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Abstract

‘This thesis explores the problem of inferring information about the three-dimensional world from its projec-
tions onto a camera (images). Among all visual cues, we do not address “pictorial” ones, such as texture or
shading. Instead, we concentrate on “dynamic” cues, which are associated with variations of the image over
time.

In order to eliminate pictorial cues, one may represent the world as a collection of geometric primitives,
such as points, curves or surfaces in three-dimensional space. Then, from the two-dimensional motion of the
projection of such primitives onto the image, one can infer the three-dimensional structure of the world and
its motion relative to the viewer.

“Three-dimensional structure from two-dimensional images” has now been a central theme in Computer
Vision for over two decades, and tools from Linear Algebra and Projective Geometry have been widely
employed to attack the problem as a “static” task. It is only in recent years that the role of time has started
to be recognized, after the influential work of Dickmanns and his coworkers on vehicle guidance on freeways.

We do not impose restrictions on the structure of the environment, and we cast the problem of gen-
eral three-dimensional structure and motion estimation within the framework of Dynamical Systems. We
show how different algebraic constraints on the image projections can be interpreted as nonlinear and im-
plicit dynamical models whose (unknown) parameters live in peculiar differentiable manifolds that encode
three-dimensional information. Recovering such three-dimensional information then amounts to identifying

dynamical models while taking into account the geometry of the parameter manifolds.



viii

Contents
Acknowledgements v
Abstract vii
1 Introduction 1
1.1 Relation to previous work . . . . . ... ... 4
1.2 Reading the thesis . . . . . . .. .. . . 7
I Visual Motion and Structure Estimation 9
2 Modeling Structure From Motion 10
2.1 Shape Spaces . . . . . . ... 11
2.2 Observing Shape Spaces: the role of pose and motion . . . . . . . . . . . . . .. .. ... ... 17
2.2.1 Models for observing shape, pose and motion . . . ... ... ... ... ... ... .. 20
2.3 Filtering Structure from Motion . . . . . . . .. ... 24
2.4 Model reduction and invariance . . . . . . ... ... 30
2.4.1 Motion-independent structure estimation . . . . . ... .. .. ... . ... ... ... 31
2.4.2 'Towards structure-independent motion estimation . . ... ... ..... ... .... 33
2.5 Decoupling and reduction as a modeling strategy . . . . .. .. .. ... ... ... ... ... 34
2.5.1 The basic reduced-order observer: simultaneous depth and motion estimation . . . . . 35
2.5.2 Pushing observer reduction: structure-independent motion estimation . . . . .. .. . 36
2.5.3 Asymmetry between continuous and discrete-time . . . .. ... ... ... ... ... 37
2.5.4 “Explicit” versus “implicit” decoupling . . . . . . .. ... .. ... ... ... ... 37
2.6 Scale factor normalization . . . . .. ... ... 38



ix
2.6.2 Normalization of shape . . . . . .. .. ... .. ... 40

2.7 Inner products and Riemannian metrics on the Shape Space . . . . . . . ... ... ... ... 41

Observer reduction in the discrete-time case: motion estimation on the essential mani-

fold 43
3.1 The Essential manifold . . . . . . . ... ... 44
3.1.1 Properties of the Essential manifold . . ... .. ... .. ... ... . ... ...... 44
3.1.2  Local coordinates of the Essential manifold . . . ... .. ... ... ... ....... 46
3.1.3 Projection onto the Essential manifold . . . . . . .. ... ... ... ... ... ... . 47
3.2 Role of the Essential manifold in Structure from Motion . . . . . .. ... .. ... ...... 47
3.2.1 Two-views closed-form solutions: Longuet-Higgins revisited . . . . . . .. .. ... .. 48
3.2.2 Two-views iterative solutions: Horn’s Relative Orientation . . . . . . ... .. ... .. 49
3.3 Dynamic solution: the “Essential filter” . . . .. .. ... ... .. ... .. ... . ..... 50
3.3.1 Choosing the local coordinates for the Essential manifold . . . .. ... ... ... .. 51
3.3.2 Propagating scale information . . . . .. ... .. L L L 53
3.3.3 Dealing with zero-translation . . . . .. ... . ... ... ... ... 53
3.4 Solving the estimation task . . . . . . . ... 54
3.4.1 Estimation in local coordinates . . . . . . .. ... ... ... 55
3.4.2 Estimation in the embedding space . . . . . . . . .. ... ... ... ... ... 57
3.4.3 Iterated Essential filter . . . . . . . . .. ... L 58
3.5 Experimental assessment . . . . . . .. L e 60
3.5.1 Simulation experiments . . . . . . . . . ... e e 61
3.5.2 Experimentsonreal images . . . . . ... .. ... 65
Observability of “Structure From Motion” 71
4.1 Observability of structure and motion . . . . . . ... ... ... ... ... ... ... 71
4.1.1 Global observability and the scale ambiguity . . ... ... ... ... ......... 73
4.1.2 Local observability: special cases . . . . . . . . ... ... . 74

4.1.3 The general case . . . . . . . . v . v i it e 78



4.1.4 Local-weak observability . . . . .. ... ... ... .. ... ... ... 80
4.1.5 Linear observability . . . . ... ... .. ... 82
4.2 Observability of the Essential model . . . ... ... ... ... ... ... . . .. __ . . . 83

Observer reduction in the continuous case: motion estimation from subspace constraints 87

5.1 Motion reconstruction via least-squares inversion constrained on subspaces. . . ... ... .. 88
9.1.1  Recovery of the direction of translation from two views . .. .. .. ... .. ... .. 89
5.1.2  Recovery of rotation and depth . . . . . . .. ... ... ... .. ... ... ... .. 91

5.2 Solving the Subspace optimization with a dynamic filter . . . . . ... . .. ... ... .. . 91
9.2.1 Identifying motion using local implicit filtering . . . . . ... ... ... .. .. .. . . 92
5.2.2 Equations of the estimator . . ... ... ... ... ... .. ... ... ... ... 94

5.3 Implementation and experimental assessment . . . . . .. .. ... ... ... ... ... 96
9.3.1 Enforcing rigid motion: the positive depth constraint . . . . . . ... ... ... . .. . 96
9.3.2 Independence from structure estimation . . . ... .. ... ... .. ... ... 97
9.3.3 Outlier rejection . . . .. . ... 98
5.3.4 Implementation . . . . .. ... ... L 98
5.3.5 Scale information recovery . . . . .. ... 99
5.3.6 Simulation experiments . . . ... ... ... ... ... 99
9.3.7 Experiments with real image sequences . . . . .. ... .. ... .. ... ... . . 105

5.4 Computation of the local linearization of the Subspace model . . . . .. . ... ... ... . 111

Weak perspective and the bas-relief ambiguity 115

6.1 The general principle: pushing the reduced order observer . . . . . . ... ... ... ... . 116
6.1.1 Reducing the order of the model . . ... ............... .. . .. .. ... 116
6.1.2  Decoupling structure from motion . . . ... ... .. ... ... ... ... .. 117

6.2 Isolating the bas-relief ambiguity: motion decoupling and choice of coordinates . . ... .. . 119
6.2.1 Choosing the motion coordinates . . . . .. ... ........... ... ... .. . 119
6.2.2 Approximate filter with four states . . . . . .. ... ... .. ... ... ... ... 120



xi

6.3 Experimental Assessment . . . . . .. ... ... 122
6.3.1 Simulation experiment . . . . . . .. ... 123

6.3.2 Thearmexperiment . . . . ... . ... ... 124

7 Pushing the reduced-order observer: fixation 127
7.1 Output stabilization and geometric stratification . . . .. . ... ... ... .. ... ..... 127
7.2 Choosing a control action . . . . . . . . .. L 128
7.3 Stabilization of a point (fxation) . . . . ... ... L 129
7.4 Stabilization of apoint and aline . . . . . . . ... . ... 130
7.5 Stabilization of aplane . . . . . . . .. 131
7.5.1 Compensation of plane-motion: warping . . . . . . . . . . . . . ... . 131

7.5.2 Plane-plus-parallax representation . . . . . . . . . . . . ... ... 132

8 Outlier rejection and segmentation 134
8.1 The innovation as aresidual . . . . . . . . ... 136
8.2 Clustering and initialization . . . . . . . . . ... L 137
83 Awpractical study . . . . . . . L 139
8.3.1 Separation . . . . . . .. 140

8.3.2 Imitialization . . . . . . . . . e 142

8.3.3 Regime: a motion splitting experiment . . . . . . ... ... ... ... ... ...... 142

9 Dynamic calibration 144
9.1 Camera model: internal and external parameters . . . . .. ... ... ... RIEIRRIR I 145
9.2 Essential filters for fundamental matrices . . . . .. ... ... ... .. ... ... 147
9.3 Tradeoffs and sufficient excitation . . . . . . .. ... ... ... .. ... 148

10 Visual motion control 151
10.1 Control on the image-plane . . . . . . .. . ... L 151
10.2 Control on the Essential manifold . . . . . . .. ... .. ... .. . .., 153
10.2.1 Choice of a metric on the Essential manifold . . ... ... ... ... .. ... .... 153



Xii

10.3 Some practical experiments . . . . . . . ... e 155
II Implementation and Experimental Results 159
11 A comparative experiment 160

11.1 Inmtroduction . . . . . . . . o L e e e e e 160

11.1.1 Modeling “Structure From Motion” . . .. . . . .. . ... ... ... ... ...... 160
11.1.2 Formulating the estimation task for the extended models . . . .. ... ... ... .. 163
11.1.3 Formulating the estimation task for the reduced models . . . . . . ... ... ... .. 165
11.1.4 Implementation and tuning . . . . . . . . . . . ... ... 167
11.1.5 Recovering the reduced parameters . . . . . . . . . .. ... ... .. ... .. ..., 169
11.1.6 Dealing with scale factors . . . . . . . . . .. ... ... L 169
11.1.7 Integral reduced models . . . . . . . . . . . . . ... 170
11.1.8 Dealing with occlusions . . . . . . ... . .. . .. ... 170
11.2 Experiments . . . . .« . . . L L e e e e 171
11.2.1 Nomenclature . . . . . . . . . . e e 171
11.2.2 The basic experiment: the “box sequence” . . . . . . . . . . ... .. ... ....... 172
11.2.3 Simulation setup . . . . . . . . 174
11.2.4 Accuracy . . . . . o e e e 175
11.2.5 Robustness . . . . . . . . . e e e 177
11.2.6 CONVEIZENCE . . v v v v i i i e i e e e e e e e e e e e e e 179
11.2.7 Dependence upon the number of visible points . . . . . . . . ... .. ... ...... 179
11.2.8 Dependence upon the aperture angle . . . . . . . . ... ... ... ... .. ... ... 182
11.2.9 Sensitivity to the “bas-relief” ambiguity . . . . . .. .. ... ... ... ... ..... 183
11.2.10 Dependence upon the parallax (sampling rate) . . .. ... ... .. ... ... .... 184
11.2.11 Other types of motion . . . . . . . . . . . .. e 185
11.2.12 A remark on “constant velocity” and first-order random walks . . . . ... ... ... 186

11.3 Discussion and interpretation of theresults . . . . . .. ... ... ... ... ......... 186



xiii

12 What next? 188
Bibliography 190
IIT Appendices and Background Material 199
A Feature tracking 200
A.1 Feature points o1l an IMAZE . . . . . v v v v v v vt e e e e e e e e e e 200
A.2 SSD algorithm for feature displacement . . . . . .. . .. .. ... ... .. oL, 202
A.3 Sub-pixel iteration . . . . . . . L e e 203
A4 Multi-scale pyramid . . . . . . . ..o 203
A5 Uncertainty Analysis . . . . . . . . 0 . e e e e e 204

B Camera calibration 210
B.1 Perspective projection, camera reference and pixel coordinates . . . ... ... ... .. ... 210
B.2 Recovering camera parameters . . . . . . ... ..o e e 212

C Linear maps, Gram-Schmidt and the Singular Value Decomposition 215
C.1 Linear maps and linear groups . . . . . . . . . v it o e e e e 215
C.2 Gram-Schmidt orthonormalization . . . . . . . . . . . . . e 216
C.3 Symmetric MatriCes . . . . . o v i e e e e e e e e e e e e e 217
C.4 Structure induced by a linear map . . . . . . . . .. . e 218
C.5 The Singular Value Decomposition (SVD) . . . . .. .. .. ... ... .. .. ... .. .. 219
C.5.1 Algebraic derivation . . . . . . . . . . . e 219

C.5.2 Geometric INterpretation . . . . . . . v v v v v e e e e e e e e e e e 220

C.5.3 Some propertiesof the SVD . . . . . . . . ... 221

D Manifolds, tangent spaces, vector fields 224
D.1 Smooth manifolds . . . . . . . . 224
D.1.1 Basictopology . . . . . . . e 224

D.12 Lie groups . . .« . o o o e e e e e e e e e e 226



D.1.3 Embeddings . . . . . . . . . . e e 227
D.1.4 Tangent plane and tangent bundle . . . . .. . ... ... ... ... ... ..... 227
D.1.5 Vector fields and Lie derivatives . . . . . . . .. ... .. ... .. 230
D.1.6 Duality . . . . . . e e e e e 231
D.2 Differential equations, local flows and one-parameter group actions on a manifold . . . . . . . 231
D.2.1 Group actions and infinitesimal generators. . . . . . . .. .. .. ... ... ... 232
D.2.2 Action on Lie groups; exponential coordinates . . . . . . . .. ... ... ... ..... 233
D.3 Distributions and Frobenius theorem . . . . . . . . . . . ... Lo oo oL 235
D.3.1 Flat distributions . . . . . . . . . . .. 236
D.3.2 Imvariant distributions . . . . . . . . . .. L e 238
D.4 Fundamentals of the Euclidean group . . . . . . . ... . . .. ... 241
The linear Kalman filter 247
E.1 Least-variance estimators of random vectors . . . . . . . . . ... Lo L. 247
E.1.1 Projections onto the range of a random vector . . . . . ... ... ... ... ..... 248
E.1.2 Solution for the linear (scalar) estimator . . . . . . . ... ... ... .. .. ...... 249
E.1.3 Affine least-variance estimator . . . . . . . . ... ... L 250
E.1.4 Properties and interpretations of the least-variance estimator . . . . . . . . . ... .. 251
E.2 Linear least-variance estimator for stationary processes . . . . . . . . . . .. .. ... .. ... 254
E.3 Linear, finite-dimensional stochastic processes . . . . . . . . .. .. ... ... ... .. ..., 257
E.4 Stationariety of LFDSP . . . . . . . . L e 258
E.5 The linear Kalman filter . . . . . . . . . . . . . . . .. e 259
E.6 Asymptotic properties . . . . . . . . . o e e e e e 263
Observability, observers and identification 265
F.1 Linear observability . . . . . . . . . . e 265
F.2 Linear obServers . . . . . . . o i i i e e e e e 267
F.3 Nonlinear observability . . . . . . . . . ... . . . 268

F.4 Identification as a filtering problem . . . . . . . .. . . ... ... 270



Xv

F.4.1 Uncorrelating the model from the measurements . . . . . .. ... ... ... .. ... 272
F.4.2 A model for PEM identification of nonlinear implicit models . . . .. .. .. ... .. 273
F.4.3 A simplified version: approximate least-squares PEM identification . . . . . . .. . .. 274

F.5 Extended Kalman Filtering for implicit measurement constraints . . . . . .. . ... .. ... 275



Xvi

List of Figures

1.1

1.2

1.3

2.1

2.2

2.3

Some “pictorial” cues for three-dimensional structure: texture (left), shading (right). . . . . .
Stereo as a cue in “random dot stereogram”. When the image is fused binocularly, it reveals
a “depth structure”. Note that stereo is the only cue, as all pictorial aspects are absent in the
random dot stereograms. . . . . . . . ... . e e
2-D image-motion is a cue to 3-D scene structure: a number of dots are painted on the surface
of a transparent cylinder. An image of the cylinder, which is generated by projecting it onto
a wall, looks like a random collection of points. If we start rotating the cylinder, just by
looking at its projection we can clearly perceive the existence of a three-dimensional structure

underlying the two-dimensional motion of the projection. . . . . . . ... ... ... .....

The Shape Bundle: configurations are points on the fibers, which are projected onto the
base-space to give a shape. . . . . . . . .. e e e
Structure-motion-velocity model: the estimated position of each feature-point is shown
in the top-left plot, along with the underlying true surface. The estimation error for the depth
of each point is also show in the top-right plot, where it can be seen that there is a bias in the
estimates (about 2 %). A bias can be also noticed in the estimates of motion in the lower-left

plot. The residual error in the projection of each feature point (innovation) is reported in the

lower-right plot. It can be seen that the components are quite correlated, and the decay is slow. 26

Structure-velocity model: when motion is integrated off-line, we do not experience any
bias in the estimates of structure, as it can be seen from the upper plots (left for the three-
dimensional position of feature points and the truth three-dimensional surface, right for the
estimation error in depth). The estimates of motion are also bias-free (lower-left), and the

innovation is small and reasonably uncorrelated (lower-right). . . . . ... ... ........



24

2.5

2.6

3.1

3.2

3.3

3.4

3.5

xvil
Depth-velocity model: when we reduce the model by substituting the initial coordinates on
the image-plane with their measured values, we introduce a small bias in the depth estimates
(upper-right plot), as well as in the motion components (lower-left). The innovation is also
more colored than before performing observer reduction. . . . . . . . .. ... ... .. ....
(Top-left) one of 45 images of an archeological site in Marzabotto-Italy. (Top-right) feature-
points are automatically selected based upon local gradient criteria and showed as the area
enclosed in a white box. (Bottom-right) the tracking of features is used as input for the
structure-velocity model, which estimates the normalized position in 3-D of each feature point.
A top view of the estimated structure is shown in (bottom-left).. . . . ... . ... ... ...
Scale normalization: pose can be normalized either by saturating a state (upper-left ) or by
adding a measurement constraint (upper-right). Alternatively, we may constrain the overall
size of the points to be scaled, by either forcing the state of the model onto a sphere (lower-
left) or by adding a measurement constraint (lower-right). The normalized estimates of the
depth of each point, as reported in the above plot, indicate that normalization of shape helps

achieving faster convergence and smoother estimates. . . . . . . . .. . ... . ... . .....

The coplanarity constraint . . . . . . . ... ..
Structure of the motion problem on the Essential space. . . . . . . . . . . ... .. ...
(left) Model of motion as a random walk in IR® lifted to the manifold or as a random walk in
R’ projected onto the manifold. (right) Estimation on the Essential space. . . . ... ....
Components of translational velocity as estimated by the local coordinate estimator. The
ground truth is shown in dotted lines. . . . . . . . . . . ... ...

Components of rotational velocity as estimated by the local coordinate estimator. . . . . . . .



3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

xviii
Components of translational velocity as estimated by the Essential estimator. Note the spikes
due to the local coordinate transformation. Note also that such spikes do not affect con-
vergence since they do not occur in the estimation process, but while transferring to local
coordinates. The switching can be avoided by a higher-level control on the continuity of the
singular values of the estimated state. There is a significant error in the local coordinates at
around frame 260, when the translation is zero and the direction of rotation is inverted. The
smoothness imposed by the dynamics of the parameters is responsible for the transient in the
estimates of the rotation, which propagates onto the estimate of translation, causing a visible
spike with a significant transient. . . . . . . . ... ...
Components of rotational velocity as estimated by the local coordinate estimator. The ground

truth is shown in dotted lines. Note the spikes due to the local coordinate transformation.

Note also that there is no transient to recover since they do not occur in the estimation process. 65

Components of the Essential matrix as estimated by the Essential estimator. Note that there
are no spikes. Note that the estimates between time 200 and 300 are non-zero, despite the
ground truth (dotted line) is, since the Essential space is normalized to unit-norm. The value
of the components of the estimates of Q in the singular region T = 0 allow us to recover
correctly the rotational velocity, once transformed to local coordinates. . . . . . . . ... ...
Components of translational velocity as estimated by the double iteration estimator. . . . . .
Components of rotational velocity as estimated by the double iteration estimator. . . . . . . .
One image of the rocket scene. . . . . . . . . . ... . ...
Motion estimates for the rocket sequence: The six components of motion as estimated by the
local coordinate estimator are showed in solid lines. The corresponding ground truth is in
dotted lines. . . . . . . . . . . . ..
Error in the motion estimates for the rocket sequence. All components are within 5% of the
true motion. . . . . . . . ... e

Norm of the pseudo-innovation process of the local estimator for the rocket scene. Convergence

isreached in less than 5 steps. . . . . . .. .. ..



5.1

5.2

5.3

5.4

5.5

xix
Pictorial illustration of the “rubbery” perception: motion is estimated without imposing the
positive depth constraint; this may result in a motion estimate which is compatible with a
rigid structure behind the viewer. Once such a structure is interpreted as being in front of
the viewer, it gives rise to the perception of a “rubbery” structure rotating in the opposite
direction. . . . . . . .. L
Estimates and errors for the direction of translation when the noise in the image plane has a
standard deviation of 1 pixel (according to the performance of common optical flow/feature
tracking schemes). Ground truth is displayed in dotted lines. In the left plot the elevation
angle ¢ is constant and equal to zero, the azimuth 0 is close to — 4. Note that convergence is
reached from zero initial conditions in about 10 steps. . . . . . . . . . . . .. ...
(Left) Estimates of the two components of the direction of translation. In the left plot the
elevation angle ¢ is constant and equal to zero, the azimuth 0 is close to —%. The noise in the
image plane measurements had 8 pixel standard deviation. The initial conditions were zero
for both components. The ground truth is in dotted lines. (Right) Estimation error for the
direction of translation. With noise of 8 pixel std in the data, the estimates are still within
20 % of the true value. . . . . . . . ... .
Estimates for the components of rotational velocity (left) and corresponding error (right).
Ground truth is displayed in dotted lines; the filtered estimates are in solid lines. The least-
squares computation of the rotational velocity is in dashed lines. . . . . ... .. ... ....
Convergence of the filter with a first-order random walk state model in the presence of non-
smooth parameter dynamics. The components of the rotational velocity of the camera are
first modulated by a sinusoidal, then by a discontinuous saw-tooth and then they drift with
a second order random walk before returning to the initial constant-velocity setting. The
estimates (solid lines) follow the ground truth (dotted lines) despite it evolves according to

dynamics which are not captured by the state model of the filter. . . . . .. .. ... ....



5.6

5.7

5.8

5.9

XX

Spherical components of the translational velocity for the experiment with non-constant ve-
locity: azimuth (left) and elevation (right). While the rotational velocity is modulated with
sinusoids and saw-tooths, translation is held constant. Between frames 80 and 120 the param-
eters drift according to a second-order random walk. It can be noticed that the filter follows
the estimates with a small but non-zero-mean estimation error. This is due to the fact that
the model that generates the data is not captured by the model used for the estimation. . . .
Brightness plots of the residual function. The value of the residual is plotted on the state-space
of the filter, which are the local coordinates of the sphere of directions of translation. Bright
regions denote small residuals. The black asterisk is the “true” motion which generated the
residual. Note that for small rotations (left) the minimum of the residual coincides with the
true motion. When the rotational velocity is large (right) the Euler step approximation is no
longer valid, and the minimum moves from the true location. . . . . . ... ... ... ....
Convergence when the positive depth constraint is not imposed and the initial condition is
chosen at random around the origin (which appears in the center of the plot): a number of
trajectories is shown in black solid lines superimposed on the brightness plot of the residual
function. The filter may converge to either the correct rigid interpretation (bright region on
the top half of the plot) or to the local minimum corresponding the “rubbery” interpretation
(bright area on the bottom half of the plot). . . . . . . .. . ... ... ... ... .......
(Left) convergence to a shallow local minimum and then to the local minimum corresponding
to the rubbery interpretation when the positive depth constraint is not enforced. (Right)

convergence to a shallow local minimum and then to the correct rigid motion (see also figure

16). o

103



5.10

5.11

5.12

5.13

5.14

5.15

xxi

Convergence to the “rubbery interpretation” (left) versus convergence to the rigid motion
interpretation (right). The state of the filter at each step is represented as a black ‘+’ and
superimposed to the average residual function (darker tones for larger residuals). After the
transient, the states accumulate either around the local minimum corresponding to the rubbery
interpretation (the one on the bottom half of the plot ) or to the one corresponding to the true
motion, on the upper half of the plot. The trajectory of the state is also plotted component-
wise in figure 15. . . . . . ...
Convergence when the positive depth constraint is enforced: (left) trajectory of the filter on
top of the brightness plot of the residual function, (right) corresponding motion components.
Initial conditions are zero. . . . . . . .. ... ...
Convergence of a structure-from-motion module to a rigid interpretation of structure (left) or
to a rubbery object rotating in the opposite direction (right). The plots show a top view of
the points, with the image plane on the lower end. . . . . . . .. ... ... . ... ... ...
Few images from the “Beckman sequence”. The camera is mounted on a cart which is pushed
around a corridor. First the cart turns left by 90°, then right and left again on a s-turn. The
sequence consists of approximately 8000 frames. We have processed here only the first turn of
the corridor, which corresponds to the first 1800 frames. The sequence was taken by Bouguet
et al., who also performed the feature tracking using Sum of Square Differences criteria on a
multi-scale framework. . . . . . ...
(Left) Azimuth angle for the corridor sequence. Zero corresponds to forward translation along
the Z-axis. The first peak is due to the left turn, while the subsequent wiggle corresponds
to a right-left s-turn. (Right) Elevation angle. The camera was pointing downwards at an
angle of approximately 5°; therefore the heading direction was approximately constant with
an elevation of +-5°. Since the camera was hand-held, there is quite a bit of wobbling.
Rotational velocity about the Y-axis (left) and about the Z-axis (right). Since the camera
was not pitching nor cyclo-rotating, both estimates are close to zero as expected. Since the
camera was hand-held and no accurate ground-truth is available, it is not easy to sort out the

effects of noise and the ones of small motions or vibrations of the camera. . . . . . . . . . . .
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(Left) Rotational velocity about the vertical axis. First the camera turns left at the corner of
the corridor (frames 700 to 1000), then right and then left again around the s-turn (frames
1000 to 1600). The integral of the rotational velocity should add up to approximately 90°, for
this is the change of orientation of the camera from beginning to end. The sum of the estimates
is 101°, corresponding to an error of 10% circa on a sequence of 1800 frames. (Right) Number
of features employed by the algorithm at each time step. On average the algorithm uses 15
feature-points, without particular attention to how they are distributed on the image plane.
The maximum number of features used is 20, and the minimum is 3. Note that two-frames
algorithms would not perform in such a case, since at least 5 features need to be visible at all
times. The temporal integration involved in the filter, on the contrary, allows us to retain the
estimates even in presence of less than 5 features. . . . . . . . . . .. . ... ... .. .....
Close-up view of the transient in the estimates of the direction of translation (azimuth on
the left, elevation on the right). The variance of the estimation error, represented using the
error-bars, decreases during the first 20-30 frames, after which it remains bounded around the

current estimate of the parameter. . . . . . . .. .. . ... ...

One of the manifestations of the “bas-relief ambiguity” is evident from watching a rotating
billboard. From a distance, the more slanted the surface, the faster it seem to move, while
the two surfaces appear to move disjointly. . . . . . . .. ... ... ... ...
Simulation experiment. Estimates of each filter (solid lines) along with ground truth (dotted
lines) for a noise level of one tenth of a pixel std. The left plot shows the estimates of the state
of the full filter with six states, the middle plot is the approximate filter with four states, and
the right plot is the reduced filter with two states. Units are radiants/frame for the rotational

velocity. Translation is adimensional since it is scaled to the average depth. . . . . . ... ..
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6.7

8.1

xxiii
Degradation of the estimates with increasing measurement noise. In the top row we report
the behavior of the filters for a noise level of half a pixel std, and in the bottom row for one
pixel std. We plot the estimates of each filter (solid lines) along with ground truth (dotted
lines). The full-filter with 6 states (left column) degrades unevenly, for two of its states are
subject to the bas-relief ambiguity. However, the particular choice of coordinates still allows
estimating correctly the remaining 4 states which are not subject to the bas-relief ambiguity.
The affine filter (central column) and reduced filter (right column) are not affected by the
bas-relief ambiguity, and their estimation error increases gracefully with the increasing level
of measurement noise. Units are rad/frame for the components of rotational velocity. . . . . .
L. Goncalves in his mimetic attire. The “arm sequence” is 250 frames long and the motion is
rotatory on a plane parallel to the image plane. The arm was rotating upwards for half of the
sequence, and then downwards for the rest of it.. . . . . . . . . . . .. . ... ... . ... .
The “arm experiment”. In the left column we plot the three components of the estimated
direction of translation normalized to the average depth of the scene; in the right column
we display, respectively from top to bottom, the local coordinates of rotation: 0, ¢ and p.
The algorithm was using on average 10 feature-points per frame. Units are rad /frame for the

components of rotational velocity. Translation is adimensional since it is scaled to the average

The same estimates reported in figure are now plotted along with their variance, represented
using error-bars. It can be seen that, since rotation occurs only about the optical axis, the
direction of the rotation axis on the image-plane, ¢ is arbitrary, and is indeed estimated with
a very large variance (middle-right plot). . . . . . . . ... ... .. ... .. ... ...
Comparison of the estimates of the angle 0 for, respectively from top to bottom, the full
filter (six states), the approximate filter (four states), the reduced filter (two states), and the

Subspace filter based upon full-perspective. . . . . .. ... ... .. ... ... .. ...

Structure of the segmentation scheme. . . . . . . .. ... ... .. .. ... ... ...
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(left) Optical flow generated by two clouds of points rotating about two orthogonal axes.
Points belonging to one cloud are plotted with dotted lines, while the other cloud is plotted
in solid lines. (right) Separation matrix. For each point (row) we mark a dot on each other
point (column) for which the difference of the residuals (d; ;) is smaller than a threshold. The
points belonging to one object are ordered from row 1 to row 100, while points of the second
object are labeled from 101 to 200. Ideally we would like to see two black diagonal blocks,
meaning that each cluster contains all and only the points moving coherently. This does not
happen in the experiments; however, the number of clusters having no spurious neighbors and
collecting more than 20 points are 66 out of 200 (circa 30%). . . . . . . . . . ... ... ...
(left) Distribution of selected points (circled) on the image plane. It can be seen that the
selected points are mixed with points which belong to the other motion. (right) Illustration
of the Ullmann experiment. Two transparent cylinders rotate about the same axis and in
opposite directions. The only cue for segmentation is three dimensional motion. . . . . . . . .
(Ieft) Optical flow generated by the Ullmann experiments. Two clouds are rotated about the
same axis in opposite directions. Observe that in this case no region-based algorithm could
work and 3D “transparent” motion is the only available cue. (right) Separation matrix. The
number of pure clusters with more than 20 points is 12, which corresponds to 5% circa of the
original feature set. . . . . . . .. ...
Initialization phase: convergence (left) or divergence (right) of clusters of points. The motion
coordinates (three for rotation and three for translation) are plotted in solid lines as estimated
in the initialization phase. The behavior of a typical converging cluster and a typical diverging
one is plotted. Ground truth is in dotted lines. Note that 20 steps are sufficient for deciding
whether a filter has converged or not. Also note that the diverging cluster has 18 spurious

points out or 93, i.e. circa 20%, which is sufficient not to reach convergence on the “dominant

Motion estimates for the splitting experiment: cluster of points with continuous motion (left)

and split cluster (right). Filter estimates (solid) vs. ground truth (dotted). . .. .... ...
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(Top) Translational velocity: filter estimates (solid) vs. true values (dotted). (Bottom) Com-
ponents of rotational velocity. . . . . ... ... ... ... ...

(Top) Coordinates of the center of projection: filter estimates vs. true values. (Bottom) Pixel

size along image coordinates . . . . . . ... ... ... ... ... ...

“Configuration tracking experiment on the Essential space: pure translation”: (A) a syn-
thetic scene composed of 30 feature points translates with decreasing translational velocity,
the components of which are plotted in (B) in m/s. The minimum-time control, whose compo-
nents are plotted in (C) in m/s, is obtained by feedback from the instantaneous estimate of the
relative configuration between the scene and the camera, and quantized at 8 bits. The noise
in the image-plane was additive white Gaussian with standard deviation corresponding to 10
pixels. The actuators are controlled as to maintain the initial relative configuration between
the viewer and the scene; the six local coordinates of the error from the desired configuration
are plotted in figure (D) (units are m/s for the error in translational velocity and rad/s for
the error in rotational velocity). . . ... .. ... ... ... ... ...
“Configuration tracking on the Essential space: roto-translational motion” (A} the scene
rotates about a fixed axis which is 1.5m ahead of the observer with constant angular velocity
of 5 deg/s. The local coordinates of the relative motion between the scene and the viewer
in the viewer’s reference are plotted in (B) (m/s for the translational velocity, rad/s for the
rotational velocity). The components of the minimum-time control are plotted in (C) with
the same units, and the corresponding deviation from the desired configuration is plotted in
(D). The noise was white, zero-mean and Gaussian with 5 pixel std, and the controller was

quantized at 8 bits. . . . . . ...
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11.1
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xxvi
“Configuration tracking on the image plane”: (A)-(B) for the same experiment described
in figure 10.2, the control on the image plane when the structure of the scene is known (in
terms of depth of each point) is comparable with the one obtained with the control on the
FEssential manifold, which does not need information about the structure of the scene (compare
with figure 10.2 (C)-(D)). When the structure of the scene is not known, and depth has to
be estimated, the control is far less robust, for it tries to drive the system to a zero-disparity
configuration which is ill-conditioned (C)-(D). The controller, whose state depends on the
deptjh of the points in the scene, tries to reduce the image parallax (disparity, or residual )
to zero: such configuration, however, does not allow estimating depth. The effect, which is
visible in figures (C)-(D), is that the controller “drifts” in order to accumulate a residual which

is large enough for computing depth. . . . . ... ... ..

(Row, Column): (1,1) one image of the “box sequence”. (1,2) normalized structure esti-
mated by the integral structure filter. (1,3) instantaneous estimate of structure by the subspace
filter. Rotational velocity estimated by the integral structure filter (2,1), the subspace filter
(2,2), the Essential filter (2,3), the point-fixation filter (3,1) and the point-plus-line filter (3,2).
The last scheme produces estimates only for two out of the three rotation parameters, since it
exploits the fact that the third (cyclorotation) is zero. Direction of translation estimated by
the integral structure filter (4,1), the Subspace filter (4,2), the Essential filter (4,3) and the
plane-fixation filter (3,3). We plot the two spherical coordinates (azimuth and elevation) as a
function of the frame mumber. . . . . .. .. ...
Accuracy experiment. 50 trials, with 20 feature-points (except for the plane-fixation filter,
see also figure 11.6), starting at initial conditions distributed at random within 4% of the
true parameters while the noise level increases from 0.1 to 1.1 pixels std, according to the
standard performance of feature tracking algorithms. The scaled norm of the estimation error
is plotted against the noise level. The filters enforcing a fixation constraint (middle row), cease
converging consistently for less than one pixel noise. Note that integral filters (bottom row)
have an advantage in performance, since they can count on an increasingly large baseline. For

the integral structure filter we display only the error in the estimates of motion parameters. .
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11.4

11.5

11.6

xxvii

Accuracy/robustness experiment. The conditions were the same described in figure 11.2,
except that the noise level goes from 0.1 to 5.1 pixels std and we did not remove the instances
when the filters did not converge. The scaled norm of the estimation error is plotted against
the noise level after the filters have settled. The size of the error-bars can be considered a
measure of robustness, for it indicates the consistency of each filter across trials. . . . . .. .
Robustness experiment. 50 trials with the initial conditions distributed at random within
10% of the true value, and the noise level increased from 1 to 12 pixels std. The histograms
represents the percentage of the experiments in which the filters reached convergence. Inte-
gral filters (bottom row) exhibit better robustness properties than reduced filters, with the
exception of the Subspace filter (top-left). . . . . . . . ... ... . ... ... ... ... ...
Convergence experiment. 50 trials with 0.5 pixel std error, while the initial conditions
are chosen at random with Gaussian distribution with o ranging from 10% to 100% of the
true parameters. Integral filters (bottom row) exhibit decreased robustness relative to reduced
filters. For the structure integral filter (bottom-left) this is mainly due to the observability
properties of the model having structure in the state, while for the integral Essential filter
(bottom-right) this behavior is due to the mechanism of propagation of scale over time.
Dependence upon the number of features. The norm of the estimation error is plotted
against the number of visible features, for a noise level of half a pixel and initial conditions
within 4%. The Subspace filter (top-left) has an advantage over other schemes in that it needs
fewer features for reaching convergence. However, the computational cost of such a filter is
quadratic in the number of features, unlike all other schemes whose complexity is linear. Note
that all filters can actually reach convergence in the presence of less than 5 feature-points (for
small noise and small acceleration) since motion information is integrated over time. This is
an advantage over two-views algorithms that need at least 5 (or 8) features to be visible at all
times. Note that the plane-fixation filter needs more features in order to achieve performance
similar to other reduced filters. For this reason the accuracy experiment in figure 11.2 has
been performed with 20 feature-points for all filters, except for the plane-fixation filter which

had 40. Note that the performance improves marginally beyond 50 features. . . . . . . . . ..
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11.7

11.8

11.9

xxviii
Dependence upon the aperture angle. Norm of the estimation error as a function of the
aperture angle that ranges from 2° to 40°. . . . . . . . . . . ...
Dependence upon the bas-relief ambiguity. The norm of the estimation error is plotted
against the “thickness ratio” of the cloud of points being viewed (ratio between width and
depth), which ranges between 10% and 100%. The error curve is almost flat for all schemes,
except for the plane-fixation filter (middle-right), whose error increases as the scene approaches
a plane. When the scene approaches a plane, the warped images have no parallax, and
therefore the residual translation has norm zero, and the direction of translation (which is the
state of the filter) can be arbitrary without violating the constraints. . . . . ... ......
Dependence upon the sampling rate. The Subspace filter (top-left), which is based
upon a differential model, converges for smaller velocities. In principle its performance should
degrade as such velocity increases, since image velocities are approximated by first differences.
However, the exponential coordinatization helps maintaining good performance even in the
presence of large image-motions. The performance of the integral Essential filter is somewhat
odd. Since the filter is based upon a second-order model, and therefore it can count on
an increasingly large baseline, it can handle small motions quite well. However, when the

instantaneous baseline increases, the bias in the estimate of scale increases, which causes a

degradation of the performance. . . . . . . . . . ... ...

11.10Alternative motions. The accuracy/robustness experiment of figure 11.3 is repeated for

some alternative motions. In the left plot we display the performance of the Subspace filter
for a forward translation of 30 cm/frame. Although the average norm of image-motion vectors
is similar to that of the box experiment, the data are less ambiguous, for the effects of rotation
and translation do not superimpose. The same motion has been estimated by the Essential
filter, and the results are shown in the middle plot. We have also considered translation along
a direction parallel to the image-plane by 20 cm/frame. The estimation error for the integral
structure filter is reported in the right plot. Compare with figure 11.3 top-left, top-right and

bottom-left respectively. . . . . . .. ... ...



xxix

11.11Complexity: number of floating point operations as a function of the number of visible

B.1

features. This count includes the overhead of our Matlab implementation. The Subspace
filter has been implemented using a tensor package that does not exploit the sparse structure

of the matrices involved in the computation. . . . . . .. ... . .. ... .. ... ... ...

An image of a calibration rig. The coordinates of the corners of the checkerboard pattern
are precisely measured relative to the center of the rig. Their corresponding projection is
measured on the image-plane in terms of row-column coordinates. The calibration process
exploits these measurements in order to recover the intrinsic and extrinsic parameters of the

imaging device. . . . . . . ...



Chapter 1 Introduction

Vision is a remarkably powerful sense that animals exploit to interact with their environment. A single
still image of a scene is already a rich source of information on three-dimensional structure, combining

different cues such as texture, shading, contours, cast shadows etc. (see figure 1.1). Such cues, however, are

Figure 1.1: Some “pictorial” cues for three-dimensional structure: texture (left), shading (right).

intrinsically ambiguous since an image is a projection of the three-dimensional world onto a two-dimensional
surface, and therefore a whole dimension is lost. Indeed such ambiguities are systematically exploited, for
instance, in the entertainment industry to produce visual illusions.

Two images of the same scene taken from different viewpoints can be put in correspondence and provide
an additional cue, called “stereo” (figure 1.2). Stereo is exploited by the human visual system to infer the
“depth” structure of the scene in the close-range. More generally, if we consider a stream of images taken
from a moving viewpoint, the two-dimensional image-motion! can be exploited to infer information about
the three-dimensional structure of the scene as well as its motion relative to the viewer.

That image-motion is a strong cue is easily seen by eliminating all pictorial cues until the scene reduces
to a cloud of points. A still image looks like a random collection of dots but, as soon as it starts moving, we

are able to perceive the three-dimensional shape and motion of the scene (see figure 1.3).

1We use the improper diction “image-motion” or “moving image” to describe the time-change of the image due to a relative
motion between the scene and the viewer.



Figure 1.2: Stereo as a cue in “random dot stereogram”. When the image is fused binocularly, it reveals a
“depth structure”. Note that stereo is the only cue, as all pictorial aspects are absent in the random dot

stereograms.

As the words suggest, “dynamic vision” deals with images that change over time, for instance under the
action of the viewer’s motion or due to changes in the shape of the environment. The term “motion vision”
is also used in contrast to “pictorial vision” which deals with the analysis of static images. In this thesis
we will concentrate on motion vision, and study how image-motion can be exploited as a cue to infer the
three-dimensional structure and/or motion of the scene.

Our prototypical problem is then

from a sequence of moving images®, estimate the three-dimensional structure and/or the relative

motion between the scene and the camera.

There are two concepts that are central to our approach to motion vision: dynamical systems and geometric
inwvariance. Under some assumptions about the structure and motion of the scene, it is fairly natural to cast

motion vision within the framework of dynamical systems. In fact, the scene can be described as a point on



Figure 1.3: 2-D image-motion is a cue to 3-D scene structure: a number of dots are painted on the surface
of a transparent cylinder. An image of the cylinder, which is generated by projecting it onto a wall, looks
like a random collection of points. If we start rotating the cylinder, just by looking at its projection we can
clearly perceive the existence of a three-dimensional structure underlying the two-dimensional motion of the

projection.
some geometric space, which moves under the action of motion, therefore describing the state of a dynamical
model. The output of such a model is the image of the scene, which depends upon its structure and motion,
but also upon other parameters such as brightness, color, reflectance or illumination of the scene.
Depending upon the particular application, one may be more interested in some parameters or in others.
For instance, if we want to build a CAD model of some object, we do not care about its particular pose and
motion when we first look at it. Therefore, in such a case we are interested in shape, but not in pose or
motion. If we want to be able to render the object for visualization, we may also need to reconstruct the
reflectance properties of its surface. On the other hand, when we drive and want to follow a prescribed path,
we do not want our control to depend upon the particular landscape we happen to be driving through.
Here we face a dilemma: we are interested in the state of a dynamical model whose measurements happen
to depend upon other unknown parameters, which may not be interesting per se. What strategy should we
pursue? Should we try to estimate all unknowns, and then just retain whatever we are interested in, or

should we rather try to devise models for the interesting parameters, that are “invariant”? with respect to

2Such an invariance may be achieved, as we will see, either by a pre-processing of the data (such as feature-tracking to get
rid of all ilumination-related parameters) or by appropriate representation of the space of unknown parameters.



uninteresting ones?

We will not try to give a general answer. Rather, we will discuss both alternatives in relation to specific do-
mains of application of dynamic vision. We will first study the simultaneous estimation of three-dimensional
structure and motion, and then explore various strategies to design models that are invariant to some of the
unknown parameters.

In the same fashion as vision is a crucial sense for animals to successfully interact with each other and
with their environment, we feel dynamic vision will play a crucial role as a sensor in control systems with
autonomous capability. For this to happen, estimates of three-dimensional structure and/or motion need to
be performed in real-time in a recursive and causal fashion. While the early involvements of vision as a sensor
were mostly at low-level in restricted environments, more complex applications require multi-level control
structures that exploit visual information in a hierarchical way in order to perform low-level control task
(such as keeping the center of the lane while driving on the freeway) as well as higher-level decisions (such
as changing lanes, passing slower cars, detecting unsafe behaviors of neighboring drivers). There are already
in the literature examples of successful applications of vision in the loop of control systems at different
hierarchical levels. In particular, Dickmanns and his group [27] have equipped a fleet of full-size vehicles
capable to drive on public freeways with normal traffic at speeds up to 150 Km/h while reading speed signs,
switching lanes, passing slower cars etc.. As the hardware improves, vision also starts being acknowledged as

a sensor for control systems involved, for instance, in robotic manipulation, tracking, docking, surveillance

etc. [10, 42, 43, 49].

1.1 Relation to previous work

Humans have always been extremely effective at estimating the shape of the environment and its relative
motion, and they use such a proficiency for facing everyday tasks such as walking, avoiding obstacles, grasping
objects. The mathematical tools for formalizing the problem, namely the geometry of the Euclidean group
and perspective projection, have been available for a long time. It may therefore come as a surprise that
the problem of estimating shape and motion from images has been formalized only in recent years [103],
despite the fact that one could find the problem “in nuce” in the early work of von Helmholtz [105] and

that of Gibson et al. [38]. Although the problem of estimating three-dimensional structure and motion has
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now been a major theme in Computer Vision for over a decade, it is indeed far from being solved, and the
literature still appears as a collection of apparently unrelated methods and schemes.

In 1981 Longuet-Higgins introduced a bilinear constraint on the image coordinates of an object onto two
different views, involving the motion parameters in a non-linear fashion [73]. His work has triggered a stream
of research known under the name of epipolar geometry which has been extended and made popular, among
others, by Faugeras (see [30] for an overview). The literature on 3-D shape and motion estimation from two
or more views has grown considerably since then, and we do not attempt to give an exhaustive coverage
here. We only report a recent result of Faugeras, who has characterized all bi-linear, tri-linear and quadri-
linear independent constraints involving image projections, motion and calibration parameters [31]. Such
constraints are interpreted as polynomial equations whose coeflicients are (nonlinear) functions of the motion
parameters. The process of finding roots to such algebraic equations (usually in the complex field), and that
of extracting motion parameters from the coeflicients, can hide the geometric structure of the parameters to
be estimated, and makes it difficult to address the issue of how to treat the inevitable measurement errors
(see [108]).

In this thesis we take a different approach: rather than seeking algebraic constraints on shape and motion
parameters, we cast the problem of structure and motion estimation within the framework of dynamical
system state estimation. The feasibility of the problem of structure and motion estimation can then be
studied as the observability of the corresponding dynamical models. The observability space plays the role
of a constraint generator, and observers are used in order to “solve” such constraints in an incremental
(recursive) and causal fashion.

It was not until a decade ago that the role of time started to be recognized in the Computer Vision
community. Gennery [36] and Dickmanns 28] were the first to use Extended Kalman Filters in order to
recover shape and/or motion parameters from streams of images, although in more restricted situations
(known 3-D shape in the case of Gennery, partially structured environment in the case of Dickmanns).
Recently, quite a few schemes that use local observers for estimating 3-D shape and/or motion have appeared
in the literature (see for instance [5, 15, 46, 78, 84]). Dayawansa et al. [24] and Ghosh et al. [37] addressed
the issue of observability and derived a test for perspective systems (linear systems with measurements in

projective spaces) which resembles the familiar Popov-Belevitch-Hautus rank test for linear systems. Schemes
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arising from the framework of perspective systems, however, have proven effective so far mainly on planar
curves or surfaces [37], when the transformation induced on the image plane is an homography and, therefore,

it can be represented as a linear transformation of the homogeneous coordinates.

Contribution of the thesis

The first observation is that the (well-known) setup of epipolar geometry can be translated into a dynamical
context by viewing the essential constraint as a dynamical model. Such a dynamical model has a peculiar
form that turns out to be somewhat general, as many other algebraic constraints involving images and 3-D
motion parameters can be interpreted as dynamical systems of the same form (for instance the “Subspace
constraint” or the “Plane-plus-parallax” setup). The thesis proposes therefore a unifying framework that
allows deriving different constraints by following simple principles from the theory of dynamical systems (for
instance that of “observer reduction”). Moreover this framework allows one to generate novel constraints
simply by choosing a fixation function. Different models are characterized by different geometry of the space
of unknown parameters.

Once we have cast the problem within the framework of dynamical systems, the problem of inferring three-
dimensional information resorts to identifying the parameters of (nonlinear and implicit) dynamical models.
In order to perform the estimation properly one must take into account the geometry of the parameter
manifolds. We have observed that the so-called “Essential space” — which has been previously characterized
in the complex field as the set of zeros of certain algebraic equations and was proven to contain singular
points - is indeed a differentiable manifold of dimension six, which coincides with the tangent bundle of the
rotation group. We have proposed two methods to design observers on such a peculiar manifold. Other
schemes can be obtained by changing the parameter space onto different sections (slices) of the essential
manifold, thus generating a geometric stratification.

It is possible, within this framework, to talk about issues such as outlier rejection, segmentation, self-
calibration, motion control in a fairly natural manner. We can also perform a thorough experimental com-

parison, since the schemes differ only by the ir local coordinate representation, while the estimation setup

remains unchanged.



1.2 Reading the thesis

This thesis is divided into three parts. Part III contains background material and can be used as a reference.
In particular, Appendices A and B describe the process of tracking point-features and calibrating a camera,
which are necessary steps towards three-dimensional shape and motion estimation. It may be skipped by
assuming that we are given a method that solves the so-called “correspondence problem”. The most critical
readers will argue that the correspondence problem is indeed very difficult to solve satisfactorily. We agree,
and indeed this observation is one of the central motivations for chapters 3 to 7, where we present models
that integrate visual information over time even in the presence of “miopic” (local) feature tracking.

Part I contains the core material of the thesis. We start from the basic constraints that define the
problem of “Structure from Motion” and see how they can be employed to simultaneously estimate three-
dimensional structure and motion (chapter 2). The feasibility of such a problem is the subject of chapter 4.
We then explore alternative strategies to render the basic models invariant with respect to some of the
unknown parameters. In chapter 3 we exploit the framework of “epipolar geometry” in a dynamical context
to decouple structure from motion. In chapter 5 we further decouple the direction of translation from the
rotational velocity. Chapter 6 shows how it is possible to decouple states that are affected by the so-called
“bas-relief ambiguity”.

The methods presented in chapters 3, 5 and 6 rely upon being able to explicitly isolate the parameters
to be eliminated from the observability space. While this is not always possible, one can do so “implicitly”
by enforcing “fixation constraints” (chapter 7).

Chapter 8 deals with the problem of segmentation, and shows how it is possible to detect outlier mea-
surements coming from the feature tracking, thus rendering the schemes proposed robust to the inevitable
tracking errors. Chapter 9 shows how it is possible, in principle, to estimate calibration parameters along
with three-dimensional motion. Chapter 10 shows a simple application of structure-independent motion
estimation to motion control.

Each chapter contains an experimental section to highlight the main features of the schemes proposed.

Part IT consists of a series of simulation experiments that compare the performance of all schemes pre-
sented in this thesis. In order to render this part self-contained, the main points of Part I are summarized

in the introductory section of chapter 11.
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Finally, in chapter 12 we discuss some directions of future development.



Part 1

Visual Motion and Structure

Estimation
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Chapter 2 Modeling Structure From Motion

In this chapter we formalize the problem of “Structure from Motion”, which consists of estimating the three-
dimensional structure and motion of a scene from the two-dimensional image-motion. We concentrate on
portions of the scene which move rigidly relative to a viewer who measures the perspective projection of the
scene onto the retina (or image-plane). We will see that the images of a moving scene depend not only upon
its shape, but also upon its pose and motion, which are unknown. We derive dynamical models whose state

includes all unknown parameters, that could therefore be estimated by means of state observation.

Background and notation for the chapter

We represent the scene as a collection of point-features in three-dimensional Euclidean space, and we assume
that we can measure their perspective projection onto an image-plane over time (the so-called “correspondence
problem”). A method for solving the correspondence problem is outlined in appendix A. We also assume that we
know the internal geometry of the imaging device (calibration, see appendix B).

A careful reader will argue that the methods available for performing feature-tracking are intrinsically local in
nature. Therefore, although it is easy to solve the correspondence for small displacements and short sequences of
images (fewer than 10 frames in most practical situations), it is virtually impossible for local methods to maintain
track of features over extended periods of time. This is indeed one of the central motivations of the thesis: the
brightness-constancy constraint is intrinsically focal, and therefore whatever algorithm uses it ought to be able to
cope with its limitations. We will present methods that allow us integrating visual information over long periods
of time, even when each single feature has a very short life-span. In the limit we can assume that each feature
survives only between pairs of frames (the so-called “optical flow") as an approximation of the projection of the
velocity of points in three-dimensions.

This is the reason why we find that the performance of standard feature-tracking or optical-flow algorithms,
as they have been available for more than a decade, is good enough for our purposes.

We will use extensively the properties of rigid motions [81]. Note that it makes no difference whether it is the
viewer or the scene moving. All that matters is the relative motion between the two. We will use the exponential
both as a local-coordinate representation of a rotation matrix R through a rotation vector 2, and to compute the
integral of a (piecewise) constant rotational velocity w. The most frequently used symbols in this chapter are

e X € IR*: three-dimensional Euclidean coordinates of a point

e x € RP? or R%: perspective projection of the point X. It can be expressed in homogeneous coordinates
(three scaled numbers) or plane coordinates (two numbers), depending upon the context

n € N(0,%,) zero-mean Gaussian measurement noise. When the measurements are encoded in homo-
geneous coordinates it is intended that the noise only affects two independent directions (not the scale

component).

g € SE(3) a rigid motion, composed of:

T e ]R3, a translation vector, and
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R € S0(3), a rotation matrix.

vA € se(3) is the instantaneous generalized velocity corresponding to g € SE(3). It is related to g via the
exponentiaf, and composed of:

e V € R3, a translational velocity vector, and

e w e R, a rotational velocity vector.

Outline of the chapter

In section 2.1 we formalize the notion of “shape”, which is then used in section 2.2 in order to define models
for shape, pose and motion having a projection in the measurement model. We have implemented some of these
models, and we discuss their qualitative properties in section 2.3. In sections 2.4 and 2.5 we motivate the use
of reduced models where different states are decoupled in the dynamics of the observer. Such issues are then
discussed in detail in the subsequent chapters 3-6.

2.1 Shape Spaces

Let P' € E3 i =1...N be points in three-dimensional Euclidean space, and let X* € R®; i = 1...N be

their coordinates relative to some (orthonormal) inertial reference frame. We call X the matrix that collects

the coordinates of each point

X=[X1 XNJGIR“N (2.1)

which we will refer to as one configuration of the points P*. Note that a change of the reference frame

will alter the coordinates, although the underlying points remain the same. The concept of shape captures

precisely

what is left of the configuration after the effects of translation, rotation and scaling have been

factored out [60, 65].

We describe the effects of translation, rotation and scaling as a group action on the set of configurations. To

this end, let g(¢) € SE(3) be a rigid motion, which acts on the P* generating a trajectory on E3 x ... x E3:
Pit) = g(t)P'Vi=1...N; V¢ (2.2)

or, in coordinates,

Xt =ROX+T@H)1...1] e R**N; v ¢ (2.3)



12

where R(t) € SO(3) is an orthonormal rotation matrix which represents the orientation of the reference frame
at time O relative to the one at time ¢, and T'() € IR® is a translation vector that represents the coordinates of
the origin of the reference frame at the initial time relative to that at time ¢. Geometrically, the trajectories
obtained under the action of rigid motion (translation and rotation) and scale can be described as a fiber
bundle [40] (see figure 2.1). Each configuration represents an point on a fiber ¢, which we can move along

the fiber by rotation, translation and scaling:

¢={MRX+T[1...1]) | » e R, T € R*, R € SO(3)}. (2.4)

Each fiber is an equivalence class that encodes one single shape, which can therefore be represented a
particular element of the class. To this end we may define a projection from the fibers onto the base-space
of the bundle by “undoing” translation, rotation and scaling. We then define the “shape” of a configuration

as the projection onto the base-space, which is therefore called the “Shape Space”.

Figure 2.1: The Shape Bundle: configurations are points on the fibers, which are projected onto the base-
space to give a shape.
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Projection of the fibers onto the base-space and local coordinatization of Shape

Spaces

Given a configuration, represented as a point on a fiber and encoded by a 3 x N matrix, we wish to find the
corresponding shape, which is the projection of the fiber onto the base-space. To do so, we need to rule out
the effects of translation, scaling and rotation. This is done respectively by centering and normalizing the

configuration, and then taking its modulo in SO(3).

Centering

Let X € R**" be a configuration matrix. Define the centroid of the configuration as:
X = —Z’]\;J (2.5)
and let X2 = X — X¢ be the centered points, which are the columns of the centered configuration matrix
X, € R3*V, (2.6)

Note that the elements of the centered configuration are not free, for the (right) null-space of the matrix X,

must contain the vector 1 = [1...1]7 of the appropriate dimensions:
X.1=0. (2.7)
In order to remember that the elements of X, must satisfy the above constraint, we will write
X.e<1>t, (2.8)

Centering the configuration around the centroid has the effect of eliminating translation. In fact, all config-

urations that are translated with respect to a given one have the same centered-configuration matrix.
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Column defection

In centering the configuration, we have introduced one constraint on the elements of the matrix X, namely
the fact that its right null-space must contain the vector 1. Instead of carrying along a 3 x N matrix with
three constraints on its elements, it is more convenient to reduce it to a matrix with 3(V — 1) free elements.

In order to do so, we want to construct a map

Xe<1>tc RPN — X e R>W-D),

Geometrically, we want to rotate (from the right) the configuration until the vector 1 coincides with its last
column. In doing so we do not want to alter the structure of the configuration; therefore, we seek for an

orthonormal N x N matrix K € O(N) such that

o
0
1
K = —
0 VN
1
for, if X, is such that X.1 = 0, then
0
X.1=X.K VN =0
0
1
which translates into
XN =0 (2.9)

where we define

X =X K. (2.10)
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Once this is done, we can just delete the last column of X, and be left with a 3 x (N — 1) matrix of free

elements

XCO e ]R,?’X(N_l).

The task boils down to finding a matrix in O(N) which has the last column equal to 1 /V'N. One instance
of such a matrix can be found in [60]. Note that there are many of them and therefore the transformation

of the centered configuration is not canonical. Once any such K is given, all the others that are of the form

K V ke O -1). (2.11)

Normalization

We now want to rule out the effect of scaling, by defining a normalized-configuration. This is simply done

by projecting the configuration onto a sphere:

= ¢ §3-! (2.12)

where the denominator is a suitably chosen norm. After centering and normalization, we are left with all

points of the form

Xeos € {W € R¥*W-D | 1w =1} (2.13)
which belong to the set X,,, € S3V-1-1,

Mod-out rotation

After scaling and translation, all possible (centered-scaled) configurations are rotated versions of the same

“shape”, which is represented as the equivalence class

[RXCOS]RESO(3) .
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Therefore, the Shape Space ! is defined as
=N = §3V-U-1/50(3). (2.14)

In order to choose one element of the equivalence class one may perform the Singular Value Decomposition

(SVD) of a scaled-centered configuration:

Xeos = RSWT (2.15)

where R € SO(3), S = diag{1,03,03}, and W has three orthonormal columns. The shape o is then just
the product o = SW7T. The two scalars o, o3, along with a local representation of the three orthonormal

N — 1-dimensional vectors W.1, W, W.3 can be chosen as a local coordinatization of the Shape Space.

Remark 2.1.1 The local coordinatization just described is based upon centering the reference frame in the
centroid of the points, setting the unity to be the norm of the coordinates, and then rotate it so as to orient the
first azis along the “largest” size of the cloud of points, then orienting the second along the largest size in the

orthogonal complement. If the cloud is isotropic, such re-orientation is ill-defined, and so is the corresponding

coordinatization of shape [60].

Remark 2.1.2 One major concern in using Shape Spaces in Structure from Motion is occlusion. In fact,
suppose that we are given a configuration, and we want to compare its shape with the shape of the same
configuration where a point has been deleted. The theory of Shape Spaces does not come at hand for
this problem, since shapes with different numbers of points belong to different Shape Spaces altogether, and

therefore they cannot be compared in a straightforward manner.

In this chapter we will restrict ourselves to the case in which we have N > 3 unoccluded points and shapes
have distinct singular values: o1 = 1 > 05 > 03 > 0. We will see in later chapters (3 and 5) alternative

formulations that allow dealing with occlusions in a more principled way.

!The term “Shape Space” is used in the literature both for the whole Gber bundle (which contains all configurations), and for
the base-space (which contains the shapes). We use the term in this latter meaning, and we reserve the name “Shape Bundle”
for the former. Shape Spaces have been addressed in the literature of Statistics. At the same time, however, the concept
of Shape Spaces is used in the exact same meaning in the literature of Geometric Mechanics, see for instance Littlejohn and

Reinsch [69].
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2.2 Observing Shape Spaces: the role of pose and motion

A shape has been defined in the previous section as the coordinates of a configuration of points relative to
a very special reference frame, which has origin in the centroid of the points, the first axis aligned on the
longer size of the configuration, which is defined to be the unit, and the second axis aligned on the longer
size in the plane orthogonal to the first axis. Therefore, between a shape o and a generic configuration X

there is just a change of coordinates g, € SE(3) and a scaling (if we neglect column defection):

_ X

= — e oV, 2.16
7= X (2.16)

We call g the pose, which is the change of coordinates between the shape’s reference and the world reference
frame and is described by six pose parameters v € RS (three parameters for translation and three for
rotation). We will use the name structure for the combination of shape and pose (i.e. a configuration of
points).

Since the choice of the world reference is arbitrary, we can take it to be centered in the pupil of our
eye, with the Z—axis (depth) aligned with the optical axis and the remaining ones ordered so as to form a

right-handed orthonormal frame. Then the shape o, seen from our eye, has a configuration
X = g, o e N1 (2.17)

where X has been adequately normalized. Now, if we start moving around with a (generalized) 2 velocity
v(t)A € se(3), our current reference changes relative to the world: in fact, at time ¢, the change of coordinates

between our eye and the world is obtained by integrating the following equation
9(r) =v(r) Ag(r) € TSE(3) (2.18)

from the initial time instant up to time t. T'SE(3) denotes the tangent bundle of the Euclidean group 3.

2The notation se(3) stands for the Lie algebra of twists corresponding to rigid motions. See [81] for a brief account on se(3)
and its corresponding Lie group SE(3).

3The tangent bundle of a manifold M is a special case of a fiber bundle, where the fibers are tangent planes TpM at each
point p € M of the manifold. Therefore, the tangent bundle is the collection of all possible tangent vectors at all possible points
of a manifold: TM = Upeps TpM. The projection of the fibers onto the base-space (the manifold itself in this case) is the trivial
map vp ETp,M —»pe M.
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The integral above cannot in general be written nor computed in closed-form unless velocity is constant,
in which case g(t) = e*. For practical purposes, we take discrete samples of the time-interval [0,¢], and
consider the corresponding discrete path g(7;),7; € [0,¢],7 = 1... N;. The integral between time samples can
be written as the exponential, under the assumption that velocity is piecewise constant. The integration of

different samples is then just a composition (product) of rigid motions:

Ny
g(t) = Hev(n)/\(n—n—l) € SE(3) (2.19)

=1

where it is intended that new factors are multiplied from the left . We indicate this operation symbolically

as

1
g(t) = / "N dg ). (2.20)
0

The object, as seen from our current reference, has a configuration
X(t) = g(t)Xo. (2.21)

What we can measure is the perspective projection of such a configuration onto the CCD surface, modeled

as an image-plane. We write the perspective projection as

m: RN — (RPN

X = n(X) (2.22)
where each point X! € IR? (a column of the configuration matrix), is transformed by

, X
(X% = X7 € RP2, (2.23)
3

40Often we take the sampling time as the unit of time, so that 73 — 7;,_1 = 1.
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We use the same notation

y=n(X)=| X2 | e RP? (2.24)

1
i |
depending upon the context, to indicate either the three homogeneous coordinates, or the two coordinates of

a point on the image-plane (without a 1 appended)

y=7(X) = c R (2.25)

X2
X3

Overall it looks like there are three reference frames involved in this picture: the object reference (with
respect to which the scaled configuration is a shape), the world reference (which is arbitrary and fixed with
respect to the object), and the viewer reference. We choose the world reference to coincide with the viewer’s
at time ¢ = 0, so that the map between them is the unit rigid motion e € SE(3), which consists of the
identity rotation matrix R = I and zero translation 7' = 0. The corresponding changes of coordinates are
what we call respectively pose (g5!: object to world) and motion (g(t): world to viewer). We call velocity

the instantaneous generalized velocity of the configuration relative to the viewer in the viewer’s reference:
v(t)A = §(t)g~ 1 (t) € se(3). (2.26)

In coordinates, v is represented by an instantaneous translational velocity V and an instantaneous rotational

velocity w: v = (V,w) € R®. Overall we assume that we can measure
y(t) =7 (9(t) 0 g5 ') +n(t) (2.27)

where n(t) € N'(0,X) is a white, zero-mean Gaussian process that models the noise in the localization of the

projection on the sensor surface. Our goal here is to model the shape o of the object being viewed, given
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measurements on the retina (or image-plane) {y*()}scjo.-; Vi = 1...N. Such measurements, however, also

depend upon other unknown parameters, namely pose and motion.

2.2.1 Models for observing shape, pose and motion

If we put together the measurement equation (2.27) and the dynamics of the parameters which appear in it,

we end up with a model of the form

(=0 o(0) = g € &N

¥=0 7(0) = 7 € R®

g=vAg 9(0) = e € SE(3) (2.28)
b0 v(0) = vp € R®

y(t) =7 (9(t) 0 97" 0) + n(t)

where we have assumed that the viewer moves with (approximately) constant velocity. We could now write
an observer for the above model, which would ideally provide us with an estimate of shape, along with
an estimate of motion and pose. We could as well pose the problem in a stochastic setting by modeling
the constants as a Brownian motion and writing an observer in the form of an Extended Kalman Filter
(EKF) [58, 17, 55] in the local coordinates of the state-space manifold. In such a case, however, the model
for shape must take into account the fact that, even if the configuration is described by a Brownian motion in
R**Y the shape coordinates are not a Brownian motion. The derivation of the correct distribution induced
by projecting a Gaussian process in Euclidean space onto the Shape Space is derived in [77].

Regardless of the choice for a deterministic or a stochastic setting, for an observer to work properly, the
model must be observable, which means that there must not be different initial conditions which give raise
to different state trajectories that produce the same measurements for all times. We address this issue in
section 4.1.

But, even without getting into the details of observability, one may notice that the initial conditions of
the model (2.28) are certainly not observable. In fact, in the measurement equation the pose parameters g,
and the motion parameters g(¢) always appear as a composition, so that if we substitute § = gg(¢) for g(t),

and g, = gg, for g, we get the same measurement model for any choice of § € SF(3). Indeed, we also get
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the same dynamics, since
L od . . a1 ~ SN
9= 7(99) = §(vA)g = §(vA)§™"39 = (§v) A (§9) =T g

and so for ¥ = §v = 0. If we look more carefully into the model (2.28), however, we see that, while initial
conditions for shape and pose are unknown, the initial condition for motion is known to be the identity
transformation e € SE(3), since it expresses the fact that the viewer’s reference coincides with the world
reference at the initial time instant. This is a piece of information that must be taken into account. We do
50 in section 4.1, where we address the observability of the model (2.28), which we call shape-pose-motion-
velocity model.

Before doing that, however, note that pose g is “in between” motion and shape, and it could very well

be removed by re-defining either one. For instance, we may choose g(t) such that g(0) = g;*, which leads

us to the model

=20 O'(O)ZO'()EEN
g=vAhg 9(0) = g;' € SE(3)
(2.29)
v~0 v(O):v()G]RG
¥(t) = 7 (g(t)o) + n(t)

which we call shape-motion-velocity model. Both models we just described have the shortcoming of being

ill-conditioned whenever the shape has any symmetry (see remark 2.1.1).

Alternatively, instead of characterizing shape relative to the object reference, we may choose the world
as a reference, since the two are just related by a (static) change of coordinates. In such a case we get a

model which involves structure, rather than shape:

(X0 =0 Xo(0) = Ko € 83V1
g=vAg g(0) =e € SE(3)
(2.30)
D=0 v(0) = vp € R®
L 7(2) =7 (9()Xo) + n(t).

This corresponds to choosing an alternative base of the Shape Bundle. Such a choice, of course, is not

intrinsic to the object but, rather, it depends upon the particular position of the viewer relative to the
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object at the initial time. However, once a particular configuration has been estimated (for instance that
relative to the world), we can project it onto the Shape Space at any time. We call the last model the
structure-motion-velocity model. We recall that we use the word structure for the combination of shape and
pose.

To complete the picture, we note that also motion plays a fictitious role, since — its initial condition being
known — it can be removed from the dynamic model simply by integrating the measurement equation. For

instance we could transform (2.28) to

\

=0 o(0) =0p € XV
4 =0 7(0) = v € R®
(2.31)
b0 v(0) = vp € R®
}_’(t) =T (f(f evATdSE(3)T o g;ld) -+ n(t)

which we call the shape-pose-velocity model. Of course, we can also obtain a configuration-velocity model in

the exact same way:
Xo=0 X(0) =X € 83!

b0 »(0) = vy € R® (2.32)

}_’(t) =17 (fot evATdSE(g)TX()) + ’I’L(t)

— 0 _
It is also possible to operate a change of state coordinates from X to , with §¢ = 7(Xp) and

Zy = Xg,, 50 that the above model becomes

(§0=0 F0(0) = yo € R**V
20 =0 Z()(O) = ZO e §V-1
(2.33)
b= 0 v(0) = vy € R®
{ yit)=m (fot edeSE(a)TS’OZo) +n(t).

Although the above model is equivalent to (2.32), there is an advantage in such a choice of coordinates. In
fact, if we describe our state X§ € IR? as a random walk, we need to attribute high variance to all components

of X§. If, instead, we encode X§ with (y§, Zg), then we can lower the uncertainty on the initial estimates
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for y§, for these are measured:

y*(0) = y§ + n¥(0).

It is also possible to eliminate the states corresponding to y§ altogether:

20 =0 Zo € §iN-1
b=0 v(0) = vy € RO (2.34)
y(t) =7 (fot e”ATdSE(g)TS’(O)ZO) + n(t) + B Vit >0

where the bias term g in the measurement equation comes from having substituted §(0) = §o +n(0) for ¥y.
Such a bias is the price one pays for reducing the size of the state-space from 3N — 1 down to N — 1. The
above model, in particular, is substantially equivalent to the one introduced by Azarbayejani and Pentland
in [5].

The models (2.28)—(2.34) are all different manifestations of the same underlying system. They are all
input/output equivalent, in the sense that they have the same initial conditions and the same measured output.
The models described can be obtained one from the other by simple changes of coordinates, integration or
model reduction. This equivalence may surprise at first, since different models have different dimensions.
However, in counting the dimensions one must include ¢ (3N-7 DOFs), v (6 DOFs), g (6 DOFs), v (6 DOF's)
as well as g(0) = e (6 DOFs). We see immediately that all models have the same number of DOFs, namely
3N+5.

All above models are integral representations, in the sense that the state consists of the initial conditions,
while integration is performed explicitly (although approximately, see eq. 2.19) in the measurement equation.
For each model we may derive an equivalent differential representation, where integration is encoded in the

state process. For instance, the structure-velocity model (2.32) is equivalent to
X=vAX X(0) =X, € $3V-1
v~0 v(0) = vy € R® (2.35)
¥(t) =7 (X) +n(?).

Similarly we may derive differential versions of all models described earlier. We may also sample such models

to derive equivalent discrete-time ones.
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Remark 2.2.1 Since we claim that all models described so far are equivalent, one may wonder if different
observers designed on different models would behave in the same way. Of course this is not the case. First
of all, different models live in different nonlinear spaces. For instance (2.28) lives in the state space LV x
SE(3) x SE(3) x se(3), which has a highly non-trivial curvature structure and singularities in the local
coordinate transformation. On the other hand, (2.32) lives on the space S*N~! x RS, which has a simple
and well-defined geometry. Furthermore, the normalization constraint can be enforced in the measurement

constraint (see appendiz 2.6), leaving us with an entirely linear state-space R*Y x RS,

Remark 2.2.2 If we wish to work in a stochastic setting, and use Brownian motions as models for the
unknown parameters, we have to keep in mind that projections onto the Shape Space do not preserve the
distributions of points on the fibers. Therefore, even if each point of a configuration is described as an
independent Gaussian process, the shape coordinates are not independent nor Gaussian [77]. This makes the

models involving shape coordinates impractical, in that ¢ simple Extended Kalman Filter is not appropriate

as a state estimator.

Remark 2.2.3 The models (2.28)—(2.34) are instances of “object-centered” models, while (2.35) is an in-
stance of a “viewer-centered” model. As we have seen, the difference between such models is just an integral
in the measurement equation.

The main practical difference between these two classes is in the enforcing of the scale-factor ambiguity.
In a viewer-centered frame, the scale factor needs to be updated at each step, thus generating a drift due
to errors in the estimates of structure. Object-centered (or world-centered) models, on the other hand, can

enforce the scale factor by imposing that any of the scaled state is (constant and equal to) a specified value.

2.3 Filtering Structure from Motion

In this section we discuss some qualitative issues related to the implementation of observers for estimating
structure and/or motion from the models described in section 2.2.1. We have implemented observers in
the form of traditional Eztended Kalman Filters, assuming that the measurement noise is white, zero-mean,
Gaussian and additive and that the unknown parameters are represented as first-order random walks.

Among all equivalent models described in section 2.2.1, we concentrate on the ones that describe structure,
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rather than distinguishing between shape and pose. The reason for such a choice is two-fold. F irst, if we
assume that each point of a configuration is described by an independent Gaussian process in Euclidean
space, the shape coordinates are not Gaussian processes. Second, the local coordinatization of shape has
singularities in the presence of symmetries.

We have implemented local EKFs for the structure-motion-velocity model (2.30), the structure-velocity
model (2.32), the reduced depth-velocity model (2.34). In each instance we have enforced the normalization
constraint either as a pseudo-measurement or as a model constraint by defining the configuration as points
of a sphere or by saturating the filter along any state. The issue of scale normalization is addressed in
appendix 2.6.

In this section we only discuss the qualitative properties of the models described in sections 221. A

thorough simulation study of the performance of these methods in comparison with other schemes may be

found in chapter 11.

Simulation setup

We have generated N = 20 points on a curved surface, placed 2m in front of the viewer. Such points
are projected onto an ideal image-plane of 500 x 500 pixels, covering a visual angle of approximately 30°.
Gaussian noise is added to the image projections with a standard deviation of 5 pixels. The object rotates
about its centroid by 5°/frame, so that the corresponding motion of the viewer is roto-translational and

constrained onto the plane orthogonal to the rotation axis of the object. We have started each EKF with

zero initial conditions.

Structure-motion-velocity model

The main feature of the structure-motion-velocity model (2.30) is the presence of an on-line integrator
for motion. In order for motion to be estimated correctly, it is necessary to enforce the initial condition
9(0) = e. This is done, in an EKF framework, by setting the variance of the initial condition for motion
to zero. However, in order to avoid saturation, it is necessary to set the variance of the model error to
a (small but) non-zero value, which causes the filter to have a small bias in the motion components (see

figure 2.2). The initial conditions are zero for all states, except for the structure components, which are
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Figure 2.2: Structure-motion-velocity model: the estimated position of each feature-point is shown in
the top-left plot, along with the underlying true surface. The estimation error for the depth of each point is
also show in the top-right plot, where it can be seen that there is a bias in the estimates (about 2 %). A bias
can be also noticed in the estimates of motion in the lower-left plot. The residual error in the projection of
each feature point (innovation) is reported in the Iower-right plot. It can be seen that the components are
quite correlated, and the decay is slow.

initialized to their projective coordinates as measured at the initial time instant (as if all points were lying
on the image-plane). The initial variance of the structure parameters, however, has been initialized to a high

value (10m). It is possible to lower the initial variance on some of the parameters, as we describe next.

Structure-velocity model

In the structure-velocity model (2.32), the integral of the generalized velocity is performed off-line, so that
there are no drifts due to the enforcement of the initial conditions for motion. We have also implemented an
EKF based upon the alternative coordinatization of the model (2.33), which uses the image-plane coordinates
and the depth of each point (rather than the 3-D coordinates of each point). Such a model has the advantage

that the initial uncertainty on the states that correspond to (measured) image-plane coordinates can be set
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equal to the variance of the measurement error, and therefore concentrate most of the initial uncertainty
along the depth direction, rather than equally spreading it on the three coordinates of each point. We

find that this is the implementation that achieves the best accuracy among the models implemented (see

figure 2.3).
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Figure 2.3: Structure-velocity model: when motion is integrated off-line, we do not experience any bias
in the estimates of structure, as it can be seen from the upper plots (left for the three-dimensional position
of feature points and the truth three-dimensional surface, right for the estimation error in depth). The
estimates of motion are also bias-free (lower-left), and the innovation is small and reasonably uncorrelated

(lower-right).

Reduced depth-velocity model

Similarly to [5], we have removed the states corresponding to the image-plane coordinates in the model
(2.33), and implemented an EKF based upon the model (2.34). Such a model has the advantage of a smaller
state-space, at the expense of a bias in the estimates due to the error in locating the features on the image-
plane at the first time instant (figure 2.4). Such an error does not contribute to the innovation, and therefore

it is never fed-back to the estimate of the state. The bias has already been reported in [5].
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Figure 2.4: Depth-velocity model: when we reduce the model by substituting the initial coordinates on
the image-plane with their measured values, we introduce a small bias in the depth estimates (upper-right
plot), as well as in the motion components (Iower-left). The innovation is also more colored than before
performing observer reduction.

Instantaneous (differential) models

We have implemented an EKF based upon the instantaneous model (2.35). Such a filter suffers a significant
drift in the estimates, which is due to the fact that the scale factor ambiguity must be propagated across
time (since the states corresponding to structure are relative to the viewer). This causes an accumulation of

errors that quickly causes the estimator to diverge in the experimental conditions described in this section.

A qualitative study on real images

In this section we report the results of experiments on a sequence of images kindly provided by AIACE (the
International Association of Computational Archeology). The experiment consists in the application of the
structure-velocity model to a sequence of images of an archeological site in Marzabotto-Italy. We have first

selected and tracked automatically a number of features using a multi-scale version of the so-called SSD
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algorithm (see appendix A for details), and then estimated the three-dimensional coordinates of each feature
point. Since there is no ground truth to compare with, we can only observe that the qualitative properties
of the structure are estimated correctly (for instance the square angle between the faces of the wall, see
figure 2.5).

The bottom line is that the noise-level achieved by standard feature-tracking technique is easily handled
by simple EKF's based upon the models described in this paper. Extensive simulation studies which test the
performance of each scheme in the presence of varying noise level, aperture angle, number of visible features,

sampling period, initial conditions, bas-relief ambiguity etc. are reported in chapter 11.

-0.4 -0.2 2 0.2 04 0.6 0.8
——image plane —

Figure 2.5: (Top-left) one of 45 images of an archeological site in Marzabotto-Italy. (Top-right) feature-
points are automatically selected based upon local gradient criteria and showed as the area enclosed in a
white box. (Bottom-right) the tracking of features is used as input for the structure-velocity model, which
estimates the normalized position in 3-D of each feature point. A top view of the estimated structure is
shown in (bottom-left).
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2.4 Model reduction and invariance

There are still some aspects of the models described in section 2.2.1 which have not been elucidated: we know
that, if an object is visible, it must be in front of the observer, i.e. Z' > 0V i. Moreover, no points are allowed
to lie on the focal plane Z = 0. These are constraints that add to the normalization constraints, described
in appendix 2.6, which are needed in order to reduce the set of indistinguishable states (see chapter 4).
This may be done at the price of transforming the state from the linear state-space IR® to the differentiable
manifold with boundary R? x Rt x $2 x S0(3), and S? is the two-sphere [11]). However, an appropriate
model should include such constraints explicitly into the state representation.

In the previous sections we have seen some cases in which it is possible to eliminate some parameters
from the state of the model without affecting its overall functioning. For instance, in transforming the model
(2.30) onto (2.32), we have exploited the fact that we know the initial condition to perform the integration in
closed-form. The model (2.34), on the other hand, is obtained by eliminating the states that can be measured
directly, in a fashion similar to the technique of observer reduction [67].

It is possible to push the idea of observer reduction in order to eliminate uninteresting states at each
level of derivative in the observability co-distribution, as we will see in chapter 6. The price we pay is that at
each level of reduction we introduce a derivative of the measurements, and a bias term if they are noisy. The
advantages depend upon the applications, and in certain cases they can be far more than computational.

As an example, consider the models described in section 2.2.1. It can be noticed that there are no
modeling errors (at least in the case of constant velocity), since the dynamics consist of purely geometric
constraints. Now suppose that we want to fit a model to the visible points in 3-D. For instance, instead of
representing shape as a collection of points, we want to represent it as the surface — chosen within a class of
parametric models - that best interpolates the configuration. The residual of such an interpolation is now a
modeling error. Such a modeling error, however, should only affect the structure parameters, not the motion
parameters. Therefore, in order for the structure modeling error not to affect the estimate of motion, it is
necessary to decouple their dynamics in the observer. A way to ensure that modeling errors in structure do
not affect the estimates of motion is to use the dynamics of motion in order to eliminate it from the state
model. Modeling shape as a surface model is beyond the scope of this paper; however, in section 2.4.1 we

derive a model for point-wise structure which is independent of motion parameters. Then, in principle, one
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could choose a parametric model class for the structure parameters and substitute the depth of each point
in the model with the surface parameters.

Modeling structure as a surface is also an effective way of handling occlusions. In fact, occluded feature-
points can be removed and new features added to the measurement model without changing the dimension
of the state (which consists of surface parameters), and without having to initialize structure parameters.
This can also be achieved by eliminating structure parameters altogether, so that the reduced model is also
independent of the particular choice of the representation of structure. In section 2.4.2 we motivate this

approach, which we then discuss in more detail in following chapters.

2.4.1 Motion-independent structure estimation

Consider the structure-velocity model in its instantaneous version (2.35), with the change of state coordinates

X' — (v, Z%):
yz‘ — C(yi,Zi)
w
2 =Fy 2 Vi=1...N (2.36)
w
V=0
w=20
(F7(t) = y'(t) + n'(t)
where we have defined
Clyt, 7%) = [ 2\_ B J (2.37)
Fy'2') = [ 0 0 1 —yizi yizi o J ' (2.38)

If we stack a number of vectors y* on top of each other and we neglect the effects of the measurement errors,

then we can assume that we can measure directly the first 2V states and therefore eliminate them. We may
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also eliminate V' and w simply by solving the state equation of y* and substituting in the dynamics of Z%:

Z = F(3,2)Ct(3, 2)3 Z e §N-1
(2.39)

CHy, 2)y =0.
The symbol | stands for the pseudo-inverse, and L for the orthogonal complement; Z and 7 stand for the

vectors that collect all Z% y'. Note that, in the above model, both ¥ and ¥ play the role of measurements.

Remark 2.4.1 Note that in the above model we do not need to make the assumption of constant-velocity (or
small acceleration), for velocity has been eliminated Jrom the model. The drawback is that the measurement

noise now also affects the state model in a non-additive, non-linear fashion, as it can be seen by substituting

y withy +n.

As a matter of motivation, suppose we want to model structure as a parametric surface, described by

S WxU — R®

U
(a,u) = Su(u) = (2.40)
Z(a)
where W C R® and U C IR%. We can choose the image plane as a local parametrization of the surface, so
that u = y. If we now distinguish — among the parameters o — the ones that influence the pose of the surface
(call them ~) from the ones that influences its shape (call them o), we can write a model that is formally

identical to (2.28), where now v € R® and o € R®, and the measurement equation is substituted by
5() = 7 (9(8) 0 07" 5.,(50)) + n(t). (2.41)

We may employ the same techniques used in this section in order to to derive a model similar to (2.39), which
only involves surface parameters and not motion nor velocity. In the case of a surface there are non-trivial
issues related to the choice of the model and its validation, which add to the problem of designing an observer
that exploits the non-linear and non-additive structure of the noise. In this thesis we concentrate on the

simplest “point-wise” representation of structure and, therefore, we do not address these issues.
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2.4.2 Towards structure-independent motion estimation

In the dynamical models described in the previous sections we assume to measure the trajectories of the

output over an extended period of time:

Yt Vi=1...N, tet,t]} (2.42)

Such an assumption is equivalent to assuming that we have solved the correspondence problem, which is that
we know which point on the image-plane corresponds to which across time.

Even in the discretized models, it is usually reasonable to assume that we can solve the correspondence
problem for a certain length of time. It is, however, extremely difficult to maintain a “label” of each point
for a long time. Also, some of the features may disappear, because they exit the field of view, or because
they become occluded.

It is fairly simple to handle the appearance of new features: suppose that, at some instant of time 7, we
have a new measurement point y* that enters the field of view, and we want to include it in the measurement
set. In order to do that, it is necessary to project such a point onto the slice of the configuration space that

corresponds to the viewer’s frame at ¢ = 0. If we have a current estimate for the motion g,

9- = g(7) (2.43)

as well as the projection of the point in question at the same time

v =y (r) (2.44)

then it is immediate to see that
y'(t) =n(9(t) 0 g5 ' 0 g7 'yi ZY). (2.45)

We may include g1, as well as g7, into g and therefore fall in the cases described in section 2.2.1.

Remark 2.4.2 If we follow the above procedure, every time a new feature enters the model and its depth

is inatialized, the initialization error affects also motion parameters, for they are coupled through the state
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model. Therefore, even in the presence of a smooth motion, the estimates we get are discontinuous due to
the initialization errors in the structure parameters.
Furthermore, in the presence of occlusions we need to remove states from the dynamical model, which

also affects the estimates of other states.

A way to overcome the problem of occlusion is to exploit the invariance of structure to eliminate it
from the model, so as to have a structure-independent model for estimating motion. This is the principal

argument of coming chapters, and we anticipate some of the main issues in the next section.

2.5 Decoupling and reduction as a modeling strategy

When facing a high-dimensional optimization problem, it is important to unravel the geometry of space of
unknown parameters, in order to see whether there are “slices” where the parameters evolve independently
in the cost objective. This responds to the need of decomposing a high-dimensional optimization task into
the solution of a number of smaller, simpler and better conditioned problems.

In the case of structure and motion estimation, the work of Longuet-Higgins [73] pioneered this approach,
by decoupling structure from the motion parameters, which he encoded in a 3 x 3 matrix, called essential
matriz. Adiv 3] and Heeger and Jepson [45] further decoupled the translational velocity from the rotational
velocity.

We will re-derive the constraints of Heeger/Jepson and Longuet-Higgins within a unified procedure. We
will start from the dynamical models described in section 2.2.1, and construct the so-called reduced-order
observer [57] both for the continuous-time and the discrete-time models. These result, respectively, in the
so-called “Subspace constraint” and the “Epipolar (or Coplanarity) constraint”, now interpreted as nonlinear
implicit models of a special class (so-called Exterior Differential Systems [16]) with parameters on a manifold
(chapters 3 and 5). Such a manifold is a 5-dimensional space, called Essential manifold, in the discrete-time
case of Longuet-Higgins and the 2-dimensional sphere in the continuous-time case of Heeger andJepson.

This asymmetry between continuous and discrete time, which cannot be resolved in the context of the

reduced-order observer, is what will motivate us towards alternative strategies for reducing the model, which

we discuss in chapter 7.
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2.5.1 The basic reduced-order observer: simultaneous depth and motion esti-
mation

The reduced-order observer [57] is a long-established technique for reducing the dimension of an observer for
a dynamical system. The basic idea consists in “solving” the measurement equation for some of the states,
and then substitute into the model equation. The states that have been eliminated are no longer part of the
state-space, and their state equation becomes a new measurement equation, which involves derivatives of
the measurerﬁents. The original measurement equation becomes now trivial, for it has been used to define
the states to be eliminated.

For instance, consider the simple linear model

1 = 613171 + G12%2
Lo = G2171 + A92X (2.46)

Yy=ocz + coxg

and “solve” the measurement equation for z, so that zy = %l If we now substitute z5 into the dynamic
equations, we get a new state model for z; which does not involve z5 but has an “output injection” term,

and a constraint involving the measurements y and ¢ and the unknown state zy:

s (4 a
&1 = (a1 — a1 2 )z + L2y

1. 1 c c c i (247)
=Vt (azeg ~ amé)y =(an —and + 12 + a2z
The original measurement equation is now the identity y = y. We may re-write the above model as
Cbl = dl‘]_ + ky
(2.48)
Yy =cxy

where § hides a time-derivative of the measured output y. It is possible to get rid of this undesirable effect
by either an output-dependent change of coordinates, as done in the original reduced-order observer [57], or

by integrating the measurement equation over a sample time interval.
This simple idea, applied to the structure-velocity model (2.32) produces exactly the depth-velocity model

(2.34), which we had derived from heuristic arguments.
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2.5.2 Pushing observer reduction: structure-independent motion estimation

Although the depth-velocity model has fewer states than the structure-velocity model, it still involves struc-
ture parameters and, therefore, it can vary in time due to occlusions and appearance of new features. The

next step consists in applying the same idea of the reduced-order observer to the already-reduced model in

order to get rid of structure parameters altogether.

Continuous-time: the Subspace model

If we apply the idea of the reduced-order observer twice to the structure-velocity model, in the first run we
can eliminate 2V states, corresponding to the measured projections of each feature-point, and be left with
N +6 states, describing the depth of each point and the motion parameters. In the second run we can “solve”
the new measurement equation, which in fact corresponds to the image motion field (and is approximated
by the optical flow), for the depth parameters.

Since the expression of the image motion field % is linear both in the inverse depth and the rotational
velocity, one may eliminate both depth and rotation, as done in Heeger and Jepson [45].

In chapter 5 we will view the resulting constraint as a reduced dynamical model, which happens to be
in the form of a so-called “Exterior Differential Systems” [16]. The only unknown in such a model is the

direction of translation, which is modeled as a point on a sphere.

Discrete-time: the Essential model

The idea of the reduced-order observer may be applied also to the discrete-time version of the structure-
velocity model. The tool to be used for eliminating the depth parameters is the so-called “Epipolar geome-
try”, which essentially resorts to the well-known coplanarity constraint, first derived by Longuet-Higgins [73].

In chapter 3 we will interpret such a constraint asa discrete dynamical system with unknown parameters
on the so-called “Essential manifold”. Such parameters encode the relative orientation of the camera frame

between successive time instants.
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2.5.3 Asymmetry between continuous and discrete-time

In the continuous-time case we will push the idea of the reduced-order observer up to the point in which we
have a model with only two parameters (the spherical coordinates of the direction of translation). This will
not work in the discrete-time case. In fact, the rotation parameters appear through the exponential map,
which we cannot invert in closed-form in order to substitute it into the model equation and apply the tools
of the reduced-order observer.

Therefore, there is an asymmetry between the instantaneous case and the discrete-time case. This will

motivate us to explore alternative methods for reducing the state of the observer.

2.5.4 “Explicit” versus “implicit” decoupling

Although it is not always possible to decouple the unknown parameters in closed-form, it is possible to do
so implicitly by imposing that some function of the parameters is held constant. We will see how this leads
to a reduction of the model by constraining it onto a subspace of the parameter space. For instance, we
may impose that the image of a point, a line, or a plane remains fixed. This procedure identifies slices of
the parameter manifold where the model is constrained to evolve. For instance, these manifolds are 4 and 3-
dimensional submanifolds of the Essential manifold, when a point or a line are fixated, and the 2-dimensional
sphere (also a submanifold of the Essential manifold), in the case in which a plane is fixated. Thus, we may
interpret the compensation of the motion of a point, a line, or a plane, as a geometric stratification of the
Essential manifold. By restricting the model to the appropriate slices, we derive 4, 3 and 2-dimensional

dynamic constraints, the latter being the discrete-time equivalent of the Heeger and Jepson’s constraint.
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Appendix

2.6 Scale factor normalization

Let us consider the structure-velocity model in its reduced version, where only the depth of each point at

the initial instant is encoded and noise is being neglected:

Zo =0 € ]RN
=0 € se(3) (2.49)

¥ =7 (9(6)5(0)Z) -

As we have anticipated in previous sections, the above model is not observable, for there is an overall scalar
ambiguity affecting the depth of each point and the translational component of motion. Therefore, an
additional scale constraint must be imposed. Such a scale constraint can be imposed either to the pose of
the configuration, by enforcing that some point (or any combination of the points) is at some prescribed

depth, or to the shape of the configuration, by enforcing the set of dots to have a prescribed size.

2.6.1 Normalization of pose

Suppose we wish to get rid of the scale-factor ambiguity by imposing that some particular point has a

specified depth, for instance
ZYt)=pV t (2.50)

There are essentially two ways to impose such a constraint: one is to enforce it in the state model of the

filter, the other is to add a measurement constraint.

Pose normalization in the state model

The first option, which has been chosen by Azarbayejani et al. [5], consists in generating an initial

condition for the chosen point, for instance

ZH0)=p (2.51)

with zero-variance, £ = 0, so that the filter is saturated along one direction, and its states evolve along
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Figure 2.6: Scale normalization: pose can be normalized either by saturating a state (upper-left) or by
adding a measurement constraint (upper-right). Alternatively, we may constrain the overall size of the points
to be scaled, by either forcing the state of the model onto a sphere (lower-left) or by adding a measurement
constraint (lower-right). The normalized estimates of the depth of each point, as reported in the above plot,
indicate that normalization of shape helps achieving faster convergence and smoother estimates.

the orthogonal subspace. In essence one works with an observer for an un-observable model, where one row

of the gain matrix is kept at zero.

Pose normalization in the measurement model

Alternatively, we may leave the state model untouched (without imposing saturation), and add a measure-

ment constraint of the form

p=Zt) (2.52)

with variance of the measurement error ;1 = 0. This setup is very similar to the previous one, except that
the filter now operates in normal conditions and its model is made observable by a dummy measurement

equation.
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2.6.2 Normalization of shape
As an alternative to normalizing pose, we may impose a constraint on the overall size of the configuration,

for instance by imposing

1)) =p vt (2.53)

Again, such a constraint can be imposed on the state model

Zo=0 eTSN-! (2.54)

or we could add the measurement equation

p= 2@l (2.55)

Such a normalization works on average better than the normalization of pose, for all states (and therefore

all measurements) contribute to the constraint, as shown in figure 2.6.

Shape normalization in the state model

In order to impose the constraint Zg € SV~ the filter state should evolve on SV —1 and therefore have
N —1 independent states. In order to do this, we could devise a system of local coordinates. However, these
would have singularities and it would require multiple charts.

A method to circumvent this problem consists in embedding the sphere in RY and then project the
update at each time onto the sphere. Such a solution is certainly not fundamental, but effectively the most
practical, since there is no need to add new dummy measurements, or set artificially some variances to zero.

The correct approach would be to formulate the filter directly on the sphere, without using any coordi-

natization. This intrinsic representation is beyond the scope of this thesis, and we will therefore not address

it here.

Shape normalization in the measurement model

This case works exactly like the one in section 2.6.1, except that the new dummy measurement constraint is

now

p=[Z@). (2.56)
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2.7 Inner products and Riemannian metrics on the Shape Space

We have defined a Shape Space through a series of transformations of the total space of configurations R3*%:

ROV g 1 e o sl un) mespn vt o)
X X. Xco Xeos o.
(2.57)
In doing so we have implicitly identified the two spaces
RN /{SE(3) x R} «= S*N-1-1/50(3). (2.58)

It is indeed immediate to see that two configurations X and ¥ belong to the same orbit under SE(3) x R
(rigid motion and scale) if and only if X,,, and Y., belong to the same orbit in SO(3). We may define
a map from S*¥=V-1/80(3) to ]RSX(N_U/SO(?)) by taking X.,s € S3(N-1-1 anq considering it as an
element of R**W=1 Such a map, restricted to the equivalence class, can be proven to be an isometric
embedding [19]. Therefore, given two shapes, their distance is equal to the distance of the corresponding
scaled-centered shapes, considered as elements of S3(N=1~1/50)(3) [19].

We are now interested in deriving a distance between two shapes on ©V, exploiting the fact that we can
consider them as elements of R**% /50(3).

Let us consider a configuration, which is a generic element of R3*Y . Such a space can be identified with

the space (3, N) of linear maps between R” and IR3, which is a Hilbert space with the inner product

<> MHEB,N)XH(B,N) — R

(X, Y) = <X Y>yu= trace(X7Y). (2.59)

To be more precise, the above map should be defined between TH(3,N) x TH(3,N) and R but, H(3, N)
being a linear space, its tangent bundle ® coincides with the space itself: TH(3,N) = #H(3,N). Such an

inner product induces a Riemannian metric, which can be used to define a norm IX[3, =< X, X >, VX €

5The tangend bundle to a manifold M , indicated by TM, is the collection of all tangent planes at all possible points p € M
of the manifolds: TM = UpeprTp M.



42
TH(3,N), and a global distance on H(3, N) simply by dy (X, Y)? =< X -Y,X - Y >;. The way this
distance is obtained is by integrating the Riemannian metric along the shortest path between X and Y
(called a geodesic), which in the simple case above is a straight line.
This does not work for a curved manifold such as the Shape Space. What we have to do in such a case is
to define a Riemannian metric, and then integrate it along a geodesic in order to define the distance between

two shapes. D. G. Kendall has defined a metric on the Shape Space, which is calls procrustean metric, which

defines a distance

ds(X = inf Xcos_ ?COS . N
S®Y) = inf Koy~ Rl (260)

It has been shown [19] that such a metric is indeed the one that is derived from the Riemannian metric, and

a closed-form expression is given by
ds(X,Y)? = ||X]|]? + Y2 - 2trace(XYT). (2.61)

Note that this distance is different from the distance of the two points considered as points on the total space
(the Shape Bundle). In fact, if considered arbitrary points in R3*®V _1), the distance between X and Y

induced by the inner product would be ||X|2 + ||Y]|? - 2trace(X7Y).
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Chapter 3 Observer reduction in the discrete-time

case: motion estimation on the essential manifold

In previous chapters we have seen how the problem of estimating structure and motion from a sequence of
images can be formalized in terms of state estimation for certain nonlinear dynamical systems. Since we
have adopted a point-wise representation for structure, occlusions are a problem as they affect the size of
the state-space and cause discontinuities in the estimates.

In this chapter we show how the invariance of shape can be used in order to eliminate structure altogether
from the state of our dynamical model, in the same spirit of the reduced-order observer, ending up with a

model for motion independent of structure.

Background and notation for the chapter

In this chapter we are going to describe a representation of rigid motion via the so-called Essential matrices.
Such matrices are denoted with Q. We will use the properties of rotation matrices R € SO(3) and those of
skew-symmetric matrices. Such matrices can be always written in the form of a matrix (operator) (T'A), which
acts on three-dimensional vectors X € R® according to the rule

(TAX =T AX (3.1)

where A is the usual cross-product. an explicit expression for (T'A) is given by

0 -Ts T
TA=| Ts 0 -1 |. (3.2)
~Ty, T, 0

More details can be found in [81]. We will also mention tangent bundles, since Essential matrices can be naturally
defined as elements of the tangent bundle of the rotation group SO(3). As in previous chapters, we call x = m(X)

the projection of a feature point of coordinates X € R3 onto the image-plane, modeled as the real projective

plane RP2. We indicate the coordinates of x as x = [zy 1]7.

Outline of the chapter

We start by defining the space of Essential matrices. These can be interpreted as a “concise” way to represent
rigid motions using a single 3 x 3 matrix. Then we show how such a representation plays a central role in the
problem of estimating motion, since it allows deriving constraints on the motion parameters which are independent
of structure. Such constraints are well-known in the vision literature and methods for exploiting them in order to
estimate motion have been proposed both in closed-form and iteratively from two views (stereo). We propose to
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view such constraints as (nonlinear and implicit) dynamical models with parameters on the manifold of Essential
matrices, and outline a method for identifying these parameters.

3.1 The Essential manifold

A rigid motion may be represented as a point in the Lie group SE(3), which can be embedded in the linear
space GL£(4) (and hence exploit the matrix product as composition rule) and is in local correspondence with
RS via the exponential coordinates and the isomorphism between so(3) and R?, as in [81]. We now discuss
an alternative matrix representation of rigid motion which is derived from the so-called “Essential matrices”
introduced by Longuet-Higgins [73].

Consider a rigid motion g = (T, R) € SE(3); then TA € s0(3) is a skew-symmetric matrix. We define

the space of “Essential matrices” as
E={SR| ReSO(3), S=(TA) € s0(3)} c R®*?, (3.3)

Clearly the Essential space does not inherit the group structure from the general linear group GL(3), since
Q1,Q2 € F does not imply Q; + Q2 € E. One possible way of imposing the group structure is by forcing
a group morphism with SE(3), for which it is necessary to “unfold” T, R from Q = (TA)R € E, perform
the group operation on SE(3) and then collapse the result into E. We will see later in this section a way of

unfolding an Essential matrix into its rotation and translation components.

3.1.1 Properties of the Essential manifold

The Essential space has many interesting geometrical properties: it is an algebraic variety that can be defined

as the subset of the 3 x 3 matrices that satisfy the following polynomial equations:

det(Q) =0
QcECR*® & (3.4)
5t1(QQM)Q = QQ7Q.
This characterization leads to algebraic methods for estimating Essential matrices from pairs of images. The

interested reader may consult [30, 79]. We do not follow this “algebraic” approach here. Rather, we consider

E to be a topological manifold, for which we will give an explicit local-coordinate characterization. The
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reasons for our choice is that finding roots to polynomial equations makes it difficult to retain a geometric
interpretation. Furthermore, since roots are found in the complex field, the resulting variety turns out to
have singularities [79]. On the other hand, using a differential geometric approach, we can easily identify F
with the tangent bundle to the rotation group, defined as TSO(3) = Ugc s50(3)TrSO(3), which is a smooth
manifold and therefore has no singularities.

In fact, elements of 7.SO(3) are all and only the 3 X 3 matrices obtained by taking a tangent vector to the
origin of the rotation group, S € T.SO(3) = so(3), which are elements of the Lie algebra of skew-symmetric

3 x 3 matrices, and pushing it forward by (right) multiplication to a point R € SO(3) of the rotation group:
S=TA € 50(3) =T.50(3) — SR € TrSO(3). (3.5)

Therefore, the tangent bundle to the rotation group is the set of matrices which are the product of skew-
symmetric matrices and rotation matrices, which is exactly the way we have defined the Essential manifold.
The following claim, due to Huang and Faugeras and reported by Maybank [79], gives a simple charac-

terizing property of the space of Essential matrices.

Claim 3.1.1 (Huang and Faugeras, 1989)

Let Q = UXVT be the Singular Value Decomposition (SVD) [39] of a matriz in R3>*3. Then

Qe EeX=5%;=diag{A A0} | A€ R*.

Proof:

(=) let Q = SR | R € 50(3),5 € s0(3); o(Q), the set of singular values of Q, is such that o(Q) =
Vo(QQT). Next observe that QQT = SST = —$% AlsoV S € s0(3) 3! T € R® | S = (TA), and
the singular values of S? are {||T|2,||T||2,0}. Hence if Q € F, it has two equal singular values and a

zero singular value.
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0 -1 0
(<) let Q =UXoVT be a Singular Value Decomposition. Let furthermore Rz(5)=| 41 0 o | bea

0 0 1

rotation of Z about the axis [0 0 1]7, then
Q=Us, VT = UzoRg(ig)UTURz(ig)VT.

Now call R = URZ(+2)V7T and S = UXgRz(+3)UT; it is immediate to see that RRT = RTR = [
and ST = —S. From the uniqueness of the SVD, it follows that this decomposition is unique, modulo

the sign in Rz(+7). Q.E.D.

Remark 3.1.1 Note that, since Q = UXVT ¢ E & 3 = diag{\ X 0}, there is one degree of freedom in
defining the basis components of the subspaces < V3 >+ and < Us >+, which corresponds to rotating
the orthogonal bases < V1, V4 > and < U.1,Us > about their orthogonal complements. However, the

effects cancel out in the multiplications when defining R and S as in the proof above.

3.1.2 Local coordinates of the Essential manifold

For any given rigid motion (T, R) € SE(3), there exists an Essential matrix Q defined by Q = (T'A)R. We
are interested now in the inverse problem: given an Essential matriz Q, can we extract its rotational and
translational components? Is the correspondence Q (T, R) unique?

Consider the following map, defined locally between E and IR®

»:F - R*xS503)—R*xR? (3.6)
QU T T
Q — = =
URz(£Z)VT e 0

where U,V are defined by the Singular Value Decomposition (SVD) [39] of Q = UZVT; U3 denotes the
third column of U and Rz(%) is a rotation of 5 about the axis [0 0 1]7. Note that the map & defines
the local coordinates of the Essential manifold modulo two signs; therefore, the map ® associates to each

element of the Essential space four distinct points in local coordinates. This ambiguity may be resolved
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in the context of the visual motion estimation problem by imposing the “positive depth constraint”, which
means that each visible point lies in front of the viewer. In a case like this we will be able to identify a

unique local coordinates homeomorphism, as discussed in section 3.3.1. The inverse map of @ is simply

1 R*xR® = E
T
o (TA)e®M
Q

which is smooth.

3.1.3 Projection onto the Essential manifold

The claim 3.1.1 suggests a simple “projection” of a generic 3 X 3 matrix onto the Essential manifold:
£g

pr<ps :R*>3 o F (3.7)

M — U diag{\ )0} VT

where U,V are defined by the SVD of M = U diag{o1,02,03} VT, and \ = % It follows from

the properties of the SVD [39] that pr. p~ (M) minimizes the Frobenius distance of M from the Essential

manifold [44, 79].

3.2 Role of the Essential manifold in Structure from Motion

When a rigid object is moving between two time instants ¢ and ¢ + 1, the coordinates X of a point at time
¢, their correspondent X’ at time ¢ + 1 ', and the translation vector T are coplanar (fig. 3.1). Their triple
product is therefore zero. This is true of course also for x, X" and T, since x is the projective coordinate of X
and therefore the two identify the same direction in R, interpreted as the “ray-space” model of RP? [86].
If we call (T, R) € SE(3) the rigid motion between the camera reference at time ¢ and the one at time ¢+ 1,

so that X’ = RX + T, then we can write the triple product in a common reference frame, for instance the

In this section we use X for X(t) and X' for X (¢t + 1) for simplicity of notation.
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camera’s at time ¢t + 1, as

XTTARX =xTTARx = 0. (3.8)

Let us define Q = (TA)R € E. The above coplanarity constraint, which is known as the “Essential con-

straint” or the “epipolar constraint”, can be written for each visible point as

x'(t+1)TQx'(t) =0 Vi=1...N. (3.9)

Estimating motion then corresponds to identifying the model

(Qx'(t) xi(t+1)=0  QeE
(3.10)

yi=xi 4 Vi=1...N, nieN(0,5,)

which we call the Essential model. Since the Essential model is linear in Q, we use the improper notation

x(t+1)Q(t) = Xx'(8),x() Q(t) =0 x € RV*9

where x is an N x 9 matrix combining x*, x’ “ and Q is interpreted as a nine-dimensional vector obtained by
stacking the columns of the 3 x 3 matrix Q on top of each other. In the following we will not distinguish
between Q interpreted as a matrix in R**® and a nine-dimensional column vector. The generic row of x
has the form [z2', ya/, o', =y, v/, ¢/, =z, y, 1 ]. We will use the notation x(t) when emphasizing the

time-dependence, while we will write Xx'(¢),x(t) When highlighting which vectors are used for constructing x.

3.2.1 Two-views closed-form solutions: Longuet-Higgins revisited

Suppose we are given two views of N points, where N > 8. Then it is possible to write 8 or more constraints

in the form

xQ =0. (3.11)

These are linear constraints on the elements of a generic (unstructured) vector Q that solves the above

equation. We may therefore use standard least-squares to estimate a generic vector Q, for instance using
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the Singular Value Decomposition:

x=UsWT — Q =W,. (3.12)

The vector Q is the null-space of the matrix x. In general, due to noise, x will be full-rank, so one can
Just choose the singular vector Wy corresponding to the smallest singular value in order to obtain the best
two-norm approximation of the null-space of y. The 3 x 3 matrix Q is then obtained by re-ordering the
elements of the nine-dimensional vector Wy into a matrix.

Since we have not used the fact that Q must belong to the Essential manifold, it is quite clear that, in

general, Q ¢ L. In order to fix this problem, we may project Q down to the Essential manifold:

Q=pr ;. (Q). (3.13)

Once this is done, the motion parameters are obtained Just as the local coordinates of the matrix Q as in

equation (3.6).

The procedure just outlined is Essentially equivalent to the scheme originally proposed by Longuet-

Higgins [73].

Remark 3.2.1 The method proposed by Longuet-Higgins consists in separating the (nonlinear) problem
of estimating motion parameters into two combined linear tasks. The resulting solution is not optimal in
any sense, since the constraints on the parameters of the Essential manifold are not enforced during the

estimation step but, rather, generic unstructured parameters are first estimated, and then their structure is

imposed a-posteriori.

3.2.2 Two-views iterative solutions: Horn’s Relative Orientation

Instead of decomposing the nonlinear task of finding motion parameters into two combined linear problems
as proposed by Longuet-Higgins, one could try to solve directly for the motion parameters by minimizing

some norm of the Essential constraint

(T, ) = arg min [T A e x| (3.14)
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with some choice of norm. This, in general, cannot be done in closed-form. Horn [61] proposed to use a
gradient-descent algorithm to solve iteratively for the motion parameters.

This procedure has the advantage of enforcing all constraints on the parameters 2. However, since we
are using an iterative procedure, we have to deal with the inevitable presence of local minima which arises

by using a general-purpose iteration that is not aware of the geometry of the underlying problem.

3.3 Dynamic solution: the “Essential filter”

The Essential constraint (3.9) has been used over the past decade in a variety of methods for estimating
relative orientation from two views. Here we propose an alternative way of looking at the problem: rather
than considering the coplanarity constraint as a set of algebraic equations on the motion parameters given
two images, we view it as a dynamical model. Such a dynamical model is in a rather peculiar form, which
is that of a linear and implicit system, and has unknown parameters that are elements of a topological
manifold. Estimating motion amounts to performing the identification of the Essential model, where the
parameters are constrained on the Essential manifold.

Since the Essential constraint is an homogeneous equation, and hence defined only up to a scale factor, we
may restrict Q to belong to S8 instead of IR®. It is customary to set the norm of translation to be unitary; this
can be done without loss of generality, as long as translation is not zero. The zero-norm translation case can
be dealt with separately, and we discuss it in section 3.3.3. For simplicity we now assume ||Q|z = ||T|| = 1.

At each time instant we have a set of N constraints in the form

Xx!(t),x(t) Q (t) =0,

therefore, Q lies at the intersection between the Essential manifold and the linear variety xx,l( £).x(t) (0) (see
fig. 3.2).

Note that, even after imposing unit norm, there is still a sign indeterminacy in Q, which accounts for the
two possible solutions Q; = +Q and Q, = —Q of the Essential constraint. These become four after being

transformed to local coordinates. This ambiguity can be overcome by imposing the positive depth constraint

“Horn used unit quaternions as an embedded (non-minimal) representation of rotations.
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as it will be done in section 3.3.1.

As time progresses, the point Q(t), corresponding to the actual motion, describes a. trajectory on E (and

a corresponding one in local coordinates) according to
Q(t+1) = Q(t) + nq(b).

The last equation is indeed just a definition of the right-hand side, as we do not know nq(t). The identity of
nq(t) and the meaning of the sign + in the above equation will be unraveled in section 3.4.2. For now, we
will consider the previous equation to be a discrete-time dynamical model for Q on the Essential manifold,
with nq as unknown input. In the case of constant-velocity motion we have ng = 0. If we accompany the

above equation with the Essential constraint, we get

Q(t+1) = Q(t) + nq(t) QckE
0 = xx' () x(t) Q(t) (3.15)
yi=x" 4 n Vi=1...N.

Now the visual motion estimation problem is characterized as the estimation of the state of the above model,
which is defined on the Essential manifold. Tt can be seen that the system is “linear” (both the state equation
and the Essential constraint are linear in Q). E, however, is not a linear space. We will see how to solve the
estimation task in section 3.4.

The observability /identifiability of the Essential models is addressed in chapter 4. It is proven that the
model is globally observable under general position conditions. Such conditions are satisfied if the viewer’s

path and the visible objects cannot be embedded in a quadric surface of IR®.

3.3.1 Choosing the local coordinates for the Essential manifold

The map @ introduced in eq. (3.6) defines the local coordinates of the Essential space modulo a sign in the
direction of translation and in the rotation angle of Ry. Therefore, the map ® associates to each element
of the Essential space 4 distinct points in local coordinates. This ambiguity can be resolved by imposing
the “positive depth constraint”, i.e. that each visible point lies in front of the viewer (34, 44, 73, 74, 109].

Consider one of the four local counterparts of Q € F, and the triangulation function dy x : E — Rt
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time t time t+dt R

Figure 3.1: The coplanarity constraint

with dx x(Q) = [Z, Z']T, which gives the depth of each point as a function of the projection and the motion
parameters (it is just the intersection of corresponding projection rays, see figure 3.1). Note that it is locally
smooth away from zero translation. Therefore, given any N point-matches with projective coordinates

xt, x! " we may use ® as a local coordinate chart for the following set, which we call the “normalized Essential

manifold”:

E=End:!

x,x’!

(R NSE =

= {Q = SRIR € 50(3),5 = TA € 50(3), |T|| = 1, dys 5+ (Q) > 0 Vi = 1..N} (3.16)

where IR is the positive open half space of IR, and d;;, denotes the preimage of dy x/. Consider ® restricted
to E. It follows from the properties of the SVD that ® is continuous and, furthermore, bijective. The
normalized Essential manifold thus defined is a topological manifold of dimension 5, since we have imposed

the metric constraint ||7]| = 1.
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Figure 3.2: Structure of the motion problem on the Essential space.

3.3.2 Propagating scale information

It is well known that from visual information it is only possible to recover the structure and the motion
modulo a scale factor multiplying the translational velocity and the depth of the visible points (see chapter
4). Such a scale ambiguity is captured by the homogeneous nature of the Essential constraint (3.9). However,
as soon as we are given some scaling information about the scene at one time instant, we can rescale the
scene and the estimated velocity to its appropriate values.

Suppose we are given the distance between two visible “reference” points in space [|X,1 — X2l = p.
Once motion has been estimated, with a normalized translational velocity, it can be used to estimate the
“normalized structure” X¢ via triangulation [93]. By matching the distance between the reference points
in the normalized structure with its reference value, we can rescale both the depth of each point and the

direction of translation simply by [|X,; — X,z = PlIT |-

3.3.3 Dealing with zero-translation

So far we have assumed that ||T|| # 0, and we have defined the normalized Essential manifold based upon
the constraint ||T|| = 1. It is easy to see that the condition IT|| = 0 defines a “thin-set” in the parameter

space. Due to the noise in the measurements, there is always a translation which is least-squares compatible
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with the observations. However, one may ask what happens when the system is close to such a configuration.
When translation is almost zero, there is little parallax in the projected coordinates of the visible objects,
which makes the estimates of the depth and those of the direction of translation ill-conditioned.

Luckily enough, we do not need to worry about the structure of the scene, since it does not enter our
dynamic model, and about the direction of translation, since its estimate will be weighted by the scale, which
is [|T)| 2 0. However, we would still like to estimate the correct rotational velocity. Here the definition of the
normalized Essential manifold comes at hand. In fact, the estimation scheme will estimate some direction
of translation T such that ||| = 1 regardless the scale of T, so that the correct rotational component of the
local coordinates can be computed. In the experimental section we will show an experiment in which the

system crosses a region in the parameter space where 7' =0 and 2 # 0.

Remark 8.3.1 The Essential constraint (3.9) defines a unique Essential matriz (up to scale) only if 8 or
more point matches are given. If 5 or more matches are available, one may extract directly the motion
parameters from the Essentiol constraint (up to a finite number of solutions). Farly motion estimation
schemes from two frames, based upon the Essential matrices, needed at least 5 or 8 point matches in order
to estimate motion [51, 73, 54]. However, since the Essential model is recursive and integrates motion over
time, it does not need to have o minimum number of features visible at each time instant, as long as the
observability conditions are satisfied (see chapter {). Therefore, using a filter based upon the Essential model
(3.10) allows us to maintain the motion estimates even when crossing regions of the ambient space with less

than 5 wvisible features.

3.4 Solving the estimation task

At this point we are ready to address the problem of recursively estimating motion from an image sequence.
There are two approaches that may be derived naturally from the Essential model.

The first approach we describe consists of composing the equations (3.15) with the local coordinate chart
®, ending up with a nonlinear dynamical model for motion in IR®. At this point we have to make some
assumptions about motion: since we do not have any dynamical model, we will assume a statistical model.

In particular, we will assume that motion is a first order random walk in R’ (see fig. 3.3 left). The problem
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Figure 3.3: (left) Model of motion as a random walk in IR® lifted to the manifold or as a random walk in IR?
projected onto the manifold. (right) Estimation on the Essential space.

then is to estimate the state of a nonlinear system on a linear space driven by white, zero-mean Gaussian
noise (see fig. 3.3 right).

In the second approach we change the model for motion: in particular we assume motion to be a first
order random walk in R® projected onto the Essential manifold (fig. 3.3 left). We will see that this leads to a
method for estimating motion that consists in solving at each step a linear estimation problem in the linear
embedding space and then “projecting” the estimate onto the Essential manifold (fig. 3.3 right).

It is very important to understand that these are modeling assumptions about motion which can be

validated only a-posteriori. In general we observe that the first method solves a strongly nonlinear problem
with techniques which are based upon the linearization of the system about the current reference trajectory,
so that the linearization error may be relevant. The second method does not involve any linearization,
whereas it imposes the constraint of belonging to the Essential manifold in a weaker way. Note that each
method produces, together with the motion estimates, the variance of the estimation error, which can be

used to perform recursive triangulation, as in [93).

3.4.1 Estimation in local coordinates

Consider composing the system (3.15) with the map ® defined in (3.6) restricted to the normalized Essential

manifold E:

®:E —» S?xR]-R°



where T' is expressed in spherical coordinates of radius one. Then the system in local coordinates becomes

E(+1) =&(t) +ne(t) 5 £(to) = o

0 = Xxy(),y' Q&) + 7(2).

(3.17)

Motion may be modeled as a first order random walk: ne(t) € N(0,%¢) for some ¥¢ which is referred to as
the variance of the model error. While the above assumption is somewhat arbitrary and can be validated
only a posteriori, it is often safe to assume that the noise in the measurements y(t),y'(t) are white zero-
mean Gaussian processes with variance ,,. The second order statistics of the induced noise 7 is a somewhat
delicate issue that is discussed in appendix F.4.

The estimation scheme for the model above, which takes into account the correlation of the error 7, is
reported in appendix F.4. A simplified version is obtained by approximating 7 with a white process (note
that i is correlated only within one time step). The resulting scheme is based upon an Implicit Extended
Kalman Filter (IEKF), which is derived in appendix F.4. We summarize here the equations of the estimator.

Call C = <8§TQ) and D = (%), then we have

Prediction step:

Et+1t) = £tlt) 5 €(0)0) = & (3.18)
P@t+1Jt) = P(t|t) + = ; P(0|0) = Py (3.19)
Update step:
Et+1t+1) = E(t+1[t) — Lt + Dx(t + 1)QE( + 1]8)) (3.20)
P+1t+1) = TE+1)PE+UHTT(t+1) + L+ 1)Ta(t+ 1)L (¢ + 1) (3.21)

Gain:

Lit+1) = Pt+15)CT¢+1)A" ¢t +1) (3.22)
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Alt+1) = CE+DPE+1)CT(t+1)+ Sa(t +1) (3.23)
T(t+1) = I-Lt+1)CEt+1) (3.24)

Residual variance:
Za(t+1) = D@E+1)8,D"(t+1). (3.25)

Note that P(t]t) is the variance of the motion estimation error which is used as variance of measurement
error by any “structure from known motion” module [93]. A similar formulation of the IEKF was used by
Di Bernardo et al. [26]. Similar expressions were also used before in the literature on specific applications;

the first instance to our knowledge was in the recursive computation of the Hough transform [23].

3.4.2 Estimation in the embedding space

Suppose that motion, instead of being a random walk in R, is represented in the Essential manifold as the

“projection” of a random walk through R? (fig. 3.3 left).

We define the operator @ that takes two elements in R**%, sums them and then projects the result onto the

Essential manifold:

@: R xR 5 E

My, My w Q=preps(Mi+ M),

where the symbol “+” is the usual sum in IR**%, With the above definitions our model for motion becomes

simply
Q(t+1) = Q(t) ® nq(1), (3.26)

where nq(t) € N(0,%,,) is a white zero-mean Gaussian noise in R?. If we substitute the above equation
into (3.15), we have again a dynamical model on a Euclidean space (in our case R?) driven by white noise.
The Essential estimator is the least variance filter for the above model, and corresponds to a linear Kalman
filter update in the embedding space, followed by a projection onto the Essential manifold. In principle,

an approximate gain could be precomputed offline for each possible configuration of motion and feature
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positions.

Prediction step:

Qt+18) = Q) ; Q(0/0) = Qo (3.27)
P(t+1Jt) = P(tt)+Zq ; P(0[0) = Py (3.28)

Update step:
QE+1t+1) = Qt+1t) @ L(t+ Dx(t + HA® + 11¢) (3.29)
PE+1t+1) = TE+DPE+1UHTT(t+1) + Lt + 1) (¢ + 1DL7 (¢ + 1) (3.30)

Gain:

Lit+1) = —-PE+1tx" 4+ 1A (t+1) (3.31)
Alt+1) = x(+1D)PE+ 1" E+1) + Sa(t+1) (3.32)
Pt+1) = I-L{t+1)x(t+1). (3.33)

3.4.3 Iterated Essential filter

The IEKF update seen in the previous section may be substituted with a Gauss-Newton iteration, as it is

customary in recursive ID of linear models:

E(k +1) = €(k) = Lvn(k)A(E(k))

where Lyg = J;, '(€(k)) and J, is the jacobian of h and h — XQ is the epipolar constraint.

Note that at each fixed time we could perform a N ewton-Raphson iteration on the function h(y,&), for
which local convergence results can be derived as well as bounds on the convergence rate. This suggests, as
an alternative to the IEKF, to fix ¢ and perform a N. ewton-Raphson iteration along the k coordinate. Once

this is done, we propagate the estimate across time with an iteration which now is linear, and has all the

desirable asymptotic properties.
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Iteration at each fixed time

At each time instant a new set of measurements y(t) becomes available. The coplanarity constraint imposes

h(y(t),€) =0 vt

Define T¢h : IR™ — R™ to be the derivative of the map A and Jn(€) the Jacobian matrix calculated at the
point §. Suppose that there exists some £* such that h(y(t),€*) = 0 for our particular (fixed) t. Then we
may write a first order expansion around the point ¢*, starting from some point & (we neglect time indices
for the remainder of this section); the resulting iteration, which is obtained by neglecting the second order

term of the expansion, is defined by
h(€r) = Jn(€k) (Errr — &)
At each iteration we solve for Y the linear problem
In(&r)Y = h (&)

and then define {y11 = & + Y. In general, also due to noise, we can expect h (&) & Im(Jn(&)), so that we

will be seeking for Y such that J;,(£,)Y is the projection of h (k) onto the range space of J;(&;):
€1 =& — Lvr(k)h (&) .

where Lygp(k) = (JL(&)JTn (§k))_1 Ji(€x). The map defined by the right-hand side of the above equation
is contractive as long as J,(£;) has full rank, in which case the scheme is guaranteed to converge to some
(possibly local) minimum.

At each time the scheme will converge to some £*, which best explains the noisy measurements yi(t),yi (t—
1); hence we have £* = £ + ng where ng is an error term, and can be interpreted as a white noise whose
variance can be inferred from the variance of n and the linearization of the scheme about zero-noise. The

estimate obtained at each fixed time, together with its variance, is fed to a time-integration step, which we
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describe next.

Propagation along time

Suppose at each fixed time the iteration along k described above converges to a fixed point £*(¢), then we

may propagate the information across time with a similar iteration:
e+ ) =&+ L) (6 - )
which realizes a linear Kalman filter based upon the model

{f(t +1) =&(t) +ne(t)
(3.34)

£() = £(1) + no(t)

where n¢ is the noise driving the random walk model for the parameters, which we assume to be white
zero-mean and Gaussian, and ng is the error made by the fixed-time iteration. L(t) is the usual linear
Kalman gain [58, 55]. The above model has all the desirable properties, as it satisfies the conditions of the
asymptotic theorem of Kalman Filtering.

Suppose now that the k—iteration has converged to a local minimum, which is compatible with the
current observations. At the next step the ¢—iteration will predict an estimate which is in general no
longer compatible with the current observations. This should help to disambiguate local minima as the

measurements accumulate in time.

3.5 Experimental assessment

In this section we describe an experiment on a real image sequence and one simulation experiment, in order
to unravel the different features of each scheme and their behavior when close to singular configurations in

the motion space (e.g. pure rotation about the optical axis).
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3.5.1 Simulation experiments

We have generated a cloud of 20 feature points at random within a cubic volume of side 1 m, placed
1.5 m ahead of the viewer. The scene was viewed under perspective projection from an image plane of
500 x 500 pixels with a focal length of 1, corresponding to a visual field of approximately 50°. Gaussian
noise with 1 pixel std was added to the measured projections, according to the performance of the most
current feature-tracking schemes [6]. The viewer was then made to navigate around the cloud with constant
velocity for 50 time instants (frames), after which the viewer stopped translating and only rotated about its
center of projection for 25 frames, inverting the direction after 15 of them. Finally, the viewer resumed its
roto-translational motion in order to return to the initial configuration.

This experiment is interesting from many extents: first of all, for part of the sequence the model is in a
singular configuration, since the translational velocity is zero. Indeed, as we have discussed in section 3.3.3,
the schemes proposed still recover some normalized direction of translation, and the correct rotational ve-
locity. Once the appropriate scaling information has been inserted, full translation is correctly estimated.
Secondly, in the first and the last part of the experiment, the motion is designed such that the effects of
translation and rotation produce the same variation, up to first order, in the derivative of the observations.
This is a well-known ambiguous stimulus in which it is difficult to distinguish locally the effects of rotation
from those of translation.

We have systematically varied the conditions of the experiments, by changing the distance in space from
the cloud of dots between 1 m and 5 m , the initial conditions between 0% and 1000% off the true value, the
level of measurement noise between 0 and 2 pixels and the number of visible points between 1 and 100.

It is interesting to notice that, while previous schemes based upon the Essential matrix needed at least
8 [73] or 5 [51] visible points at each time instant, here we can allow any number of points even below the
threshold of 5, since we integrate over time the motion information.

The behavior of the various versions of the Essential filter was consistent, with a graceful degradation of
the estimates as the noise level increases, and a need for more precise initial conditions as the noise increases
and the number of visible points diminishes. The performance of the filter saturates as the number of visible
points increases beyond 20. The performance also degrades as the points move far away from the viewer

and as the structure approaches a plane. Under these conditions, in fact, the matrix X approaches rank 6,
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Translational Velocity: local coordinates (solid) vs. truth (dotted)
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Figure 3.4: Components of translational velocity as estimated by the local coordinate estimator. The ground
truth is shown in dotted lines.

rather than its normal rank of 8 [33]. A thorough experimental evaluation is reported in chapter 11.

The local coordinate estimator

In figures 3.4-3.5 we show the six components of translational and rotational velocity as estimated by the
local coordinates estimator. Ground truth is plotted in dotted lines. Convergence is reached in less than 20
steps from an initial condition within 20% off the true state. Initialization is performed using one step of
the traditional Longuet-Higgins’ algorithm [73]. Tuning of the filter has been performed, as with the other
schemes, within an order of magnitude. It must be pointed out that we have observed a better behavior by
increasing the variance of the pseudo-innovation. This is due to the fact that the EKF relies on the hypothesis
that the measurement noise is white and the linearization error is negligible, while this is often not the case.
An increase in the variance of the measurement noise accounts for the residual of the linearization. The

computational cost of one iteration is of about 100 Kflops for 20 points.

The estimator in the embedding space

In fig. 3.8 we show the 9 components of the Essential matrix as estimated by the Essential estimator in the

embedding space. Since convergence is about 4 times slower than the local coordinate version, but each step
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Rotational Velocity: local coordinates (solid) vs. truth (dotted)
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Figure 3.5: Components of rotational velocity as estimated by the local coordinate estimator.

requires 4 times less computation, we have sampled the measurements four times faster, ending up with a
400 frames-long sequence.

Note first that, between the frames 200 and 300, the true value of the state is zero. The estimates of the
filter drift off to non-zero values, since the Essential matrices are defined as to have unit norm. Such non-zero
values are those that allow estimating correctly the rotational velocity and a dummy direction of translation
even in the case of pure rotation about the optical axis, as discussed in section 3.3.3. Once transformed the
state into local coordinates and inserted the appropriate scale, it is possible to recover the correct rotational
and translational components of motion, as shown in figures 3.6-3.7.

The homeomorphism ® defined in (3.6) may have singularities due to noise when the last eigenspace is
exchanged with one of the other two. In fact, in presence of noise, the third singular value of the estimated
Essential matrix is non-zero, and occasionally may even become bigger than the other two. Since the SVD
sorts the singular values in decreasing order, the eigenvectors — which encode the motion information — may
be interchanged.

This causes the spikes observed in the estimates of motion. However, there is no transient to recover, since
the errors do not occur in the estimation step, but only in transferring to local coordinates. The switching

can be avoided by a higher-level control on the continuity of the singular values. The only significant error in
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x 107 Translational Velocity: Essential estimator (solid) vs. truth (dotted )
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Figure 3.6: Components of translational velocity as estimated by the Essential estimator. Note the spikes
due to the local coordinate transformation. Note also that such spikes do not affect convergence since they
do not occur in the estimation process, but while transferring to local coordinates. The switching can be
avoided by a higher-level control on the continuity of the singular values of the estimated state. There is a
significant error in the local coordinates at around frame 260, when the translation is zero and the direction
of rotation is inverted. The smoothness imposed by the dynamics of the parameters is responsible for the
transient in the estimates of the rotation, which propagates onto the estimate of translation, causing a visible

spike with a significant transient.

the local coordinates occurs at around frame 260, when the translation is zero and the direction of rotation
is inverted. The smoothness imposed by the dynamics of the parameters is responsible for the transient in
the estimates of the rotation, which propagates onto the estimates of translation, causing a visible spike with
a significant transient. Note that a much less relevant spike was also present in the estimate of the filter in
local coordinates (figure 3.4).

The computational cost of our current implementation of the filter in the embedding space amounts to
circa 41 Kflops per each step for 20 points. Initialization was performed within 20%, as in the previous case,

using one step of the algorithm of Longuet-Higgins [73].

The 2-D iteration

The Essential filter in local coordinates has been implemented using the double iteration described in sec-

tion 3.4.3. The results are reported in figures 3.9-3.10. This scheme reaches similar accuracy to the local filter
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Rotational Velocity: Essential estimator (solid) vs. truth (dotted)
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Figure 3.7: Components of rotational velocity as estimated by the local coordinate estimator. The ground
truth is shown in dotted lines. Note the spikes due to the local coordinate transformation. Note also that
there is no transient to recover since they do not occur in the estimation process.

after proper initialization, even though the error analysis used for calculating the variance of the estimates
at each fixed time was only approximate. Speed may be adjusted by varying the number of iterations at each
fixed time. We have noticed that a number of steps between 3 and 7 is sufficient. The cost of the scheme for
7 iterations and 20 points is 100 Kflops. The simulations reported were performed using a constant variance

of the error of the k-iteration.

3.5.2 Experiments on real images

We have tested our schemes on a sequence of 10 images taken at the University of Massachussets at Amherst
(see fig 3.11). There are 22 feature points visible; ground truth and feature tracking have been provided.
Due to the limited length of the sequence, we have run it on the local coordinates estimator which, however,
has a transient of about 10-20 steps to converge from arbitrary initial condition. Hence we have run the local
estimator on the 10 images starting from zero initial condition, and we have used the final estimate as initial
condition for a new run, whose results we report in figures 3.12-3.14. We did not perform any ad hoc tuning,
and the setting was the same used in the simulations described in the previous paragraphs. In fig. 3.12

we report the 6 motion components as estimated by the local coordinate estimator and the corresponding
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ground truth (in dotted lines). The estimation error is plotted in figure 3.13. As it can be seen the estimates
are within 5% error, and the final estimate is less than 1% off the true motion. Finally, in fig. 3.14 we display
the norm of the pseudo-innovation of the filter, which converges to a value of about 103 in less than 10 +

5 steps. In this experiment, we have used the true norm of translation as the scale factor.
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x 107 Components of Q: Essential estimator (solid) vs. truth (dotted)
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Figure 3.8: Components of the Essential matrix as estimated by the Essential estimator. Note that there are
no spikes. Note that the estimates between time 200 and 300 are non-zero, despite the ground truth (dotted
line) is, since the Essential space is normalized to unit-norm. The value of the components of the estimates
of Q in the singular region T = 0 allow us to recover correctly the rotational velocity, once transformed to

local coordinates.
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Translational Velocity: 2D estimator (solid) vs. truth (dotted)
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Figure 3.9: Components of translational velocity as estimated by the double iteration estimator.

Rotational Velocity: 2D estimator (solid) vs. truth (dotted)

0.1
£ o
o1 N S
10 20 30 40 50 60 70 80 90
time
x 107
5[»
§ OL
-5
10 20 30 40 50 60 70 80 90
time

10 20 30 40 50 60 70 80 90
time

Figure 3.10: Components of rotational velocity as estimated by the double iteration estimator.
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Figure 3.11: One image of the rocket scene.

Motion Estimates for the rocket sequence
12 T T T T T T T

Motion components

Figure 3.12: Motion estimates for the rocket sequence: The six components of motion as estimated by the
local coordinate estimator are showed in solid lines. The corresponding ground truth is in dotted lines.
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Motion error components for the rocket sequence

Normalized error components

Figure 3.13: Error in the motion estimates for the rocket sequence. All components are within 5% of the
true motion.
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Figure 3.14: Norm of the pseudo-innovation process of the local estimator for the rocket scene. Convergence
is reached in less than 5 steps.
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Chapter 4 Observability of “Structure From Motion”

In this chapter we analyze the possibility of inferring three-dimensional structure and/or motion from a
sequence of images. As we have seen in previous chapters, structure and /or motion may be described as state
or parameters of nonlinear dynamical models that have perspective projection as a measurement equation.
Studying the possibility of inferring structure and/or motion from a sequence of images is equivalent to

assessing the observability of the corresponding models.

Background and notation

We are going to use some of the properties of rigid motions, which are described as points on the Lie group
SE(3). A rigid motion is composed of a translation vector T € R® and a rotation matrix R € SO(3). A rotation
matrix can be represented locally via the exponential of a three-dimensional vector Q € IR3: R = 2, We could
also represent a rigid motion by an instantaneous translational velocity V' € R® and a rotational velocity w € IR3
(the infinitesimal generators of the group action). For more details see [81]. For a general introduction of the
terminology on observability, see appendix F.

In this chapter we will use the same notation described in chapter 2 and chapter 3. In particular, we call
X € R? the coordinates of a generic three-dimensional vector in space. The coordinates of N points may be
collected into a 3 x N matrix X € R**Y. The same applies for y € RP?, which is defined as the perspective
projection of the generic point in 3-D: y = 7(X). Again, we will use the same symbol for the coordinates of the
projection onto a plane and the homogeneous projective coordinates.

Outline of the chapter

We will first study the observability of the models described in chapter 2, and prove that such models are locally
observable modulo a one-dimensional subspace of the state-space. This does not mean that the linearization of
these models is observable, as we will show. We then study the observability of the Essential model, as described
in chapter 2. Reduction does not alter the dimensions of the observable subspace, but it introduces singular

configurations in the observable space.

4.1 Observability of structure and motion

In chapter 2 we have seen a number of models involving structure (shape and pose) and motion. Such models

are equivalent, in the sense that they are related by coordinate transformations of the state space. Therefore,
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we choose one of them to perform the analysis, namely the structure-velocity model
Xi=0 X{(0) = X§ e R®
v=0 v(0) = vy € R° Vi=1...N. (4.1)

yi(t) =T (fot ev/\ngE(S)TXé)

We restrict our analysis to constant-velocity motion, and for now we let each point be described by its 3-D
coordinates X§ € IR® relative to the initial time-instant (we address normalization in section 4.1.1). We also
assume that points are in general position, which means that they do not line up in zero-measure sets in R?,

and that there is no noise in the measurements. Let
y(t, Xo,v0) (4.2)

be the (measured) output trajectories starting from initial conditions Xy, vo. We recall that the generalized

velocity v is described in coordinates by a translational velocity V' and an instantaneous rotational velocity
w:

VA € se(3) = € RS, (4.3)
The integral of the generalized velocity gives motion; we write symbolically!
i
g(t) = / e dspa)T (4.4)
0

where g(t) € SE(3) can be described using a rotation matrix R(t) € SO(3) and a translation vector

T(t) € IR?, which are iven, under constant-velocity, by
g

R(t) = e“M (4.5)
T(t) = TtV (4.6)
where T(wit) = (1—e") g + 200 it full 0

and 7(0,¢) = It

1See the discussion in chapter 2 regarding the integral of a generalized velocity.
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In this context, the symbol A stands for the cross-product 2. Therefore, we may write the structure-velocity

model in coordinates as

( Xy =0 X40) = X € R?
V=0 V(0) =V, € R®
Vi =1...N. (4.7)
w=0 w(0) = wp € R®
yi(t) = m (e?NXE + T (w,t)V)

And now the observability question:

Given an initial condition for the above model: Xq, Vo, wy and a set of output trajectories {§(t, Xo, Vo, wo) }eeqo,7]s

do there exist different choices of initial conditions Xa, Vi, wq such that

¥ (t, XO,VO,wo) =y(t, X,, Va,wa) VE€[0,7] 7> 0?7

We call (X, Vo,wo) the set of initial conditions that generate trajectories that are indistinguishable from

those generated by X, V;, wo:

I(XOa %awo) = {X7 I/,(,U l y(t7x7 ‘/7‘*)) = S’(t,XO, %;WO) ) t} (48)

Then the observability question can be written as

[(XO,%,L{JO) ; {XO,%,W()}. (49)

4.1.1 Global observability and the scale ambiguity

The answer to the observability question is clearly negative, since

I(X07 1/07“}0) 2 {QXO,Q%,WO I Vae ]R‘} (410)

2The cross product between two vectors in R3, X! A X2 can be represented as the product of the matrix (XiA) =
0 -x} X!

x1 0 —X} | with the vector X2.

-X: Xxi 0
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This is a well-known scale ambiguity, which essentially says that objects with the same shape “which are

twice as big, twice as far and translate twice as fast look identical”. To see this it is sufficient to notice that
m(X)=n(aX)V a e R, (4.11)

and, therefore,
y(t, Xo, Vo, wy=m (e“’M)—(o + 7T (w, t)V) =7 (e“’/\ta)_(o + T (w, t)aV) = $(t,aX,, aVy, w). (4.12)

One way to get rid of such an ambiguity is to normalize the states that are affected. One may constrain any
one coordinate of X' to be a specified value, or constrain the coordinates of the translational velocity, for
instance [|V|| = 1. Alternatively, we may constrain X to be scaled to norm one. This is done in the models

described in the previous chapters by imposing X, € S3V ~1ie. by choosing o = ”)—(10” (see appendix 2.6).

Therefore, we know that there will be at least a one-dimensional unobservable subspace of the state of our

model, so we may downgrade our observability goal is to see whether this is the only one:

I(Xo, VE),OJ()) ; {CMXO, aVy, wg l Yace IR,} (413)

4.1.2 Local observability: special cases

Pure rotation

Suppose that motion consists of pure rotation about the optical center, so that V = 0 V ¢. Then it is

immediate to see that

v, XE,0,w)=m (e“NMXp) =7 (eMalX() (4.14)

and therefore

I(X},0,0) D {a'X},0,w |V o € RV 5} (4.15)

Note that this is not an overall scale affecting all points but, rather, one scale parameter per each point.
This means that the position in space of each point can be determined only up to a line passing through

the center of projection. Its position along this line (depth), however, cannot be recovered. This is also a
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well-known fact: pure rotational motion about the optical center does not allow to infer 3-D information

about the environment.

We may ask if these are all the undistinguishable initial conditions, or if there are other w, # wq that
generate the same measurements. The answer is no. In fact, if Vi, XE,0,wp) = ¥ (t,X,0,w,) V ¢ then, in

particular, y*(0, X, 0,wp) = y*(0, X§,0,w,), and since y*(0) = m(X¢), then we can write
yit) =7 (e“MXE) =m (e“’“Atyi(O)) =7 (e“*"*y*(0)) (4.16)
and furthermore ¥*(t);=0 = wo A y(0) = w, A y%(0), which is true only if
¥ (0) Afwo — w,] =0V i (4.17)

That is to say that the difference between the two initial conditions must be parallel to the lines passing
through the center of projection and each point on the image-plane. This of course cannot be true as soon

as two non-coincident points are observed, which implies that Wq = wp and, therefore,
I(X5,0,w) = {&'X{, 0w [Va' € RV =1...N > 2}. (4.18)

If only one point is observed, then I(Xy,0, w) ={aXp,0,w+AXy |V a, ) € R}.

Pure translation

Let us now assume that w = 0 V ¢, while V # 0 and characterize the set I (X%,V,0). Assume that
y'(t, X§, V,0) = y*(t,X%,V,,0) V £. Then in particular y'(0) = m(X}) = m(X) so that Xj = yizi

and X! = y2 Z¢. Then we have
Y (1, X5, Vo,0) = 7w (yh 25 + Vot) = 7 (yi Zi + Vat) (4.19)
and so for its derivative at ¢ = 0, which can be written as

V' (mo=A'—2 =A% Vi =1...N (4.20)
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where

A= [ I -y} ] (4.21)
Therefore, if V, and Z’ generate the same set of measurement as Vj and Z}, then

Vo Vol .
A [Zé ZéJ =0V (4.22)

which happens either when ZQ — —‘Z/—‘:— = 0, or when it belongs to the null space of A* V i. It is immediate to
0 a
see that the first condition corresponds to V, = aVj and Z¢ = aZ$, which is the well-known scale ambiguity.

As for the second condition, it corresponds to

Voo Va iy, :
— —— =Ny, Vi=1...N; Xe R 4.2
Zé Zg YO ? i € ( 3)

which can be written, after defining p* = %‘3—, as
Vo—p'Vo=XXjVi=1...N; \.,p' € R. (4.24)

For the above condition to be satisfied with A* # 0 all points X{ must be aligned on plane. In fact, the left
hand-side of the above equation describes a number N of points on a line passing through Vj and parallel
to V,. In order for us to be able to choose scalars A* so that AXE line up, the points X} must belong to a
plane through the origin. Since we have assumed generic-position conditions, not all points lie on a plane,
and therefore the only solution is A’ = 0, which again corresponds to the usual scale ambiguity. Therefore

we have

I(Xo,V,0) = {aX4,aV ¥ o € R}. (4.25)

Planar structure

From the previous discussion, which will be made general in section 4.1.3, we see that structure and motion
are observable — modulo the scale ambiguity — whenever the points do not lie on a plane passing through
the origin (optical center). Note that, in order to maintain all given points on a plane through the origin,

we need to constrain motion so that the optical center remains on that plane, which means that we can only
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rotate about a vector orthogonal to the plane, and translate along a vector parallel to the plane. Therefore,
if we know that motion and structure are on some plane, we can take it as a slice of a cylindrical world,
which projects onto an image-line, and re-scale the whole problem to a “2-D from 1-D” task. We can easily

derive models which are equivalent to the ones proposed in section 2.2.1 by just substituting

R3 R?
RP? RP!
S? St

SE(3), se(3) SE(2),se(2)

A

2N = 83N=D-1\ 50(3) S2N=D=1\ 50(2).

Therefore, if we know that motion and structure lie on a plane, we can eliminate the un-necessary states
and re-formulate the problem in a smaller-dimensional space. Note that this situation actually occurs, for

instance, in autonomous navigation in buildings’ interiors, and it can be readily detected using simple rank

tests [106].

Another interesting case is when points are contained on a plane not passing through the optical center,

i.e.

X' eR|InecR? | nTX =1. (4.26)

In such a case the transformation undergone by the projection of feature points between any two different

views can be represented as an homography, which consists of a scaled linear transformation of the projective

coordinates:

yi(t) ~ At)y) € RP? (4.27)

where ~ indicates equality up to a scaling factor and A(#) is a generic 3 x 3 matrix. In order to see that it

is sufficient to write the measurement equation as

y'(t) =7 (R®)XE+T(t) - 1) = m (RE)Xh + T(t)nTXE) = 7 (A(t)X5) (4.28)
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where we have defined A(t) = R(t)+ T(¢)nT. The last equation is equivalent to (4.27), and is linear in A(t),
which has 8 independent parameters that contain all the information about rotation, scaled translation and
normal vector.
Such a case is singular in epipolar geometry [76], while we are going to see soon that it is observable from

the models described in section 2.2.1.

4.1.3 The general case

We have seen that shape can be observed at most up to a scale when translation is not identically zero.
When there is no rotational velocity, then such a scale ambiguity is the only unobservable subspace under
general-position conditions. We now turn to prove that rotation is irrelevant as far as observability of
structure is concerned, and therefore we can carry out a reasoning similar to the zero-rotation case to prove
that structure is observable modulo a scale subspace under general-position conditions. Before proceeding,

we make a few remarks.

Remark 4.1.1 The observability of structure (modulo a scale) does not imply that there do not exist configu-
rations of points that do not allow reconstruction of motion or structure. It Just says that such configurations

are a zero-measure set (after scale compensation), and therefore turns their study into a singularity analysis.

Remark 4.1.2 The tools used for studying observability are intrinsically local. Which means that, given two
sets of initial conditions, their corresponding output trajectories can be distinguished by staying arbitrarily
close to the initial conditions. This does not imply in general that the same output trajectories can be distin-
guished for arbitrary state evolutions, for one could conceive some periodic motions and a synchronous output
such that the initial conditions become indistinguishable. However, again, these are pathological conditions,
while under generic conditions we can assume that we can distinguish output trajectories corresponding to

different initial conditions for arbitrary state evolutions.

Remark 4.1.3 Note that local observability does not imply that the linearization of the model is observable,

as we will show in section 4.1.5.

We now proceed with proving that

I(Xo, Vo,wo) C {aXo,aVp,wo V a € R}. (4.29)
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As we have done in the zero-rotation case, we exploit the measurements at time ¢ = 0 to substitute X} = y§ zZ

and X! = ytZ:. Then we have

. Ve . -V, . ‘
Vi (t)i=o = AZZ—‘Q +Bwy =A%+ Bw, Vi =1...N (4.30)
0 a

where
: —yiv: 1+ -y
Bi = 172 ! ! , (4.31)
-6 vy ovh |

We can write the above equation as

Z% Va, _ 3 ~ s
Azt =g =Bovi=1.N (4.32)

where & = w, — wy. For this to be true it is necessary that the vector B'@ be in the range space of A’ for

all 7, i.e. there must be scalars A}, Ay, A\ such that

Al
AL\ | =B (4.33)
Ay
or equivalently
AL -yiys .
= w1
0 ~1-yi |
0 1+yi” 5
Az Yiys ]
~¥yils =yh |
- wi.
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The first set of equations imply that @y = 0 or yi” = —1, similarly the second set implies @y = 0 or yi° = —1,

and the third equation implies either w3 = 0 or y? = —y2. Therefore we conclude that

(4.34)

[SE)
It
o

which means that there are no indistinguishable rotations. This also implies that, if there are undistinguish-

able combinations of translation and depth, these must satisfy

Vo Va .
(=~ —-—)=0Vi =1...N 4.35
Al ~ ) =0V i (4.35)
which brings us back to the analysis of the zero-rotation case.
From the discussion in the previous section, it follows also that V, = aVp and Z! = Z}, which allows us

to conclude that

I(Xo, Vo,wp) = {aXo,aVy,wy |V o € R}. (4.36)

Therefore motion and structure are locally observable modulo a one-dimensional linear subspace. Analo-

gous results can be obtained for discrete-time models, under general-position conditions involving structure,

motion as well as time sampling.

4.1.4 Local-weak observability

In the previous section we have explored the local observability of structure and motion by assuming general-
position conditions. Such conditions are not satisfied when points line up in some particular plane in 3-D or
when just one single point is visible.

Since we can measure the image over an extended period of time, we could try to take increasing levels
of derivatives, and explore to what extent motion and structure are observable with one point only.

The local observability space O is defined as the set of the output functions and all their possible Lie
derivatives along vector-fields in the accessibility algebra (see [53, 48, 63, 64, 66, 82, 104] for an intro-
duction on nonlinear observability, and appendix F for notation). Under the constant velocity assump-

tion, the state vector-field in (2.35) is autonomous and, therefore, the observability space is spanned by
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{7, L Fse .,LI;;TF ...}, where f represents the state vector-field and L 77 is the Lie derivative of the output
function 7 along the state vector-field . The observability codistribution is d@® = {dh | h € O}. The state
manifold is IR?, intended as a local coordinatization of se(3) x R®. Computing the observability codis-
tribution is trivial but messy, and we have employed symbolic manipulation programs that also compute
normal rank. Such a rank reaches its maximum of 8 after two levels of Lie differentiation (and therefore
three derivatives overall). One could therefore conjecture that the one-dimensional unobservable subspace
coincides with the scale ambiguity discussed in previous sections.

Indeed it is the case, for it can be verified that the null space of the observability codistribution is, in

case of nonzero translation
Null([dr, dL Fr, deﬂr, dL?;’f(']) = Span [ X, X, Xs Vi Va V3 0 0 0 J .
In the case of pure rotation, a basis of the null space of the observability codistribution is

[X1X2X3000000Ja

and all the points with the same projective coordinates are indistinguishable. In the case of nonzero forward

translation, the set of states which are indistinguishable from [X, V; wo]T is therefore

X()S

I(XO)%ywo):{ VOS ' SE]R'}a

Wo

which corresponds to what we have found for the general case.

Therefore, even in the case of one single visible point, we find that structure and motion are locally
observable modulo the one-dimensional subspace, under the constant velocity assumption. Indeed, adding
more points does not change the structure of the observability space, since feature points are not coupled
with each other in the state model.

From our point of view, the line of work in epipolar geometry that tries to derive explicitly all constraints

involving measurements and unknown parameters is equivalent to an algebraic analysis of the observability
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codistribution. The fact that the observability codistribution reaches the maximum rank after three levels of
differentiation (and therefore four derivatives overall, since the observability codistribution is the collection of
differentials of the Lie derivatives of the output) is equivalent to the statement that there are no independent
constraints beyond the quadri-linear ones (in the measurement), derived by Faugeras [31].

One may then raise the question of what is the best way to exploit all independent constraints: whether
to use a local observer, which is practically equivalent to a sort of dynamic inverter of the observability
codistribution, or to write explicitly all constraints and then solve polynomial equations to estimate the

unknown parameters. The answer depends upon the particular application one is targeting, as we have

discussed in 2.4.

4.1.5 Linear observability

Consider the model for structure and motion estimation, for instance in its differential form (2.35). If we

linearize that model around a reference initial condition, for instance with all points on the image plane,

then we get the linear system

£=A¢
(4.37)
y=0C¢
where ¢ = {X,V,w}, A = %(EE) C= 875(5.5); for N = 1 we have
(wor) Iz —(FoA)
A = 0 0 0
0 0 0
¢ = [ zA 00 J
i 1
cA” = _Z’A[ (wor)*  (woA) ™" —(woA) " (FoN) J
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The observability matrix for the linearized system is hence

(%A 0 0

Nl
IS

%A(wo/\) —%A(}_’o/\)

2 AwoN)® L A(woN)T —%A(wo/\y(}_’o/\)J

It is easy to see that O has rank 5, in face of a state space of dimension 9. The linearized system is, therefore,

not observable, and we say that the original model is not linearly observable.

4.2 Observability of the Essential model

In the framework of the Essential filter, motion estimation is viewed as the problem of identifying the

following nonlinear implicit model with parameters on a the “Essential manifold”:

x'(t+ 1)TQxi(t) =0 Q=TAR|(TA) € s0(3),R € SO(3)
(4.38)

yi(t) = x*(t) + ni(t) Vi=1...N.

Since the Essential constraint is linear in Q, it is possible to write it using the notation
x(x,x)Q =0

where x is a n X 9 matrix and Q is interpreted as a nine-dimensional vector obtained by stacking the
columns of Q on top of each other. We also write x’ for x(¢ + 1). We will use both notations x(x,x’) and
x(t) depending on whether we want to emphasize the points that contribute to the epipolar constraint or
the time in which it is computed.

We will assume constant velocity, so that the unknown parameters in the Essential model (4.38) are
described as a point on the Essential manifold E. We may therefore transform the identification task onto

a state estimation task where the parameters and their (trivial) dynamics play the role of the state 3. The

31n a stochastic framework the parameters of the Essential model describe a random walk in the Essential manifold. In
chapter 3 Essential parameters are modeled as either a random walk in the local coordinates lifted to the Essential manifold,
or as & random walk in the embedding space projected onto the manifold.
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resulting model has the form ]
Q(t)=0 (AN
- (4.39)
X(¥,5)Q = vy
where the noise term v, is induced by having substituted y* for x* in the Essential constraint. Note that
the above model is independent of structure (shape and pose), and it only describes inter-frame motion (or

“discrete velocity”). It is possible to integrate the above model from the initial time instant, so that Q

describes motion relative to the initial time, just by substituting ¥ with §(0).

Remark 4.2.1 The price we must pay in order to eliminate structure is that the noise term vy 45 no longer
white, for it is correlated within one time-step. In order to whiten it it is necessary to add N states to the
model — which annihilates the benefits of the above model — as it is shown in [90].

However, a simple implicit Extended Kalman Filter (IEKF) implemented by approxzimating vy with a
white noise has proven effective in real-world situations. In chapter 8, two recursive schemes are proposed
for solving the estimation problem: one is based upon an [EKF in the local coordinates of the Essential
manifold, the other is based upon a linear update on the linear embedding space R?, followed by a projection

onto the Essential manifold.

We now turn our attention to the observability of the model (4.39). Suppose that, at time ¢ + 7;, the matrix

x(t + 7;) has a null space of dimension ki. When the viewer moves with constant velocity, we may write

x®HQE) = 0

xE+7m)Q(t+7m)=x(t+m)QE) = 0

X(t+TP)Q(t+Tp):X(t"'Tp)Q(t) =0
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and state rank conditions for observability on the extended matrix

( x() -

x(t+71)

L X(t+TP) J

It is easy to prove * that the above matrix X reaches rank 8 if and only if there does not exist a plane that
contains all the visible points or a (proper) quadric surface® in IR® which contains all the visible points and
the path of the center of projection. It is immediate to see that, if all the visible points are contained in a
plane, then x has rank 6. Suppose therefore that the visible points do not lie on a plane. We treat visible
points and centers of projection at subsequent time instants in the same fashion, since they play equivalent
roles in the Essential constraint. Therefore, we will choose two of them as reference centers of projection, and
treat the remaining as visible points. We now show that rotation plays no role in the study of observability
of the Essential model.

Let T # 0. Consider the epipolar constraint written relative to a reference frame which is centered
mid-way between the two optical centers at each time step. Call T = %, R=e%" and X = RX +T. The

Essential constraint reads

i T

X" Qx' = [RE - DTQRT (X +T) = (' - TTRTQR"(x + T) =0 1<i<N. (4.40)

Since R is invertible, we may redefine Q to be RTQRT without loss of generality. Therefore, we will assume

R = 1. Equation (4.40) becomes
. ~ . ~ ~T ) - ) ~T  ~ ~ ~
E-TQEFER'+T7)=x" Q%' -TTQx' +xi QT -T7QT =0 1<i<N. (4.41)

Call < Q >={Q e R*® | (¥ -D)TQ(x +T) =0, 1<i< N}, which is a vector subspace of R3*3,

We have to prove that its dimension is one. Indeed, dim(< Q >) is always bigger or equal than one, since

4The following result is a more general version of the result stated by Longuet-Higgins for the case of stereo (two views) [74].
A. Mennucci (personal note) provided a version of the proof which has been extended here.

5A quadric surface is a set {reR3>*® | 2TAz+ 0Tz +¢c= 0} where A is a 3 X 3 matrix, b is a 3—vector and ¢ is a scalar.
It is proper if it is a proper subset of R3.
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it contains the matrix TA, as can be seen by direct substitution in eq. (4.41).

Now, suppose that the equation (4.40) holds for a matrix M , and decompose it in the symmetric and

: : _ M-MT — M4+MT
antisymmetric part 4 = ¥5%— S = 57—, then

xi' $%1 — 2TT A% —FTST =0 1<i<N.

Then consider the set <V >= {z € R® | 279z — 2T7 Az — TTST = 0}. This set always contains the two
points 7" and —T, the centers of projection, as it can be verified.
Suppose there is no (proper) quadric surface containing the points %%; then it must be that V = IR?, that
means that S = 0 and 774 = 0; this means that M is necessarily a multiple of TA = Q, so we get that
dim(< Q >)=1.

Vice versa, suppose that the symmetric part S of M is nonzero or that TTA # 0; then the set < V > is
a quadric surface that contains the points %* (by definition), and the points 7' and ~T, which are the two
centers of projection (if the symmetric part § = 0, then the set {z € R® | TT Az = 0} is a plane, which is

in any case a quadric surface).

Remark 4.2.2 Note that the quadric surface is a thin set in the 3-D Fuclidean space, and in general the
measurement noise in the projected coordinates is sufficient to set the model in general-position. Note also

that T' # 0 plays a critical role in achieving global observability, while Q (or R) has no influence.

Remark 4.2.3 Notice that the elimination of structure from the Essential model has the additional cost of

introducing singular configurations that were not present in the general models described in section 2.2.1.
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Chapter 5 Observer reduction in the continuous case:
motion estimation from subspace constraints

In previous chapters we have seen how structure and motion can be described as the state of a nonlinear
dynamical model that has a perspective projection in the measurement equation. Structure and motion may
be estimated simultaneously by a state observer. We have also seen how it is possible to reduce the order of
the observer by eliminating structure from the model (chapter 3). In this chapter we show how it is possible
to further decouple the translational component of motion from the rotational one, and eliminate the latter
so as to be left with a model with only two unknown parameters describing the direction of heading. This

can be done easily in a differential (continuous-time) framework, since the motion parameters appear linearly

in the model.

Background and notation

We are going to adopt a continuous-time representation of rigid motion, through a translational velocity V and a
rotational velocity w. We call X = [X ¥ Z]7 € R® the coordinates of a generic point in space, x = [z y|T = 7(X)
(or x = [z y 1]7) its perspective projection, as in chapter 2, and y the noisy version of x: Yy =X+mn. The
velocity of the generic point under the action of a rigid motion is given by X = w A X + V, where A denotes the
cross product. Due to the presence of the scale-factor ambiguity, we represent the translational velocity V' using
spherical coordinates 6, ¢, as we describe in the appendix at the end of this chapter. We use the notation e to
denote the variance/covariance matrix of the random vector &.

Outline of the chapter

We first describe a technique for decoupling the depth and rotational velocity from the models described in
chapter 2. It is based upon a linear projection resulting in the so-called “Subspace constraint”, introduced in [45].
Such a constraint was used by Heeger and Jepson to formulate an optimization task in order to estimate the
direction of heading from optical flow. We take a different approach, and view the constraint of Heeger and
Jepson as a dynamical model of a very peculiar class, that of so-called “Pfaffian Systems” (a particular type of
Exterior Differential Systems [16]). Such a model, called the “Subspace model”, has as unknown parameter the
direction of heading, represented as a point on a sphere. Estimating motion then amounts to identifying the
Subspace model.
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5.1 Motion reconstruction via least-squares inversion constrained

on subspaces

Consider any of the models resulting from the constraint of rigid motion and perspective projection, described
in chapter 2. The first derivative of the output of such models, which is referred to in the literature as the
“motion field”, represents the velocity of the projection of the coordinates of each feature-point in the

image-plane:

Xi(t) = [%Ai | BiJ V(t) (5.1)

where

, [‘ 1 0 —z
A =
0 1 —g
PR .9 .
4 ’— _wzyz 1 + zt _yz
B = . (5.2)
-1 = in xiyi e

The motion field is not directly measurable. Instead, what we measure are brightness values on the imaging
sensor. For practical purposes, the motion field is approximated by the “optical flow”, which consists in
the velocity of brightness patches on the image-plane. Such an approximation is by and large satisfied in
the presence of highly textured Lambertian surfaces and constant illumination. However, outliers are quite
common in realistic image sequences, due to the presence of occlusions, specularities, shadows etc. . Any
motion estimation algorithm willing to operate in real-time on realistic sequences must be able to deal with
such situations in an automatic fashion.

In the next sections we will assume that we can measure directly the motion field, neglecting outliers.
Only later, in section 5.3.3, will we show how it is possible to spot-out outliers due, for instance, to T-
junctions, specularities, matching errors from the feature-tracking algorithm, and reject them before they

can affect the estimates of 3-D motion.
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5.1.1 Recovery of the direction of translation from two views

By observing a sufficient number of points xX* Vi=1...N , one may use eq. (5.1) for writing an overdeter-

mined system which can be solved for the inverse depth and the rotational velocity in a least-squares fashion.

To this end, rearrange equation (5.1) as

1
Z(t)*

w(t)

X (t) = [AV(6,9) | B]

Since the translational velocity V muiltiplies the inverse depth of each point, both can be recovered only
up to an arbitrary scale factor. Due to this scale ambiguity, we may only reconstruct the direction of
translation; hence V may be restricted to be of unit norm, and represented in local (spherical) coordinates!
as V (0, ¢) € S2. For instance,  may denote the azimuth angle in the viewer’s reference, and ¢ the elevation
angle. If some scale information becomes available, as for example the size of a visible object, it is possible
to rescale the depth and the translational velocity, as we will discuss in the experimental section. When N

points are visible, the equations above may be rearranged into a vector equality:

SRS B S
X—C(X,G,gb)[Zl,...,ZN,w] , (5.3)
where
AV B
C(x,0,4) =
ANV By

and x is a 2V column vector obtained by stacking the x* Vi=1...N on top of each other. At this point

one could solve the above equation (5.3) in a least-squares fashion for the inverse depth and rotation:

=C'x (5.4)

! An instance of a spherical coordinate chart is reported in appendix 5.4.
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where the symbol T denotes the pseudo-inverse. By substituting this result into equation (5.3),
% = CCtx,

one ends up with an ¢mplicit constraint on the direction of translation, which is represented by V(6, ¢).

After rearranging the terms and writing explicitly the pseudo-inverse, one gets the following [45]:
N I -~
[I —-¢(c7e) CT} %= Ctx=0. (5.5)

It is then possible to exploit this constraint for recovering the direction of translation by solving the following

nomlinear optimization problem:

V =arg ‘grélélz ICL(x, V)] (5.6)

In other words one seeks for the best vector in the two-dimensional sphere such that x is the null space of
the orthogonal complement of the range of C~(x, V). If the matrix C was invertible, the above constraint
would be satisfied trivially for all directions of translation. However, when 2N > N + 3, CC' has rank at
most N + 3, and therefore C is not identically zero.

Note that the solution consists in “adapting” the orthogonal complement of the linear space generated
by the columns of ¢ — which is highly structured as a function of V{8, ¢) — until a given vector % is its null
space. Heeger and Jepson [45] first solved this task by minimizing the two-norm of the above constraint
(5.6) using a search over 8, ¢ on a sampling of the sphere.

In section 5.2 we rephrase the Subspace constraints described in this section as a nonlinear and implicit
dynamic model. Estimating motion corresponds to identifying such a model with the parameters living on
a sphere: we propose a principled solution for performing the optimization task, which takes into account

the temporal coherence of motion and the geometric structure of the residual (5.6).
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5.1.2 Recovery of rotation and depth

Once the direction of translation has been estimated as V = V (6, ), we may use eq. (5.4) to compute a

least-squares estimate of the rotational velocity and inverse depth from

=Cl(x,0,d)x. (5.7)

Note that, from the variance/covariance of the estimation error of the direction of translation 0,¢, it is
possible to characterize the second-order statistics of the estimate of the rotational velocity, ¥,. We may
therefore design a simple linear Kalman filter which uses the above estimates as “pseudo-measurements” and

is based upon the linear model
w(t+1) =w(t) + npw
(5.8)

C£N+1;2N+3(xa f,0)% = w(t) + nw
where the notation C;r N+1:2n 43 Stands for the rows from 2N +1 to 2NV + 3 of the pseudoinverse of the matrix

C; npry is the noise driving the random walk model, which is to be intended as a tuning parameter, and n,,

is an error whose variance X, is inferred from the variance of the estimation error for 8, ¢.

5.2 Solving the Subspace optimization with a dynamic filter

In this section we will view the Subspace constraint from a different perspective. Instead of considering it
an algebraic set of nonlinear equations to be solved for the direction of heading, we view it as a nonlinear
and implicit dynamical system, which has parameters constrained onto a two-dimensional sphere. Then we
introduce a local identifier based upon an Implicit Extended Kalman Filter in order to recursively estimate
the heading direction. Once the heading is estimated, it can be fed into a simple linear Kalman filter that

estimates the rotational velocity.

Let us define o = [4, |7 as the local coordinate parametrization of the translational velocity V; @ is the
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azimuth angle, and ¢ the elevation. x* are measured up to some error,
y'=x' 4 7t (5.9)

which we model as white, Gaussian and zero-mean: n: € N (0,%,:). In the presence of outliers, this
hypothesis is violated, and we will show in section 5.3.3 how to detect and reject such outlier measurements
before they can affect the estimation process. The error in the location of the features induces an error in

the derivative,

i s .7
yl :XZ+nZ,

which is usually approximated by either the optical flow, or by first differences of feature positions between
time ¢ and ¢+ 1. Note that y’ is an actual measurement, and is not derived from y. This is the reason for
the notation y’ in place of y. Therefore, n’ is not the derivative of the n', and can actually be considered
independent. Call x the column vector obtained by stacking the components of x?, similarly with x. Now

define C*(x,a) as in (5.3). Then the Subspace constraint (5.5) may be written as ¢+ (x, @)% = 0. Now

CH(x,a)x =0 Via) € S2
(5.10)

yi = xt 4t Vi =1...N
represents a nonlinear implicit dynamical system of a particular class, called Exterior Differential Sys-
tems [16]. Solving for the translational velocity is equivalent to identifying the above Exterior Differential

System with parameters V() on a differentiable manifold (the sphere in this case) from the noisy data y.

5.2.1 Identifying motion using local implicit filtering

The direction of translation, encoded by the two-dimensional vector «, is represented in the above model
(5.10) as an unknown parameter which is subject to three types of constraints. First of all, V() is constrained
to belong to the unit-sphere in RS. Secondly, the dynamics of the states x induces trivially a constraint on

the outputs y:

Cly,alt)yr=n (5.11)
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where 7 is a residual noise induced by the measurement noise n. The parameters o must evolve in such a
way that the outputs y satisfy the above dynamics. Since the outputs are directly measured, we could call
the above constraint the “a-posteriori” dynamics. However, often times the direction of translation is not
free to change arbitrarily, for there is some “a-priori” dynamics it must satisfy. For instance, if the camera
is mounted on a vehicle, it must move according to its kinematics and dynamics, which results in a model

of the generic form

a(t+1) = fla,ng) (5.12)

where n, summarizes all the significant parameters of the vehicle. If the camera is hand-held, or the
mechanics of its support is unknown, we know at least that velocity must be a continuous function and the
acceleration cannot exceed certain values. In lack of a mechanical model, one may employ statistical models

as a means of describing some inertia. For instance models of the form
a(t+1) = fla) +ng ne € N(0,X,) (5.13)

where f is a polynomial function and n, is a white, zero-mean Gaussian noise.

By putting these three constraints together, we can write a discrete dynamic model for the parameters

(5.14)

{ a(t+1) = flat)) + na(t)
Cly,alt)y!

7

o€ [0.m) x [~ 5)

which can be used for designing an Implicit Extended Kalman filter, whose equations we report in the next
subsection. Before doing that, however, we would like to stress that the function f in the model equation
(5.14) is a design parameter which is left to the engineer, and depends upon the circumstances in which the
algorithm is to be used.

If the algorithm is intended for general purposes, one may choose a conservative model, which is a model
that fits a larger class than the actual one, neglecting more specific dynamics that may be present, for
instance, in vehicle guidance, helicopter flight etc. . Should further information about the dynamics of the

support of the camera be available, it can easily be exploited by inserting it into the model (5.13).
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A typical case in which no model like (5.13) can be found is when there is no temporal coherence between
subsequent images, which are snapshots of a scene taken from various points of view at different time instants.
In such a case, a batch method is most appropriate. Since we are interested in real-time estimation, we always
assume that the images are taken sequentially from a camera, so that temporal coherence between subsequent

images is guaranteed.

In this chapter, we consider the very simplest instance of a statistical model, which is a first-order random

walk:

flo) =« (5.15)

It is not superfluous to point out that the first-order random walk (Brownian motion) does not restrict the
motion to having constant velocity. The variance of the noise driving it, £,, can be considered a tuning
parameter that trades off the “speed of convergence” with the “precision” required. One may consider this
as a starting point: if the dynamics of the camera in a particular experiment are not captured by this simple
model, one can move up the class and consider richer models. It is our experience, however, that a first-order
random walk works quite well in most cases, in the sense that it allows decent precision while not limiting
the range of possible motions to a significant extent. In the experimental section we will show how the simple
Brownian motion performs on a variety of situations, ranging from constant-velocity motion, to sinusoidal,

to discontinuous velocity, without changing any tuning or modeling parameters.

5.2.2 Equations of the estimator

From the model (5.14), it is immediate to derive the equation for an Extended Kalman Filter (EKF) [55, 58]
that estimates the direction of translation .. The only caveat is that the measurement equation is in implicit

form. The key observation is that the vector
e(t) = CH(y(t), &t + 1]1))y’ (5.16)

plays the role of the “pseudo-innovation” process, and therefore the standard equations of the EKF can
be applied [55]. We report here the complete set of equations for the filter that estimates the direction of

translation using a first-order random walk model. The reader interested in a detailed derivation of the
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Implicit Extended Kalman Filter may find it in appendix F.

Prediction step
{ a(t+ 10t) = a(t|t) &(0[0) = g

P(t+ 1[t) = P(t|t) + Z4(t) P(0|0) = Py

Update step
Glt+ 1t +1) = &t + 1|t)+

+L(t + 1)CH(y (1), a(t + 1]t))y’

P+ 1t+1) =T+ 1)P{t+ 1)TT(t+ 1)+

+L(t +1)D(t+ 1)Z5(t + 1)DT (¢ + 1) LT (¢ 4 1)

where
(L(t+1) =P+ 1{t)CT(t + 1)A~ (¢t + 1)

A+1)=Ct+ 1P+ 1H)CT(t+ 1)+
+D(t+ 1) (¢t + 1)DT (¢ + 1)

T(t+1)=1—-L{t+1)C(t+1)

- oCts_

D@E+1) = (a[x@):*l)|[y<t>,y'17@<t>
= (8C+x

Ct+1)= <8a(t’)c)|y(t),d(t)

and X7 is the variance/covariance matrix of the measurement error 7 = [n, n'], considered as a white noise?.
Y~ is a tuning parameter that corresponds to the variance of the noise driving the random walk model.

At each step, the estimates of the direction of translation can be used for instantaneously recovering the
rotational velocity from (5.7). Such a pseudo-measurement may also be used for updating the state of a

linear Kalman filter based upon the model (5.8):

Prediction step
{dj(t + 1[t) = &(tlt) @(0]0) = wp

P, (t+ 1]t) = P,(t|t) + Sru(t) P.(00) = P,,

21t should be noted that 7 is not a white noise, for n and n’ are effectively correlated. A technique for fixing this inconvenient
is described in appendix F. However, we find that the performance achieved by approximating 7 with a white noise is satisfactory
in most cases.
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Update step
(O(t+1]t+1) = ot + 1))+

+Lo,(t+1) (é;rN+1:2N+3(Ya a)yr—a(t+ 1“))

Py(t+1t+1) =Tyt + 1)P, (¢t + )T (¢t + 1)+

{ +L,(+ )T, (t+D)LT(t+1)
where the gain matrices L,,,T",, are the usual ones of the linear Kalman Filter [58].

It is easy to verify that both the models (5.14) and (5.8) are locally-weakly observable. In fact, the
uniqueness results in the analysis of the algorithm of Jepson and Heeger [56] are equivalent to the assessment
of the observability of the model (5.14), for it is instantaneously observable. The model (5.8) is observable,
for the state and measurement models are the identity and the filter just acts as a smoother. Note that
the algorithm just presented produces a measure of the reliability of the estimates in the form of the second

order statistics of the estimation error P and P,,.

5.3 Implementation and experimental assessment

5.3.1 Enforcing rigid motion: the positive depth constraint

When estimating motion from visible points, we must enforce the fact that the measured points are in front
of the viewer. This may be easily done in the prediction step by computing the mean distance of the centroid
and checking whether it is positive. If it is negative, the antipodal point of the state-space sphere is chosen
as the prediction.

When we do not impose such a constraint, the filter may converge to a rigid motion which corresponds
to points moving behind the viewer, and is therefore not physically realizable. However, if we allow such a
condition to happen by releasing the positive depth constraint, and then feed the estimate into a structure
estimation, such as for example a simple Extended Kalman Filter [78, 84, 93] initialized with points at positive
depth and a large model-error variance, the result is a rubbery percept of structure which has been observed
also in psychophysical experiments [62]. A pictorial representation of the rubbery percept is illustrated in

figure 5.1.
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RIGID PERCEPT "RUBBERY" PERCEPT

Figure 5.1: Pictorial illustration of the “rubbery” perception: motion is estimated without imposing the
positive depth constraint; this may result in a motion estimate which is compatible with a rigid structure
behind the viewer. Once such a structure is interpreted as being in front of the viewer, it gives rise to the
perception of a “rubbery” structure rotating in the opposite direction.

5.3.2 Independence from structure estimation

It is worth noticing that the state of the filter proposed contains only the motion parameters, and is therefore
independent from the structure of the observed scene, provided some general-position conditions. Such
conditions are satisfied when the scene cannot be embedded in a planar surface, and the motion relative to
the viewer generates non-zero parallax. Such conditions describe a zero-measure set in the possible structure
and motion configurations, and the noise in the image-plane coordinates is sufficient to set the model in
general position. As a consequence, we do not need to track a specific set of features; instead, at each
step we can change set of features or locations where we compute the optical flow/feature tracking, without
causing discontinuities in the estimates of motion. This is a key property of the filter, since it allows us to
deal easily with occlusion and appearance of new features.

Also, note that the filter is able to work properly even when the number of visible features drops down
to less than five (for small accelerations), since it integrates over time the information from each incoming

frame. This, together with the robustness and noise-rejection properties, is a substantial advantage over

two-views schemes.
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5.3.3 Outlier rejection

One of the crucial features of the Subspace filter, as well as the Essential filter, is its independence from
the structure of the scene. However, each feature-point is indirectly represented via the innovation process
(5.16). In particular, for each feature-point with projective coordinates X;, the components of the innovation
€;, defined in (5.16), describe how such a feature-point is compatible with the current estimate of motion d.
Since at each step the filter computes the pseudo-innovation vector, it is possible to compare each component
against the same at the previous time instant and, using some simple statistics, reject the measurements that
give too large a residual before updating the estimates of motion. This technique may be applied both for
rejecting outliers, such as mismatches in the optical flow, T-junctions, specularities etc. and for segmenting

the scene into a number of independently moving rigid objects, as in chapter 8.

5.3.4 Implementation

We have implemented the filter using Matlab. Each update step consists essentially in 15 products of matrices
of size varying from 2 x 2 to 2N x 2N, one inversion of the 2N x 2N variance of the pseudo-innovation, 5
sums and the computation of the Singular Value Decomposition (SVD) of C, for a total of circa 1 Mflop for
N =20 points. However, the computation can be cut in half by taking into account the sparse structure of
the matrices involved in the computation (block-diagonal structure of 3,, and C). A time-consuming part of
the algorithm is also the linearization of the system with respect to the measurements, D(t + 1).

Since the Extended Kalman Filter is based upon the assumption that the linearization error is negligible,
which is not often the case, we have added to the variance DX, DT a small symmetric random matrix in
order to account for the linearization error. This practice typically improves the performance of the Extended
Kalman Filter for models which are strongly nonlinear.

A crucial part of the design of an EKF consist in “tuning” it, i.e. in assigning a value to the elements
of the variance/covariance matrices of the model errors: 3,,%,,. A custom procedure is to assume that
these matrices are diagonal, and then play with their values until the prediction error is as white as possible.
Standard tests are available for this procedure, such as the “cumulative periodogram” (the integral spectrum
of the prediction error). In our experiments we have performed a coarse tuning by changing the variances of

the model errors by one order of magnitude at a time. We did not perform any ad-hoc or fine tuning, and
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the setting was the same throughout the different experiments.

In all experiments, unless stated otherwise, the filter was initialized to zero: ag = 0,wo = 0, and the
initial variance of the estimation error P and P,, was the identity matrix of dimension 2 and 3 respectively,
scaled by 100.

In order to implement the filter, the linearization of the model is needed. In the appendix to this chapter

we report the detailed computation of the local linearization of the measurement model.

5.3.5 Scale information recovery

The scheme proposed recovers the direction of translation as a normalized vector of IR3. Such a normalization
is necessary because of the presence of a global scale-factor ambiguity that affects the norm of translation
and the inverse depth of the visible features, as it can be seen from the equation (5.1). The important fact to
realize is that there is only one scalar ambiguity for the whole sequence so that, should some scale information
become available at any instant, it can be propagated across time and the scale ambiguity resolved.

In fact, at each step the normalized translation and the rotational velocity estimated by the filter may be
used for computing some “normalized” structure, which can be re-sized to fit the scale information available,
as done in [93]. If no scale information is available, the initial translation may be used as a unit scale, or the

distance between any two features, for instance.

5.3.6 Simulation experiments

We have generated at random a set of 20 points in space, distributed uniformly in a cubic volume of side 1
m, with the centroid placed 1.5 m ahead of the image plane. The points are projected onto an image plane of
512 x 512 pixels with focal length of 750 pixels. The cloud of points rotates about its centroid with a velocity
of circa 5°/frame, with the centroid maintained on the optical axis at a fixed distance from the center of
projection; White, zero-mean Gaussian noise is added to the projections. The motion is roto-translational
in the viewer’s reference frame, and is challenging since the effects of rotation and translation superimpose.

Convergence is reached from zero initial conditions and noise in the image plane coordinates up to 8 pixel
std. The convergence of the main filter with a noise level of 1 pixel std is reported in figure 5.2, while the

same experiment is repeated with a noise level of 8 pixels std in figure 5.3. In both cases the positive depth
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constraint has been enforced. The transient for converging from zero initial conditions ranges from 5 to 40
steps, depending on the noise level, the type of motion and the structure of the scene.

The least-squares pseudo-measurements of the rotational velocity, computed as described in section 5.1.2,
are plotted in figure 5.4 (dashed lines), and compared with the recursive estimates (solid line) using the linear

Kalman Filter described in section 5.1.2 with a noise level of 1 pixel std.

Direction of translation: 1pixe! std noise Error in the direction of transiation:t pixel std noise

rad

N
3

0 20 40 60 80 100 120 140 160 180 200 0
trame

Figure 5.2: Estimates and errors for the direction of translation when the noise in the image plane has
a standard deviation of 1 pixel (according to the performance of common optical flow/feature tracking
schemes). Ground truth is displayed in dotted lines. In the left plot the elevation angle ¢ is constant and
equal to zero, the azimuth 0 is close to —7. Note that convergence is reached from zero initial conditions in

about 10 steps.

Direction of translation: 8 pixel std noise Error in the direction of transiation: 8 pixel sid noise
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Figure 5.3: (Left) Estimates of the two components of the direction of translation. In the left plot the
elevation angle ¢ is constant and equal to zero, the azimuth 8 is close to —%. The noise in the image plane
measurements had 8 pixel standard deviation. The initial conditions were zero for both components. The
ground truth is in dotted lines. (Right) Estimation error for the direction of translation. With noise of 8
pixel std in the data, the estimates are still within 20 % of the true value.
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Figure 5.4: Estimates for the components of rotational velocity (left) and corresponding error (right). Ground
truth is displayed in dotted lines; the filtered estimates are in solid lines. The least-squares computation of
the rotational velocity is in dashed lines.

Challenging the model

In designing the estimator of the parameters « for the model (5.14), we have wide open choice on the
dynamical model for the state f, depending upon the conditions in which the algorithm is applied. For
instance, if the camera is mounted on a mobile vehicle, we may use the kinematics and dynamics of the
support for describing the evolution of the state. If we know that the camera is moving with considerable
inertia, we may employ a smoothness constraint etc. . In lack of any model, we can employ statistical models,
for example fixed order random walks. In the experiments reported here we have chosen the simplest possible,
which is the first order, corresponding to a Brownian motion. Whether this model is rich enough to capture
the possible motions undergone by the camera is a question of modeling which is left to the engineer, who
has to judge the intrinsic tradeoff between flexibility (large model variance) and accuracy or “smoothness”
(small model variance).

Just for the sake of illustration, we have considered the same synthetic experiment described in the
previous section, and modulated the speed of rotation about the object’s axis first with a sinusoid, then with
a saw-tooth discontinuous function, and then with a second order random walk (which is one step up the
ladder of the class of random walks, and cannot be captured in principle by the Brownian motion). During
the latter phase we have also altered the other components of the rotational and translational velocity.
Eventually, motion resumed to constant velocity. Note that the parameter which is modulated is the most

difficult to estimate, since the effects of rotation and translation are similar (it is one of the manifestations
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of the so-called “bas-relief ambiguity”). In order to appreciate the precision of the tracking, we have lowered
the noise level down to a tenth of a pixel. In figure 5.5 we show the three components of the rotational
velocity (solid lines) superimposed to the ground truth (dotted lines). The two spherical coordinates of the
direction of translation are plotted in figure 5.6 (solid lines) along with the ground truth (dotted lines). The
estimates of the filter follow closely the motion parameters, even at the discontinuities. It is worth pointing
out that the tuning was exactly the same in all the experiments in this paper, and no ad-hoc tuning was
performed. It is possible to see a small, but not zero-mean, estimation error, which is a clear symptom
that the model employed (a first order random walk) does not capture the true dynamics of the parameters
(sinusoidal, discontinuous or a second-order random walk). If one wanted to get rid of these effects, a higher-
order random walk should be considered. However, the one just performed is an extreme experiment, and
usually real sequences taken from video exhibit a considerable amount of inertia. Therefore we will restrict

ourselves to the simplest first-order random walk.

o
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Figure 5.5: Convergence of the filter with a first-order random walk state model in the presence of non-
smooth parameter dynamics. The components of the rotational velocity of the camera are first modulated
by a sinusoidal, then by a discontinuous saw-tooth and then they drift with a second order random walk
before returning to the initial constant-velocity setting. The estimates (solid lines) follow the ground truth
(dotted lines) despite it evolves according to dynamics which are not captured by the state model of the
filter.

The residual plot in the state-space

A typical plot of the residual function, which is the value of the Subspace constraint (5.16) as a function
of the parameters ¢ € [0,7),¢ € [-%,%), is shown in figure 5.7 for a particular value of the states. The

residual depends both on the motion and structure parameters. For an isotropic cloud of dots undergoing
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Figure 5.6: Spherical components of the translational velocity for the experiment with non-constant velocity:
azimuth (left) and elevation (right). While the rotational velocity is modulated with sinusoids and saw-tooths,
translation is held constant. Between frames 80 and 120 the parameters drift according to a second-order
random walk. It can be noticed that the filter follows the estimates with a small but non-zero-mean estimation
error. This is due to the fact that the model that generates the data is not captured by the model used for
the estimation.

constant-velocity motion, the residual is nearly constant. Therefore, it is sufficient to show just one frame of
the residual with the filter trajectory superimposed. In the following subsections we restrict our attention
to the constant-velocity case just because — the residual function being constant — it is possible to display
it. The bright areas indicate a small residual value. The black asterisk indicates the motion (in the local
coordinates of the sphere of directions of translation) which generated the residual. It is noted that the
minimum of the residual is displaced from the true motion when the norm of the rotational velocity is large.
This is due to the fact that we approximate the velocity of the projected points (motion field) with first
differences; the approximation is good as long as R = e*" & [ +wA, i.e. as long as the norm of the rotational

velocity is small.

Convergence and local minima

The reader may have noticed the presence of local minima in the plots of the residual function (figures 5.7-
5.11): if motion is estimated instantaneously from two frames, as in [45], the estimate can be trapped into
a local minimum. In our experiments, however, we have rarely witnessed convergence to a local minimum,
unless temporary. This is due to the recursive nature of the scheme, which integrates information over
a large baseline. In figure 5.9 and 5.10 we show a typical example of the temporary convergence of the

filter to a local minimum: after few iterations the observations are no longer compatible with the motion
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interpretation, forcing the filter out of the local minimum.

Residual function: theta = 1.084, phi = -0.6478 ,Omega = -0-0-0, noise =0 Residual function: theta = -1.571, phi = 0.04363 ,Omega = 0.0872700, noise =0

theta
theta

Figure 5.7: Brightness plots of the residual function. The value of the residual is plotted on the state-space
of the filter, which are the local coordinates of the sphere of directions of translation. Bright regions denote
small residuals. The black asterisk is the “true” motion which generated the residual. Note that for small
rotations (left) the minimum of the residual coincides with the true motion. When the rotational velocity is
large (right) the Euler step approximation is no longer valid, and the minimum moves from the true location.

Rubbery motion

A qualitatively different local minimum is the one corresponding to the “rubbery motion”. When the
positive depth constraint is not enforced the filter may converge either to the rigid or to the rubbery in-
terpretation (figure 5.8). In figures 5.9 and 5.10 (left) we show the convergence to the “rubbery motion
interpretation” when the positive depth constraint is released.

In figures 5.9 and 5.10 (right) we show the convergence of the filter to the rigid interpretation. Note that,

when the positive depth constraint is enforced, the estimate is reflected onto the correct rigid interpretation

(figure 5.11).

Structure estimation

When we feed the motion estimates into a structure-from-motion module initialized with points at positive
depth and a large model-error variance [93], we may observe either a rigid set of points which move according
to the correct motion (a top view of the points is shown in figure 5.12 left) or to a “rubbery” percept (figure
5.12 right). This is in accordance with the experience in psychophysical experiments [62]. Note that the

rubbery solution disappears as soon as we impose the positive depth constraint.
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Convergence to the solution starting from different initial conditions

theta

phi

Figure 5.8: Convergence when the positive depth constraint is not imposed and the initial condition is chosen
at random around the origin (which appears in the center of the plot): a number of trajectories is shown
in black solid lines superimposed on the brightness plot of the residual function. The filter may converge
to either the correct rigid interpretation (bright region on the top half of the plot) or to the local minimum
corresponding the “rubbery” interpretation (bright area on the bottom half of the plot).

5.3.7 Experiments with real image sequences

The “Beckman corridor” sequence

The complete “Beckman corridor” sequence consists of a sequence of approximately 8000 frames taken by
J.-Y. Bouguet et al. inside the corridor of the Beckman Institute at the California Institute of Technology.
On the walls sheets of paper with high contrast provide sufficient texture for point-feature tracking. The
sequence is taken while the camera moves along the corridor on top of a cart which is hand-pushed following
a prescribed path on the floor of the corridor, so that qualitative ground-truth can be reconstructed. The
sequence, with the tracking of about 400 feature-points, the same employed in [12], has been kindly provided
to us by J.-Y. Bouguet. The features come with a condition number that indicates the presence of sufficient
contrast along both spatial directions.

We show here only the first 1800 frames, during which the cart was turning of 90 degrees at a corridor
angle, and then following a shallow s-turn. The algorithm makes no assumption about the fact that motion

occurs on a plane, so that we can check whether the rotation about the fronto-parallel axis and the cyclo-
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Figure 5.9: (Left) convergence to a shallow local minimum and then to the local minimum corresponding
to the rubbery interpretation when the positive depth constraint is not enforced. (Right) convergence to a
shallow local minimum and then to the correct rigid motion (see also figure 16).

rotation are estimated as zero, and the elevation angle is constant. Rotation about the vertical axis should
integrate at about 90 degrees at the end of the experiment.

We have run our algorithm by using only part of the feature-set. We have fixed the maximum number of
features to 20, so that the average number that pass the innovation test described in section 5.3.3 is about
15, with a minimum of 3 features at frame 400. The number of features used by the algorithm as a function
of the current frame is plotted in figure 5.16. It must be noticed that no particular attention is paid to the
location in the image-plane of the features used by the algorithm, so it can happen that at some step the
scheme uses few features that cover only a small portion of the visual field.

In figure 5.14 we show the estimated direction of translation, consisting of the azimuth angle (direction
of heading) and elevation angle. The latter is constant to about 5 degrees, which corresponds to the angle
between the camera and the horizontal axis on the cart. The direction of heading points left during the first
turn, then slightly right and then left again during the s-turn. This is consistent with the cart having front
steering wheels and the camera being mounted on the front. The rotation angle about the Y-axis (horizontal)
and Z-axis (cyclo-rotation) are zero, as reported in figure 5.15. The rotational velocity about the vertical
axis X, reported in figure 5.16, shows first the full left turn, then the s-turn left-right. The integral of the
velocity along the whole sequence is 101°, with an overall error of about 10° over 1800 frames. This is the
mean integral of the error along the whole sequence. In order to appreciate the convergence of the filter,

which was initialized to zero, we show the components of the main filter for the direction of heading, along
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Convergence to the rubbery interpretation Convergence to the correct interpretation

theta
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Figure 5.10: Convergence to the “rubbery interpretation” (left) versus convergence to the rigid motion
interpretation (right). The state of the filter at each step is represented as a black ‘-’ and superimposed to
the average residual function (darker tones for larger residuals). After the transient, the states accumulate
either around the local minimum corresponding to the rubbery interpretation (the one on the bottom half
of the plot) or to the one corresponding to the true motion, on the upper half of the plot. The trajectory of
the state is also plotted component-wise in figure 15.

with the variance of the estimation error — plotted as errorbars — during the first 100 frames (figure 5.17).
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Figure 5.11: Convergence when the positive depth constraint is enforced: (left) trajectory of the filter on top
of the brightness plot of the residual function, (right) corresponding motion components. Initial conditions
are zero.
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Figure 5.12: Convergence of a structure-from-motion module to a rigid interpretation of structure (left) or
to a rubbery object rotating in the opposite direction (right). The plots show a top view of the points, with
the image plane on the lower end.
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Figure 5.13: Few images from the “Beckman sequence”. The camera is mounted on a cart which is pushed
around a corridor. First the cart turns left by 90°, then right and left again on a s-turn. The sequence
consists of approximately 8000 frames. We have processed here only the first turn of the corridor, which
corresponds to the first 1800 frames. The sequence was taken by Bouguet et al., who also performed the
feature tracking using Sum of Square Differences criteria on a multi-scale framework.
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Figure 5.14: (Left) Azimuth angle for the corridor sequence. Zero corresponds to forward translation along
the Z-axis. The first peak is due to the left turn, while the subsequent wiggle corresponds to a right-left
s-turn. (Right) Elevation angle. The camera was pointing downwards at an angle of approximately 5°;
therefore the heading direction was approximately constant with an elevation of +5°. Since the camera was
hand-held, there is quite a bit of wobbling.
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Figure 5.15: Rotational velocity about the Y-axis (left) and about the Z-axis (right). Since the camera was
not pitching nor cyclo-rotating, both estimates are close to zero as expected. Since the camera was hand-held
and no accurate ground-truth is available, it is not easy to sort out the effects of noise and the ones of small
motions or vibrations of the camera.
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Figure 5.16: (Left) Rotational velocity about the vertical axis. First the camera turns left at the corner of the
corridor (frames 700 to 1000), then right and then left again around the s-turn (frames 1000 to 1600). The
integral of the rotational velocity should add up to approximately 90°, for this is the change of orientation of
the camera from beginning to end. The sum of the estimates is 101°, corresponding to an error of 10% circa
on a sequence of 1800 frames. (Right) Number of features employed by the algorithm at each time step. On
average the algorithm uses 15 feature-points, without particular attention to how they are distributed on
the image plane. The maximum number of features used is 20, and the minimum is 3. Note that two-frames
algorithms would not perform in such a case, since at least 5 features need to be visible at all times. The
temporal integration involved in the filter, on the contrary, allows us to retain the estimates even in presence
of less than 5 features.

Appendices

5.4 Computation of the local linearization of the Subspace model

In this appendix we give the detailed equations for the linearization of the model of the Subspace filter. We

compute the derivative of the implicit measurement equation
CH(x,V (8, ))% (5.17)

as a function of the derivative of ¢ with respect to the states 6,¢ and the measurements x. From the

definition of C+ we have

L = (1 ~¢(ere)” éT> | (5.18)
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Figure 5.17: Close-up view of the transient in the estimates of the direction of translation (azimuth on the
left, elevation on the right). The variance of the estimation error, represented using the error-bars, decreases
during the first 20-30 frames, after which it remains bounded around the current estimate of the parameter.

If we call o a scalar parameter (a will be either ¢(t), 0(t) or one component of the measurements T (), (1))

and
5 . 0C
Y 1
¢, = % (5.19)
then we have
. -1 ST
Ci= - @, (cTc cT—c(cTc) ér -
N
K, (cTc .
- C—= (T (5.20)
Since, for a square and invertible matrix A, AZ' = —A"1A, A~ we have
- ~ J N Jy SN
¢t = -G, (cTc) éT ¢ (cTc) T -
cfem N\ "L o JO o\ —1
- c(cTc) (c§c+cTca) (CTC) ér (5.21)

we can write, after collecting the common terms,

Cx = —CLC,CT— 1" ¢ré-. (5.22)



113

If we call

Ko = C+C,CH (5.23)

and we notice that €L is a symmetric matrix, we end up finally with
Ct=-K,-KZ. (5.24)

We now seek for a cheaper and better-conditioned way of computing the matrix . Consider the Singular

Value Decomposition of the matrix C:

C=Ux.VT (5.25)

then it is immediate to notice that

Ct=r1-uu’. (5.26)

After substituting for the SVD of € and exploiting the orthogonality of U and V, we have
Ko = (I-UUT)CuV.E7 UYL, (5.27)

In order to compute the full linearization of the implicit measurement equation with respect to the states

¢, ¢ and the measurements x, we are only left with computing the derivatives of the matrix C with respect

to these parameters:

A8y 0
Co = 0 (5.28)
i Axgr 0 |
A5y 0
Cy = 0 (5.29)
l]
| Avgg 0 ]
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0
. Vs .
Coi = 95;
0
0
( 0
Cpi = ggf
Vs
0
where
- -
—cos(¢)sin(9)
ov
B0 cos(d)eos(h)
o]
—sin{d)cos(6)
ov
59 = —sin(¢p)sin(h)
cos(9)
The spherical coordinates are defined such that
cos(6)cos(¢p)

V{9, 9)= sin(0)cos(d)

sin(¢)

We now have all the ingredients necessary for computing the linearization of the model:

o= <§TC;—;>:[@¢X i |

. [ 9Ctx 51 Al 51 . 51
D= 3 %] = Chix Cylx CyNX | C .

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)
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Chapter 6 Weak perspective and the bas-relief
ambiguity

Weak-perspective is a scaled orthographic projection that can be used for approximating the imaging model
when the field of view is small as well as the scene “flat” relative to its distance from the viewer. A well-known
visual effect under such conditions is the so-called “bas-relief ambiguity”: the rotational velocity along an
axis parallel to the image-plane and the depth parameters are hard to observe.

In previous chapters we have seen how reduction can be useful to remove structure parameters and
therefore obtain smaller models of constant dimension in spite of occlusions. In this chapter we want to
further decouple the space of motion parameters into a portion that is not affected by the bas-relief ambiguity
and one which contains parameters subject to such an ambiguity. By doing so, we can obtain consistent

estimates of the states that are not affected by the bas-relief ambiguity even when the remaining states are

impossible to recover.

Background and notation

We consider a number N of point-features P* of coordinates X* € IR® Vi = 1 : N, that project perspectively
onto the image plane in the points p € IRP2. The weak-perspective points

X
i - ; : i . L X5
p* = w(P"), of coordinates x* = 5 (6.1)

where d is the average distance between the scene and the center or projection, can be considered an approximation
to the true projection under a small visual angle and a negligible relief. If the scene undergoes a rigid motion
g € SE(3) — which can be represented as an instantaneous translation T' € IR® and a rotation matrix R € SO(3)
— then the motion of the points in 3-D and the weak-perspective measurements describe a nonlinear dynamical
system of the form

Pi(t+1) =g, 0 P{(t) e R®  rigid motion

gi+1 = gt D ng(t) € SE(3) small acceleration (6.2)

p'(t) = m(PHt)) € R?® weak — perspective

where @ represents a first order random walk in the local coordinates of the motion parameters (as a simple mean
of modeling some inertia). In the case of constant-velocity we simply have ng =e € SE(3).
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Outline of the chapter

In principle, a state observer for the dynamical model described above could be employed for estimating jointly
the structure and rigid motion of the scene from weak-perspective. Such an observer might, however, exhibit
poor performance due to the presence of structure in the state, which results in a state-space that has high and
changeable dimension, as points get occluded or move out of the visual field. One possible strategy consists
in trying to reduce the dimensions of the state-space as much as possible, ending up with a small-dimensional
highly-constrained state-space model. In the next section we are going to explore the principles of reduced-order
observers, which are the basis for constructing dynamic models for estimating motion independent of the scene’s

structure.
Then we will see how these principles can be applied to isolate the components of the motion parameters that

are affected by the bas-relief ambiguity.

6.1 The general principle: pushing the reduced order observer

6.1.1 Reducing the order of the model

We start from the model (6.2) and operate a change of coordinates (into observable canonical form) in order

to linearize the measurement equation, which leads us to a model in the form

pz(t + 1) = fl(piagtacz) + f?(th)Si € ]R‘2

s'(t +1) = hi(p', g1, d) + ho(gi,d)s' € R
(6.3)

Ji+1 =9 D ng(t) S SE(3)

ly'=p' +n’ € R? Vi=1...N

where s* = X% /d is the relative depth of each point and n’ is a measurement noise which is assumed to be
zero-mean, white and Gaussian. We omit the time argument when it is ¢.

The first step towards reducing the order of the model consists in eliminating from the state the variables
that are directly measured. Using a technique extrapolated from the so-called reduced-order observer [57],

one can “solve” the measurement equation for the states one wishes to eliminate:

pl=y' —n (6.4)
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and then substitute them into the dynamics of the remaining states in equation (6.3):

Sl(t + 1) = hl(yl7gt7j) + hQ(gt,J)SZ + nsi
J(t+1) :l(ylugtvslag)_’_nd (65)

gt41 = g: D ng(t) € {SE(3) mod R}.

The dynamics of the average depth d has been isolated from the other scaled depths s, since it will play
a role in the coordinatization of the motion parameters in the presence of the scale-factor ambiguity (sec-
tion 6.2.1). The original measurement equation becomes now trivial; however, the dynamics of the variable

being eliminated becomes the new measurement constraint, which involves one time-delay:

Yt +1) = iy, g6, d) — fa(ge, d)s’ = i, (6.6)

The noise terms n,,,nq and 7¢ are induced by the measurement noise n'. In principle, the time-delay could
be eliminated from the measurement equation (6.6) using an output-dependent change of coordinates [57].
Here we do not pursue this approach, and we are content with keeping two images in memory at each time.
The notation {SE(3) mod R} reminds us that there is an overall scale ambiguity in recovering the motion

parameters; as a result, we represent g; as a normalized translation 7' € S? and a rotation matrix R € SO(3).

6.1.2 Decoupling structure from motion

With the simple procedure described above, we have reduced the state-space from 3N + 5 down to N + 6,
while adding a time-delay to the 2N measurements. One could push this idea even further, and eliminate

the N parameters s' from the 2N new measurement equations (6.6):

st = fHge,d) (¥ (t+1) = iy’ 96, D), (6.7)

where 1 denotes the subspace inverse, and then substitute them into the dynamics of the remaining states

in (6.5). The measurement equation no longer becomes trivial, for there are still N independent constraints
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that have not been employed for “eliminating” s*:

fi(g,d) (Yt +1) - f1) = falgr, d)t 7l (6.8)

where | denotes the subspace orthogonal complement. Again, the dynamics of the variable being eliminated

becomes a measurement constraint, with now two delays. The final expression of the model becomes therefore

of the form _ . . -
(d(t+1) =1y’ g, Ay (t+1) — fif1,d) + na

Gi+1 = gt D ngy(t) € {SE(3) mod R}
f3(g6:d) (' +1) = f1) = falge, d)* (6.9)
f3ge,1) (Yt +2) - Ay (t+ 1), 9, 1) +

\ —hy —haof] (¥ (¢ + 1) — f1) = 7,

where the arguments in f1, b1, he and [ have been omitted and i, is, as usual, a noise induced by substituting
the measurements into the dynamics of s'. We can write the above model in a more synthetic form as

E(t+1) =m(E®) +net) € M~RS

X (£, y (@), y(t = 1),y(t—2)) = ny(t) € R

(6.10)

where ¢ belongs to a six-dimensional state-space manifold that encodes the motion parameters and the
average depth of the scene, and only 2N of the measurement constraints are independent.

In the experimental section 6.3 we will show an actual expression of the above model with an appropriate
choice of coordinates, along with experiments of the performance of the filter derived from such a model on
real and synthetic image sequences.

One could play the game just described over and over, and successively eliminate each state by solving
from the time-evolution of the measurement equation and substituting into the state equations. This process
is guaranteed to succeed as long as the dynamic model in question is locally-weakly observable [53]. In fact,
the above process could be regarded as analogous to a level-wise inversion of the Observability Grammian in
the linear case. Of course, the more levels are involved, the higher the number of delays that appear in the
measurement equations (or the higher the number of Lie-derivatives of the measurements in the continuous-

time case). In our case, two delays are sufficient, for the model is observable with two levels of bracketing.
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Figure 6.1: One of the manifestations of the “bas-relief ambiguity” is evident from watching a rotating
billboard. From a distance, the more slanted the surface, the faster it seem to move, while the two surfaces

appear to move disjointly.

6.2 Isolating the bas-relief ambiguity: motion decoupling and choice

of coordinates

It is well-known that, under small visual angles and negligible relief, it is difficult to resolve some of the
motion parameters. This effect, which is known as the “bas-relief ambiguity”, can be observed for example
by taking two flat surfaces, connecting them rigidly at a right angle, and rotating them about an axis (a
rotating billboard, see figure 6.1). The perceived motion from a distance is strikingly non-rigid, as the surface
which is more slanted seems to move faster. In the presence of the bas-relief ambiguity, it is important to
parametrize the state-space manifold M so that the states that are affected are “isolated”. Failure to do so

may result in poor estimates of all the states, including the ones that are not affected by the ambiguity.

6.2.1 Choosing the motion coordinates

At this point, one may ask if it is possible to push the reasoning outlined in section 6.1.1, and formulate
filters that estimates only the motion parameters that are not affected by the bas-relief ambiguity. The
procedure outlined in the previous section relies on the fact that one is able to “solve” for the states to be
eliminated from the time-evolution of the measurement equation. Eliminating p’ and s* was easy because
they appeared linearly in the measurement equations (6.3) and (6.6) respectively. However, it is not so for

the motion parameters, which are encoded into £(t). In this section we will see that it is possible to decouple
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the motion parameters and formulate two filters, one with four states, and one with two states only, which
are not affected by the bas-relief ambiguity. To this end, we need to make a choice for the local-coordinate
parametrization of the motion parameters £ € M ~ RS.

We choose to represent motion using & = (77,6, ¢, p|T, defined such that

~
il
a3

eR®  R=e®M[aln ¢ g0(3) (6.11)

where (e3/\) is a 3 x 3 skew-symmetric matrix having all zeros but —1 in position (1,2) and 1 in position
(2,1). The Euler-angle representation of rotation, which was introduced by Koenderink and Van Doorn [61],
corresponds to rotating by p radiants about an axis on the image-plane, forming an angle ¢ with the
horizontal axis, and then rotating about the optical axis by an angle 6. It has the advantage that the
bas-relief ambiguity is isolated in the parameter p, while cyclo-rotation 0 and the angle ¢ are always easy to
estimate. The disadvantage is that, like all Euler-angles, it is only a local representation, and a filter based

upon such a representation may run into singularities.

6.2.2 Approximate filter with four states

Under the choice of coordinates described in (6.11), eq. (6.8) may be written as

( cos(@)v(t)
sin(@)v(t)
y(t+1" y®)T 1 —cos(¢ — 0)

—sin(¢ — 0)

fl
=

(6.12)

—w(?) |

which is a rank-four homogeneous equation up to zero-mean noise. In the above equation, v and w are

approximated by [107] )

v(t) = sin(p)[—sin(¢) cos(4)]y(t) + cos(p) + Ty
i X (6.13)
w(t) = sin(p) <—sin(¢)T1 + COS(¢)T2)

under the condition p = 0. Eliminating p from this constraint, even though simplified, is not a trivial matter.

A naif approach consists in writing a filter for the 4 variables v(t) = [v(t), w(t),0(¢), p(1)]T, having (6.12)
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as an implicit measurement equation. The problem is that the dynamics of ¢ involves all the states &, and
therefore we cannot hope to eliminate some of them and use their dynamics as a measurement equation.
In fact, note that equation (6.12) comes from the residual measurement equations that were not used for
eliminating s¢, but then it is necessary to integrate the measurement equations with the dynamics of the
variables s’ being eliminated.

An approximate filter can be obtained, however, by modeling the dynamics of v and w as a random walk,

and neglecting the dynamics of the variables T, p- Such a filter will have a reduced measurement constraint,

and an approximate dynamics:
Yt +1) =9(t) +ny € R
(6.14)
eq. (6.12) € RN,
Note that, once the filter has estimated v and w, there is no way of unfolding the motion parameters T’ and

p out of them; we must be content with the four parameters ¢, which are only a partial representation of

motion. Such an approach has been pursued, for instance, in [107], although derived differently.

6.2.3 Reduced filter with two states

The redundancy in the measurements may be exploited up to the point in which we define a filter with only
two states. To this end, consider eq. (6.12), which is obtained by eliminating the relative depth parameters
s*. The motion parameters 7' and p appear through v and w, defined in eq. (6.13). Therefore, we may

eliminate these four variables and be left with a filter that has only § and ¢ in its state. To this end, rewrite

eq. (6.12) as

Co v(t) 40 3
-1 =¥ + (t) (6.15)

Y (e
S¢ w(t) S0

or, in a more condensed form,

oit+1,0) | " | = wt.0,0) 4 7(0). (6.16)

w(t)
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Here ¢, stands for cos(¢), and so for s4 = sin(¢). Then, eliminating T and p can be easily done my

eliminating v and w, which appear linearly in the above equation. The final expression of the model involving

only ¢ and 8 is therefore
Ot +1) =0(t) + ne(t)

Bt +1) = #(t) + no(t) (6.17)
Gt +1,8)H(t,0,0) = na ()
where n,. is the noise of the reduced constraint, which is induced by the measurement noise n, and ng and

ng are noise models driving the random walk, whose variances are to be regarded as tuning parameters.

6.3 Experimental Assessment

We have implemented three recursive filters for the models of eq. (6.9), (6.14) and (6.17), using a local
observer based upon the Implicit Extended Kalman Filter, which is derived in appendix F; the only thing
needed is the model and an expression of the local linearization of the model. Space limitations do not allow
us to report all of the computation; we restrict ourselves here to writing the actual equations in the local

coordinates for the model (6.9) (the other two are already in local coordinates and ready for use)

T(t)
o(t)

(T(t+1) =
O(t + 1) = 0(¢) + ng(t)
P(t+1) = 8(t) + no(t)
p(t+1) = p(t) + ny(t)

eq. (6.12) e RN

[ sgv(t 4+ 1)v(¢)
(6.18)

—cou(t + 1)u(t)

—sg_gu(t) — sgc,u(t)
v cp—gv(t) + coc,u(t) =ny

5455 + S4-0Cp

2
—C4S, — Cp—6Cp

| (—S¢,T1 + C¢T2)(1 - Cp) + T38p J
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Figure 6.2: Simulation experiment. Estimates of each filter (solid lines) along with ground truth (dotted
lines) for a noise level of one tenth of a pixel std. The left plot shows the estimates of the state of the full filter
with six states, the middle plot is the approximate filter with four states, and the right plot is the reduced
filter with two states. Units are radiants/frame for the rotational velocity. Translation is adimensional since

it is scaled to the average depth.

where W = [yT(t +2) yT(t + 1) y7(¢) 1] € R¥*" and v and its dynamics are defined from equation (6.13).

All the filters have been implemented in Matlab and tuned with the same parameters. Tuning the filters
has proven to be a rather non-trivial matter. Since the measurements are actually generated by a full-
perspective projection, while the dynamic model regards them as the outcome of a scaled orthography, the
variance of the measurement noise must be increased so as to account for the perspective distortion. As
a consequence, the variance of the model error must be also increased in order to avoid over-smoothing.
Since perspective distortion is very poorly modeled by a white and zero-mean Gaussian noise, all the filters
based upon the models described above (as well as all other models based upon the weak-perspective model)
perform poorly in the presence of significant perspective effects.

The three schemes have similar computational complexity and they run, in the current Matlab imple-
mentation, at about 2 to 10 Hertz on a Sun Sparc 20, depending upon the number of visible points (usually

on the order of 10 to 100).

6.3.1 Simulation experiment

A cloud of 20 dots, 1 meter in diameter, was generated at a distance of 10 meters from a viewer and rotated
about a vertical axis with a speed of about five degrees per frame. Its projection onto a virtual image plane
of 500 x 500 pixels was corrupted with noise whose level was varying between one tenth of a pixel to one
pixel std. The three filters exhibit similar performance, for the states which they have in common, in the
presence of low noise levels (see figure 6.2). As the noise level increases, the full filter with 6 states is affected

by the bas-relief ambiguity, so that two of its states are estimated poorly (figure 6.3). However, notice that
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Figure 6.3: Degradation of the estimates with increasing measurement noise. In the top row we report the
behavior of the filters for a noise level of half a pixel std, and in the bottom row for one pixel std. We
plot the estimates of each filter (solid lines) along with ground truth (dotted lines). The full-filter with 6
states (left column) degrades unevenly, for two of its states are sub ject to the bas-relief ambiguity. However,
the particular choice of coordinates still allows estimating correctly the remaining 4 states which are not
subject to the bas-relief ambiguity. The affine filter (central column) and reduced filter (right column ) are
not affected by the bas-relief ambiguity, and their estimation error increases gracefully with the increasing
level of measurement noise. Units are rad/frame for the components of rotational velocity.

the remaining states converge with estimation errors very similar to that exhibited by the approximate filter

and by the reduced filter, which are not affected by the bas-relief ambiguity.

6.3.2 The arm experiment

Figure 6.4: L. Goncalves in his mimetic attire. The “arm sequence” is 250 frames long and the motion is
rotatory on a plane parallel to the image plane. The arm was rotating upwards for half of the sequence, and
then downwards for the rest of it.

The “arm” experiment consists of a sequence of about 250 frames kindly provided to us by L. Goncalves.

An arm with high contrast texture was rotating with a velocity of about half a degree per frame (figure
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6.4). Features were selected and tracked automatically using simple gradient methods. The estimates of
the full relative motion between the arm and the camera are estimated by the full filter with 6 states, as
reported in figure 6.5. The estimates correspond to the qualitative ground-truth provided with the sequence.
In figure 6.6, we plot the variance of each estimate represented using error-bars. Since motion is mainly
cyclo-rotational, any estimate of the angle ¢ is correct. Indeed, we are in a singularity of the coordinate
representation. The filter estimates ¢ as being approximately 5, and correctly assigns a large variance to the
estimate. The estimates of the only significant state in common among all filters are compared in figure 6.7.
There we also report the cyclo-rotation as estimated by the “Sushspace filter” (as in chapter 5), which is
based upon a full-perspective model. The estimates of the filters are consistent. The ones based upon the
weak-perspective models are more jittery, since the variance of the measurement error has to be increased

in the tuning in order to account for the perspective distortion.

|
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Figure 6.5: The “arm experiment”. In the left column we plot the three components of the estimated direction
of translation normalized to the average depth of the scene; in the right column we display, respectively from
top to bottom, the local coordinates of rotation: 6, ¢ and p. The algorithm was using on average 10 feature-
points per frame. Units are rad/frame for the components of rotational velocity. Translation is adimensional
since it is scaled to the average depth.



Figure 6.6: The same estimates reported in figure are now plotted along with their variance, represented
using error-bars. It can be seen that, since rotation occurs only about the optical axis, the direction of
the rotation axis on the image-plane, ¢ is arbitrary, and is indeed estimated with a very large variance

(middle-right plot).

Figure 6.7: Comparison of the estimates of the angle 8 for, respectively from top to bottom, the full filter
(six states), the approximate filter (four states), the reduced filter (two states), and the Subspace filter based

upon full-perspective.
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Chapter 7 Pushing the reduced-order observer:

fixation

In chapter 3 we have seen how it is possible to reduce the order of the models described in chapter 2 so as to
eliminate structure and be left with a model for estimating motion independent of structure. In chapter 5 it
was possible to further eliminate the rotational component in the continuous-time framework by eliminating
it from the measurement equation and its derivatives. This is not possible in closed form in discrete-time
case, since the rotation parameters appear at the exponential. In chapter 6 we have further eliminated states
that are affected by the bas-relief ambiguity.

In this chapter we explore an alternative strategy for reducing the order of the observer. Rather than
“explicitly” eliminating states, we can impose that some (“implicit”) function of the state-space is constant
(or “fixated”). By doing so, we impose constraints on the state-space manifold, and therefore reduce its
effective dimension. The resulting models are exactly in the form of Essential models (chapter 3), where

the parameters are constrained on different subspaces of the Essential manifold, depending upon which

constraints are imposed.

Background and notation

In this chapter we adopt the same notation used in chapter 3.

Outline of the chapter

We first describe how forcing a function of the state-space to be constant can be used to reduce the dimension
of the state-space. Since such a function is arbitrary, we choose to treat three simple examples, which correspond
to imposing that the image of a point, a line or a plane are fixed.

7.1 Output stabilization and geometric stratification

Suppose that we are told that some of the states of a dynamical model are zero. Then we may as well

constrain the observer to the remaining states, and eliminate the constant ones from the dynamical model.
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The same applies if a function of the states is held constant. In fact, consider a point in the state-space
manifold, P € M. If f: M — IR is a smooth function, and 0 = f(P) is a regular value, then the pre-image
f71(0) € M is a submanifold of M [41], and the point P is constrained onto such a submanifold. In this case
it is possible to find a set of coordinates where some of the parameters are constant, and we can therefore
concentrate our attention on the remaining ones.

Therefore, if we view some function of the state as an oulput (measurement equation) of the dynamic
system, and this output is held constant, or stabilized, we may identify a “slice” of the state-manifold, and
constrain the model on such a slice.

Although the choice of which function to stabilize is arbitrary, we will consider three simple instances:
the image-motion of a point, a point and a line, and a plane. By stabilizing such outputs, we identify slices
of the Essential manifold, which build a geometric stratification of the problem of estimating motion under

fixation constraints.

7.2 Choosing a control action

In order to stabilize a particular function of the image, we could either actuate the camera, and move it in
space (“mechanical control”), or pre-process the image by considering changes of coordinates that depend
upon the outputs, without acting on the support of the camera (“software control”). For instance, keeping
a single feature point fixed on the image plane can be accomplished both by rotating the camera about the
center of projection (or about another point in space), or by shifting the origin of the image-coordinates. As
far as the effects on motion estimation are concerned, the two methods are equivalent. A few gaze-control
techniques which guarantee exponential convergence are described in [91], while image-shift registration
techniques that achieve fixation in a single step are described, for instance, in [96].

Fixating a point and a line on the image plane may be easily achieved by fixating a point and then
rotating the image until another point comes to the desired line. This may be accomplished both by rotating
the camera about the fixation axis, or by rotating the image about the optical center with a purely software
operation.

Fixating a plane in the image, however, can be only accomplished by manipulating, or pre-processing,

the image, as described in section 7.5.1.
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Stabilized feature Compensating 3-D Corresponding image Residual DOF's State-space manifold
motion deformation

none none none 5 E Essential mfd

point 2-D camera rotation image center displacement 4 s4 Sylvester mfd
rotation about optical center image center shift 4 rotation 3 83 3-dimensional Sylvester

point+4line
mfd

plane no feasible 3-D rigid motion planar warping 2 s0(8) skew-symmetric unit-

norm 3 X 3 matrices

7.3 Stabilization of a point (fixation)

Let us assume that we have applied any fixation technique that provides us with a sequence of images where
the projection of a given point remains fixed on the image-plane. Since the projection of the fixation point is
stationary, the object (scene) is free only to rotate about this point, and to translate along the fixation line.
Therefore there are overall 4 degrees of freedom left from the fixation loop. These four degrees of freedom
are encoded into the rotation matrix R = e**, and in the relative translation along the fixation axis v € IR.
The epipolar representation presented in chapter 3 applies immediately once we represent the translation 7'

as

T
T(R, U) = l: —Ris —Roz3 —Rs3+v jl > (7-1)

and v = d((it(Jg)l) # 0 is the ratio between the distance of the fixation point at time ¢+ 1 and the same distance
at time t.

The coplanarity constraint (3.9) also holds in the case of fixation, once we have substituted the appropriate
expression for T'. Since there are four degrees of freedom, the parameters 2 and v will now lie on a four-
dimensional subspace of the Essential manifold. Indeed, it can be easily verified that the Essential matrices
under the fixation constraint are all and only the 3 x 3 Essential matrices that satisfy the following Sylvester’s

equation

Q(R,v) = RST + vSR (7.2)

where S = [0 0 o]TA and « is the arbitrary scaling factor due to the homogeneous nature of the coplanarity
constraint. We will call S* the four-dimensional submanifold of the Essential manifold which is defined by

the above equation after normalization. The $* manifold is locally diffeomorphic to IR x SO(3) and hence

to R*.
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Therefore, in order to estimate motion under the fixation constraint, it is sufficient to consider the epipolar
constraint where now the parameters are constrained not on the Essential manifold, but on the S*-manifold.

We have therefore to deal with a model of the form

(Qx'(1)Tx'(t+1) =0
Qest (7.3)

Y(t) =x'(t) +ni(t)

where

§* = {QeE|Q=RST+vSR,Re SO(3),

veR,S=[001TA}. (7.4)

Estimating motion reduces to identifying the above dynamical system with parameters on S%.

7.4 Stabilization of a point and a line

Suppose now that, in addition to fixating a point, we can maintain a line passing through it fixed in the
image plane. We are essentially in the same situation described in the previous section, once we have
“frozen” the degree of freedom corresponding to cyclorotation (rotation about the optical axis). Therefore
there are overall 3 degrees of freedom. The Essential matrices corresponding to motions that obey the
“point plus line” fixation constraint must lie on a three-dimensional submanifold of the submanifold S of
the Essential manifold E, since the point-fixation constraint described in the previous section is satisfied.

The only modification that occurs is that now there is no cyclorotation. Therefore the parameter space

becomes

s =5 n {Rze[“” 2 OrA}. (7.5)

Hence, under the “point plus line” fixation assumption, we end up with a model of the form

(Qx' ()% (t+1) =0
Qes? (7.6)

Y () =x'(t) + ni(t)

which needs to be identified in order to estimate the motion parameters.



131

7.5 Stabilization of a plane

We now proceed in our stratification by assuming that we are able to “compensate” the image sequence in
such a way that the points that lie on some plane (not necessarily a physical plane in the scene) remains fixed
in the image plane. In this case there is no physical motion of the camera that achieves this compensation
(besides locking the camera to the plane). Therefore we need to “deform” the images of the sequence in

order to account for the motion of the plane.

7.5.1 Compensation of plane-motion: warping

Let us assume, for the moment, that all points in the scene lie on a plane — not passing through the origin
— described by I = {X, € R® | aTX, = 1}. We indicate with x, € RP? the projective coordinates of the
generic point of the plane II. We will now see that, as the plane IT moves rigidly in space, its image deforms
according to a projective transformation, i.e. a linear transformation of the projective coordinates. In fact,

we may write the evolution of the 3-D points of the plane as
Xi(t+1) = ROXL(t) + T(t)aTXi (1) = A@)XE(2) (7.7)

where A(t) = R(t) + T(t)a” is a 3 x 3 invertible matrix. The projective coordinates of the points on the

plane obey a similar relation

X (t+1) ~ A()X;(t) (7.8)

where the symbol ~ indicates equality up to a scaling factor (projective equivalence). Given 4 or more
point-correspondences on the image-plane, we may solve the above equation for the 8 parameters of A that

are free after normalization.

Once the matrix A has been estimated, up to a scaling factor, we may wundo the transformation by

multiplying the transformed points by A—!:
xt(t+1)" = A7 (E+ 1) = xL(2). (7.9)

Therefore, such a warping leaves the points of the plane fixed in the image [8, 4, 85].
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7.5.2 Plane-plus-parallax representation

In the previous subsection, we have assumed that all points of the scene lie on the plane II.
Now, let us assume that we have compensated for some plane, for instance the average plane, and see
what happens to the points X* that do not lie on such a plane, after the warping with A=!. In general,

x%(t+1)" # x*(t). More specifically, we have

x(t4+1)" ~ ATt + 1)=(R+Ta") x(t+ 1)

~ (I - RTTa")'RT[RX'(t) + T (7.10)

where [-] denotes the projective coordinates. If we call 7" = RTT, then we can write

x(t+1)° ~ (I —TaT)"X(t)+ 1]

T'a” ,
~ T+ —— 't ’ A1
which may be finally written as
x (t+1)" ~ x*(t) + B ()T (7.12)

. 1 T~ri
where §'(t) = (1 + —Tia—zST(fl) is a scalar factor. Therefore, the last term can be interpreted as a residual,

which is in the direction of the epipole (the projective coordinates of the direction of translation 7" ). The
derivation above is taken from [85].

This representation, consisting in the motion of a plane — encoded by the matrix A — and the residual
parallax in the direction of the epipole — encoded by G%(¢) - is known in the literature as the “plane-plus-
parallax” representation, and has been developed in [8, 4, 85].

Now, let us see how warping affects the setup of epipolar geometry. It is immediate to verify that
)T

x(t+ 1) (T'A)XHt) =0 T ¢ §? (7.13)

and, therefore, the effect of rotation has been canceled out by the image warping. We may represent the



133

overall model as, again, an implicit dynamical system, with parameters on a manifold

(Qx'(t)"™x*(t+1) =0 2 _ g2
Q=T'A€s0(3)NS?* =S8 (7.14)

yi(t) = x(t) + ni(?)
where the last equivalence follows from the isomorphism between so(3) and R® [11]. Thus, the plane-fixation
constraint corresponds to Essential matrices which are of the form Q = 7T’A. Due to the normalization
constraint on 7", we have only two degrees of freedom left, and rotation has been fully decoupled from
translation. This model may be considered the discrete-time equivalent of the Subspace constraint, for it
fully decouples structure and rotation, and leaves a dynamic constraint only in the direction of translation.

This argument closes the picture on model reduction in Structure From Motion, and links together

chapters 2, 3, 5 and 6.
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Chapter 8 Outlier rejection and segmentation

In chapters 2, 3, 5, 6 and 7 we have assumed that the scene being viewed consists of a single rigid object.
The process of dividing the scene into portions that corresponds to objects moving independently is called
segmentation. In chapter A we have also observed that, since feature tracking is an intrinsically local
procedure, often times it may result in outlier data due to mismatch or violations of the brightness constancy
equation. The process of outlier rejection may also be thought of as a segmentation of the scene, since outliers
appear to move in a way which is inconsistent with the other points belonging to the same object. In this
chapter we address the issue of segmentation and outlier rejection.

Many cues may be used for scene segmentation, such as boundaries, texture, discontinuities of the optical
flow, stereo, motion etc. . Ultimately a system for performing three dimensional scene segmentation ought
to integrate all the information available by exploiting each cue.

There are two motion cues that might be used for scene segmentation: 2D motion on the image plane,
where optical flow discontinuities are projections of scene depth and/or 3D motion discontinuities, or 3D
motion itself. There are a number of assumptions as well: object rigidity, piecewise smoothness of the scene,
object opaqueness (which, together with all previous assumptions translates into piecewise smoothness of
the optical flow), existence of a “dominant motion”. Accordingly, the motion-based segmentation algorithms
may be classified into a number of categories. 2D optical flow region-based algorithms [9, 99, 14, 52], 3D
region-based [25, 97], and transparent 3D motion {111, 13, 87]. We call “transparent 3D motion” algorithms
the ones which do not make use of regions-contiguity assumptions, and may therefore handle motion of
transparent objects.

In this chapter we present a method for segmenting a scene from a sequence of monocular images using
only 3D motion cues. We make no use of spatial contiguity, and hence we are able to perform on transparent
motions. The main assumption is that each object populating the scene is a rigid body. We use the “Essential

filter” as a motion estimator, although all the considerations apply to the other models described as well.
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Figure 8.1: Structure of the segmentation scheme.

Background and notation

In this chapter we adopt the notation used to derive the “Essential filter” in chapter 3. We use the Essential
filter as a testbed for simplicity, although all considerations can be extended to each of the models described in

chapters 2, 5, 6, 7 as well.

Outline of the chapter

We will first sketch an outline of the algorithm. It consists of a separation step, which composes clusters
of points having high probability of belonging to the same rigid object, an initialization step in which a filter is
assigned to each cluster, and then a regime phase, which is characterized by having a filter associated to each
rigid object. During the regime phase the rigidity assumption is constantly checked and, if the object splits into
more than one independent body, the points which are incompatible with the current motion are rejected and
returned to the separation phase (see fig. 8.1). In the later sections the operation of each step is analyzed in
detail. In section 8.1 we introduce an innovation-based self-validating test for rejecting outliers. In section 8.2
the operation of the separation and initialization phases is explained and some open issues are discussed.

The scheme which we propose consists of three “modes of operation” which are constantly active during
the segmentation procedure. A supervision program is in charge of assigning to each feature point a mode of
operation (see figure 8.1).

Separation Suppose we are at the initial time instant. We do not know how many objects are moving in the
scene and which points belong to which objects. The separation step produces a set of clusters (one for
each point) which have high probability of belonging to a single rigid motion.

Initialization The initialization mode takes the output of the separation step, namely a set of clusters of points,
and runs a motion estimation algorithm (for instance the Essential filter) in parallel for each cluster. After
a settling time it gives either a convergence verdict, which promotes the cluster to the regime stage, or a
divergence verdict, which causes the cluster to be assigned to the separation again.

Regime The clusters which are promoted from the initialization mode enter into “regime” mode. Each object is
assigned to a filter which is in charge of estimating the rigid motion of the object and constantly checking
for outliers (points whose motion is not consistent with the rigid interpretation). This is done using a very
simple criterion which we call the “predicted innovation test”!.

1This choice may sound like an oximoron, since the innovation is exactly what cannot be predicted. However, it renders the idea
of what the test is about.
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8.1 The innovation as a residual

The Essential model presented in chapter 3 may be written as

X (E+ DQUT(E), RE)X () =0
Vi=1:N (8.1)

X'(t) = x*(t) + n'(¢)
where x?(t) are the projective coordinates of each of the N visible points in the viewer’s reference at time
t, Q = R(TA), where (T, R) is the rigid motion undergone by the observer between time ¢ and £+ 1 and %
are the noisy measurements of the image plane coordinates. Tt is customary to assume n' € N(0, 9). The

basic step of the Essential filter is of the form

T T
(t+1) = (t) +
R R
+L() | i (1)Q(T, B)Ri(t — 1) (8.2)

where L has the structure of the gain of an Extended Kalman Filter (EKF) [58, 55] whose states are the

motion parameters and R € SO(3). The quantities
() =xi (O)QUE, AR (t—1) Vi=1:N (8.3)

are the components of the pseudo-innovation vector, and measure how far each point is from the current
motion interpretation (T, R) The Essential filter also updates the variance of the motion estimation error
through a discrete Riccati equation. Since the constraint (8.1) is linear in Q, we use the (improper) notation
x’ iTQxi = Xx*(x/,x)Q = 0. Once N points are observed we can stack the measurements into a N X 9 matrix
x and write xQ = 0. We also use the shorthand Q for Q(T, R) The matrix Q belongs to the the so called

“Essential manifold” (see chapter 3 for details).
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Consistency with the rigidity assumption

Suppose at time ¢ the filter is in steady-state operation, and is estimating a rigid motion with some innovation
norm (typically on the order of 10~2 to 10~%). Suppose at time ¢ + 1 some points enter the scene which do
not belong to that rigid motion. At time ¢ the filter has produced the best prediction of motion at time ¢+ 1
given the measurements up to time t: Q(t + 1[¢). We can therefore make a “prediction” of the innovation
process é (¢t + 1Jt) = x(x',x)Q(¢ + 1]t) and compare each component against the variance of the previous
innovation: o2(t).

In our implementation we reject at each time all the points which produce a residual error E(t + 1t)
greater than one standard deviation of the innovation. Furthermore we can include into the filter any point
which comes into the scene and produces a residual error within a standard deviation of the innovation.
This allows dealing easily with occlusion, appearance of new feature points and splitting of rigid objects. It
is also possible to perform robust statistics on the components of the innovation, although we find that the
simple test proposed works well enough on the sequences we have tried.

The above discussion relies on the assumption that the filter is in steady state operation, hence estimating
the motion of a single moving object. What can we do at the initial time, when we have no clue of what

the motions in the scenes are? We will show in the next sections how the innovation test can be exploited

to initialize a filter for each moving object.

8.2 Clustering and initialization

At the initial time instant we have a set of points and their correspondents at subsequent time instants (see
chapter A). The first thing one is tempted to do is to run a filter until it converges to some “dominant”
motion, rejecting progressively all the points which are not compatible, then assign the rejected points to
a new filter, and so on, until all the points are assigned to a filter. However, the Essential scheme is very
sensitive to the presence of outliers (which is the key of the regime mode), and it does not converge if more
than few points are inconsistent with a single rigid motion interpretation. Furthermore, the innovation test
can be performed only when convergence has been reached: otherwise, the norm of the innovation is large,

which causes all the points to be rejected.
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The separation mode is in charge of constructing a number of “clusters” of points which are likely to
belong to the same rigid object, based only on 3-D motion (hence not exploiting local 2-D cues). The

initialization phase runs a filter for each cluster and merges the clusters that have converged to similar

motions.

Separation of initial motions

Let us examine the structure of the innovation (or residual) e. It is the image of y via Q, considered as an
element of the vector space IR. If all the N points which build up x were part of a rigid body, and no noise
was present, then Q would span the null space of x¥ and the residual error would be zero. Suppose a point
x* is added which does not belong to the rigid motion, then the corresponding component of the residual
error €' = XiQ is greater than zero and the point can be easily spotted. However, we do not know Q, and in
fact there might be many objects moving, each with its corresponding motion Q. Now suppose two objects
are undergoing independent and unknown motions. The matrix ¥ has now full rank [79]. Let us define the
“residual space” as the span of x. The intuition is that, if we pick up an arbitrary motion Q, the errors
XQ in the residual space corresponding to points which belong to the same motions tend to cluster. For
example when Q is very close to the motion of one of the two objects, its points will produce a very small
residual, while others will have larger errors. We want to explore experimentally the possibility of using a
similar criterion for separating points based on their residual errors.

One could think of computing residuals with respect to an arbitrary motion set < Q? > =1k} for
grouping points which are associated by similar rigid motions. A question of sufficient ezcitation arises
about the family of motions one chooses [94]. If the family < QF >i=1:x} is chosen properly, points
corresponding to different rigid motions will group into different clusters in the residual space. Which family
of motion vectors do we use? how do we perform the clustering if separation occurs?

Our choice for the family < Q? >(i—1.kx} is the canonical basis of the motion space R’ lifted to the
Essential manifold [89]. This choice, although simple, may be far from the optimal. Another simple choice
of sufficiently exciting motions are random vectors in IR® lifted to the Essential manifold. We could also
employ the canonical basis (or random vectors) in R?, although they may represent points which are not on

the Essential manifold.
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Given any basis of K elements, for each measurement set ¥ we produce a matrix & = [e1, €2, ...€K].
Then we cluster the points using a nearest neighbor criterion in the residual space. To do so, we produce
a matrix D = {d; ;} measuring the distance of the error vectors corresponding to each couple of points:
dij = ||€ —€]|. Dis a N x N matrix, called the separation matrix. We mark for each point i (row) all the
points j (columns) which have an error smaller than a threshold: d; ; < +y. In our experiments we have used
v = 3 mean(A), where A is the vector having as its elements 4 the minimum distance of the point i from
the other points.

We have tested the separating power of this procedure on a variety of motions and points configurations.
We have evaluated roughly as 0.3 the probability of having clusters which contain no spurious points and
more than 40 % of the correct points. Therefore out of 100 clusters generated (one about each point), 30
contain at least 40 points which are moving with a coherent rigid motion. The Essential filters initialized

for such sets converge from an arbitrary initial condition. Some instances are reported in the experimental

section.

Initialization phase

The separation procedure has produced N clusters of points. For each of these clusters we start an Essential
filter. According to the estimates of the separation step, for 100 clusters, one about each point, 30 will have
a set of at least 40 points all belonging to the same rigid motion. We initialize each filter with one step of
the basic Longuet-Higgins algorithm (see chapter 3).

After some settling time (20 steps) we evaluate the norm of the innovation process for each filter. We
discard filters with high innovation norm (> 1), and we merge together points belonging to clusters which
have produced motions whose difference is in the range of a standard deviation of the estimation error. At

this point we have initialized the algorithm and we have one Essential filter associated to each rigid cluster.

8.3 A practical study

In this section we will show the results of some experiments on the operation of the segmentation scheme.
We will show each mode of operation separately: first the performance of the separation step is tested on a

synthetic set of transparent clouds of points rotating about two orthogonal axes. The same is then repeated
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Figure 8.2: (left) Optical flow generated by two clouds of points rotating about two orthogonal axes. Points
belonging to one cloud are plotted with dotted lines, while the other cloud is plotted in solid lines. (right)
Separation matrix. For each point (row) we mark a dot on each other point (column) for which the difference
of the residuals (d; ;) is smaller than a threshold. The points belonging to one ob ject are ordered from row
1 to row 100, while points of the second object are labeled from 101 to 200. Ideally we would like to see
two black diagonal blocks, meaning that each cluster contains all and only the points moving coherently.
This does not happen in the experiments; however, the number of clusters having no spurious neighbors and
collecting more than 20 points are 66 out of 200 (circa 30%).

when the two clouds are rotating about the same axisin opposite directions (Ullmann’s experiment [103, 102]).
Then the initialization mode is tested on typical sets of points of the rotating clouds. We show the convergence
of a filter associated to a cluster containing no spurious points and the divergence of a filter attached to a
cluster with 20 % of spurious points. We then show the behavior of the regime phase when a rigid object
attached to a filter splits into two objects which move with independent motions.

Throughout the experiments we have used initial information about the scale factor (norm of initial
translation or distance from the centroid) and then propagated it through the estimation procedure. In
the synthetic sequences the images are generated by a simulation program which adds Gaussian noise to

the image plane measurements with 1 pixel std, according to the performance of the most common feature

tracking and optical flow schemes [6].

8.3.1 Separation
Transparent objects rotating about orthogonal axes

Two clouds of points in the same 3D region undergo a rotational motion about two orthogonal axes. An
example of an optical flow generated by this sequence is shown in fig. 8.2 (left). As it can be seen the two

clusters can be separated quite easily based on the direction of the 2D flow. However, neighboring points
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Figure 8.3: (left) Distribution of selected points (circled) on the image plane. It can be seen that the
selected points are mixed with points which belong to the other motion. (right) Illustration of the Ullmann
experiment. Two transparent cylinders rotate about the same axis and in opposite directions. The only cue
for segmentation is three dimensional motion.

moving with the same 3D motion can have opposite 2D velocity. In fig. 8.2 (right) is shown the matrix D
described in section 8.2 (the separation matrix). Points satisfying the neighboring criterion in the residual
space are marked as dots. In this example points from 1 to 100 belong to one object, and from 101 to 200
belong to the object rotating about the orthogonal axis. Hence in an ideal situation we expect a symmetric,
block diagonal structure with zeros on the off-diagonal blocks. Instead, the number of clusters having no
spurious neighbors and collecting more than 20 points are 66 out of 200 (circa 30%). Hence for 200 filters
which run independently in the initialization phase, 66 will converge to a rigid motion. In fig. 8.3 (left) we
show an image plane view of the selected points for the one of the clusters. It can be seen that the selected

points are mixed with other points which belong to the orthogonal motion.

Transparent objects rotating about the same axis with different directions

The same experiment described in the previous section is repeated when the two clouds of points are rotating
about the same axis in opposite directions (see figure 8.3 right). Psychophysical experiments showed that
this is a difficult task for humans; 3D motion is the only available cue.

The image plane view is reported in fig. 8.4 (left), and the corresponding separation matrix D in fig. 8.4
(right). The number of clusters collecting no spurious neighbors is smaller than in the previous experiment.
However, the number of pure clusters with more than 20 points is still 12, which corresponds to 5% circa

of the original feature set. Filters initiated with one of the 12 pure (rigid) clusters converge to the proper
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Figure 8.4: (left) Optical flow generated by the Ullmann experiments. Two clouds are rotated about the
same axis in opposite directions. Observe that in this case no region-based algorithm could work and 3D
“transparent” motion is the only available cue. (right) Separation matrix. The number of pure clusters with
more than 20 points is 12, which corresponds to 5% circa of the original feature set.

motion allowing the scheme to be initialized correctly.

8.3.2 Initialization

In this section we show a prototype of a converging cluster (fig. 8.5 left) and a diverging one (fig. 8.5 right).
Motion is represented using six components (three of translation and three of rotational velocity); ground

truth is shown in dotted lined.

8.3.3 Regime: a motion splitting experiment

In this section we show an experiment of a splitting object: one of the clouds of points is rotating and
a regime filter is tracking its motion. After 25 frames the cloud breaks into two sets of points: one keeps
on rotating with the same motion, while the other starts rotating about an orthogonal axis. All the points
which belong to the split cloud are rejected by the filter. Since all of them belong to the same rigid motion,
the new filter initialized with the rejected points converges rapidly to the motion of the new split cloud. In
fig. 8.6 (left) we show the motion for the cluster which continues after the splitting, and in fig. 8.6 (right)

we show the motion estimates for the split cloud.
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Figure 8.5: Initialization phase: convergence (left) or divergence (right) of clusters of points. The motion
coordinates (three for rotation and three for translation) are plotted in solid lines as estimated in the
initialization phase. The behavior of a typical converging cluster and a typical diverging one is plotted.
Ground truth is in dotted lines. Note that 20 steps are sufficient for deciding whether a filter has converged
or not. Also note that the diverging cluster has 18 spurious points out or 93, i.e. circa 20%, which is sufficient
not to reach convergence on the “dominant motion”.
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Figure 8.6: Motion estimates for the splitting experiment: cluster of points with continuous motion (left)
and split cluster (right). Filter estimates (solid) vs. ground truth (dotted).
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Chapter 9 Dynamic calibration

Motion estimation from image sequences is usually performed in two steps: first the camera is calibrated,
in order to establish metric relationships between world coordinates and image-plane measurements. The
internal parameters (pixel size, optical center, focal length), are usually estimated off-line. Once calibration is
performed, one can estimate camera motion and ambient structure in a variety of ways, as we have described
in previous chapters.

Most of the recursive motion estimation schemes rely upon the exact knowledge of internal camera param-
eters. However, experimental evidence shows that these can change drastically during a long sequence [22]
due to zooming and changing of the aperture. Moreover, often it is not possible to access the physical device

which produced the sequence.

Many approaches for camera calibration are available in the literature; they can roughly be classified as:

1. Batch schemes, which rely on the knowledge of the structure by including a calibration rig in the field

of view (see [67] and references therein).

2. Active devices, which rely on the knowledge of the camera motion by controlling the configuration

(pose) of the camera [29, 22, 7].
3. Arbitrary structure and motion. Camera self calibration is performed along with motion estimation [32].

The first two approaches assume that the camera is available for meagurements, by either controlling its
motion or inserting a known object into the field of view. Therefore, it seems that the third approach is the
only feasible solution when the the device which produced the sequence is not available, as for example in
image compression applications or automation of image processing tasks for the movie industry.

Faugeras et al. [32] propose a batch scheme which reconstructs the epipolar transformation of the camera,
and then imposes the structure of such a transformation by solving a set of polynomial equations, known

as Kruppa's equations. However, the scheme has some drawbacks which make it unattractive for real world

applications. In particular
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e High sensitivity to pixel-noise
e Numerical instability

e Motion parameters and internal parameters are treated alike. While camera-motion can vary arbitrarily
during a sequence, it is conceivable that some parameters (for example the pixel size or aspect ratio)

are constant over long periods of time

¢ Not all the information coming from a sequence is exploited. The scheme processes 3 images at a time

and does not use temporal coherence or a-priori information (such as reference values for focal length,

initial confidence in the position of the optical center etc.).

Hence we want a recursive scheme which, after each incoming image, updates the computation performed at

the previous step. We also want the scheme to be causal so that it can be used for real-time implementations.

Background and notation

In this chapter we will adopt the same notation of the “Essential filter” introduced in chapter 3. Note that
the same considerations also apply for the other models described in previous chapters: the state-space can be
extended and the calibration parameters estimated on-line, provided that the corresponding model is observable.

Outline of the chapter

In this chapter we present a scheme for performing ego-motion estimation and camera calibration recursively
and causally for an image sequence. It does not need a calibration rig nor to control motion, while it exploits
redundancy at each step and computations from each previous step by recursion. A priori information about
calibration can be used, if available, as initial conditions for the estimation scheme. Internal parameter time

constants are adjustable by tuning their random walk models.

The scheme is based upon a modification of the “Essential filter”, extended to estimate camera parameters
according to the representation of [32]. A key feature is that the structure of the epipolar geometry is imposed
explicitly as the structure of the state-space of the filter, so we do not need to solve explicitly complicated
polynomial equations in order to enforce such a structure. From a different point of view, our filter can be viewed
as a recursive differential scheme for solving Kruppa's equations.

9.1 Camera model: internal and external parameters

The camera may be modeled as a perspective projection map

M: R} — R? (9.1)

X - x
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The simplest instance, which we have used so far, is the so called “ideal pinhole model”:
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It can also be represented as a linear map between real projective spaces, M : RP® — IRP?: in homogeneous

coordinates it is represented by a 3 x 4 matrix [ A ] O J where
fsz 0 —?0
A= 0 fsy —Jo
0 0 1

is the internal parameter matrix. f is the focal length, (o, jo) the coordinates of the optical center and
(sz,8y) the pixel sizes along the image plane coordinates. The deviation from 90° of the angle between the
optical axis and the CCD surface is usually on the order of 19, and we may therefore neglect it.

In the case of an uncalibrated camera, a constraint similar to Longuet-Higgins’ coplanarity constraint
can be derived simply as follows: given the projection of a feature x(t) at time ¢, its correspondent at t + 1,
x(t + 1), must lie on the epipolar line *e;41 '. Such a line is described in projective coordinates by a linear
function of x(¢). The matrix representing such a linear function is called the fundamental matriz F, which

is defined by the relation ‘e;11 = Fx(t). It can be easily verified that
F=ATQA™!, (9.3)

where Q is an Essential matrix. From the definition of the epipolar line, one may derive a generalization of

the Essential constraint seen in chapter 3 as

T i .
x" Fxi =0 Vi=1...N. (9.4)

I The epipolar line corresponding to a given feature is the intersection of the epipolar plane of that feature and the image-
plane. The epipolar plane is the plane determined by the two centers of projection and the feature in question.
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The scheme presented in [32] consists in first estimating F from (9.3), and then imposing its structure a-
posteriori by solving the Kruppa equations, which correspond to enforcing the fact that ATFA (is Essential

and therefore) has two equal singular values and zero determinant.

9.2 Essential filters for fundamental matrices

The Essential filter has been introduced in order to identify the dynamical model determined by the Essential
constraint:
T (t+1)QE)x(t) =0
Vi=1...N. (9.5)
X' (t) = x}(t) + ni(t)
We propose to extend the Essential filter to estimate fundamental matrices, by just substituting Q with F,
and impose the structure of the fundamental matriz explicitly by writing the estimator in local coordinates:
the estimate at each step determines a matrix which is fundamental by construction, and we do not need to

enforce the structure by solving explicitly ill-conditioned polynomial equations. The structure of resulting

update is very similar to the Essential filter [89]:

3 3
PlE+D =] 7 [O+LE | < OATEQE, A @Rt - 1) (9.6)
B

where £ = [fsg, £Sy, %0, Jo]7; L has the structure of the gain of an Implicit Extended Kalman Filter (IEKF)
(see appendix F).
If we call @ = [¢ 0 ¢ Q)T € R?, where Q are the exponential coordinates of R = ¢, and (0, ¢) are the

spherical coordinates of T, then we can write the complete set of equations for the filter:

Prediction step
{ &t + 1)) = a(tt) &(0]0) = ap

P(t+1[t) = P([t) + Sa(t) P(0[0) = Py
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Update step
(G +1t+1) = a(t+ 1))+

L(t+ 1% () A~TQa(t + 1])) A% (¢ — 1)
Pt+1jt+1) =
L+ 1P+ 1H)TT (¢t + 1)+

L(t+1) Dy ()2 (t + 1)DE () LT (¢t + 1)

where (Lt +1) = P(t+ 1j)CT(t + DAt + 1)

Alt+1) =Ct+1)P(t+ 1t)CT(t+ 1)+

+D4(t+ 1), (t+1)DE (¢ + 1)

T(t+1)=1-L{t+1)C(t+1)
i T k)
e

B axiT(m)Q(t)x"(t))
Clt+1)= (T(t)— I%(2),4(2)

)lfc(t),&(t)

\

where ¥, and 3, denote the variance of the noises a(t) and n(t) respectively.

9.3 Tradeoffs and sufficient excitation

In order for the motion and calibration parameters to be estimated, one must verify that the model just
described is observable. As it turns out, there are some tradeoffs due to the coupling between calibration and
motion parameters. For instance, the localization of the optical center is strongly coupled with the direction
of translation (with its component on the image plane).

We have performed a set of simulations on a noisy synthetic sequence, which show that often the estimates
are subject to biases when the structure and the motion are not “sufficiently exciting”. In figure 9.1 we show
the estimates of the translation and rotation parameters. In figure 9.2 we show the estimates of the internal
parameters. The noise on the image-plane was one tenth of a pixel, according to the performance of the best
optical flow/feature tracking techniques [6]. Convergence is reached in about 100 frames. Each iteration
consists of about 100 Kflops: an implementation using Matlab (not optimized) runs at .6Hz on a Sparc
10-20.

Note that, once the motion has been reconstructed, we may feed the estimates onto any Structure-
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Figure 9.1: (Top) Translational velocity: filter estimates (solid) vs. true values (dotted). (Bottom) Compo-
nents of rotational velocity.

From-Motion module that processes motion error [84, 93]. However, the motion configurations that allow
estimating accurately the scene structure, as for example fronto-parallel translation, are often not sufficiently
exciting for estimating the camera parameters. Vice-versa, motions that allow a good estimation of the
camera calibration are often ill-conditioned for estimating depth, as for example a spiral along the optical

axis. Therefore, there is also an intrinsic conflict between the estimation of the camera parameters and the

structure of the scene.



Figure 9.2: (Top) Coordinates of the center of projection: filter estimates vs. true values
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Chapter 10 Visual motion control

Traditionally, the control task in systems using vision as a sensor has been formulated directly on the image-
plane [42]. This choice is very natural in certain applications, for example tracking, docking, navigation etc..
However, it results in methods that are intrinsically local, whereas there are applications in which one is
required to track a globally prescribed path in the full configuration space. Furthermore, the control on the

image-plane exhibits some limitations due to the dependence of the controller on the structure (depth) of

the observed scene.

Background and notation

See chapters 3 and 5.

Outline of the chapter

In the next section we briefly describe a simple tracking control on the image-plane, and highlight its limitations.
In the following section we propose to formulate the tracking problem in the configuration space in its Essential
representation (through the Essential manifold). We anticipate that the resulting control has more “global”
features and does not depend on the structure of the observed scene. Instead, structure comes as a byproduct
of the Essential estimator once the control task has been accomplished. In the experimental section we describe
simulated experiments of the behavior of a simple controller based on the Essential filter.

We suppose the camera is mounted on a moving platform, on which we have full control. For simplicity
we neglect the dynamic constraints and assume to be able to control directly the translational and rotational
velocity of the platform. Suppose our task is to maintain a given relative configuration between the platform
and the scene. Such a situation occurs in tracking the motion of a three-dimensional object (of unknown shape
and kinematics) or in maintaining a fixed pose with respect to a scene despite the action of disturbances on the
platform (as for example in hovering or in underwater operation).

10.1 Control on the image-plane

Consider any of the models described in chapter 2. The time derivative of their output x (also called “motion

field” and approximated by the optical flow) can be written as:

() = T, XsW)ult) Vi=1...N (10.1)
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where
1 T 2
w— 0 —% — Ti1T2 l1+z7 —xo
J(x,X3) = | ™ = ' (10.2)
0 XL;; —;—z — (1 + IL‘%) T1X2 1

and x° indicates the image-plane coordinates of the projection, while X% denotes the third component of
the space coordinate (depth) of each point. The vector u(t) = (V(t),Q(¢)) is the canonical exponential
representation of the instantaneous motion (1°(t), R(t)). Suppose the initial configuration of the points on
the image-plane is x*(ty|ty) = x}, and an exogenous agent acts by moving either the platform on which the

camera is mounted or the target which the camera is looking at, producing a deformation of its image:

x'(t+1) = x*(t) + X(2). (10.3)

Suppose our goal is to keep the configuration of the observed points fixed at the value of the initial instant x}.
At any time we can measure a noisy version of the instantaneous configuration modified by the external agent,
and act with the control of the platform on which the camera is mounted. Using a first-step approximation,

one could write

X(t+ 1) 2 xi(t) + T (x(8), X ())u(t) (10.4)

and use a one-step deadbeat controller:
u(t) = T (1), X4(1)) - (xh — x'(t)) (10.5)

where | denotes the pseudoinverse. Note that the control depends on the depth of each point of the scene
Xi(t). Such a strategy has been experimented by Kimura et al. [42], who pioneered the control on the
image-plane. However, the expression of the deadbeat controller on the image-plane depends on the inverse
depth of each visible points, which needs to be “estimated” on line. This problem can be overcome by
assuming that the structure of the scene is known, and therefore the inverse depth can be recovered linearly
(via calibration as in Appendix A). Another alternative, which we do not pursue here, is the use of a stereo

system.

If the structure (depth) of the scene is not known, we need to estimate it, unless the motion of the target



153

is purely rotational about the center of the viewer’s reference, in which case 7 does not depend on the depth.
In order to estimate depth, we need non-zero disparity (also called visual parallax), which is the displacement
of corresponding points across different images. When disparity is close to zero, the recovery of the depth
is ill-conditioned (see Chapter 4). Therefore the image-based controller, which depends on the depth, tries
to drive the system towards a configuration of zero disparity, which does not allow recovery of depth. As a

result the controller either “drifts” or “swings”, as is discussed in the experimental section.

10.2 Control on the Essential manifold

Consider Qg € E describing the relative configuration between the scene and the platform at the initial
instance, and suppose we ask it to be constant despite the motion of the scene, encoded by an arbitrary
d(t) € E. We indicate with Q(t) the Essential matrix describing the motion between the initial instant and
the current time, which is therefore defined by the Essential constraint x° ()" Q(#)x} = 0. The effect of the

exogenous displacement (motion of the scene) and the control action are described by the model

Q(t + 1) = Qt)a2 (u(t))@d(?)

v ()T Q(1)y(0) = A(t)

(10.6)

where & represents the sum of the local coordinates, # describes the effect of the estimation error (it is in
fact the pseudo-innovation of the FEssential filter). In general we may want to specify the control task in

terms of some distance defined on the Essential space, dg(Q1,Qz), so that

e(t) = dp(Q(t), Qa(t)) (10.7)

satisfies a difference equation whose dynamics can be assigned by choice of the input.

10.2.1 Choice of a metric on the Essential manifold

Since E can be interpreted as an alternative representation of SE(3), any control strategy on the Euclidean
group can be mapped onto the Essential manifold. However, if we were able to formulate the control strategy

directly on the Essential manifold, the Essential filter would then gives us a direct estimate of the full state
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which is optimal, independent of the structure and obtained linearly from the visual data [89).
The choice of a metric on the Essential space is not a trivial issue, and we intend in this section to hint

at some possible choices. First of all any metric in the Euclidean space SE(3) can be “mapped” onto the

Essential manifold by defining
d5(Q1,Q2) = dsp) (T~ 0 ®(Q1), ¥ 0 ®(Qy)) (10.8)

where ¥ and @ are local coordinatizations of SE(3) and E respectively. An alternative (and equivalent)
method is to set the metric directly in the local coordinates and then “lift” it to the manifold. It must
be pointed out, however, that there is no natural (bi-invariant) choice of a metric on the Euclidean group.
Another possibility is to “project” a metric of the ambient space of the Essential manifold, R®, by using the
projection onto the manifold pry. It is unclear at the moment what the properties of such a metric may
be. Note also that a possible way of generating a path between two points of the Essential manifold, based
on its interpretation as the tangent bundle of S O(3), is to formulate a control that connects two points of
SO(3) with a given direction in the tangent plane. Such control strategies, called “dynamic interpolation”

have been studied for Riemannian manifolds and Lie groups in [21, 47].

10.2.2  Minimum-time, structure independent control on the Essential manifold

In this section we consider a simple experiment: we want to formulate the control that drives the relative
configuration to the desired one in one step (the minimum time in this discrete-time framework), as we have
done in section 10.1 for the control on the image-plane. We do not make any assumption on the scene, and
we want to develop a control strategy which is independent on depth, so that we do not have ill-conditioned
controllers at unobservable configurations of the system.

The model described in eq. (4.38) gives an immediate expression for such a minimum-time controller.
Suppose we are only interested in maintaining the initial configuration, then Q(to) = 0, and our control can

be inferred from the current estimate of the essential matrix, Q(t + 1{%), by

Q(t + 1jt) = Q(¢)t)@d(t) (10.9)

x'(t+1)T(Q + 1]t) + n(t)x) = 0 (10.10)
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N u(t+1)) = —Qt +1t) (10.11)

Qt+1jt+1) = Q(t + 1|{t)@d (u(t + 1)) = n(t) (10.12)

and therefore, provided that our estimator is unbiased, the control

u(t) = —®(Q(tft — 1)) (10.13)

gives a one-step correction which brings the state to the goal instantaneously up to white, zero-mean noise.

10.3 Some practical experiments

In this section we report an experiment of simple control laws for maintaining a given relative configuration
between a scene and an actuated platform on which the camera is mounted.

In figure 10.1, we have simulated a rigid cloud of points moving in front of the camera, which is mounted on
some actuated platform, and have generated a simple minimum-time control, based on the motion estimated
by the Essential filter, in order to maintain the initial configuration between the camera and the scene. The
following experiment, reported in figure 10.2, describes a similar experiment for a different motion of the
scene.

In the last experiment, reported in figure 10.3, we have implemented a minimum-time image-plane control
designed for the same task of the previous experiment. In this case the controller is asked to maintain
the initial configuration of the points observed on the image-plane. Therefore, at each step the controller
drives the disparity (difference between projections of the same point at subsequent times, also called visual
parallax) to zero. However, we have seen that the image-plane minimum-time controller depends on the depth
(structure) of each point of the scene. When the structure ts known, then the controller performs similarly
to the one on the Essential space (see figure 10.3 (A)-(B)). If the geometry of the scene is not known, then it
must be estimated. However, depth cannot be estimated for zero parallax. Therefore, the system is affected
by the intrinsic conflict between trying to drive the parallax to zero, and at the same time trying to keep it
large enough in order to be able to compute depth. The effect, which is visible in figure 10.3 (C)-(D), is

that the controller “drifts” in order to accumulate a residual which is large enough for computing depth.
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(A) (B) °

Figure 10.1: “Configuration tracking experiment on the Essential space: pure translation”: (A) a synthetic
scene composed of 30 feature points translates with decreasing translational velocity, the components of
which are plotted in (B) in m/s. The minimum-time control, whose components are plotted in (C) in
m/s, is obtained by feedback from the instantaneous estimate of the relative configuration between the
scene and the camera, and quantized at 8 bits. The noise in the image-plane was additive white Gaussian
with standard deviation corresponding to 10 pixels. The actuators are controlled as to maintain the initial
relative configuration between the viewer and the scene; the six local coordinates of the error from the desired
configuration are plotted in figure (D) (units are m/s for the error in translational velocity and rad/s for the

error in rotational velocity).

In some cases the controller “swings”: when the residual is large, there is enough parallax for computing
the controller accurately and drive the residual to zero; at this point the controller is computed with large

errors, and the residual grows again.
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Figure 10.2: “Configuration tracking on the Essential space: roto-translational motion” (A) the scene
rotates about a fixed axis which is 1.5m ahead of the observer with constant angular velocity of 5 deg/s.
The local coordinates of the relative motion between the scene and the viewer in the viewer’s reference are
plotted in (B) (m/s for the translational velocity, rad/s for the rotational velocity). The components of the
minimum-time control are plotted in (C) with the same units, and the corresponding deviation from the
desired configuration is plotted in (D). The noise was white, zero-mean and Gaussian with 5 pixel std, and
the controller was quantized at 8 bits.
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Figure 10.3: “Configuration tracking on the image plane”: (A)-(B) for the same experiment described in
figure 10.2, the control on the image plane when the structure of the scene is known (in terms of depth of
each point) is comparable with the one obtained with the control on the Essential manifold, which does not
need information about the structure of the scene (compare with figure 10.2 (C)-(D)). When the structure
of the scene is not known, and depth has to be estimated, the control is far less robust, for it tries to drive
the system to a zero-disparity configuration which is ill-conditioned (C)-(D). The controller, whose state
depends on the deptjh of the points in the scene, tries to reduce the image parallax (disparity, or residual)
to zero: such configuration, however, does not allow estimating depth. The effect, which is visible in figures
(C)-(D), is that the controller “drifts” in order to accumulate a residual which is large enough for computing
depth.
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Chapter 11 A comparative experiment

In this chapter we compare the schemes derived in previous chapters on a common set of experiments. In
order to render the discussion self-contained and avoid reference to all other chapters, we first review in
synthesis the different schemes presented in chapters 2, 3, 5, 6 and 7. Then we compare the performance of

all schemes on a common set of experiments on synthetic images.

11.1 Introduction

In this section we summarize the main results described in part I of the thesis in order to introduce the set

of experiments described in section 11.2.

11.1.1 Modeling “Structure From Motion”

In the preceding chapters we have seen how different models for estimating motion from sequences images can
be cast within the framework of dynamical systems estimation and identification. We have started from the
model that is “defined” by the rigidity constraint and the perspective projection, either in a continuous-time

or in a discrete-time fashion:

Xt +1) = R()X(t) + T(t) X' =QAXi4+V
Vi=1...N (11.1)

Y () = n(X(t)) +ni (1) Y =m(X) +

where the states X' = [X" Y* Z/]T € R® are the 3-D coordinates of each of the N feature-points in the
scene relative to the viewer’'s moving frame, x = 7(X) = [QZ(— % 1]T € RP? represents an ideal perspective
projection (pinhole), and n* € A'(0, R?) is a white, zero-mean and Gaussian measurement noise. The 3 x 3

rotation matrix R(t) describes the change of coordinates of the viewer’s moving frame between time ¢ + 1

and time ¢, and is orthonormal with positive determinant. When the rotational velocity €) is held constant
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between time samples, R is related to ) via the exponential map: ! R = %/, Therefore, a rotation matrix
has only 3 degrees of freedom, encoded in the three-dimensional rotation vector Q. T is a 3-dimensional
vector that describes the translation of the origin of the moving frame.

It is possible to integrate the above models from the initial time-instant, and end up with an “integral”

model of the form

X'(t) = 'Ry X' (to) + T3, Xi(to) = X§ (11.2)

where the coordinates of each point relative to the initial time-frame X{ are constant, and the current
configuration is described by the unknown translation T}, and rotation 'Ry, relative to the initial time
instant.

We have then dynamically extended the models above in order to include all unknown parameters T, R
or V, {1 in the state-space. In order to do so, one needs to know how such parameters evolve in time. In the
absence of any dynamical model, one may assume that they evolve statistically according to a random walk

of some order?. In the case of a discrete-time first-order random walk, one ends up with the extended model

( X'(t+1) = R(&)X(t) + T(t)

Tt+1)=T()+nr(t)
Vi=1...N(@) (11.3)

R(t+1) = R(t)enr ®)

LYH(E) = m(XE(t) +ni ()

where ny € R® np € R® are well as n* € RP? are white, zero-mean Gaussian processes. The above model
is the discrete-time version of the structure-velocity model introduced in chapter 2. We have applied the
idea of the “reduced-order observer” [57] in order to reduce the dimension of the state by the number of

the measurements, and be left with one state for each visible point, which encodes its depth in the moving

1The notation A stands for the operator that performs the vector product on R3: (QAMNX = QAX VY X e R3 In

0 —w3 wz
coordinates QA = w3 0 —w1 |. Alternative (local) representations for rotation matrices include various types of
—w3 w1 0

“Euler angles”; global (embedded) representations can be obtained through unit quaternions [81].
P g q
2The choice of a random walk is made for shear engineering convenience, for it results in a model which is suitable for

“recipe-design” of an Extended Kalman Filter.
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frame. Depending on whether we use a first-order model or an integral (second-order) model, we have

Zi(t+1) = Z§(t)
( Z4t +1) = R3 () Z%(t) + Ts(t) Qt +1) = Q) + na(t)
Tt+1)=T()+ np(t) ViE+1) =V({#)+nv(t)
R(t +1) = R(t)enn\®) . R(t+1) = ?OAR(t) 4
yi(t) = 1(Z )y () + ni(2) T(t+1) = SXONT(1) + V(1)
| ¥'(t) = 7 (R()y*(to) Z5 () + T(2)) + n'(t)

where Z¢ is the depth of each point at the initial time 0, which is obviously constant. Then we have pushed
the idea of the reduced-order observer in order to decouple structure from the motion parameters (chapters
3 and 5), and we have applied “output stabilization” in order to further decouple rotation from translation

(chapter 7). In all instances we have ended up with implicit dynamical models in the form

h(xt )%t =0
{ aeM (11.5)

yi=xt+nt Vi=1...N
where o are unknown parameters constrained to belong to the set M. In the discrete-time case we end up

with a similar form where x(¢ + 1) replaces x. By simply changing the set M we may obtain all the different

reduced models. Some relevant instances are:

Essential model: it is the well-known coplanarity constraint introduced by Longuet-Higgins [73], inter-
preted as a discrete-time implicit dynamical system. The unknown motion parameters 7' and R are
encoded into a 3 x 3 “Essential matrix” Q, which belongs to the space of matrices of the form (TA)R.

Such a space E is called “Essential manifold”. The function A is simply h(x, Q) = x? Q. See chapter

3 for details.

Subspace model: it consists of the Subspace constraint introduced by Heeger and Jepson [45], interpreted
as a dynamical system, rather than as an algebraic constraint. « = V is the direction of heading,
which is a three-dimensional vector with unit norm. The space of unknown parameters is the sphere
of all possible directions of translation: M = S2. The fanction A is the orthogonal complement of the

range space of a matrix C(x, V) of coeflicients of the 2-D motion field equation, which depends upon
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the image projection of each feature point x* = 7(X*) and the direction of heading V. See chapter 5

for details.

Point-fixation model: it arises when the sequence of images is taken while fixating some particular feature-
point on the image plane [35]. Such a fixation constraint may be specified simply by considering
Essential matrices of the form Q = RST + vSR with v € R, the velocity along the fixation axis and

S5 = [0 0 1)A. The model h remains the same as in the Essential model. See chapter 7 for details.

Point-plus-line fixation model: if, in addition to fixating a point, we impose that another point passes
through a given line, we further restrict the parameters to be of the form Q = RS” +vSR,R =

eler w2 07 4, e Ry, S = [0 0 1]A. See chapter 7 for details.

Plane-plus-parallax model: it describes the residual motion after the image has been warped as to com-
pensate for the motion of a plane [8]. We can impose the plane-fixation constraint simply by restricting
the parameters of the Essential model to unit-norm 3 x 3 matrices of the form o = T'A, and the param-

eter space is the two-dimensional unit sphere, as in the Subspace model: T € M = S?. See chapter 7

for details.

11.1.2 Formulating the estimation task for the extended models

In the extended models (11.4) derived from the basic constraints of rigidity and perspective, all unknown
parameters are state variables of the model. Such states evolve in a space that is not a linear space. For
instance, rotation matrices do not sum up to produce another rotation matrix, and so for unit-norm vectors.
Rotation vectors and spherical coordinates are an instance of a system of local coordinates on a curved space
(such as the set of rotation matrices or the unit-sphere).

The first step in order to make the model (11.4) suitable for designing an EKF that estimates the state
from the measurements is to transform the model into local coordinates: to this end we substitute to R its
local-coordinate correspondent rotation vector Qg € R®, such that 3 R = e®#". The state of the model
becomes € = [... Z* ... T, Qg] € RV*®. We have already assumed that the measurement noise n' is

white, zero-mean and Gaussian and that the motion parameters are described by a random walk, so that the

3Note that Qg is just an alternative way of representing R and is different from €, which represents the instantaneous
rotational velocity of the viewer moving frame.
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model in local coordinates is driven by a white, zero-mean Gaussian process. In order to avoid saturation

of the filter (see section 11.1.4), we add a Gaussian noise nz: with a small variance also to the first N

components of the state model:
ZP(t+1) = R () Z°(t) + Ts(t) + ng: (0). (11.6)

We can proceed in a similar way for the “integral” model (11.4-right), whose state-space is transformed into

local coordinates using the exponential map: A small residual noise is added to all components of the state

model in order to prevent saturation:

( Z5(t + 1) = Z§(t) + nys(t)
Qt+1) = Q) + ng(¢)
V({t+1) =V () +ny(t)
(11.7)
Qr(t+1) = Logsp(s) (eXOe2=®N) 4 ng (1)

T(t+1) = e®NT(X) + V(t) 4 np(t)

Y'(t) = m (R(£)y*(t0) Zi(t) + T(1)) +ni(t) + n}

where the last error term in the measurement equation takes into account the error in measuring the coordi-
nates of the projections at the initial time instant ¥'(to). The function Logg g(3) indicates the (local) inverse
function of the exponential map R = e?#" (see [81] for details *). The variance of the measurement error, X,
and X, can be inferred from the properties of the optical flow/feature tracking algorithm [6]. The variance
of the noises that drive the random walk model, ¥, with * = nz:, ng, ny,Nqg, Nr are tuning parameters,
and must be assigned by the engineer according to some criteria which we will discuss in section 11.1.4. The
above model is a local-coordinate version of the structure-motion-velocity model described in chapter 2.

The models in eq. (11.4), modified according to (11.6) and (11.7) respectively, are of the general form

§(+1) = f(E(t) +ne(?)

Yi(t)=g(€®t)) +ny:s(t) Vi=1...N

(11.8)

where f and g are locally smooth functions and the unknown parameters are encoded into the state ¢ that

4 A Matlab routine to compute the exponential map and its inverse can be retrieved via anonymous ftp from vision.caltech.edu
under /pub/matlab/vision/rodrigues.m.
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belongs to the linear space RN ® for (11.4-left) or RYT6%C for (11.7). Such models are in a form suitable
for applying an Extended Kalman Filter, whose equations can be derived from any standard textbook on
stochastic filtering, for instance [55]. The only caveat is the scale factor ambiguity, which we discuss in

section 11.1.6.

11.1.3 Formulating the estimation task for the reduced models

The reduced models (11.5), unlike the extended ones just discussed, are not yet in a form like (11.8) suitable
for applying an EKF. In the remainder of this section we are going to outline a method for performing the
identification of the class of models (11.5), which is essentially derived from appendix F.

The first step consists in transforming the identification task into a state-estimation task; this is done
by postulating some dynamics for the unknown parameters «. In the case when the camera is mounted
on a vehicle, or on a robotic arm, we have some dynamic constraints that govern its motion, typically in
the form ot + 1) = f(a(t),n.(t)), where f is some smooth function and n, some unknown input. In
the most conservative approach, we may assume that there are some bounds on the acceleration, due to
the fact that the relative motion between the camera and the scene is somewhat smooth, so we may write
fla(t),na(t)) = at) ® n,(t) with the constraint that n,(¢) is (unknown but) small in some norm. We
will explain shortly the meaning of the symbol &. If a camera is hand-held, or if there is no information
on the device that produced the sequence, then we may want to assume a statistical model for the motion
parameters, for instance a random walk. The simplest instance of a random walk is a Brownian motion (first
order), where f(a(t),na(t)) = a(t) ® ne(t) with n, a white, zero-mean Gaussian process. The choice of the
dynamics of the parameters is part of the design process and depends upon the specific application one is
targeting. Here we will restrict to first-order random walks just because they are the simplest models and

flexible enough to deal with most situations we have encountered:
alt+1) = a(t) ® na(t) a(ty) = ap (11.9)

where n, € N(0,%,). The reader may now wonder what we mean with the symbol @. Since the pa-
rameters o do not lie on a linear vector space, we cannot simply sum two elements and hope to ob-

tain a point on M. If we want to induce a sum operation we have to map each point into its local-
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coordinate correspondent, perform the sum in the local coordinates, and then map the result back onto

the original space. If we call £ = (o) € R™ the local-coordinate correspondent of @ € M, we have

®:MxM — M; (a1,a) = a;@az = ¥ (¥(a1)+¥(a2)). The symbol + denotes the usual sum on R™.

For instance, if @ = VV € 82 is a unit-norm three-dimensional vector with spherical coordinates 8, ¢, such that
T

V(0,¢) = [ cos(8)cos(¢)  sin(0)cos(¢) sin(d) J then Vi © Vo = V (01, 61) &V (82, ¢2) = V(01 +02, 61 + ¢2),

where the last sums are intended modulo 27.

Equation (11.9), transformed into local coordinates, will be the state of the filter that estimates the

parameters a:

E(t+1) =E£(t) + ne(t) (11.10)

where £ = 1(a) and ng(t) = 1¥(na(t)) and + denotes the usual sum in R”. Now, if we substitute y* — n'

for x* in the state of the model (11.5), we get
h(yi(t — 1), at))y'(t) = @(t) Vi=1...N, (11.11)

where 7% is a noise process induced by n*. Notice that ¢ is not a white noise, for it is correlated within one
time step. A method for dealing with such a problem is described in appendix F, while in this chapter we
will assume that 7’ is approximated by a white noise, whose variance is inferred from the variance of n* and
the linearization of h. If we now put together equations (11.9) and (11.11), after assuming that #° is white,

we end up with a dynamic model for the unknown parameters, having an implicit measurement constraint:

alt+1) = a(t) ® na(t) alte) = ap
{ . ‘ . aeM (11.12)
hy*(t — 1), a(®))y*(t) =a*(¢t) Vi=1...N,
which has a local-coordinate correspondent
£(t+1) =¢&(t) +ne(t) &(to) = &o
{ _ ‘ A £cRM (11.13)
h(yt(t — 1), 1 (E@))yi(t) = @' (t) Vi=1...N.

The above model is now in a form suitable for applying an EKF in its version for implicit measurement

constraints. This can be easily derived from the standard equations of the EFK, after observing that the
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variational model about the best estimate of the current trajectory is linear and explicit, and the quantity

€(t) = h(y'(t - 1), (E(t + 110)))y' (t) (11.14)

plays the role of the innovation (the output prediction error [65]) of the filter. A derivation of the equations

of the implicit EKF, which are summarized in the next section, can be found in appendix F.

11.1.4 Implementation and tuning

In the previous sections we have seen that both the extended models (11.4) and the reduced models (11.5)
can be put in a form that is suitable for designing an observer, which are (11.8) and (11.13) respectively.

If such models were linear and the model and measurement noises were white, zero-mean and Gaussian,
the Kalman filter would guarantee that the innovation ¢ be white, zero-mean and have minimum variance.
In the case of a nonlinear model, the “whiteness” of the innovation is considered to be a reliable diagnostic
of the filter performance, and it may be evaluated using standard statistical tests, for instance Bartlett’s
Cumulative Periodogram (the integral spectrum of the prediction error).

What are the statistics of the measurement noise in typical vision applications? The feature-correspondence
is known up to some uncertainty, summarized in the noise process #°. Such uncertainty comprises both local-
ization noise, which is usually zero-mean and in the order of few pixels standard deviation, and large errors
due to mismatches. Such errors are intrinsic in the functioning of feature tracking/optical flow algorithms,
which are based upon a local brightness constancy assumption often violated in real-life situations [6]. These
errors cannot be eliminated by the optical flow /feature tracking algorithms; indeed, it is responsibility of the
methods that use the optical flow/feature tracking in order to estimate 3-D structure and motion to treat
properly both sources of errors, by rejecting outlier measurements due to mismatches, and by exploiting
the statistics of the localization error and the redundancy in the measurements in order to minimize their
effects. When the noise in the measurements is far from white and zero-mean, the statistics of the innovation
changes dramatically, which suggests that by doing some simple test on the innovation process we may be
able to spot out the outlier measurements due to mismatches in the optical flow/feature tracking. In fact,
each component of the innovation measures how consistent each visible feature point is with the current

estimate of motion. A test for rejecting outliers based upon such a principle has been proposed in chapter 8.
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Therefore, we are going to assume that the measurement noise is white and zero-mean, and we will reject as

outliers those feature-points that produce an innovation residual which is not consistent with our statistical

model.

We report here, for the sake of completeness, the equations for the Implicit EKF, which can then be

applied to the reduced model (11.13), and to the extended model (11.8)

&t +1Jt) = f(E(tIt)) £(0/0) = &

P(t+11t) = F()P(OFT(2) + Te () P(O)0) = Py
£+ 1[t+1) = £+ 1[t) + Lt + DA (y(t — 1), €t + 1)0)) y(¢)

Prediction step {

Update step {
Pt +1)t+1) =T+ 1Pt + 1T (¢ +1) + Lt + )Za(t + VLT (¢ + 1)
Lit+1) =P+ 1)CT({t+ DA (t+1)
Gain: ¢ A(t+1)=C(t+ )P+ 1)CT (¢t + 1) + Sa(t + 1)

T(t+1)=1—L{t+1)Ct+1)
Residual variance: Z;(t+1) = D(t + 1) DT (t + 1)

where F' = (g—g), C = <%§) and D = (Wt)aﬁ(?—T)])’ Y.« indicates that variance of the process *, and
P is the variance of the estimation error. In the extended (explicit) models of the form (11.8), we have
Ry (t —1),€(8)y(t) = y'(t) — g°(£(t)); in the reduced models (11.13) we have f(£) = €.

The only ingredients that are needed in order to complete the implementation of the filters are the
measurement and model variances 5 and ¥,. For the measurements, we have assumed that the error in the
location of each feature-point is independent, with a standard deviation of 1 pixel (0.002 units of focal length
in the simulation experiments described in section 11.2), according to the average performance of optical
flow /feature tracking techniques [6]. X is therefore a 4N x 4N matrix 5 with diagonal elements 4 % 10~6.

We assume that the model errors ng are uncorrelated, and therefore their variance ¢ is a diagonal
matrix. In principle the elements of X corresponding to the structure parameters (in the extended models),
and the ones corresponding to Qp and T in the integral models should be zero, for the model is ezact. In
order to prevent saturation S of the filter, we add a noise term whose variance is small relative to the variance
of the measurement error (10719).

The variance of the random walk models for V and 2 is the most crucial to set, for it trades off the

“smoothness” of the estimates with the “inertia” of the filter. We have experimented with various types

5Note that in the reduced filters we need to keep in memory the measurements at time ¢ — 1, and the measurement vector
is effectively 4N-dimensional (image-plane coordinates at time ¢ and t — 1), rather than 2N-dimensional as in the case of the
extended models.

8Saturation of the filter can be described as follows: if the variance of the model error is zero, the model is perceived by the
filter to be exact, the relative weight of the measurements decreases until the gain becomes zero along some direction, and the
filter drifts away without paying attention to the measurements {55].
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of motion, and finally set the variance of the random walk parameters to 1076, This number has nothing
magic, and has to be regarded as a reference. In order to be consistent, however, we have maintained the

same tuning parameters throughout all the experiments we describe in section 11.2,

11.1.5 Recovering the reduced parameters

The “reduced models” (11.5) are obtained from the extended ones (11.4) via model reduction, as discussed in
chapter 7. In essence some of the states are eliminated by solving the measurement equation for such states,
and substituted into the model equation. For instance, the Subspace model is obtained by eliminating the
depth and rotation parameters from the time-derivative of the measurement equation of the model (11.8).

As a result, the filters based upon the reduced models will only provide an estimate of some of the
unknown parameters. How can we estimate the remaining ones?

The parameters that are not represented in the state of the reduced models are in a sense “hidden” and
can be recovered easily. In fact, we can use the same equation that we solved for eliminating them in order
to provide an estimate from the current estimate of the states of the reduced model. Chapter 5 provides
an instance of such an “indirect” estimate for the rotation and structure parameters from the estimated
direction of translation.

As for the structure parameters, once motion has been estimated, it can be fed, together with the variance
of the estimates, to an algorithm for estimating structure that processes motion error, such as (84, 93].

Structure parameters may also be recovered by simple triangulation (see chapter 3).

11.1.6 Dealing with scale factors

As we have anticipated in previous sections, the structure parameters and the translational velocity are only
measurable up to a scale factor which affects the depth of each point and the norm of the relative translation.
In fact, it is very well known that an object moving in front of a camera produces the same images as an
object which is “twice as far, twice as big and moving twice as fast” [73].

In order to get rid of such an ambiguity we can choose essentially two ways. The first consists in isolating
the state variable that corresponds to the scale factor ambiguity and eliminating it. This is done in all reduced

filters, where the translational velocity is expressed in spherical coordinates 9, ¢ (azimuth and elevation).
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Only the direction of heading, therefore, is estimated while the radius is constant and therefore removed
from the state-space.

Alternatively, we may leave the state-space untouched, and saturate the filter along any direction affected
by the ambiguity. Note that, by doing so, we are dealing with a model which is globally unobservable, and
we just “freeze” our filter onto a slice of the unobservable space. The variance of the model error of any one
of the states affected by the ambiguity (for instance the distance of one point in the models (11.4)), is set to
zero, and so is the variance of the initial estimate. Each initial condition determines a slice of the state-space
which is an observable subset of the state-space. Of course we can observe the trajectory of the model along

such slices, but we cannot infer from the measurement in which slice we are.

11.1.7 Integral reduced models

Reduced filters may be implemented in their integral form, simply by referring the structure to the initial

time instant and integrating the motion parameters. For instance, in the case of the Essential constraint,

the corresponding integral filter is based upon the model

Qt+1) = Q) + na(t)
V(it+1) =V () +ny(t)
R(t+1) = O R(2) (11.15)

T(t+1) = 2 ONT(t) + V(1)

LY ()T QT (1), R(t))yh = 7 (t).

Here the scale factor may be set by imposing that the initial translation has norm one, by giving it as an
initial condition and saturating the initial variance of the estimation error for the norm of translation. This
solution, unlike when the scale factor is associated to structure parameters, is very sensitive to drifts since

the translational velocity changes in time and therefore the initial guess cannot be updated.

11.1.8 Dealing with occlusions

It must be noticed that, unlike incremental model, all filters based upon an “integral” model (defined relative

to the initial time instant) need all the features to be visible throughout the experiment. In the presence of
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occlusions and appearance of new features one has to use some ad-hoc heuristics 7. While all other schemes
based upon a first-order random walk estimate velocity (or rather relative attitude between successive time
instants), the integral filters estimate the attitude of the viewer relative to the initial time instant.
However, we remark that one of the major strengths of the reduced models is that they can integrate
motion information over time in absence of continuative tracking of the same point-features, or even using
optical flow at a fixed number of locations on the image. In fact, since structure is not represented in the
state, we can add and remove features by adding or deleting rows of the measurement equation of the model
(11.13), without affecting the continuity of the state. Structure, however, is represented indirectly through

the innovation process (11.14), whose components are a measure of how consistent each feature is with the

current motion interpretation.

11.2 Experiments

We have chosen to use a simulation framework in order to make careful comparisons, since a rigorous ground
truth is available while the relevant parameters are varied systematically. Such a ground truth is difficult to
obtain and impossible to validate for real image sequences.

First, we test the scheme on a real image sequence obtained by rotating a box on top of a chair (the
“box sequence”, section 11.2.2). Then we build a simulation that mimics the box sequence, and allows us to
change the number of visible features, the distance from the viewer, the noise level, the initial conditions for
the filters and other structural parameters in a systematic way. The basic setup is described in section 11.2.3,
and the following sections outline the results of the experiments. The particular choice of experiment is then

validated by testing the algorithms on other motion and structure configurations (section 11.2.11).

11.2.1 Nomenclature

We have implemented a recursive filter for each of the geometric models just summarized. The filter based
upon the extended model (11.4-left), which we call the “structure filter”, needed very accurate initial
conditions for the motion parameters, and therefore it did not converge in most of the situations described

in this section. Therefore, the filter for simultaneously estimating structure and motion has been implemented

A technique for dealing with a variable number of features is outlined in [80].
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only in its “integral” version, based upon the model (11.4-right), which we call the “integral structure
filter”. See chapter 2 for details.

We have then implemented the filter derived from the Subspace constraint, called the “Subspace filter”
in [92], which corresponds to the model (11.12) with the parameter space M = S2. The velocity of image
features is approximated by first differences, and exponential coordinates are used to model the discrete mo-
tion between successive time instants. The filter based upon the epipolar constraint of Longuet-Higgins [73]
is called the “Essential filter in local coordinates” in [90]. These filters are implemented in their incre-
mental version, which can employ both feature tracking or optical flow (velocity vectors at fixed locations
on the image-plane) as input. For the sake of comparison with the integral-structure filter, we have also
implemented an integral version of the Essential filter, which refers motion to the initial time instant; we
call this filter the “integral Essential filter”.

We have then implemented one filter for each of the fixation constraints described in chapter 7. The
filter derived from fixating a feature-point is called the “point-fixation filter”. Similarly, when we fixate a
point and a line, we have the “point-plus-line fixation filter”, and when we compensate for the motion
of a plane we have the “plane-plus-parallax filter”, or “plane-fixation filter”. All of these filters are
obtained from the model (11.12) where, in each case, only the parameter space M changes.

It must be noticed that “integral filters” need all features to be visible throughout the sequence, as
opposed to “reduced filters” that can integrate motion information over time even in the presence of features
with a very short life-span. Therefore, reduced filters have an advantage in real-life situations, since it is
extremely difficult to track single features over long sequences; typically feature-tracking algorithms can
trace features over the order of ten frames, and then refresh by selecting a new set of features [6]. In the
following sections, however, we are mainly interested in comparing the geometric essence of each scheme,
and we have therefore selected all features that survived from the beginning to the end of the experiments,

in order to compare integral models against reduced ones.

11.2.2 The basic experiment: the “box sequence”

We report here a test on a sequence of real images that we will later replicate in our simulation environ-

ment. This is done mainly for the purpose of motivating the experimental conditions used in the simulations.
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Figure 11.1: (Row, Column): (1,1) one image of the “box sequence”. (1,2) normalized structure estimated
by the integral structure filter. (1,3) instantaneous estimate of structure by the subspace filter. Rotational
velocity estimated by the integral structure filter (2,1), the subspace filter (2,2), the Essential filter (2,3),
the point-fixation filter (3,1) and the point-plus-line filter (3,2). The last scheme produces estimates only
for two out of the three rotation parameters, since it exploits the fact that the third (cyclorotation) is zero.
Direction of translation estimated by the integral structure filter (4,1), the Subspace filter (4,2), the Essential
filter (4,3) and the plane-fixation filter (3,3). We plot the two spherical coordinates (azimuth and elevation)
as a function of the frame number.
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A box of side approximately 30cm is placed on a chair 50cm ahead of the camera and rotated by 5 deg/frame
circa. The direction of rotation is inverted after 25 frames, and the overall sequence is 40 frames-long.

We have used a multi-scale version of the classical SSD algorithm [75] for tracking a number of features.
In order to test the integral filters we have selected only the features that survived from the first to the last
frame.

The setting used for each filter is exactly the same used for the simulation experiments which is described
in the next sections, and no ad-hoc tuning was performed. Initial conditions were zero for all schemes, and
a noise level of one pixel std was hypothesized for the feature tracking.

In figure 11.1 (top row) we show one image of the test sequence (left), with the feature points highlighted,
and the estimates of structure performed by the integral structure filter (middle), normalized so as to place
the center of mass at unit distance from the viewer. The figure shows a top view of the scene at the initial
time instant, and it can be seen that the qualitative structure of the box is estimated correctly. In the right
plot we show the instantaneous estimate of structure that comes as a byproduct from the Subspace filter,
as discussed in section 11.1.5. Note that such estimate only uses the instantaneous measurements and the
current estimate of motion, and is therefore less precise. All other schemes do not provide an estimate of
structure directly. However, their estimates of motion may be fed to any structure-from-motion module that
processes motion error, as done for instance in [84, 93].

In figure 11.1 (rows 2-4) we show the estimates of the rotational velocity and the direction of translation
(azimuth and elevation). The plane fixation constraint does not provide an estimate of the rotational
velocity directly. Similarly, the point-fixation and the point-plus-line fixation constraints do not provide a
direct estimate of the direction of translation, but only the translational velocity along the fixation axis.

Of course, in the absence of a ground truth it is only possible to appreciate the qualitative behavior of
each estimator. In order to perform a rigorous quantitative evaluation of the properties of each model, it is

necessary to employ a simulation platform, which we describe in the next section.

11.2.3 Simulation setup

We have generated a simulation that mimics the box experiment described in the previous section. A cloud

of N = 20 dots is distributed at random within a cubic volume of side 1m at a distance d = 2m from the
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Figure 11.2: Accuracy experiment. 50 trials, with 20 feature-points (except for the plane-fixation filter,
see also figure 11.6), starting at initial conditions distributed at random within 4% of the true parameters
while the noise level increases from 0.1 to 1.1 pixels std, according to the standard performance of feature
tracking algorithms. The scaled norm of the estimation error is plotted against the noise level. The filters
enforcing a fixation constraint (middle row), cease converging consistently for less than one pixel noise. Note
that integral filters (bottom row) have an advantage in performance, since they can count on an increasingly
large baseline. For the integral structure filter we display only the error in the estimates of motion parameters.

viewer. These dots are projected onto an ideal image plane with unit focal length and 500 x 500 pixels,
corresponding to a visual angle of approximately 30° and therefore approximately 3.5" of visual angle per
pixel. White, zero-mean Gaussian noise has been added to the projections with a standard deviation ng
varying between 0.1 and 12 pixels. The cloud is then rotated about an axis parallel to the image-plane and
passing through its center with a constant velocity 8 of 4 deg/frame. The basic experiment is then altered by
varying systematically the parameters of the simulation. All tuning parameters remain the same throughout

the experiments.

11.2.4 Accuracy

81If the reader is not comfortable with this assumption, we suggest a quick look at section 11.2.12.
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Figure 11.3: Accuracy/robustness experiment. The conditions were the same described in figure 11.2,
except that the noise level goes from 0.1 to 5.1 pixels std and we did not remove the instances when the
filters did not converge. The scaled norm of the estimation error is plotted against the noise level after the
filters have settled. The size of the error-bars can be considered a measure of robustness, for it indicates the
consistency of each filter across trials.
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Each scheme is tested on a sequence containing 20 point-features, with initial conditions distributed
normally at random around the true motion parameters, with a standard deviation of 4% of the norm of
the true parameters. The noise level is increased from 0.1 to 5.1 pixels std, and the normalized estimation
error is evaluated over a window of 10 frames, after the filters have settled (between frame 50 and 60). In
figure 11.2 we plot the norm of the estimation error against the noise level for a window between 0.1 and
1.1 pixels, according to the average performance of feature-tracking/optical-flow techniques [6]. In order to
evaluate the accuracy, we have plotted only the instances when the filters have convergence in all 50 trials.
We display the mean error, and visualize the standard deviation using error-bars.

It may be noticed that the Subspace filter does not converge to zero error in the absence of noise and
Is in general less precise, since it has to cope with the approximation of the derivative of the position of
the features on the image-plane using first-differences (upper-left plot). The schemes that impose fixation
constraints, either for a point (middle-left), a line (middle-center) or a plane (middle-right) cease converging
consistently for noise levels around 0.6 pixels std. This is due to the propagation of the errors in fixating
noisy features.

Integral filters (figure 11.2 bottom) can count on an increasingly large baseline, for structure is referred
to the initial time-instant and motion is modeled as a second-order random walk, and exhibit therefore a
better performance.

In figure 11.3, we plot the norm of the estimation error against the noise level that increases from 0.1 to
5.1 pixels without removing the instances when the filters did not converge. We have performed 50 trials of
the experiment, and we display the mean error, and visualize the standard deviation using error-bars. This
experiment evaluates a mixture of accuracy and robustness, since the size of the error-bars gives an idea of

the consistency of the performance across trials.

11.2.5 Robustness

In this experiment we assess the robustness of each filter, intended as the capability to retain a correct
estimate in the presence of increasing noise. We have performed 50 trials, with initial conditions distributed
at random within 10% of the true parameters, and we have tested whether the filter has reached convergence

after 50 time steps. In order to formulate a convergence verdict we test both the estimation error and



178

Figure 11.4: Robustness experiment. 50 trials with the initial conditions distributed at random within
10% of the true value, and the noise level increased from 1 to 12 pixels std. The histograms represents the
Dpercentage of the experiments in which the filters reached convergence. Integral filters (bottom row) exhibit
better robustness properties than reduced filters, with the exception of the Subspace filter (top-left).
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the periodogram of the innovation. In fact, the criterion for the filter to be operating correctly is that
the innovation be “as white as possible”. The periodogram, which is the integral of the prediction error
spectrum, is a measure of how “white” the innovation is. However, occasionally filters may get stuck in
“local minima” where the innovation is small, but the estimation error is large.

In figure 11.4 we report a histogram of the percentage of trials that have reached convergence as a function
of the noise level that ranges between 1 and 12 pixels std. It can be seen that the filters that enforce fixation
constraints (middle row) are significantly less robust than the ones based upon explicit reduction. Integral
filters (bottom row) are in general more robust than reduced filters, with the exception of the Subspace filter

(top-left), which proves remarkably robust.

11.2.6 Convergence

In this experiment we test the convergence properties of each model, by changing the initial conditions at
random within a region that grows from 1% to 100% of the true values of the parameters. In figure 11.5
we plot an histogram that counts the percentage of successful convergences as a function of the size of the
perturbation of the initial conditions. Noise is half a pixel std.

The filters based upon the fixation assumptions (middle row) have convergence problems, most probably

due to the effects of noise propagated through the fixation constraint.

Integral filters (bottom row) prove more sensitive to initial conditions than reduced ones. For the struc-
ture integral filter this is due to the observability properties of the model, discussed in [88], while for the
Essential integral filter this is most probably due to the mechanism of propagation of scale, which consists
in saturating the norm of the initial translational velocity. Such a filter is subject to a drift that increases

with perturbations in the initial conditions.

11.2.7 Dependence upon the number of visible points
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Figure 11.6: Dependence upon the number of features. The norm of the estimation error is plotted
against the number of visible features, for a noise level of half a pixel and initial conditions within 4%. The
Subspace filter (top-left) has an advantage over other schemes in that it needs fewer features for reaching
convergence. However, the computational cost of such a filter is quadratic in the number of features, unlike all
other schemes whose complexity is linear. Note that all filters can actually reach convergence in the presence
of less than 5 feature-points (for small noise and small acceleration) since motion information is integrated
over time. This is an advantage over two-views algorithms that need at least 5 (or 8) features to be visible
at all times. Note that the plane-fixation filter needs more features in order to achieve performance similar
to other reduced filters. For this reason the accuracy experiment in figure 11.2 has been performed with 20
feature-points for all filters, except for the plane-fixation filter which had 40. Note that the performance
improves marginally beyond 50 features.
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Figure 11.7: Dependence upon the aperture angle. Norm of the estimation error as a function of the
aperture angle that ranges from 2° to 40°.

In figure 11.6 we display the norm of the estimation error as a function of the number of features, which
range from 10 to 100. In general performance levels at 50 points, for the noise levels and initial conditions
considered. An exception is the plane-fixation filter, which needs more points in order to accurately warp the
images, and estimate the residual direction of translation. The Subspace filter seems to have an advantage
in that it needs fewer points. However, such a filter has a quadratic complexity, and therefore it becomes

computationally intensive for more than 70 feature-points.

11.2.8 Dependence upon the aperture angle

All models based upon full perspective projection need a wide field of view in order for the higher-order
perspective effects to be appreciable. We have decreased the aperture angle from 40 down to 2 degrees: most
filters seem to prefer aperture angles larger than 10 degrees, while the plane-fixation filter and the integral

structure filter need at least 20 degrees of visual angle to achieve satisfactory performance (figure 11.7).
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Figure 11.8: Dependence upon the bas-relief ambiguity. The norm of the estimation error is plotted
against the “thickness ratio” of the cloud of points being viewed (ratio between width and depth), which
ranges between 10% and 100%. The error curve is almost flat for all schemes, except for the plane-fixation
filter (middle-right), whose error increases as the scene approaches a plane. When the scene approaches a
plane, the warped images have no parallax, and therefore the residual translation has norm zero, and the
direction of translation (which is the state of the filter) can be arbitrary without violating the constraints.

11.2.9 Sensitivity to the “bas-relief” ambiguity

We have taken the original cubic cloud of points, and reduced one of the dimensions to a fraction of the
original side, ranging from 100% (cubic cloud) down to 10% (flat cloud). The norm of the estimation error
as a function of the “flatness” of the cloud is plotted in figure 11.8. Most filters do not seem to be bothered
by such a deformation, for the aperture angle considered (30°). Notice that one can view such a deformation
of the cloud as a reduction of the effective field of view, which is however limited to the times when the cloud
shows the thinner face.

An exceptional behavior is exhibited by the plane-fixation filter (middle-right). In fact, the estimation
error seems to increase dramatically as the cloud approaches a plane. This, however, does not mean that the

filter is not operating correctly. In fact, as the cloud approaches a plane, the warping operation stabilizes
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Figure 11.9: Dependence upon the sampling rate. The Subspace filter (top-left), which is based upon
a differential model, converges for smaller velocities. In principle its performance should degrade as such
velocity increases, since image velocities are approximated by first differences. However, the exponential
coordinatization helps maintaining good performance even in the bresence of large image-motions. The
performance of the integral Essential filter is somewhat odd. Since the filter is based upon a second-order
model, and therefore it can count on an increasingly large baseline, it can handle small motions quite well.
However, when the instantaneous baseline increases, the bias in the estimate of scale increases, which causes
a degradation of the performance.

such a plane up to the point in which the residual parallax is zero (in the limit of a flat plane). Therefore

the norm of the residual translation is zero, and its direction is undetermined.

11.2.10 Dependence upon the parallax (sampling rate)

In the basic experiment the cloud of dots rotates about an axis parallel to the image-plane by 4 degrees
per frame. In figure 11.9 we show how performance changes as the rotational velocity varies between 1 and
12 degrees/frame. The Subspace filter is based upon a differential model, and therefore it prefers small
rotations. There is, however, a tradeoff between the first-difference approximation of the image-velocity and

the amount of parallax in the data. As the velocity increases, the data are better conditioned, but the
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Figure 11.10: Alternative motions. The accuracy/robustness experiment of figure 11.3 is repeated for
some alternative motions. In the left plot we display the performance of the Subspace filter for a forward
translation of 30 cm/frame. Although the average norm of image-motion vectors is similar to that of the box
experiment, the data are less ambiguous, for the effects of rotation and translation do not superimpose. The
same motion has been estimated by the Essential filter, and the results are shown in the middle plot. We have
also considered translation along a direction parallel to the image-plane by 20 cm/frame. The estimation
error for the integral structure filter is reported in the right plot. Compare with figure 11.3 top-left, top-right
and bottom-left respectively.

first-order approximation of the image velocity degrades. The exponential coordinatization of motion helps
improving the filter for large image-motions.

The behavior of the Essential integral filter (bottom-right) is almost inverse to the other filters. In fact,
it degrades as the image-motion increases. This is most probably due to the mechanism of propagation of

scale, which is subject to biases that increase with the size of the image-motion.

11.2.11 Other types of motion

Throughout this section we have considered the “box experiment” as a paradigm. Here we consider other
types of motion. In a first experiment we consider forward translation within an infinite cloud of points,
where only the ones that fall within a visual angle of 30 degrees are seen. Translation is 30 cm/frame in order
to produce an image-motion of size comparable to that of the box sequence. Note that we cannot test integral
filters on this sequence, for points move out of the visual field as the viewer translates forward. Results are
qualitatively similar to those obtained for the “box experiment”. As an example, in figure 11.10 we display
the results of the accuracy/robustness experiment for the Essential filter and the Subspace filter. In general
this motion is “simpler” than the roto-translational motion of the box experiment, and performance is better.

We have also considered translation along a direction parallel to the image-plane by 20 cm/frame. The
scene is the usual cloud of 20 points of side 1m at 2m from the viewer. As time goes by, the cloud moves

farther away, and the effective aperture angle decreases. Nevertheless the performance is comparable with
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Figure 11.11: Complexity: number of floating point operations as a function of the number of visible
features. This count includes the overhead of our Matlab implementation. The Subspace filter has been
implemented using a tensor package that does not exploit the sparse structure of the matrices involved in

the computation.

that obtained in the box experiment. In figure 11.10 (right) we show the performance of the structure

integral filter.

11.2.12 A remark on “constant velocity” and first-order random walks

In the incremental models we have chosen a first-order random walk to describe the dynamics of the unknown
parameters. Integral models can be interpreted as a second-order random walk. The only reason for choosing
such random-walk models is that they are a good compromise between simplicity and flexibility. As we have
pointed out already, any other dynamical or statistical model can be used in place of the first-order walk
in any one of the filters described in this chapter, as long as it preserves the observability properties of
the overall system. The reader who is uncomfortable with modeling motion as a first-order random walk
may consider looking at an experiment described in chapter 5, where the velocity of the cloud of the same
synthetic experiment just described is modulated first by a sinusoid, then by a saw-tooth discontinuous

function, and then by a second-order random walk.

11.3 Discussion and interpretation of the results

We have compared the various models under controlled conditions, in order to evaluate the geometric prop-
erties of each constraint. It emerges that the models obtained by reduction using fization, i.e. using output-
dependent changes of coordinates, are in general less effective in all respects: precision, robustness and

convergence properties. This is surprising, for one expects that the fewer the degrees of freedom, the better-
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conditioned the optimization task should be. Qur finding can be explained by the fact that, when reduction
is performed using changes of coordinates that depend on the noisy measurements, the effects are propagated
in a non-linear fashion across the states of the filter, and even keeping track of the second-order statistics of
the errors does not help. “Explicit reduction”, on the other hand, does not require use of the measured out-
put, and helps achieve desirable properties such as global observability of the dynamic model [88]. Note that
we could reach this conclusion only because the unifying framework allowed us to compare the models that
exploit the fixation constraints versus the same models based on general motions, simply by changing the
geometry of the parameter space while using the same dynamic model and the same estimation technique.

Integral filters are in general more accurate and robust than reduced ones, with the exception of the
Subspace filter that proves remarkably insensitive to measurement noise. On the other hand, integral models
are more sensitive to perturbations in the initial conditions, due either to the observability properties of the
model or to the mechanism of scale propagation.

Other practical aspects, such as the presence of occlusions, need also to be taken into consideration. In
fact, in the presence of occlusions, the integral structure filter has a disadvantage over the reduced models
that do not include structure parameters in the state, for it has discontinuities in the estimates each time a
new feature enters the field of view, or each time a feature disappears. Furthermore, the integral structure
filter needs full-fledge feature tracking, and cannot use the optical flow at a fixed number of locations on the
image.

The computational load of the schemes proposed are comparable, and range approximately between
40K Flops per frame and 10M Flops per frame depending upon the scheme, the number of features and
the implementation. In figure 11.11 we report the number of floating point-operations as a function of the
number of points for our Matlab implementation. Such implementation is not optimized and the count
includes the overhead from the Matlab server. We feel that each one of the schemes we have tested could be
implemented in real-time on standard processors once the feature tracking/optical flow is available. Motion
and structure estimation are not the crucial bottleneck for real-time systems; feature-tracking/optical flow,
on the contrary, is quite demanding and needs to be further optimized in order to run in real-time on low-cost

hardware platforms [6].
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Chapter 12 What next?

In this thesis we have focused on a low-level point-wise representation of the scene. The geometry of
“Structure from Motion” of generic configurations of feature-points is now fairly well understood thanks to
the efforts, among others, of Ullmann, Longuet-Higgins, Faugeras, Tomasi and Kanade. The contribution of
this thesis is in the direction of processing image information over time, by casting the problem of Structure
from Motion within the framework of Dynamical Systems.

Such a point-wise representation is sufficient in a number of applications such as autonomous navigation
and robotics manipulation, where a coarse description of the environment suffices to accomplish the tasks at
hand. There is, however, a whole range of applications of motion vision for shape representation that demand
a more refined description of the environment. For instance, visual data storage (image databases) and
transmission (image-sequence compression), virtual reality and multi-media, reverse-engineering of movies,
landscape reconstruction for CAD modeling or endoscopic surgery planning, and more in general any system
requiring a human to interact with a “computer model” of the environment.

A natural way of refining the representation is to impose models on the environment and group feature
points into higher-level descriptors such as surfaces, solid objects, structures. Then problem-specific infor-
mation such as a-priori information about the environment can be inserted at the highest level, rather than
being enforced early in the data processing, thus Jjeopardizing the flexibility of the overall system.

In some applications, for instance three-dimensional rendering for Computer Graphics, such a hierarchical
representation is built “by hand”: first point-wise structure is estimated, then a polygonal mesh is fitted
to the three-dimensional data and smoothed. Then different meshes are patched together and rendered. In
principle, a system should entail a complete representation of the objects at different levels of resolution and
perform the estimation directly on the parameters of the representation, without the need to go through
feature-point selection and tracking and then 3-D interpolation. However, as of today, no methods are
available for estimating surface structure “directly”, and the power of computing hardware is still far from

sufficient to accomplish the task in real-time.
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There are in the literature some instances of organization of (partial) 3-D information onto surfaces in the
field of image compression, for instance the so-called “layers” [2], and “mosaics” [8]. These representations,
though primitive in the sense that they involve little of the geometry and none of the dynamics of the envi-
ronment, have resulted in promising image-compression algorithms. There is also psychophysical [100] and
physiological [101] evidence that humans tend to build a representation of their environment by organizing
(grouping) depth into surfaces.

Once we enter into this mode of operation, different issues play a crucial role towards a satisfactory
solution of the problem, for instance the choice of the model classes and their validation, the segmentation of
different models, the design of hierarchical control and decision strategies, communication between different

levels of the representation and sensory information fusion.
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Appendix A Feature tracking

In this chapter we describe a method to automatically select and track point-features in a sequence of
images. A point-feature is defined as a point that can easily be recognized from one frame to the other
(the so-called “correspondence problem”). The basic constraint used to solve (locally in space and time) the
correspondence problem is the “brightness constancy” of the region of image surrounding a feature point.

Many algorithms have been proposed to perform this task; for a review see [6]. We will concentrate on a
well-known algorithm presented by Lucas and Kanade [75] and then refined by Tomasi and Kanade [98]. Tt
relies upon a differential technique, which is therefore effective only when the spatial and temporal sampling
rates are high enough, so that the displacement across frames is small. When this assumption is not satisfied
it is possible to apply the same technique in a coarse-to-fine manner, as we discuss.

The material presented in this chapter is not central to the thesis: we treat feature-tracking and camera-
calibration as a “front-end” for algorithms performing three-dimensional structure and motion estimation.
Therefore, this chapter has been relegated in the appendix, having assumed that we have a method for

identifying a number of features on an image and find their correspondent in subsequent images.

A.1 Feature points on an image

Features are often referred to as characteristic points which are representative of the scene being viewed and
easily recognizable from one image to the other. In order to develop a technique to automatically extract
features we need a more operative definition. First of all it is not easy to identify single points (pixels), so

we associate to each point with coordinates (x,y) on an image I a small neighborhood (or window) W(z, y).

Remark A.1.1 If the feature-window has constant brightness, then it looks like a homogeneous patch and
it cannot be localized in a different image. If the window has a brightness gradient, then it is possible to
localize its correspondent on a different frame only in the direction of the gradient, since an image-shift

normal to the gradient does not modify the brightness pattern of the window patch (this is a manifestation
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of the well-known “aperture problem” ). Therefore, in order to be able to solve the correspondence problem,
a window needs to have a significant gradient along two independent direction. This concept is formalized as
follows.

We say that the window W is a reliable window if the integral of the squared spatial gradient of the image is
above some threshold 7 along two independent directions: if I (z,y,t) is the brightness of the image at the

point (z,y) at time ¢, and VI(z,y,t) is the spatial gradient calculated at that point, then the window being

reliable can be expressed as

Omin / VIVITdzdy | > T, (A1)
W(zo,y0)

where 0y,;, denotes the smallest singular value. In the simplest implementations the partial derivatives are
approximated by first differences and the integral by a finite sum. The expression in parenthesis is referred

to as Sum of Squared Difference (SSD) [75]. We say that the point (zg,yo) is a feature point if W(zo, o) is
a reliable window.

After this definition, it is easy to devise an algorithm to extract features:

e set a threshold

e for all points in the image compute the SSD

e if the minimum singular value of the SSD is bigger than the threshold then mark the point as a feature
point.

Remark A.1.2 There are some practical issues that must be addressed in constructing an effective feature

selector. For instance, we must avoid selecting different feature-poinis within the same window, since this

could cause feature mismatch during the tracking.

To this end, one can sort the pizels in an image based upon the value of the smallest singular value of the
SSD (which can be taken as a “quality measure” for that point as a potential feature ). Then within a given

area one may select only the “best” candidate as a feature point.

Optical flow and feature-tracking

Instead of selecting a number of point-features and then trying to estimate their displacement across frames,

we may choose a fixed set of locations in the image, and then estimate the velocity of the brightness patches
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at those locations, which is what is called “optical flow”. Of course in such a case we have to make sure
that the brightness patch at each preset location satisfies the SSD criterion, otherwise the optical flow is
subject to the aperture problem. Once this is done, the algorithm for estimating feature displacements that
we describe in the next section can be used to compute optical flow as well.

The literature on optical flow is quite vast and we do not attempt to give a thorough coverage here. For

more details see [6] and references therein.

A.2 SSD algorithm for feature displacement

dy
Let I(x,y,t) be an image, the displacement = d is implicitly defined by the following “brightness
do
constancy equation”
d oI ol
—Il‘,y,t :Im, _(_ )dl" a. dy — I, 4 =0, A2
@5t =@y = ... )" tleut) (A.2)

where dt = 1. The above can be rewritten, indicating with VI the spatial gradient of the image, as

dy
Vg = - 1) (A.3)

do

(2, y.8) "

Note that this in fact does not define a unique displacement, since it is a scalar equation in two unknowns.

However, we can augment this to a (rank-one) vector equation by multiplying on the right by VIT,

d
virvy, =VI'(I-1L),,. (A.4)
do

and then integrate it on a small window W(z, y):

dy
/ VITVI(U,W) dudv :/ VIT(I - It)(uw,t)dudv. (A.5)
W(z,y) do W(z,y)
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If we assume that the displacement vector is constant at each point of the window W, we can write the

above equation as

dy

G (A.6)

I
)

do

where G = fW(z ) VITVI(W’t)dudU and e = fW(:c v) VIT(I - It)(u,v,pydudv. In order to be able to estimate
the feature displacement, we must be able to invert the matrix G, which is exactly what we defined to be
the SSD in the previous section. Therefore, if we select feature points based upon the SSD criterion, we are

guaranteed to overcome the aperture problem, and we can solve for the displacement via

=G le. (A.T)

A.3 Sub-pixel iteration

In order to achieve sub-pixel accuracy we may iterate the procedure just described in the following way:
e d®=Gle
o ditl — —1git+1

where we define

o eitl = fW VIT(I — It)(u+d§,v+d§,t)dUdU'

At each step (u + di,v + d}) is in general not on the pixel grid, so that it is necessary to interpolate the

brightness values to obtain image intensity at that location.

A.4 Multi-scale pyramid

One problem common to all differential techniques is that they fail as the displacement across frames is

bigger than a few pixels. One possible way to overcome this inconvenience is to use a coarse-to-fine strategy:

® build a pyramid of images by smoothing ans subsampling the original images (see for instance [18])
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e select features at the desired level of definition and then propagate the selection up the pyramid

e track the features at the coarser level

e propagate the displacement to finer resolutions and use that displacement as an initial step for the

sub-pixel iteration described in the previous section.

Remark A.4.1 The whole procedure can be very slow for a full-resolution image if implemented on con-
ventional hardware. However, it is highly parallelizable, so that the image could be sub-divided into regions
which are then assigned to different processors. In many applications, where a prediction of the displacement

of each feature is available, it is possible to process only restricted regions of interest within the image.

A.5 Uncertainty Analysis

Optical flow/feature displacement is implicitly defined by equation (A.5). In general we do not have direct
access to the image I, but only to a sampled and quantized version of it, corrupted by noise. Furthermore,
in practical implementations, derivatives are approximated by first difference operators and the integral is
a finite sum. However, it is useful to postulate the existence of a continuous and differentiable process I
underlying the observations in order to discuss the incremental effect of different approximations a posteriori.

In the following we assume that the image is corrupted by a simple additive noise model, so that the
actual observation I is the direct superposition of the “true” image I and some noise process no(z,y,1).
It is customary to assume that the process ng is statistically uncorrelated in space and time, and has a
Gaussian distribution. This might be partially motivated by the fact that ng is the result of a large number
of independent events and hence there is enough substance to invoke central limit theorems. However,
a more honest standpoint would be to postulate whiteness and Gaussianity and then try to validate the
hypotheses with a detailed statistical analysis. The quantization error, though deterministic in nature, can
be modeled as random noise with uniform distribution with domain equal to the quantization step. As a
further simplification, we include the quantization error in the additive term ng by approximating its uniform
distribution by a Gaussian one. In the following analysis we assume for simplicity that ng is the collection
of all of the noise terms, modeled as a Gaussian white noise with variance o2; ng is therefore equal to on,

where n is a unit-variance, white, zero-mean Gaussian noise.
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Let us now expand (A.5) in a Taylor series around o = 0, and calculate the covariance of the displacement

meastrements up to first-order (the mean is obviously zero).

I=I+on=VI=VI+oVn (A.8)

VITVI ~ VITVI + o(VnTVI 4+ VITVn) + O(6?) (A.9)

N VITVI =Y (VITVI+oVn VI +oVITVn) Vi,jeW (A.10)
(2%} )

where higher order terms have been neglected. Now call
« Gi=Y,,VIT"VI
e er=),,;Vn(l—L)
® ey = Zi’j VIn,
o d=d+dy.

Then we can rewrite (A.5) as

d

G =é (A.11)
do
or, after expanding in Taylor series around o = 0,
Gd+o0Gid+oGd, =e+e; +es (A.12)
where higher order terms have been neglected. Then by definition of d we have Gd = e, hence
Gid+Gd,, =e1 + e = d, = G_l(el -+ 62). (A13)

QOur goal now is to find an expression for the covariance of d,,. Since the matrix G4 is linear in n, we can
write it as a linear operator L¢ times a vector obtained by stacking the elements n; ;Vi, 7 € W+ on top of

each other. W is a window augmented to allow the calculation of the spatial gradient of n. e; can also be
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on the other hand, can be written as a linear

operator L., whose size is twice that of e;, since it must multiply all the noise components in the current

window as well as those in the previous one in order to calculate the time difference. Hence the size of Lg

and Le, is 2 x (w +1)?, while L, is 2 x 2(w + 1)2, where w is the size of the original window W. The above

steps can be summarized as

Gid=Lg

€] = Le]_

and the generic row element of the operator Lq is:

(21%.,]. di + Iyi,j dg)

1,1,

1,2t

| Mwtlwt1,t J

N1,

Niaz

nw+1,w+1,t J

n1,1,t

Ni12t

Nw41,w-1,t
n1,1,t+1

71,2,t41

Nw+1,w+1,t+1 ]

(=2L, ,dy = Iy, ,do — I, dy)

(Ly, ;d1) (—ZIyi,jdg — 1y, ;di = I, ;dy)

(21

(Iﬂii,de)

©J

d2 + I?Zi’j dl)

(A.14)

(A.15)

(A.16)

(A.17)
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which multiplies the generic error term

Nit1,5
NG 5 (A.18)

g 541

B

while the generic row element of the operator L,; is

Nit1,5
(Ii,‘—fti-) —(Iz’,'_Iti-) 0
J ¥ J 2 ni7j (Alg)
0 o =iy = Lyy) o Loy - Iy)
N j+1
] ]
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and, finally, the generic row term of the operator L., is

- -
Tit1,5,8
Mgzt
g 41,
0o --. Iy, 0 0 o | e 0 e Iy,, 0
(A.20)
0 -+ =L, =+ 0 -« | ««v 0 ... Ly, - 0
41,5641
Ti,5,64+1
15 541,641
After reordering the terms N5 i the above definitions we can write
’- ni1.t !- 1.1t
_1 ni,2,¢ 1,2,
d, =G (Lg + Le,) + L., (A.21)

| ot lw1t J | Pwtlwite |
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r -
Tit1,5,
’- : Nt
41,5
T,j5+1,t
Call the ordered error vectors ny = ni; and ny = : , then we can calculate the variance
Ti41,5,6+1
T, j+1
| : ] Ti,5,t4+1
T, 541,641
of the above expression: i
34, = E [dnd]] (A.22)
_ 1T _ 4T
G Y Lg + Let)E [minY] (Lg + Lo)TG™T + G Lo [ngng | LLG1 (A.23)

since the noise processes are supposed to be uncorrelated in space and time, the variance of the long column

vectors will be identity matrices of the appropriate sizes, so that we have finally

Ya, = G (LoLG + LG LY + Lo, LG + Lo, LT, + Lo, LT ) G~17 (A.24)

n
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Appendix B Camera calibration

Feature selection and tracking provides us with the pixel coordinates (row-column) of a number of points in
the images across time. The process of establishing a correspondence between such pixel coordinates and
metric coordinates is called calibration. In this section we only describe the problem at a superficial level,
enough for what is treated in subsequent chapters. For a thorough analysis of the problem of calibration,
see the book of Faugeras [30] (pages 33-66) and references therein.

In this section we use the symbols (z,y) to denote the metric coordinates, while (i, j) are the row-column

coordinates as outcomes of the feature-tracking step.

B.1 Perspective projection, camera reference and pixel coordi-

nates

Suppose that we are looking at a three-dimensional scene through a camera, and call X € R? the coordinates
of the generic point in space, relative to an orthonorma) reference frame centered in the center of projection.
The surface of the CCD sensor could be modeled as a plane of equation X3 = 1, so that the third axis of
our reference frame coincides with the optical axis, and the image-plane is parallel to the first two reference
axes. In such a case, the coordinates of the projection of the point X can be written as an ideal perspective

(central) projection

X3
X3
X
X = = n(X) = . (B.1)
Yy
X1
X3

The coordinates x described position on the image plane relative to a reference frame centered in the optical
center (the intersection of the image-plane with the optical axis), with the axes aligned with the first two
axes of the reference in 3-D. Such a choice, which is what we call the “camera reference”, is made on purpose

for the perspective projection to have the simple form above.
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In order to establish metric correspondences between the features and the three-dimensional world, it is
necessary to find the change of coordinates between the camera reference and the pixel coordinates. We will
model such a change of coordinates as an affine transformation of the plane, and a quadratic correction that

compensates for the radial distortion due to the lens. The affine transformation can be written as follows:

= +A (B.2)

where (1,j) are the pixel coordinates (row, column) of a given point, (ip,jo) is the location of the optical
center expressed in pixel coordinates, and A is a generic 2 x 2 matrix. In order to simplify the model
we could assume that A is diagonal, which amounts to assuming that the pixels are rectangular and not

“diamond-shaped”. Such an assumption is often reasonable, so we will simply consider

A= . (B.3)

The scalars s1, 85 can be interpreted as the size of the pixels along the two principal directions expressed in
terms of focal lengths. If we further assume that the pixels are actually square, then s; = so is the focal
length. Such an assumption, however, is often violated on commercial cameras.

Once we have changed the reference from row-column to camera coordinates, we need to compensate for

the radial distorsion introduced by the lens. We model such a distorsion as a transformation
x = % = x(1 + k|jx|]%). (B.4)

Therefore, calibrating a camera amounts to recovering the set of parameters ig, jo, $1, $2, ¥, which correspond

to the optical center, the pixel size and the radial distorsion.
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B.2 Recovering camera parameters

Let us call K the overall transformation from pixel coordinates (i,J) to distorted camera coordinates %:

K:R? = R% % (4,)). (B.5)

We call £~1 its inverse function. If we write the perspective projection of a number of points X! Vi=1... N ,

=K' ,j)=r(X)Vi=1...N (B.6)

and isolate the pixel coordinates

LH=K@#(X)) Vi=1...N (B.7)

we see that they depend upon the camera parameters ig, jo, s1, 82, k, which are present in the function K.
In order to recover such camera parameters, one could measure the coordinates of a number of points
in three-dimensions X = [X',...X"], and the pixel-coordinates of their corresponding projections i, j, and

then set up an optimization problem of the form

iOuiO: 81,82,k = arg min ”(i’j) - ICioyjo,ShS%k (7T<X)) ” (BS)

To this end, it is customary to use a calibration rig, which is a pattern of points that are easily detected as
feature points, whose coordinates are known with high precision relative to some reference frame. Figure B.1
displays an image of a typical calibration rig.

However, the coordinates of such points are usually known in a reference frame which is not the camera
frame, since it is very difficult to know the exact location in space of the optical center. Therefore, we do not
measure the three-dimensional coordinates X* but, rather, the coordinates relative to a “world reference”,

X, The change of coordinates between the camera and the world reference can be described as

X'=RX! +T (B.9)

where T is the (unknown) location of the center of projection of the camera in the world reference, and R is



213

Figure B.1: An image of a calibration rig. The coordinates of the corners of the checkerboard pattern are
precisely measured relative to the center of the rig. Their corresponding projection is measured on the
image-plane in terms of row-column coordinates. The calibration process exploits these measurements in
order to recover the intrinsic and extrinsic parameters of the imaging device.

the (unknown) orientation of the camera frame relative to the world reference. (T, R) are often referred to
as extrinsic calibration parameters, as opposed to the internal parameters that describe the location of the
optical center, pixel size and radial distorsion.

Then our optimization problem must be solved with respect to all intrinsic and extrinsic parameters:

i07j07 81,82, klv T, R = arg min ”(i7j) - ICi07j07517821k (W(RX’UJ + T)) ” (B]‘O)

Note that in the above optimization the parameters in the matrix B are not free, since they must preserve
the structure of the rotation matrix which in the above expression is denoted by saying that R must belong

to the space of special (unit-determinant) orthonormal matrices S 0(3).

Remark B.2.1 One may set up an optimization routine to estimate the local coordinates of the parameters
iteratively from the above constraints. There are of course issues concerning the presence of local minima

and the initialization of the iteration, which we will not pursue here. See [50] (chapter 13) for more details.

Remark B.2.2 In order to be able to recover all intrinsic and extrinsic parameters, the data must be “suf-
ficiently exciting”. For instance, if the calibration pattern is parallel to the image-plane, the location of the
optical center cannot be distinguished from the translation component of the extrinsic parameters. We will

not get into the details of the analysis of singular calibration rigs, for which the reader is referred to [30].
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For our purposes it will suffice to know that a planar rig slanted with respect to the image plane can be used
to find the calibration parameters after having performed an iterative minimization on equation (B.10) in
a least-squares sense. To avoid falling into local minima one may nitialize the iteration at different initial

conditions, and then check the consistency of the estimates.
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Appendix C Linear maps, Gram-Schmidt and the
Singular Value Decomposition

We assume that the reader is familiar with the basic concepts of linear algebra.

C.1 Linear maps and linear groups

A linear transformation of a linear (vector) space (modeled as IR") is defined as a map T': R™ — IR" such

that
e T(z+y)=T(z)+T(y) Vz,y e R"
o I'az)=aTl(z)Vz e R", a cR.

If we consider the ring of all n x n matrices over the field IR, its group of units GL£(n) — which consists of

all n x n invertible matrices and is called the general linear group — can be identified with the set of linear

maps:

T:R"—=R" z— T(z) =Tz | T € GL(n). (C.1)

We recall that a set G is a group if it closed with respect to an operation, call it -

- G@x G — G

(91,92) —  g1-92 (C.2)

which is associative, has a null element and an inverse:
L (91-92) - 93=g1- (g2~ 93) YV g1,92,93 € G (associative)
2.3e€G|g-e=gVYge G (null element)

3.VgeG3geG|g-gl=g"1 g=e (inverse).
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The set of n x n non-singular matrices is a group under the usual matrix product. Such a group can also be

identified with the metric (vector) space R

We say that a linear transformation of a space with inner product is orthogonal if it preserves such inner

product:

< Tz, Ty >=<z,y> Vz,ycR" (C.3)

The set of n x n orthogonal matrices forms the orthogonal group O(n). If M is a matrix representative of an
orthogonal transformation, expressed relative to an orthonormal reference frame, then it is easy to see that

the orthogonal group is characterized as
On)={M € GL(n) | MMT =TI}. (C.4)

The determinant of an orthogonal matrix can be £1. The subgroup of O(n) with unit determinant is called

the special orthogonal group SO(n).

C.2 Gram-Schmidt orthonormalization

A matrix in GL£(n) has n independent rows (columns). A matrix in O(n) has orthonormal rows (columns).
The Gram-Schmidt procedure can be viewed as a map between GL(n) and O(n), for it transforms a non-
singular matrix into an orthonormal one. Call £, (n) the subset of GL(n) consisting of lower triangular

matrices with positive elements along the diagonal. Such matrices form a subgroup of GL(n). Then we have

Theorem C.2.1 (Gram-Schmidt) VM € GL(n) 3L € L, (n) E € O(n) such that

M=LE (C.5)

Proof:
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The proof consists in constructing L and E iteratively from the rows m; of M:

vy, = my, — e = Il:',‘ill

vy = mp — <mp,e; > e — ey = u‘v’;'H
- —

Voo = om Y <my e >e ey = e

Then E = [e ...el]T and the matrix L is obtained as

I 0 ... 0
I <ms,e; > ”Vg“ . 0
_ vnl |

Remark C.2.1 Gram-Schmidt’s procedure has the peculiarity of being causal, in the sense that the k-th
column of the transformed matriz depends only upon rows with index | < k of the original matriz. The
choice of the name E for the orthogonal matriz above is not random. In fact we will view the Kalman filter
as a way to perform a Gram-Schmidt orthonormalization on a peculiar Hilbert space, and the outcome E of

the procedure is traditionally called the innovation.

C.3 Symmetric matrices
Definition C.3.1 @ € R™*" 4s symmetric iff QT = Q.

Theorem C.3.1 Q is symmetric then

1. Let (v,)) be eigenvalue-eigenvector pairs. If Ay # A, then viLvj, i.e. eigenvectors corresponding to

distinct eigenvalues are orthogonal.
2. 3 n orthonormal eigenvectors of Q, which form a basis for R™.
3 Q204N >0i=1:n, ie Q is positive semi-definite iff all eigenvalues are non-negative.

4. ifQ@>0and Ay > XAy )\, then maxjg,=1 < T, Qr >= A and min|g,=1 < 2, Qz >= \,.
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Remark C.3.1

o from point (8) of the previous theorem we see that if V= ’: Vi Vo e v, J 18 the matriz of all the
ewgenvectors, and A = diag{)\; - - - An} is the diagonal matriz of the corresponding eigenvalues, then we

can write Q@ = VAVT; note that V is orthonormal.
o Proofs of the above claims are easy ezercises.

Definition C.3.2 Let A € R™ ", then we define the induced 2-norm of A as an operator between R"™ and
R™ as
Al = max | Az|f5 = jmax, < z, AT Az > .

llzll2= zll2=

Remark C.3.2

o Similarly other induced operator norms on A can be defined starting from different norms on the domain

and co-domain spaces on which A operates.

o let A be as above, then AT A is clearly symmetric and positive semi-definite, so it can be diagonalized
by a orthogonal matriz V.. The etgenvalues, being non-negative, can be written as o?. By ordering the
columns of V' so that the eigenvaluematriz A has decreasing eigenvalues on the diagonal, we see, from

point (e) of previous theorem, that AT A = Vdiag{o?---02}V7T and ||Al|; = 0.

C.4 Structure induced by a linear map

® Let A be an operator from a vector space E over the field of F (e.g. R) to a space (F,F)

e Let E have a scalar product < , >g: E x E — F and F have finite dimension and a scalar product

<,>pFxXF—F

o Let the adjont operator A* be defined by

< Az,y >p=<z, A%y > Vee E,yc F
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of course A*: ' — E. If A € R™*", 4* = AT
e Let E be decomposed as:

E = Nu(A) & Nu(A)*

e Let F' be decomposed as E = Ra(A) & Ra(A)*.
Theorem C.4.1 Let A, E, F be defined as above; then

a) Nu(A)* = Ra(A*)

b) Ra(A)t = Nu(A*)

c) Nu(A*) = Nu(AA*)

d) Ra(A)* = Ra(AA%).

C.5 The Singular Value Decomposition (SVD)

The SVD is a useful tool to capture essential features of a linear operator, such as the rank, Range space,
Null space, induced norm etc. and to “generalize” the concept of “eigenvalue- eigenvector” pair.

The computation of the SVD is numerically well-conditioned, so it makes sense to try to solve some
typical linear problems as matrix inversions, calculation of rank, best 2-norm approximations, projections

and fixed-rank approximations, in terms of the SVD of the operator.

C.5.1 Algebraic derivation

Theorem C.5.1 Let A € R™*"™ have rank p. Furthermore suppose, WLOG, that m > n, then
e JU € R™*P whose columns are orthonormal
e 3V € R"*? whose columns are orthonormal
e 3¥ € RP*P| ¥ = diag{o; - ~op} diagonal with oy > g9 > -+ > op

such that A =UXV*.
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Constructive proof

e compute A*A: it is hermitian and positive semi-definite of dimension 7 X n. Then order its eigenvalues

in decreasing order and call them o> >0 > .. -0,2z > 0. Call the a; singular values.

e From an orthonormal set of eigenvectors of A*A create an orthonormal basis for IR™ such that
span{vy ---v,} = Ra(A*) and span{vpy;---v,} = Nu(A). Note that the latter eigenvectors cor-

respond to the zero singular values, since Nu(A*A) = Nu(A).

e define u; such that Av, = o;u;Vi = 1 : p, and see that the set {u;} is orthonormal (proof left as

exercise).

* Complete the basis {u;}vi=1.», which spans Ra(A) (by construction), to all R™.

(gl 0 - v .. 0
0 69 - v oo 0
S - .
e then Afvy - -vp] = [ug -« ) which we name AV = UX
0 0 0 0y,
0 0 v ee ... omj

hence A = USVT

Then the claim follows by deleting the columns of U and the rows of V7 which multiply the zero singular

values.

C.5.2 Geometric interpretation

Theorem C.5.2 Let A € R™" = USVT, then A maps B(0,1) = {z ¢ R" : lzlla = 1} to an ellipsoid

with half-azes o;u;

Proof:
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let z,y be such that Az = y. {v; “++vp} is an orthonormal basis for R™. with respect to such ba-

sis ¢ has coordinates [< vy, >, < vy, >, -+, < U, >]. Idem for {u;}. Let y = Yoy — Az =

n

Y oiuiviz =30 oy < vz >= Y1 Yiui = y. Hence o; < vi,z >= y;. Now lzlf = >0, <
2
vg, x >?= 1Vz € B(0,1), from which we conclude > ie1 % =1, which represents the equation of an ellipsoid

with half-axes of length o;.

C.5.3 Some properties of the SVD
Rank and Null space
Theorem C.5.3 LetA = UV have rank r; then
e Nu(A) =span{v,41...v,}
® Ra(A*) = Nu(A)* = span{v; ...v,}
® Ra(A) =spanf{u; ... u,}
o Ra(A)* = Nu(A*) = span{u,; .. SUn }

proof: by construction.

Generalized (Moore-Penrose) Inverse

The problems involving orthogonal projections onto invariant subspaces of A, as Linear Least Squares (LLSE)

or Minimum Energy problems, are easily solved using the SVD.

Definition C.5.1 Let A € R™ ", A = UAVT where A is the diagonal matriz with diagonal elements

(A1,..-Ar,0...0); then

Al = UAVT, Ayy = diag(AT, .. 0710...0)

Theorem C.5.4

o AATA=A

o ATAAT = AT
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Least squares solution of a linear systems

Theorem C.5.5 Consider the problem Az = b with A € R™*" of rank p < min(m,n), then the solution %

that minimizes || AL — b|| is given by & = A'b.

Fixed rank approximations

One of the most important properties of the SVD has to deal with fixed-rank approximations of a given
operator. Given A as an operator from a space X to a space Y of rank n, we want to find an operator B
from the same spaces such that it has rank p < n fixed and |A— Bl is minimal, where the F indicates the
Frobenius norm (in this context it is the sum of the singular values).

If we had the usual 2-norm and we calculate the SVD of A = UXVT, then by simply setting all the
singular values but the first p to zero, we have an operator B = UX, V7T, where Y(p) denotes a matrix
obtained from ¥ by setting to zero the elements on the diagonal after the p*”, which has exactly the same
two norm of A and satisfies the requirement on the rank.

It is not difficult to see the following result

Theorem C.5.6 Let A, B be defined as above, then A~ Bllr = opt1. Furthermore such norm is the

minimum achievable.

Proof: easy exercise; follows directly from the orthogonal projection theorem and the properties of the SVD

given above.

Perturbations

Consider a non-singular matrix A € R"*" (if A is singular substitute its inverse by the moore-penrose

pseudo-inverse). Let JA be a full-rank perturbation. Then
o |ok(A+06A) —op(A)| < 01(6A) Vh=1:n

® 0,(AJA) > 0,(A)o,(5A)

[ ) Ul(A_l) = (A
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Condition number

consider again the problem Az = b, and consider a “perturbed” full rank problem (a + dA)x = b+ 6b.

Since Az = b, then to first order approximation 6z = — A6 Az. Hence o]l < [AT|[||6A]||z, from which

””6;”” = ”ATHHAH% = k(A)%l. “k(A)” is called the condition number of A. It easy to see that k(A) = a,
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Appendix D Manifolds, tangent spaces, vector fields

D.1  Smooth manifolds

Although an intuitive grasp of the basic notions of topology will often suffice to understand the material
treated in this book, we report here some basic definitions and well-known facts in order to make these notes

self-contained. The main references for this sections are the books of Abraham et al. (1] and Boothby [11].

D.1.1 Basic topology

Let M be a set. A topology on M is the collection of its open subsets, which are defined as follows:
1. M and 0 are open
2. U; C M are open Vi == U;Uj; is open

3. U; C M are open = ﬂiklei is open for all finite k.
A set with a topology is called a topological set. A subset U C M is a neighborhood of a point p € M if
it is open and it contains p. A set M is Hausdorff if any two points have disjoint neighborhoods: V p,q €

M, 3U,V C Mopensets | pecU,qe V,UNV = 0. A collection of open subsets {U;} of M is a basis if
1. M = UiUi and
2. UiNU; = Ugeg Uy for a set of indices K

i.e. any non-empty intersection of basis elements can be written as the union of some basis elements. A
function f : M — N between two topological spaces is continuous if the pre-image of an open set is open:
V C N open = f~}(V) C M open. A continuous function whose inverse is also continuous is called an
homeomorphism. Two sets are homeomorphic if there exists an homeomorphism that maps one into the
other.

At this point we are ready to give a formal definition of a topological manifold: M is a topological manifold

of dimension m if
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1. M is Hausdorff
2. M has a countable basis
3. M is locally homeomorphic to R™.

The third condition states that — around each point — we can find a homeomorphism that “fattens out” the
manifold so that it looks like the usual R™ [figure here]. The pair composed by an open subset U C M
and a homeomorphism ¢ : U — R™;p — z is called a local coordinate chart, and z = ¢(p) is called the
local coordinate of p. Naturally the local coordinate of a point is not uniquely defined, for we can find
two different neighborhoods U and V, and two corresponding coordinate charts (U, ¢) and (V, ), such that
Tz =¢({p) #¢P) =y. Themap goyy~l :UNV = UnN Viy = z is a homeomorphism, which is called
a coordinate transformation. If such a coordinate transformation (which is a function on R™) is a O™
(or smooth) function, i.e. it is infinitely differentiable, then the two coordinate charts are said to be C*®
compatible. A collection of charts that cover the whole manifold M is called an atlas. If an atlas is composed
by pairwise C*° compatible charts, it is called a C™ atlas. A topological manifold is called a smooth manifold
(or differentiable manifold, or ¢ manifold) if it is equipped with a C* atlas. A smooth homeomorphism,

with smooth inverse, is called a diffeornorphism.

For example, the sphere is a two-dimensional smooth manifold. To construct a local coordinate
chart, imagine to cut the sphere with a plane through the equator, and to draw a line from the
north pole, through each point, until it intersects the plane [figure here]. By doing so we can
establish a correspondence between points on the sphere and points on the Euclidean plane. It is
easy to see that such a correspondence is a smooth function. The point of intersection is the local
coordinate of the point on the sphere. Note, however, that we cannot find the local correspondent
of the north pole, using this chart. We may indeed repeat the construction from the south pole.
In this case the north pole does have a well-defined local coordinate, but the south pole does not.
The two local coordinate charts considered cover all points of the sphere, and it can be shown
that they are C* compatible. It can also be shown that it is not possible to find a single chart

that covers all the sphere, and therefore it is only locally diffeomorphic to R2.
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Consider a function F mapping a manifold M into another manifold N , and let (U, ¢) and (V%) be
coordinate charts on M about the point p and on N about the point ¢ = F(p) respectively. The composition
of the functions ¢=1, F and ¢ maps the local coordinates of p to the local coordinates of g. Such a function

is typically called the local coordinate correspondent of the function F:

F:R™ - R Ty (D.1)

where = = ¢(p),y = ¥(g),q = F(p), and therefore

y=1voFo¢ ()= F(z). (D.2)

The function F is said to be smooth when its local coordinate correspondent £ is smooth. We will often omit

the tilde and use the same symbol F to denote a function between two manifolds, and its correspondent in

local coordinates.

D.1.2 Lie groups

A differentiable manifold which possesses a smooth group structure is called a Lie group.

We recall that a set G is a group if it closed with respect to an operation, call it -

t@xE — @G

Pg =~ p-g (D.3)

which is associative, has a null element and an inverse:
1L.(p-q)-r=p-{qg-r)VYpgreG (associative)
2.deeG|g-e=gVge@ (null element)
3.VgeG3gleGlg.gl=glg=c¢ (inverse).

For instance, the set of non-singular n X n matrices is a group under the usual matrix product, and it

is also a differentiable manifold, for it is isomorphic to R™’. Therefore, it is a Lie group, also called GL(n),
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general linear group acting on R™.

D.1.3 Embeddings

Let FF: M — N be a smooth map between two manifolds. #' is said to be an immersion if the rank
of F equals the dimension of M. The rank of a function between manifolds can be defined as the rank
of the differential of the local coordinate version F — known from calculus — which is easily shown to be
coordinate-independent. The map F' is said to be an embedding if it is an injective immersion. There are
some non-trivial issues concerning the topology induced from M by F' and how it compares to the topology

of N; the reader may consult for instance [41] for more details.

We will use often the term embedding space. In order to illustrate this concept imagine a manifold,
for instance a sphere S? = {z € R® | ||z]| = 1}. Consider now the map I : §? — R*;z — z,
which does not change the point z, but simply views it as an element of the ambient space R?
without paying attention to the constraint ||z|| = 1, which defines the sphere. We say that the
map I maps points of a manifold into its embedding space. The embedding (or ambient) space
is usually chosen so that it is less structured and therefore easier to work with. As a matter of
fact, each differentiable manifold can be embedded in R with % big enough (in fact Withney’s

Embedding theorem [11] regulates how big k must be).

D.1.4 Tangent plane and tangent bundle

In this paragraph we will describe two equivalent characterizations of the tangent space to a manifold. The
link between these two definitions will be hinted to in section D.2. The first one resorts to the intuitive
notion of the tangent plane to a surface in IR®: in fact, we can define the tangent space to the manifold M at
the point p as the linear space of the derivatives of all possible one-parameter curves of M passing through
p [figure here]. Consider a curve ¢ : U C R — M;t > ¢'(t), where U is a neighborhood of p, such that

there exists some ¢y with cf(tq) = p. Then we can define

T,M =< é(to), ..., (to), ... > (D.4)
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where ¢ = % and < ... > denotes the linear span. It is easy to see that the tangent space thus defined is

a linear space of the same dimension of the manifold M , and it corresponds to the intuitive generalization

of the tangent plane to a surface in R3. The tangent space is often called tangent plane regardless the

dimension of the manifold.

An alternative definition, which is less intuitive but easier to work with, uses the concept of a derivation.

To this end, consider the set of all smooth real-valued functions defined in a neighborhood of the point p:

C=()={h:U C M — R smooth | p € U} (D.5)

and consider all the real-valued linear functionals on '™ (p) that satisfy Leibniz rule:

D(p) ={fp : C®(p) — Ry h > f,h} (D.6)

such that
L. fplathy +aghs) = a1 fyhy + azfpha ¥V a1, a1 € R, by, hy € C®(p) (linearity)
2. fp(hihz) = hi(p) frha + ha(p) foha ¥V hi, hy € C(p) (Leibniz rule).

Such functionals are called derivations on M at p. We then define the tangent space of a manifold M at a

point p, T, M, as the space of derivations on M at p:
T,M = D(p). (D.7)

A map F: M — N;p — ¢ between two smooth manifolds determines in a natural way a map between

their tangent planes at p and ¢ = F(p):
F., T,M —T,N (D.8)
that maps a tangent vector fp on M onto a tangent vector gq on N according to the rule

gqh = F*p (fp)h = fF—l(q)F o h. (Dg)
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Such a map is called the differential of F' [1], or push-forward [11]. It is easy to see that the push-forward of

the local-coordinate correspondent of the function, F° , is the Jacobian matrix of partial derivatives

- OF
P = <—8x> : (D.10)
z=¢(p)

The latter definition of the tangent plane allows us to easily characterize a basis for the tangent plane.

Define m tangent vectors to R™ at x as

Vi=1...m, (D.11)

6$i

which is easily seen to be a basis for all derivations in R™, for all tangent vectors fz to R™ at z can be

written as f; = fi, % +ooifa, + 6—9?,;’ which acts on a function & as its derivative along the direction f,:

foh = —g—gfm. (D.12)

We can now consider a local coordinate chart (U, ¢) as a map between the manifolds M and R™, which
induces a push-forward ¢,, between T,M and T,IR™, where z = ¢(p). We define a basis of Tp,M as the

push-forward of the basis of T, IR™:

0 %)
where
o ., 0

which acts on a function h € C°°(p), where p = ¢~1(z), according to

_., 0 . Ohogp™?!
¢*P1(8:ci )h = ( axl )av:qﬁ(p) (D15)
which in local coordinates becomes
oh
z (D.16)

Oz

where h is the local coordinate correspondent of h.

It is possible to prove that the tangent plane to a manifold is itself a manifold of the same dimension. If
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we consider the collection of all possible tangent planes to all points of a manifold, we obtain
TM = UpemT,M (D.17)

which is called the ¢tangent bundle. It is possible to show that the tangent bundle to a manifold is a manifold
of twice the dimension. The push-forward of a map F': M — N, when the point p € M is not specified,

can be interpreted as a map between the tangent bundles of M and N:

F.:TM — TN. (D.18)

D.1.5 Vector fields and Lie derivatives

A (smooth) vector field is defined simply as a smooth map between a manifold and its tangent bundle:
M —TM;p~ f, € T,M. (D.19)

Since f, is a vector in the tangent plane to M at p, it acts on functions h € C°°(p), returning a scalar
foh € R. We denote with (M) the set of vector fields defined on the manifold M.

The same object, f, could also be interpreted as a map between smooth real-valued functions on M:
[:O%(M) — C®(M);h+ fh (D.20)

where the function fh : M — IR acts on a point p via fh(p) = fph. When used this way, fh is called Lie

derivative of h along f, and indicated by
Lih=fh: M — R;p~ Lsh(p) = foh. (D.21)

In local coordinates the Lie derivative L £h is, not surprisingly, the directional derivative of A along f: g—’; f-

The Lie bracket between two vector fields f; and f2 is defined as follows:

[ s x(M) x x(M) — x(M); (f1, f2) — Ly fo— Ly, fr. (D.22)
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In local coordinates we have [f1, fo] = % fi— % fa.

D.1.6 Duality

V™, the dual of a vector space V, is defined as the space of linear functionals on V. V* is itself a vector
space, and its elements, w, act on the elements v of V' giving a value < w,v >€ R. If {ey,... ,€m } 18 a basis
of V, the unique vectors {ej,..., e’ }, defined by < ef,e; >=06;; 1, are a basis of V*, called the dual basis.

Given a map 7 : V — W between two vector spaces, the dual map F* : W* — V* is defined by
< F*(w"),v >=< w*, F(v) > Vv € V,u* € W*. (D.23)

For instance, the cotangent space to a manifold M at a point p, Ty M is the dual of the tangent space; the
tangent covectors are the dual of tangent vectors, and the covector fields are dual of vector fields.

A function A : M — generates a natural covector field, d)\, which is called the gradient (or differential)

of A, such that

, d
M(f)=<arf> 2. (D.24)

The differential is expressed in local coordinates as the row vector of partial derivatives of A with respect to

LlyenryTm:
oA oA (D.25)

E"”’_axm]'

dA\(z) =

D.2 Differential equations, local flows and one-parameter group

actions on a manifold

The notion of a vector field allows us to introduce the concept of a differential equation on a manifold. In

fact, consider a curve on a manifold M described by

P (t1,t2) — M;t e p(t). (D.26)

16 ={1ifi =340 otherwise} is the Kronecker delta.
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The differential of this map at ¢, p., maps the vector (%)t onto a vector in the tangent plane to M at

p(t) : pi, (£) = B(t). Therefore, we have

d

=) (D.27)

d, ...
Ps i TR — TM; (=) = (1) = pa(

Now assume we are given a vector field f : M —s T'M, the curve {p(t)} described above is an integral curve

of f if the following is satisfied locally around ¢:
P(t) = fo)- (D.28)

We will often write p = f(p) or even, in local coordinates, & = f (z).
We will now see that there is a close relationship between vector fields and one-parameter group actions

on a manifold, which is essentially governed by the fundamental theorem of ordinary differential equations.

Such a relationship glues together the two definitions of the tangent plane that we have given in

section D.1.4. The reader interested in a more detailed and rigorous treatment of this issue can

see [11].

D.2.1 Group actions and infinitesimal generators

We define the (smooth) action of a group G on a set M as follows as follows:
¢:GXM-— M; (t,p)— o¢(t,p) (D.29)

such that
1. ¢(e,p) =pV p € M, where e is the null element of the group G,
2. ¢(t1, P(t2,p)) = ¢(t1 - t2,p) ¥V t1,t2 € G, p € M where - is the group operation (semi-group property),
3. ¢ is a smooth map.

We will often use the notation ¢;(p) or ¢,(t) in place of ¢(t, p) when emphasizing the role of the group element

¢ or the point the group is acting on, p. ¢ are called trajectories; when the action takes the trajectories out
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of M, ¢ : G x M — N C M, they can be visualized as fibers, organized in a bundle [figure here].
Consider now IR as a one-dimensional compact group acting on the manifold M through ¢(t,p),t €
R,p € M as above. The group operation is the usual addition: ¢; -t2 = t; +%2. Then we can establish a local
correspondence between a one-parameter group action @(¢,p) and a vector field f € x(M). In fact, given a

group action @p(t), we can define a vector field f, which is called the infinitesimal generator, such that

h At)) —h
o2 Jym, MO, P30

Vice-versa, given a vector field f € x{(M), we can define a local one-parameter group action, which is called
the flow of the vector field, through the fundamental theorem of ordinary differential equations. The flow

represents an integral curve of the vector field, and therefore it satisfies
bp(t) = fo,)- (D.31)

If we add the condition that ¢,(0) = p, then the correspondence between the vector field and its Hlow becomes

(locally) one-to-one. Equation (D.31) represents a differential equation on the manifold M. We will also

write

p= f(p) (D.32)

letting p(t) play the role of the flow (trajectory) ¢,(t) or, in local coordinates,
& = f(z). (D.33)

Rigorous proofs of the above statements are beyond the scope of this book, and can be found in standard

texts on differential geometry, such as [1, 11].

D.2.2 Action on Lie groups; exponential coordinates

When a one-dimensional compact group acts on a manifold, we can establish a local correspondence between
vector fields and group actions, interpreted as a flow of a system of differential equations. If the manifold

where the one-dimensional group is acting is itself a Lie group, then it is possible to unravel the structure of
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the flow even further.

Consider a matrix Lie group with the product operation (either the left product Lpp2 = p1-py =
p1p2 ¥V p1,p2 € G, or the right product Rp,p2 = p1 - p2 = pap1). Consider the class of vector fields L(G)
(or R(G)) that are invariant under left (right) multiplication: L.f = fV f ¢ X- Then, given a tangent
vector f at any point p, it is possible to push it forward to the tangent plane to the origin by left (right)

multiplication with the inverse p=!

o €ET,G = Loy fp € T.G (D.34)

where e is the identity vector (origin) of the group G. Now, each vector f. tangent to the origin e of G

defines a unique one-parameter subgroup of G via
fe €T.G s efet € G. (D.35)

It is possible to prove that all an only the (compact) one-parameter subgroups of a Lie group are exponentials

of the above form [95].

Therefore, in the case of a Lie group, it is possible to establish a local one-to-one correspondence between
left (right) invariant vector fields, the tangent plane to the group at the origin, and the exponential group
action. The tangent plane to the origin of a Lie group is a Lie algebra. A vector space V is a Lie algebra if

we can define an operation [-,-] : V x V — V_ called bracket, that satisfies the following three conditions:
L [eavy + agvg, w] = a; vy, w] + azve,w] V a1, 00 € R, vy, v0,w €V (linearity)
2. [vi,v9] = —[vo, 1| Vo, 00 €V (skew-symmetry)
3. [u, [v, w]] + [v, [w,u]] + [w, [u,v]] =0 V w,v,w € V (Jacobi identity).

The set, of vector fields on a manifold (M) is a Lie algebra with the bracket [f, g] defined in eq. (D.22) such

that it acts on a smooth function A via
[/, glph = LgLyh(p) — LyLsh(p). (D.36)

It is possible to characterize the Lie bracket in terms of the flow of the vector fields involved. Call qﬁ{ (p) the
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flow along f starting at p. Then for each p € M we have [11]

f.9](p). (D.37)

lim
50

¢l _goel(0)—g, [
t _

D.3 Distributions and Frobenius theorem

A distribution is a (smooth) assignment

A:M—TM (D.38)

such that there exist d vector fields fi,..., fs with p — A(p) = span{ fi,, ..., fa,}, where the span is
intended with coefficients on C°°(M). Note that, for each p fixed, A(p) is a vector space, so that it is
possible to extend notions such as the sum, intersection and dimension of a distribution directly from linear
spaces. In particular, we say that a distribution is non-singular on M if it has constant dimension r. In the
local coordinates, rank(A(z)) =r V z € U, where U is a neighborhood of a point p. It is possible to define
a basis of a distribution around a regular (non-singular) point, i.e. a family of vector fields {f1,.-., fa} such

that
1. fi... fq are linearly independent for each z € U,
2. f1...fq span the distribution,
3. VreAr(z)= Zle c¢i(z) fi(x) Yo € U, where ¢; are smooth functions on U.

A distribution A is said to be involutive if it is closed under the bracket operation: 71,7, € A = [T1,72] € A.
Note that it is possible to check the involutivity of the distribution by verifying that the brackets of the basis
elements are elements of the distribution.

Similarly, a co-distribution is a (smooth) assignment of elements of the co-tangent bundle:
QM —T'M (D.39)

spanned by covector fields. Given a distribution A, if there exists a co-distribution, €, that annihilates it,
in the sense that < w*,v >=0V w* €, Vv € A, we say that Q is the annihilator of A, and we indicate it

by Q = AL
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Consider now a non-singular distribution A of dimension d, spanned by {fi,..., fa} around a point
p, with local coordinate z. Let 2 = AL be 3 non-singular co-distribution of dimension m — d, which is
spanned, locally around z, by {wy, ... »Wm—d}, such that < wi, fi >=0Vi=1,...,d; Vi=1,...,m—d. In

local coordinates we can collect all the vector fields f; into a matrix F, and the above condition becomes

wiF(x)=0Yj=1,...,m—d (D.40)

where F' = [f1 ... f4]. Now imagine to seek, among all covector fields wj, those which are ezact differentials

of some functions );, i.e.

wy =1L, (D.41)

The above problem corresponds to finding m — d independent solutions to the first-order partial differential

equation (PDE)

O\ NP B
S F@)=0¥ji=1...m-d (D.42)

When we can solve this problem, we say that the distribution A is completely integrable, i.e. when there
exist, locally around z, m — d functions ALy o3 Am_g such that AL = span{d\i,...,d)\,_4}. Frobenius
theorem [11] states that integrability, such a strong condition on a distribution, is equivalent to involutivity,

which can be verified by simple computations (see [11]).

D.3.1 Flat distributions

Let A be a non-singular, d-dimensional involutive distribution spanned by {f;,..., fa}, and call {\q,. .., Aa}

the functions A; : M — R whose differentials satisfy the PDE %)g‘;' F(z)=0Vi=1...m—d (such functions
exist according to Frobenius theorem) locally around some 7o € M. The one-forms {dAq,..., dAm_gq} are

independent and span the annihilating codistribution AL. Let us change coordinates using the m — d
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functions A and d other functions ¢; in order to complete the basis,

(¢1

i bd

A1

| Am—d ]

It is easy to show that, in the new coordinates, all vectors 7 € A are characterized by having the last m — d
components identically zero. In fact, consider ® as a function, ® : M ¢ R™ — M ¢ R™, that maps a

point p into ®(p). The action induced by ® on a vector field 7 is the push-forward
T(p) = 7(q) = ®.7(q)), 4y, (D.44)

which can be computed in local coordinates as

T(z) = : (D.45)

where z is the local coordinate of ¢ and = = #71(2) is the local coordinate of p. Now, since d\; span the

codistribution that annihilates A, and 7 € A, we have necessarily %); (¢71(2)) =0Vi=1...m—d. Hence,
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there is a set of coordinates where the last m — d components of the vector fields of the distribution are zero:

Rl
I

(D.46)

Such coordinates are called flat coordinates, or flow-box coordinates, and the distribution is said to be flat in

these coordinates.

A subset of the manifold M is called a d-dimensional slice S at the point p if there exists a neighborhood

U of p such that, for all ¢ € U we have
Aa+1(9) = Aa+1(P); - -, Am (@) = Am(p)- (D.47)

Therefore, an involutive distribution naturally identify a slice of a manifold; in fact, the tangent plane to the

slice is exactly the distribution:

T,S=A(q) CT,MV q€ 8. (D.48)

D.3.2 Invariant distributions

We say that a distribution A is invariant under the vector field f if it is closed under the bracket operation

with f:
TEA = [r,fleEAVTEA. (D.49)

It is customary to write [f, A] € A. We will now see that an involutive distribution which is f-invariant
allows writing f in a special “triangular” form.

Let A be a d-dimensional involutive distribution which is f-invariant, and let us use the same change of
coordinates (D.43) described in the previous subsection. Then the generic vector field 7 € A has the form of

equation (D.46), with the last m ~d coordinates equal to zero. Let us divide f into the first d components f1,
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and the last m —d, f2, and similarly for the point p and the vector field 7. From the previous considerations
we have 72 = 0 for the generic vector field in the distribution A. Now, since all brackets of the elements of
A with f must also be elements of A, they must be of the form

1(,,1 2 1 *
' p?) T _ (D.50)

2", p?) 0 0

where the asterisk * indicates some vector field. Writing the above bracket in local coordinates we get

aft  aft 1 ort o7t 1

T 2z T 1 ) f * *

oz oz _ oz Ox _ _ ) (D51)
2 2 af?

s lo] Lo o L] o] o

Therefore, since a—ff = 0, the portion of the vector field f2 depends only upon z2. If the vector field fis
ox

associated to a differential equation, then its general form is

.’I:‘l — fl(.Tl, xZ)
(D.52)

2 = f2(2?).
Therefore, we have seen that an involutive distribution generates slices of the manifold M. If the distribution

is invariant under a vector field f, then the flow of the vector field [ carries slices into slices:
S={zeM|z=¢"(p)pe S} (D.53)

The same reasoning can be carried out for involutive co-distributions, as we will outline in the following

example. We remind that a co-distribution Q is invariant under a vector field fifLiweQVwe

Consider a vector field # = f(z), which describes the evolution of some state z € IR™. Assume
that we can measure the “output” of such evolution, which is in the form of some function of
the state y = h(x) € RR". Now, suppose that there exists a co-distribution ) that is involutive,
d-dimensional, f-invariant and that it contains the one-form dh. If we decompose A into its first
m — d components, h', and the last d components, A2 then, from the discussion of the previous

paragraphs, we know that dh! = 0 and, therefore, locally in the flow-box coordinates, h = h(z?).
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At the same time, because Q is f-invariant, f is such that %ﬁ—f = 0. Therefore, the original system

is transformed into

&? = f*(z?) (D.54)
y = h(z?)
What we can measure is
Y iepor,) = h(@Lo (0))iettors) (D.55)

which is a function of the evolution of z2 alone. Because z2 evolves independently of 2!, we will

never be able to assess the evolution of z! by measuring y. Therefore, the points x that are on
2! wl
the form produce the same output y as the points for w! # z'. In other words

z? z?
they are indistinguishable from the output.
z! wl
All the points that are indistinguishable from z = are therefore of the form { |wt €
2 2

T x
]Rm_d}, which identifies a slice of M. However, it is not clear that only the points of that form are
indistinguishable. We can guarantee uniqueness only if we assume that € is the smallest (in the
sense of inclusion) involutive co-distribution that contains the forms dh. Such a co-distribution

can be constructed incrementally by taking the one forms dh, then taking all possible Lie deriva-

tives along f until the co-distribution becomes involutive:

Q = {dh}
0 = {Q,L}
O = {1, L1} (D.56)

where L¢€) denotes all Lie derivatives of the elements of the co-distribution 2 along the vector
field f. If there exists an r such that Q, = Q,11, then €, is the smallest involutive co-distribution
that contains the forms dh. Note in fact that the sequence of co-distributions is increasing (in

the sense of inclusion), and generates an involutive co-distribution. The problems may arise if
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the co-distribution is singular at a point, in which case we may only guarantee that the sequence
above generates the smallest involutive co-distribution which contains dh in an open and dense

subset of a neighborhood of the point.

D.4 Fundamentals of the Euclidean group

Consider a rigid object in the three-dimensional space. Euclidean geometry is concerned with the transfor-
mations g of the three-dimensional space that preserve the distance between any two points p;;i = 1,2 of

the space, and the cross product between any two vectors ¢;;¢ = 1,2:

d(pi,p2) = d(g(p1),9(p2)) V¥ pi,pa € R

9@ A gq2) (@) Ngi(@2) VYV ai,¢2 € TR® ~R?

where g, is the transformation induced on vectors: ¢ = py — p1 = g.(q) = g(p2) — g(p1), and TIR? is the
tangent space to IR®. Such transformations are called congruencies, similarities or rigid motions.

If we take IR? as a model of the Euclidean space, with the Hilbert structure relative to the inner product
<> R)xR? — R; (p1,p2) —< p1,p2 >= plpy, and we represent the points p; in coordinates
X; = [X; Y; Z;]7 relative to some orthonormal reference frame, then it is easy to show that the congruencies

are all and only the transformations of the space of the form
g:R* —R>X—>RX+T (D.57)

where T € R® and R is an orthonormal matrix with unit determinant (to rule out reflections), i.e. such that
RR" = RTR = I, and I is the identity matrix. Intuitively, imagine a rigid object in the three dimensional
space, and consider a point in the object as the origin of an orthonormal coordinate system fixed in the
object, such that the coordinate vectors satisfy < e;, ej >=d0;; V4,5 = 1...3. The rigid motion of the object
can be described, relative to a world reference frame, as a translation of the origin and a rotation of the object
reference. No deformation that destroys the orthonormality is allowed, and also reflections are excluded,

since we require that the determinant of R is positive. The transformation (D.57) can also be interpreted as
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a change of coordinates in R3 that preserves distances between points and angles between vectors of R>.

The set of orthonormal matrices with positive determinant is a group under the usual matrix multiplica-
tion, called SO(3) (special orthogonal group in IR?). The identity matrix is the null elment, and the inverse
matrix exists, for the determinant is non-zero. It is possible to prove that it is also a smooth manifold,
using the pre-image theorem [41] for the function o : R* — R®; R — RTR. The pre-image theorem shows
that SO(3) = o~*(I), where [ is the identity matrix, is a differentiable manifold of dimension 3. Therefore,
SO(3) is a Lie group.

A rigid motion is described by a pair (T, R), where T' € R® and R € SO(3). It is immediate to prove
that the space SE(3) = R3 x SO(3) is also a Lie group, called special Fuclidean group, and that it has
dimension 6 (three dimensions pertain to rotation, and three to translation). We denote with g = (T,R) a

rigid motion, intended as an element of the Euclidean group SE(3), which acts on IR? as follows:
¢: SE(3) x R* — R?; (g9,p) — gp; in coordinates RX + T (D.58)

It we embed SE(3) in the matrix group GL(4), we can represent the group action of SE(3) on R? as a matrix

multiplication:

X+ GX (D.59)

where

G = , and X = (D.60)

are called homogeneous coordinates.

Let us now characterize the tangent vectors to SO(3). It is easy to show that the tangent plane to the

origin of SO(3), T;SO(3) is exactly the set of skew-symmetric 3 x 3 matrices [95]:
T;SO(3) = so(3) = {§ € R®3 | §T = —5}. (D.61)
The reader can verify that the matrix exponential of a skew-symmetric matrix S is a rotation matrix:

R=¢e5" € S0(3)V S € s0(3);t € R. (D.62)
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We can now ask ourselves how the tangent vectors to a generic point R € SO(3) are made. They are nothing
else than tangent vectors to the origin, i.e. elements of so(3), pushed-forward to the point R via, for instance,

right multiplications: SR.

In fact, given an element g; of a matrix Lie group G, and a tangent vector to G at g: 1 € T, G, the

push-forward of a left-multiplication by g2, Lg, g1 is given by

Lg,+G1 = g2in (D.63)

for, if we call g; = qb*t(gl)—c‘li—t, we have Lg,.g1h = g1(ho Ly,(g1) = ¢*t(gl)%(h0 Ly, (q1)) = Z;i_t(h 0 gog1) =
(92g1)*t%h = godut %h = g201h, and similarly for a right multiplication. Therefore, we can push forward
tangent vectors by either left of right multiplications. For instance, given a tangent vector ¢ to G at g, we

can obtain a tangent vector V* at the origin e simply by left multiplication

Vi=g"leT.G (D.64)

or by right multiplication
VP =g € T.G. (D.65)

In the case of a rigid motion, G = SE(3), V* and V?® are a short way of coding the velocity of the rigid
body, and are called spatial velocity and body velocity respectively. In fact, while g € T, S E(3) is embedded

in TG L(4), which is represented by 12 numbers, V* or V* € T.SE(3) are represented, as we will see shortly,

using 6 numbers.

From what we have seen, the tangent plane to the rotation group SO(3) at a point R is therefore of the

form

TrSO(3) = {SR | S € s0(3)} (D.66)

and the tangent bundle is obviously

TSO(3) = {SR | S € s0(3), R € SO(3)}. (D.67)
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We will encounter often the space T'SO(3), for it plays a crucial role in vision problems.

The space so(3), the Lie algebra corresponding to SO(3), is composed by vectors of the form

0 —s3 9
SA=1 s3 0 —s; | |s=][s1,52,535]" € R%. (D.68)
—89 S1 0

Therefore, there is a one-to-one global correspondence between skew-symmetric 3 x 3 matrices and three-
dimensional vectors. In this sense so(3) is isomorphic to R®. The notation sA comes from the fact that
the cross product between two vectors s; and sy in R3, s; A 82, can be written as the product of the
skew-symmetric matrix s; A times the vector s, : (817)s2.

The isomorphism between IR® and 50(3), together with the exponential map, provides a local coor-
dinatization of SO(3) as follows. Given a three-dimensional vector s = [s1, s, s3)7, we can construct a

skew-symmetric matrix sA, and then take the exponential in order to obtain a unique rotation matrix

R=e". (D.69)

It is possible to prove, using Rodrigues’ formulae [81], that the converse is also true (although only locally),
L.e. given a rotation matrix R, it is possible to take its logarithm in order to obtain a skew-symmetric matrix
S, and then extract s such that S = sA. We have therefore established a local diffeomorphism between S 0(3)
and R?, which confirms that S O(3) is a differentiable manifold of dimension 3. This local coordinatization,
which is often called canonical or ezponential coordinatization, puts each point R € SO(3) in correspondence
with a tangent vector to the origin S € so(3), defined such that R = e°.

In a similar way it is possible to establish a system of local coordinates for SE (3), by putting a pair
(T, R) € SE(3) in correspondence with a pair (V;S), where V € R? and S € 50(3) via exponential coordi-

nates. Such coordinates are called twists in the robotics literature [81], and may be represented in so-called

Qn Vv
“Pliicker coordinates” as vA = g~ ' = , where V € R® and QA € s0(3). We will use the same

0 0

symbol for an element of se(3) and its Pliicker coordinates. The reader interested in a complete treatment

of the concepts sketched here may consult for instance [11, 59, 68, 81, 95]. An explicit expression for the
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exponential map on SFE(3) is given by

R T QA vV
= exp
0 1 0 0
where
R = &N (D.70)
T = TV (D.71)
1
L _ (Qn) T
T = o [(1 ) (@A) + 99 |- (D.72)

The exponential map may be inverted locally for computing V and Q from R and T, since the matrix 7 ()

is invertible when || € (0, 7). In the case ||| = 0, the exponential map is defined simply by

R = I (D.73)

T = V. (D.74)

The exponential map, together with the isomorphism of s0(3) with R®, gives a local coordinate parame-
trization of SF/(3), which in the robotics literature is called the “canonical” (exponential) representation.
If we consider the composite action of time on the Euclidean space through SE(3), we can motivate the

characterization of vA = gg~! as “velocity”. Consider a point p which has moved between to and ¢ according

to some motion: p(t) = g(¢)p(¢y). Then we have

B(8) = §(t)p(to) = g(t)g ™" (t)g(t)p(to) = v(t) A p(t)

and, in coordinates,

X(#) = Q) AX(t) + V(¢), (D.75)
where V' and 2 represent the translational and rotational velocities of the viewer’s moving frame [81].

Note, as a simple observation, that there is a diffeomorphism between SE (3), the Euclidean group
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of rigid motions, and T'SO(3), the tangent bundle to the rotation group. In fact, given a rigid
motion (T, R), with T' € R® and R € SO(3), we can exploit the isomorphism between R? and
$0(3) to construct S = T'A € s0(3), and then SR € T'SO(3) is uniquely determined. Vice-versa,
if we are able to separate the factors S and R from the product SR € TS80(3), we can then
identify the unique T' such that TA = S, and determine uniquely the element (T,R) € SE(3)
corresponding to T'A R € T'SO(3).

This simple observation will turn out to be of primary importance for the vision problem. In
fact, instead of representing a rigid motion using the exponential coordinates (V,Q) € R® such

that
Qn VvV

0 0
e C R¥4 (D.76)

belongs to the FEuclidean group SFE(3), we represent a rigid motion using (T,9Q) such that
T A Cc R (D.77)

belongs to the tangent bundle of the rotation group T SO(3). This representation will result
in a very natural and well-known constraint on the image of points moving rigidly in a scene.

Elements of TSO(3) are called essential matrices.
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Appendix E The linear Kalman filter

E.1 Least-variance estimators of random vectors

Let T : R® - R™; X +— Y be a transformation acting between two spaces of random vectors with

3

instances in IR™ and IR™ (the model generating the data). We are interested in building an estimator for
the random vector X, given measurements of instances of the random vector Y. An estimator is a function

T*:R™ 5 R" Y — X = T*(Y), which solves an optimization problem of the form
T = inC(X —T*(Y E.1
arg min C( N7 (E.1)

where 7" is a suitable chosen class of functions and C(-)7 some cost in the X —space.

We concentrate on the simplest possible choices, which correspond to minimum variance affine estimators:

T = {AcR™™beR" | T(Y) = AY + b} (E.2)

cOr = E|-|? (E.3)

where the latter operator takes the expectation of the squared euclidean norm of the random vector Y.

Therefore, we seek for

(A,b) = arg rﬂi;?EHX — AY —b|]? (E.4)

We call ux = EX and Xx = EXX7, and similarly for Y. First notice that if pux = py =0, then b = 0.

Therefore, consider the centered vectors X = X —pux and ¥V =Y — ty and the reduced problem

A= argngnEH)_( — AY 2. (E.5)
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Now observe that
E||X — AY —b])* = BI|AY — X + (Aux +b— py)l|> = E| X — AV —b))> + | Apux + b — uy |2 (E.6)
Hence, if we assume for a moment that we have found A that solves the problem (E.5), then trivially
b=pux — Apy (E.7)

annihilates the second term of eq. (E.6).

Therefore, we will concentrate on the case ux = py = 0 without loss of generality.

E.1.1 Projections onto the range of a random vector

The set of all random variables Z; defined on the same probability space, with zero-mean EZ; = 0 and finite

variance Yz, < oo is a Hilbert space with the inner-product given by
< Z, Zj Su= EZ.;ZJ- = EZZZ] (ES)

In this space the notion of orthogonality corresponds to the notion of uncorrelatedness. The components of

a random vector ¥ define a subspace of such Hilbert space:
H(Y) =span < Yi,..., Y, > (E.9)

where the span is intended over the reals. We say that the subspace H(Y) is full rank if By = EYY T > 0.
The structure of a Hilbert space allows us to make use of the concept of orthogonal projection of a random

variable onto the span of a random vector:

Z=proyyy>(X) & <X-2,Z>4=0YZcH(Y)
& <X-ZYi>y=0Vi=1...n (E.10)

= E[X|Y] (E.11)
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= X(Y) (E.12)

The notation E[X|Y] is often used for the projection of X over the span of Y 1.

E.1.2 Solution for the linear (scalar) estimator

Let Z = AY be a linear estimator for the random variable X € R; A € TR" is a row-vector, and Y € IR"

an n-dimensional column vector. The least-square estimate Z is given by the choice of A that solves the

following problem:

A=arg rr}gn JAY — X3, (E.13)

where || - || = E|| - || is the norm induced by the inner product < -,- >y.

Theorem E.1.1 The solution Z = AY to the problem (E.13) exists, is unique and corresponds to the

orthogonal projection of X onto the span of Y :
Z = progyy)s(X) (£.14)

The proof is an easy exercise. In the following we report an explicit construction of the best estimator A.

From substituting the expression of the estimator onto the definition of orthogonal projection (E.12), we get
0=< X — AY)Y; >y= E[(X — AY)Y}] (E.15)
which holds iff EXY; = AEYY; Vi=1...n. In a row-vector notation we write

EXYT = AEvYyYyT

Sxy = AYy (E.16)

which, provided that H(Y) is full rank, gives A = & xy Iyt

1The resemblance with a conditional expectation is due to the fact that, in the presence of Gaussian random vectors such a
projection is indeed the conditional expectation.
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E.1.3 Affine least-variance estimator

Suppose we want to compute the best estimator of a zero-mean random vector X as a linear map of the
zero-mean random vector Y. We just have to repeat the construction reported in the previous section for

each component X; of X, so that the rows A; of the matrix A are given by

A = SxyEyt
= (E.17)
A, = ZTxyIyt
which eventually gives us
A=SxySyt (E.18)

If now the vectors X and Y are not zero-mean, ux # 0 ,uy # 0, we first transform it into a zero-
mean problem by defining ¥ =Y — puy, X = X — tx, then solve for the linear least-variance estimator

A= E)-(Y}];l = Yxy 2!, and then substitute to get

Z=px+ SxyEHY — py) (E.19)

which is the least-variance affine estimator

Z=E[X|Y]=AY +b (E.20)

where
A = Sxys3t (E.21)
b = Ux — nyz;luy. (E.22)

It is an easy exercise to compute the variance of the estimation error X = X — 2:

Y =Yx ~ ZxyIy Oyx. (E.23)
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If we interpret the variance of X as the “prior uncertainty”, and the variance ot X as the “posterior
uncertainty”, we may interpret the second term (which is positive semi-definite) of the above equation as a

“decrease” of the uncertainty.

E.1.4 Properties and interpretations of the least-variance estimator

The variance of the estimation error in equation (E.23) is by construction the smallest that can be achieved
with an affine estimator. Of course if we consider a broader class 7~ of estimators, the estimation error can

be further decreased, unless the model that generates the data 7' is itself affine:
Y=TX)=FX+W. (E.24)

In such a case, using the matrix inversion lemma 2, it is easy to compute the expression of the optimal
, s Y Y 1%

(affine) estimator that depends only upon Xy, ¥y and F:
Z=SxFT(FExFT +Sy)" 'Y (E.25)
which achieves a variance of the estimation error equal to
L =Yx - ExFT(FExFT + %y) 'Fxy. (E.26)

Projection onto an orthogonal sum of subspaces

Y
Let Y = be such that
Y,
H(Y) =H(Y1) © H(Y2). (B.27)

We may now wonder what are the conditions under which

E[X|Y] = B[X|v1] + E[X|Ya). (E-28)

21f A, B,C, D are real matrices of the appropriate dimensions with A and C invertible, then (A + BCD)~1 = A1 —
ATIB(C~'+ DATIB)-1DA.
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After an easy calculation one can see that the above is true iff EY; Yyl = 0, which is to say when
H(Y1) L H(Yp) (E.29)

Change of basis
Suppose that instead of measuring the instances of a random vector ¥ we measure another random vector
Z which is related to Y via a change of basis: Z = TY | T € GL(m). If we call E[X[Y] = AY, then it is

immediate to see that

E[X|Z) = Sxz%;'Z
= Sy TT(IT 'y T Y2

= SxyXZyiTlZ (E.30)

Innovations

The linear least-variance estimator involves the computation of the inverse of the output covariance matrix
Yy. It may be interesting to look for changes of bases 7' that transform the output Y into Z = TY such

that 37 = I. In such a case the optimal estimator is simply
E[X|Z]=%xz2Z. (E.31)

Let us pretend for a moment that the components of the vector Y are samples of a process taken over time:
Y; = y(i), and call y* = [V5,...,Y;]7 the history of the process up to time ¢. Each component (sample) is an
element of the Hilbert space #, which has a well-defined notion of orthogonality, and where we can apply

Gram-Schmidt procedure in order to make the “vectors” y(i) orthogonal (uncorrelated).

<
I

vo= y(1) — =y

vi = y(2-<y@,a>e  — e
= —

veo= yt) - <ylhe>e — e=gy
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The process {e}, whose instances up to time ¢ are collected into the vector et = le1,...,e]T has a number
of important properties:

1. The component of e’ are orthonormal in H (or equivalently {e} is an uncorrelated process). This holds

by construction.

2. The transformation from y to e is causal, in the sense that — if we represent it as a matrix L, such that
t_ t
Yy = Lie (E.32)

then L, € £, is lower-triangular with positive diagonal. This follows from the Gram-Schmidt proce-

dure.

3. The process {e} is equivalent to {y} in the sense that they generate the same span
H(y") = H(eb). (E.33)

This property follows from the fact that L; is non-singular.

4. If we write y* = Lie! in matrix form as Y = LE, then Sy = LLT.

The meaning of the components of v, and the name innovation, comes from the fact that we can interpret
ve=y(t) — Ely(t)ly* "] (E.34)

as a one-step prediction error. The process e is a scaled version of v such that its variance is the identity.
We may now wonder whether each process {y} has an innovation, and if so, whether it is unique.
The following theorem, which is known as Choleski factorization theorem or Spectral Factorization theorem

depending upon the context, states the conditions:

Theorem E.1.2 There exists a unique vector E which is causally equivalent to'Y iff there exists a unique

lower-triangular matriz L, called Choleski’s factor, such that Sy =LLT.

Remark E.1.1 The Choleski factor can be interpreted as a “whitening filter”, in the sense that it acts on

the components of the vector Y in a causal fashion to make them uncorrelated.
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We may consider a two-step solution to the problem of finding the least-square filter: a “whitening step”
E=L"'Y (E.35)
where X g = I, and a projection onto H(E):

X(Y)=SxpL Y. (E.36)

E.2 Linear least-variance estimator for stationary processes

In the previous section we have interpreted a column-vector as a collection of samples from a scalar random
process, and computed the least-variance estimator by orthogonal projection. In this section we see how this
plot generalizes to proper stationary processes. We consider only scalar processes for simplicity of notation,
although all considerations can be extended to vector-valued processes.

Let us assume that {z(t)} € R"™ and {y(t)} € R™ are (wide-sense) jointly stationary, i.e.
Sey(t, s) = Ex(t)y”(s) = Ty (t — s). (E.37)

Again, we restrict our attention to linear estimators of {x(t)} given the measurements of {y(s); s <t} up

to time t. We denote the estimate by Z(¢[¢). A linear estimator is described by a convolution kernel A such

that
¢

2(tlt) = Y h(t,k)y(k). (E.38)
k=—oco
The design of the least-variance estimator involves finding the kernel % such that the estimation error

Z(t) = z(t) — 2(t|t) has minimum variance. This is found, as in the previous sections for the static case, by

imposing that the estimation error be orthogonal to the history of the process {y} up to time ¢:

<z(t)—&tt),y(s) >y = 0Vs<t

Ba(t)y"(s)— > h(t,k)Ey(k)y(s) = 0Vs<t (E.39)

k=—o00
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which is equivalent to

Sy (t — 5) Z R(t, k), (k — s). (E.40)

k=—o00
The above is equivalent to a linear system with an infinite number of equations, and we will assume that it
has a unique solution for H. Given that the processes involved are (jointly) stationary, and the convolution

starts at —oo, it can be easily seen that the kernel h is time invariant: h(t, k) = h(t — k). Therefore the last

equation is equivalent to

Yoy (t) = Zh(s y(t—5)VE>0 (E.41)

which is called Wiener-Hopf equation and is exactly equivalent to the orthogonality conditions (E.16). In

fact, if we Z-transform the above equation

Say(2) = H(2)Sy(2) (E.42)
we have exactly the same expression as equation (E.16), which we could try to solve as

H(z) = Sy (2)S:71(2) (E.43)

provided that the spectral density S, is invertible. This, however, is not quite the solution we are looking for.
In fact, in order to be of any use, the estimator must be causal (it must not depend upon “future” samples

of the process {y}) and stable (it must return a bounded estimate for bounded data). We can express these

conditions by requiring
e causality: h(t) = 0 V¢t < 0 (or H(z) analytic at co)
* stability: H(z) analytic in [2| > 1 (or h(t) square-summable).

One particular case is when the spectral density of {y} is the identity (or equivalently {y} is a white noise).

Then Sy, = I and we could choose

Eay(t) t>0
h(t) = { (B.44)
0 t<0.

This suggests us to try to whiten (or orthonormalize) the measurement process {y} in a similar fashion to
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what we did in section E.1.4. Indeed we can state a theorem similar to E.1.2, which is known as the spectral

factorization theorem:

Theorem E.2.1 There ezists a process {¢} such that H(é") = H(y") and Ee(t) = Ad(t) uff there exists W (z)

stable and causal, with W~'(2) causal such that Sy(z) = W(z)W(z1).

Remark E.2.1 In words there exists a white process {&} (called the inmovation ) which is causally equivalent
to {y} iff the spectral density of y has a causal, stable and minimum-phase spectral factor. If we re-scale
W(z) to L(z) = W(z)W(c0)™!, the innovation {e} is re-normalized so that Ye(t) = I6(¢), and is called

normalized innovation.

We may at this point repeat the two-step construction of the least-variance estimator. First the “whitening

step”:
E(z) = LY (2)Y(2) (E.45)
and then the causal part of the projection:
. Ype(t) xe(t) t>0
X({Y)= (E.46)
0 t<0

where * indicates the standard convolution. Equivalently, if we denote by [Sze(z)] .. the causal part of the

Z-transform of ¥,.(t), we can write

X(Y>(z) = [Sze(z)]+ E(z). (E'47)

Since Sze(2) = Szy(2)L(z71)7!, the final expression of our linear, least-variance estimator is (in the Z-

domain) & = H(2)y(z), where the kernel H is given by
H(z) = [Say()L7H(="1)], L7 (2). (E.48)

The corresponding filter is known as the Wiener filter. Again we can recover the meaning of the innovation as
the one-step prediction error for the measurements: in fact, the best prediction of the process {y}, indicated

with §(t[¢t — 1), is defined as the projection of y(t) onto the span of {y} up to t — 1, indicated with H,_,(y).
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Such projection is therefore defined such that
) 1
y(1) = 9(tlt — 1) + e(t) (E.49)

where e(t) L H;_1(y) = Hi_1(e).

E.3 Linear, finite-dimensional stochastic processes

A linear, finite-dimensional stochastic process (LFDSP) is defined as the output of a linear, finite-dimensional
dynamical system driven by white Gaussian noise. Let A(t), B(¢), C(t), D(t) be time-varying matrices of
suitable dimensions, {n(t)} € N(0,I) | En(t)nT(s) = I5(t — s) a white, zero-mean Gaussian noise and Zo a
random vector which is uncorrelated with {n}: Ezon” () = 0 V #. Then {y(t)} is a LFDSP if there exists

{z(¢)} such that

z(t+ 1) = A(t)z(t) + B(t)n(t) z(to) = x9
{ (E.50)

y(t) = C()z(t) + D(t)n(t)
We call {z} the state process, {y} the output (or measurement) process, and {n} the input (or driving) noise.
The time-evolution of the state process can be written as the orthogonal sum of the past history (prior to

the initial condition), and the present history (from the initial condition until the present time)

z(t) = @ioxo—l- i (PchB(t)n(t) = E[m(t)]?—l(a:to)] :IL— E[x(t)]a:(to), s z(t —1)] (E.51)
k=to

where ® denotes a fundamental set of solutions, which is the flow of the differential equation

{ Ot +1,5) = A(t)®(t, s) (E.52)

o(t,t) = 1.
In the case of a time-invariant system A(t) = A Vi, then ®(t,s) = A'~.

Remark E.3.1 As a consequence of the definitions, the orthogonality between the state and the nput noise

propagates up to the current time:

n(t) Ly z(s) Vs < t. (E.53)
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Moreover, the past history up to time s is alway summarized by the value of the state at that time (Markov

property):
Elz(t)|Hs(x)] = Elzt)|z(s)] = ®(t, s)z(s) Vt > s. (E.54)

E.4 Stationariety of LFDSP

In order to design the least-squares estimator as in the previous sections, we ask what are the conditions
under which a LFDSP is stationary. The first restriction we require is that the system be time-invariant.

The mean of the state process at time ¢ is given by

pa(t) = A7 pgg (E.55)

while the covariance of the state-process

Yy (t, 8) = A¥°5,(s) (E.56)

evolves according to the following Ljapunov equation
Y.(s +1) = A%, (s)AT + BBT. (E.57)

The conditions for stationariety impose that o,(t) = const and p;(t) = const. It is easy to prove the

following

Theorem E.4.1 Let A be stable (have all eigenvalues in the unit complex circle), then Y,(t — to) — X,
where ¥ = Y 10, A¥BBTAT" is the unique equilibrium solution of the above Ljapunov equation, and {z}
describes asymptotically a stationary process. If xo is such that $,(to) = 3, then the process is stationary

Yt > 1.

Remark E.4.1 The condition of stability for A is sufficient, but not necessary for generating a stationary
process. 1If, however, the pair (A, B) is completely controllable, so that the noise input affects all of the

components of the state, then such a stability condition becomes also necessary.
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E.5 The linear Kalman filter

Suppose we are given a linear finite-dimensional process, which has a realization (A, B,C, D) as in equation
(E.50). While we measure the (noisy) output y(t) of such a realization, we do not have access to its state
z(t). The Kalman filter is a dynamical model that accepts as input the output of the process realization,
and returns an estimate of its state that has the property of having the least error variance. In order to

derive the expression for the filter, we write the LFDSP as follows:

z(t+1) = Az(t) + v(¢) x(to) = o
{ (E.58)

y(t) = Cx(t) + w(?)

where we have neglected the time argument in the matrices A(t) and C(¢t) (all considerations can be carried
through for time-varying systems as well). v(t) = Bn(t) is a white, zero-mean Gaussian noise with variance

Q, w(t) = Dn(t), also a white, zero-mean noise, has variance R, so that we could write

where n is a unit-variance noise. In general v and w will be correlated, and in particular we will call
S(t) = Eu(t)wT (1)]. (E.59)
We require that the initial condition 2z be uncorrelated from the noise processes:
zo L {v},{w} Vi (E.60)

The first step is to modify the above model so that the model error v is uncorrelated from the measurement

error w.
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Uncorrelating the model from the measurements

In order to uncorrelate the model error from the measurement error we can just substitute v with the

complement of its projection onto the span of w. Let us call

9(t) = v(t) — E(t)[H(w)] = v(t) — E[o(t)lw(?)] (E.61)
the last equivalence is due to the fact that w is a white noise. We can now use the results from section E.1

to conclude that

o(t) = v(t) — SR~ w(2) (EB.62)

and similarly for the variance matrix

Q@=Q-SR™'sT. (E.63)

Substituting the expression of v(t) into the model (E.58) we get

z(t+1)=Fz(t)+ SR 'y(t) + o
(E.64)

y(t) = Cx(t) + w(t)

where F' = A — SR™1C. The model error # in the above model is uncorrelated from the measurement noise

w, and the cost is that we had to add an output-injection term SR 1y(t).

Prediction step

Suppose at some point in time we are given a current estimate for the state &(t]t) and a corresponding
estimate of the variance of the model error P(t|t) = E[#(t)#(t)”] where # = z — #. At the initial time to we

can take £(to|to) = zo with some bona-fide variance matrix. Then it is immediate to compute
2(t +1]t) = FE(tlt) + SR~ y(t) + E[o(t)| Hy(y)] (E.65)

where the last term is zero since 9(t) L 2(s)Vz < ¢ and 5(¢) L w(s)Vs and therefore #(¢) L y(s)Vs < ¢. The

estimation error is therefore

B+ 1)) = Faele) ¥ o(2) (E.66)
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where the sum is an orthogonal sum, and therefore it is trivial to compute the variance as
P(t+1t) = FPEt)FT + Q. (E.67)

Update step

Once a new measurement is acquired, we can update our prediction so as to take into account the new
measurement. The update is defined as (¢ + 1|t + 1) = Efz(t + 1)]Hy41(y)]. Now, as we have seen in

section E.1.4, we can decompose the span of the measurements into the orthogonal sum
Hisa(y) = Hily) ¥ {e(t + 1)} (E.68)
where e(t + 1) = y(¢ + 1) — E[y(t + 1)|Hy(y)] is the innovation process. Therefore, we have
E(t+ 1t +1) = Elz(t + 1) Hy(y)] + E[z(t + 1)|e(t + 1)) (E.69)
where the last term can be computed using the results from section E.1:
B+ 1t + 1) =a(t+1t) + L(t + 1e(t + 1) (E.70)

where L(t + 1) = Xzo(t + 1)S71(t + 1) is called the Kalman gain. Substituting the expression for the

innovation we have
Ft+1pt+1) =2t + W)+ LE+1)wE+1) - Ce(t+1Jt) (E.71)

from which we see that the update consists in a linear correction weighted by the Kalman gain.
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Computation of the gain

In order to compute the gain L(t + 1) = X;.(¢ + 1)X.1(¢ + 1) we derive an alternative expression for the

innovation:
e(t+1)=y(t+1)— Ca(t+ 1)+ Cx(t + 1) — C&(t + 1|t) = w(t + 1) + Ci(t + 1Jt) (E.72)
from which it is immediate to compute
Yre(t+1) = P(t + 1jt)C7. (E.73)
Similarly we can derive the variance of the innovation A(t + 1):
AR+1) =S, (t+1)=CPt+1t)CT + R (E.74)
and therefore the Kalman gain is
L(t+1) =P+ 1t)CTA I (t + 1). (E.75)

Variance update

From the update of the estimation error
FA+1t+1)=2@E+ 1) — Lt + De(t +1) (E.76)

we can easily compute the update for the variance. We first observe that Z(¢ + 1]t 4 1) is by definition
orthogonal to Hy11(y), while the correction term L(¢+1)e(t+1) is contained in the history of the innovation,

which is by construction equal to the history of the process y: H;y1(y). Then it is immediate to see that

Pt +1t+1) =Pt +1)t) — Lt + DAt + DLT(t + 1). (E.77)



263

The above equation is not convenient for computational purposes, since it does not guarantee that the

updated variance is a symmetric matrix. An alternative form of the above that does guarantee symmetry of

the result is

P(t+1t) =Dt + 1)P(t + 1)['(t + 1)T + L(t + 1)RL(t + 1)T (E.78)

where I'(t + 1) = I — L(t + 1)C. The last equation is in the form of a discrete Riccati equation (DRE).

Predictor equations

It is possible to combine the two steps above and derive a single model for the one-step predictor. We

summarize the result as follows:

B+1t) = ARt — 1) + Ko(2) (y(t) = Ca(t]t — 1)) (E.79)

I

P(t+1[t) FU(t)P(tlt — VL)' FT + FLHRLT ) FT + Q (E.80)

where we have defined

K.(t) = FL(t)+SR™! (B.81)

= (AP(tlt— 1)C" + §) A7t (1) (E.82)

E.6 Asymptotic properties

If we consider time-invariant models (all matrices 4, C,Q, S, R are constant in time), we can study the

asymptotic behavior of the estimator.

Remark E.6.1 In particular, the dynamics of the estimator depends upon P(t), the solution of the DRF
of equation (E.78). We want such a solution to converge asymptotically to a small but non-zero value. In
fact, P = 0 corresponds to a zero gain K = 0, which indicates that the filter does take into account the

measurements. In such a case we say that the filter is saturated.

We will not get into the details of the results of the asymptotic theory of Kalman filtering. We will

only report the main results, which essentially says that if the realization of the LFDSP is minimal, then
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there exists a unique positive-definite fixed-point of the DRE, and the solution converges to the fixed-point
asymptotically. Furthermore the dynamics of the estimation error is stable (even though the process may

be unstable). The Kalman filter converges asymptotically to the Wiener filter described in section E.2.

Claim E.6.1 If the pair (F,C) is detectable and (F,+/Q) is stabilizable, then there ezists a unique P |P =
PT > 0 fized point of the DRE (E.78). Furthermore P(t) — P for all positive semi-definite P(ty) and

I = limiooI'(t) is stable.

We recall that a (F, C) being detectable means that the unobservable subspace is stable, as well as (F,v/Q)
being stabilizable means that the uncontrollable subspace is stable. The proof of the above claim, as well as

other results on the asymptotic properties of the Kalman filter, can be found for instance in [55].
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Appendix F Observability, observers and

identification

F.1 Linear observability

Let us consider a linear system in the form

{ &(t) = A(t)z(t) + B)u(t) 2(0) = zo
(F.1)

y(t) = C(t)z(t).

We say that the above model is completely observable if, given pairs {y(t), u(t) }efto,t,) ON an interval [to, 1],
it is possible to reconstruct uniquely the initial condition zy. Once the initial condition is known we can
reconstruct the whole trajectory z(¢) by simply integrating the state model. If we call ® (¢, o) the fundamental

set of solutions of the differential equation above, i.e. a matrix of the same size of A(t) such that
‘I)(t +1, to) = A(t)q)(t, t()) q)(to, to) =1 (F2)
then the output y(¢) can be written as
¢
y(t) = C(t)D(t, to)zo + C’(t)/ ®(t, 7)B(T)u(r)dr. (F.3)
to

From the above expression we can see that the input v is irrelevant, since we may substitute the measure-
ments y(t) with §(t) = y(t) — C(¢) ftf) ®(t,7)B(T)u(T)dr. Therefore, observability is only concerned with
(A(?),C(t)). For this reason one often speaks about the observability of the pair (A(t), C(t)). We call the

operator Lo(t) = C(t)®(t,to) the observability operator. Tt is easy to prove the following
Claim F.1.1 The following statements are equivalent:

o The pair (A(t), C(t)) is completely observable
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o Nu(L,) = {0}
® N, = L,Lj is non-singular; L} denotes the adjoint operator of L.

Note that the last test consists in verifying the rank of the linear finite-dimensional operator N,. An explicit

expression for such an operator, which is called the observability grammian, is given by

No(t,to)-—-/ O* (7, t)C*(1)C(7)® (7, t)dT. (F.4)

to

If the system is time-invariant, so that the matrices 4, B,C are constant, then the fundamental set of

solutions of the state integral is simply

B(t,t9) = Al-t) (F.5)
and testing for observability reduces to verifying that the matrix

o
cA

cA™ |

has full-rank. Note that it is sufficient to consider n steps, where n is the dimension of the state-space, as

it is easy to see using Cayley-Hamilton theorem. Equivalent characterizations can be easily derived (see for

instance [57]):
Claim F.1.2 The following statements are equivalent:

e The linear-time invariant system (F.1) is observable

O has full rank

there exists a matriz L such that the spectrum of A — LC can be assigned arbitrarily

M-—A
the rank of 1s full for all choices of A € R.

C
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F.2 Linear observers

Suppose we are given a linear system in the form (F.1). An observer for it is just another dynamical model
that accepts as inputs the input/output pairs of the original system u(t), y(t), and produces an estimate of
the state of the original system. The most trivial form of observer consists in a copy of the original model.
If equation (F.1) represents some physical process, we may produce a model of it (for instance a computer

program) driven by the same dynamics, where we have access to the states:

2(t+1) = A1) + Bt)u(?) 2(to) = #o. (F.7)

Of course, if the above equation is just an approximation of the actual physical process and there is even a

slight error in the initial conditions, the state of the observer could drift arbitrarily away from the state of

the original model.

Since all we can measure from the original system is the output, we require it to be close to the output
that would be produced by the estimated state: §(t) = C(¢)2(t). If this is different from the output y(t) we

could use the difference as an error to be fed back to the state, for instance with a linear correction

2(t+1) = A()2(t) + Bt)u(t) + L(2) (y(t) — C(H)2(1)) (F.8)

where the gain L(t) can be chosen so as to satisfy conditions of stability of the observer, or other optimality

conditions. The error £ = z — & can be easily seen to obey
2(t+1) = (A(t) — L()C(t)3(t) (F.9)

from which we see that if the model is time-invariant and observable we can choose L so that the error decays
to zero exponentially.

The Kalman filter is a special type of observer for systems where the input v is a white, zero-mean
Gaussian process. In such a case, L is chosen so as to guarantee the minimum variance of the estimation
error. While in this section we have postulated a linear update, using heuristic arguments, in [58] it is proven

that the optimal filter does have the structure of a linear update as in the above equation, where L(%) is
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choosen by solving a discrete Riccati equation.

F.3 Nonlinear observability
In this section we report some notation, referring to [48, 63, 64, 66, 82, 104], for the system:

&= f(z,u) ; z(to) = 20
{ (%)

y=h(z)

where z € N C R", some n-dimensional manifold, w € M C R™ and y € P C RP; it is assumed that f and

h are smooth functions. The set of admissible inputs is described as U = {u : R* — P C R”} such that
1. U is closed under concatenation
2. f describes a family of vector fields parametrized by @ € P.

3. u are piecewise constant functions which are piecewise continuous from the right:

u(t) ={a; forteLi=[ti+...+ti_y,ti+...+%) |4, € PCRP, Vi}.

We call f; = f(x,4;); in the time interval I; the system evolves along the integral curve of f;. The above
assumptions may be partially released; however, they are general enough for our purposes. In studying the

visual motion problem, we will be mostly concerned with the autonomous case: u(t) =0 Vi.

Definition F.3.1 z, and z3 are said to be indistinguishable (and denoted with z11x2) & Yu € U, h(¢y(z1,u)) =

h(de(xa,u)) Vit > 0.

I(@) = {z; | zilx ; x € N} is the set of states which are indistinguishable from z.

Definition F.3.2 (x) is completely observable (C-0) at x & I(z) = {z}.

(%) is completely observable & it is C-O atz ¥ z € N.

Definition F.3.3 Given an open set U C N, z1 and zo are said to be U-indistinguishable (and denoted

with £11%22) & {¢(z1,4) € U, ¢y (w9, u) € U V¢ € [to, ta]} = h(¢e(z1,u)) = h(Si(z2,u)) Yt € [to, t1].

IY(x) = {z; | z:1Vx} is the set of states which are U-indistinguishable from x.
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Definition F.3.4 (x) is said to be locally weakly observable (L-W-0) atz & U,z € U | VYW cUx e
V, IV (z) = {z}.

() is said to be locally weakly observable & it is L-W-O at = YV € N.

Definition F.3.5 The observability space O for (%) is defined to be the smallest subspace of C°(N) which

contains the functions {hy...h,} and is invariant under Lie differentiation along vector fields in T = {fi =

Definition F.3.6 The observability codistribution is defined as

dO = {d) | A € O}

The observability codistribution is the smallest codistribution which is invariant for () and contains the
forms dh. It can be shown that the definition does not change if we allow the vector fields in 7 to belong to

the accessibility algebra, which consists of repeated Lie brackets of vector fields in 7.

Definition F.3.7 A system is said to satisfy the observability rank condition (ORC) atp & dim(dO), = n.
Remark F.3.1 The ORC can be stated in terms of exterior differential systems. In fact we may interpret
the observability codistribution as a Pfaffian system [16]

dO =dh+dLsh+...+dLy Vh

where f = f(-,1), n is the dimension of the state-space manifold N. The observability rank condition may

be state as:

Definition F.3.8 .

The system (x) satisfies the observability rank condition at p & dO, = ;N
Theorem F.3.1 If dim (O) =n at p, then (%) is locally weakly observable in a neighborhood of p.

Proof:

see [83, 53, 20] This condition is not necessary [20]; however, the following result holds:
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Theorem F.3.2 If O has constant dimension and the system (x) is locally weakly observable, then rank

(0) =n.

F.4 Identification as a filtering problem

Suppose {z(#)} € R"Y is a trajectory on a linear state-space, which is subject to an implicit dynamic

constraint of the form

hiz(t),dz(t),a] =0 z(0) =z aeM (F.10)

where a are some unknown parameters which may move (slowly) on some topological manifold M. Call

a = 9(a) € R™ the local coordinates correspondent of a. Suppose we are able to measure x up to some

white, zero-mean Gaussian noise:
y(t) = z(t) + n(t) n e N(0,Ry,).

We are interested in identifying the parameters o recursively from the measurements {y(¢)} based on the
minimization of some cost function of the prediction error (for a classical treatment of prediction error
methods (PEM) for linear explicit models see for example [94, 72, 71]).

A common paradigm for PEM identification consists in forcing a Kalman Filter to work as a parameter
estimator. The state of the filter is augmented with the unknown parameters, which are described using
a random walk model. In this section we will extend this paradigm to nonlinear implicit dynamics and
parameters living on a topological manifold. We will restrict our attention to discrete time dynamics,
although the same analysis may be carried out for continuous time models.

First we proceed in analogy with the linear-explicit case: we describe the local coordinates of the param-

eters as first-order random walk, and use the dynamic constraint as an implicit measurement constraint:

a(t+1) = a(t) + na(t) a(0) = ag

hly(t) = n(t),y(t - 1) = n(t — 1),9~Ha(t))] =0

(F.11)

where we have substituted the index ¢ with ¢ —1 in the measurements {y} (or equivalently the estimator runs

with one step delay). We assume n,,, the noise driving the random walk, to be white zero-mean and Gaussian;
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its variance R, may be regarded as a tuning parameter. The noise process {n(¢)} induces a residual in the
measurement equation: if we approximate z(t) with y(t), in general we will observe A [y(t),y(t — 1),a] =
A # 0, where 7 depends on {n}{y} and a. This residual — as we will see — is the prediction error (or
pseudo-innovation) when choosing a least-squares criterion in the PEM.

Let us collect the measurements into a vector g(t) = [ T yT(E—1) }T, and similarly with a(t) =

[nT () nT(t — 1)]T. Our task is to estimate o from the model

a(t+1) = a(t) + na(t) a(0) = ao

h[g(t) — a(t), ¥~ (a(t)] = 0.

(F.12)

In order to follow the course of the linear-explicit case, we have to solve a number of problems:

R.5(t—5s) Rpé(t—s+1)
1. the noise 7 is not white: E[n(t)nT(s)] =
R, 6(t—s—1) R, 0(t—s)

2. the error 7 does not appear additively in the measurement equation
3. the measurement equation is nonlinear and implicit.

The Extended Kalman Filter (EKF) [58, 17, 55] is a general-purpose local extension to nonlinear systems
of the traditional Kalman Filter. It is based on a variational model about the best current trajectory. The
system is linearized at each step around the current estimate in order to calculate a correcting gain; the
update of the previous estimate is then performed on the original (nonlinear) equations. In order to solve
step 3 we need to further extend the EKF to cope with the implicit measurement constraint. This is done
in section F.5. We call the result Implicit Extended Kalman Filter (IEKF); some variations of the scheme
have been used in different applications in the past years, see for example [23, 26, 46, 33]. The derivation
is based on the simple fact that the variational model about the current trajectory is linear and ezplicit, so
that the a pseudo-innovation process may be defined analogously to the explicit case.

The derivation of the IEKF in section F.5 does not address the fact that the noise 7 is correlated (see
point 2 above). The residual of the measurement equation 7, which is in fact the pseudo-innovation of the
filter, is characterized in terms of 7, provided that the last is white, zero-mean and uncorrelated with n,.
In the following section we will show how to whiten 7 and therefore reduce the problem to a form suitable

for using the IEKF as derived in section F.5. Later on we will see how the problem simplifies by assuming
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that 7 is white.

F.4.1 Uncorrelating the model from the measurements

Consider a first-order expansion of the measurement equation about the point §(t), a(t):
h{g(t), v~ alt)] ~ Dy (6)n(t) - D-(O)n(t - 1) = O(lfal*) = 0

where the limit implicit in O is intended in the mean-square sense, and where we have defined

R ah[x(t)yx(t - 1)70']

D) = ( 9z (t) ) ()= alt) (749
. Ohlz(t), z(t — 1), d]

P = ( x(t —1) ) .0 (a) (10

Here the residual 7i(t) = —D, (t)n(t) — D_(t)n(t — 1) is clearly correlated. In order to estimate the dynamics

of n(t), we may insert it into the state: call z(¢) = n(t — 1).

a(t +1) = a(t) + na(t) a(0) = ap
z(t+ 1) = n{t) z(0) =0 (F.15)

0 = A [g(t), v~ a(t))] ~ D—(B)=(t) + w(t)

where we have defined w(t) = —D(t)n(t). Now the measurement error w is white; however, it is correlated
with the model error v = [n,n”]". We may therefore project the model error onto the span of the measure-
ment error, H (w), in order to make the two orthogonal. We define #(t) = v(t)— Ev(t)|H (w)]. Since w(t), n(t)
and n,(t) are white, it is easily seen that E[u(t){H (w)] = Efv(t)|w(t)] = Elo(t)w” (8)] (Elw()w” (1)]) () =

SowEglw(t). If we define

[ R, ©

Qi) = (F.16)
0 R,

R(t) = Dy(t)R.(t)DL(t) (F.17)
i 0

S(t) = (F.18)
| ‘“Rn(t)DZC(t)
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it is easy to see that X, X' = S(t)R™!(t); furthermore ¥; = Q(¢) = Q(t) + S()R~1(£)ST(t). Now

# = v — SR™'w is by construction orthogonal (uncorrelated) to w.

F.4.2 A model for PEM identification of nonlinear implicit models

In the previous paragraph we have derived an extended model (up to first-order) with the model error

uncorrelated from the measurement error:

a(t +1) = a(t) + ne(t) a(0) = ag
At +1) = K@) (b [5(0), 0~ a(0)] - D-(0(0) +n(t)  2(0) =0 (F.19)

= h [5(t), v~ Ha(t))] = D_(£)2(t) + w(t)
where we have defined

K(t) = Ra(t)DT(t) (Dy(t)Ra(t)DT(2) " (F.20)

w(t) = —D()n(b). (F.21)

By applying the results of section F.5, we can derive a pseudo-optimal PEM identification scheme described

by the following iteration:

Prediction step

&t + 1Jt) = a(tl) &(00) = ag
2t +1]t) = K(t) (h[(t), a(t|t)] — D_(2)2(t[t)) 2(0j0) =0 (F.22)
P(t+ 1)t) = F)P(tt)FT (t]t) + Q(¢) P(0[0) =
I 0
where F = and C(t) = (——ah[y ga (a)])m(t[t),g(t)'

K@ (c®) —D-(1)])

Update step

alt+1ft+1) a(t + 1)
+ L{t + 1) (h[5(t), a(t + 1])] — D_(t + 1)2(t + 1]t))

z(t+1]t zZ(t+ 1t + 1)

Pt+1t+1) =T+ )P+ 1HTT(t+ 1) + L(t + 1) Do (t + 1) Ry (t + 1) DL (¢ 4+ LT (£ + 1)
(F.23)
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where

Lit+1) = PE+1)CTE+1DA T (t+1) (F.24)
At+1) = CE+DPE+1)CT(t+ 1)+ Dy(t+ 1)Ru(t + 1)DT(t + 1) (F.25)
Tt+1) = I-LEt+1)CE+1) (F.26)

Note that we are trying to estimate a process {z(t)} which is nearly white noise (n(t) is correlated only
within one step). Furthermore, if we expect a large number of measurements, the cost in updating a large
state and tuning a large number of model-variance parameters may be relevant. In practical applications the
approximation 7 as white noise are often better behaved. In the following section we show how the structure

of the filter simplifies under such an approximation.

F.4.3 A simplified version: approximate least-squares PEM identification

In this section we report the equation of the parameter estimator which are obtained supposing that the

residual 7 is white. This corresponds to applying the results of section F.5 directly to the model of eq. (F.12),
assuming that {fi} is a white process:

Prediction step

{&@+H0=dMﬂ &(0]0) = aq
(F.27)

P(t+1jt) = P(tt) + Ry (1) P(0]0) = R,
Update step

Gt + 1t +1) = at + 1t) + Lt + 1A [5(t), (6t + 1[t)]

Plt+1t+1) =T+ 1)PE+UOTT (¢ + 1) + L(t + 1)Dy(t + Ry (t + )DT (¢ + 1) LT (£ + 1)
(F.28)

where now the quantities L(t 4 1), A(t+ 1) and I'(¢ + 1) are defined according to section F.5. Note that we

have reduced the size of the state from n + m down to m.
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F.5 Extended Kalman Filtering for implicit measurement con-

straints

We are interested in building an estimator for a process {a} which is described by a stochastic difference

equation of the form

a(t +1) = fla(t)) +v(t) ; a(to) = ag

where v(t) € N (0,Q,) is a white, zero-mean Gaussian noise with variance Q,. Suppose there is a measurable

quantity «(¢) which is linked to a by the constraint
hla(t),z(¢)] = 0 VL. (F.29)
We will assume throughout f,h € C™ ; r > 1. Usually z is known via some noisy measurement:
z(t) = y(t) + w(t) : wt) e N(O,Ry,) (F.30)

where the variance/covariance matrix R,, is derived from knowledge of the measurement device. The model

we consider is hence of the form

{a(t +1) = flat)) +v(t) 5 afto) = ao
. (F.31)

hla(t),y(t) + w(t)] =0
Construction of the variational model about the reference trajectory

Consider at each time sample ¢ a reference trajectory @(t) which solves the difference equation
a(t+1) = f(a(t))

and the jacobian matrix

nmmiF@=<%) :
a(t)
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The linearization of the measurement equation about the point (&(t),y(t)) is
hla(t), z(t)] = Ala(t), y()] + C(@ y)(a(t) — &(t)) + D(@,y)(z(t) = y(t)) + O(€7)

where

— = ah
Cla,y) = (8_a>|a<t>,y<t>

_ . oh
o = (5)
la(e),ue)
& = {lla—al? lz-yl*

and the limit implicit in O is intended in the mean-square sense. Exploiting the fact that h[a, z] = 0, calling

Sa(t) = a(t) — a(t) and neglecting the arguments in C' and D, we have, up to second-order terms

hla(t), y(t)] = —Cda(t) — Dw(t).

Prediction Step

Suppose at some time ¢ we have available the best estimate &(¢|t); we may write the variational model about

the trajectory &(¢) defined such that

a(t+1) = fa®) ; at) = altft).

For small displacements we may write

Sa(t+ 1) = F(a(t))da(t) + o(t) (F.32)

where the noise term #(¢) may include a linearization error component.
Note that with such a choice we have §&(t|t) = 0 and 6a(t + 1]t) = F(a(t))oa(t|t) = 0, from which we

can conclude

alt+ 1)) = a(t+ 1) = f(a(®)) = f(at)t)). (F.33)
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The variance of the prediction error §&(t + 1t) is
P(t+1]t) = F@)P)FT(t) + Q (F.34)

where Q = var(¥). The last two equations represent the prediction step for the estimator and are equal, as

expected, to the prediction of the explicit EKF [58, 55, 17].

Update Step

At time t + 1 a new measurement becomes available y(¢ + 1), which is used to update the prediction
&(t + 1jt) and its error variance P(t + 1|t). Exploiting the linearization of the measurement equation about

a(t+1) = &t + 1jt), we obtain, letting & = &(¢ + 1|t) and y = y(t + 1),
hld,y) = —C(&, y)salt + 1) — n(t + 1) (F.35)

where we have defined n(t + 1) = D(&, y)w(t + 1). This, together with the equation (F.32) defines a linear

and explicit variational model, for which we can finally write the update equation based on the traditional

linear Kalman filter:

da(t+ 1t 4+ 1) = §&(t + 1[t) + L(t + 1) [h[&, y] + C(4, y)da(t + 1|t)] (F.36)
where
Lit+1) = —-P{t+1)C(&y) A (t+1) (F.37)
At+1) = C(4,y)PHt)C(&,y)T + Ra(t + 1) (F.38)
Pit+1t+1) = T@E+DPE+1TT(#+1)+L{t+ DR, (t+ DL+ 1)T (F.39)
Tt+1) = (I-L{t+1)C(&y)). (F.40)
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Since 0&(t + 1]t) = 0 and 6&(t + 1ft +1) = &(¢ + 1]t + 1) — &(¢ + 1|¢), we may write the update equation for

the original model:

At +1ft+ 1) = &(t + 1[t) + L(t + DAa(t + 1]2), y(t + 1)]. (F.41)

In this formulation the quantity & [&(¢ + 1|t),y(¢ + 1)] plays the role of the pseudo-innovation. The noise n

defined in (F.35) has a variance which is calculated from its definition:
Ry(t) = D(&,y)Ru(t)D” (4, y). (F.42)

The update of the variance P(t + 1|t + 1) is computed from the standard equations of the linear Kalman

filter [23, 33, 70, 110]. See also [33, 70, 110, 46].



