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An snnlytical method ie developed in detail whereby it is veossible
o calculate, with arbitrary accuracy, the temverature, the stresses, and
the residual strsins as a function of the radial position and time indncéd
in an infinitely long solid isotropie cylinder by a quench in a large
body of fiuid, =ssuming that 21l of the pertinent parameters are knowm

{graphical) functions of the temperature.

In the course of this development, a genernl theory is presented
whereby it is theorsetically possible to predict the atresses and the re-~
sidual strains in an isotropic body at any time during a thermsl snd me-
chanical history if the following very general assunptions are satisfied.

1) The temperature and the boundary conditions are known functions
of the position and time and the free thermal expansion is s known func-
tion of the temperature.

2) There are values of E, G and 7/ which are known functions of
the temperature and which relate, through Hooke's Tinw, the changes in the
atrosses with the changes in the strains which occur if the siresses are
removed from an infinitesmal element of the body.

3) There ie =2 theory of strength available which either wredicts
the maximum stresses which the material can sustain, =8 a2 function of the

temperature and the past hietory, or which predicts the plastic strain
rates as a function of the sirssses, the temperature and the past history.

Selecting the values of the portinent naramstaers from the literature,
= numerieal ealeulation of the residual stresses 18 made for a snecific

coze of a quenched sclid eylinder. The results are compared with experi-

mental values for the same c¢ase determined by other investigators.

The devslopnrents for a solid cylinder are extended %o a hollow eyline-
der and a flat plate. Various suitable theories of strength are consid-
erad, The modifications to the general theory and the additional infor-

nation required if a phuse change is involved are briefly indicated.
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IHTRODUCTION

The problem of residusl stresses is receiving increased interest due
to the important influence residual atrellei sometimes exert upon fatigue
strength and dimensional stebility. The gradusl industrisl acceptance of
the techuniques of shot peening, surfaece rolling., colining operations neap
0il holes and carburizing to achieve surface residual compresasive stresses
is evidence of the value of favorable residusl stresses upon fotigue pro-
perties. Ths techniques of auto-fretitage for gun barrels and over-gpeed
for turbine rotors inecreszse the dimensional stability and effectively
increase the strength of the parts through the formation of Tavorable
residunl stresses. The utilization of the most common source of residual
astresses -~ quenching - is, however, conspicuously absent from the fore-
going list. This may be attributed largely to = lack of appreciation of
the fact that surface residusl compressive stresses of yield point mug-
nitude may be induced in steel, under favorable conditions, by a quench

from tenpering temperatures.

Existing knowledge of the disposition and magnitude of residual
stéaasea resuliing from guenching is based largely upon experiments] de-
terninations resnlting from appropriately cutting up the specimen and
noting the distortion which occurs, or. more recontly..by X~ray methods.
Reliabla experimentsal determinations of three dimensional residusl stires-
ses have been made only for the case of & long cylinder vhere the residusi
gtresses ere symmetrical and independent of axial position. In this case

the borinz out technique of Sache (1) is mathematically accurate. Using
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Sunehs' fechnique, several sxperimenters, notebly Iuhier and his =sssoclates
(2}, (3)s {B); Vishart and Potter (5); and Horger and Neifert (6), have
determined the residunl stresses in long steel eylinders of varicus compo-
gitions resulting from aumenching from above and below the austenite range.
A summary of other methods of prerimantally estimating the values sf
residusl stresses is given by Barrett (7) and Sachs and Zapey (6). She
tyoe of residusl siress determined in the foregoling references must be
figtingulshed Trom the "tessellated® stresses, estimated by Laszlo (9),
which are set up within the individual structural elemenis, s.z. pesrlite,
graphite~in-ferrite, and etc. when they are heated or cocled. The former
nay be-considerod to be the avernge, or "macro®, streesses which sre super-
imposed upon the "tessellated" streeses. In this thesis, the asssuuptions
of isotropy and of the dependence of the physical preperties wpon tempera~

turs immediately remove all considerations of "tessellated” siresses.

Although the foregoing discussion indicates the desirsbility of the
development of an analytieal technigue for computing the residusl stresses,
resulting from ; quench, even if limited to simple bodies, there has been
no full acale nitempt. prior to this thesis, to develop the necessery
techniques, Russell (10) caldulated the tsmperature versus time in a
eylinder subject to an infinite guench, sesuning that the conductivity
and the thermal diffuuivity were constent. His caleulation is of vartic-
ulsyr interest because an approach to the problem of including the effects
of a phase chgpga is introduced, EHe then sttempted Yo calculate the sires-
ses due to this temperature dlst;ibution, assuming that no yielding

sccurs, and using & constant value of the coefficient of thermsl expansion
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and variable values of % and 7/, His equations for the stresas ave,
however, incorrsct in that several terms regquired by the variation of =
and & are neglected. Trerpschuh {(11) obtained experimental valuss of
the temmerature distribution versus time for s cylinder guenched from the
sustenite range. He then sssumed that the strese level in the cylinder at
the completion of the phass change was 28ro, and ealeulated the reaidual
stregses on the asesumption that they were caused bylthe differsnce in

thermal expansion batween the completion of phase change and roosm temper-

ature,

The specific purpose of this thesis is the development, in a form
suitable for numerical solution, of an analytical method for the determi-
nation of the temperature, the reeidual (or plastic) strains and the true
sbresses as a function of the position and time and for the determination
of the final residual siresses induced in an infinitely long solid isntro-
vie eylindsr by symmetrically auenching it in a large body of fluid.
Widthin the limitations of the accuracy with which the conditlions tabulnted
below are satisfied, a semi-graphicsl finite difference method is developed
which, as the steps in position and time are decreased in size, approaches

the exect solution to the problem.

1) There are volues of the thermal conductivity and of the thermal
diffusivity which are kmown {graphical) functions of the temperature and
there i3 a boundary layer conduetivity which ¢an be represented =as a2 known
{zravhiecsl) function of the surface tenmperature of the cylinder.

2] The free thermal exvansion is a Ynown funcition of the temnera-
ture. There are values of the elastic cossfficients, ¥, G, and 1/ which
are known functions of the temperature and which related, throusgh Hooke's
Linw, the ¢hanges in the stresges with the chanzes in the strains whieh
occur if the stressas are pemoved from an infinitesmal element of the body.
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3) There is a theory of strenzth available which either wredicts
the maximan stresses which the material can sustain, as a function of the
temperature snd the past history, or which predicts the plastic strain
rates as o function of the stresses, the tempsrature and the past history.
For purposes of illustration, the method is epplied %o a apscific case of
a guenched eylinder. The values of the pertinent parameters are selected

fron the literature and the charscter of the numerical colculations ia

iliustrated.

The general purpose of the thesis is the extension of the foregoing
develouments to other cnses and, us indicated in the abstract, the devel-
opment of é.;ancral theory whereby it is theoretically wnossibla, under
very general assumptions, to predict the stresses and the residual (or
plastic) strains in an isotropic body at any time during a thermal and

mechanical history.



The devaloument of an analytical method for the prediction of the
residual stresses induced in an infinitely long s6lid isotropic eylinder
by a symmetrical guench in a large body of fluiéd, sssuming that 21l of

the pertinent perameters sre known {graphiesl) functions of temmersturs,



CHAPTER 1

This chnpter will be devoted to the development of 2 senizrevhical
nethod for the nrediction of the teapersture as n function of the radial
position and time in an infinitely long -solid isotropic cylinder, rasuli-
ing fron s symnetrical guench in = large body of fiuid., It will be
sgauned that the houndary layer conductivity is s known {grechical) func-
tion of the gurfrce temparnturs of the cylinder. Thie is not a resirice
tive cssumption in the sense that, in any specific case, any other
naraneters which influence the bouncary layer conductivity mey be intro-
duced as functions of the surfres temperature of the eylinder. ‘lhe
thermel conductividéy and the thermal diffuslivity will be ~ssumed %o be

¥nowun {graphicsl) functions of temperature.

vhe fellowing notztion will be used in this chapter:

Let: v b2 the radius to any noint. em,
ry  be the outer radius of the cylinder. Cl.
x be the radial position parameter = r/ry cm./en.
be the temperature =t ~ny point r. 0.,
Eﬂ be the bulk temperniure of the fluid. BE,
t be the time. gac,
Y be the thermsl conductivity, cal./em. sse. °C.
P be the specific weigzht. gm.!cm.3
e be the specific heat, eal./gm. °C.
a- be the thermsl diffusivity I k/ c_. cm.”/sec.

2
h be the boundary layer conductivity. cal.fem. s2e. °C.



The differential esuation of heat flow in eylindriecnl eoerdinntes,

assuning that the temmerature is & function of ths radial noesition and

time only, will now be deprived,

Congider a rinz of unit lenzith, inner radius

r+ dr .

The rate of heat entering the ring from the inner radius

equals the rote of heat storsze in the ring plus the rate of heat

leaving across the outer radins r + &r.

rabte of heat entering

rate of heat lsaving

The rate of heat storage

]

r znd outer radius
r
-2T rk g—I col./en. sec.
T S d e 2
-n["h g_r_' + é?(i'k a'—.E)dr] ;_,--;1.,"63:!. bvcc
oT " _
ZTf t‘dl‘pcps—f cal, fﬂmc S8,

Dguating these heat ratss, as stated above, and simnlifying the resuld,

zivas the following equstion for heat flow in c¢ylindrieal conrdinsiest

(1)

{Ta. 1)

boundary condition which the solution teo

|
r

[+

S0

eprlies to the interior materisl

oT

<
Q-
—

|

)k

a

I

-
[e¥]
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} “c./see,

of $he cylinder, The

(Zq. 1) mast match at the

gurf-ce of the cylinder, will now be developed.

An instantaneous boundery layer conductivity h  is defined such

that the rate with vhich heat passes from the surisce of the cylinder

into the suenchinz fiuid per unit length of the cylinder is given by?



~ Tk h(T - T,) ral./em. sec.
:‘":I‘I‘ :
This rate of heat flow through the boundery layer must equal the rate of
heat flow through the material of the eylinder at the surface of the

eylinder. This latter heat flow rate is given byt

~zmh (k 21) -

Zguating these heat flow rates, as stated above, results in the fundamen-

tal boundary condition equation:

Q.

o :-—/LT—':'Z,
(2) ey, = ")

[+

(%a. 1), (%q. 2} =and the initial conditions (temperature versus
radial position at the start of the guench) define the temperature pro-
blem, However, since %k, a and h are assumed to bs known (zraphiesl}
functions of the temperature, thoa§ souations are nonlinear and it will
be nacessary to solve them by » semigraphical finite diffesrence technigue.
The remainder of this chapter will be deveted to the development of this
technique. V. T. Schmidt (12) demonstrated a graphical technigue for
solvinz this set of eguations wvhen a and k are assumed constant and
the development which follows will be an original extension of hie tech-
nique to cover the cage of varisble a and k.

The finite difference fornm of (¥g. 1) will now be derived, The

steps which follow are required for this derivation,
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The time t 4is divided into intervals At,1 {not necessarily eaual),
the end of emch intervsl being distinguished by the subserintst €, 1, 2,

curees J=l, Js d+Ls c.eeee Tha value of t a2t the and of the kith

interval will then bet t, = Zz:tj

The radiug is divided into n equal intervals Ar (vhers nar = rl},
the center of each interval being distinguished by the subseriptst °,

}.'}l-;" 2'71:" eve 68 e m"?.g Me m'!"?.-g cecone 31":':'-

in terms of this notation, the following spproxinmations may be madel

AT o Tmjm = Tmyj
¥ = aT;,,
aT
,l——-
Y (m+5)Tm+1;=Tmj)

"Sk "'=(h—z’§]m,.g (m %) (T j =Tm=,)

o g f
el F"a—(r cEglr--‘) - m(a/rJI (’" Ha)ye, =Ry + O, |
oF rzmar !
o | ’
= @M -(.Tmﬂj -ZT»}J'*T *LJ)"'Z_";;(T”“,’J- "Tfn-j.j)]
T -
=25, o 7
3k F=map 2@ar) (T”'Hlj‘T""ES)
3T ~ /
F = 2t ey =1
gy 20@8 e i)
L odH aT & _r
Hoar R e QPR 4 oy (Hmes =t 1) (v | ~Tm-1,5)
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In terms of these approximetions {when the radial position is
mensured in terms of the parameter x = r/’rl) {Zq. 1), for heat fiow
in eylindrical coordinates, may be written in the following finite

difference form:

29 rry, At; A4
{3) mJ‘H r Zd (AXYZ) ifl:(T‘"*LL\- ZT'"/ 3 +Tm-IJJ)

—"rﬁ(rw,s“'rm*‘,i )] §'—K- ( K 1)(1:"*51 T""‘A)

With the equation for hest flow in eylimdrilesl coordimstes wribbe
in the finite differonce form of (Zg. 3, the development of = semi-
zrophiecsl technique for the solubion 6f the temperature vroblem proceeds
from the demonstration thet there is n graphicsl construction, first
develoned by V. B, Schmidb (12). u"aa.cw gives the value of the follawing

term of (Zq. 3)t
I \ 3
2 [(1;‘*';;\—21-‘1’53 +—]:n-}‘_\)+ Zm (T""*‘h'a _Tm~53 ]

To carry out this demonstration, consider the following zraphical

conasbtruetion and development:

loq [(\‘n-l)ﬂx] ,l
\oq [mAXj

\oq E\'n-yﬁ AK]_ - }!
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It will now be shown thst the distance ¥y in this construction ie
approximately equal to the desired term. By the vrineiples of geometry,

the distsnce y Dbecomes:

- - log, — log,, [(m-1)
gy = (Tmﬂ + 3) 910 [max] = log, [(m-Nax]

b m-) lag,, [(hm)ax] _ l"ﬂ;u[(""")ﬂ"} - (Th.“ —TM-LJ)

J

\0510—”% T )
|°3|° eay mxi,) T ome i) T (T m sJ)

m =~/

The series expansion for the logarithmic term ist

m TR
log,, M-~ B ('n‘-T"‘" mx ¥t ) R P BRI S SR

Mgl A ] = 2 " 4m " am3 180,sT T
Vol T ;(n,+§aa+é;r+n—d 4m i m

On neglecting the third snd higher order terms this beconest

|og.°'.$E*n_, _l_(l__l__)
03 my T 2 2m
[T

Using this value for the logarithmie function, the distmnce y Teconess

J = —';.-[(TMH ZTH’IJ m |j) + ‘Z.rn(T\'ﬂ'H; - IJJ)]

This - is the value of the roqﬁira& term of (%g. 3).

Since the graphical construction juet developed uses 1eg101 for the
radial position parameter, the further development of a semigraphical
mathod for the solution of the temperature problem requires thal the

boundary condition, (Bq. 2) , be expressad in terms of this variasbdie.



“his may be done by noting that:

AT I 9T

at | o = Llaye. 2l
I(logx)  dx vel X 3 I(log,2)

X

X=1 X =

{(Tge 2} o therefore, becomes:

Y | _ _ Kh .
U a(_‘og‘g) x:l— "”og'g (T T;)) L

The complete development of o semigraphical technique for the gol-
ution of the temperature problem may now be made most easily by referring
to (Fig, 1). Uhile this represents a specific example, made with n = 5
or Ax = 0,2 , the technique is general. ‘i'h'e first step is to select a
value of At such that the function Eam.ddt_frlg(dx}z has approximately
the value 1.0 for the range of temparatui‘es which will be encountersd.
Values of this function which sre less thon 0.5 mnake the solubion une
necessarily tedious, while values in excess of 1.5 may result in poor
convergancé due te excessive magnification of any graphiecsl or difference
equation approximebion errors. This function is then plotted on the
right, a2s shown in (Figz. 1), to the same scale of tempersture 2s is used
for the temperature distribution. The thermal conducﬁivity. k and Bk

gre plotted on the right in a sinmllar manner,

The value of the function:
s : e s
2 [( TmHJ:‘ “ZTml; +Tm_.J;,) * 7m (Tmﬂ);, Tm-n):-,) :|

is then obtained for svery value of m by applying the graphicszl const-

= \Oﬂfoe 3@) .

i



sy

EELYROTS

MN UN of =
uw_.w il SLo o5 11_bo Lo S0 £0 ro 9
\
” |
\
]
1
N
N aik
! \
! \
r V
2 ]
t N
) =
w o
L
g
!
r, Az, P rz, z z
\.\ﬂvx i _ B I Bl \uﬂ g .NM\_NMNWJW& N ¥ “TIMNI,w .«ML,N.W
A9 gy e
g Y ¥y
! |w.wl.\ L. o ! o~ ! -
¥epuby 0] sajbog P[Jbling i %0y o e X % bo; it 57
() pur (2) suoiyonbz Buirjog soyg poyyal  fedrydosb— 1wag



. =10~

ruction developed on pege 6, »nd indlcated for one value of = by the
dotted line in (Fig. 1). lote that for m = &, the value of this func-
tion is chtained by drawing o horigental line from the temperature st
m =z 1%, and thet for m = n-H , the value of this funection is obtained
from the neighboring points, one of which is in » fictitious layer at

= distance 4x/2 beyond the surfzce of the cylinder.

The value of the function:
|
8K (H"‘*‘;J - K"’"J)(Tmﬂ' T
mj 4 vl o

is then obtained by earryinz out the indieated operations upon the vslues

of Tm—l.‘! . Qn-l,‘] » the corresvoniing valuee of k k and

mel, 3 ' Tm=l,§ °

the value of Bkm {(corresponding to T 1) which are read directly

v J
from (Figz. 1),

ihe sum of these two functions is then multiolied by thes correspond-

~ ”~
ing valu=s of 2a At _/r "'(mr:)"‘f s which is also read dirsctiy from
m' J J+1 1

{Fig. 1), This results in the increment of tempersture durinz the inter-

val M,j+l:

24, : At.i*l ) I
{3} Tm,,gﬂ_Tr% = ( r;T (ax)? z (Tm+L3_zTn3j +Tm-;Jj)
! - I
+ ﬁ(-‘;'"ai T'."‘Jﬂ +§FMJ(KMHJJ_KM-IIJ )(Tmn,j_ Tl;‘l-c,))

This increment of temperature 7T m g is then added to the exist-
", 3

-7
my J+1
ing temperature Tm.,j , for every value of m from m= » to M= n=-1,



ziving ths tenpsrature U ab the end of the succesding time inter-

Ty J41
vnl for the interior wpoints of the cylinder.

“he temperaturs abt the surface of the cylinder is then determined by
drawing » siraight line from the point T | - in such 2 manner that
=y 34
it intersacts the surface of the cylinder with a slope which satisfies

the boundary conditiond

X =l

3T _ _ _nb _
{1} a(l"ﬂ,g‘) . = H“oﬁloe) (T To\

Yhen h is sngsumed to be & known funcbion of the surfaces btempsrae-
ture of the cylinder, (Za. 4} may be satisfied by the application of
the steps which follow., These steps are illustirated in (Fig. 1) for

the temperature distribution at the time tj P

“he function ¥k logloe/rlh ic vlotted ns = distance from the surface
of the cylinder versus btempernture, where the unit of lanzth is the

lenzth of one cycle of ths 108101 scale,

A straight line is then drawn from the point T 9" in such a
manner that it intersects the datum temperature line fo‘ at a distance
k 1°g10°/r1h from the surface of the cylinder., By the principles of
geometry, the slope of this line st the surface of the eylinder ia ziven
by (Ta. b) . Referring to (Fiz. 1), it is evident that, in spite of
the interrelationship between the intercept distance and the surface

temper~turs, this line is readily drawn with the 2id of a little graphi-

cal trial and error.
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The intersection of this lins with the fictitious surface, Ax/2
from the true surface of the cylinder, is considered to be the temper-

anbture » which is required in the succeedingz csleulation for the

?
B+-}‘. J

determination of ¥

n=%, 341

The technique renuirad to detsrmine the temperature distributisn at
the tinme t*+Atf+1 s Trom the tenparature at the time tj » has now bhsen
indicated, For the determination of the temperature distribution at a

later time, the calculation le merely repsated until thet time is rsached.

The development of a semigrachical msthod for the prsdiction of the
temper~ture ag & function of ths radial position and time, in an infin~
itely long solié isotropic eylinder resulting from a symmsetrical cuench
in n large body of fluid, mry now be considered complets, excent for =

discussion of come minor points in the utilization of the method.

The labor involved in cerrying out o numerical solution will be g
minimam if the number of intervals n inte which the radlus is divided
is kept as small a8 is consietent with the required accuracyt! +the number
of poinks at vhich the temperature is determined, 2 rough measure of the
labor inveolved, is vroportional to the cube of n , This means, in
zeneral, that it 1s desirable to decrease the value of n 2s the solu-
tion progreases and the temperature dlstribution becomes less irregular,
To change the value of n to n'!, draw a smooth curve t&rough the last
values of the temperatures ?m.j and consider that the intereections of

this curve with the new intervals define the values of Tm, 5" which
- L B

will bhe nsed in the econtinued eslculation.
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The technique developed for the determiantion of the temneraituve
distribution in the interior of the cylinder is nuite general and m@y he
edapted for use with completely different boundary conditions. A¢ long
a8 the heat flow through the surface of the cylibder is n known function
of the surface temnpersature and, or, time, the nreblem may be salved, Ior
example, if the cylinder were hsnted by radistion, the bhoundnry conditions
mizht be of the form!

ST a 4 T4
ar r:",'"'-= -T(T “TO) P=iz

where A is a function of ths emissivities and To is bthe temperature
of the radiating body. Another example, which could be handled, would be
s ouench into a smaell body of fluild, where the bulk temmersiurs of the
fluid To is a function of the time integral of the hesat flow ncross the
surface of the cylinder, and where the boundary layer conductivity is a
function of this bulk température as well ag the surface temperature of
the eylinder. To recapitulsie, =ny boundary condition which in » cnlcule
able manner determines the rate of hseat flow through the sarface of the
cylinder may be used with the technigues developed in this chonter to

deternmine the temvernture as a2 function of the radial positlion znd time.

A comnletely different type of houndary conéition, which ecould be
handled, is that of recuiring the tempsrature at some point in the bedy,
preferably near the surface, to be 2 known function of time. This tyme
of boundary condition is the most ;atisfactory for an aectual physical

ca3e where such a temperature csn be experimentally determined, gince it



G Fe

sliminates 2l) of the errors inherent in the assumption of Lhie valuse of

ke boundery layer conductliviby,



CHAPTER 11

"This chapter will be devoted to the extension of the homogensous-
iﬂq%rnpic theory of elasticity to include the effects of thermal éilation,
residual strain and the variation of vhysical propsrties with unosition
due to temperaturs (or othér) effectes. The basic assumpntion used ia that
tgqrs are values of Young's Modulus T and Poisson's Ratio o which sre
unique functions of the tempersature (or of position and time) only, and
which relate, through Hooke's Law, the changes in strain with the changes
in stress which occur in an element of the body if the siresses are

B %
removed from that element of the body bhut no other changes take nlace.

The development will start from the unchanged enuations of eguil-
ibrium and compatability and will proceed, through the use of the concentis
of "straines caused by stresses” (in the unloading sense of the basic
assumption), "strains of thermal dilation" and "residual strains®, to a
modified form of Hooke's Law which relstes the stresses to the total
atraeing. The equations of eguilibrium, compatability and thie modifiad
flooke's Law, tozether with the boﬁndary conditions, define 2 unique stress
solution in terms of the thermal éilation and the residual strains. I%
;111 then be shown that this sclution may be divided up into stresses due
to the thermal dilation, stresses dus to the boundary forces and stresses
due to the residual sirains. In Chapter IV it will be shown how stresses
due to the first two factors, with ndditienal information in the form of
2 theory of strength, may be used to determine the values of the residual

strains as a function of position and time,



Let:

The following notetion will be used in this cheplers

E be Tounz's MHeduluns for unleading.
Y ba Foliaesena Batio for unloading.
e =2 f 201 ¢+ V),
X»2 Vo 2 ba ractanzular coordinntes,
T&. q;. q; be the normal streszass.
vy t&z. ﬁ;x bs the sheor siresses.
o, U, u be ths cemponents of dispiscement of a peind.
x
¥y ]
EI. ey. €, be the normal strains,
K;y. g . be the shear strains,
eg. e;; Gg— be the normnl strains coused by sitreaeses.
[\ T T
!xy' ;&z' ‘éx be the shenr strains csused by stresses,
e;. ;. e: be the residusl normal strains.
o -] o
Xxy' sz. Vu be the residusl shear strains.
e? be the linear conmponent of the thermal dilation,
$, 8, 8  be the components of the surfsce forces per unilt
- g % surface aren.
L. RY. L, be the directinn cosines of the external normal
- : to the surfnce of the body at $he »oint under
considerntion.

The subscript 1 refers tc stresses, displacements =nd strains
due to thermal dilation.
| The subseript 2 icfera to stresses, displacemente and strains
due to boundary forces.

The subscript 3 refers to stresses, displacements and strains

due to ressidual stralns.



The esjquations of egullibrium ars well known® »nd, assuning thai

there are no body forces, may bs written in the following form:

3G , My ., atax -
I x ¥ EX] # 3z g

aly ATy Aluy
ay + Jd=z + Ix = @

0z , ITex , 3y _
32 T ax Yay 0

If the boundary conditions are introduced as known forces on the

surface of the body, they may be written in the follewing form:

Tx 2x +‘r¥y Ly +Tzx 82 =Sx
q_y ‘QY +‘ryz Rz.-i-‘t'xy x = Sy
2% + Tzxfx +T,Jyz 2)/ =Sz

Within the limltations of small dienlacements, as used hy Timeshenkof

the equetions nf compatability mey be written in the following form:

. The development of the eguations of equilibrium, compnbicility, =nd
the ordinary form of Hooke's Low, the techniques for eliminsting the dis-
placenents and the strainsg from the enuations, the proof of the unigue-
nees of the stress solution and etc. are given in Timoshenko, "Theory of
Dlastieity?, The reader is referred to this text as a background for

this ehapter,
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_ QUux _ dUx Uy
x™ Sx KX)!- dy LT

_ Uy _ Quy bz
€y~ 3y K)’-‘ 92 T dy

=1 _du u
€5 N P

In thess equations it is ossumed that the displacements are small guani-

ities varyinz continuously over the volume of the body.

If 4t is possible to relate the stresses to the sitrains, thers will
be a unique stress solution which satiefies the equations of equilibrium
and compatibility and which matches the boundary conditions. THooke's
Law, as it 1s ordinarily presented, relates the stresses toc the siraing
when B and 7V are assumed to be constant and there are no thermsl
dilation or residual strain terms. In the following section, o modified
form of Hooke's Law will be developed which will include these factors.
This development will proceed from the definition of the following con-

ceptet "etrains caused by siresses”, “atrains of thermal dilstion”,

and "residual strains®,

In defining the concept "straine caused by stresses”, 1t will be
nesgessary tc_generalise Hooke's Law by the understanding that £ and V
are variables of vposition snd time but are not functions of the agiress
level, and it will be necessary to restrict Hooke's Law by defining
Pstraing caussed by stresses? in such o menner that yielding or cresy

do not affect it's validity,



~19~

The strains coused by the stresses sre defined to be the negative of
ths changes of the strains wgich would sppear if the stresses ware
removed from an infinitesmal elament of the body, but all other condit-
ions were kept constant. it will further be assumed that there are known
values of ¥ and V , which sre unioue functions of the temeraturs only
{more generslly, which sre unigue functions of position and time, but
which sre independent of the stress level), which when put into the follow-

ing egquations will proverly relate the sirains and stresses degeribed

above,
o _é [u; (T +6)] Xxyz -cl;- T,y
e = gl @ +33) ] K== & Tyz
el = % V@) Gox= 5 L
In these equations é;. e;. é: and K;;. 8;;. X;; are the negzative

of the changes of the strains which would sppear if the stresses, r&.
W&. 7 and 'ny. ?;z‘ T;x were removed from an infinitesimal element
of the body, but all other conditions were kept constant. ¢ is defined

to bet G = EBf2{1+Vv).

The concept of "strains of thermal dilation® may be illustrated in
the following way. Consider an infinitesmal element of the body, from
which the stresses have been removed; in general it will not lhave the
gsame volume as 1t had in the originsl state, The strains which result

in this volume chanze mre defined to be the "strains of thermal diiation®,
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and will be denoted by:
T T T T
EX':E-)’=EZ=E xxy:. Xyz:b’zx'_-.o

Only one symbol, &' , is necessary to describe these strains, since they
are the linear componerte of a volume changse and sare, by the assumption
of isotropy, vresumed to be equal in all directions. I% will further be
assumed that the value of € is a known function of the temperaturs

only (or more generally, of wosition and time only). In the literature,
this term is commonly spproximated by e =ar s where A is the coel-

ficient of linssr thermal expansion.

The concept of “residual straine® may be illustrated in the follow-
ing way. Consider an infinitesimal element of the body, from which the
atresses have been removed; in general the element will not have the sanme
.shape as it had in the originsl atate. The sirains which are responsible
for this change of shape will be defined to be the "residual strains®,
Thesa strains corrsespond to the amount the element has yielded during it's
past history, and are sometimes called plastic strains or permaﬁent
strains, Strains of thie type will be denoted ae followss

8

= 5;-- E:v and a';yv rg,zr

¥ox

It will be assumed that these strains do not change the volume of the

elenent, f.0,:

S o) -
el tey+rel=o0
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These concepts will now be synthesized into a modified form of _inole?

‘Low which will relaste the stresses to the strains, when residual sirazins
and thermal dilation are present. The strains actually present in the
body coerresponds to the sum of the three typss of strains defined in the

previocus prragraphs, It is possible, therefore, to write the following

equntions to replace the ususl form of Hooke's Taw:

€z efreTteg - = %[qrv@yﬂg)+€T+€f
T T °
€y = € +€ +tey = _EL[G_Y @) + € + &y
€= € v+l = Llg-vltm)] € + €
z % - 3 [T;_ xP Yy z
T 0 _ L v’
= + +
a{x‘y' = xxy ‘xy - 6 Txy "y
X)’Z - xyl + xyz - G -cyz + KJZ
- T o - o
sz = sz + sz & T‘L’zx + Xz.x

If it is nesumed that the value of the thermal dilation and the
values of the residual strains are known functions of position at any
time, then at that time these egquations relate the stresses to the
stralins. Under these circumstances, the above squations, together with
the boundary conditions and the egquations of equilibrium and compatibil-
ity, form a set of esguations which uniguely determine the siress distri-

bution in the body.

=
&



The next step in the development will be to show thot the solutlon
for the stresses, determined from this set of ecusntions may be divided
into three psrte: the stresses due to the thermnl dilation, the sirssses
dune to the boundary forces, and the siresses due to the residunl stralns,
The necessity for this division, and clae for the divisien of the stresses
due %o residual strains inte two perts, will appesr in Chapter IV,whare
tha technigues for debtermining the velues of the residusl stroins as 2
function of position and time are develovped. Thace technicues depend
upon the 1ntroéuetion of gdditional information 1un the feorm of = theory

of strength, and further discussion of them will be defsrred uniil

Chapter IV,

The separablility of the solution into stresses due to thermsl dil-
ation, stresses due to boundery forces, and stresses due to residusl
strains may be indicated by showing that the sum of the soluticns, due o
each of these fectors, satiefies the original set of equations. VYhen
this is shown, the separnbility follows from the unigueness of the separ~

ate and complete solutions,

The set of equations which define the complaste soluticn are renented
bﬁlow. For purpoges of simplicity, only the first of the esuations of
epach type are written, the other two of each type beinz obtained by =
eyeclic permutation of the subscripis. |

9ty

Tquilibrium: Inside the body: 5 T L%

2y

Vs

5x=0

+
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Uomprbibility: ' ex- x

= SUy _ Su.

Xy 37 aJ

Modified Hooke's Lawi €, = ‘E [g; -1/(0} +q;)] +e' + €

Wgyz 'éf‘t;3'+ X;;
In these segustions, at sny given time, the elastic constante, the

thermal dilation, the residusl strains, and the componenis of the supr-

face fprcas are presumed to be lknown functions of position, 2nd the

stresses, strains, and displacements nre presumed to be unlmowns. The

" unigueness of the solution will not be proved here, but it is indicnted

since there sre 15 unknowns and 15 eguations which apvly te the interior

of the hody.

The set of equations which define the stresses due %o the residual
strains are presented below. Thig set of equations ie identical o the
original set except that the boundary foréeﬂ and the residual straine
are st egual %o zero. The solution to these equations for the stressea,
strains, and displacements sre dencted by the subserivt 1. (igaln, enly
cne third of the eguations 2re written, the remsinder belnsg obiained by

cyelic permutetiorn of the subseripis.)

@ 0x
3% ay az,

Bgeliibriums inside the body:

At the surface! “;.QK + Ty Ly+ tzx’JZz =0
i
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Compatibility: , éx‘ — —37-'
Y. = %& + %
".YI - 3z ay
Modified Hooke's Law: €, = —[lj[ﬁ,-V@Sv,+°2,)]+6T
= L
\(K_y‘ - G' T’x],

The set of equations which define the stresses due to the boundsry
forces are pressnted below., This set of eguations ig identical to the
original set except that the thermal dilation and the residunl straius
are set equ&l to zero. The solution to these equatione for the siresses,
straing, and displacements are denoted by the subseript 2 . {Cnly one
third of the equations are written.)

Equilibrium: Inside the body: aar:,. + ag’;“ + aatzz"z =
G;,\-Q‘x"' T"-’z -QJ, + szz Rz = Sx

At the surface i

‘ U g
Compatibility: E"z = dx

Yy, = 2YY¥a MUz,
2 d=z * dy

1

Hodified Hooke's Law: & —é—[«;;v(ﬂjﬁﬂ;ﬁ]

2

& il
K*.yz ) Tx_yz
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The set of equations which define the stresses due to the residusl
strains are presented below., This set of egquations is identiczl foc the
orizinal set except that the thermal dilation and the boundary forces
are set equal to szero. The solution to these equations for the sirsases,
strains, and displacements =re denated by the subscript 3, {(Uniy one

third of the equations sre written.)

(vt o
Bauil ibrium? Inside the body: - X3 e at}ﬁS e aszs -0
a)( 33 al

At the surface ¢ UISQ:: + ,tx.ya »QJ + t';_xaﬂz‘— 0

'y I e e auxB
Compatabi}ity. X3 = 3,
~ au.‘.la auza
YX\YB— dx v 33
€, = —‘-[r -v(@_+ G )] + e
Modified Hooke's Law! X3 = EL'*3 J3 ' %3 %3
. °
}/X.Ya— G ,C’Kyfi + Yx-y

The equations of equilibrium, compatability, and Nodified Hooke's
Law which the sum of the separnte solutions satisfy may be obbtained by
addition. The equations are: (Only one third of the equations nre

written.)

Equilibrium: Ineide the body!
3 S e = 3% "
-é—}-(((l}|+0}1+ u;s) + 5 @'xyﬁhyj ny3)+ az(tn.* LZx;szs)— 0



PG

Bquilibrium: A% the surface:

(@103 ra ) By + (T +Ty 4T3y Y@+ (T, T +T) = S

Compatability: (€,+ €, + €,)

a%(ux} Uy, +Uy )

(nyl-} ):‘.YQ:E_YX\VJ - aiz (u3|+ u31+ u33)+ % (uz;+ uzz * uzs)

Hodified Hooke's Laws

(ex‘l} Exf Gx3 = _é_—[( ‘l+v;2+ q;‘a) _y{(0§1+032+“33}}(E\+022+U;3}]
o

+ie’ + <

R %)= & Oy Ty, +Ty,) + Y,

Howsver, this set of equations is identical with the set of eguations
which defines the complete solution. Hence, 1f the sum of the sepasrate
solutione satisfles the set of equations which defines the complete

solution, ths sum of the separate solutions must be identical with the

complete golution.

In & similer manner it could be shown that, within the solution for
the stresses due to the residuanl etralins, two solutions for ithe stresses

due to different values of the regidual siraing =re additive.

in this chapter a theory, vhich is en extension of the ordinary

theory of elasticity, has been developed which includes the effects of

thermal dilation and residusl etrain upon the stresses in o bedy. The
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basic assumption resuired in this theory is that there are krown values
of Young's lodulus and Poisson's Ratio which are unique functions of the
temperature (or more generally, functions of position and time which sre
independent of the stress level), and which relate, through Hooke's Lnw,
the changes in the strains with the chnnzes in the stresses in an c¢liement
of the body when the stresses are removed from that element. The concept-
ions of "strains csused by stresses”, “strains of thermal dilation”, and
frssidual strains” have been defined. The set of agquations which deter-
mines the stresses in terme of the boundary conditions, the thermal dilat-
ion, and the rssidusl strains has been presentsd; The separability of the
solution to this set of eguations into the stresses due to thermal dilat-
ion, the siresses due %o boundary forces, and the stresses due to residual

strains has been indicated,

The theory has s wide renge of apnillieability in the sense thad almost
all metals, within enzineering temperature limits, reasonably satisfy the
fequired asgumptions. The pregent utility of ths theory is , howevser,
limited by the lack of adequate data on physieal properties, particularly
at higher temperstures, and by the mathemnileal diffienlties invelved in
the determinétian of the values of the residunl sirains a3 2 function of
the stress-temperature hintory; Methnods for determining the residusl
strains as a function of position and time, throuzh the introduction of
ndditional information in the Torm of »n theory of strength will be devel-
op&d in Chapter IV. & numericel exzmnle using & specific theery of

gtrength is commuted in Chapter VII,
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CHAPTER I1I

This chapter will be devoted to the applicaticn of the theory of
Chapter II to the case of an infinitely iong solid isotropic cylinder,
when 21l of the variables sre functions of the radial position oniy. %he
set of equations whose solution gives the stresses will be derived. Uhis
sat of equations will be divided into three sets, whose solutions zive
the stresses due to thermal dilation, the stresses due to the boundary
forces, and the stresses due %o the residual strains. Semigraphical
techniques for the solution of these sets of equations will then be indi-
cated. The sum of these solutions will correspond %o the stresses exisi-
ing at any particular time, and as such, all variations of the variables

with t¢ime will be negzlected.

The mathenatical development procesds from the assumptions that all
factors are radially symmetrical, and that plane cross sectlions of the
ecylinder remain plane. With these assumptions, the principal stresses
and strains coinclde in direction with the directions of the cylindrica

coordinates.
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The following notation will be used in this chapter:

Let: B be Young's iModulus. (for unloading)

v be Polsson's Zatio. (for unloading)
0 = B/ 2(1 + 7).
Ty P § be the cylindrical coordinates.
Ty be the outer radius of the cylinder.
A & rglr% {dimensionless radial position parameter).
q;. q;,q; be the principal siresses.
U; be the 1l'st approximation to the radial sitress,
% v be the total axial force in the oylinder /Tr, £
P be the external pressurs.
er.ew & be the principal strains.
é;’ he the 1l'st approximation to the constont axial strain.
eT be the linear component of the thermal dilaticn. {(nor-
' mally considered zero at the center of the eyl.)
G be a constant of integzration.
e be the 1'st approximation to this constant.
A be an alternate form of the constant of integration,
£ (e = 5[ 5 (5)dA
’ A
2 () = -%@J;“?% () dA

The subscrints 1, 2, and 3 refer to the seporatsd solutions:
the stresses due to thermal dilabtlon, the sitresses due %o boundary
forces, and the stresses due to residuasl sirains, respectively.

(Bxceptions sre the terms £ (T) , f (o) , and r )
1 r 2 r 1
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The pertinent eguntions for this specific problem appear below. The
equations of equilibrium end compatibility are well known, and are nre-
gsented without their derivation, The Modified Hooke's Law was develeped

in Chapter II, and the bhoundayry conditions are self-explanatory.

Zguilibriums (5) Ug = f‘;(" )
Compatibilitys (6) €= Gr (re;,)
(7) €, = constant
Hodified (8) - -‘E-[ (¢¢+uz)] + e+ e’
Hooke's i
Laws
"
(9) &y = é—[ﬁ; —v(O+ ) |+ €y + €
(10) e,z t[nvE-g))+el - €
Boundary (11) T { oo
Conditionst r=0
(12) Ry = —
g rzp P

7
(13) J' G aTrdr = TH 0 ayg
[+]
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The manipulation of these eguations reaquired to eliminate the
unknown variable strains €, and < 0 and to form a set of eguastions
from which the stresses may be readily determined, will now be made. in
particular, the equations will be expressed in terms of the radial posit-
ion parameter, A4 avrzlrlz o Since the final eguations have their simplest

form in terms of this variable.

By sultsble manipulation, (FBq. 5) may be written in terms of the

variable A in either of the following equivalent forms:

Ts—0r _  dly
(5a) A " dA
(5v) %+ = zfq. (AT)

in a similar fashion, (Zq. 6) may de written in terms of the
variable & 4in the following form!

€.~Eg _ dEg
(6a) 2A - dA

The solution of {Baq. 10) for T gives the followinz slternate
1
form for thalt sgquation’

{10a) E = 7/((3} +ﬁ.) T E(Gz_ - e: - &T)

The substitution of (Eg. 10a) 4in (Ba. 9} results in the follow-

ing alternste form for (Zq. 9) , in which v, is eliminated.
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(9a) gy [ (1-v) 0 —-vv;,:l +0+v)e” + e +v(el- &)

The subtraction of (3. 92 from (%g. 8), followed by the diviision
of the difference by 24, results in (Bg. 14} below. The substitution
of (Zq. 5a) 4n (Zq. 14) results in (Bq. lba). (Tq. 18b) is an
alternate form of {Zg. lba).

E.-€g _ _ l+v U3-Qn e;’- é‘::,,
{1“) 24 - E 2A - 2A
1he - _ Atv dliz. Ex-€p
{1h4a) E dA 2A
_ _d (1w d (14v) _ Ss-€r
(14%) = dA( E “I-)* q7‘%( E ) 2A

The substitution of (Bq. 9a) in the right haond side of {(Ig, 6a)

results in another egquation containing the term (er-e }/ 24,
P

e,.,-ed

(15) = = 3‘% {'“E—”[(l—v)ﬂ,}—w‘h}r(; -’ + (e: sV &) —Vez}

The elimination of (er-%)/aa between (Zg. 14B) and (Zq. 15),
followad by a single integration, results in 3
1-v? SA d (1+v A—I—J‘eo'ead
a6) 1 (G+w) = |G F( P [ g

f(€; +7/e;) —(|+v)eT + Ve, +C

In (Bq., 16), € 4s the constont of integration, and the Limits of

intsgration, 0 %o 4 , are sglected for later convenience, In this
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equation, &_  is a coustant which has the status of a conatant of inte-
zration, If €_ had been eliminated earlier, one mors integration would
have been required, and this integration would have introduced a constant

of integration squivalent %o. G;.

(Zq. 17) 48 an alternate form of (Zg. 16} , in which ths relation-
ship, 2G = B/(1-V) , has bdeen used. The gsubstitution of (Zg. 5b) in
(Bq. 16} repults in (3g, 1B), which contains W} as ites only unimown

variable of position.

A =%
an Grwa - [25[6 G- 25
(6]
09 2w ) B 25

The boundary conditions which apnly to (Eq. 18}, in terms of the

variable A, arss

(19) ZATy ki o

(20) 2AT. = =2p

The result of the substitution of (Be. 17} in (Zq. 10a) is:

A Aa o
_ 2Vve drl 2 Ep—-€
2) G = o a(e)oa - 2 ==tdn
(]

o

26 egte)— E e’ + 28 ¢, 4 ZC
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The boundary condition which =uplies to (B, 21), in terms of the
varisble A, is3
I
(22) J‘U-z dA = Tzan.
a
The set of emuntions, (Tg. 17} throush (Bq. 22}, econstitutes the
besic relationshins from which the stresses may be deternmined. GThe
stresses T ond v nnd the constants € and C may be determined
from the set of equations, (Fa, 18} through (¥a., 22). ¥With these

known, T, may be determined from - (Eq. 17). Using the notation,

]

f(n) = B[l and  £65)= 2[5 (s

the solution of the set of equations, (Zg. 18) shrough (Ei. 22}, 1is
complicated by the fact that the terms, fliﬂ; } =nd fziﬂ‘r }. appear o
the rizht hand side of (Eq, 18) and (Eg. 22) respectively. This dif-
ficulty can be circumvented by the use of Plccardls lethod®., The follow-
ing discussion indicates how the method will be applied to this cass,

The set of eguations, (Es. 18) through (Zg. 22) will be solved on
the basis of the assumption that tltq;) = 12(0;) 20 .

This will result in a first approximation $o the radial siress, which

» LA discusgsion of Plccerdls Method for solving scuatione in which zon
unknown appears in.functional form sz well as explicitly 4is ziven in
many applied mathematics texts; for example, "Arpilied Mnthem-ties for
Engzineers®, Reddick arnd Miller, p 174,



#ill be desnobed by Ei_. & second syproximaiion fo U; may then ha

T T W = ¢ T
obtained by assuming that flirr, = fl(trrJ and that fgxtr'r, = grﬁ'r,f
and solving (Zg. 18) shrough (Tq. 22) on the basis of this assumniion.
This procsss is continued until satisfactory values of G“r varsus A

are obtained. VYhen this ig accomplished, T

Pt

and U: may be determined

from (Zq. 17) and (2g. 21} reapectively.

Before discussing in detall the technigue of selving these souations,
it will be convenlent to divide this set of eguabions inke thrse sets,
These sets will determine the stresses due to the thermel dilation, the
gtrepsass due to the boundary forces, and the stresses due to the residual
strains. The proof of this separability was indlented in Chapter II., The
three sets of equations appenr below. The sets will be distinsuished by

the subserints 1, 2, and 3,

The streases dus to the thermsl dilation:

(17), Ug+Tp
' | = flw) - * et aa b

d
(18), 255 (AT)
9, 24, | =0 (200, 2A% | =0
' Azo A=)
B LT 26 2V G
(21)1 o = fz(ﬁ_r; - € T 7 &t T &

|
(22), j‘a- dA=o0



The stresses due to the houndary forocest

(17), T+,
=fm)+ oSt T8 O
4 (A%) R
(18}2 ZdA( *i

(19) AVl =0 (20) 2A0, = ~2p
? A=o A=l
26 2V
A2, ,= LW(m) i &, + 2ve 6,

I
(22J;, Jﬂz dA = T avg.
. 0

The stresses due to the residusl strains:

(17) S+ T, o ot
= f(m)-& —e";‘; dA- B Ewrer i e,
<1a>32-d—(Av;) ° +2&c,
= AT =0
(19),  2AT, ‘A__oh o (200, 2 A
Aeg-er.
(20, @, = fo,)- "‘_fo BdA — 28 (yejrel)+ 2E
o + 26 ZVGCS
-
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As was indicated in Chapter II, the foregoing separation is nosaihbls
if B, UV , a2nd 26 = B/(1-V) ore the same in ezch of the sepnrated
sets of equations. Since, in the complete caleuletion, the stresses of
the fires$ two kinds will be used, through some theory of atrength, to
predict the residual strains, the restrictions on = and 7 $ake ths
following practical form. At eny given time, & and 7 must be known
functions of posltlon, independent of the stregs level. The most useful
form of this functional dependence will Ds thet T and 7 sre known
funetions of the temperature. ith thias ~esumpition, the porticular zeopa-~
ration indlecated may ba showa te hs valid, sincs it is apmarent thob the
sum of the semarats solubions: (v;lw;z-\- U;B). (Tp,+ G+ 0;3}. _(0‘21{- T,

#T 0 (84§

2+ enj). and  (Gy+ GE+CB)' mist satisfy the original set of

-equations.

The remainder of this chapter will be devoted to the development of

specific technigques for solving each of the separated sets of eguations.

A semigraphical method for solving the set of eguations which gives
the strosses due to the thermal dilstion will .now be developad. AY any
ziven time, c? will be mssumed to be & known (graphical) function of
position, in the sense that it is & known (zraphiecal) function of the
temperature, and the temperature is a lmown {gravhical) function of posi-
tion. It is desirable to mention at this point that the solution to this
set of eguationa for s constant value of e’ is zero, or that the solut-
ion is independent of a constani part of e¥ . For #xample, if the data
for e? ie mensured froma 20 °C YDbasse, and this data is called eﬁzo.
then for later convenisnce in graphical integration, eT may be defined

as follows:



-
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20 20 —_—

Yhen €7 4ig defined in this menner, the sxisl strain e”l becomes the
difference betwesn the existing axisl strain and the axial strain wiich

would be present if the eylinder were uniformly a2t the temmerature of

the center of the cylinder, i.8.%

b T
e = (&) -€
% 21 20 A=0

The Tirst step in the development will be the introduction of a

moddified constant of integrationt

¢t = ¢ -e
1 1 1

The resulting modifiecations in (Zq. 18)1 and (%1, 21)1 are made by

noting thats
2v6 26 - _E 26 7
(R el,“' I AS e’_-: REEAY
z 2V6 - E 2v6- "
v Sz, 9w ¢ == S+ G S

This modification is made in order that in the first step of the itera-

ki
tive solution (Plecardts Methad), the constant Gl will be szero.

Iin terns of this sltarnate constant of intezration, the set of
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equations which give the stresses due to the thermal dilabion are:

(17831‘ Tg +Th

= E 26 AF
£(o) - S + e+ 2S5
{18&}1 ZQ‘%(AG};) i ) 14 | i-v
(9 2AT | =o (20). 2zAW%G| =o0
B Azo A=l
(21a)
1 W, = f;(qﬁ)--j% 3 7;% S, + ZI/GtT

|
22, [mda=o

(44

The results of the integration of (2. 183)1 ‘and {Za. Zla}1 are

indicated below.

i23)1 24 :ﬁ”—(@)dA f edA+ez[ dA +G[3ﬁ-dA

[}

G)dA-| 15 €A+, [ Sdr+C | FEEIA
f@o-[ % [ f

2

2, f %1.‘*“ % j

Yote that (¥q. 23) automatically satisfies the boundary ceandition,
g :

zAW'l - = ¢y due to the limits of integration which were selscied. I%
is presumed that \;y =) _E,. \35 s and %}ﬁ? are known functions of the

radial parsmeter A , in the ssnse that graphieal plote of their volues
versus A are known. Hence the indicated integrations of thase tarnms
may be carried out graphieally, and it may be presumed that the velues of

the intezrals of these terms are also lmown {zraphicsl) funetions of A,

A first spproximation to the value of the radisl stress, densted by
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T
byl
the terms, fl(W;l) and fé(ﬁ}l

s may now be made., This avproximation will be obtnined by setting

~

/ » equal to zero, and apnlying the

remaining boundary conditions to the remaining terms of ({Zg. 23} . and
1

(®q. 2&)1 . This will result in a first approzimation to ths valuss of

the constants, which will be dencted by Egl and cl' . These constants

Aai

°

may then be used to obtain the value of ry

The application of the boundery conditions, ZAU}I w1 ¢ and
: :
IﬂildﬁFo v to (Ea. 23}1 and (Zq. 21'*}1 » in which fl(a_r}_} and
[a] ¥ «
faﬂrrl) have besen set equal to zero, results in the following egquations

-

for the determination of Eil and Cl .

[ ’ ! !
- £ L = E ~r 26
0 = —J;ﬁEdA + ez_lj;ﬁdA +C,_[o-‘_ydA
0 =-[E cua + & J"——E A +Cr | 2Cdn
- J; -V € Z, s -u +CJ A -V

The solution to this pair of eguations for igzl and 'EI iz given below.

Vg ot
(25), €, = Jy 15,6
- 1 Z, ! LdA
o TV

{26}1 Cl' =0

Using these values for the constants, the valus of 2@3; may be obtain-
i

ad from the Tollowing eouation.
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A — A
(230)  2aF, = - | & <on + &, | oA
i o o

The results, divided by 24, give the value of F;l sverywhers szcent
at A2 0, %he following equation, obtained from (Zg. 1@331 ¢ 2ives

its value at the csnter,

25 (AT

This value for E;I is now mut into the neglected terms, £ (0T, )

and £,(0, 0 o of (Zq. 23), amd (Zq. 24), » givings

(231.)1 2A T, = J f(ﬁ- dh - j I + GZLW‘“WC Iz_@ JA

A
A ,V 2ve
(zma)l oq; 2 fl(w)dA j E'dA + &, L JA 4+ G, I dA

in which the values of all of the terms on the right are known excepnt

$
G%l and Gl .
k]

A second approximation to the values of the constants E”l and Sl

may now be obtained by applyinz the boundary conditions to (¥g. ujb}
and {Zq. be)l « These constants may then be used to obtain a second

approximation to T, .
1

The aprlication of the boundary conditions, Eﬁv}l = =0 ond



y
i} Do

J~(I",_ dA=0, %o (Fg. 23b). rod {(To. 24b) resulis in the Tcliowing
o “1 1 1
aquations for the determination of the mecond approximation te ths vslues

of € and C'
-21 1

”~

’ . )
The solution of this uair of egquations for e% and Sy i3 given below.

= |

{25a)

¢z hiG)oa+ L @)on
[an — [ 3 da

oh) € X E 4 k m"“f G N IR A
Z, { dA {IlzGdA jl zdeA]

Using these values for the constants, a second approximation for q

nay now be obtained from {Zq. 23b}1 . Hotice that the volue of T =«

the asnter is now obtainsd from:

-E, r 26
|A=o+ ez"-v A=0+C‘ -V lazo

The resulting valuss of W} may now be used to revlace the vaiues
1
of T}l in the foregzoins arsument, and the yrocess may be repeated, or.
28 in the numerical cage to be considered in Chapter TI, this seceond

approximation will be close enough without subsequent iterations.
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With the value of G;l known, the remaininz stresses sre determined
from the followingy egmations, in which ell of the terms on the righi are

known.‘

are),  TG= et - S5 65 102

= @) -5 +ef o2

(21&} : =7 Z.' \~u

3
& numerical examvle of this caleculation, determining the stresssg
due to the thermal dilation, is given in Chanter Vi. As will Te geen in
that caleulation, the method readily lends itself to tabular-graphical
form. In that ealeulation, it will be seen thot satisfactory sccuracy
may ba obtained if the valunes of the ter:s are ealeulated abt only a few
radial positions, and the required intermediste noints are graphieally

interpolated.

A semigraphical method for solving the sel of equatieons whieh zives

the stresses due to the boundary forces will now be developed. The

boundary forees in this case are the external vpressure p and the averaze

axial siress T, — Since the general approach has heen develeoned in

the previous case, the sccompanying remerks will be more terse.
The sguntions which apply to this case are repeated bhelow.

il 206
= f(W®)+ ¥ Sz + 19 S

(18), 23k(AE)
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a9, 2%, <o (200, 2A0:| =-2p

A=0 A=l

26
(21), T =1(%)+ T&: % 2ve ¢,

]
(22), j 0Z,0A = Gavg.

Q

The results of the integration of (Zq. 18)2 and {Zq, 21)_ are:
(23) = jA$( + e P'ﬂ-‘idA * 20 dA
2 2Ty = [ f@)are. | +3 [ Eis

(28), f Jf ((r)dA+ e, J.E,%%dA + G, J;A,Z_LEJA

2%

Hote that (Za. 23}? antomatically satisfies the boundary conditions

2;&;91”0 2 0 , due to the limits of integration which were sslected.

The anplication of the boundary conditionsa: ZAG

=z =2p =nd

T Am] T
fcr QAT T, oo+ b0 (Za. 23) end (%q, 24), , in vhich £ (T, ) and
?( )} have been set egual to sero, results in the firet spproximation
to the constants, denoted by E; and 5; :
2 E4
2 '2v6
(25) g = Sz L_‘_“_’;dA (-2) L v 9
Bt | <1 log 2 '2 Z
: \L28on ) - ([2%an]
26 2V6G-
(26) C (‘*ZP)JO 5 9A - U;.crvg JT—V dA
- . 26 /A T? ' 216 a]?
1 [EEy T



Using these values for the constantes, o first aoproximation to the value
of the radial stress, dencted by E}Q s+ may be obtained from the follow-

ing equations,

' A
= = VG ~ 26
(23&)2 ZAGTE = EZIJ; %:.V—dA ¥ £, J;led/-\
— - = 2VG = 20
ZQT‘Z = ezz I-v Cz I-?/] o
A=0 A=0

The resulting values of E;o are now put into the neglectsd termss

Xa. 2 ,“:. a—'"o-.
fl(ﬁ}z) and fz(ﬁ;g) of (2 3)2 and (¥q. 2 )2 ziving:

A A
(23)  2AG, ¥ H(q;.)dt\ + &g, | HoA L0, | 2% om

(=]

A

(241),, [’3; = ff (u_l")d'A'i'EzzL 28 dA + Cz f}—?ﬁ%dA

in whieh the values of all of the terms on the righi are known excent
€ and ©, . The application of the boundary conditions to {(Ba. 23b),

2
and {(Eq, be)? resulis in the followinz second approzimations to the

valunes of the constants.

(G254 +[E G b

ey =T S T [[EWF - ([T
o~ = f(q—,,)dAf dA+jf(r)dAj 208 ga

c, ¥
(26a), 2 2t ‘.oWdA] —Uz Oqa]*
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Usling the values obtained from these equations for the constants, 2
sacond approximation fer Uz m2y now bde obtained from the following
5 _ ?

ejuations.

_ A
(& )dn + e,_J %’%ﬁa’A+C,_ji—vdA

(23b) g = | %
2 g = A A A

v 26 |
26| =, 79| +C 1y, Nete fi(e)| =0
A=0 A=0 A=0 A=0

The value of o obtained from the above esjuatlongmay now be used
2
to replace the volue of T}? used in the foregoing arzument, and the
process may be repeated, or, in some casges, this gsecond aporoxinmation

will be cloze enough without subsequent iterationsa.

With the value of U}E known, the reumaining stresses are determined
from the followinz equations, in which 211 of the terms on the rizht are

known.
an, Sy = fE) s Bee, s o,
26 2
{21), W, = &)+ 5 €z, + g ak A

As in the case of the stresses due to the tharmel dilation, s=btic-
factory accuracy can be achieved, when 211 of the terms discussed ars
evaluated at only & few radial vositions, and the required intermediste

pointe pre graphically interpolated.
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A semigraphical methed for solving the set of egquations which zives
the stresses due to the residusl straing will now be developed. Ths
residual strains will be presumed %o be known (zraphicsl) functions of

vosition,
The esquations which npply %o this case are repeated helow.

(17)3 0—9‘3+“—’3

= (o) BT - BEe) r ey B,
(18), 25 (A%) °
(19), ZAQ—EL=O=° (20, ZA“—rélA:I:O
(21)3 ?(QT- ZVGI—G?—C—'"dA —c—(1/e +€2) + 3_67_3
+ 27/6" C
¥ |
(22)3 _f 2 dA =

)

The results of the integration of (Z4. 18)3 and (Fa. 21)3 ares

(23), 24T = [ e [—Gic" S dadn- I S Earvelldate, (ﬂfﬁdhcj ze )

A

(28) fr dA= ﬁ(«- Jd J [“"* e S| j L+ )dh+ € IO%dA+Q3°%}{[/E'dA

Note that (Zq. 23)3 sutonatically satisfies the boundary condition:

2Aﬂ;3|A=G 0 ¢ due to the limits of integration which were selected,

The application of the bhoundary conditions! 2&“}3 o =0 and

I
Str‘z db =0, to (3q. 23) and (%, 21:_) + 4in which £ (tr"} and
3

f {W‘ ) have deen set oqual to zero, ronulta in the followinz firet
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approximations to the values of the constants denoted Dy € and ?3 .

3

2o U [ vef 6};&‘]‘{4 +f 26665 +€) dA} j’ Ve s {I’[& 'E-:;-E-:-J,,]d,q.r JEASIE )a’Ag

(25)365“ e [ 2ugaa(t
O e 5 i 1 S o e i
(260,57 [['fT‘;dA ]1 - E Ve gr'|?

The values of the constants cnn he deternined from the above equations,
1f the values of the terms are determined by gzraphicel intezration.

Using these values for the constants, a first approximation t¢ the value

of the radial stress, denoted by E'r » may be obtained frem the follow-
3

ing squations:

A
(232} ZAW——G= j[m' e”—"e*dA]dA j‘?'—_“%(e;-i-“l/e;_)dﬁd-é rzvedA +C3J3%'dA

-v

- G
+ eZ \-

- 26 i
— Note limit S2-Sro
iy o Y a0 = ZA

2@‘ = -2

A=0 A=0 A=0O

The resulting values of .G"r are now put inte the neglected termas,
3

f (e ) aud 12{0;.33 s of (Eq. 23)3 and (Zq. 211-)3. 2iving:

(230, A ) (c;)da j[ (e e*da]dp.- j Sesve)dAt e, r*”‘*cmw 26 g

A A
(2kv) [‘Eg”“g f, (05 )oa- J ﬂc’f‘ﬂ‘*"ﬂdﬂ J.y(vewe)o't\ e}.j_wdm C_;j’ LedA

o
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in these egquations the values of 21l of the terms on the right zre Inow

2%

except 623 and 6‘3 « The application of the boundary equations

{2q. 23b)3 and {Zq. 24h)3 results in the following second ayproximat-

ions to the values of the constants.

= L‘%C:ﬂ#\flf @ )on + f SR [ f (@ )an

([l [ 2]

¢}

(25333 €z, = €25 7t

f dA j £ (@)en+ |, f}’fdAff (T, )dA

\, Bal= [, 2ea]

(262 G = G5 +

Using the values obtained from these equations for the constents, =

second approximation for T, ~ may now be obtained from the following
3

eguations,

(23), T, :Jol},(ﬁs\dA-l ng;" e’"d:ﬂdﬂf & (estvel)date, f;WdAJrc[

20
3la=0

& Ja

The value of G} obtained from the above eguations may now be used

3

%0 replace the value of 3;3 used in the feregoingz argument, and the
process may be repeated, or,asin the memerical e¢nse to be considered in
Chapter VII, this second approximation will be close enough without

subsequent iterations.
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With the value of U; known, the remainine stresses sre determined
3
from the following equations, in which nll of the terms on the right are

known,

_ 26 [ €s-€; p . PUE
(1?)3 %3 - —Q%+ fl(q?\B) - _‘?170 2A dA~ %%:(€¢+'1/62)+ %6131_ %Cﬂ

Ao

(21, @, = @)~ FF - Brers) + 2e, » 2o,

& numerical example of this caloulation, determining the strssses
dus to the residual strains, is given in Chapter ¥III. As will be seen
in that ealculation, the method reandily lends itself to tabularegraphical
form. iIn that cszlenlation, it will be seen that satisfauctory accuraecy
may be obbained if tha values of the terms sre caleulated ab only o few
radial positions, and the reguired intermedinte points are srashienily

internolated.

This chapter was devobed to the determination of the strssses exist-
ing 2t a given instant of time in an infinjitely lonz solid isctropie
cylinder, when 211l of the variables are functions of the radial pesition
only. The equations which determine the siresses as a function of the
thermal dilatioh, the boundery forces, and the residual strains, ware
pragsented. These equations were divided into three sets of equations,
whish gave the stresses due to the thermal dilation, the stresses due to
the boundary forces, and the stresses due to the residusl strains. Semi-
gravhical methods for the sclution of each of these sets were thaen indi-

cated.



In this chapter, a theory of strength will be introduced and it
will be indicated how thia theory of strength msy be used %o determine
the values of the residual strains as a function of pqsition and tine.
Before the theory of strengih is introduced, however, it is desirable
that a recapitnlaxiun be made so that the function of this chanter in

the total mroblem becomes more apparent.

The problem which is undertcken in Par$ I is the development of an
analytical method for the prediction of the residusl stresses induced in
an infinitely long solid isotropic eylinder by a symmetrical aquench. In
Chapter I, & technique was presented for the determination of the tenr-
erature as & function of the radial position and time, In Chapter II,

a theory, which is an extension of the ordinary theecry of elasticiity, was
developed which included the effects of thermal dilation and rssidusl
atrains upon the stresieu oxisting in an ifsotropic Yody 2t any given tinme,
This theory presumes that the materisl behaves slastically in the sense
that Hooke's Law deseribes the changes of the strains which appsar if the
stresses on an element of the body are removed. Such effects as ylelding
or creep, by this definition, merely chanze the residusl sirain terms,

In Chapter 111, the theory of Chapter I1 is used to separstsly determine,
at = given time, the stresses due to the thermal dilation, the sirsases due
to the boundary forces, and the stresses due to the residusl sirains, for
the case of an infinitely long solid isotroplc cylinder when 211 of the

variables are functions of the radial position only.
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The following notatlon will be ugsed in this chapter:

be Toungls Hodulus for unloading..
be Foissonls Ratlioe for unloading,
s zf2(1-9),

be the time.

be the local coordinates, parailel in direction
to the loecal vrinciple stresses.

bs unit vectors in the x, y, and 2 directions.

be the principal stresses.

» %(W£+g;+0;).
be the prinoipal redgced etroases.

be the tensile gstress at which the material will
yield, (If such exists.)

= (0 B {0y )% ¥ (U'z-ﬁ")g be s parometer
proporéional to the shear strain enerzy.

be the value of k? at which yielding commences.

be the prineinal strains.

be the prinecipal residual strains.

be the vrincipal residu=al strain rotes,

be the shear strain ensergy.

be the energy required to vroduce the rasgidusl
strains,. .
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If the residual strains sre known, the stresses due $o them con he
determined, but the method of determininz these residusl stroins hos ved
to be pressntad, The remaining nart of the btotal problem is, therefors,
the development ef nmethods for either determinring the changes of the
residusl siralns as a funclion of time, in the terms of the fsmperature
and the stresses which would have tesn present if those changse in
residunl strain hed not $sken placs, or of determining the recidunl
strain rates as & function of the sireszes and tenmperature erxisting ob

“a vparticular time,

There are obviously as many approaches to this problem as there are
theories of strength. Thig is, howsever, a three dimensional stress Pro=
blem, hence, for exawple, the paximun tension theory of strensih may bLe
eliminsted, since it mnkes no pretence of describing three dimensionnl
yielding. 1In addition, it must be remembered that, in Chapter II, certain
restrictions on the elastic (unloading) properties of the materinl wers
necessary. 4t will be instructive teo examine certain of the types of
stress atrein relationships for eluple tension which satisfy thess re-
strietions, as 2 nrelinlnary te the introduction of o theory of sirensih.
The restrictions are that there =re kpowp values of %, V, =nd
26 = /(1 + V), vwhich are unigue functions of the temperature (or mere
generally, which srs unigue functions of position and time bubt which are
independent of the stress level) and which relata, through Hnoke's Law,
the ¢changes in the strains with the chenges in ths siresses, which occur
in an element of the body if the siresses are pemoved from that element,

but no other changes tnke place.
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The simplest type of stress strain relationship which satisfiss
these restrictions is illustrated in (Pig. 2). [Hild steel at moderate
temneratures closely approximates this curve, if the uvpper yileld is
nezlected and the flat portion of the yield is not sxceeded.

| Yielding Aenewed Yieldin
Y& —— , —— 4

Stress 03
‘s,

l‘(o
N
Y,

- \/°c> 3
NN

J

jdual Strai Stran g,
ex

This type of stress strain relationship, where the yield polnk, F, and
¥ are funétians of temperature, is because of itesimplicliy particular-
ly adapted %o the solution ¢f the outlined problem., This is the ﬁyg;e of
relationship sssumed in the numerical computations of Chapter VII and

is the one %o which most of the succeeding development will be devsoted,

Another type of stress etrain relationship, which eatisfize the
restrictions, is indiecated in (Fig. 32). It is approximated by materi-
als in which strein herdeninz is apporent, such as aluminum or stazinliess

gtesl at ordinary temperatures.

— e
/
0 RS /
o oy g yn b?/
1 W, L/fLE %, £ oy
£ 5///5 <3 3/
& & [~ a S k<]
3 SiE ¥ L
5 T 7 i
) ;F
/
. . /
is Residual :‘] Strain ey . Residaal ' Strain €,
Strain e} Straineg

(Pig. 3a) | {(Fig. 3b)
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Depending upon the material and the temperature, (Fig. Ja) may or say
not be idealized into (Fig. 3b). This strain hardening type will be

discussed briefly in the succeeding developments. The reguired computab-

ions, using this type of relationehip, are more difficult.

Such materials as piteh, or metals at hizgh temperature, may be av-
proximated by a completely different type of stress siraln relationshivp.

For rapid loading or unloading, the material is presumed %o behave elaa-

tically. with 5, 7V , and & being functions of temperature, btui fov

sustained loads the residusl atrain rate is presumed to bs 2 function

of the stress level and the temperature. For pure tension, the relation-

ship may be expressed as: el f(T W) .

&
relationship is indicated in (Fig. 4).

This type of stress strain

Sustained Load

.
AN o
o &
ge AA‘ NG
L / N
& M n 3 =~
3 v & =
a / g S L 2
y § 3 ® S
Y} ,’ ~ N %) 3
S ¥ 3 ' N
G & 3 2
&t
it B -_— SR Wk _ Aesidual Straines | STrowex
/?es/a’t/a/ SZErqitz

(Pig. &)

This type of stiress strain relationship ie most ideally adapted to use in
conjunetion with the theory of Chapter Il. Beceuse of this fact, this
type will be discussed in the sucéeeding developments. This type of
relationship is particularly useful in computing the amount of residusl
strees relief due to tempering or other siress relief heat treatment, end

is 2leso apnliocable %o cases where creep is the deminant factor.
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The first step in the seleetion of a theory of strength is the
selection of the parameter, in saddition to the temperature, whose value
is presumed to indicste whether yielding takes place, or whose value
determines the rate of yielding. In the case of eimple tension, to which
the foregoing siress strain curves apply, the obvious parameter is the
tensils stress. JFor threes dimensional stress problems, however, the maxi-
mum teneile stress has been shown to be an unsstiafactory eriterion., The
paraneters most commonly used in three dimensional stress problems are
the shear sirain energy and tho maximum shear siress. While the results
from the nase of either of these parameters Aiffer only slightly, it is
commonly acceptad® that the shear strain energy (or Mises-Hencky criter-
ion) corresponds most closely to the experimental results obtained using
polycrystalline materials, vhofe nacroscoplc isotropy is assumed due %o
the smallness and random orientation of the crystals. This is particu-
larly fortunate, since this oriterion is mathemstically more suitable

for the problem at hand than the maximum shear eriterion.

The second atep in th; sslection of a theory of etrength ls the
determination, if yielding takes place, of the rslative proportions of
the principal residual strain increments. Again the mathematically most
suitable theory* ies the one now accepted as being the most accurate for
polyuryttalitno_uatorlall. where nacroscopic isotropy is assumed due to

the smallness and random orientation of the crystals. This theory

* Fadai, ?Plasticity”, contains a good discussion of the different
theories of strength and plastic flow. The reader is referred %o this
text as 2 background for thie chapter.
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prasumas $hat the orineinal residual strain increments ars proporiional
to the principal reduced stresses and ars in the some direction. This

implies that the sum ef the vrincipal rasidual strains is zexo.

The nathematiecsl application of this theory of strenzth to the pro-
blem =2t hand will row be discuesed in relation to the forsgoing tynes of
gimple tenslon stries streoin relastionships. HMost of the susceeding de-
velopment will bz devoted to ths firet type, approximeted by mild steel
2t moderate btemperatures, since this type will be sssumed in the mumeri-

eal computations of Chapter VII,

Assuning thet the stress strain relstionship fer zimnle tension is of
the type indicated in (Fig, 2), the modified Hooke's Law of Chaptsr II,
nsglecting thermal dilation, may be written in the formi

Mol = (ieally - 2o T = Hegee)

E(ey—-ey) (+2)0y -~ 300

1]

vhere: & = -%'(Gx+ey+et)

I

a(e,~€)) (+v) 07 - 3V0

=4 ‘ £ ° e
€ = 3(6+e+€)
(-2 R

i

o.o E(e = e°)

The shear strasin energy mey now be written in the following form.

-l
I

—,l:[""x (€x-€) + G (,-€)) + T (€ e:_)] ~ 140(e-€)

Total strain energy dilstion str-oin energy

. [ﬂ; [y 5300 )+ [ (190G -327] 4 [Gle-3o0 ] - 3(1-22) ‘T?}



By suitcble menimulstion, this may be written in ths following forr.
- 1+ 2, 2 2
Vo= T [(U}“U") + (0'& —V') +(U;-_ —V) ]

By the asssumption of the theory of strength, V may never exceed 2
cert=in value, If ¥ tends to exceed this velue, ylelding takes nloce.
This value ig readily determined from the yield mneint in simvle tensicn,
apd iss

_ 2 Iyv 2
¥ R 75.
Y. p. 3 2E “YP©

Therefore the limiting valua »f the function,

2 2 2 2 N
@ s (G EG-0RG-T] L 1 2 = BGT
The significance of the proportionality of the principal residual
strain increments te the oprincipal reduced streases will now be investi-

gated, If Y 1is the energy required to produce the residusl strains,

the differential inecrement of work done in yielding ist

¥ = Gideg + qydey + gy de;

(G-0)deg + (6y-Ndey + (Tz-T)de; — 30de”

Yow if €% (defined to be %(e: > e§ + e:)) is nssumed to be zers {the

residusl strains result in zers volume change), then the increment .o
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wory done in yielding nmay be written in the fellowinz vectsr fornm.

az :[(a‘x-q-)L + (5-9)g +(G;_-\r)|5] 0 [de: L+dey i-rde:li]

The reaguirement of the theory of strength that dez t ae® 1 a¢

htd
& 2

(T -(F).é (Ty -T) s (T -TU), therefore, implies that the foregoinz
x 2

a8

vectors are parsllel., This maximizes dY in terms of a given maznitule
of the vector strain increment. It ig further implied that the provor-
tionality of the reduced stresses and the strain increments ls based wvon

the assumpntion thatl €® 1s zero, rather then vice versa.

A finite difference techniocue for detsrminins the residusl strains
ns o fanction of time will now be indicstad on the bnszis of thess devel-
oumants, It is assumed that, at time ., the velues of the residusl
strains are known. At time ¢ 4+ 4%, it is assumed that the sirsases due
to the thermal dilation and ﬁhe stresses due to the boundary forces nrs
Imown. Using the residunl sirains present at time &, the stresses due
to these residusl sitrains at time ¢ + A% are then compubed., Th
reduced stresses corresponding toc the sum of the stresses due to these
three factors, and the value of the function K = ((U? -T )% 4 (W§ “ 1"

>
+ GTZ -G‘)”) are then determined a2t time ¢ + 4t.

The following techniaue is then used to estimate the vnlues of the
residusl strain increments in the interval 4t., Hodificntions to the
setimate, made possidle by the knowledse of the results of »revinus time
interval computations, should be included to incrsase the ncourney of the

astimste., Subject to these medifications, it is nssumed thnt everywhere
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2
k%  exceeds ~%§;_D » vielding will take place. It is also assumed that

the residual strein incremente dune to this yleldinz will be proporiional
to the foresgoing reduced stresses, For the purpose of estimating thess
increments, 1% will be further assumed that these increments of the
residual strains do not affect the totel strains. With this further
assumntion, the following relationships relating the changes of the re-

duced stresses to the increments of the rasidunl sirsins are valid,

26 4 = —A(Tx-T)

Il

- a(T-T)

)

26 Aey
2caed = - A(0G-T)

2
Wherever k  exceads %U’z p." the changes of the reduced siresses =nd
the corresponding increments of the residual strains, reguired to couse

2 5
k to mateh %0"; p.* mzy then be estimated from the following esustions.

26 a6y = - a@-1) = (1-V3ZR)(®-1)

1]
=
i
wlp
",,J N
P
p
N
e |
!
‘a
~~—

264€y = —8(0-T)

i

(l* # ) (6-1)

The streasses due to these saztimated residuzl strain increments nrs then

26 8¢. = - alG-T)

computed. Due to the grossness of the agssumption t™at the total strains

are a constant, these siresses, added to the vrevicus stresses mny

e

not

2
be expected %o give s satisfactory agreement between k and = 0"

e- *
Lie

over the rezion in whieh yielding wns assumed. The agresment willi,
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however, be mich better thar was schieved with the value of kg fron

the previous stresses only, ond may be improved =till mors by debteornining
o constant which when mulfinlied by the estimsted residunl strain inere-
ments and the siresses due %o these increments results In the beut match

>
between k~ and %Ti over the mssumed region of yislding.

iiuh the restriction that the ratioc of the residual atrain incremenis
in each coordinate direction dosg not ghange, the results of this first
eatinate mre used, in ruch the same faghlon, to determine a new esiinmnte
of the required residusl strain increments. The results of this second

2

o
estimate should give 2 till closer match between kz and '§(Ty I
With two independent solutions for the siresses dus to the estimated
values of the residusl strain increments, this match may be further in-

proved by utilizing o linenr combinastlion of these two solutlons.

This procass of successive noorosimations to the renuired residusl
strain increments may be, if neecessnry, continuel. As the number of
independent solutions becomes larger, the use of a linesr combination of
these golutions becomes mere important. kz and %T;p. can be exaetiy
matched at the some nmﬁber of positions as there sre linsarly indeveniert
solutions due to succesplive sstimates of the required residusl sirvain
increments. When o satisfactory matech between k2 anﬂ'-%Q‘i.p_ ia
obtsined, the reguired values of the residual strsine at the time ¢ +4%
are known, The antire procsss ig then repeated for the next time interval,

in this manner, the complete solution ve. time is obbainsd,

The forezolng discuseion applies in toto to tha case where the malbs-
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rial has a stress strain relationenln for slmple tension of the forn

(Fig. 3) indicated for strein hardeninz materisls. The only difZsrance
2 - 2

1s that the paramejer, -§U‘§ x (the maximum value of the funetion 1~ =

2 .2 ey

((G’x =T~ % (U'y =7+ (Tz +0 ) ) which the material nmay sustaln with-

out yielding) muet now be considered to be a function of ths residual

strain-femverature history, includinz the values of the assumed residual

strain increments in the time interval 4%, A discuseion of suitnble

approximations for this functional dependence is beyond the scope of this

thesis.

hen the matsrial has a strass strein relatlonship of the tyoe indi-
cated in (Fig. 4), which ig mathematieally similar to slow viscous fiuid
flow.‘the tschnigue is even eimpler. It i3 =mssumed that the residuanl
strains and the total stresses are inown at time . These sitrssses, to-
gebther with the temperature, determine the residual atrain rate. Thig
residual strain rate is presumed to act unchenged for the time intervel
4%, at the end of which time the total siresses are computed., These
stresses , at time (% + At), determine the residual strain rate in the
'uucceedlng time interval. The process is repeated until the complete
solution is built up. The simplest functional dependence betwsen the
stresses and the residual strain rates (mathematically identicsl to slow

viscous fluid flow) ist

9 u@0) , G s (g, el (e )

where A/ 1s an experimentally determined funetlon of the temperaturs,
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analogous %o viscosity. A discussion of more complicatad relationshirs,
such as would be involved in creep with strain hmréenlng. is beyond the

scope of this thesls.

in Chapter II, it was indicated how the stresses due to the therma
dilation.rﬁhe stresses due to the boundary forces, and the siresses due
to known values of the residual strains, could be determined., It wus
indicated that, while the stresses due to known values of the residunl
strains could be detarminﬁd. the values of the residual strains wvere
unknown. 1t was further indicated that the valuss of the residual strains
could be deteruined only if additionsl information, in the form of a
theory of sirenzth, was introduced. In this Chepler, certain theories of
strength were presented, and it was indicated how these theories could be
apnlied to determine the values of the residual streins as a function of

vosition and time,

It may be noted here that the developments of this Chopter are more
restrictive, in the sense of the required assumpiions, than are those of
Chapter II. Hence the utility of Chapter II is not limitsd by the anpli-
cability of the developments ofrthis Chapter, dbut rather, it is limited
by the ability, by any method or throuzh any theory of strensth, to deter-

mine the reeidual strains.
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The application of the developments of PART I to the following

problem, neglecting end effectst

"Determine the residunl stresses indueed by quenching, from 600 0°C,
in otill water nt amdblent temperature, & previously noymalized golid
ateellcylinder, 5 ¢m, in diemeter by 40 cm. long. The composition of
the steel is as follows: 0.30% C., 0.20% si., 0.75% Mn., 0.051% ».,

and 0,030% S.".

This particular problem corresponds to the experimential residual
stress determination performed by H. Bucholtz and H. Buhler (3),

who used the techniques developed by Sachs (/) for their determination.



This chapter will be devoted to the determination of the temperature
distribution, as a function of the position and time, for this case of a
5 cm. diameter mild steel cylinder, quenched from 600 °. 1in still water

at ambient temperature.

The firat step in this determination is the sslection of the values
of the pertinent variables, as a function of temperature, from the liter-
nture. Thig problem of sslection is complicated by the fact that the
values of the rsgquired parameters are not available for the particular
composition of stesl used in the experimental residual stress doteimin-
ation for this case. Vortunstely the parameters are only slightly influ-
enced by small changes of composition, hence reasonably accurate values
of these paramoter; nay be obtained from weighted averages of the values

of these parameters for steels of neighboring composition.

Table ] contains a summary of the assumed values of the pertinent

| paramctlis as a function of the temperature. A discussion of the select-
jion of these values foilows the table. 7The results are presumed to ap-
proximato'tha values which would have been obtained from a previously
normalized steel of the follewing compositiom: 0.30% C., 0.20% si.,

0.75% ¥n., 0.051% P., and 0.030% S..

The notation used in this chapter is the same as that used in

CHAPTER
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%he data used in the estimation of cp is given in (Fig. 5). The
assumed values for the specific heat are given by the curve, which was
obtained by taking = smoothed weighted average of the specific heats of
pure lron and of three steels, whose compositions are in the neighbor-

haod of the desirsd composition.

The data used in the estimation of k 1is given in (Fig. 6). The
assuned values for the conductivity are given by the curve, which was
obtained by taking s smoothed weighted average of the conductivitiss of

two steels, whose comvosiftions bracket the desired composition.

The values of P , the specific weight, were obtained by calculation
from the thermal expansion data developed in (Fig. 7). assuming that
the specific weight at 20 %. 1s 7.85 gnm. /cm.3 « The valuss were

obtained from the relationship:

P = 7.85/(1 +e§0)3 c;-./clll.3

The data used in the estimation of ego is given in (Fig. 7). The
assumed values of the thermal expansion are given by the curve, which was
obtained by taking a smoothed weighted averaze of the thermal expansions
of three steels, whose compositions are in the neighborhood of the desiresd

composition, ‘.i'hiu thermal sxpansion data will algo be used in the sirsse

calculation of Chapter ¥I.

it is apparent, from the spread of the original data in these fig-
ures, that ep s ¥, and e; are relatively insensitive to composition.
An estimate of the accuracy of theilr assumed values, without knowing the

gecuracy of the original data, is difficult. Considering the spread of
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Data from Metals Handhbook 1948 £d o33
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Code: / Pure /ron
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Data From Metals Handbook /948 £d. p 314

Code: | 023%C, 0635% Mn, 0.074% Ni, 0437 Cu,
7race Chr

2 OH8%C, 0.643%/Mn, 0.063%N:, 0.127%Cy.,
7race Cr
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the original data only, anm accuracy of the order of 2§ appesrs rsason-

able.

The estimation of the boundary layer conductivity is, however, more
difficult, due to the lack of dnta. Host of the data appearing in the
litersture relates to hardenability caleculations, and is of an empirical
nature. The most highly developed of this type of calculation is that
of M. A, Orossman and his nssociates (13). In their cslculations, an
empirical constant value of h/k is nssigned to different éuenchtng med-
iums under different conditions, for all steels, and an empirical constant
value of the thermel diffusivity a is given to all steels. On the
bagis of thesse allnlptiénl. the temperature distribution versus time is
computed, neglecting the heat of transformation. The hardensbility is
then related to the half temperaturs time, or the time this calcnlation
indicates is required for the temperature at a point $o be reduced by one
helf. Such a calculation is snccessful since whether or not a steel will
herden is lergely a function of the cooling rate at & temperature near
the knee of the isothermal $ime tempsrature, or 3, curve, and the empir-
icsl parameters are sc chosen that this calculation of the half tempesra-
ture time is sultably r.lata# to the cooling velocity at this temperaturs.
it is, however, apparent that values of h wused in euch a ?alculation

have 1little meaning for the particular computation under consideration.

A. Rose (14) , in 1940, made a literature survey of the data from
which values of h , 28 a function of temperature, could be caleunlated.
0f all the data he reports, only the experimental results of I, 3, Pil-

ling and P. D. Lynch (15) ocorrespond at all closely to the case under
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consideration. The results of Filling and Lynch's experiments ars pre-
sented in the form of a center temperature versus time curve for a 6.5 mm.
by 50 mm, Hi. plus 5% Si. eylinder quenched in still water st ambient
temperature. Based upon A. Rose's analysis of this data, the following
values of the boundary layer conductivity, as a function of the specimen
surface temperature, for a quench into still water at ambjent temperature,

are assumed.

Temperature Range OO h oal./cm? sec. °C.
20 - 300 0.028 |
300 - 700 0.078
700 - up 0.037

The discontimmities in this data are based upon the fact that the mode

of eooling changes with the tempsrature in fairly distinet steps, which
are visible to the eye., The hizhest tempersture range reproaeﬁt: cooling
through a steam jacket without fluid contact and consequently has 2 low
value. The middle range represents vigorous boiling with fluid contact
and hizh convection currents and hes the highest velue. The lower range
represents conduction and convection without bolling and has a low value,
As seen in (Mig. 8) , the transition at 7300 . was slightly smoothed
in order to avold anomslies in the temperature solution due %o the differ-

ence eguation approximations.

The accuracy of these values for the boundary layer conductivity is
open %o question because the cylinder on which these values were deter-
mined is 1/8 +the size of the cylinder involved in this computation.

The data of A, Rose (!4), which is all for emall specimens, indicates
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that the boundary layer conductivity is = drastic function of the bulk
temperature and velocity of the water. The bulk temperature particularly
affects the surface $emperaturs at vhich the transition in the meode of
cooling occurs. In view of this, and in the light of ordinary fluid-
301id heat transfer theory, i% may be expected that the valus of h is

a fanction of the following factors:

1) The surface temperature of the body being quenched.

2} The bulk temperature of the coolant.

3} The local coolant veloeity.

&) The thickness of the heeted, or boundary, layer.

5) The surface condition of the body.

6) The availability of the muclel for the start of vapor bubbles.

7} The pressure.

Considerations of this type indicate that there is nobt only a gize effect
but that in the experimental case, which this calculation matches, the
value of h may have varied by z falrly largs factor over the length of

the eylinder.

The assumption of ihn value of the boundary layer conductiviiy nmay,
therefore, be considered to be the most oritical sssumption in the temp-
erature problem, This will be discussed again in Chapter VIil when the
results of the csleulated values of the residusl stresses are compared

witk the results of the sxperimental determination of Bucheoltz and Buhler.
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The values of the pertinent parameters have now been selected as o
functlion of temperature. The temperature, as a function of position and
time may now be determined by the application of the techniques developed
in Chapter I. (Fig. 8) 4indicates, to a reduced scale, the complete
graphical set-up used to obitain the solution of the temperature vroblem.
This figure also indicates a sample ealeulation for the interval from
t=z7te =9 nncondn. The necessary tabular computations accompany-
ing this sample caleculation are indicated in Tzble 1I. The caloulation
was carried out through a totmnl of 37 seconds; or until the temperature
gradient became comparatively smell., During the first five seconds of
this enleulation, the radiue wrs divided up inte n = 5 equsl 1ntgrvals.
and the time interval wess & second, At five seconds, the number n
wag changed to 5 and the value of A% wne increased to 2 seconds.

At the end of 31 seconds, the value of At was decreased to 1.2 sec-
onds, in order to decrease the velue of the multiplier Zaﬂt/{Ar)2 from

approximately 1.5 te 1.0 .,

The results of this caleulation wers croes plotted as temperature
versus time !o£ various radisl positions, in order %o check the cunti-
auity of the solutien. The final results were then plotted, {(¥iz. 9) .
for t =1, 2, &, 8, 16, and 32 seconds mgalinst the new variabls A = %%

= rzlrlz. {(Fig. 9) represents the temperature distributions which are

used in the stress yroblen.
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Complete Set-up for the Solution of the lemperature Disfribufion vs 7-/',?‘78

A Saomple Calculation For the Time [(nterval €=7to t=9sec s /l/ustrated
if this Figure /s used in conjunction with Table II
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CHAPTER VI

"his chapter will be devoted to the determination of tha stressas
due to the thermsl dilation, as a function of the vosition and the time,
for the case of a2 5 cm. diameter mild steel cylinder which is subjscted
to the temperature distribution versus time indicated in (Fig. 9). This
temperature distribution corresponds to a quench from 600 °C. in still
water at ambient temperature. Since the boundary forces are zero, the
results of thie computation will represent the stresses which would have
been present in the cylinder if no yielding had taken place. The tech-

| niqual‘of sclution and the notation used will be those of Chapter III.

The first step in this determination is the selection of the values
of the pertinent variables, as a function of the temperature, from the

literature.

The value of the linear component of the thermal dilation (thermal

expansion), egﬂ » was selected in Chapter V and is presented in (Fig.

7).

The selection of values of B, G, end ¥ = (B/26) -1, {is,
however, more difficult. The articles of ¥F. L. Tverett and J. Miklowlits
{(16) and G, Verse (17} contain not only originai determinations of B
and G , tut also show comparisons of their resulte with those of previous
investigators. The bibliographies of these articles are virtually inclu-
sive of the work done in this field, These references indicste that the

values of B amd (G , while not particularly sensitive to composition,
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are sensitive to the techniques by which they nre determined. This is
particularly evident when values of 2/ are calculated from values of &
and ¢ which were determined by different technisues. As 7/ is an
important paramster in the cealculation under consideration, and as the
experimental determinations of Zverett and Miklowitz are the only ones
specifically designed to obtein reliasble values of 7/ , the results of
their experimentsl work is assumed in the computation under considera-
tion, Their values of B and G were determined by unloading in com-
bined bending and torsion. Since these values were determined simltane-
ously, the resulting value of 7/ may be presumed to be more reliable
than when (as in the other available determinations) the values of =
and G are determined dy different techniques on different specimens,
Furthermore, the technigue of unloading corresvonds to the definitions
for E and & which were specified in Chapter II. The composition |
and the heat treatment of the steel used in this determination of the
elastic constants (nominal S,A.E. 1020 -~ hot rolled) deviates appraci-
ably from the steel assumed in the caloulation under consideration {nom-

inal S.A.E. 1030 -- normslized) , but, in lieu of better data, this

divergence must be accepted.

This data of Fverett and Miklowitz is presented as values of E and
G at ambient temperature, 200 °F.,, 400 °F,, 600 °F,, 800 %7,, and
1000 °F, For un_'in the computation under consideration, the intermsediate
points were plotted with extreme care in (Fig. 10) in such a manner
that the resulting value of 7 = (%/26) - 1 formed a smooth curve. The
values of % and 2G were graphically extrapolated from 1000 °F,

(537.78 %¢.) %o 600 ®C. From the curves of (Pig. 10), the values of



the perameters: VvV, E/i-v ., 26/1-, ond ZV6/1-v were computed and
plotsed dn {(Pig. 11). 7The derivative 4/dP(1/2¢) wns graphicelly
determined from the curve 1/2¢, which wae obtained from the volus of

20, (Fig. 10). This derivative is plotted in (Pig. 12).

The teehninue used in determining the siresses due to the thermal
dilation will now be indieanted through the 2id of 2 sample calenlatlon,
In this sample calculation, the etresses due to the thermal dilation
corrasvonding to the temperature distribution, {(Fig. %), for & =

gaconde will be computed.

The enuations to be solved were Jeveloped in Chepter III, bulb will

e presented ognin here Tor convenience. The ecustione to be solved ared

[ & L' FR)an | Troh~ [ () P

(25) ey = o '
: T L—%d&[f dA — f”f*dA]
£@)0A + J, £.(0%)
_— \dA + dA
26),  Gi= I__Er: : i 2140de
& 1/

A
(23), 2ATr = ff(ﬁ?)d/\ j =7 eTgp + &, [A dA + C —dA

o

(l?a.)l

Y
|

E r 206-
T ) -5 e, 502

I

~--E T E r 2VG
(212) T2 L0 -we ve 5 +0 T
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(Table II1) contains the necessary numerieal =snects ‘r}f this sample
csloulation. Referring te thie table, all of the parameters ars svaluated
at A0 , G2, 0.4, 0.6, 0.8, 0.9 and 1.0, These nositions =re
arbitrerily selected as the minimum mumber which will give the nscessary
sccuracy for the grophieal interpolation of the values of the parnmeters.
Zhe extra position, A = 0.9, is ndded becsuse of the greater inisinl
tenperature gradient nesr the surface. The temperature of esch of thase
positions, at & = & see., is obtained from (Fig. %), and is recorded
in (%able IIl). The corresponding values of %5/(1-v}, 2¢/(1-V) sand
2ve/(1-v) , obtained from (Pig. 11), are recorded in (Table III)
and plotted in (Fig. 13) as = funetion of A, The values of f;——d.‘«x.
II_.GA. and j—ﬁu are determined, for these positions, by the
graphieal integration of the curves of ({(Fig. 13), and are recorded in
(Table III). The corresponding values of Ggo. deternined from (rig. 7).
da/ar(1/26), determined from (Fig. 12), and d4T/dA , deterninsd by

graphieal differentiantion of (Fiz. 9), are also recorded in (U=ble 1II}
}  and _.S‘lq.la_} -

The values of the products -pe =3 1,(@20 - E

- 0 dA26
H%(E%,')g% are determined for these positions and ars rechordod in (Tabls
111). 141/@ is plotted in (Fig. 14} and the value o;_%/GTM. at

these poaitions, is dstermined by graphical integration and is rocordied

in {Table II1).

A 'firet approximation to the vsluss of €, and G;_ is then

%
obtained from (2q. 25)1 smd (Eq. 26)1 by assuming that rl(rrx;
,)(G' }) = 0. This approximation is:
E T
= € dA -3 =y __
e = L = L3i65xi0 Vi and § =0

: M I
‘ [, aA
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A first spproximation to T . demoted by Erl » 1is then obtained for
these positions from (XEq. 23)l by assuming that fl(v'rl) = 0, This

approximation is:

1

A A
T - (EgT g | E
2AT, s;l_-yEdA‘\' & 5 aA
These values of T Ty are used to form the function "1 E%‘ZG ), which
is plotted in (Pig. 14), The function f (-ﬁ)di is then obtained,
for these positions, by graphical 1ntegrntlon. and is recorded in (Table

I11). The funectionst

2¢ (A - erA 4
f(%)= —'»L w ok (28)da and (%) = 157/ & sr(s)a
[+]

are then obtained for these positions and are recorded in (Table III)
and plotted 1n {(Fig. 14). The values of the functions Jfl(ﬂ'rl)dh and
jf (U' JdA, are then obtained Dy graphical integration, for these posi-

tions, and are recorded in (Table IiX).

§
A second, and in this case Tinal, approximation to (= and 01 is
X

then obdtained from (T7q. 25)1 and  (2q. 26)1 » by replacing fl((T‘rl)

and fz(ﬂ'rl) by fl(v'rl) and fz((rrl) respectively. These approxima-

tions areil
. . f f ( h)dA J 209 - | f'(“"*\dﬂj 25 %A | 3 ¢
= = —1L3I63x%,,
z N G'A [ J’ g_G:dA s I-V dA] 3x Y,
I I\ =
C = —f f(q’ )dA + Jo (0 )da — 0. 1889« 157 1y,

j 2VE gp



=Gt

‘"hess values of the constants are used to obtnin o second, snd in this
case finsl, spvroximation to the values of the stiresses at these posi-

tions. The values of the siresses are obtalned from the eguations:

A A A
2A%. [ £(G)dA ~[Edh +e | Ear +C,'J; SeAtl)
, - +{(@) -5 +e, 5 +03
~ - E T E r 2ve
T—:_‘ - 'FZ(UT—-) “w € tS iy 0 9

The question of whether = third approximation is regquirsd is essily
settled in this case. The second approximstion for W}I differed from
the first by a maximum factor of about 10%. Therefore, it may be
expeeted that the third approximetion will differ from the seconi by a
maximun factor of approximetely 1%. A factor of 10% is somewhat large,
in this csse, but a factor of 1% is better than the input data, hence a

third aspproximation is uneco:sary.'

The valuss of the stresges due i& the thermal dilation were calcu-
1ated in 2 similer monner to the sample caleulstion for ¢t =1, 2, &4, 8,
16 and 32 seconds. The results of these enleulations sre plotted in
(Fig. 15) and (Fig. 16). A cross plot (not shown) of the stresses n%
the surface and at the center versus time indicates thet & = &4 seconds
corresnonds apuroximately to the most severe surface siresses, and that
t = 8 seconds corresponds approximately to the most severe eenter
stresses, On this basis it may be presumed that no apprecisble yielding

tokes place after B8 seconds, until ¢ approaches infinity, at which
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time the stressss due to the residual strains present at t = 8 seconds
may causs yielding, It follows, therafore, that it is unnecessary to zo
beyond B seconds in the determination of the yielding due to the stresses
of thermal dilationn., The ru&ucud stresses due to the thermal dilation

are plotted in (Fig., 17) and (Pig. 18) for ¢ =1, 2, 4, and 8 seconds.

{(Fig. 19) shows the value of k2 » 2 paraneter proportional to_tho
shear strrnin energy, due to the stresses of thermal dilstion, for % =1,
2, #, and 8 seconds. On the same figure, for comparative purposes, the
maximum value which 4° may nssume whithoup the material ylelding is
indicated. This set of curves is introduced at thia point in order %o
indicate the amount of ylelding recuired. The discussion of the sssump-
tion of the value of the yield point, as a function of the temperature,

is deferred to Chapter VII.
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In this chapter a complete sample calculation of the stresses dus to
the thermal dilation at t = I seconds was presented, Oraphical plets of
the stresses versus radial position, resulting from $this snd ainmilar cal-
culntions, were presented for ¢t =1, 2, 4, B, 16, and 32 seconds., It wae
indicated that & = 8 seconds corresponds, for purposes of calculation, %o
the last time at which yieiding. caused by the stresses due to the thermal
dilation, oceurs. Oraphiceal nlots of the reduced stresses and of k™

for =1, 2, 4, and 8 seconds were then presented. The stresses due

to the thermal dllation, as & becomes larze, anproach zeroc.



This chapter will be devoted to the determination of the values of
the residual strsine, and the stresses due to these residual strains, as
a function of the radinl position and time, for the case of & 5 em. dis~
neter mild steel cylinder quenched from 600 °C in still woter at ambient
temperature. The techniques for the determination of the stresses due to
known values of the residual stroins were developed in Chapter III. The
techniounes uesed in ihe determination of the values of the residual
straine were developed in Chapter IV. The notation used will im $hat

usod in these two chapters.

The values of 211 of the necessary parameters, ag o fuactien of the
tempsrature, were assumed in Chapter VI, with the sxcepiion of the yield
point. Bucholtz and Buhler (3 ), who made the experimentnl datermination
of the finel residusl stresses for the cnse under consideratioz, alse
deterninad some of the properiiss of the stesl undar considersntion. The

results of their short time tensile tests are vresented in (Table IV).

Iable IV
Stehl St 50 mi% 0.30% C., 0.20% Si., 0.75% Ma., 0.051% P., and 0.03%%S,

Pruf- Streclk- ng- Dehnung Hin-
temperatur grensze festiglkeit (1=10 4) schurung
2 2

. kg/mm kg/mm % %

2G 35.6 57.3 23.7 bl
150 .6 61.9 13.7 €8
300 22.9 60.3 21.0 50
450 20.2 4.9 22.5 66

550 4.1 29.0 2.0 75
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These values of the yield point are the values assumed in the problem

under conslderation. They are plotted in (Fig. 20) together with the
2.2 2

derived parametar ‘3 P which represents the maximum vslue which k-~

may sssume without yielding occurring.

It is ¥nown that the results of a short time tensile test of miild

steel at elevated temperatures has the form indicated below.

b’(

ey

In order to manke the solution as simple as possible, and hecnmuse there is
no better available data, it is necessary to replace this with 2n aporox-

imate curve of the form indicated below,

e

=

Sy

I% is further nssumed that what is nominslly reported as a “yiald point®
in such o short time tensile test corresponds to the value which should
be assigned to the yield point‘in the simplified curve. Such an assump-
tion at temperatures in the vicinity of 600 %¢. is open to some cuestion,
but in lieu of better data it will be accepted here., This faclor will

be discussed azain in Chapter VIII, particularly in relation to "creep”
at these temperatures, when the calculated values of the finnl residual

stresses are compared with the experimental results of Bucholiz and

Buhler (3 ).
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The techniques reaquired to determine the residuzl strains and the
stresees due to these residual strains, as a function of the position and
time, will now be illustrated with the nid of 2 sasmple caleunlation, In
this sample calculation, the residual strains will be computed =t © = &
seconds, based upon u knowledgze of the residusl stralns present at ¢ = 2
seconds, This particular sample calculation is chosen because it illus-
trntes two artifices which may sometimes be employed to reduce the iazbor

involved in the calculation per time ster.
The sequence of steps in this sample ealculation will be as follows:

(1) The stresses in the body at & = &4 seconds, due to the residual

straing present at % = 2 seconds, will be computed.

(2) These stresses will be combined with the previpusly conpubed
strosses at t = L seconds due to the thermal dilation to form the total
reduced stresses present at UL seconds, sssuming that no additional yleld-

ing talres place,

(3) The fumetion k° will be formed, and the increments of the
residual strains in the interval from 2 %o L seconds will be sstimated.
These inerements will be added to the residual strains present at 2 sac.
{This lnter is not = necessary step, but is convenient since the total
residual strains ars usually more reguler than the increments, and hence,

regquire fewer points %o plot.)

(4) The first srtifice will then be introduced. In this particular
case the dominant estimated values of the residusl strains will occur

near the surface and near the center, with an intermediate region in whiech
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there will be little or no ylelding. The estimated values of the resid-
uval strains will, therefore, he divided into estinmated residusl strain3v
asar the surface and near the center, Linear combinations of the stresses
due to these faectors will allow a perfect match between k?” and %‘T;,?p.
2t both the surface and the center, where the residual strains will have

thelir maximum value.

(5) The stresses due to the assumed values of the residual strains

nsar the surface and dus to the assumed values of the residual strains

near the center will then be compubed.

{(6) A linear combination of the solutions to (5) will be made

which matches k? and & U‘g at the surface and at the center. It

3 ¥.r.
will be found that this dces not result in a satisfactory match in the
internedinte regions., In most cases this would mean that another esti-
mation of the values of the residual strains would be neaded, but in this
case, the second sartifice may be introduced. This artifice consists in
noticing that the residusl strsin ratios 2t & = 2 seconds are nsarly the
sane as the regquired ratios of the increments of the residual strains.
Eence the stresses, ot ¢ = & geconds, dune to the residual strains pre-
gsent at & = 2 seconds, may be used 23 a third independent solution, ae
long as it represents a minor psrt of the combination. Using a linear
combination of these three independent solutions, k- and '%Q;?p_
are matched at three points, resulting in a satisfactory mateh over the
entire region. The fact that the possibility of this artifice exisis

indicates that a2 longer time interval could have heen used.
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For convenience in exyositicn. the discussion of the samnle caleu-
lation will be divided inte thres sections, which are not precisely in

the foregoing sequence. These sections are’

(a) The datermination of the stresses st & = I seconds, due to the
residual strains ovresent at t = 2 geconds, due to the sstimated residual
strains pressnt near the surface, and due to the estimsibed residual

straine oresent near the center.

(b} The estimation of the residual strains vpresent at % = 4 seconds
and the separation of this estimate inte residual strains present near

the surface and near the center.

(e} The use of a linesr combination of the three independent solu-
P
tions to (a) to satisfactorily match k? and '?U‘zp over the entire

region,

Section {(a) will now be discussed in detail. It must be remembered
that in the sequence of steps in this sample calculation, the estimation
of the values of thes residusl strains precedes the determinetion of the

gstresses due to them.

The engustions necessary to solve ssaction (a) were developad in
Chapter III, but will be presented agaln for convenience., %he eguations

to be solved are:
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(25), <= { 'f dA[ '(wa’c«;qehd;\)df\ +J%§(Zfe;+e‘;)o&l—f£@%)d4
| .
[l e s i i

([[#a] - M J }

(26}3 ‘ Cs ) {f{;—% [ ZG €¢ ehdﬂ)dA +)—:l_g(eg,+ve:)dA—J:ﬁ(Ué}dA:|
- [z [L("’-—,, A + J ATAE )dA—JH“T-)dA]}
{ fa] - [[8pa]'}]

(23),  2ATg= Jf(ﬂ?)dA f( %odﬁ dA~J S (€arvel)dA

+E f ZVegp + C, f28an
30 °
an, %= -0 () - 5[ TGt - e o B g E

{21)3 ." % (UT*)"' g?—froengChdA - (7/6 +e )~i—cZ = 1‘17?/’% -



=103~

(Table V) contains the necessary numerical aspects of the samnle
calculatloﬁ for % = I ssconds reguired to solve (3edtion a). Since a
gimilar ealenlation was outlined in Chapter III, the discussion which
follows will presume that (Table V) 4is nearly self-sxplanatory. The
first, second and third rows, respectively, of (Table V) give the
numerical computations necessary to determine the siresses, at & - 4
seconds, due to the residual strains vresent at & = 2 seconds, the
estimated residusl strains present nesr the surface, and the sstimzted
residual strains present nesr the center. (Fig. 21} and (Fig., 22}
2ive the plots of the parameters {(in addition to those alresdy determined
in the sample calculation of Chapter VI) whose integral values are
required in (Table ¥) for the calculation of the stresses due %o the

eatinated strains present near the surface.

The sequence cf the major steps presented in (Table V) is as
follows. & first estimate of the values of 'EE and 03 » denoted by

E;B and C.,, is obtained from {Zq. 25)3 and (®q. 26)3 » assuming

that £,(0,.) and £ (7. ) are equal to zero. Using these values for
1V Ty 2 Tq

= and C_ 4, & first estimste of {, , denoted by .‘J-' » is obtain-
2 3 s -
ed from (¥Naq. 23)3 s in which tl(v; } 1s assumed to be equsal to zero.

Using this value for E; + the functions ti(e; ) and fé(E; J are
3 3 3

formed. A second estimate of the values of the constante e’3 and 93

is then obtained from (Bg. 23)_ , inwhich f (T ) anmd ¢ (T }
3 13'3 2 r

: e ™3
have been renlaced by the known functions, flﬂr; J and f?(v} } &
3 =73
Using these valuss for E!3 and 03 » a second estimate of ¢, is
3

obtained from (Zq. 23}3 » in whieh fl(W} )} has been replaced by the
3
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known funetion fl(ﬂ-:rs). In this case the second estimate is sccepted
a8 being accurate enough. Values of G; and G‘m are obtained from
R

(Eq. 1?)3 and (Tq. 21)3 + in which fl((!"r) and fz{q;) have been

3 3

replaced by fl(?r'ra) and fz(q‘ra).

These steps may be readily followed in (Table V).
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(Table VI) reprecents the numeriesl enleulations correspondins %o
(Section b) of the sample calculationt the estimation of the residual
strains present at ¢ = L seconds, and the separation of this estimate
into residual strains present nesr the surface and near the center. I%
is to be remembered that in the actual seguence of the ealeculation, tgiu
sten precedes the eslculations renresented in the 2nd and 3rd rows of

Table ¥). The basis for this caleculation was presented in Ch&pter‘i?.

Referrinz to (Table V1), the previously determined stresses st
t = &4 seconds due to the thermal dilation and due to the residusl strains
present at ¢ = 2 seconds asre recorded. The reduced sireases due %o these
twoe frotors are then computed, and their sum is recerded. The value of
'%0;?p; s the maximum value of the function ¥> which 1t is sssumed that
the material can sustain without yielding, is then deternined from (Fig.
20}, and the known tempersture distribution (Table IV) at ¢ = &
seconds. The changes in the raduced stresses required %o match ¥ and

y = >
‘%3??;. + &t the points where k is the larger, are then computed from

the relationshipss

A{G-v) = = (1= \/?) (0-v)
AE-T) = = (1- @) (T5-7)

|

a(G-v) =~ (- -—%:_’;‘"") (@-)

The increments of the residual strains are then computed on the basis of
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the asgunmption that the total siraine of any element of tha body rama2in
- constant. With this assumption, the satimated valuss of the residusl

strain increments sre given by the following rslationshins.
A€l = -k AG-T) , 0€,=-HAWT) and  A€; = 55 AW -T)

The value of 2G , appearing above, is obtained from (Fig. 10) and

the known tempsrsture distribution (Table IV) at & = 4 seconis.

These estimated increments of the residual strains sre then added
to the residusl strains present at + = 2 seconds, giving the estinated
residual strains at ¢ = 4 seconds. For this case, these esiimated
residual strains are separated, as indicated in (Table Vi), into %he
estinated residu=l stralns nesr the surface and near the center, The
stresses due to these estimated residual straing were ealeulated in

(Teble V).



SAMPLE CALCULATION (continued)

Thrs ilfustrates the melfroa of esz“/;waz*/hf the reg uirod volues of Residual/ Strain

t=4 sec
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CISE LS EE T B |2 FSd 3 (§ifieee i (prllsy B w2y ¢ L T I I3
I I TN LN S B S50 S CLEE L U Rl B R A
si e iET el 2 |1 |2 275 CEIBE PR TRL PR nfeRRiEL oSy 9| WY
SHEEFE|lml B LB | T e (53] ST BEFST ST T S5 Fean ¥l T AR LY | n )N
& 5o v LB B g | x <> oW s B 2 ! < i 0] w g
® ! i
A L7 S A I £ R L o = B Bl - 2 F%_,‘?mf 1@ ale-¥)a(G)aG-T) 26 | A€ | aey | sel | ﬁz‘ze; t2|€0 42l En | €3 | el
Wimtin= | |16 ityint| 18 13010 16/ ilic 16403 167 1b/18140° b i | 10 1181 (i) :c?::'féf»wi imirn | ity 19 18/ S e 10° Liyin 1 1y O” iz 136 irin 15 i 16 1) 1811y 150y 15 i |1 1
% § v |fp-v | Ger i C
;ii o 714 1 714 |-14.28 | 309 t.w% L6657 335 [~ 1.37 | -239 ) 478 1375 AT4 | 74 1~.f{4a: ¢ 0 o . 214 1 14 |--3498
%‘ffé 0.2 524 | 7.84 i713.08| .60 :4% TFT) L2493~ 123 |- F®3 3.06 1335 | 088 .13) -.q\qg Q fa] 1) ) 088 | V) - A
§§§ Ou -Sle | 1245~ 729 | 2.3% 2*2@5 980 ,020(+0.10 |- .asi+ 1511494 |- .00y | 017 —.Ofo% 0 0 o -.007] .0VT |- .06
é%‘é O -24.02| \9.69} 4.33 | 9.8% 3.3;% 624 | ‘376 .03~ 790~ i.&=3_E 6.2 - -544 -946 .oqa% o) a - O --T94|. .44 | .093
B %,Sl o3 -30.64 | V71,770 112,94 “%-‘fi_w__*ﬁ‘-ﬁi_-%ia 31z 140 -6.6‘8'—4.82% 18,20 |~ . 24| -360 -2&4%-1.;49‘ 658 | .487 ‘~'\..‘u§1 LoIs | 79
§§§ 09 -3009 | 1558 14.4( | '359, 6.05] .66a| .332| 97|57 -4.80! 18.87|-.518] 24 12591960 1 OR5| 1935 ~2.988) 1299 | 1.189
959 Lo -26.85 297 1338 ‘o8z 628! Tl .23 6.3|-3.085-5505| \NAT[--332] .1eo |72=-2 421400 | 13712 -5.294] 1.560 | 1.684
55 W U, | W, TG % 6 G
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(Table YI)
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(Table VII) contains the ealoulations necessary for (Section &)
of the gample calenlationt the selection of a suitabls linesr combinstien
of the avallable independent solutions (for stresses due to assumed
velues of the rasidual strains) which, when added to the stresses dus %o

the thermal dilation, achieves a satisfmctory mateh betwesn X° and

2 2

v.p. OVer the entire range in which yielding occurs. This tablse ia

lorgely self-explanstory. In {(Table VII) it is indicated that the
stresges due to the thermal dilation plus a linear combination of the
stresses due to the sssumed values of the residusl strains near the
surface and near the center will not form a satisfactory mateh between
2 2

2
5 e 3 YeDe

of the required values of the residusl strains would bs necessary. In

over the entire region. In general a second assumption

this particular case, howvever, it is indicated that the stresees ot

t = 4 seconds, due to the residusl strains ypresent at & = 2 seconds,
may be used as & third independent sclution. The remainder of (Table
¥I1} econstitutes one method of approximastely solving the three simul-
taneous quadratic squations reguired to match ¥ and %-0%?p' exactly
. at three points, The final solution is then presented.



SAMPLE CALCULATION

(continued)

T 4 sec
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This table illustrates the use of [inear combinations of known solutions to mateh H* and §Typ
@ @ LC R - S & ,
Reduced Stresses | Aeduced Stresses |Aeduced Stresses | @+ @ = Assumed O+@ = Total Solution |(r-o)* JE 1 - P
; . /s aoparent Hat a solu, +X@+ /
| Dwe to Therral | Due to Assumed | Oue to Assumed Solution due to dueto € and Assumedr(Tg-¥1\/0 (187 i P e,ﬂ Vi tm”zcam’_’;pseld erd @ ’BQCOU o
| Oilation: ¥ € values mear surface| €° values hear center| Residuol Strains |Residuol Strans (-] ' t_>€' formed which would match K™ and 3%, at any z‘wapqus,buf
B B " Tape S b Vel Wiyt gl ety il gllell Paapiineg A ? 2| n this casethe remairing points would still hot match satisfactorif]
A WU I0G-0 (G- |56 (0G0 G0 -1 (G- G- %G| GGG -G G- G- G- | K™ (3G, . ' o | ;
i r @,V E 2~ ERE B ALK 3 "3 95783 (V@7 Ns i Yz57 NS LI AN B & z ; 3 e Ord/nar!!y q hew assumpt;aﬂ of E:) Ep and ", would be reqwreaj but
o | 8.29% | 8.29 é-’&b‘ﬁ ~32.02{~-3.02| 4.04 —/997|~1.997| 3.994 -4.02 | ~9.0% | 8.04 g‘?'z’f 4.27 |-859 187 | /35 | /nthis case the stroims at t=2 have rearly the proper relative
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i r ‘r ! - o . . Ji . - . [
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; ' independent solutions it is possible to match K and 2Ty.p.
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i ; - ! ot three points which in s case results ina salisfactoy
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A - 0E-T GG (-22.25 #4070 %) (-22.25 + 44.77) * for (D+¥@): (u’r—(ﬂiA 572089 -0 | -0 |Tz-T H* (2(4.053- 1.9778)* for(@ws@):(ﬂ?-r)] =-20.48
i . = Azlo
O —//5|=1i5] 230 |+( 9.43 - 22.42%)". +( 9.43-20.68%)" V), 5 10.57(G-0|,  -1028 4.053| 4.053]-8./00| 99 [+ (8.006- 3999 9)*= /35 @-0)| ,.,5 767
| Kl. o= 652 ' )
OR -l/¢ |~/ 49| 2.32 +(12.82~ 18.27))" = 6.28 r{/2.82 -18,09%) =6,28 L‘és B @9 20,59 329 | 746 =87 | 16 o 4.053-19778 = JBE (T, 5 /28
i ifor (B +x S0 = T A0 ) .
0. e gy ¥ i A2 - P - 57 - s
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- - i 2 s, =, _ ;
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: - '~ ' " - . by D+ z 2mal
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0.9 12763 /730 ~/033 | X= 0.04655 *% = 0.04255 b=-4.0456 I-b=5.0456 |-20.8 850 |1.68 | 6/¢ | TP =0 and mearly | & = 0.0053/
| ' , maithes thermn at A=OBEA= L0 T
0 14070 |-22492 |~/8.27 Xb=-0.1883 Alb)z0.2187 |-z0, 20 7.92 1/2:38 | 628
Solution for a voiue of B, | Summary of fluitiph~| Tota/ Solutior G-, - - Sy f } ' . \
. . 2 2| - < £24 sec. 2 /270 (volue wsed. + o o y ]
Such that D+(B+pYDIXD | /79 Coetficients D+/2200D+0696® (- (1A RS V54 32X Firma/ Soution Tor sec. 2 1220 (volue usedin @) O 995('°j’¢ usedin @t 0.1883(klue 1 &)
S QBRI S R of A= 18936 (57 S 8% x £ » Py ] - -"03,’-—-” Tolo/ Stress Jve T |Towa! Redweed Stress 7otal St Fr-4
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! A= ! i < RN L.g 0 :
9k (q*z-q-)f =-9.98 +Ki+/3.§.—,é’}®+[¥b]@ 3.59 | 5.9/ -94¢ | /38 | /9% f 7 2 %h% fj.,@—,—;, 0,087 | 2.0857|-0./4¢ | i2.93 | 12./4 | 2i.2] |-3-84 [-3./3 | &FS H.53(~/2/7 |-27.59
Azo i i R b3 [T . ’ —
04 b(4,74-f_977§)1: /35 [ Now ! -5.7¢ | /i-38 |~562 | /94 | 2126 §}’, é’ »_,% N ; ;Qf o | © o H.5C | 11.67 | igj9 |-/.657|-2.94 | .09 |-/2.74 | 530 |17/
: ; LN S : D .
*6 | 8 ==D.bos Liew(p) +3 = /220 -/4.93 /0.03 | 4.93 | 398 | 383 § S 3.@ ¢ §$;M; ~0.664 1 0:563 [D.095~ 1.9/ |-8.4C | 594 | 849 |-/ 28 | 3.4/ (-7.24 1772 | 12.63
. ' fix . Lsufs : "
2.8 I+81 5, = 064 |-1935 | 894 (/092 | 563 | I59 R £ N §-S a%;. T /.942|//8 9829 6.86 3—4:’,07 -26.90 2723 |-20.6% ~6.5§3 |-3.05129.23 | 26.72
! | 5 N v S Y X ; ‘]; ! i {
o9 Yb = 0.883 [RC18 | 8./3 | /13.057 &/9 | (OST = ;:‘i g ’75:; g g\@ e “R.6651/.392 | L2375 3.63 —58.62-96-58137.97 |~29.741-/2.72 | —1.35 |26.9z | 30.84
i i [k TSN ey ! f
1.0 [ ~20.29 | 753 /37 | 638 | 628 weRINEE B|-340 | 1.639 11767 O [75/5 66,70 47.29 |-XTS7 ~9.42. O |21.78|33.%

(Table TII)
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(Fig. 23) shows the results of the sample enleulation and of similar
caleulations, In this figure, the reduced stresses due to the residual
atraing present at t = 1, 2, 4, and 8 seconds nre presented. Since this
figure, together with (Fig. 17) and (Fig. 18), contains the essencs
of the results, Dlots of the stresses due to the residusl strains and
nlots of the total stresees, although known, have been nmitted. It W&G'
indicated, in Chapter VI, that & = 8 seconis was the last time at which
annraciable yislding due to the stresses of thermal dilatlon occurred.
Hence, no further yielding occurs until the stresses due to the thermal
dilation become small snough so that ylelding, in the opposite sense,

cavsed by the stresses due to the residusl strainsg commences.
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It now remains %o find the residusl strains which are in the body
when it reachss room taemperature and to caleulats the final residusl

stresses dus to thess strains.

In this particuler case, gince only a small amount of reversed
vielding, caused by the stresses due to the residual strains, is
expected as the gylinder further cools, it is presumed that the values
of the residusl strains present at t = 8 seconds remain constant until
the cylinder reaches ambient temperature (20 °C). When the eylinder
is uniformly at smbient temperature, the stresses due to the residual
strains which wers present at § = B seconds, are computed. It is
found that X’ excesds £ V.2 omly from 4z 0.9 to AT 1.0.

The smount of (reversed) yielding recuired to maseh kz and %‘W}fp.

is then computed, in 2 manner similar to the sample calculation, and the
final values of the residual stresses are determined. These calculations
{(when T = constant) are much simpler than the sample caleulation, eince

£(0,) and £,{T) ere zero, and since certain of the graphical inte-

crations can be eliminnted.

The final values of the residual stresses are presented in (Fig.
25), Thess values will be compared with the experimental results of

Bucholtgz and Buhlser in the next chapter.
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in thils chapter, 2 complete sample calculation of the resldual‘
strains present a2t ¢ = 4 seconds, based upong the residual strains
present at t = 2 seconds, and a calculation of the stresses due %o
these residual strains were presented. Graphleal ploks of the reduced
stresses versus radial position, resulting from this and similar calcu-~
lations, were presented for t = 1, 2, &4, and 8 seconds. It was indi-
gated how the residual strains present af t =8 soeoﬁds ( the last time
at which yielding caused by the stresses due to the thermal dilation
sccurs) were used to determine the final residual stresses left in the
cylinder when it reaches ambient temperature. The final residual

stresses are plotted in (Pig. 24).



-119~

CHAPTER VIII

While the results of the caleculation (Fig., 24) do not represent
the exact solution to the calculated problem, it must be remembered that
if the gize of the time and distance intervals is decreased and the runer-
ical accuracy is incressed, the results of ths calculation spproach the
sxact eolution to the ealeulated problem. By the caleculated oroblem is
meant the aquench from 600 °C. in a fluid at 20 9C, of an infinitely
long isotropic cylinder 5 em. in diameter, where the boundary layer
conductlvity and the properties of the material, ns a function of the
temperature, are exacily as assumed. Thus, eny difference betwesn the
results of the foregoing calculation and the exact solution to the caleu-
lated problem ere atiributable to the approximations resulting from the

finite size of the steps and the finite accuracy of the numericel cémpu—

tetions.

This chapter will be devoted to 2 criticsl comparison of the enlcu~
lated values of the final residunl siresses with the experimentnlly
determined values of Bucholts and Buhler (3), for the case of = 5 em.
diameter by 40 om. mild steel cylinder quenched from 600 °c. in still
water at smbient temperature. The calculated values of the finsl residual
stresses are presented in (Fig. 24) ond the experimental values are
presented in (Pig. 25). While there is n general agreement of form and,
megnitude between thess results, there are greater divergences. Dbatween
them than would be expected Lf the ecalculated problem corresponded exact-

1y to the physical conditions of the expsriument.
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The major divergence lies in the fact that in the caleunlated resulis
the largest stresses (corresponding to ineipient yielding) appear at the
snrféco of the eylinder, while in the experimental results, the largest
stresses (correeponding to incipient ylelding) appesr in the center. In
the calculated results, the streeses in the center sre but 63% of the
stresses required for yielding, while in the experimentsl results, the
stresses at the surface are but 71% of the stresses required for yiald-
ing. 4 discussion of some éf the Tactors which may be responsible for
this divergence will now be made. This discussion will be divided inte

the following three naris,

1) A discussion of how nenrly the caleulated problem corresnonds
to the experimentnl conditions. %The validity of certain sssumntions, and
the reliabllity of the assumsd values of the parameters will be investi-

zZabed.

2} A discussion of the errors involvad in the caleulation of the
stated oroblem. The maln emvhasis will bs on ths errors involved in the

finite difference approiimations.

3} A discussion of the difficultise involved in the exverimentsal

determination of the residual stresses,

The first guestion which will be nsked is how close does the assumed
muenching rate correspond to the experimental guenching rate, rememberlng
that 81l of the yielding due to thermsl stresses occurs during the first
e;ght seconds. The immersion of a cylindor' 5 em, in diameter by 40 em.

long tnkes a finite time. If rapidly done, it must result in high
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variable fluid velocitiez, which certainly influences the boundary layer
conductivity. If alowly done, the assumption that the nartisl derivative
of all parameters with respect to 3 is zero is seriously compromised,
in addition, while the cylinder is in the fluid, distinct varistions of
the boundary layer conductivity with 2z nust be expected since there is

initially rapid boiling, which must engender convection currents.
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Thesa currents may be expected to be more severe near the top of ths
eylinder, as illustrated. This means an additional vération of h with
2 . Further, the tempersturs and the time at which thg $ranaition in
the mode of cooling occurs (from bolling with fluid contset to no boil-
ing) may be expected to be seriously lowered and delayed nesr the top of
the eylinder, due to the fact that the fluld passing the top has already
absorbed large quantities of heat from the lower portione of the cylindar.
Thma, the region (excepting for the differsnce in pressure) ot which the
boundary layer conductivity may be presumed to be closest to that which
wvas assumed (based upon experimente with extremely small specimens) is
near the bottom of the cylinddr. At the center, where most interest is
att#ched. the assumed boundary layer conductivity may be presumed to be

alterad by, ot least, the following factors.
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1} There sre higher convection currents, which tend to incresse h.

2) There is a greater thickness of the heated fluid and vepor layer,
which tends to decresse h,

3} The surface temperature at which the transition in the mode of
cooling occurs, is lowered, which tends to sustain the value of h

(hizher in the first mode of cooling) for a longer tinme.

It is the author's opinion thait these factors may be expecied to heve
somewhat the following overall sffect near the longitudinal ceanter of the

cylinder,

1) The initial value of h is probably lower than sssumed in the
calenlation,

2) The transition in h (due to the change in the mode of cooling)
is probably smaller, muech less well defined, and oecurs at & lower temper-
ature than assumed in the calculation.

3} Values of h after the transition are probably increased.

There is , however, no quantitative data avallable in the literaturs on

these effects, hence they could not be included in the ealenlation,

The foregoing enumerated overasll effects would tend to reduce the
anount of yieldinz at the surface and tend to increase it st the radisl
center of the cylinder. A comparisaon of the esnlculated and experimental
residuzl atrenies. (FPig. 24) and (Pig. 25), indicates that these sre
precisely the effects which would be required to bring the calculated
and experimental results into closer agreement, since they would reduce

the residuszl stresses near the surface and increase them at the center.
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in view of these factors, it may be concluded that the meswptisn
of the value of the boundary layer conductivity ie one of the critical
points in the ecalculation. It may be further concluded that the devia-
tions of the sciual boundary layer conductivity, nesr the longitudinal
center of the cylinder, from the sssumsd values of the boundsry layer
conductivity are an important cause of the deviations of the calenlated
and experimentel results. A less important, thouzh perhaps significant,
factor is that the vertial derivatives of all parameters with resvect to

z are not equal to zero in the experimental case,

Another critical point, although one extremely difficult to svazluate,
lies in possible deviations betwesn the actusl and the sssumed values of
the elastic constante E, 7 and &, aes a functisn of temperaturse.
ihis is particularly true since 7 must be determined from V = %? - 1
and is hence an extremely ceritical function of the values of E and &,
It is almost impossible to find reliable values of Poltson" Ratio; the
reference used by the author being perhaps the best available, The

selection of the value of ¢ is also critical becaunse the derivative of

1/@ with respect to temperature is reguired.

The assumption of the value of the yield point is e eritical sssump-
tion of comparable importance to the assunpbtion of the boundary layer
conductivity. This is true because at tempsratures in the vicinity of
500 to ‘600 OC. there is an effect similar to creep appearing. Thi= is
avidenced by the fact that 21l of the experimenters who have stteupted to
deternine the elestic constants in this temperature range were forced to

use either unloading techanigues or vibration techuiques in order to obiain
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consistent results., Unfortunately there is no guantitative dota for
fereep” available in the strees tempernture levels involved in this $ype
of problem. Availasble creep dats is in terms of days, months and yeare,
rather than seconds, and this date is at such low stress level? that the
smount of ereep per second is truly negligible, It must be remembered,
howaver, that yielding due to "creep” is the ecsiest to compute in the
tyve of problem under consideration, as was indleated in Chapter IV.

In addition it would be mathennticelly simple to superimpose "ereex® upon

‘the type of calculation just completed.

It is interesting to note that the introduction of "ecreep" at high
tenneratures would tend to ineresse the residusl straing present near the
center in the problem just completed. This is apparent from an cpnraisal
of the tenperature distribution for variocus velues of elarsed tinms,

(Fig. 9). 1In this figure, it is seen that the surface drops below 500 °C.
in 1 second while the center tsles 16 sucoﬁds to achieve the same temp-
ereture drop. Furthermore, during the first 8 seconds, in which the
caleulation indiceabtad that the yielding due to the stresses of thermal
dilation censed, the center temwerature has only decreased about 10 °C,
it follows, therefore, that virtually =11 of any "creep® which might

have occurred would have occurred nesr the center. The increase in the
residual etrains near the center would result in inereased final caleu-
1ated residual stiresses near the center. It would amlse docrease the
residual strains prsssnt near the surface since yielding near the center
during the quench would relieve the surface streases. Thess factors are

precisely the factors required to bring the calenlated final residual
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stresses and the experimental residusl stresses, (Fig. 24) amd (Fig.

25) . 4into clossr agrsement.

The remaining parsmeters, k (conductivity), P (specific weight),
cp {specific heat), and & (1inear compononﬁ of thermal dilation}, are
believed to be non-critical. A& great deal of work has been done on the
evaluation of thase parameters as a function of the temperature for a
variety of materials and their values sre known to temparatures hisher
than 600 °C, for most common naterials, consisting solely of = single

phase.

“he major remaining difference batwesn the calculated wroblem and
the actual physical experiment lies in the assumption, in the caleculated
problem and in the calculations involved in the experimental determina-
tion, that the ecylinder is of infinite length. Since the cylinder’s
lenzth was 0§ times the diameter (mt the time it w=s quenched) it may be
exnacted that thermal end effacts are completely negligible over o central
rezion of 20 cm. of its 40 em. 1length. Such a section was removed
after the guench and the residusl streases determine& in it by Sach's
boring out technigue. The removal of thie gentrai gssction changes the
stress distribution naér the ends of the removed section. These changes
introduce small, bud oppreciadble changes in the values of the residusl
stresses as determined by Sachls technique. 7The residusl stresses are
deternined from the changes in length and diameter accompanying the boring
oub of the cylinder, and in this case the langth of the total eylinder

(including the disturbed ends) was measured.

The follewing list iz a recapitulation of the deviations, between
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the calculated problem and the experimental conditions, which have besn
discussed. The list is arranged in pleusible erder of decreasingz impor-

tance,

1) Deviztions between the actual and assumed boundery layer con-
ductivities over the central {(longitudinnl) region of the cylinder.

2} Deviations between the actual and assumed yield pointes and the
failure to include "ereep! effects in the ealculation.

3) Deviations between the assumed and actual values of the elastie
constants. E, 7 and G, '

L)}  Veriation of the experimental boundary layer conductivity with
2, and hence 2 varlation of all temperabture dependent parameters vith =
during the quench.

5) End effects caused by the finite length of the experimental
cylinder,

6) Deviations betwean the assumed and actual values of k/p cp.

T
¥, and €,

Ho pretense is made that these are the only important possible deviations,
but they sre certainly the most obvicus., In the opinion of the authar.
the correction of the above deviations wonld result in 2 close sgreemeni

between the calculated and experimental results.

The accuracy of the numerieal portion of the computation ie, in view
of the foregoinz deviations between the assumed and actual conditions,
lese important than the famct that it is capable of indefinite refinement.

The sccuracy of this caleunlation would have been elightly improved, for
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the same amount of laber, if the residual strains had been compubed =i
t =2, b, 6 ond B seconds rather than at ¢t = 1, 2, 4 and § seconds.
The computation at ¢ = 6 seconds might have caught slightly grester
atresses in the intermedinte region betwesn the surfaee and the center
of the eylinder. In addition, it is incumbent uvon the suthor to point
out that there is an impl;cit error in the caleulation of the 1Limit, as
A approaches zero, of the followinz quantity at © = 4 and t = 8
seconds.

limiy Ss-Sr

A—C
In order to avoid infinite derivatives in the stresses with respect to
A, ot the center of the cylinder, it is required that this limit be

finite. In the rumerical calculations for ¢ = 4 and & = B seconds,

= ~0
2= 9| am0

of the above cuantity was zero. ZReferring to page 60 of this texs,

it was, however, tacitly assumed that since £ the Limit

however, it is evident that this l1imit should have besn estimated from the

following equation.

limit égtﬁEE:-L(V'%gvlmﬁ -0}~ ot
A—0 ZA 26 Tl TR

Tsing the equation of equilibrium, (Eg. 5a), the above equation may be

written in the following form.

linit 2Ce-0Er _ '—(I—J——-f’%q;l) dle
L0  2A 26 k=/ JA

A=0
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fortunately, the contribution of this error is nezligible in this
case due to the following factors. The ferm dv;/dﬁiﬂgﬂ is small =%

t =4 and t = 8 seconds and is identically sero at ¢t =1 and & =

]

seconds. This implicit error affects the term cf - €1/24 only in the
o ©
ég ~ E-

region A{0,2 . The term appears as 2A dA while the other

terng have finite values at the center, hence the contribution of ithis
term can never exceed approximately 1/10 the maximum error in the term,
which in this cnse 18 already small. %he fact that this error was allowed
to creep in, however, indicstes the care whiech must be exercised when

1imiting procssses are involved,

it is believed by the suthor, although a substantiating discussion
would be difficult, that the differences between the resulbts of thig
calculation, {Fig. 24), =nd the exact results o} the caleculated problem
would be everywhere lese than 10,000 p.s.i. and that an aversze accuracy

of better then 5000 p.s.i. might be expected.

The remaining factor which is involved in a comparison of the calcu-

1ated and experimental values of the residual stresses is the quesition of

how well the experimental results (Fig. 25) actually represent the
regidual stresses which existed in the cylinder. The experimental deter-
mination of these stresses slso reguires the assumptions that end offects
are negligidle and thet the partial derivative of all parameters with
respect to 2= is serc. The validity of these aslumpiicnl was previocusly
diseussed. In order to apprecinte the difficuliies (even if these assunp-

tions were strictly true) in the experimentsl determinatiocn of the residusl



stresass, it is necessnry tc investigzate the mathenmstics of Sachis borine

——im

"

out technigue {1 ).

S5ince one of the few references in Engzlish which even oresents the
required equations has serious typographiesal errors in its oresent=tion,
He Lo YWishart and B, K. Potter (5 ), it will be desirable to derive

these egquations.

Gonsider the following equations, which were derived in Chapter III
for the stresses dus to the boundary forces, when the elsstic coeflfi-

clents are constant,

(17), T+ U
3&-(C+Ve)

|- F
(18), ZaiA (AT)

(21, § = 5 E.+v0)

The first step is to show that the constant C may be identified with
the circumferentisl strain at the surface. i.e, € = e%\ - The inte~

gration of (Eg. 18)2 gives:
2AT. = l—%ﬁ'—[(c-&-‘IJez)Aa-D]

The applieation of the boundary condition W; 1331 =0 zives:

(27) G o= - £ 8 (crve)



Substituting (3q. 27) in (Za. 17), gives the following volus for

(28) G = 2% —?'TA(c+vez)

TIvaluating (Zq. 9a) at the surface gives:

(9a) e""A:n = -'—l-;'l’-[(\-y)v;}m— VG;IMJ ~ BE,

Substituting (Eg. 28) in (Tg. 92), and noting thot (rrl (my = C sives:
2 L2 _ . 1¥Al _ =
(29) e‘P‘A“ = 26 03), Ve, = (CHve) | -ve, =C

This indicates that the constant € may be identified with the eircum-

ferential strain at the surface.

Sach's technigue consists of boring out the center of the cylinder in
sugcessive increments and measuring the corresvonding vaiuves of the resuli-

Hg. 27) indicates that in order %o pro-

i strains and e .
g EE . 3| 2=1
duce external strains Es and e; _— due to this boring cut, the valine

of W} maet changze at the inner surface of the bore, A4 = ﬁb » by the

following amount.

26 |1-Ag
= — == —2(e
AU‘;, = a& C ¢,A=I+vez)
A=A,
The existinz stress at A = Ab irn the original cylinder. % \i*Ah §
o
»lus the change in this stress due to the boring out, AW}) . mush
3T F

equal the final stress sfter boring at the surface of the bore

“_r‘ﬁ*"‘hb [ 1-8“



o ]

A=A

A=Ay, A=Ak

Yowever, the radial stress at A = Ab after boring mst be zero, since
thig is the surfacs of the bore. Therefore, the following esguation nay

be written,

= _.A(]T\l = ,_& _‘__I.'\.‘.E E¢'A=|+VGZ)

A=Ag 2

Un

o AzAb

This original stress must have satiafiad the eguation of ecuilibriums
-
(5b) W = 2 2(AT7) —Tr

Therefore, ths original circumferential stress in the eylinder hesfore

berinz maist be ziven by the followinz eguatien,

|—-H4>J (o] )

— ZG'- _ J+AL ~
[(l Ab)dA (E?) +VveE ) —ZAb(€¢1A2‘+VCz]

Similarly, (Bq. 21), 1indicates that in order to vroduce the

external strains 62 and due to this boring out, the value of

e
8| 2= _
U; at A= Ab muat change by the following amount,

A“_z! 2 l—Q:?/—_(Gz +'U€¢|-A=‘)

A=Ay
The existing stress at A = A in the original cylinder, \

S A,b
piuns the change in the siress, A\]‘;\ Amhy » mast egual the Tinsl stress

after boring out, Wz\ A=hy 1.8.8



G AT = trz|
I A<Ap

It is now nescessary to deternmine the atress, U; l Amiy, s Which axiasls ab
the surface of the bored out cylinder. dAssume that an inerementsl amount
dAb is bored out from the eylinder. This reduces the axiasl ferce on the
rqmalndor of the cylinder by an amount Q; \ .&_%dab. which must cerres-
pond to a uniform change of the axial strees over the remainder of tha
cylinder glven bys

W), , 8= [ 1= (Ap+dAy)] T

A:Ab

Zeferring to (Za. 21}2. this may be written in the following form,

T

z

hn, * 21~ (e oms)] 3k (6t ’_’e"’A,.),

Jeglecting second order terma, it follows that the original axial stress

is given by the folliowing ar{uatlon.

5, - 28 [ (1- A ij = +7/e¢lA=) — (& + v%]m')]

For purposes of simplicity, the foregoing clumsy notation will be

altered as indicated below,

Let: W q-¢. Te be the originsl stresses hefore boringz.
A be the dimensionless bored out area.
e, be the longitudinal astrain caused by the borins out.
eg ' be the eircumferential straln at the surface couvseld

by the boring out.



in terms of this notation, the equations by which the residusl

stresses are determined pmay be written in the following form.

(%) G 22[ HA(g, 1ve)]

(%) G= 2 (-N%(grve) - U2 (epre)]
(32) T = 28 [ (-Ag(etrey) - (e tve,) |
wt vy = 22 (A4, e) - (6p+76,)]

1t is interesting to note that the siresses at the center are given Dy
- 26 &
“;_IAzo‘ -U  dA (695+7/ez)

T

- 1 2¢ d
ol = W\ = Z WV dA (EZ+V€-¢.)

™ Tl
in order to apprecinte the significance of the foregoing eguations more

easily, the following graphicsl comstruction may prove helpful, If the
funstion -f—z-_ci;{ez + ‘Ue, ? is plotted against 4, the following construc-

tion givas the value of U".

a i z\"““
I p

_g | e,

- 2% (e lyveq ) .

|-V ﬁ T
| 7-‘4:1
|' E)A-—as
0 L y
le] 0.5 1.0
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This graphical construction indlcates quite clearly the ilmportance neid
26

only of the value of the function I1:y{ez +‘V§). but also of the

derivative of this function with regpect to A. A similar graphienl

construction =pplies to the ternm (V; ¥ W;).

The magnitude of the measurements involved in the dstermination of
the stresses by the above equations is indicated in the small figure
gshown in (Fig. 25) . For example, the first point of the E; curve
corresponds %o a change in the diameter of the cylinder of 2/10,000 of
an inch, and this wust be measured accurately enough to give = reliable
slope. It must also be considered that these measurements were made by
mechanical means rether than with strain gages. Referring te this figure,
it is seen that if the first messured points of ez and Eb were used,
rather than the smoothed curve, the initial values of T, 2nd Ty wouvld
be changed by approximstely 20%., Therefore, it may be concluded that
the securacy of the sxperimental residusl stresses near the center ie
auite low. The securacy, of course, improves as the size of the bors

inereases, but the messuring preblem is still acute,

In view of these factors, and the unsvenness of the original exner-
imental mearements of e¢ and ez. as indicated in the small figzure
shown in (Fig. 25), it ie apperent that this experimental determination,

particularly at the center, is subject to very large possible errors.

In this chapter, the calculzted values of the final residuzl stresses
have besn compared with the experimental values determined by Bucholtsz
and Duhler. It was polinted out that, while the calculated results do not

renrssent the exact solution to the assumed problem due to finite differ-



ence avproximation errora, the uge of o greater number of steps cauvses
the ealenlsztad =o0lution to converge on the exact solublon. It woae then
indicatad that the divergence bebwsen the caloulated sond experinsnisl
valueg nf the final residual stresses was much greater than could be
prplained on the basis of the finite difference approxination errsors.
This divergence wns nbtridbuted to errore in the assumed valuzs of the
naremeters, variastion of the experimentel boundary layer conduetiviity
with axisl mnosition, end effects and errors in the experimentol deter-

mination of the resgiduval stresses.

These divergences in no way detraect from the msthod of ealeulabion,
which iz eapsble of arbitrary scourasy. Ratﬁer. they indicate that much
more relisble valuss of the parsmsiers snre regquiraed end that srealer care
maat bhe taken in obitaining experimentsl results which do nol appreeiably
violnte the assumpbions of infinite langth and no variation with axisl

=ositinm.
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The extension of Pprt I to cover the case of an infinitely long

holliow eylinder.

The statement and brief discussion of other cases which can be

simply hendled.

The effects of introducing o vhase change on ths fempsrabure and

stress problen for all cases., A brief discussion of the sdditional in-

formation required.
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CEAPTER

This chapter will be devoted to the extension of Fart I %o cover
thse case of a holloew eylinder, The problem, stated in its entiredy, is
the development of an analytical mebthod for the nrediction of the regid-
usl stresses induced in ap infinitely long concentrie hoilcw isotropic
eylinder by a symmetrical aguench in = large body of fluld, assuning thab
all of the pertinent parameters are known (graphical} funetions of the

pemperaturs.

The first step in this problem is to indicate the modifiealtions to
Chapter 1 necsssary to determine the temperature distribution. The nota-
tion used will be the same as that presented in Chapter I, page 2, excent

for the following additions.

Lats r, be the inner radius of the eylinder.
x, = r,/ry
hb be the boundary layer conductivity on the inner surface.
by be the boundary layer conductivity on the suiler surface.

The required modifications consist of the inbroductlion of a bBoundary loyer
at the inner surfnce as well as nt the ocuter surface and 2 ¢henge in the
division of the cylinder such that the distance rl—ro is divided up

into n equal intervals ar, or (l-x ) 1is divided up inte ‘n esusl
intervale Ax, the center of each interval being distingulshed by the

subscripte

;Q»f-;-.;‘.gq-ﬁg. ceeres ZREB L aieie 22+ (o=b)
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Theese divisions sre plotted in the same nmanner as indicated in (¥ig.1),

vage 9, versus 1oglexr except that now there is a half interval {(corres-
vonding to .;% - %} inelde the inner surfzce of the cylinder as wsll as
s half interval (corresponding to -Q’+ n+{ ) beyond the outer surface
of the cylinder, Referring to page 8, the boundary layer equation on the

inner surface of the cylinder may be developed in 2 manner similsr to the

development of (Zq. 4). It is readily seen that this equation is:

21N
E \ose_(T T°)

o »

E@ has the significance of the bulk fluid temperature in the interisr

of the eylinder. This eouation is satisfied in the same nmenner as the
boundary layer equation was satisfied at the outer surface if a curve

k 10‘10./rohb is plotted to the left of the inner surface, %hen this is
done, the solution to the problem proceeds in exactly the same manner as
outlined in Chapter I, excevt that everything said sbout the outer surface

now apolies to the inner surface as well,

Tha remaining sten is to indicate the modifications to Chapter 1II
required by 2 hollow cylinder. The notation used will be that used in

Chapter 111 except for the following additions and changes.

Let: %, be the internal pressure.
n be the exiernal pressure.
r, be the inbternal radius.
B = r 2/rl2
! » ZG—
SO B Sm.dA( 7)dA
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On page 33, the set of equations, (2q. 17) through (%q. 22}, were
Ziven which defined the stresses in a solid cylinder. Thg enly chanses
whiech occcur in these hqustions when they are adapted to » hollow eylinder
are a change in the limits of integration and o change in the boundary
condition esuations, (Tq. 19) and (Bq. 22). Th; equations for 2 hollow
cylinder are vresented below. The equations corresponding te thosa for

~.so11d cylinder are distinguished from them by a wnrime.
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Ls before, this set of equations nmoay be separated into thre= sets of
equations which give the siresses due to the thermal dilation, the stresses
due to the boundary forces, and the stresses due to the residunl strains.
Bach of the separated sets of equations will be presented and the technigue

of solving them will bs indicated. This techninue is similor to thot used

in Chenter IIILp
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Yor = hollow cylinder, the sst of equations which gilves the sirsssas
due to the thermal dilation is given below. The correscondings sed of

eguations for a solid cyliﬁéar wes presanted on page 30,
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The results of the integration of (Zq, 18&); and (Eq. 21a); are
'
indicnted below. Note that (2. 19)1 is satisfied due to the limits of

integration,
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The application of the boundary conditions, (Taq. 20); and (Zq. 22}£w
results in a set of equations comparsble to (Ea. 25.9.)1 and (Bg, 26a),

i ‘ '
page 42, except that the approximations for fi(W;1) and fo(U; } are
1 = Ty

not indicated.
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“he technicue of solving ﬁhese squations paraillels that ussed in
Ghapter X1l. A first sporoximstion %o 65’ and :3;. danotad by ég
and 5}, is obtained from (Rg. 35b){ and {(Eq. 26b); v nasuminz that
f{(ﬁ'rl) and fé(q;,l} are zero. These values for the constants ars used
to obtain a first spproximation %o L )8 ry denoted by V:rl . from {Zg.
23}; . assuming that f]_(ﬂ" } is zero. “"hts vzlue of Q’rl 418 ussed bo
obiain a sscond 'zpnroximation to the values of -‘5 2, and C‘{ by renlacing
fliq}l) and f2(€r,l) by fl(U"rl) and fg(cr,.l) in (%q. 251)); and
(Zq. Zéb){ . Using these second anproximations for the values of the con-
stants, a2 second approximstion to Trl is obtained from (Zq. 23); s
assuming that fi(q;l) equals f{@f;l). This second =spproximation o
V;l is either used to renlace E;l in the foregoing srgument and the
wrocass is repeated or this second aporoxinmation 1s considersd close
enouzh. When a satisfactory value of [ is obteined, T,  ond

] o g

are obtained from (Eg. l?n); and (Za. 21); "

Gince the technigue for solving the sete of equations which give the
siresazs due t0 the boundary forces and the stresses dume to bthe residual

strains is the some as described above, it will suffice to meraly uressan

the enuntions, and assume that the foregolng discussion is spplied $o then.
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The set of eaquations which gives the stresses dus o

Forces, for ths case of = hollow cylinder, is given below,
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The faregoinz equabtions are solved in an identical manner to the urevious

set, which save the stresses due to the thermal dilation.
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ihe set of equntions which gives the streases due to tile residusl

atrnins, for the case of a hellow cylinder, is given Dbelow.
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The foragoing equations =re solved in an identical menner te the previous

seb, which gave the stresses due to the thermsl dilatioen.
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Geteide of the forsgolng modificablions bo the esguabions, the {dlge
cussion of Zart I spplies in its entirety tn the remalnder of the come
mubations required %o debermine the rasidunl stresses in an infinitely
long concentric hollow isoiropic cylinder gquenched in 2 lorze body of

fluid.

In this chapter the modifications reaguired to extend Pap$ i to
cover the case of a hollow cylinder hove been indiented. This chapter
is not intended o stznd =lons, but rather, iz to be used in conjunetion

with the discussions of Part 1.
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This chapter will be devoted to the consideration of ?urther sxten~
sions to Paprs 1. It is apparent that only cases in whilch the varisbles
may be considered to be functions of & ainglo position parsmeter, at a
given time, may be handled by similar technigues, This restriction
effactively limits the extension of Eart 1. which may be made without
drastic increases in the complexity of the method of selution, %o the
cages of the flat plate and the solid or hollow sphere. For other seo-
netrical cases, the developments of Chapter II and Chapter IV otill apuly
to the stress problem, but the application of these chapters to other
geometricallsha@en is beyond the scope of this thesis. 7The case of the
flat plate will be considered in limited detail and the case of the sphere
will be driefly mentioned. The modifications to Par$ I and the additicoi
infoermation required to handle cases in which a phase change is invelved

will be briefly considered.

The infinite flat plate is a linmiting case of the hollow cylinder,
in which (ry-r,) equals the plate thickness and r, is sllowed to ep-
proach 1ﬁfin1ty. This is 2 simpler case than the cylinder becsuss a
plain seale (rather than a logarithmic) can be used in the graphical con~
struction for the temperature problem and in the siress problem there are
two constant strains rather than one, The case of the flat nlate will now

be briefly discussed.

Uonsider an infinite flat plate of thickness b, where x and ¥

are coordinates perallel to the principle stresses in the xy plane.
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logume that ?1 and To respectively, are the fluld bulk temper=iure

nbove snd below the plate and that hl and ho respectively, sre the

-

boundary layer conductivities sbove and below the plate,

HR

Lhe equations correspvonding to (¥a. 1), page 3, (Fa. 2), paze i,

and (¥a. 3), page 6, are!

, ﬂ:ﬂ[ﬂﬂ-ﬂ- ak aT]
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These equations may be solved by a graphiecal construction similer to
(Fig. 1). The differences are thnt 2 need no longer be plotted to o
log scale but mey be plotted directly, =nd that there is now s boundary
layer on each face of the plate. In (Pig. 1) the graphical construc-
tion for the boundary layer required a curve plotied at a distance

E.EE%LQ: from the surface. For the case of the flat plate there are

rlh

two curves raquired, at distance E; and ﬁ“ respactively, from the
0

upper and lowhy surfass of the piate, OCutside of these medifications,
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the solution of the temperaturs problem vrocseds in an identical manner

to that presented in Chapter I.

For the case of an infinite flst plate where the perameters are in-
devendent of x and y, the required equations for the stresses =re

indicated below.

constant

Ey @ constant
& = thoGm)re +€
$ = mIEE]eG

4
T - - p (p ie the pressure on the upper and lower
surfacer of the plate.)

b

jﬁ}dz = - Ty avg. are cverage vrin-
2 g ecipal utrooloa Yn xy plane due to

b boundary forces at tha infinitely rauoved
iqﬁdz =P yg. dges of the plate./

These equations may be readlly solved, and may be divided up, 28 in
the case of the cylinder, into stresses due to the thermal dilation,
stresses due to the residusl strains and stresses dus to the boundary
forces. Unlike the case of the cylinder, explicit sclutions are obisin-
able since no terms comparable to fl(U;) and fz(U;) sppear. The
zanersl solution, particulafly for the stresses due to the boundary
Torces, becomes fairly lengthy, henee for purposes of illustration it is

desirable to uase a less general case.

Consider the case of & flat plate in which the bBoundary forces ars

sero and the perameters are independent of the direction in the xy plane.



Letting ek raprasent both E; and & , 0; represent both [ =nd

p g
o

Tyo and &) represent both €l and eg,g the equations for the sim-
plified case are: '

&, = Constant

Ex = .LE’_“ * e; + €7

o
j Txdz = O

Separating this set of equations into two sets, giving respectively the
stressos due to the thermal dilation and the stresses due to the residusl

straina, results in the following sets of equations.

€x = Constant €x, = cConstant
-V 2 o

Ex, = = re’ and €, = —\-Ey-“'xs +E€x

b b

Lﬂ;dz. = 0 , (Gae = O

The aolution to these sets of 'eqna.tions are respechively:

b b
g T £ 4
= &'dz £ | o j U X O%
T = _E_EQT -~ iﬂlL_____} and W = ———&E - l
5T WY X3 = rviex
[F e ? J, v d=

The technicues for determining the values of the residunl strains are of

course the same as in Part 1.

Similsr technioues for the solution of the temperalure problem may
b2 develonsd for the case of the sphere. In this case the graphieal

conatruction ie similar to the caase of the cylinder, sxcept that Hthe
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strass solution is simpler than for o eylinder sine
unznown stresses (ossuming symmetry). The stress squstions ore rendily
develoned in 2 mammer similar to the developments of Chapter ILI, Dbud

will not be presanted here.

The stress problem, as developed in Chapters II and IV, 1s guite
general, but seml-graphical solubions for the temperature are enly nossi-
ble for the cases of the flat plate, the cylinder and the epbere. Tor
other zeometric shapes (where the temperature is = function of tw§ or
more position coordinates as well as time) it is necessary to develop
new techniques for solving the temperaturs prodlem. 4 considerstion of
the erxtension of Part I to other geometric shapes is beyond the scope of

this theesis.

The remaining question which will be considered is whether the de-
velomments of Pari I can be extended to ineclude a phase change during
the quenching cyele. The answer to this gquestion is yes, if the follow-

ing additional conditions are sntisfied,

1) The values of the pertinent parameters are kaown for ezch wurs
ohase in the temperature range at which that phase ie present and it is
nossible to determine the values of the parameters when two phnses sre
simultaneously present.

2) It is possidle to determine the phase change rate at any time

in terms of the past history of the point under consideration.

Lesuning thot these conditions sre satisfied, the first chanze in



«}51-

Part I is in the interpretation of ﬁhe terma., In addition o belinz fone-
tions of the temperature, all of the parameters are now functions of the
amount of phase change completed. For example, let A be the first
vhase and A be the second phase snd A Dbe the frection of & which
has transformed %o A. Let eg be the thermal expansion of d ansi_ e:‘;
be the thermal expansion of A, Then if there are two phases vpresent,
e (1 -ANeg +Aeg
Although all of the properties, when two phases are present, may not be
deternined as simply as this, the parameters wsed in Part I may stiil be
congidered to be a function of the amount of phase change completed.
“hen this is understood, there are no modifications to the stress problen

outlined in Part I.

In the tempsrature problem, however, there is an additional tern.
Zet H be the amount of heat evolved per unit welght in the complete
transformation of A to A. Referring to page 3, there is now an nddi-

tional term appearing. This term is:
The rate of heat generation = 2 Idrp H-g-f-'

The egquation for heat flow in cylindrical coordin-otes is then obtained

by equating the rate of heat entering the ring from the inner radiums =
plus the rate of heat generation in the ring %o the rate of heat storaze
in the ring plus the rate of heat leaving across the outer radius r-dr.

ith this =2dditional term, (®g. 1), page 3, becomes:

T _ gL 8 (w38TY), 2 3k 3T H 3N
at‘q[rar@"ar‘*n ]“"



This means that to the right hand sids of

ing term must be added,

H
Tryy P = 2os)

-

4+ discussion of methods of satisfyingz conditions 1) and 2}, usze 150,

U

iz beyond the scope of this thesis. A simplifiel avproazch to condition

2] is given by Russell (/0) for stesl of eubectoid composition.

In this chapter it has been indicated thal sinilar itechnisues to
those used in Part I can be appiled to the cases of the flat piate an
the gvhere. The extenslon of the problém to include phass changs has
been indicated, and the characlter Gf the additional information recuired

to solve the vproblem when phase chanse is present hns besn poianted ocutb.
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This thesis presents, for the first tims, 2 method vhereby ths vari-
atlon with tempersture of the thernal conductivity and of the thermsl
diffusiviﬁy may be included in the calculstion of the tempsrature versus
position 2nd time for the particulasr cases considered. In certazin nor-
tions of the rumericsl cerlculation presented in Chapter V, the tims de-
rivatives of the iempernture at the surface were 305 greater and -t
the center were 307 less thon would have been obtained if sversze
values, rather than variable values, of the therm:l conductivity =rd

thermal diffusivity were ﬁuod.

In the temperature calceulation it wos indicated that size and posi-
tion effects on the boundary layer conductivity =re very importont, and
that a2t preseat they are nob kumown. It wns also poinited ocut that the
boundary layer conﬁucﬁivity in the cnse of a large cylinder (similarly
for a flat plate) could be computed, if a tempersture near the surface
ware known versus time, For exasmple, if = long solid cylinder is quenched
in a vertical position, the variztion with helght of the boundary layer
conductivity may be computed. If this is done with eylinders of various
dismeters and lenzths, size snd shape effects may be investignted. (In
these cases, of course, suitable vrecsutions must be maintoined to insure

that the axial flow of heat ias negligible.)

The basic contribution of this thesis to the stress problem is the
development and use of the concent of the separability of the total

stresses into the stresses due to the thermal dilation, the atresses due



to the boundary foreces and the sirssses dus to ths rasidusl stroins. It
is this concent which allows tha-developmsnt of the finite diflersace
techniques whereby the stressas may be lnvestigated -4 the end o7 o suce
caading time interval in the knowledge of = $heory of strensih, tharsby
21lowinz residual strain 1ncrsmaﬁts in that time interval te te orsdictad.
Phis coneent, and the edditionql davelonnants of Chapters I1 and IV, ooen
an =poroach wharsby sctual numerical values may be obtained to 2 vinle
hizat of problems involving yielding. This concept of separability is
bagaed upon the assumption that the valuss of the slastie cosfficients are
the same in ench of the set of sguations which zives the total stresses.
The2 suthor, By assuming that the values of the elastic coefficisnts are
unique functions of the temperature and thot they repressni ths values
obtainaed by unlosding an 1nf1nitéﬂmal element, has merely cliosen the sime

nlest way of natisfying the required assumption.

o

in the speciflic eages of the eylinder mnd the plate, the coatribution
of this thesis lies largesly in the developmente whereby the effects of the
voristions of the elsstie coefficiente with (emperature may bhe exascitly
includad. In this regard, the equations eand the semi-grasphical tech-

nigqueg for their solution nresented in Chapter IIl are original contri-

utions.

Perhaps the most important contribution of this thesis, however, llies
in the lnowledgze it éffordn that, assuming the volues of the paramefers
are ¥nown and end effects are nesligible, srhitrarily ezact calculations
of the residual stresses dus to symmatrically nuenching = scolid or hollow

erylinder (or infinite flat plate) may actually be carried out. In this



enanection it must be pointed out, however, that ths results of the eul-

culntion nresentel in Part II indicsate that a lavge amouni of Turilie
vorn ie negestory befeore the voluese of the pertinent onromesters roe
slamartely kmown,  In particulsy, Detber voaluss of the bounlovry Llarer

confuntivity and of the "ereap” proverties of materials =t Lilgh oo

tures nnd stress levels are required.

The most imvoriant direet extension of this thesls, briefly mentlionsd
in Chepter X, i3 the consideration of the case where phase change ie in-
volved (i.e. stesl auenched from the austenite region). This cnn e

nocomolished 1f the factors tabulatsd on page 150 are known.
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