A"Y{A -1;)Band B, = A"A - 1;;)B..
Absolute accelerations measurements arve available at the 2°¢ and 4 DOF, which

is given by
zlk] = ~L,M~'Kx[k] — L,M~'Cx[k] + n[k] (6.7)
where L, is an observation matrix which is given by

01 000 '
L, = (6.3)
00010
and nfk] is a discrete white noise, with zero mean and standard deviations 0.001g,
which models the prediction error, i.e., measurement noise, the differentiator errors
and modeling error.

The signal given to the AMD actuator is given by

so the controller feeds back only the current and the previous time step. Here G, €
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R'%% p = 0,1 are design parameters. Substituting Eqn. 6.7 and 6.9 into Eqn. 6.6,
one can obtain the following augmented vector equation:
vik + 1] _ vik]

= A, + B, flk] (6.10)
z|k] zlk 1]

where f = [w[k],n[£]"]"; and A, and B,, are given by

A A-_ﬁcGDLO[MiiK M™'C 0'E3><3} gt:Gl
' LMK —LMUIC O O
- (6.11)
i B B.G,
Bu:
Oz Iy

Then, the covarlance matrix X, of the aupmented vector is the solution of the fol-
b u g

lowing Lyvapunov’s equation in discrete form
- - o .
Yy, = Ay A, + BB, (6.12)

where X7 is the covariance matrix of £,

The threshold levels for the performance reliability of the interstory drifts, actua-
tor stroke and the actuator acceleration are 1.0cm, 1.0m and 10g, respectively. Two
controllers are designed. A pre-test controller is found by using the following pre-
test prior distribution of the structure: Gaussian distribution, truncated for positive
values only, with mean 1.1 and 1.0% and standard deviation 0.2 and 0.5% for the
stiffness parameters and damping ratios, respectively. Also, a post-test controller is
found by using the updated PDF of the parameters obtained in Section 6.2.

Tables 6.3 and 6.4 show the performance quantities of standard LG, with the
mass matrix and the identified stiffness matrix as the weighting matrices, and the two
aforementioned controllers, including the interstory drifts, AMD actuator stroke ()
and control force {f,,}, for the cases of a random excitation sample and twice the 1940

El Centro earthquake record, respectively. In these tables, o denotes the rms value of
* P ¥
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Performance quantity | Threshold | Uncontrolled | LQG | Pre-test (10g) | Post-test (10g)

gy (my | — 0.0072 0.0024 0.0023 0.0019

Tyy oy (my | — 0.0074 0.0024 0.0023 0.0019
pgops (M) | 0.0062 0.0022 £.0020 0.0017
Tpyeus () | — 0.0037 0.0016 0.0015 0.0013
max|zy| (m) 0.01 0.0222 0.0107 0.0085 0.0072
maxxy — ag| (m) 0.01 0.0217 0.0094 0.0082 0.0070
maz|a — ay| (m) 0.01 0.0212 0.0084 0.0079 0.0068
max|ay — a4] (m) 0.01 0.0133 0.0067 0.0066 0.0057
Tp, (m)y | = e (0.1538 0.0482 0.0501
or gy | = 6.7633 0.7863 1.3642
maa|a,] (m) e | e 0.6545 0.1656 0.1739
mnaz| fon| (g) we | - 28.059 31912 5.5509

Table 6.3: Statistical properties of the performance quantities under random excita-
tion {Example 6-1).

a quantity. It can be seen that the interstory drifts are significantly reduced in both
cases when the AMD is installed. The LQG controller gives comparable structural
performance to the robust reliability controllers but it requires much larger control
forces. Furthermore, the post-test controller gives better performance than the pre-
test controller because it incorporates the updated PDF of the structural parameters.
Fig. 6.6 and 6.7 show the interstory drifts for the uncontrolled and controlled structure
using the post-test controller under twice the El Centro earthquake. Furthermore,
the corresponding stroke and normalized control force are shown in Fig. 6.8 and 6.9,
respectively.

A parametric study is performed to investigate the effect of the control force limit.
Post-test controllers are designed using the following threshold levels for the control
force: 2g, 5g, 20g and also for unlimited control force {but retaining the constraint
of 1.0m for the actuator stroke). The controller gains for these controllers as well
as the aforementioned ones are shown in Tables 6.5. Furthermore, the performance
quantities for these control systems are shown in Tables 6.6 under random excitation.
It is intuitive that a controller with a higher level of control force performs better but
the improvement saturates when this level is large enough, so there is a kind of law

of diminshing return as larger actuators are provided.
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Performance quantity | Threshold | Uncontrolled | LQG | Pre-test (10g) | Post-test (10g)

gy (my | — 0.0030 0.0011 0.0010 0.0009

Tyy oy (my | — 0.0030 0.0011 0.0010 0.0009
Tpgope (M) | — 0.0025 0.0009 0.0008 .0008
Tpyeus () | — 0.0014 0.0006 0.0005 0.0005
max|zy| (m) 0.01 0.0135 0.0069 0.0069 0.0068
maxxy — ag| (m) 0.01 0.0145 0.0070 0.0069 0.0069
maz|a — ay| (m) 0.01 0.0127 0.0055 0.0058 0.0055
max|ay — a4] (m) 0.01 0.0078 0.0045 0.0037 0.0046
Tp, (m)y | = e 0.0683 0.0203 0.0211

or gy | = 1.9145 0.4871 0.5494
maa|a,] (m) L 0.5009 0.1319 0.1388
mazx| fon| (g) we | - 15.661 3.8865 44003

Table 6.4: Statistical properties of the performance guantities under twice the 1940
El Centro earthquake {Example 6-1).

Gain LOQG Pre-test{10g) | Post-test{2g) | Post-test{dg} | Post-lest(10g) | Post-test{20g) | Posi-lest{no lImil}
Goll) | -4.2332 -0.6823 -(.19598 -0.9030 -0.6478 -0.0102 -3.31

Ga{2) | -17.251 ~2.2305 Eilbslt -0.8906 -2.3554 -6.2100 -38.53

Gty | e -0.0708 1.0224 00157 -0.0391 0.0489 -14.19

G2y | e -1.1744 3.39%5 0.8092 L1090 18500 15.65

Table 6.5: Gain coefficients of the optimal controllers (Example 6-1).

Performance quantity | Threshold | Post-test (2g) | Post-test (5g) | Post-test (20g) | Post-test (no limit)

gy (m)y | 0.0025 0.0022 0.0017 0.0015
Oppegs (M) | o 0.0025 0.0022 0.0017 0.0016
Ty M)y [ 0.0022 0.0019 0.0015 0.0013
Tpyewg M)y [ 0.0015 0.0014 0.0011 0.0010
snax|a | (m) 0.01 0.0095 0.0082 0.0068 0.0068
max|a — az] {(m) Q.01 (.0086 0.0075 0.0067 0.0066
maa|ay — 23] {(m) 0.01 0.0082 0.0077 0.0065 0.0064
max|ag — 24] {m) 0.01 0.0060 0.0056 0.0045 0.0040
o, (m)y | e 0.0273 0.0354 0.0587 0.1268

or, g | (.3304 0.7889 3.7039 13.817
maz)as] (m) 1.0 0.0863 0.1149 .2200 .5998
max| fon! (8) As labeled 1.1426 2.9848 17.109 57.548

Table 6.6: Statistical properties of the performance quantities under random excita-
tion with ditferent control force constraints {Example 6-1).
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Figure 6.6: Interstory drift time histories of the uncontrolled structure under twice
the 1940 El Centro earthquake record (Example 6-1).
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Figure 6.7: Interstory drift time histories of the controlled structure under twice the
1940 El Centro earthquake record (Example 6-1: post-test controller).
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Figure 6.8: Controller stroke time histories under twice the 1940 El Centro earth-
quake record {Example 6-1: post-test controller).
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Figure 6.9: Controller force (normalized by the actuator mass) time histories under

twice the 1940 El Centro earthquake record {Example 6-1: post-test controller).
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Chapter 7 Conclusion and Future Work

7.1 Conclusion

Chapter 1 introduces the general idea of identification and robust control for smart
structures and the organization of this thesis.

Chapter 2 introduces a probabilistic approach for choosing the most plausible class
of models representing a physical structure based on its response measurements. The
most plausible class of models has to compromise between its accuracy and complex-
itv. For example, a more complex model might be able to capture the dynamics of
the system more precisely but it introduces more parameters, which might over-fit
the data. Therefore, the most plausible class of models should have enough, but not
redundant, complexity in order to optimize this tradeoff. Examples using linear and
nonlinear systems are used for demonstration.

Chapter 3 describes a Bayvesian time-domain approach for modal updating us-
ing nonstationary incomplete noisy measurements. This time-domain approach is
based on an approximate expansion of the updated probability density function. The
proposed approach allows for direct calculation of the associated uncertainty of the
identified modal parameters. Numerical examples verify the accuracy of the identified
modal parameters and their associated uncertainty by sirmulations. The importance
of treating nonstationary response is also addressed.

Chapter 4 introduces a Bayvesian spectral density approach for updating nonlin-
ear systems using incomplete noisy measurements. This frequency-domain approach
is based on the statistical properties, shown in Appendix A, of the spectral den-
sity estimator. The proposed probabilistic framework is very well-suited for solving
such a nonunique problem. Again, the proposed approach allows for direct calcula-
tion of the associated uncertainty of the identified model parameters using response

measurements only. Numerical examples verify the accuracy of the identified model
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parameters and their associated uncertainty using simulated response time histories.

Chapter 5 introduces a stochastic robust control method. The proposed method
provides exact treatment for the delay time (including the buffer time for data collec-
tion, computation, and signal delivery and the internal dynamics of the actuator), so
the controller can avoid the instability problems induced by time delays. Numerical
examples are used to provide some insights into the proposed method. The proposed
approach is also applied to a control benchmark problem with satistactory results.

Chapter 6 uses a 20-DOF building to demonstrate the procedures for identification
and robust control for smart structures. First, the model selection and identification
approaches presented in Chapters 2 and 3 are used for optimally selecting the model
class to be used for the controller design. Two model class candidates are assumed,
which are a class of four-story structural frames and a class of four-story shear build-
ings. It turns out that the class of four-story shear buildings is more plausible based
on the data. Furthermore, the optimal parameters and the updated PDF for the
parameters are obtained. By using this information, the robust control approach pre-
sented in Chapter 5 can be performed to obtain the optimal controller. The control
system (the 20-DOF building with the actuator) is tested under random excitation
and twice the 1940 El Centro earthquake record. The structural response was sig-
nificantly reduced, and the actuator stroke and control force did not exceed their

threshold levels.

7.2 Future Work

This thesis introduces a complete framework for the identification and robust
control for smart structures. However, it is desirable to extend the framework to
allow for a real-time odaptoble controller in order to capture changes in structural
behavior. This is very important since the structural properties might be changing
during large earthquakes or strong wind excitation.

The proposed robust control methodology was demonstrated using examples with

an active mass driver. Further work can be done using semi-active devices (Kobori
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et al. 1993; lwan and Wang 1996; Dyke et al. 1996; Spencer and Sain 1997; Johnson
et al. 1999; Zhang and Twan 2002), which have very low power requirements and have
been proved to be very efficient. Also, the proposed methodology can be extended to
nonlinear dvnamical systems. In this case, the failure probability might be obtained
by simulations (Au and Beck 2001}.

Cost-benefit analysis {Irfanoglu and Beck 2001} can be used with the proposed
control framework for selecting the most cost-effective strategy of response reduction
{e.g., choosing from passive control device or active mass driver).

Finally, the proposed system identification techniques based on output-only data
can be applied for damage detection. Thev can also applied to past seismic response,
especially in the case where the base motion time histories are unavailable to serve
as input, as occurred in some damaged steel-frame buildings in the 1994 Northridge

Earthquake in Los Angeles (Carlson 1999).
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Appendix A
Asymptotic Independence of the Spectral Density Estimator

In this appendix it is shown that the spectral density estimators are independent
at any two different frequencies w and &' as N — .
First, define the following scaled real and imaginary parts of the spectral density

estitnator

%((}iﬁ(wk) R‘i‘-[%%}}(wk”

(A1)
%g“g,}; (wk) = Im [3’5(‘3} (w,g”

where Yy (wy) is given by Eqn. 4.20 and f'“ denotes the j% element of a vector f.

Note that E’[%(“ wlwr)] = 0 and E[3 (wr)] = 0.

A1 Y (w) with Y3 (W)

Taking mathematical expectation on both sides of Eqn. A.1, one can easily obtain

the following:

E[(Yelw) — EY ) DU ) — EY (D]

= B[ U al")] = Bl LT )] "
N-TN-1

- ZZ gAY AL — Y cos(jw At) cos{ke'At)
Fe=l) b

Let | yo‘ A (€2), which is assumed to be finite ¥ € R, be the cross spectral density

between » and y" at frequency Q. By using the fact that the cross covariance



127
function (,,'9(0":53}(7“) = ffo N ya 3)(9)&1'&17“&5‘2 and (‘.()S(Z) = w,

E[(%f@*}gw—ﬁ[ Y DUl — BN
N—-1T N1

/ o Z Z A -DAL g(u 3 (Q)[Gijwﬂt + éifijw;\tnﬁiiw’ﬂt 4+ éifilw';\t}dﬂ
¥
Gl e

N-1N-1
/ § : J(Siw) Dl (W —sz)_xt ij((l—é—w)ak‘é—i—il(—w’—X'l}zlst + ﬁ'éj(s*z—w}z‘.x'é—é—fl(w’—S*z)akt
fr’\f "

Fel) e

L ALl A SiPH Qs

/ HEOD (0, (jg+/ HOMNw, —w ds”z+f HEP (0 —w,0")dS)

+ / H &N —w, —w)d)

{A.3)
where Hy{{%w,w’) is defined as
B remn a Ly N1 N-1
Hf\;};ﬁ) (Qw'}u.),) o M Z ¢ G AL Z Caii{w’fs"z);\t (Aél)
3w N g i
If (2] # w and [§2] # &,
(0,5) [1 - i;\z;x-t(s‘z+w}1[1 . (iz\?ak'é(w’—(l}] .5)
..... _ 0, r
Hy™ ($hw, o) = SaN[1 — eidr)][] — il —0]"y Sy (1AL {A.5)
By using sin(z) = "szf )
N =T)at) wrw') /2 Sln[(sww};\zm} Sin[(w’—s‘z);\zm] )
HEN w0’y = 2 2 GBS OIAL (A6
() Sﬁlﬂrsiri[iuﬁ};}gﬂsin[("“’ —éz)m1 Y ) (4.6)

Then, the following inequality can be obtained since || = 1 and |sin{r)| < 1 {r € R):

Sy At

81N sin[ J“")‘\i] sin[ & JT?)M}

(A7)
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By taking the limit as N — oo,
hm HOPw,w) =0 i Q4w and Q] # {A.8)
N—oo N
Similarly, Hf\;}’ﬁ)(ﬂ, —,w'), H’iot 3)(9 w,—w') and H’iot ?) (€2 —w, —«') also tend to
zero as N — oo, if 1Q] # w and |9 74 w'.
Now, we consider H (w0, w) at [ = w or [0 = o, First, at Q = —

(0.8 N-1
HS\?”&}(Q:" . ‘:) _ S u )(‘ )Af Z éﬂil{w’fﬂ)At

3
[0 {A.9)
S((I 3)(9)“3?5[1 . (:ai.f\fdi{w"*ﬂ)}

N
87(‘[1 o ﬁmt(wf—s‘z)]

4 s
which is finite. Similarly, it can be shown that H\"7{Q;w, o) is finite at Q = o',
Next, consider {1 = w or {1 = —u,

[1 — VALY s"sz:)MI — ANAY w’fﬂ)}

HE (w0 = SR (VKLY (A.10)

STN[1 — @fdtH)|[] — gt —0)] 7Y

As N — o0 and 1 = w or —w',
Jim HE w0’ =0 (A.11)

Therefore, H () (€ w,07 is finite at = +w and © = £w'. Similarly, it can be
shown that H o ﬂ(QJW, —w'), H;}l"ﬁ) (€2 —w, ') and Hf\;}’ﬁ)(ﬂg —uw, —w') are finite at
= £w and 2 = £w'.

Therefore, H(“ })(Q' w,w, Hf\?"ﬁ)(ﬂg w, —w', H_,f })(ﬂ —w,w') and H o j)(ﬂ: -, —w')
tend to zero as NV — oo if |€2] # w and |2} # &' and they are finite as N — o0 if |Q] =
wor (] = w'. Tt can be concluded that f H o ﬂ(ﬂ'a),w )d€2, ff‘; Hf\f""ﬁ}(ﬂg w, —w'dQ,
I H (€ —w,0")dS2 and . HN 0 —0, —)dS) tend to zero as N — o0 and
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so from Egn. A.3:

Jim B[ (w) - U @D W) — BN RN =0, if w#of
(A.12)

A2 Y (w) with Y3 (W)
Similarly, it can be proved that NI'EH E [(%ﬁgf,, (w)— By Hw )])(%}U) {(W)-F [%gi}; (W] =

0 as follows:

Emﬁww—ﬁwﬁ<mww<> E[H ()]

N—1 N1
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—/ HEP0; —w, =)

(A.13)

where H"" is given by Eqn. A.4.
As shown in Section A, [7 H (0w, w7d8Y, . H (0w, —w ),



130
f H(“ 2 (€ —w,w)dQ and f H?"‘(ﬁ) (§2; —w, —w")dQ tend to zero as N — 0o, s0

Jim EI(U (@) - EUG @DV ) - EA@IN =0, i w e (A1)
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where H"" is given by Eqn. A.4.
Again, [% H&P(Qyw,w)dQ, [ HEP 0w, —d0, [© BP0 —w,w)d0
and

I H§1’5j) (€2 —w, —)dQ tend to zero as N — 20, so

lim E[(Y3 () — BN U @) - EMO @ =0, i w £« (A16)

N—=oo
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A4 S© 3)( ) with A &’)( )
- iy iy

We conclude that any element in the set {%(‘}) {w), {UI( D, @R(a)), %@ (w)} with
any element in the set {%\, H( ) %5 ( ", 1?5(5):,3( ", 9(5) (W)} gives an uncorrelated
pair, where o, 5,7v,0 = 1,2,... , N; &nd w # w'. Furthermore, %}(;‘)R( ) and Y, O}( )
are Gaussian distributed V92 € Rand o = 1,2,... ,N; as N — o¢ even if the stochas-
tic process y is not Gaussian. Since uncorrelated Gaussian random variables are in-
dependent, as N — 0o each element in the set {%{‘}) (w), Y 1{w), %“ w) ( }is
statistically independent of each element in the set {7 R( ), %m( , %(é)R( ), S)I( 1
where o, 5,%,0 = 1,2,... , Ny and w # &', By using Eqn. 4.19, the following can be

obtained:

SO (W) = 9 )Y (@)
= [ ‘:UR( )%\‘)R( )"*"%Q)( )% ( )]+ [%(u)( )%\,R( ) — ‘:UR( )%(f)( ]
(A17)

(e, )

Therefore, 5%

{w) and S, f)( ) are statistically independent if o, 7, v, 6 =1,2,... | N,

w#wand 0 < w,w < the Nyvquist frequency.

..}.t’



132

Bibliography

Akaike, H. {1974). A new look at the statistical identification model. JEEE Trons-
actions on Automatic Control 19, 716-723.

Akaike, H. {1976). On entropy maximization principle. In Applications of Statistics,

P.R. Krishnoioh {(Ed.), North Hollond, Amsterdam, 27-41.

Andersen, P. and P. H. Kirkergaard (1998). Statistical damage detection of civil
engineering structures using ARMAV models. In Proceedings of 16th IMAC,

Asmussen, J. C., 5. R. Ibrahim, and R. Brincker {1997). Application of vector
triggering random decrement. In Proceedings of 15th IMAC, Volume 2, Orlando,
Florida, pp. 1165-1171.

Au, 5. K. and J. L. Beck {2001). Estimation of small failure probabilities in high
dimensions by subset simulation. Probabilistic Engineering Mechanics 16(4),
263-277.

Au, S. K., C. Papadimitriou, and J. L. Beck {1999). Reliability of uncertain dy-
namical systems with multiple design points. Structural Sofety 21, 113-133.
Beck, J. L. {1978). Determining Models of Structures from Earthguoke Records.
Technical Report EERL 78-01, California Institute of Technology, Earthquake

Engineering Research Laboratory, Pasadena, California.

Beck, J. L. {1996). System identification methods applied to measured seismic
response. In Proceedings of Eleventh World Conference on Forthquoke Engi-
neering. Elsevier, New York.

Beck, J. L. and S. K. Au (2002). Bayesian updating of structural models and
reliability using Markov Chain Monte Carlo simulation. Journol of Engineering

Mechonics 12874 ), 380-391.



133
Beck, J. L. and L. S. Katafygiotis {1998). Updating models and their uncertainties.
I: Bayesian statistical framework. Journal of Engineering Mechonics 124{4),

155-461.

Beck, J. L., B. 5. May, and D. C. Polidori {1994). Determination of modal param-

wngs of First World Conference on Struciural Control, Pasadena, California, pp.
TA3:3-TA3:12.

Box, G. E. P. and G. M. Jenkins {1970). Time Series Anolysis, Forecosting ond
Control. Holden-Day, San Francisco.

Box, G. E. P. and G. C. Tiao {1973). Boyesion Inference in Stofistical Analysis.
Reading, Mass., Addison-Wesley.

Brockwell, P. J. and R. Davis (1991). Time Series: Theory ond Methods. New York:
Springer-Verlag.

Carlson, A. E. (1999). Three-dimensional Nonlineor Inelostic Anolysis of Steel
Moment-frome Buildings domaoged by Eorthquoke Excitolions . Technical Re-
port EERL 99-02, California Institute of Technology, Earthquake Engineering
Research Laboratory, Pasadena, California.

Caughey, T. K. and M. E. J. O'Kelly {1965). Classical normal modes in damped

Caughey (Ed.), T. K. (1998). Special issue on benchmark problems. Eorthquoke
Engineering ond Structurol Dynomics 27(11).

Cox, R. T. {1961). The Algebra of Probable Inference. Baltimore: Johns Hopkins
Press.

Doyle, J. C., B. A. Francis, and A. R. Tannenbaum (1992). Feedbock Control The-
ory. Macmillan Publishing Company.

Dovle, J. C., K. Glover, P. P. Khargonekar, and B. A. Francis {1989). State-space
solutions to standard H, and H., control problems. IEEE Tronsoctions on

Automatic Control 34(8), 831-847.



134
Dyke, S. J., B. F. Spencer, P. Quast, D. C. Kaspari, and M. K. Sain (1996).
Implementation of an active mass driver using acceleration feedback control

Microcomputers in Civil Engineering 11, 305-323.

Dyke, 5. J., B. F. Spencer, I>. Quast, and M. K. Sain {1995). Role of control-
structure interaction in protective svstem design. Journol of Engineering Me-

chonics 121{2), 322-338.

Dyke, 5. J., B. F. Spencer, M. K. Sain, and J. D. Carlson {1996). A new semi-active
control device for seismic response reduction. In Proceedings of 11th ASCE

Engineering Mechanics Special Conference, Ft. Louderdole, Florido.

Field, R. V., W. B. Hall, and L. A. Bergman (1994). A matlab-based approach
to the computation of probabilistic stability measures for controlled systems.
In Proceedings of First World Conference on Structurol Control, Internolionol

Association for Structural Conirol, Pasadena, pp. TP4-13-TP4-22.

Field, R. V., P. GG, Voulgaris, and L. A. Bergman (1996). Probabilistic stability
robustness of structural svstems. Journol of Engineering Mechanics 122(10),

1012-1021.

Gersch, W. and D. A. Foutch {1974). Least squares estimates of structural system
parameters using covariance function data. Institute of Elecirical and Electron-
ics Engineers Transoctions on Automaotic Control AC-19(6), 898-903.

Gersch, W., G. T. Taoka, and R. Liu {1976). Structural system parameter esti-

mation by two-stage least squares method. Journal of Engineering Mechan-
ics 102{5), 883-899.

Ghanem, R. and 5. Sture (Eds.) (2000). Special issue on structural health moni-
toring. Journal of Engineering Mechanics 126{7).

Gull, S. F. {1988). Bayesian inductive inference and maximum entropy. Mozimum
Entropy and Boyesion Methods (Ed. J. Skilling), Kluwer Acedemic Publisher,

Boston, 53-74.



135

Hoshiya, M. and E. Saito {1984). Structural identification by extended Kalman
filter. Journal of Engineering Mechonics 110{12), 1757-1770.

Housner, G. W., L. A. Bergman, T. K. Caughey, A. (. Chassiakos, R. O. Claus,
S. F. Masri, R. E. Skelton, T. T. Soong, B. F. Spencer, and J. T. P. Yao
{1997). Special issue on structural control: past, present, and future. Journal
of Engineering Mechanics 123(9).

Irfanoglu, A. and J. L. Beck {2001). Optimal structural design under seismic risk us-
ing engineering and economic performance objectives. In Proceedings of 1C0S-
SAR’01, Newport Beach, California, USA.

Ivers, D. E. and L. R. Miller {1991). Semi- Active Suspension Technology: An evo-
luttonory view. Advanced Automotive Technologies, ASME Book No. HO0719.

Iwan, W. D. and L. D. Lutes {1968). Response of the bilinear hysteretic system to

stationary random excitation. Journal of the Acoustical Society of America 43,

Iwan, W. D. and L. J. Wang (1996). New developments in active interaction control.
In Proceedings of Second Internotional Workshop on Struciural Control, Hong
Kong, China.

Jaynes, E. T. (1983). Papers on probability statistics and stotistical physics (Ed. B.
Rosenkrontz). Reidel, Dordrecht.

Jetfreys, H. (1961). Theory of Probobility (3rd edition). Oxford Clarendon Press.
Johnson, E. A., B. I. Spencer, and Y. Fujino {1999, March). Semi-active control of

cable vibration. In Proceedings JSME Dynomics and Design Conference, Chiba,

Japan, pp. 153-156.

Johnson, E. A., P. G. Voulgaris, and L. A. Bergman {1998). Multiobjective optimal

structural control of the notre dame building model benchmark. FEorthquoke

Katafvgiotis, L. 5. and J. L. Beck {1998). Updating models and their uncertainties.
IT: Model identifiability. Jouwrnal of Engineering Mechonics 124(4), 463-467.



136
Katafygiotis, L. S., C. Papadimitriou, and H. F. Lam {1998). A probabilistic ap-

proach to structural model updating. Soil Dynomics & Eorthquoke Engineer-

Kobori, T., M. Takahashi, T. Nasu, N. Niwa, and K. Ogasawara {1993}, Seismic
response controlled structure with active variable stiffness svstem. FEarthquoke
Engineering and Structurel Dynomics 22(11), 92-941.

Krishnaiah, P. R. {1976). Some recent developments on complex multivariate dis-
tributions. Journol of multiveriete anolysis 6, 1-30.

Kullback, S. (1968). Information Theory ond Stotistics. Dover, Publications Inc.,
Mineola, N.Y.

Lin, Y. K. (1976). Probobilistic Theory of Structural Dynomics. Robert E. Krieger
Publishing Company, Malabar, FL.

Loh, C.-H. and S.-T. Chung {1993). A three-stage identification approach for hys-
teretic systems. Farthquoke Engineering ond Struciural Dynomics 22(2), 129~
150.

Loh, C.-H. and Y.-H. Tsaur {1988). Time domain estimation of structural param-

Lutes, L. D. and S. Sarkani {1997). Stochastic Analysis of Structurol and Mechonicol
Vibrations. New Jerseyv: Prentice Hall.

Mackay, D. J. C. {1992). Bavesian interpolation. Newral computodion 4(3), 415-447.

Marrison, C. I and R. F. Stengel {1995}, Stochastic robustness synthesis applied
to a benchmark problem. Internotional Journol of Robust Nonlineor Control 5,
13-31.

May, B. S. and J. L. Beck (1998). Probabilistic control for the active mass driver
benchmark structural model. Forthquoke Engineering ond Structurel Dynom-
ics 27(11), 1331-1346.

Natke, H. G. and J. T. P. Yao (1988). Proceedings of the Workshop on Struc-

tural Safety Fvoluotion Based on System Identification Approoches. Wiesbaden:



Vieweg and Sons.
Paganini, I'. (1996). Sets and Constrains in the Anolysis of Uncertoin Systems.
Technical report, Ph.D. thesis, California Institute of Technology.
Papadimitriou, C., J. L. Beck, and L. 5. Katafvgiotis {1997a). Asymptotic expan-

sions for reliability and moments of uncertain systems. Journoel of Engineering

Papadimitriou, C., J. L. Beck, and L. 5. Katafygiotis {2001}. Updating robust
reliability using structural test data. Probabilistic Engineering Mechonics 16(2),
103-113.

Papadimitriou, C., L. S. Katafvgiotis, and S. K. Au {1997h). Effects of structural
uncertainties on TMD design: A reliability-based approach. Journal of Struc-
tural Control 4{1), 65-88.

Peng, C. Y. and W. D. Iwan (1992). An identification methodology for a class of

hyvsteretic structures. Eorthquoke Engineering ond Structural Dynomics 21(8),

Pi, Y. L. and N. C. Mickleborough {1989). Modal identification of vibrating struc-
tures using ARMA models. Journol of Engineering Mechonics 115(10), 2232~
2250.

Quek, S. T., W. P. Wang, and C. G. Koh (1999). System identification of lin-

ear MDOF structures under ambient excitation. Earthquoke Engineering ond

Roberts, J. B., J. F. Dunne, and A. Debonos (1995). A spectral method for esti-
mation for nonlinear system parameters from measured response. Probobilistic
Engineering Mechonics 10{4), 199-207.

Roberts, J. B. and P. D. Spanos {1990). Rondom Vibration ond Stotisticol Lin-
earization. Wiley, New York.

Safak, E. (1989). Adaptive modeling, identification, and control of dynamical struc-

tural systems It Theory. Journol of Engineering Mechanics 115{11), 2386-2405.



138
Sato, T. and K. Takei (1997). Real time robust identification algorithm for strue-
tural systems with time-varyving dynamic characteristics. In Proceedings SPIE
4th Annuol Symposium on Smort Structures ond Moteriols, Bellingham, pp.

393-404.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of statistics 6{2),
461-464.

Shi, T., N. P. Jones, and J. H. Ellis (2000}. Simultaneous estimation of system and
input parameters from output measurements. Journal of Engineering Mechan-
ics 126(7), T46-753.

Sivia, D. 5. (1996). Dota Analysis: A Bayesion Tutorial. Oxford Science Publica-
tions.

soong, T. T. {1990). Active Structural Control: Theory ond Proctice. Wiley, New
York.

Spencer, B. F., 5. J. Dyke, and H. 5. Deoskar (1998). Benchmark problems in
structural control: Part I-Active mass driver svstem. Earthquoke Engineering
ond Structurol Dynomics 27(11), 1127-1139.

Spencer, B. F. and D. C. Kaspari (1994). Structural control design: a reliability-
based approach. In Proceedings of Americon Conirol Conference, Baltimore,
MD, pp. 1062-1066.

Spencer, B. F., D. C. Kaspari, and M. K. Sain {1994). Reliability-based optimal
structural control. In Proceedings of Fifth U.S. Nationol Conference on Eorth-
quoke FEngineering, EERI, Oakland, California, pp. 703-712.

Spencer, B. F. and M. K. Sain {1997). Controlling buildings: A new frontier in
teeback. TEEE Control Systems Magoezine on Emerging Technology 17(6), 19~

Stengel, R. F. and L. R. Ray {1991). Stochastic robustness of linear time-invariant

control systems. IEEE Transoctions on Automatic Control 36{1), 32-87.



139
Vanik, M. W., J. L. Beck, and 5. K. Au (2000). A Bayesian probabilistic approach
to structural health monitoring. Journal of Engineering Mechonics 126{7), 738~
745.
Veneziano, D., M. Grigoriu, and C. A. Cornell {1977). Vector-process models for
systern reliability. Journol of Engineering Mechanics 103(EM3), 441-460.

Warburton, G. B, and E. O. Ayvorinde (1980). Optimal absorber parameters for

Yaglom, A. M. (1987). Correlotion Theory of Stotionary and Reloted Rondom Func-
tions. Springer: Prentice Hall.

Yuen, K.-V. {1999). Structural modal identification using ambient dynamic data,
MPhil thesis. Technical report, Hong Kong University of Science and Technol-
ogv, Hong Kong.

Zeldin, B. A. and P. D. Spanos {1998). Spectral identification of nonlinear structural
systems. Journol of Engineering Mechonics 124(7), 728-733.

Zhang, Y. F. and W. D. Iwan {2002). Active interaction control of tall buildings
subjected to near-tield ground motions. ASCE Journal of Structural Engineer-
ing 128(1), 69-79.

Zhou, K. K. and J. C. Doyle {1996). Robust and Optimal Centrel. Prentice Hall,

New Jersey.



