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Abstract 

 The stability, activity, and solubility of a protein sequence are determined by a 

delicate balance of molecular interactions in a variety of conformational states.  Even so, 

most computational protein design methods model sequences in the context of a single 

native conformation.  Simulations that model the native state as an ensemble have been 

mostly neglected due to the lack of sufficiently powerful optimization algorithms for 

multi-state design.  Here, we have applied our multi-state design algorithm to study the 

potential utility of various forms of input structural data for design.   

To facilitate a more thorough analysis, we developed new methods for the design 

and high-throughput stability determination of combinatorial mutation libraries based on 

protein design calculations.  The application of these methods to the core design of a 

small model system produced many variants with improved thermodynamic stability, and 

showed that multi-state design methods can be readily applied to large structural 

ensembles.  We found that exhaustive screening of our designed libraries helped to 

clarify several sources of simulation error that would have otherwise been difficult to 

ascertain.   

Interestingly, the lack of correlation between our simulated and experimentally 

measured stability values shows clearly that a design procedure need not reproduce 

experimental data exactly to achieve success.  This surprising result suggests potentially 

fruitful directions for the improvement of computational protein design technology.  
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Introduction 

 Protein-engineering efforts based on directed evolution have met with 

considerable success (1-3). In tandem, structure-based computational protein design 

(CPD) methods have been developed to allow screening for desirable sequences to be 

performed in silico (4-6). Despite a number of high-profile results that demonstrate the 

utility of CPD (7-12), the routine computational design of functional proteins remains 

elusive.  Thus, many current efforts focus on the improvement of CPD methodology or 

on the synergistic application of CPD with experimental high-throughput screening or 

selection (13).  

Although the stability, solubility, and activity of a protein depend on the relative 

energetic contributions of many conformational states, including ensembles of native, 

unfolded, and aggregated structures (14), most CPD methods evaluate sequences based 

on their energies in the context of one fixed backbone structure.  This simplification has 

made design results undesirably sensitive to slight changes in main-chain and side-chain 

conformation, and has made difficult the selection of sequences with amino acid 

composition similar to naturally occurring protein.  These issues have been approached 

via the use of high-resolution structural templates, expanded rotamer libraries (15, 16), 

energy functions with softened repulsive terms (17, 10, 18), iteration between structural 

refinement and sequence design (10, 19), and amino acid reference energies (10, 20).  

Although these strategies can help to mitigate the impact of the fixed-backbone 

approximation, they do not address the fundamental reality that sequence fitness is a 

function of multiple conformational states.   
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In a handful of cases, multi-state design (MSD) procedures have been used to find 

sequences that simultaneously stabilize or destabilize a combination of a few different 

conformational states (21-23). However, MSD techniques have not yet been applied to 

native ensembles with many conformational states that might better reflect the flexibility 

of real proteins.  The degree to which various energy functions, rotamer libraries, and 

structural templates of single-state design (SSD) might be appropriate for this type of 

MSD calculation is, so far, unknown.  We recently developed a framework for MSD that 

allows for efficient sequence optimization given hundreds of conformational states (24). 

Here, we have applied this framework to test the applicability of current CPD methods to 

large structural ensembles, and to investigate whether the use of such ensembles might 

result in the selection of more desirable sequences by CPD.   

The most basic goal of CPD has been to optimize interactions between amino acid 

side chains to promote thermodynamic stability of the native state. Unfortunately, 

standard methods for the measurement of protein stability are too laborious to allow the 

testing of more than a few designed variants, and the top-scoring sequence produced by a 

new design procedure does not yet sufficiently reflect its general utility. Fortunately, 

recent progress in laboratory automation has allowed us to construct an efficient pipeline 

for the basic evaluation of new procedures in CPD.  In our scheme, gene libraries are 

assembled from degenerate oligonucleotides, proteins are expressed and purified in 

microtiter plates, and liquid-handling robotics assist in the preparation of chemical 

denaturation series in a 96 well format for assay by tryptophan fluorescence. The 

integration of these technologies has allowed us to assess the stability of hundreds of 
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designed protein variants with minimal experimenter intervention and limited 

incremental expense.  

Given several design procedures to evaluate and a high-throughput experimental 

assay, we needed a general and rigorous method to choose a limited number of 

representative sequences to test from each design.  Although several useful computational 

protein library design methods have been developed (25-28), none reported so far takes 

directly into account simulation energies, allows control over library size and possible 

sets of amino acids, and eschews heuristics that can introduce bias into the libraries it 

produces. So that our experimental results might better reflect the results of the 

underlying CPD calculations, we developed a new library design procedure, called 

Combinatorial Libraries Emphasizing And Reflecting Scored Sequences (CLEARSS), 

which satisfies these criteria.  

 We used standard single-state design (SSD) and MSD to redesign the core of the 

small, stable domain Gβ1 based on several sources of structural information, including a 

crystal structure, an NMR structure, and MD simulations.  Our efforts were motivated by 

a curiosity about the relative merits of different sources of structural data for design, and 

the hypothesis that use of a structural ensemble might help to correct for design failures 

observed in SSD.  Because the imperfect nature of CPD limits the conclusions that can be 

drawn from a comparison of single sequences, we developed new methods for the 

computational design and high-throughput experimental stability determination of 

combinatorial protein libraries.  The results we report here provide simultaneous 

experimental validation for (1) the application of multi-state protein design methods to 

large conformational ensembles, (2) the transformation of arbitrary CPD results into 
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combinatorial mutation libraries, and (3) the experimental stability determination of these 

libraries by high-throughput gene assembly, protein expression, purification, and 

screening.      

 

Results and discussion 

Designed libraries  

To simplify the validation of our multi-state design methods, we applied them to a 

previously studied set of core positions (Figure 2-1) in a small model system, protein 

Gβ1, and relied on a set of energy functions that previously found stabilized variants of 

this sequence (17).  We assessed these methods by performing designs based on each of 

the following sources of structural information: a crystal structure (xtal-1), an NMR-

constrained minimized average solution structure (NMR-1), an NMR ensemble (NMR-

60), a constrained MD ensemble (cMD-128), and an unconstrained MD ensemble (uMD-

128).  Our new algorithm for library design (Figure 2-2) was then applied to produce 

degenerate oligonucleotide sequences that reflect quantitatively the amino acid 

preferences determined by the design calculations.  Given the requirements for purified 

protein of our stability assay, we chose to design and screen a 24-member library based 

on each structural data source described above.   

All five designed libraries comprise relatively conservative sets of mutations 

away from the wild-type sequence (Table 2-1).  The libraries other than uMD-128 share 

many characteristics in common.  Each of these libraries chose only the wild-type amino 

acid at positions A20, A26, F30, and A34. Every member of each of these four libraries 

contained the single-mutant Y3F, which previous experiments have shown to be well 
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tolerated by the structure.  These four libraries all allowed the wild-type amino acid at 

every other position, and all contain the most stable Gβ1 core variant previously 

characterized, Y3F+L7I+V39I (17). 

 The two NMR libraries were extremely similar to each other: both chose the 

amino acids FILV at position 52, and directed the remaining diversity to positions 7 and 

39.  In contrast, xtal-1 and cMD-128 allowed only the wild-type Phe at position 52, and 

instead allocated diversity towards positions 7, 39, and 54.  xtal-1 differs from cMD-128 

in that it gave up L7F and V39L to allow L5I. The unconstrained MD ensemble library 

uMD-128 was the least conservative, specifying a size reversal of two nearby residues via 

mutations L5A and A34F, and diversity at residue 30, a position untouched in the other 

libraries.  

 As shown in Table 2-2, the designed libraries generally succeeded in representing 

the top-scoring sequences from each design calculation, given the constraints imposed by 

the genetic code.  The exception was the uMD-128 library, which represented only three 

of the best 100 sequences from the original design calculation.   This was caused by an 

unusual designed sequence list, in which the best-scoring sequence contained a feature 

(the size reversal mentioned above) that was very uncommon in the remainder of the list.   

 

Experimental characterization of designed libraries 

Experimental screening of the xtal-1 library (Figure 2-3A) showed two distinct 

sets of variants.  The 12 library members with wild-type Leu at position 5 all exhibited 

stabilities similar to or better than the wild-type sequence, while the 12 with Ile at 

position 5 were all significantly destabilized.  Screening of the NMR-based libraries 
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(Figures 2-3B and 2-3C) showed a similar dichotomy.  In each case, the 6 library 

members with the wild-type Phe at position 52 exhibited wild-type-like stability or better. 

The remaining 18 variants from each NMR-based library were highly destabilized, and 

many lacked enough of a pretransition to be fit to the two-state unfolding model.   

Evaluation of the MD libraries indicated that all 24 variants from the constrained 

library, cMD-128, had stability similar to the wild-type protein or better (Figure 2-3D).  

In contrast, all 24 variants from the uMD-128 library failed to produce any significant 

change in fluorescence signal across the denaturation series, and likely assume an 

alternative structure, as discussed below.  Sorting the individual sequence members from 

every library except uMD-128 according to experimental stability (Figure 2-4) shows that 

the cMD-128 input structural ensemble favored more high-quality sequences (better than 

wild type) than any other library.  Every other designed library specified at least one 

problematic substitution that rendered many of its sequences destabilized or otherwise 

unlike the wild type.  

 

Impact of input structural data on designed libraries 

 Why were apparently destabilizing mutations such as L5I, F52ILV, and A34F 

chosen by the design procedure?  These mutations were all present in high-scoring 

sequences from the original design calculations, and thus reflect real preferences of the 

original design procedures, rather than artifacts introduced by the library design process.   

 The selection of the amino acids FILV at position F52 in the two NMR-based 

libraries resulted in three quarters of each library being significantly destabilized.  In the 

context of the NMR structures, no Phe rotamer in the library was able to fit perfectly at 
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position 52, encouraging the selection of smaller amino acids.  If the set of rotamers at 

this position is supplemented with the observed rotamer in each structure, the designs 

choose to allocate diversity to positions 7 and 39, resulting in libraries similar to xtal-1.  

This result highlights how dramatically the rotameric approximation can influence the 

results of a design, despite our biophysical intuition that a solution ensemble might better 

reflect protein structure than a single crystallographic snapshot.  It suggests that, at the 

very least, rotamers optimized for the wild-type sequence should be included when the 

goal is to simply find desirable sequences.  For this project, we omitted the structurally 

observed rotamer at each position in order to limit the significant bias towards the wild-

type sequence that these rotamers tend to cause.  In the context of a real-world protein-

engineering project, including these rotamers would have considerably increased our 

chances of success.  Interestingly, this failure of discrete rotamers even occurred in the 

design of the NMR ensemble, indicating that continuous side-chain optimization may be 

useful during design, even when allowing conformational flexibility of the main chain.   

The L5I mutation, which caused half of the xtal-1 library members to be 

destabilized relative to the wild-type sequence, may have been selected due to a failure of 

the softened repulsive contact potential that is used to counteract unrealistic rigidity 

introduced by the CPD model.  The γ methyl group of Ile5 bumps into a Thr residue on 

an adjacent β strand and is scored as a serious clash using unscaled van der Waals radii, 

but appears innocuous with the atomic radius scaling factor of α = 0.9 that we used for 

the designs evaluated here (17).  Repeating the design calculations with radii scaled by 

intermediate values such as 0.925 and 0.95 prevents Ile from being chosen at position 5, 

but also increases the frequency with which smaller residues are chosen at position F52.  
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Interestingly, the recommendation of α = 0.9 is derived from previous experiments based 

on the same set of Gβ1 core positions that were designed here.  The earlier work drew 

conclusions based only on the best-scoring sequences produced by the design 

calculations, and found no difference between scaling atomic radii by 0.9 or 0.95 (17).  

Our results indicate that the mutations produced by the design procedure vary 

significantly with values of α between 0.9 and 0.95 when more sequences are taken into 

account.  Therefore, a more rigorous investigation of appropriate α values for design may 

be warranted.  Although the L5I mutation might also be reasonably attributed to the fixed 

main chain and discrete rotamers, several good-scoring libraries based on the constrained 

MD ensemble also contained this mutation (see below).  Since the additional 

conformational diversity provided by the ensemble did not inhibit this design failure, we 

find explanations related to energy function more plausible.   

To analyze the uMD-128 data, it is important to note that our stability assay 

reports on the environment of the single Trp residue of Gβ1.  Changes in packing caused 

by substitutions at other positions could alter the native-state environment of Trp43 

enough to flip its side chain out into solution or change its fluorescence properties, 

crippling our ability to monitor unfolding by fluorescence.  This interpretation seems 

unlikely for the destabilized members of the crystal structure and NMR libraries, for 

which a partial unfolding transition is clearly indicated by the raw data.  However, the 

members of the uMD-128 library fail to show any such a transition, rendering the validity 

of our assay suspect in this case.   

A constant feature of the uMD-128 library is a size reversal specified by 

mutations A34F and L5A.  The model structures produced by this design were well 
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packed and contained no obvious flaws such as Trp43 flipping out into the solvent.  

Previous characterization of several Gβ1 variants that include mutation A34F has 

indicated that these sequences assume oligomeric structures and exhibit altered 

fluorescence properties (29-31).  This suggests that the structural basis for our designs, as 

well as our fluorescence assay, may be inappropriate for sequences containing this 

mutation.  When we reanalyzed a subset of the uMD-128 variants using circular 

dichroism, they uniformly displayed wild-type-like secondary structure but lower 

stability and low levels of protein expression.  The previous reports and our new results 

indicate that the uMD-128 library sequences likely assume structures different from the 

design target.  As target structures move away from experimentally determined structures 

and greater sequence diversity is enabled (32, 33), more effective negative design 

strategies may be required to exclude sequences that preferentially adopt alternative 

conformations.  

A recent theoretical analysis of NMR and crystal structures as templates for 

design has suggested that some individual members of NMR ensembles might be more 

appropriate templates than others (34).  To assess the impact this might have had on our 

results, we ranked the members of each structural ensemble by DREIDING energy (35) 

and separately by Rosetta energy (36). We then designed new libraries using only the top 

16 energy-ranked structures from each ensemble using each energy ranking (Table 2-3).  

The two new libraries produced from the NMR structural ensemble were similar to those 

from the original design; both specified diversity at position 52 and contain destabilized 

sequences.  The library based on the top 16 DREIDING-ranked sequences from the 

constrained MD ensemble only specifies known non-destabilizing substitutions, whereas 
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the top 16 Rosetta-ranked structures again gave diversity at position 52.  For the 

unconstrained MD ensemble, the top 16 Rosetta-ranked structures gave a library very 

similar to that produced by the entire ensemble, and the top 16 DREIDING-ranked 

structures gave a library of sequences that appear severely overpacked.  In total, the 

libraries produced from the top-ranked sequences were similar to those produced from 

the full ensembles in four cases, and were worse in the remaining two cases.  Based on 

this post-hoc analysis, our multi-state library design procedure seems robust to the 

influence of poor templates within each ensemble. However, more sophisticated methods 

of template selection may ultimately prove more fruitful.  For example, it might be 

interesting to choose a subset of a structural ensemble according to the degree to which 

individual members are able to recover wild-type-like sequences, and apply MSD to this 

subset rather than to the entire ensemble.   

 

Influence of the designed library selection method 

 At this point, it is important to address the degree to which the library design 

method might affect the conclusions we draw from our experiments.  The CLEARSS 

library design procedure was developed with an understanding that many different 

combinatorial libraries may similarly represent a given list of scored sequences.  It is 

intended to produce a list of the top-scoring designed combinatorial libraries that satisfy 

all constraints, and to let the user choose between them.  In general, this choice might be 

influenced by chemical intuition or prior mutational data, and thus partially account for 

properties of the system that are not modeled during the design procedure.  To make our 

evaluation of input structural data sources as fair as possible, we chose to ignore such 
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influences and apply an objective strategy based on the energies of the sequences in the 

libraries.  Still, we must ask how the other libraries generated by CLEARSS would have 

fared in our experimental assay.   

Each of the top 20 designed libraries based on the NMR ensemble, and each 

based on the single average NMR structure, assigned smaller residues than the wild-type 

Phe to position 52.  The remaining diversity of each library was occupied by various 

combinations of the other mutations present in the xtal-1, NMR-1, and NMR-60 libraries 

we screened in this work.  It seems very likely, then, that the screening of any of the top 

NMR-based libraries from our designs would have resulted in stabilities similar to those 

we have reported here.  Similarly, all of the top 20 designed libraries based on the 

unconstrained MD ensemble contained mutations L5A and A34F, and would be expected 

to exhibit properties similar to uMD-128.   

A more interesting case is provided by the designs based on the crystal structure 

and constrained MD ensemble.  Our analysis of the libraries xtal-1 and cMD-128 

produced by these designs seems to indicate that cMD-128 was more successful, since a 

much greater fraction of its members were shown to be highly stable.   However, when 

the top 20 libraries from each design were inspected in aggregate, it became clear that the 

xtal-1 and cMD-128 designs had produced a variety of libraries, some featuring the 

destabilizing mutations described above.  Both the xtal-1 library and the cMD-128 library 

were found in the top 20 set of libraries produced by each design.  Furthermore, each 

design produced several libraries with diversity at position 52, like NMR-1 and NMR-60.  

 The influence of the library design procedure on a comparison between structural 

inputs can also be assessed by scoring the sequences from each library on each of the 
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other input structures or ensembles.  Histograms of these energies (Figure 2-5) show that 

each structural input prefers the sequences from its own library over those from other 

libraries, though often by narrow margins.    

These observations, taken in total, suggest that the library design method we used 

did not unduly influence our optimistic conclusions about the merits of high-quality 

structural ensembles as inputs for computational protein design.   

 

Approximation in computational protein design 

 In addition to helping validate the use of multi-state and combinatorial library 

design methods for computational protein design, our results also reflect unexpectedly on 

protein design itself.  Plots of experimental stability versus simulation energy for the 

cMD-128 library (Figure 2-6) failed to yield any correlation, despite the apparent success 

of this design calculation.  Likewise, the design calculations for xtal-1 and the NMR 

libraries failed to predict the pronounced destabilizing effects of mutations L5I or F52L, 

even though these designs also found a variety of stabilized variants. 

An intuitive perspective on the development of CPD methods is that 

improvements in designed sequences will follow from improvements in our ability to 

predict or rank experimental stabilities (37). However, recent advances in stability 

prediction procedures (38, 39) have not yet, to our knowledge, produced the expected 

benefits to combinatorial protein design.  Our results are consistent with a recent 

assessment of stability prediction methods, which found that the ability to reproduce 

experimental stability rankings is unnecessary for useful CPD (40). These conclusions 
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prompt a modified view of the factors that make structure-based design possible in the 

first place. 

Protein structures relax to accommodate mutations, and the computational 

difficulty of simulating and scoring these relaxed structures has so far rendered 

intractable the accurate stability ranking of sequence variants with many mutations.  

Fortunately, this malleability also means that sequences chosen to fit into a rigid protein 

model, even using approximate energy functions, will likely be tolerated by whatever 

relaxed structure results from the mutations they contain.  In this way, the soft material 

properties of proteins serve to impede the development of the accurate quantitative 

protein design methods, but also enable the more qualitative methods we can apply today.   

The standard view of CPD has been as a single, rigorously quantitative problem: 

correct packing of amino acid side chains into a high-resolution template structure leads 

to a stable and well-behaved designed sequence.  However, our analysis supports a 

revised view of CPD, comprising two distinct problems:  (1) to find areas of sequence 

space that can favorably adopt the target structure, and (2) to avoid areas of sequence 

space that might favorably adopt alternate structures.  The first problem is simply an 

enhancement of the original formulation of CPD in which we admit that current methods 

for native-state sequence selection are approximate, and focus on finding areas of 

sequence space enriched with variants that satisfy the target fold.   

The second problem has typically been treated implicitly, as discussed above.  

The energy function used in this work applies a simple tripeptide model of the reference 

state for solvation energies, and assumes that all other interactions average out in the 

unfolded ensemble.  However, issues such as those encountered with the uMD-128 
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library likely cannot be addressed in a general way without the use of explicit competing 

state models.  Such simulations are more difficult than those that model only the native 

state, in large part because few non-native states have been characterized experimentally.  

In alpha helical peptide systems where large numbers of undesirable states are readily 

identifiable, explicit negative design has yielded improvements in structural specificity 

(41). We hope that general models of unfolded and aggregated states will lead to similar 

improvements in the design of globular proteins.   

 

Conclusions 

  We enlisted new methods for the design and screening of combinatorial libraries 

to test the application of multi-state design procedures to several structural ensembles, 

and to compare the resulting designs to those based on single structures.  Single-state and 

multi-state designs based on NMR data produced similar sets of libraries; likewise did 

those based on crystallographic data.  Although an MD-based library gave superlative 

results, we cannot definitively conclude that the use of a structural ensemble provides any 

particular advantage over a single high-resolution structure for the purposes of design.  

Nevertheless, this initial success confirms that the energy functions and rotamer libraries 

developed for single-state modeling are equally applicable for the multi-state design of 

large structural ensembles.   

This work also provides further support in favor of rigorously screening an area of 

sequence space discovered by simulation, and has helped in vetting our new, general 

method for library design.  For some designs that specified undesired destabilizing 

mutations, library screening suggested underlying causes for design failure that would not 
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have been apparent via the ad-hoc testing of individual sequences.  Because our library 

design procedure is specifically intended to faithfully represent its input scored sequence 

list, and is indifferent to the origin of the list, it should be more useful for the evaluation 

of new design procedures than its predecessors.    

 Current design procedures seem to find stable sequences by selecting mutations 

that are likely to be accommodated by a relaxed version of the template structure, and not 

by accurately ranking the mutations relative to each other. Given that protein stability and 

function depend on competing states as well as the native state, the poor agreement we 

observed between simulated and experimental energies in our successful libraries 

suggests that future effort towards explicit negative design is warranted.   

 

Materials and methods 

Input structural data 

Input atomic coordinates for the β1 domain of Streptococcal protein G (Gβ1) 

were taken from the 2.2 Å crystal structure 1pga (42), the 60 member NMR structural 

ensemble 1gb1, and a constrained, minimized average structure generated from the 

ensemble 2gb1 (43). Hydrogens (if any) were stripped from each structure, and new 

hydrogen positions were optimized along with side-chain amide and imidazolium group 

flips using REDUCE (44). Each structure was then standardized with 50 steps of 

conjugate gradient minimization using the DREIDING force field (35). An unconstrained 

128 member molecular dynamics (MD) ensemble was generated from the minimized 

crystal structure by running a 12.8 ps MD trajectory at 300 K in vacuum using the 

DREIDING force field and saving the coordinates every 0.1 ps.  The constrained MD 
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trajectory was generated by the same procedure, using an additional harmonic point 

restraint with a force constant of 100 kcal/mol/Å2 applied to keep Cα atoms near their 

initial positions.  Each MD snapshot was standardized as described above.  After 

standardization, the NMR, unconstrained MD, and constrained MD ensembles exhibited 

average pairwise main-chain RMSDs of 0.25, 0.84, and 0.12 Å, respectively.   

 

Sequence design specifications and energy calculations 

In the sequence designs, ten core positions of Gβ1 (3, 5, 7, 20, 26, 30, 34, 39, 52, 

and 54), were allowed to assume any of the hydrophobic amino acids A, V, L, I, F, Y, 

and W.  Tryptophan 43 was allowed to change conformation but not amino acid type, so 

that our fluorescence-based stability assay would not be compromised.   Allowed side-

chain conformations at the variable positions were taken from the Dunbrack backbone-

dependent rotamer library with expansions of ±1 standard deviation around χ1 and χ2 

(15). To avoid bias toward the wild-type sequence, this set was not supplemented with 

the side-chain coordinates from the input structure, except at position 43.  All other side 

chains and the main chain were fixed in the input conformation.  Pairwise energies were 

computed for each structure or ensemble member using energy functions described 

previously (45, 46), with the polar hydrogen burial term omitted.  

 

Sequence optimization 

FASTER was used to find optimized sequences in the single-state design of the 

crystal structure and the NMR constrained minimized average (47). Multi-state sequence 

optimization of each ensemble was performed as described (24). The energies of a 
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sequence in the context of ensemble member were combined into a single score by 

computing the free energy of the ensemble system at 300 K: 

 

€ 

A = −kT log( e
−E j / kT

j

∑ )  

where each Ej is the energy of the sequence when threaded on member j of the ensemble.  

While various functions could be used to combine the state energies into a single score, 

we chose the free energy function over other averaging schemes because it prefers 

sequences that satisfy multiple states in a physically reasonable way that does not require 

any particular number of states to be satisfied.   

 

Combinatorial library design 

To choose combinatorial sequence libraries for experimental screening, we used a 

new algorithm reported here (Figure 2-2).  Given a list of scored sequences, a list of 

allowed sets of amino acids, and a range of desired library sizes, the method evaluates all 

possible combinations of sets of amino acids at different positions that lead to a library 

with a size in the desired range. Each position in each library is scored by summing the 

Boltzmann weights of the sequences in the list that contain a library-specified amino acid 

at that position.  The position scores are then summed to give an overall library score. 

Our algorithm is able to consider all possible libraries because it treats positions 

independently, and because it ignores amino acid sets that are unnecessarily large in the 

context of a given position. In this work, we allowed only those sets of amino acids that 

can be specified by degenerate codons that do not include codons observed with low 

frequency in E. coli.  A temperature of 300 K was used in the Boltzmann weighting, and 
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the target library size was 24.  Setting the desired library size to other values, such as 12 

or 48, gave libraries composed of the same mutations found in the 24 member libraries.   

 After applying this algorithm to the lists of sequences produced by the 

computational designs, we instantiated the 20 best-scoring libraries from each design and 

rescored all of the amino acid sequences in each library by rotamer optimization.  Each 

library we inspected contained the best-scoring sequence from the design it was based on, 

although this is not required by the method.  From each design, we chose for 

experimental testing the library in the top 20 with the smallest energy spread between its 

best-scoring and worst-scoring sequence.   

 

Library construction, expression, and purification 

Oligonucleotides (Integrated DNA Technologies) containing ~ 18 bp overlapping 

segments were assembled via a modified Stemmer method (48) using KOD Hot Start 

Polymerase (Novagen) to generate full-length streptococcal Gβ1 with an N-terminal His6 

tag.  Secondary structure content and annealing temperatures were verified by NUPACK 

(49, 50).  For each library, oligonucleotides containing the desired single mutation or 

degenerate codon were swapped into the assembly mixture.  Standard subcloning 

techniques were performed to first insert the library into the frameshift selection plasmid 

pInSALect (51) and finally into an expression plasmid (pET11a).  The library was 

transformed into BL21 Gold DE3 cells (Stratagene) and colonies were picked into 96 

well plates for plasmid miniprepping and sequencing (Agencourt Biosciences). Any 

missing library members were generated by standard quick-change protocols.  Sequence-

verified library members were pulled from replicated glycerol stocks and inoculated into 
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Instant TB media (Novagen) in 24 well plates. After overnight incubation at 37oC, cells 

were pelleted by centrifugation.  Pellets were freeze/thawed once and resuspended in 1x 

CelLytic B (Sigma-Aldrich) lysis buffer before another identical centrifugation step.  Cell 

lysates were loaded onto an equilibrated HIS-Select filter plate (Sigma-Aldrich), washed 

twice, and eluted with buffer containing 250 mM imidazole, pH 8. 

 

Microtiter plate-based stability determination 

Appropriate amounts of GdmCl (Sigma-Aldrich), Milli-Q water, eluted protein, 

and NaPO4 buffer, pH 6.5, were added to maintain a fixed volume in each well of 96 well 

Costar UV transparent flat bottom plates by a Freedom EVO liquid handling robot 

(Tecan).  Adapting a previously reported stability assay, mutant proteins were subjected 

to a 12 point GdmCl gradient across the columns of the plate, where each row contained 

a separate denaturation experiment (52).  The plates were equilibrated for at least one 

hour and shaken at 900 rpm on a microtiter plate shaker (Heidolph). 

Tryptophan fluorescence measurements were taken on a fluorescence plate reader 

(Tecan) with a plate stacker attachment. Parameters empirically determined for wild-type 

Gβ1 were later used for each library assayed.  Excitation was performed at 295 nm and 

emission measured at 341 nm with 10 nm bandwidths.  Data were fit as a two-state 

unfolding transition using the linear extrapolation method (53) in Pylab.  The GdmCl 

concentration at the midpoint of denaturation, Cm, was estimated numerically based on 

the fraction-unfolded curve fit.  
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Microtiter plate-based stability assay controls 

 The fluorescence profiles of the GdmCl gradient and the elution buffer show no 

effect on the shape of the unfolding transition of wild-type Gβ1 (Figure 2-7A).  Sample 

signal below the elution buffer was interpreted as expression failure; any sample whose 

data could not be fit yet whose signal was above the elution buffer was deemed expressed 

but unstable, unfolded, or misfolded.  In order to test the accuracy of the microtiter plate-

based denaturation assay, Gβ1 unfolding was monitored by circular dichroism (Aviv 

Biomedical) and tryptophan fluorescence in a fluorimeter (Photon Technology 

International).  The denaturation profiles from these low-throughput experiments were 

compared to results from the fluorescence plate reader (Figure 2-7B).  The overlapping 

data points support the use of a two-state unfolding fit during our stability calculations 

and verify the accuracy of the assay.  Next, the unfolding curves from several protein 

preparations from different concentrations confirmed the assay’s precision (Figure 2-7C).  

These results support some assumptions that the stability determination method described 

here makes in order to maintain a high level of throughput.  First, we never assay for 

protein concentration before setting up the GdmCl gradient, relying on the fraction-

unfolded plot to remove any concentration bias/effects.  Second, the high concentration 

(250 mM) of imidazole in elution buffer is never dialyzed out of the eluted protein 

solution.  Figures 2-7B–C show that these discrepancies in protein preparation have no 

significant effect on fraction unfolded plots for the wild-type protein.   
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Figure 2-1:  The core residues of Gβ1 designed in this study.   Each of these positions 
was allowed to assume various rotamers of the hydrophobic amino acids Ala, Val, Ile, 
Leu, Phe, Tyr, and Trp.  Position Trp43 (not shown) was additionally allowed to change 
rotamer but not amino acid type.  All other side chains and the main chain were fixed in 
the input conformation for the state being modeled in each case.   
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Figure 2-2: General scheme used to design combinatorial mutation libraries based 
on computational protein design calculations.  A line of boxes indicates a protein 
sequence; each box represents a position in the protein chain.  Different colored boxes 
represent different amino acids.  The set of sequences on the far right corresponds to the 
expansion of a particular combinatorial library into the set of sequences it represents.  
The energies of the sequences in the expansions are used to decide which combinatorial 
library to test experimentally, as described in the Methods section. 
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Residue WT xtal-1 NMR-1 NMR-60  cMD-128 uMD-128 

3 Y F F F F F 
5 L IL L L L A 
7 L ILV ILV IL FILV FL 

20 A A A A A A 
26 A A A A A A 
30 F F F F F FIL 
34 A A A A A F 
39 V IV IV ILV ILV IL 
52 F F FILV FILV F F 
54 V IV V V IV AV 

 
Table 2-1: Combinatorial libraries designed from different sources of structural 
information.  xtal-1: library based on single-state design of the crystal structure.  NMR-
1: library based on single-state design of the constrained minimized average NMR 
solution structure.  NMR-60: library based on multi-state design of the 60 member NMR 
structural ensemble.  cMD-128: library based on multi-state design of the constrained 
molecular dynamics ensemble.  uMD-128: library based on multi-state design of the 
unconstrained molecular dynamics ensemble   
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 xtal-1 NMR-1 NMR-60  cMD-128 uMD-128 

number of top 20 list 
sequences found in 

library 
8 12 10 8 1 

number of top 100 
list sequences found 

in library 
15 20 16 16 3 

 
Table 2-2: Library coverage.  For each design problem, we report the number of top 20 
and top 100 designed sequences from each original list that were represented in each 
corresponding combinatorial library.  The maximum possible number of top 20 
sequences that could be represented is 20, whereas the maximum number of top 100 
sequences is 24 because each library contains only 24 members.    
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Figure 2-3: Fraction-unfolded curves derived from the stability determination of 
experimental libraries.  The dashed black curve denotes variant Y3F, which is the 
closest library member to the wild type in terms of sequence, and which is known to have 
a stability very similar to the wild type.  The blue curves denote variants with Cm < 2.0 M 
(“destabilized”) and the red curves denote variants with Cm > 2.0 M (“stabilized”).  (A) 
xtal-1 library:  Destabilized variants feature Leu at position 5 while stabilized variants 
feature Ile at position 5.  Not pictured:  variant Y3F+L5I+L7I, which did not give a signal 
that could be fit to a two-state unfolding model.  (B) NMR-60 library:  Stabilized variants 
feature Phe at position 52 while destabilized variants lack Phe52 but have Val at position 
39.  Not pictured:  14 variants that lack Phe at position 52 and which did not give a signal 
that could be fit to a two-state unfolding model.  (C) NMR-1 library:  Stabilized variants 
feature Phe at position 52 while destabilized variants lack Phe52 but have Val at position 
39.  Not pictured:  13 variants that lack Phe at position 52 and which did not give a signal 
that could be fit to a two-state unfolding model.  (D) cMD-128 library:  Only stabilized 
variants are present in this library.   
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Figure 2-4:  Library mutants sorted by experimental stability.  All sequences from 
the cMD-128, NMR-1, NMR-60, and xtal-1 libraries were named according to their 
designed positions (Sequence ID) and sorted by their experimentally determined Cm 
value.  Some sequences have membership in more than one library.  All sequences above 
the “wild-type stability” label are more stable than the wild-type sequence.  No sequences 
below the “unfolded protein” label gave a measurable transition in the stability assay. 
  

Sequence ID
Library

cMD-128 NMR-1 NMR-60 xtal-1
FLIAAFAIFV
FLIAAFALFI
FLFAAFALFI
FLVAAFAIFV
FLIAAFAVFV
FLFAAFAIFV
FLFAAFAIFI
FLIAAFAIFI
FLIAAFALFV
FLVAAFAIFI
FLVAAFALFI
FLLAAFAIFV
FLFAAFALFV
FLIAAFAVFI
FLLAAFAVFV
FLVAAFAVFV
FLVAAFALFV
FLLAAFALFI
FLVAAFAVFI
FLLAAFAIFI
FLLAAFALFV
FLFAAFAVFV
FLFAAFAVFI
FLLAAFAVFI
FIIAAFAIFV
FIIAAFAIFI
FIVAAFAIFV
FILAAFAIFV
FIVAAFAIFI
FILAAFAVFV
FIIAAFAVFI
FIVAAFAVFV
FLIAAFAVIV
FILAAFAIFI
FILAAFAVFI
FLLAAFAVVV
FIVAAFAVFI
FLIAAFAVLV
FLVAAFAVIV
FLLAAFAVLV
FIIAAFAVFV
FLIAAFAIIV
FLIAAFAILV
FLIAAFAIVV
FLIAAFALIV
FLIAAFALLV
FLIAAFALVV
FLIAAFAVVV
FLLAAFAIIV
FLLAAFAILV
FLLAAFAIVV
FLLAAFALIV
FLLAAFALLV
FLLAAFALVV
FLLAAFAVIV
FLVAAFAIIV
FLVAAFAILV
FLVAAFAIVV
FLVAAFAVLV
FLVAAFAVVV

wild-type stability

unfolded protein

0.000

3.445

Cm (M GuHCl)
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Residue WT NMR-
16D 

NMR-
16R 

cMD-
16D  

cMD-
16R 

uMD-
16D 

uMD-
16R 

3 Y F F FY F W F 
5 L L L L L FLV A 
7 L ILV IL IL IL I FL 
20 A A A A A F A 
26 A A A A A A A 
30 F FILV F F F FILV FIL 
34 A A A A A A F 
39 V I IL ILV ILV IV IL 
52 F FL FL F FL F F 
54 V V ILV IV IV V AV 

 
Table 2-3: Combinatorial libraries designed from the top 16 energy-ranked 
structures based on two different energy functions.    NMR-16D: library based on the 
top 16 NMR structures ranked by DREIDING energy.  NMR-16R: library based on the 
top 16 NMR structures ranked by Rosetta energy.  cMD-16D: library based on the top 16 
constrained MD ensemble structures ranked by DREIDING energy.  cMD-16R: library 
based on the top 16 constrained MD ensemble structures ranked by Rosetta energy. 
uMD-16D: library based on the top 16 unconstrained MD ensemble structures ranked by 
DREIDING energy.  uMD-16R: library based on the top 16 unconstrained MD ensemble 
structures ranked by Rosetta energy 
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Figure 2-5:  Library member energies.  Energies of the members of each library when 
threaded on the structural basis for (A) the xtal-1 library, (B) the NMR-1 library, (C) the 
NMR-60 library, (D) the cMD-128 library, and (E) the uMD-128 library 
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Figure 2-6:  Correlation between simulation energy and experimental stability for 
the cMD-128 library.   No correlation was observed between the experimentally 
measured fitness of the sequences and simulation energies that were used to select them 
for experimental screening.   
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Figure 2-7:  Microtiter plate-based stability assay controls.  (A) Denaturation gradient 
and elution buffer fluorescence profiles.  Gβ1 (black) was expressed in a 5 mL culture, 
purified, and eluted with 500 µL of elution buffer (50 µM NaPO4, 300 mM NaCl, 250 
mM imidazole, pH 8).  Since each point of the Gβ1 denaturation profile contains 35 µL 
of eluted protein, the elution buffer profile (red) substitutes protein with 35 µL of elution 
buffer.  Similarly, the water profile (blue) adds 35 µL of water to make up the final 
volume.  Each denaturation profile contains an increasing gradient of GdmCl, 50 µM 
NaPO4 buffer at pH 6.5, and water.  (B) Fraction-unfolded profiles between different 
modes of detection.  CD data (red) measured 5 µM Gβ1 titrated with a 5 µM Gβ1/8 M 
GdmCl solution in 0.2 M steps at 218 nm.  Fluorimeter data (blue) measured 5µM Gβ1 
titrated as in the CD experiment with excitation performed at 295 nm and emission 
recorded at 341 nm with 4 nm bandwidths.  Plate-based data (black) measured 12 
separate solutions of 10 µM Gβ1 in response to increasing amounts of 8 M GdmCl with 
fluorescence parameters identical to the fluorimeter data except for 10 nm bandwidths.  
All samples were measured at 25°C in 50 µM NaPO4 buffer at pH 6.5.  (C) Fraction-
unfolded profiles between different protein preparations.  Gβ1 was expressed in 100 mL 
cultures, purified, and diluted to 1, 5, 10, and 500 µM in 50 µM NaPO4 buffer at pH 6.5.  
Another expression culture was dialyzed overnight (Pierce Biotechnology) after 
purification and diluted to 10 µM in the same buffer.  All measurements were taken on a 
fluorescence plate reader as described in the text. 
 


