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Appendix D

Strand Orderings for
Pseudoknot-Free Representations

Given a complex microstate c, we can draw a polymer graph representation (also called the

circle-chord representation) by laying out the strands on a circle, in the ordering π∗(c), and

representing the base pairs by chords connecting the appropriate locations (Figure D.1).

In the case of a complex microstate with a single strand, we call the secondary structure

pseudoknotted if there are crossing chords. However, the case where a complex microstate

contains multiple strands requires a slightly more complex definition. We note that in this

case, a strand ordering π∗(c) corresponds to one particular way of arranging the strands on

the circle; the circular permutations of π∗(c) are the (L − 1)! permutations of the strands

which are distinct when arranged on a circle, e.g. for three strands labeled A,B,C, there

are only two distinct circular permutations: (A,B,C) and (A,C,B). With that in mind,

we call an arbitrary secondary structure pseudoknotted if every circular permutation of the

strand ordering has a polymer graph representation that contains a crossed chord.

While our simulator is not constrained to using a strand ordering π∗(c) whose polymer

graph representation does not contain a crossed chord, it is convenient for us to do so, as the

output representation is easier to generate in these cases. The following heuristics allow us

to maintain the property that our complex microstates always use a strand ordering π∗(c)

whose polymer graph does not contain a crossed chord:

The initial strand orderings we generate are based on a dot-paren structure, which

naturally translate to a polymer graph with no crossed chords. The only time strand

orderings can change is when performing a bimolecular move (either a break move or join

move). For a break move, the resulting pair of complexes maintain the same orderings



107

(a) A hairpin with long stem (b) Short three-way branch migration system

Figure D.1: Two different secondary structures using polymer graph representation. Strands
are always arranged with 5� → 3� orientation being clockwise around the circle.

the strands originally had in the original complex – e.g. if we had a complex of 5 strands

(A through E) with ordering (A,D,E,C,B) which broke apart into two complexes with

strands A,B,C and D,E, the resulting pair of orderings would be (A,C,B) and (D,E)

(Figure D.2).

For a join move, we first note that a complex’s open loops correspond to sequential pairs

of strands in the circular strand ordering (this corresponds to the strands on either side of

the “nick” in the dot-paren representation), so that a complex with ordering (A,B,D,C)

has open loops corresponding to the pairs (A,B), (B,D), (D,C) and (C,A). When we

perform a join move, we take each complex’s strand ordering and find the cyclic permutation

(these are the permutations that are identical when arranged on a circle, e.g. (A,B,C),

(B,C,A) and (C,A,B) are cyclic permutations on the strand ordering (A,B,C)) which

places the affected open loops at the edge of the permutation. For example, if we are

joining (A,B,D,C) with (E,G, F ) by the open loops around (B,D) and (E,G), we use

the cyclic permutations (D,C,A,B) and (G,F,E), ending up with the strand ordering

(D,C,A,B,G, F,E) for the resulting complex (Figure D.3). Why does this ordering have

no crossing chords (assuming the starting ones did not)? We note that this join move was

joining a base on either the 5� end of D or the 3� end of B, with a base on either the 5�

end of G or the 3� end of E - in all four of these cases, the resulting chord cannot cross
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(b) (A,C,B) and (D,E) after break move

Figure D.2: Polymer graph representation before and after a break move (base pair high-
lighted in red). Note that the ordering is consistent, but we now have two separate complexes
and thus two separate polymer graphs.

any existing chords if we use the given strand ordering. Note that in general, the bases

available for a join move are not necessarily from the 5� and 3� edges near the nick but the

same argument applies. For example, if we used a join from the (G,F ) open loop (from the

previous example), there is a single base on strand E that could be used to make the join,

but since it’s in the same open region as the 5� end of G and 3� end of F , it also could not

create a crossed chord.

So we have shown that the strand ordering π∗(c) maintained by our simulator for a

complex microstate c has a polymer graph with no crossed chords. This leads naturally

to the question of whether there is a different circular permutation of π∗(c) which also has

no crossed chords. The (surprising) answer is no - every other circular permutation has at

least one crossed chord! This is stated in the following theorem:
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(c) (D,C,A,B,G,F,E) after cyclic permutations and join

Figure D.3: Polymer graph representation before and after a join move. Open loop regions
are noted with a cyan circle marker. Four of the (many) possible join moves between open
loops (B,D) and (E,G) are shown in (c), using red, blue, magenta, and cyan.
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D.1 Representation Theorem

For every non-pseudoknotted complex microstate c, there is exactly one circular permutation

π∗(c) whose polymer graph has no crossed chords.

While the above heuristic can be expanded on to prove this theorem via induction on

the number of strands in a complex, a more thorough proof can be found in [5] and so we

will not reproduce it here.


