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Abstract

What we see depends on where we look. This is obvious as a statement about the nonunifor-
mity of our external visual environmenst. But it is also true, in a much less obvious sense, as
a statement about the internal neurophysiology of the visual system. What we see depends
on where we look in the neurophysiological sense that eye position signals have a dramatic
effect on the responsiveness of visual cortical neurons. This thesis empirically studies the
way in which point of regard (what point in space the eyes are fixating) influences neurons
in visual cortical areas V1 and V4 and then presents a theoretical exploration of how these
two different ways in which “What we see depends on where we look” might be functionally
intertwined.

The empirical data presented here adds to the growing body of evidence that eye posi-
tion signals are ubiquitous in visual cortex, an observation which reopens speculation about
the functional role that these signals might play in different visual cortical areas. The pres-
ence of eye position signals in visual areas of the ventral visual processing stream raises the
possibility that these signals might facilitate object identity. Eye position signals might be
exploited by visual cortex as a conditioned stimulus, which can become functionally linked
to the responses of visual cortical neurons (unconditional response) through repeated pairing
with the unconditioned stimulus, the retinal stimulus, in a classical conditioning paradigm.
In this way the visual system would be capable of learning systematic relationships between
point of regard and statistical characteristics of the visual environment. The learned re-
sponse to the conditioned stimulus could then be exploited as a preparatory signal, to speed
or otherwise alter visual processing to suit the current context. In exploring this theoretical
viewpoint, we discuss the circumstances under which context dependent coding provides
advantages and how a code switching strategy might be implemented through physiological
parcellation mediated by gain control. Eye position signals are here considered to be one
among many different types of extra-retinal signals present in visual cortical areas, whose
presence might be similarly exploited. As such, the data and theory presented here should
be considered as contributing to the broader literature on the influence of signals from

outside the classical receptive field.
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Chapter 1 Influence of Point of Regard on Neurons in

Ventral Visual Cortex

Perception may be regarded as primarily the modification of anticipation.

Art and Illusion, E.H. Gombrich

The eye of a master does more work than both his hands.

Benjamin Franklin

1.1 Introduction

Vision in primates is an active process in which visual information is sought out in the
environment and exploited in a purposeful and opportunistic way.! The evolution of active
vision in primates involved a functionally linked set of changes: foveated retinas; frontal
placement of eyes; enlargement and greater parcellation of visual cortical areas; and special-
ization of cortical areas for visual guidance of muscle movement. These changes gave rise to
the primate capacities for high acuity frontal vision and eye-hand coordination, endowing
early primates with many advantages in their ecological role as visual predators in the fine
branch niche[7]. The primate ability to learn novel visually guided behaviors requires learn-
ing not only specialized motor patterns directly related to the behavior, but also specialized
eye movement patterns suited to the guidance of the behavior, and the efficient extraction
of the particular visual features needed for the execution of the behavior[49]. While the
term “active vision” usually refers to the role that eye movements play in the selection of
information entering the visual system, the processing of this information in visual cortex
may be as active as the eye itself. The activity of both the eye and the processing of
the information conveyed by the eye may be actively coordinated. Active changes to the

processing of visual information may constitute a “covert” component of active vision.

! Active sensation, as a strategy for acquiring information about the environment, has evolved in many
sensory modalities and in many organisms. For example, many mammals exploit active movement of the
pinnae in audition, and active movement of whiskers in tactile perception. This strategy is used with compact
sensor arrays that are densely populated with receptor elements, well suited to the gathering information
from a localized region of the environment with very high acuity, but requiring a system for organizing the
movement of the sensor in order o sample the environment effectively.
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Signals from a variety of sources indicating eye position, threat, and reward, are present
in visual cortex[9; 21; 60; 39]. These signals often precede and are indicative of a change
in behavioral or sensory context[56]. Eye movements, for instance, typically precede mo-
tor actions of visually guided behaviors by about a second, making the eye position signal
an important predictor of upcoming visual information entering the processing stream[49].
As a result of learning mechanisms present in cortex, such predictive signals, would tend
to influence neuronal responses[72; 5]. The visual system has the capacity to adapt in
an eye position dependent manner, a capacity that plays an important role in learning
specialized visual tasks. Psychophysical phenomena in which “a new perception is condi-
tioned to the eye position stimulus” have been described as situational or conditioned

aftereffects[47]. It is plausible that a form of conditioned learning of associations between

Figure 1.1: Kohler’s Goggles
Colored Goggles devised by Kohler create a blue-tinted world when the wearer looks to
the left and a yellow-tinted world when he looks to the right. If the goggles are worn for
several weeks, the eye adapts and the color distortions tend to disappear. Somehow the
visual system learns to introduce the proper correction according to whether the eyes are
turned to the left or right. Figure from Experiments with Goggles, Ivo Kohler, Scientific
American, 1962

eye position and visual stimulus characteristics is the mechanism underlying these effects,
but the anatomical locus and physiological basis for these phenomena remains little ex-
plored. This thesis explores the influence of extra-retinal eye position signals, indicating
the point in three-dimensional space at which the eyes are directed, on the responsiveness
of neurons in V1, V2, and V4.

The presence of eye position éignals in visual cortex has been known since the 70’s. Pro-
found spatial deficits found in clinical cases of damage to posterior parietal cortex motivated

the search for and discovery of neurons which were both responsive to visual stimuli and
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influenced by eye position information[10; 70]. The success of this line of research and the
associated coordinate transformation theory has influenced where subsequent research has
looked for this phenomena and how its functional relevance has been interpreted. In the
interval since these seminal studies, further research has found similar eye position mod-
ulation of neurons in earlier areas along the dorsal visual processing pathway, and more
recently studies have extended these findings to the earliést stages of cortical and sub cor-
tical visual processing[16; 48; 84; 78|. Studies of the modulatory effect of distance cues on
cells in both V1 and V4, have indicated that extra-retinal signals related to vergence and
accommodation are also present in areas along the ventral visual pathway.[23]. The current
study explores the influence of all three spatial parameters, horizontal, vertical, and depth
eye position signals, and their interactions. The data presented here deepens the under-
standing of the influence of these signals by comparing and contrasting the effects found
in different visual cortical areas, and contributes to the growing body of evidence that eye
position signals are ubiquitous in visual cortex. The difference between the distribution of
modulation found in different areas, the fact that this type of modulation is prominent in
the ventral pathway, and the lack of clinical evidence which would support a role for these
eye position signals in the ventral stream similar to that proposed for the dorsal stream,
leads us to propose an alternative role for these signals in ventral visual processing.

Anatomical data suggests that the modulatory eye position signals observed in these ex-
periments may originate in frontal areas commanding saccadic eye position and movement.
The convergent termination pattern of eye position inputs, dopamenergic inputs (implicated
in reward conditioning), and amygdalar inputs (implicated in aversive conditioning), in lay-
ers 5 and 6 of visual cortical areas V2 and V4, provides a potential substrate for learning of
correlations between eye position and the nature of visual information entering the visual

processing stream.
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1.2 Anatomical and Physiological Background

1.2.1 Oculomotor System

While most animals have gaze stabilization? mechanisms which align the retina with targets
in the external world, gaze shifting® mechanisms typically are found only in vertebrates with
retinal sub regions specialized for higher acuity, such as the primate foveated retina. In this
section we focus on the anatomy of the saccade and gaze-holding circuitry.

In primates, eye movements are controlled via six extra ocular muscles arranged in three

antagonistic pairs:
e The medial and lateral rectus muscles controlling the horizontal position of each eye.
e The superior and inferior rectus muscles controlling vertical position of each eye.

e The superior and inferior oblique muscles controlling rotation of the eyes about the

line of sight.
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Figure 1.2: Diagram of Eye Muscles

Diagram showing the six extra ocular muscles controlling eye movements. Taken from Eye

and Brain by R.L. Gregory[33].

2V/estibulo-ocular system and optokinetic system
3Version consisting of Saccadic and Smooth pursuit systems, and vergence
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In their relaxed state, the passive elastic properties of the muscles create spring-like forces
which draw the eye into a central position. Moving the eye from this central position requires
overcoming the resistance of the orbit to motion and accelerating the eye. Maintaining the
eye in a position, other than the central position, requires a static force to counteract
the spring-like tension of the muscles. Eye position is a linear function of the firing rates
of oculomotor motor neurons while the eye is stationary, with each motor neuron having
a characteristic eye position at which it begins to fire. High frequency bursts of activity
generate the dynamic force produced during an eye movement, while tonic activity maintains
eye position.

The medial, superior, and inferior recti are innervated by the oculomoter nerve (cranial
nerve III); the superior oblique is innervated by the troclear nerve (cranial nerve IV); and
the lateral rectus is innervated by the abducens nerve (cranial nerve VI). The third, fourth,
and sixth cranial nuclei containing these motor neuron somata are interconnected by a
pathway called the medial longitudinal fasciculus (MLF), enabling unilateral coordination
of extra ocular muscle activity. In vertical movements of the eyes, due to a slight torsion
generated by the superior and inferior rectus muscles, there is a need for coordination not
only between the muscles within this antagonistic pair, but also between this pair and the
oblique pair which produces a corrective torsional force. In horizontal version movements of
the eyes, there is coordination not only unilaterally between the medial and lateral rectus
antagonistic pair of muscles of an eye, but also bilaterally between the medial rectus of one
eye and the lateral rectus of the other eye. Vergence eye movements also result in a different
sort of bilateral coordination in which the medial and lateral rectii of the two eyes operate
in concert.

Premotor burst neurons in the paramedian pontine reticular formation (PPRF) activate
eye muscle motoneurons during horizontal saccades. Vertical saccades are controlled by
premotor burst neurons of the rostral interstitial nucleus of the medial longitudinal fasciculus
(MLF). Lesions to the prepositus nucleus of the hypoglossal nerve results in a condition
where the eye drifts back to its central position after making saccades, suggesting that
the tonic activity of the neurons of this nucleus are responsible for generating the static
force signals necessary for maintaining eye position. Integration of the different incoming
velocity signals to generate horizontal eye position information involves the coordination

of the nuclei prepositi hypoglossi and the medial vestibular nuclei on both sides of the
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brain stem as well as the cerebellar flocculus. The interstitial nucleus of Cajal is thought
to provide the velocity to position integration for vertical eye movements. Neurons of the
rostral midbrain reticular formation form a center for vergence control. Vergence burst-tonic
neurons of this area are good candidates for integrators of vergence velocity signals.

The existence of separate systems controlling vergence and version postulated by Ewald
Herring, whose outputs are combined during gaze shifts to produce the final binocular mo-
tor command|38], are well supported by lesion studies in which deficits to either vergence or
version can be produced. A population of neurons in the oculomotor nucleus discharge with
vergence, accommodation, or both. This type of behavior reflects the fact that accommoda-
tion and vergence are not independent processes. Vergence is altered when accommodation
is altered, even in monocular viewing (accommodative-vergence). Likewise, accommodation
is altered when vergence is altered (vergence-accommodation). But there is a great deal of
evidence that vergence response generally matches vergence demand closely (i.e., fixation
disparity is very small), while accommodative response matches accommodative demand
less so. Hence quantitatively the influence of disparity on vergence and perhaps also on
accommodation is stronger than that of blur[44]. The oculomotor system undergoes three

changes as fixation distance decreases, which are collectively known as the near response.

e Vergence: the two eyes converge on the fixation point to minimize binocular disparity.
e Accommodation: the lens of the eye accommodates to minimize blur on the retina.

e Constriction: the pupils transiently constrict causing increase in depth of field.

The involvement of pupillary constriction in the near response may be due to involvement
of the pretectal olivary nucleus/nucleus of the optic tract complex.

The pontine and mesencephalic circuits providing the motor signals for saccades are
themselves driven by inputs from superior colliculus and also receive direct cortical input
from the Frontal Eye Field. Neurons of the intermediate layer of the most rostral portion
of the superior colliculus discharge tonically during active visual fixation. These neurons
project to caudal parts of the colliculus and to the dorsal raphe nucleus where they in-
hibit saccade generation. Activity of neurons in the intermediate layer of caudal superior
colliculus precede eye movements. These neurons are arranged in a map of potential eye
movements, and focal electrical stimulation within this map evokes saccades into the move-

ment fields of the stimulated neurons. Parameters of eye movements appear to be encoded
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by the activity of populations of neurons within this map. Neurons of intermediate layers

Supplementary Posterior
eye fields parietal cortex

Frontal
eye fields

Caudate
nucleus
Superior

colliculus

Substantia nigra

pars reticulata Mesencephalic

and pontine reticular
formations

Figure 1.3: Anatomy of Saccadic Eye Movements
Schematic diagram showing the main pathways governing the cortical control of saccades.
Taken from Kandel and Schwartz

of superior colliculus receive direct cortical input from both LIP in parietal cortex and the
Frontal Eye Fields in frontal cortex. The inputs from LIP are thought to play an important
role in linking visual attention with saccade behavior. Frontal Eye Fields play an impor-
tant role not only in saccades but also in the control of gaze-fixation, via their projection
onto omnipause neurons in the nucleus raphe interpositus[18]. Visual neurons in FEF re-
spond vigorously to stimuli that will be targets of saccades; Movement related neurons of
the Frontal Eye Field fire only before saccades that are relevant to the monkeys behavior;
and visuomovement neurons of FEF discharge most before visually guided saccades. FEF
influences superior colliculus both directly, through projections to intermediate layers, and
indirectly through projections to caudate nucleus which results in a release of superior col-
liculus from inhibition by the substantia nigra. Lesions to superior colliculus produces only
transient damage to the saccadic system due to the presence of the direct projection from
FEF to the brain stem.

Oculomotor cues, such as accommodation and vergence, can be quite effective signals
for determining distance at close ranges. Psychophysical studies have demonstrated that
subjects are able to make accurate distance judgments in the absence of pictorial cues for

distances of less than one meter[36]. At larger distances pictorial cues become increasingly
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important in the judgment of distance. This may be due in part to the fact that the
‘magnitude of the accomodative power and the vergence angle declines exponentially with
respect to distance. For example, the difference in lens power for shifting fixation from
20cm (the approximate near point for an adult human observer) to one meter is 5 diopters.
On the other hand, shifting fixation from 1 meter to 5 meters results in a change of only

0.8 diopters as shown graphically in figure 1.4.
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Figure 1.4: Accommodative Power and Convergence Angle as a Function of Distance
Changes in the accommodative state of the ocular lens and the vergence angle between the
eyes as a function of the fixation distance between the viewer and the object. The curves
for these two functions are identical. Note that for distances greater than 1 meter there is
little change in accommodation power or vergence angle. This means that these cues will
be of little use in determining the distance of objects greater than 1 meter away, and that,
as proposed by Descartes, the visual system must rely on cues that are strongly dependent
on learning and experience. Taken from [7, Evolving Brains, Allman].

Lesion studies have indicated that visual cortical area V4 is important in integrating
distance cues with retinal size information to arrive at accurate judgments of object size.
Electrophysiological studies in visual cortical area V4 have shown that distance cues, both

visual and motor, modulate the size tuning curves of neurons. This is illustrated in figure

1.5.
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Figure 1.5: Distance Modulated Cells
Size tuning curves of V4 cells showing modulation with respect to distance which persists
even when pictorial cues are removed. Figure from Representation of Three-Dimensional
Space in Primate Visual Cortex, Richard M. Jeo, Caltech Thesis 1998[43].
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1.2.2 Sources of Eye Position Signals in Visual Cortex

There are two types of extra-retinal eye position signals, categorized according to their
point of origin: those that originate from receptors in the eye muscles; and those from areas
commanding the eye position. We will refer to the two as afferent feedback and efference
copy respectively. Since the pathways carrying each of these types of information consist
of overlapping recurrent networks of cortical areas and sub cortical nuclei, the question of
where the eye position signals originate and which of these two types of information is being
conveyed may be ill-posed.

While the more restricted anatomical question of which areas provide a direct input
which could carry this type of information can be addressed (and will be discussed in detail
in the next section), the data from psychophysical approaches is much less conclusive and
often produces conflicting results. Psychophysical experiments provide indirect evidence
that both afferent and efferent inputs contribute to the perception of eye position. Studies
in which eye muscles are temporarily paralysed, effectivly removing afferent feedback from
eye muscles while leaving efference copy signals intact, support a role for efference copy
in determining perceived position[14]. But complementary studies in which the eyes are
not moved, eliminating efference copy, but eye muscle vibration produces false afferent
feedback, also provide support for the role for afferent feedback into the visual system[82].
There is evidence that proprioceptive feedback indicating head and body orientation are

also influential on observer’s perception of visual direction[68].

Efference Copy from the Oculomotor Command System

The frontal eye fields (FEF) are an important component of the cerebro-ponto-cerebellar
pathway involved in governing voluntary eye movements, including vergence and ocular
accommodation[28]. In addition to its connections with the pontine nuclei and its well
known projections within frontal cortex, the FEF has projections to many posterior visual
cortical areas, including those studied in this thesis. The FEF is broadly divided into an
area governing small saccades (sFEF)* and an area governing large saccades (IFEF), with
sFEF providing a much heavier projection to posterior visual areas than IFEF. Both areas

are topographically organized according to saccadic amplitude, and loosely maintain this

4Small saccades are those less than 10° in amplitude, which are by far the most common, directing gaze
to conspicuous and informative features of a scene.
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organization in their projections to visuotopic cortical areas. In general, projections from
IFEF terminate in areas with large and eccentric receptive fields®, whereas sFEF projections
terminate in areas with small centrally located receptive fields. Of particular interest in our
study are the projections from sFEF to areas V2-V4 of the lunate sulcus and V3-V4 along
the medial wall of the infereior occipital sulcus. There is a bilaminar pattern of termination
of FEF projections to most of the posterior cortical areas, much different from the columnar
pattern, in which termination is more evenly distributed throughout all cortical layers, found
in frontal lobe projections. Usually termination is restricted to layers 1 and 5/6 with greater
density in layer 1 and a looser meshwork in layers 5/6. The columnar pattern was found
most notably in area 7a/LIP, which is also the recipient of the heaviest of the posterior
FEF projections. These two different laminar termination patterns may have their origin
in two different populations of projection neurons within the FEF; the bilaminar pattern
originating in FEF cells primarily in layer 5/6; the columnar pattern originating in large

FEF cells of layer 3[77].

(FST.IPa,PGa)
lateral Lower STS

FEP I

IT

ventral prestriate
(V2c,V3v,v4c, vat),

Figure 1.6: Connections of Frontal Eye Fields
Diagram showing anatomical connections between Parietal, Inferotemporal, and Frontal

cortices, Diagram from [17, Bullier et al.]

While many cells within FEF exhibit transient responses during eye movements, there

5Guch as at the mouth of the calcarine sulcus at the border of V1 and V2
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is a population of cells that display a tonic firing rate related to vergence angle and accom-
modation. Cells have been identified with activity specifically linked to the near-response
or to the far-response[28|. Since we are measuring firing rates during a period 500-1000msec
after the production of a saccade, the cells which exhibit a tonic response may play a role
in the modulation found in the studies discussed in this thesis.

While the connections from FEF to posterior visual areas provides a means by which
commanded eye position signals could influence low level visual processing, there are also
reciprocal connections from posterior visual areas to FEF which may be important in mod-
ulating the formation of eye position commands. In particular, lateral FEF receives a major
part of its input from the ventral part of prestriate and inferotemporal cortex (V3v,V4,TEO)
which probably signals feature attributes to be used for selecting the target for eye move-
ments [17]. The connections between frontal, parietal, and inferotemporal cortex appear
to be organized as a network of interrelated areas emphasizing central vision, small sac-
cades, and form recognition. Psychophysical studies dating back to the work of Yarbus
demonstrate that patterns of fixations depend both on features in the visual scene (“bot-
tom up processing”) and on the questions one is trying to answer from the information
contained in the scene (“top down processing”)[86; 49]. The common finding that eye
movements are directed to features of faces such as eyes, nose, and mouth is likely to rely
upon information from ventral regions involved specifically with face processing relayed to
FEF. Eye-movement theories of optical illusions have established a relationship between
distortion of perception and distortion of eye movements during perception[66]. Enright
has found that accommodative vergence varies with the implied depth of the point fixated
when viewing a painting with strong perspective cues[24]. Electrophysiological stimulation
studies lend additional support to the notion that activity in ventral visual areas influences
eye-movements. Stimulation of the transition area between occipital and temporal cortices
elicits the three components of the near response, accommodation, pupillary constriction,
and convergence [42]. The stimulation sites from which these responses were elicited corre-
spond with areas found to have anatomical connections with FEF[81]. PET studies of the
near response provide further evidence of cortigal processes producing increases of activity
in posterior structures (occipital, cerebellar, and temporal) and with activity decreases in
frontal and parietal regions preceding the ciliary motor command. These studies suggest a

dynamic and reciprocal functional connection between the accommodation and the visual
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search/visual attention systems that share premotor circuitry[65].

Physiology of Dorsal Visual Cortical Areas

Physiological experiments in dorsal cortical areas have examined in great detail the neural
representation of visuospatial relationships, including distance and angle of gaze. Extensive
work in parietal areas has shown that gaze angle and object depth modulates the gain of
responses in parietal areas. The primary mechanism for gaze modulation is reported to be
linear gain modulation of neural responses (for reviews see [10]).

Sakata et al. [1980] recorded from area Ta of posterior parietal cortex in macaque
monkeys that were trained to fixate on a movable screen that varied in distance from the
monkey. They found that the neurons fired when the monkey fixated on the target and that
for visually responsive neurons in area 7a, the magnitude of the response was related to
fixation distance. Sixty-five percent of the depth sensitive neurons preferred closer fixation

distances and 29% preferred farther distances.

Representation of Distance in Primary Visual Cortex

Distance information is represented as early as primary visual cortex and also in parietal
cortex. Recordings from V1 in awake monkeys trained to fixate on a spot on a monitor
that could be moved to different distances have measured responses to binocular disparity
at different viewing distances. The stimuli were scaled so that retinal dimensions were kept
constant. The primary result was that the magnitude of these responses was modulated by
viewing distance for about 80% of the neurons studied. Angle of gaze is also represented
as early as primary visual cortex[43; 84]. Although this study was performed in cats, it is

likely that direction of gaze is represented in V1 of primates.

1.2.3 Amygdalar Inputs to Visual Cortex

The nuclei of the amygdala play an important role in the control and modulation of behav-
iors associated with emotional and visceral reactions, particularly organization of appro-
priate response to threat or attack. Many of the complex series of changes accompanying
bilateral damage to the amygdalar complex, referred to as Kluver-Bucy Syndrome, can

most easily be explained on the assumption that the ventral visual processing stream has
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become disconnected from the system which attaches an appropriate motivational tag to
percepts. For example, monkeys with amygdalar lesions are insensitive to visual stimuli
that normally arouse intense fear. Another profound effect of damage to amygdala is to
make it difficult for reinforcing stimuli, whether positive or negative, to become established
or recognized [83]. There is growing evidence that the role of amygdala in computing an
affective motivational tag given a sensory input, and relaying this tag back to the sensory
areas providing the input, contributes to the association of reward with previously neutral
stimuli. In humans, the amygdala appears to play a general role in guiding preferences to
visual stimuli that are normally judged to be aversive or to predict aversive consequences.
This function may be especially critical in regard to the judgment of social stimuli such
as faces, as evidenced by the specific deficits in the recognition of affective facial features
relating fear, and spared recognition of identity[2; 3]. More broadly, Amaral suggests that
amygdalo-cortical projections might have a role in modulating cortical processing based on
the motivational or emotional state of the organism[9]. LeDoux has noted that the pro-
jections from amygdala to cortex are considerably heavier than from cortex to amygdala.
Amygdala projects to primary and secondary visual processing areas from which it does not
receive inputs. Visual inputs to amygdala come primarily from much higher level visual ar-
eas in temporal cortex such as TE and TEQO. With this architecture, activation of amygdala
by complex visual stimuli could result in feedback to early visual processing areas, altering
the processing of subsequent stimuli[50].

LeDoux has also pointed out that a potential purpose for a visual input from thalamus
to amygdala, in addition to the much more highly processed input from temporal cortex, is
simply to provide a fast acting early warning of potential danger. We would like to add to
this the idea that an early warning signal activating amygdala might trigger a potentiating
input from amygdala to early visual cortical areas which would be useful in preparing

processing in these areas for responding to danger as illustrated in figure 1.7.
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Brain Pathways of Defense.

Figure 1.7: Anatomy of Fear Response
Diagram showing a scenario in which an unexpected danger is encountered, and how amyg-
dala organizes a response, including sending a signal to ventral visual cortical areas. Dia-

gram modified from LeDoux.

Evidence of the capacity for signals from amygdala to potentiate or stimulate visual
system processing comes from electrical stimulation of amygdala®, which frequently illicit
complex visual hallucinations. The hallucinations have been interpreted as the result of

neocortex attaching a significance signal to random cortical activity[31].

1.2.4 Neuromodulatory Inputs to Visual Cortex

Neuromodulatory inputs to cortex consist of diffusely projecting, widespread afferents which
use one of several monoamines as neurotransmitter’. The broad spatial domain of these
projections and the relatively long time course of monoamine actions makes these systems

ideally suited for a role in regulation of activities that involve large areas of neocortex, such

SIn patients with temporal lobe epilepsy
7 Acetylcholine will be included.
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as vigilance, attention, affective state changes, and mood. Each monoamine projection orig-
inates from a separate nuclear complex at different levels of the neuraxis. The tangential
termination patterns of these systems, in which single axons may innervate different func-
tional cortical areas, differ fundamentally from the termination patterns of thalamocortical

and corticocortical afferents.

e NA innervation arises from the locus coeruleus. Tecto-pulvinar-extrastriate structures
are more densely innervated than geniculostriate and inferotemporal structures. The

preferred target of NA innervation is pyramidal cell dentrites of layers I1I, V, and VL.

s 5-HT innervation arises from the dorsal and median raphe nuclei. The seroternergic
neurons innervating primary visual cortex are separate from those that innervate
prefrontal, motor and somatosensory areas. There are two classes of 5-HT fibers, very
fine and larger caliber, each having its own regional and laminar preferences. These
fibers show a strong preference for layer IV in area V1, where the innervation is among
the densest of all neocortical areas. Relatively small diameter distal dendrites of both

pyramidal and non-pyramidal neurons are the primary target of serotonergic input.

e DA innervation arises from the substantia nigra/ventral tegmental area cell groups.
There is only a very sparse projection to area V1, where it is limited to layer I;
V2 receives slightly more innervation primarily in layers I and V/VI; a projection of

intermediate density to temporal visual areas terminates in all layers except IV.

o ACh innervation arises from the nucleus basalis of Meynert. There is a substantial
innervation of V1 and other primary sensory and motor areas, and a less dense inner-
vation of visual association areas. In V1, layer I receives the most dense innervation

followed by layers II and III.

It is notable that FEF inputs to the visual areas we are recording from have the same
laminar pattern of termination (primarily in layers I and V/VI) as the dopaminergic input.
Amygdalar inputs also terminate primarily in layer I. The dopamenergic and amygdalar
inputs to these areas are of particular interest in this context since they have been strongly
implicated in positive and negative reinforcement learning respectively.

Tonic activity of cortico-cortical inputs could have effects on post synaptic sites which

last as long as the duration of the tonic activity. Hence this type of input could have
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potentially long duration effects, as neuromodulatory inputs do, but have the advantage
of being able to turn on and off rapidly, and have spatially more specific connections.?
Although the inputs from FEF, amygdala, and DA neurons act primarily on distal dendrites
in layer I, mechanisms such as distance-dependent scaling of synaptic strength, which are
found in cortical pyramidal cells, can make the effect of these distal synapses as strong as

those closer to the soma [52].

1.2.5 Other Potential Sources of Inputs to Visual Cortex

Central thalamic nuclei of primate contain neurons related to vergence and ocular accom-
modation that primarily carry signals related to the motor commands for vergence and
accommodation. These nuclei have projections into visual cortical areas and hence might
be a potential source of the extra-retinal eye position signals we observed[87].

Based on clinical neuropsychological studies, researchers have suggested that the hip-
pocampus and medial temporal lobe structures are important for encoding what has been
variously described as contextual, configural, spatio-configural, or relational information.
It has been demonstrated that implicit memory ? for contextual visuospatial information
facilitates perceptual processes such as visual search. The lack of such contextual cueing
effects in amnesic patients’ in the presence of intact perceptual/skill learning, suggests that
medial temporal lobe may function to bind contextual cues in the environment[21] and pro-
vide this contextual information to visual cortical areas for use in forming associations. In
serving such a function, these areas may be important to some forms of priming (sensory

conditioning).

8The fact that equivalent changes in electrical membrane properties can be produced either by changes
in the biophysical properties of membrane channels, or by appropriate direct electrical stimulation of the
membrane, has been exploited in an experimental technique called dynamic clamping[73].

®Implicit memory is most succinctly described as memory not accessible to consciousness
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1.3 Experiments

1.3.1 Methods
General Methods

All surgical, training and neurophysiological recording procedures conformed to the National
Institutes of Health and USDA guidelines for animal research, and were carried out under a

protocol approved by the Caltech Institutional Animal Care and Use Committee (IACUC).

Training and Surgery

Two adult male macaque monkeys (one Macaca mulatta and one Macaca fascicularis) were
used in this study. The monkeys were trained to sit in a standard monkey chair and fixate
a small spot on the computer monitor for a juice or water reward delivered by a device
capable of dispensing up to four different types of liquid with up to 0.01 ml accuracy (Mike
Walsh, Caltech Biology Electronics Shop). Prior to training, a stainless steel head post
was implanted to permit head restraint for fixation training and recording. The head post
was fixed to the skull using orthopedic straps and bone screws (Synthes, USA) under sterile
conditions and general anesthesia (xylazine 0.5 mg/kg, ketamine 10 mg/kg). Post operative
analgesic drugs (buprenorphine, codine, acetaminophen) were administered for several days
following the surgery. Fixation was monitored with a non-invasive infrared video-based
eye tracker (ISCAN, RK-716PCI). Following fixation training, a second aseptic surgery was
performed to implant a recording chamber (Caltech Central Engineering) over a craniotomy
to allow controlled and sterile insertion of microelectrodes. The placement of the chamber
was determined by cranial and vascular landmarks, and was designed to give access to
parafoveal areas of V1, V2, and V4. The correct placement of the chamber and location
of the lunate sulcus was verified through exploratory receptive field mapping. The location
of the chamber limited access to those neurons whose receptive fields were predominantly

located parafoveally in the lower left quadrant of the visual field.
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Figure 1.8: Illustration of Brain

Illustration of primate brain with different visual areas color coded.

The chamber and implant margins were monitored for infection, and were cleaned daily
with saline and dilute chlorhexidine diacetate (0.05%). The chamber was filled with in-
ert sterile oil (either heavy silicon or mineral oil) during and between recording sessions.
Sterile opthalmic antibiotic ointment (Bactracin-Neomycin-Polymixin, Gentacin or Chlo-
ramphenicol) was used as necessary (for 10-14 day periods), to inhibit bacterial growth in

the recording chamber.

Recording

To record the activity of single neurons, the intact dura was penetrated with sterile glass
insulated platinum-iridium microelectrodes (1-4 m$?), using a stepping motor micro drive
(Herb Adams, Caltech Central Engineering). The location of the penetration was set in
polar coordinates using the chamber opening as the frame of reference (radius Omm being
the center of the opening, and angle 0 degrees being determined by a notch on the right
lateral side of the opening). The electrode signal was amplified by a preamplifier at the
head stage (Mike Walsh, Caltech Biology Electronics Shop) and then band pass filtered
before being digitized. The analog to digital conversion was performed by a PCI-1200
National Instruments data acquisition board in a dual processor Intel PIIT Windows NT
based machine. Acquisition software was written with Labview5.1 (National Instruments).
Single neurons were isolated using a window discriminator with 5 parameters written in

Labview (Yuxi Fu). Spike times were recorded to 1ms resolution.
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Visual Stimuli
Setup and Receptive Field Mapping

A computer monitor (SGI Graphic Display Monitor) was mounted on a precision computer
controlled positioning device (Industrial Devices Corp.) 87cm long. Electro-optic sensors
marked three positions on the positioning device track which were points at which the center

of the surface of the monitor was at 22.5cm, 45cm, and 80cm from the monkey’s eyes.

A% Deg
<

Figure 1.9: Experimental Paradigm

Subjects were required to fixate on a spot that might appear at any one of 27 different
positions. The possible positions of the fixation spot consisted of three horizontal positions,

three vertical positions and three distances.

The monitor was used in its highest resolution mode (1280x1024 pixels) with a refresh
rate of 75Hz. Stimuli were generated on an SGI O2 using graphics programs written in
Python and utilizing native SGI OpenGL. Whenever applicable, antialiasing routines were
used to reduce pixellation effects. For each subject, an extensive calibration was performed
to determine the center of the monitor (the intersection between the line passing through
the point midway between the eyes and perpendicular to the monitor surface). This cali-
bration was repeated regularly during the time period over which these experiments were
conducted. The monkey’s chair and the positioning device were aligned so that the mo-
tion of the monitor was perpendicular to the plane passing through the monkey’s eyes and

perpendicular to the ground.
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The subjects viewed the monitor through an aperture constructed from a matte black
material placed approximately 8cm from the eyes. The aperture masked off all of the visual
environment except the center of the monitor screen, even at the farthest distance. This
was verified before the start of an experiment in two ways: using rigid rods to determine the
line of sight, and by testing the limits of the subjects field of view behaviorally by having
the monkeys fixate targets at different locations on the screen.

Stimulus onset and offset events were synchronized to the data collection using a trigger
spot appearing briefly at the leftmost edge of the monitor during the onset and offset image
frames. This spot was detected by a small photodiode affixed to the leftmost edge of the
monitor, and this trigger signal was sent as an analog signal to the data acquisition board.
The rising edge of this signal was used as the stimulus event onset time. The trigger spot
was not visible to the subject as it was masked by the aperture.

When a single neuron was isolated, the optimal receptive field characteristics were esti-
mated by hand at one or two viewing positions (usually the central position at 80cm and/or
45cm) using bar stimuli. The location, size, aspect ratio, orientation, brightness, speed, and
direction of motion of the bar were adjusted so as to produce the maximal response from
the isolated neuron. During the experiment, the bar stimulus to the receptive field was
presented statically (flash on- flash off) so that the temporal characteristics of the neural

responses could be more easily assessed.

Experimental Paradigm

A single successful experimental trial consisted of the following events: fixation spot goes on;
subject acquires fixation within 50 msec and maintains fixation for 500 msec; bar stimulus
comes on in the receptive field and stays on for 1500-2000 msec; bar stimulus goes off;
fixation spot goes off. If, after acquiring fixation, the subject maintains fixation until the
fixation spot goes off, then he is given a juice or water reward. If, at any point after
acquiring fixation and before the fixation spot goes off, the subject breaks fixation, then
the trial is immediately aborted, the screen is blanked, and there is a short pause interval

before the beginning of the next trial.
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Figure 1.10: Trial Structure
Responses during fixation only and during stimulus presentation over the receptive field of
the neuron were measured each trial, and mean spike rate for both portions of the trial were
calculated. The monkey was required to maintain fixation throughout the duration of the

entire trial.

Before each trial an experimental condition is selected at random from the set of 27
possible (h,v,d) triplets. Each experimental condition is repeated 10 times (in random
order), so that there are a total of 270 trials per experiment. The positioning device is then
commanded to move the monitor to the position determined by the value of d selected for
this trial. Sizes of stimulus elements and distances between stimulus elements are scaled
with distance using the subject’s center of monitor is the origin. This is done so that the
visual stimulus falling on the retina is constant throughout the experiment, regardless of

experimental condition.

1.3.2 Data Analysis
Area Classification

Cells were assigned to a visual cortical area based on receptive field position, size, and prop-

erties, and position relative to the lunate sulcus. In the absence of histological classification,



30

we combine V1 and V2 for quantitative analysis.

Tests for modulation

It is well known in the literature on cortical physiology that there is a linear relationship
between the mean firing rates and variance in the firing rates among cortical cells, and we
found that this observation holds true for our data set, both taken as whole or as individual
cells. This type of correlation between mean firing rate and variance in the firing rates
violates the equality of variances (or homoscedasticity) assumption of the standard anova
model [76] which is typically used to determine if the difference in mean firing rates under
different experimental treatments are statistically significant.

There are at least two ways to perform statistical significance tests in this situation.
The standard treatment of data in which means and variances are positively correlated is to
logarithmically transform the data before performing an ANOVA test. Another possibility,
is not to assume anything about the distributions and perform a non-parametric test such
as the Kruskall-Wallis Rank Sum test. Both these analysis techniques were applied and the
two analyses were in such close agreement that we will only quote the results of the more
standard log transform anova analysis. Three-way ANOVAs were performed on both the
log transformed data from the stimulation period and the log transformed data from the
fixation period to determine if there were significant modulations of the mean firing rate
with respect to each of the experimental variables H,V, and D or any combination of them.

In all tests of significance a p-value of 0.01 was used as criterion threshold.

Fractional Gain

The magnitude of modulation of the mean response with respect to each of three dimensions
was quantified by calculating the fractional gain between the highest and the lowest mean
response values. We will denote the mean firing rate for the 10 repetitions of experimental
condition (h, v, d) by M 4,4y, which is calculated by dividing the spike count by the stimulus
duration. The mean spike rate was also calculated for the fixation only period. Using this
notation, we define the maximum and minimum mean firing rates with respect to each of

the three experimental variables as follows:
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Moz (v,d) = m’?'X(M(h,v,d)) Mpin(v,d) = H}lin(M(h,v,d)) (1.1)
Mma:i:(h1d) = mT?‘X(M(h,v,d)) Mmin(h‘v d) = n%]in(M(h,'v,d)) (12)
M’ma:r(ha'u) = mg'X(M(h.,v,d)) Mmi’n(ha 'U) = I%H(M(h,v,d)) (13)

The definition of the fractional gain values can now be formulated as follows:

M (’U, d) — Mmin ('U, d)

FGhlv,d) = T (1.4)
FGy(h,d) = Mm“(’;;ri)a;( }f"fgn(”” ) (1.5)
FGy(h,v) = Mmaw(};/}:l)a;(fx"(h’v) (1.6)

Each of these functions for fractional gain gives 9 fractional gain values since there are
three possible values for each of their two arguments. These 9 values can be summarized

as a single value, the mean:

FGy = (uF;l) [FGh(v,d)] (1.7)
FGy = B [FGy(h,d) | (1.8)
FGy = (’E,)[FGd(h, )] (1.9)

The lowest possible fractional gain value is 0.0 which indicates that the mean response
rate was unaffected by a change in the dimension in question. The highest possible value of

1.0 indicates that responses were absent for at least one value of the dimension in question.

Modulation Index
For each of the dimensions H, V', and D cells were classified into three categories.
e H

— Leftness: monotonically decreasing with respect to h
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— Non-monotonic: non-monotonic with respect to h

— Rightness: monotonically increasing with respect to h
oV
— Downness: monotonically decreasing with respect to v

— Non-monotonic: non-monotonic with respect to v

— Upness: monotonically increasing with respect to v
o D

— Nearness: monotonically decreasing with respect to d
— Non-monotonic: non-monotonic with respect to d

— Farness: monotonically increasing with respect to d

A modulation index for each the dimensions H,V, and D was calculated as follows:

1 if cell is a Rightness cell,

Mody, = FGj x Classy where Classp, = {0  if cell is a Non-monotonic cell,

—1 if cell is a Leftness cell.

1 if cell is a Upness cell,
Mod, = FG, x Class, where Classy =40 if cell is a Non-monotonic cell,

—1 if cell is a Downness cell.

1 if cell is a Farness cell,
Mody = FGy4 x Classg where Classq =<0 if cell is a Non-monotonic cell,

—1 if cell is a Nearness cell.
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1.4 Results

These experiments were designed to examine the effect of point of regard on neural re-
sponses as measured by mean firing rate of the neuron during both the fixation only period
(symbolized FO) and the stimulus presentation period (symbolized S). A total of 88 cells
(41 in V1 and 47 in V4) were recorded from in two monkeys, while they performed a fix-
ation task. These visual areas belong to early and intermediate stages of visual cortical
processing along the ventral pathway. We found that 85% of the cells recorded from had
a statistically significant amount of modulation with respect to at least one of the exper-
imental variables H,V, or D. Figure 1.11 and figure 1.14 show examples of the type of

modulation encountered.
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Figure 1.12: Raster Representation of Example Cell
This V4 cell shows a nearness preference and at the far distance a horizontal preference for
direction to the right.
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Figure 1.13: Raster Representation of Example Cell
This V1 cell shows a complex non-monotone modulation with a clear nearness component.
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1.4.1 Demographics of Modulation Effects

Each cell in our sample population was tested for modulation with respect to H,V,D and all
possible interactions between these variables using a MANOVA analysis. The percentage
of the population having each of these different types of modulation is shown in figure 1.15
below. The distribution of the different types of modulation varies significantly both with
respect to visual cortical area (V1/V4) and with respect to trial period (FO/S).

In all cases the largest population of cells were those modulated with respect to dis-
tance.!¥ In all cases there were few cells which were modulated with respect to both H and
V.11 The distribution of the different types of modulation has a strikingly similar shape
for the fixation only period and the stimulation period within each area. The similarity
in the shapes of the distributions during these two trial periods is evidence that similar
modulatory mechanisms are operating during the fixation only period and during the stim-
ulation period, and that part of the modulation found in the stimulation period may be
accounted for by modulation already present during the fixation only period'? The amount
of modulation during the stimulation period is larger than that found during the fixation
period in both V1 and V4.

There are some notable differences between the distribution for area V1 and the dis-
tribution for area V4. In V1 there is a paucity of modulation with respect to V, a result
which confirms earlier findings[79], while in V4 the amount of modulation with respect to
V is comparable to the amount of modulation with respect to H'3.

The modulation of each cell can be classified according to whether the mean firing
rate is monotonically increasing, monotonically decreasing, or neither, with respect to the
experimental variables. The measures (Classp, Class,,Classg) used for this purpose are

described formally in the section on data analysis. The distribution of these different classes

10 An analysis of the values of the fractional gains revealed that, although the average magnitude of modu-
lation with respect to D was marginally larger than those with respect to the other dimensions (statistically
significant), the slightness of this difference leads us to believe that it is the more widespread distribution
of this type of modulation, rather than its greater strength, which accounts for its greater representation in
the population.

1This may be indicative of an independence of the sources of the signals producing the H and V modula-
tions. Likewise the coupling between the H and D modulations found in V1 may be indicative of a common
source for the modulation with respect to these two parameters.

12This will be discussed in greater detail below.

13This may be an indication that information regarding V is not available to V1 and only enters the visual
processing stream at the later stage of V4. This is further evidence of the independence of the sources of
information regarding H and V.
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Figure 1.15: Three Way MANOVA
Summary results of three way MANOVA analysis for fixation only and stimulation periods.
Percentage of cells that had significant (p < .01) modulation with respect to H,V,D, or
some combination of these experimental variables. Results for V1/V2 and V4 are shown

separately.
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of modulation with respect to visual cortical area is shown in figure 1.16 below.

In V1 approximately % of the cells are monotone increasing, % are monotone decreasing,
and % are non-monotone'*. In V4, however, there is substantially larger proportion of
nearness cells and a substantially smaller proportion of farness cells than are found in V1.

Since each cell is assigned three classifications, one for each experimental variable, these
measures permit an examination of the size of the intersections of the different classes. The
most notable observation to come out of this analysis is the very small percentage of cells

classified as both far and down compared with the other (d,v) categories. The implications

of this observation are discussed in later sections.

Among cells classified as near/far and up/down
Percentage belonging to combinations of classes
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Figure 1.17: Distribution of (d,v) Classes
Percentage of population devoted to the conjunction of (d, v) classes consisting of near-down,

near-up, far-down, and far-up.

1.4.2 Strength of Modulation

The degree to which a cell is modulated with respect to each of the experimental variables
can be quantified using the fractional gain measures (Mody,, Mod,, Mod;) described in the

section on Data Analysis. These measures tell us on average the maximum amount by which

4The non-monotone half of the population is divided into 1 concave and ; convex, so that roughly § of

the population falls into each of the four categories. Since we will not further discuss the concave/convex
distinction, we have lumped them into a single non-monotone category.
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the mean firing rate can change with respect to the experimental variable, normalized by
the excitability of the cell. The graph below shows the distribution of modulation indices

found in our population, which is roughly normal with a mean of 0.4.
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Figure 1.18: Histogram Showing Distribution of Modulation Indices for All Cells.

When separated out by modulation with respect to H,V, and D, fixation only modu-
lation and stimulation modulation, and cortical area V1 and V4 the distributions were not
significantly different from each other with the exception that modulation with respect to
D was very slightly though significantly larger on average.

The analysis also revealed that there were significant correlations between the mod-
ulation indices (Modp, Mod,, Mod;) both during the fixation only and the stimulation
period. The correlation was strongest between (Mody,, Mod,, Mod;) during fixation only,
and weakest between (Mody,, Mod,, Mody) for fixation only and (Mody, Mod,, Modg) for

stimulation.

1.4.3 Modulation in the Absence of Receptive Field Stimulation

Typically, in parietal visual areas where eye position modulation has been found, fixa-
tion activity also varies with gaze and appears primarily to convey information about eye
position.[70] A similar modulation of fixation activity was found in V1, V2, and V4 [23].

In those experiments 47 percent of V1 cells and 51 percent of V4 cells showed significant
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relation coefficients; Center: scatter plot of modulation indices during fixation only period
with correlation coeflicients; Right: scatter plot of modulation indices during both fixation

and stimulation periods.
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Figure 1.20: Three way manova: Fixation Only modulation factored out
Summary results of three way ANOVA analysis for fixation only period (FO), stimulation
period (S), stimulation minus fixation (S - FO), and stimulation divided by fixation (S/FO).
Percentage of cells that had significant (p < .01) modulation with respect to H,V,D, or
some combination of these experimental variables. Results for V1/V2 and V4 are shown
separately.
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fixation only response modulation with respect to distance. In our experiments 40 percent
of cells exhibited significant modulation during the fixation only period, corresponding to
half of those which showed modulation during the stimulation period. Since the modula-
tion effects for these two periods were not independent, we analysed the data to test for
modulation effects remaining after factoring out fixation firing rate. Manova analysis was
performed on data with fixation firing rate subtracted from stimulation firing rate, and for
data with fixation firing rate divided out. The results are shown in figure 1.20. When fixa-
tion firing rate is factored out, by either subtraction or division, about half of the neurons
still show significant modulation. This indicates that these results can only be partially

explained by simple additive or multiplicative models of gain modulation by eye position.

1.4.4 Summary

While these experiments do not directly address the question of where the modulatory
signals originate, the presence of modulation during the fixation only period strongly sug-
gests that the modulatory signals are related to eye position. Tracing experiments have
demonstrated an input to V2 and V4 from the small saccade part of frontal eye fields
(sFEF)[77; 17]. The frontal eye fields (FEF) are an important component of the cerebro-
ponto:cerebellar pathway involved in governing voluntary eye movements, including ver-
gence and ocular accommodation[28]. There is a population of cells in FEF that display
a tonic firing rate related to vergence angle and accommodation[28]. Stimulation of FEF
and of V4 produce vergence and accommodation [42]. Thus the modulation seen in V2
and V4 may arise from efference copies of commands arising in the frontal eye fields. The
modulation seen in V1 may result from indirect relay from from frontal eye fields via V2.
The lack of cells showing modulation with respect to both H and V' may be indicative
of an independence of the sources of the signals producing the H and V modulations. The
difference between V1 and V4 in the number of cells showing modulation with respect
to V may be an indication that information regarding V' is not available to V1 and only
enters the visual processing stream at the later stage of V4. This is further evidence of the
independence of the sources of information regarding H and V. In contrast the coupling
between the H and D modulations found in V1 may be indicative of a common source
for the modulation with respect to these two parameters. This signal may be of the type

hypothesized by Hering[38], that there are separate premotor conjugate and vergence eye
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movement command.

Our results may contribute to a better understanding of the functional differences be-
tween the ventral and dorsal pathways in the visual cortex of primates. A basic distinction
in these pathways is between the ventral specialization for object identity and the dorsal
specialization for manipulation of objects in visual space [34; 58]. This distinction probably
arouse in the evolution of the extra striate visual areas because the more ventral path pro-
ceeds from the foveal visual field representation in V1, whereas the dorsal path lies adjacent
to the lower visual field representation where the hands are located during the manipu-
lation of objects [57; 63]. Location in visual space is crucial for the performance of both
ventral and dorsal functions but in different ways. For example in V4, a main component of
the ventral path, object distance probably contributes to the mechanism of size constancy
(23], which is crucial in discriminating object identity. The ability to accurately judge the
size of objects at a distance requires gradual learning of the relationship between retinal
size, object distance, and object size during early childhood [7; 75; 4]. Lesion experiments
producing deficits on size constancy tasks indicate that this learning may occur in V4 and
its upstream target IT[40; 80]. Such learned associations between eye position signals and
sensori-motor contexts would have significant adaptive value.

The presence of a modulatory eye position signals in visual cortex prior to visual stim-
ulation makes it possible for them to function as conditioning stimuli. Retinal stimulus
characteristics (US) produce sensory responses in visual cortical neurons (UR). Learning
resulting from repeated pairing of eye position signals (CS) with retinal stimulus characteris-
tics (US) would tend to result in the eye position signal potentiating those neurons sensitive
to the stimulus characteristics (CR), prior to stimulus presentation [5], thus preparing vi-
sual processing for the expected stimulus. A functional linkage between point of regard
(CR) and the responses of visual cortical neurons (UR) learned in this way could result
in perceptual learning of systematic relationships between point of regard and statistical
characteristics of the visual environment. While there are circumstances in which strong
correspondences exist between eye position and stimulus characteristics, and in these cir-
cumstances the visual system is capable of adapting to the eye position signal alone [47],
in natural behavior it is more likely that eye position signals are but one of an array of
extra-retinal signals that, when taken together, are very informative about the current sen-

sory and behavioral demands, and strongly predictive of future sensory inputs. This array
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probably includes eye position related signals relayed from frontal eye fields, fear related
signals from amygdala, and reward related dopaminergic signals which serve a critical role
in learning [39; 3; 9; 5]. All three of these extra-retinal signals converge on layer 1 of V2
and V4 and the frontal eye field and dopaminergic inputs also converge on layers 5 and 6
of V2 and V4,

Devices for human use as simple as rear view mirrors or bifocals, and as complex as
a virtual cockpit explicitly based on a ”what-you-see-depends-on-where-you-look concept,”
create correspondences between point of regard and distinctive information sources, and

may be implicitly exploiting the natural talent humans have at learning such associations.

1.5 Discussion

1.5.1 Adaptation to Visual Context Through

Specialization of Visual Processing

It has been suggested that specialists live in an effectively simpler world, and that the
simplification permits faster and more accurate information processing and consequently
higher behavioral efficiency[12]. There are many different types of context which provide
hints for animals that they are operating within a simplified environment to which they
can adapt by specializing. These contexts can be broadly categorized as ecological context,
motivational context (drives, reward/punishment schedule), and task context (recognition
vs. discrimination).

The adaptive value of specialized abilities has been studied for the task of finding and
selecting foods. In insects, specialists are better and faster decision makers than generalists,
which translates into higher quality diets and higher offspring survival. In primates it has
been shown that quality of diet is a good predictor of lifespan and reproductive success.
Skill in specialized visuomotor behaviors related to foraging, some of which depend heavily
upon subtle visual discriminations (of color for instance), would ultimately have a signifi-
cant impact on quality of diet. The location of objects in the visual field provides important
clues about their identity. Object distance together with its retinal subtense reveals the size
of an animal and whether it is a possible food item or a potential predator. Some threat-
ening animals, like raptors, tend to be located in the upper visual field while others, like

snakes, tend to creep in the lower visual field. The experience with their probable location
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Figure 1.21: Eye Position Information and Visual Foraging
Drawing at left from[63, Previc]. Graphs at right showing the value of different food sources.
Taken from [8, Altmann)]

will facilitate their identification and speed the initiation of life-saving protective responses
as illustrated in figure 1.22. Similarly, different types of food sources tend to be located in
different parts of visual space, and this knowledge will facilitate efficient foraging[8]. Dis-
tance, in particular, may be a particularly strong cue for distinguishing between important
classes of visual task and motivational contexts, such as between reaching distance (periper-
sonal) and walking distance (extra-personal) arenas. There is clinical evidence of cortical
specialization along these lines[35].

In humans, there are a variety of different low level visual system adaptations specific
to specialized visual tasks (ex.reading [64; 74; 30], driving a car [49]) which are able to
coexist in visual cortex. Psychophysical studies of perception during reading reveal low
level visual system specializations producing higher acuity for information presented to the
right of the fixation point (in those that read from left to right)[64], contributing to the more
efficient processing to written information. Other studies indicate that the minimum retinal
size of legible letters is linked to distance cues such as the vergence angle[74]. Kohler’s
prism experiments also revealed interesting stimulus class specific or task specific types
of adaptation. In inversion goggle experiments, subjects note that, after an adaptation

period, “writing appears in the right place in the visual field and at first sight looks like
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Figure 1.22: Warning Calls of Vervet Monkeys Correlated with Height in the Visual Field
Vervet monkeys have been shown to have different warning calls in response to danger from
raptors and for snakes. The calls are illustrated with spectrograms. The protective value of
these calls for the group comes from evoking joint attention to the danger. The correlation
between the danger, the call, and the direction in the visual field is very important to this
behavior.

normal writing, except that when one attempts to read, it is seen as inverted.”[33, p206]
In left-right reversal goggle experiments, subjects sometimes perceived that “a scene would
come to look correct except that writing remained ’'mirror-writing’.” [33, p209] It would
be interesting to determine if conversely it would be possible to adapt the visual system
only in the reading task situation, without this adaptation influencing perception in other
behavioral contexts (double dissociation of adaptation). Some subjects noted other shuffled
or paradoxical perceptions which might be indicative of other types of specialized visual
processing, for example “pedestrians were sometimes seen on the correct side of the street,
when the images were right-left reversed, though their clothes were seen as the wrong way
round!”[33, p209] The experiments of Ahissar and coworkers have found more generally
that perceptual learning is specific to the stimuli used for training, and that the degree of
specificity depends on the difficulty of the training conditions. “As task difficulty increases,

learning becomes more specific with respect to both orientation and position, matching
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the fine spatial retinotopy exhibited by lower areas. Consequently, we enjoy the benefits of
learning generalization when possible, and of fine grain but specific training when necessary.”
[6]

Among the factors influencing the processing of visual information, the distribution
of masking and attention over the visual field have been proposed important factors that
become matched to the nature of perceptual and motor task being performed so as to
amplify the information relevant to the task. “The events leading to visual awareness
include a substantial editing process that de-emphasizes irrelevant information and adds
interpretations and inferences about the meaning of the targeted information...this editing
of visual signals begins in relatively early stages of processing in the cerebral cortex. What
the observer is trying to see and what that observer knows about the visual scene have
considerable impact on what is represented in the visual cortex. ..the cortex creates an
edited representation of the visual world that is dynamically modified to suit the immediate
goals of the viewer.” [56] What is relevant to the task emerges from practice, and masking
patterns develop in parallel with motor skill during the performance of a task [30]. In
the task of reading, psychophysical evidence suggests that active lateral masking in the
periphery effectively degrades background information into textural information, making
it possible to process fine spatial detail at the center of vision without interference. This
pattern of masking, learned early in life, is an important component of normal reading
ability. Geiger et al. also suggest changing the distribution of masking over the visual field
is but one of a lexicon of learned visual strategies, which are discrete (they do not shade

into each other), and which one can switch between as appropriate for the task at hand.

1.5.2 Preparation in Sensori-motor Pathways

Adaptation of the visual systems of organisms to their environment occurs on many dif-
ferent time scales. On evolutionary time scales, the visual system of a species is adapted
to suit the unchanging features of the environment in which they evolved. The spectral
sensitivity of photoreceptor pigments of the retina and the shape and refractive index of the
material forming the lens of the eye are good examples of such evolutionary adaptations[51].
There are many features of the environment which are not stable enough over time or con-
sistent enough over the environment of the species to permit adaptation at the species level,

but are stable enough over the lifetime of an individual to permit adaptation at the indi-
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vidual level. Correspondingly, many species have the capacity during early development
to learn general characteristics of their individual visual environment through alteration of
anatomical connectivity during critical periods, or specific components of their environment
through imprinting. The information acquired during these formative periods frequently
remain stable throughout the lifetime of the individual. Years of training and gradual im-
provement during development are needed to acquire information about the highly complex
but consistent correlations in the visual environment needed to perform specialized visual
skills', such as face recognition and reading at mature performance levels[7; 75; 4]. On the
time scale of months and weeks, prism experiments have demonstrated the flexibility of the
visual system in adapting to dramatic distortions in the visual world[47]. Developmental
changes, disease, trauma, fatigue, neuromuscular attrition, and environmental factors such
as refractive correction, require a mechanism for continual recalibration and adaptation
of the visual system on this time scale '8 [59; 46]. The same mechanisms which may have
evolved for this purpose could be exploited for the development of task specific visual system
specializations. Even relatively brief exposure to distinctive sensory and behavioral contexts
during practice of novel visual tasks results in psychophysically measurable improvements
in performance, phenomena termed perceptual learning and priming[6; 45; 21].

Preparatory activities which exploit the correlation between regularities in the visual
environment and distinctive behavioral contexts result in faster reaction times, and more
accurate or appropriate responses. Along the pathway from visual input to motor output
there are many stages at which preparatory changes can influence visuo-motor behaviors.
The term preparatory set, originally used to describe the pattern of activity found in pri-
mary motor cortex that reflected an animal’s preparation to respond to a later stimulus[25],
can be usefully applied throughout the sensori-motor pathway. On the sensory end, prim-
ing can be considered as an example of preparation in the sensory systems for expected
incoming inputs. In visual cortical neurons, it is often difficult to separate the sensory
response of a neuron attributable to the physical properties of the stimulus from memory

responses resulting from the associative activation of the neuron as a member of an assem-

5By specialized we mean that these skills involve very narrow ensembles of images. Behaviorally they
typically require discrimination of subtle visual features.

18 Also relavent in this context is compensation in the nervous system, which entails the reassignment
of functions in response to a change in the neural input or other signals caused by damage. The work of
Mersnich, Ramachandran, and others illuminates the phenomena and the mechanisms behind reorganization
of sensory maps in response to injury or sensory deprivation.
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bly that encodes, by virtue of prior history, the experience to which the stimulus belongs!” .
This electrophysiological difficulty may be the source of the inseparability of memory from
perception using behavioral or psychophysical techniques[27]. Perceptual memory and the
process of perception are particularly closely tied when the memory recalled consists of
values of physiological parameters that influence sensory processing, and when the recall of
these parameters results in a change in physiological processing of information.

Small alterations in the processing at multiple stages along the sensori-motor path-
way could potentially result in a cumulatively large alteration in the overall sensori-motor
transformation. This would be a particularly useful strategy to use in systems where each
particular stage has limited capacity to change'®. Psychophysical experiments on perceptual
learning phenomena suggest that leé,rning most likely does occur at multiple levels of the
visual system simultaneously, the strength of the learning in different areas being strongly
dependent on the specific demands of the task. Evidence that alteration of sensori-motor
transformations involves adaptation in multiple areas along the sensori-motor pathway dates
as far back as the first inverted prism experiments of Stratton in the late 19th century. Strat-
ton noted that he fairly quickly learned to overcome difficulties of performance while at that
stage continuing to experience the scene as inverted. At a later stage the perception of the
visual scene was upright. This observation, which has since been verified by many authors,
highlights both the distinction between motor learning and perceptual adaptation, and the
fact that both are components of sensori-motor adaptation[67].

The sensori-motor pathway is part of feedback loop which is closed through interaction
with the environment: the motor system produces actions of the organism on its environ-
ment; actions on the environment change incoming sensory signals; the new sensory signals
can lead to alteration of motor activity. Since the motor areas are the parts of the feedback
loop closest to the sensory areas while still internal to the organism, the activity of areas on
the motor output side of the sensori-motor pathway may be a particularly good source of
preparatory cues to the areas closer to the sensory side. Von Holst and Mittelstaedt postu-

lated a functional role for efference copy of motor commands such as these, in distinguishing

17 «Strong recurrent synaptic connections in a neural network tend to produce stereotyped responses be-
cause population activity is primarily controlled by recurrent connections that do not depend on the stimulus.
In such a network, the afferent, stimulus-dependent inputs serve to choose between a number of possible
stereotyped responses.”[71] Modulatory signals, including eye position signals, may also function to switch
between stereotyped responses.

18The capacity of the visual system to adapt does degrade with age. Particularly striking are the differences
in the plasticity before and after a critical period.
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exafference (changes in sensory signals due to changes in the environment) from reafference
(changes in sensory signals due to changes initiated by the organism). This function might
be accomplished by formulating expectations of upcoming sensory events based on efference
copy signals, and comparing these expectations directly with actual sensory data. While the
types of expected sensory events envisioned by Von Holst and Mittelstaedt are those which
are causally linked to motor commands, this idea can be extended to include expectation of
sensory events which, while they have no direct causal relationship with the efference copy

command, are nonetheless be correlated with the efference copy command.

Perceptual Learning

The presence of a modulatory eye position signals in visual cortex prior to visual stimula-
tion makes them good candidates for conditioned stimuli in classical conditioning. When
a sensory signal (the US), which produces an unconditional response in a given neuron
(the UR), is consistently preceded by increased activity of a second neuron (the CS), the
responses of the two neurons become increasingly correlated (CR). This increase in correla-
tion represents the strengthening of the “functional connection” between the two neurons,
and follows the Hebb-Stent Law[5]. 1° Likewise, we would expect the activation of a neu-
ron by eye position signals during the fixation only period (CS), preceding the reception of
retinal stimulation (US), would result in an increased correlation between this neuron and
the neurons subsequently stimulated by the retinal input (CR/UR). After repeated pairing
of eye position signals and visual stimulus, one would expect the eye position signal alone
to potentiate the response of neurons sensitive to the expected visual stimulus (UR), prior
to the presentation of the visual stimulus.

The idea of sensory conditioning has a long history dating back to the turn of the century.
“A particular response tendency of a neuron can be referred to as a perceptual hypothesis
...Such an hypothesis may be set into operation by a need, by the requirements of learning
a task, or by any internally or externally imposed demands on the organism. If a given
perceptual hypothesis is rewarded . . . it will become fixated; and the experimental literature

...indicates that the fixation of “sensory conditioning” is very resistant to extinction.”

19Modifications were weaker when the stimuli that evoked the response carried no behavioral relevance.
They concluded that the mechanisms of learning that underlie neuronal plasticity in the cortex of adult
monkeys obey the essential features of both the Hebb-Stent Law and Thorndike’s Law of Effect.
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[15].20

Ivo Kohler, in his prism experiments during the 1960’s, demonstrated the striking degree
of flexibility the visual system has in adapting to distortions of the visual world. In the
phenomena which he called situational aftereffect or conditioned aftereffect,” a new
perception is conditioned to the eye position stimulus. Thus, with prisms on, different retinal
images ultimately come to signify the same phenomenal impression, depending upon eye
position.”[67, p204] In these experiments, “...there is a small distance between the eye and
the prism. As a result the eye can, and frequently does, move with respect to the glasses...If
one analyzes the geometry of the rays striking the retina, one finds that the adaptation
problem is much more severe than if the prism and eye could be held in rigid relationship
...In fact, the distortion changes with every change in the angle that the axis of the eye

makes in relation to the prism.”[47, p433]

1.5.3 Code Switching

All of the adaptations referred to above are long lasting, and can be used effectively when
the appropriate situation arises, even after long periods when they are unused. For example,
in Kohler’s goggle experiments, upon re-testing the subjects eight months later, they found
that when the lenses were worn, the subject immediately showed the various modifications to
behavior which had previously developed while wearing the spectacles. “It thus seemed that
the learning consisted of a series of specific adaptations overlying the original perception,
rather than a reorganization of the entire perceptual system.”[33, p208]

The intermittent use of specialized adaptations of the visual system in behavioral or sen-
sory contexts which arise discontinuously in the environment, requires a simple means by
which special contexts can be‘ recognized, and a means by which the appropriate specialized
visual adaptations can be invoked. The learning and maintenance of multiple, specialized
adaptations also requires a way of preventing catastrophic interference between the adapta-
tions to distinct contexts, which otherwise might result in information acquired about one
context overwriting previously acquired information about a different context[22].

There are two sorts of computational advantages of acquiring multiple specialized adap-

tations and switching between them as necessary. The first is more efficient use of expensive

20We will retain this view of a response tendency of a neuron as a perceptual hypothesis in the theoretical
analysis since the terminology and concept map easily onto the concept of hypothesis in computational
learning theory.
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neural real-estate through time-sharing. When there are limitations on representational re-
sources available for coding, extending the range and efficiency of representation, through
the reuse representational elements for different purposes in different contexts, gives context
sensitive languages great computational power?!. The second advantage is improvement in
behavioral performance. Dividing large problem domains into simple sub domains, and
adapting to the different sub domains separately, permits faster convergence to more ef-
ficient processing behavior. As long as they are available inexpensively, hints providing
information about the domain to which incoming information belongs can be exploited to
increase coding efficiency by better matching coding characteristics to the characteristics of
the information source.

The extent to which the visual system would be capable of switching operating modes
to suit the needs of the current context depends in part on constraints regarding the cost of
switching modes, the number of different modes that can be accommodated, and constraints

on learning new contexts, all of which will be discussed in the section on theory.

Avoiding Catastrophic Interference

One solution to the problem of catastrophic interference is anatomical parcellation?? where
different types of stimuli are processed in physically separate cortical areas. The clinical
evidence that damage to a localized visual cortical area can produce specific visual deficits,
prosopagnosia being the best known example, provides evidence that such a strategy might
be employed. More recent evidence, however, suggests that face responsive regions of visual
cortex are used in many different types of tasks requiring visual expertise [37; 29]. The
anatomical parcellation idea, when taken to the extreme, results in the grandmother cell
problem. If the cortex needs a different area for the processing of each of the special
environmental contexts which might arise, then there will be a combinatorial explosion in
the number of areas needed. Hence anatomical parcellation is a very costly solution in
terms of the amount of hardware needed, and cortex is metabolically very costly hardware
indeed. Furthermore, psychophysical and electrophysiological evidence suggests that at
least some components of context specific perceptual learning occur at very early stages of

visual processing where the funnel for visual information is spatially narrow, and there is

21Since neurons are scarce in comparison with synapses, one way in which the same neurons might perform
different functions in different contexts is by activating different sets of synapses in different contexts.
22 Anatomical parcellation might more accurately be called spatial multiplexing.
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little room for anatomical parcellation.

An alternative to the anatomical parcellation solution to preventing catastrophic inter-
ference is to use physiological parcellation 23. In this strategy the same area or elements
are used for different purposes at different times. There are many well known examples in
neuroscience of systems in which neuro-modulatory signals result in switching of behavior
in multifunctional neural circuits. The changes in both integrative processing of sensory
signals and of ongoing motor output in response to modulatory signals 24 has been best
illustrated and understood in lobster stomatogastric ganglion[54]. Such modulation of neu-
ral processing in response to signals indicating behavioral context may occur in the visual
system as well.

While the goal of dividing the world into behaviorally distinct contexts provides clues
as to how the world might be partitioned by a given species for use in code switching,
conversely, the way in which an organism divides up the environment into distinct contexts
may have an important impact on behavior. Acquiring information about a specific context
has a cost, and to fully exploit this information behavior must be geared towards using
existing learned contexts, rather than continually learning a new context for each new
case[11]. One way of avoiding catastrophic interference is by restricting behavior so that
situations always cleanly fall into one of the existing contexts, effectivly behaviorally filtering

out situations which might fall into grey areas between contexts.

23More accurately referred to as temporal multiplexing
24Both chemical and electrical
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Chapter 2 Theoretical Considerations

...the choice of which [representation] to use is important and cannot be taken
lightly. It determines what information is made explicit and hence what is pushed
further into the background, and it has a far-reaching effect on the ease and
difficulty with which operations may subsequently be carried out on the

information.
Vision, David Marr

2.1 Introduction

This section is an exploration of a theory regarding the functional role eye position sig-
nals might be playing in ventral visual cortex. There are as many different roles that
can be proposed for these signals as there are visual tasks, and many of the roles that
have been proposed for specific computations are plausible!. Rather than taking a specific
computational task as our starting point and trying to determine the role of the eye posi-
tion signal within that task, we ask “Given that eye position signals are present in visual
cortex together with associative learning mechanisms, how will these signals come to be
utilized?” In answering this question we rely upon the evolutionary principal that coding
in nervous systems must be understood with reference to the environments to which they
are adapted; and the ecological observation that the environment is divided into physically
and behaviorally distinct niches to which organisms have evolved specialized adaptations.
The field of natural image statistics made the leap of applying the evolutionary principal
to the understanding of neural encoding by interpreting the physiological characteristics of
neurons in the visual system in terms of the empirically measured statistical structure of
the environment to which the visual system is adapted[26; 69]. While the basic ecological
observation has equally important implications for the understanding of visual systems[51],

the study of the ecology of vision has been focused primarily on early stages of vision,

'Since V1 cells are known to respond to a very narrow range of disparities, it has been suggested that
stereopsis requires either many cells tuned to each disparity at each locus, or a mechanism by which disparity
tuning of individual cells is dynamically adjusted[19]. Extra-ocular eye position signals in visual cortex could
potentially play a role in such a dynamic disparity adjustment.
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- with relatively little investigation into the implications for the encoding of visual informa-
tion at cortical stages of processing. From the standpoint of coding theory this ecological
observation can be interpreted as evidence that natural environments can be decomposed
into distinctive sub-environments which are different enough from each other that there are
significant advantages to developing distinct codes for representing each of these distinct
sub-environments. In this chapter we explore the implications of such a decomposition for
the encoding of visual information.

David Marr observed that “The usefulness of a representation depends upon how well
suited it is to the purpose for which it is used... because vision is used by different an-
imals for such a wide variety of purposes, it is inconceivable that all seeing animals use
the same representations; each can confidently be expected to use one or more represen-
tations that are nicely tailored to the owner’s purposes”[55]. Some specialist species are
committed to very restrictive micro-environments and hence may require only one or few
specialized codes designed to represent the limited variety of circumstances that may arise.
Most species, however, live in environments containing many of these micro-environments.
In this situation, a code switching strategy, in which specialized codes can be dynami-
cally adopted to suit the current micro-environment, would provide both the flexibility of
generalists with the performance of specialists. 2 In situations where there are reliable
environmental cues available indicating a change from one distinct visual environment to
another, many species have evolved the capacity to change operating modes of their visual
systems depending on these cues. Switching between photopic and scotopic vision is a sim-
ple example of this strategy. A physiological mechanism permitting such changes to occur
at the level of cortical processing would enable the visual system to adapt to very complex
and transient partitions of the environment.

In previous sections we have discussed the survival advantages associated with task or
context specific learning. From the computational standpoint the advantages of code switch-

ing arise primarily from the exploitation of a hint about the structure of the environment,

2 Adaptive coloration in animals provides a good illustration of dynamically adopting a specialized adap-
tation to suit the current micro-environment. While walking sticks have adopted a morphological adaptation
which commits them to the tree sub-environment, rabbits commonly have a seasonal coat of fur to match
the seasonal visual properties of their environment; chameleons can adapt their skin color on a shorter time
scale and can match a wider variety of visual environments encountered within its habitat; cuttlefish are the
most dynamic of all, capable of adapting their skin pattern and texture continuously as they move around
within their environment. Such dynamic switching of behavior to suit the current situation is commonplace
in the animal kingdom.
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namely that it can be decomposed into distinctive sub-environments. In computational
learning theory hints are defined as auxiliary information about the target function that
can be used to guide the learning process, and they help usually by reducing the size of
hypothesis space which the learning algorithm has to search through[1]. Hints that split the
global environment into simpler micro-environments effectively splits the learning of a com-
plex function into piecewise simple components. Restricting learning problems to simple
sub environments permits the use of simpler models, and often leads to faster convergence,
and improved performance. One of the most interesting questions from the theoretical
perspective is: How large a set of special cases should be maintained? If this collection be-
comes large enough, other costs associated with the space taken by this information and the

difficulty of retrieving information from a large set begin to counterbalance the advantages.

2.1.1 Background

The Rice Machine is perhaps the earliest example of an algorithm using a codebook switch-
ing strategy. It was developed at the NASA Jet Propulsion Lab to improve the efficiency
of encoding information from multiple distinct sources[20] and was used for sending image
data to earth from the Mars Voyager spacecraft. The Rice Machine is a simple two-stage
code, in which the first stage describes which code will be used® and the second stage de-
scribes the data using the chosen code. The multiple codebook idea has since been used to
extend the Shannon source coding theorem to nonergodic stationary sources by using an
ergodic decomposition to interpret a nonergodic source as a composite of ergodic sources®
[32]. While a universal code is in theory more complicated than an ordinary code, involving
many codebooks and a mechanism for switching between them, in practice it can be more
efficient since separate codebooks can be used for distinct short term behavior.

In any two-stage coding scheme, there is a tradeoff between the average lengths of the
first and second stage descriptions. The longer the first stage description is permitted to be,
the more subtly differentiated the available code books can be, and the more well matched

the codebook can be to the statistics of the data to be encoded. On the other hand, the

30ne of four in the case of voyager, requiring a two-bit prefix to describe it

“This type of decomposition may be particularly relevant to describing nonergodic natural environments
which may be most simply described as mixtures of ergodic sub-environments. Breaking the environment
down into ergodic or approximately ergodic components has the great advantage that within each component
learning the statistical structure of the component is valid.
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length of first stage descriptions can easily overwhelm any gains that might be made in
the second stage of encoding. One of the most important considerations in balancing these
factors is the frequency with which codebooks will be switched. While the Rice Machine
employed the simple scheme of re-evaluating which codebook to use at regular, and relatively
short, intervals, more sophisticated schemes for determining when to switch codebooks have
been developed. In particular, it is important to avoid a phenomena referred to in control
theory as chattering, where switching between codebooks occurs too frequently, incurring
very high overhead costs.

The mixtures of experts paradigm for supervised network learning is closely related to
two stage codes. It was developed as a way of overcoming the drawbacks of training a single
multilayer network to perform different subtasks on different occasions, most notably slow
convergence rates and poor generalization due to catastrophic interference. “If we know in
advance that a set of training cases may be naturally divided into subsets that correspond
to distinct subtasks, interference can be reduced by using a system composed of several
different expert networks plus a gating network that decides which of the experts should
be used for each training case.”[41] This technique is advantageous when the training set
can be divided into simpler (homogeneous) subsets, and the learning task in each of these
subsets is not as difficult as the original one. During training the gating network allocates
a new example to few experts, and, if the output is incorrect, the corrective weight changes
are localized to these experts. After training the network computes a value for an input
by first having the gating input route the input to the appropriate expert and then having
that expert compute the final output value. This scheme has been modified and extended
in many ways since it was introduced, and the class of models it gave rise to are referred
to as ensemble models or committee models. One notable extension of this model is the
Boosted Mixture of Experts model, which replaces the gating network and the need to know
in advance the appropriate partition of input space, with an algorithm which initializes a
split of the training set to different experts and incrementally introduces new classifiers
which are encouraged to become an expert on patterns on which the previous classifiers
make errors or disagree[11].

The use of code switching strategies is becoming increasingly common in a wide variety

of engineering applications. It is used in designing control systems® that can operate in

5They are often referred to as Hybrid Systems in the field of Control Theory([62].
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multiple environments governed by distinct sets of equations. Transitions between these
environments can cause the input-output characteristics of the control system to change
rapidly or even discontinuously. Multiple models are needed in this case both to identify
different environments and to control them rapidly[61]. Code switching is used for speeding
CPU performance where detecting and predicting switches of computational context is
critical to operating performance [53]; in text compression where model based encoding
schemes arrive at different codes for different document classes[85]; and in the design of
context aware networking environments where the system trys to detect the current context

and anticipate the users needs.

2.2 Code Switching

Code Switching is most simply illustrated using the following modification of the classic
Western Union Problem. The objective of Western Union is to maximize its profits by
minimizing its costs assessed in terms of the number of characters that need to be sent over
the wire. The typical strategy is to use a Huffman code which assigns small codeword to
frequently occurring strings, and longer code words to less frequently used strings. The
frequencies are typically estimated from large collections of messages collected over time.
But now let us assume that Western Union has access to a simple and inexpensive piece of
side information: each message is labeled with the name of the closest holiday at the time
the message was sent, in the set of N holidays {fathers-day, mothers-day, xmas, graduation-
time,...}. This extra information could be used to partition all past messages sent into N sets,
estimate a separate probability distribution function for each element of the partition and
construct an optimal codebook based on the different probability distribution functions.
Now when the sender wants to send a message, he should first send a signal indicating
which partition (or context) the message is coming from and hence which codebook to use
to decode, and then use the associated codebook to code the message °. The likely outcome
of using this code switching strategy is that “xmas” will have a very short encoding around

Christmas time and a relatively long encoding around graduation time.

%In the case we are discussing, since both the sender and receiver presumably have access to a calendar
and the current date, they could both know which codebook to use without any messages about context
being sent. This is one advantage of making use of globally accessible side information.
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2.2.1 Costs and Benefits of Code Switching

If one considers only the cost of the messages sent then clearly code switching saves Western
Union some money. But one also needs to account for the the costs of computing N times as
many frequencies, of computing N codebooks, of storing N codebooks, the cost of switching
between codebooks, and the cost of sending a message indicating which codebook is being
used. In addition, in order to compute the N sets of word frequencies, one may need N
times as much data, which means that Western Union may have to wait a long time before
they can capitalize on their database of messages. In this illustration, the side information
was provided for free, but in many circumstances the side information also comes at a
cost. When all of these costs are factored in, it is unclear whether code switching gives
an advantage. Given a probability distribution over the environment and a specification
of those costs mentioned above, we ‘would like to determine the optimal partition of the
environment, keeping in mind that one possible partition is no partition at all.

A code switching strategy is specified by a partition of the input space or environment
along with function which classifies inputs into their partition sets; a codebook associated
with each partition set; and an encoder which uses the correct codebook given the partition
membership of the input. The costs associated with using code switching can therefore be
broken down into the cost for obtaining a collection of codes, the cost for maintaining a
collection of codes, a cost for using a code, and a cost for switching codes. The fact that
codes and partitions must be learned, and that there are costs associated with learning,
places constraints on the granularity and complexity of the partitions of the environment
that can be practically used.

Using code switching requires the extraction two distinct types of information from the
environment: the statistical regularities of specific contexts that can be exploited to produce
an efficient codebooks; and the simple features of the context that can be used to identify

it, to distinguish it from others,and, as a key, to recall the appropriate codebook. 7 8 Both

"This may provide an interesting way of defining the distinction between procedural and declarative
memory. Procedural memory has to do with the regularities found in a context. Declarative memory has to
do with the identifying features of a context[22].

8The distinction between these two types of information is equivalent to the distinction drawn in linguis-
tics and communication theory between types of information content referred to as transactional information
and interactional information. Interactional signaling establishes the communications link and its charac-
teristics prior to the sending of transactional information over the channel. In coding theory, a typical
interactional signal might consist of the sender providing the appropriate codebook to the receiver before
coded transmission begins. While there are systems that carry these two types of information in separate
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types of information must be learned from experience and stored in memory for later use.
Both the identifying features of a context and the contextual regularities may be obtained
from within the same sensory modality. This is probably the case in many visual processes
in which preattentive mechanisms provide the contextual cues?, but the contextual cues
can also come from a different sensory modality or even from signals internal to the animal
(e.g., an internal clock).

The free availability of certain contextual cues may determine how the environment is
partitioned by an animal using code switching. For this reason, use of the abundant internal
signals as cues to context are of particular interest. The wiring devoted to connections
between cortical areas accounts for a large fraction of the volume of the brain in primates.
These connections have a high degree of macroscopical order, best described as a set of
discrete bundles joining areas or parts of areas to each other, rather than as a continuum of
intertwined fibers. There are wide variations in convergence and divergence of connections
between cortical areas, but there is a tendancy for connections to be reciprocal. Among
approximatly 30 visual areas in the monkey, there are 300 connections, about % of all
possible connections. Among 73 cortical areas in the monkey surveyed, about 15 percent of
all possible connections exist. Connections between areas are more likely to exist when they
are geometrically close to each other[13]. As mentioned earlier, a variety of extra-retinal
signals are conveyed to visual cortex, including eye position signals. The specific set of

extra-retinal signals present in visual cortex may be an adaptation that has evolved based

on the value these signals have as side information about the environment.

2.2.2 Hints and Context: Learning Theory

We would like to consider when it is helpful for a learning algorithm to split the learning
of a target function into a collection of learning problems where one is learning the target
function on only a subset of the input space. It is similar to learning a complex function

by first splitting it into piecewise simple components. The optimal way to accomplish this

channels, for example the telephone system, using what is called out of band signaling, many systems carry
both in the same channel, using what is called in band signaling.

%These preattentive mechanisms and their role in directing eye movements may serve to direct the fovea
of the retina to positions in the visual scene centered on distinct visual contexts. For example, if one of the
contexts is faces, and there is a face in the visual scene, the fovea will be directed to the center of the face,
rather than to the boarder between the face and the background or some other random position. Within
the context of face discrimination, the fovea is directed to be centered on the eyes, nose, or mouth, and not
other positions on the face (see the classic work of Yarbus [86]).
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task depends on what functions can be represented simply by the hypothesis space, and
also depends on what sort of simple functions can be produced by restricting the inputs to
the target function f. Let us formalize the situation as follows: Let (Z1,...,%,) be random
variables drawn from sample spaces (Si,...,S,) which are a partition of the sample space
S for the random variable Z. Each is drawn according to the probability distribution
Fs, (z) = F(z|xz € S;). Let (By,...,By) be subsets of hypothesis space B. Now we have
the following set of n learning problems: (Z;, Fs,, B;, Select, Per f) where ¢ € 1,...,n. Each
learning problem selects its own hypothesis b; after seeing k; examples.

One way of solving any such learning problem is to take the k£ examples provided and
partition the examples into subsets according to which of the sets (S1,...,S,) they fall into.
Let us call these example partition sets, (E4,...,E,). Solve the i’th learning problem by
selecting a hypothesis b; on the basis of E;. Finally, recombine these different hypotheses

by defining b, the solution to the whole learning problem, as follows:
b(&) = by(z)(¥) where h(£) = ¢ when Z € S;

The question is: “When does this strategy pay off?” Another way of phrasing the
question is: “Given a learning problem what is the optimal way to partition S
and B for use with the above described learning scheme?”, keeping in mind that
one possibility is to leave S and B in one piece, which is equivalent to not using this strategy
at all. Other, more restrictive and perhaps more realistic, versions of this problem might
include either constraints on how S can be decomposed or on how B can be decomposed,
or both.

The effect of such a hint is twofold:

e It restricts search of the hypothesis space to a smaller subspace B; C B, thereby
reducing the VC dimension and hence the number of samples needed to make a valid

generalization.
e It reduces the number of samples by partitioning the input space.

This arrangement is only fruitful if there is enough of a reduction in VC dimension so that
the reduced number of samples is still sufficient for valid generalization.

Let the VC dimension of B be VCg and the VC dimensions of B; be VCp;. The fraction
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of samples we can expect to get from each piece of the partition is F'(S;) = p;. What we
need to characterize is an expected generalization error. The hint we are given essentially
amounts to our getting the function A in the formula for b for free. Characterizing how
much effort it would have taken us to learn h might give us some insight into how much it
can help us.

Another factor which might play an important role in determining the optimal partition
of the input space is the effect of noise or the signal to noise ratio over the input space. Since
the number of samples needed to make reliable estimates of statistical parameters increases
with the magnitude of the noise, while the number of samples available will decrease as the
partition of input space is made finer, there is probably a lower bound on the fineness to
the partition determined by the noise in the input data.

Without placing some restrictions on how S and B can be decomposed, we might arrive
at some absurd results. For instance, we can easily imagine a situation where the optimal
partition of S is into sets on which f is constant, but these sets may have a very complex
shape (i.e., the function A might have high complexity). Likewise, we can imagine the
situation where the structure of the sets in the decomposition of B is highly complex. We
need to be sure either to charge for the complexity of the decompositions, or at least set
down some reasonable. guidelines. Obviously, the nature of the optimal partition of S will
have an important impact on the optimal partition of B and visa versa. The two extremes
of the type of guideline that can be set down are the situation where the partition of S is
fixed and no constraints are put on the partition of B, and the situation where the partition
of B is fixed and no constraints are put on the partition of S. I believe in most practical
situations constraints must be placed on both.

The growth function which defines the VC dimension is defined as

m(N) = max (number of partitions of Z1,...,Zy by b € B)
Z1,..,ENES

Since we are now considering subsets of S and B, we need to consider the VC dimension of
a hypothesis set with respect to a particular input space, instead of assuming the full input

space. The appropriate growth function is as follows:

ms; 8;(N) = _ max . (number of partitions of Z1,...,Zy by b€ B;)
F1yeee TN ES;
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In considering the relationship between the partition of S and B, it is interesting to note
that, just as hypotheses partition inputs, inputs can be used to partition hypotheses. On

this basis we can define the dual of the traditional growth function as

m(N) = max (number of partitions of by,...,by by z € X)
b1,..,0EB

and this can be used to define the VC dimension of the input space with respect to a
hypothesis set. Using the dual growth function, it should be possible to derive results
analogous to those expressing rates of convergence of learning in terms of the traditional
growth function. These analogous results would tell us something about the number of
hypotheses we need in our hypothesis set for valid generalization, rather than the number of
examples we need for valid generalization. ° In the typical learning problem, such a result
would have little use since there are typically weak constraints on the number of hypotheses
in the hypothesis set, and strong constraints on the number of examples available. But in
the next section I will be discussing a natural situation where there is a severe constraint
on the number of hypotheses in the hypothesis set.

These costs will be related to various observable properties of the code. For instance, we
will make the reasonable assumption that the cost of maintaining a collection of contexts
is a monotonically increasing function of the size of the collection. Hence we expect the
size of the collection of contexts employed in a mode switching coding strategy is inversely
proportional to the cost of maintaining this collection of contexts. In fact, one might be able
to calculate the cost of adding a new context to a collection as a function of the complexity of
the context to be added, and as a function of how similar the new context is to the contexts
in the current collection. Also, the mean frequency of context shifts should be inversely
proportional to the cost of switching contexts. It only pays to switch context if one is going
to be in the new context for a significant period of time, otherwise the advantages gained
by using a different context are outweighed by the costs of switching contexts.

The discussion of chapter 1 elaborated on the survival advantages of context specific
sensori-motor adaptation and the evidence that the data on eye position modulation of
responses of visual cortical neurons presented in chapter 1 might be interpreted as an

instance of cortical adaptation of neural codes to the current context.

10These results would require defining a probability distribution on hypothesis space. We will give an
example below of a natural definition of such a probability distribution function on a hypothesis space.
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2.2.3 Natural Image Statistics

Research on natural image statistics largely neglects the fact that the image ensembles that
the animal encounters are influenced not only by the visual environment but also by the
behavior of the animal itself. Internal information about the state of the organism, such
as eye position, could readily be exploited for hints about the specific context generating
incoming sensory information or whether the current context has changed. Correlations
which might exist and be exploitable in particular areas of the environment, are washed
out in analyses of the ensemble of all images. Much greater advantage would be derived by
partitioning the environment into simple sub-environments, each with their own distinctive
and exploitable statistical structure.

It has been suggested that the receptive field properties of visual neurons are ”matched”
to the statistics of natural scenes. But when these researchers speak of ?THE” statistics of
natural scenes, they are trying to make a generalization about the ensemble of all natural
images. ! It would be of interest to analyze the statistics of several different ethologically

relevant sub-ensembles of natural images and:

1. see if the statistics for these sub-ensembles are different (we will call them image

contexts);

2. see if visual neurons can exploit information about image context and change their

tuning properties appropriately.

Alternatively, by experimentally manipulating the reward associations, create arbitrary
but easily identifiable ensembles of images which become behaviorally relevans.

In these experiments we postulate that the statistics on the ensemble of natural images
can be parameterized in such a way that there is a systematic change in the statistics with
respect to the parameter. It has been noted in the literature on natural image statistics
that image statistics are invariant with respect to scaling (or change in focal length of the
camera). Another simple parameterization of natural images is in terms of the focus of the
camera. For these preliminary experiments we will only be concerned with two different
focus distances: near, by which we mean within grasping distance; and far, by which we

mean focus at infinity.

ronically, their empirical measurements are taken from a very restricted subset of this ensemble.
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Chapter 3 Appendix: Relating Computational Learning
Theory,

Stock Portfolios, and Population Genetics

3.1 Introduction

These three seemingly unrelated topics each offers their own insights into the problem
of optimally partitioning the environment. In computational learning theory, ensemble
learning models use populations of learners with some variation in their abilities to improve
performance over single learners. In population genetics, a population of organisms with
some variation in phenotype has greater survivability than a homogeneous population, due
to its ability to handle a greater degree of environmental fluctuation. In the branch of
information theory called stock portfolio selection theory, the goal is to create an optimal
population of stocks, with enough variability (diversified) so that it will not become extinct.
There is a natural mapping between the problems encountered in population genetics, those
in computational learning theory, and portfolio selection problems. We will describe the
mapping between these three domains, and translate results derived in each of these fields
into the language of the others. We focus on convergence theorems which are found in
each of these fields, and how the concept of the VC dimension, which has been introduced
relatively recently in computational learning theory as an important measure in estimating
the convergence rate of learning algorithms, can be applied in both population genetics and
portfolio selection problems. We will begin by describing the mathematical paradigms used
in the portfolio selection problem, the computational learning problem of learning from

examples, and the problems of predicting gene frequencies in a genetic population.

3.1.1 The Stock Portfolio Selection Problem

The stock market scenario we will be discussing can be described by the following tuple:

(Z, F, B, Select, Per f) where

o = (z1,...,%m) is called the stock market vector. 7 is a random variable which
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has probability distribution function F. Each z; represents the price relative of stock
i. The price relative is the ratio of the price at the end of the day to the price at the
beginning of the day for stock 7. There are a total of m different stocks. Each day #
assumes a new value, and so the value of 7 on day j will be denoted Z; = (z;1...Zjm).
A record of N days of the stock market will be denoted X™ = (#1,...,&,) so that X"

is an n X m matrix with X1 = Tig.

e B is a set of permissible ways in which one can invest in the stock market.
B = Simplez,,
where Simplex,, is defined as

m
Simplex, = {g= b1y wsn b ) 105 2 0, Zb,- =1}
=1

which is a simplex in m dimensions. ! Each vector in this set is called a portfolio
where b; represents the fraction of one’s wealth invested in stock i. At the end of
each day, the investor is free to sell all his stock, and reinvest this money using a new
portfolio chosen from B, which may be chosen according the performance of portfolios
on previous days. The portfolio chosen on day j will be denoted b; = (bj1,...,bjm)-
A record of N days of investment portfolios will be denoted B™ = (by, ..., by) so that

B™ is an n X m matrix with B, = b;;.

e Perf is a performance measure which one wishes to maximize. Typically, one would
like to maximize the expected wealth relative or the expected growth rate. The wealth
relative on day j, denoted by S;, is the ratio of the wealth at the end of the day to
the wealth at the beginning of the day which is simply as follows:

S(b;, ;) =8; =bj - %

!The basic model can be extended to account for side information by making the the elements b € B
functions which map values of the side information vector § to m-vectors on the simplex. This modification
makes the set B more similar to a general hypothesis set as found in learning problems. We will expand on
this later.
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and the wealth accumulated over n days is:

The ezponential growth rate is the logarithmic counterpart to the wealth relative as

follows:

and:
TT U | S o= 1 &
W(B", X") = —logS(X", B") = T—LglogS(bi,:ci)
P

One might want to place some additional constraints on the value to be optimized
such as the permissible amount of variance in the value. In this way one can control
the degree of conservatism in the investment strategy. 2 The performance measure
can be a function of the history of the stock market and the previous investments

made.

e Select is an algorithm which chooses a portfolio from B on the basis of previous

experience and possibly some external information (insider tip?7).

Once each of these elements is specified, the behavior of the system and its performance
is completely determined (except for the behavior of the random variable which is not in our
control). The concerns of research into portfolio theory applied to financial markets centers
on finding an optimal strategy Select for choosing a portfolio when all other components of

the tuple are specified.

3.1.2 Computational Learning Theory

The standard framework for formalizing the problem of learning from examples can be

described by the same tuple (Z, F, B, Select, Per f) where:

e % = (z1,...,%m,) is called the input vector. Z is a random variable which has
probability distribution function F'. FKach z; represents the value of variable ;. Each

iteration of the learning algorithm T assumes a new value, and so the value of 7

It may also be prudent to take into account transition costs since some good strategies may incur very
high transaction fees (brokers fees) due to the large number of transitions required by the strategy.
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on iteration j will be denoted Z; = (j,1...%jm). A record of N samples from the
input space will be denoted X" = (Z1,...,%,) so that X™ is an n x m matrix with

—cn _ .
Xz-’j = Tjj.

e [3 is called the Hypothesis Set. At each iteration one can choose a hypothesis from
B on the basis of the performance on hypotheses chosen on previous iterations. A

record of N iterations of hypothesis choices will be denoted Br = (b1,...,bn).

e Perf is an error measure which one wishes to minimize also commonly referred to as
the loss function and denoted Q(b, ). The goal in learning from examples is to find
a hypothesis in B which is a good approximation for an unknown function f when all
one is given is the values of f on randomly drawn inputs Z. The performance measure
Perf is a measure of how different the chosen hypothesis b is from the unknown
function f. A typical example would be mean squared error:

Perf(b, X") = Q(5, X" (f (&) — b(&:))*

N_1

2

1 n
Another important quantity is the risk function defined as

R(b) = £[Q(b, )]

where expectation is taken with respect to the distribution on Z. The empirical risk
function is given by

o o b o e i s
Remp(b, X") = HZQ(}% ;)
=1

Note that although the target function f is not explicitly included in the tuple de-
scribing the learning problem, it is implicitly present in the Performance function.
While in Portfolio problems the goal is usually to maximize the performance measure
since this corresponds to maximizing wealth, in learning problems the goal is typically

to minimize the performance measure since it is a measure of error or loss.

e Select is a learning algorithm which chooses a hypothesis from B on the basis of

previous experience and possibly some external information (hints).

There are a number of question of interest in this setting:
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¢ How well does a particular learning algorithm (such as backprop) work in a particular

context?

e Given a particular learning problem, what is the optimal learning algorithm to use?

3.1.3 Population Genetics

We can describe the situation in population genetics using the same tuple (Z, F, B, Select, Per f)

where:

—

e ¥ = (z1,...,Ty,) where x; represents the fitness relative of genotype i. The fitness
relative in many cases is defined to be the ratio of the number of individuals of genotype
i in generation j to the number in generation 5 — 1 3 but in artificial selection, the
fitness can be judged by any criterion. There are a total of m different genotypes.
Z is a random variable which has probability distribution function F', which will be
influenced by many factors including fluctuations in the environment. Each generation
Z assumes a new value, and so the value of Z on generation j will be denoted z; =
(zj1--.,%jm). Note that there is much debate about what constitutes fitness, but
typically one might use number of viable offspring as a measure of fitness in which

case the fitness relative is a measure of reproductive rate.

e B = Simplez,, is a set of possible gene frequencies in the population. * The elements
of B are referred to as genetic portfolios and can be thought of as the number of
individuals allocated to a particular genotype. The components b; represent the pro-
portion of genotype 7 in the population. The genetic portfolio generated on generation

4 will be denoted I_;j = (bj,1,---»bjm)-

e Perf is a performance measure. Many evolutionary biologists have proposed different

3Note that one interesting difference between the stock market and population genetics is that in the stock
market the usual way to increase one’s wealth is to have the price of individual shares rise. Occasionally,
there will be situations where stocks split, in which case one gains not by having the price of stocks increase,
but rather by having stocks “reproduce.” In population genetics, the only way to increase wealth is by
having shares (individuals) split (reproduce). One could imagine a stock market in which there were no
prices, but the number of shares changed. The factor by which shares of a stock increased each day would
be related to the profits of the corresponding company.

“The assumption, commonly made in population genetics, that purely random mating occurs, places an
important constraint on the nature of B. Given a population of a particular genetic composition and the-
assumption of random mating, only a limited class of gene frequencies can be generated. This constraint
also limits the power of Select. For instance, it is apparent that changes in gene frequencies cannot change
arbitrarily quickly.
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performance measures which they hypothesize are being maximized or minimized by
natural selection. Here 1 leave Perf as simply an arbitrary function which may or
may not be maximized by natural selection. A typical example of such a performance
measure would be the expected population fitness relative. The fitness relative, de-
noted by the symbol S, is defined as the ratio of the population fitness in generation

j the fitness at generation j — 1:

S; =

S

wdy

e Select represents natural selection as an algorithm which chooses a new distribution
of gene frequencies from B on the basis of previous performance of the population.
In contrast to the scenario in portfolio theory, the selection or investment strategy
is fixed by nature (natural selection) ®. In animal and plant breeding programs, we
have the same situation as in the natural selection case except that Select is not fixed
by nature. Breeders are free to choose at each generation the composition of the
breeding population and the performance measure Perf, just as investors are free to
reinvest at the end of the day and are free to choose the performance criterion Per f
on which to base their decision to reinvest. ® The questions asked by animal and
plant breeders are the same as those asked by financial investors: What is the optimal
selection strategy Select to use so as to optimize Perf? They would like to choose
the composition of the population in such a way as to maximize the wealth relative,

which is a measure of the increase in performance of the population.
Most research in population biology centers on two questions:

e What exactly is the investment strategy embodied in natural selection? This question
is approached by assuming a particular performance measure Perf is being maxi-

mized. For example,

e What performance measures are being maximized? Or in other words what are the

consequences of using the particular investment strategy employed in nature. This

®Although there will be some discussion later about mechanisms that have evolved for the purpose of
altering this investment strategy by changing B

S Artificial selection is not subject to the constraints of random mating. In fact, non-random, or directed
mating, is probably the most important tool available to breeders for designing an investment strategy (that
is until we can directly engineer the traits we desire).



74

question is approached by assuming a concrete implementation of the selection strat-
egy embodied by natural selection. For example, the standard theory of stock market
investment is based on the consideration of first and second moments of S, the objec-
tive being to maximize the expected value of S subject to a constraint on the variance.
A similar objective may be at work in the evolution of organisms. It is desirable to
maximize the fitness (or expected performance) of the population, but if the variance
in performance is too great, extinction may result.

3.1.4 Stock Portfolios and Learning Theory

Portfolio Selection as a Learning Problem

Let us view the portfolio selection problem as a problem of learning from examples by sim-
ply equating the elements of the tuple specifying the portfolio problem (Z, F, B, Per f, Select)
with the corresponding elements of the tuple for the learning problem (a‘c" JF' B, Perf', Select’ i

This mapping equates
e stock market vectors with input vectors.
e portfolios with hypotheses.
The only change we will need to make is in the definition of Per f

e Perf will be defined as follows:
Perf = —log(Perf) = —logS(b, F)

This makes the loss function for the learning problem map to the negative of the

exponential growth rate. The following correspondences will then hold:
Q(b, %) = ~W (b, 7)

Q(Env X’n) = —*W(B‘nvj{’n)

R(b) = £[Q(6,7)] = —E[W (b, 2)] = ~W ()
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When this is done, it can be seen that the portfolio selection problem is equivalent to a
rather simple learning problem. The hypothesis space for the learning problem consists of

single node networks illustrated in the following diagram: where the weights of the network

are limited to the simplex B = Simplez,,. As mentioned above in the description of learning
problems, a target function is implicit in the definition of the performance function. If the
performance function for the portfolio problem is taken to be the expected wealth relative,
then we may ask "What target function is implicit in the expected wealth relative?’. It will
be argued here that this target function could reasonably be considered the Max function
which returns the maximum value of all its inputs. The hypothesis set we are considering
here is too weak to be able to approximate the Maz function well when there is a uniform
distribution on the inputs, but for some input distributions it may perform quite well. The
hypothesis set can be strengthened by using side information. The use of side information
described by Cover amounts to using a hypothesis set consisting of the following networks:

The circle nodes in this diagram are the same summation nodes as appear in the single

node diagram. The output node in this case is a switch which can output any one of its
inputs depending on the value of the side information g. Obviously, this type of network
can be significantly more powerful, depending on how large & is (the number of summation
nodes), and what constraints are placed on the switching function. If no constraints are
placed on the switching function, the overall function can be arbitrarily complex.

Using the tools of learning theory we can try to bound the number of examples (or days)

needed to converge on a good solution in terms of properties of the hypothesis set, namely
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the VC dimension. Later we will compute the VC dimensions of both the simple class of

networks and the more complex class of networks.

Learning from Examples as a Portfolio Selection Problem

Let us now explore an alternative mapping between the portfolio problem and the learning

problem. This mapping equates
e stocks market vector with hypotheses performance vector
e portfolios with probability distributions on hypothesis space

Since this mapping is not as straightforward as the one described above, let us make
it more explicit. Given a learning problem described by the tuple (Z, F, B, Per f, Select)
where B = {hi1,...,hp} and |Z| = k, we will construct a mapping onto a portfolio problem

specified by tuple (Z,F',B , Perf', Select ) .

o & =(z,...,%,) where

,  e—Perf(hid)  o—Q(hiE)

%= Cost(h;) :Cost(h@-)

represents the performance relative of hypothesis 2. The fraction %i%% is the ratio

of the dividends from the stock at the end of the day to the cost of the stock. In this
market one rents stocks at the beginning of the day, and in return receives whatever
dividends the stock generates during the day. The dividend of the stock is simply the
performance of the hypothesis on the examples drawn during the current iteration
of the learning process. At the end of the day the stock is returned’, and one can
take the money earned during the day and reinvest as one sees fit the next day. It
is as if one is renting a piece of machinery (an algorithm) for the day, and whatever
profit you can derive by using the machine is yours at the end of the day. We will
initially assume that all stocks are the same price, which is a common situation in
computational learning theory where each hypothesis in the hypothesis set has the

same cost®.

“This situation is actually not as strange as it sounds. It is realized in actual stock markets by ...

8But the cost of a hypothesis can usefully be employed to incorporate the complexity of the hypothesis
into the choice of hypothesis. One would charge more for a more complex hypothesis, but would expect
more dividends or higher performance from a more complex hypothesis.



77

The examples are drawn from the input space according to some unknown probability
distribution function, the hypotheses are functions of this random variable, and the
performance measure is a function of the input random variable and the value of the
hypotheses on the random variable. Hence the vector of performance measures is a

random variable with probability distribution function F'.

B = Simplez,, is a set of permissible ways in which one can invest in the hypotheses.
Each portfolio in this set represents a probability distribution over the hypothesis
set. The output of the portfolio selection algorithm will be a probability distribution
on the hypothesis space rather than a specific hypothesis as is usually the case with

learning algorithms.

Perf', the performance measure, is the same as in the Portfolio selection problem.

Take it to be the exponential growth rate W,
W (b, &) = W; = log(b; - T;)

This corresponds to the expected performance of the hypothesis set given a particular
weighting function and a specific set of examples. The expectation is taken over the
hypothesis set. The performance measure is a function of the input/output pairs
generated by the hypothesis. Let us consider the special portfolio vectors €; which
have a 1 in position 7 and 0’s elsewhere. The following correspondences hold:

e—Q(hi )

W (&, @) = log(é; - &) = log(a;) = log(5

oT(hi)) = —Q(hs, Z) — log(Cost(h;))

If we set Cost{h;) = 1 then we have
W(&, ) = —Q(hi, 7)

and
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e Select is a learning algorithm which adjusts the current probability distribution func-
tion over the hypothesis set on the basis of past performance. This is equivalent to
choosing a portfolio from B on the basis of previous experience and possibly some ex-
ternal information (hints). One would like a learning algorithm to find a probability

density function on the hypothesis space which maximizes the expected performance.

Before any examples have been generated, a learning algorithm will typically assume
each hypothesis in the set is an equally good performer, so the initial portfolio will assign
each hypothesis the same amount of wealth (or uniform probability distribution). As ex-
amples are generated the learning algorithm will modify the probability density function
on the hypothesis space. If the target function is contained in the hypothesis set, then
the probability density function should eventually converge to one of the basis vectors €;
where all the probability is concentrated on those functions in the set which represent the
target function. Under what circumstances will o probability distribution function over the
hypothesis space perform better than any single hypothesis in the set? This question will
be the focus of later sections discussing Context. The answer to this question depends
somewhat on how the probability distribution is used. There are a number of different ways

in which this output can be utilized:
1. one can choose the hypothesis with the highest probability and use this one only.

2. each time a new input is generated, one can select a hypothesis from B according to

the probability distribution function, and use the selected hypothesis on this trial.

3. each time a new input is generated, one can evaluate all hypotheses on this input, and
produce the weighted average of these outputs (weighted according to the probability

distribution) as the final output.

In the last case, the final result produced is not a hypothesis in B, but rather a member of

the hypothesis set Hull(B) which is defined as follows:
Hull(B) = {h = H - b|b € Simplex,}

where
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is the vector consisting of hypotheses in B. The hypothesis set Hull(B) can be seen as the

set of networks which look like: Hence if we use the probability distribution in this way, then

the learning problem we have solved is described by the tuple (Z, F, Hull(B), Per f, Select)
where:

Perf(h = H -b,&) = (Perf(h1,%),. .., Perf(hm,Z))- b

Any learning problem in which the hypothesis set can be decomposed in this way into a
linear combination of a finite number of hypotheses and where the performance function is
linear in the performance of the hypotheses can be simply mapped to a portfolio problem on
a hypothesis set of size m by considering each node in the layer preceding the output node
to be a hypothesis. To intuitively understand the power of being able to combine multiple
hypotheses in this way, let us briefly discuss how such an arrangement could potentially be
exploited. Let’s say one is faced with the problem of learning a function which is too complex
to be well approximated by any single hypothesis set (in other words our hypothesis set is too
weak). One could overcome this problem by just using the hypothesis set to approximate
pieces of the target function (or more accurately approximate the target function when
restricted to a small part of the input space). If one is provided with a good partition of
the input space and side information telling which piece of the partition the input belongs
to, then one can apply the appropriate hypothesis in the appropriate context and arrive at
a good approximation of the target function where before there was none. This idea has
many useful applications to design of learning algorithms, to design of portfolio selection
algorithms, and to understanding the process of speciation in evolution.

Interesting questions can also be raised with regard to the reverse mapping, convert-
ing portfolio problems to learning problems. As we have seen, the simple way to do this
is to equate portfolio vectors with hypotheses, but this section proposes an alternative,

more complicated, but perhaps more interesting, mapping. When stocks are equated with
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hypotheses through the mapping

, e—Perf(hi,E)

5T Cost(h)
and one is given a stock portfolio problem, it is sensible to ask the following
e What do the hypotheses h; correspond to?
e What does the target function correspond to?

If we consider the h;’s to correspond to companies, and Cost(h;) to be the price of com-
pany i’s stock at the beginning of the day, then the function e~ Ferf(%:%) should give the
price of company 4’s stock at the end of the day as a function of the company h; and the
environment Z. Such a function is obviously very complex. Included in the variables of the
environment which affect the value of this function are current events, weather patterns,
and the psychology of investors. But also included in these variables are factors which
are more accessible and quantifiable, such as the profits of the company for the day, and
structural characteristics of the company such as number of employees, number of levels of
management, amount of feedback in the company organization, and the sophistication of
their machinery. We might have some hope of characterizing the computational complexity
of a company in terms of such structural characteristics.

We might also ask > What is the target function implicit in the definition of Per Fe 2,

The optimal company.

3.2 Theorems on Convergence Rates

Portfolio theory, computational learning theory, and population genetics each have their own
theorems regarding the number of days, iterations, or generations needed for a particular
portfolio selection strategy, learning algorithm, or selection process, to converge to a stable
and good solution. We will begin by stating a theorem about portfolios, introducing the
appropriate terminology, and will follow this with theorems from computational learning

theory, and population genetics, translated into the terminology from portfolio theory.
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3.2.1 Comparison of Portfolio and Learning Theory Convergence Theo-

rems

The best performance achievable in the portfolio selection problem described is the maxi-
mum wealth relative over all available sequences of investments:
8*(X™) = max S(b, X™)
bEB

1

W*(X") = —logs™(X™)

W*(X™) = max E[W (b, )]
bcB
We will refer to the portfolio vector which acheives this maximum as b*. A theorem of
Cover and Ordentlich states that there is a portfolio selection algorithm called a p weighted

universal portfolio algorithm for which
W*(X™) — W(X™) < log(Clt )

where W is the wealth achieved by this portfolio selection algorithm, n is the number of
days, and m is the number of stocks. The quantity C’((fnt%_l) is the number of ways of
selecting a collection of n stocks when choosing from a set of m different stocks. This gives
a bound on how different the actual wealth generated by the selection algorithm is from the
maximal wealth that could have been generated, as a function of the number of days and
characteristics of the set B of portfolios. We can also describe the quantities:

W' (X™) = max W (&, X™)

&
W' = max £[W (&, 7)]

These quantities maximize the wealth with respect to the portfolios at the vertices of the
simplex. These portfolio strategies correspond to betting all of one’s money on one stock.
Note that W < W* and W' < W*.

Likewise in computational learning problems, the best performance achievable can be
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characterized by the minima of the risk or loss functions:

R}yp(X™) = inf Remg(b, X™) = Remp(b*, X™)
beB

R* = inf R(b)
beB

The theorems of Vapnik and Chevonenkas state that for C < Q(E, Z) < D, then

R(E) - Remp(ga X’n) < wﬁ

holds with probability at least 1 — ), where

. _ 4G%(2n) —log(n/4)

n

and
- —logn (D-0C)
* ny % _
Remp(X ) BT = (D O) m I 2 \/E
holds with probability at least 1 — 27.
If we have a mapping where:
R(b) = ~W(b)

then

Rp(X™) = inf Remyp(B, X™) = inf —W (5, X") = —sup W (5, X") = —-W*(X")
beB beB BB

—*

R* = inf R(B) = inf E[-W (b, X)] = —sup EW (5, X)] = —max E[W (b, X)] = —W*

beB beB BeB beB

The portfolid selection result

can be restated as follows:

R(X™) — R*(X™) < log(Clmiy ™)
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The learning theory results:

W W < (0 - o/ 81, P20 g

The mapping between portfolio selection problems and learning problems establishes a
connection between the convergence rate of a learning algorithm and the doubling rate of a
portfolio. In some situations (uniform fair odds) we know that a Conservation Theorem
holds which stats that the sum of the doubling rate for the optimal portfolio and the entropy
of the stock values is constant.? If the entropy of the stock market is high, then convergence
will be slow. From computational learning theory we also know that the convergence rate
should also be related to the VC dimension of the hypothesis set. Hence, it seems likely
that VC dimension of the hypothesis set is folded into the entropy of the stock market. The
higher the VC dimension, the slower the convergence and hence the smaller the doubling
rate.

If we were dealing with a single deterministic hypothesis, the entropy of this function
applied to the random variable generating inputs to the function would be bounded by
the data processing inequality. This theorem states that the entropy of a deterministic
function of a random variable must be less than the entropy of the random variable itself.
But the population of hypotheses with the pdf defined on it constitutes a randomized
algorithm. The entropy of a randomized algorithm applied to a random variable need
not be lower than the entropy of the random variable. An additional entropy factor is
contributed by the pdf over hypothesis space. Consider the simple situation where each
hypothesis is a constant function, each outputting a different constant from the others. Since
these functions disregard their inputs, the entropy of the input random variable makes no
contribution to the entropy of the output. The entropy of the output in this case is simply
the entropy of the pdf on the hypotheses. Note that if some of the hypotheses assume the
same values, then the entropy would be lowered. Now let us consider another simple scenero
in which there is only one hypothesis in the hypothesis set, and it maps inputs to outputs

in a one to one fashion. In this case, the entropy of the output is simply the entropy of

In less restrictive settings, an inequality holds.
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the input random variable. Note that if the hypothesis were a many to one map then the
entropy would be lowered.

Now let us modify this scenario. Based on the value of the input random variable, the
previously constant outputs of the hypothesis will be permuted, so that a hypothesis which
previously outputted value ¢ will now output value d while another hypothesis will now
output value c¢. In this situation the entropy can be either raised or lowered depending
on whether the output distribution is made more or less uniform. A uniform distribution
on inputs need not produce a uniform distribution on outputs. Conversely, a non-uniform
distribution on inputs can produce a uniform distribution on outputs.

One factor which will certainly lower entropy of the output has to do with the charac-
teristics of the hypothesis set alone. If the hypotheses are many to one maps and/or there is
little diversity in the functions (i.e., it frequently happens that the outputs of two different
functions are the same on the same input), then the entropy will decrease. This is related

to the VC dimension of the hypothesis set.

3.2.2 Convergence Theorems in Population Genetics

In population genetics a specific hypothesis or function in the hypothesis set is described
by its genetic code or genome. Individual genes are the components of the genome. In
learning theory a hypothesis is described by a set of parameters, such as a set of weights in a
neural network, and individual parameters are the individual components of this description.
The majority of convergence theorems in population genetics are of the following form:
If a particular value of a genetic parameter (allele) occurs in the population of size N
with frequency p and it has a selective advantage s over its alleles in a randomly mating
population, then the number of generations it takes for this value of the genetic parameter
to become fixed is G(N,p,s). The equivalent sort of theorem in computational learning
theory would be: If a particular value of parameter value occurs with probability p in the
hypothesis space, and the performance of functions having this parameter value is increased
by a factor s, then the number of iterations of the learning procedure until the value of this
parameter becomes fixed is G(N,p, s). Typically, convergence theorems in learning theory
regard convergence of all parameters simultaneously, and a probability distribution on the
hypothesis space is usually not considered except perhaps for a uniform distribution. In

the computational setting it would be extremely unusual to find a parameter value for
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which the performance gain was constant and independent of the values of all the other
parameters. In this respect the theorems of population genetics may not be particularly
relevant to computational learning theory, but a more careful consideration of a probability
distribution function on the hypothesis space and its impact on convergence, which is the
meat of the theorems of population genetics, may well provide benefits in the computational
setting. On the other hand, this assumption of the independence of the effects on fitness of
changes in different genetic parameters might not be a good one even in population genetics
(although it does make things more tractable). The theorems of computational learning
theory regarding the convergence of all parameters, which do not assume independence,

might be more applicable to natural populations.
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3.3 Speciation as a Computational Strategy

The convergence theorems discussed thus far described the convergence of characteristics
of the population (or equivalently hypothesis set pdf. or stock portfolio) to an equilibrium
value. These theorems require some assumptions or ergodicity, or statistical uniformity, of
the environment. For animal populations it is clear that the environment is not spatially
uniform and this is why all species reside in a specific limited part of the environment.
Within a limited domain the environment might be considered statistically uniform. Some
species have limited their domain, or niche, to incredibly specific environments, while others,
like humans, have domains which are quite large and diverse. In this section we will be
concerned with the determinants of a species’ range, and under what circumstances non-
uniformity in the environment gives rise to the phenomena of speciation. We will view
speciation as a computational strategy for dealing with non-uniform environments, and will
examine how the concepts of hint, VC dimension, and over training, can help us understand
" the biological phenomena of speciation. In order to understand these phenomena, we must
extend the ideas of convergence of properties of the population to convergence of both
properties of the population and t‘he domain which the population inhabits. There are in
fact two sorts of evolution happening in parallel and interacting with each other: there is
selection of genotypes by the environment; and there is selection of the environment by the
genotypes. Finally, we will discuss how the computational strategy of speciation might be
exploited in computational learning problems.

To illustrate the interaction of the partition of S and of B and how the dual VC dimension
might be useful, I would like to discuss a natural application of these ideas to the theory of
evolution. We will use the formalization discussed in section 1. 10

From the standpoint of evolutionary biology, it is empirically apparent that the envi-
ronment S is, in fact, partitioned into contexts, and these are usually referred to as niches.

Operationally, niches can be defined either in terms of physical characteristics of the envi-

10 A gpecies is a collection of individuals that can interbreed to produce fertile offspring; in other words, the
hypothesis set is a species if there is a function R which can take any two hypotheses from B and generate
other hypotheses from them which also belong to the species. For any particular genotype, we can define a
probability that the genotype will occur in the population, based on the existing population, the function R
and the probability that two hypotheses will “mate”. Two individuals/hypotheses are said to have distinct
phenotypes if there exists a value of the environment on which the two generate distinct outputs or responses.
Selection eliminates some individuals from B and applies R to others on the basis of their responses to the
environment. This process generates a new hypothesis set from the existing hypothesis set.
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ronment, or in terms of the spatial distribution of species. Frequently these two definitions
of niche correspond. The most plausible explanation for the existence of this partition of
the environment, and the partition of organisms into species which occupy these niches, is
that such partitions are useful in learning or adaptation. By restricting the environment to
which a species has to adapt, the species is able to more efficiently adapt to the environment.

There are two well known extremes to degree of niche specialization. Generalist species
are wide ranging and able to adapt to a wide variety of environmental conditions. Specialist
species can only survive in a narrow range of environmental conditions and are consequently
highly localized. I hypothesize that this distinction can be stated simply in terms of VC
dimension as follows: Generalist species have a high VC dimension while specialist species
have a low VC dimension. A prediction of this hypothesis is that while generalists have
the advantage of being able to adapt to a larger variety of environments, they will take
longer to reach the same level of performance (or adapt to the same degree) than would a
specialist species. Specialists have sacrificed the range of environments to which they can
adapt, in favor of fast convergence to very high performance.

Two key questions in evolutionary biology are as follows:
e How is the partitioning of the environment into niches determined?
¢ Under what circumstances does speciation occur?

The interrelationship between the partitioning of the environment into niches and the par-
titioning of organisms into species illustrates the interdependence of optimal partitioning
of input space and hypothesis space. From a consideration of this concrete situation, it is
apparent that the partitioning of the environment found in nature depends not only on the
characteristics of the environment itself, but also on the characteristics of the organisms

which are adapting to the environment. 11

1 These questions are also related to issues regarding the causes of extinction and radiations of species.
One of the proposed causes of extinction are rapid and dramatic changes in the environment. One way of
protecting a species against extinction due to environmental fluctuations is to have phenotypic variation.
The environment can be seen as assuming values which are used to evaluate individuals of a species and
partition them into two groups: adaptive and maladaptive. Those in the adaptive group survive. A species
will go extinct if the environment assumes a value for which all the individuals are maladaptive. If there
is enough phenotypic variation, or in other words, if the dual VC dimension of the species is high enough,
then no matter which value the environment assumes, there will be elements on both sides of the partition.
As long as a few individuals (hypotheses) fall into the adaptive partition, the species will survive. Another
way of protecting against the hazards of environmental fluctuations is to restrict the domain of the species
to a sub environment where these fluctuations are smaller in magnitude or less frequent or both. These two
strategies represent a tradeoff and a pair of competing forces on animal populations.
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The former strategy dictates that every species should have a large and diverse pop-
ulation. Indeed I believe it might be possible to prove a “Nothing succeeds like success
theorem” which states that the more populous a species, the more likely they are to survive
in the future. A species might have a competitive advantage by virtue of its numbers alone.
This fact would give rise to a pressure for species to expand their numbers. So why aren’t
all species numerous and diverse? The latter strategy dictates that every species should
restrict its domain to the part of the environment which is most constant. This fact gives
rise to the pressure for species to split into sub-populations (speciation), each of which is
adapted to a small piece of the environment. So why aren’t all species located in these
environments? These two pressures, the pressure to grow, and the pressure to split,
give rise to the partitions of organisms and environments that we observe.

Obviously the answer to both questions in the preceding paragraph lie in the fact that
there are severe constraints on population size stemming from limited resources. Placing
restrictions on the types of environment which are acceptable has the advantage of creating
stable environments, but has the disadvantage of reducing the size of acceptable environ-
ment. The smaller the environment, the smaller the population size it can support, and
consequently the smaller the amount of phenotypic variation. Given that there is a con-
straint on population size, one must decide the optimal way to distribute the population’s
phenotypic variation. The two extreme strategies are wide and sparse; and narrow and
dense. These probably correspond to the strategies of generalists and specialists respec-
tively. The narrow and dense strategy will do a better job approximating a function within
a narrow domain than the wide and sparse strategy in the same narrow domain, but the

wide and sparse strategy will permit the approximation of a wider variety of functions. 2

12 Adaptive radiations, the sporadic bursts of speciation found in natural history, can be understood in
terms of the occasional discovery of new and very powerful hypothesis sets. A definition of evolutionary
progress might be based on the idea that a more powerful hypothesis set requires fewer hypotheses for valid
generalization than a weaker hypothesis set. Progress in evolution can be equated with the evolution of
more powerful hypothesis sets.
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