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Abstract 

 Proper understanding and prediction of the fitness consequences upon sequence 

mutation is an outstanding challenge in protein engineering.  Although mutational data 

traditionally has been difficult and expensive to acquire, recent advances in laboratory 

automation have enabled the thermodynamic evaluation of almost every single mutant in 

a small 56-residue protein.  With a domain-level perspective, we explore mutational 

outcomes, distributions, positional sensitivity, and mutant amino acid tolerance.  

Benchmarking current stability prediction methods reveals unbalanced performance 

across different structural criteria, but a uniform capability to capture the trends of our 

unbiased dataset.  The surprising neutrality of single mutations to the domain contrasts 

with the stark negative epistasis seen in small, heavily mutated datasets, especially in 

variants comprised solely of individually stabilizing mutations.  The poor predictability 

of multiple mutants from single mutations indicates that the field must move beyond 

single global stability measurements in order to truly comprehend the mutational effects 

of proteins. 
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Introduction 

 Protein mutagenesis data has long provided insights into the forces responsible for 

protein stability and folding (1–5).  The protein-engineering field flourished from the 

ability to test hypotheses by comparing the thermodynamic effect of single- and multiple-

amino acid mutations against a wild-type sequence.  Abstraction of these concepts into 

computationally tractable algorithms have pushed the field even further, allowing users to 

score near or distant mutant sequences (6–9).  These tools have also made feasible the 

computational probing of the mechanisms surrounding domain mutational tolerance and 

evolvability (10–13). 

 Despite this success, the principles of stability engineering describe only the 

general trend of the effects of amino acid mutations.  Results are often mixed when 

applied to any specific problem due to the number of possible secondary and tertiary 

environments found in proteins (1, 4).  A typical solution to this issue of proper context is 

the acquisition of more and more data in your protein of interest.  This was a daunting 

task in the past, as the efforts required to engineer and purify protein mutants scaled 

linearly with the number to be made.  Recently, technological advancements in laboratory 

automation and next-generation sequencing (14–16) have lowered this barrier so that the 

construction effort is identical for orders of magnitude more variants.  Here, we analyze 

thermodynamic data from almost every single-mutant of an entire protein domain 

obtained through a previous effort in laboratory automation.  As experimental data of this 

magnitude will only become more common, we examine the general utility of large 

datasets, and explore the performance of today’s scoring algorithms. 
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 Rare in the literature due to its laborious nature, domain-level mutagenesis data 

can provide valuable insight on mutational distributions and average positional and 

amino acid effects in proteins.  Early work on mutational effects was performed on 

globular proteins such as the globins, lac repressor, lysozyme, staphylococcal nuclease, 

and barnase.  Numbers on the fraction of mutations experimentally found stabilizing or 

destabilizing varied with each report, suggesting that the distribution of stability effects 

was unique to each protein.  Although a convincing universal distribution for globular 

proteins was recently reported, most of the evidence was computationally derived (17).  

Conclusions on positional and amino acid effects from the pioneering studies centered on 

the importance of core and surface patterning of polar and nonpolar amino acids and 

secondary structure propensities.  But what dominates or decides the sensitivity of a 

position?  And which amino acid is best tolerated by the protein of interest?  Our domain-

level perspective of single mutant data simultaneously verifies the nature of mutational 

distributions and illuminates topics on positional sensitivity and amino acid tolerance.  

 Structure-based stability prediction algorithms translate our general knowledge of 

non-covalent protein interactions into a context-sensitive output.  The degree to which 

they succeed is entirely dependent upon the constitution of the test dataset.  A long 

necessary independent analysis of prediction algorithms concluded that all of the tested 

methods did not perform as well as previously reported and frequently failed to capture 

details (18).  The curious fact that the algorithms had previous success in predicting 

mutational effects was reconciled with their ability to recapitulate general trends in the 

independent test set.  Unfortunately, the test dataset used by Potapov and colleagues was 

biased towards large-to-small amino acid mutations, a feature very common to datasets 
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extracted from the popular online aggregate database of stability data, Protherm (19).  As 

most of the current algorithms were trained on datasets sampled from Protherm, their true 

capabilities may be more underwhelming than reported.  Our comprehensive single-

mutant library provides a truly unbiased dataset upon which to test the performance of 

current and future prediction algorithms.     

 Experimental data on the stability landscape of a protein elicits inquiry into 

additivity effects and the domain’s mutational robustness. Recent work on these topics 

has put forth that proteins thermodynamically stabilized from wild type or under weak 

functional selection exhibit a threshold against deleterious mutations that, once 

exhausted, declines rapidly (11, 12).  The larger than expected effect of detrimental 

mutations after the threshold defines the system as negatively epistatic.  We weigh in on 

this theory with real datasets and, alternatively, determine what effects the combination 

of multiple beneficial mutations might bestow upon a protein.  The literature contends 

that all manner of simple and complex effects can exist under this scenario (20).  Does 

the knowledge of every favorable single mutation enable the engineering of hyper-

stabilized proteins?   

 Using a streamlined laboratory automation method, we constructed 935 single-

mutants of the small monomeric domain Gβ1, multiplying 55 of 56 positions by 17 of 19 

possible mutant amino acids.  Variants were purified and assayed for thermodynamic 

stability by observing tryptophan fluorescence in response to chemical denaturation.  

Rather than engage in the details of individual mutations, we chose to explore an array of 

topics important to protein engineering.  We experimentally verify previous conceptions 

about the distribution of mutational effects for an entire protein domain, as well as 
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describe novel trends previously unexplored due to the lack of data.  The unbiased nature 

of the dataset provided us a terrific avenue upon which to test popular stability prediction 

algorithms, as well as to guide the mutagenesis of multi-point mutants aimed to explore 

the epistatic effects of favorable mutations.  

 

Results and discussion 

The mutational distribution of Gβ1 

 The overall distribution of ΔΔG effects in the Gβ1 domain is shown in Figure 4-1.  

As a significant fraction of mutations lead to severely destabilized or insoluble proteins, it 

is not a normal distribution.  Thus, we report an overall median ΔΔG of -0.25 kcal/mol 

with an interquartile range of 1.88 kcal/mol.  If neutral mutations are those with a ΔΔG of 

±0.5 kcal/mol then the fractions of positive, neutral, and negative mutations are 16%, 

41%, and 43%, respectively.  While technically these values indicate that most mutations 

are destabilizing, 57% of mutations (positive + neutral) would have at worst almost no 

effect on protein stability. Roughly 12% of mutations tested could not be accurately 

measured by our stability assay (“unf” in the mutational distribution) and likely represent 

evolutionary dead ends.   

 This data illustrates that across the entire domain, the native sequence is robust to 

point mutations.  This topic has seen much debate in the literature with evidence in favor 

for and against mutational robustness.  Discrepancies likely arise (beyond those due to 

measuring different proteins) from varying stringencies in functional selection and by 

incorporating only the residues allowed through amber codon suppression.  Our stability 

data likely represents the upper limits of robustness, as layering an activity requirement 
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upon sequences will lower the yield of neutral and positive mutational outcomes.  

Omitting unbiased tryptophan and cysteine incorporation, although necessary for the 

fidelity of the stability assay, also likely skews the fractional outcomes toward mutational 

tolerance.  Finally, because the Gβ1 domain is small (56 residues), its ratio of surface-to-

buried positions fosters a tolerant distribution that may not be the case for larger proteins 

with larger cores.  Previous measures of a mutation’s functional inactivation probability 

across a protein domain are divergent, with values from 5% (21) to 34% (10).  Again, 

differences in protein identity, selection stringency, and incorporated residues are likely 

the answer to these inconsistencies.  In Gβ1’s case, having 88% of single mutations 

available for mutation presents an enormous amount of “safe” potential evolutionary 

trajectories for stabilization.  This finding is somewhat surprising considering the 

relatively low thermodynamic threshold of Gβ1 (~ 4–5 kcal/mol) in comparison to other 

proteins (up to 15 kcal/mol).  Of course, the interactions between subsequent mutations 

will ultimately decide the feasibility of any particular path, and will likely shrink the 

potential complexity (22).   

 Although it appears intuitive that the mutational distributions of any two unrelated 

monomeric proteins will differ, this was found not to be the case in a recent 

computational study (17).  Using the FoldX algorithm, the authors computed mutational 

distributions for a large panel of proteins and show that they all follow a similar 

asymmetric distribution.  While future experimental efforts will be able to support or 

refute the full finding, we can currently verify the presence of the universal distribution in 

our dataset and confirm the FoldX algorithm’s suitability for this type of study.  We fitted 

our dataset (excluding those mutations labeled unfolded) to the bi-Gaussian and 
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individual core/surface distributions described in (17).  In addition, we compare the 

derived means and variances to those from an identical dataset produced by FoldX3 

(Table 4-1).  Both sets of data fit the Gaussian equations well and exhibit the overall 

universal trend of sharper, stabilizing surface distributions with wider, destabilizing core 

distributions (Figure 4-2).  In fact, the exquisite agreements between the calculated and 

experimental standard deviations provide noteworthy support for a Gaussian description 

of the surface and core mutational distributions.  A two-population t-test to determine the 

similarity between the calculated and experimental individual Gaussian means finds the 

core distributions statistically identical (α = 0.025, p = 0.30) and the surface distributions 

different (α = 0.025, p = 9.2x10-13).  This discrepancy can be explained by the historically 

poor treatment of surface energetics in stability algorithms along with small margin of 

error due to the tighter distribution.  As shown in the literature (17, 18, 23) and later in 

our analysis, it appears that algorithms like FoldX3 can fail to capture specific details but 

still produce the correct experimental trend.   

 

Positional sensitivity and mutant amino acid tolerance 

 Efficient visualization of each individual mutant in the library is accomplished 

through the use of a heat map (Figure 4-3).  This perspective makes it abundantly clear 

that sequence position, not identity of the incorporated mutant amino acid, dominates 

mutational effects.  This phenomenon is supported by the mutational sensitivity of wild-

type non-polar amino acids that contribute to the hydrophobic core of the protein.  Box 

plots of the stability effects separated by RESCLASS (Figure 4-4), an algorithm that uses 

the geometry from a crystal structure to designate core, boundary, or surface positions, 
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illustrates this behavior extremely well.  The 75th percentile of the core mutation 

distribution sits below the inter-quartile range of the other categories, illustrating the 

intolerance of core positions to mutation.  Only amino acid mutations to proline or 

glycine serve as exceptions to this result as they are generally deleterious regardless of 

the position due to their unique phi psi distributions.  

 Although we know that random core mutations are deleterious to protein stability, 

what quantitatively determines positional sensitivity?  We approached this question by 

using supervised classification on a large number of attributes to train a linear regression 

model to predict the average ∆∆G of each position in the Gβ1 domain.  The best model 

gives a correlation coefficient of 0.83 and includes weights from a measure of the 

hydrophobicity of the wild-type amino acid and RESCLASS categories.  However, the 

major contributor to the model was occluded surface packing value (OSP), which alone 

gives a correlation coefficient of 0.78 (Figure 4-5).  As a metric for protein packing, OSP 

is routinely used to analyze structural datasets and protein folding predictions (24).  That 

its found to be the chief determinant of domain-wide positional sensitivity is not 

unrealistic, as the result extends previous work on core mutations (25, 26) and makes 

intuitive sense: heavily occluded amino acids would be less likely to accommodate 

disruptions in their packing environments.  The major outliers to this correlation are 

Gly41 and Tyr45, whose average ∆∆G values are greatly destabilized in comparison to 

their OSP.  Position 41’s sensitivity can be explained by its proximity to Trp43, the 

reporter amino acid for the stability assay, which will severely limit the allowed mutation 

types (small or flexible).  And while position 45 is located on an outer beta strand, it is 

only one of two hydrophobic amino acids responsible (the other being Trp43) for 
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shielding an edge of the protein’s core from solvent.  Overall, OSP does a superb job in 

identifying the most sensitive positions to mutation and should be a part of the protein 

engineer’s toolbox. 

 Complementary to the analysis on positional sensitivity is determining which 

amino acid scan of the domain best captures the average ∆∆G for each position.  Actual 

experimental data on the system can help alleviate the issues with complex environments 

that protein packing alone predicted poorly.  Whereas alanine mutagenesis is most often 

used to derive functional hotspots, it is unclear which amino acid can best forecast overall 

destabilizing, neutral, or stabilizing sites.  The result of both a ∆∆G deviation method and 

a linear ranking method  (see Methods) show serine as the highest-ranking amino acid, 

with a mixture of methionine, threonine, and glutamine rounding out the top four (Figure 

4-6).  All of these amino acids are non-charged, polar, and fairly amphiphilic in nature, 

making them reasonable choices for an amino acid stability scan.   

 If the structure of the protein of interest is available, then adjusting the scan by 

RESCLASS would likely lead to higher prediction accuracy.  In our study, methionine 

and alanine dominated the core rankings, while threonine, serine, and glutamine topped 

the rankings for boundary and surface positions.  These results again show a preference 

for uncharged amphiphilic amino acids, along with moderate “like dissolves like” 

tendencies for core and boundary/surface predictions.  Alanine ends up performing 

respectably well across the core and boundary segments of the protein, although it is a 

decidedly poor indicator of positional sensitivity on the surface, where the majority of 

other amino acids outcompete it.  In total, the two deviation calculations give similar 
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results, unifying and strengthening the evidence for small amphiphillic residues such as 

serine as the first choice for stability scanning mutagenesis.   

 Instead of averaging by position, we now average by mutant amino acid and ask, 

which amino acid is best or least tolerated by the domain, and why?  Because reasonable 

solutions to this query require a comprehensive number of mutations per position, our 

dataset is uniquely positioned to explore this topic.  The worst amino acid for general 

incorporation is proline, followed by glycine  (Figure 4-7).  This isn’t surprising, as the 

special amino acids are well known to be debilitating to protein stability.  Aspartic acid is 

the third worst incorporated amino acid, most likely due to its highly acidic nature.  It 

also contains the smallest amount of nonpolar atoms in comparison to the other charged 

amino acids, strengthening its relative charge and snowballing its destabilizing nature.  At 

the other end of the spectrum are the hydrophobic amino acids, and in particular, the 

large aromatics tyrosine and phenylalanine.  Why are these tolerated so well on a domain 

that, due to its small size, features a much larger surface-to-core ratio than most other 

proteins?   

 Close observation of the data in Figure 4-7 shows that among the functionally 

identical amino acid pairs (D/E and N/Q), the residue carrying an extra methylene was 

tolerated better across the protein.  This, coupled with a high surface-to-core ratio when 

compared to the average protein, suggested that the Gβ1 domain may be unique in its 

accommodation of hydrophobic mutations, perhaps in an effort to bury more hydrophobic 

surface area.  Since average mutant amino acid data is recapitulated well by Popmusic2 

(Figure 4-8) we investigated our hypothesis by calculating the systematic scan of four 

other proteins, all larger than Gβ1, with the Popmusic2 web server. The proteins selected 
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isolated the effects size, secondary structure composition, and packing density might 

have on amino acid tolerance (Table 4-2).  Amazingly, all four had very similar average 

mutant amino acid rankings, essentially duplicating the experimental Gβ1 results (Figure 

4-8).  The tolerance to large hydrophobic amino acids across a domain appears to be a 

general feature of soluble globular proteins. 

 Native proteins feature very modest amounts of solvent-exposed hydrophobic 

residues due to the possibility of alternative folded states that better bury the nonpolar 

surface area.  Yet, the very presence of modest amounts of surface hydrophobic residues 

indicates that the physical mechanism underlying this behavior has some buffer 

preventing disastrous aggregated outcomes.  Single incorporations of nonpolar residues 

are not likely to alter the native conformation, and as seen by the data, can stabilize the 

fold.  Previous experimental work on staphylococcal nuclease supported the notion that 

this “reverse hydrophobic effect” is almost nonexistent across single mutations (27).  

Interestingly, they note that fully exposed positions better tolerate aromatic incorporation 

than partially buried sites, arguing that mutation sites are still susceptible to steric clashes 

and packing effects despite being close to the protein surface.  We found similar results 

when the average stability effects of the top four tolerated amino acids (Phe, Tyr, Leu, 

Ile) in boundary and surface sites were broken down into two populations of packing 

density.  However, when the data was broken down into quartiles, there is a bump in 

average stability in the partially exposed quartile, providing evidence for preferential 

packing between the incorporated hydrophobic amino acid and the nonpolar atoms of 

other native residues near the surface (Table 4-3).  In sum, considering the hydrophobic 

mutability of protein cores (28, 29), the support for partially exposed hydrophobic 
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clusters, and that the native conformation is unlikely to change because of a single 

mutation on plastic protein surfaces, non-polar residues offer the best chance at making 

neutral or stabilizing interactions across a protein domain. 

 

Stability prediction algorithm performance 

 Three popular prediction algorithms, Popmusic2, FoldX3, and Rosetta, were used 

to calculate the stability change of the 935 mutations in our domain mutagenesis dataset. 

Popmusic2 is a reduced-representation statistical energy function trained to recapitulate a 

large experimental dataset from the Protherm database.  FoldX3 is similarly trained, but 

uses an empirically derived energy function mixed with weighted statistical terms.  

Rosetta mixes statistical potentials with an all-atom physical potential, and was trained to 

recover native sequence composition for protein design.  Three versions of Rosetta are 

used, each with increasing amounts of backbone flexibility.  The specific details and 

parameters used for each algorithm are described in the methods.  Unfolded mutations for 

which only approximate data is available were filtered, leaving 825 mutations.  

Unrealistic predicted energies from the FoldX3 and Rosetta calculations prompted further 

filtering by removing mutations with abnormally high van der Waals clash or repulsive 

energies, respectively.  Algorithm performance was evaluated by correlation coefficients 

(Table 4-4) and fraction correct % (Table 4-5).  In addition, these metrics are reported for 

the datasets broken down by volume change, RESCLASS, and polarity change to assess 

performance by mutation type.   

 When asked to recapitulate energetic details of the full dataset the hybrid energy 

functions perform quite poorly, as the purely statistical Popmusic2 method led the pack 
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with a correlation coefficient of 0.56 (Table 4-4).  After filtering mutations with large 

clashes, FoldX3 shows improved performance while the flexible backbone Rosetta 

methods achieve the best overall correlations to the dataset.  Although full backbone 

minimization reduces the number of outliers due to repulsive clashes, it is outperformed 

by constrained minimization, even against our unbiased dataset (Chapter 3).  The notion 

that too much backbone freedom may simultaneously hurt and help structure prediction 

of a mixed dataset (30) is upheld by our results.  When asked to recover the fraction of 

positive, neutral, and negative mutations in the data (Table 4-5), all of the algorithms 

perform almost equally.  This result speaks to the utility each method has in predicting 

the correct trend in large datasets (17, 30).  That they all do so equally well is both 

reassuring to users in the field and frustrating to developers looking for avenues of 

improvement.  

 Mutations that remove volume (-VolΔ) are better predicted than those that add 

volume (+VolΔ) across all algorithms and both tables.  The closer a mutant protein’s 

conformation is to wild type, the better each prediction algorithm performs, as most are 

capable of only torsion preferences or rotameric flips.  The methods that do introduce 

backbone flexibility perform better, but can be restricted by limited sampling of correct 

conformations (30).  The preference for large-to-small mutations then implies limited 

structural rearrangements across the domain for this mutation type, a conclusion 

supported by work on T4 lysozyme (31).  The overwhelming number of alanine and 

glycine mutants (-VolΔ) in the Protherm database may also partially explain the affinity 

Popmusic2 and FoldX3 have for this mutation type.  A surprising detail is the continued 

advantage constrained minimization exhibits over unconstrained minimization, even 
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across the small-to-large mutations (r = 0.56 vs. r = 0.52) that are expected to introduce 

sizeable backbone rearrangements.  

 As a large determinant of mutational sensitivity, tertiary structure can be expected 

to play a role in algorithm performance.  The overwhelming number of destabilizing 

mutations in the core inflates the fraction of mutations easily predicted (Table 4-5), while 

mutations closer to the surface are binned at > 50% accuracy.  However, knowledge of a 

mutant’s ΔΔG direction is no guarantee of correlation coefficient accuracy, as shown by 

the poor performance of core mutants in Table 4-4.  The fact that destabilizing variants 

exist across a larger energetic range than more benign mutations likely promotes this 

inaccuracy in predicting buried positions.  

 Breaking down the data by polarity changes highlights the underlying principles 

that govern the prediction algorithms.  The effective van der Waals potential in FoldX3 

and Rosetta give these methods an advantage in predicting the core packing effects of 

nonpolar-to-nonpolar mutations (Table 4-4).  Likewise, Rosetta’s suboptimal treatment of 

buried electrostatics (nonpolar-to-polar, r = 0.34) and nonpolar exposure (polar-to-

nonpolar, r = 0.42) is ameliorated by allowing backbone flexibility.  No particular method 

excels in polar-to-polar mutations, likely a result of the lack of explicit solvent from any 

of the calculations.  Differences between algorithm frameworks may be best embodied by 

comparing the core (nonpolar-to-nonpolar/polar) and surface (polar-to-nonpolar/polar) 

prediction accuracies of FoldX3 and Popmusic2.  Despite very similar training sets, each 

method’s competency lies in inverse structural environments:  Core mutations come 

easier to FoldX3 due to its effective treatment of sterics, while surface mutations are 
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better captured by Popmusic2 because the statistical nature of its potential can implicitly 

capture complex multi-body effects.  

 The differences seen in Table 4-4 between the algorithms are smoothed when the 

stringency in prediction accuracy is lowered, as in Table 4-5.  Only the poor performance 

in polar-to-polar mutations by FoldX3 and Rosetta is effectively reproduced from the 

previous metric.  Popmusic2 performs admirably in predicting the fraction correct in all 

polarity change categories.  This jack-of-all-trades quality likely stems from the fact that 

each statistical term is weighted by solvent accessibility, allowing it to grossly fractionate 

between debilitating core mutations and neutral surface mutations.   

 Any recommendation on the prediction algorithm of choice must be tempered by 

the type of question being asked.  Queries concerning the specific and accurate stability 

of particular single-mutants would probably be best estimated by the constrained 

backbone minimization Rosetta protocol.  However, attention should be paid to filter 

unreasonable repulsive energies and to consider that accuracy can drop with polar-to-

polar mutations, buried positions, and mutations that add volume.  If computational 

power is limited or the number of mutations is greater than 103, Popmusic2 is 

significantly faster and is effective in predicting the trends in the data (Figure 4-8).  The 

actual magnitude of each calculation should be viewed skeptically, unless the mutation 

involves only polar residues, in which case Popmusic2 performs better than any iteration 

of Rosetta.  FoldX3 serves as the middle ground between the other methods in terms of 

both speed and accuracy.  While observations from mutational trend studies in which 

FoldX was used are likely to be duplicated by other algorithms, specific values should be 

taken lightly, especially those involving polar surface mutations. 
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Additivity of multiple mutations 

 The wild-type sequence of the Gβ1 domain is very tolerant to single mutations, as 

evidenced by the mutational outcome percentages and heat map distribution reported in 

the first section.  Mutability trials, where single mutations are added until exhausting 

some threshold, reemphasize the observed leniency surface positions have over those in 

the core.  These calculations assume each mutation is completely additive, an unrealistic 

assumption for proteins, although they do provide reference points for the mutational 

load of a perfectly additive system.  If the threshold is 4.5 kcal/mol (the ΔG(H20) of wild-

type Gβ1 is 4.04 ± 0.4 kcal/mol), then an average of 6.28 ± 4.9 random mutations over 

1000 trajectories are needed to break the protein.  Predictably, the required number of 

mutations increases as one progresses through the RESCLASS categories from 2.07 ± 1.1 

mutations (core), to 10.27 ± 8.9 mutations (boundary), to a maximum of 17.46 ± 15.0 

mutations on the surface.  Given the stated evidence, one might assume that making 

multiple mutations on the surface of Gβ1 would be more successful than mutating a 

similar number of positions in the core. 

  Data from previous efforts in individually designing the core and surface of Gβ1, 

coupled with our comprehensive dataset, allows us to examine the relative performance 

of our design procedures as well as the additivity of mutations in different regions of the 

protein.  The core mutant dataset is a compilation of libraries designed from different 

sources of structural diversity where only hydrophobic amino acids were allowed (23).  

Each mutant is 2–5 fold away from wild type, above the 2.1 random mutation reference 

mark, yet more than 80% of the dataset is thermodynamically neutral or better than wild 
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type (Figure 4-8).  This result endorses the all-atom two-body energy function (similar to 

Rosetta) we used to predict these sequences for modeling hydrophobic core interactions.  

Rosetta’s advantage in accurately predicting nonpolar-to-nonpolar single mutations 

(Table 4-4) supports this finding.  The surface mutant dataset is a single library of 

mutants, designed using the same energy function as the core study, which aimed to 

improve overall stability through mutations to the β-sheet surface of the protein 

(unpublished results).  No mutant carrying more than 1 mutation in this library was 

stabilized from wild type, and a mild inverse relationship exists between stability and the 

number of mutations (Figure 4-8).  In addition, the observed number of mutations isn’t 

remotely close to the random mutation reference point for this segment of the protein, 

reemphasizing the reduced capacity of physics-based energy functions to capture surface 

interactions.   

 The discrepancy in algorithm performance in different protein environments 

could also be attributed to the nature of additivity in each environment.  When the core 

mutant data is plotted against the sum of individual ∆∆G stability values from our single 

mutant dataset, the linear trend line (r = 0.86) is jilted above the perfect additivity line (y 

= x), signifying that the mutants are destabilized compared to what the simple sum would 

predict (Figure 4-8).  As the majority of mutations are stabilizing, one explanation may 

be that there is some limiting level of local stabilization that a protein core can reach 

before interactions elsewhere in the protein become more important globally (20).  

Conjecture aside, this plot serves as a reference to an identical chart featuring the surface 

mutant data (Figure 4-8).  Here the trend line dramatically intercepts the perfect additivity 

line, demonstrating much more pronounced non-additivity than in the core mutants.  The 
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particular number of mutations is also very important, as the slope of the trend line 

radically changes after introducing 3 mutations to the wild-type background, mirroring 

the largely simple additivity found in double-mutants from another large data study (14).  

Why is the additivity of multiple mutations so different between the structural 

environments?   

 One biophysical explanation would be that the capacity of surface residues to 

change conformation, along with the greater number of potential interaction partners 

(solvent molecules) as compared to the situation in the core, allows for the differences 

seen in mutational non-additivity.  Interactions not modeled by traditional protein design 

software, such as buried waters and extensive hydrogen bond networks along the surface, 

could be so important to the enthalpy of the protein that they overcame any gain in 

entropy from joining the bulk solvent.  Finally, a parallel can be made between our 

observations and recent work in linking fitness robustness and epistasis.  Bershtein and 

coworkers describe a quantitative inverse correlation between higher tolerance to 

mutations and the level of negative epistasis (12).  Enzymes (β-lactamase) tested under 

low fitness (ampicillin) levels exhibited higher degrees of negative epistasis; that is, the 

effect of mutations after exhausting some threshold level was greater than when under 

higher levels of fitness stringency.  Similarly, surface positions, seemingly tolerant of 

most single mutations, display markedly stronger non-additivity than core positions.  This 

finding extends the robustness-epistasis theory from describing global, random mutations 

to capturing particular tertiary-structure effects of proteins.  Unfortunately, the ~ 100 

multiple mutants in this combined study represent an incredibly small slice of the number 
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of potential two-, three-, four-, and fivefold mutants possible, and therefore this parallel 

may only exist for the variants examined here. 

 The surface mutations in the previous additivity study didn’t include any greatly 

stabilizing single mutations, an element that may have had an effect on the observed 

epistasis.  In fact, the Bershtein theory is reported to represent combined deleterious 

mutational effects.  What is the result of combining multiple mutations that are all 

individually significantly stabilizing?  Drawing from our comprehensive dataset, we 

constructed three variants (Table 4-6) by first selecting mutations that each stabilized the 

Gβ1 domain by more than 1 kcal/mol.  This led to 33 individual mutations over 16 

positions, a great majority of which introduced large hydrophobic residues.  We selected 

one mutation per position with an eye towards limiting the number of incorporated non-

polar residues and combined them into a single variant (16-fold).  The mutations were 

then visualized on the 1PGA structure and funneled down to 8 mutations, removing 

clustered, interacting residues (8-fold).  Lastly, 2 more mutations were screened out due 

to their mutation of special residues, which tend to have entropic effects on protein 

stability (6-fold).   

 The three variants were expressed, purified, and assayed for stability in the same 

way as the entire single mutant dataset.  The 16-fold mutant had no soluble expression as 

determined by the criteria set in Chapter 3.  The 6 and 8-fold mutants expressed normally 

yet both displayed neutral ∆∆G stability values, despite featuring individual mutations 

that, when summed, should stabilize the protein by more than 8 and 10 kcal/mol, 

respectively (Table 4-6).  Rationally combining multiple efficacious single mutations 

from our stability map proved not to be a successful avenue for protein stabilization.   
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 Upon investigating the results, all but two of the mutations in the 16-fold mutant 

occurred in the boundary or surface of the Gβ1 domain, and more than half of them 

involved a polar-to-nonpolar mutation.  Introducing that many hydrophobic residues to 

the protein surface is thought to be dubious for aggregation reasons, unlike single 

nonpolar incorporations that can be stabilizing (1, 2, 32, 33).  Anticipating the 16-fold 

mutant’s issues, the 6- and 8-fold mutants were designed more conservatively, avoiding 

the insertion of potentially destabilizing interactions and evening the ratio of polar and 

nonpolar mutations.  Mutated sites were selected for their three-dimensional distance 

from each other, thereby promoting conditions for perfect additivity (20, 34).  The 

subsequent severe non-additivity encountered by the variants suggests very large 

unfolded state effects are at play.  Whether these effects are due to the tertiary location, 

residue type, number of the mutations, or some combination of these attributes is 

unknown.  Future work on these variants should attempt to definitely explain the source 

of non-additivity by tracing their potential mutational paths through sequence space. 

  Structure-based protein engineering and design seeks to modify the properties of 

proteins through the calculation of folded state energetics.  Our analysis of the additivity 

of mutations in the Gβ1 domain demonstrates the difficulty in identifying distant, 

stabilizing sequences without explicit consideration to the unfolded state.  Despite a wild-

type sequence experimentally determined to be accommodating of most single mutations, 

multi-fold variants became increasingly harder to predict, especially if the mutations 

occurred on the surface.  Modern techniques minimize this deficiency in structure-based 

design by testing libraries of engineered sequences to spread the risk in selecting a 

mispredicted variant.  Although this can be effective (23, 35, 36), novel, efficient, and 
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effective methods for the unfolded state, among other absent concerns and 

approximations, will help to usher in truly robust protein design.  Concurrently, efforts to 

capture experimental data on more than just the global stability of mutant proteins 

deserve attention.  For example, multiplexing thermodynamic stability with solubility, 

expression level, and proteolysis resistance would produce quality high-density datasets 

that will deepen our understanding of both in vitro and in vivo stability. 

 

Conclusions 

 Our aggregate analysis of stability data on every single mutant in Gβ1 provided 

the first experimental look at the mutational distribution of a protein domain.  The rather 

tolerant nature of the protein, especially to hydrophobic residues, illustrates the plasticity 

of non-core residues and the heavy desire to bury nonpolar surface area.  Atomic packing 

density linearly correlated with positional sensitivity, and scanning with serine, not 

alanine, served as the best experimental indicator of positional hotspots.  The unbiased 

nature of the dataset provided an even playing field upon which to test popular stability-

prediction algorithms.  Although Rosetta was the clear performance leader, every method 

could satisfactorily recapitulate the general trends of the data.  Upon examining the 

additivity of previous design efforts, we learned that non-additivity was prevalent 

throughout the protein, but especially on the surface.  Attempts to utilize the data for 

rational stability engineering failed in the face of tremendous non-additivity. 

 Large mutagenesis datasets will only become more common with the maturation 

of automation technologies and next-generation sequencing.  This incoming avalanche of 

data will provide breadth in complementing traditional in-depth analysis of important 
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systems.  However, the volume of data current cutting-edge technologies can produce 

(105 variants, or all double mutants in a 50 aa protein) still pales in comparison to the 

enormity of potential sequence space.  This is especially troubling considering that ours 

and another study show that double mutants are fairly additive (14), in contrast to what 

we see with variants three or more mutations away from wild type.  Computational 

solutions exist that can traverse the ocean of potential sequences, but require high-density 

datasets from which to train new methods to properly evaluate proteins distant from the 

starting sequence.   

 

Materials and methods 

Dataset 

 Thermodynamic stability data from 935 single mutants of the β1 domain of wild-

type Streptococcal protein G (Gβ1) was generated as described in Chapter 3 of this 

thesis.  Briefly, each gene was constructed through laboratory automation and sequence 

verified.  Every protein was expressed, purified, and its chemical melting point (Cm) 

determined by measuring tryptophan fluorescence in response to a 24-point GdmCl 

gradient.  The !!!!"#$%# value was used to calculate ∆∆G from the following equation: 

∆∆! = !! ∗ (!!!!"#$%# − !!!!") 

where ! is the average of the wild-type and mutant m-values (37), a parameter obtained 

from the linear extrapolation method (38) for determining changes in free energy.  Using 

this equation, stabilizing mutations held positive values, while destabilizing mutations 

held negative values.   
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∆∆G distribution fitting  

 The experimental ∆∆G data was binned into a histogram with 0.5 kcal/mol 

intervals.  In order to match previous work, all stability data was multiplied by -1, making 

positive values represent destabilizing mutations and vice versa.  We used the following 

Gaussian model to fit the individual core and surface distributions, with F the percent 

fraction and x the ∆∆G values (17):  

!! ! = ! 100
2!!!

exp − ! − ! !

2!!  

The bi-Gaussian fit model was given as a superposition of two Gaussians with di!erent 

means and variances, and !! the fraction of the first Gaussian:  

!!" ! = 100 !!
2!!!!

exp ! − (! − !!)
!

2!!!
+ 1− !!

2!!!!
exp ! − (! − !!)

!

2!!!
 

If the fit is good, the mean and variance of the first Gaussian should correspond with the 

surface distribution, while the mean and variance of the second Gaussian should 

correspond with the core distribution. A two-sided t-test was conducted using the 

Mathematica HypothesisTesting package (Wolfram Research) in order to determine 

agreements between the means of two given Gaussian distributions (assuming equal and 

unknown variances).  P-values were generated with a 95% confidence interval (α = 

0.025). 

 

Amino acid scanning analysis  

 Single mutant data of 19 amino acids across 55 of 56 positions in the Gβ1 domain 

allowed us to identify the best amino acid for experimental stability scanning. We 

experimented with two ways to rank the deviations between the ∆∆G for a particular 
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mutation and the average ∆∆G at each position in the protein.  Let us define !∆∆!!,! as 

the deviation of the stability ∆∆!! for amino acid mutant i from the average stability at a 

single residue position a where 1 ≤ i ≤ 19 and 1 ≤ a ≤ 56. This is given by the following 

equation: 

!∆∆!!,! = ∆∆!!,! −
∆∆!!,!!"

!!!
19  

In the first ranking system, we used a weighting directly proportional to the actual  

!∆∆!!,!!value calculated.  We derived !∆∆!!,! for every single possible mutant and then 

summed the results for each amino acid across all residue positions. The scoring function 

for each individual amino acid i in this weighted deviation method is given by:  

!"#$%! = !∆∆!!,!
!"

!!!
 

As the weighted deviation method can be biased by the large stability changes common 

to core positions versus those on the surface, an alternative deviation method was 

developed.  In this ranking system, we sorted !∆∆!!,!!for all amino acids i from smallest 

to largest, at residue position a. The ranked position of a given mutation i at residue a is 

defined as !(!∆∆!!,!).!!For a particular residue a, we would assign a score of 1 to the 

first-ranking single mutation, a score of 2 to the second-ranking single mutation, and so 

on through the last amino acid. Once completed, we then summed the individual 

scores!!(!∆∆!!,!)! for each amino acid across all positions to obtain an aggregate score 

for that particular amino acid. This score for a given amino acid i in this ranked deviation 

method is given by:  

!"#$%! = !(!∆∆!!,!)
!"

!!!
 



! 105 

As the actual scores in each method aren’t physically relevant, they are normalized with 

respect to the score determined for alanine incorporation. 

 

Prediction algorithms  

 The webserver for Popmusic version 2.1, located at!

http://babylone.ulb.ac.be/popmusic, was used by performing a “Systematic” command on 

the wild-type crystal structure of Gβ1 (1PGA).   

 The latest release of FoldX (version 3.0, beta 5) was retrieved from 

http://foldx.crg.es.  The crystal structure of Gβ1 (1PGA) was prepared by using the 

“RepairPDB” command to perform Asn, Gln, and His flips, alleviate small Van der 

Waals’ clashes, and optimize wild-type rotamer packing. Every mutation in the dataset 

was constructed through the “BuildModel” command, and the difference in energy 

between the WT reference and the corresponding mutant was averaged over five trials.  

 The latest release of Rosetta (version 3.3) was retrieved from 

http://www.rosettacommons.org.  The ddg_monomer application was used to generate 

single mutant stability data from a pre-minimized version of the crystal structure of Gβ1 

(1PGA).  We explicitly followed the available online documentation in order to prepare 

all necessary input files. Option sets described in the documentation pertain to the various 

Rosetta iterations tested in this paper (no bb min: low-resolution protocol; cst bb min: 

high-resolution protocol; full bb min: high-resolution protocol with an empty distance 

restraints file). 

 The performance of each algorithm was evaluated by Pearson’s correlation 

coefficient and the fraction correct, defined as the number of correctly categorized 
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mutants (stabilizing (>= 0.5 kcal/mol), neutral (< 0.5 kcal/mol and > -0.5 kcal/mol), and 

destabilizing (<= -0.5 kcal/mol)) divided by the total number of mutations in the set.   

 

Mutability determination 

 In order to provide an upper bound on the mutability of the protein we assumed 

perfect additivity of the ∆∆G values for single mutants.  We defined !!"#$!as the critical 

number of mutations needed to exceed the threshold ∆∆G of 4.5 kcal/mol. For a series of 

N mutations, the net stability of such a domain is:  

∆∆G!"# = ∆∆G!
!

!!!
 

The probability of stabilizing/destabilizing a protein domain with a random mutation was 

examined by making each single mutant equally probable.  We ran a simulation in 

Mathematica for 1000 or 10000 trials with 200 random mutations in each trial.  This 

many random mutations were made in order to have a high likelihood that we would 

reach the unfolding threshold before this value.  We found the critical number of 

mutations !!"#$  by checking the net stability after each successive mutation. When 

∆∆G!"#,! > 4.5 kcal/mol, then !!"#$ = !.  
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Figure 4-1: Single mutant stability distribution for the Gβ1 domain.  As an example, 
if ∆∆G stability data is represented by χ, then the zero bin holds data with values 0 ≥ χ > 
1.  The “unf” bin holds mutant stability data that could not be determined, and is likely 
insoluble or in an alternative conformation.   
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 Experimental data FoldX3 data 

Type µ1 σ1 µ2
 σ2

 R2 µ1 σ1 µ2 σ2 R2 

Surfacea -0.13 0.65 - - 0.996 -0.53 0.68 - - 0.995 

Corea - - 0.28 1.23 0.932 - - -0.17 1.25 0.901 

All -0.13 0.53 1.01 1.43 0.999 -0.55 0.64 1.02 1.75 0.997 
a Surface and core determination done as described in the methods 

 

Table 4-1: Gaussian fitting parameters for the mutational distributions 
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Figure 4-2: Gaussian fits of the Gβ1 mutational distribution.  The single mutant 
dataset was calculated using FoldX3, and values corresponding to unfolded data were 
removed from both datasets.  Equation fits are described in the methods.  Positive ∆∆G 
values indicate destabilizing variants and vice versa. 
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Figure 4-3: Single mutant stability landscape for the Gβ1 domain.  Each mutant is 
colored by its ∆∆G value, where red is destabilizing and green is stabilizing.  Self-
identity mutations, e.g., M01M, are assigned a zero value and colored gray.  Mutant 
stability data that could not be determined are given the arbitrary value of -5.  
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Figure 4-4:  Single mutant stability distributions by RESCLASS.  The ∆∆G stability 
distribution for each RESCLASS category is separated into quartiles.  The median values 
for the core, boundary, and surface distributions are -2.89, -0.06, and -0.02, respectively.  
The red dashed line is the median value for the entire distribution, -0.25.  Mutant stability 
data that could not be determined are given the arbitrary value of -5. 
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Figure 4-5:  Packing density is linearly correlated with ∆∆G averaged by position.  
Each data point represents a position in the Gβ1 domain, and is colored by RESCLASS.  
The equation for the red trend line is ! = −7.9! + 1.6, with an r2 of 0.62. 
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Figure 4-6:  Amino acid scanning mutagenesis.  The amino acid that best matches the 
stability at every position in the Gβ1 domain was determined using both ranking and 
actual kcal/mol weighted deviations (see Methods).  The results are normalized to alanine 
incorporation (black dotted line) to compare against typical functional scanning 
methodology.  The charts describe the overall data and RESCLASS categories and are 
sorted from the best to worst match.  Amino acids are colored by physiochemical type.  
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Figure 4-7:  Stability distribution of Gβ1 by mutant amino acid.  Incorporated amino 
acids are sorted by the average ∆∆G stability effect of that mutation (black reference line) 
over the Gβ1 domain.  Amino acids are colored by physiochemical type.  
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Figure 4-8:  Calculated stability distributions by mutant amino acid.  Single mutant 
stability data was calculated with Popmusic2 for the Gβ1 domain (1pga), along with four 
other proteins: cystatin (1cew), azurin (2aza), alcohol dehydrogenase (1deh), and 
lysozyme (4lyt).  Incorporated amino acids are sorted by the average ∆∆G stability effect 
of that mutation (black reference line) over each domain.  Amino acids are colored by 
physiochemical type. 
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Variant Number of Residues % Helixa % Stranda Average OSPb 

1pga 56 25 43 0.332 

1cew 108 20 48 0.314 

2aza 129 16 36 0.368 

4lyt 129 41 11 0.376 

1deh 374 28 25 0.392 
a Secondary structure was determined through DSSP. 
b Residue packing density (OSP) was averaged over each protein.  
 

Table 4-2: Bioinformatics statistics for selected proteins 
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OSP percentile 
rank 

Average ΔΔGa 
by quartiles 

Average ΔΔGa 
by halves 

1–25 0.382 
0.449 

26–50 0.516 

51–75 0.097 
-0.094 

76–100 -0.285 
a Calculated over Y/F/I/L amino acids only 

 

Table 4-3: Comparing the average ΔΔG of hydrophobic mutations by OSP 
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Popmusic2 FoldX3 Rosetta 

(no bb min)a 
Rosetta 

(cst bb min)b 
Rosetta 

(full bb min)c 

All 0.56/825 0.35/825 0.26/819 0.45/825 0.44/825 
All w/o 
clashes -/- 0.52/742 0.35/747 0.62/810 0.61/824 

+VolΔ 0.46/489 0.42/417 0.37/428 0.56/476 0.52/488 

-VolΔ 0.6/340 0.53/329 0.35/323 0.62/338 0.64/340 

Core 0.28/127 0.31/73 0.3/75 0.26/115 0.22/127 

Boundary 0.55/221 0.65/217 0.63/213 0.72/219 0.71/221 

Surface 0.54/477 0.41/452 0.35/459 0.57/476 0.57/476 

NP!NP! 0.43/125 0.57/91 0.52/85 0.60/118 0.62/124 

NP!P! 0.49/163 0.62/125 0.34/139 0.64/156 0.53/163 

P!NP! 0.66/249 0.47/240 0.42/236 0.69/248 0.68/249 

P!P! 0.58/288 0.41/286 0.58/287 0.52/288 0.53/288 
All entries are tuples of correlation coefficient (r) and number of data points (n); NP: nonpolar; P: polar. 
a No backbone minimization after repacking 
b Constrained backbone minimization after repacking 
c Unconstrained backbone minimization after repacking 
 
 
Table 4-4:  Algorithm performance by linear correlation 
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Popmusic2 FoldX3 Rosetta 

(no bb min) 
Rosetta 

(cst bb min) 
Rosetta 

(full bb min) 

All 0.62/935 0.59/935 0.61/918 0.61/935 0.60/935 

+VolΔ 0.52/527 0.52/527 0.52/510 0.53/527 0.51/527 

-VolΔ 0.75/412 0.69/412 0.72/412 0.71/412 0.70/412 

Core 0.78/204 0.84/204 0.86/187 0.83/204 0.82/204 

Boundary 0.57/238 0.57/238 0.53/238 0.53/238 0.52/238 

Surface 0.58/493 0.50/493 0.55/493 0.53/493 0.54/493 

NP!NP! 0.61/147! 0.68/147! 0.61/140! 0.65/147! 0.64/147!

NP!P! 0.66/210! 0.72/210! 0.68/200! 0.74/210! 0.67/210!

P!NP! 0.61/272! 0.57/272! 0.64/272! 0.61/272! 0.60/272!

P!P! 0.62/306! 0.49/306! 0.53/306! 0.51/306! 0.52/306!

All entries are tuples of fraction correct and number of data points (n); NP: nonpolar; P: polar. 
a No backbone minimization after repacking 
b Constrained backbone minimization after repacking 
c Unconstrained backbone minimization after repacking 
 

Table 4-5:  Algorithm performance by fraction correct 

 

!

!

 

  



! 124 

!

!

Figure 4-9:  Complex additivity in core and surface mutation libraries.  Actual ∆∆G 
is plotted against the sum of single mutation ∆∆G values for core (top) and surface 
(bottom) mutational libraries.  Each data point is colored by the number of mutations 
from wild-type it carries.  The black dashed line is ! = !, and serves as the indicator for 
perfect additivity.  The r2 for the red trend lines are 0.74 (top) and 0.15 (bottom). 
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Variant Identity Actual ΔΔGa  Sum ΔΔGb  

6-fold K04T  L12Y  E27L  F30Y  N35K  E56F -0.10 8.07 

8-fold 6-fold  G14L  D47P 0.57 10.98 

16-fold 8-fold  M01F  T02I  L07I  T16I  E19I  
N37L  D40F  E42I unfolded 21.21 

a Determined stability through experiment; units in kcal/mol 
b Determined stability by summing the ΔΔG of the individual single mutants; units in kcal/mol  

 

Table 4-6:  Identity and stability of additive variants  

 

 


