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Abstract 

 Protein engineering techniques such as directed evolution and structure-based 

design aim to improve the properties of natural proteins.  The next step, the de novo 

insertion of function into previously inert protein scaffolds, is the lofty promise of 

computational protein design.  In order to achieve this goal reliably and efficiently, 

computational methods can be iteratively improved by cycling between theory and 

experiment. 

 Efforts to both accelerate the rate and broaden the information exchanged within 

protein design cycles form the core of this thesis.  Improvements in the throughput of 

experimental stability determination allowed the thorough assessment of new multi-state 

and library design tools.  Intending to alleviate the fixed backbone, single native state 

design approximation, the study found constrained molecular dynamics ensembles useful 

for core repacking applications.  The subsequent development of automated liquid 

handling protocols for common molecular biology techniques brings design experiments 

to new levels of sample throughput.  This technology facilitated the creation of a stability 

database encompassing every single mutant in a small protein domain.  Although 

constructed to facilitate future computational training efforts, we answer a multitude of 

questions pertaining to mutational outcomes, distributions, positional sensitivity, 

tolerance, and additivity in the context of a protein domain. 

 By expanding the constraints of experimental molecular biology, this work opens 

up new possibilities in the efforts to train and assay new computational methodologies for 

protein engineering applications. 
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