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Abstract

The main purpose of my thesis is to establish an effective version of the
Grunwald—Wang.Theorem, which asserts that given a family of local char-
acters x, of K of exponent m where v € S for a finite set S of primes of
K, there exists a global character x of exponent m (unless some special case
occurs, when it is 2m) whose component at v is x,,. The effectivity problem for
this theorem is to bound the norm N(x) of the conductor of x in terms of K,
m, S and N(x,). This problem was encountered in 1995 in the work of Hoff-
stein and Ramakrishnan ([H-Ra95]), where they needed it in a particular case
when K D p,, AND m is a prime. In this thesis, we solve this problem com-
pletely, and show in the general case that N(x) is bounded by AJ],.q N (Xo)®
with A = (AONS)C”SI. In the special cases when K D pu,, OR m is a prime,
we can give a better bound for N(x) with A = AONgZ, where Ay, B, C; and
Cy are independent of S. The later bound improves the result of [H-Ra95].
We get an even more precise bound, namely N(x) = 4[] s NPN(xp), when
K =@ and m= 2.

In this thesis, we develop three different approaches, dealing with the
quadratic extension case, the Kummer or the general [-extension case, and
the general case respectively. In addition to class field theory, we use a reduc-
tion process to the unramified case and certain modified effective versions of
the Chebotarev Density Theorem. Also, in the general case, we transport to

this problem some techniques from Algebra involving essential subgroups and



iii
essential closures.

To check the maximal range of our method, we also consider the problem
with GRH, and get A = (Aplog N5)00|S| in the general case where Ay and
Cy are independent of S. When K = Q and m = 2, we do even better with
A << (2!81og NS)Z. To get these results, we use yet another modification of
the effective version of the Chebotarev Density Theorem (with GRH).

These effective results have some interesting applications in concrete sit-
uations. To give a simple example, if we fix p and [, one gets a good least
upper bound for N such that p is not an [-th power mod N. One also gets
the least upper bound for N such that I | ¢(N) and p is not an [-th power
mod N. The table 3.1 describes the best least upper bound we get this way
for quadratic Dirichlet characters on Cg having desired local behavior at some

p and/or infinity.
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Introduction

In 1933, W. Grunwald ([Gr33]) stated a striking theorem asserting that, given
a number field K, a finite set .S of places, and a family of characters x,, v € S,
of K of orders m,,, there exists a global character x of finite order of K whose
local components at v € S are x,. Furthermore, the order of x is the least
common multiple m of the m,, unless a special case occurs when it is 2m (cf.

Theorem 0.2— 0.4).

However, Grunwald’s original statement and proof had a flaw, which oc-
cured when he discussed the special case. The gap was filled by Sh. Wang
([Wad8], [Wa50]), who also gave a precise criterion for the special case and
showed that the order of x can be taken to be m under an additional con-
dition (see Chapter 10, [A-T68]). So this theorem is appropriately called
the Grunwald-Wang theorem. For a detailed discussion of this theorem, see

[Lo-Ro02000].

Given the local datum { x,, | v € S}, there are infinitely many global char-
acters x with local components x,. They can be highly ramified in general.
Indeed, some additional ramification has to be allowed as seen for example
when all the x, are unramified and K has class number 1. However, the nat-
ural question which arises is whether we can control the ramification of x in
terms of K, S, m and the norms N(x,) of the conductors of x,, for v in S. To

be precise, one would like a bound on the norm N(x) of the conductor of x,
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of the form AT], . (N (xu))? for some constants A, B only depending on K,

S and m.

This effectivity problem was encountered in 1995 in the work of J. Hoff-
stein and D. Ramakrishnan on Siegel zeros ([H-Ra95]), where they needed

it in a particular case when K D u, and m a prime, bounding N(x) by

Hues (A + N(Xv))B-

In this thesis, we solve this problem completely. In the general case, we
bound N(x) by AT],cs (N(x0))?, with A = (Ag - Ns)°®!l, where B, Ay and

C} depend only on K and m and Ng is the product of the norm of S.

If K contains p,, (Kummer case) or if m is a prime [ ({-extension case),
we get a bound of the form AJ], . (N(x0))? with A = AoN§* where B, Ap
and (5 depend only on K and m. So our bound is stronger and more precise
than the bound in [H-Ra95]. And if K = Q and m = 2, we can, by using a
different method, even show that N(x) < CNs]],cs N(xv) for some constant

C'. For a precise statement of the theorems, see the next section.

To understand the problem, let us look at the the simplest case, which
occurs when K = Q, m = 2, with S = {p} or { p,o0 }, and x,, unramified. A
quadratic Dirichlet character xp, (D,p) = 1, is nontrivial at p if and only if
p is inert in Q(+/D), i.e., (%) = —1if p# 2 and (%) =-—1ifp=2 Ttis

nontrivial at co if and only if D < 0. Thus this problem is exactly the one of

finding a bound for the least nonquadratic residue mod p.

In this thesis we develop three different approaches dealing separately with
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the following cases: (i) Quadratic extensions over @Q (Chapter 3),

(ila) Kummer extensions with m arbitrary, (iib) Non-Kummer extensions with

m a prime (Chapter 4), and (iii) the general case (Chapter 5).

Let us begin with some things which will be used in some or all the ap-

proaches.

By class field theory ([Lang70]), there is a natural surjective map from the
set of characters x of order m to the set of cyclic extensions of degree m,
with the fibers being of the form {x/ |1 < j<m —1,(j,m) = 1}. Thus the
problem reduces to the construction of minimally ramified cyclic extensions

with given local behavior.

In cases (i), (iia) and (iib) we make a reduction to the“unramified” case,
which means that in the given datum, all local characters are unramified.
The main idea of this reduction process is to find a minimally ramified global
character 1 with the given local ramification behavior so that by twisting
with this character, one eliminates the ramification at the given places. But
the choice of p is critical and we pick it carefully. In cases (i) and (iib) when
K = Q, we choose at any prime p, a Dirichlet character ® which is unramified
outside p such that (u(p))_1|Q;< - Xp is unramified and set = [] s 1) (See
Lemma 3.5 and Proposition 1.7). In case (iia), since the characters of order
m are given by K*/K*™, the problem reduces to finding v € Ok of minimal
norm with v(u) = v(u,) for any v € S, where u, € Ok, corresponds to xu.
For more details, see below. Finally, we get a bound which is a product of an

expression coming from the unramified case and a power of the product of the



X

norms of the conductors of the given local characters.

In cases (i) and (iii), we use suitable effective versions of the Chebotarev
Density Theorem. We need only the standard ones ([L-M-O79], [KM94]) in
case (i) while we need a modification (see Theorem 2-C, Chapter 2) in case
(iii). This modified version of the Chebotarev Density Theorem for a Galois
extension L/ K gives a least bound for a prime of K outside the given .S which
is unramified in L and does not split or corresponds to a certain conjugacy
class under the Artin symbol. The main idea to prove this modified version
is the same as the classical version in [L-O77], [L-M-O79], [KM94]. The only
difference is to estimate a certain sum over the primes in S. For details, see

Chapter 2.

Let us briefly discuss the cases (i), (iia) and (iib), and then describe in

greater detail the difficult general case (iii).

The approach in case (i) (Chapter 3), dealing with quadratic extensions
of Q, is the following. After the reduction to the unramified case, we further
reduce the problem to the construction of a minimally ramified quadratic ex-
tension Q(v/D) over Q with given local behavior. Note that for any D not
divisible by p, the restriction of xp to Q) is nontrivial iff (%) = —1 (resp.
(%) = —1) when p # 2 (resp. p = 2). Thus by the quadratic reciprocity law
of Gauss, each local condition corresponds a condition on (%) or the sign of
D. Hence, the problem is then reduced to a question (Question Z in Chapter
3, see Section 1.5) related to the Chebotarev Density Theorem for L/Q where

L is the extension of Q(1/—1) obtained by attaching ,/p for all p in S. We
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answer this question unconditionally with only elementary methods.

The second approach deals with cases (iia) and (iib). In case (iia), by the
Kummer theory (see [Ne91|, [Lang70], and also Chapter 1 below), we have
a bijection between characters of exponent m and the elements of the field
modulo m-th powers, and such bijection is compatible with localization. Thus
one reduces the problem to finding a b € Ok with b = b, (mod (KF))™ (See
Corollary 4.2). Reducing to the unramified case, where each b, is a unit in
Ok, , the equations becomes b = b, mod p,. So we can we apply an effective
version of the Chinese Remainder Theorem (Theorem 4.1) which is stated

and proved in this chapter. This method does not work in the general case.

In case (iib), we lift the local characters to K,((;)* and proceed as in
case (iia), and then pull back the global character. More explicitly, let x,, =
Xv © Nk, /K, for w € S, where S is the set of places of K; = K ({;) above S.
First we find a global character ¥ of K; with the given localization by using
(iia). We need to pull back ¥ on Ck, to x on Ck through N, /x. To do this
we use ([T, x o o) (K2:K] instead of § while o runs over Gal(K;/K). This is

possible since [K; : K| divides [ — 1 which is prime to .

The third approach (Chapter 5) treats the general case. Without loss
of generality, we may just consider the case when m = [" is a prime power.
The idea for this case is complicated. In fact, we consider a stronger prob-
lem which comes from another formulation of the Grunwald—Wang Theorem.
Given P = Hwes K;j — I and subgroup Py < P with P™ C P, there exists

a standard open subgroup V of Iy such that VI%LK* separates P/F,. i.e.,
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PNVIEK* C Py where n = m, or 2m if the special case occurs. The problem
is to find a least bound of the norm of such V. To achieve this, we transport

to this problem some techniques from Algebra involving essential subgroups

and essential closures.

To make our explanation understandable, let us discuss here only the generic
case. One crucial step is that if S’ is a set of primes of K containing S such
that #C¢(K, S') is not divisible by [, then VILK* = VILK®S = VILW for
some subgroup W in K% of finite rank which is computable (See Prop 5.8).
If aset ¥ of p ¢ S is chosen such that for any representative a € W/W" — 1,
there is some p in ¥ which does not have a lift splitting in K (§r,/a)/K(¢r),
i.e., K (Gr,\/a) # Ky (¢r), or is inert in K ({;r), then by Prop 5.6, the standard
open subgroup V,, corresponding to the cycle ¢ which is the formal product of
the primes in ¥, separates I% - W/Ik.. Thus take V = V, N V; where f is the

conductor of Py in P (for definition, see Section 5.4). V' is what we need.

When a special case occurs, however, some changes in the statements and
the proof are needed, but the main idea is the same. For a definition of the

special case, see Chapter 0.

Now let us describe the contents of all the chapters. In the ensuing section,
we will list out all the main results we get in this thesis. Chapter 0 consists of
the background material for the Grunwald-Wang Theorem, and some notations
which will be used in this thesis. Chapter 1 involves the preliminaries to
the later chapters. Chapters 3, 4, 5 deal with and solve this problem in

various cases via the three different approaches. Then Chapter 2 focuses on
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the statement and the proof of a modified version of the Chebotarev Density

Theorem.

Finally, it may be of some interest to know how much better we can do in
terms of finding the best possible constants A and B. To this end, we show
(see Chapter 6) that if assumes GRH, one can get A = (Aglog Ng)°!®! in
the general case, where Ay and Cy depend only on K and m. For case (i),
one can do even better with A << (2/5log Ns)2. To get these results, we use
two S—versions of the Chebotarev Density Theorem (with GRH), proved in
Chapter 6, which is a small improvement of Theorem 2.6 in [Se81] by J.-P.

Serre.



Main Results

Here we state the main results of this thesis. First, we list out all the uncondi-
tional results. In fact, we solve the problem in general, and also find stronger

bounds for various particular cases.

We begin with an effective version in the quadratic case K = Q and

m = 2.

Theorem A. Let S be a finite set of primes of Q, x, be either a quadratic
charatcer or a trivial character of Q, for each p € S. Then there exists a

global quadratic character x with XIQ;; = Xp such that

N(x) £ CNs [ [ N(x)
peES

C=2ifcc€elS, C=4ifco¢s, whereNs=Hp€SNp.

This is Proposition 3.6.

Theorem B. Let p be a rational prime and x, be a quadratic character on

Q- Then there ezists a global quadratic character x on Cgq such that

@) XIQ;; = Xp/
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N(xp)(@+3) ifp=1 (mod4);

N(x) = 9 8N (xp) ifp=3 (mod 4);

\ 10N (xp) ifp=12.

If we also require that x is even/odd, then condition (ii) is replaced by

(i)

CN(xp)(p+3) ifp=1 (mod4);

N(x) = 1 2CN(xp)(p+1) ifp=3 (mod 4);

\7CN(X;D) ifp=2

where C =1 if x is even, and C = 2 if x is odd.

This is Proposition 3.7.

For a more precise result when S = {p} or { p, 00 }, see Tables 3.1 and 3.2.
Now we turn to the general Kummer case u,,, C K.

Theorem C. Letm 2 1, K a number field which contains the group pi, of m-
th roots of unity, S a finite set of finite primes of K, and x, a local character
of exponent m on K for each v € S. Then there exists a global character x

on Ck of exponent m with x| KX = Xuv Such that

N(x) £ ((m?/2) HpB)nK -B(Q) - Ng"x . HN(Xv)(m—l)nK . 9e1
plm

vES
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where Q = {wy,ws, ... ,wn, } s an integral basis for K, ng := [K : Q),
ng
IT > lel,
o:K—C i=1
Ns = [l,cs Npw, and ¢, = r1(K) (resp. 1) if m =2 (resp. m > 2).

This is Theorem 4-A.

For any finite set 7" of places of a number field K, we will write Clg 1 for

the T'—class group of K (see the end of Section 0.1 for a precise definition).

Here is another version in the Kummer case.

Theorem D. Let S be a finite set of finite primes of K which contains fi,,
where m is a positive integer greater than 1, x,, a local character of exponent m
on KX for each v € S. Assume that S* is a finite set of finite primes disjoint
from S, Sy = {v | m} and Ss with Clx seuseu(sm—s) = 1. Then there exists

a global character x on Ck of exponent m with X|K5 = X such that
N(x) £ ((m*/2) Hp BN - [ Noo- [T N(w)-2*
veES* veS,utm
where B(R2), ¢1, Ng and nk are as defined in the previous theorem.
This is Theorem 4-B.
Next we get a precise result for the [-extension case, i.e., with m = [, an
odd prime, and K arbitrary.

Theorem E. Let S be a finite set of finite primes of K, and m =1 is an odd
rational prime, X, a local character of exponent m on K for each v € S.

Then there exists a global character x on Ck of exponent m with x|gx = Xov



Xvil

such that

l3nK+2an , e d? Dzl
(X)_( ongd ) B(Q)NSK HN(X’U)

veS

where K1 = K(¢), nk = [K : Q], d=[K; : K], * = {wi,ws,... yWngd } 15

an integral basis for Ky, and

nigd

B@) =[] 3 lowl.

0:K—C i=1

This is Theorem 4-C.

Here is a more precise result for K = Q and m = [ an odd prime. Note

that this is not merely a corollary of Theorem E..

Theorem F. Let S be a finite set of finite primes of Q, and x, a local charac-
ter on Q) of exponentl for each p € S while | is an odd rational prime. Then

there exists a global character x on Cgy of exponent | with XlQ;; = Xp such that

N(X) g 2—(l—1)l2l+1(l l 1 N.ls 1 H N Xp
PES,p#l

This is Theorem 4-D.

Here is the general case. Without loss of generality, we may assume that

m is a prime power [".

Theorem G. Let K be a number field, m = I" a prime power, S a finite
set of primes of K, X, a local character on K of exponent m for each v €
S. Assume K((r)/K is cyclic, or the special case occurs with some specified

condition holds. There is a global character x on Cg of exponent m with
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Xlgx = Xv such that
N(X) é (dKl('r+1)nKNS/)C(TW+1)l[K(CLT)3K] . H N(X’U)
vES

for some absolute, positive, effectively computable constant C where S’ is a
finite set of finite primes containing all the finite primes in S and satisfying

Lt # Clg sus,,, and
rw = M(Clk,suse) + #(S U Se) — 1.

Here v,(G) denotes the minimal cardinality of the generating set of the

Sylow-l subgroup of G. For a more explicit version, see Chapter 5.

Corollary H. Let m = [I" a prime power, S a finite set of primes of Q, X,
a local character on Q) of exponent m for each p € S. There is a global

character x on Cg of exponent m with x|Q; = Xp such that

i S lr+1
N(x) £ N, ) IS TT N ()

peS

for some absolute, positive, effectively computable constant C' where Sy consists

of all the finite primes in S.

Finally we turn to a result with GRH for the general case.

Theorem I. Preserve all the hypothesis of Theorem G with the same ry and

S’, and assume GRH. Then There is a global character x on Cg of exponent



m with x|gx = Xo such that
N € C*" (B 4 (r + 1) B + Bg)*™ 2 ((Br + rBy)” + E3) HN(Xv)
for some absolute positive constant C’, where

E, = [K; : K]logdk
E2 = [K1 . K]nKlogl

E3 = [K1 . K]logNSI

The following theorem provides a bound for m = 2 and K = Q assuming

GRH, which is stronger than what is implied by the previous theorem.

Theorem J. Let S be a finite set of primes of Q, xp, a charatcer of exponent 2
of Q) foreachp € S. Assuming GRH, there ezists a global quadratic character

X with x|gx = Xp such that

N(x) << (210, Ns)" [T N (xo)-

pES

Besides these results, we also get three modified versions of the effective
version of the Cheborarev Density Theorem (Theorem 6-A, 6-B and 2-C).

The first one is a small improvement of Theorem 2.6 in [Se81].



Chapter 0 Notations and Statement of the

Problem

0.1 Notations and Background

Let K be a number field, v a place of K, and p the prime corresponding to wv.
In the non—Archimedean case, p has the natural meaning — a prime ideal of
XK.

Let K, or K, denote the completion of K at v (or p), and let Ok denote
the ring of integers of K, where K is a local or global field (e.g. a number
field). If K =R or C, then O = K.

Let Uk or O denote the group of invertible elements in Ok.

If K is an ultramedian local field, denote 7 a uniformizer, and p = (7) the

prime ideal of K. Also denote
Vin =UD = {z:v,(x—1) >n} =1+p"

where v, is the valuation corresponding to p. If K = R, denote p the corre-

sponding infinite prime of K. Denote

Vi = Vo = R¥

Voio=RX={a€eR*|az=0}.



If K =C, then V; = C*.
In the above case, we use the notation V,» where p” is a formal prime power
which is called a cycle. Such Vi is called the standard open subgroup (of the

multiplicative group O% of level n ). Also we denote the unit group as the

following: (Compare with the group of the invertibles.)

(
Uk if K is non—Archimedean
Uk = q {1} if K=R
SLif K=C
\

If K is a global field (for example, a number field or a function field over a
finite field), denote Ak as the ring of adeles of K, i.e., the restricted product

of K, rel. to O,; Ik the ring of ideles of K, i.e., the restricted product of K

rel. to U, where U, = Uk, . i.e.,

by =) | 25 € Ky, 26 € Oy for almost all primes v.}

- H' K,
and also we have

I o= { () | e € Ky € O for almost all primes v.}
- H’Kg

K embeds into Ak, and K* embeds into [k in a natural way: K — Ag :

@b (ne g Bipevu g Byoss )y 800 B= w2 Tar t @ = {ane sBynns s8ysse)s
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Let Cx = Ig/K* = the group of idele classes of K.

Let ¢ = [[p™ denote a cycle, i.e., a formal product of primes. If p is real,
np, = 0 or 1; if p is complex, n, = 0; if p is a finite prime, n, = 0,1,.... Note

that n, is 0 for almost all p.

An idele a = (a,,) € I is said to be 1 modulo ¢, if the following hold:

(1) a, = 1( mod p™) if p is non—Archimedean. This condition is equivalent
to vp(a, — 1) = n,.

(2) ay, 2 0, if p is real and n, = 1.

(3) ay, € O, = OF if n, = 0, for any case.

Denote the above a =1 (mod ).

Putl, ={a€lg|a=1 (modc)}. NotethatI} = {a€lk|a, € O }.

Denote V; = I the standard open subgroup of Ix of the cycle c. Also denote

. I K~
CK: KKX

the Ray idele class group of K of the cycle .

For a global field K, denote Ug the unit group of K as before.

Uk :={a€ K* a€Of forall non-Archimedean v }
1(K) = the group of roots of unity in K
={we K*|w" =1 for some N }

pn(K) ={we K* |w"=1}

A local character x on/of K* (sometime we say of K) where K is a local



4

field is a homomorphism: x : K* — S!.
A character x is said to be of exponent n if x factors through K> /(K*)" —
pn(K) — S* — C*. If n is the smallest positive integer such that x factors

through K*/K*", we also say that x is of order n. (Denote here Ordx = n.)

A global character x on/of Cx (We also call such x a Grossencharacter on

Ck or on K.) is a continuous homomorphism:
X CK :]IK/KX = Sl

with Ker x contains C§; = V. 0o K*/K* for some cycle c. (Note that C§ form
a basis of open neighborhood of 1 in Ck.) Also, x is said to be of exponent n
if x factors through Cx/C% — u,(C) — St — CX.

X is said to be of order n if such n is the minimal exponent of .

Also, the natural embedding K0 — I induces a natural embedding K} —
Ck.

Compose x with such embedding, we get x|x, the local component x at v.

Also we denote it x|,.

The conductor f, of x is defined as the following:

If x is a local character x, on K, = K where p is the corresponding
prime. (It is a real ideal if v is non—Archimedean.)

fx = p/ where f is the minimal nonnegative integer satisfying U I(é,) C Kerx.

In fact, if v is non—Archimedean, it means that x, factors through K> /(1+
p’), and xu|14ps—1 is nontrivial.

If v is complex, f, = 1.
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If v is real, then f,, = 1 or p, and it depends on the sign of x(—1). f, =1

iff x(—1) = 1; fx = p iff x(—1) = -1

Next, if x is a global character, then f, = ¢ where ¢ is the smallest cycle

such that x|ce = 1. i.e., Let X be the composition the natural map Ix — Ck
and x, Then ¢ is the cycle such that X|y. = 1 and if X|y, = 1 for some ¢'|c

then ¢’ = ¢.

If fy = ¢ = cinscy where c;¢ is the infinite part of ¢ and ¢y is the finite
part of ¢, then we also call ¢y the finite conductor of x, which appears in the

functional equation of L(s, x).

Theorem 0.1. If x is a global character, then the conductor of x is the prod-

uct of the conductor of its local components. i.e.,

fx = H Fxw

where s = X|u:

Proof. See [Lang70] or [Ne86]. O

A local character x on K* is said to be unramified if f, = 1. A global
character  is said to be unramified at v if x|, is unramified (otherwise we say
it ramified), i.e., f,, does not involve p — the corresponding prime to fV fV.

Let p be a prime of K (local or global). Np is defined as (1) Np = [Ok : p]

if p is a finite prime of K; (2) Np = 2, if p is real.

Remark: If K is a global field, v is non—Archimedean, p the corresponding
prime ideal, then [Og, : pOk,] = [Ok : p]; thus (1) is compatible with

localization.
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If ¢ =[] p™, then define the norm Nc¢ = [J(Np)™.

The norm of the conductor of x (local or global) is denoted N(x) := N (f,).

By the definition and Theorem 0.1,

N(x) = N(fy) = HNXU)—HN(fo

To end, let us explain the concept of a T—class group here.

For any finite set T' of places of a number field K, we will write Clg 7
for the T—class group of K. It is well known that T—class group has two
interpretations (see [Lang70] , [Ne91]).

First, if T' is a finite set of primes of K, the T-ideal class group Clg r is
defined as Ji/J% Px where Jg is the ideal group of K, JE the subgroup of
Jxi generated by all primes in 7', and Pk the subgroup of Jx generated by all
principal ideals of Og. It is clear that Clgp is exactly the class group of K,
and as T' gets larger, Clg r shrinks.

Furthermore, if 7' contains all infinite primes of K, then Clx r is defined
as I /IL K>, where I denotes the group of ideles Z with local component
Z, € Uk, for ¢ ¢ T. Also, it is clear that Clk g, is isomorphic to the class
group of K, and that Clk r shrinks as T' gets larger, where Sy is the set
consisting of all the infinite primes of K.

The two definitions are compatible with each other since for any finite set
of finite primes S, the first Clg g is isomorphic to Clk sus,, defined in the
second way. So we can define Ck r, for arbitrary set T" of primes of K, finite

or infinite, using either definition.
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0.2 The Grunwald—Wang Theorem and the Effective

Version

Here we state the main theorem — Grunwald’s Theorem. This theorem was
first stated and proved (not completely) by Grunwald. However, the proof
appeared in [A-T68] was first due to Sh. Wang (see Chapter 10 of [A-T68|,

and [Wa50]).

Theorem 0.2. Let S be a finite set of primes and { x,,v € S'} a set of local
characters of K. ( x, on K. for each v € S') of exponent m.

Then there ezists a global character x on Ck such that

(8) X|o = Xo-

(b) x is of exponent m, unless the special case occurs (which we will define

below), when such x be found of exponent 2m.

Theorem 0.3 (Characterization of the special case). Let S be a finite
set of primes of K, P(m,S) := {z € K*,x is an m-th power in K for all
v ¢ S}

Then P(m,S) = K*™ except if the following conditions hold. (If they hold,
we say that the special case of Wang occurs.)

(a) K is a number field.

(b) —1,+(2 + mes) are nonsquares in K* where s is the integer such that
Nes € K™, Mos+1 & K*.

(e) m=20wl, 24/, L = 5,

(d) Sp C S, where Sy := the set of primes |2 such that —1,£(2+mn2s) are

nonsquares in K.
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In the special case, P(m,S) = K*™ U aoK*™, where ag = (1 + (s)™ =

Myerr = (igsr1)™ = [£(2 + 100) ™2,

Notation: (, := a primitive n-th of root of unity. 7, ;= 2Re(, = ¢, + Cl

Theorem 0.2 and Theorem 0.3 are proved in [A-T68]. Also in Chapter 1,

the sketch of proof will be contained.

Remark. The simplest of the special case occurs when m = 8, K = Q,

So = {2}, 16 € P(m, S), but 16 ¢ Q$, ap = (2 + n*)* = 16.

Theorem 0.4. Keep the notations as in Theorem 0.2 and Theorem 0.8.

If the special case occurs, then such x can be found of exponent n =

lem(|xvl) o

H Xv(ao0) =1

VESy

Otherwise, we can only reach the exponent 2n.

Remark. The simplest of the special case for Sy = ¢ occurs when m = 8, K =
Q(=7), ap = 16, and K ((s) = K(v/2,4)/K collapses at 2 since v/7 = iv/—7

and —7 is a square in Qs.

In [H-Ra95], Lemma 2.10 asserts that for K 2 p;, where | — a rational
prime, given S a finite set of finite primes, x,,v € S global characters are
given of exponent [. By Theorem 0.2 and Theorem 0.3, note that 7, = ny = 0,

the special case can’t occur. So we can find a global character x satisfying
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Theorem 0.2, x | {. And furthermore, we can find such x with

Nx) < [[(A+N(x))®

vES

where A, B depend on [, K and S.
In fact, we will see in next chapters that such bound can be strengthened

to the form

N() < AT NGw)®

veES

A depends on K, S and [, and B depends on K and [.
This is the simplest case of what we call an effective version of

the Grunwald—Wang theorem.

Of course, there is a natural way to generalize this theorem. One may ask
how the bound will depend on the various parameters, when the condition

that m is a prime or that ¢,, € K is dropped.

Problem I K is a number field, S, m given and { x,,v € S} given as in
Theorem 0.2. All notations are the same as in Theorem 0.2 and Theorem

0.3. Find a (effective) bound for N(x) in terms of K, S, m and N(x,) for a

solution x in Theorem 0.2.
Or, restating it.

Problem T’ K is a number field, S a finite set of primes, m a positive
integer, and x, a local character on K for each v € S. Assume that x, are

of exponent m, find a global character x which is a solution of the Grunwald—
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Wang Theorem, such that N(x) can be bounded by an effective expression in

terms of K, S, N(xu).

Remark: Of course, Problem I also has an obvious analog when K is a

function field over a finite field.

By the local and global class field theory, there is a surjective map from the
set of local characters on K¢ (global characters on C) of finite order, to the
set of cyclic extensions of K, (K) of finite order. Also there’s a one-to—one
corresponding between the set of open subgroups of K (Ck).

Another version of the Grunwald—Wang theorem and the precise form is as

follows.

Theorem 0.5. S is a finite set of primes of K, and for each K,, forv e S, a
local cyclic extension L,/ K, is given. [L, : Ky)lm. Then there exists a cyclic
global field extension L/K such that

(a) L./K,, the localization of L/K at a prime w/v, is the same as L,/ K,
(Up to a K,-isomorphism).

(b) [L : K] divides m, unless the special case occurs; if the special case

»

occurs, we can find such L with the following “ag” constraint:
Sl = SO g Sa
where

Sy :={p € So, a0 is a norm ong/Kwﬁl‘P}

Otherwise, we can only find L with [L : K] = 2m.
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Notation: If L/K is cyclic corresponding to a character x (local or global),

then denote f|./x = fly-

Thus, we state the following problem:

Problem II S, L,/K, are given above in Theorem 0.5. Find a global
extension L/K satisfying Theorem 0.5 and find the least bound of N(f/x)

in terms of K, S, m, Nfp,/k, .

Remark 1: Such bound for Problem I or Problem II should exist, since for
each local field K,,, KX" is of finite index in K*, thus the set of local characters
on KX of exponent m is finite. Thus the character family {x.,,v € S} is from
a finitely many choice. For each choice of {x,,v € S}, there is a solution x
satisfying Theorem 0.2. Choose the maximal of such N(x) for x obtained

through all choices of {x,,v € S}.

Remark 2: Problem I and Problem II are not equivalent unless #5 =1 or
m = 2, and Theorem 0.2 and Theorem 0.5 are not equivalent unless #5 =1

orm = 2.

Here we introduce the notation BP1 and BP2, the least bounds obtained
from Problem I and Problem II. If an expression F is found for such bound,

we write BP1 < F or BP2 < E, respectively.
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Chapter 1 Preliminaries

1.1 Reciprocity Law and Properties

First recall some important properties of characters of finite order both in the

global and local settings.

Let K, be a local field, p be its maximal ideal, and assume that (,, € K,
thus via the local class field theory, each subgroup of K of index M and expo-
nent m corresponds to an abelian extension of K, of degree M and exponent
m. Here, “exponent m” means that the Galois group of this abelian extension
has exponent m. This correspondence is set up by the local reciprocity law.
See [Ne86], [Ne91].

Consider a local field Ly = Kj( "\‘/K—px) By Kummer theory, Np,/k,Ls =
"
and Gal(Le/K,) = KJ/K;™ is finite.

Consider the following reciprocity map &3,@:

*,b
== ()

. (*’ LCI/KP) %
B Vb

where (*Tb> is the local Hilbert symbol, and K;" = Hom(K, u(K)).

By the local class field theory (See [A-T68], [Ne86] and [Ne91]), ®, induces
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a homomorphism:

O, : KX /KX™ — (KX /KX™)"
[b] = Xby

N (

a,b

Proposition 1.1. ®, s an isomorphism.

Proposition 1.2. Let x be a local character of exponent m of s

(1) If p { m, then fy, = 1 iff x is unramified, and f,, = p iff x is ramified.
Say x = Xpp for some b € K, Then fy,, = 1 iff b € Uy, -prm, fxop = P
otherwise.

(2) In general, if {,, € K, is NOT assumed, then f, | p**', where

0, ifptm
A =

[vp(m) + ;}”_/—’1’] ifp | m
where p is the rational prime lying under p, and ey, is the ramification index

of p over p.

In particular, if m = p"v and ptv, then A\, = [ep/p('y + ;i—l)] when p | m.
Remark. Here [z] denotes the integral part of z, i.e., the largest integer not

exceeding z.

Proof.

(1) See Prop 3.4 and Lemma 5.3 in [Ne86] and [Ne91].
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(2) Tt suffices to show that:

IF p(5) 2 vy () + ey (P — 1),

theny =37, (é)w“ converges, and y™ = 1 + .

Since

Up ((i)fta) = avy(T) + vy (i(%le)(#Jrz)!"'(?l{Jfa_l))

= afup() — vy(m)] — vy(a)

o9}

2 afuy(z) = vp(m)] = 3 oy (p)
= afvy(2) = y(m) = —25) = 0

as vp(x) — vp(m) — %"_L’l’ is positive. Thus as a formal series, y = (1 +z)m O

Now we come to global characters. Let K be a number field with ¢, € K.

Consider the following map:

(5IKX —>CKA
b_’Xb
i 5 By ] = (a,K( \/TH\E/)E/K) Vb

where (a, K(%/b)/K ) is the global reciprocity law symbol.
The main assertion about the global characters is the following Proposition.
Proposition 1.3. (The interconnection between the global and local

reciprocity laws of exponent m)

(1) ® induces an isomorphism ® between K*/K*™ and the group of con-



15

tinuous characters on Cx of exponent m.

(2) Forbe K*, p a prime ideal of K, we have

*, b
Xb|p: T = Xb,p

where Xpp = (—p—é) is the m-th power Hilbert symbol on K,,.

This is standard. See [Ne86] and [Ne91].

Next, we consider )\, appeared in Prop 1.2, and state and prove some

results, which will be useful to us in the later chapters.

Lemma 1.4. Let K be a number field, m an integer. (Here (,, is not assumed
to be in K.)

(1) II, p divides I b which in turn divides (m) ], (p)-

(2)

nK

[Tve» < qm]]»

p plm

(3) For any global character x of exponent m, put f = [[, p™ and x,, = x|o-

Then, [1ym fx. divides (m) [1,,,(p)*, and f, divides

[[e]I®* T »-
preal. plm ptm, ram.
Hence,

N(x)f{(m)H(zo)?} II No.

plm ptm, ram.

Proof.
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(1) As Ay = vp(m) + 1, then (1) immediately holds.

(2) Directly from (1).

(3) From Proposition 1.2, we have

foU divides Hp”’\*’ divides Hp1+vv(m)+€v/p

vlm plm plm

divides (m) - Hp . H P
plm

plm

divides (m) - I—[(p)2

plm
and

[] fx divides II »

vtm, finite plm,x|p ram.

using f = Hv finite fv ) Hp real P+
Thus all assertions in (3) hold. Done.

O

The following corollary can be easily drawn from Lemma 1.4 and Proposi-

tion 1.2, together with the Kummer theory.

Corollary 1.5. Assume that ¢, € K, K a number field, x = xp», and (b) =

lem p®) . ¢ and b € Ox\{0}, ¢ being some cycle not involving those primes

p|m.

Then

fy divides ¢q(m) D[(p)ch

plm
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and

nK

NG S Am][p?y Ne-2o

plm

where ¢y s the cycle which is the formal product of all real primes in K, and

c1 denotes the numbers of all real places v of K where x, is ramified.

Proof.

Note that for p t m, x|, is ramified iff f,,, = p, iff m|v,(c). O

1.2 [-extensions

Next we want to say something about [—eztensions, by which we mean cyclic
field extensions of degree a prime number .

Assume that K is a number field, m = [, an odd rational prime, let x a
global character of K of exponent I. K; = K({;), and X = x o Nk, /k.

For each prime tower w/v in K;/K, we have the following commutative

diagram:
(#1), — Ugy
lN(an/KU JNKl/K
Kv e OK
such that:

X'w = Xup'© N(Kl)u/Kv

i.e., the localization commutes with the norm.
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The following is easy but crucial. It will be used in the Chapter 4.

Lemma 1.6. Let X, = X|v, and X = Xo © N(x1)o/k,- Then X|w = Xw and
Hfiw | va’
wlv
equality holds if v 1. Hence,
TNV G) | N ()b,
wlv

equality holds if v11. Here, given a formal cycle ¢ of product of finite primes

in K, we identify it with the cycle represented by the ideal Ok, in K;.

Proof.
It suffices to show (2) by all the discussion above.

For any a € 1+ p™ in KX where f,, = p7v,
Nk, (@) © 1+ p3»

Thus Xu(@) = Xo(NEy)/k. (@) = 1, thus fg, | fx,» thus [, fz. | fxe-
Furthermore, if v { /, and w | v, thenw { [/, and p,, =[], pu since (K1)o/ Ky
is unramified as K1 = K({).
And by Prop 1.2 f,, =1 or p,, and fg, = 1 or p,.

Thus it suffices to show that X, is unramified iff x, is.
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Due to the following diagram,

N, /r
F HE. OB
lf‘fFl/(Kl)w lNF/Kv
(Kl)w K’U
Nx1), /Ky

By the global reciprocity law, say X, corresponds to F'/ K, for some cyclic
extension field F', and F; = F(¢;) thus by the functorality and lemma 1.6,
Fi /K, is the field extension corresponding to X..

Note that [ 1 [(K1), : Ky] and [F': K] and [F} : K3, are 1 or [, thus they
are equal. And also, F1/Kj, is unramified if F'/K,, is unramified; F;/Kj,, is
totally ramified if F'/K, is totally ramified.

Thus (2) is true.

For (3), although we have identified the cycles of K with the corresponding
ones in K7 in the sense of Lemma 1.6, the norms mean different. They differ

by a factor of [K; : K| at the power index. O

More details will be discussed in later parts.
We conclude this section by the following proposition which is a direct
consequence of the decomposition Ig = Q% x R x [ Ug,. See [Lang70],

[Ne91], [Ra-Va97].

Proposition 1.7. Let p be a rational prime and x, a given local character on
Q. Then there exists a global character x of Cq of the order dividing that of
Xp satisfying the following:

(1) x is unramified at all rational primes q # p,

(2) Xlplo, = Xplsg, - €, Xp' - Xlp is unramified.
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1.3 Local and Global m-th Powers

In this part we discuss the local and global m-th powers and the interconnec-
tion between them. More importantly, we go through a proof of the Grunwald—
Wang Theorem, because we will later need to use both the notations and some
ideas in the proof.

Recall that for any finite set S of primes of K, C'¢k s denotes the S—class
group of K.

For each number field K, and S some set of finite primes in K, we introduce

the following notations.

I (m, S) = I'*(m, S)

= {c €lk,v,(c,) is divisible by m for all ¢ ¢ S}
Ix(m,S) = I(m,S)

= {CE]IK,C(‘O EK:m for all cp¢5'}
P*(m,S) = I*(m,S) N K*

:= {a € K*,v,(a) is divisible by m for all ¢ ¢ S }
P, 8} = I{m, ) N K*

={aeK*,ac K" forallp ¢ S}

Lemma 1.8. If Clgs =1, i.e., Ig =13 - K*, then P*(m,S) = B . =7,
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Remark. K° denotes the set of S-units of K.

Proof. See [Lang70] or [Ne86]. O

Proposition 1.9. Let K be a number field and S a finite set of primes,
P(m,S) defined as above. Thus P(m,S) = K*™ if K({2:)/K is cyclic, where

t

m = 2tm/ where m’ is an odd integer. In general, P(m,S) 2 K*™?.

Proof. We proceed this into several steps.

Also see the Chapter 9 and 10 in [A-T68].

Step 1. Reduce to the prime power case

If we know that Proposition 1.9 is true when m a prime power, then

P(m,S) = (] P(»*,S)

p*|m

= [ &% nPis
palm,p;ﬁz

= K*™ 0 P2, S)

If K(¢2t)/K is cyclic, then

(LHS) = K*™ n k**

= K*™
else

(LHS) = K*™ 0 K**/

- me/2
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Here we used a fact that if (a,b) = 1 for a, b positive integers, then K** N

K< = Kk,

In fact, say ua +vb =1, u,v € Z then if z € K**N K*® then ¢ = guatvb ¢
Kxab

Remark: In fact

[P(m,S) : KX™ = [K*™ N P(2%,8) : K*™]

= [P(2,S) : K**]

by the following lemma and that K*™ - K** = K*.

Lemma 1.10. Let H € G € W be abelian groups, C S W another subgroup.
Then [C NG : CN H] divides |G : H|. In fact, |G: H|=[GC : HC]-[CNG :
CNH]. Then [G:H]|=[CNG:CNH]iff GC=HC.

Proof.
[G:CNG]=[GC:C)=|GC: HC|[HC:C]|=|GC: HC][H : C N H]
Thus

[G: H]=[GC: HC]-[CNG:CnH]

Continuation of the Proof of Prop 1.9.

Step 2: Kummer case, m = p", and (,, € K

Assume that (,» € K, need to show that P(m,S) = Kx¥.



23
Va € P(m,S),a € K™ for any ¢ € S. Thus the Kummer extension

K(®/a)/K collapses completely outside S, i.e., K,(&/a)/K, is a trivial ex-
tension. Thus by Theorem 5.2 in [A-T68] or Corollary 3.9 in [Ne86] which
asserts that a Galois extension is trivial if all but finite primes split completely.

We conclude that K ( %/a)/K is also trivial. ie., a € K*?".

Step 3: K ((yr)/K is cyclic of the degree of a prime power. m = p"

Note that if p is an odd prime, then K ({,r)/K is cyclic.

For each o € P(m,S), let 8" = {¢'|p € S, ¢ primes in K; }, thus o €
K™ € K(Gr)y” for ¢/ | o, ¢ ¢ 8.

Thus by step 2, we may assume that « = 3™, Bo € K((r)™, Bi = Bolpr'-
Thus K(B;)/K is a subextension of K({,)/K. Since K({,)/K is cyclic of
degree of p power, then all subextensions can be totally ordered by inclusion.
If ¢ K*™ then f5; ¢ K, then select a minimal subextension K (3;,)/K which
is contained in K (3;)/K for other K.

Note that ¢ ¢ S splits completely in K(3;)/K for some ¢ since a = 3¢, thus
p ¢ S splits completely in K(5;,)/K.

By Theorem 5.2 in [A-T68] we just mentioned, K(G;,) = K, B, € K*

contradicts the assumption that a = 3;,™ ¢ K*™.

Step 4. m = p", p is odd

Vz € P(m,S), let K1 = K((p), ' ={¢' | p €S, ¢ primes of K;.}, thus
Vo' ¢S, ¢ |p,ze Kx™C Klg,m.
Note that K;(¢yr)/K is cyclic of degree of power of p, from the last step,

z € K™, thus x = y™ for some y € K;*.
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Let A\=[K;: K]|p—1, then

2 = Nk, k(%) = Ngy e (Y™) = (N i (y))™

Thus z* € K*™,

Note that (A\,m) = (\,p") =1as A | p—1, we get x € K*™.

Step 5. m = 2!, K(¢n)/K is cyclic

K ((et)/K is cyclic of degree dividing 2¢~1; thus from the step 3, the propo-

sition is true in this case.

Step 6. m = 2!, t > 3, then P(m, S) € K*™/?

Note that K({4)/K = K(v/—1)/K is cyclic. Thus if K(¢»:)/K is not cyclic,
i 8.

Now we prove that P(m,S) € K*™?2. In fact, let Ky = K(v/—=1), S =
{@|p, pprimesof K1 }.VpeES, @|op, x€ B ¢ BT,

Note that K;((at)/K; is cyclic. Thus by the step 5, z € le2t.

Say z = y?', for some y € K, = K(v/—1), thus

2® = Nig(y=1yx (@) = (Niy=nx¥))?

Hence z = +y2 . If £ = —y?" ™", then —z € K;<4 for all ¢ ¢ S as t = 3, then
—1€ K:4 for all ¢ ¢ S. Thus by the step 5, —1 € K** thus £v/—1 € K*?,
thus K; = K(v/—1)/K, thus z € K*™.

xm/2

Otherwise z € K

Combining up the last 6 steps, we get the proposition. O
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Proposition 1.11 (Description of the special case). If K is a number
field, K(2%)/K is not cyclic. m = 2'm/,2{m’

Here

ap = (14 Gos)™

= (2+m)™? = (V=12 +m))

m/2

where s is the integer such that nys € K and mgs+1 ¢ K.

Then
(1) P(m,S) € KX™UapK*™, and 8 | m.

(2) If —(2 + mgs) is a nonsquare in K*.

Let
So:={pl2, =1, £(2+ns) are nonsquares in K }

then P(m,S) = K*™ if o G S;

P(m, S) = KX™U* agK*™ if S, € S.
(3) If —(2 + mgs) is a square in K* then ag = (1 + (os)™ € KX™.

Remark: Here we explain why Prop 1.9 and Prop 1.11 lead to Theorem 0.3.
Note that if K({s¢)/K is not cyclic, then we rule out the possibility that K is
a function field. Also —1 is not a square of K since Gal(K ((x)/K(v/—1)) is
a subgroup of Gal(Q({2:)/Q(v/—1)) which is cyclic. Here Lo/~ T° =—1.

Also 2 + 1gs = (dm9041)?, and mge41 & KX, thus 2 + 7 is not a square.

Also t = 3 since K ({sr)/K is cyclic if t < 3.
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Also check that

ag = (1 s Czs)m = Poasd ¢ == (\/ —17723+1)m

= [£(2 + 7)™

Thus all assertions can be easily deduced from these two propositions.

Proof of Proposition 1.11.
Let K1 = K(v/—1) = K(y/—1), then K;({s2t)/K; is cyclic. By the remark
8| mandt23.

Thus by Prop 1.9,
P(m, 8) = K*™ S K**

Vz € P(m, S), say « = y*, y € K.
Let o be the nontrivial element of Gal(K;/K), i.e., the nontrivial automor-
phism of K7, then z = a(y)zt.

Thus

(%) -1

for some 7, and (" € K;. Also
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Let r = 2t=* . ;4 for some integer \ and some odd integer u.
Say uA + 2¢B =1 for some integer A and B, thus (3 ™ = o (¢2:™).

However,

CZ*TA — <2t2t_)‘;LA — §2t2t_>‘(1—-2t3)

9t—A

= (2" = (a

and

7;50/’}0{6(@*) =@+ = eK

By the assumption of s, A < s.

Thus

for some pyp.

Note that
G € Q(m2s, v—-1) CK(V-1) = Ky
and 0(ss = (oo * since Im (s € Q(12s), and

0(Cs) = 0(Cs) + o(vV—1)o(Im (ys)
=nos — V—1Im (g = (™"

Thus o(1 + (o) = 14+ Gt
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and

14 Cos

ore)

Thus let ' = y/(1 + ()" € K;.

Check that

[E

y'/oy) =y/o(y) / (IL+ Coo]/[1 + Goa D™ =

Thus ¢ € K.

Thus z = (1 + CQS)ZtMO c Kx%

Note that
(1+G)™" = (@2 +m)* e ¥
and
a0 = (1+G)™ = (14 )™ = (2 +mp)” "™
Thus

t i
.”BEKXZ Uaon2

As z and ao € K*™.
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Thus

z e (K*F N K*™) Uao(K*% n K*™)

:meuaonm

Thus (1) holds.

Now Prove (2).

If —(2 + n,) is a nonsquare in K*, i.e, &v/—1nsr1 ¢ K, we have that
F = K((s+1) = K(y/—1,mps+1) over K a four-group subextension of K ((3:)/K.

Thus by the definition of Sy, F'/K collapses at ¢ iff o ¢ Sy since —1 =
=1, (d£mge41)? = 2 4 10 and (:l:\/——_Tngs-H)z = —(2 4 1n0s).

Note that if v/—1 € K then (ps € Q(ns,v/—1) C K. Thus if F/K

collapses and v/—1, ms+1 or v —1mgsr1 € K7, then

ap = (14 Cos)™ = mosi™ = (\/—17725+1)m € K:jm

Next, we will prove that ag ¢ K;fm for ¢ € Sp.

Assume that

ao € KX™ @)
Then ao € K. In K(Cx)/K,
2t—1 )
¥ —a=[[(—- G "(1+G&)™)
r=0

Thus say b, = (o (1 4 (2)™ , thus K (b,)/K is a subextension of K ((x)/K for
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each r, thus it is abelian.

Since I'/K does not collapse at ¢ as ¢ € Sy, thus neither does K ((¢)/K.
Thus for each r, if b, is not in K*, then K (b,)/K will not collapse at , thus
b € K. Thus by the assumption (*) we claim that one of the b, should be
in K*.

Thus for some r
Co” (L + Go)™ € KX
Thus
C2t27 . (1 + C25)2m’ - C2t2r+2t_3m’ . (2 +7728)m, c Kx2 c K*

As 24 13 € K*, thus C2t2r+2t_sml e K.
Since v/—1 ¢ K we have (5,7 4ot-smy = %1, then £(2 + me)™ € K%, thus
+(241) € K*?, which contradicts the assumption of (2) stated in Prop 1.9.

So (*) is not true.
(3) is easy since (\/—17723+1)2 = —(24m2) and ag = (v/—11gs11)™ O

Given S, let P = H(pe s K and endow it with the product topology, thus
via the natural embedding K5 — Ik and K — Ck, we get the two injective
homomorphisms: P I and P s O

Throughout this part and Chapter 5, P be the image of P in Cx via
the natural map. Note that the natural map P — P — Cf is continuous,
but in general not a homeomorphism unless #S = 1. See [A-T68], [Lang70],

[Ra-Va97].
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1.4 Local and Global m-th Powers (II)

A problem arises: how can we characterize open subgroups of P of finite index?

Proposition 1.12. Let Py C P — Ck be a subgroup with its pre-image Py
via the natural map P — P «— Ck.
Then P, is open in P of finite index iff Py is open in P of finite index,

i.e., if [P : Py) < oo, Py is open in P.

Remark. Since P — P — Cg is continuous, then “P, open in P” implies
“P, is open P”. The converse is not true in general, but [P : Py] < oo implies

that Py is open in P of finite index, as KSm is open in K for all ¢ and m.

Proof. Assume that [P : Py] < oo need to show that P, is open P.

Note that Py 2 PPl and P” is of finite index in P. Thus it suffices to
show that P™ is open in P as F; is the union of some cosets of P". Since any
closed subgroup of a topological group of finite index is open, it suffices to
show that P" is closed in P.

We claim that P" contains P N Cx™. Since C# is closed in Cx thus
PNCg? is closed in P. Also, the index of PNCx?™ in P is less than or equal
to the one of P?" in P which is finite as P N Cx?® 2 P2?*, thus P N Cx™" is
open in P, thus so is P™ in P. Done.

Now we prove the claim. In fact, for any [z] € P N Cx*" for some z € I
while (z), = 1 for ¢ ¢ S. Thus for some b € K*, b~'z € I, thus b~! €
K;,‘Q" for all ¢ ¢ S, thus by Proposition 1.9. b=! € K*", thus z € I% and

[z] € P™. 0

Proposition 1.13. (1): PN Ck™ = P™ unless we’re in the special case.
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Let af be the idele class represented by the idele: ag at ¢ € Sy, and 1 outside.
Then if the special case occur, PN Cg™ = P™UaoP™, where ag = (2 + 7725)"’/2
and s is the largest integer such that ns € K.

(2): Ck™ is closed in Ck.

Proof. First prove (1).

Abuse the notation. Also denote P the image of P in Ig. If z € PN K*T}.
Say z = az™ where z € I and a € K*. Thus a € P(n,S) = K*" unless the
special case occurs, whence a € P(n, S) = K*"UaoK*". Note that ap € K"

for all ¢ & Sy from Proposition 1.11, we prove (1).

(2) (Also see [A-T68], [Ra-Va97] and [Ne86]). Let S* be sufficiently large
containing all infinite primes such that Clg s« = 1.

Let Ix = Urg+Igr where Ixr = {1 € Ik, (i), € U, for ¢ ¢ T }.

Ik, is open in Ix for each T, thus it suffices to show that

K*T% NIk is closed in I 7.

Thus K*I7% is closed in Ix, thus Ck" is closed in Ck.
K

Vz € KX]InK N ]IK,T

=01, 1 € g, a € K*

thus a - (i)," € Uk, for ¢ ¢ T, thus n | v,(a) where v, be the valuation

corresponding to ¢.

Let 8 =[] ¢r gozfnﬁ, since Clgr = 1 then
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a € Jgr such that af is principal.

Say a8 = (7), and let ' = a -y

Check that v,(a’) = 0 for ¢ ¢ T. Thus ' € KT and ¢ = i € Ik, thus
KX Neq = KTIxo™

Note that I ™ is closed in Ix 7, and K7 : KT" is finite,

thus [K 17" : (KT)"Ig 1" = Ixr"] < oo, thus KT - I 1" is also closed in

I, 7, Done. O

Remark: KT denote the set of T-units in K*. i.e, the set of elements in K7

which is a unit in K, outside T'.

The next thing is as follows: Say PNC™ € P,, can we find an open subgroup
VinC=Cgsuchthat V2C"and PNV = P,.

Similar to the case of global characters, we can also introduce the conception
of a conductor an open subgroup of Ckg.

Let V be any open subgroup of Ck. Define fy the least cycle m such that

cmCV.

Definition W a topological abelian group, H < G £ W is a tower of subgroups
of W.
We say that an open subgroup V (of e—which is the identity element of

W) separates G/H it GNV & H.

Remark. It’s easy to show that: if GNV & H then GNVH = H.

Lemma 1.14. H < G open subgroup, G € W abelian, W™ < H, then the

following are equivalent:



34
(a) 3 an open subgroup V' such that GNW"™V C H.

(b) 3 an open subgroup V such that GW" NV S HW™ = H, ie., V
separates GW™/H.

(¢) 3 an open subgroup Vg such that Vg 2 HW™ and GNVyg = H.
Proof.

(a) = (b): f GNW™V < H, then Vz € GW" NV, say z = gw™ where

geEG,weW, theng=aw e VW"NG S H, then z € HW™ = H.

(b) = (a): KGW"NV S HW™ Let g € GNW"V, g = w™ for
some v € Vand w € W, thus v = gw™ € VNGW™ € HW™ € H, thus

ge HW™ = H.
(a) < (c): See the remark above. O

From Lemma 1.14, to prove that there is a open subgroup V in C = Cg
such that V' O C™ and PNV = P, while P/F, is of exponent n, it suffices to
find a open subgroup V of C'x such that PC*" NV C BC", i.e., V separates
PC™/Py,C™. If V separates PC™/PyC™, then VC™ separates P/P, and VC™
contains C™.

Since [PC™ : PoC™] | [P : Py is finite, thus PoC™ is open in PC™ if it is

closed.

Lemma 1.15. (1) P,C™ is closed thus open in PC™ where n is an arbitrary

positive integer.

(2) C/C™ is compact.

Proof. From Prop 1.13, C™ is closed in C. Consider the following natural
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homomorphism:

U:P P Cx—C/C

Of course V¥ is continuous, and is a group homomorphism.

Note that P* C C™ then VU factors through

¥:P/P"— C/C"

Note that
P/pP" = H K:/K;‘n
pES
is compact.
In fact,
1orZ/2Z, if ¢ is real.
K /K" =11, if ¢ is complex.

Z/nZ x Ug, JUY, if o is non-Archimedean.
\ P

The image of 1501_:’"/]5” in C/C™ is P,C™/C™. Of course, PyP" is open and
closed in P thus P,P" / P™ is open and closed in P / pPr.

By the compactness of P/P™ we get that P,C™/C™ is open and closed in
PC™/C™. Thus Py,C™ is closed in PC™.

Furthermore,

C/C™ =RY/RY" x C/Ck”
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and C% which consists of elements of norm 1 in Ck is compact (see [Ra-Va97]).

O

The following proposition and lemma will lead to a proof of the Grunwald—
Wang theorem. In fact, if P/F, is cyclic and there is an open subgroup V' such
that PNV = Py and V D C™, then we get a global character on PV/P)V
which can be extended to a character of the same order on C'/FP,V which is

finite.

Proposition 1.16. (the Grunwald—Wang Theorem, a “pre-formal”
version)

(1) Let P be the canonical image of [[,cq K7 in Ck with a subgroup Py such
that PN C™ C Py, Then there exists an open subgroup No of C' containing C™

such that

PN,o/Ny = P/Py = P/P N Ny

(2) If P/ Py is cyclic of order m, then there exists an open subgroup N such
that C'/N is cyclic of order m and PN Ny = Py, unless the special case occurs.
If the special case occurs, and Py 2 PNC™ then C/N can be made of order

m otherwise C /N is of order 2m.
Recall Theorem 0.3 for the definition of the special case.

Lemma 1.17. Let H < G be a subgroup of finite index and G an abelian
group, xXg a character of H of exponent n, and Ker xg 2 G™. Then xu can

be extended to a character xg on G of exponent n.
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Proof. Using the induction, we may assume that G/H is cyclic of a prime
order, since in general, any subgroup tower of an abelian group is contained
in a tower in which any two consecutive terms have their factor group cyclic
of prime order.

Assume Ker xy = 1 without loss of generation since Ker xy is also a
normal subgroup of G.

Thus H = Z/aZ where a | n, and G is of exponent n. Say #|G : H| = p
for some prime number p|n.

If H has a complement N, i.e.,, G = HN and H N N = 1, thus define xq
as the following way:

Xg(hn) = xg(h) for h € H and n € N.

Thus Ker xg = N and x¢|g = xg. Thus x¢ is what we need.

So we complete the cases when H has a complement.

If H has no complement, by the structure theory of abelian groups of finite
order, the Sylow p-subgroup W of G which is also abelian should be cyclic.
In fact, say a = p®u where p t u, if W is not cyclic, then W must be of type
(p*, p), and W N H must have a complement Y which is a p group, and thus
Y is a complement of H in G.

Note that G = W x M for some cyclic group M in H of order u, W is cyclic
of order p**! and H = (W N H) x M, thus it is easy to extend xg to xg of
order ap = #G as G is cyclic, while G is of exponent n.

Done. O

Proof of Proposition 1.16.

(1) From Lemma 1.15, P,C™ is open and closed in PC™.
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Assume that V separates PC™/P,C™, i.e., PC"NV & P,C™.

Let No = ByC™V.

Then PN Ny = PN PC™"V € P,C*(PNV) = F,C™

Then PN Ny E PN P,C"C P(PNC™) C P.

Then PN Ny = Py as Py C P,C™V.

Thus PNo/No = P/P N Ny = P/ P.

(2) n = m, or 2m is the special case occurs and P N C™ G Fy. We have
PNC™C Py from Prop 1.13. Applying (1), we find such Ny and note that
C/Ny is of exponent n. Apply Lemma 1.17 and extend the character on
PNy/Ny = P/Py to C/Ny of exponent n, and let N be the kernel of such

character, then N is what we need. Done. O

1.5 Quadratic Characters

This part is a preliminary part for Chapter 3. Here we list some well lemmas.
As Q 2 po = { £1}, each quadratic extension over Q should be a Kummer

extension.

Lemma 1.18. Let L = Q(\/d) be a quadratic extension for some square free

integer d, then we have

ZIVd), ifd=2,3 (mod 4);

Or
Z[H—Q‘/E] ifd=1 (mod 4).
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Furthermore,

4d, ifd=2,3 (mod 4);
dL = D?:SCOL =

d, ifd=1 (mod4).

Proposition 1.19. (Characterization of the local quadratic extension
over Q, or R)
Let K = Q, or R a local field of Q, and L/K a quadratic extension. Then
(i) If K =R then L =C.
(ii) If p# 2 and K = Q,, then either
(a) L/K is unramified, L = K (\/c), ¢ € Uy, is not a square; or
(b) L/K is ramified, L = K(,/p); or
(¢) L/K is unramified, L = K(,/pc), c € Ug, is not a square.
(iii) If p= 2, K = Qg then
(a) L/K is unramified, L = K(v/5); or

(b) L/K is ramified, L = K(v/A), A = +£2, —1, =5, £10.
Remark. See Lemma 1.21.

Proposition 1.20. If L = Q(v/d), d a square free integer, then

(i) oo ramifies iff d < 0.

(i) p # 2, a rational prime, ramifies iff p | d.

Ifp|d, and% is a square mod p, then case is (ii)(b) in the last proposition;
Ifp|d, and % is not a square mod p, then the case is (ii)(c).

If ptd, then if d is not a square mod p, then the case is (ii)(a) and p is
inert; If d is a square mod p then p splits.

(iii) p = 2, ramifies iff d = 2,3 (mod 4);
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Ifd =1 (mod 8) then 2 splits, if d =5 (mod 8) then 2 is inert.
Lemma 1.21. Let xi 4 denote the local or global quadratic character, corre-
sponding to K (v/d) /K, where the character is local if K is a local field, global
if K is a global field.

Then
XK, dd = XK,d " XK,
1.8

(KX/KXZ)A —{x1}, i K is local
XK, -
(Cx/Cx®)" — {£1}, if K is global

is a continuous homomorphism.

Remark: Proof of Prop 1.20 and Lemma 1.21 can be found in many text-

books, for example in [Lang70], [Ne86], [Ne91]

Proof of Prop 1.19.

(i) is clear. We will prove (ii) and (iii) because we will need the explicit
statements later.

(ii) Let p be an odd prime.

If L/K is unramified, then L = K(/c) for some ¢ € Ug,, where c is a

non-square.

Note that if ¢; and ¢y are two non-squares in Ug,, then cicy ! is a square,
then

XQmCl - Xprc2'
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If L/ K is ramified, then the corresponding character x is not trivial on U, .

Note that xgq, is not trivial on Ug,, and furthermore,

(1+ pZ,)*® = 1 + pZ, for p odd, thus x and Xq,p factor through Uy, /1 +
pZ, = (Z/pZ)™ thus they both agree with quadratic symbol on (Z/pZ)™.

Thus Xluy, = X@ppli,: thus X - Xxpp I8 unramified,

thus X = Xq,.p OT XQp,p * XQp,c = XQp,pc 10T SOMe nonsquare c in Uy, .

(i) x € (@3 /Q5Y)".

Note that Q% /Q}> = (Z/2Z)°,

and Xq@,,—1, XQs,2 and Xq,,5 are “linearly independent” in (Q3 / Q;‘Z)A, and
also they generate (Q5 / Q;‘Z)A.

In fact, we have the following:

XQ2,—1(_1) =-1 XQz,—1(5) =1 XQ2,—1 (2) =1
XQo2(—1) =1 XQz,2(5) = —1 X@2(2) =1
XQo,5(—1) =1 XQ.,5(5) =1 XQ25(2) = —1
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Chapter 2 A modified Version of the

Chebotarev Density Theorem

In this chapter, we will prove an S—effective analog of the result in [L-M-O79].

By class field theory, idele class characters x of finite order correspond in a
canonical way to characters of Gal(K /K) of finite order. By abuse of notation,
we will still use the letter x to denote this Galois character. Moreover, there
is a canonically associated finite abelian extension L/K such that the kernel
of x as an idele class character is the norm from C7.

Throughout this section, for any number field L, d; denotes the discrim-
inant of L, and dr/x denotes the relative discriminant of L over a subfield

K.

Theorem 2—-C. Let L/K be a Galois extension of number fields of degree n,
S a finite set of primes of K, and C a conjugacy class in Gal(L/K). Then
there is a prime ideal p of K such that (1) p is unramified in L, and p is of

degree 1 over Q. (2) p ¢ S. (3)

(40

Nk op = dfz(e)(n log Ng 4 1)°*¢



43

where € is any positive number, Ay(e) is some constant only depending on €.

c=11f(r has no exceptional zero, ¢ = 3/2 otherwise.

An ezceptional zero of (r(s) is a real zero near s = 1. For details, see
Lemma 2.3.

We note that by Stark ([Stk74]), there is no exceptional zero if the Galois
closure L of L over Q contains no quadratic extension, in particular, when

[L : Q)] is odd.

This theorem gives a strengthening of Theorem 1.1 in [[-M-O79]. The
difference is the presence of condition (2) in our result. The basic method is
as in [L-M-O79]; however, there are some delicate points to be resolved. We
will accomplish this in Section 2.3 after some preliminaries in Sections 2.1

and 2.2.

In Chapter 6, (see Section 6.1), we also give such S—versions of two distinct
results of this kind under GRH. But note that this is not the case for Theorem

2-C above, and indeed, every result till the end of Chapter 5 is unconditional.

2.1 Some Estimations, Preparations for the Main Ar-
gument
In this section, we will describe several things we plan to use in our proof.

First we introduce two kernel functions used in the classical analytic
method, which was also used by Lagarias, Odlyzko, Montgomery and K. Murty

(cf. [L-O77], [L-M-O79], [KM94] and [Se81]). The use of these two different
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kernel functions is related to the Fzplicit formulas of A.P. Guinand ([Gu48])

and A. Weil ([We52]).

Let

ys—l _ xs—l 2
ki(s) = ki(s;z,y) = (ﬁ)

ko(s) = ko(s;z) = z*°t*

Thus

k(1) = (log %)2

kg(l) = .’172

For each smooth function k(s), denote k(u) the inverse Mellin transform,

defined as

k(u) = = /aHook(s)u“sds

2mi a—100
where a is a sufficiently large number.

Thus for a > 1, we have

0, if u > 9? or u < z%

ki (u) = ki (u; 2,y) = < %log}"u3 if zy < u < y?;

1 e 2
slog % ifz* <u<zy.

2
5 N -1 log 2
ka(u) = ka(u;z) = (dmlogx) 2 exp S — (4logzi }
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Note that for each j and u, k;(u) > 0, and for large u, k;(u) is small.

Lemma 2.1. (1) Let ¥® denote the summation over the prime ideals of K

that ramify in L, then

lgﬂ
Z > log(Np)ky (Np™) << — —= logdy,

m>1

S X loalNhn) << ~(log ) log dz

m>1,Npm<g10

(2) Let X° denote the summation over the prime ideals of K in S, then

s 2 log £
> log(Np)kn(N5™) << —5= log N

p m>1

Z ST log(Np)ka(Np™) << (logz)? log N

m>1,Npm<z10

(3) Let XF denote the summation over the pairs (p,m) for which Np™ is

not a rational prime, then

(log £) (logy)

P ~
> log(Np)ky(Np™) << nk ~tioz 2)

p’m

R 2
Z log(Np)ks(Np™) << ngz™*
(4)
R ~ 52
Z Z log(Np)ka(Np™) << ngz® 7 (log z)
pm  m>1,Npm>g3+s

where § is any positive number.

Proof.
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For (1), see Lemma 3.1 in [L.-M-O79]. For (2), the proof is almost the same

as (1) except that we need to estimate 3°° log(Np) instead of S-Flog(Np).

For (3), see Lemma 3.2 in [L-M-O79]. However, a step in the original proof
of the first estimation of that lemma needs to be slightly corrected as follows.
Use the fact that the number of pairs (p,m) such that Np™ = ¢ is at most

nk, and get

F 7 m Yy —h h
> log(Np)ky(Np™) <<nx(logZ) >,  p"logp

p,m z2<ph<y?,h>2

<< nk(log %)(logy) Z n1

n=p%,a>2,n>x2
i
xlogx

<< ni (log 2) (log )

where the last bound uses the prime number theorem.

For the second estimation, let S(u) denote the number of prime power

integers p" in the interval [1,u]. It is easy to see that S(u) << u'/2. Thus

ZP log(Np)ky(Np™) << ng Z log(p") k2 (p")
p

p,h>2

&L nK/ (log u) ks (u) dS(u) << nxxi
3

where the last bound uses the integration by part as in [L-M-O79].
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For (4),

3" log(Np)ka(Np™) << nx Y (log@)ka(q)

Npm>g3+o g>z3+8

+00
&L nK/ (log u) ks (u)du

3+3
/+oo t exp - QM etdt
(3+6) log = 4 log x

+o00 - 2
(8+9) log z 4 log T

1 +o0 t2
<< ngx?(log x)_i{/ 3log x exp (— ) dt
dlogzx 410gm

+0co t2
+ (log a:)/ t exp (——) dt}
VT 4

5 1 3/2 +o00 +2
<< ngz*(logz) 2 {3(log x) / exp (—Z> dt
6vIogz

2
+ (log x) exp (——% log x) }

[

<< ng(logz)”

ST

<< ngaz’(logz)”

2
<< npat T (log x)

where we use the well known estimate f; X e t?/Adt << e T4,

Recall that for any global character x of K, A(x) is defined as

dr N/ (fo(x))
where fo(x) is the finite part of the conductor of x. For the definition, see
Section 0.1.

Lemma 2.2. Let x be a global character of K.

(1) If N(t) = NL(t) denotes the number of zeros p = 3+ iy, of (k(s) with
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0<pB<1and|y—t| <1, then we have

N(t) << logdg + nk log(|t| + 2)

(2) If n(r;s) = nk(r;s) denotes the number of zeros p, of Cx(s) with |p —

s| <r, then we have

n(r;s) << 1 +r(logdix + ni log(|s| + 2))

(3) If Ny(t) denotes the number of zeros p = B + 4y, of L(s,x, K) with

0<pB<1and|y—t|l <1, then we have

N, (t) << log A(x) + nk log(|t| + 2)

(4) If ny(r; s) denotes the number of zeros p of L(s, x, K) with |p—s| <,

then we have

ny(r;8) << 1+ r(log A(x) + nx log(|s| + 2))

Proof. See [L-O77] and Lemma 2.2 in [L.-M-O79]. O

Lemma 2.3. Let x be a global character of K. There is a positive, absolute,
effectively computable constant cy such that

(1) L(s, x, K) has no zero p = 3+ iv in the region

B>1—c; ' (log A(x) + nx log(|y| +2)) ™

7> (14 czlog A(x)) ™
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(2) L(s, x, K) has at most one zero in the region

B>1—(calog A(x))™"

v < eplog A(x)) ™

If such a zero exists, it must be simple and real, and x must be trivial or

quadratic.

In the last statement of the lemma, such zero is called the exceptional zero
of L(s,x, K). Again, by Stark ([Stk74]), if the Galois closure K of K over Q

contains no quadratic extension of Q, x must be quadratic.
Proof. See [L-O77], or [Lang70] and [Ne91]. O

Before finishing this part, we quote the Deuring—Heilbronn phenomenon

here, a discussion of which can be found in Section 5 in [L-M-O79].

Lemma 2.4. [Deuring—Heilbronn Phenomenon]
There are positive, absolute, effectively computable constants c; and cg such

that if Cr(s) has a real zero By, then (r(o +it) # 0 for

e
log ((l—ﬂo)log(dLT”L))
log(dymmL)

c>1—cg-

where T = |t| + 2 with the single exception o + it = [p.

O

Corollary 2.5. There is a positive, absolute, effectively computable constant



50

c10 such that any real zero By of (1(s) satisfies
1— 8o >dL™

Proof. See Corollary 5.2 in [L-M-O79]. O

2.2 The Standard Model

In this part, we will recall the main model of [L.-M-O79] for our method here.

We have included the relevant details for the convenience of the readers.

We need to consider the Artin L-series L(s, ¢, L/K) (cf. [Lang70], [Ne91],
[L-O77], [L-M-O79]) where ¢ is the character of an irreducible representation

of G = G(L/K). We have

L s0.1/K) = 53 0o log ) (V9) ™
where

ma_ 1 ™
(I)K(p ) - ey (L/K) ae]p%/}() ¢( )

where 7 = (%}g) is one representative of the Frobenius element corresponding
to p, I, = I,(L/K) is the inertial subgroup of the decomposition group G, =

G(Ly/K,) and e,(L/K) = |I;| is the ramification index of q over p.

If p is unramified in L then ®x(p™) = ¢(a™). If L/K is abelian, then all

irreducible ¢ are characters.
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Lemma 2.6. Let C' be a conjugacy class of G and g a representative of C,

H =< g> and E = L the fized field of g. Then we have

(1)

Fo)=~1gr Y 80 E5,6,L/K) = X st

¢ irreducible x€G(L/E)

where G(L/E) denotes the group of characters of G(L/E), and (2)

=33 " 6(p™)log(Np)(Np)~*

p m>1

where

1 ()" =c
0(p™) =
0 sf (L/TK =£ O
and [0(p™)| < 1 if p ramifies in L.
Proof. See Section 5, [L-O77]. O

The previous lemma allows us to reduce the density problem to the case of

a cyclic extension, for which we can use just the abelian L—series of Hecke.

The following lemma (cf. [Lang70], [L-O77]) describes a functional equation

that L(s, x, F/) satisfies.

Lemma 2.7. Let L(s,x) = L(s,x,FE) be the L-series associated to x €

G(L/E).

A(x) = deNEg/q(fo(x))
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where fo(x) denotes the finite conductor of x.

1 if x is principal;
6(x) =

0 otherwise.

There are nonnegative integers a = a(x) and b = b(x) such that

a(x) +b(x) = ng

Set

and

A(s, x) = (s(s — 1)’ AP (5) L(s, %)
Then A(s, x) satisfies the functional equation
A(L = s,%) = W(H)A(s, x)

where W (x) is a certain constant of absolute 1.

Furthermore, A(s, x) is entire of order 1 and does not vanish at s = 0.

Let

il 2+00 It

... s k:(s)d
5 |, T 0ks(e)ds

Ji(x) 2
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and

1 2400
I = —— Fe(s)kj(s)ds

2m 2—i0c0

where F(s) is defined in Lemma 2.6.

By this lemma, we have
|C "
L= 5 3@ (221)
x€G(L/E)
where g is a representative of C'.
We have two ways to express ;. One way is using the inverse Mellin

transform and the other is using the residue theorem.

By the inverse Mellin transform, and we have

Ji00) =Y > x(™) log(Np)k;(Vp™)

p m>1

since

LI m ms
~ (500 ) = 3 37 (™) log(Np) (V)
p m>1
Also, by Lemma 2.6
C _ m
i=1al >oxY, log(Np)k;(Np™)
T p m>1
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Lemma 2.8. (1)

Ji(0) = 800k;(1) = Y ki(p) + O(nzk;(0))

p

+ O(ky(~3)(108 A(X) + 7))

where the sum runs over all the nontrivial zeros of L(s,x,E), and all the

implied constants are absolute and effectively computable.
2)

|G|
@fj > k;(1) - ;kj(f?)

— ce{nrk;(0) + kj(—%) logdp}

where the sum runs over all the nontrivial zeros of (r(s) and cg is positive,

absolute and effectively computable.

For the proof we need the following

Proposition 2.9. (the Conductor—Discriminant Formula)

H Alx) =dg,

x€G(L/E)

For a proof, see [L-O77], [Od77].

Proof of Lemma 2.8.
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For (1), see [L-O77]. The basic idea is to consider the following integral

—— (5 X, E)k;(s)ds

where the sum runs over all the zeros p = 3 + ¢y of L(s,x, E) within the
rectangle B(T): [—%,2] x [T, T)]. Estimate the integral on each line segment
and let T go to the infinity as in [L-O77]. In fact, on the line segment from

—1 44T to -1 — 4T,
%610, )| << log AGY) + n(og(s| +2)
(see Lemma 6.2, [1-O77]). Thus,

L/ Z II:I(S xE)k;(s)ds| << kj(—%){logA(x) +ng}

21

as

1
k]_(—§ + Zt) << k‘l(— fy>>2=

) 3
271+ 12
1 . 1 9 '
k2(—§ +1it) << kl(—g)exp(—t logz) ifz>>1

To estimate the integral /4 (7") on the horizontal line segments from 2 + T’
to —3 & 47, one uses the method of Landau (Section 6 of [L-O77], Section 3

of [L-M-079], [Land27]), obtaining the estimate

I[(T) << k;(iT)(log A(x) + nglogT).
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Combining these estimates with Proposition 2.9, we obtain (1).

Now (2) is easy to get from (1) since

|C|
j—|—ZJ

X€G(L/E)

and

)= I LsxE

x€G(L/E)

and we can use Proposition 2.9.

O

Now we are ready to explain how we plan to use the standard model for
our purposes.

From the rest of this chapter, assume that y >> x if we apply the first kernel
function k1(s) and z >> 1 if we apply the second one ky(s). Let n = np/ng
which is not less than |G|/|C|.

Thus, by Lemma 2.8 (2), we have

L ¥ k (1) — Z|k ) — ¢ {nKk( )+ k; (—%) (—logdL>}
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Note that
e L
k1(0) = (x —1y > o g
1 7% — y_% ’ _3
ki(—%) = 5 <<z
2 -3
ka(0) = 1
kz(—%) =

Thus, the c¢{ } term is bounded by some multiple of

2 Jogdy, ifj=1;
Tj:

Llogd,, ifj=2

Furthermore, we have

Thus,

L=8,1+8:+8s+1

I, = 52,1 -+ Sz,z + 5’2,3 -+ 52,4 + I~2

where the symbols mean the following;:
I ; denotes the sum over the primes outside S, unramifying in L, of degree
1 over K and the Artin symbol of p under L/K being C such that Np < y?

or 239 when j = 1 or 2 respectively.
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S1, denotes the sum over (p,m) with p ramifying in L. Sy, denotes the
sum over (p, m) with p ramifying in L and Np™ < z'°.

S1,2 denotes the sum over (p,m) with p in S. Sy, denotes the sum over
(p,m) with p in S and Np™ < z1°,

S;3 denotes the sum over (p, m) with Np™ not a rational prime.

S5.4 denotes the sum over (p, m) with Np™ > 23+,

Applying Lemma 2.1, we have

11
51,1 <L —-Mﬂlog(h
n x

=

1
Sa1 << ;(log z)? logdy,

1
5172 << &Sﬁ@ log Ng

Sa,9 << (log x)% log Ng

(log(y/z))(log y)
z(log x)

51,3 << ng

52,3 << TLK:IS7/4

2

2~ log x

52,4 << Ng%

Then the main idea of this model is the following: Pick z, y appropriately.
If we assume that for any p unramifying in L, of degree 1 over K and the Artin
symbol of p under L/K being C such that either Np > y? or z3+° when j = 1

or 2 respectively, or p € S or p ramifies in L, then I ;=0 and

- (kja) - |kj<p)|> <ET;+Y S

However, if the left-hand side dominates over czT; and S;, by a sufficiently

large constant factor, then one gets a contradiction.
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So the key component of this model is to find a better lower bound for

k1) = 3 k(o)

2.3 Proof of Theorem 2-C.

In this part we will prove Theorem 2-C. Let P;(C,S) be the set of primes of
K satisfying (1) to (3) in Theorem 2-C.

From last section we’ve already seen that the quality of the effective bound
depends on the lower bound of k;(1) — > |k;j(p)|. However, the possible
exceptional zero (y will cause difficulty. In general, one will be forced to use
the Deuring—Heilbronn. Fortunately, there is nothing new here compared with

the classical case where S = ().

To simplify our notation, we define [y to be the exceptional zero of (1(s)
if it exists, and By = 1 — (e2log dL)—1 otherwise, where ¢y is the constant
defined in Lemma 2.3, so that (z(s) has at most one zero in the interval
(1—(cologdy)™,1).

In either case,

k(1) = > " ki(p)| > ki (1) — k;(Bo) — > ks(p)]

p p#Bo



60

By using the mean value theorem, we have

yPo—1 xﬂo—l)Z
Bo—1

>1i0(log )mln{l (1 — Bo) log = }

ka(1) — ka(Bo) = 2* — aforbe’ > ﬁmin{ L,(1—Bo)log 2 }

k(1) — k1 (Bo) = (1og y)2 - (

First suppose
1 — By > cr*(log d3"%)?

where ¢7 is the constant defined in Lemma 2.4. In this case, we use the kernel
kl(S).

The contribution of the zeros p of {;(s) with |[p — 1| > 1 is bounded by
> ko)l < wdn(t; 1) <<logdp
lo—1]>1 5

where n(t; 1) is the number of the nontrivial zeros of (;, with [p — 1| >t (See

Lemma 2.2).

Next, assume that |p — 1| < 1 for a nontrivial zero p = 8 + iy # Bo of (r.

If By as an exceptional zero exists with
1 g -4
1= fo < geer (logdr)™,

then since dy, > 3™2/2 for nj, > 2, we have

1
2

> { (Gt~ Aylogds |

C7
(1 — Bo) log(dr3~") —
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and therefore by the Deuring—Heilbronn (Lemma 2.4)

ANPY. ;PR o
log { <1—ﬁo)log(dL3"L)} <1, log {(Re2)(1 — o) logdr}
— €11

<1l-
ps a log(dr3mL) - log dj,

On the other hand, if

1
1— 5y > 1—802072(10g dL)_1

then by the zero—free region given by Lemma 2.3,
B < (3cylogdr)™

Hence we have

2log {(Ge2)(1 — o) log dL}_l

<1-
ps = log dy,

for some 0 < ¢p < ¢11.

Thus (*) holds for all the cases.

Let

2log {(%Cg)(l . ,30) log dL}——l

e . logdL

From (*), we have

k1 (p)] << 22 D|p— 1|7 << 272B[p— 1|7
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Thus, by Lemma 2.2,

> e <a® [ Zan@)

lo—1|<L,p#B0

<<z ?8(B~2 + B llogdy)

<<z B ogd;,

As B >> (log dL)_l, using the expression of B, we have

log x
2c12 logdy,

S (ol << ogdn)*{ (Ges)(1 — o) logs |

Ip—1|<1vp5éﬁ0

Thus we have shown that

k(D) = Y k()] > 5 (10s %) min { 1,01 - ) 1og L} (aa-)

— cizlogdy,

logx
212 og

o c14(logd[,)2{(—é—cz)(1 — o) log dL}

for some positive constants c¢;3 and cy4.

We now complete the proof of Theorem 2-C in the case

1-— ﬁo > C72(10g dL3nL)2.
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Assume that for any p in P;(C,S), Np > y%. Then

0=hL= Y (logNp)ki(Np)
pEPL(C,5)

= ﬁ(log %)Zmin { 1, (1 — pBo) log% }

1
i | log dL
n

log x
2¢12155g T

. cM%(log dL)Q{(%CQ)(]. — Bo) log dL}

where ¢15, {. ..} comes from S, and ¢;{...} comes from Tj.

Fix any positive constant ¢, and set y = z'*¢, z = dLC(E)(l + nlog NS)%Le
for sufficiently large C(¢), one gets that the first term dominates over the other
terms by a large constant factor. Let us check this.

The c14{. ..} term is bounded by some multiple of

1 log z)?
~(log d;)*472%© — o (%)

as C(e) goes to oo, thus it is dominated over by %(log %)2 by a large constant

factor. Also, this term is bounded by some multiple of

%(log dp)?41—e2€0@ . (1 — By) log dy,
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which is 0((1_ognx_)3:(1 — o)) as C(€) goes to oo, thus it is dominated over by
L (log %)3(1 — o) by a large constant factor. From the discussion above one
can verify this assertion for the ¢i4{...} term.

Since

L.y 1 Y 1.y
Elog;logNs £L Wlog; L ;log;

thus one can verify this assertion for the ¢i52{. ..} term.
Other terms are easy to check. So one draws a contradiction, and we get

Theorem 2-C in this case.

Furthermore, we consider the case
1 — fo < cr*(log dg3™) 2,

where we will use the second kernel function ks (s). In this case

c 1 s
.4 > —log (1 — By~ "

log T Boylogdis™ = 2

If p =+ iy is a zero of (1(s) with |y| < 1, and p # (o, then by the

Deuring—Heilbronn,

lka(p)| << 2718 << 2P

1 R -1 & log =
= x2 eXp {_Clg logxlog( /80) }$2(1 _ ﬁo) lgloSdL

log dL
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for some positive absolute constant c;9. Thus

D ka(p)| << 2*(1 - Bo) ™ log d

[v1<1,p#£80

If p= B+ iy is a zero of {1 (s) with |y| > 1, and p # By, we have
ka(p)| < ¥ <<z

Thus assume x > 2. Applying Lemma 2.2, we have

j{:lkg I<3< Ezzpvl2n1 14+-4n—4n?

l>1 n>1

<< zlogdy, Z 2= gy Z A" (O 4 1)

n=>1 n>1

<< zlogdy,

where N (T') is the number of zeros of (1,(s) in the region [0, 1] x [T'— 1,7 +1].

Thus

Z ka(p) > mm {1,(1 — Bo) log =} (4A-2)

— exozlogdr, — e12®(1 — Bo) T -log dy,

for some absolute positive constants cag and ca;.

We now complete the proof of Theorem 2-C in the case

1 — Bo < er*(log dL3”L)2.
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Assume that for any p in P,(C,S), Np > 23, Then

O=h= > (log Np)ka(Np)
peP1(C,S),Np<z3+6
2

- Wmin{l,(l—ﬁo)logx}

1
— C0— lOg dL
n

1
—021E$2(1— 0)019'°5dL -logdy,

— Coa1 {%(log m)% log dL}

— €222 {(log fﬂ)% log Ns}

7
— €223 {HKW}
_a2
— Ca4 {nK:c2 7 (log x)}

== Cg log dL

where ¢2, {... } comes from S, , and ¢;{...} comes from T;.

Fix any positive constant ¢, and set z = d;,“)(1 + nlog Ns) for suffi-
ciently large C'(€). One gets that the first term dominates over the other terms
by a large constant factor. Let us check this.

First be aware that by the Deuring—Heilbronn (Corollary 2.5), and the fact
that d§ >> logdy >> ny, for any € > 0, the first term dominates over nxx?~*

for C(€') sufficiently large for any a > 0.

The ¢1{. ..} term is bounded by some multiple of
1 2 c19C(€’)
Em (1 — Bo) log dj,

as C'(€) goes to oo, and thus it is dominated over by the first term.
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Since
(log z)*log Ng << T

thus one can verify this assertion for the copo{. ..} term.
Other terms are easy to check now. So one draws a contradiction, and we

prove Theorem 2-C in this case.

2.4 Computations of Bj(K(¢r),S) and Cr(k,3)

In this part, we will apply Theorem 2-C to compute two types of constants
we will need in Chapter 5.

Let I” be a prime power, K a number field, S a finite set of (finite) primes,
S the set of primes of K; = K(() over the primes in S. It is easy to check

that Ng = NI,

If ¢ € K,
the least bound for Nq such that
Bi( K, S, a) = (i) q a prime of K not splitting in K (\/«);
(ii) gtl and q ¢ S.
Bl K.5) = max  Bi(K, S, ).

acKS ag(KS)

The next symbol has multiple meaning;:
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If K(¢r)/K is cyclic, then

the least bound for Nq such that
Cr(K,S) = (i) g, a prime of K inert in K ((pr);
(i) atpand q ¢ S.
If K(¢-)/K is not cyclic, so that [ =2 and r > 3.

the least bound for Nq’ such that
Cx(K,S) = (i) q’, a prime of K; = K(+/—1) inert in K((or);
(ii) g’t2and q' ¢ S" while "= {p’ |p€ S }.

Now we explain how we apply Theorem 2-C to calculate these quantities.

(1) Calculation of By(K(¢r), S).

Set K; = K({), it is easy to check that dg, = dK[KI:K]dkl/K where the
relative discriminant dg, /x  divides ["IKuKInx | This is because I" belongs to
the relative different Dy, k.

For any a € K f - K fl, we consider L; = K;(y/a). Without loss of gener-
ality, one may assume that a € Ok, and 0 < vs(a) <1 — 1 for each p € S.

Let T} be the set of primes p dividing o, Th = S — T1. Also, we denote Tp

as the set of primes of K; dividing [ which does not ramify in L; = K;(\/a).

Lemma 2.10.
dLl/Kqulzo divides l"Kl[Kl:K]Nial_l

Proof.

Let m = 7 be a uniformizer of the local field (K3); for any p € Ti. Thus



69

there exists integers my and my with —mql+maus(a) = 1. So vz(r~™la™2) =
L.

Let o/ = 7~™!a™2 then L; = K;(V/). Let w be the (finite) prime of L,
over p. Then D(z,), /x), contains lw'~. Thus Dy, /k, divides () [Tzeq @'

Since each prime in T} is unramified in L;, we have Dy, /x, [, eq, (0') divides
O Tier, &

Thus dp, /x, Ng,' divides [EuKIng Nz =1, O

Since all primes in T} ramify in L1, so applying Theorem 2—C, we have

Bl(Kl, S’, Ol) = Bl(Kl,Tz U To, a)

Az

< (N{fb_ldKll lTLKl[Kl:K]NTIl——l) (1 kS llOg ij £, llOg NT0)2

< (dKll anl[KlzK]Ngl—l)Az

while the last inequality holds since we can choose A; > 2.

Thus

Bi(K1, §) < (di,' 1 Ng—1) (2-4-1)

< (dKl ll(1+T)"KNSl—1)A2[K1:K]

(2) Calculation of Ci- (K, S).

First, if K;/K is not cyclic and | = 2, » > 3, then assume p is the rational
prime of K whose lift in K(7) is inert in K; and of degree 1 over QQ, then p
is also of degree 1 over Q. Also, let n = (or + (5. Then K; = K(n)K (i)

and K(n) N K(1) = K, and thus Gal(K1/K) = Gal(K1/K(i)) x Z/2Z =
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Gal(K(n)/K)xZ/2Z. Thus if the lift of p in K (¢) is inert in K7, then p is inert
in K(n) and (KIT/K) = o for some generator o of G(K1/K(i)). Conversely, if
(Klp K) = o for some generator o of G(K1/K (%)), and p is of degree 1 over Q,
then the lift of p in K () is inert in K, and it is of degree 1 over Q.

Note that every prime of K dividing [ is totally ramified in K3, so that we

may apply Theorem 2-C in all cases to get

Cir (K, 8) < (dg I'™=)2EvK (1 4 (K, 1 K]log Ng)? (2-4-2)

S (dK lrnK NS)AQ[KlK]

where we have used the identity dg, = (dg I7 ™)K K]
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Chapter 3 Quadratic Dirichlet Characters

This chapter is to solve the Grunwald’s problem in the case K = Q and
m=l==12.
As Q 2 pp = {£1}, each quadratic extension over Q is a Kummer exten-

sion.
Note that if m = 2, Problem I and Problem II described in Section 0.2

are equivalent.

3.1 Main Results of This Chapter

Question Z Let S = {pi,pa,... ,pm } be a finite set of finite primes.
Find a, such that py,ps,... ,pm t @, and 4 divides a — 1 if p; = 2 for some

1, and

(3)-cn

€; = 0 or 1 given.

a?—
Define (%) = (—1)Tl be the quadratic residue symbol of « in Q,

Thus

1 ifa=1 (mod 8)

-1 ifa=5 (mod 8)
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Also find the least bound of such |a.

Remark:  Q(y/a)/Q is unramified at p; iff p; f o (for odd p;) or 4| — 1 (for
pi = 2).
Answer: We can find this « such that

(1) az0,

la| £ 4Nsif2€ S, |a| S Ngif 2 ¢ S;

2) az0,

la| £4Nsif2€ S, |a| S Nsif 2 ¢ S

(3) any sign for

la| £ 2Ngif2€ S, |a| £ Ng/2if 2 ¢ S;

where Ng := [ .g Np, define Noo = 2.

pES

Lemma 3.1. (1) Let Ly and Ly are finite extensions over Q, L1 N Ly = Q

and L = L1Ly. Then the discriminant of L satisfying

dr, < dg,"P2dp,™

and

log,dp  logydp, | logydp,
(7 A () ML,

where ng = [K : Q].
(2) Let Ly, La, ... and Ly are finite extensions over Q, and L; N Ly - -- L

L;=Qand L=1L;---Ls. Then

10g2 dr, < Z 10g2 dL
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Remark. 1In fact, if Ly N Ly = K, then we can prove

(dL/K) divides (dLl/K)"Lz/K(dL2/K)nL1/K

where (dr/x) = Np/xDr/x = the ideal of Op, generated by Discy,/k (V') for all

free Og-submodule V' in Oy.

Proposition 3.2. Let d is a square free integer. Let D = d ifd =1 (mod 4),
4d if d = 2,3 (mod 4) be the discriminant of Q(v/d). If xg,u be the quadratic

character corresponding to Q(v/d)/Q, then

|D| ifd>0
fx:
|D|co ifd <0
and
|D|  ifd>0
N(X) = fo =
2|D| ifd<0

Proposition 3.3. Form =2, K =Q, all x, forv € S finite, are unramified,
then

2Ns (if oo € S, Xoo s trivial;)
BP1,BP2<

ANs (ifco & S or oo € S, Xeo s nontrivial.)
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Proposition 3.4 (Ramified Factors).

(
p ifp=1
N(XQ,p) = %
p ifp=3
\
L,
p ifp=1
fXQ,p = <
dp ifp=3
\
(
2p ifp=1
N(XQ,—p) = 4
L8p ifp=3
fXQ,—F = 4
4poco if p=3
N(xq2) =8
N(XQ,—l) =38
N(XQ,—2) =16

Proof. This can be easily verify.

(mod 4)

(mod 4)

(mod 4)

(mod 4)

(mod 4)

(mod 4)

poo  ifp=1 (mod 4)

(mod 4)

fXQ,z =8
fXQ_l =4.-00

fxq—2 = 8- 00

Lemma 3.5. (Reduction to the unramified case)

(1) Giwven any quadratic character on Q5 , one can select one of A = +1 or

+2 such that Xq,\|u, agrees with this character on Ug,.

(2) For Problem I, m =2 and K = Q, the following way is used to find

a global quadratic (or trivial) x1 such that xilp = Xp-
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Let (x), be a local character defined as below:

2

Xop #p=1 (mod4)

(X"), = { Xo—p p=-1 (mod 4)

| X@a ifp=2

while Xou\lug, = (X*)2lug, -

Then let

x= [ &,

pfoo,pES
Xp ramified

then X, - xol,* are unramified for all finite p € S.

Thus the Problem I is reduced to the problem: (m = 2, K = Q), find X
such that Xp = Xp - Xol,"* for all finite p € S.

Thus x1 = X - Xo s a solution, and x1|, = Xxp for allp € S.

(3) Ifoo € S and 2 ¢ S, the following way is used to find a global quadratic
(or trivial) x1 such that x1|, = Xp-

Let (x*), be a local character defined as below:

Xop 4 pis odd
(X)), =
XQ-1 #p=o00

Then let

xo= J] &9

pfoo,peS
Xpramified
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then chiy - Xol, Y are unramified for all finite p € S.
Thus the Problem I is reduced to the problem: (m = 2,K = Q), find x
such that X, = X, - Xol,* for all finite p € S.

Thus x1 = X - Xo 48 a solution, and x1|, = X, for allp € S.

Proposition 3.6. m =2 and K = Q, then

BP1,BP2 << CNs-[[N(x»)

p
C=2ifceS;C=4ifoods.

This is Theorem A.

For #S =1, S = {p}, p a finite prime, a stronger version of Prop 3.6

holds.

Proposition 3.7. If p is a rational prime, S={p}, m =2, K = Q, then

.

N(xp)(p+3) ifp=1 (mod4);

BP1,BP2< | 8N (xp) ifp=3 (mod 4);

[10NGG) =2

This is Theorem B.
Remark. (1) Proof of Prop 3.7, using a varied version of Prop 3.3, for
S = {p} will be given.

Also, we can list out all representatives of global characters, when localized

at a given prime, we get a given local character.
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Remark. (2) From Table 3.1, Prop 3.7 can be justified to

BP1,BP2 < N(x,)(p+3), ifp=1 (mod 4);

BP1,BP2 < 8N (x,) ifp=3 (mod 4).

3.2 Proofs

Proof of the Question Z

Select o such that a = w; (mod p;) for odd p;, where ( -;;1) = (=1)% for
some u; € (Z/p;Z)%,

a = v; (mod 8) for p; = 2,

v, =1if¢=0,v;, =5if ¢, = 1.

Then we can find

Such @ 2 0, and |a| £ 4Ng if2es,
la| < Ns if2¢ S;

Such a £ 0, and || = 4Ny if2 €S,
o] £ Ns if2¢8;

Such a, and |a| < 2Ng if2eS,

|a| = Ng/2 if2¢S8S.

Proof of Lemma 8.1. We prove a stronger version. Also see [Lang70].
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p Representatives localized at p
L=QW/d) D [ NG
p=3 (mod 4) Q 1 1
Q(V-d) d 2d’
1=d = Eg—l or or splits
d’ not a square mod p | 4d’ 8d’
Q-1 4 8
Q(d) d d
15d £ ’é—l or or unram., inert
d’ not a square mod p | 4d’ 4d’
Q(y/p) ip 4p
Q(V—pd’) pd’ 2pd’
1=d < %1 or or ram., p is a norm
d’ not a square mod p | 4pd’ 8pd’
Q(v—p) P 2p
Q(vpd') pd’ pd’
1sd < %1 or or ram., p is not a norm
d’ not a square mod p | 4pd’ 4pd’
p=1 (mod 4) Q 1 1 splits
Qv-1) 4 8
Q(V=xd) d’ d [ 2d
15d £ %3 or or unram., inert
d’ not a square mod p | 4d’ 4d’' / 8d’
Q(y/p) P D ram., p is a norm
Q(/—p) 4p 8p
Q(vEpd’) pd | pd" [ 2pd’
1<5d £ %3 or or ram., p is not a norm
d’ not a square mod p | 4pd’ | 4pd’ / 8pd’
p=2 Q 1 1 splits
1e%0) 7 11
Q(v/5) 5 5 unramified, inert
Q(V=3) 3 6
Q-1 4 8 type XqQqz,—1
Q1) 28 28
Q(v-5) 20 40 type XQz,—5
Q(V/3) 12 12
Q(\/é) 8 8 type XQ.,2
Q(v/—14) 56 112
Q(+/10) 40 40 type Xq,,10
Q(v/—86) 24 48
Qv=2) 8 16 type XQ.,—2
Q(V/14) 56 56
Q(/~10) 10 80| type xas 10
Q(V6) 24 24

Table 3.1: Representatives of Global Characters over Q with Given Local Behavior at p

and/or oo
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Lemma 3.8. If LN Ly, = K, then

(dL/K) divides (dLl/K)"Lle (sz/K)nLl/K-

Proof. Note that O, 1, 2 Or,0p,

and for any K-bases (; and €23 in Op, and Oy, respectively,
Q= Wkl = {LUl'(.()Q le Eﬂl,wg € Qz}

is a K-basis of L in Oy, p,.

Thus, direct computation leads to
3 — i NLo/K . )4 np, /K
Dlz(sc(ﬂ) DIz(sc(Ql) 2 DI’L{SC(Qz) 1
Therefore,
Dlz;sc((’)LlLQ) divides DIY;{SC(Q) = Dlz'{sc(Ql)"Lz/K -DIZ'{SC(QQ)"LI/K

Then,

D}'{SC(OLILZ) divides D};sc((’)l,l)"’“?/"-DI’i{sc((’)Lz)”Ll/K

Done.

Proof of Prop 3.2.
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p if pis odd and p | d;

1 ifpisodd and p{d;

8 ifp=2]|d;

f(xedp) =4 ifp=2andd=23 (mod 4);
1 ifp=2andd=1 (mod 4);

oo fp=ocandd<(;

1 ifp=ccandd=0.

and verify that

H [Lap=ld| ifd=1 (mod 4);

BiRs Hp|dp -4 =4|d| otherwise.

and N(xqd) = N(Xq.dlw)|D|- =

Proof of Prop 3.3.

First assume that co € .5,

Let S’ =S — {00 }. We want to find « such that

es, (2)=("

where ¢; = 1 if x,, is trivial and —1 otherwise, and p; { « for all finite
primes; if p; = 2 then @ =1 (mod 4),

and furthermore from the Question Z, we can find such «, in addition,

satisfying,
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1N fowesS, |¢f] 24Ny and a=1 (mod 4) if2€ 5 |o| S Ng if 2 ¢ &,

no matter whether y. is trivial.
Ifooé¢ S, |a] £2Nsand a =1 (mod 4) if 2 € 5; |a| £ Ng/2if 2 ¢ 5,
no matter whether y is trivial.

(2)

where

0 if xp, is trivial;
€, =

1 if xp, is not trivial.

(3) If oo € S, then a > 0 if x o is trivial; @ < 0 if X is not trivial.
Thus by some arguments, (2) and (3) lead to that xg.alp; = Xpi;

and from (1), the absolute value of the discriminant of Q(y/c) is

4Ng if o € S;
D] =

Hence

4Ng if co & S or X is nontrivial;
N(XQ,a) _S_
2Ngs if oo € S and X is trivial.

Proof of Prop 38.6.
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From Prop 3.3, we know, if x, are unramified for all finite v € S we have

2Ns T, N(xp) = 2NsN(xe) if 00 € S;
BP1,BP2 <

4Ng ifoo ¢ S.
(i) If co ¢ S, use the reduction process (2) in Lemma 3.5.
By Prop 3.3, we can find ¥ such that
o =Xp- Xojz1 forallpe S
and N(X) < 4Ng and fy divides oo - ¢ where N(c) = |¢| £ 2N5.
Note that fy, divides 0o [] s f(Xp),

thus

)cx1 = f)Zon divides lcm(f}bfxo)

divides oo-c- H f(Xp)

peES

= N(x1) £2-2Ns-- [[ N(xp) = 4Ns - [[ N (x»)
pES pES
(ii) If oo € S, use the reduction process (2) in Lemma 3.5.
By Prop 3.3, we can find x such that
Xlp = Xp " Xoiz2 forall pe S
and N(X) < 2NsN(xo - Xolsg) and fg divides fg., - ¢ where N(c) = |c| £
2Ng.

Note that f,, divides oo Hpe o (X))
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thus

fxa = fxfxo divides lcm(ffm fxo)

divides oo -c- H f(xp)
peS—{o0}
and
X1loo = Kloo * Xoloo = Xoo * Xolza * X0loo = Xoo
Therefore,
fy, divides c- H f(Xp)
peS

Thus

N(x1) £ 2Ns- [[ NOw)

p

Proof of Prop 8.7.

Study the proof of Prop 3.6 above, case S = {p}, we have
fx, divides oo-c:f(xp)

where c is the finite part of the conductor of ¥.

Say X = Xo,4 thus ¢ = |D| while D is the discriminant of Q(/d).
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Therefore,

2|d|N(xp) ifd=1 (mod 4);
N(x1) £ 2N(xp)|D| =

8|d|N(xp) ifd=2,3 (mod 4);

Assume that x, # 1, note that d (mod p) is a square residue iff

Xlp = (X*)p =Xp" XO|;1

Thus if p =3 (mod 4) take d = £1 and |D| =1 or 4.

If p=1 (mod 4), thus we can find d satisfying |d| < %ﬁ which is a non-
square mod p and |D| £ p+ 3. Such d exists as the # of square residues mod
pis z';—l,ordzlandDzl.

If p=2taked =1 or 5 thus |D| =1 or 5.
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Chapter 4 Kummer Extensions and General

[—Extensions

4.1 Statement of the Main Theorem

This chapter is to describe and discuss Problem I and Problem II in the
Kummer extension case (case (iia)) and the [-extension case (case (iib)). Note

that in the case (iib), ¢, € K will not be needed.

Condition (A): K is a number field, S is a finite set of finite primes, m a

rational integer great than 1. For each v € S, x,, a local character of exponent

m on K is given.

Kummer case Condition (B): ¢, € K.

The assertion of the Grunwald—Wang Theorem:

Given condition (A), there exists a global character x of exponent m (2m
if the special case occurs. See page 7.) on Uk such that x|, = X|gx.c, = Xov

for eachv € S.

What is BP1: Recall that, the effective version of the Grunwald—Wang
theorem is that: Not only such y exists, but also, we can find such x with the
norm N(x) is bounded by BP1.

Now state the four main theorems of this chapter. These four main theorems

complete Theorem C to F, as the later ones are the Problem I part of the
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following four theorems.

Theorem 4—A. For Problem I and Problem II, assume the condition (A)

and the Kummer case Condition (B) hold. Then

ni
2
i 3 n (m—1)n
BP1,BP2< | - [[r°| B@Ns"™ [] N(x)m D"
plm veS
where § is an integral basis for K, Q = {wi,wa, -+ ,wnk }, nx = [K : Q)],

B = [ 3 lotwl

0:K—C i=1
and Ng = [[,cg Npo where || denotes the absolute value in R or C.
This theorem leads to Theorem C.

Theorem 4-B. For Problem I and Problem II, assume the condition (A)
and the Kummer case Condition (B) hold, and assume that S* is a set of finite

primes disjoint from S,, and S, where
S = {v, finite primes in K dividing m}
such that
ClK,5*0500U(Sm—5) = 1,
1.6
KS"US=U(Sm=5) .= L g € KX, 0,(z) 20 Yo & S*USeuU(Sm—5)}

is a PID.
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Then

K

BP1,BP2< m;nﬁ -BQ) - Ns™ - [T Moo ]I Nxw)

plm vES* veS,vtm

where B(2), ng and Ng are defined in Theorem 4-A.

This theorem leads to Theorem D.

Remark. Theorem 4-B applies especially when Ok is a PID, and S* = (.

The following are the two main results for the case when condition (A)

remains and (B) drops, and m = [ an odd rational prime.

Theorem 4—C. For Problem I and Problem II, m = [, an odd rational

prime, (A) holds. Then

BP1,BP2< <——Z3W+2"Kd)

nyd? * —1)n
sma— ) No<¥ - B@") [] N (o)

veS

where K1 = K({;) and d = [K; : K|, and also Q* is an integral basis for Ky,

£ = {W]_,(U2, S ,Lt)an},
nid
B@)= [] 3 lotw)
0. K1—C i=1

This theorem leads to Theorem E.

Theorem 4-D. For Problem I and Problem II, K = Q, m =1 an odd

rational prime, condition (A) holds. Then

BP1,BP2< 27001 ) - Ns@D' T N(xw)
veSuil

This theorem leads to Theorem F.
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4.2 Main Approach: The Kummer Case

This section is to prove Theorem 4—-A. The main idea is to apply the following

theorem — the effective version of the Chinese Remainder’s theorem.

Theorem 4.1. (Effective version of the remainder theorem)

Let a be an ideal of Ok, K a number field, B(?) the same as in Theorem
4-A, Let \ € Z a positive integer in a N Z.

Thus, for each ¢ € Ok, 3¢ € Ok, such that

(a) e—Cc €aq,

(b) Nc = |Ngo(d)| < (3)¥B(). where N =ng = [K : Q)

Remark: Recall that
N
I Dl
o:K—C i=1

Proof. Say ¢ = Zfil o;w;, then let ¢ = Zf\; , ow; such that A divides o; — o

and |of| < 2,thusc—c € \Og € a and

Nd = INK/Q | = H|o(c
< I3 ool £ Y [T 3 ool
oloo 4 oloo i=1
= (5)" - B©)

The following corollary is deduced from the theorem above.

Corollary 4.2. Let S be a finite set of finite primes in K, and choose b, €
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K, for eachv € S. Assume that v(b,) = E,, 0 < E, S m. Then there ezists

b e Ok such that

b=b, (mod KX™), (A)
i.e, by, -be KX™,
N
m- H mP
Nb< | —=Hm2 ) T (Wpo) BN - NY - B(Q) (B)
2 vES

Proof. Let a = [],gp?* oL,
where A, is defined in Prop 1.2.

Recall that

[vp(m) +e(p/p)/(p — 1)] < vy(m) + €y if p divides p|m;
0 | if p tm.
where p is a rational prime divisible by p. Set A = m-I[,.,, p-I1;ves(Npo,)® 7 €
Z*,
Check that A € a, in fact, for any v = v, € S, p be the corresponding prime

ideal and lying above the rational prime p.

Thus, if p | m, then

vp(A) = vp(m) +vy(p) + By, + 1

=vy(m) +eyp+ Ey, +1 2N+ E,, +1
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if p 4 m, then

YX) =By, +1=2+E, +1

Next we can apply Theorem 4.1.

First by the remainder theorem, there exists by € Ok, such that v(by—b,) =
Ap, + E, + 1 for any v € S. Applying Theorem 4.1, there exists b such that
b — by € Ok, thus satisfies (B).

Check (easily) that b, - b € Uk, and v(b,™ - b— 1) = )\, + 1, thus by

Prop 1.2, 5,7 b€ KX™, thus (A) holds. O
Next, we combine all things above.

Proposition 4.3. Preserve the hypotheses of Theorem 4—A, and assume that
Xv = Xbopo JOT €ach v € S, and v(b,) = E,, 0 £ E, S m.

Then, there exists a global character x = xp of exponent m, such that

¥olu = Nbire = Xboign (A)
nK
Nx)Sim?-J[p*p - Ns™-BQ)- [[(Vpo)"mx (B)
plm veS

Prop 4.3 stands a crucial part for this chapter.

Corollary 4.4. Keep the hypotheses of Prop 4.3. If b, € Uk,, t.e., B, =0

for any v € S, there exists a global character x = xp of exponent m satisfying
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(A) and the following

nK

Ne) £ {m?-T[s*} - Ns™ - B() (B)
|

It is easy to get Corollary 4.4 from Prop 4.3.

Proof of Proposition 4.5.

By Corollary 4.2, there exists b € K satisfying (A) and (B) in Corollary
4.2, then Xplv = Xbpo = Xbopo 85 bl -be KX™ holds for each v € S. To
verify (B) in Prop 4.3. Applying Lemma 1.4 (3) and note that (also applying

Prop 1.2)

( H N p) divides Nb
Done. O

Proof of Theorem 4-A.

By observation, we need only to show that

H(NPU)EU < H N(Xv)m_l

veES veES

so that we can apply Prop 4.3.
Note that x, = Xp,p, for some b, € K, we can choose such b, that
b, € Ok, and v(b,) < m, so Prop 4.3 can be applied.

Note that if F, # 0, then 1 £ E, £ m — 1, thus K,(}/by,)/K, must be
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ramified. Then N(x,) 2 Np,, and eventually

[[@Vpo)™ < II @)™ ][ NOw)™

veS vES, Xv = X|v ram. veS

Done. 1

Proof of Theorem 4-B.
First assume that x, = Xs,, for each v € S, v(b,) = E,, 0= E, S m.
Since Clk, s+USeU(Sm—5) = 1, we can find ¢, € Ok satisfying
(i) v(ey) = 1,0(cy) = 0 for any © # v in S;

(ii) ©(cy) = 0 outside S*, S, and S.

Let 6= [T,eqts™
By the assumptions above, v(c¢7t-b,) = E,—v(c) = 0. Thus from Corollary

4.2, there exists by € Ok satisfying

bo=ct-b, (mod K ™) (AA)

Nbo < (W) . Ng™ - B(Q) (BB)

Check that Xeg-clv = Xby,po = Xo-

Furthermore, we want to estimate

m

pfm,Xp,.c Tam. at p.

so that we can apply Lemma 1.4 (3).
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Note that

11 Nps ] Np<Neo- [T Np

PTm,Xbo-c ram. at p. PTmyplbOC p+m7p|c

SNbo-Ns-- [[ Moo

vESputm,pulc

:Nbo‘NS*- H va

veS, VM, 1<E,Sm—1

Combine (BB) above, use Lemma 1.4 (3), and note that for v € S, v { m,
N(xv) = 1if x, is unramified and N(x,) = Np, if x, is ramified; and E, =0

iff x,, is unramified. Done. O

4.3 Main Approach: Non—Kummer [-extensions

In this section, we will come to the case when (A) holds, and the Kummer
extension case (B) is dropped. m = [ an odd rational prime.

We will prove Theorem 4-C and Theorem 4-D.

Here denote K1 = K((), G = Gal(K,/K), Ny = [K; : Q], and d = [K] :

K] |l—1. G acts on K, Ik, and Ck, the natural way.

First, we sketch out the main idea of the proof.

Let S:={w|veS} and X = Xo © Ny, k., for each v € S, the point
is, to construct a global character of exponent I: ¥, such that |, = x. and
bound N(X).

Furthermore, by some trick, we need that ¥ can be pulled back, i.e., dx
a global character of exponent [, such that ¥ = x o Ngk,/k, and thus x|, o

Ny, /60 = (X © Ny /i) lw = Xuw, thus for v € S, Xlv = Xv on Nk, /K., since
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[(Ky), : K] |d, and (I,d) =1, x is of exponent /, hence

[KX : Ny, k. (K1),] divides d|l—1

hence x|, = x» on K¥, so that we may apply Lemma 1.4 and Lemma 1.6.
Notice that, when we construct ¥ such that x|, = X. for each w € S , We

don’t necessarily have that ¥ factors through Ck, / Ker N, k. However,

(d=! mod 1)
X = {H(fcoa)}

ceG

is what we need, since x = ¥ o 0,Yo € G.

Lemma 4.5. If x is a global character on Ck, of exponentl, and X = X oo
for any 0 € G = Gal(K,/K), then

(1) There exists a unique global character x on Cx of exponent | satisfying
X = x° Nk /k-

(2) Furthermore,

I ow-( I~

ptl, X|5 unram. i, x|p unram.
where d = [K; : K].

Proof.

Step 1. x factors through Cx/ Ker Nk, k-

In fact, for each A € Ker Nk, k, A = a/o(a) for some a € Ck and a
generator o of G which is a cyclic group since H™1(G, Ck,) = 1 by the global

class field theory.
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Step 2. Knowing that N, x(Ker X) is closed in Ck, (1) and (2) hold.

In fact, let Ag = Nk, /x(KerX), [Nk, /kCxk, : Ao] | I, thus Ag is of finite
index and thus is open in C'x. Furthermore, from the step 1, we can get an
algebraic character xo (not assuming the continuity) on Ng, /kCK of exponent
[, which can be uniquely extended to an algebraic character x on Ck of expo-
nent [ as [Ck @ Ng,/k(Ck,)] = d | | — 1 relative prime to . As Kerx 2 Ay is
open, x is continuous. It is easy to check (1). Applying Lemma 1.6 (3), (2)

holds.

Step 3. Nk, k(Ker X) is closed in Ck.
Since ¥ is a global character on Ck,, by the global class field theory,
Kerx = Npk,Cr for some field extension L/K;. Thus Ng,/x(KerX) =

Nk, /k(N1/k,C1) = Nk (K) which is closed. Done. O

Detailed Proof the Theorem 4—C.

Notations are the same as before. K; = K({), N1 = ng, = [K; : Q]
Xo = Xo © Nxy), /K, for any finite prime ideal tower w/v in K;/K where
veESs.

By Theorem 4-A, and its proof, and Corollary 4.2, we can find a global

character ¥ = x; of exponent ! on Ck,, such that X|, = Xw, for any w € S,

and

TT (V5u) %™ - NG - B@)

we8

Here we explain all the notations. B(Q*) is defined in Theorem 4-C, for
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each w, p, is the corresponding to w, and ¥, = X35, for each w € S, and
0 < E;, == w(b,) S 1, and note that if Ej, # 0, X., is ramified.
Thus we have

[T po)Pot < TT N ()M

weS wes

Thus we get

[T ws(3) NGO NP B@) @)

ptl, X ram. wesS

Let & = (Mec(Xo0) " ™

Thus X = X o 0, and
II Np<(RHSof AA)
ptl, X|3 ram.

and by Lemma 4.5, ):( = x o Nk, /k, X a global character exponent /, and

Xo = Xv o0 Nxyy /i, K 15, thus on K* by the uniqueness of x, and also,

[ &b < (RHSof AA)?
pil, x|p Tam.
and by Lemma 1.6 (1)—(3), we have

I N&) £ T NGw)?

wes veES
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and
H ﬁw H pv . OK]_
wes veS
We get
l2 an d2
I ws(3) M“s@) (58)
pfl, x|p ram.
I Vo)
veS
Applying Lemma 1.4, we are done. O

Check the proof above. If additionally, we assume that x,,v € S are
unramified, thus so are x,, for all w € S because of Lemma 1.6. Thus E,, =0

for all w € S, thus (AA) is replaced by

1 w=(5) -~ 5@ (a)

pil, X5 ram.

and thus (xx) is replaced by

IERCE (g)’”‘d Ng<® B ()

p'fly XIP ram.

Especially, for K = Q, N = 1, d = | — 1 as we select the integral basis
o = {1,4,...,¢7%}, and B(Q) = (I — 1)(1—1), we will get the following

intermediate statement:

Proposition 4.6. For Problem I: Let K = Q, m =1 an odd prime, and S,
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a finite set of finite primes in Q such that for each v € S, X, is unramified.

Then there exists a global character x of exponent | such that

Xo=x%  (veS) (A)
2yt (1-1)2 -1
I ws(5) M a-1- (®)
o, x|p ram
O

Proof of Theorem 4-D.

For any given x,, v € S, not necessarily assuming that y, is unramified
for each x,, By Prop 1.7, for each p,, the corresponding rational prime to v,
there exists a global character Y, such that Y, is of exponent /, and Y,,|,, and
Xv agree on Ug,, and Y, is unramified at any other finite primes outside v.

Let X% = [Tues(Yu '|v) - Xo, then X is unramified for each v € S, and X,
is of exponent [.

Thus by Prop 4.6 there exists a global character x* of exponent [ such that

X'lb=x; Wwes

and
I »< (%)l NE - 1yt
i, x|p ram.

Let x = x* - [I,es Yo, then x|, = Xxu(v € S), and x is of exponent .

And by the construction of Y,,.
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II »

pil, x|p ram.

II » Il>»

ol X*|p ram.  pil,up€S

o\ -1
<(5) Ma-v T Mo
vl ,veS

A

Where v,, denotes the corresponding place to the prime p.

Applying Lemma 1.4, we are done.
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Chapter 5 General Case

In this chapter, we solve the general case using a different method. Since each
character can be expressed uniquely as a product of characters of prime power
order, we may easily reduce to the case when m = [" is a prime power. We

will prove the following theorem.

Theorem 5-A. Let K be a number field, m = I" a prime power, S a finite
set of primes of K, x, a local character on K of exponent m for each v in S.
Assume that K ((r)/K is cyclic. There is a global character x on Ck of

exponent m with its local component being x, at each v € S, such that

N(x) < BuK(Gr), 8™ o (K, 8) T N )

veS

where S’ is a finite set of finite primes containing all the finite primes in S

and satisfying 1 { #Clk sius,,, with
rw = N(ClK,s0s,) + S U Soo| — 1

Here +;(G) denotes the minimal cardinality of the generating set of the

Sylow—{ subgroup of G.

Definition 5—i. For each number field K, let s be the largest integer such
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that 79 € K. Define Sy as the following.

So={p divides 2, —1,£(2+n) are not squares in By }

Also, if r > s, define

ag = (14 Gos)” = (imos1)” = mppon™
and af denotes the idele class in C'x with components ag at the primes in Sy

and 1 at other primes.
The next theorem deals with the case when K ((or)/K is not cyclic.

Theorem 5—-B. Preserve all the hypotheses of Theorem 5-A withl = 2 except
to replace the condition about K ({ir)/K by the following:

(SS) K ({or)/K is not cyclic, So C S and

H Xv(ao) =4

VESy

Then there is a global character x on Cg of erponent m with its local

component being x,, at each v € S, such that

NG < B(K (), 8™ or (K, 8") [] Nxw)

vES

where S’ and rw are the same in Theorem 5-A.
Furthermore, if (SS) is replaced by
(SS) K((xr)/K is not cyclic, po € So — S # 0,
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then there is a global character x on Ck of exponent m such that

N(x) < Bi(K(Gr), 8)™ " Npo* [T N (o)

veS

where X\ is the smallest integer such that
1+ p())‘ c Ll,z{rpo :

Note that if both (SS) and (SS’) fail, then we are in the special case of
Wang ([Wab0], [A-T68]), and such x of exponent m might not exist. In such
case, there will be a character x of order 2m with desired local components,

and the bound above will still apply with m = 2" replaced by 27+1.

Definition 5—-ii. The conductor fy of an open subset V of Ix or Ck is the
smallest cycle ¢ such that V' contains V; which is the standard open subgroup
in Ix or Cxk corresponding to ¢. Also, when F; is open in P where P is a
subgroup of I or Ck, the conductor f of Py in P is the smallest cycle ¢ such

that Py contains P NV..

In fact, we prove the following theorems which are stronger. For details,

see Section 5.4.

Theorem 5-C. Let K be a number field, m = I" a prime power, S a finite
set of primes of K, P = [l,es K, P the image of the natural embedding of

P into Ig, and Py a subgroup of P such that P/ Py is of exponent m.
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Assume that K((r)/K is cyclic. There is a cycle ¢ such that

K*V,IPNPC P,
and
Ne < Bi(K(¢r), $)™" ™ o (K, 8') N

where S’ and rw are the same in Theorem 5-A, and § is the smallest cycle |

such that PNV; C Fo.

Theorem 5—D. Preserve all the hypotheses of Theorem 5-C with | = 2
except that the condition about K((r)/K is replaced by the following.
(SS) K ({or)/K is not cyclic, Sy C S and af € Py,

Then there is a cycle ¢ such that
K*VIgNnPCF
and
Ne¢ < Bi(K(Gr), 8)™ " Cir (K, S') N

where S’ and ryw are the same in Theorem 5-A, and f is the smallest cycle f
such that PN V; C F.
Furthermore, if (SS) is replaced by

(SS) K((r)/K s not cyclic, po € So — S # 0,
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then there is a cycle ¢ such that
K*VIRNPCP
and
Ne < Bi(K (Gr), §)"™ " Npo* Nf
where X\ is the smallest integer such that

1+ po* CUE, .

5.1 Formulation of Case (iii) & Problem V

Now we will find a weak bound for Problem I and Problem II in the general
case. We do not assume that the ground field K contains (,,, m = I".
Here we still denote K as a number field, S a finite set of places (or primes)

in K, and x,,v € S given local characters of K} of exponent m.
Let P = HpeS Koy P injects into Ck in such a way that
V¥(a,) € P, there’s an idele ¢ = (c,) such that

ay,, fpes
Cp:

1, otherwise



105
and the following holds:

(e, ) = [] (a5, &)

pes

Let Py € P be a subgroup with quotient of exponent m, i.e., P/ Py is of
exponent m. Let P and P, be the images of P and P, in Ck via the natural
embedding P — Ck. In general, P — Cf is not a topological embedding
unless #S = 1. However, by Proposition 1.12, there is a one-to—one corre-
spondence between the set of open subgroups of finite index of P and the set
of open subgroups of P.

By Lemma 1.14 and Proposition 1.16, we can get the following reformu-

lation of the Grunwald-Wang Theorem: ([A-T68])

Theorem 5.1. Let P be the image of P = HpES K via the the natural map:

HKPXH]IK—HC=OK

peS

where S is a finite set of primes in K.

Let Py be the image of Py via the natural map above where Py is a subgroup
of P with the factor group P/PO being cyclic of order m.

Let n = m, or 2m if the special case occurs as in Theorem 0.3. Then we
have the following:

(a) There exists an open subgroup V containing P,C™, and P N V = P,.

(b) There exists an open subgroup V separates PC™/PoC™.

(c) There exists an open subgroup V such that PN C"V S F.

From Proposition 1.13, n = m, or 2m if the special case occurs. And
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PNC"C P,

In fact, when the special case occurs, P N C™ & Py U agPy where ag =
(14 (25)™ as in Theorem 0.2 and Theorem 0.3.
Note that (a) is exact Proposition 1.16, and in fact the main part of the

Grunwald’s Theorem, which was also proved [A-T68].

In Chapter 4, we get a weak least bound of N(x) in terms of K, S and m
where K is a number field and (,, € K, and S is a finite set of finite primes.
Also, we get a least bound of N(x) in terms of K, S and m where m = [ is an
odd rational prime, and K be an arbitrary number field, and S a finite set of
finite primes.

However, the strategy used in Chapter 4 fails for the general case here. So

we will develop another way.

In fact, given K, S, xv,v € S as in Theorem 0.2, with Py determined as
the kernel of [] x, on P and P, the image of P, via the natural map described
on Page 30, if we find an open subgroup V of C' = Ck satisfying (c), we may
let V = PyC™V then V satisfies (a).

Denote BP5 as the least bound for the Problem V or Problem V' given

below. We have

BP2 < BP1 < BP5

Problem V: Let P = [T,cs KX where S is a finite set of places of a number
field K, Py a subgroup of P with the factor group ]5/]50 being of exponent

m > 1, and P, Py the respective images of ]3, P, via the natural injective
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homomorphism

p: P=T[ K>k — Ck.

veS

Find a standard open subgroup V = Cg' of C = Ck for some cycle f, such

that
PR WweEng
and N§f < BP5, where n = m, or 2m if the special case occurs (see Theorem
0.3).
Equivalently, we may work on the following Problem V’.

Problem V': Let P = [l,cs K where S is a finite set of places of a number
field K, Py a subgroup of P with the factor group ]5/160 being of exponent
m > 1, and P, Py the respective images of P, Py via the natural injective

homomorphism

U:P=]]KS-Ik.

veES

Find a standard open subgroup V = V; of I for some cycle f, such that
PNK*XIZV C B

and Nf < BP5, where n = m, or 2m if the special case occurs (see Theorem

0.3).

Recall that, we say the special case occurs, if K({-)/K is not cyclic (hence
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l=2and r > 3), So £ S and a} € Py. See the beginning of this chapter for

the definition of Sy and ag.

5.2 Essential Closure

This part is to introduce the concept of “essential closure” which will be

needed.

A lattice in K* of rank h is a free abelian subgroup of K* of rank h.

Let R be an integral domain and M an R-module. A submodule N is
said to be R—essential or R—divisibly closed in M if for any 0 # 0 € R and
n € M, we have on € N = n € N. Given any nonzero A in R, N is said to

be A—essential or A\—divisibly closed if \n € N = n € N.

For each nonzero A in R, call the set

{n € M, °n € N for some s}

the \—essential closure or A—divisible closure of N in M. Of course a A—
essential R—submodule of M is the A—essential closure of itself; and any A—

essential closure of a submodule of M is A\—essential.

Call the set

{n € M,rn € N for some non—zero r in R}

the R—essential closure or R—divisible closure of N in M. Of course any -

essential submodule is also A\—essential for any A # 0 in R.
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Also, when one says essential one means Z—essential.

Ezample. The set K° of S—units in K is Z-essential in K* for any finite set

S of primes of K.

Now we recall some standard facts, and give proofs for completeness.

Proposition 5.2 (Basis of a sublattice in Z"). Let V € Z™ be a sublat-

tice of rank r, and let

Wo=0GWi=Zx0"'G...
CW=Z %0 C...

CWna =Z" ' x0' S W, =2"

be a filtration of Z, i.e.,
Wi:{(alv-“yan)ezn, aj=0 \V/jg’l}

Let V, =W,NV, Vo =0 and V,, =V, and a; some element in V; generating
Vit Wia/Wea EW /Wi 2ZifVi# Vi and o, =0 if Vi = Vi,

Thus the nonzero elements of ay,... ,a, form a Z-basis for V.

Proof. First V is generated by ay, ... ,a,. This is true as we can inductively
prove that (a;) + Vi_y = V;. In fact, for any a € V;, say a = ¢;a; + b where
ci€Zand be W,y thus b € W,_1 NV, =V,_4, thus (a;) + V;_1 2 V;.
Furthermore, we prove that only r elements in a1, ... ,a, are not zero, so
that we conclude V is free on r nonzero elements in «q,...,a,. In fact, if

Vi # Viey then V;/V, 4 2V, + W;_1/W;1Z. Thus rkV, = rkVi_; + 1. As
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rkV =r, r of factors V;/V;_; are not zero, hence only r elements in o, ... ,a,

are not zero. [

Recall that J§ denotes the S—ideal group of K, i.e., the ideal group of K
generated by (finite primes) p in S; Pg denotes the principal S-ideal group,
ie., Pg = PgNJg. Also, let ri(K) and ro(K) denote the numbers of real and

complex embeddings (up to conjugacy) of K respectively.

Lemma 5.3. Let S be a finite set of finite primes. Then K° is isomorphic to

w(K) - Mo, where Mg S K* is free, with a basis of

{61, & S P [y P ,W#S}
where { €1,... ,€r1ry—1 } 1S a basis of units in K*.
Moreover, the images of m; in Jy form a basis for Pg.

Proof. Let B,...,Bu=s| be a basis for PZ in JZ. From Proposition 5.2,
such basis exists, as Pg is a sublattice in JZ = Z" of rank M = |S).
Let 7; be an element of K which generates (3; for each 1.

Thus we have

K% = (m) x ... x (my) x Ug

Then by the Dirichlet’s Unit Theorem (see [Lang70], [Ne86], [Ne91], [Ra-Va97],

5 B

Uk = w(K) X {€1) X ... (€ry4rs—1)
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Combining the two formulas above, we get the assertion. Done. O

5.3 Effective Method (I)

Again, let [ be a rational prime. The following is basic to our method.

Proposition 5.4. Assume that (¢ € K. Let W < K° is a Z—-essential sub-
group containing pu(K), the group of the roots of unity in K, rkW = ry, and
S a finite set of finite primes

Then there exists an open subgroup V =V, N...NV,,, w Srw +1 of Ig
separating 1% W /1%, where q; are chosen via the following process:

Step 1: Set Ao =W andi=1.

Step 2: For each i, choose prime q; ¢ SUS; of K not splitting in K(\/a)/K
for some a € A1 SW, a ¢ W'

Step 3: Set
A=A NK],

Step 4: If A; # W', then increase i by 1 and go to Step 2. Otherwise set

w=1.

Corollary 5.5. In Proposition 5.4, we can find such open V; = Vo, N...NV,,,

with
Nf < By(K,S)™*

where Bj(K,S), defined in Chapter 2, denotes the upper bound of the least
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norm of the prime in K outside S and S;, which does not split completely in

KWh) forh € K5.

Proof of Proposition 5.4. Assume that q1,...,q, is chosen as in this propo-

sition, with Ag = W, A, = W'. Later on we will prove that w < ry + 1.

First, we prove that V =V, N...NV,, separates I'W/I'.
Assume that Z'-a e I'W NV, wherea € Ag=W and Z = Z, € I = Ig.
Thus Z!. -a € Vy,.

Ifae A1 2 Wl, then

l l
Zqi-a€1+qiqu>j

=>a€Kél

Thus the Kummer extension K (\/a)/K splits at q;, hence a € A;. Note

that A; S A; 1, and A, = W'. Thus,a € W!and Z' -a € I.

Furthermore, w < rkz/z(W/W'). In fact, W = p(K) - W’ for some free
W’ of rank ry. Therefore, W/W* = u(K)/u(K)' - W’/W" and ¢, € K. Thus
w S rkzz(W/WH =1+ rw.

In fact, from the discussion above, we see that Ag =W D A; D ... isa
strictly descending series of subgroups of W containing W', and thus such a

series is finite.

Next, prove that V separates I'' W/I.
We will prove inductively the following:

Forany 0<i<r
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(1) V separates I' W/I";

(2) IV separates W/W".

Clearly the assertion holds for ¢ = 0.

Assume by induction that the assertions above hold for i — 1, we will prove
(1) and (2) for 3.

fzeWNI'V c W' = Ag_l, we want to prove x € Aii_l for each s < w.
By induction, we may assume that z € A?_l for every 7 < s. We need to
prove that = € AL,

Say z =y eI'V.

Since V,, N K C qusli as 14+q, C Kq’:li since q, 1 I, we have ' € Kq’ili
hence y(i¥ € K ! for some my.

Note that 1 < r, (i € K, (ji-1 € qusl, Yy € qusl, and K(\/y)/K splits at q,.
Thus y € As and = € AFT

Since this holds for all s < w, we have z € szi—l = W, and

'wnv S W nI'v)

i

g ]Ili Wli = ]Il

Thus (1) and (2) hold for each ¢ < r, in particular hold for r. Done. O

In fact, from the process above, we can choose each q; with the norm not

exceeding B;(K, S), So Corollary 5.5 follows.

Proposition 5.6. Let K be a number field such that K((r)/K cyclic,c W <
K% a Z-essential subgroup of rank rw containing pu(K), the group of the roots

of unity in K, and S a finite set of finite primes.
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Let q be an inert prime of K in K((r) outside S and Sj.

Let Vi = Vg N...NVy, be a standard open subgroup of Ik ) that separates
Hl;{(clr) . W/Hl;;(clr), while q}, ... ,q., are selected as in Proposition 5.4 for K; =
K(Gr), S ={p a prime in Ky, plp € S} and W is the Z—essential closure of
W in Ik, . |

Then V = (Vi N1k) NV, separates Iy - W/Ik, and Nfy < Nq - Nfy,.
Remark. rw =7rkW =rkW as W/W is torsion.

Also recall that S; denotes the set of primes of K dividing I.

Recall that for each open subgroup V in Ik, fy is the smallest cycle such

that V 2 V;.

Corollary 5.7. In Proposition 5.6, such V' can be found as
Nfy < Bi(K1,S)™"* . O (K, S)

where Ky and S is as in Proposition 5.6 and By(Ky, S) is as in Corollary 5.5;
Crr(K,S), defined in Chapter 2, denotes the least norm of prime of K which

is inert in the cyclic extension K({;)/K outside S and S;.

We will prove Proposition 5.6 in the next section (see Proposition 5.12,

Page 124). Similarly one can easily prove Corollary 5.7 from Proposition 5.6.

We conclude this part by a proposition. For the rest of this chapter, unless

specified, S might contain infinite primes.

Proposition 5.8. Let m = I". Let S be a finite set of primes, S’ a finite
set of finite primes containing Sy such that | { #Clk 5. Then there exists a

Z-essential subgroup W of K such that
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(1) W-K*™ 2 P*(m,S), m=1" a prime power, where

P*(m,8) :={z e K*,m|v(z) Vv finite primes ¢ S}

(2) W 2 K.

3)

rkW < rk K5 +4(Clk s)

=71(K) +ro(K) — 1+ |S¢| + m(Clxks)

where

Sy 1= the set consisting of all the finite primes in S.

7(QG) := the minimal number of generating elements Sylow [-subgroup of G.

Especially, if 1 1 #Clk s, then W = K5,

Remark. 1f G is abelian then denote +;(G) be the minimal number of gener-
ating elements of Sylow [ subgroup of G.
For example, if | = 3, G = Z/3ZxZ/9Z, then v3(G) = 2. If G is cyclic, then

for any prime number I, v,(G) = 1; If #G is prime to [, then also v,(G) = 1.

Proof of the proposition.
Recall that Jx is the group generated by the ideals of Ok and Pk the sub-
group of Jx generated by all principal ideals of O. Also, J% is the subgroup

of Jx generated by the primes in S and P is Jg N Pk.
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Let Py be the inverse image of the Sylow I-subgroup T of Clk, i.e.,

Pl'{z{aEJK]alA € Px for some AZO}
We can find a minimal subset of P consisting of
T T
generating P J2/PxJs, i.e.,
(i1) + ...+ (in) + JoPx 2 JoPy
Note that
N = 2(PgJ%/PxJg) = n(Clk.s)
since
" J2 | PeJs = TCU | CES

is the Sylow [-subgroup of Cly/Cl3, = Clk s where Cl5, = Jg/Pg.

. .. it .
Furthermore, we can choose representatives i, in Jg N Pk. The reason is

the following: Since [ { #C/¥k g/, we have
Py JS | PrJg = TCEs |CL3

which is the Sylow—I subgroup of Clx/ Cts =C¥ k,s', hence it is trivial. This
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means

Py C PxJS = Px(PLNJZ).

Let

J = JZ x (41) x {ig) X ... {ix) C JS

and F = J N Pk a subgroup of J'. Then E admits a basis by Proposition 5.2.
Moreover, since J'/E = J' Px/Pg < Clk, then E and J' have the same
rank N + |Sy|.
Hence we may find a basis of £ formed by (e1), (e2) ... (en4s;|) With e; in

K5,

Let W, be the subgroup of K5 generated by Ux and ey, es... en+|s;|, and
W the Z—essential closure of Wi. It is easy to see that W; consists of those
elements in K* generating principal fractional ideals in F.

Note that 7k W = rk Wi = N +|S¢| +7r1(K) +ro(K) — 1. Hence (3) holds.

Since F contains J3 N Px = Py, by the construction of Wi, W; and hence

W contain K°. Then (2) follows.

(1) holds from the following claim:
Wy - K*™ 2 P*(m, S)

Now we will prove this claim.

For any a € P*(m, S), m | vy(a) for each finite prime p ¢ S, and v,(a) =0
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for all but a finite number p.

Define an ideal A by:
A — Hpﬂn(—za—)
pEs

Thus by the definition of Py, A" € P} for some integer h not divisible by 1.

Hence by the fact that the 5,1 < s < N, generate Pj.Js /PxJs,

N
A=Ay - (0) ]

s=1

for some w, € Z, Ay € J2 and b € K*.

Thus
) AP e JEJ = T,
and hence
(ah)(b)—m — (Ah(b)—l)meh’Up(a) = JI:%'JI _ J’_
peS
Thus

(a®>™) € ' N Px = E.

So by the construction of W, we have

ahb_m € Wl .
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Hence o™ € W, K*™.

Since A is not divisible by [ and h is relative prime to m, we have
a€ad"K*™ e Wi K*™ c WK*™.

Hence the claim and assertion (1) follow.

Done. O

5.4 Main Results and Proofs

In this section, we will prove the four main theorems in this chapter. After
treating the case when K((r)/K is cyclic (see Theorem 5.10 and Corollary
5.11, which are in fact Theorem 5-C and 5-A), we will focus on the case when
K({r)/K is not cyclic. We will state and prove Proposition 5.12 (see Page
124) which is an analog of Proposition 5.6 in this particular case. Finally we
will finish proving Theorem 5-D and Theorem 5-B to conclude this section

(see Theorem 5.15 and Corollary 5.16).

Before we start, recall that (see Section 1.3)
P*(m,S) = I*(m,S) N K*
= {a € K*,vy(a) is divisible by m for all p ¢ S }

P(m, ) = I(m, S) N K>

={a€e K ,ac K" forallp¢ S}

Let us begin sketching the main idea of our method.
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Let K be a number field, S a finite set of (finite or infinite) primes, P =
II,es K5, P the image of P via the natural embedding into Ix, P, a subgroup

of P with P/P, is of exponent m = [" which is a prime power.

Assumption 0: PN KxXI™C P
Note that this assumption holds when K ({;-)/K is cyclic, in particular

when [ is odd.

Thus under the assumption above, we reduce the effectivity problem of the
Grunwald—Wang Theorem to the one of finding an open subgroup V of Ix

such that

PNEK*I™V C R,

(see Section 5.1).

Let z = (z,) e PN K*XI™V, 2y = 1 for p ¢ S. Write x = a - Z™ - R, where
acK*,Zcland R=(R,) €V.

Thus 1 =a-Z*- R, for p ¢ S, and hence a € P*(m, 5).

So we want to choose V' appropriately to force z to be in F.

Let S be another finite set of finite primes containing S¢ such that #C?xk sus,,
is not divisible by I. By Proposition 5.8, a = a; - ¢™ for some ¢ € K* and
a; € W S K5'Y%= for some given W satisfying (1), (2) and (3) in Proposition
5.8. We still denote the rank of W as rw.

Replacing a by a1, and incorporating ¢ into Z, we get

aeW C K% = K55,
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Consequently,

r=aZm"Re PNWI™V.

Now we prove the following

Lemma 5.9. Assume that K((,)/K is cyclic where m is a prime power. If
Vo separates WI™ /I™ where the conductor of Vi does not involve any prime in

S, then V* = Vo N'V; separates P/ Py, where § is the conductor of Py in P.

Proof.

For any x € PN WI™V™, write
r=a-4"+ R, aeW,Ze€l, ReV*
Without loss of generality, assume that
zp € Ok, pes

It is clear that « € 1} since the conductor of Vj does not involve the primes
in S, and the component of = at each p ¢ S is 1.

Thus since Vy D V* separates I"™W/I"™,
zR'=aZ™ e VoNnWI™ Cc I™

Taking the local components on both sides at any p ¢ S, and being aware
that z, = 1 outside S. We have R, € K™ outside S.

Also, it is clear that ¢ € I™ as a Z™ € I'*, and thus a € prm for any p.
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So a € P(m,0). Since K(¢r)/K is cyclic, a € K*™ by Proposition 1.9 (see

Section 1.3).

Set

w:HRpEP

peS

and w' = Rw™.
As R, € K™ for p ¢ S, we have ' € I™.

Note that
zwl=zR W eI™NPcC P
and
weV*NPCcViNnPCFh

Hence we have x € P,.

O

When K(¢r)/K is cyclic, Assumption 0 holds, and thus we may choose Vj

as in Proposition 5.6 separating W1I™/I™, so that
Niv+ £ Bi(K(Gr), §)™ " Crr (K, 8')NF

Furthermore, WI™V/I™ = K*I™V/I™ separates P/P, by the lemma above.

We get the following
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Theorem 5.10 (The First Main Result). If K({-)/K is cyclic, then

BP5 < B(K(Gr),§) ™ Cr (K, §') N

where S' is the set of primes of K((r) over primes in S', which is a given
subset of primes of K containing all the finite primes in S and satisfying

l‘r#CEK,SUSW;
rw = Y(Clk sus,,) + #(S U Se) — 1,

and f is the conductor of Py in P.
This is Theorem 5-C.

Corollary 5.11. Assume that K((r)/K is cyclic. Then

BP1, BP2 < B(K(Gr), $)™ " Cr (K, 8) [] N(xp)
peS

The above theorem and corollary complete the proof of Theorem 5-A.

Next, consider the case when m = 27, r > 3 and K ((»r)/K is not cyclic.
We need a stronger statement than Proposition 5.6 and Corollary 5.7.

Recall that, s is the largest integer such that 7os = 2 Re((os) is in K,
So={p |2 —1,%(2+ ;) are not squares in K }

and

i

i 2 T
ap = (1 +()” = (V=Impst1)” = nois
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Proposition 5.12. Letl =2, m = 2". Assume that K ({>-)/K is NOT cyclic.

(1) When So € S, Let W € K5 a subgroup in K* of rank rw, and let W
be the Z-essential closure of W in K({ar).

Let q be a prime of K in Sy, not in S and
i=Vgn...nV,

separating H%{T(czr) : W/II%(QT), and V; is selected, as in Proposition 5.4, for

-Kl = K(CT");
S":={p a prime in K1,p dividingp € S'}

where S” be a given larger set of primes of K such that #Clk s1ys,, is odd.
Then V = (V NIg) NV separates I¥ - W/I* and Nfy < Nfy, Ng*, where
A is defined such that 1+ ¢* < Uz,
(2) When Sy £ S, let V1 be chosen above, and let q be a prime with divisor
q1 in K(v/=1) such that q; is inert in K (Cyr).

Then V = (Vi N1k) NV, separates 12" - W/I* U qol%".

Propositions 5.6 and 5.12 play a crucial role for our method, and we will

prove them together.

Proof of Prop 5.6 and Prop 5.12.

Keep the same notation as in Proposition 5.6 and Proposition 5.12.

We need to prove that V = (V; NIg) NV, separates 15 W/Ik or 1% W/I% U
1% aj. Equivalently, it suffices that I'%V separates W/W" or W/W*" U aqW"

since W is Z—essential. See Section 5.1.
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Note that W c K, and S’ is the set of primes of K; = K (¢ir) above the

primes in S’. Here recall that S’ is some given set of primes of K containing
Sf such that ZT#CKK,S’USOO-
Let W be the Z-essential closure of W in K- 1§'. Assume a € W N ]IQV.

Then a € I%V; C Ik," V4. Thus by Proposition 5.4.
a e Wnlg'"Vi cW¥

Write a = b" for some b € K((r),

bo = b,b1,by, ... ,bir_1 are all ["-th roots of a in W, and b; = b}, for all 1.

Case (O): K(¢r) = K. Here the assertion follows from Proposition 5.4.

Case (I): K(¢r)/K is cyclic of degree > 1 and some prime q of K is inert
in K(¢r).

Since a € I,V C I%V,, we have a € qulr as1+q = (1+q)" in K as
g 1. Thus one of b; lies in K.

However, for any i, K(b;)/K C K((r)/K and q is inert in K({)/K, thus
q is also inert in K'(b;)/K, and b; & K¢ if b; ¢ K*.

Since for some 7, b; is in ch, this b; must be in K*. So a € K*". Hence

a € WY since W is Z—essential in K*.

Case (II): K(¢ar)/K is not cyclic and S € S. Let g € So — S and X an
integer such that 1+ q* C U, .

Since the 4-group subextension K (v/—1,v/2 +12)/K of K;/K does not
collapse when localized at g, the decomposition group G4(K;/K) is the same

as G(K1/K) (see Proposition 1.11 in Section 1.3).
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Therefore, we have a € K for a € W2 NI V.
Then a = b;*" for some b; € K.
However, b; ¢ K* = b; ¢ K as Gy = G. We conclude that some b; must

be in K%, So a € K** . Hence a € W?'.

Case (IIT): K({or)/K is not cyclic, and Sy € S.

We will prove:
WNIx S W UaW?.
As we have already had (from Case (1))
WNIE S W NI oV < W

while W* denotes the Z-essential closure of W in (K(v/=1))*. Thus the
remaining is a result of the following lemma (also see Proposition 1.11), which

in fact is proved in Chapter 1. O

Lemma 5.13. Let K be a number field, and s the largest integer such that
nes € K. Assume that K((t/K) is not cyclic.
Put ag = 1mps%" = (\/—17725)2t_1 =1+ Czs)2t and assume that a = b* for

a€ K> andbe K(v/—1)°. Then

t t
a € K*% UaoK™?
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Now we work on Problem V' in the case when K((-)/K is not cyclic.

Let us study the proof of Theorem b5.10. If we have found V separating
WI? /T¥, and P(m,S) = K*™ holds, then everything in the proof still works
when K((>r)/K is not cyclic. This happens in the case Sy Z S, when we
select V* = V5 N V; where § is the conductor of F in P, and V} is selected as
in Proposition 5.12.

Note that in this case, the fact P(m,S) = K* comes from Proposition

1:41.

Then it remains for us to consider the special case. Recall that in the special
case, Sp C S. Also, we need the condition aj € Fp.
Recall that aj has local components ag at the primes in Sy and 1 elsewhere.

Also note that ag € K™ for p ¢ Sy, hence ag - I*" = aj - I?".

Lemma 5.14. Let m = 2". Assume that K((,)/K is not cyclic, Sy C S
and af € Py. If Vo separates WI™/I™ U agl™, where the conductor of Vo does
not involve any prime in S, then V* = Vo N'V; separates P/ Py, where f is the

conductor of Py in P.

Proof.
The proof of this lemma is almost the same as the proof of Lemma 5.9.

Similarly, For any =z = (z,) € P N WI™V*, write

zt=a+-Z™ R, aeW,Ze€l,R=(R,) e V"
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Without loss of generality, assume that

z, € Ok, pesS

It is clear that x € V4 by the same reason as in the proof of Lemma 5.9.

Thus since Vy D V* separates I™W/I™ U aol™,

TR =aZ™ € VonWI™ C I™ U aqoI™

Taking the local components on both sides at any p ¢ S, and being aware
that z, = 1 outside S and aol™ = agl™. We have R, € K™ outside S.
Also, it is clear that a € I™ U agl™ and thus a € K™ for any finite p ¢ So.

So a € P(m,So), hence a € K*X™UagK*™ by Proposition 1.11 (see Section

1.3).
Set
w=][[R,eP
pes
and ' = Rw™1.

As Ry, € K} for p ¢ S, we have v’ € I™.

Note that

zwl=zR %W e (™Ua™NPCP

and

weV*NPCcViNPCRH
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We have z € P,.

O

From this lemma, we have P N K*XI™V* = PN WI™V* C B, where V* =
VoN'V;, Vp is found via Proposition 5.12 such that V4 does not involve primes
in S and Vj separating W - 12" /ag - 12" UI?", and f is the conductor of Py in P.

Furthermore,

rw+1

Nfy+ £ By(K (Gar), S') - Cyr (K, S") - Nf

Then we get the following main theorem of the special case. Here we abuse
the notation; we denote Cy- (K, S) as the least bound of the norm of the finite
prime in K (if K ({sr)/K is cyclic) or K (1/—1) (otherwise) which is not dividing

any primes in S or 2, and is inert in K (o).

Theorem 5.15. If m =27, K({3)/K not cyclic, So & S and af € Py, then

rw+1

BP5 < By(K (), S') . Cor (K, S') - NY.
pr()ESO—S;é@, then

BP5 < By(K(G), )™ - po* - N¥,

where \ is the smallest integer such that 1 + po* C Llf{:o.

This is Theorem 5-D.
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Corollary 5.16. If K((y)/K is not cyclic, Sy € S, and

H Xv(ao) = ]-a
VESH

then
BP1,BP2< By(K((),§)™ ™ - Oy (K, 8) - NF,

where rw = ¥2(Clk sus,,) + #(S U Sx) — 1, and | is the product of the con-
ductors of xo.

IfﬁoESg—S#@, then

rw+1

BP1, BP2 < By(K(Gr), §)™ ™ - po* - V¥,

where X\ is the smallest integer such that
1+ po* C U, .

The above theorem and corollary complete the proof of Theorem 5-B.

5.5 Proofs of Theorem G and Corollary H

In this part, we will plug in the results in Section 2.4 to prove Theorem G
and Corollary H of page xvii.

Theorem G can be directly deduced from Theorem 5—-A and 5-B. In fact,

rw+1

C(K,S") is absorbed by B(Kj,S") . Also, note that if (SS’) holds, then
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A <e(po/2)(r+1) (r > 2) since

14+ pg(PO/z)(""-l-l) - u}z{lo

where e(po/2) is the ramification index of pg over 2 (see Proposition 1.2 and

rw+1

its proof). Thus, Npo" is also absorbed by B(K1,S")

Corollary H is easy to get from Theorem G as Q has class number 1 and
rw+1=|SUS|. It gives a good least bound of N such that p is not an I-th

power and [" | ¢(N).
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Chapter 6 Results assuming GRH

From now on, we assume GRH (Grand Riemann Hypothesis) which asserts
that for a number field L, the Dedekind zeta function {; has no nontrivial
zeros beyond the critical line Re s = % for a number field L. Proving such an

assertion is of course far beyond reach at the moment.

We will prove Theorem I which answers the effectivity problem of the
Grunwald-Wang Theorem in the general case assuming GRH.
Also, a sharp result for the quadratic extension case assuming GRH will

also be given.

6.1 S—versions of the Chebotarev Density

Theorem with GRH

In this section, we will prove two distinct results which are the S—effective
versions of the Chebotarev Density Theorem with GRH. They are analogies
to the results in [L-O77], [L-M-O79] and [KM94].

Throughout this section, for any number field L, d; denotes the discrim-
inant of L, and d; /i denotes the relative discriminant of L over a subfield

K.

Theorem 6—A. Let L/K be a Galois extension of number fields of degree n,

S a finite set of primes of K. If we assume the GRH, then there is a prime
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ideal p of K such that (1) p is unramified in L, and p is of degree 1 over Q;

(2) p ¢ S; (3) p does not split in L; and (4)

1 2
Ngjop = Co { (E log dL) + log NS}

where Cy 1s an absolute constant.

This result is an S—analog to the main theorem in [KM94|. It is slightly

stronger than the S—version (Theorem 2.6.) in the basic paper of Serre ([Se81]).

Theorem 6-B. Let L/K be a Galois extension of number fields of degree n,
S a finite set of primes of K, and C a conjugacy class in Gal(L/K). Assuming
the GRH, then there is a prime ideal p of K such that (1) p is unramified in

L, and p is of degree 1 over Q; (2) p ¢ S; (3)
(1)
b
and (4)
Ngjgp < Co {(log dr)? +nlog Ns}

where Cy s an absolute constant.

This theorem is an S—analog of the main theorem in [L-O77].

Now we prove Theorem 6-A and 6-B. Keep the notations as in Chapter

2. Assuming GRH, we need only to use the first kernel function k(s).
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Lemma 6.1. Assuming GRH, we have

2
ki(p) = Y ka(p)| = (log 2)" + O(a7") log dy
p
where the sum runs over all the nontrivial zeros p of (1(s).
The proof is standard (see [KM94], [L-M-O79]). We give an argument for

completeness.

Proof. Consider the sum over nontrivial p = 3 + iy. Assume that y >> =z,

we have
-1
ICCIED RIS B
z o= p=4 ¥
0o ,.—1
0 / %dn(r; 1)
12 T
<<z '(4+2logdy)
<<z tlogdy,
Done. O

Now we begin proving Theorem 6-B by applying the standard model in

Section 2.2. From Lemma 2.8 and Lemma 6.1, we get

’I’LIl Z kl(l) = Z |k1(p)\ — Cg {’I’LLkl(O) + kl(—%) log dL}

o

2
> (log %) + O(z™) logdy, — csz2logdy,

- (]og %) ® 4+ Ol Y o
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Furthermore, I; — I; is bounded by the following;:

L-L= S11+ S12+ 51,3

—0( — (1og )logdL>

+ 0 ( (]og ) log NS)
g <nK (log ¥) (log y))

xlogx
Here n = [L: K].

If Np > y? for p € Pi(C,S), i.e., for p satisfying (1)—(3) in Theorem 6-
B, then I; = 0. Then set z = a(logdL+ \/(nlogNs)) and y = Pz for

sufficiently large 3 and a > (log ﬂ)z.

Recall that n = [L : K] and ny, = [L : Q], we have,

1
L| =0 ——( logd
n|l| (oﬂ(logdL)z(Ogﬁ) og L)

+0 ( m(log A)log Ns)
0 (i doe2logs +log2))

xlogx

is bounded as n;, << logdy. As f3 goes to infinity, we get (log 8)*+0(1) = O(1)
which also goes to infinity, contradiction.

So Theorem 6—B holds.

Next we will prove Theorem 6-A. We need to use a different model which

is the same as in [KM94].
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Let

1 2-+ioc0 }{
Ty = -y :
K I b i CK (S)kl (S, z, y)dS

On one hand, by using Lemma 2.8,

I = (1og %)2 =" ka(p) + Olnichks (0) + kl(—%) Tog

where the sum runs over the zeros of (x(s).

By Lemma 6.1, assuming GRH,
2
Fio = (1og %) + O(z " og di).
Furthermore,

Jg = Zlog(Np)l%l(Npm; Z.Y)-

pym

Let

Jx = log(Np)ki(Np; 2, ),
p¢S

where Zp¢ S' runs over the primes unramified in L of degree 1 and outside S.
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Thus

Je — Ji = Si1+Si2+S13

=0 (% (log %) log dL)
+ 0 (;1—2- (log %) log NS>

&5 <nK (log ¥) (log y))

xlogx

Set z = a(Llogdy, + /log NS)Q, y = Bz and assume that a > (log §)**.

Then it is easy to check that

Jx — Jx = O( )

1L
(log B)°
If Np > y? for all p satisfying (1) and (2) in Theorem 6-A, then

@—lkgo
n

Thus

(%) oes + 0o )™ + O((og ) ™) <0

as ””n;llogd,; << i
If B3 is large enough, this inequality will fail.

Thus, there is a p satisfying (1) and (2) with

2
Np <<y?> << O ((%logdL) +logNS> 2



138
Done. O

6.2 Results with GRH

First of all, we do some calculating. Throughout this part, S denotes the set
of primes of K((;r) over the primes in S.

Recall that If (; € K,

the least bound for Nq such that

Bi(K, S, a) := (i) g a prime of K not splitting in K (\/a);
(ii) gtland q & S.
Bi(K,S) = max  Bi(K, S, ).

acKS o (Ks)l

The next symbol has multiple meaning;:
If K(¢r)/K is cyclic, then
the least bound for Nq such that
Cr(K,S) = (i) q, a prime of K inert in K ((r);
(ii) g{p and q ¢ S.
If K({r)/K is not cyclic, so that | =2 and r > 3.

the least bound for Ng’ such that
Cor(K,S) := (i) ¢, a prime of K; = K(v/—1) inert in K({or);

(ii) g’t2 and g’ ¢ S’ while S’ ={p’ |p € S}.

(1) Calculation of By(K(¢r),S) (with GRH).
Set Ky = K((r). For any o € Klg which is not an [-th power in K;. Let

I+ = K1(Va). From Section 2.4 we know that logdr. < [Kq : Kllogdx +
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rng(K; : K]logl and, by Lemma 2.10 on Page 68,

logdy, +llog Nz, < [K; : K|{llogdg + (I — 1)log N, + (r + 1)l ngk log}

where T} = {p| [{vs(a)}, To = S — T, and Tp the set of primes of K,
dividing ! which does not ramify in L; = K;(\/«).

Thus assuming GRH, and applying Theorem 6-A one gets

Bi(K1,5,a) = Bi(K:1,T; U Ty, o)
<< {[K: : K]log dx +log Ny, — log Ny, + (1 + ) nk[K; : K]logl}?
+ llog Ny, + llog Ny,

<< {[K; : K]logdk +log N5 + (1 +7) ng[K; : K]logl}?
Thus we have
Bi(K1,S) << {[K: : K] (logdx + log Ns + ng (14 r)logl)}* (6-2-1)

(2) Calculation of Cj-(K, S) (with GRH).
From Section 2.4, in any case, we can apply Theorem 6-B for K;/K. So

we have

Crr(K,S) << {[K:1 : K] (logdg + rnglogl)}* + [K; : K]logNs  (6-2-2)

Plugging in the results above in Theorems 5-A and 5-B, one can easily
get Theorem I. (Note that we assume that if | = 2 and K ((2r)/K is not cyclic,

then Sy C S)
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6.3 The Quadratic Extension Case with GRH

First we recall Question Z (Section 3.1):
Let S = {p1,p2,... ,pm } be a finite set of finite primes.
Find «, such that py,pa,... ,pym 1 @, and 4 divides o — 1 if p; = 2 for some

1, and

€; = 0 or 1 given.
a?—
Define () = (—1)_2_1 be the quadratic residue symbol of « in Q.

Thus

1 ifa=1 (mod 8)
—1 ifa=5 (mod 8)
Also find the least bound of such |a].

The answer to this question with GRH is the following;:

Assuming GRH, we can find such prime « such that

| € 1428 + 21511 1og, Ng)?

<< (2 ]og, NS)2
We can also find such a with —« is a prime, and

o] << (2%!log, Ns)®
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Proposition 6.2 (Assuming GRH). Form =2, K = Q, all x, forv e S

finite, are unramified. Then
BP1,BP2 << (21og, Ns)*
Proposition 6.3 (with GRH). Let m =2 and K = Q. Then

BP1, BP2 << (2%10g, Ns)* - [ N(x»)

p

This is Theorem J.

Proof of Question Z and Prop 6.2., with GRH.

Let

Q(y/p:) ifp;=1 (mod4)orp; =2;
L=

Q(v/=pi) ifp;=3 (mod4).

and Ly = Q(v/-1)
Put L = [IY, Li, so that Lemma 3.1 applies.

Note that

G(L/Q) = HG(Li/@)

Thus, by [L-O77], there exists a prime number p corresponding to a given
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element in G(L/Q) under the Artin reciprocity map such that

p < c14(logy dr)?
< 1429 + 2191+ log, Ni)”

<< (2¥10g, NS)2

where from Lemma 1.18 (see Section 1.5),

S|

|
log, dr, H log, d, 1
Wé ——2—§1—|—§log2NS

=0

asdp, =p; if 2 | p;, dp, =4, dp, =8 if p; = 2.

Furthermore, we will describe below the conditions (2) and (2'), and prove
that if (2) holds then (5) — (—1), and that if (2') holds then (gﬂ) = [-AF,
So that, by the discussion above, we can finish the proof of the answer to the
Question Z with GRH.

Condition (2):

é5’4):(—1)E ifp;=1 (mod4) or p; = 2.
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Condition (2'):

(Li/K):<ipi> (=) ifpi=3 (mod 4);

p p )
(=1 ifp;=1 (mod4) or p; =2.

(4)-(3)-

In fact, (2) implies p =1 (mod 4).

Thus by Prop 1.20 on page 39, and the Gauss reciprocity formula, we have

( ) (Ep_) (L/K)—( 1) ifp;=1 (mod 4);
g =(5 = 15)
:(szK>_( ¥ if p; =3 (mod 4);
(

(3)-()- () wns

Moreover, (2') implies p = 3 (mod 4). Thus by Prop 1.20, and the Gauss

reciprocity formula, we have

(5)-(2)-(3)

_ (Eﬂ) = (=1)f ifp;=1 (mod 4);

(2)--(2)-(2) - (=)

1)t = (—-1)¢ if p, =3 (mod 4);

= 'n
<;p>:(z%):( Z/OK)=(—1>E if ps = 2.
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Now Prop 6.2 is clear. The proof is the same as Prop 3.3 (see page 73). O

Proof of Prop 6.3.

Without loss of generality, assume that co € S. Use the reduction process
(2) as in Lemma 3.5.
By Prop 6.2, we can find a quadratic character ¥ such that x|, = xp- Xo|; 1

for all p € S and
N() = Niz << (2*!log, Ns)”

Thus note that

p if p # 2, oo;
f(X")p) =
1,400 8 ifp=20r .
Thus
f(xo) divides oo - H f(Xp)
peS’
Therefore,

N(x1) = N(X)N (xo)

<< (2%log, Ns)* - 8T N(x»)

peES

<< (2"10g, Ns)" - [T N ()

pES
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