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Abstract

We derive the two-scale limit of a linear or nonlinear saturation equation with a

flow-based coordinate transformation. This transformation consists of the pressure

and the streamfunction. In this framework the saturation equation is decoupled to

a family of one-dimensional nonconservative transport equations along streamlines.

This simplifies the derivation of the two-scale limit. Moreover it allows us to obtain

the convergence independent of the assumptions of periodicity and scale separation.

We provide a rigorous estimate on the convergence rate. We combine the two-scale

limit with Tartar’s method to complete the homogenization.

To design an efficient numerical method, we use an averaging approach across the

streamlines on the two-scale limit equations. The resulting numerical method for the

saturation has all the advantages in terms of adaptivity that methods have. We couple

it with a moving mesh along the streamlines to resolve the shock more efficiently. We

use the multiscale finite element method to upscale the pressure equation because it

gives access to the fine scale velocity, which enters in the saturation equation, through

the basis functions. We propose to solve the pressure equation in the coordinate frame

of the initial pressure and saturation, which is similar to the modified multiscale finite

element method.

We test our numerical method in realistic permeability fields, such as the Tenth

SPE Comparative Solution Project permeabilities, for accuracy and computational

cost.
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Notation

Bold letters indicate vectors or matrices, normal letters indicate scalars. For

the quantities that define the coordinate transformations a capital letter denotes a

function and a lowercase letter denotes a spatial variable. For P, p,Ψ, ψ,v a zero

subscript indicates the quantity at t = 0. A ·̃ denotes a quantity upscaled along a

streamline and a · a quantity upscaled both along and across the streamlines.

S: Saturation

η: Entropy function for S

q: Entropy flux function for S

Π: Physical pressure

P : Pressure as a function, defined as P = 1 − Π

p: Pressure as a spatial variable

Ψ: Streamfunction as a function

ψ: Streamfunctions as a spatial variable

∇⊥·: The operator that maps the velocity vector to the vorticity, (−∂y , ∂x)
ξ: Fast spatial variable in the pressure direction, defined as ξ = p

ε

ζ : Fast spatial variable in the streamfunction direction, defined as ζ = ψ
ε

v = (u, v): Velocity in the Cartesian frame

v0: Velocity in the pressure-streamline frame

n: Unit normal vector

t: Unit tangent vector

i, j: indices for discrete quantities

h: mesh size

‖f(x, y)‖n =
(∫

f(x, y)ndxdy
)1/n

φ: Test function
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Chapter 1

Introduction

Making mistakes is part of academic freedom.

In nature there is a multitude of phenomena whose fundamental physics takes place

on a small length scale but we observe them on a larger length scale. We are not

interested in water particle collisions but in the motion of rivers; we are not interested

in the transfer of electrons in a metal lattice but in the flow of electricity in a wire.

Using fundamental physics such as Newton’s and Coulomb’s laws on the nanoscale we

can derive the Navier-Stokes equations and Ohm’s law that are valid for larger scales.

We will refer to the process of deriving an equation with quantities defined on a large

scale from the equation for small length scales as upscaling. In these two examples

the physical concepts and the type of the equations differ much between the small

and large scale descriptions. This process is far from trivial even in the case when the

physical description remains the same. For weather prediction, the physical laws on

the scale of meters are the Navier Stokes equation with heat transport, and it is next

to impossible to predict the average temperature over a length scale of kilometers.

Flow in porous media is another phenomenon that falls in this category. A porous

medium is a solid material that is permeated with miniscule pores that allow the

transport of a fluid through it like a sponge. An example of a porous medium in

nature is a subsurface rock formation as in figure (1.0.1). Flows in porous media

with practical significance arise in enhanced oil recovery and contaminant transport

in groundwater. During enhanced oil recovery, a substance such as water or carbon

dioxide is pumped through a well to the surrounding porous medium that is satu-

rated with oil. The water or carbon dioxide displaces the oil into nearby wells from
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Figure 1.0.1. A porous rock

which it can be collected. During contaminant transport in ground water a polluting

substance contaminates a water reservoir. They can be modeled by the equations of

incompressible immiscible two-phase flow

∇λ(S)K(x, y)∇P = 0

v = λ(S)K∇P

St + v · ∇f(S) = 0,

where P is the pressure, S is the saturation, which is the volumetric ratio of oil or

contaminated water to total liquid, and K is the permeability. Note that the pressure

equation is coupled to the saturation equation in a nonlinear fashion.

Experiments performed in laboratories can characterize the permeability and other

properties of porous rocks on the micron scale, and well logs provide data on the scale

of centimeters. Seismic imaging is used to extrapolate the information between wells.

Both enhanced oil recovery and contaminant transport involve transport over a length

scale of kilometers. The large difference between the length scale on which we know

the properties of the rock and the scale over which it is transported, the length scale
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of the average flow that we are interested in, makes the cost of direct simulation

prohibitive. Even if it were feasible, a direct simulation would waste computational

resources because it would provide a much more detailed description than is needed

to assess whether enough oil would be recovered or the water supply can be used.

There have been a number of efforts to upscale flow in porous media. Among

the general categories of upscaling methods are averaging, percolation theory, ho-

mogenization, and hybrid approaches. In an averaging method we derive a cascade

of equations, with mean flow and higher-order fluctuations, and we obtain a descrip-

tion on a coarse level by truncating this cascade to some order. In homogenization

we examine a sequence of problems with decreasing pore size but constant pore vol-

ume and consider the limiting process to describe the upscaled flow. Averaging and

homogenization both assume a more or less homogeneous pore structure. This as-

sumption fails in the presence of one connected pore that runs through a large part of

the domain, which is referred to as a fast channel, or more generally in the presence

of structures with long-range correlation. Such structures will be missed by an up-

scaling procedure that uses only local information. Such structures arise naturally in

porous media near fault lines and cracks in the rock as in figure (1.0.1). Incorporating

them accurately in an upscaled model is crucial because most of the transport occurs

through them. Percolation theory is based on the opposite assumption as homog-

enization and averaging, that transport occurs only through a network of such fast

channels and provides models where the connectivity is important rather than the

local description.

Our approach is based on homogenization and averaging, but in a setting that

will make up for these shortcomings. We will combine these two approaches with an

adaptive coordinate transformation defined by the pressure P and the streamfunction

Ψ. The transformation will detect and account for fast channels and resolve the inter-

face region between oil and water where the largest changes in the flow profile occur.

We will use homogenization and averaging to treat the rest of the flow regions where

the pore structure is indeed more or less homogeneous. Many upscaling methods

that have been proposed in the literature are ad hoc. Instead we will try to derive
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a rigorous estimate of the upscaling error and provide a solid mathematical founda-

tion for our upscaling methodology. We will also test it for benchmark permeability

models such as the Tenth SPE Comparative Solution Project [11] and the synthetic

channelized fields considered in [10] both for accuracy and computational cost.

The coordinate transformation that we use was inspired by the successes of the

time of flight method when applied to the saturation equation. The streamfunction

Ψ was first introduced by Muskat [38] in the context of two-phase flows. It was first

used by Higgins and Leighton [26] in the context of a numerical method to define

streamtubes through which transport occurs. They mapped the transport equation

to the streamtubes and used the fact that it becomes one-dimensional to solve it.

Thiele [50] followed the same approach, but accounted for the changes in mobility

by periodically recalculating the width of the streamtubes so his method bears some

resemblance to ours. Streamline methods were introduced by Shafer [45] who tracked

particles through the domain. Pollock [44] used the exact solution of the particle

trajectories under the assumption that the velocity field is piecewise linear. Datta

Gupta and King [15] introduced a new coordinate along the streamlines, the τ , in

which the saturation equation has a particularly simple form: St + f(S)τ = 0. Blunt,

Lui, and Thiele extended the streamline method to include diffusion and gravity

effects, which lead to the modern streamline methods. Streamline and streamtube

methods automatically resolve fast channels by virtue of discretizing the flow in Ψ.

More importantly when we use Ψ the saturation equation becomes one-dimensional.

Complementing our coordinate transformation with the pressure P instead of τ results

in an orthogonal transformation. We also note that in time of flight methods it

is difficult to include cappilary pressure effects whereas with our formulation it is

straightforward. With P instead of τ the saturation equation retains its multiscale

structure so that upscaling is meaningful.

Our homogenization approach is based on Nguytseng’s theory of two-scale con-

vergence. Nguytseng [41] proposed using oscillatory test functions φ(x, y, x
ε
, y
ε
) to

define the homogenization limit. Such a limit would be an average over all length

scales leaving the fast scales x
ε
, y
ε

intact. If we try to derive the two-scale limit in a

periodic domain we stumble upon the fact that the cell problem v · ∇(xε ,
y
ε )
S = 0 has
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no unique solution. This equation for the cell problem means that the saturation to

lowest order is constant along streamlines. To restrict the degrees of freedom con-

tained in a general two-scale expansion, E [19] incorporated this piece of information

to the expansion by using a test function φ(x, y, x
ε
, y
ε
) with v · ∇(xε ,

y
ε )
φ = 0. E arrives

at a unique two-scale limit, but the equations by which the two-scale limit is defined

don’t offer any insight into its structure. Moreover, there is no clear way to design an

efficient numerical method based on them. Westhead [53] incorporates the fact that

the saturation to lowest order is constant along the fast streamlines by introducing

a projection operator onto the average along the fast streamlines and also obtains a

unique two-scale limit. He expands the saturation equation into an average and fluc-

tuations and uses the projection operator to close the equation for the fluctuations.

The resulting equations are much more revealing about the structure of the two-scale

limit, and a numerical method is proposed.

The approach of Westhead assumes a two-scale structure for the velocity field in

the Cartesian variables. We will assume a fast variable in the pressure-streamline

frame. The upscaling philosophy in this thesis for upscaling either the pressure or

the saturation equation is that the geometry of the flow should be reflected in the

coordinate system that we use. Also we will not apply the projection only on the

fluctuations as Westhead did but will restrict the test functions as E. The implemen-

tation of this idea is the main result of this thesis. The idea to use a flow-based

coordinate system in the context of homogenization of the incompressible Euler equa-

tions appeared first in McLaughlin, Papanicolaou, Pironneau [40]; however they used

a slightly different multiscale expansion than we did and did not arrive at a unique

homogenization limit.

On a theoretical level the saturation equation in P,Ψ is one-dimensional which

allows us to obtain a convergence rate to the two-scale limit that is independent

of the assumptions of periodicity and scale separation. We can also carry out the

homogenization farther than the two-scale limit using Tartar’s method. On a practical

level the homogenized equations that we arrive at are much simplified compared to

those of Westhead. In addition consider how the fast flow channels are upscaled with

a Cartesian and a pressure-streamline method. In the Cartesian frame they are thin
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and they are grouped together with slow channels resulting in a large upscaling error.

In the pressure-streamline frame they are wider because the transformation focuses

the computational points in the fast regions and they are grouped separately from

the slow channels. This leads to a more accurate upscaling method. We apply our

upscaling philosophy to the pressure equation and complete our upscaling method for

the two-phase flow equations.

In the second chapter we describe the physical phenomena that occur during flows

in porous media, present their equations, and demonstrate the difficulties that arise

in modeling. We select the simplified model of side-to-side incompressible flow with

no capillary effects, which retains the essential difficulties in upscaling, the presence

of small scales that affect the large scale flow in a significant way. While describing

a naive approach to solve numerically the two-phase flow equations we introduce

concepts involved in designing a numerical method for the two-phase flows that will

be used in later chapters to design an accurate upscaling method. Finally we show

a few numerical results and highlight the essential features in the solution such the

shock at the interface and the presence of long fingers.

In the third chapter we introduce the coordinate transformation to the frame

defined by the pressure and the streamfunction. Our upscaling method that is de-

scribed in the next chapters will be based on this coordinate system so we describe its

properties in detail. In a pressure-streamline coordinate frame the two-dimensional

transport equation is decoupled into a family of one-dimensional equations and the

grid is focused in the high flow regions. We show how these two properties can be

used together with a moving mesh to design a method that is easy to implement and

superior to the method in the Cartesian frame, described in the first chapter. In nu-

merical experiments with realistic permeability fields we observe that the numerical

method in the pressure-streamline frame converges faster, that the error constant is

smaller. This concludes the part where the discretization grids resolve the fine scale

of the permeability and leads us to chapters three and four where the discretizations

do not resolve the small scales.

In the fourth chapter we upscale the hyperbolic equation of the two-phase flow

equations. For that we restrict ourselves to one-phase flow. When we look at the
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velocity field in the pressure-streamline coordinates the fast channels are magnified

and the variation of the velocity field over the coarse scale is smaller. The flow

is more or less uniform in the coarse cells of a coordinate system that follows the

flow. We obtain the homogenization of the equation, using two-scale convergence

that had been obtained in the Cartesian scheme in the nineties. The two results

are different because they are valid under assumptions of two different multiscale

structures. Yet we compare them and conclude that the approach in the pressure-

srteamline frame leads to simpler equations that are easier to solve. We show weak

convergence and rigorously estimate the upscaling error of the two-scale limit without

using the assumption of periodicity and scale separation. Then we average out the

fast dependence of the two-scale limit across the streamlines using Tartar’s method

to obtain a fully homogenized equation. It is not clear how to design an efficient

method using that equation, so we use an averaging approach to remove the fast

dependence of the two-scale limit across the fast streamlines following Efendiev and

Durlofsky [20, 21]. The advantages of the resulting method are demonstrated on

realistic permeability fields in terms of accuracy and time of computation.

In the fifth chapter we apply the same upscaling philosophy to the elliptic equa-

tion. We use the multiscale finite element method that is based on the homoge-

nization theory for elliptic operators. Before we apply the method we transform

to the pressure-streamline coordinates to deal with the long-range structures of the

permeability field. Our approach has all the advantages of an improved version of

the multiscale finite element method, called the modified multiscale finite element

method, and also treats fast channels more effectively. This leads to very accurate

upscaling as we demonstrate in numerical experiments. Finally we combine the two

approaches and present numerical results for the full two-phase flow.
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Part 1

Resolved Scheme
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In the first part we introduce the equations and the physical phenomena that

they describe. We examine the properties of the pressure-streamline frame in terms

of adaptivity. We assume that all the quantities are smooth when we discretize them.

That is, if we denote by ε the length scale on which the quantities fluctuate, then we

assume that our grid is such that ε > h and it resolves all scales.
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Chapter 2

The Porous Media Equations in
the Cartesian Frame

2.1. Derivation of the Physical Model

We will start by introducing the phenomena that take place in a porous medium

and deriving a quantitative description for them. A porous medium is a solid medium

that is permeated by miniscule pores that allow the transport of a gas or a fluid. That

gas or fluid is often referred to as “phase”. We will restrict ourselves to immiscible

flows, flows where the two phases are separated by a distinct boundary and don’t

mix. We will also consider phases that do not react with each other. In general, the

motion of any fluid is described by the Navier-Stokes equations. For a flow in a small

pipe the Reynolds number, which quantifies the relative importance of convection

of momentum to viscous diffusion of momentum, is V L
ν

, where V is the velocity, L

is the characteristic length scale, the diameter of the pipe in this case, and ν is the

kinematic viscosity. In our case all three quantities are such that the Reynolds number

is very small and in this limit the Navier-Stokes equations reduce to the linear Stokes

equations.

The pores are on a much smaller length scale than the length scale of the average

transport, so there have been early on attempts to derive a physical law on a larger

length scale. In 1856, Darcy discovered empirically a law, which now bears his name,

and describes the transport of one fluid in a porous medium. Darcy’s law can be
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written as

(2.1.1) v = −K
µ

(∇Π − ρg∇D),

where v is the velocity of the fluid, K is the permeability of the medium, µ is the

viscosity, Π is the pressure, ρ is the density of the fluid, g is the constant of gravity, and

D is depth. Darcy’s law essentially states that the velocity of the fluid is proportional

to the gradient of pressure. The permeability K is an empirical constant that depends

only on the geometry of the porous medium and describes how fast the fluid moves

through the region for a given pressure gradient. The same law has been recently

derived from the Stokes equations using homogenization (for the details we refer

the interested reader to [27]). Darcy’s law is complemented by an equation for the

conservation of mass of the fluid

(2.1.2) ∇ · (ρv) + q =
∂(φρ)

∂t
,

where q denotes sources or sinks in the domain, and φ is the ratio of the pore volume

available to the fluid to the total volume, referred to as porosity. Porosity describes

how much volume is available to the fluid and does not depend on the geometry of

the pores, while permeability describes how the geometry and connectivity of the

pores affect the mean flow. We can consider the porosity to be the density of the

rock. Passive transport of contaminant through the water of porous medium can be

described by (2.1.1), (2.1.2). It is referred to as one-phase flow.

For flows of two different fluids in a porous medium, Muskat [39] first postulated

that Darcy’s law holds for each fluid separately

(2.1.3)
vw = −Kw

µw
(∇Πw − ρwg∇D)

vn = −Kn
µn

(∇Πn − ρng∇D).

The two different fluids have been denoted with subscripts n and w for “non-wetting”

and “wetting”. This refers to the fact that the walls of the porous medium show

preference in being covered by one of the two fluids. Which fluid covers the walls

of the porous medium determines the contact angle of the interface of the two fluids

with the wall and the capillary pressure. Usually water is more wetting than oil and
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a gas would be the least wetting phase of the three. The difference of the pressures

of the two phases is equal to the capillary pressure

(2.1.4) Πn − Πw = Πc.

Darcy’s law for one fluid (2.1.1) is much simpler to work with than for two fluids,

as in (2.1.3), because in (2.1.1) the permeability K depends only on the porous

medium whereas in (2.1.3) Kw is the permeability of the porous medium combined

with the non-wetting phase and obviously depends on the distribution of the non-

wetting phase, likewise for Kn. We refer to Kw, Kn as the relative permeability. Our

goal is to derive equations for the flow of two fluids where the influence of the pore

structure and the influence of one fluid on the other are separated and their nature

is elaborated. Then the resulting equations would be as simple as the equations for

one fluid in a certain sense.

Experiments have shown that the relative permeabilities depend only on the ratio

of the concentration of the fluids that are involved and are more or less independent

of their type of fluids, their velocities and pressures, or the past flow profiles. This

means physically that the flow reaches its steady state locally. For a discussion of

cases when this assumption fails and the flow is not at equilibrium locally we refer to

Barenblatt [3]. To utilize this experimental observation we will introduce the concepts

of saturation and phase mobilities.

We will denote by Sw(x, y) the ratio of pore volume occupied by the wetting phase

to the total pore volume and refer to it as the saturation of the wetting phase, likewise

for Sn. By definition we will have

(2.1.5) Sw + Sn = 1.

The phase mobility λw is defined as λw = Kw
Kµw

, likewise for the non-wetting phase.

We write Darcy’s law in terms of the phase mobilities

(2.1.6)
vw = −λwK(∇Πw − ρwg∇D)

vn = −λnK(∇Πn − ρng∇D).
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In this framework the experimental observation that relative permeability only de-

pends on the ratio of the concentrations can be translated as

λw = λw(Sw) and λn = λn(1 − Sw).

The conservation of mass (2.1.2) can be written in terms of the saturations and

velocities of each phase as

(2.1.7)
∇ · (ρwvw) + qw = ∂(φρwSw)

∂t

∇ · (ρnvn) + qn = ∂(φρnSn)
∂t

.

Equations (2.1.7), (2.1.3) are general and can apply to flows with any number of

phases. We have included the effects of compressibility of the phases and the porous

medium and of capillary pressure.

2.1.1. Pressure Equation. To derive the pressure equation analogous to the

pressure equation for one-phase flow we first define an average pressure Π as

Π =
Πw + Πn

2
.

We can write the pressure of the wetting and non-wetting phases in term of the

average pressure as

(2.1.8)
Πw = Π − Πc

2

Πn = Π + Πc
2
.

We combine (2.1.7), (2.1.3) to obtain

(2.1.9)
∇ · (ρw (−λwK (∇Πw − ρwg∇D))) + qw = ∂(φρwSw)

∂t

∇ · (ρn (−λnK (∇Πn − ρng∇D))) + qn = ∂(φρnSn)
∂t

.

Quantities φ, ρw, ρn depend on the pressure since the phases and the medium were

assumed to be compressible. We define compressibility as the relative change in

volume divided by the change in pressure required to achieve it. Mathematically, we
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let

Cφ =
1

φ

dφ

dΠ

Cn =
1

ρn

dρn
dΠn

Cw =
1

ρw

dρw
dΠw

.

We make this dependence of the right hand side of (2.1.9) on the pressures explicit by

expanding the time derivatives and writing (2.1.9) in terms of the compressibilities

∇ · (ρw (−λwK (∇Πw − ρwg∇D))) + qw = ρwSwφCφ
∂Π

∂t
(2.1.10)

+ φSwρwCw
∂Πw

∂t
+ φρw

∂Sw
∂t

∇ · (ρn (−λnK (∇Πn − ρng∇D))) + qn = ρnSnφCφ
∂P

∂t
(2.1.11)

+ φSnρnCn
∂Πn

∂t
+ φρn

∂Sn
∂t

.

Now we divide (2.1.10) by ρw and (2.1.11) by ρn and add the results to eliminate the

time derivatives of Sw, Sn. We use equations (2.1.5), (2.1.8) to obtain an equation

for Π

(

− 1

ρw
∇ · (ρwλwK∇) − 1

ρn
∇ · (ρnλnK∇)

)

Π

+

(

1

2ρw
∇ · (ρwλwK∇) − 1

2ρn
∇ · (ρnλnK∇)

)

Πc

+

(

1

ρw
∇ · (ρ2

wKg∇) +
1

ρn
∇ · (ρ2

nKg∇)

)

D +Q

= φ(Cφ + SwCw + SnCn)
∂Π

∂t
+
φ

2
(−SwCw + SnCn)

∂Πc

∂t
.

We have denoted the sources and sinks by Q. The resulting equation is parabolic in

Π or Πc.

We would like to make some simplifications in this equation, while still keeping

the terms that describe the essential physics and that are the most difficult to model

numerically. In practice the capillary pressure is much smaller than the average

pressure so we can neglect it. Furthermore we can treat the gravity term as external
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forcing in the same way that Q will be treated so we will refer to them as ∇·Gp. The

equation becomes

(

− 1

ρw
∇ · (ρwλwK∇) − 1

ρn
∇ · (ρnλnK∇)

)

Π+∇·Gp+Q = φ(Cφ+SwCw+SnCn)
∂Π

∂t
.

We regard the quantity Cφ + SwCw + SnCn as the total compressibility. Then the

above equation is analogous to the corresponding equation for one-phase flow with a

time-independent porosity, which arises from the combination of (2.1.1), (2.1.2)

1

ρ
∇ · (ρλK∇)Π = φC

∂Π

∂t
.

Our final assumption is that the medium and the phases are incompressible. This

assumption is justified in the case of fluids moving through the rock. When a gas is

used to displace the oil the effects of compressibility cannot be ignored; however the

complications that they create can be treated in a similar way as in the incompressible

case. Our final equation for the pressure is

(2.1.12) (−∇ · (λwK∇) −∇ · (λnK∇))Π + ∇ ·Gp +Q = 0.

Based on the analogy with one-phase flow we can define a total velocity v to be

(2.1.13) v = (λw + λn)K∇Π +Gp = vn + vw.

In this work we will neglect the gravity and source terms for simplicity.

2.1.2. Saturation Equation. Following the same line of thought we derive an

equation for the saturation that involves average quantities rather than quantities

specific to a phase. We substitute Darcy’s law for two phases (2.1.3) into (2.1.4) in

terms of the gradients to obtain

vn + vw = v

− vn
λnK

+ ρng∇D +
vn
λnK

− ρng∇D = ∇Πc.
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We can solve for the velocities of each phase in terms of the average velocity and the

capillary pressure. We have

vw =
λw

λw + λn
v +

λw
λw + λn

λnK∇Πc +Gs.

We have lumped all the terms involving gravity into Gs. We will make the assumption

that the capillary pressure depends only on Sw and write the velocity of the wetting

phase as

vw = fwv + hw∇Sw +Gs,

where

fw =
λw

λw + λn

hw =
λw

λw + λn
λnK

dΠc

dSw
.

With this expression for the velocity the equation for the saturation of the wetting

phase can be written as

∇ · (ρwfwv) + ∇ · (ρwhw∇Sw) + ∇ · (ρwGs) + qw =
∂(φρwSw)

∂t
.

In the average pressure equation (2.1.12) the sources Q refer to the points of

injection of water and collection of oil. Away from these points (2.1.12) shows that

the average velocity v is incompressible. Then we see that the saturation equation is

a parabolic equation

v · ∇(ρwfw(Sw)) + ∇ · (ρwhw∇Sw) + ∇ · (ρwGs) + qw =
∂(φρwSw)

∂t

that describes convection by the average velocity v and a nonlinear flux function

f(Sw) in the presence of diffusion due to capillary forces and external forcing due to

gravity. Mathematically, the significance of the diffusion due to capillary pressure is

that it selects a physically relevant weak solution for the nonlinear conservation law.

In practice at the length scales that geological data are available, diffusion due

to capillary forces is negligible. Moreover modeling and upscaling become more chal-

lenging when the transport is convection dominated rather than diffusion dominated.

We simplify the saturation equation by omitting the forcing terms due to gravity and
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the capillary forces that would add unnecessary complications without illustrating

better any of the concepts to be presented. We will also assume that the fluids are

incompressible. In the case of oil and water this is a valid assumption; moreover

the transport of a compressible fluid must be dealt with in a manner that is consis-

tent with the incompressible case. Finally we assume that the porosity is constant

throughout the medium. With these assumptions the saturation equation reduces to

(2.1.14) v · ∇(fw(Sw) =
∂Sw
∂t

.

This equation was discovered by Buckley and Leverett [8] and bears their names.

Given Sw we can easily compute Sn by (2.1.5). Equations (2.1.4), (2.1.14) have the

desirable property that the influence of the porous medium and the interaction of the

two phases have been separated and encoded into K and fw,λ, a form that is intuitive

and can be quantified easily by experimental measurements. The most widely adopted

model for λw and λn is

λw(Sw) = S2
w

λn(Sw) = m(1 − Sw)2,

where m is the mobility ratio. With these constitutive relations we have

λw(Sw) + λw(Sw) = λ(Sw) = S2
w +m(1 − Sw)2

λw
λw + λn

= fw(Sw) =
S2
w

S2
w +m(1 − Sw)2

.(2.1.15)

One-phase flow can be recovered from the equations of two-phase flow by choosing

λ(S) = 1 and a linear flux fw(Sw) = Sw. We note that for two-phase flow the pres-

sure depends dynamically on the saturation through λ whereas in one-phase flow the

pressure and saturation equations are decoupled and the pressure is time-independent.

2.1.3. Model Problem. To make the presentation simpler we restrict ourselves

to flows in the unit square. There are two types of two-dimensional flows that are

widely considered, side-to-side and corner-to-corner. Corner-to-corner flow refers to

flow across opposite corners of the unit square and side-to-side refers to flow across

opposite faces. If we consider a three-dimensional underground flow from a well
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into which water is pumped to a well where oil is collected, corner-to-corner flow

corresponds to a horizontal cross-section and side-to-side corresponds to a vertical

cross-section. In this work we will mostly consider side-to-side flows for convenience

and show how to treat corner-to-corner flows in a similar way. Instead of the physical

pressure Π we will substitute for it Π = 1 − P and refer to the new variable as

pressure P with a slight abuse of terminology. For the rest of this work we will drop

the subscripts w.

Then the equations (2.1.12), (2.1.14) of the previous section for pressure P and

saturation S in a Cartesian frame are

∇λ(S)K∇P = 0

v = λ(S)K∇P
∇2Ψ = −∇⊥ · v

St + v · ∇f(S) = 0.

(2.1.16)

The boundary and initial conditions are

(2.1.17)

P (x = 0) = 0 ∂yP (y = 0) = 0 Ψ(y = 0) = 0 ∂xΨ(y = 0) = 0 S(x = 0) = 1

P (x = 1) = 1 ∂yP (y = 1) = 0 Ψ(y = 1) = c ∂xΨ(y = 1) = 0 S(t = 0) = 0.

We have denoted by ∇⊥· the operator that maps the velocity vector to the vorticity,

∇⊥ · (vx, vy) = −∂yvx + ∂xvy.

Ψ is the streamfunction and is defined to be constant on the streamlines. The

streamfunction is not part of the standard set of two-phase flow equations, but is

important for our approach so we have added it to (2.1.16). The Dirichlet boundary

condition on the pressure designates the x = 0 boundary as the inlet, the point where

water or contaminant is pumped, and the x = 1 boundary as the outlet, the point

where it is collected. The Neumann condition for the pressure imposes that there be

no outgoing flow at the y = 0 and y = 1 boundaries. The streamfunction is constant

on the integral lines of the velocity field; its level sets follow the flow. The constant

c can be chosen arbitrarily. We will chose c =
∫ 1

0
udy, so that Ψy = u.
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Figure 2.2.1. Staggered grid for the pressure

In a finite volume scheme for the pressure equation, the permeability and the
velocity are defined on the edges of the dual cells and the pressure is defined in the

centers of the dual cells.

2.2. Resolved Scheme

Next we will derive a numerical method for the model problem (2.1.16) and in-

vestigate numerically the properties of the solutions. On the way we will illustrate

some of the issues involved in the design and how they are tackled. This numerical

method will serve as a basis for our upscaled scheme that will be developed in part

two. We will also introduce some measures to quantify the flow.

2.2.1. Finite Volume Method for the Pressure equation. For the pressure

equation we will employ a finite volume (FV) method. Practically speaking a finite

volume method arises from a straightforward finite difference discretisation on a stag-

gered grid. We partition the domain into rectangular cells that define the primal grid,

as in figure 2.2.1. Connecting the centers of the cells we obtain the dual grid.

To derive the finite volume discretisation we start from the integral formulation

of the pressure
∫

Ωi,j

∇λ(S)K∇PdA =

∫

∂Ωi,j

v · ndS = 0.



20

This equation holds over all subsets Ωi,j of our domain, in particular over the cells of

the primal grid. If we assume that the velocity is piecewise constant over the edges k

of the dual control volumes Ωi,j and the pressure is piecewise linear in Ωi,j we arrive

at the following discretisation

∑

edge k of Ωi,j

vk · nk = 0(2.2.1)

Pi+1,j − Pi−1,j =
vk · nk
λ(S)K

Pi,j+1 − Pi,j+1 =
vk · nk
λ(S)K

.

Note that the velocity vi is conservative because it satisfies (2.2.1).

2.2.2. Finite Volume Method for the Saturation Equation. For the time

discretisation of the saturation equation in (2.1.16) we use an Implicit Pressure Ex-

plicit Saturation Scheme (IMPES). We assume that in the time interval (t0, t0 +∆tP )

the velocity remains constant and is equal to its value at time t0. Physically, this is

equivalent to assuming that in the time interval (t0, t0 +∆tP ) we have one-phase flow.

For example a first order IMPES method in time would be given by

∇λ(St)K∇P t = 0

vt = λ(St)K∇P t(2.2.2)

St+∆t − St

∆t
− vt · ∇f(S) = 0.

The nonlinear coupling of the saturation and the pressure equation occurs through

the velocity. If we discretize the two-phase flow equations as in (2.2.2) we will obtain

an explicit expression of S in terms of quantities at time t0, in particular in terms of

the velocity. The velocity vt in turn is coupled to the pressure in an implicit fashion

since its formula contains the saturation St at time t0. The scheme will be first-order

in time, independently of the rest of the discretization because the velocity is assumed

to be piecewise constant in time.

For the spatial discretization of (2.2.2), the cells of the finite volume scheme are the

cells of the dual grid. The flux (2.1.15) of the Buckley Leverett equation is nonconvex
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and could in general require special treatment in the numerical scheme. For a general

nonconvex scalar conservation law, Osher [42] discovered a functional relation for the

saturation and its flux in terms of the similarity variable x
t
. Evaluating this relation at

x
t

= 0 corresponds to a stationary frame and gives the flux for the Riemann problem,

which is what we need in the construction of the numerical scheme. It turns out to be

the same as in the case of convex flux. We defer the rest of the details until section

3.3.3.

It is very crucial that the CFL condition is not violated. In some cases if the

CFL condition is violated the saturation does not blow up, but instead we obtain a

solution that does not satisfy the entropy condition.

2.3. Some Numerical Results

There are three widely used quantities of interest in two-phase flows that quantify

numerical error. We will look at the relative error, defined as ‖exact−computed‖
‖exact‖

. The L1

norm of the saturation can be interpreted as the total amount of transported fluid in

the domain and can be used to investigate whether a method is conservative or not.

We can use other Lp norms, but we note here that it is meaningless to consider the

maximum norm when the exact solution has a discontinuity as the saturation does.

Quantities related more to practical applications are the breakthrough time, which is

the time that water first reaches the collection well, the fractional flow rate (ffr), and

the pore volumes injected (pvi). The fractional flow rate is defined as

(2.3.1) ffr(t) =

∫ 1

0
f(S)v · x̂dy
∫ 1

0
v · x̂dy

and describes the volumetric proportion of oil to total fluid that is collected at the

outlet well, the quantity that is of most immediate use to the petroleum engineer. In

a coordinate frame p, ψ that satisfies v · x̆dy = dψ the fractional flow rate becomes

(2.3.2) ffr(t) =

∫ 1

0

f(S)dψ.

The pressure-streamline frame that we will introduce in the next chapter has this

property so we will use the second form (2.3.2) in our computations. The fractional

flow curve is a plot of the fractional flow rate with time, and its integral is the total
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Figure 2.3.1. Shock and rarefaction of the Buckey Leverett equation
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Saturation profiles along a streamline for a nonlinear flux with m = 1 (left) and
m = 5 (right) at t = 0.2, 0.4, 0.6.

amount of oil produced at the outlet until a certain time. Instead of time, fractional

flow curves are often reported as functions of pore volumes injected, defined for unit

porosity as

pvi =
1

‖Ω‖

∫ t

0

∫ 1

0

v · x̂dy,

where Ω is the area of the domain. Pvi is the time that is required to inject an amount

of fluid equal to the capacity of the oil reservoir, essentially it is a rescaling of time.

We discuss briefly some characteristics of two-phase flows. We show a plot of the

saturation profile along a streamline at different times in figure 2.3.1. The saturation

develops a shock whose strength diminishes as time passes. The shock is followed

by a rarefaction wave. As the mobility increases, the shock strength decreases. In

figure 2.3.2 we show a saturation profile in two dimensions computed in Cartesian

coordinates with the method described in this chapter. In flows in two and three

dimensions when the velocity varies rapidly across the flow lines, the saturation profile

develops fingers along the fast channels of the flow. We are interested in resolving the

fast channels and upscaling over adaptively selected regions where the flow is more or

less uniform. Note that the presence of numerical diffusion smears the shock out. The

grid that was used was 60 × 60, which explains why the resulting saturation profile

is smeared. This effect will be much reduced when we use an adaptive coordinate

frame, and we will be able to see the fingers more clearly.
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Figure 2.3.2. Fingering in two phase flows
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Chapter 3

An Adaptive Framework for
Solving the Porous Media Equation

3.1. Context of the Present Work

The most successful attempt to design an adaptive numerical method for the

transport equation in oil reservoir simulation and ground water flow is the time of

flight method. It was slowly developed by many researchers and expanded to apply

to the many physical phenomena that arise in two-phase flows. A detailed review of

these efforts can be found in [4]. The central idea is to track the streamlines of the

flow and solve a one-dimensional transport equation along them

St + |v| d
ds
f(S) = 0,

where s denotes arc length. Datta-Gupta and King [15] introduced time of flight,

which is central to modern streamline methods. It is defined by

τ =

∫ s

0

dζ

|v(ζ)| .

If we change variables from s to τ we arrive at an equation whose solution is easy to

compute because it does not contain the velocity field

St +
d

dτ
f(S) = 0.

Time of flight satisfies the ikonal equation on the plane

1 = |v|dτ
ds

= |v|∇τ · v

|v| =⇒ v · ∇τ = 1.



25

From this equation it is clear τ is a well-defined function in the plane. (τ, ψ) is not

an orthogonal system of coordinates. To see this we can consider the case of shear

flow that arises when K = 1 − y. Then the velocity field is v = (1 − y, 0) and the

streamlines simply y = const. Time of flight is given by τ = x
|1−y|

so its level sets are

not perpendicular to those of the streamfunction. The pressure is given by P = x and

(p, ψ) is an orthogonal system. This fact holds generally as we will see. Our approach,

which will be described in the next section, is based on the coordinate frame p, ψ and

has all the advantages in terms of adaptivity as the streamline method. In addition

it is easier and more meaningful to try to upscale in p, ψ coordinates compared to

(τ, ψ) as will become apparent in part two.

3.2. The Pressure-Streamline Frame

3.2.1. Coordinate Transformation. We will make a change of variables from

(x, y) to (p, ψ) as defined above. The elements of the Jacobian matrix of the trans-

formation and its inverse are computed below. They relate the differential in X, Y to

the differential in P,Ψ




dX

dY



 =





XP XΨ

YP YΨ









dP

dΨ



 = J−1





dP

dΨ









dP

dΨ



 =





Px Py

Ψx Ψy









dX

dY



 = J





dP

dΨ



 .

Solving the second equation for dX, dY we get




dX

dY



 =
1

PxΨy − PyΨx





Ψy −Py
−Ψx Px









dP

dΨ



 .

Comparing the two equations for dX, dY we find the elements of the Jacobian matrix

and its inverse

(3.2.1)

Px = u
λK

Py = v
λK

Ψx = −v Ψy = u

XP = u
‖v‖2λK XΨ = −v

‖v‖2

YP = v
‖v‖2λK YΨ = u

‖v‖2

J = ‖v‖2

λK
J−1 = ‖v‖−2λK.
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This is a time-dependent coordinate transformation so the saturation equation be-

comes

St −XtSx − YtSy + v · ∇f(S) = 0.

The second and third terms are due to the motion of the coordinates p(t), ψ(t). Using

the chain rule on the saturation we find




SP

SΨ



 =





XP YP

XΨ YΨ









Sx

Sy



 .

Solving this equation for Sx, Sy we can write the saturation equation in terms of the

pressure and streamfunction variables

St −
Xt

J−1
(YΨSP − YPSΨ) − Yt

J−1
(−XψSP +XPSΨ) +

‖v‖2

λK
f(S)P = 0

St − ‖v‖2XtYΨ − YtXψ

λK
SP − ‖v‖2YtXP −XtYP

λK
SΨ +

‖v‖2

λK
f(S)P = 0.

Note that in this formulation the flux term is one-dimensional. The advantages of

the pressure-streamline frame in terms of simplicity and adaptivity are based on this

fact. We can substitute the velocity in the last equation. Then the full equations in

the pressure-streamline frame are

(3.2.2)

∇λ(S)K∇P = 0

v = λ(S)K∇P
∇2Ψ = −∇⊥ · v

St − Xtu+Ytv
λK

SP − (Ytu−Xtv)SΨ + ‖v‖2

λK
f(S)P = 0.

3.2.2. Entropy Solutions. In this section we demonstrate that the entropy so-

lutions of the two-phase flow equations (2.1.16), (3.2.2) coincide. This is in general not

obvious because the equation in the pressure-streamline frame is in nonconservative

form. In our particular case the analysis follows easily from the fact that there exists

a frame, namely the Cartesian frame, in which the equation is in conservation form.

The first obstacle is that there is no proof of existence and uniqueness of solutions to

the coupled two-phase flow equations. There is only a proof of existence of a solution

when capillary forces, a diffusion term, are included in the equations [1]. The proof

is made more complicated by the fact that the diffusion term is degenerate. When
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λ(S) = const the pressure equation is decoupled from the saturation and then we

have a unique solution.

For the following we will assume one-phase flow. We will interpret the satura-

tion equation in the sense of distributions, so we first derive that formulation for

completeness. In the Cartesian frame the weak form of the saturation equation is

∫

R2×R+

(Sφt + f(S)v · ∇φ)dxdydt+(3.2.3)

+

∫

R2

S(x, y, t = 0)φ(x, y, t = 0)dxdy = 0, ∀φ(x, y, t) ∈ J .

We change coordinates to arrive at the weak formulation in the pressure-streamline

frame

∫

R2×R+

(

Sφ
t,fix x+

)

J−1dpdψdt+(3.2.4)

+

∫

R2

S(p, ψ, t = 0)φ(p, ψ, t = 0)J−1dpdψ = 0, ∀φ(p, ψ, t) ∈ C∞.

The Jacobian J−1 of the transformation was defined in (3.2.1). We have denoted

with φ
t,fix x the derivative with respect to time, keeping x, y fixed. It is well known

that when the flux function is nonlinear a hyperbolic equation can have many weak

solutions. Motivated by the physical principle that entropy in nature cannot decrease

when time increases we define admissible solutions to be the weak solutions that

satisfy that property. To determine the correct entropy equation for our equations

we start from the weak form of the entropy equation in the Cartesian frame. Let

η(µ), q(µ) be an entropy-entropy flux pair. The following entropy condition must be

satisfied for every convex entropy for the solution to be unique [13, 34]

∫

R2×R+

(η(S)φt + q(S)v · ∇φ) dxdydt+(3.2.5)

+

∫

R2

η(S(x, y, t = 0))φ(x, y, t = 0)dxdy ≤ 0, ∀ nonnegative φ ∈ J .
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Changing variables we arrive at the correct entropy condition in the pressure-streamline

frame

∫

R2×R+

(

η(S)φ
t,fix x + q(S)

|v|2
λK

φp

)

J−1dpdψdt+

+

∫

R2

η(S(p, ψ, t = 0))φ(p, ψ, t = 0)J−1dpdψ ≥ 0, ∀ nonnegative φ(p, ψ, t) ∈ J

or

∫

R2×R+

(

J−1η(S)φ
t,fix x+

)

dpdψdt+

(3.2.6)

+

∫

R2

η(S(p, ψ, t = 0))φ(p, ψ, t = 0)J−1dpdψ ≥ 0, ∀ nonnegative φ(p, ψ, t) ∈ J .

The strong form of the entropy condition is

(

J−1η(S)
)

t
− Xtu+ Ytv

λK

(

J−1η(S)
)

p
− (Ytu−Xtv)

(

J−1η(S)
)

ψ
+ q(S)p ≤ 0.

(3.2.7)

The first three terms are the Lagrangian derivative of J−1η(S) in the moving frame

p(x, y, t), ψ(x, y, t).

The choice of the space J is not important for one-phase flow but for two-phase

flow we must select it to be H1, as we will see in the proof of the following theorem.

Theorem 3.2.1. Assume that the system of two-phase flow equations in the Carte-

sian frame (2.1.16) together with the entropy condition (3.2.5) interpreted in the sense

of distributions φ ∈ H1 has a unique solution. Furthermore assume that the trans-

formation x, y → p, ψ is nonsingular in the sense that the elements of the Jacobian

matrix and its inverse are bounded. Then that solution coincides with the solution

of the two-phase flow equations in the pressure-streamline frame (3.2.2) together with

the entropy condition (3.2.7).

Proof. To show that φ(x, y) ∈ H1 ⇔ φ(p, ψ) ∈ H1 we change variables in the

definition of the H1 norm and use the fact that the elements of the Jacobian matrix

and its inverse are bounded. The transformation x, y → p, ψ is a bijection from

H1 to H1 so S satisfies the weak pressure-streamline saturation equation (3.2.4) and
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the associated weak entropy inequality(3.2.6) for all φ(p, ψ, t) ∈ C∞ if (and only

if) S satisfies the weak Cartesian saturation equation(3.2.3) and its associated weak

entropy inequality (3.2.5) for all φ(x, y) ∈ C∞. Thus the two solutions coincide

and the uniqueness of the solution in the pressure-streamline frame follows from the

uniqueness of the solution in the Cartesian frame. �

These results can be slightly modified to cover the more general case when there is

no coordinate system where the equation is in conservation form and S(·, t), f(S)v(·, t)
are in L1 only. For the details we refer the interested reader to the work of LeFloch

[35].

3.2.3. Invertibility. For the map to be invertible we need the Jacobian ‖v‖2

λK
to

be positive. Since the permeability and λ are bounded from below we have to examine

only the velocity. The requirement that the velocity be nonzero makes the method

applicable for example only in flows where the streamlines are not closed because a

closed streamline must contain a point with zero velocity . The maximum principle

shows that there can be no sources or sinks inside the domain because that would

result in an extremum of P and also a point where the divergence of the velocity field

is not zero.

This doesn’t exclude saddle points for the pressure. If we pick a convex domain

with two sources of equal strength on the boundary so that they are opposite from

each other, then along the line joining them there will be a point of zero velocity

and a saddle point for the pressure. So it is the boundary condition that determines

whether the velocity inside the domain is nonzero. If we assume that there are no

sources or sinks on the y = 0, 1 boundaries then for flow from side-to-side there can

be no saddle points. The two streamlines going into the saddle point would have to

emanate from the x = 0 boundary, and the two streamlines that come out of the

saddle point would have to end up at the sinks at x = 1. In two dimensions this

cannot occur without streamlines crossing as is shown in figure 3.2.1. We believe that

this argument can be made rigorous.

The analogous situation in three dimensions is when the domain of the problem

is the unit cube with x = 0 as an influx and x = 1 as an outflux boundary and with
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Figure 3.2.1. In 2D the flow has no saddle point

Both ougoing streamlines of a saddle point cannot end at the outflux boundary
without crossing other streamlines.

the rest of the boundaries having no flux. In this case the boundary condition cannot

guarantee that the Jacobian of the transformation does not become negative and we

can only make progress by making an assumption that this does not happen.

3.2.4. Adaptivity. Rewriting the saturation equation using pressure and stream-

function as independent variables leads to a superior method in terms of adaptivity.

Firstly, it accommodates the boundary conditions better than in the Cartesian frame.

In a Cartesian frame we arbitrarily prescribe that there is no flux on the boundary

of our domain. In realistic situations one would have to make a computation in a

rectangular domain that includes all the regions where there is flow. In the pressure-

streamline frame the domain of computation automatically covers the flow region.

This leads naturally to a no-flow boundary condition at the boundary of the domain

since that boundary is a streamline.

Adaptivity across the streamlines. Across the flow a mesh regularly spaced in the

streamfunction variable ψ is automatically focused in regions with large gradients

in the streamfunction variable. The magnitude of the gradient of ψ, the density of

points in the pressure-streamline frame, is equal to the magnitude of the velocity,

by (3.2.1), so the mesh is focused around the streamlines with larger velocity. More

precisely, if we discretize the domain in cells uniformly spaced in p, ψ with spacing

∆p,∆ψ then every streamtube, defined as the region between (ψ0, ψ0 + ∆ψ), carries

the same amount of fluid from the inlet boundary at x = 0 to the outlet at x = 1. The
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Figure 3.2.2. Velocity profile for shear flow with a fast channel
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reason is that at the boundary of the streamtube there is no outward flux because it

consists of streamlines and the velocity is tangent to them. Therefore the amount of

fluid entering the streamtube at the inlet is the amount that exits at the outlet. That

flux is equal to

∫ ψ0+∆ψ

ψ0

v(x = 0) · x̂dy =

∫ ψ0+∆ψ

ψ0

u(x = 0)
dY

dψ
dψ =

∫ ψ0+∆ψ

ψ0

dψ = ∆ψ.

In this derivation we used the fact that at x = 0, Ψ is only a function of Y . This

expression quantifies the adaptivity principle with which we select the mesh along ψ.

We will demonstrate the advantage of selecting ψ as the variable across the flow

in a simplified case of one-phase flow with linear flux. A permeability function that

produces a flow with a fast channel is K(x, y) = K(y) = 0.75 − 0.5y + 7
1+1000(y−0.5)2

.

It is shown in figure 3.2.2. The streamlines in this case have a particularly simple

structure; they are straight lines and the velocity is constant on each streamline.

Since the permeability does not depend on x, the analytical solution for the pressure

is P = x and the velocity is v = (u, 0) = (K, 0). The saturation equation for

the Cartesian and pressure-streamline frames is St + uf(S)x = 0, where u = u(y)

or u = u(ψ). The difference is that in the Cartesian frame the one-dimensional

problems are regularly spaced in x and in the pressure-streamline frame they are

regularly spaced in ψ. We see at the left part of figure 3.2.3, that the method in
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Figure 3.2.3. Fractional flow curves for shear flow with at fast channel
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the Cartesian frame does not resolve the fast flow channel well. The fractional flow

rate has only one steep drop, which implies that if we select the streamlines in the

Cartesian frame only one streamline lies on the fast flow channel. Hence the fractional

flow rate is far from the exact solution. If we select the streamlines to be regularly

spaced in ψ we obtain more accurate results, namely the fast channel is resolved

better. The fast channel affects the fractional flow curve during early times t < 1

and is very well captured by the computation in ψ. The breakthrough time is more

accurately predicted. At later times the fractional flow curve is less acurate because

the slow regions are under-resolved by the computation in ψ.

Finally, the pressure-streamline coordinate frame eliminates cross-wind diffusion.

Cross-wind diffusion is purely a numerical artifact associated with a non-adaptive

choice for the coordinates in which we solve the equations. Consider the case of

convection of the saturation in a Cartesian frame. The coordinate system is not

aligned with the direction of the flow, and neither is the upwind direction. If we

naively apply a time-splitting method, we are convecting the saturation first along

v · x̂ and then along v · ŷ by upwinding in those two directions whereas the true

upwind direction is along v. The result is that the saturation is transported along

the shock front in the cross-wind direction, besides across the shock front. Aside

from the introduction of diffusion into the numerical solution, it is difficult to design

second-order schemes with limiters that are stable and effective. In contrast, in a

pressure-streamline frame, we have one-dimensional convection along the streamlines,
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which means that there is no cross-wind diffusion, upwinding is accurate, and higher-

order schemes are stable and easy to implement. For completeness we mention some

efforts to design multidimensional upwind schemes. A first-order scheme that uses the

correct upwind direction is the Corner Transport Upwind scheme, which was extended

a second-order scheme by Colella [12] and van Leer [51]. A more recent effort can be

found in [18].

Adaptivity along the streamlines. The pressure coordinate is adaptive in the sense

that it places the points of computation near large velocities. To minimize the points

of computation that are necessary for an accurate computation we use a moving

mesh along the streamlines. The mesh will be concentrated near the regions where

the numerical error is large, and it will be sparse in regions where the numerical error

is small. For the Buckley Leverett equation we must resolve the shock well so that

numerical diffusion will be small in the shock region. We make a transformation from

a fixed coordinate system to a moving coordinate system p(ξ, t) along the streamlines.

The saturation equation becomes

(3.2.8) St − PtSp + v0f(S)p = 0.

The first two terms are the Lagrangian time derivative, which is the time derivative

of the saturation in the moving frame. In general the motion of the mesh is determined

by a second partial differential equation, called the moving mesh partial differential

equation (MMPDE). Our approach is based on the equidistribution principle first

introduced by de Boor [7]. De Boor selected the variable P (x, t) so that in each

interval ∆ξ the arc length of the graph of the saturation function is the same, that is
√

∆S2 + ∆P 2 = C∆ξ. The motion of the physical mesh is given by

√

S2
p + 1

∂P

∂ξ
= C

∂

∂ξ

√

S2
p + 1

∂P

∂ξ
= 0.

The quantity w =
√

S2
p + 1 is called the monitor function. Near the shock the

arc length of the graph of the saturation increases rapidly, and the moving grid is

concentrated. In general, we must select the monitor function to be a measure of the
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Figure 3.2.4. Moving mesh with slowly varying velocity field
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numerical error, so that the numerical error is equally distributed over the moving

mesh points. We will use the second derivative in the monitor function and our

MMPDE will be

(3.2.9)
∂

∂ξ

√

S2
pp + E2

∂P

∂ξ
= 0

where E is a constant. Equations (3.2.8), (3.2.9) form a system for S, P . A classifi-

cation of different MMPDEs and some of their properties can be found for example

in papers by Huang and Russell [32].

To demonstrate numerically the adaptivity of a moving mesh we solve the Buckley

Leverett equation withm = 1 with a moving mesh and without. The fine computation

has 200 cells and the coarse computation 20 cells. The minimum mesh spacing for

the moving mesh that is allowed was selected to be the mesh spacing of the fine

computation, that is hmin = 0.005. If we allowed the mesh to cluster more we would

obtain a sharper shock at the expense of a longer computation. The velocity field was

v(p) = 1 − 0.2cos(2πp) on [0, 1]. In figure 3.2.4 we show the saturation at t = 0.5.

Besides the gain in complexity which is a factor of 10 we see a sharper shock profile

because the mesh has been concentrated near the shock. In figure 3.2.5 we show a

plot of the map at the final time demonstrating that the mesh is concentrated near

the shock.
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Figure 3.2.5. The mesh transformation
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Figure 3.2.6. Moving mesh with rapidly varying velocity field
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We note that the moving mesh equations are valid when the velocity field is

smooth on the coarse scale of the moving mesh equations. If the velocity field varies

on the fine scale then when we interpolate the velocity onto the moving mesh points

we make a large error. For an accurate computation in this case we have to replace

the velocity with its geometric average in the moving mesh equations and interpolate

the geometric average of the velocity onto the moving mesh points instead. Results

for a velocity field that is equal to 1 and 4 alternatively on the fine grid on [0, 1] at

time t = 0.3 are in figure 3.2.6.
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We provide insight into why this occurs and a proof for convergence in part two

of this work. We will show that the effective velocity of transport over a region is

given by the geometric average of the velocity in that region.

Adaptivity in time. Decoupling the full problem into one-dimensional problems

facilitates making the algorithm adaptive in time. It is easy to take a different time

step along every channel. To make the method even more adaptive in time we can

use locally adaptive time steps along the channels as well, see for example [48].

3.2.5. Extension to Three Dimensions. We will consider flows in the unit

square three dimensions. We will assume that P (x = 0) = 0, P (x = 1) = 1 and a

Neumann condition for the rest of the boundary. The construction of the map in three

dimensions is slightly more complicated than in two dimensions. The reason is that

the normal vector to the velocity is not unique. The primary reason why we selected

p, ψ is because the saturation equation reduces to a one-dimensional equation with

advantages in adaptivity and simplicity. We transform the flux term of the saturation

equation in an arbitrary coordinate system (p, ψ1, ψ2)

v · ∇f(S) = v · ∇Pf(S)p + v · ∇Ψ1f(S)ψ1
+ v · ∇Ψ2f(S)ψ2

.

To have the same outcome in three dimensions we need a coordinate system with one

direction along the flow and all other directions perpendicular to the flow. This

requirement results in a unique two-dimensional map but not in unique higher-

dimensional maps.

Thus we can construct the map x, y, z → p, ψ1, ψ2, by selecting ψ1, ψ2 to be or-

thogonal to p. An excellent discussion of the streamfunction in three dimensions

can be found in [5]. To focus the computational grid close to the fast stream-

lines we impose a constraint on how ψ1, ψ2 are selected. Following the same line

of thought as in two dimensions, we define a streamtube to consist of the points with

(ψ1, ψ2) ∈ (ψ10 + ∆ψ1, ψ20 + ∆ψ2). Since the velocity is tangent to the boundary of

the streamtubes inside the domain, the flux at the inlet of the streamtube equals the

flux at the outlet. At x = 0, the inlet, we consider ψ1, ψ2 → y, z as a two-dimensional

transformation, and we impose that its Jacobian be the magnitude of the velocity.



37

This means that the area in the ψ1, ψ2 coordinates is equal to the flux at any point

into the domain, that is

dψ1dψ2 = |v|dydz.

Using this relation we can show that each streatube in the p, ψ1, ψ2 domain carries

the same amount of fluid

∫ ψ10+∆ψ1

ψ10

∫ ψ20+∆ψ2

ψ20

v(x = 0) · x̂dydz =

∫ ψ10+∆ψ1

ψ10

∫ ψ20+∆ψ2

ψ20

v · x̂dydz

=

∫ ψ10+∆ψ1

ψ10

∫ ψ20+∆ψ2

ψ20

u
dψ1dψ2

|v| =

∫ ψ10+∆ψ1

ψ10

∫ ψ20+∆ψ2

ψ20

dψ1dψ2

= ∆ψ1∆ψ2.

After we select the parametrization of the p = 0 or x = 0 surface in terms of ψ1, ψ2,

we convect the values of the parameters with the velocity field to the rest of the level

sets of the pressure.

3.3. Numerical Implementation

3.3.1. Computing Ψ,v0. After solving for the pressure we need to extract Ψ

and then v0, which will be used in the saturation equation. Instead of solving the

Poisson equation (2.1.16) to compute Ψ we will use the first-order equation (3.2.1).

This is faster and more accurate. Since the boundary y = 0 is a streamline we set

Ψ(x, y = 0) = 0 and integrate along y

Ψ(x, y) =

∫ y

0

u(x, s)ds.

On the continuous level the fact that the velocity field is conservative guarantees

that the line integral
∫

∂Ω
∇Ψ · tdt, where t is the tangent vector to ∂Ω, vanishes

over any subdomain of the unit disk. This makes Ψ single valued on any point of

the domain. On the discrete level we assume that the velocity is piecewise constant

on the edges of the dual control volumes. The fact that the discrete field satisfies

the discrete conservation condition means that we can integrate along any path that

consists of boundaries of dual control volumes to compute Ψ. We will simply integrate
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along x = ih

Ψi,j =

j
∑

s=1

ui,sh.

More importantly, discrete conservation implies that Ψi,j computed with the formula

above will have the same value at y = 1, and our transformation maps the unit square

onto a rectangular domain. Once we compute Ψ at the edges of the primal grid, we

linearly interpolate it to the edges of the dual grid.

To compute v0 we interpolate the quantities u2

λK
, v

2

λK
from the edges of the dual grid

cell to its center. We could have avoided having to interpolate the components of the

velocity to the same point to obtain its magnitude by using triangular cells instead

of quadrilateral cells. Then we would know ∇P in the center of the dual triangles

and we would only have to interpolate the permeability. This would eliminate a

source of error, but would complicate the implementation without illustrating the

principles any better. Next we have to interpolate the velocity and saturation to the

pressure-streamline frame.

3.3.2. Natural Neighbor Coordinates. To obtain quantities on a regular grid

in p, ψ from a regular grid in x, y involves interpolation over an irregular grid. We

are given a set of points pi,j, ψi,j and function values Si,j, and we want to interpolate

them linearly to the points p = ih and ψ = jh. Let p∗, ψ∗ be a point on which we

want to interpolate the values Sij. If the grid were regular we would use the vertices

of the cell in which p∗, ψ∗ lies to reconstruct S∗. When the grid is irregular there is

no unique way to decide which of the points in the neighborhood of p∗, ψ∗ should be

used to construct S∗, that is, who the neighbors of p∗, ψ∗ are. If we choose the wrong

neighbors the interpolation error can be large.

We briefly introduce the concepts of Voronoi diagrams and natural neighbor co-

ordinates. A Voronoi diagram is a partition of the domain Ω that associates a cell

Ωi,j to every point pi,j, ψi,j of an irregular grid, according to the following rule. A

point belongs to Ωi,j if it is closer to pi,j, ψi,j than any other point of the grid. We

consider the Voronoi diagram of pi,j , ψi,j and p∗, ψ∗. The neighbors of p∗, ψ∗are the

points whose Voronoi cells have a common edge with the cell of p∗, ψ∗. Note that the

number of neighbors is not fixed for all neighbors, but depends on the local shape
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Figure 3.3.1. The interpolation weight of A is proportional to the
area π that P takes from A
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of the grid. The interpolant at p∗, ψ∗ is the weighted average of the neighbors. The

weight of neighbor, called the natural neighbor coordinate pi,j , ψi,j, is the ratio of the

area that p∗, ψ∗ takes from the cell of pi,j, ψi,j when p∗, ψ∗ is added to the Voronoi

diagram of pi,j, ψi,j ,to the area of the cell of p∗, ψ∗. This is illustrated in figure 3.3.1.

This idea was first proposed by Sibson [46]. It can be shown that the interpolant

defined by this procedure is linear. We observed that when the computational domain

is (0, 1)× (0, c) natural neighbor coordinates lead to a large number of neighbors and

a lot of numerical diffusion. We can change the aspect ratio of the computational

domain, which will lead to less singular triangles and less diffusion. In practice we

observe that the most accurate interpolation is the one where the neighbors of a

point P ∗,Ψ∗ are the vertices of the quadrilateral that encloses P ∗,Ψ∗. To find their

interpolant we use natural neighbor interpolation described above.

With this method we can interpolate the saturation and the velocity onto a regular

grid in p, ψ. It will guarantee that the variation of the saturation does not increase

when we move to the pressure-streamline frame since linear interpolation is averaging;

therefore the numerical error is some extra diffusion in the saturation. This diffusion

will guarantee that the whole numerical scheme for the saturation remains Total

Variation Diminishing.

For the velocity it is equally reasonable to use linear or quadratic interpolation.

The velocity interpoplation is most crucial and seems to be the source of most nu-

merical error. We note here that whereas the pressure is smooth the velocity has
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O(1) oscillations over length O(ε). We implemented Sibson’s quadratic interpolant

but didn’t notice a significant difference.

3.3.3. Finite Volume Scheme for the Saturation in p, ψ. As in the numer-

ical method for the Cartesian frame, we will use an IMPES method for the time

discretization of the equations. By using the IMPES scheme we don’t have to deal

with the second and third terms of (3.2.2). These terms depend on the change of the

streamlines and by using a first-order discretization of the velocity in time, which de-

pends on the pressure, we are assuming that the streamlines remain constant during

a pressure time step. The full saturation equation (3.2.2) in an IMPES framework

without these terms is

(3.3.1) St + v0f(S)p = 0.

To discretize this equation correctly we consider its physical interpretation. S(p, ψ)

is not a conserved quantity, as is obvious by (3.3.1). We can derive a conserved quan-

tity from the conserved quantity in the Cartesian frame using (3.2.1)

∫

Sdxdy =

∫

SJ−1dpdψ =

∫

S

v0

dpdψ.

We can arrive at the same conserved quantity by changing coordinates in the weak

formulation of the conservation law. We arrive at a second interpretation of v0(x, y)

as the capacity of the streamline at x, y. We have decomposed the two-dimensional

convection into one-dimensional convection along streamlines, each with a given ca-

pacity at every point. We can also think of streamtubes and their width. We divide

(3.3.1) by v0 and integrate over a small volume to arrive at the integral conservation

form. If Sti denotes the average of the saturation in the ith volume at time t and 1
v0i

the capacity of that cell, we obtain

St+∆t
i

v0i
=
Sti
v0i

− ∆t

∆p

(

F(Sti , S
t
i+1) − F(Sti−1, S

t
i)
)

.

An integer subscript i denotes a quantity at the center of a cell or an averaged quantity

over a cell, and a subscript i − 1/2 denotes a quantity defined at the edge between

the cells with indices i and i− 1.
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In general, the flux F describes the effect of a right- and a left-going wave on the

average saturation Si. We will use a Reconstruct-Solve-Average (RSA) approach and

will average the saturation profile over cells at the beginning of the time step, advance

the Riemann problems for a time ∆t, and then average the saturation again. For the

Buckley Leverett equation (3.3.1) there is only a right-going wave of strength Wi−1/2

and speed σi−1/2 given by

Wi−1/2 = Si − Si−1

σi−1/2 =







f(Si)−f(Si−1)
Si−Si−1

Si−1 6= Si

f ′(Si) Si−1 = Si
.

Godunov’s method will have

F(Si−1, Si) = σi−1/2Wi−1/2 = f(Si) − f(Si−1).

We will use a second-order method based on the Lax Wendroff scheme. It can

be derived by Taylor expanding St+∆t in time and substituting (3.3.1) for the time

derivatives. It can be considered as Godunov’s scheme with a flux correction F . The

full scheme is given by

(3.3.2)

W̃i−1/2 = φ(θi−1/2)Wi−1/2

Fi−1/2 = 1
2
σi−1/2(1 − 1

v0i−1/2

∆t
∆p
σi−1/2)W̃i−1/2

St+∆t = Sti −v0i
∆t
∆p

(f(Si) − f(Si−1)) − v0i
∆t
∆p

(Fi+1/2 − Fi−1/2),

with θi−1/2 = Si+1−Si
Si−Si−1

. To ensure that the scheme remains Total Variation Diminishing

(TVD) we employ a minmod limiter, which is described above by φ. In the flux

correction Fi−1/2,
1

v0i−1/2
can be selected as the cell-centered capacity 1

v0i
or 1

v0i−1
, or

as their average, and the numerical method will still be second-order accurate. We

will select the latter motivated by the fact that the second time derivative of the

saturation derived from (3.3.1)

Stt = v0

(

v0

(

f ′(S)2
)

Sp
)

p
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Table 1. 2nd order convergence of fine p, ψ scheme

25 50 100 200 400

L1 relative error 5.66 × 10−4 1.64 × 10−4 4.43 × 10−5 1.15 × 10−5 2.89 × 10−6

ratio of L1 errors 3.45 3.7 3.85 3.98

L∞relative error 0.0015 4.88 × 10−4 1.76 × 10−4 4.78 × 10−5 1.27 × 10−5

ratio of L∞ errors 3.1 2.77 3.68 3.76

Table 2. 1st order convergence of fine p, ψ scheme near extrema

25 50 100 200 400 800

L1 relative error 0.0022 8.92 × 10−4 3.30 × 10−4 1.22 × 10−4 4.64 × 10−5 1.80 × 10−5

ratio of L1 errors 2.47 2.70 2.70 2.62 2.57

L∞ relative error 0.0074 0.0049 0.0033 0.0020 0.0011 6.06 × 10−4

ratio of L∞ errors 1.5 1.48 1.65 1.82 1.82

contains v0 evaluated between Si and Si−1 when discretised with centered differences,

as in the Lax Wendroff scheme. The CFL condition is

∆t ≤ ∆p

f ′(Si)v0i

.

We will demonstrate the accuracy of our method in the case of nonlinear flux

with m = 5. For the computation of the error we used a simulation with 4000

cells. For S(t = 0) = 1 − 0.9p2, v0 = 1 + 0.5 sin(5πp), at t = 0.3 we obtained the

errors of table 1. We can see that as we refine the grid the order of convergence,

the base 2 logarithm of the ratio of the errors, tends to 2. To test that the limiter

does not introduce too much error we select an initial condition with an extremum,

S(t = 0) = 0.55−0.05‖p−0.5‖
0.5

, v0 = 1+0.5 sin(5πp). This initial condition varies slowly

so it can be resolved by a small number of points. It has a large second derivative

at the extremum, and therefore a first-order method will have a large error near the

extremum, which allows us to observe the error convergence clearly. At t = 0.3 we

obtain the errors in table 2.

At the extremum of the saturation, the scheme is reduced to first-order because

of the limiter so the method is only first-order in L1. If we continue refining the grid

we will see the ratio of the L1 norms converging to 4. We note here that the observed

order of the scheme is close to the theoretical predictions only for very smooth, that

is, very well resolved, saturation profiles and velocities. We report the errors for the
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Table 3. Order of accuracy of fine p, ψ scheme in the presence of
shocks

25 50 100 200 400

L1 relative error 0.0400 0.0213 0.0114 0.0060 0.0030

ratio of L1 errors 1.88 1.87 1.9 2.0

L∞ relative error 0.257 0.265 0.258 0.261 0.260

ratio of L∞ errors N/A N/A N/A N/A

same velocity field, v0 = 1 + 0.5 sin(5πp), when the initial condition is a Heaviside

function, at t = 0.5, in table 3. In the presence of a shock the method is only first-

order with respect to the L1 norm, and the L∞ error does not converge. The error is

the same as the interpolation error of a discontinuous function on a uniform grid.

3.3.4. Moving Mesh. There are two approaches to solving moving mesh equa-

tions (3.2.8), (3.2.9). The first is to solve them in the physical domain p and interpo-

late the solution to the new mesh at every time step, and the other is to write in terms

of computational variables and solve them in the computational domain ξ. The first

has the advantage of being in a conservation form; however the interpolation can lead

to numerical errors. For the second, no interpolation is required, but the equation

that must be solved is more complicated and not in conservation form and that can

be a source of numerical error.

For conservation laws there is a strong reason to prefer the physical domain. The

numerical method for the saturation equation can be interpreted as solving a Riemann

problem for each cell and then interpolating the solution to a fixed grid. Since there

is already an interpolation involved in solving the physical equation, there is a lot

of knowledge about the interpolation errors and methods (ENO, limiters) to reduce

it effectively. Moreover an extra interpolation fits naturally in the framework of a

method that already contains an interpolation.

In practice, instead of solving the moving mesh equation (3.2.9) we simply compute

the values of the monitor function wi associated with saturation values Sni and grid

point locations P n
i at the previous time step and then interpolate the inverse of the

monitor function P n
i (wi) onto a uniformly spaced grid in w. The resulting values Pi

are the new mesh locations at the next time step. To compute the monitor function
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we first compute the second derivative of the saturation using finite differences. To

avoid very singular monitor functions we pass the result through a first-order Fourier

filter, a few Jacobi iterations of the heat equation. The effect is to damp the high

frequency modes of the monitor function. In theory once we have found the optimal

number of filter passes, when we double the number of moving mesh points we should

double the number of filter passes so that the smoothing of the monitor function is

the same. In practice the increased accuracy does not compensate enough for the

increased computational cost because the monitor function is not accurate enough,

so in our algorithm we kept the number of filter passes fixed. In regions where the

second derivative vanishes the mesh can be very sparse and the error can be large.

To remedy this, we don’t allow the monitor to be smaller than E, which we select to

be

(3.3.3) E =
hmin
hMM

maxSpp.

Since E is the minimum of the monitor function, this choice for E imposes that

hmin
hMM

be the desired ratio between the minimum and maximum spacing of the moving

mesh grid. We will impose that the minimum spacing be hmin in the next step of

the method. In this step we select the maximum spacing of the moving mesh points

to be hMM = 1
number of moving mesh points

. In regions where the mesh is concentrated the

derivative Pξ is small and the CFL condition

∆t ≤ Pξ
vf ′(S)

∆ξ

leads to a severe time step constraint. After we determine E by(3.3.3) we impose a

cutoff to the monitor function so that the minimum mesh spacing is hmin. The moving

mesh solution can be at best as accurate as a uniform computation with grid spacing

hmin. When comparing an upscaled and a fine computation we will often take hmin to

be the mesh size of the fine grid. We observed that the moving mesh points oscillate

around their trajectories. This is because in the computation of the monitor function

at time t+ ∆t we use the saturation at time t and not at time t+ ∆t. To eliminate

these oscillations we use the fact that the general mesh motion is to the right. When

the grid point moves to the left we filter it by x(t+ ∆t) → 0.95x(t) + 0.05x(t+ ∆t).
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When we interpolate the saturation from the grid points of the previous time

step to the next time step it is important to obtain the initial condition for the

saturation equation so that the total variation does not increase and the scheme

remains conservative. Otherwise there is no guarantee that the numerical scheme

will converge. We overcome these difficulties by interpolating through advancing the

following equation

S∗
t − PtS

∗
p = 0.

This idea was first proposed by Li, Tang, Zhang [37]. The initial condition is S∗(tn) =

Sn(xn), and the resulting saturation is the interpolated saturation on the new mesh,

S∗(tn+1) = Sn(xn+1), which is then used as an initial condition for the saturation

equation. The full scheme can be viewed as an operator splitting scheme

(3.3.4) St − PtSp + v0f(S)p = 0 7−→







St + v0f(S)p = 0

St − PtSp = 0







.

We note that the split scheme retains second-order accuracy, provided that we solve

both parts of (3.3.4) with a method that is at least second-order accurate. That is

because the differential operators that correspond to (3.3.4) commute. To see this

we can write the second equation in the static coordinate frame, St = 0, from which

it becomes clear that it has no physical effect on the solution. We discretise the top

equation of the time-splitting scheme (3.3.4) on an irregular grid Pi, following the

same line of thought as in the previous section. Define Pi+1, P1 to be the boundaries

of the ith cell, κi = 1
2
(Pi+1 − Pi) to be the area of the cell, and κi−1/2 = 1

2
(κi+1 − κi).

The Lax Wendroff scheme (3.3.2) becomes

W̃i−1/2 = φ(θi−1/2)Wi−1/2

Fi−1/2 = 1
2
σi−1/2(

κi−1

κi−1/2
− 1

v0i−1/2

∆t
κi−1/2∆ξ

σi−1/2)W̃i−1/2

St+∆t = Sti − v0i
∆t
κi∆ξ

(f(Si) − f(Si−1)) − v0i
∆t
κi∆ξ

(Fi+1/2 − Fi−1/2).

For the correct upwinding of the interpolation equation of (3.3.4), we rewrite the

convection term as a conservative convection term and a forcing

(3.3.5) St − (PtS)p + PtpS = 0.
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The moving mesh velocity is linear in each cell so the forcing term can be integrated

exactly, given the moving mesh velocity at the edges of the cells. The first-order wave

is easily determined by (3.3.5). To find the correction we follow the derivation of the

Lax Wendroff scheme and Taylor expand the saturation in time, and substitute the

time derivatives using (3.3.5)

S(tn+1) = S(tn) + ∆tSt(t
n) +

1

2
∆t2Stt(t

n)

= S(tn) − ∆t (PtS(tn))p + ∆tPtpS(tn) +
1

2
∆t2

(

P 2
t Sp(t

n)
)

p
+

1

2
∆t2PtpSt(t

n).

The numerical scheme is given by

W̃i−1/2 = φ(θi−1/2)Wi−1/2

Fi−1/2 = 1
2
Pti−1(

κI−1

κi−1/2
− ∆t

κi−1/2∆ξ
Pti−1)W̃i−1/2

St+∆t = Sti − ∆t
κi∆ξ

(P+
ti−1W

+
i−1/2 + P−

tiWi+1/2 − (Pti − Pti−1)S
t
i)−

− ∆t
κi∆ξ

(Fi+1/2 − Fi−1/2 + ∆t
κi−1/2∆ξ

(P 2
ti − P 2

ti−1)Wi−1/2),

where f+ is defined as max{f, 0} and similarly for f− and where θi−1/2 = Si+1−Si
Si−Si−1

,

I = i− 1 if Pti > 0, and θi−1/2 = Si−1−Si−2

Si−Si−1
, I = i if Pti < 0.

To demonstrate the order of accuracy of a moving mesh method we must design a

numerical experiment that satisfies two contradictory conditions. The initial condition

and the velocity must be well resolved by the grid so that the rate of error convergence

has reached 2 and at the same time the saturation profile must be varying enough

so that the mesh moves and our experiments are meaningful. We select the same

conditions that we used to show second-order convergence for the scheme on the fixed

grid, S(t = 0) = 1 − 0.9p2, v0 = 1 + 0.5 sin(5πp), at t = 0.3. The mesh was not

moved using the moving mesh equation, which would result in little mesh motion,

but according to P (t, p) = p + 0.10.3−t
0.3

sin(2πp). The errors at t = 0.3 are shown in

table 4 and we observe second-order convergence.

To demonstrate the accuracy of the moving mesh we repeat the experiment with

a shock, v0 = 1 + 0.5 sin(5πp), and a Heaviside function as initial condition. First

we look at the case of linear flux. We filter the monitor function 4 times and choose

E = 0.05 hmin
hMM

maxSpp. This means that the maximum spacing allowed is very large.
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Table 4. Order of accuracy of p, ψ scheme with moving mesh

25 50 100 200 400

L1 relative error 0.0013 3.67 × 10−4 9.38 × 10−4 2.39 × 10−5 6.02 × 10−6

ratio of L1 errors 3.54 3.9 3.92 3.97

L∞relative error 0.0041 0.0012 3.07 × 10−4 7.76 × 10−5 1.95 × 10−5

ratio of L∞ errors 3.42 3.91 3.96 3.98

Table 5. Efficiency of moving mesh for linear flux

uniform cost hmin = hMM

10
cost hmin = hMM

20
cost hmin = hMM

40
cost

100 0.0486 2 25 0.0502 2 0.0532 5 0.0396 8
200 0.0324 6 50 0.0239 10 0.0202 20 0.0217 37
400 0.0207 19 100 0.119 39 0.0083 78 0.0058 148
800 0.0128 75 200 0.0064 145 0.0040 286 0.0024 578
1600 0.0077 310 400 0.0034 538 0.0018 1067 8.08 × 10−4 2209
3200 0.0044 1226

The first three columns are the number of grid points, the L1 relative error, and the
computational cost for the uniform grid. The rest of the columns are the same
quantities for the moving mesh algorithm, for three different choices for hmin.

We can afford to do this because away from the shock the exact solution is a constant

and can be resolved with very few points. The errors and times of computation at

t = 1.0 are shown in table 5. The optimal moving mesh computation is the one with

hmin = hMM

40
. If we extrapolate the entries for the uniform computation we see that

a moving mesh computation with 200 points has the same error as a computation

of 6400 uniform points, a factor of 32. The moving mesh computation is 8 times

faster. In table 5 when the number of points is doubled the error is halved and the

computational cost is quadrupled because the algorithm has twice as many points in

space and twice as many time steps. To have the error using a moving mesh we can

also halve hmin. This doubles the number of time steps but does not double the grid

points. It simply uses them more efficiently so the cost is only doubled. This is the

case for using a moving mesh.

We repeat the experiments for the Buckley Leverett flux with m = 1. We filter the

monitor function 8 times and choose E = 0.05 hmin
hMM

maxSpp. The results at t = 0.7 are

shown in table 6. The results are not so impressive in this case. In most computations

we observe that for the same L1 error it takes a uniform grid with 4 times as many

points as the moving mesh grid, but the computational cost is the same. The reason
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Table 6. Efficiency of moving mesh for nonlinear flux

uniform mesh L1 relative error cost moving mesh L1 relative error cost

100 0.0102 2 25 0.0110 4
200 0.0051 7 50 0.0041 16
400 0.0025 27 100 0.0022 59
800 0.0011 107 200 8.9 × 10−4 216
1600 5 × 10−4 428 400 3.45 × 10−4 894
3200 2.5 × 10−4 1712

Figure 3.4.1. 2pt geostatistics permeability field
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Plot of the permeability in a logarithmic scale.

is that now we need to resolve the region away from the shock to have an accurate

shock speed, so the moving mesh can be focused less near the shock. If we compare

the uniform computations in tables 5, 6 the accuracy in the nonlinear case increases.

With a linear flux we have a contact discontinuity and all the characteristics in the

region of the shock are parallel, whereas with the nonlinear flux we have a shock and

the characteristics flow into the shock. This reduces the numerical diffusion in the

nonlinear case and makes the uniform computation more accurate; hence less points

are needed for a sharp shock.

3.4. Numerical Results

We want to demonstrate the superiority in terms of adaptivity of a method in the

pressure-streamline frame using realistic permeability fields. We will use a permeabil-

ity field defined on a 50 × 50 grid that was generated by GSLIB [16]. It is shown

in figure 3.4.1. The plot is in a loge scale so the permeability varies over 3 orders of
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Figure 3.4.2. Numerical diffusion in the presence of fast channels
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Cartesian (left) and pressure-streamline (right) computation snapshots on a 50 × 50
grid, using the permeability field in figure 3.4.1.

Table 7. L1 error of fine pressure-streamline method

50 100 200
Cartesian 0.165 0.100 0.0524
p, ψ 0.119 0.0616 0.0329

magnitude. It is strongly layered in the x-direction so we expect fast channels in the

x-direction. We will solve the problem described in (2.1.16) with inlet at x = 0, no

flow boundary conditions at y = 0, 1, and m = 5. The saturation profiles appear for

time t = 0.4 in figure 3.4.2.

It is clear that near the shock the Cartesian method has more diffusion, especially

in the cross-wind direction. The pressure-streamline method resolves accurately the

fast channels but is slightly less accurate in the slow regions, compared to the Carte-

sian method. A comparison with a more resolved computation on a 200× 200 grid in

figure 3.4.3 confirms this.

To investigate the convergence properties of the two methods we compute the L1

norm of the error. For computations on grids finer than 50 × 50 we interpolated the

permeability of figure 3.4.1 linearly. We considered a computation with 800 × 800 to

be the exact solution. It is shown in table 7. Both schemes converge to first order

because the solution is discontinuous. The pressure-streamline method converges

faster because there it has less numerical diffusion. The performance of the two

numerical schemes will vary even more for rougher permeability fields and flows in a
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Figure 3.4.3. Decreasing numerical diffusion in the presence of fast
channels by increasing the resolution
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Cartesian (left) and pressure-streamline (right) computation snapshots on a
200 × 200 grid, using the permeability field in figure 3.4.1.

Figure 3.4.4. Convergence rate of the fine Cartesian and pressure-
streamline methods
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Log-log plot of the L1 errors as functions of the number of discretization points and
their least squares lines.

45 degree angle, due to cross-wind diffusion. For both schemes the L1 error decreases

as ∆x, but the constant for the pressure-streamline method is smaller. This becomes

obvious in a log-log plot of the error in figure 3.4.4.
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Part 2

Upscaled Scheme
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We try to construct numerical methods when the grid does not resolve the fast

scale ε, that is, when the grid size satisfies h > ε. A straightforward discretization on

such a grid would fail because the solution is not smooth over the grid cells and the

discretization error, the higher-order terms in a Taylor expansion, is large. If we take

the limit as h, ε → 0 keeping h > ε the numerical method would not be consistent.

Therefore we need to find an upscaled equation and design a numerical method for it

instead.
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Chapter 4

Upscaling One-Phase Flow

4.1. Two-Scale Limit

4.1.1. Context of the Present Work. In this chapter we investigate the prop-

erties of the saturation when it is convected by a velocity field that has O(1) variation

over length scales of O(ε). Up to a certain length scale the evolution of the saturation

equation is dominated by the diffusion due to capillary forces, and upscaling the full

two-phase flow equation consists of simply upscaling the pressure equation [2]. For

velocity variation over larger length scales when the saturation equation is convec-

tion dominated its upscaling is no longer trivial. This is why we neglected diffusion

altogether in our model equations.

We would like to average the saturation over all length scales, but keep information

on the scale ε−1 intact, which is equivalent to taking the two-scale limit, introduced

by Nguetseng [41]. We will focus on (3.2.2) without the terms due to the motion of

the coordinate frame p(x, y, t), ψ(x, y, t). This is the case of one-phase flow where the

pressure is not coupled to the saturation and therefore time-independent, or the case

of two-phase flow with an IMPES discretization, as has been described before. Then,

in a Cartesian frame we have

(4.1.1)
Sεt + vε · ∇Sε = 0

S(x, y, t = 0) = SIC
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and in the pressure-streamline frame we have

(4.1.2)
Sεt + vε0S

ε
p = 0

S(p, ψ, t = 0) = SIC(p, ψ, ψ
ε
),

with vε0 = ‖vε‖2

λK
. We have deliberately omitted from these equations the precise nature

of the dependence of the velocity field on the slow and fast variables because it will

be part of the discussion that follows.

Let y = x
ε

denote the fast variables. If one assumes a two-scale expansion for

(4.1.1) in (x, y) in a periodic domain, the expansion will not be unique, in general. A

two-scale expansion with two independent variables contains more information than

what can be determined by its equations for all orders. Hou, Xin [29] specified

the conditions on the velocity field under which this expansion is unique. In their

problem the assumption of periodic boundary conditions was used for the ergodic

theory results. To arrive at a unique two-scale expansion, E [19] used the fact that the

ε−1 equation for non-oscillatory initial conditions, v ·∇yS = 0, imposes that the two-

scale limit be constant along the flow lines. He incorporated this piece of information

in the two-scale expansion by modifying the definition of two-scale convergence. He

thus restricted how much information the expansion contains and obtained a unique

two-scale limit. However the equations by which the two-scale limit is defined don’t

offer any insight into its structure. Moreover there is no clear way to design an efficient

numerical method based on them.

Consider the definitions of the weak and two-scale limit of a sequence of functions

Sε

∫

Sε(x)φ(x)dx→
∫

S(x)φ(x)dx, ∀φ(4.1.3)

∫

Sε(x)φ(x,
x

ε
)dx→

∫

Sfull(x, y)φ(x, y)dxdy, ∀φ(4.1.4)

∫

Sε(x)φ(x,
x

ε
)dx→

∫

Srestricted(x, y)φ(x, y)dxdy,(4.1.5)

∀φ with v · ∇yφ(x, y) = 0.
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By setting φ(x, y) = φ(x) in (4.1.4) and comparing with (4.1.3) we find S(x) =
∫

Sfull(x, y)dy. Generalizing this argument we see that the weak limit is the average

over all scales that are faster than the O(1) of the corresponding two-scale limits. This

shows that Srestricted is the average of Sfull along the fast streamlines, but contains

fast scale information across the streamlines. Since we know from the ε−1 equation

that the two-scale limit Sfull is constant along the fast streamlines, the two are the

same. The restricted sense of convergence has retained all information of the full

two-scale limit.

Westhead [53] introduced an operator to project the full two-scale limit Sfull

onto its average along the streamlines that is the restricted Srestricted, thus obtaining

a unique expansion. Projecting on the streamlines and restricting the test functions

are equivalent. However their method differs from ours in that they first expanded the

saturation equation into its moments and used the projection operator only to close

the equation for the fluctuations. We applied it to the whole equation, by first deriving

the two-scale limit using test functions. In both cases the equation for the average

saturation contains a convection term and forcing by the fine scale. The advantage of

our approach is that the convection term describes more accurately the mean flow, and

thus less information is stored in the forcing term. For example in the case of linear

flux, in our average saturation equation the convection term will give an accurate total

flux, and the forcing from the small scales will only correct the breakthrough times of

the fast channels. In addition our forcing term has a straightforward interpretation

as the macrodispersion, which has been studied extensively.

The approaches of E and Westhead have in common that they assume a two-scale

structure for the velocity field in the Cartesian variables. In most physical models,

the assumption of periodic cells and fast variables in a Cartesian frame does not

result from a physical property of the system. In our case the permeability will not

in general have periodic cells in a Cartesian frame. We will assume a fast variable in

the pressure-streamline frame. This idea appeared first in McLaughlin, Papanicolaou,

and Pironneau [40] in the context of the Euler equations. The connectivity of the

flow channels that results from the features of the permeability will be accurately

reflected first in the velocity and then in the pressure and streamfunction variables.
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Figure 4.1.1. Velocity is smoother in p, ψ frame
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Velocity in the Cartesian (left) and pressure-streamline frame (right) in a
logarithmic scale.

With a slight abuse of terminology, upscaling means averaging over cells, and we feel

it is more intuitive to pick the cells over which we average to be regions between

streamlines and lines of constant pressure.

To obtain more insight into our upscaling philosophy consider how the fast flow

channels are upscaled with a Cartesian and a pressure-streamline method. In the

Cartesian frame they are thin, and they are grouped together with slow channels

resulting in a large upscaling error. In the pressure-streamline frame they are wider

because the transformation focuses the computational points in the fast regions, and

they are grouped separately from the slow channels. To demonstrate this we use the

permeability in figure 4.1.1, which has many fast channels, and show the velocity |v|2

λK

in the Cartesian and pressure-streamline frames. An additional advantage of selecting

the fast variables in the pressure-streamline frame is that we can prove convergence of

the upscaled equations without assuming either scale separation or periodic boundary

conditions. This allows us to get rid of the awkward assumptions that the medium

does not vary in some length scales and that when fluctuations exit the cell in one

side they return to the opposite side of the same cell.

It is interesting to look at the structure of our multiscale expansion. If we write

explicitly the dependent variables of the saturation we get

Sε(p, ψ) = S̃(pε(x, y), ψε(x, y),
pε(x, y)

ε
,
ψε(x, y, t)

ε
) +O(ε).
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In this work we assumed periodic cells in pε

ε
, ψ

ε

ε
, but it would have been possible to

expand first the pressure and streamfuntion variables and look for the lowest-order

term in the form S̃(p0(x, y), ψ0(x, y),
p0(x,y)

ε
, ψ0(x,y,t)

ε
). We highlight the fact that the

variables in this last expression no longer depend on ε. Physically this would mean

that the multiscale structure is in terms of the lowest-order term for the pressure and

not the full pressure. First Hou, Yang, and Wang [30] and later Hou, Yang, and Ran

[31] implemented this idea for the Euler equations, assuming a two-scale structure in

the variables of the Lagrangian map.

Even though the time of flight, streamfunction τ, ψ coordinate system has the

advantages described above, it is not suitable for upscaling in our case. When we

transform the equation to this frame there is no quantity with a fast scale; there is

nothing to upscale. The oscillatory structure has been stored in the transformation.

By using the pressure-streamline frame we choose to divide the oscillatory structure

between the transformation and the velocity field and upscale the latter.

4.1.2. Derivation of the Two-Scale Limit for Linear Flux. We proceed

with a rigorous derivation of the two-scale limit for a linear flux. The idea to consider

the two-scale limit, due to Nguetseng [41], which is a weak limit using oscillatory test

functions. To derive the two-scale limit we follow the method of E [19] to multiply

the equation with an oscillatory test function, pass the derivatives to the test function

and then take the limit ε → 0. In [19], E finds the two-scale limit for transport in

conservation form assuming a multiscale structure in the Cartesian variables, whereas

we will assume a multiscale structure in the pressure-streamline variables and deal

with one-dimensional transport in nonconservative form. We denote the fast spatial

variables by ξ = p
ε
, ζ = ψ

ε
. We have suppressed the dependence of p on ε to simplify

the notation, but the reader should keep it in mind as it has important implications

on the structure of the asymptotic expansion. As we promised in the previous section,

we assume that the velocity has the following structure

vε0(p, ψ) = v0(p, ψ,
p

ε
,
ψ

ε
).
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Let Y = Y1 ×Y2 = [0, 1]2, φ be a smooth function, periodic in the variable in Y , with

compact support and J = {φ : R
2 × R

+ × Y → R}.
We will use the following convergence theorem due to Nguetseng [41]:

Theorem 4.1.1. Let {Sε}ε>0 be a uniformly bounded sequence in L∞
loc(R

+, L2
loc(R

2)).

Then there exists a subsequence, still denoted by {Sε}ε>0, and a function S̃ ∈ L2
loc(R

2×
R

+ × Y ), such that, as ε→ 0

∫

R2×R+

Sε(p, ψ, t)φ(p, ψ,
p

ε
,
ψ

ε
, t)dpdψdt→

∫

R2×Y×R+

S̃(p, ψ, ξ, ζ, t)φ(p, ψ, ξ, ζ, t)dpdψdξdζdt,

for all φ ∈ J .

Remark 4.1.2. We can give an indication why the two-scale limit of the saturation

will not depend on a fast time variable if the initial condition SIC(p, ψ, ζ) does not

depend on p
ε
. If we assume a two-scale expansion where the first term depends on a

fast time τ = t
ε

then the ε−1 equation will be

S̃τ + v0S̃ p
ε

= 0

S̃(p, ψ, ξ, ζ, t = 0, τ = 0) = SIC(p, ψ, ζ).

The solution of this equation (with periodic boundary conditions) is S̃(p, ψ, ξ, ζ, t =

0, τ) = SIC(p, ψ, ζ), which shows that there is no fast time dependence in S̃ for t = 0.

We remind the reader that the structure of the asymptotic series is an assumption

that either leads to a cascade of well-posed equations or not and that there does not

need to be a justification for it.

To show that the sequence Sε is bounded we multiply (4.1.2) by Sε

vε
0

and integrate

over the whole domain

d‖ 1
vε
0

Sε(·, t)‖2
2

dt
=

∫

R2

SεSεpdpdψ =

∫

R2

((Sε)2)pdpdψ = 0 ⇒ ‖ 1

vε0
Sε(·, t)‖2

2 ≤ ‖ 1

vε0
Sε(·, 0)‖2

2.

vε0 is the Jacobian of a nonsingular transformation, and is therefore always positive.

Assuming that it is bounded below boundedness of Sε follows immediately. The

conditions of Nguetseng’s theorem apply so the two-scale limit S̃ exists.
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To derive the two-scale limit we divide both sides of the equation (4.1.2) by the

Jacobian, multiply by a test function φε, and integrate

∫

R2×R+

(
Sεt
vε0
φε + Sεpφ

ε)dpdψdt = 0.

We pass the derivatives in t and p to the test function by integration by parts and

obtain

∫

R2×R+

(
Sε

vε0
φεt + Sεφεp)dpdψdt+

∫

R2

SIC(p, ψ, ζ)

vε0(p, ψ)
φε(p, ψ, t = 0)dpdψ = 0.(4.1.6)

The boundary terms vanish because Sε vanishes at ∞. This equation will be the

starting point to derive equations for the two-scale limit to orders ε−1 and ε0, as

follows. First we choose φε = εφ(p, ψ, p
ε
, ψ
ε
, t) in (4.1.6). With this substitution we

expand the second term inside the first integral in (4.1.6)

∫

R2×R+

Sεφεpdpdψdt =

∫

R2×R+

εSεφpdpdψdt+

∫

R2×R+

Sεφξ(p, ψ,
p

ε
,
ψ

ε
, t)dpdψdt.

We take the limit ε → 0 in (4.1.6) as described in Theorem 4.1.3. Since the two-

scale limit S̃ exists, Sε will converge to it, with φεp, φ
ε
t, and vε0 playing the role of the

test functions of the theorem. As ε → 0 all terms vanish because they contain Sε

and φ, which are bounded and are premultiplied by ε, except the second term above.

The term that does not vanish gives the O(ε−1) equation after another integration by

parts in the fast variable ξ

(4.1.7)

∫

R2×Y×R+

S̃ξφdpdψdξdζdt = 0.

The boundary terms that arise from the integration by parts canceled each other out

because φ and S̃ are periodic in ξ. The resulting O(ε−1) equation implies that the

two-scale limit of the saturation does not depend on the fast variable ξ along the

streamlines.

Next we choose a test function φε = φ(p, ψ, ψ
ε
, t) that does not depend on ξ. Thus,

we incorporate the information from the O(ε−1) equation into the O(ε0) equation.

With this choice of test function, taking in (4.1.6) again the limit ε→ 0, we find

∫

R2×Y×R+

(
S̃

v0
φt+ S̃φp)dpdψdξdζdt+

∫

R2×Y

S̃IC(p, ψ, ζ)

v0(p, ψ, ξ, ζ)
φ(p, ψ, ζ, t = 0)dpdψdξdζ = 0.
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We have denoted with S̃IC the two-scale limit of the initial condition. We will ma-

nipulate this equation a little farther by carrying the ξ integration out. We remind

the reader that (ξ, ζ) ∈ Y = Y1 × Y2, as was defined previously.

∫

R2×Y×R+

(
S̃

v0

φt+ S̃φp)dξdpdψdζdt+

∫

R2×Y

S̃IC(p, ψ, ζ)

v0(p, ψ, ξ, ζ)
φ(p, ψ, ζ, t = 0)dpdψdξdζ =

=

∫

R2×Y2×R+

(S̃

∫

Y1

dξ

v0
φt + S̃φp)dpdψdζdt+

+

∫

R2×Y2

∫

Y1

S̃IC(p, ψ, ζ)

v0(p, ψ, ξ, ζ)
φ(p, ψ, ζ, t = 0)dξdpdψdζ.

After another integration by parts in t and p for the first term we find

(4.1.8)

∫

R2×Y2×R+

(S̃t

∫

Y1

dξ

v0
+ S̃p)φdpdψdζdt+

+

∫

R2×Y2

S̃(p, ψ, ζ, t = 0)

∫

Y1

dξ

v0

φ(p, ψ, ζ, t = 0)dpdψdξdζ−

−
∫

R2×Y2

∫

Y1

S̃IC(p, ψ, ζ)

v0(p, ψ, ξ, ζ)
dξφ(p, ψ, ζ, t = 0)dpdψdζ = 0.

The initial condition for S̃ must be S̃(p, ψ, ζ, t = 0) = S̃IC(p, ψ, ζ) so that the second

and third terms cancel. We define ṽ0 to be the harmonic average of the velocity along

the fast streamline variable over a cell, ṽ0 = (
∫

Y
v−1
0 dξ)−1, and rewrite the first term

in terms of it

(4.1.9)

∫

R2×Y2×R+

(

∫

Y1

(
S̃t
v0

+ S̃p)dξ)φdpdψdζdt =

∫

R2×Y1×R+

(
S̃t
ṽ0

+ S̃p)φdpdψdζdt.

(4.1.7), (4.1.9) are the weak formulation of the equations for the two-scale limit of

the saturation. The corresponding strong form is

(4.1.10)

S̃ξ = 0

S̃t + ṽ0S̃p = 0

S̃(p, ψ, ζ, t = 0) = S̃IC(p, ψ, ζ).

The solution of these equations is unique because the system is linear.

We have just proved
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Theorem 4.1.3. The solutions {Sε}ε>0 of (4.1.2) with vε0 = v(p, ψ, p
ε
, ψ
ε
) 2-scale

converge to a unique limit S̃ given by (4.1.10), as ε→ 0.

We can consider the equations (4.1.10) to describe the homogenized operator at the

expense of having an extra variable, namely the fast variable across the streamlines

ζ . Later in this section we will show how to get rid of this extra variable. These

equations have a physical interpretation that is very intuitive. Two points that start

on the same streamline at the beginning of a cell and are traveling, one with the full

velocity field and the other with the harmonic average of the velocity over the cell,

will meet at the end of the cell. Therefore the harmonic average of the velocity is

the correct average velocity by which the averaged saturation should travel. We will

exploit this property in the next section, as well.

Remark 4.1.4. The above results can be extended to the case when the initial

condition depends on the fast scale ξ. The only difference in the two-scale limit will

be the initial condition. From (4.1.8) it will be

S̃(p, ψ, ζ, t = 0) =

(
∫

Y1

1

v0(p, ψ, ξ, ζ)
dξ

)−1 ∫

Y1

S̃IC(p, ψ, ζ)

v0(p, ψ, ξ, ζ)
dξ,

which imposes that the initial condition for S̃ be the average of S̃IC weighted by the

velocity v0.

4.1.3. Derivation of the Two-Scale Limit for Nonlinear Flux. We extend

the results of the previous section to the saturation equation with nonlinear flux

Sεt + vε0f(Sε)p = 0(4.1.11)

S(p, ψ, t = 0) = S0

where f is continuous on R.

The tools that we used for a linear flux are not powerful enough to prove con-

vergence in the nonlinear case. If a sequence of functions uj converges to u in L2,

this does not imply that g(uj) converges to g(u) for a general continuous function g.

We use Young measures to investigate the limit of g(uj). We will denote the Young
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measure νx associated to the sequence g(uk) by 〈νx(µ), g(µ)〉. To construct it, con-

sider for fixed j the family of measures {δuj(x)} parameterized by x, where δuj(x) is

a delta function centered at (x, uj(x)) in the graph of uj(x). There is a one-to-one

correspondence between the function g(uj), its graph, and its Young measure. Then

νx is the limit of the convergent subsequence of this family. Intuitively, the Young

measure at a point x is the limiting density of the values uj(x) at x. When the

Young measure reduces to a delta function at x, then for that point we have indeed

g(uj(x)) → g(u(x)). The formulation of theorem 4.1.3 with Young measures follows.

Theorem 4.1.5. Assume we have a sequence of functions {Sε}ε>0in L
∞
loc with Sε :

R
+×R

2 → K where K is a compact subset of R. Then there exists a subsequence, still

denoted by {Sε}ε>0, and a family of parameterized probability measures {νp,ψ,ξ,ζ,t(µ)}
supported in K, which depends measurably on (p, ψ, ξ, ζ, t) and is periodic in ξ, η with

period Y = [0, 1]2 such that as ε→ 0

∫

R2×R+

f(Sε(p, ψ)φ(p, ψ,
p

ε
,
ψ

ε
, t)dpdψdt→

∫

R2×Y×R+

〈νp,ψ,ξ,ζ,t(µ), f(µ)〉φ(p, ψ, ξ, ζ, t)dpdψdξdζdt,

for every nonnegative φ(p, ψ) ∈ J , f ∈ C(K).

This theorem is a simple extension of Nguytseng’s theorem and appeared in E

[19]. Following the methodology of E [19], we will first derive the entropy condition

that the two-scale limit must obey and then use it to prove the convergence to the

two-scale limit. Compared to the case with a linear flux, here we must tackle the fact

that instead of an equality for Sε, we must work with an inequality for Sε that holds

for all entropies. We consider the family of Kruzkov’s entropies

η(µ, k) = |µ− k| , q(µ, k) = sgn(µ− k)(f(µ) − f(k)).

If an entropy inequality is satisfied for all Kruzkov entropies then it is satisfied

for any linear combination with positive coefficients of the Kruzkov entropies, that

is, for any convex entropy, and this implies uniqueness of the weak solution. To

consider all entropy functions is equivalent to considering Kruzkov’s entropies. With
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the family of Kruzkov entropies, the entropy inequality (3.2.6) for a time-independent

transformation reduces to

∫

R2×R+

J−1η(Sε, k)φt+q(S
ε, k)φpdpdψdt+

∫

R2

η(S(p, ψ, t = 0))φ(p, ψ, t = 0)J−1dpdψ ≥ 0.(4.1.12)

As in the linear case, we will use this equation as a starting point to derive equations

for the two-scale limit S̃ to O(ε−1) and O(ε0) by substituting in it carefully selected

test functions. Substituting first φ = εφ(p, ψ, p
ε
, ψ
ε
, t) and taking the limit ε → 0 we

find
∫

R2×Y×R+

〈νp,ψ,ξ,ζ,t(µ), q(µ, k)〉φξdpdψdξdζdt ≥ 0.

In the linear case the O(ε−1) equation showed that S̃ did not depend on ξ and thus

allowed us to make the test functions independent of ξ. To show that the equation

of the two-scale limit will not depend on ξ, we must show that q(S̃) and η(S̃) do not

depend on ξ, or more precisely, that the corresponding Young measures don’t depend

on ξ. We will first deal with 〈νp,ψ,ξ,ζ,t(µ), q(µ, k)〉. The above relation means that

〈νp,ψ,ξ,ζ,t(µ), q(µ, k)〉ξ is positive. For every ε, qξ(S
ε, k) has zero mean in ξ because it

is periodic in that variable. Then, also its limit 〈νp,ψ,ξ,ζ,t(µ), q(µ, k)〉ξ must have zero

mean in ξ. A nondecreasing function with zero mean must be zero. Then it must be

(4.1.13)

∫

R2×Y×R+

〈νp,ψ,ξ,ζ,t(µ), q(µ, k)〉φξdpdψdξdζdt = 0.

We have shown that 〈νp,ψ,ξ,ζ,t(µ), q(µ, k)〉 is independent of ξ. The entropy inequal-

ity (4.1.12) holds for any smooth entropy-entropy flux pair η(µ), q =
∫

η′(µ)f ′(µ)dµ

as can be easily verified by substitution. If f ′ 6= 0 then any smooth function can be

written as
∫

η′(µ)f ′(µ)dµ so (4.1.13) holds for any smooth q. Furthermore since C∞

is dense in L∞ and differentiation and integration are continuous operations, (4.1.13)

holds for any q ∈ L∞. In particular

(4.1.14)

∫

R2×Y×R+

〈νp,ψ,ξ,ζ,t(µ), η(µ, k)〉φξdpdψdξdζdt = 0.

We have shown that the limits of η(Sε, k), q(Sε, k) don’t depend on ξ so we will

remove that subscript from ν. Letting φ = φ(p, ψ, ψ
ε
, t) and taking the limit ε→ 0 in
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(4.1.12) we obtain

∫

R2×Y×R+

J−1 〈νp,ψ,ζ,t(µ), η(µ, k)〉φt(p, ψ, ζ, t)+

+ 〈νp,ψ,ζ,t(µ), q(µ, k)〉φp(p, ψ, ζ, t)dpdψdξdζdt+

+

∫

R2

η(S(p, ψ, t = 0))φ(p, ψ, t = 0)J−1dpdψ ≥ 0.

Passing the ξ integration inside the integrand

∫

R2×Y1×R+

∫

Y2

J−1dξ 〈νp,ψ,ζ,t(µ), η(µ, k)〉φt(p, ψ, ζ, t)+

+ 〈νp,ψ,ζ,t(µ), q(µ, k)〉φp(p, ψ, ζ, t)dpdψdξdζdt+

+

∫

R2

η(S(p, ψ, t = 0))φ(p, ψ, t = 0)J−1dpdψ ≥ 0,(4.1.15)

we obtain the weak form of the entropy inequality for the two-scale limit. We focus

for a moment on the term 〈νp,ψ,ζ,t(µ), η(µ, k)〉. It describes the limit of the family of

functions|Sε − k|for all k that may depend on space. We will guess S̃ and substitute it

for k. Then we will show that the resulting Young measure
〈

νp,ψ,ζ,t(µ),
∣

∣

∣
µ− S̃

∣

∣

∣

〉

= δS̃,

completing the proof. To obtain the guess we can follow the same procedure as in

the linear case to obtain the following equations for nonlinear flux

(4.1.16)
S̃ξ = 0

S̃t + ṽ0f(S̃)p = 0.

We will only give a formal argument for convergence here. The strong form of

(4.1.15), with k = S̃ is

∫

Y2

J−1dξ
〈

νp,ψ,ζ,t(µ), η(µ, S̃)
〉

t
+ 〈νp,ψ,ζ,t(µ), q(µ, k)〉p ≤ 0.

Integrating with respect to p, ψ the second term vanishes because of periodicity and

we obtain

d

dt

∫

R2

∫

Y2

J−1dξ
〈

νp,ψ,ζ,t(µ),
∣

∣

∣
µ− S̃

∣

∣

∣

〉

dpdψ ≤ 0.
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At t = 0 we have
∫

〈

νp,ψ,ζ,t(µ),
∣

∣

∣
µ− S̃

∣

∣

∣

〉

dpdψ = 0, so the solution to this ordinary

differential equation is

∫

R2

∫

Y2

J−1dξ
〈

νp,ψ,ζ(µ),
∣

∣

∣
µ− S̃

∣

∣

∣

〉

dpdψ = 0,

which shows that ν is the Dirac measure δS̃. This argument can be made rigorous

with the work of DiPerna [17].

We summarize these results in theorem 4.1.6.

Theorem 4.1.6. The solutions {Sε}ε>0 of (4.1.11) with vε0 = v(p, ψ, p
ε
, ψ
ε
) satisfy-

ing the entropy condition (4.1.12) converge to a unique limit S̃ given by (4.1.16) and

subject to the entropy condition (4.1.15), as ε→ 0.

4.1.4. Convergence Rate to the Two-Scale Limit. We provide a conver-

gence proof of the fine saturation Sε to the two-scale limit S̃ as ε → 0, without the

assumption of scale separation or periodicity of fast variables. We also want to have

an idea of how fast this convergence is. In what follows, quantities depend on ψ, ζ

parametrically but we will suppress that dependence. In this notation the velocity

satisfies

vε0(p) = v0(p,
p

ε
).

We will prove

Theorem 4.1.7. Assume that vε0(p) is bounded uniformly in ψ, ζ above and below

(4.1.17) C−1 ≤ vε0(p) ≤ D.

The solution S̃ of (4.1.10) converges to S defined by (4.1.2) with vε0 = v(p, ψ, p
ε
, ψ
ε
)

and initial conditions that may depend on the fast scale at a rate given by

‖Sε − S̃‖∞ ≤ Gε,

when the initial conditions are Lipschitz, and

‖Sε − S̃‖n ≤ Gε1/n,

when they have a finite number of discontinuities.
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The velocity bound implies that C̃−1 ≤ ṽ0(p) ≤ D̃, uniformly in ψ, ζ . We will

we look at the properties of the flow maps and then use these properties to obtain

the convergence estimate. For a particle that starts at point p at t = 0 and moves

with velocity vε0, the flow map P (p, T ) is its position at time t = T. The flow maps

P (p, T ), P̃ (p, T ) corresponding to S, S̃ are defined by

dP
dT

= vε0(P ) dP̃
dT

= ṽ0(P )

P (p, 0) = p P̃ (p, 0) = p.

The velocities are given as functions of the spatial variable so a more useful function

that characterizes particles motion under the velocity field is its time of flight T .

T (p, P ) is the time required to travel between p and P . It is given by

(4.1.18)
dT
dP

= 1
vε
0
(P )

dT̃
dP

= 1
ṽ0(P )

T (p, p) = 0 T̃ (p, p) = 0.

We can integrate these equations to find

T =
∫ P

p
dθ
vε
0
(θ)

T̃ =
∫ P

p
dθ
ṽ0(θ)

.

Using the fact that ṽ0(P ) is constant in a cell (kε, (k+1)ε) we can take it outside the

integral

T̃ (kε, (k + 1)ε) =

∫ (k+1)ε

kε

dθ

ṽ0(θ)
=

1

ṽ0(kε+ ε
2
)

∫ (k+1)ε

kε

dθ =

∫ (k+1)ε

kε

dθ

vε0(θ)

= T (kε, (k + 1)ε).

Then T, T̃ agree when the starting point p and the ending point P are the boundaries

of a cell. This is illustrated in figure 4.1.2. Time of flight is additive in the sense that

T (a, b) + T (b, c) = T (a, c), which implies the two time of flight surfaces agree on a

grid of size ε in the (p, P ) plane. For p < kε < (k + q)ε < P , using the additivity of

time of flight we get

|T (p, P ) − T̃ (p, P )| ≤ |T (p, kε) − T̃ (p, kε)|

+ |T (kε, (k + q)ε) − T̃ (kε, (k + q)ε)|

+ |T ((k + q)ε, P ) − T̃ ((k + q)ε, P )|.
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Figure 4.1.2. Fine and coarse characteristics intersect at the bound-
aries of the cells

A fine characteristic emanating between kε and (k + 1)ε must remain in C.

The second term of the right hand side vanishes as we showed before. Using the

definition (4.1.18) and the bounds on the velocities of T, T̃ we find

(4.1.19)

|T (p, P )− T̃ (p, P )| ≤ |T (p, kε) − T̃ (p, kε)| + |T ((k + q)ε, P ) − T̃ ((k + q)ε, P )| ≤ 2Cε.

We stress that this bound is uniform in ψ, that is, over all streamlines because we

assumed a uniform bound for the velocity in (4.1.17). Using this bound on the time

of flight (4.1.19), simple calculus gives a bound on the inverse flow map

(4.1.20) |p(T, P ) − p̃(T, P )| ≤ 1

minp,ψ T̃p
|T (p, P ) − T̃ (p, P )| ≤ 2CC̃ε.

We will use this bound on the inverse flow to quantify the difference between the

saturation and its two-scale limit. Now we will state the dependence on ψ explicitly.

All norms are with respect to p and ψ. We can write the solution to the saturation

equation and its two-scale limit using the initial condition and the inverse flow map

as

(4.1.21) Sε = S0(p(T, P,Ψ),Ψ) S̃ = S0(p̃(T, P,Ψ),Ψ).
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For Lipschitz initial conditions with constant M it follows immediately that ‖Sε −
S̃‖∞ ≤ M‖p − p̃‖∞ ≤ Nε, for some constant N . If the initial condition is not Lip-

schitz we do not have pointwise convergence. Consider the case where the initial

condition has one jump discontinuity and is Lipschitz everywhere else. Then at time

T also Sε will have a discontinuity, by (4.1.21). To fix the notation, let that disconti-

nuity be of magnitude less than ∆S, which does not have to be small, along a curve

(P (λ),Ψ(λ)), λ ∈ (0, 1) on the P,Ψ plane, with length L. We will denote the thin

strip of width 2CC̃ε around that curve with

A1 = {(P,Ψ) such that P (λ) − 2CC̃ε ≤ P ≤ P (λ) + 2CC̃ε, λ ∈ (0, 1)}

and the rest of the domain will be A2. We selected the width of the strip based on

(4.1.20) so that for any point P (p, T ) outside the strip, when we trace it back with

the fine and coarse flow maps, if p is on one side of the discontinuity then p̃ cannot be

on the other side. In A2, p and p̃ are always on the same side of the jump so we can

use the Lipschitz condition on S0 to show that
∫

A2
(Sε − S̃)2dA2 ≤ M2ε2|A2|. Inside

the strip even though Sε and S̃ differ by an O(1) quantity, we can use the area of

the strip to make the L2 norm of their difference small, that is,
∫

A1
(Sε − S̃)2dA1 ≤

(∆S + Nε)24CC̃εL. Then ‖Sε − S̃‖2 ≤ Gε1/2. The estimates for any Lp follow in a

similar fashion.

The results can be extended to the case of a finite number of discontinuities in the

same way, which completes the proof.

To obtain the estimate for the saturation equation with linear flux we followed

a longer path than necessary, but one that gives an intuitive explanation well. A

simpler way to obtain the estimate, which holds only for initial conditions that don’t

depend on the fast scale, is given next, for the saturation equation with nonlinear

flux.
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Theorem 4.1.8. Assume that vε0(p) is bounded uniformly in ψ, ζ above and below

C−1 ≤ vε0(p) ≤ D.

Denote by F (t, T ) the solution to St+f(S)T = 0. The solution S̃ of (4.1.16) converges

to Sε defined by (4.1.2) with vε0 = v(p, ψ, p
ε
, ψ
ε
) and initial conditions that don’t depend

on the fast scale, at a rate given by

‖Sε − S̃‖∞ ≤ Gε,

when F remains Lipschitz for all time, and

‖Sε − S̃‖n ≤ Gε1/n,

when F develops at most a finite number of discontinuities.

Proof. As before the velocity bound implies that C̃−1 ≤ ṽ0(p) ≤ D̃, uniformly

in ψ, ζ . We transform the equations for Sε (4.1.11) and S̃ (4.1.16) to the time of flight

variable defined by

dT ε

dp
= 1

vε
0
(p,ψ)

T ε(0) = 0
for Sε and

dT̃
dp

= 1

ṽ(p,ψ,ψ
ε
)

T̃ (0) = 0
for S̃.

Both equations reduce to

St + f(S)T = 0.

The solution to this equation is F (t, T ). Since the initial condition does not

depend on ε neither does F . Then S = F (t, T ε(P,Ψ)), S̃ = F (t, T̃ (P,Ψ)). Using

these expressions for the saturation we can obtain the desired estimates by following

the same steps as in the linear case. When F remains Lipschitz for all times we can

easily obtain a pointwise estimate in terms of the Lipschitz constant M ‖Sε− S̃‖∞ =

‖F (t, T ε) − F (t, T̃ )‖∞ ≤ M‖T ε − T̃‖∞ ≤ Gε. Otherwise we will need the time of

flight bound (4.1.19) that we derived for the linear flux that reduces here to

(4.1.22) |T ε(P ) − T̃ (P )| ≤ 2Cε.

We will divide the domain in regions where F is Lipschitz with constant M in the

second variable, denoted by A2, and shock regions, denoted by A1, and estimate the
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difference of Sε and S̃ in each region separately. To fix the notation, let that there

be n discontinuities in F (t, ·) of magnitude less than ∆F , which does not have to be

small, at {T = Ti}i=1,...,n. We will denote the thin strips of width 2Cε around the

discontinuities with A1

A1 = {T such that |T − Ti| ≤ 2Cε, for some i = 1, . . . , n}

and with A2 its complement. We selected the width of the strip based on (4.1.22), so

that for any point P , if T ε(P ) /∈ A1, then T ε(P ) and T̃ (P ) are on the same side of

any jump Ti. When T ε(P ) ∈ A2, F is Lipschitz in the region between T ε and T̃ , and

we can show

∫

A2
(Sε − S̃)2dpdψ =

∫

A2
(F (t, T ε) − F (t, T̃ ))2dpdψ ≤ M2‖T ε − T̃‖2

∞|T ε(A2)
−1|

≤ N2ε2|T ε(A2)
−1|,

where we used the time of flight bound (4.1.22). By |T ε(A2)
−1| we denoted the image

of A2 under the inverse of T ε(P ). Inside the strip A1, even though Sε and S̃ differ

by an O(1) quantity we can use the smallness of the area of the strip to make the L2

norm of their difference small

∫

A1
(Sε − S̃)2dpdψ =

∫

A2
(F (t, T ε) − F (t, T̃ ))2dpdψ ≤ (∆S +Nε)2|T ε(A1)

−1|
≤ (∆S +Nε)24CDnε.

We estimated the area |T ε(A1)
−1| by using the definition of A1 and the fact that the

Jacobian of the transformation T ε(P )−1 is vε0 and is bounded uniformly in p, ψ as in

equation (4.1.17). Putting together the two estimates for regions A1 and A2 we obtain

‖Sε − S̃‖2 ≤ Gε1/2. Estimates in terms of the other Lp norms follow similarly. �

In general we are interested in obtaining a coarse scale method that gives accurate

saturation profiles and fractional flow curves. If we relax this criterion and simply look

for a coarse scale method that gives accurate fractional flow curves then the above

proof shows that we only need to keep information across the streamlines in our coarse

method. We can replace the velocity along each streamline with its geometric average

along the whole streamline and solve the resulting equation on a coarse grid whose

size does not depend on the magnitude of the velocity fluctuations. Then the effort to
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solve the saturation equation is O(1), and if the fine grid takes O(N ×N) operations

per time step, the above upscaled scheme will take O(N × 1) operations.

4.2. Comparison with the Cell Problem in the Cartesian Frame

We will rewrite the equations (4.1.10) in the form of an equation for the average

saturation forced by a term that depends on the solution of a cell problem for the

purposes of comparing our homogenized equations to those in the Cartesian frame.

We expand S̃,ṽ0 as an average over the cells in the pressure-streamline frame and the

corresponding fluctuations

(4.2.1)
S̃ = S(p, ψ, t) + S ′(p, ψ, ζ, t)

ṽ0 = ṽ0(p, ψ, t) + ṽ0
′(p, ψ, ζ, t).

Averaging equations (4.1.10) with respect to ψ we find an equation for the mean of

the saturation

St + ṽ0Sp + ṽ0
′S ′
p = 0.

An equation for the fluctuations is obtained by subtracting the above equation from

(4.1.10)

S ′
t + (ṽ0 − ṽ0)Sp + ṽ0S

′
p − ṽ0

′S ′
p = 0.

Together, the equations for the saturation are

(4.2.2)
St + ṽ0Sp + ṽ0

′S ′
p = 0

S ′
t + ṽ0

′Sp + ṽ0S
′
p − ṽ0

′S ′
p = 0.

We can consider the second equation to be the cell problem and the first equation

to be the upscaled equation. We remind the reader that the cell problem for a hyper-

bolic equation is O(1) whereas for an elliptic equation it is O(ε). We can obtain an

approximate numerical method by solving the cell problem only near the shock region

in space time, where the macrodispersion term is largest. It is best to diagonalize

these equations by adding the first to the second one

(4.2.3)
St + ṽ0Sp = −ṽ0

′(S̃p − Sp)

S̃t + ṽ0S̃p = 0.
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Compared to (4.2.2), it has fewer forcing terms and no cross fluxes, which leads to a

numerical method with less numerical diffusion that is easier to implement.

We want to compare the homogenized equations derived above with the corre-

sponding equations in the Cartesian variables. We note that strictly speaking such

a comparison is meaningless because the two homogenized equations correspond to

different problems. Equations (4.2.3) are valid only when the coarse cells are de-

fined by the level sets of pressure and the streamfunction whereas the homogenized

equations in the Cartesian variables are valid under the assumption of x, y as the

fast variables and periodically fluctuating velocities. In practical applications both of

these assumptions become approximations to reality and then such a comparison is

useful.

The homogenized equations in the Cartesian variables as derived by Westhead

[53] are defined in terms of the average saturation over the coarse blocks S and the

fluctuations S ′′. Note that whereas the fluctuations S ′ in the pressure-streamline

frame depend only on one fast variable, the fluctuations S ′′ in the Cartesian frame

depend on two fast variables. P is a projection operator onto the average along the

streamlines within the cell, which corresponds to the fast variable along the stream-

lines and Q is a projection onto the orthogonal complement so that any function u

can be written as u = P(u) + Q(u). With this notation the homogenized equations

are

(4.2.4)
St + v · ∇S + ∇ · v′′S ′′ = 0

S ′′
t + (v + P(v′′)) · ∇S ′′ + P(v′′) · ∇S −∇ · v′′S ′′ = G(x, x

ε
, t),

where

G(x,
x

ε
, t) = (v + P(v′′)) · Q(∇S ′′) − P(Q(v′′) · Q(∇S ′′)) + Q(S ′′).

The Cartesian cell problem, which is the equation for the fluctuations in (4.2.4), is

a two dimensional equation along two fast variables. Before one can solve it, one must

compute the projections P and Q which adds to the complexity of the method and

its computational cost. In contrast the pressure-streamline cell problem in equations
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(4.2.3) contains only one fast variable and no projection operator. In some sense,

in the pressure-streamline frame the projection operation, which was carried out by

restricting the oscillatory test functions, cleanly removed a fast variable and reduced

one fast dimension to arrive at the cell problem of (4.2.3). In the Cartesian frame the

projection operation remained in the equations in the form of P and Q and the fast

variation along the flow was not cleanly removed. This is another indication that the

pressure-streamline frame reveals the structure of the flow correctly.

4.3. Weak Limit and Full Homogenization

With the derivation of the equation of the two-scale limit we have homogenized the

fine saturation equations. The homogenized operator given by (4.1.16) still contains

variation of order ε through the fast variable ψ
ε

; however there it does not contain

any derivatives in that variable. Its dependence on ψ
ε

is only parametric. We can

consider ∂
∂t

+ ṽ0
∂
∂p

to be the homogenized operator for ∂
∂t

+ vε0
∂
∂p

at the expense of

having to introduce an extra dimension, an extra parameter.

We can remove the dependence of the homogenized operator on ψ
ε

and arrive at a

homogenized operator that is independent of the small scale. When we homogenized

along the streamlines, the resulting equation was of hyperbolic type like the original

equation. In a seminal and celebrated paper, Tartar [49] showed that homogenization

across streamlines leads to transport with the average velocity plus a time-dependent

diffusion term, referred to as macrodispersion, a physical phenomenon that was not

present in the original fine equation. We briefly discuss this result here. It applies

only in the case of linear flux.

We will assume that the velocity field does not depend on p inside the cells, that

is, vε0(p, ψ) = v0(ψ,
p
ε
, ψ
ε
). With this assumption the equation for the two-scale limit

of the saturation is

S̃(p, ψ,
ψ

ε
, t)t + ṽ0(ψ,

ψ

ε
)S̃(p, ψ,

ψ

ε
, t)p = 0.
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We will denote by L the Fourier transform in p and by F the Laplace transform in t.

Taking these two transformations we find

LFS̃(q, ψ,
ψ

ε
, s) =

FS0(ψ, q)

s+ 2πiqṽ0(ψ,
ψ
ε
)
.

We denote by dνψ
ε

the Young measure associated with the sequence ṽ0(ψ, ·) and use

it to obtain the weak limit LFS(q, ψ, s)

(4.3.1) LFS(q, ψ, s) = FS0(ψ, q)

∫ dνψ
ε
(λ)

s+ 2πiqλ
= FS0(ψ, q)

1

2πiq

∫ dνψ
ε
(λ)

s
2πiq

+ λ
.

To invert the Laplace and Fourier transforms we use the fact that there exists a second

Young measure dµψ
ε

that satisfies

(

∫ dνψ
ε
(λ)

s
2πiq

+ λ

)−1

=
s

2πiq
+ ṽ0 −

∫ dµψ
ε
(λ)

s
2πiq

+ λ
.

We have denoted by ṽ0 the weak limit of the velocity. If we insert this expression

into (4.3.1), inverting the Laplace and Fourier transforms becomes straightforward.

The resulting equation is

(4.3.2) St + ṽ0Sp =

∫ t

0

∫

Spp(p− λ(t− τ), ψ, τ)dµψ
ε
(λ)dτ.

This equation has no dependence on the small scale and we consider it to be the

full homogenization of the fine saturation equation. Efendiev and Popov [24] have

extended this method for the Riemann problem in the case of nonlinear flux.

4.4. Designing an Upscaled Model from the Two-Scale limit

It is hard to see how the fully homogenized equation (4.3.2), which we derived

from the two-scale limit using Tartar’s method, can be used to design a numerical

method. We will derive an efficient numerical method starting from the two-scale

limit by using the method of averaging. We will also demonstrate that this equation

is very close to the homogenization result of the previous section. We will use the

higher moments of the saturation and the velocity to model the macrodispersion. In

the context of two-phase flow this idea was introduced by Efendiev, Durlofsky, and
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Lee [20, 21] and is referred to as Volume Averaging. In these papers they were facing

a much more difficult problem since they were averaging along and across the flow.

In our case the velocity field is already upscaled in the direction along the flow. In

addition we are selecting the shape of the cells so that the velocity varies less within

each cell. The resulting algorithm is also simpler to implement in our case because

of the decoupling of the full two-dimensional equation to one-dimensional transport

along streamlines.

4.4.1. Physical Interpretation of the Subgrid Forcing. We would like a

physical interpretation of the forcing term that appears in the equation for the mean

saturation in (4.2.2). We will integrate the equation for the fluctuations along the

characteristics to eventually form that forcing term. The characteristics are defined

by
dP

dt
= ṽ0, with P (p, 0) = p.

The equation for S ′ is

S ′ = −
∫ t

0

(

ṽ0
′(P (p, τ), ψ)Sp(P (p, τ), ψ, τ) + ṽ0

′S ′
p)
)

dτ.

We take the derivative of both sides with respect to p, multiply by ṽ0
′, and average

over ψ. The second term will be third- order in fluctuating quantities and therefore

small compared to the first. The macrodispersion becomes

ṽ0
′S ′
p = −

∫ t

0

ṽ0
′ ∂

∂p

(

ṽ0
′(P (p, τ), ψ)Sp(P (p, τ), ψ, τ)

)

dτ.

We take ∂
∂p

outside the integral to find

ṽ0
′S ′
p = − ∂

∂p

∫ t

0

ṽ0
′ṽ0

′(P (p, τ), ψ)Sp(P (p, τ), ψ, τ)dτ

+

∫ t

0

∂ṽ0
′

∂p
ṽ0

′(P (p, τ), ψ)Sp(P (p, τ), ψ, τ)dτ.

Looking at the last equation we can understand the influence of the macrodisper-

sion in the upscaled equation (4.2.2). The first term corresponds to diffusion whose

magnitude depends on the two point correlation of the velocity field, and the second

corresponds to a convection. Similar results have been obtained in a probabilistic
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framework (see for example [43]). When the velocity field does not vary a lot along

the streamlines, which is realistic since we have already averaged along streamlines,

we expect the convection term of the macrodispersion to be negligible. Convection by

simple arithmetic average of the velocity across streamlines will then give the exact

amount of fluid that is transported through the domain over large times. It will give

the correct integral of the fractional flow curve over all time or the total amount of

oil that can be obtained. If we want to retain some information about the break-

through time or the precise form of the fractional flow rate at every time we have

to retain some information about the fast and slow channels within the coarse cells.

This information would be contained in the macrodispersion.

4.4.2. Numerical Averaging across Streamlines for Linear Flux. The

derivation in the previous section contained no approximations, and the average sat-

uration equation cannot be solved on the coarse grid. In this section we follow the

same idea as in that derivation to solve the equation for the fluctuations along the

characteristics, but with the purpose of deriving an equation on the coarse grid. To

achieve our purpose we will not do analytical upscaling in the sense that we are not

interested in deriving a continuous upscaled equation as in the previous section. We

will first discretize the equation with a FV method in space and then upscale the re-

sulting equation. Our upscaled equation is then dependent on the numerical scheme.

We note that also the definitions of the average saturation and its fluctuations (4.2.1)

are easier to understand in the context of a numerical scheme.

We use the same definition for the average saturation and the fluctuations as in

(4.2.1) and follow the same steps until equation (4.2.2). We discretize the macrodis-

persion term in the equation for the average saturation

ṽ0
′S ′
p =

ṽ0
′S ′

i+1 − ṽ0
′S ′

i

∆p
+O(∆p).

A superscript ·i refers to a discrete quantity defined at the center of the conservation

cell. Instead of solving the equation for the fluctuations on the fine characteristics as
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before, which would lead to a fine grid algorithm, we solve it on the coarse character-

istics defined by
dP

dt
= ṽ0, with P (p, 0) = p.

Compared to the equation that we obtained in the previous section for S ′, this equa-

tion for S ′ has an extra term, which appears second

S ′ = −
∫ t

0

(

ṽ0
′(P (p, τ), ψ)Sp(P (p, τ), ψ, τ) + ṽ0

′(P (p, τ), ψ)S ′
p(P (p, τ), ψ, τ) + ṽ0

′S ′
p)
)

dτ.

The second term is second-order in fluctuating quantities, and we expect it to be

smaller than the first term so we neglect it. As before, we multiply by ṽ0
′ and average

over ψ to find

ṽ0
′S ′ = −

∫ t

0

ṽ0
′ṽ0(P (p, τ), ψ)Sp(P (p, τ), ψ, τ)dτ.

In this form at time t it is necessary to know information about the past satu-

ration in (0, t) to compute the future saturation. In the appendix we demonstrate

that Sp(P (p, τ) depends weakly on time, in the sense that the difference between

Sp(P (p, τ) and Sp(P (p, t) is of third-order in fluctuating quantities. Therefore we can

take Sp(P (p, τ) out of the time integral to find

ṽ0
′S ′ = −

∫ t

0

ṽ0
′ṽ0

′(P (p, τ), ψ)dτSp.

The term inside the time integral is the covariance of the velocity field along each

streamline. The macrodispersion in this form can be computed independent of the

past saturation.

4.4.3. Numerical Averaging across Streamlines for Nonlinear Flux. The

nonlinearity of the flux function, the fact that the sum of the fine saturation fluxes is

not equal to the flux of the sum of the fine saturations, introduces an extra source of

error in the approximation. We Taylor expand f(S̃) near S and keep only the first
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term

(4.4.1)

S̃ = S(p, ψ, t) + S ′(p, ψ, ζ, t)

ṽ0 = ṽ0(p, ψ, t) + ṽ0
′(p, ψ, η, t)

f(S̃) = f(S) + fS(S)S ′ +O(S ′2)

f(S)p = fS(S)Sp + f(S)S ′ + . . .

A reasonable objection is that this approximation will be inadequate near the

shock since S ′ is not small there. The region near the shock is important because

there the macrodispersion is largest. Due to the dependence of the jump in the satu-

ration on the mobility we expect this approximation to be better for lower mobilities.

Nevertheless this approximation works well in practice. For more accuracy it is also

possible to retain more terms in the Taylor expansion, as was done in [21]. We will

show that in realistic examples these higher-order terms are not important in our

setting.

Using these definitions we derive the following equations for the average saturation

and the fluctuations

St + ṽ0f(S)p + ṽ0
′(fS(S)S ′)p = 0(4.4.2)

S ′
t + ṽ0

′fS(S)Sp + ṽ0fS(S)S ′
p − ṽ0

′S ′
p = 0.

The macrodispersion is discretized as

ṽ0
′(fS(S)S ′)p =

ṽ0
′fS(S)S ′

i+1
− ṽ0

′fS(S)S ′
i

∆p
+O(∆p).

We solve the second equation on the coarse characteristics defined by

dP

dt
= ṽ0fS(S), with P (p, 0) = p

and form the terms that appear in the macrodispersion

ṽ0
′fS(S)S ′ = −

∫ t

0

ṽ0
′fS(S)ṽ0

′(P (p, τ), ψ)fS(S(P (p, τ), ψ, τ))Sp(P (p, τ), ψ, τ)dτ.

As before we have dropped terms that are second-order in fluctuating quantities. We

use an argument in the appendix to show that fS(S(P (p, τ), ψ, τ))Sp(P (p, τ), ψ, τ)
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does not vary much along the streamlines and take it out of the integration in time

to find

(4.4.3) ṽ0
′fS(S)S ′ = −

∫ t

0

ṽ0
′ṽ0

′(P (p, τ), ψ)dτfS(S)2Sp.

This expression is very similar to the one obtained in the linear case; however

here the macrodispersion depends on the past saturation through the equation for

the coarse characteristics.

4.5. Implementation

4.5.1. Considerations for the Macrodispersion. Even though the macrodis-

persion depends on the past saturation it is possible to compute it incrementally.

Given its value D(t) at time t we compute the values at t+ ∆t using the macrodis-

persion at the previous time

D(t+ ∆t) =

∫ t+∆t

0

. . . dτ =

∫ t

0

. . . dτ +

∫ t+∆t

t

. . . dτ.

This is possible because in the derivation for the approximate expression for the

macrodispersion we took the terms that depend on S(τ) outside the time integration.

The integrand, the average covariance of the velocity field along the streamlines, needs

to be computed only once at the beginning. Then updating the macrodispersion takes

O(n2) computations, as many as it takes to update S.

The macrodispersion can be negative because of the term v′, and this leads to

an equation with negative diffusion for which the numerical scheme is ill-posed. In

[21, 20] an extra approximation was attempted to overcome this difficulty. We will

simply apply the macrodispersion only where it is positive.

For the convection diffusion equation we must observe an extra CFL-like condition

to obtain a stable numerical scheme [47]

∆t ≤ ∆p2

2ν
,

where ν is the diffusivity. In our case the diffusivity is
∫

cell

∫ t

0
ṽ0

′(p(τ), ψ)ṽ0
′(p, ψ)dτdψ.

If the macrodispersion is large this can be a very restrictive condition. We can use

an implicit discretisation for the macrodispersion. This is straightforward since the
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Table 1. Numerical demonstration of theorem 4.1.8

2 4 8 16 32 64 128

L1 0.0432 0.0124 0.0063 0.0049 0.0022 6.62 × 10−4 1.41 × 10−4

L∞ 0.670 0.664 0.663 0.665 0.653 0.61 0.096

problem is one-dimensional. The resulting system can be solved by a tridiagonal solver

very fast. Since the order of the highest derivative in the equation has increased, we

require extra boundary conditions. For the computation of the macrodispersion term,

we impose no flux on both boundaries of the domain.

4.6. Numerical Results

To interpret correctly the numerical experiments that follow, we must distinguish

between two sources of errors. We will refer to the difference between the upscaled and

the exact equation as the upscaling or modeling error and to the difference between the

solution of continuous upscaled equations and the solution to the numerical scheme

as the discretization error. We will refer to the difference between the solutions of

the continuous fine equations and the numerical scheme of the upscaled equations as

the total error. To separate the upscaling error from the total error we will solve the

upscaled equations on the fine grid, which is the grid on which we solve to the fine

equation. We will also solve them on the coarse grid to compute the total error.

First we design a numerical experiment to demonstrate the estimate of theorem

4.1.8 for a discontinuous solution. To find the rate of convergence of S̃ to Sε we have

to use a grid that resolves the velocity and the shock so that the numerical diffusion

near the shock does not mask the upscaling error. At the same time the velocity

must vary enough in the cells so that the upscaling error is large. To avoid numerical

diffusion we use a small final time. We will restrict ourselves to one spatial dimension,

nonlinear flux with m = 1, Tfinal = 0.1, v = 1− 20p sin(10π 1
p+0.1

) + 20sin(5π
2
). Since

we are interested in the upscaling error we used 4096 cells for both upscaled and

fine computation. The results are shown in table 1. The L∞ norm shows that in all

experiments with less than 64 points the numerical diffusion was not significant. The

convergence rate seems to be slightly larger than 1, which is consistent with theorem

4.1.8.
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In all the computations that follow we use permeability fields defined on 400 ×
400 fine blocks. The fine computations are averaged over the coarse grid so that a

comparison with coarse computations is possible. The coarse equations are computed

on a fine grid to minimize the effects of numerical diffusion, except for the moving mesh

computations that are computed on the coarse grid. We compare the saturation right

before the breakthrough time so that the shock front is largest. This is the toughest

case.

4.6.1. Macrodispersion Modeling. Before we show numerical results with the

fully upscaled saturation we will demonstrate that the approximations involved in the

derivation of the saturation equation with macrodispersion do not introduce large er-

rors. When investigating the effects of macrodispersion numerically it is crucial that

we minimize the numerical diffusion, otherwise the macrodispersion will be hidden

by the numerical diffusion. If we Taylor expand the velocity v′ in equation (4.4.3)

then macrodispersion term scales as t∆ψ2 for smooth velocity fields. If we use a Lax-

Wendroff scheme with a limiter then in the shock region where the macrodispersion

term is most important the numerical scheme is only first-order. The modified equa-

tion for Godunov’s scheme shows that the numerical diffusion scales as ṽ0∆p(1−ṽ0
∆t
∆p

).

Making sure that the numerical diffusion is smaller than the macrodispersion can be

achieved in general by using coarse cells that are elongated in the ψ direction. Here

we will simply discretize the equation for S on the fine grid.

We consider the case of linear flux to understand the influence of the macrodis-

persion and the accuracy of our model. We use the layered permeability field of figure

4.6.5 with no long-range correlation. We upscale from a 400 × 400 to a 50 × 50 grid.

In table 4.6.1 we see snapshots of the saturation at t = 0.3. It is important to include

the macrodispersion term when we are interested in accurate saturation profiles. In

the computations of the next section we observe that the moving mesh that was im-

plemented solves the equation for S with macrodispersion accurately even though the

macrodispersion is computed on the adaptive grid, which is fine near the shock of S

and coarse away from it. This confirms our conjecture that the macrodispersion is

more significant near the shock. To derive the equation with the macrodispersion we
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Figure 4.6.1. One-phase flow, linear flux, 2pt geostatistics snapshots
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Fine (top), S with macrodispersion (middle bottom) and S without macrodispersion
(right bottom).

assumed that the velocity field varies little across the streamlines and we neglected

higher-order terms. This explains the small discrepancy between the fine solution and

the solution with macrodispersion.

4.6.2. Saturation Snapshots. We select three benchmark permeability fields,

each representing a different class of permeabilities. The first is a layered permeability

that we used so far where the velocity field varies rapidly across the flow but not along

the flow and the flow is more or less parallel to the x-axis and was generated by GSLIB

with lx
ly

= 10. The second permeability is the Stanford 44 model [10] in the percolation

limit where the flow has complicated geometrical features and has similar variation

along and across the flow. The third permeability field is SPE10 36 [11] and has a

fast channel that carries most of the flow. In the experiments with a nonlinear flux
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we selected a mobility m = 5. The fine computation is on a 400 × 400 grid and is

then averaged over the coarse grid, which is 50 × 50, for comparison. The numerical

results, shown in figures 4.6.2, 4.6.3, 4.6.4, 4.6.5, 4.6.6, 4.6.7 show that the coordinate

transformation captures the long-range correlations of the flow and the model with

S̃ or S derived with homogenization and averaging provides an accurate upscaling

model.

We notice that S̃ is much more accurate than S, which makes sense because S̃

is upscaled only along the streamlines whereas S is upscaled along and across the

streamlines. In the experiments with the fast channel, the SPE10 36 permeability

field, we see an artifact next to the fast channel in the saturation snapshots. This

artifact affects neither the fractional flow rates as we see in the figure nor the relative

L1 norm of the error, which is shown to be around 0.07 for S and 0.01 for S̃ in

table 4. We defer a more quantitative discussion of the error until the next section.

The artifact is insignificant because it is in a region with slow flow. By resolving

the fast channel we have sacrificed some resolution in the slow channels. Our coarse

cell at the edge of the fast channel can be large and might contain the neighboring

slow channel, which would explain such artifacts. What is more important though is

that the overall accuracy is not compromised. Such artifacts will disappear and the

fractional flow rates will be more accurate as we make the coarse block finer as in the

series of saturation plots of figure 4.6.8. The corresponding fractional flow rates are

in figure 4.6.9. We note that it is slightly harder to compute accurately the tail of

the fractional flow curve than its part near the breakthrough.
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Figure 4.6.2. Saturation snapshots for a layered permeability field,

linear flux
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Permeability in a logarithmic scale (top left), fractional flow curves for the fine

solution on a 400 × 400 grid and upscaled solutions on a 50 × 50 grid (top right), S̃

and S computed on a 50 × 50 grid with a moving mesh (middle and bottom right),

and fine S averaged on the corresponding coarse blocks (middle and bottom left).
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Figure 4.6.3. Saturation snapshots for the percolation case (Stanford

44), linear flux
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Permeability in a logarithmic scale (top left), fractional flow curves for the fine

solution on a 400 × 400 grid and upscaled solutions on a 50 × 50 grid (top right), S̃

and S computed on a 50 × 50 grid with a moving mesh (middle and bottom right),

and fine S averaged on the corresponding coarse blocks (middle and bottom left).
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Figure 4.6.4. Saturation snapshots for a fast channel (SPE10 36),

linear flux
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Permeability in a logarithmic scale (top left), fractional flow curves for the fine

solution on a 400 × 400 grid and upscaled solutions on a 50 × 50 grid (top right), S̃

and S computed on a 50 × 50 grid with a moving mesh (middle and bottom right).

and fine S averaged on the corresponding coarse blocks (middle and bottom left).
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Figure 4.6.5. Saturation snapshots for a layered permeability field,

nonlinear flux
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Permeability in a logarithmic scale (top left), fractional flow curves for the fine

solution on a 400 × 400 grid and upscaled solutions on a 50 × 50 grid (top right), S̃

and S computed on a 50 × 50 grid with a moving mesh (middle and bottom right),

and fine S averaged on the corresponding coarse blocks (middle and bottom left).
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Figure 4.6.6. Saturation snapshots for the percolation case (Stanford

44), nonlinear flux
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Permeability in a logarithmic scale (top left), fractional flow curves for the fine

solution on a 400 × 400 grid and upscaled solutions on a 50 × 50 grid (top right), S̃

and S computed on a 50 × 50 grid with a moving mesh (middle and bottom right),

and fine S averaged on the corresponding coarse blocks (middle and bottom left).
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Figure 4.6.7. Saturation snapshots for a fast channel (SPE10 36),

nonlinear flux
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Permeability in a logarithmic scale (top left), fractional flow curves for the fine

solution on a 400 × 400 grid and upscaled solutions on a 50 × 50 grid (top right), S̃

and S computed on a 50 × 50 grid with a moving mesh (middle and bottom right),

and fine S averaged on the corresponding coarse blocks (middle and bottom left).
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Figure 4.6.8. Saturation snapshots with decreasing coarse block size

for a fast channel (SPE10 36), nonlinear flux
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S computed on a 50 × 50, 100 × 100, 200 × 200 grid with a moving mesh (top,

middle, and bottom right) and fine S computed on a 400× 400 grid and averaged on

the corresponding coarse blocks (top, middle, and bottom left), for same

permeability as in figure 4.6.7.
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Figure 4.6.9. Fractional flow rates with decreasing coarse block size

for a fast channel (SPE10 36), nonlinear flux
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Fractional flow rates with upscaled and fine saturations computed on a 50 × 50,

100 × 100, 200 × 200 grid (top, middle, and bottom right) for same permeability as

in figure 4.6.7.
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Table 2. Upscaling error for the layered permeability

LINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0021 6.57 × 10−4 2.15 × 10−4 8.75 × 10−5

L1 error of S with macrodispersion 0.115 0.0696 0.0364 0.0135

L1 error of S fine without macrodispersion 0.1843 0.0997 0.0505 0.0191

NONLINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0023 8.05 × 10−4 2.89 × 10−4 1.29 × 10−4

L1 error of S with macrodispersion 0.116 0.0665 0.0433 0.0177

L1 error of S fine without macrodispersion 0.151 0.0805 0.0432 0.0186

Table 3. Upscaling error for the percolation case (Stanford 44)

LINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0222 0.0171 0.0122 0.0053

L1 error of S with macrodispersion 0.0819 0.0534 0.0333 0.0178

L1 error of S fine without macrodispersion 0.123 0.0834 0.0486 0.0209

NONLINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0147 0.0105 0.0075 0.0040

L1 error of S with macrodispersion 0.0842 0.0658 0.0371 0.0207

L1 error of S fine without macrodispersion 0.119 0.0744 0.0424 0.0214

Table 4. Upscaling error for the fast channel (SPE10 36)

LINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0128 0.0093 0.0072 0.0042

L1 error of S with macrodispersion 0.0554 0.0435 0.0307 0.0176

L1 error of S fine without macrodispersion 0.123 0.0798 0.0484 0.0258

NONLINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0089 0.0064 0.0054 0.0033

L1 error of S with macrodispersion 0.0743 0.0538 0.0348 0.0189

L1 error of S fine without macrodispersion 0.0924 0.0602 0.0395 0.0202

4.6.3. Accuracy and Computational Cost. To compute the upscaling error

we compare the upscaled solution computed on a 400× 400 grid with the fine satura-

tion computed on the 400×400 grid and averaged over the coarse grid. The errors are

computed in the p, ψ frame, which is equivalent to weighting the error in every region

with its flux. This choice is more meaningful physically. We display the upscaling

error for the computations of the previous section in tables 2, 3, 4.
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Table 5. Total error for the layered permeability

LINEAR FLUX 25x25 50x50 100x100 200x200

L1 upscaling error of S̃ 0.0021 6.57 × 10−4 2.15 × 10−4 8.75 × 10−5

L1 error of S̃ computed on coarse grid 0.0185 0.0062 0.0019 0.0015

L1 upscaling error of S 0.115 0.0696 0.0364 0.0135
L1 error of computed on coarse grid 0.139 0.0779 0.0390 0.0144

NONLINEAR FLUX 25x25 50x50 100x100 200x200

L1 upscaling error of S̃ 0.0023 8.05 × 10−4 2.89 × 10−4 1.29 × 10−4

L1 error of S̃ computed on coarse grid 0.0268 0.0099 0.0027 9.38 × 10−4

L1 upscaling error of S 0.116 0.0665 0.0433 0.0177

L1 error of S computed on coarse grid 0.146 0.0797 0.0461 0.0184

Table 6. Total error for the percolation case (Stanford 44)

LINEAR FLUX 25x25 50x50 100x100 200x200

L1 upscaling error of S̃ 0.0222 0.0171 0.0122 0.0053

L1 error of S̃ computed on coarse grid 0.0326 0.0161 0.0107 0.0113

L1 upscaling error of S 0.0819 0.0534 0.0333 0.0178

L1 error of S computed on coarse grid 0.135 0.0849 0.0477 0.0274

NONLINEAR FLUX 25x25 50x50 100x100 200x200

L1 upscaling error of S̃ 0.0147 0.0105 0.0075 0.0040

L1 error of S̃ computed on coarse grid 0.0494 0.0295 0.0150 0.0130

L1 upscaling error of S 0.0842 0.0658 0.0371 0.0207

L1 error of S computed on coarse grid 0.17 0.11 0.0541 0.0303

To put these computations in perspective we note that a uniform computation

with 400 points has a relative L1 error of approximately 0.02 for the linear flux and

0.002 for the nonlinear flux according to earlier computations in tables 5, 6. S̃ is a

very accurate approximation to the fine saturation. It is more accurate for the layered

permeability than the other two fields because the variation of the velocity along the

flow is smaller. S is less accurate because we are upscaling in two dimensions and not

just one. The layered permeability has large variation across the flow so the effects

of macrodispersion are more significant.

In tables 5, 6, 7 we show the total error, that is, the modeling and discretization

error, in the case when we use a moving mesh to solve the saturation equation. It

is interesting that the convergence of S̃ to S is observed even though the upscaling
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Table 7. Total error for the fast channel (SPE10 36)

LINEAR FLUX 25x25 50x50 100x100 200x200

L1 upscaling error of S̃ 0.0128 0.0093 0.0072 0.0042

L1 error of S̃ computed on coarse grid 0.023 0.0095 0.0069 0.0052

L1 upscaling error of S 0.0554 0.0435 0.0307 0.0176

L1 error of S computed on coarse grid 0.0683 0.052 0.0361 0.0205

NONLINEAR FLUX 25x25 50x50 100x100 200x200

L1 upscaling error of S̃ 0.0089 0.0064 0.0054 0.0033

L1 error of S̃ computed on coarse grid 0.0338 0.0148 0.0074 0.0037

L1 upscaling error of S 0.0743 0.0538 0.0348 0.0189

L1 error of S computed on coarse grid 0.115 0.0720 0.0406 0.0204

Table 8. Computational cost

fine x.y fine p, ψ S̃ S

layered, linear flux 5648 257 9 1
layered, nonlinear flux 14543 945 28 4
percolation, linear flux 8812 552 12 1

percolation, nonlinear flux 23466 579 12 1
SPE10 36, linear flux 40586 1835 34 2

SPE10 36, nonlinear flux 118364 7644 25 2
It took 26 units of time to interpolate one quantity from the Cartesian to the

pressure-streamline frame.

error is larger than the numerical error of the fine solution, which is 0.02 for the linear

flux and 0.002 for the nonlinear flux in the L1 norm, as mentioned before. The reason

is that the location of the moving mesh points was selected so that the points are

as dense near the shock as the fine solution using the parameter hmin (see section

3.3.4). This was done to observe the upscaling error clearly and also to have similar

CFL constraints on the time step, which allows a clean comparison of computational

times. We show the times required to compute the fractional flow curves above in

table 8. The computations were performed on an AMD Athlon 1.5GHz with 512MB

RAM. The upscaled solutions were computed on a 25× 25 grid and the fine solution

was computed on a 400 × 400 grid so we expect the S computations to be 256 times

or more faster. The extra gain comes from a less restrictive CFL condition since

we use an averaged velocity. The computations in the Cartesian frame are much

slower; we believe that it is a combination of the fact that they have fluxes in two
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Table 9. Comparison to a naive upscaling method for SPE10 36

50x50 100x100 200x200

L1error of S 0.0720 0.0406 0.0204

cost of S 4 36 253

L1error of S 0.582 0.17 0.0955
cost of S 4 16 96

S is calculated on the coarse grid, by interpolating the fine permeability with a fast
channel (SPE10 36) from 400 × 400 to the grid shown in each column.

dimensions and that our implementation was slower than the implementation in the

pressure-streamline frame.

Finally we compare our method with a naive upscaling method. The naive upscal-

ing method is simply interpolating the permeability field linearly onto the coarse grid

and then solving for the saturation on that coarse grid. We use the same parameters

as in the previous section and report the results for the permeability with a fast chan-

nel (SPE10 36) in table 9. To achieve an L1 error of 0.09 in the final saturation our

upscaling method requires a 50× 50 grid and 4 units of time. If we tried to refine the

grid we would require 200× 200 points and 96 units of time. Our upscaling algoritm

is about twenty times faster. We note that in table 9 as we double the number of grid

points in each direction the total cost should increase by a factor of 8. We observe

a slightly lower factor partly because the algorithm has an adaptive time step. For

example, for the naive upscaling method from a 100×100 to a 200×200 grid the total

cost increases by a factor of 6 instead of 8. The cost per time step for the 100 × 100

computation is 0.23 and the cost per time step for the 200×200 computation is 0.79.

The cost per time step increases by 3.4 which is closer to the theoretical value of 4.

The remaining discrepancy can be expained by the presence of some overhead cost in

our implementation. The gain will be much larger if we use a Cartesian frame for the

naive upscaling method, as is clear by the results of part 1 of this thesis and also of

table 8. These numerical results can also be interpreted as a demonstration that the

coarse grids don’t resolve the small scales and that upscaling is necessary.
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Chapter 5

Upscaling Two-Phase Flows

5.1. Pressure Equation

5.1.1. The Multiscale Finite Element Method (MSFEM). In the previous

chapter we described a procedure to upscale the saturation equation. We approxi-

mated the fine saturation with its two-scale limit, which can be computed on a coarse

grid. For the pressure equation it is not enough to upscale; we also want to be able to

downscale, that is, given coarse quantities to compute fine quantities such as the fine

pressure and velocity fields. The fine scale velocity is required for the computation

of the effective velocity; it is an input of the upscaling scheme for the saturation.

Hornung’s book [27] is a standard reference for the foundation for upscaling elliptic

equations.

Many methods have been proposed to upscale the pressure equation. They can

be divided into two broad categories: “analytical upscaling methods” that assume a

form for the upscaled pressure equation and derive its effective coefficients via ad hoc

approximations and “numerical upscaling methods” where the upscaled equations are

formed and solved numerically. For an extensive review we refer the reader to [25].

Here we mention an approach with elements related to our approach. In [52] Wen,

Durlofsky, and Edwards propose a flow-based grid comprised of the streamfunction

variable across the flow and a composite variable along the flow that is obtained

by a weighted average of the pressure and the arclength variable and then apply a

grid smoothing step to reduce its distortion. However they used this grid with an
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analytical upscaling method. We will design a numerical upscaling method based on

the MSFEM, which was introduced by Hou and Wu [28].

The MSFEM is particularly suitable for our purpose because it allows for down-

scaling. The idea is to define basis functions over coarse cells that satisfy the elliptic

operator in a local problem subject to linear boundary conditions on the boundary of

the cell. The basis functions resolve the fine scale. The operator that downscales all

quantities from the coarse to the fine grid is given by the basis functions. Besides the

theoretical importance of being able to compress multiscale operators using a mul-

tiscale basis set, the MSFEM can lead to an efficient upscaling method if we don’t

recompute the basis functions at every pressure time step. Then we have a method

with a computational time that is a function of the number of coarse cells. The fact

that the basis functions don’t need to be updated has not been proven rigorously

but has been observed in many two-phase flow experiments [22]. This experimental

validation shows that the basis functions truly capture most of the fine scale behavior

and that the MSFEM method rests on a sound idea.

As in every finite element method the continuous problem is discretized by project-

ing the solution onto a finite dimensional space that is spanned by the basis functions.

The basis functions satisfy the same equation as the pressure on the coarse blocks

of the domain. The main difficulty is to determine the boundary condition for the

basis functions. A second drawback of the conforming MSFEM is the presence of

resonance error in the basis functions near the cell boundary. This was noted by Hou,

Wu, and Cai in [28], and they proposed the method of oversampling to improve on

it [23]. However MSFEM with oversampling is non-conforming, which implies that

the pressure is be continuous across the coarse blocks, and we cannot use it to com-

pute the fine velocity. The mixed MSFEM of Chen and Hou [9] gives a conservative

fine velocity within each basis and a coarse velocity that is also conservative. Their

computations have excellent conservation properties. In our case we cannot use their

algorithm because the fine velocity field will be nonconservative across coarse blocks,

which can make the transformation singular. In this chapter we will see how to deal

with both of these difficulties by changing to an adaptive coordinate frame.
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5.1.2. The Modified MSFEM. It is well known that the domain of dependence

for an elliptic operator is the whole domain over which the problem is defined. In

practical terms this means that changing the value of the permeability at one point

will affect the solution at every other point in the domain. In MSFEM methods

we decompose the computation into a local part of computing the basis functions

and a global part where all the local solutions are coupled together. The MSFEM

basis functions are determined locally in each coarse cell and contain only information

about the local structure of the operator to be upscaled.

For the case when the permeability has structures with long-range correlation that

need to be captured, such as high permeability channels, Efendiev, Ginting, and Hou

[22] proposed to incorporate more global information into the basis functions. They

use the solution to the fine pressure problem at the initial time for supplying the

boundary condition of the cell problem. Their method is referred to as the modified

MSFEM. The motivation is that the connectivity of the fast channels will be reflected

in the initial pressure and, through the cell boundary condition, in the basis functions

as well. Even though the computation of the basis functions are decoupled in the sense

that they can be done independent of each other, the basis functions contain some

information about the global structure of the permeability.

The modified MSFEM is a conforming method and gives a continuous fine velocity

field. Like the computation of the basis functions, computing the fine pressure initially

is also a one time overhead of the method. In their study Efendiev, Ginting, and Hou

observed that the modified MSFEM performs better than MSFEM. They were also

able to demonstrate this analytically in certain cases. More importantly for us, the

modified MSFEM performs better than MSFEM with oversampling, which means

that it also removes the resonance error.

5.1.3. The Modified MSFEM in the Pressure-Streamline Frame. The

framework of the modified MSFEM fits our purposes well. We want to tackle problems

with fast channels, and we need to be able to compute the fine velocity field to upscale

the saturation equation. We adapt it slightly at no extra computational cost to fit the
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philosophy of our upscaling method for the saturation equation that was described in

section 4.1.1.

For the saturation equation we picked the coarse blocks over which we average

to have constant size in the pressure-streamline frame. We will follow the same idea

for the pressure as well. Upscaling means finding the effective behavior or simply

averaging, and our choice of frame will group regions of high and low velocity in

separate cells. The variations in the velocity are to a large extent caused by the

variations in λK. So we expect the variation of λK to be smaller in each coarse cell

than if we had selected square cells in a Cartesian frame, which will lead to a smaller

upscaling error for the pressure.

As in the modified MSFEM we solve for the initial pressure for the boundary

condition for the bases. However we will then transform to the frame of the initial

pressure P0 and streamfunction Ψ0 to pick the shape of the coarse blocks. The coarse

blocks will be defined by the lines p0 = ihc, ψ0 = jhc. For the basis functions

of the MSFEM, we select a linear boundary condition on edges with p0 = ihc and

no-flux boundary conditions on edges with ψ0 = jhc. Initially the exact solution

of the pressure equation in the pressure-streamline frame is of course the identity

P (t = 0, p0, ψ0) = p0. This means the boundary condition for our basis functions

coincides with the fine pressure solution initially, as in the modified MSFEM. In

our method the long-range correlations of the basis functions are captured by the

coordinate frame, whereas they are captured by the basis functions in the modified

MSFEM.

If we assume that the pressure at time ∆t has not changed much from the pressure

at time 0, then the level sets P (∆t, p = ihc, ψ) = ihc have not changed much either,

and our boundary condition for the basis functions remains accurate. In figure 5.1.1

the solid lines show a coarse block in the (x, y) and (p(0), ψ(0)) frames. The dashed

lines show the level sets of the pressure and streamfunction a short time afterwards.

The are very close to the boundaries of the cell. A justification why this is so is that

the pressure does not have a two-scale structure to lowest order for permeabilities

with periodic fast variables according to homogenization theory. We cannot use the
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Figure 5.1.1. Boundary conditions for the cells of the pressure equation

In a pressure streamline frame, lines of constant pressure and saturation form a
uniform grid.

same line of reasoning for the no-flux boundary conditions because they depend on

the derivative of the pressure.

5.1.4. Derivation of the Equations. We write the pressure equation in terms

of the new variables. Let ζ = p0 and η = ψ0. First we derive the elements of the

Jacobian matrix and its inverse. They relate the differentials in x, y to differentials

in ζ, η in the following way




dX

dY



 =





Xζ Xη

Yζ Yη









dζ

dη



 = J−1





dζ

dη









dζ

dη



 =





ζx ζy

ηx ηy









dX

dY



 = J





dX

dY



 .

Solving the second equation for dX, dY we get




dX

dY



 =
1

ζxηy − ζyηx





ηy −ζy
−ηx ζx









dζ

dη



 .

Comparing the two equations for dX, dY we find the elements of the Jacobian matrix

and its inverse

ζx = u0

λ0K
ζy = v0

λ0K

ηx = −v0 ηy = u0

Xζ = u0

‖v0‖2λ0K Xη = −v0
‖v0‖2

Yζ = v0
‖v0‖2λ0K Yη = u0

‖v0‖2

J0 = ‖v0‖2

λ0K
J−1

0 = ‖v0‖−2λ0K.
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We have used v0 = λ0K∇P0, ∇Ψ0 = v⊥
0
. Using the chain rule on the pressure we

find




Pζ

Pη



 =





Xζ Yζ

Xη Yη









Px

Py



 .

Solving this equation for Px, Py we derive the rule for the transformation of derivatives

Px =
1

J−1
0

((YηPζ) − (YζPη))

Py =
1

J−1
0

(−(XηPζ) + (XζPη)) .

We can take the pressure derivatives of the innermost parentheses outside the paren-

theses

Px =
1

J−1
0

((YηP )ζ − (YζP )η)

Py =
1

J−1
0

(−(XηP )ζ + (XζP )η) .

Applying this rule twice we get

∂xλKPx =
1

J−1
0

(

(YηλK
1

J−1
0

((YηP )ζ − (YζP )η))ζ − (YζλK
1

J−1
0

((YηP )ζ − (YζP )η))η

)

∂yλKPy =
1

J−1
0

(

−(XηλK
1

J−1
0

(−(XηP )ζ + (XζP )η))ζ + (Xζ
1

J−1
0

(−(XηP )ζ + (XζP )η))η

)

.

We can write the transformed operator using the metric tensor

∇λK∇P 7−→ 1

J−1
0

∇ζ,η





λK
Y 2
η +X2

η

J−1 λK
−YηYζ−XηXζ

J−1

λK
−YηYζ−XηXζ

J−1 λK
Y 2
ζ +X2

ζ

J−1



∇ζ,ηP.

Using the expressions for the elements of the Jacobian matrix we find

1

J−1
0

∇ζ,η





λ
λ0

0

0 λλ0K
2



∇ζ,ηP.

The saturation equation becomes

St + (v · ∇P0)Sζ + (v · ∇Ψ0)Sη = 0.
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We propose a second transformation to solve the saturation in the frame of P ,Ψ.

It is defined in terms of the velocity vζ,η in the ζ ,η frame with vζ,η = Ao∇ζ,ηP ,

∇ζ,ηΨ0 = v⊥
ζ,η. The chain rule gives a useful relation

vζ,η = Ao∇ζ,ηP = A0





Xζ Yζ

Xη Yη



∇P

=





λ
λ0

0

0 λλ0K
2









u0

‖v0‖2λ0K
v0

‖v0‖2λ0K

−v0
‖v0‖2

u0

‖v0‖2



∇P

= λKJ−1
0





u0

λ0K
v0
λ0K

−v0 u0



∇P = J−1
0





v · ∇P0

v · ∇Ψ0





⇒ J0vζ,η =





v · ∇P0

v · ∇Ψ0



 .

Using this relation we rewrite the velocity (v ·∇P0,v ·∇Ψ0) ·∇ζ,ηP in the P , Ψ frame,

and we arrive at the following saturation equation

St + J0vζ,ηA
−1
o vζ,ηSp = 0.

The full algorithm is shown in figure 5.1.2. There are three different time steps

involved in the algorithm: ∆tB , the time between two updates of the bases, ∆tP ,

the time between two updates of the pressure, and the time step of the saturation

equation. In practice we rarely have to update the basis functions. In all experiments

that follow, updating the basis functions lead to no significant improvement.

5.2. Implementation

5.2.1. Computing the Pressure with MSFEM. As in the FV method we

divide the domain Ω into coarse primal and dual cells. Both the coarse primal cells

and the points at their centers are denoted by 1, . . . , 9. Similarly the points at the

center of the coarse dual cells are denoted by A, . . . , D and so are the centers of the

coarse dual cells as in figure 5.2.1. For each coarse cell of the dual volume we compute

four basis functions φ from which we construct the finite element basis χ. For example

for cell A we solve

∇λ(S)K∇φkA = 0 in A,
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Figure 5.1.2. The Multiscale Streamline Method

(1) Solve for the initial pressure P (0) and streamfunction Ψ(0) on the fine grid.
This is a one time overhead of the method that provides exact boundary
conditions for the cell problems at t = 0.

(2) Transform the velocity and the saturation to the frame of p(0), ψ(0).
(3) Advance the saturation equation

St +
|v|2
λ0K

Sζ = 0

until time T .
(4) Solve for the basis functions of the MSFVM method.
(5) Advance the equation until t = ∆tB, with the following steps:

(a) Solve for the new pressure P (T ) using the old basis functions

∂

∂ζ
(
λ(S(T ))

λ(S(0))

∂P (T )

∂ζ
) +

∂

∂η
(λ(S(0))λ(S(T )K2∂P (T + ∆t)

∂η
) = 0.

(b) Transform the velocity and the saturation to the frame P (T ),Ψ(T ).
(c) Advance the saturation equation

St + J0A
−1
o ‖vζ,η‖2Sp = 0

until time T + ∆tP .
(d) Transform the saturation back to the frame P (0),Ψ(0).

(6) Go to step 4 until t = TF .

Figure 5.2.1. Coarse and fine grids for the MSFVM Method

subject to φkA = δik on the corners of A, linear boundary condition on the edge 14, 25

along constant pressure and no flux on the edges 12, 45 along the same streamline. The

basis function χ5 is defined on A
⋃

B
⋃

C
⋃

D by φ5
A, φ5

B, φ5
C , φ5

D. Denote with H1
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the space of functions whose derivative is in L2 that vanish on the p = 0, 1 boundary.

When we look at the continuous pressure equation as a variational problem in H1 its

solution satisfies
∫

λK∇P · ∇φ = 0, ∀φ ∈ H1.

We discretize this equation by considering it in the space V = span{χk}. Then we

can write P, φ as a linear combination of the basis functions with coefficients pk, φk.

The solution of the discrete variational problem satisfies

(5.2.1)
∑

k

pk

∫

λK∇χk · ∇χl = 0, ∀χl ∈ V.

5.2.2. Computing the Streamfunction.

With the Multiscale Finite Volume Method (MSFVM). The solution of 5.2.1 will

have a continuous velocity inside the dual volumes but not on their boundaries. As we

noted in section 3.3.1, the numerical velocity must satisfy the discrete conservation

(2.2.1) so that the streamfunction is uniquely defined and so that the image of the

unit square in the pressure-streamline frame is a rectangle. In the algorithm that

we presented in the previous chapter for one-phase flow this was achieved by a finite

volume discretization of the pressure equation. For the upscaled scheme we will

borrow ideas from the multiscale finite volume method (MSFVM).

To compute a continuous conservative velocity field, Jenny, Lee, and Tschelepi

[33] used a second set of basis functions φ defined on the primal grid. For example

φ
5

is defined on cell 5 and satisfies

∇λ(S)K∇φ5
= 0 in 5.

The fluxes on the boundary are provided by the fluxes of χ5. Then a conservative

fine scale velocity field can be extracted from the pressure. Like the basis functions

of the MSFVM method this second set of basis functions needs to be computed in a

preprocessing step only.

With an Elliptic Equation. A second way to obtain the streamfunction is the

following elliptic equation for Ψ

∇2Ψ = −∇⊥ · v.



105

This can be done very efficiently by substituting Ψ = Ψ̆ + y. Then the boundary

condition for Ψ̆ is homogeneous and the resulting equation can be solved very effi-

ciently with the Fast Fourier Transform in O(Nlog(N)) operations, where N is the

total number of fine grid points.

Obtaining the streamfunction Ψ with an elliptic equation does not require that

the velocity be incompressible on a discrete level. However it can introduce a larger

numerical error than obtaining the streamfunction by integrating the velocity of the

previous section. The reason is that the right hand side of the elliptic equation involves

derivatives of the velocity, whereas the approach with the dual bases involves only

the velocity. In general the velocity will not be smooth and the computation of the

curl will be inaccurate. This effect is alleviated by the fact that the transformation

in the initial pressure and streamfunction coordinates is near the identity. Of course

we have no theoretical proof for this claim.

5.2.3. Coarse Interpolation. We have presented all the ingredients for an ef-

ficient scheme for the two-phase flow equations. Before we put them together in the

next section, one final comment on coarse interpolation is appropriate. The only part

of the algorithm that contains a computation on the fine scale is the computation

of S(p, ψ) and ṽ0(p, ψ), which are used to solve the saturation equation. Since these

quantities are defined on the coarse grid, the question arises whether we really have

to go on the fine scale to compute them. This is possible for S(p, ψ) by first writing

the Jacobian of the transformation in terms of the multiscale basis functions χk of

the pressure.

dPdΨ =
|v|2
λK

dXdY =
∑

fine nodes of cell

PkPlλK∇χk · ∇χldXdY.

Then

S(p, ψ) =

∫

cell
S(p, ψ)dPdΨ =

∑

fine nodes of cell

PkPl

∫

λK∇χk · ∇χldXdY.
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Figure 5.3.1. Cartesian and P0,Ψ0 coordinate transformations

A uniform grid transformed under X, Y → P0,Ψ0 (left) and under P0,Ψ0 → P,Ψ
(right)

The velocity is not a simple arithmetic average but an arithmetic average across the

flow lines and a harmonic average along the flow lines and cannot be expressed in

terms of the multiscale basis functions.

5.3. Numerical Results

5.3.1. The Transformation P0,Ψ0 → P,Ψ. We want to demonstrate that the

map P0,Ψ0 → P,Ψ is very close to the identity and that this leads to less numerical

diffusion. We consider a permeability field with a straight fast channel, nonlinear

flux with m = 1. We compute the saturation profile until T = 0.3 and denote the

pressure and streamfunction at that time by P0,Ψ0. We then advance the saturation

until T +∆tP with ∆tP = 0.0001 and denote the pressure and streamfunction at that

time by P,Ψ. In figure 5.3.1 it is obvious that P0,Ψ0 → P,Ψ is very close to the

identity. We transform the saturation 20 times back and forth and show the results

in figure 5.3.2 . There is more diffusion both in the fast channel and the uniform

front when the transformation is far from the identity. The relative L1 error of the

saturation transformed under X, Y → P0,Ψ0 was 0.0971 and under P0,Ψ0 → P,Ψ it

was 0.0584. We did not observe such a clear difference in more realistic flow profiles

but we believe this is due to the fact that our method to transform the saturation

was not optimized at all to preserve sharp shocks.
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Figure 5.3.2. Numerical diffusion in Cartesian and P0,Ψ0 coordinate
transformations
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Initial saturation (top), saturation transformed 20 times under X, Y → P0,Ψ0 (left),
and under P0,Ψ0 → P,Ψ (right).

5.3.2. Upscaling Only the Pressure. We are interested in isolating the pres-

sure upscaling error, so we perform computations with the fine saturation. We will

use the layered permeability field, the saturation equation with nonlinear flux, and

m = 1. All norms are in the p0, ψ0 variables because the quantities that enter our nu-

merical method depend on p0, ψ0 and not x, y. A comparison at t = 0 is meaningless

because initially both the upscaled and fine methods use the fine pressure to com-

pute the velocity, that is, initially the two methods coincide. We have recomputed the

pressure four times and compare the upscaled and fine quantities at one pressure time

step before the final time. This ensures that λ(S)K at t =
3Tfinal

4
is much different

than at time t = 0, which is what we used to compute the basis functions. Then we

have a strict test whether our upscaling method is accurate and whether the basis
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Table 1. Pressure upscaling error for the layered permeability

50x50 100x100 200x200

L2 pressure error at t =
3Tfinal

4
0.0013 0.0007 0.0004

L2 velocity error at t =
3Tfinal

4
0.0250 0.0149 0.0076

L1 saturation error t = Tfinal 0.0108 0.0056 0.0028
These errors should be compared with the change in velocity between t = 0 and

t =
3Tfinal

4
. The reason is that the upscaled scheme computes fine quantities at

t = 0. The norms are computed in the p0, ψ0 variables. The L2 difference of the fine

velocity at t = 0 and t =
3Tfinal

4
was 0.2041.

functions need to be updated. To put the results in perspective in the caption we

report how much the velocity changed from t = 0 to t =
3Tfinal

4
. In table 1 we show

the results. The error in velocity is larger than in pressure because the pressure is

smoother. Overall our upscaling error for the pressure is much smaller than for the

saturation.

5.3.3. Full Upscaling. In the results that follow we use the layered permeability

field, the saturation equation with nonlinear flux, and m = 1. The final time was

Tfinal = 0.4 and the pressure time step was ∆tP = 0.1, so the pressure was computed

four times during the simulation. We will use the full algorithm 5.1.2 which upscales

both pressure and saturation with S or S̃. We show some plots in the case when the

fine solution is defined on a 400 × 400 grid and the upscaled on a 50 × 50 grid using

S in figure 5.3.3.
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Figure 5.3.3. Snapshots for the full upscalling method for a layered

permeability field, nonlinear flux
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Permeability in a logarithmic scale (top left), fractional flow curves for the fine

solution on a 400 × 400 grid and upscaled solutions on a 50 × 50 grid (top right),

coordinate transformations X, Y → P,Ψ(middle left) and

P0,Ψ0 → P,Ψ(middle right), S computed on a 50 × 50 grid (bottom right), and fine

S averaged on the corresponding coarse blocks ( bottom left).
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Table 2. Convergence of the full upscaling method for the layered permeability

with S̃ 50x50 100x100 200x200

L2 pressure error at t =
3Tfinal

4
0.0014 0.007 0.004

L2 velocity error at t =
3Tfinal

4
0.0235 0.0137 0.0072

L1 saturation error t = Tfinal 0.0105 0.0052 0.0027

with S 50x50 100x100 200x200

L2 pressure error at t =
3Tfinal

4
0.0046 0.0021 0.0008

L2 velocity error at t =
3Tfinal

4
0.0530 0.0335 0.0246

L1 saturation error t = Tfinal 0.0546 0.0294 0.0134
The pressure and velocity errors should be compared to the change in velocity

between t = 0 and t =
3Tfinal

4
. The reason is that the upscaled scheme computes fine

quantities at t = 0. The norms are computed in the p0, ψ0 variables. The L2

difference of the fine velocity at t = 0 and t =
3Tfinal

4
was 0.2041.

Table 3. Comparison to a Cartesian upscaling method

Cartesian upscaling with S with S̃

L1 saturation error t = Tfinalon 50x50 0.164 0.0546 0.0105
The fine solution was defined on a 400× 400 grid and the upscaled on a 50× 50 grid.

We study the convergence of the upscaled scheme to the fine solution when the fine

solution is defined on a 400×400 grid in table 2. We also compare our upscaling scheme

to a simple upscaling method using the coarse velocities of the MSFVM method in

the cartesian frame.3. As in the one-phase flow we observe that upscaling with S̃

is more accurate than S. In order not to be wasting computational resources, the

pressure upscaling error should be similar in magnitude to the saturation upscaling

error. If we upscale the pressure to 50× 50 points then we should use S̃ instead of S

because the saturation error with S quintuples whereas with S̃ it remains the same as

is obvious from tables 1 and 2. Another way to control the upscaling error is of course

through the size of the coarse cells. We could upscale for example the saturation with

S to 50 × 50 cells and the pressure to 20 × 20 cells.
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Chapter 6

Conclusion and Future Directions

The method that we have presented here can be made more accurate in a number

of ways. It can be improved by an interpolation method that preserves shocks so

that changing coordinates does not introduce too much diffusion to the saturation.

An option is to track the shock separately and then use one-sided interpolation near

the shock. We have observed that the coefficients of the elliptic equation in the

p0, ψ0 frame are singular; perhaps there is a way to regularize them, or regularize

the transformation without introducing too much error. In particular the square of

the permeability appears so this regularization will only be a simple rescaling of the

permeability tensor. We note that it is possible to write an elliptic equation for

the pressure in the pressure-streamline frame, an equation directly for X(p, ψ) which

suffers from the same drawback. Its permeability depends on the solution and the

coefficients are singular as well.

Strictly speaking it is not possible to extend this method to general three-dimensional

flows because the Jacobian of transformation defined by the pressure and the two

streamfunctions can be negative. This is not necessarily a difficult obstacle. An

approximate transformation could be used in such cases. The questions that arise

naturally are in which cases the approximation does not lead to a large error and

what that error is.

What is different with our approach is that we are able to get rid of the awkward

assumption of periodicity and scale separation. This is pleasing on a theoretical level

but we believe that it can also explain why the numerical method is so accurate. It

would be interesting to use a coordinate transformation to obtain the two-scale limit
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under stochastic homogenization and try to relax some of its awkward assumptions.

In this work we tackled the homogenization of the saturation equation assuming that

the velocity does not depend on the saturation. Effectively we treated the coupling

between the pressure and saturation equations by linearization. This is equivalent

to considering one-phase flow. Further work should address the homogenization of

the coupled two-phase flow equations and investigate whether any new physical phe-

nomena arise. More generally it is interesting to apply the same philosophy to other

equations, either in cases when a transformation groups the small scale in a more

intuitive way or equations that are reduced to a simpler form under a coordinate

transformation.

When I heard the learned astronomer,

When the proofs, the figures, were ranged in columns before me,

When I was shown the charts and diagrams, to add, divide, and

measure them,

When I sitting heard the astronomer where he lectured with much

applause in the lecture room,

How soon unaccountable I became tired and sick,

Till rising and gliding out I wandered off by myself,

In the mystical moist night-air, and from time to time,

Looked up in perfect silence at the stars.

Walt Whitman
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Appendix

Proof that fSSp depends weakly on time

In this section we justify that fS(S(P (p, τ), ψ, τ))Sp(P (p, τ), ψ, τ) does not vary

much along the streamlines so that we can take it outside the time integral of the

macrodispersion which is written out below

ṽ0
′fS(S)S ′ = −

∫ t

0

ṽ0
′fS(S)ṽ0(P (p, τ), ψ)fS(S(P (p, τ), ψ, τ))Sp(P (p, τ), ψ, τ)dτ.

By“weakly in time”we mean that taking the term fS(S(P (p, τ), ψ, τ))Sp(P (p, τ), ψ, τ)

outside the time integration of the macrodispersion term introduces an error that is

third-order in fluctuating quantities. To prove it we follow an idea in [14] and write

the macrodispersion in terms of G(p, P (p, α)) = ṽ0
′ṽ0(P (p, α), ψ)

ṽ0
′fS(S)S ′ = −fS(S)

∫ t

0

d

dτ

∫ τ

0

G(p, P (p, α))dα
∂

∂p
f(S(P (p, τ), ψ, τ))dτ.

We integrate by parts to find

(6.0.1) ṽ0
′fS(S)S ′ = −fS(S)

∫ t

0

G(p, P (p, τ))dτ
∂

∂p
f(S(P (p, t), ψ, t))+

+ fS(S)

∫ t

0

∫ τ

0

G(p, P (p, α))dα
∂

∂p

∂

∂τ
f(S(P (p, τ), ψ, τ))dτ.

The first term on the right hand side of (6.0.1) is what we model the macrodis-

persion with. We must show that the second term is much smaller than the first. If

we solve the equation for the average saturation (4.4.2) along the coarse streamlines

we obtain
d

dτ
S(P (p, τ), ψ, τ) = ṽ0

′(fS(S)S ′)p.
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This term is second-order in fluctuating quantities, whereas f(S(P (p, t), ψ, t)) is

zeroth order. Together with the term
∫ τ

0
G(p, P (p, α))dα they make the second term of

(6.0.1) third-order in fluctuating quantities. Then we obtain the following expression

for the macrodisperion

ṽ0
′fS(S)S ′ = −

∫ t

0

ṽ0
′ṽ0(P (p, τ), ψ)dτfS(S)2Sp.
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