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~n rmnlytical method is developed in detail whereby it is pO!!l! i ble 

to calcula.te. ,"!'i th arbitrary accurncy, the tell'l"O"!rRture, the stresees, and 

the rellidual strains as a function of the radial position and time induced 

in an infinitely long solid isotropic cylinder by a quench in a l~ge 

body of fluid, Assuming thAt all of ths pertinent pArameter!! are known 

(graphical) function!! of the temperature . 

In the eourll9 of this development, ~ general theory is presented 

~hereby it i!! theoretically possible to predict the stressee and the re-

sidual strains in an isotropic body at any time during a thermal and me-

chanica! history if the following very general aesumptions are satisfied. 

1) The tem?erature and the boundary conditions are known functions 
of the position and time and the free thermal expansion i8 a known func­
tion of the temperature. 

2) There Are values of E, G and V which Are known functions of 
the tel!lpersture and which relate, through Hookl'l's Ltlw, the cha.nges in the 
stresses wi th the changes in the strain!! which occur if the stresses are 
r emoved from an infinitesmal element of the body. 

3) There 18 ,~. theorY of strength ava11nble which either '?'jredicts 
the m~irnum stresses which the material can sustnin. aa n function of the 
temperature and the p~~t history. or which predicts the pInstie strain 
rate~ ae a function of the .tressel. the tempera ture and the past history. 

Selecting the values of th~ p~rtlnent parameters from the literature, 

" !!umerleal crucul ll.t ion of tho resldual stresses is made for a 8~ecific 

case of a quenched sdlid cylinder. The resulte ~e compared ith experi-

mental values for the same case determined by other investigators. 

The developments for a solid cylinder ara extended to ~ hollow cylln-

der ~~d n fl at plate . Var ious suItable theorlee of strength are consid-

e~ad. The modifIcations to the general theory And the additional infor-

mation required if a phase change i. involved are briefly indicated. 
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'l'ABr,lJ OF COUTml'l'S 

The development ot an Bn~lyt1eAl method for the predic­

tion of th!l residual s tresses 1nduced 1n an inf1n1 tely long 

~olid isotropic cylinder by B symmetrioal quenoh in a large 

body of fluid, assumi ng thAt ~ll of the pertinent parameters 

are known (graphical) functions of the temperature. 

1 

Chapter I - - The development of B . ami-gr~phlcal 2 
method f~r determ1ning the temperature as a function of 
the poe1t1on IUld time when the boundary layer oonductiv-
Uy. the thermal ccmductlvlty and the thermal dit:fus1v-
i ty nre known (graphical.) functions of the temperature. 

Chapter II - - ~he ex~ens10n of the homogeneous- 15 
hotropic theory of elasticity to include the effects 
of thermal dilation. reeidull.l strains and the variation 
of physical properties with temperature. The sepa.re.-
bll1ty pt the solution into the stresses due to the 
thermal dilation. the stresses due to the boundary 
forces nnd the stresses due to the residual strains. 

Chapter III - - The 8.ppllcl'1.tlon of the extended 28 
theory to the case of B l ong solid cylinder. The devel-
opment of the Itpproprlr ... te equntione and semi-graphical 
methods for their solution. 

Chapter IV - - The introduction of variaut theo- 51 
ries of strength and the use of these theoriee to deter-
mine the values ot the reeidunl strains as B function 
of the position and time. 

'.t'he numerical calculation of the residue.l stresses in 64 

the caee of P. specific mild steel cylinder quenched from 

600 °C. 

Chapter V The numerical cnlculation of the 65 
temperp.ture as E'. function of t he position !and time. 
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II ( cont.) 
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C~pter VI - - The numerical calcula tion ~f the 
str esses due to the th~rr~al dilation ~9 ~ function of 
t he position and time . 

Chapter VII - - 'fhe rr.llll~rical determInation of t he 96 
ve~ues of the r esidual strains and t he calcul ation of 
the .tresses due to t hese residual strnins ·'lS Il. functIon 
ot t he position BUd tim •• 

Chapter VIII - A compnriaon of the fin,"'.l computed 119 
values of the residual stresses with the experimental 
determi n.'\tione for t he sMle M.ee, of !3u.choltz and 
Buhler (3) 

The extension ot Port I to cover other cnses. 137 

Chapter IX - - The extension of Part I to the 138 
CEH!e of an infinitely l ong hollow cylind.er. 

Chapter X - - - Further extensions to Pp*t I. A 146 
consia,erlltion. in limited det ail, of the caae of the 
infinite tlet plnte. Use of similar techniques for the 
case of a sphere. Modifications and addit ional i nfor-
mation requlre4 to i nclude the effec t s of n phase 
change. 
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UrI'RQDUCTlon 

The problem of res1dual etreases 18 recelving l ncreased interest due 

to the lmportant 1nfluence residual stressee sometimes exert upon fntigue 

strength and d1aens1onal ate.blllt;". The gradual industrinl acceptance ot 

the techniques of shot peen1ng. surface rolling. coining operntions ne~ 

oi l holes and cnrburlz1ng to achieve surface residual compressive stresses 

is evid~nce of t he value of favorable r esid.ual stresses U pO:l rc.tigu.€! pro­

perties. 'l'he techniquee of anto-frettage for gun b!'.rrel e et1I:l over-speed 

for turbine rotors 1ncrease the dimens10nnl stabilit;" and effectively 

increase the strength of the parts through the f ormation of favorable 

resid~~l stresses. The utilisation of the most common lource of residual 

streas.a - quenching - 18, hovever. consplcuously absent f rom the fore­

golng llst. This m&7 b. nttributed largely to ~ lack ot ~ppreciatlon of 

the faot that surface resldual compre.sive . atreeses ot 71eld point ~ 

ni tude m&7 be l nduced in steel, l1nder fe-vorable conditione, by a quench 

f rom t empering temperatures. 

~1sUng knowledge of the dispositlon s.nd magnitude of re!lidu~l 

str~ases resulting trom quenchlng 1, based largely upon eyperlment~l de­

terminations reeu). tlng from I'Ippropriatel y cutting up the speclmen aDd 

noting the distortion which occurs. or . more recently, by X-ray methods. 

Rel i able experimentp~ determina tions of three dimensional residual stree­

ses have been made on17 tor the ca ee of 8 long c711nder where t he residual 

etressee p~e synmetrlcal and independent of axi al position. In this caee 

the boring out techni que ot Sschs (1) ls ma~hematically accurate. Using 



S',cl:s I t ~chnique . several experiment ·ers . notably })uhler and l:is ~ssoclr-l.tae 

(2), (J). (1;.); ·.ashlll"t and Potter ( 5) ; and Horger and Neifert (6), have 

a!!termined the residuC1.1 str~g5e9 i n lone: steel eylinders of' various compo-

sitions resulting from q,uench ing from above and belo,,; the austenite r a nge. 

~ sumcary of'other methods of experimentally estinati~ the values of 

resic.uc,l Gtresses is ~;iveu by Bm'rett (7) nnc.l. Sachs and Zspey (Ii). ~he 

t;Y':96 of residu~,~ strMs Cl.etermine(\ in the f oref;oln.g ref erences flust be 

t.,hich nre s e t Ul) within the 1ne.lvi.lual structural elemen'..; s. e . ;;. pe~'X"lite, 

f,'raphite-in-ferrite, and etc . when they are hea ted or cooled. The forl!!er 

ma.y be considered to be the Ilvernge. or flmllcroll. strel!leS which l3.l'e super-

imposed upon the "tesse1l8.ted" etr eesee. In this thes 111 , the e,ssumptions 

of isotr opy and of' the dependence of the physical properties upon teaperB-

ture immedia tely remove all consider ations of "te8sellEl.tedll stresses. 

Although t he forego i ng d i scussion indicates the desirabIlity of t he 

development of an analyt i eal technique for computing the r esidual stresses. 

r esulting from a quench , I!!VI9n i f limited to simple bodies, there M .s been 

no full scale Ilttempt, prior to thh theall. to develop the nece:!sary 

t~chn!<1.ues. Russell (10 ) c alC'Ul p..ted thl!! tsrupercture vereus time in a 

cylinder subject to a n infinite quanch, n.suminl~ that the conrl.uctivity 

l'Uld the thermal diffueivity were const l'.nt . Ris c alculBtion is of 1.,r.r tic-

uV:·r int er est because an n.pproaeh to the problem of includir..g; the ef fects 

ot a phnse change is introduced . He thl!!n o.tteop tetl to calcula te the stres-
\ 

ses due to thi s temperature distribution, a amxming tha t no yielding 

occurs, and using a const ant v e.lue of the coeffic ient of thermal expansion 
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aDIi variable yalu •• of E and 1/. Hie equatlons tor the streae are, 

however . incorrect in t hat ssveral terms required by the varlatlon of E 

· ~nd v are neglected. Treppschuh (11) obtained experimental valu~8 of 

the temperature distribution versus time f or ~ cylinder quenched from the 

~ustenlte range. He then assumed t hat the stress level in the cylinder a t 

the completion of the phase change was zero, and c:lleul a ted the residual 

stresses on the ~seumption that they were caused by the difference in 

thermal expansion between the compl etion of phase ch~nge .gnd r oom te~per-

ature. 

The specific purpose of this thesis is the development. in a form 

suitable for nwnerical solution, of an aru>..lytlcal method for the determi­

up.tion of the temperature , the residual (or plastic) strains and the true 

stresses as a function of the position and tU3e and for the determination 

of the flnal residual stresses induced in an inflnitely long solld iaotro-

pie cylinder by symmetrically quenchlng it in a large body of fluid. 

\i1 thin the limitations of the accuracy with vhich the conditions tabulp.ted 

below l'U'e !latisi1ed. a !lelmi-graphicD.l finite difference method is developed 

whieh, &s the steps ln p05iti~n and tlme are decrea Bed in s ize, approaches 

the exect solution to the problem. 

1) ~here are value. of the thermal conductivity and of the thermal 
dlffusivlty which are known (graphioal) functions of the temperature and 
ther e il. I.l bounduy layer eonducUvi ty which clin be represented. t.lS a known 
(~aphioel ) function of the ~f~c~ temper~ture of the cylinder. 

2) The f ree th9rm:u enm.n!l1on is n known function of t he t!!!mpera­
ture. There are y~luea of the elastic eoesfficlents , E, G. and 1/ whlch 
2l'9 known functions of t he teopera.ture and which relnted, through ,:;ookelll 
La~, the changes in the strassell wi th the eh~n~eB in the wtrains which 
occur if the stresses are r emoved from A.n i nfinitesm-l slement of' the body. 
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3) There ill a theory of strength ava ila.ble .... hich either ?)rENHcts 
the maximum stresses which the material can sustain, as a function of the 
tel!lperature 8.nd the pa;st history. or which predicts the pIaetic strain 
r a tes as a function of the Itralles, the temperature and the past hi tory. 

li'or purposes I)f illustration, the lllethod. is applied to '" ~peel1'ie caee of 

a quenched cylinder. The values of the pertlnent pe.rf'neters N'e sel ect ed 

fro!!! the litera ture and the chara.cter of the numeric ftl cdculation!l is 

ill ustrated. 

The general purpose of the thesis is the extension of the forego i ng 

develo,:)ments tc other enses and , as ind iC:<l.te<.'. in the abstract, the devel-

opment of 1\ general theory 'fhereby it is theoretlcn,lly possible, under 

very general assumptions, to predict the stresses and the residual (or 

plastic) strains in ~ isotropic body at any time during a thermal nnd 

mechanical hll'ltory. 
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'1'he devalop!'lent of an an'llytic"l.l method for the prediction of the 

residual atreeses induced in fUl infinitely long !loUd hotropic cylineer 

by a sYJ!ll!l&trical quench in a. l:u-ge body of fluid. anumlng that all of 

the pertinent p>'U'am&tere nr1'! knntJn (gra;phieBl) functions of terj1')er'~tur3 , 



::'hi!:l chn·,ter tIill be d.evoted to the development of a se .. :!i!?:r1'.nilical 

method fer the "rediction of the temper<\ture a s ,,). functi"n of th", .1' ,.(1 i ll.1 

position ?~~ time in an infinl t~ly l ong·solid isotropic cylind.er , resu lt-

ing fro!:! <>. syrn~1etr ic l'l.1 quench in "), L:ll'ge body of fluid. It 1-lill be 

"5!sumed thnt the bound?ry l a rer cor:duc tivity is a known (p,re.nhic.:ll) func-

tion of t he suri'pce temper.">.ture of the cylincer. This is not n rpstr ic-

tive 'lssumption in tht!! sense th~t. in :'lny specific Cp..se, a,'1Y other 

n ,u-sneters which influence the boum'.'1ry l~yer conductivity m .. y be lntr o-

therm~l conductivity llnd the thermal d i f fusiv1t y ,,; i11 be "ss=ed to b e 

lmoun (graphic~':l) funct ions of t;'!m~:H~r ""'ture. 

\ ·r..s follm .. :i.nz not a tion 'Wil l be used in this chepter: 

Let: r be th>o- radius to any point. eln. 

r1 be the outer radius of the cylinder. em. 

x b e the r~dial position parf.l1!'leter = r/rl cm./cn. 

i be the temper ,.ture ~t nly point r. °e o 

~;: be the bulk tempero,ture of the fluid. °e. 
0 

t be th.a tiDe. s ec. 

>, 
'- b~~ the thermal conductivity. cal./cm. sec. °e, 

p be the s96cifie veight. gm./cm. 3 

c be the 
~., 

sp!!cif1e heat. cal./gm. °c. 
be the ther!!l~ll d1ffn s1vity - kl c • 2 , 

a - p 
em. ,see. 

? 
°e. 1: be the bOlL'1.dnry It'tyer eorul.uctivity. cal-/em. ' see. 
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I.::r .. e differe:nt1~1 eou l? tinn ("If he~.t f low in eyllndrieA.l c r.tnrdinntes , 

n S9uming that the tem..,er ""ture i9 "" function of the l"lldi:tl '1()9itio n ~ntl. 

tiJ:ie only, 11111 no\·.' be d.8~ iveO. 

Consider 1'. rine; of unit len0 th, in.ner rl:ldiu9 r and outer r l!!JHus 

r + d:r 'l'he rl3.te of hel".t enta.ri ng the ring frOM the in)(l.er r :"ii l u9 r 

eClual s the r.<:.te of heat s t0r!',,:,;e in t h e ring plu s t he r!l.te of heat 

leaving across the outer radius r + dr. 

'the rate of h ea t entering = -Z1f rH # 0 <>..1.' cm. sec. 

;;:l1a rl'l t e of heat le~1Ving = -zu[rhtr -t Jt(f-kH)dr] cl'11.!crn. :: ec. 

~he rate of heat stol'n,ge c~l./em . see. 

:~qu.').ting t hese heat rates, as st:'l.ted above, and aim:,,11fylng the re~ul t . 

gives the f oH owir.g 9ClUf·,tlon for he~ .. t fl ol>" in cylindric:".}. cO"lrdi>1.~.tes: 

(1 ) ~c ./s~c. 

(~q. 1) ~:ppl1 es to the int",rior ffi " terid of' the c ylinder. f~he 

boundArY c ondition wh i ch t he s ol u t i on to (2q. 1) mus t match at the 

surf" .c e o f t he cyl i nder, ..,ill ne .... b e d eveloped. 

11-'1 i nstant:meous b euncl8rY l ;'!.yer conductivity h is defined such 

that the r lJ.te \'1i th uhich he" t pnsses f r om the surfac e o f the cylinder 

into th~ qu~nch1!'..f; fluid per u nit length of the cylinder is ~iven b71 
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(~ al. l e;:'i . S !?:~. 

'i'hie rp..t e of heat flo .... through the bound ",ry l a yer mus t equal the r !l.te of 

heat flow through the m~.terial of the cylinder ~.t the surface of the 

cylinder. This b1tt.er h~l!lt flotl r~t e 1s given by: 

Equating these heat flow rntes. as s tated above. results i n the fundru~en-

tal bound.ary condition equa tion: 

(2) dTI :: 
~t' . r=t; 

- Jz... (T - "10)1 
If r- ... 

-'I 

(»t. 1), ( Eq . 2) 8.nd the il'-1t1:'11 coM.iUons (tempera ture versus 

radi~l position at the stp~t of the Quench) defi ne t h e te~perature pro-

blem. However. since k. & and hare nssUl!led to be knO\1n (gra phical ) 

functions of t h e t emperature. theee equations ~.re nonlinear and it uill 

be necessary to solve them by a seoip,raphical finite dif f erence technique. 

'l'he remainder of this chapter !'fill be d evoted to the development of this 

technique. V. E. Schmidt ( I.e ) demonstrated a gra.phica.l tech.!lique for 

solving thi s set of equat ions ~hen a and. k ere a ssumed constant and 

the development which follows will be an original extension of his tech-

ni~ue to cover the case of variable a and k. 

The finite d.ifference for!j of ( :<::q . 1 ) will no"" be derived . ;;he 

steps ~ .• hich follow are r equired for this deriva tion. 
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The time t is divided into intervals At 
,1 

(not necessarily eq,ur'll). 

the end of each i nterval being disti~~ished by the subscripts: 0, 1, 2, 

. . . . . . j -l, j +l • The value of t at the end of the kIth 

interval will then be: 

'ihe radius 1B divided into n equal intervru. s A r (where n Llr ::: r 1 ). 

the center of each intervnl being distinguished by the subscripts: 

I } , . . . " ... m- I, m • m+l, 
, 

n- ~~ . 

" 

In terms of this notation, the following approximations may be made' 

• 
• • 

"""" --

T "1j 1'1 - r "1j 
Lilj+ I 
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In terms of these ap-proximatio!l9 (\~b.en the !'.1.dL~ posi t:i.on is 

me~~ured in terms of the p<~~eter x = r!r
l

) (Eq. 1), for heat flow 

in cylindrical. coordinl1tes. may be , .. ritten in the following finite 

d i tference form: 

\fUh the equ. ... t1on for he!l.t flo;,;: in cylindrica l coordinr;.tas 101'1 tten 

in the finite differ ·mce fOl'm oZ (:2C!. . )). the development of !!. s<31:li-

~1).!lhic!U technique for the solution ·6f tl,e tempera ture :yrobleli:: proceeds 

from the demonBtration thR-t t here is ~ grClphieel (~ onstruet1on. first 
/ 

developed b7 V. h . ~chmid t ,12,) . tihicl: give~ the v·:llue of the foll ot.'ing 

tern of ( Eq. 3): 

To carry out this demonstration. consider the following gr?-phlc!U 

construction and development: 

TI 
t -- /1 ------------------

1,-1' T." . 
I 

/J T." .... ' t >J ~ )~ 
loS x 

1123 [(In-I) <Ix 1 "I J j . 10 [ J \oglh 11)( 

It> \c>g ~(m±l) A.x 1 - --_.-' 
\0 
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I t will now be shown th~.t the dist<il'l.ee y in this CIlnstructinn is 

approxiI1l9.tely equal to the desired ter':l. F,Y' the principles of geometry. 

the dietance y becomes: 

y= 

= 

The series expansion for the 10g~ithmic term lsI 

On ne,~leeting the third :ond higher order terms this beco!:les: 

IOQ 
~.o 

tn+. 
In-I 

-.L(I __ I) 
]. ]. m 

Using this v !'llue for the lognrithoic function, the distance y becones: 

:'his is the vru.ue of the required tere of (!";q . J). 

Since the graphical construction just developed uses loglOx f or the 

redial position parameter . the further development of a gemigraphic~ 

method for the solution of the temper9.ture problem requires t~.at the 

bound~y condition. (~. 2) , be expressed in terms of this variabl~. 



'';''his may be done by noting that: 

( ~q . 2) • th~refore. becomes: 

<iT 
0(100 x) 

,}IO 

", - (. -

X=/ 

':i:he compl ete d.eveloprnent of a gemigrl!.phleal technique for the 901 -

ution of the temperature problem may nOl1 be m~le most ensily by referring 

to (Fig. I). Uhlle this represents ~ specific example. made with n;:; 5 

or A x ;:; 0.2 • the technique is general . The first step is to sel ect "'. 

value ot 6 t such that the funotion 21!m.jll t/r
1

2( 4x)2 ;'laG approxi ma tely 

the vnlue 1.0 f or the range of temperatures whioh will be encountered. 

Values of th18 function "hieh nre le9S t M O 0.5 malee the solut i on un-

necessarily tedious, while value!!! in excess of 1.5 may resul t in poor 

convergence due to excessive magnification of a~y graphic~l or di f ference 

equation approximation errore. ~hls function is then plotted on t he 

right. a s shown in (Eig. 1 ), to the same seale of temper~ture a s i 9 used 

tor the temperature distribution. The thermal conductivity, k cmd 8k 

ere plotted on the right in n 9inilnr oannar. 

The value of the funct ionl 

i s t hen obtained tor every value ot m by appl~lng the graphlc~l eonst-
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ruction d~veloped on p~e 6, ~nd in~ic~ted for one value of m b y t he 

dotted line in O:'ig. 1). ;':ote t:'l.~t for £1 = ;;, the v a.lue of thi s func-

tion is obtained by drnwing fl horizontal Une from the · temper '1ture p.. t 

m = 1'\ and thp.t for m = n- t • the value of this function is obta ined 

from the neighboring points, one of which is in .. fictitious l ayer at 

a dist l:l.nce 0 70/2 beyond the surfp..ce of the cylinder. 

rhe v~ue of the function: 

is then obtained by c2rrylng out the indica ted opera tions upon the valu e s 

of T T • the corrosponding values of r.l+l •. j· rn-l. j 

the value of Bk 
0. j 

(corresponding to T ) n." which ere read d irectly 

from ( Fig. 1). 

The sUm of these tuo func tions is then T1Jul ti91ied by the cOrreS!lO nd-

iug v~lue of 

(Fig. 1). This results in the increment of tempern.ture during the i n ter -

This increment of temperature T -T ,is then added to t he exist-
m, .1+1 M • .j 

ing temperature for every value of !!I from 
, 

m = "i to 
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r'~ 

\' •. Hl 
:It t he end of the 5ucc e~ding t ir,.s inter-

v~l for t he interior points of t he cylinder. 

';:h9 temper'a ture a t the Gurff',ce of the cylinder is then deterDinea by 

orp..wing 1'. strfl.ieht line from the yoint '.i' 
n-'~ , 5+1 

in such ~ m~nner th~t 

it intersect s the surface of the cylinder tiith a slope \~hich s a tisfies 

the boune 'C:r.y condi ticn: 

~(Ioll x) 
JIO X=I 

,',hen h is ~1 SSt1.jned to be c. known function of the surface tempsra-

ture of ths c ylinder. (:Sq. 4) mt!,Y be s fl.t isfied by the application of 

the steps which foll o",. These step s are illustrat ed in (FiC. l) for 

the teml'ernture dbtr1bution at the time t.
j

• 

i~;he funct i on k log <'l/I' h 
10 1 

is nlottec1. rlS !1 cligt('.!lce from the suri'.'Olce 

of the cylinder versus terr!:;Jer r: tu:r.e , vhere the unit of len.::th is the 

len:-;t.h of one cycle of the loe; x !lca le. 
10 

A straight line 1s then drmm from the po1nt 

manner that it 1ntersects the da tum temperature line 'r 
o 

at a distance 

k log, efr, h from the surface of the cylinder. By the pr inciples of 
._0 ~ 

geometry. the slope of this line I),t the surface of the cylinder is ,e;lven 

by ( E~. 4) • Referring to (Fig. 1), it is evident thnt. in spi te of 

the interrelllLticmship between the intercept distance and the suri'~.ce 

temper:>.ture. this line 19 rendily dr<lwn ~"ith the B.id of a l ittl e grn.phi-

cal trial and error. 
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The intersection of this line with the fictitious surface, 4 yf2 

from the true surfllce of the cylil'l.der, is considered to be the t"iirDe'r-

n.ture T l ,which is required in the succeeding c~lcu.lation for the n+ ,; , .1 
o.eterminl".tion o£ l' • n-1:. , .1+1 

;fhe techni~ue required to determine the temperature d istr ibution a t 

the time t,~+6t ,:f+l ' from the tel:roer!),ture ~,t the time t ,has now been 
j 

indica ted. For the determina tion of the temperature distribution at & 

lllter time, the c~l ou1at1on is merely repeA.ted until thilt time is rellChed. 

The development of a semigrephica l method for the prediction of t he 

tS::lperc'.ture as a function of the r~it.ll position Illla. time. in an infin-

i tely long solid isotro})ic cylinder re9ul ting from a symmetrical quench 

in ti l~g~ body of fluid, mRY now be consideroo complete, exceut for a 

discussion of some minor points in the utilization of the method. 

The labor involved in c arrying out ~ numeric~l solution will be a 

mini~ if the number of intervAls n into ~hich the re~1u9 is divided 

is kept as small as 18 consistent w1th the required ~ccur ll,cy: the number 

of points at which the temperature 18 determined, a rough measure of the 

labor involved, 1s proportion&l to the cube of n. This means, in 

e,eneral, that it 19 desirable to decrease the VAlue of n as the 901u-

tion progresses and the tempereture distribution becomes less irregular. 

'1'0 chRnge the value of n to n', draw a smooth curve through the last 

values of ths tenperatures T m", ~.nd, oonsider that the intersections of 

this curve \lith the new interval s define the vn1ues of '1:1'1 1 ,,1' -which 

v ill be used in the continued calcula tion. 
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The technique developed for the de t ermin'l.tion of t he tei:r.'le r a t ure 

d i etribution in the interior of the c ylinder is quite ~eneral and ~ay be 

adapted for use with completely different boundru-y cond~tlo n.$. les long 

a s t he h ea t flov through the surface of the cylihd~r i 9 Po known functi on 

of the surf'l.ce temper~ture and. or, time. the problem rn~y be solved. ?or 

exronple, if the cylinder wer~ hea ted by r l'lJi iJ';.t1oI'., the boundnry conditions 

miGht be of the f orml 

where ~ is 9 function of the emissivlti99 a M T i s the ta''lperat ure 
o 

o f the radia.ting body. Another e:y':/,)l!lple. which could be h~ndled , would be 

!l', quench into OJ. smp"]'l body of fluid. ~Ib.ere the bulk temper .'>.ture of t he 

fluid r;; is a function of the time integrRl of the hep"t flO'1 ,,-c ro s s the o 

surface of the cylinder. pm' where the boundary l a yer conduc tivi ty is a 

function of this bulk tel!l1Jer a ture a s well rcl.B the suriucs temper R. t ure of 

t he cylinder. 'l'o recapitulate, any boundary condition ",hich in p . c~lcul-

a ble manner determines the r a te of heat flow t~~ough the surfa c e of t he 

c ylinder may be used .1ith the techniques developed in this ch~nter to 

determine the temperl'.ture a s a func tion of the !'"p..di1ll position a nd t ime. 

A comnletely different type of boundary condition, t/hich cou l d be 

handled . is thnt of requiring the temperature a t Borne point in t he nody. 

preferably near the surface, to be a known function of t i me. 'l'hi s type 

of boundary condition is the most s .atisfRctory for ",.n actua l -P:1y s i cal 

c a.se w~ere such A. temper l3.ture C 'ln be '!!:r.nerimentally dE"ternined. s i nce it 
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ellmlnilte3 all of the errors inher<?nt in the .,\ssUl:rption of t',e v'l','.e of 

th!'! boundary layer conductivity. 
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CHAP'.i:ER II 

, Thi s chapter trill be de-voted to the e:t'tension of the hOClogeneouG-

i ~otro:p1c theory of elasticity to include the effects of t hermo.l diLltion. 

residual strain and the v~iet1on of physical ~ropert1es with yosition 

due to tempero.t.ture (or "ther) effects. The o'lsic assul1rotlon used is ·~ .. _at 

t~e .'U'e values of Young's Modulus and Poisson's ! s t10 v which ~e 

unique functions of the tempernture (or of position and time) only, and 

which relate, through Hooke's Law. the changes in s tra1n ~ith the changes 

i n stress which occur in an element of the b.ody 1f t he stresses are 
.l, 

removed from tha t element of the body but no other ch,.,.ng;;.s tnke plac;? 

The development will stMt from t.he unchanged equ.'!.tions of equil-

ibrium and compatabil1ty and will proceed. through t he use of t he conce~ts 

of "strains caused by stresses" (in the unloading sense of the basic 

a SSUlllpt1on), 6 strBins of t.hermal dila tion" and "residual strains ~ . to a 

modified form of Hooke's Law ~hieh r9l~tes the stresses to the total 

str&1ns. The eqUl!).t1ons of eiIuilibriu.'lI, cOllrp~,tab1l1ty ~_'ld thi s I!loditied 

Hooke'. Law. together with the boundary cond1t.ions. define ~ tL'lique stress 

solution in terms of the therm::ti dilation and. t.he l'esid.u'.!.l stra inG. It 

w1ll then be shown that this solution may be div1ded up into stresses due 

t o the t hermal d1lation. stresses due to the boundary forces and stresses 

due to the residual stra1ns. In Chapter I V it will be sho~n hov stresses 

due to the first t wo factors. with additional inform~tion in the form of 

a theory of strengt h. may be u sed to determ1ne the values of the re~idual 

strains ae a function of position and t ime. 
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The foilowing no t atior. will b~ us~ in t his chp,?t<?rl 

Let : E be Young's Mod_ulu9 for unlooo 1 !l,~ . 

V be Pohson' !) R~t1o _for unloading . 

G = E I 2(1 + v ) . 

x. y. Z bl!! r ecte!1o~l:u' eoordin'1t99. 

If"x' Iry ' Ir be the normal 9 tres~~H9 s. 
z 

t' t'yz' "" be the shef.'x str~ss~s. • ~ zx xy 

u • u • u be the components of di3~)1 :s.cement of <". ·~o int. 
:x y I'l 

E 
x' ~. Ez be the normal s trains. 

~:xy' ~yz' Irzx be the 9he~ strains . 

€(i. E:(j Err be the norrnnl ntrains C 9 USed by str~ssea. 
x y' z 

~(j \l"' \l"' 
%y' 4'yz· (zx be the shear strnins CIlUSed by stresses. 

0 0 0 be the residual normru str:'1ins. E , Ey ' Ez x 
(0 
xy' 

),0 
yz' 

),0 
zx be the residu<> l shear str!iUns. 

ET be the linear cOl!lponent of the thl!rmal dil ~t ion. 

s , 9 • 9 be the components of the eurIl1ce forces per unit 
x y z surf'?ce lU'ea. 

~, i.y ' ~z' be the directifJn cosines of the external nf')r:n'll 
to the surfrtc<! of tile body at the ~~oint under 
considera.tion. 

'l'he subscript 1 refers t o stresses. dlspl~ceoe1'lts ~-11d str!;O,ins 

due to thermal dilation. 

The eubscript 2 refers to stresses. displacements and strains 

due to boundary forces . 

The subscript :3 refers to stresses. d.ispl ncel~ent9 and strains 

due tn residuAl strains. 
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there ro-e no body forces. m~ b"! '"ritten in th('! follm'Ting for:l: 

aClX + at' xx + ~ 0 aX ay d"Z. 

aoy + a't~z. + dLxy ::: 0 
ay dZ. ax 

a\fi. + 
01:'2.)( + aiy 7. = 0 

a:z. ~ oJ 

If the boundary conditions ~e introduced ns known forces Oll the 

surface of the bod.y. they ma.y be wri tten in the follo\~lng form: 

iii thin the liBitRtions of sl'lr-W.l cl1s:pl ;:>,cem~nt .,. '19 use.J. by 111r.lOsh~nko~ 

tn,? e1u/l,t1ons of eom!lro'.tnbility ln1'.Y b .. ,,,rittell in the follO'!lri!lf.; forrc: 

I!o The development of the equtl.tions of equilibrium. cOlnnnt ibn1 ty. '?,nd 
the ordin1U"Y form of Hooke's L(!\1. the techniques for e11nil"..p.ting the dis­
~lacementa and the strain. from the equationa, the proof of the un1que­
mIss of the stress solution Itr>il etc. ::ere given in Timoshenko. !lTheor~r of 
Elastic1ty". The render is r eferred to this text as a background for 
thi5 chaptar. 
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In these equations it 18 n89Ul!leO. that the dhplacernsnts are small qmmt-

itiea varying continuously over the volume of the body. 

If it is possible to relate the stresses to the strains . there ~ill 

be a unique stress solution which sa tisfies the equations of equil ibrium 

and compat ibility and which matches the boundary conditions. ITooke!g 

Law. as it is ordinarily presented. relates the stresses to t he strains 

when E and v are assumed to be constant and there are no t hermi'l1 

dilation or reaidu:-..1 strain terms. In the follot1ing section, !l modified 

form of Hooke's Law tlill be developed 1:lhich will include these factors. 

This development will proceed from the definition of the following con-

cepts' " strt'lins caused by stressee", II strains of thermal d1l8.tion'! . 

In defining the concept II s trllins caused by stresses". i t will be 

necessary to general i ze Hooke'g L!lw by the understanding th:lt E and 11 

are vari ables of position :;Ina. time but I"se not functions of the stress 

level. and it viII be necessary to rAstrict Hooke's Law by defini ng 

lI etrains caused by stresses" in such a manner thRt yielding or creep 

do no t affect it's validity. 
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The strains caused by t he stresses are defined to be t he ne6~tive of 

thf!! changes of the strains ",hich would appear i! the stresses \Jere 

remo"!!i from an infinitesma.l ehment of the body. but all other cond.lt-

ions were kept constant. It \rll1 further be .'l.SSU!lled. that there nre known 

vaJ.ues of E and v • which pre unique functions of the te1!l')erlltUI' e 0:11y 

(more generally, which are unique functions of position and ti~e . but 

which ~ll's independent of the stress level). ~"hioh when :;;mt into the follow-

i ng equations will properly rel~te the strains and stresses described 

above. 

If" 
E '" J( 

E'" :: 
y 

Elf" 
z. :: 

\ 

In these equations 

t [ax -v (II, +IJ;) ] 

t ( <ly -v(o; +\l;) ] 

t[ IlZ -v (<IX +ITY) ] 

e'T • 
x 

e" , 
y 

EfT" 
Z 

and 

~)':: t L~y 

~z.:: i-1:y z.. 

~z.x :: t 1:z.x 

are the neg~tive 

of the changes 01 the strains which would 2ppear if the stresses, ~x. 

and t' r r xy' yz' ~x lIters removed from an infinitesimal element 

of the body. but all other conditions were kept constnnt. G is defined 

to bel Or = E/2(1+V ). 

The concept of "str Ains of thermal dilation" may be il1ustr(1.ted in 

the following way. Consider an infinitesroal element of the body. from 

which the stresses have been removed; in generAl it will not have the 

same volume as it had in the original sta te. The strains which result 

in this volume change are defined to be the "strains of thermal dilat ion". 
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BOO will be denoted by: 

T T T 
-r"y == ~YZ = ~ZX = 0 

Only one symbol. €T . is necenBr;r to describe these s tra.ins, since t hey 

are the linear components of IJ. v(')ll1me change and are , by the assumption 

of isotropy. presumed to be equal in all d irections. It will further be 

T a8sumed that the vAlue of E is a kno1l1n func tion of the temperature 

onl y (or more Generally, of ~o!lition and time only). In the l iterature, 

thls ter m 19 cOllll!lOnly approxil!latf!d by 
T E : <:1, 1' , where a.. is the coef-

fieient of line~ thermal expanslon. 

The concept of IIr eeidual stra.ine" may be illustrated in the fo11ow-

1ng way. Consider an inf'initesil1l1:U element of the body. frorJ W'llich the 

stresses have been removed; in gener 81 the element "'il l not have the gn.me 

s hape a s i t had in the original sta te. The stra ins which G~II responsible 

for this change of shape vill be defined to be the "residue! strains';. 

TheslI strains correspond to the amount the element has yielded during i t l s 

past h1story. and are sometimes oalled plastic strains or permanent 

stra1ns. Stra ins of thia type vill be denoted R,S f'ollove: 

It vlll be a ssumed thnt these strains do not change the volume of t he 

e l ement. l. e. : 
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These concepts will now be synt hesized into a. modified forI!! of __ ;002:e :8 

. Law which vi1 l rel ",te the stresses t o the strains, ~,hen residual str:'lins 

and t hermal dil~tion are present. The strains actually present i n t he 

body corresponds to the !!urn of t he three ty-pes of strains defined in the 

!'revlous ppragrl":pns. It is pn sa1ble , t herefnre , to i>Il'1te t he Iollo\-'ing 

equnt10ns to repl p-ce the ulup-l foro of Hooke's 1nw: 

Ex - E~ + ET + E~ = t [~-V(1Ij +lfJ) + 1S
T + E: -

E'I - EfJ'" + ET + E. y :: t[~ -1I(a;+1f;,)] + e' + 6; - ~ 

Ez. = e'" + eT 
'Z. 

+ eO 
z. :: ~[Cfi-V(~+\l))1 +ET+ IS: 

Glry 
:: ~i" + rO - ~ l'xy + rO 

l( y )(.)1 
xy 

'tyz 
:; ~;~ ~o - ..1-1; + to + yz G yz JZ 

~lX = 
I]'" "6;x - I l' yO 

(Jzx + G z.x + z:.x 

If 1t i8 assumed that the value of the thermal dila tion and the 

value. of the residual .trains are known functi ons of position at any 

time , then at that time t hese equations relate the stresses to the 

strains. Under these Circumstances, the above equations, together with 

the boundary ooOOi tions and the eq,uatlons of eCluili briWll and compat ~bll-

ity. form 8. set of equa,tions I1hich uniquely determine the stress clistri-

bution in the body. 



The next step in the c.evelopment ~·iilI. be to show ·!;h:.'.t t he soh).t ll)!i 

for the stresses. determined fror.'l this set of El(!u'ltions ;" i~,y be (Iivid ed 

into three PArtes: the stresses due to the thermal dilation, the stresses 

due to the bOUL~ary forces. a nd the stresses due to the residu~l 9t~~ins . 

~he necessity for this d ivision. a nd ['.lso for the division of the f,tresses 

(;ue to residu?.l stra ins into t wo P/uots. I~ill R1)pe:'.r in Chapter !V .wh~re 

the techniques for deter!!li ning the vclues of the r esidual stre.ins P.s :3. 

function of posi Hon e..'ld time are d evelo!)ed . 'I'h~se tecr.nic;ues (] ey.oend 

upon t he introduction of addi tional inform~.tion in the forr .. of D. t~eory 

of strength. and further discussion of them w11l be deferred until 

Chapter IV. 

irhe aeparabi1i ty of the sol ution into stresses due to thermal dil-

a tion , stresses due to boundery forces, and stresses due to residual 

stra.ins liUlY be indics.ted by showing t hat the sum of the solutions. due to 

each of these factors, satisfies the original set of equations . ihe~ 

thill is shown, the separ:J.bllity follows from the uniqueness of the sepnl"-

ate and complete solut ions. 

'.i'he set of equa.tions which define the complete solut i on l'U'e re:")M.ted 

below. For purposes of simplicity, only the first of the equa.tions of 

each type are written, the other t wo of e ach type bei n.~ obta ined b y __ 

cyclic permutntion of the esubscripts. 

;qu ilibriwn: Inside the body: 

At the sur f a ce 
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Cnl'llpati bil1ty: E = dt<" 
J( d)<, 

\.J= 
~Uy ~lJ:t. + 
,h. ~:J 

j·\odified Hooke ' s Lnw: 

In these equations . at any given time. the elast ic constanta. the 

thermal dilation. the residual strains. and the components of the sur-

face forces are presumed to be known functions of position. and the 

stresses. strains. e.nd displl'.cement s !;'x e presumed to be un.knowns. The 

uniqueness of the solution will not be proved here. but it is indic c;.ted 

since t here l"..re 15 unknol'ms and 15 eouHtions ~lhich np'f.)l y to the interior 

of t he body. 

The set ot e(luations which define the stresses due to t he residual 

strains are presented below. This Bet of equatinns is identical t o the 

original set except that the boundary forces and the .esid~~l strains 

are set equal to zero. The solution to these 8'Iua tions for the stresses. 

stra ins. and displacements ~re denoted by the subscrilJt 1. (Again, only 

one third of t he ectu a tions I'~e wri tt en. the remninder being obtni ned by 

cyclic permut<.l.tion. of the tlu.bscriph.) 

Il".side the body: 

At the surfllcel IJX Q)( + t'xy flv+ tzx .Qz. ::: 0 
, 1./ I 
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Compat i.bill tTl E 
~UX 

:: ~ X, d X 

)"XY
1 

=: ~U..Y' + 
JU~, 

a~ "dy 

Modified Hooke's Law: 

The aet of equations which define the stresses due to t he bound~~y 

foreea are preaented below. This set of equ.~tions is identical to the 

original set except that the thermal dilation and the residual s trBins 

are let equal to zero. The solution to these equations for t he stresses . 

str aina, and di lplncements are denoted by the Bubscript 2. (Only one 

third of the equations are written. ) 

EquiUbrium: Inside the body: 

At the surface 

Compat i Mli ty: Ex :: 
oL1x,,-

2. dX 

Y>ry2. = au;t:,. 
+ dU z ,,-

<h. d~ 

ex =- t @-;,. -v(Oj1.+qz~) ] 
2. 

Modified Hooke'l Lawl 

"Qxy7. = t 1:x'y1. 
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The eet of equ~tions which define the stresses due to t he re9iQu~1 

strl\1ns are presented belovo Th1e set of e(tuations 19 identic :<tl to t~.e 

original set except that the thermal dil~tion and the boundQrY forces 

are set equal to zero . The solution to these equations for the stresses, 

strains. and displ acements ,~e denoted by the subscript J. (Only one 

third of the e~u~tion9 ere written. ) 

Equilibrium: Inside the bodyl 

At the surface I 

compatahil1ty: 

Modified Hooke 's LR": 

d\fX 
--;!­

dx 

Ex 
3 

¥XY3 :: 

Ex :: 
.j 

Yxy <l 

;:Hha 

oX 

aU.Y3 + 
aU za 

d:.. <3) 

t[ 1G3-1I(!l)3 + Gi)] + 
0 

E J( 
3 

t t'XJ', + Yx; 

The equations of equll ibrium. eompat ll.bllity. and Modified Hookels 

Law which the sum of the separl'.te solutions satisfy may be obtained by 

addi tion. The equations are: (Only one third of the equations ~re 

writhn. ) 

Squl1ibrium: Inside the body: 

..,.d (1lX + IJX 1- OX ) + ~ (Lxy + t~" + tv ) + ..,.a Q:zx + t'2.X + l'zx ):: 0 
ox\.: I ~.3 Q:J I J< J.3 07. I ~ J 
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:Squili brium: At the sur f l'!.ce: 

Compat ability: (Ex+ Ex + Ex ) 
\ l, 3 

Modified Hooke'. Law: 

(Ext Ext EJ.) = t [(14/~/ \Ix) -Z/[CO),+O)< +1Jj3)t(IJ;.\+Ui/ \J;)J] 
T 0 +, E + Ex 

However. t his set of equations is identic~l with the set of equations 

which defines the complete solution. Hence. if the sum of the sep'lr , .. te 

solutions satisfies the set of equations which defines the complete 

solution. the sum or the s ep8x ate solutions must be identical with the 

complete solution. 

In a similar manner it could be shown that. within the solution for 

the stresses due to t he residual strains. t~o solutions for the stresses 

due to different valuell of the reaidu,.~l s trnillS Il.!'e add! tive. 

In this ci'll'l.pter a theory. I!hich, is ~_n extension of the ordin::J.ry 

theor y of elast i City. hR.s heen developed which inc l ud es t he effects of 

thermal dilation and res:l.dUGJ. strain upon the stresses in :~ body.. 'Ehe 
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basic nssumption required in this theory is tha t there ~e known vRlu~s 

of Young's :!odulu$ e.nrl Poi9son's R!ltio 11hich ~e unique functio!ls ef the 

temperature ( or more generally. funct ions of position IUld tilne "hlch are 

independent of the stress level). Il-nd ",hieh rel .~te. throUt'!;h Hooke 's ;,,,,'tf. 

t he changes in the stra ins ",ith the ehnngee in the straues i n an element 

of the body when the stresses are removed from thl'1t element. The conce',et­

ions of "strains cs.used by stresses<1 . "strains of thermlll di1 :'l.tion;~ . and 

"residual strains fl have been defined. The set of equations tthich deter­

mines the stresses in terms of the boundary conditions. the thermal dila t­

ion. and the residual strains has been presented. '!'he separability of the 

solution to this set of equations into the stresses due to therm."11 dil"l.t­

ion. the stresses due to bound~y forces. and the stresses due to residual 

strains has been indica ted. 

The theory has a ",ide r nnge of np:ol ieabll i ty in the s ense tb~".t almost 

all met&ls . within engineering temperature limits. r eesonably s ~tisfy the 

required nsaumptions. 'fhe present util ity of the theory is • how?ver. 

limi ted by the lack of l'ld eClu~te d'l.tn on phyB1elll propert ies. p>'l.%'ticul r.rl:.' 

at higher temper!;"tures. and by the ElA,thel!ltlt ical difficulties involvec. in 

the determin!l.tioll of the v nlues of t he residul'Il atrains !!.S a function of 

the etrl!8s-temper'lture history. nethods for determining the resldunl 

strains as a funct10n of position and ti~e. through the introduction of 

~dditlonal i nfor mrttion in the f orm of a theory of ~trength will be c~vel­

oped in Chapter I V. J, nUl!lerlc (~1 eXR'lI;::>l e using a specific theory of 

strength is co~puted in Ch~pter VI I . 
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CH.A?TF..R II I 

This chapter \1i11 be deToted to the R.ppl1eation of the t heory of 

Chapter II to the CBse of an infinitely l ong solid isotropie cyl i nder, 

when al l of the vllri!tbles :!}.re function!! of the r adial -position only. 'rho 

set of Afluntions whose solution i~ivel!J the stresses will be derived. l:nis 

set of equation!! will be divided into three sets, whose solutions give 

the stresses due to t hermal dilation, the stresses due to the boundary 

forces, and the stresses due to t he residual stra ins. 5emigraphical 

techniClues for the solution of these sets of equa.tions will then be indi­

cated. The sum of these eolutions vill correspond to the s tresses exis t ­

ing at any particular time, and as such, all varia tions of the var i abl es 

with time will be neglected. 

The mathematical development proceeds from the Rssumptions t hat all 

factors are radially symmetrical, and that plane eross sections of t he 

cylinder remain pl8ne. With these assumptions, the principal streae8S 

and strains coineide i n direction vith the directions of the c71i ndrical 

eoordi nate •• 

- z. - - --_ __ _ 
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The following notat ion will be used in this chapter: 

;: 

v 

0 

r. ,. z 

r
l 

A 

q- . 
r q-~ . ~ 

i" 
r 

~ avg. 

p 

Er' ~' Ez 

Es 

e T 

C 

C 

" , v 

f ( Ir ) 
1 r 

t ( II'""" ) 
2 r 

be Young'. Modulus. (tor unloeding) 

be Poisson's Ratio. (for unloading) 

: E I 2(1 + v ) . 

be the oylindrical ooordiw~te8. 

be the outer radius of the cylinder. 

= r2/ri (dimensionless r adial position par~et9r). 

be the prinoipal strGssea. 

be the ltst approximation to the rAdial s tress. 
? 

be the total axial torce in the oylinder In rI" 

be the external pressure. 

be the principal strains. 

be the l'st approxi mation to the oonet~nt axial strain. 

be the linear component of the thermal dilation. (nor­
mally considered zero at the center of the cyl.) 

be a constant of' integr ation. 

be the list ,~p'pro:ltil!la.tion to this oonstant. 

be an nltern~te form of the const~nt of integration. 

= 
lQ: rA .sL ( , ) ,-v J. 0;. q',4 '-I>- d A 

o 

- 2.l/G-i~ ~ (, ) dA 
I-V 0 r <Ill, '2.<7 

The subscripts 1. 2. rmd:3 refer to t~e sep,'U' .~ted solutions: 

the stresses due to thermal dilation. the stresses due to bound~.rY' 

forces. and the atrel9aes due to residual strains. respectively. 

(Exceptions are the terms f
l

( 11"" ) • f ( \l ) • and r
1 

) 
r 2 r 
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The pertinent a~up.tions for this speciflc problem appear below. ~he 

9quetiona of equilibrium and eompat ib!lit~ are well known. and are pre-

eent ed without their derivation. The Modifled Hooke's Law Y~$ developed 

in Chapter II . and the boundary conditions Are self-explnnntory. 

Jllqulli briUl!l: (5) 

Compat ibll! t~c (6) 

Modified (8) 
Hooke's 
Lavi 

(9) 

(10) 

Bound8l'~ (11) 
Condi tionel 

(12) 

(13) 

E = constQnt 
z. 

E r :: ~ [~--V(Ir~+IfZ.)] + E:~ + ET 

HG¢ -V(U-z+a-;.)] + 
0 ET E¢ .= Erp + 

Ez. = ~ [0-;. -v (<r.:- ~)J + E: - ET 

~I <0::> 
1' : 0 

U-r I - -p 
r=r 

I 

(' 2. 
Irz.. CIYS' . II;. ~ITr clr - lTY; -

0 
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~. msn1pulation of these equations required to eliminate the 

UZIknown Tariable strains Er and EO,' and to form a set of e<tuatlonl 

from whlch the 8tre88e. mq be readily deterlll1ned, wlll 1'10\1 be made. :in 

particular, the equation8 vl11 be expressed ln terms of the radial poslt-

1011 plU"alllet8l'. 2 2 
A wr/rl • slnee the flnal e~uatlon. have the1r simplest 

form in terms of this variAble. 

B.r .u1table manipulation, (Eq. s) ~ be wrltten ln terms of the 

variable A ln elther of the following equivalent foras; 

<Sa) 

In a slmilar fashion, . (Eq. 6) m~ be wr1tten 1n term8 of the 

varlable A 1n the follow1ng torm; 

(6a) dE(lI 
= ciA 

~e solution of (11q. 10) for IJ glves the following alternate 
~ 

form for that equation' 

( lOa) 

The subetitution of (Eq. lOa) in ( Eq. 9) results in the follow-

1ng '&lternate form for (Eq. 9) • in whlch ~ i8 elim1nated. 
z 



/ 

The subtraction of (Eq. 9) from ( Eq,. 8). followed br the dlvl !lon 

of the dlfference br U.. resultG in (BIl. ii}) below. 'Phe subst1tution 

of (r~. Sa) l n ( Eq. 14) results in (Eq. 14a) . (~. 14b) ls an 

al ternate form of ( EQ.. 14a). 

o " 

(14) = 
E-~- Ee,., 

ZA 

(14a) 

(14b) 

The substitution of (Eq. 9.) ln the right hand side of (Eq, 6a) 

results in another equation containing the term (e - e )/2A. 
r ~ 

The elim1nation ot (e - e )f2.&. between ( :2:q . 14b) and (Eq. lS). 
r .-

f ollowed by a single integration, results l n I 

(16) IE":t(<r!1+IJf:) = 5~d~('~1I)dA- JAG~~e;dA 
o . 0 

-:-(E; +VE~) -(I+lt)ET + VEz. +C 

In ( Eq. 16) . C 13 the const!.\Jlt of lnt!!grn.t1on, and t h\9 11m! t s of 

integration. 0 to A . are selected for l ater convenienoe. In thi. 
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G 1s a eon9t~Ult whi eh has the stntue of P.. constant of inte-
2: 

~atlon. If E~ had been elimi nat ed earlier, one cora integration ~ould _. 

have been required, and this integra.tion would have introduced a eon3tant 

ot i nt egration equival ent to E • 
z 

(Eq. 17) 1. an alternate f orm of (Dq. 16) , in which the relation­

ship, 2G = E/(l-~). has been ueed. The aubs'ltut l on of CEq. Sb) in 

(Eq. 16) results in· (Eq. 18). which. contains IJ
r 

a s itli! only tU'_l{."1mm 

varlable of position. 

(17) 

(18 ) 

~he boundary conditions uhien p.pp1y t o (Eq. 18), in t erms of t~e 

variabl e A. &rei 

( 19) 2A 0;\ :::: 0 
A"''' 

(20) -2 p 

The rer~lt of t he substitution of (Eq. 17) in (Eq. l Oa) lSI 

A fA ~ " 
( 21) ~ - 211G-f d (I ) _ 27/G- IS S'S - ErdA 

z - i=1J q;: dA 2.& dA I -V ZA 
D 0 

- ~\-"7.1 (" ""-'1" -L =0~ - E ET + 2.8- E + 2VG- C ... " v = I = - 1-1./ --I-V - Z. I- V 
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I 

(22) Jtr;.dA - If"z.Qvg. 
a 

The set of eqll~tlon!l. (:::". 17) throUGh (r;q. 22). cnnstitutE'B tre 

bnsle rp.l~tlcnehips from which the stresses m~~ be determi~ed. 7.~e 

q- ~.nd the const~.nts e a.nd 0 m!lY be determined 
Z 2 

from t he set of equational (Eq, Ifl) throup',h (:sq, 22). tilth these 

known, Il"f> m~,y be dehr!!llned froD! (Eq. 17). Usi!lo9: the nota,ticn. 

-_ ZG-J'" ~ ( I ) d 
I-V lit- dA Th A 

o 
f (, we;., r,A ~( I ) 
2.\.a;.) = I7'i7L~dA ZiT dA ) 

o 

the solution of the set of equations. (Eq. 18) t hroUgh (E'~, 22), 1,' " 

complicated by the fac t thn.t the terms, f1 (a;. ) ~:md f,,( U- ). ~ppear on 
G r 

the rlf~ht hand e1de of ( Eq . 18) a nd (E::t. 22) respeoti veJ.y. ':i:~lis dif-

floul ty can be circumvented by the use of Plccard I s r>1ethod'~. The fo llow-

lng discuaslon indicate. how the method Hill be n:pf>l1ed to this case. 

The set of equations, (E::j. 18) through (Eq. 22) ',:ill be solved on 

the bas1s of the a ssumption that fl( ~r) = f2( ~r) = 0 , 

'l'h1s w11l result in &' first apprOXimation to the radls.l stress . which 

t.: I. discussion of J?iccll,rd's Method for solving eoua tions in uhich em 
unknown appe~s ln~unetional for m a s well as explicitly i s Given in 
m~ app11ed mathem~t1cl! texts: for exe.!!'lp1e. ~A:,jp1ied Un.thet1~,t1cs lor 
EngineerB", Reddick and louner. p 17£;. 
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-will be denoted by r 
r 

A. seeo:ld [CTroroximation to q- r:~y t hen be 
-- r 

obtained by nssuming that f1 (~rl = fl(~r) and t hat f 2(r r > = t2 <~r } 

and solving (~q. 18) through (Eq. 22) on the basis of this a9sum~tlon. 

~i9 process i3 continued until satisfactory values of cr versus 
t ' 

.' . ' 

lU'9 obtained. ,fuea thla 18 accom:)li shed, ~jJ 

(~. 21) respectively. 

and may be det er~ined 

from (E<!.. 17) and 

Before discussing in detail the technique of solving these eouations, 

! t ~ ... il1 be convenient to divide this set of equations into three sets. 

Thesa sets will determine the stresses due to the thermal dilation, t he 

stresses due to the boundary forcea, and the stresses due to the res idual 

strains. 'X:h. proof of this sepl?.r~~bi1i ty ttas indicated 1n Ch!\-pt t>l' II. The 

three seta "f equations appear belot!. 'I'he!lets will be distinguished 'by 

the subscripts 1. 2, and 3. 

The stresses due to the th~rmaJ. dllatlon: 

(21) 
1 

(19) 
1 

2A(Jf, , I -0 
A~o 

(20) 
1 2 A {j'"r: I == 0 

A~I 

E T 2.G- ZYG- C 
I-V E + i -V E z,+ I=V I 
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The stres8es due to t he boundary foroee' 

(21)2 

(19) 
2 

ZArt"'~1 :: 0 
A = o 

I 

(22)., S rrz. ciA = QZ avo, 
r;. 0 2 J 

The str.saes due to the re91d~ strain81 

(22)3 fer;. dA:: 0 
o 3 

(20) 
'? 
-' 

-2p 

2A\lr I :: 0 
3 A=: I 
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As was indicl'l,ted in Chapter II. the foregning sepD.r~t1on is ~o5~1'h19 

if E. 1/ ~ 2G = 1./(1-11 ) nre the sallie in each of the sepnrn.ted 

sets of equations. Since. in the complete calculation, the stresses of 

the flrst two kinds will be used. through some theory of strength, to 

pr~ic' the residual strains. the res'i;rietions on E end 1/ t~ke the 

following practical form. At 9Jl3' given time. Ii and v must be known 

fUnction. of pos1tion. independent of the stress level. The moat useful 

f orm of thh funotion.d dependence win b9 th, t E and v ~.re kno,,;n 

funetions of the tel!l1;erature. ;Jith this 2.S SUl!l!lt ion, the p,;rticul,'ll" ~epa.-

gum of the S9PnT'lte solutions: ( V-rl+ ~2+ o; 3)' ( cr-f)1+~2+a;))'«)Zl+o;2 

+~ ). (e~ +e -+e ). nnd (Cl + C2;,C'3) ' must sat-iofy the origin'),l set of 
~J ~l 1212 2) 

eqtlBtions. 

The remainder of this e~~pter 10'111 be devoted to the development of 

speolf1c tecl->..niquea tor golving each of the separated Beta of equations. 

A semigraphical method tor solving the set ot equ~tion9 t-rMch gives 

t he .trelses due to the t hermal dllation will ,nov be deve~ped. At any 

T ( given time. G vll1 be aSlumed to be 8. known gra.phioAl) function of: 

position, in the senae t het 1t is a known (graphieal) funetion of the 

temperature. and the temperature ls a known (gr8i'hioal) function of poai-

tion. It ie desirable to mention at this ~lnt that the solution to this 

~_T eet of equations for a eonst~t value of <:c is zero. or that the solut-

lon 19 independent of a con.t~t p~t of ET For '~~~le. if t he da t a 

tor ", 'l' is measured f rom !!l 20 oC base. and this data is c811ed EJ:20 • 

then for l~ter oonvenienee i n gr~ph10al integration. ~'l' may be defined 

&1 to1lows: 
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m 
'.1hen e " 19 ceflned in this mpJln9r, the axi al strain € 1 becomes the 

:3 

difference between the existing l1:11:i81 strain and thIS axi~l 3tr~>.in which 

lfOU.ld be ))re!'lent if the eylillder were uniforr::lly at the tenl!)eratu.re of 

the center ot the cylinder. i.e.; 

(E ) 
~1 20 

reT/ 
- 4;:0 

The 1'1rst step in the developllIent will be the introduction of It 

modified constant of integration: 

c· = C E 
1 1 I'll 

'l'he resulting modifications in (E". 18)1 ruld (E'lo 21)1 ~e m"..de by 

noting thatl 

ZlIG- E + ZG C 
\-11 7.j \ -11 \ 

= --.L E z, + 2G- C' 
\-11 , 1-7/ I 

2G- c + 1.1IG- C = 
1-11 ~z I-V I 

I 

This :uodif'1ca tioI'. iG In.'lde in order thnt in the first step of the itera-

tlve solution (Picc0rd's Method). the con9t:~t 
, 

C 
1 

will be zero. 

In terms of thls.1tarnat o eonstnnt of integaUl)n, the set of 
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equations which g1ve the stresses due to the t herwll dilation Me: 

( 19) 
1 

2AtJ""~1 =0 
A=O 

(20) 
1 ZAIIt;I =0 

A=I 

(22) 
1 

~z. 
I 

\ 

1 cr;. ~A :: 0 
C1 I 

The results of the integration of (:sq. 18a)1 and 

indicated belovo 

(2 ) 
1 

CEq. 2h.; 
1 

(24) 
1 SA fA LA E. T [A E 'I~VG-\l;. dA '" f (<<t;)dA - 1-11 E ciA + E-z ~dA + C, 1-1/ dA 

a I a 2. 0 I 0 0 

Note t hat (Eq. 23) antomatlcally s a tisfiee the boundary condition. 
1 

due to the l1mits of integra tion Ilhich t{er~ selected. It 

E T E ~G- 7.1IG-1. preaumed that I-V E . \-1/ ' \-11 • :too T=V l"..re known functiona of the 

radial par~eter A . in t he senae that graphioal plots of their v flluea 

versus A are known. Hence the indicated integrations of t hese ter;ns 

may be carried out graphicl!llly. and it may be presumed t hat the v alues ot 

the integrals of the •• terme are uso known (graphical ) functions f)£ A. 

~ first approxioation to the value ot the radial strese. denoted by 
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-i"rl • may now be made. '2his aropro:ximation \,'i11 be obt!'l.ined by :'lettin.g 

the terms, £1 ( Q""rl) and f
2
(ar

1
) , equal to zero, and e.:n~l1ying the 

remaining boundl".zy conditions to the remaining terms of CEq. ;~ 3) and 
1 

(Bq. 2t~)1. This vill result in a first appro:xil!l!ltion to the values of 

the eonstant.. which vl11 be denoted by EZl and c~ 

may then be used to obtaln the value of 

'I-he Application of the bound8!'Y conditions. , 
~\Ji,dA=O . to (Ell. 23)1 and 

These constants 

and 

and 

f'2(ll""r l) have been set equal to zero. results in the folloving equations 

for the determination of e
14 1 

O - fl.£... €;TdA - [' E C-'J' 2~ dA I-v + E:z., I=1i dA + , '-1/ 
000 

I' I: T - I' E - J' 2.VG-o - ,-v EdA + Ez" ,_v dA +ct I-V cJA 
o 0 0 

The solution to this pair of equations for E 31 

(25) 
1 

e,' = 0 

5' E 
\-1/ dA 

o 

Using these values for the con8tants, the v~ue of 

eO. fro!!) the following eq.ua tion. 

is glv:en belov o 

may be obtsin-



(2)a) 
1 

lA If;. = 
I 
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rA T - rA E 
J I~V e dA + E z L I-V d A 
o J 0 

The results. divided by 2A. give the value of Irr everYlihers e:lcCe'Jt 
1 

at A : O. '1he following equation, obtained from CEq. 18a)1 • • ~iV38 

its value at the center. 

and 

This value for 

(23b) 
1 

(24b) 
1 

A=O 

is now '9Ut into the neglected. terms, 

and (Eq. 24)1 ' givingl 

in which the v~lue. of all of the terms on the right:ttEl kno'..nl except 

and 

A aecond approximation to the values of the constants 

may now be obtained by applying the boundary conditions to 

and (Eq. 24b) • These constants may then be used to obtain n second 
1 

approximation to ~~ • 
1 

1~e application of the bound~y conditions. 2AII"'r I ~=1 = 0 1 ." 



I 

r <r~ dA = 0 • Jo ~l 
to (1':0. 230) f'nd (~(1. 2hb) results i ... the ::olioui"'" - - 1 - 1 -0 

eq~t1onll for the determination of the second a"PTlrox1:r,::l.tion to the v~,luea 

ot nnd c f 

1 

rl lET r' E J1 2 (3-Jf(fr )dA - (' Ni E dA + E z, J I-""u dA + C; 1-11 dA 
0' \ Jo 0 0 

=::. 0 

~9 solution of thi s vair of equations for a..!'ld 
,.1 

'"'I 19 give~. belovo 

(2SI!!.) 

(26&) 

C' 
I 

Ez. 
I 

Using theae values for the const!lnte. (;l. second a.pproxlr:l1ttlon for 

oaT noy be obtained from (Eo . 23b) • 
- 1 

l!otice that the vr~lue of 

t!1e center 1s nOIf obta.in'O.n. froml 

Z\lr: 1 I A= 0 
E 11 EI 'Z G-I - 1-11 E A=o + EZ,I_V A=O + C, -,:-=v )\,,0 

I".t 

The resulting v!Uues of q- may now be used to repl,aee the v!!.luea 
_ rl 

of ~r in the foregoi~ argument. and the ~rocass may be repeated, or. 
1 

9.9 in the n1lJl1erie'cu c"tse to be eonaidered in Ch~'Pter VI. this second 

approxim~tlon vill be cl ose enough without subsequent lter~tions. 



Wi th t he v,),lue ot ~l kno,m. the re:naining stresses I~.re deter'~inoo. 

from the followin.g e(!Uations. in which ell of the terms on t he rio -ht 1",1'19 

know. 

\ld, -~ + f(llr) - ..£ el + ~~ l~' + C' Z G-
T, I I J 1-11 I v J I-V 

A numerical example of this calculation. ceter~inine the stresses 

due to the t hermal dilntion. is given in Chapter VI . As uill be seE'n i!l 

that calculation. the method rendlly lends itsel f to t s,bular-gr!!,phic1'Il 

form. In that ·calculation. it ",i11 be seen thf).t sAt hfnetory MeurMY 

may be obta ined if the values of the terx::s !".re erueulatoo. a t only 8, few 

rpAlal pOBltion~. and the re1uired interm~iate points &re graphically 

interpolated. 

A semlgraphleal method tor BolYing the set of equations uhieh, ::>,ives 

the stresI911 due to the boundary forees Hill now be developed . The 

boundary f orces in this case ruoe t he external :'lx-aasure l' !".:ad the g;lera,,;e 

r.xial etr en cr . Since the general appr oneh has been o.evelo~,ect in 
~ avg. 

the previous case, the accompanying rel!!:?rka v111 be more t~rse. 

The equation. which ~pply to 'hie ea se IU'Et repea.ted below. 

(17)2 
Ir. *,," } 2. 2.... 

~(~)+ ~1JG- E + :zG-

2. 0'1. (A \f~) 
1-]) ~ I-V C~ 

(18)., ,-



(19)2 ZAIr";.1 == 0 
A=o 

(21 )2 n- f (rr-) + J1._~ E.z. + 2116- C \Jz.:>.. =: :2. \J r>. v 1. 1- 1/ 2. 

1 

j az.. dA::: az. QV9-
o ~ 

Th~ rgsult9 of the integra tion of (Eq. 18) and (Eq. 21) nre: 
2 2 

(f; SAf ~)dA + E z rI\2'~1/1J. dA + 0 rA:ZG- dA 2 A t:2.. = 0 I ~\ 1. 1. 10 1 10 1-11 

No t e t hat (Eq. 23}2 automaticnll~ satisfi es the boundary condition: 

2A~? I A.O = 0 • due to the limits of integration which were selected. 

The application of the boundary oonditions: 2A~2 1 A-I = -2p nnd 

, in whioh f <a;A) I f
O
(fz2dA : (J""z avg. ' to ( E~. 23) and (Eq. 24)2 

2 - 1 .:.: 

f?(~ ) have been . at ,_ 2 
equal to zero, results in the first approximation 

to the eon.t~t.. denoted by E and C? 
22 -

(26) 
1 

I I .3Q: cJA - (-1.p\ r' 2VIT dA <JzQVJ . 0 I-v ') Jo I-V 

J' 2.G­(-2p) 0 ,_z,dA -

[J~ ~~dAr-
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Using these vdues for the constll.nte, a first ~pproxim.stion t o the value 

o f t he riJ.dlul stress. deno ted by <rr2' may be obtliined from the follo'!i­

lng equations. 

ZA IJr. =: 
7. 

2iSi ::: E 21IG-1 + C 2G-j \lri Zz 1-11 z. I-Y A=O 
A=O A=O 

The reButting v!tlu es of (f"r Z are now put into the neglected ter!!!9: 

3D.d f ( q;. ) of ( ?4 . ?3) and 
2 2 2 

( Eq . 24) • givingl 
2 

(23b) 
2 

Z A lJ... ~ fA~ (n-_) dA -\- E \ "'2.V 10'-dA + C lA2.G- dA 
'2. h \I\z. zzJ I-V 2 I-V 

v () 0 

in which the values of all of the terms on the rll~ht are kno\1n. except 

EZ2 and C2 , The &ppl1ca tlon of the boundary conditione to 

and (Eq. 24b)2 results i n the follovi ng second appr oximations to the 

valuea of the constanta. 

+ 

(26a) .~ 

'" ~J'~dI\1Z. - fr 2~~clAJ2. l 0 \-v l 0 ~ v 
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Using t he values oi:lt :ll ned f r om these equ&tions for t he c"nst.'mts, 3. 

second approximation for OJ. m~ now be obtai ned from t he fo l101dng 
2 

e~ll.l8. t1" n •• 

(23b) 
'2. 

The v nlue of Clr obta.ined from the rtbove e'1uetions mgy no\] be used 
2 

to replaoe the value of used in the fore~oing argument. n.nd t he 

process may be repeated, or, in some cases. t1113 ascond approxima.t ion 

w11l be close enough without subsequent iterations. 

Nith the v alue of (Jr 2 known. t he remalnin~ stressea are c1etermned 

from the following equations. in which 011 of t he t erms on t he right are 

known. 

(21)" 
<. 

As in the Case of the stresses due t.o the thermal dll <'\tlon. 9<'1.ti8-

factory accura c;r can be achieved. ethen all of the terms discussed. are 

evaluated at only a few rp~ia1 positions, and the required intermed i nte 

points ~e gr~phieallf interpolated. 



A semlgr.!lphic:U method for solving the set of equations .... hich gives 

the stresses due to thf! resid~l strains will now be developed. 'The 

residual strains .... ill be presumed to b 9 known (~aphlca.l) functiOn:) of 

position. 

The equat i ons which ~pply to this anse are repeated below. 

(21) 
3 

(19) 
:3 2AIJr. I == 0 

.3 i\ "0 
(20)3 2 A If\'::3 I :=; 0 

A=I 

The results ot the integration of (Eq . 18») and (Eq. 21)3 are: 

Note t~~t (Eq. 23), Automatically satisfies the boundnry conditio~: 

2AIJl. :3 1 A=C = O. due to the 11mi ta of integl'ation which ,~are selected. 

The appl1cation of the boundary conditions: 2A1lJ. l = 0 and 
I :3 A=l 5 Irz dA = o. to (Zo . 23) and. ( Eq. 211 ) 1n which f (~) and 

0 3 - 3 J 1:3 
t (~) have been set equal to lero. reBults in the following tlrst 

2 J 



- 48-

-.'1.1!proxi!ll(!.tions to the v alU!';lS of t he eons t'ld s denoted 'by E 
z) 

and 

The vnlues of the eonstl.Ults cr>.n be cJ~t ermined from the flbove equ a tions, 

if ~he values of the term, are determined by graphical integration. 

Uaing these v.n1ues for the constunts. e. first c.pproxlution to the value 

ot ~he radial str.... denoted by ~r • may be obtained from the f olloy· 
) 

lng equations: 

The resulUne; vtalues ot 

of 

<rr are nov put. into the neglected terms. 
:3 

CEq. 23)3 and (Eq. 24»). giving: 
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In theBe equetions the values of all of the terms on the right I?,!'e lMotlIl 

except 6 z and C The ~pplication of the boundary equstions to 
J J 

(Eq. 2)b)3 and (Eq. 24b)3 resul ts In the follo~lng second npproxim~t-

ione to the values of the constsnts. 

I I I I 

(2.5&')3 
rv -1 ~;dAI t(~)dA + 1 ~vg-dA[f(ft.)dA 

E z = E;l3 + o 0 3 0 0 1 .3 

.3 [ 5: ~dA To - [~I ~~tdA J]. 

I I I I 

(26a) c:: C3 + 
- l-f:¥;dAj"t.(O\)dA+ L 7!,;oA fo tJifr3 )dA 

3 .3 
\( 2G- dA]~ [f' 'J.VG dAY 

o I-V 0 I-v 

Usi ng the values obtai ned fro8 these equations tor the oonstants, n 

second appro%lnation for ~r may nov be obt~ined from t he fol l ouing 
J 

equations. 

The yt!llue of \['1' obtained fron the sbove e~uationB m~ nov be used 
:3 

to replace t he ve1ue of f r u aed in the foregoing .'lrgument. ruul. the 
J 

proce.s may be repeBted. QT . as. il) the !!U.l!IerioBI c !',se to be oonsidered in 

Che:pter VII. this second aPPl'ox1matlon 'I1ill be close enough without 

subsequent iterations. 
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With the value of IJ known, the remaining stresM9r,.,re deter~iined 
rJ 

from the following equa~ions. in whioh all of the terms on the right ~e 

known. 

(17) 
:3 

A numerical e%~~ple of this calculation, determining the stre~ses 

due \0 the residual strains. i8 given in Chap\er VIII . As will be seen 

in that oalculation, the method read1ly lends i teell to t abular-gr<:,phicru 

forlll. In that eBloulat1on, 1t will be 8elm that sat1sfnctory a.ccuracy 

may be obtained if the values of the terr.l9 are c'llcul0.ted. at only 8. few 

r "..dia.lpom1tlons, ~ t~e required inter'O'lsc i ,'>,te ?Clints :n'e gra:);~iC!l.lly 

interpolated. 

This chapter was devoted to the determination of t he stresses exist-

ing at a. given instant ot time in an infinitely long solid isotropic 

cylinder, when all of the variable. are functions of the r adial position 

only. The e~uatlon8 whlch determine the stresses as a function of the 

therrn~l dilatioh, the boundary forces, and the residual strains, ~are 

~r9sented. Theta equat ions ~ere divided into three sets ot equations, 

which ,~a.ve the .tree ••• due to t he thermal d1ll'ltion, the stresses due to 

the boundary forces. and the atresses due to the residual stra1ns. $~mi-

gra~hical methods for the .olution of each of these sets were then i nd1-

eated. 
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In this chapter, a. theory of strength will be introduced :llld i t 

will be indicated how t his theory of strengt h may be used to determine 

the values of the residual strains a~ a function of posi tion and tice. 

Before t he theory of strength is introduced. however. it is desirable 

t hat a recapituletlon be made so that the funct ion of this chapter i n 

t he total problem becomes nore apparent. 

The problem which is undertelten i n Part I 18 the develo?l!lent of an 

analytical method for the prediction of the residual stresses induced in 

an 1nfinitely long solld isotropic cyl1nder by a symmetrical quench. In 

Chapter I. a teehnique was presented for the determination of the taupo­

erature IOU a 1'uncUon of the r adial posi t ion and t1me. In Ch.-'J.pter II . 

a theory. which is an extension of the ordinary t heory of elasticity. was 

developed which lneluded the effects of thermal d1lation and residual 

strains upon the s tresue existing in an lsotropic body O.t wy Gi ven t 1tje. 

Thls t heory prasu.'lIes thst the m'7.ter1el behttves elMtiCt>~ly i n the sense 

that Hookels Lmf describes the changes ef the 9tr8.ins which r-l.P?03IU" 1f the 

stre8se; on an element of the body are removed. Such effects as yie~di~ 

or ereep, by thie definition. merely change the residu.nl stra i n terms . 

In Chapter IU. the theory of Chapter II h used to separately o.etermine. 

at a given time, the stresses due to the thermal d1lation. t he stresses due 

to the boundary tore •• , and the stresses due to the res1dual strains, f ()r 

the oaee of an infinitely l ong solld isotropic cylinder when all of the 

variables are tunctions of the r ad1al position only. 
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The 1'ol1owil".(]; nota.tion -.till be u sed in thi s c!"tepter: 

Le\1 E 

V 

G 

t 

x. Y. 

1. ..1. 

~ . ~t 

(Q"" - Ill 
(~- Ir) 
( It" ~r 11"') 

<r: y. n. 

'" 2 3( {J,- " ) 
;j . 1" · 

EX' ey• 

EO 
x' 

eO 
y' 

e 

t. 

q; 

e. 
eO 

z 

de l) x, dEe det' ...:x, z err dt 'i'ir' 

V 

1. 

be Young's Modulus for unloadi ng. 

be Poisson 's Ratio for unloadi ng. 

: E/ 2(l-V). 

be the time. 

be the local coordinates. parallel i n di rection 
to the local principle stresses. 

be unit vectors i n the x. y. and z direc t ions. 

be the principal, stresses. 

= ~~"(+ 0;,+0;; )' ., 

be the prinoipal reduced stres8ss. 

be t he tensile stress ~t which t he m~terla1 ~ill 
yield. (If such exists.) 

~ ~ ? : (rr; - (f)- + {~-(1"t- + ( lrz. -11"r be Q parruneter 
proportional to the shear stre~n energy. 

2 
be t he v lllue of k a t which yhlding COml'lences. 

be the pri nelDal stra ins . 

be t he principal residual str~lns. 

be the prinoipal residUr~l strain r~te s . 

be the shear str~n energy. 

be the energy required to produce t he residual 
strt'!ins. 
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det~rmined, but the method of c1et,"rmln.il!g these resldu."!l 

to be presented. The remainin3 p,~t of the tot~l proble~ 1s. therefo~E'!, 

the development of r:lethods for e1 theI' d.etert'!1nlng the ch·'.!1g'?s of the 

residu!!.l strains a s a function of time. in the ter~s of th.e t?l'1peratllre 

and. t he stresses which would D.l?ve bMn present if those Cbl .. !lges in 

residup~ strain hg,d not t aken pl?ce. cor of (1 eter!ninin\~ the resid.urll 

""- p2.rticullll' time. 

There are obviously e.s many approaches to this problem ~).s there ('Ie 

theories of s trength. This is, however. n three dimension~l stress pro-

blame hence. for exa~ple, the m~imQ~ tension theory of strength m~y be 

e11min'1ted. sinoe it mr.,kes no pretence of describing three di!!lendonci 

yielding. In addition, it must be l"e;!lembered t:1a.t, in Ch'1pter II. cel· t ,,~in 

restrictions on the ela~t1e (un1oadin~) 'nroperties of the lUateriBl uers 

necessary. It ~Iill be instructive to exomine certe.1n of the t:';119S of 

stress atrain l 'elo.t1onshlpri fo r eicple tension Ylhich 8fltisfy tbJ'l'3S re-

striations. ns I). prslir:llnr.ry to the introduction of !? theory of streneth. 

'l'he restrictions nxe thD.t there f;rE !mgwn values of :E. V , F..!l.d 

2G: ::'/(1 + v ), which l'...re unique functions of 1;h0 tem!)erntul'e (or more 

generally. which are unique functions of l}osi tion ::.00 time but 1.~hich nre 

inclepenrl ent of the stress level) =<1 whioh relata, through Hooke's Lrlw, 

the changes in the strains tri t!l the ch~.nees in the stresses, '"hie!, occur 

in an element of the body U' the stresses are re;:;qved fro!:'. thA.t element, 

but no other chf'.ngee tnke place. 
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The simplest type of stress stra i n relationship ~hich sa t isf ies 

theae restrictions 18 illustr!?teCl. i n ( :ri g. 2). rtlld steel a t modernte 

temperatures closely approximates t hh eurve, if the Ul'per yield. is 

neglected and the flat portion of the yield is not exceeded. 

1< Be 51<1"9' strain >1 

(Fig, 2) 

~h1s type of stress strain r elationship, ~here the yield polnt, E, and 

" are functions of temperature. is because of its simplicity. p!!\l' ticular-

17 adapted to the solution of the outlined problem. This is the type of 

relationship 8.8sumed i n t he nWll8rlcru. comptltatlone of Chapter VI I and 

is the one to which most of the succeeding devel09ment will be devot&&. 

Another type of 8tr e88 strain relationship, which eathf1ae t:le 

restrictions. 1a indicated in (ll'lg. :3a). I t is approximated by n".teri-

ale i n which strain hardening is app~rent. such as p.~uminum or st~inle9s 

steel at ordinary temper atures. 

f\"s;4 ... 0' 1 
StrQ'\'l ~~ 

(Fig. )8) 

Strain ex StraIt) G Jt 

(Fig. 3b) 
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Depending upon the material ancl the tenperll$ure, (? ig. )a) may or aay 

not be idealized into (Fig. 3b). This strain h!!'zdening t ;rpe 11ill be 

dlscu.sed briefly in the succeeding developments. The required comput~t­

ions, uslng this type of relationship. are more difficult. 

SuQh materials as pitch, or metals at high temperature, may be ap-

proxlmated by a completely different type of stress strain relationship. 

For r apid lOMing OJ' unloMing, the material is presumed to behave elaa-

tlcally , with E, v • and G b~ing functions of te~pere.ture. but for 

suatn,ined lOM S' t he residual strain ro.te 19 ~resUtled to be ~, function 

of the !!ItresB level And the tenI!'erllture. For pure tenaion, the rela.t ion­

d~o 
ship may be e~re8sed as: dt~ = f(~~.T) . This type of stress strain 

relationshlp 19 Indicated in (Fig. I}). 

(Fig. 4) 

This type of stress strain rel~tionship is most ideally adapted to use in 

conjunction with the t heory of Chap hI' H . BeCe113e of thin fa,ct. thh 

type will be disouBsed in the succeeding developments. ~r~9 type of 

relationship is particularly useful in eomputir~ the amount of residual 

stress relief due to tempering or other strese relief hea.t treatment. end 

is aleo applioable to eases Hhere creep is the domin~nt fp..ctor. 



1~e f irst step in the seleotion of u theory of strep~h 1s the 

.electlon of the paramet er. in pJidition to the temperature. who se value 

11 presumed to iudicat. whether yielding takes plsce. or whose value 

deter mines the rat~ of yielding. In the caae of simple tension. to which 

\ta . foregoi ng s,re ... t raincUl'Te. apply, the o'bYi ou. puameter is the 

teneil •• t r.... 701' 'hre. dimen.lonal . tr •• s probl.... hoveYer. the maxi-

mum 'en.ile .tr ••• baa b •• n &bovn to b. an unsati.factory criterion. The 

~".t.r. mo.' coamonly u.ed 1n thr .. dim. nslonal e're •• ~roblema ue 

from the u •• of elther of the •• parameter. 4iffer only .ligh'ly. it i. 

coamonly accepted- ,bat the .hear .tr aln energy (or Mi ••• -Hencky criter­

iOIl) corr •• pond. 11101\ Clo.ely to ' t~ experimlntal re.ults obtained ualng 

pol7Cryabll1l1e mater1al •• whlre I!IMrolcopio 1I0tropy 18 &88U111ed due to 

the .malInl •• and randolll orlentatlon ot the cry.'~l.. th1s 1. particu­

larly f ortunate. sincl 'hl. ori'erlon i. mathematically more suitable 

Th •• econd .tlp 1n 'be •• 1eotion of & theory of atre~th i8 the 

determination. if yiel ding take. place. of the relatlve proportions of 

the principiH rel1dual strain incrementa. Again thl III&theme.tically 1II0at 

.ui 'able th.or~ 1a the one now accepted a. be1J1g the most accurate tor 

pol7Cr y.,allin. material.. where macro.coplc ieotropy is as.Wlled due to 

th •• mallne •• and random orlentation otthe crystal.. Thi. theory 

• R~d$i, "Plasticity". contains a good di scussion of the different 
theories ot streng\h and plaeUa flow. 'fhe reader 18 reterred to thi. 
text ae & bA.Ck;gro1Uld for thh chapter. 
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to the :t;lrincipal reduced stresses und arfl in the S!:L"le direction. ':'115 

i mpli es thnt the sum 01~ the nrinc1:pa\ residual strains is zero. 

The natheoatle ru. a.?pl1C!~t1on of this theory of stren~th to the pr·:;-

blem <.'.t h a nd vil1 nov be ciseu9sed. in re1~,tion to the foreg!')ing types of 

simple tension str~ss strl"in rel a tionships. i·lost of t he succeeding de-

velopment \:111 be devoted t.o the fir s t type, Ilpnroximltted by mnd steel 

p..t moderAte temperatures, since this t:,rpe will be n.3 ~m.med in the n11"leri-

e ru. conrputntioM of Cho.:pter VII. 

Assuming toot the !3tress s tr l:'ln reln.tlo!lsn.lp for sir:mle ten!') i on is of 

the type indie'\ted in (Fig. 2), thE! modified Hooke's L!\w of Chc'l.pter II. 

neglecting ther~ll dilat i on, may be ~Tittan in the form' 

E(E\ - IR:) = (I+v)r,. - 3'I1r IT"" ::. ~ (~-t U;+~) 

E(ey - e;> = (I +V)UY - 3111r 
~/herel G = ~(Ex-\-Ey+6lt) 

:;(Ez- e:) :: (I+v)\Ji - 3v<r 

" I (0 ° ~) 

E(E _ eO) (1-211)\1" 
E ="3 EJ<+Ey+<;' .. ~ 

'l'he shear strain energy- may now be uritten in the f oll",dng form. 

'l'ot!\l st·rAin energy-



By the ~ • .umption of the theory of str~ngth. V may never exceeo 8 

cert:'!in v Alue. If V tends to exceed this vplue. yielding t; pJre s :>IF.\ce. 

Thill v li'.lue is ref'.dlly de t ermined from the yield Tloint in s1mole tension. 

~.nd isl 

v y. p. 

Therefore the l1mi H ng value'lf the function, 

./ is 
22. 2-

k .. := " Irv. "'. y.". ,, 0' /. , 

'l'he significance of the proportionality of the princi 9al residual 

strain increments to the principal reduced stresses will now be investl-

gated. It ! i8 the energy required to produce the residual strains, 

the differential increment of work done in yielding i31 

110w if E O (defined to be l(Go 
-\0 GO + e.0 » 18 assumed to he zero (t.ne J:x y !l 

re8idual strains result in zero volume c~-ange). then the increment of 



:Ehe requirement of the th~ory of strs!'lgth that a s 

( liT" - IJ ) i ( If" - II" ) : (<r - IJ), therefore , impli!?s th:?t the foreg;o ir,.?; 
x Y 2-

vectors are par;-,J.lel. This m'~ximi zea dX iIi ter~s of A. (,;iven m!>,~nitl1tl e 

of the vector str~in increment. It is further implied that the pro~or· 

tlona!ity of t he reduced stresses ~nd the stra in increments is based upon 

the ~s9Umption t hat eO Is sero. rather thAn vice versa. 

A finite difference t ~chnla.ue for determining the I'ed,c.u'::.l st):' lli ns 

1\9 "'. function of time t·!Ul now be indicatM on th"'! Dr1sis of th.~se (1e'1e1-

o~'1lents. It is assumed thl.1t. a.t time t. the ValU9!J of tho :r"-'ilidual 

stra ins are known. At time t + dt. it 1s assumed that the stress~s due 

to the t hermal dilation and the stresses due to the boundary forces"iTe 

knovn. Using the residual strains present a t time t, the s tresses due 

to thee9 residual strains at time t ",".6t are then computed. ':.:he 

reduced stresses correspondi~~ to t~e sum of t~e stresses due to these 

tbree factors, l'.nd the v nlue of the function 

+ (\r z - !if' r?) are then determined a t time t + LIt. 

The fo l lowing technique h th~n u sed to estil'l:<'!te the values of t!1e 

residu:<.,l stra.in lncr.ement~ in the intervl'.l At. !1odific!tt1om; to the 

~ s tl!!l:t:lte. made possibl e by t he knotrled,<;9 of t he result s of ~r evil')ns t i me 

i nterval comput ntions. should be included to i ncrease the ~!CcurclCy of the 

8stimfl.te. SubJect to these modifica tions. it is tlS9UJ;\9C. th:l.t e',er~here 



? 
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yi elding will t Ake plACe . It i9 also naoumeu t hfl.t 

the residual strain incrementa due to this yielding wi ll be proportionnl 

to the foregoing reduced stresses. For the pIlrl'oee of estiwl.ting thes") 

increments. 1 t ",111 be further a ssUlIled t hat these incr ements of the 

residUAl strains do not Affect t he total str~in9 . tf1 th this further 

a.sumption, t he following relationshipa relAtinB the ch~~ea of th~ re-

duced .tre.ses to the increments of t he residunl strains are v~lld. 

"lfherever k
2 

exceeds * q-.2 , t he changes of the reduced stresses M.d 
, :J JE.p. 

the corresponding incrementa of the residual strains. required to Ofluse 

k
2 

to match ~J~ • may then be estimated from t he follo~ing e~uations. 
" • p . 

The streasea due to these estlm'3.t ed residual strnin incrsl!Ient s nre thell 

computed. Due to the grossness of the assumpti on t~At the t ot al strains 

are a constant, these stre8ses . pAd ed to the previ ~U9 stresses m~y not 

be expected to give a satisfactor7 agreement betwee~ k
2 

over the region i n which 7ielding WR8 assumed. The agr eemell t ~1l1, 
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however. be illUch better th:u: ,. Waa ~chleved ",Uh the vf'lue of f ro:,; 

t h e previous stresses only. t.'.nd. may be iErproved still more b y d et " Z't1 i n ing 

n const!"..nt llllieh " hen mulUpll00 by the estlm~.ted r esidur]. st,r ;",i n incre-

r.19!ltS and the stresses due to t11ege lnerar'if!nt s results i n I;he oeut ::-I ~.t ch 

betl'reen fl.lld over the :?BSumed rep;ion of yielding. 

With the re!!Jtriction tha t tha r at1 0 of the re81du1l1 stra 1e i !1.cr e!:le:l.ts 

1n each coordinate direction ~ ~ chang,. the resul ts of this first 

estimate are used. in much the Bame fashion. to det'.'!r11l1ne 11 new esti!TI1.,te 

of the required res1dual strain 1ncrements. The results of this second 

? 
estimate should give a. still closer oatch between ;.;:- and 

? ? .-. q-.... • 
3 y. -rj . 

~Ji t h t \;/O independent solutions for the stresses due to the e9tim~ted 

vruues ot the residu!!l strain increments. this !!la tch may be furtller iu-

-proved by util1.zine ~. l1nenr combination of t hese t\10 solutions. 

This proc'tss of successive Il"pproximntions to the re'luired r(tsidu~l 

strain increments ms:s be. if necess:1l"Y, continue<~ . As t he nlli~ber of 

indflpendent solutions becomes larger. the use of 1.1. linel!?.r combini? tion of 

these solutions becomes more L~portant. z'q-2 
3 y.p. 

l!I~.tehed at the S$l!le number of positions lUI t here are linearly I n<ia)s!lC.er.t 

s olutions due to suocessive estim"'.tes of the required resid.unl strcd n 

increments. I-Jhen ~ B:1tisfnotory Ilk~t eh between kG and is 

obtained. the required Talus!! of the residuA.! str'l.lns at the time t + A t 

are knovn. 1'he entire -prooess i9 t he:l repented for the ne::o:t time int"lrval. 

In this manner. the com?lete solution vs. t1me is ·:lot ainoo.. 

~:'he foregoing discussion applies i n toto to t~;.~ case where tile mate-
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(Fig.:3) indicat"ld for strain hprdeninc:; 11l'1terials: ~he only (li!'7er9nce 

1& th'3.t the p'tr~\Illet9r. * 1r2 ' (the maxi!!lUl!l v2.1ue of the fu."'lotj,on l? 
J y. p . 

«Ir _ 1r )2 + (Ir _ q- )2 + (q- +IJ" )2) ',111ioll the m~teri'3l !'1:!'..y 9ust [l,in \11th-
x y z 

out yielding) !!lU8t now be considered to be a. fu.nction of the residu'll 

strain-tempera.ture history. inc!.udln~ the vn.1ues of the ~c9umed resit~u1U 

atrain increments in the time interval 111;. A discussion of sUltable 

approximations for this functional dependence i8 beyond the scope of this 

t hesia. 

I hen the material has a strese strain rellltlon3h1p of the type indi-

cated in (Fig. 4). which 1G matheoatieally sinilar to slou VhCOllS fluid 

flov. the technique is even simpler. It 1:3 a saumed that the resicl.u:ll 

stra.ins and the total stresses are known fit time t. 1'1',e135 stresses. to-

get her with the temperature. determine the residual strain r ate. ihis 

residual strain rate 1s presumed to act unchenged for the time in'i;erv21 

Llt. at the end of ,,,hlch time the total stresses are computed. ~'hese 

stresses. at time ( t + ~t). determine the residual strain rnte in the 

succeeding time intervAl . The process 1s reveated until the complete 

solution 18 built up. 'l'he aimplest functional dependeoce bet,.een t~le 

s traues and the ree1dUPti stra.in r~te8 (mathematically identical to slo,/ 

viscous fluid flow) ls: 

J 

where fA is an experimentally determined funotion of the tel!lper~ture. 
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analogous to v1soosity. A discussion of more complicated r el ationships. 

such as would be involved in creep with iltr lil.in h~<l"dening. is beyand the 

scope ot this thesis. 

In Chapter II. it vas indicated hov the stresses due to t he thermal 

dilation, . the stresses due to the boundary forces, and the stresses due 

to knovn values of the residual stra ins, could be determined . It 'h\S 

indicated that. while the stresses due to known values of the res iduo~ 

stra.ins could be determined. the values of the reaidual strains tlere 

unkno~. It was further indicated that the values of the residual strains 

could be determined only if additional information. in the forf!1 of ~ 

theory of strength, was introduced. In this Chapter. certain theorie~ of 

strength were presented , and it WR.S indicated how these theories could be 

apnlied to determine the values of the residual strains as a funct i on of 

~eition and time. 

It may be noted here that the developments of this Chnpter are more 

restrictive, in the sense of the required ~BsurnptionG, than are t hos e of 

Chapter II. Hence the utility of Chapter II is not limited by the appli­

CAbility of the developments of this Chapter. but r a ther. it is l i mi ted 

by the Bbil1ty. by any method or through any theory of strength. to det er ­

mine the reeidaal strains. 
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PAll'.r II 

~. application of the developments of pm I to the following 

problem, negleoting end effects: 

"Determi ne the r~sidua1 stresses induoed by quenching, from 600 °C. 

in stil l wnter r·.t ambient tempern.ture, e. :previously llormali:-.ed solid 

steel cylinder, ;; cm. in diameter by 1>0 cm. long. The campod tlon of 

the steel is as follows: O.~ C.. O . 20~ Sl., 0 .'15% f~n.. 0.051% 1' •• 

a.nd 0 .030;; s. II • 

'l'hh particular problem corresponds to the experimental residual 

streae deiermination performed by R. Ba.choltz !UId H. Buhler ( 3 ) , 

who used the techniques developed by Sachs ( I ) for their determinAtion. 
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This chapter will be devoted to the determination of the temperature 

distribution, ae a function ot the position and time, for this case of a 

Scm. diameter mild steel cylinder, quenched from 600 °C. in still water 

at ambient temperature. 

~h. fir.t .tep in thie determination i. the selection of the valu.s 

of the pertinent variables. AS a function of temperature. from the liter­

ature. This problem of selection is complicated by the fact that the 

values of the required parameters are not available for the particular 

composit ion of steel used in the experimental residual stress determin­

ation for this ca se. Fortunately the parameters are only sllghtly influ­

enced by emaIl changes of composition. hence reasonably accurate valuee 

of these parameters may be obtained from wei ghted averages of the value. 

of these parameters for ateels of neighboring composition. 

Table 1 contains a SWTll!lary of the assumed valuea of the pertinent 

parameter s as a functlon of the temperature. A discussion of the select-

10n of thess values followa the table. The ruul ts are presumed to ap­

proximate the values which would have been obtained from a previously 

normal ized steel of the follow1ng composition: o.JO~ C., O.20~ Si •• 

O.7S'J. l !n.. 0.05l~ P., and.O.OJO~ s .. 

The notation used in this chapter is the same aa that used in 

CRM'TER 1 
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'ihe data used ln the eetlll18.tion of c is glven 1n (1l'i8. 5) . 'rhe 
p 

assumed values for t he spec1fic heat are glven by the curve. whlch was 

obtained by taking a smoot hed veighhd !lver age of the specific heats of 

pure iron and of three steels. vhose composltions are in t he neighbor-

hood of the desir ed compositlon. 

Th. data used 1n the estlmation of k 18 glven 1n (Flg. 6). The 

A.sumed values for the conductivity ere given by the curve. vhlch was 

obtained by ta.k1ng III smoothed velghted average of the conductlvities of 

tvo ste.ls. vho •• compositlons brack.t the deslred composition. 

The values of p , the speclflc velght, ",.re obtained by calculation 

froD tbe tbermal expanslon data developed in (rig. 7), assumlng that 

the speciflc veight at 20 °C. ls 1.85 gm./c14. 3 • The value. vere 

obtalned from tbe relatlon.hlpl 

:3 p./cm. 

'I'be data used in the .sUmaUon of E~o h given in (Fig. 7). The 

assumed value. of the tbel'1llAl expanaion are glv.n by tbe curve. which was 

obtained by taklng a smoothed welghted average of tbe thermal expansions 

of three et •• le. whos. composltions are ln the ne1ghborhood ot the desired 

composltlon. This thermal expanslon data will Gleo be used in the stress 

calculation of ChAPt.r II. 

It ls apparent. from the spread ot the original data in t hese fig-

uree. t hat are relatlvely insensltive to compos1tion. 

An estimate of the aecur&c1' of their a .. umed valu... w1 thout knowlng the 

accuracy of the orlginal dat A. ls dlfflcult. Considering the spread of 
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the original dnia only. an aceur~oy of the order of 2% nppearl reason­

&ble. 

The eltimation of the boundary layer conductivity is. however. more 

difficult. due to the lack of data. Most ot the data appearing 1n t he 

l1ter~ture relates to hardenability oalculations. and is of an empirical 

nature. The most highly developed of this type of cnleulation i8 that 

of M. A. Grossman and hie associates ( 13 ). In their calcula tions. an 

empirical conI tent value of h/k is Bssigned to different quenching med­

iums under different conditional for all Iteels. and an empirical constant 

value of the thermal diffasivity a 11 given to all steels. On the 

basis of these as.umptions. the temperature distributIon verlul time is 

computed. neglecting the he~t of tranlformation. The hardenability 1s 

then related to the half temperature time. or the time this calculation 

indicahs 18 required for the temperature at & point to be reduced by one 

half. Such a calculation 1& Sllccessful since whether or not a. steel ~ill 

harden is large1y a function of the cooling rate at '.a.- temperature nl2<11" 

the knee of the isothermal time temperature. or S. curve. and the empir­

ical parameters are 10 chosen that this calculation of the half tempera­

ture time 1. su1tably related to the cooling velocity at this temperature. 

It h. however. apparent that vlUuee of h used in such & cal.culatlon 

have little meaning for the particular computation under consideration. 

A. Rose ( 14 ) , in 1940, made a literature survey of the data from 

which values of h ,as a function ot tempera ture, could be calculated. 

Of' all the data he reports • . only the exper1mental relults of l'l . 13. Pil­

ling and T. D. L,nch ( 15) correlpond at all closely to the case under 
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con81der~~lon. The results of Fl1l1ng and Lynch's experlments are pre-

.ented ln the form ot a center temperature versul t1me curve tor a 6.5 rom. 

b~ SO mm. Ul. plus S~ S1. cyllnder quenched In stll1 water at ambient 

temperature . Based upon A. Bose's analysl. ot th11 data. the following 

values of ~he boundary layer conductlvl ty. as a tuncUon of the specimen 

surface temperature, for a quench lnto stlll water at amblent temperature, 

are assumed. 

Temper ature Range °c 

20 - JOO 

JOO - 700 

700 - up 

2 
h cal./cm. seo. °e. 

0.028 

0.078 

0.0)7 

The dlscontinnitlel in thl1 data are based upon the fact that the mode 

ot coollng changes with the temperature In falrly distlnct eteps, whlch 

are v1.1ble to the eye. The hlghest tempera~ure range represent, coollng 

through a steam jaeket without fluid contact and consequently hal a low 

value. The middle range represents v1gorous boiling with fluld contact 

and high convectlon currents and has the hlghest vnlue. The lower range 

represents conduction and convectlon wlthout bol11ng and has a low value. 

As seen ln (Fig. 8) , the tr~sltlon at JOO 00. ~ sllghtly Imoothed 

in order to avold anomalies ln the temperature solution due to the difter-

enoe equation approximatloni. 

The accuracy of the.e ve.lue. for the boundary la~er conductivIty 1a 

open to question because the cylinder on which these values were deter-

mined 1. 1/8 the 8iz. ot the cylinder involved in t his oomputation. 

The data of A. Roee ( 14-). whlch 11 Qll for emall speclmen.. lnd icates 
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that the boundary layer conductivity 18 a drastic function of the bulk 

temperlltur!, and veloolty ot the wl1ter . The bulk temperature particularly 

affeoh the surface temperature 3t t.;hlch the transition in the mode of 

cooling occurs. In view of this. and in the light of ordinary fluid­

solid heat transfer theory. it may be expected that the value of h is 

a function of the following factors: 

1) The surface tem'Pere.ture of the body being ~uenched. 

2) Th. bulk temperature of the coolant. 

J) The local coolant velOCity. 

4) The thickneS9 of the heated. or boundary. layer. 

S) !he surface condition of the body. 

6) The aral1abl1ity of the nuclei tor the start of vapor bubble •• 

7) ~he pressure. 

Oonsiderations of this type indicate that there is not only a !.Iiz& effect 

but that in the experimental ease, which thie calculation matches. the 

value of h may have voried by a f airly large f actor over the length of 

the cylinder. 

The as.umption of the value of the boundary layer conductivity lllAq, 

therefore. be coneidered to be the most critical assumption in the temp­

erature problem. Thi. will be di.eu •• ed again in Chapter VIII when the 

resul ts of the calculated valu •• of the rea1dual stre .. e. Are oompared 

with the results of the experimental determination of Bucholtz and Buhler. 
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The va1u~s of t he pertinent p~~eters ~~ve noy been selected ~s a 

function of temperature. The temper~ture. as ~ tuncti~n of position and 

time may now be determined by the appliention of the techr,iques d.eveloped 

in Chapter I. (~ig. 8) indicates, to n. reduced scale. the complete 

graphical set-up used to obtain the solution of the temperature problem. 

'l'h1e f1gure also indioates a sample calculatioJ:!. for the iJ:!.terval from 

t = 7 to t. 9 seconds. The necessary tabular computations accompany-

1ng th1s 8811lple calculsUon are indicated in 'llible II. '!'he calculation 

was carried out through a total of 31 seconds; or until the temper ature 

gradient bec8llle comparat1vely small. During the f1rlt five S9condS of 

thh cf'~culation. the radius wns d1v1d",d up 1nto n· S equal intervals. 

and the time interval WAS .~ second. At five seconds, the number n 

.... FlB chn.nged to S and the vcl-ue ot ~t W1l.e increand to 2 seconds. 

At the end ot 31 seconds, the value of ~t wal deereased to 1.2 S8C-
? 

onds. in order to deorease the value of the multiplier 2a4t/(4r)- from 

approximately 1.S to 1.0. 

!he results of thie calculation were crOBS plotted ~. temperature 

versus time for vario~s rad1al positions. in order to check the conti­

nuity of the solution. The final results were then plotted. (Fig. 9) • 

tor t = 1. 2, 4, 8, 16, and 32 seconds sgainst the new variable A = x2 

: r 2/r
1

2• (Fig. 9) represent. the tempernture distributions which are 

uled in tbe stress problem. 
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CHf.,P'I'F..R VI 

'l'his chapter will be devoted to the determination of t h p. s t resses 

due to the thermal dilation, as a function of the position and the time, 

for the ease of a ; cm. di nmet9r ~ild 9t~el cyl inder which i8 subj ected 

to the tem~erature distribution ver sus time indicated in (Fig. 9). Th1s 

temperature distribution corresponds to a quench from 600 °e. in still 

vater at ambient temper a ture. Sinee the boundary forces are zero , the 

results of thia computation will repres ent the stresses which ~ould have 

been present in the cylinder if no yi elding hnd taken place. The tech-

niques of solution and the notation used will be those of Chapter III. 

The first step i n this determination is the selection of the values 

of the pertinent variables, as a function of the temperature, from the 

Ii terature. 

'rhe value of the Unear component of the therlll8.l dilation (thermal 

T exp,<ulsion) , E 20 

1). 

was selected in Chapter V and ia presented i n (Fig. 

The selection of values of lil , G , and v :: (E/2G) - 1, h, 

however , more difficuH . 'rhe IU'tlcles of F. L. Everett and J . Miklowih 

( 16 ) and G. Verse ( 17 ) contain not only origi nal determinations of E 

and G, but also show comparisons of their results with those of previous 

investigators . The bibliographies of t hese Articles are virtually inclu-

slve of the work done in this field. These references indicl', t e tha t the 

v~lues of E and G , while not pPJticulArly sensitive to composition, 
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are sensi tive to the techniques by which they nre determined. This is 

particularly evident when values of zY are calculated from v~lues of E 

and G which were determined by different techniques. As V il 3D 

important parameter in the calculation under considera tion, and as the 

experimental determinations of Everett and Miklowitz are the only ones 

specifically designed to obtain reliable values of V, the results of 

their experimental work is assumed in the computation under considera-

tion. Their values of E and a were determined by unloading in com-

bined bending and torsion. Since these Yalues were determined simultane-

dusly. the re.ulting value of· v may be presumed to be more reliable 

than when (as in the other available determinations) the values of E 

and G are determined by different techniques on different specimens. 

Furthermore , the technique of unloading corresponds to the definitions 

for E and a whieh were specified in ChApter 11. The composition 

and the heat treatment of the atsel used in this determination of the 

elast ic constants (nominal S.A.E. 1020 -- hot rolled) deviates appreci­

ably from the steel assumed in the cslculation under consideration (no~­

ina! S.A.E. 1030 -- nor.malized) , but, in lieu of better data, this 

divergence must be accepted • . 

This data of Everett and Miklovitz is presented a. values of E and 

a at ambient temperqture. o 400 F., 600 or., 

1000 °7. For use in the computation under consideration, the intermediate 

point. were plotted wi th extreme care in (Fig. 10) in such a mnnner 

that the resulting value of V = (Ef2G> - 1 formed a smooth curve. The 

values of E &nd 2G were graphic~ll~ extrapolated from 1000 OF. 

o 
to 600 C. From the curv •• of (Fig. 10), the values of 
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V . 1./1-1/ , ?(;./l.-V . nnd. LVGI1-v 1'1ere enmputed nnd 

plotted in (~'lg . 11 ) . The d.eriv t'.tlve dld'l'(1!2G) wns ,~!l-phlc~lly 

det ermined from the curve 1/2(1 . which wns obt<linE"<l. from the vI1..1ue of 

20 . (Fig. 10) . This derivative is plotted in (Fig. 12). 

The technique used in determining the stre~se8 due to the therm~l 

d.ilation will no,,, be indica ted through the aid 01 a SIImple c~lcule.t1on. 

In thi~ s ample ealculRt1on. the etresses due to the thermal dila.tion 

cor responding to the tem,era ture distribution. (Fig. 9). for t = h 

!!econd s will be c(')mputed. 

The MUr'l,tlons to be solved were cevel"p~ in ChaJ)ter III. but will 

be presented r>,gnin here for convenience. The e c.u .!'.t1ons to be s olved 'Ire: 

(21 a) 
1 

Ez. = , 

O¢ , 

~, 

r' E T L \-1J E dA 
-"(:";"-e--- + 

Jo '-11 riA 

n- fro) E TEe' 2G-
-\lr + \0-1"' - I-v E ;- E z 1-'· -+- J I=V , I I , v 
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(Table III) conta ins the nl~cessar;y nu.Qerlcal R.S:gects of this $'1."':Ip1e 

caleulatlon. Referring to this table. al l of t he pnr~Aterg r~e ev~lunted 

at A = 0 • 0 . 2 • 0 .4 • 0. 6 • 0.8 • 0.9 and 1.0. These positio;1.!l p.re 

arbitr ar ily selected a s the minil!lU/ll nunber IIhicn w111 e ive the nece"S:<lrY 

:;.ccur~cY' for the gr f'.phle~l interpolation of the v alues of the :nm-r.l!leters. 

T.b.e e!':tra positio!l, A = 0.9 • 1s Il.dded because of the gre:d:er initinl 

temperp..ture t!1"ndient ne::lr the surfllce. The tempero,ture of each of these 

tlositione. a t t = 4 see., i8 obtained. from ( l!'1g . 9 ), and is recorded 

in (Table III) . The corre8~ondlng v alues of E!(l-V), 2G!(1-V) and 

211G/(1-v ) , obtained. from (Pi •• 11), are recorded in (Tl'lble III) 

A.nIl. plotted in (Flg. 13) 9.8 a function of A. The vl'llues of h~Jl dA' 
o 

l~ ? . "2'J.1G 
o Y:vdA• and I ~ 9.l'e determined, tor these poSitions, by the 

graphioal integration of the curTes of (Fig. 1). and are recorded in 

(Table III). 
T 

'rhe corresponding values of E-20 , determined from ( J'ig. 7), 

d!dlf(1!2G), determined from (Fig. 12), Md dT/qJ.. determiMd by 

graphical differentia tion ot (Fig. 9) . are also recorded 1n 

~'l ..L TT l ~'he valuee of the prod.uc$s r-vE : 1-11 (6 20 - 6 20 A _ 0) and 

( Table III). 

..Q.(....L\ -
dA 2G I -

~2!-)fi are determined for these poSitions and are recorded in (2able 

HI). 1::V~ is plotted 1n (Fig. 14) and the Va1u. l:~v,"'rdA. a\ 

these positions. is determined by graphical integration and is recorded 

in (~able III). 

I 
A first appro~im~tion to the T~lues of € and C1 is t han 

zl 
obtn1ned trom (Zq. 25)1 by assuming t hat 

This approximation 1s: 

E = 7.\ r ' i:. 
)0 \::y dA 

-3 " = I. 3165)(10 ~n and c,' = 0 
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A first approximation to ~r • denoted by ~r • is then obtained far 
1 1 

these p08itions from (Eq. 2)1 by assuming that fl(~rl) = o. ~h1s 

approximation is: 

~4it::: - fA..s... eTdA + e~ i~ dA 
, 1-1/ 4, 1-11 '0 0 

-Theee values of ~r 
1 

- d..l-are used ta form the A function IJ""rl di< 2G ). which 

14). 'l'he function {~rl h(~)dA is then obtained. is plotted in (Fig. 

for these positions. by graphical integration. and is recorded in ( ~&ble 

III). ~he functionsl 

f.( -) 2C-iA-..d..( I) \ 'iJr. ::: ~ Ilb ciA 2C. dA Q,.,d 
l . 0 I 

are then obtained for these position. and are recorded in ('reble III) 

and plotted in (Fig. 14). The values of the funoUons J~ (Q=r )dA a.Dd 
o 1 1 !Af2 (Q=r 1 )dA. · are then obtained by graphical integration, for these posi-

tiona, and are recorded in (Table III). 

I 
A Becond , and in thie case final. approximation to E and C

1 
ia 

zl 
then obtained f r om (Jl:q. 25)1 and ( Eq . 26)1 ' by repli!t.cing f1 (er

rl
) 

and f2(~rl) by tl(~rl) aDd f2(~rl) respectiTely. These approxima­

tions arel 

c' '" I 
- 3 

- 0, 188'1 x 10 f'll" 
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'l'hese values of the constants are used to oht l1in a second, and in t his 

cas e final , F.Lp"proxi1!lation to the values of the s tresses nt these posi-

tiona. The values of the stresses are obtained from the e~uationa : 

A t- (E ,{A2.G-
2A<rr 

...... J ~(O=r)dA - ..£ e.TdA + E'I 1-11 d A + C1 '-11 ciA 1-11 
I o I 0 0 0 

""' -CJr + 1; (<Jt.) - .£ eT E" '2G-
<r~1 + E z 1-1/ + C, 1-1/ 

I I 1-1/ , 

..£ ET + E, ,Ev +C' 2Vc;.. 
\-11 4 \ - J I-V 

~he question of whether .A, t hird IlnproximR.t ion 18 requir~ is ellall), 

settl ed in this caee. The second approximation for ~rl differed from 

the firat by a maximum factor of about lO~. Therefore. it may be 

expected thAt the third approximation will differ from the second by a 

ma..'l[illlUlll fa.etor of approxiE!H.tely 1%. A factor of lO~ is somewhat large, 

in thie CMe , but I':l. f actor of 1:£ 1$ better t han the input data. hence a 

third approximation is uneoeSIUll"Y. 

The value. of t he strssses due to the thermal dilation were calcu-

lated in a si milar manner to the s~~ple calculation for t = 1; 2. 4, 8, 

16 and J2 seconds . The results of these calculations are plotted in 

( Fig. 15) and (¥ig. 16). A cross plot (not shown) of the stresses ~t 

the surface and at t he center versus time indicates that t = 4 seconds 

corresponds approxim2tely to the moet seYere surface stresses. and that 

t = 8 seconds corresponds approximately to the most severe center 

stresses . On thie basia it may be presumed that no appreciable yleldl~s 

tekes place after 8 seconds , until t appr oaches inflnity. at which 
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tine the stresses du~ to the residunl stra ins present at t = 8 seconde 

-may c~uss yielding. It £0110'-'19, ther '3fore, that it i s uIl."lecessary to go 

beyond 8 seconds in t~e de t ermin.'\t1on of the yielding due to tile stresses 

of thermal dilation:. The reduced stresss!! due t.o the therl!la.l dll~tion 

are plotted in (Fig. l7) and (Fig. I8) for t = 1. 2, 4, and 8 seconds. 

(rig. 19) showe the value of 
? 

k- , a ~qrgmeter ~roportional to the 

shear etrnin energy. due to the stresses of thermal dilation, for t. = 1. 

2. 4 , and 8 seconds. On the same figure, for comparative purposes. the 

maximum value which k2 may assume whithou~ the material yielding i8 

indicated. This set of curves is introduced at this point in order to 

indicllte the amou..'lt of yielding required. The dhcuuion of the Po.Gsump-

tion of the yalue of the yield pOint, as n function of the te~perature, 

is deferred to Chapter VII . 
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In thi s Cliil!)ter a compl!!te sa.,r;:>le cnlcu1!'ltion of the stresses due to 

tl.16 therr;uu. (;i1e.tion nt t = l y !leconda \18.9 pr'8sented , Graphicnl plcts of 

the s tresses versus radial position, resulting from thls and siJ:)ilar cal­

clll nt ions, were presented for t = 1. 2 . 4. fl, 16. and 32 second •• It Willi 

i~~icllted that ' t = 8 seconds corresponds. for purpo.es of c~leu18tion. to 

the l Bst time at which yielding, cau.ed by the stre.se. due t~ the thermal 

dilation, oceur.. GrBphical ~lots of t he reduced stresses and of k2 

for t = I, 2. 4. and 8 seconds were then presented. The stressea due 

to the thermal dilation. I1S t becomes l arge, Ilpproach zero. 
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CljAPTER VI I 

This eh&pter will be devoted to the determination of the vRluee of 

the residual strains. and the stresses due to these re!'.lidu~l strA,ins. as 

~ function of the r adi al position and t i me. for the eas~ of a 5 em. dla-

o 
mt'lter mild steel ,~,.l1nder Q.uenehed frnlJl 600 C in st111 water at !U!lbient 

t emperature. ~he techniques for the determination of the stresses due to 

known value. of th,e residual etrq,ins were develoned in Chapter III. The 

techniques used 1n the determination of the values of the residual 

straine were developed in Chapter IV. The notation used 11ill be tha t 

ueed in these two ehapters. 

The values of all of the necessary pexameters, as n function of the 

tempernture. were assumed in Chf.\pter VI, with the ey.cep'i;ion of the yield 

pOint . BIlchol t7. and :Buhler ( 3 ). who mllde the exper imental determination 

of the fine1 reeolducl s tresses for the ca se under c!mslci.erati(l~:. a l ao 

determined some of the prnperties of the s teel under eon!lieer""tion. The 

reaults of their short time tensile tests ore 'presented In(Ta,ble IV). 

Table if 

Stahl St SO mit O.JO~ C •• 0 . 20~ 51., 0.75% Mn., O.051~ P., and 0.030%5 . 

Pruf- Streck- Zug- Dehnung Eln-
tecperatur grenze festlgkeit (1=10 d) sehurung 

°e. 2 
kg!mm 

2 
kg!mm 'J; ~ 

20 35.6 57.3 23. 7 64 

150 34.6 61 .9 13. 7 68 

)00 22.9 60.) 21.0 50 

450 20.2 1-1-1.9 22.5 66 

550 1l~.1 29.0 42.0 75 
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These values of the y1eld point are the values assumed in the probleo 

under consider ation. They are plotted 1n (Fig. 20) together with the 

2 2 2 
derived parameter 3 ~y. p.' which represent, the maximum value wh1ch k 

may assume without yielding occurring. 

It 1& known that the results of a short time tensile test of mild 

steel a t elevated tempera tures has the form indicated below. 

E,>; 

In order to make the solution ~s simple as poss1ble, and because there i s 

no better av~ilable date, it i8 necessary to replace this w1th ~ ~pprox-

imnte curve of the form indicated below. 

qy.p.- I---r--------

ex 

I t is further assumed that what is nomin811y reported as a "yield point" 

in such a short time tensile test corresponds to the value which should 

be aSSigned to the yield. point in the simp11fied curve. Such an assump­

tion at temperatures in the vicinity of 600 OCt is open to some question, 

but in lieu of better data i't w111 be accepted here. Thh f actor will 

be discuued again in Chapter VIII , particularly in relation to "creep" 

a t these temperatures, when the calcula ted values of the final residual 

s tresses sre compared with the experimental results of Bucholtz and 

Buhler ( 3 ). 



20 

IS 

16 

14 

/0 

b 

z 

o 

/f~ ferflnce (3) 
:t 

;'issilmed Valve of Yte/4 Point fjl" and ~ ifj-p-

---. 

~ 
~ 
~ \ 

\ 
\ 

\\ 
\ 

~ .Y. l"-

I 

\ 
\ 
~~ 

o /00 zoo 300 400 

Temf'erature 0 C 
(Fly . 10) 

4h 

42 

38 

\ 
30 

\ 

1\ 
'\ \ 

\\ 
18 

14-

5'00 

'\ 

/0 
600 



- 99-

l 'h e technique!! r equire(J. t o determine the residual strains and the 

l ire lees due to these residual strains. ~s a function of t he position and 

time. will nov be illustrated with the Bid of a s~ple calculation. In 

thh sMrple calcula tion. the residual strAins will be compu.ted a t t = 4 

seconds. based upon a knowledge of the residual strains present at t = 2 

sMonds. Thi s pm-t1cular erunple calculstion is eho.en because it illus­

tr~tee two 8J'tificea which mAy sometimes be employed to reduce the l abor 

involved i n t he e~leulatlon per time Itep. 

The sequence ot steps in this .ampls enlculaUon 11111 be as followa : 

(1) The stre.see in the body a t t = 4 second., due to the r esidual 

strains present at t: 2 seconds, will be computed. 

(2) These stress.s viII be combined vith the preyiou31y comput ed 

strease. at t = 4 seconds due to the thermal dilation to form the total 

reduced'streese. present at 4 aeconds, aaauming thl!lt no additional yield­

ing take. place. 

(3) The function k2 viII be tormed, and the increment. of the 

residual atr~ine i n the interval trom 2 to 4 .econds will be estimat ed. 

Theae increment. will be added to the residual strains preeent at 2 s~c. 

(2his l ater is not ~ neoessary step, but i. convenient since the t otal 

residual straine nre usually more regular than the incrementa, and hence, 

require fewer points to plot.) 

(4) The fir.t artifice will then be introduced. In this particular 

ease the dominant eatima.ted value. of the residual .trains w11l occur 

near the surtace and near the center. with Bn intermediate region in which 
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ther~ will be little or no yielding. ~~e estimated values of the resid-

ual strains will. therefore, be divided 1nto estimated residual strains 

near the surf~ce And near the center. L1near comb1nations of the stresses 

due to these factors will allow a perfect match between k~ _..:I Z q- 2 
I!'l..... J y.p. 

a t both the surface and the center, where the res1dual strains will have 

their maximum value. 

(5) The stresses due to the assumed value. of the residual strains 

near the .urface and due to the aSlWled values of the re.idual strains 

near the center will then be computed. 

(6) A linear combination of the solut10ns to (5) will be made 

whleh matches k2 and Z. \j 2 
:3 y.p. at the surface and at the center. . It 

will be found tbAt this does not result in a sat1sfactory match 1n the 

1ntermediate regions. In most ceees this would mean that another 8st1-

mat i on of the value. of the re.idual strains would be needed. but in th1s 

case, the second art1fice may be 1ntroduced. This artifice consists in 

notiCing that the residual stra1n rat10s at t. 2 seconds are nearly the 

same as the requ1red rat10s of the 1ncrements or the reaidual str~in •• 

Henee the atresse., at ~ = 4 aeconda, due to the res1dual strains pre-

.ent at t = 2 seconda, may be USM as e. third independent eolution, Aa 

long as it represents a minor part of the combination. 

combinat1on of thea. three independent solutions, ~ 

Ualng B linear 
2 2 

BIId - CJ J -y.p. 

are matched at three po1nts , result1ng 1n a s~tlefaetory match over the 

entire region. The f8etthat the pos.ib11it7 of thia art1f1ce exists 

ind1cates that a longer t1me 1nterval could have been used. 
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For convenience in exposition. the discuasion of the sample calcu-

l RUon 1.1111 be divided into three sections. which are not precisel y i n 

the for egoing sequence. These sections are: 

(I'll The determination of the .tr ••••• at t = 4 second •• due to the 

r •• idual .train. present At t = 2 .econds. due to the estimated residual 

Itrains present near the surface. and due to the estimated residual 

strains present near the center. 

(b) The estimation of the residu."I.l strnlntl present At t = 4 !!UIcond. 

and the separation of this .tltimate into reeidual .trains present near 

the surface and near the center. 

(c) The use of a linear combina.tion of the three independent solu-

. ? 2 2 
(a) to s athfactorily I!l8.tch Jr and""a: OVIfl" the entire 

~ .. "'. p . 
ilons to 

region. 

Section (a) yill now be dhcussed in detail. It mu.t be remembered 

that in t he .e~uence of step. in this sample calcula tion, the estima tion 

of the values of the residual str&ine ~recede. the determination of t he 

stresses due t" them. 

The equation. necessary to .olve section (a) were developed in 

Chapter III. but will be pre.ented &gAin for convenience. The equation. 

to be .olyed Are, 
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(25)3 E~3 = {['~t o'A[[(~~:(e;;t~d~dA t f~;(ve;+G~)dA-It(~)d~ 

- {' ~_'ffdA [{ (:; [.~~-<d')dA + t~; (o;HG.:)dA-If. ("'i)d~-;-

(21) 
3 



" 
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(Table V) contains the neceesary numerical Aspects of the s~~l 8 

calculation for t = j~ seconds required to solve (Section aJ. Since a 

similar calculation was outlined in Chapter III. the discussion which 

follows viII presume that (Table v) is nearly self-explanatory. ihe 

first, second and third rov., respectively, of (Table V) give the 

numerical computations nece.eery to determine the stresse., at t = 4 

second.. due to the residual strains present at t: 2 seconds, the 

estimated residual strains present near the surfnoe, and the estim~ted 

residual strains present near the center. (Fig. 21) and (Fig. 22) 

give the plots of the par8llleters (in addition to those alrelldy deterl!lined 

in the s8lllple calculation of Chapter VI) vhose integral vglues are 

required in ( Table V) for the calculation of the stresses due to t he 

estimated .trains present near the surface. 

The sequence of the mS"or stepa presented in (Table V) 15 as 

follow •• A firet estim~te of the values of ~ 

E Z) s.nd C)' 

thA.t fl ( IT" rJ) 

-

It) 

is obtained from ( Eq. 25)3 snd 

are equal to zero. 

and 

(Eq . 

C , denoted by 
) 

26) , auuming 
3 

Using these values for 

0) . a first estimate of Il""r ' 
) 

denoted by Ifr ' 
:3 

is obta in-

ad from ( Ell. . 2) , 
J 

in which fl( r r ) is BSlumed to be equal t o zero. _ ) 

Using this value for Il""r ' the functions 
:3 

are 

formed. A aecond estimate of the values of 

is then obtained from 

have been replaced by t he known functions, 

Ueing thea. values for E
ZJ 

and °3 , B lecond estimate of r r
J 

ie 

obtained from (EQ.. 23)3 ' in which t (II ) has been replaced by the 
1 r) 
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known funct1onf1 (;r ). In thh case the eecond estimate is aecepted 
:3 

aa being accurate enough. Values of ~ and 
. J 

in which t ( \J'" ) 
1 r:3 

(%q. 17)3 and (~. 21)3 • 

replaced by tl<~r) aDd t
2
<fr ). 

:3 3 

>'l%'8 obtained frnll 

These s'epa may be reBdily followed in (Table V) . 
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(Table VI) repres~nt!!l the numerlenl o<).lculatlons correspondi n; t o 

(Section b) of the s~~ple calculation: the ~stim3tion of the re9idu~ 

strains present ~t t = 4 secoMa, and. the s!'rrmration of thh estim!!.te 

into residUAl 8tr~lns preaent nepr the surface ~nd near the center. It 

is to be remembered that in the actual sequence of the cqlculstion, t his 

step preeedes the c l'.leulatioDs represented in the 2nd lmd Jrd rows of 

(Table V) . The basis for t his calculation was preaented in Chapter IV . 

Referring to (Table VI ), the previously determined stressea at 

t = 4 seconds due to the thermal dilation and due to the re~ldual strain. 

present at t· 2 aeconds lire recorded. The reduced stresses due to these 

tUG fnctorl are then computed. lind their SWII is recorded. The value of 

Z 2 . 
~ o-y P , 
,.I . • 

the maximum value of the function k2 which it is a.ssumed that 

the material csn sust&ln without yielding, 1s then deterained from (Fig. 

20) , and the kno~ temperature distribution (Table IV) at t a 4 

seconds. The changes in t.he reduced strenea required to match ~ and 

11" .-~ 
? 

y.p •• at the poInts where k2 is the l~ger, are then computed from 

the relationships: 

A(~-Ir) ~ - (\- tt;~) (~-r) 

The increments of ths residual strains are the~ computed on the basis of 
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the assumption thllt the total str!>.ins of .. my element of the bo(1y r~m~.in 

. eonstn.nt. i'i1th thi!! aSS1l1lrption. the estim"~.ted vslues of the residue.l 

strain increments are given b;V the following relationships. 

AE~ = -2'G- 4(0;. - tr) 

The value of 2G. appear ing above, i9 obtained from (Fig. 10) and 

the known temper~ture distribution (~able IV) a t t = 4 seconds. 

Thea. estimated increments of the residual strains are then anded 

to the residual strains present at t = 2 seconds. giving the estimated 

residual strains a t t = 4 seconds. For this ease. theae estimated 

residual strains are separated, as indicated in (Table VI). into the 

estimated residual strains near the surface and near the center. The 

stresses due to these estimated residuAl s trains 1I1ere calculated in 

('l'able V) . 
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(Table Vn) contain!! the c;.,L~ull).tions neoeas ,'U'y for (Section e) 

of the srunple cf\l.eulatlon: the selection of R. sui t Able liaero.r cOlllbln?Uon 

of the avall able independent ~olutions (for stresses due to a9gun~d 

v!llues ot the residual strains) ",hloh, t/hen added to the stresees due to 

the thermal dilation, achieves a sati8tllctor~ match between ~ and 

2 (]'" 2 
j y.!'. over the entir~ r ange in which ~ielding oocurs. This t able is 

l.r.rgely .elf-explanatory. In (Table VII) it is indicated thllt the 

stressel due to the thermal dil~tion plus a linear combination of the 

stresses due to the ~ssumed values ot the residual strains ne~ t he 

surface and near the center will not form a satl.factory match bety~en 

and ,g, q-- 2 over the entire reglon. 
;3 y.p. In general & seoond a98~nption 

of the re~ired values of the residual strains would be necessary. In 

this particular CBse, however, it is indloattld t lul,t the strese9a tl.t 

t = 4 seconds. due to the'resldual straine ~resent ~t t ~ 2 seconds, 

may be used as !!. th1rd lndependent solutlon. The remalnder ot (~l1bl e 

VII) constitutes one method ot ~pprox1mately solvlng the three simui-

taneoua quadratic equp.tlons requlred to match ~ exactly 

at three points. The flnal solution is then presented. 





(Fig. 23) shows the resll1 t~ of the s:"\Lllpl e Mlculatlon .:1nd of 3imilsr 

calculations . In t his figm"e. the reduced stresses due tn the residu",l 

etrl'l.lns prl!lMnt at t = 1. 2. 4, and. 8 seconds nre pr9l3entoo.. Since this 

figure, together wi th (Fig. 17) and (Fig. 18). contains the essence 

of t he results, plots of the stresses due to the resldu~l strains And 

-plots of the total gtresses. although known. have been omitted. It w~s 

i!ldic!'.lted, in Chapter VI. thnt t: 8 seeoMs ""9 the l ast time .at which 

appreciable ~ielding due to the streseee of thermAl dilation occurre~. 

nenee. no further yielding nccurs untll the stresses due to the thermal 

dllntion beoome small enough so that yielding. in the OPPOSite sense. 

caused by the streeses due to the residual strRins commences. 
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It now remains to find the residual 9tr~ins which are in the body 

when it reaches room tAmperature 8nd to caleulat5 the final re$idu~l 

stresses due to these strains. 

In this Tllll'tieulr:>r case, dnce only a sl!I8l1 amount of reversed 

yielding, caused by the stresses due to the residual strains, is 

expected as the cyl i nder further cools. 1t is presumed that the values 

of the residual strains present at ,: B seconds remain constant until 

the cylinder r eaohes ambient t emperature (20 0 0 ). When the cylinder 

is un1for~ly at ambient temper ature. the stresees due to . the residual 

8tr?~ns which vere present at t = 6 eeconds. 9recomputed. It is 

ed .& rr- 2 
exce 8 J ' y.p. only from A = 0.9 to A = 1.0 • 

The emonnt of (reversed) yield.1rag required to match k
2 

and .& If: 2 
J y.p. 

1s then computed, in & mahner similar to.the sample calculation, and the 

final values of the re.idual stre.ses are determined. Thsse calculations 

(when ~ = constant) are much simpler than the sample calculation, since 

11 (<rr) and f 2(!J'r) are zero, and since certain of the graphical inte­

grations can be aliminnted . 

The final value. of the re.idUAl stres.es are presented in (Fig. 

24). '.lh ••• ValU~8 will be co~ed wUh the experimental reeul te of 

Bucholtm and ~er in the n.xt chapter. 
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I n this chapter, Ii complete sample calculntion of the residual 

etra.ins present I1t t = 4 seconds, be.sed upong the ree1dual strains 

present at t = 2 seconds, and Ii calculation of the stresses due to 

these residual stralns were presented. Graph1cal plots of the r educed 

stresses versus r!!dial posi tlon, resulting frolll t hla !Uld a1mllar calcu­

lations. were presented tor t = 1, 2. 4~ and 8 seconds. It was i ndi­

cated how the residual strains present at t = 8 •• conds ( the l ast tlm. 

a t which yielding caused by the stresses due to the thermal dilat1~n 

occurs) vere used to determine the flnal residual stresses left 1n the 

cylinder when it reaches ambient teaperature. The final residual 

stresses are plotted in (F1g. 24). 
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CllAl"I'ER V I II 

i'lhile the results of the cAlculation (Fig. 24) do not represent 

the exaet solution to the ealculated problem, it must be remembered tha\ 

if the size of the- tine e,nO. distanee intervals ie decreased IUld the numer­

ical aecurlloy i s incre"!.sed., the rem! t s of t~e ca.lculation a.pproach the 

eXl?.ct Mlution to t he e~.lcul !'\ted problem. By the cal cuI at 00 problem 111 

l!Ieant the quench from 600 °C. in P. fluid. !l.t 20 °C. of an lnfinitel;r 

long isotropie eylinder S em. in diameter, vhere the boundary l Byer 

conduetivity Ilnd the properties of the mp.terial. R9 a function of the 

temperature,are exactly as assumed. Thus. any di f ference between the 

results of 'he foregoing caleulation and the exact solution to the calcu­

lated problem are attributable to the approximations resulting from the 

finite si ze of the eteps aDd the finite accuracy of the numerice.l COIltp!l­

t!'.tions. 

'fhi!! ch:1pter w111 be devoted to n. critic"'.l comparison of the c n.lcu­

lat~ values of the final residual stresses with the experimentnl ly 

de\ermined v!\lues of Buchol tl IUld Buhler ( 3 ). f or the o!ll.se of a S om. 

diameter by 40 em. mild eteel cylinder quencbed from 600 OCt 1n still 

water a t ambient temperature. The calculated value. of the final residual 

.treeses are presented in (Fig. 24) and the experimental values are 

presented 1n (:rig. 25). While there 18 1'1. generBl agreement of form and • 

megnitude between these results. there are greater divergences. between 

them than would be expected if the c alculated problem corresponded exact­

ly to the pbysical conditione of the experiment. 
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The major divergence lies in the fact thttt in the calcula.ted resul ta 

th~ largest stresses ( correspondi ng to inc1pient yielding) appear ~t the 

surface of t he cylinder. while in the experimental results. the largest 

stresses (corresponding to incipient yielding) a.ppear in the center. In 

the calculated results, the stresses in the cfmter !ire but 6'» of the 

stresses required for yieldi~. while in the ex~er imantal results, the 

stresses at the surface are but 71% of the stresses re1uired for yield­

ing. A discussion of 80me of the factors whIch may be respons ible for 

this divergence w111 now be made . 'l'his diecus!!Jion '11111 be divided into 

the fo llowing three pArts. 

1) A discus!lion of how ne~lythe cnlcub,ted problem corre9ponds 

to the eXperiment~l conditions. The validity of certain assumptions, and 

the reliability of the assumed values of the parameters ,.,111 be inv~eti-

2) A discussion of the errors involved in the e~leulnt lon of the 

9t a ted "!lroblem. The m'\in em.,h!'\sis '!I11l b!'l on the errors imrolvetl in the 

finite difference approximqtions. 

J) A ciscussion of the diffieulties involved in the exnerimental 

determination of the residual stresses. 

The f1rst ~ue !!J tion which will be asked is how clos e does the assumed 

Quenching rate correspond to the exper imental quenching r~te. remembering 

that all of the yielding due to thermal stresses occurs during the first 

eight seconds. The i mmersion of a cy11nder 5 em. in di Ameter by 40 em. 

long tllkes a finite time. If rapld.ly done. it must result in high 
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v~iabl e fluid velocities . ~hich certainly influ8ncee the boundary l~er 

conductivity. If slowly done. t he assumption t hat t he partial deriv~tive 

of all parameterl with reepect to S is zero is seriously co~promieed. 

In addition. while the cyl inder is in the flUid. distinct variations of 

the boundary layer conductivity with s mult be expected since there is 

initially r apid boiling. which must engender convection currents. 

T 

These currents may be expected to be more severe near the top of t he 

oylinder. as illustrnted. This meane an Additional varation of h ~ith 

z. Further. the temperature 3Dd the time at which the trrunsition in 

the mode of cooling occurs (from boiling with fluid contact to no boil-

ing) may be expected to be seriously lowered and delayed near t he top of 

the cylinder. due to the f act that the fluid passing the top has ~lready 

ablorbed large ~uantitiel of hea t from the lower portions of the cylinder. 

Thus . the region (excepting for the difference in pressure) nt which the 

boundary layer conductivity may be presumed to be closest to that which 

was aesumed (based upon experiments with extremely small specimens ) i l 

ne~ the bottom of the cylinder . At the center. where moat interest is 

a\ taehed. the assumed boundary l ayer eonduetivit~ may be presumed to be 

~ltered by. et l east. the f ollOWi ng factors. 
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1) There ~re higher convection currents, which tend t o incre~ge h . 

2) There 18 n greater thickness of the heated fluld ana v~:;J()r 1:1;7£1r. 

which tends to decrep-se h. 

3) The rmr face temperature I1t which the tr"l.nsi tion i n t he mode of 

cooling occurs, 1tt lowered, which tends to susta in the v~lue of h 

(higher in the first mode of cooling) for a longer time. 

It is the author's opinion that these f actors may be expecG ed to have 

SOT.let,hat the folloving overall effect ne1U' the long i tudinnl center of the 

cylinder. 

l) 'fhe initial value of h is probably lower t han !l9sU!IIeKl i n t h e 

cnlculation. 

2 ) The tr!Ulsit1on in h (due to the ch~n,a;e in the mode of cooling) 

is 11robably smaller. much less well defined. and occur" at a lower temper­

ature than a .eumed 11\ the c p..lculation. 

J) Values of h a fter the transition Are probabl y increas ed . 

There is • however. no quanti t at ive data availanlein the lit er a ture on 

t hese effects . hence they could no t be included in the calculation. 

~he foregoing enumerated overall effects woulo tend to r educe t he 

~ount of yielding at the surface and tend to increase it nt the r~ia1 

center of the cylinder. A comp!U'isoXl of the calculaten and e:~peri!!lentRl 

residual stresses, (Fig. 24) and (rig. 25), indicates that theee are 

precise17 the effects which would be required to bring th~ calcula t ed 

and experimental results into olo ser agreement, since they would reduce 

t he residual streuse neu the surface and increa!le them at the cent er. 
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In view of these factor s. it may be concluded t hat the aseu.c.ption 

of the value of the boundary layer conductivity is one of the critic~l 

points in the calculll.tlon. It Hay be furt her concluded that the devifl-

tions of the actual boundary layer conductivity. near the longitudin:ll 

center of the cylinder. from the assumed values of the boundary l~~er 

conductivity are an import&nt cause of the deviations of the cal culated 

nnd experimental results . A les8 important. though perhaps significant, 

f!!.etor 11 that the partial der ivatives of all plU'Al!leters with resp'1!ct to 

z are not equal t o zero in the experimental case . 

J~ther eritlc81 point. although one extremely difficult to ~~aluate. 

l ies in possible deviations between t he actual and t he assumed values of 

t he el&etic const~~ts E. V and G. 8S a function of tem~ernture. 

;.:; 
'ihis ill plU'ticularly true dnc. v must be detflrmined from V = - - 1 

2G 

I'!.nd is hence an extremely cr itic!!.l function of the values of E and G. 
, 

I t is almos t impossible to find reliable VAlues of Poisson's Ratlo; the 

reference used by the AUthor being perhaps the best available. The 

selection of the value of G is also critical because the deri~at1ve of 

l fG with respect to temper~ture is required. 

The assumption of the value of the yield point is a criticnl assump-

tion of comparable i mportance to the B99UInption of the boundary l ayer 

co~Auctivity. This is true because at temperatures in the vicinity of 

500 to 600 00. there i8 an effect s1milar to creep appeAring. This i8 

evidenced b7 the fact that all of the experimenters who have attempted to 

cetermine the elastic constants in this t emper ature range were forced to 

use either unloading techniques or v1bration techniques in order to obtain 
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con!!1eter..t results. Unfortunately thel'e h no quantita tive d a t a foil:' 

Bcreepll !l.vp-.llable i n the stress temper ? ture levels involv9Cl, in this type 

of problem. Available creep dat I? iiS in t!!'rms of d l'\Ys . months and year!':. 

r~ther than secop~s. ~d t his datI'!. is at such low stress levels that the 

amount of' creep per aecond 11 truly negligible. It must be remember ed . 

hOtlever. thnt yielding due to nereep" i$ the e~_aiest to eompute in the 

type of' pr()bleo under considera tion, U !; .... I'lS indieo.ted in Chapt er I V. 

In add ition 1 t would be l!lR.them~ticl",lly !limple to superimpose 1\ cree-:;" upon 

' t he t ype of calculation just completed. 

It is interesting to notethl'lt the introduction of "creepll a t high 

tem~eratures would tend to increase the residua l str a ins present neer the 

center in the problem ,just com!,leted. This is a,P'PArent from M r:'.ppr &isal 

of the ter.!l1era tura d1stribution tor various vr,J.ues of elapsed time. 

(FO'" 
15 - 9). In ,this figure. it is seen tha,t the surtncedrops belo," soo oC. 

in 1 secor~ while the center takes 16 seconds to achieve the a~m8 temp-

er::ture drop. Furthermore, d\U"ilJg the first 8 seconds, in which the 

cnlculatioll indic2.tad t h:J.t the yielding (lue to the s t resses of therl!lal 

d ilation censed. the center teunerature has only decreased about 10 °C. 

I t followe. theref ore, that Virtually a ll of any " creep" which might 

have oceur~ would have occurr~ ne:uo the center. The increllse in the 

residual strains near the center would result in increased final calcu-

l a ted residual stresles near the center. It would a lso decrease the 

residual strains present near the lurface since yielding near the center 

during the quench \fould relieve the surface stresses. These fl'lctora are 

precisely the factors requirec to bring the calculated final reSidual 
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Itrelllles and the ex:.:.erimenhl residual stresles, (l'1g. 21~) and (Ji'ig. 

25). into clo!er agreement. 

The remaining "parameters. k (conductiV1ty). p (spec11'1c t<.fe1ght). 

C
p 

( IPec1f1c heat). and T 
E (linear component of thermal dilation). are 

believed to be non-critical. A great deal of work has been done on the 

evaluation of th9se parameters as a function of the temper ature for a 

variety of materials and their values are known to temperatures hi,~her 

than 600 °e . for most common materials. consisting solely of a single 

pM.e. 

The oajor remaini ng difference between the calculated ~roblem and 

the actual phys ieal exper1ment lie. in the assumption. 1n the calculated 

problem and in t he cg1cu1ations involved in the experimental determina.-

tiOIl, that the cylinder 13 of infinite length. S1nce the cylinder IS 

length was 8 time. the di3l!leter (at the t illle i t V~'.II quenehed) it may be 

expect~ that thermal end effects are completely neglig1ble over e central 

region of 20 cm. of its 40 cm. length. Such a section vas removed 

after the quench and the res1duru. stress.s determined 1n 1t by Snch)s 

boring out technique. The removal of this central sect10n changes the 

stressdistributlon near the ends of the removed section. These changes 

introduce small . but sppreciable changes 1n the vAlu~s of the residual 

stresses as determined by Snch's technique. The residual stresses are 

determined from the changes in length and diameter Rccompanying the bor1ng 

out of t he cylinder. and in th1s CBse the length of the total cylinder 

(including the disturbed ends) WAS measured. 

"'he followinr; list 1s e. rec!lpUu1e.tion of the deViations, between 
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the calcula t ed pr oblem and t he experimental condit i ons. ~hich have been 

d i sculilsed. The list is arranged in plausible order of decr easing impor-

tance. 

1) Deviations betveen the actual and assumed boundary layer con-

ductivities over the central (longitudinnl) region of the cylinder. 

2 ) Devia tions between the actual and assumed yield pointe and t he 

f a.ilure to include Il ereep" effect. in the calculation. 

3) Deviations between the assumed and actual values of the el as t ic 

constants· E. V and G. 

4) Variation of the experimental boundary layer conductivity ~1th 

z. and hence a variation of all temperature dependent parameters with z 

during the quench. 

5) ~nd effects caused by the finite length of the experimental 

cyl1.nder. 

6) Deviations between the assumed and actual value. of 

and e T. 

k!p c • 
p 

J o pretense 1ll made tha t these are the only importE'..nt possibl e dev i a tions. 

but t hey are certe.inly the most obvious. In the opinion of the author. 

the correction of the above deviations would result in a close agreement 

bet lteen the cA.leu1nted and experimental results . 

The accuracy of the numerical portion of the computa.tion ie, in View 

of the foregoing deviations between the a ssumed nnd actual conditions, 

les s important than the f act that it is capable of indefinite refinement . 

The accuracy of t his caleulation vould have be~n slightly improved . for 
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the s ?..me amount of labor. i f the residu1l.l str~in9 had been cO!ll:9Ut ecl a t 

t : 2, 4 . 6 and 8 seconds r ather t han a t t. 1. 2. 4 and 8 seconds . 

The computation I1t t = 6 eecond.s might hIlve caught slightly f:,reR.ter 

s t r ess"!! 1n the 1nter med1ate reg10n betveen the surfp..ee 3l"..d the canter 

of t he eyllnder. In addition. 1t i9 incumbent u~n t he author t o poi nt 

out t hat there 1!! an implicit er ror in the cnleul lltion of t he liui t . a s 

A approaehes zero. of the followi ng quantit~ ~t t: 4 nnd t = 8 

seconds. 

limit 
A~ O 

In order to avold Inflnite derivatlves in the stres.es with r espect to 

A, a t the center ot the cy11nder. It is required that thi s limlt be 

fini te. I n t he numerical ealculat ions f or t; 4 and t = 8 seconds. 

it WA S , hovever. t aeUl l assumed t hnt Il1nee E O I : E O I the 11mlt 
r A-O ; 11..- 0 

of the above quantlty vas ser o . ReferrIng to page 60 ot t hi s text, 

however. 1t 1s evident tha t thi. 11mit should heve been estlma t ed f rom the 

fol l owi ng equatlon.~ 

tlE~ - .aE~ __ , (1-1 ;u;:;:) limd 
7. A - 7.G k"- A "-70 

(\i¢-Q") - (IJ;. -q-) 
7.A. 

Us ing the e«luation of eq.u1l1briUIII , ( Eq. Sa ), the above equation ma.y be 

written in t he following f orm. 

limit 
A~O 

-' ( I _ 'ill) si§i: I 
2G- 'W dA A=O 
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lcortuns.tely . the contri bution of this error is negligibl·e i:1 t'j.is 

case due to the following f8ctors. Th.e term d lJ"r!df' !A=O is sllIo.11 :"".t 

t = 4 and ~. 8 second. and i s identically Bero a~ t = I and t = 2 

seconds. This i mplicit error affects the term ~g - ~/2A only in the 

['

0 e O '"I - r A ( 0.2. The term appears s s 2A uA while the other region 

terms have finite value. at the center. hence the contribution of this 

term can never exceed approxim&tely 1/10 the ma.xilllU!!l error in t: ... e tero, 

which in this c r-.sa is Already Sfo11"..ll. ~he fact that this error '",a3 allOWed 

to creep in. however. indicates the care vhich crust be exercised when 

l imiting processes are involved. 

It is believed by the Buthor, although a substantiating discussion 

tJould be difficult, thf.!t the differences betllleen the resul ts of thi!; 
\ 

calculation. (~'ig. 24), and tbe exact results of the CalculAted problem 

t-!OuJ.d be everywhere less than 10,000 p.s.!. and that an avera,g;e accuracy 

of better than SOOO · p.e.i. might be expected. 

~he remaining f actor which is involved in a comparison of the cnlcu-

lated and experimental values of the residual stresses i s the q119stion of 

how ~ell the experimental results (Fig. 25) ~ctually re~e8ent the 

residual stresses vhich existed in the cylinder. The experimental rleter-

ruination ot these stresses also re~uire$ the assumptions that end effects 

are negl i gible and that t he partial derivative of all parBDeters vith 

respect to I is sero. The Validity of these Resumptions vas previOUsly 

discussed . In order to appreci~te the dif ficulties (even it these RSSump-

tiona vere strictly true) in the experiment.~l determination of the residual 



s "tr ", .t'I~s. it is n·?cess~ry to investi,~3.t e the !llatheoat i cs of Zilch I s bering 

out tecr..ni"ue ( I ). 

Since one of the fev references in Eng1i1h which even presents t ha 

requlred equations hae serious typogrllphlcru. errors in i t9 :,)resente.t;ion . 

H. : ,. 'dhhnrt and R. K. Potter ( 5 ). it wll1 'be desir a.ble to derive 

t hese equatlons. 

Consider the following equations. which W$rs c erived in Ch~pt er III 

for the etreesea due to the boundary f()rces. ~rhen the ,,,If.'.l'!tic coeffi-

clents are constant. 

(17}2 ~, + <r, } 
= ~t (C +V'Ez ) 

(18)2 z.fA ((4 1ft. ) 

(21}2 ~ - 2G- (Ez. + V C) - I-V 

The first step is to show that the constant C may be identified with 

the circumferential str~in at the surface. i.e. The i nte-

grat ion of (Eq. 18)2 give., 

2AlJr = ~t [(C + VEl:) A 1- D] 

The ~ppl1ellt1on of the boundary condition Ifr I A=l = 0 glvu: 

(27) I-A (C +'VE ) ZA z 
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Substi tutln;g; (:'?q. 27) in ( :::'1. 17)2 g1ves the follO'..'1ng V~1118 fo r 

(28) 

3valuating ( Eq. 9a} at the surfaoe gives: 

Substi tuting (Eq. 28) in ("Sq. 9·2). nOO. !lotine thl?t Ifr I .;-1 : C £; ive9: 

(29) == (C t VE) I+A\ - 'VE == C 
z ~A A: I Z 

'l:hls indicates that the constant C may be identified ~'7ith the eircUl!l-

ferentia1 strain a t the surface. 

Saeh's teohniqu e oonsists of boring out the center of the cylinder in 

.8uecessi'le increments and measuring the correa~oonding values of the l' 98U1 t-

ing strains 6 and c I . (~~. 27) i ndioates that in order to pr o-
Z If A=l 

duce external strains E \ due to this borill/~ out. the· V.,UU9 
" A=l 

of <f"r t!Itlit change a.t the inner surf'a.ee of the bore. A = ~. by the 

following 3!'Jount . 

<1\lr/ 
A~Ab 

The existing stress at A = A" in the originAl cylinder, <f"r 0 \ "aAb ' 

~.'lus the oh~r.gel in this stress due tatha boring out . t:..'r.. 1 • must 
r A- At, 

e~ua1 the fin~ stress after boring ~t the surface of the bore 
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However, the r edial atre.s at A = ~ after boring mu.t be zero, since 

this i8 the surface of the bore. Therefore, the following equation may 

'X'hh originnl stress must h~v~ "ll!thfied the (!q'lll~til)n of f'lqulli nrium: 

Therefore, the original cireumferentisl stres. in the cylinder b efore 

boring must be given b~ the following equat ion. 

Similarly, ( Eq . 21)2 indicates that in order to produce the 

external strains G z due to this boring out, the vp~ue of 

~ at A = ~ IllUst change by the following smount . 

~he existing stress nt in the original cylinder, q: \ • 
!!Io t,a':'b 

must equal the final stress 

after boring out, n- \ • i e I -' 2 Ji.=Ab • • 
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It is now neceeasry to d.eterl!line t he atrgas. which. exists I1t 

the surface of the bored out cylinder. ..ssume that an incrementnl r.\ll1ount 

~ 1e b~red out from the eylinder. ~his reduces t he axi al foree on the 

remainder of t he cylinder by an amount q- \ dA. 
II A- Ab - b' 

which must eorres-

pond to a uniform eh~nge of the axial stress over the remainder of the 

eylinder given by: 

tf"l \A=Abd Ah = (\- CAb + ciAb)] dlJz. 

Rei'erring to (Eq . 21)2' this may be t7ritten in the folll'lt/ing form. 

;Jeglectlng eecond order terme. it follow8that the origirml axi al streas 

is given by the following equation. 

ll'or purpous of si!nplieity. t he foregoing clumsy nota.tion w111 be 

altered as indica ted below. 

Let: If"r' ~. Q""~ be the original streeses before boring. 

A be the dimenaionlese bored out area. 

Eot: be the longitudin"\l etra.1t'l caused by the boring out. 

~ be the circumferential strl:!.in 1'1.10 the surf.~ee c.~used 

by the boring out. 
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In ter,,!s of this not p..tion. the eque.t1ons by which the resi~llr:l 

atrssses are determi ned I!lR.y be written in the f ollowi ng f orm. 

( 30) \It.:= ~; [ '::(i (Ec; + !fEz)] 

(31) If¢> = ~ [ (I-A)t,.:;(E<t+ VEz) - I;: (E<tT 7-Ez.)] 

(32) Ifz. · ~; [(I-A)d~(Ez.+lIE<p) - (Ez.+lIctb) ] 

and IJ"rT~'I' = ~~[ ('-A'>1r..(E'I>t?l~) - (E"<p+716z)] 

I t is intere9ti~~ to note that the stresses a t the center are given by: 

lJ"ZIA=O == ~t d~ (E¢ + 71 eJ 

q-."i ::: ~I = i ~; d~ (Ez. +lIEp) 
A""" A:.O 

I n order to a~preciate the significance of the foregoing equations more 

easily. the following graphi oal construction rn~ prove helpful. If the 

function l2~, (E + ?IE ) h plotted against A. the following eonstrue-- .. 2· _ 

tioD gives the value of 

1 

0.5" 

A 
/·0 

v;. \." =1 

~ll\ : o. s-
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This grAphical construction indicates quite clearl y th~ im~rtance not 

only of the v nlue of the function i:'Gv (E: z + "i)' but also of t he 

derivative of this function with respect to A. A similar graphic~l 

eonstruction !'l.:m>l1es to the term (IT; + Irr ). 

The magnitude of the measurements involved in the determinat ion of 

the stresses by the above equations is indicated in the smell figure 

~hown in (Fig. 25) . For example. the first point of the E~ curve 

corresponds to a change in the diameter of the cylinder of 2/10,000 of 

~n inch. and this must be measured aocuretely enough to give a reliabl e 

slope. It must Illso be considered that these mea surement s were mp..G.e by 

meehrulicnl means rather than \~ith strain gages. Referring to this figure, 

it 19 seen that if the first mee.sured points of E.2 an.d E., were used, 

r ather than the smoothed curve, the 1nitial values of Il'"z and ~ would 

be chnnged by approximatel y 20~. Therefore, it may be concluded that 

the ~ecuracy of the experimental res idual stresses near the cent e~ is 

('luite 101:;. The ,~euracy, of course, improves a s t he 91 ze of the bore 

increases , but the m~asuring problem is still acut e. 

In vi ew of these factors. and the unevenness of the orig1nBl exper-

i nenta l mearements of &; ~nd E . 
:!i 

a s indicated 1n the small f i gure 

shown i n (Fig. 2,5). it is appnrent that this experimental de terminA.tion, 

particularly a.t the center. is sub,jeet to very large possible errors. 

In this ch"l.pter, the caleul l? ted va.lues of the final residual stresses 

~~ve been compared with the experimental v~~ues determined by Bucholt z 

~nd Buhler . It W2S pointed out thet. while the c?lculated results do not 

represent the exact solution to the B. surned problem due to finite differ-



ence ,??pr ox1mat1on errors, t!:.e use of a e;r!!F.!ter numo(l>r of st e!)g C:luses 

the ea,lcul,'?.t __ d o;ol ution to conv ert;e .)11 the "xllCt solution. :.:t ':re.n t ::.en 

ind i cnted that the d.lvereE'nc~ bet'"een the calculRted and eX'Jer iment :-- l 

v:'),lues of the fin~}, res idual 5tren~$ ,<las much greater tha n could be 

explAined on the bash of the finite differenCe! approximl.tion ""l" !,i) !,~ . 

This divergence ~ms a ttributed to errora in the 6u1lllleci va1u,~s of th~ 

pl'U'ameter s. vro-i~tlon of the experlment~:.l boundArY l ayer conduct i'! i t y 

~1ith uia l Yl,:)sition. end effects ::md errors in the eXgeriment~,l d e t er­

mination of the residual streaees . 

Thege diverg~nce.s in no w,,-y d",tr~~ct from the method of calcula.tion, 

~rhich l~ C !!.:yc~b1.e of ,""rb i t.r<",ry ;1,,CCur:Wy, R:".th!9r. they indica te th0,t !'l11c h 

nor .. reli<>.b16 values of the p ,.or'1!!l,?ter3 are required S, l\'~ t}mt greater eare 

!'!!U"lt be t'l.:{en in obt '!inine: ex'"eriment,?l r€!sul ts which do not appr!'!ci"bly 

vi"l~te the nssumptions of infinl te length 1l.!U1 no vP..Ir i at ion wi th a~i::ll 

"0os1til)n. 
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The extension of Part I to cover the case of an infinitaly long 

hollow eylinder. 

The st~tement and brief discussion of other cases which c~ be 

si~ply h,;mdled. 

The effects of introduo1ng a 1)h~sf! change on th!! tem')~rA;tl.1.re?nc1 

s tress problem for all oases. A brief' di scussion of the additional in­

for~at10n required. 
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CF.JU'TER pC 

This chapter vBl be devoted t o the extension of rart I to covez-

the case of a holloy cylinder. The problem. sta ted in it s entirety, is 

t he development of an ~nalytical method for the prediction of the r~sid-

usl stresses induced in sn infinitely long concentric hollo~1I' isotrouic 

cyl inder by a symmetrieal quench in ~ large body of fluid, aS9umi~~ that 

all of the pertinent parameter. are knol:1ll (graphical) functio ns of '~he 

ter.foerature. 

t he first step in this problem is to indica te the mod ifle~ti0ng to 

Chapter I necessary to determine the tempera ture dietribution. The nota-

tion used will be the same as t hAt presented in eM.pter I. T-Ia..i1l 2 . 9xce ,1t 

for t he following Additions. 

Let: ro be t he inner radius of the cyl i nder. 

x = rolrl 0 

ho be the boundary layer oonductiv ity on t he inner surface. 

hl be the boundary layer conductivity on t he outer surface. 

The required modifictl,tions consist of the int r oduction of '" bou.'1dary layer 

nt the lnner surf'l?ce ""s v ell a s f'. t the outer surf:'l.ce :end a ch:rmgoa in tht!l 

dlvision of the cyllnder such tha t the distance r -1' 
1 0 

i s d iv l d.ed u ') 

into n equcl. inhrva18 A I'. or (l-xo ) is divided up into n e!.!ua1 

intervals A X, the eenter of each lnterval being d.ll!1ti%~ished by the 

subscripts 

X 1. i-iX 1 .=:2. ... + 1..,· M 2' ,_I 

x ...... ?x +I!1 . 
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C'hese division!! lU'e 1Jlotted in the SIll!l8 manner IlS indlcate<.'L in (:f'ig.l ). 

P"4'1:e 9, versus log xTexeent that now there is a hill! interva.l (correa-
10 -

Xo ') ~ondiD8 to 4i - ~ inside the inner surfece of the cylinder a s ~ell a.s 

!, l~f interval (corresponding to ii + n + ~ ) beyond the outer surface 

of' the cyl1nder. Referring to p!!ge 8, the boundary layer equation on the 

inner surface of the cylinder /!,Ay be developed in a manner similar to the 

development of (1'4. 4) . It; lz read ily Men tha t this equntion is: 

~ he> (T-T.)I 
1\\ e. 0 

"!iIO x =)(0 

ha.s the lignificance of the bulk fluid temperature in the interior 

of the cylinder. This 9qUp..t1on is tl lJ.tisfied in the same manner a s the 

boundary l ayer e~uation vas s atisfied at the outer surface it a curve 

k l0'tO e!r oho is plotted to the lett of the inner !Surface. ~hen this is 

done. the solution to the problem proceeds in exactly the same menner a s 

outlined in ChApter I. except tl~t everythi ng said about the outer surface 

nOli ~pt)11es to the inner surfaoe as ~!el1. 

The renalning step 1s to 1nd1e~te the modifications to Chapter III 

required by a hollow cy11nder. The notation used 10'111 be that used in 

Chp..I,ter III except for the following additions and changes. 

1 et: Po be the internal pressure. 

pt be the external preseure. 

ro be the internal radius. 

:1.0 : 2 
ro Irl 

2 

A 
I 

;;), \li.d~ (k)clA fl (lrr ) : 
A .. 
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On page 33. the s.t of eqUBtlons. ( Eq. 17) through (Eq . 22), ' .. ~r"~ 

given which defined the s tress.s in a solid cylinder. The onl y ct~n~ee 

whi ch occur in these equBtionl when they are ~~~pted to a hol l ow cylinder 

are a change in the 11mi til of integrlltion and a change i n the boundary 

condition e~u~t~on5. (Eq. 19) ~d (Eq. 22). The equations f or a hollo~ 

c ylinder are presented below. The equa tions corresponding to t hose for 

~. solid cylinder are distinguished from them by a prime. 

(17)' 

(18)' 

~Ac;r-rl = - ~Ao Po 
I'\=Ao 

(20) • 2AIlrI =.-7.~ 
A=I I 

.5 before. this set of equations f111y be sepl1l'ated into thr e-o. set s of 

equationl which give the s trelles due to the thermal dilation, the s t resses 

due to the boundary forces. and the stresses due to the residunl str:"lins . 

Each of the separated sets of equ!ltlons w111 be presented a nd. t he technique 

of solvLng them will be indic~ted. This technique i s similar t o th~t used 

in Chr.:pter III~ 
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j,'or a hollow cylinder , the set of eqw'\tions which ~ives t he st;r'?snes 

due to the t hermal d il a tion is given b elovo Thl' corres- :'onding set of 

eq_uat ions for a solid cylinder we.s r>resent ed. on p~e )9. 

I 
(l8a) 

1 

I 

l lfz dA = 0 
Ao I 

The results of the integra tion of 

2Alfrl ::: 0 
I 1'.=1 

_..£. T E 211G- ' 
\-11 E + \-11 El-- + 1=11 C J 

I 
{~ . 18a} 

1 
and 

l 
indica ted below. Note thet ( Eq . 19) 18 SB.tisfied due to the limits of 

1 

t 
(24) 

1 

The application of the boundary conditions. 

resul ts in a !let of equ a.tions comp>!<r 8.ble to ( Eq. 
! 

(Ell. 20)~ 

2.513.) and 
1 

-page L;2. except that the approxima.tions for ' 1 (~l ) 

not indicated. 
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r'~~GdA flf,'( q-;: ) dA- (1F-;dA 'A r'«ft:{ )dA 
lAo JAo J JAo )"0 

+ l'LdA[f ' 2G- d A -l' 211£;'<I/I J I-V I-v I-V n 
Ao Ao Ao 

~he tecnnique of solvi~ these eqtk~tions p~zalle18 that used in 

CAApter Ill. A first approxi mat ion to ~z 
1 

-I 
and C1 , is obtained f rom 

Cl , denoted by E 
~l 

I 
26b)1' ~ssumi~~ t~~t 

! 
fl ( lrrl ) and lire sera . These values for the constants lire used 

to obtain a first ~pprox1mation to ~r • 
1 

23) 0 • 
1 

assuming the.t is zero. 

-denoted by V"r • 
1 

This vr>-.lue of ~r 
1 
I 

from 

is used to 

and 1\ by replacbg 
q 

fl {(Jrl ) and 

(~. 26b){ • Using these second approximations for the values of the con-

stants, a second aPIlrox1l!mt lon 

assuming that 

to ~r 1s obtained f rom (Eq. 23){ • 
1 

f{ (ij!-rl ). '2hh second ~~pproximation to 

If"rl is either used to repleee ~rl in the foreeoing ar~~ent ~~L th~ 

process is repeated or t hi s Sftcond appro~imatl on is co nG i dered close 

eno\l6h. Hhen 11 satisfa.ctory 

~re obtained fro~ ( Eq. 17a)~ 

value of 'if is obtained , 
r l 

I 
(:sq. 21)1 • 

n.nd ~ 
1 

0ince the technique for solving the sets of equations which give the 

~tressea due to the boundary forces and the stresses due to t he residual 

st:r!l.ins is the acme .as described libove , it "ill suffice to merely present 

tl::.e; equa tions, ruld ,'tSSlL'lIe tru..t the f orego i ng discussion 115 applied to ther,"! . 



forc~s. fer the CIl.S~ of '!. hello.., c;:;lincer. is given below. 

( ?!.) I 
-+ Z 

I 

(19) 
2 

, 
(22) 

. 2 

A 

[ '\f-z.dA = 
A 2 • 

c -:2..-

(20 )?' ~A 1f'~ \ = - 'A. P. 
_ 2. A= I I 

[ 51 26-dA]2. _ [II 2VG- dA ] 2 
A \-11 Aa 1-1J 

o 

The f('lregoing eq1Ul,tions Are solved in nn ldentica.l manner to the previous 

set, which Gave the streeses d,ue to the thermal di lation. 



The set of equl'l.t1ons ~/hieh gives the streeses due to t11e residu~. 

str~ins. for the case of a hollow c ylinder. is given below. 

, JA 0 0 

f (Iff: ) - 2G- e<tJ-e"dA - :2.G-(EO +lIeO) + 211G- e + -:tG- C 
J \'.3 \-1/"LA \-1) I; 1> z. \-1/ ~ 1-1/ :3 

A" I 

(18)3 

1. A'ifr \ == 0 
3 A=I 

I ' 

J~ dA;: 0 
Ao 3 

The foregoing ~quation8 are solved in un identical manner to the previous 

set . wbi ch gave the stress!!!! due to the thermal dila tion. 
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Outside of tht'! foregoing modificetions to th~ ~1uation3. the (' 15-

clls sion of ?nt I lo;p;)lil'!s in its entir!'lty tl) th ... remrtinder of the com-

put;;.tion>! required to determine the resldur;,.l stresses in an i nfinitely 

long concentric hollow isotropic cylinder quenched in 1!- l.<:ree body of 

fluid . 

In thi s cha.pter th~ modifications required to extend 1" '*\ I to 

cover the case of a hollOlf cylinder have been indica ted. '1'1:1;; c" npter 

is not intended to st",nd alone, but rl!ther. is to be used ill conJanction 

with th~ discussions of P~rt I . 
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CHAPTER X 

Thi. chapter will be devoted to the consideration of .further exten­

sions to Per' I. It is app~ent that only cases in which the vnriablee 

may be conl idered to be functions of s single posit i on parameter, 3t a 

given time, may be hnndled by similar techniques. This restriotion 

effectively 11mite the extension of Patt I. which may be made without 

drastic increases in the oomplexity of the method of solution, to the 

casea of the !lilt pl at. and the solid or hollow sphere. For other geo­

metrical o&ses, the developments of Chapter II and Chapter IV still apply 

to the street problem. but the application of these chapters to other 

geometrical shape. is beyond the .cope of this the.il. ~he case of the 

f lat plate will be considered in limi ted detail and the case of the sphere 

~lill be br1efiy mentioned . The modifications to Par~ I and the add1tie;;:-c~:i 

informGtlon required to handle CAses in whioh A pbs.e change is involved 

tI1l1 be br1efiy conddered. 

The infinite fiat plate i. a limiting cas. of the hollow cylinder. 

in which ( r l -ro) equal. the plate thickness and rl i. allowed to ap­

proach infinit y. This i s a simpler ease than the cylinder becQuse a 

pl a in scale (ra~her than a logarithmic) can be used in the graphical con­

struction for t he temperature probl em and 1n the str e •• problem thers are 

t",o constant .trains rather than one. The ollse of the flat plate will noy 

be briefly d1scussed. 

Consider an 1nfinite flat plate of thickne8s b. where x and y 

are coordinate. parallel to the prinelple stresses in the xy pl ane . 
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l,n9um~ that and T o 

above And belo~ the pl at@ and that ~ Ilnd h respectively, ~'r~ t he 
o 

bounn.",ry l r>,yer conduc tivities pbeve a~d belo'\'! th~ nlnte. 

/ 
/' 

/' 
/' 

' / - - -7 - - -- - - --y 
/' 

:':he equo.t1ons corr esponding to ( :Bq. 1), page J. ( Etl_ 2), :r-""'..ge h, 

:tr..d (:Sll_ J)t pnge 6. a re: 

I 
(2) <IT \ __ n, (T l.){ 

oz. z.=-I,,- T\ - J 2.=b 
and 

These equations may be solved by a graphical construction similar to 

(Fig. 1). The differences are thnt z need no longer be plotted to a 

log scele but ~ be ploUed directly, end ,hat there 1s n0\1 Q boundary 

layer on each faee ot the plate. In (Fig_ 1) the graphical construc-

tion for the boundary l$Yer required a curve plotted at a distance 

k loglOs 

r
1 

h 
two curves 

from 'he surface. For the case of the flat plate there are 

required. at 

up':'ler and lou!tr surface 

dis tane e ti;:­
of the plah. 

k... and h 
o 

r eepectively, from the 

Outaid e of these modifications. 
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the solution of the tempera.ture problem proceeds in an identic . .1 manner 

to that presented in Chapter I. 

For the case of an infi nite fl~t plate where the parameters are in-

de~)endent of x and y. the required equations for the s tresses Ill'e 

inrl.icated below. 

E = x 
G = ~ 

G = x 

E = Y 

IT"z = 
b 

50Xd z- '" 0 

b i 1fJ' d;,; : 
0 

constAnt 

f[~-1J(IG-tQ";.)]+E: +E
T 

+[oy -lI(rz. t!JX)] + Ey + ET 
- p (p is the pressure on the upper and lower 

surf~ce~ of the pla te.) 

b 
x n.ve. 

b 
if e.vg. 

(If x avg. and If'y ave. 
cipal stresses in tne 
boundary forces a t the 
edges of the plate. ) 

ar~ !?ver age "rin­
xy -pl ane due to 
infinitely removed 

These equations mq be readll~ Bolved. and !'lay be divided up. LS in 

the case of the cylinder . into stresses due to the thermal dilation. 

etresaes due to the residual.tr a ins and stresles due to the boundary 

forces. Unlike the ca se of the cylinder. explicit solutione are obtain-

able since no terms eompllrable to i l (lrr ) and f 2 (lIr ) ~1.ppear. :i'he 

general solution. particularly for the stresses due to the boundary 

lorees, becomes f air ly lengt bJ. henee for purposes of illustration it is 

desirable to use a leslI genere1 case. 

Consider the ca.gEl of a flat plate in which the boundary lorcel! t,lze 

~ero and the parp~leterll are independent of the direction in the Xli' plsne. 



j,e t U ng E x 

If' y ' and eO 
x 

pl1f1ed case 

represent both c and 6. , x y 

represent both e O 
x and 

are: 

Ex :: constant 

Ex = Ii' I1X + Ex + 6 T 

b 1 If"xclz = 0 

0 E
7

, 

Il""" l'epresent both ~ '"'.nd x 

the equation!! fo r the sim-

S~p<'1r Il.Ung this set of equations into two sets, giving respectively the 

s tresses due to the thermal dilation BOd the stresses due to t he residunl 

str a ins. results in the following sets of equations. 

Ex = Con"tant E.X3 = ConstcltTt 
1 

EXI 
\-1) \" 

EX3 
\-1/ \f; -t-e; :: -\IX ;-E and :: T x3 E I 

b b 
0 fllKdz. :: 0 t I!;d7. • 

0 

The solution to these sete ot eQuations are respectively: 

and 

The t echni Que! for determining the values of the residual stra ins are of 

cours e the sace ae in P~t 1. 

SimilE'S technlo.ue! for the 90lution of the tempera ture probl em may 

b~ developed for the ca.se of the sphere. In this ca •• the graphic tU 

CO!l9truction ie similar to the case of the cyl1nder, except that the 
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u.n£:l·" m s tr8S $ eS (assuming symme try / • 'rhe stress eqU3tions axe r(','c·Lily 

r1.eve:>"oped. in & llW.!'lJler {dmilar to th" d!wslopments of Ch:.l.p·t!!r n:;:, hu.t 

lIill not be presented here . 

1'he stress pr.?blero, as developed. in Chapters II a nd I V, in qll:lte 

general, but se:ni-gra;phicl'l.l solut ions f or the temperature are only TJOssi-­

bi e for the easel! of the flat ylate, the cylinder nncl the _i.-here. r or 

other geometric shapes (where the tempera ture is .!J. functio n of t110 or 

more position coordinates as well as time) it is necessary t o develop 

ne',1 techni ques for solving the temper? ture problem . A considerat ion of 

the extension of Part I to other geometric shapes is beyond the s cope of 

this thesis . 

The remaining question which will be considered is ~!h"!ther the de­

velOl)L1ente ·of P'Kt I Ca.ll be extended to include !l phase change duri!'.g 

the quenching cycle. The anB~er to this question is yes, if the fol1o~­

i ng ndd i tional conditions are sn.tisfied . 

1) The values of the yertinent parameters are known for eech ?ure 

?hase in the temperature r2~e at which that phase is present and it is 

p oe d ble t':J det ermine the v'1.lues ,.,f the porameters t ... hen t wo ph~s !! $ are 

5i;~ltaneous1y pres ent . 

2) It is possible to determine the phase change r a te at any time 

in terms of the past history of the point under consideration. 

[~£:3ut:ling th.?-t these conditions ::l.r e s~tisfiEd, tn!! fir s t ch311:::~ i n 
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Part I is i n t he interpretation of the terl!ls. In p...ddition to bei l'!'?; fur.c·· 

tions of the temper ature. All of the pnr~~eters are nov functions of the 

amount of phase change completed. For e%~~ple, let ~ be the f i r st 

phttae aod f3 be the second pMae t>.nd A be the frs.ction of 0. which 
",. 
J.' 

has t r ansformed to /1. Let E~ be the therl!lal expansion of 0. and EfJ 

be t he thermal expansion of {3. Then if there I?.re two phases present, 

; ;.1 though all of the properties. when two phases are present, may not be 

determi ned as simply as thie, the parameters used i n Part I may stil l be 

e onaidered to be a function of the amount of phase chang9 completed. 

' ;hen this 111 under s tood. there are no !!Iodifications to thE stress ?roblem 

outlined in Part I . 

In the temperature problem, however. there is an additionAl term. 

Let H be t he 8J!Iount of heat 8Vo1ved per unit ~.,eight in the complete 

transformation of C\ to f3 . Referri ng to p~ge J. there is nov an addi-

tion81 term ~pp.aring. Thi, term ie: 

The rate of beat generation :: iTfrd,...? H g; 

The eq1lation for heat :flow in cylindrical coordin"'.tes is then obtained 

by equating the r ate of heat entering the ring from the inner rad ius r 

plue the r ate of heat gener ntlon in the ring to the r ate ' of heat storage 

in the ring plus the rate of heat leaving acr083 the out er r Bdlua r-dr. 

~ ! ith thh .~d1tional term. (:Eq . 1). pnge J. beMmes: 

aT 
dt 



-1.52-

T~lis me!l-YlS that to t he right hand. sid.e of ( "Bq . 3). p:'l,;e 6, t he f o11o>:,-

l\.m' ) ,J 

.:, discussion of !:Iethods of satisfying cond.itions 1/ 1:r...'1(l 2). YJPg,o, 1.50, 

is beyond the scope of this thes1B. A simpl ifie;":. approl.-:.ch to concitio:'l. 

?' - ) i s given by Russell ( IO ) for steel of eutec 'Go ld oomposition . 

In this chapter it has been indica t ed that similar techniques to 

those used in Pert I can be applied to the cases of the flat plate and 

the. sphere . The extension of the problem to include phase chll:!'",ge h-~s 

I 

'been 1nd ica ted, and the character of the add itional information reo:aire-.'l 

to solva the problem when phase ch~~e is present has been pointel out . 
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CONCLB"SION 

This thesis presents, for the first tlm~, a method 1ihereby til.., v~i­

Fttion 1011 tb. temper::..ture of the ther!l!ll conliuctivi ty and of the ther",i'l 

di ffusivity mp.y be· included in the cplculat10n of the tempera~Yr6 versus 

T;Osltion :mrl time for the plU'tieullU' C .~ls e5 considered. In cert ::;.1r.. 7-lor­

tiol1s <)f the numer1c9.l cl>.lcu18.t1on presented in Ch.'l.pter V. the tlm~ de­

riv:'.tl ves of th~ temperl'.ture A.t t hE' surf p.c e were 30% ,:;renter nne. ".t 

the cen.ter were "$1% less t ha.n \'1ould h.'l.ve been obtained if ~C!.vernge 

vnlu!'J8. r a ther tbAA variable values, of the therm:ll conductivity I?ril 

thermal diffus1vity vere ueed. 

In the temperature calculation it v :co.s indicated that si ze amI posi­

tion effects on the boundary layer conductivity 2l'e very importunt. and 

t h.'lt ~.t prsaent they are not knoHn. It ;'1119 also pointed out that the 

boundary l ayer cOllLluctivi t y in the c ~~se of a. bree cylinder (SiEli10.rly 

for a fl nt pla te) could be computed, if n teoper ature near the 9urfaee 

uere known versus time. For example. if e. long solid cylinder is qu~ncbed 

i n a vertic e.l 'Posi tion, the v~1Zi :?t1on wi th height of the boundary leyer 

conductivity may be COM'!l1lte<l.. If thi s 1s done H1. t h cyl inders of vnriou3 

ci?~eters and lengths, si ze pnG shape effects may be investigated. (In 

these cases. of course, suitable ~recButions must be maintained to insure 

that the axial flov of heat is negligible.) 

The ba.ic contribution of this theeis to the stres. problem i s the 

development and uee of t he concept of the separability of the total 

\~tresses i n to the stresses due to the therm.al. d. i1ation, the stresses due 



t o t he boundary forceiJ and the strp.s s e s due to the rasio.u::l 3tr ··· ·.l.n~.. It 

-ollo':!il1€ residu.'11 strr>.ln i ncrenents in that t lrl!' int&x'val to 'oe ·~")reu. ict $d • 

.... '/' 
J. ~; w 

:'.r". :".ryprol\ch whe:rebY '1.ctual numerical v .'1.1ues rn1tY b~ obt ained to '~ '.;hnl e 

h )s t. of 7'lrobl ems involving ;,.ielci.ill,'~ . ThI $ concept of sepRl'.'lbility i l:! 

b~'\sed upon the Ilssumption thl.\t t he '71\1\1e$ of t he e1 Retic coefficients sre 

t he srI..'Ile in allch of the set of eq,ul~tlone which ,.:;ivee the total s t r ess •• • 

?ha ~uthor. by ~'9uming t hat the values of the elastic coefficients nre 

uni~U9 functions of the temperature ~~d th9t they r epr esent the values 

obtd nad by unloading an infinitesima l element. has merely eho sen the sim-

plest way of sathfyiD.d the required a uulllption. 

In the specific cases of the cyl imiElr unO. the p1nte, the ccrltri but i on 

of this thes i s l i es largely in the develoJllll~mts wherBb~' I;h" effect s of the 

v :u-ia tions of the el~.stic coetf1eient a with temperature !!lay be exactly 

include<l . In thi13 reg1l.I'c, t h'9 equ ations a.nd the seml-graphlc p..l tech-

ni ques for their ~olutlon pl'e sented in Ch,9.pter HI n.l'e ()rigino.l contr i '-

b1.lticZlS. 

Perhaps the most lmpor tant cont rIbution of t hio thesI., however, 11es 

in the knowledge lt p1forda t hat, Assumi ng the v~lues of the parRmeiers 

~re known and end 9ffect~ ~re ne~liglbl e. pxnltrnrily e~aet calcula tions 

of t he residual stresses due to symmetricru.ly ".uenC!hing a solid. or hollow 

C!ylindel' (or infinite flat plnte) lllRy act\lll11y be c!U"ried out. In t hi s 



:,/"~~t:: "u.~t e1.~J' };:n0~?n. !:1 'P;~rtic"U.lt~!' , 'he"lite.r v~")~'Uss C):t the bOU~l(.><!·~,r l~~:~, '" ~:;r 

C0 1'('t1.r:1; lvity and o f the itcre~l''' pro;)el'ties o f !Zle.terin.ls ".t 'il,;l : t >'i"ci'::" '~ 

tures :1nd stress levels a re required. 

The most impol' t Mt direet extension of' this thesis. ~orlefly msntioned 

in Chapter X. is the consi der a t ion of th8 case where phaae cimnge is in­

volve:i (i.e. steel (1.uenched from the llusteuite region). 'this e nn be 

8.ccom-,)lished if the f a ctors t a bulc-.ted on }lnge 1,50 are known. 
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