58

Appendix A

Data Structures

A.1 Overview

The simulator is composed of many objects, which have very strong dependencies and are
one of the key components in allowing us to use efficient algorithms for recomputing the
set of adjacent moves. Our data structures contain a lot more information than those in
previous works, but this is what allows us to use the more efficient algorithms for move
selection, update and energy computation.

The following is a list of the primary objects which we will elaborate on in this section:

SimulationSystem

EnergyModel

HairpinLoop OpenLoop
| BulgeLoop |
| MultiLoopl I StackLoop |

m—) (Creates

m—) CoNtains
=3 [nteracts With

Figure A.1: Relationships between data structure components

59

Object Name Basic Function

SimulationSystem | Controls the simulation, handles trajectory parameters
and simulation setup.

StrandComplex Summarizes the information for a particular complex,
including the ordering, intra complex moves, and loop structure.
SComplexList Stores all the complexes in the system and handles
inter-complex moves.
Loop Base class for all types of local loop objects.

Contains information about the energy, adjacent loops, and has all
the generic loop accessors which are implemented by derived classes.

Move Contains information about a single move, including the affected
loops, type of move and rate at which it should occur.

MoveTree Container type for organizing the Move and MoveTree nodes for a
particular unit: a loop, a complex or the system.

EnergyModel Base class for all types of energy models.

Defines all the accessors for finding the energy of particular
loop structures. Derived classes implement these, and contain
all the necessary parameter data.

StrandOrdering Auxiliary class used by a Complex to handle strand ordering
information and functions for checking stop states,

handling output of the complex and other related tasks.
Options Auxiliary class which contains all the simulation options.

This is the object which contains all the model and simulation
parameters necessary for the simulator, as well as the input
DNA system. It is also used to handle the results coming from
the simulator (e.g. the output). This is the only Python object
included in this section.

A.2 SimulationSystem

Purpose: This object handles the main control loop of the program in addition to per-

forming the setup and initialization duties.

Functionality:

1. Initializes the EnergyModel object based on parameters from the Options object.
2. Initializes the system state for each trajectory.
3. Handles random number generation for each step of the markov process.

4. Performs the main loop of the simulator, performing a move, updating the time and

handling output duties.

Data Members:

60
1. EnergyModel: contains a reference to the energy model being used for the system.
This data is also used to initialize a static member of the Loop class, so that all loops
have a direct reference to the correct energy model, but we need to store it here so

that it can be properly freed later.

2. SComplexList: the current secondary structure state of the system is stored in this

object, which needs to be reinitialized to the starting state for each trajectory.

Discussion: The system object, while containing the main control loop for the program,
is very limited in the scope of what it does, handling only the main initialization duties
and the random number generation component of each step of the markov process. This
lets us focus on handling all of the different simulation modes (and thus output options) at
this point without having to know about any of the secondary structure information in the
system.

This is one of two C++ objects that are closely connected to the Python side of the
simulator, as we need to both access the parameters and inputs for a particular simulation

system as well as provide output back across that interface.

A.3 StrandComplex

Purpose: Represents a single connected complex of strands. Things that take place at
that level are handled here if they don’t involve the specific ordering of the strands. This
includes the initial generation of the loop objects representing the complex as well as han-

dling joining moves between two complexes.

Functionality:

1. Contains code that generates the entire Loop-based structure from the sequence and

dot-paren structure input. Only used when the trajectory is initialized.

2. Performing base pair creation moves between two complexes is handled here, joining

the appropriate data together.

3. Performing base pair deletion moves which cause a complex to break into two con-

nected structures is done here.

61

Data Members:

1. StrandOrdering: contains information about the strands/sequences used in the com-
plex, the cyclic permutation corresponding to the current structure and links to the

actual structure.

2. MoveTree: tree structure collecting all the moves corresponding to loops within the

complex.

Discussion: Originally this object also contained all the information about the current
sequence and dot paren representation of the structure, but it made more sense to split
those into a seperate object when it became apparent that all the functions which dealt
with those used a very similar linked list approach. Because of this, there are really only
three main functions here which don’t involve the ordering in some way: joining a complex,
breaking a complex, and initializing a complex.

The initialization of loop structure for a particular complex is easily the most compli-
cated algorithm here, and is discussed in Section B.2. Why not handle the loop creation in
another location? The simple answer is that at some point, there needs to be a function
which can translate from the sequence and structure for a complex into the loop structure,
and since those are only relevent at the complex level, it can’t be any lower. Loop structure
only knows very local bits of the sequence and has no concept of the dot-paren structure, and
while the strand ordering does involve both the sequence and structure, the main functions
contained there deal with modifications to that ordering and subsequent changes to the

output representation, and not really anything to do with the actual structures underneath.

A.4 SComplexList

Purpose: Contains all the complexes in the current state of the system. Handles compu-
tation of join move rates between complexes, and controls move choice selection between

join moves and moves internal to each complex.

Functionality:

1. Computes the total join rate between complexes, which requires information about the

external bases (unpaired bases appearing in an open loop) present in each complex.

62
2. Handles control flow for picking which complex the next move takes place within, or

computing which join move took place.

3. Handles high level code for checking a stop state, specifically when a stop state involves
multiple complexes being present, we need to check for the simultaneous presence of

all of them, without overlapping.
Data Members:

1. StrandComplex: linked list of complexes, along with the current energy and total rate
for each complex, so that they do not have to be recomputed when a move doesn’t

involve that complex.

2. Join Rate: total flux for all join moves between complexes. If a move is performed
within a complex, this total only needs to be recalculated when that move involves

an OpenLoop.

Discussion: Exists mainly as a way of seperating the simulation system from the actual
strand complexes. This layer handles summarizing the rates from each complex, as well as
everything about the join moves. The join moves are calculated very simply by figuring
out the total number of combinatorial choices for pairing bases. While this is done under
the assumption that a single base pair is sufficient to join two complexes, it could easily be
extended to require two adjacent bases to pair, by changing the definitions of exterior bases
and the resulting combinatorial choice.

Note our bimolecular rate method’s effects are focussed mainly here: the join move rate
only involves the numble of possible pairs plus the energy model’s base join move rate. If we
changed the rate method this may have to be handled at a much lower level so that we can
include energy computations on the resulting open loops. Currently we don’t have to do
that, as the energy contributions due to those loops are in the reverse rate (when breaking
a complex apart), as at that point we will have detailed information about the secondary
structure. If we tried to use those energies in computing the join move rates, we would have
to have much more information about the secondary structure of each complex at this level,
which would be a lot more computationally intensive. However, for some types of energies,
it’s conceivable that a similar redefinition of the exterior bases would work, like what we

mentioned above for forming two bases at a time.

63

The other key thing handled here is checking for the existence of a stop state. A
stop state can involve the secondary structure of multiple complexes, so we have to start
handling it at this level, and it’s important that we try to optimize the computation as much
as possible, as the simulator goes through a huge number of states, and only a small portion
of those are going to be stop states. At this level several shortcuts are implemented, such as
only checking for a stop state when the number of complexes currently present would allow
it, and halting the checking for a particular stop state when there aren’t enough unchecked

complexes in the current state to match the remaining ones in the stop state.

A.5 Loop

Purpose: Base class for one of the two (ad hoc) polymorphic types used in the simulator.
Secondary structure can be broken down into a tree consisting of connected loops. The
particular type of loop does not matter in this structure, but does matter for calculating
the energy and possible moves available to that loop. Thus this class defines all the methods
which can be used to interact with generic loops, and the specific implementations handle

the details.

This class, along with the six derived classes (StackLoop, HairpinLoop, BulgeLoop, In-
teriorLoop, MultiLoop and OpenLoop) composes the largest percentage of the code in the
program, currently around 40%. This is due to the need for each derived class needs to
handle move generation and energy calculation in a specific way, as well as delete moves

which need to be able to handle each of the possible combinations of two derived types.

Base Class Functionality:
1. Compute delete move rates for arbitrary pairs of derived loop types.
2. Perform delete moves for arbitrary pairs of derived loop types.

3. Perform deletion moves which cause a complex to split (OpenLoop-OpenLoop delete

moves).

Derived Class Functionality:

64
1. Energy Computation: passes appropriate data members to the energy model for cal-

culation.

2. Move Generation: computes rates for all internal base pair creation moves, adds

generated moves to move tree data structure for that loop.

3. Move Evaluation: builds the resulting loop structure after performing a base pair

creation move.

4. (OpenLoop only) Exterior bases: computes the counts of each base type accessible in

that open loop for a complex join.

5. (OpenLoop only) Complex joins: create the resulting pair of connected open loops

from the pair of open loops involved in a complex join move.
Data Members (general for most derived classes):

1. Loop: list of adjacent loops, in a fixed 5’ to 3’ ordering such that base pairs can be

associated with the correct adjacent loop.

2. sequence: base sequence for each strand participating in the loop. Usually just two,

but can be any number for Multi and Open loop types.
3. lengths: lengths of each base sequence present in the loop.
4. energy: stored value from calling the energy model functions, to avoid recomputation.

5. MoveContainer: container for all creation and deletion moves involving this loop.

Used to make deleting this set of moves from a larger structure a simple task.

Discussion: Algorithms: The per-step move generation algorithm (Section B.4) and the
move update algorithm (Section B.5) are implemented in a distributed manner in the de-
rived Loop objects. The advantage for these algorithms are in the local properties. We
only need to know for creation moves the information about the particular loop involved,
and for deletion moves the two loops adjacent to the base pair being deleted. This means
that creation moves can be handled within each loop type cleanly, using only the internal
data to that loop to generate the two new loops which are to replace it. Deletion moves are

handled in a similar way by creating a friend function of the base Loop class which handles

65

each case of a pair of loop types.

Output Reconstruction: Though each loop object only stores a very small portion
of the total sequence, it is straightforward (and indeed, must be possible) to use only those
pieces to reconstruct the actual strand sequences and dot paren structures. In practice, this
reconstruction, especially that of the dot paren structure for use in output, would need to
be done each time we wanted to output a state, which for full trajectory output would be
every step. Thus there are functions to perform this reconstruction within the class, but
instead of using those at each step, the information about which base(s) were affected in
a move are passed back by the relevant move update function so that the StrandOrdering
object can keep the output structure up to date for use both in trajectory mode and for

stop state checking.

Deletion Move Duplication: Note that a particular deletion move occurs twice, once
in each loop adjacent to the base pair involved. The resulting rates are then halved, such
that the total rate is correct, and the deletion move is performed identically no matter
which loop’s copy of the move is chosen. This means that each loop needs to be able to
reset its deletion moves independently of the creation moves within that loop, and handling
this cleanly is one difficulty with how we build the overall set of moves for the complex. The
alternative, however, would be to store a deletion move relative to only one of the two loops
adjacent, which would make the recomputation of deletion moves caused by performing
creation moves to be excessively complicated. Since the total number of deletion moves per
loop is small (usually two), calculating and storing the deletion moves twice is a small effect
on the complexity of move generation, and is much easier to implement and more efficient

for move update.

Complex Join/Break: The complex join and break moves are handled at the lowest
level within this object. Complex breaks are implemented in the base class, as they need to
rebuild the two open loops adjacent to the breaking base pair into disconnected open loops.
Joins are handled within the OpenLoop object, forming the resulting connected open loops.
While it would be convenient to handle these all within a particular object, they affect the

data structure at many different levels and so there is no convenient place to handle all the

66
appropriate changes to the strand ordering, the underlying open loops, the new resulting

complex(es) and the moves available to each.

A.6 Move

Purpose: Represents a single creation or deletion move. Contains the necessary informa-

tion for the appropriate Loop to perform the move.

Functionality:

1. Directs control to the correct loop to handle the actual creation/deletion necessary to

perform the move.
Data Members:

1. affected loops: links to the loops affected by this move (i.e. the ones that created it).
2. move rate: rate at which the move should occur, for use by the move choice algorithm.

3. type information: used by the affected loops to perform this move

Discussion: This is the simplest data structure that’s important enough to actually men-
tion. It’s really just used as data storage by the loop’s move generation algorithms, so that
the move choice algorithms can traverse the moves directly without having to go through
the local loop structure, and once the move is chosen transfer control into the affected loop
to perform the choice.

This is the basic unit that’s being allocated and deallocated in large quantities at each
step, and so one possibility for improving speed is to keep a pool of pre-allocated Move
objects that are passed out rather than constructed from memory, and returned to the pool
instead of deallocated. The allocation/deallocation hasn’t appeared to be a major factor
at this point though, so it’s likely that other methods are a better choice for improving the

simulation speed.

A.7T MoveTree

Purpose: Holds all the Node objects for a particular logical unit, such as a Loop, Strand-

Complex, or SimulationSystem. Implements the addition of nodes and deletion of nodes in

67

an efficient way. Can itself be used as a base type to be organized into higher level move

trees.

Note that this object is no longer fully implemented and has been deprecated in favor
of moving to C++ Standard Template Library containers for handling moves. Specifically,
we currently use an array data structure as our move container for each logical unit, with
a move selection algorithm that is linear in the number of moves; as discussed in section
B.7, move selection is not typically the rate limiting step in simulations, so the non optimal
data structure does not result in a significant performance drop.

We present the following information as a look into the original construction of these

data structures and algorithms.

Functionality:
1. Contains a tree structure of node objects (implemented as either Moves or MoveTrees).
2. Can singly add a node efficiently.
3. Can be constructed with serial addition of Move objects efficiently.
4. Can delete a single node efficiently while leaving the tree well balanced.

5. Performs the move choice algorithm, taking the random number and efficiently selects
a node. This node then is either the Move we wish to perform, or a nested MoveTree

from which we must continue the algorithm.
Data Members:
1. Tree root: pointer to the root node in the tree.
2. Tree total rate: total rate of all nodes in the contained tree.

Discussion: While we could implement a container for the Move type objects in many
other ways, it is convenient to use a tree for efficiency reasons. While the worst case com-
plexity of our simulator doesn’t change, the average case can be affected be the choice of

data storage for these objects, as we will discuss further in section B.7.

68
The ideal structure for us to use would actually be a Huffman encoding tree based on
the relative rates of each move/container stored in the tree. However, maintaining this en-
coding for a rapidly updating selection of moves is just as inefficient as using a list structure,
so while it would be ideal for our choice operations, we would have just moved the time

complexity into the update steps.

Finally, we have many different choices of methods to implement our trees in a balanced
fashion. Since we do not need a search operation as the elements are not sorted, and are
instead accessed by the move choice algorithm using their relative rate, we can implement
any simple balanced tree, as long as the insert and delete operations are logarithmic with
the total size of the tree. We do need a special algorithm for constructing a tree from a
loop’s set of moves, as performing these insertions on an empty tree would add an extra
logarithmic factor to the requirement. This is easy to implement by maintaining a static
list as the tree gets built, and make a single pass to connect the structure and sum the

totals once we have all the moves required.

A.8 EnergyModel

Purpose: Computes the energy of particular loop types. Computes rates for moves, based
on energy model parameters and rate options. This is a base class, used to implement

specific instances of energy models, such as the NUPACK energy model.

Functionality:

1. Calculates the energy for each of the six specific types of loop, based on the energy

model parameters used and other energy model options.

2. Calculates the move rate based on the starting and ending state’s energy, type of move

and other energy model options.
3. Reads in the energy model’s parameter set from a file.
4. Transforms the energy model parameter set for non-standard temperatures.

Data Members:

69

1. Energy model parameters: stores all the parameters for the energy model. This in-

cludes dG and dH parameters so that we can calculate dG’s for different temperatures.

Discussion: Data Size: Though we list the energy model parameters as a single data
member, it should be noted that this is the largest object in terms of data size. There are a
huge number of parameters involved in calculating the loop energies, and extra data needs
to be stored in order to calculate the energy at different temperatures. Collecting these
parameters in a single place is the main reason why the energy is not calculated directly
within each loop type, as the storage and extra functionality are better placed in a single

external object which can be quickly called.

Scope: Note that this object is used to calculate the energy of specific loops in a sec-
ondary structure. Previous libraries for computing the energy only deal with (at the input
level) the energy of an entire structure, and as such were not suitable for use here, as the
computation of energy for a single loop is the basic operation which we use a large number

of times for every step of the simulator.

Different Energy Models: The EnergyModel object is actually a base class, providing
a standard interface for calculating the energy of a specific loop type. We implement
two different derived classes, ViennaEnergyModel and NupackEnergyModel, based on the
Vienna and Nupack parameter sets, respectively. These are particular implementations of
the general nearest neighbor energy model and use subtly different parameter files. Other
variations on the standard energy model can be used here as necessary, as long as they have

the same basic function of being able to calculate the energy of a loop component.

A.9 StrandOrdering

Purpose: Handles the functions within a complex that involve the ordering of the strands
within the complex. These include most output functions, reordering of strands that hap-
pens when a complex is joined to another, and returning the exterior bases in all the

OpenLoops in the structure.

Functionality:

70

1. Maintains a linked list of the strands within the complex and the implied cyclic per-

mutation needed.

2. Performs circular permutations on the strand ordering, necessary when joining two

complexes.
3. Maintains the current sequence and dot-paren structures on demand for output use.

4. Performs stop structure checks to see if the strands in the ordering could match the

given set of strand ids and their ordering.

5. Assists SComplex in building the initial loop structure, and maintains links to all the

OpenLoops contained within the complex.
Data Members:
1. Strand List: doubly linked list of strands, each containing the following;:

(a) Strand ID.

(b) Strand Sequence (output version - ASCII).

(¢) Strand Sequence (binary encoded version, used internally).
(d) Current Dot-paren structure.

(e) OpenLoop pointer associated with the strand.
2. Exterior base count (updated when open loops change).

Discussion: When we join two complexes together, we need to ensure that the permu-
tation of the strands used for output corresponds to the cyclic permutation which does
not contain any crossed chords (this is guaranteed by the Representation Theorem, Section
D.1). Maintaining the ordering such that this is guaranteed is very straightforward, we
just need to take the cyclic permutation of each set of strands such that the strands being
joined together are on an ’edge’. This type of operation happens often when dealing with

the structure output and multi-complex moves (joining or breaking).

This object also maintains links into the actual loop structure, used for retreiving the

exterior base counts. These get updated automatically when moves are used that affect

71
OpenLoops. This is also used when we need to actually perform a join move, to help choose
which pair of bases is actually being joined, since we only compute the total rate of all join

moves combinatorially and don’t actually enumerate all the options until one is chosen.

A.10 Options

Purpose: Collects all the information about input, including simulation options, energy

model options, associated files and output information.

NOTE: this is a Python object and included here due to the relative dependence on
the data contained within at the highest simulation levels (SimulationSystem and Ener-
gyModel). Full documentation on the input and output routines is in the Multistrand

documentation, generated automatically for the Python side of the simulator.

Functionality:
1. Maintains simulation options and variables for use by SimulationSystem.
2. Returns energy model options for use by the EnergyModel.
3. Provides interface methods for reporting output to the user.

Discussion: Collects all the options used in the simulator in one data structure. Accessed
by EnergyModel and SimulationSystem to retreive the appropriate options when neeeded.

Contains the default settings for all options which are not required to be set in the input.

