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Abstract 

What we see depends on where we look. This is obvious as a statement about the nonunifor

mity of our external visual environment. But it is also true, in a much less obvious sense, as 

a statement about the internal neurophysiology of the visual system. What we see depends 

on where we look in the neurophysiological sense that eye position signals have a dramatic 

effect on the responsiveness of visual cortical neurons. This thesis empirically studies the 

way in which point of regard (what point in space the eyes are fixating) influences neurons 

in visual cortical areas VI and V 4 and then presents a theoretical exploration of how these 

two different ways in which "What we see depends on where we look" might be functionally 

intertwined. 

The empirical data presented here adds to the growing body of evidence that eye posi

tion signals are ubiquitous in visual cortex, an observation which reopens speculation about 

the functional role that these signals might play in different visual cortical areas. The pres

ence of eye position signals in visual areas of the ventral visual processing stream raises the 

possibility that these signals might facilitate object identity. Eye position signals might be 

exploited by visual cortex as a conditioned stimulus, which can become functionally linked 

to the responses of visual cortical neurons (unconditional response) through repeated pairing 

with the unconditioned stimulus, the retinal stimulus, in a classical conditioning paradigm. 

In this way the visual system would be capable of learning systematic relationships between 

point of regard and statistical characteristics of the visual environment. The learned re

sponse to the conditioned stimulus could then be exploited as a preparatory signal, to speed 

or otherwise alter visual processing to suit the current context. In exploring this theoretical 

viewpoint, we discuss the circumstances under which context dependent coding provides 

advantages and how a code switching strategy might be implemented through physiological 

parcellation mediated by gain control. Eye position signals are here considered to be one 

among many different types of extra-retinal signals. present in visual cortical areas, whose 

presence might be similarly exploited. As such, the data and theory presented here should 

be considered as contributing to the broader literature on the influence of signals from 

outside the classical receptive field. 
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Chapter 1 Influence of Point of Regard on Neurons III 

Ventral Visual Cortex 

Perception may be regarded as primarily the modification of anticipation. 

Art and fl/usion, E.H. Gombrich 

The eye of a master does more work than both his hands. 

Benjamin Franklin 

1.1 Introduction 

Vision in primates is an active process in which visual information is sought out in the 

environment and exploited in a purposeful and opportunistic way.1 The evolution of active 

vision in primates involved a functionally linked set of changes: foveated retinas; frontal 

placement of eyes; enlargement and greater parcellation of visual cortical areas; and special

ization of cortical areas for visual guidance of muscle movement. These changes gave rise to 

the primate capacities for high acuity frontal vision and eye-hand coordination, endowing 

early primates with many advantages in their ecological role as visual predators in the fine 

branch niche[7]. The primate ability to learn novel visually guided behaviors requires learn

ing not only specialized motor patterns directly related to the behavior, but also specialized 

eye movement patterns suited to the guidance of the behavior, and the efficient extraction 

of the particular visual features needed for the execution of the behavior[49]. While the 

term "active vision" usually refers to the role that eye movements play in the selection of 

information entering the visual system, the processing of this information in visual cortex 

may be as active as the eye itself. The activity of both the eye and the processing of 

the information conveyed by the eye may be actively coordinated. Active changes to the 

processing of visual information may constitute a "covert" component of active vision. 

1 Active sensation, as a strategy for acquiring information about the environment, has evolved in many 
sensory modalit ies and in many organisms. For example, many mammals exploit active movement of the 
pinnae in audition, and active movement of whiskers in tactile perception. This strategy is used with compact 
sensor arrays that are densely populated with receptor elements, well suited to the gathering information 
from a localized region of the environment with very high acuity, but requiring a system for organizing the 
movement of the sensor in order to sample the environment effectively. 
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Signals from a variety of sources indicating eye position, threat, and reward, are present 

in visual cortex[9; 21; 60; 39). These signals often precede and are indicative of a change 

in behavioral or sensory context[56). Eye movements, for instance, typically precede mo

tor actions of visually guided behaviors by about a second, making the eye position signal 

an important predictor of upcoming visual information entering the processing stream[49). 

As a result of learning mechanisms present in cortex, such predictive signals, would tend 

to influence neuronal responses[72; 5). · The visual system has the capacity to adapt in 

an eye position dependent manner, a capacity that plays an important role in learning 

specialized visual tasks. Psychophysical phenomena in which "a new perception is condi

tioned to the eye position stimulus" have been described as situational or conditioned 

aftereffects[47). It is plausible that a form of conditioned learning of associations between 

Figure 1.1: Kohler's Goggles 
Colored Goggles devised by Kohler create a blue-tinted world when the wearer looks to 
the left and a yellow-tinted world when he looks to the right. If the goggles are worn for 
several weeks, the eye adapts and the color distortions tend to disappear. Somehow the 
visual system learns to introduce the proper correction according to whether the eyes are 
turned to the left or right . Figure from Experiments with Goggles, Ivo Kohler, Scientific 
American, 1962 

eye position and visual stimulus characteristics is the mechanism underlying these effects, 

but the anatomical locus and physiological basis for these phenomena remains little ex

plored. This thesis explores the influence of extra-retinal eye position signals, indicating 

the point in three-dimensional space at which the eyes are directed, on the responsiveness 

of neurons in VI, V2, and V4. 

The presence of eye position signals in visual cortex has been known since the 70's. Pro

found spatial deficits found in clinical cases of damage to posterior parietal cortex motivated 

the search for and discovery of neurons which were both responsive to visual stimuli and 
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influenced by eye position information [10; 70] . The success of this line of research and the 

associated coordinate transformation theory has influenced where subsequent research has 

looked for this phenomena and how its functional relevance has been interpreted. In the 

interval since these seminal studies, further research has found similar eye position mod

ulation of neurons in earlier areas along the dorsal visual processing pathway, and more 

recently studies have extended these findings to the earliest stages of cortical and sub cor

tical visual processing[16; 48; 84; 78]. Studies of the modulatory effect of distance cues on 

cells in both VI and V 4, have indicated that extra-retinal signals related to vergence and 

accommodation are also present in areas along the ventral visual pathway.[23] . The current 

study explores the influence of all three spatial parameters, horizontal, vertical, and depth 

eye position signals, and their interactions. The data presented here deepens the under

standing of the influence of these signals by comparing and contrasting the effects found 

in different visual cortical areas, and contributes to the growing body of evidence that eye 

position signals are ubiquitous in visual cortex. The difference between the distribution of 

modulation found in different areas, the fact that this type of modulation is prominent in 

the ventral pathway, and the lack of clinical evidence which would support a role for these 

eye position signals in the ventral stream similar to that proposed for the dorsal stream, 

leads us to propose an alternative role for these signals in ventral visual processing. 

Anatomical data suggests that the modulatory eye position signals observed in these ex

periments may originate in frontal areas commanding saccadic eye position and movement. 

The convergent termination pattern of eye position inputs, dopamenergic inputs (implicated 

in reward conditioning), and amygdalar inputs (implicated in aversive conditioning), in lay

ers 5 and 6 of visual cortical areas V2 and V 4, provides a potential substrate for learning of 

correlations between eye position and the nature of visual information entering the visual 

processing stream. 
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1.2 Anatomical and Physiological Background 

1.2.1 Oculomotor System 

While most animals have gaze stabilization2 mechanisms which align the retina with targets 

in the external world, gaze shifting3 mechanisms typically are found only in vertebrates with 

retinal sub regions specialized for higher acuity, such as the primate foveated retina. In this 

section we focus on the anatomy of the saccade and gaze-holding circuitry. 

In primates, eye movements are controlled via six extra ocular muscles arranged in three 

antagonistic pairs: 

• The medial and lateral rectus muscles controlling the horizontal position of each eye. 

• The superior and inferior rectus muscles controlling vertical position of each eye. 

• The superior and inferior oblique muscles controlling rotation of the eyes about the 

line of sight. 

superior obllquQ 

superior rectus 
f(~mov(:d Qr. 

this side 

luft eye t ja h ~ eye 

Figure 1.2: Diagram of Eye Muscles 

Diagram showing the six extra ocular muscles controlling eye movements. Taken from Eye 

and Brain by R.L. Gregory[33]. 

'Vestibulo-ocular system and optokinetic system 
3Version consisting of Saccadic and Smooth pursuit systems, and vergence 
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In their relaxed state, the passive elastic properties of the muscles create spring-like forces 

which draw the eye into a central position. Moving the eye from this central position requires 

overcoming the resistance of the orbit to motion and accelerating the eye. Maintaining the 

eye in a position, other than the central position, requires a static force to counteract 

the spring-like tension of the muscles. Eye position is a linear function of the firing rates 

of oculomotor motor neurons while the eye is stationary, with each motor neuron having 

a characteristic eye position at which it begins to fire. High frequency bursts of activity 

generate the dynamic force produced during an eye movement, while tonic activity maintains 

eye position. 

The medial, superior, and inferior recti are innervated by the oculomoter nerve (cranial 

nerve III); the superior oblique is innervated by the troclear nerve (cranial nerve IV); and 

the lateral rectus is innervated by the abducens nerve (cranial nerve VI) . The third, fourth, 

and sixth cranial nuclei containing these motor neuron somata are interconnected by a 

pathway called the medial longitudinal fasciculus (MLF), enabling unilateral coordination 

of extra ocular muscle activity. In vertical movements of the eyes, due to a slight torsion 

generated by the superior and inferior rectus muscles, there is a need for coordination not 

only between the muscles within this antagonistic pair, but also between this pair and the 

oblique pair which produces a corrective torsional force. In horizontal version movements of 

the eyes, there is coordination not only unilaterally between the medial and lateral rectus 

antagonistic pair of muscles of an eye, but also bilaterally between the medial rectus of one 

eye and the lateral rectus of the other eye. Vergence eye movements also result in a different 

sort of bilateral coordination in which the medial and lateral rectii of the two eyes operate 

in concert. 

Premotor burst neurons in the paramedian pontine reticular formation (PPRF) activate 

eye muscle motoneurons during horizontal saccades. Vertical saccades are controlled by 

premotor burst neurons of the rostral interstitial nucleus of the medial longitudinal fasciculus 

(MLF). Lesions to the prepositus nucleus of the hypoglossal nerve results in a condition 

where the eye drifts back to its central position after making saccades, suggesting that 

the tonic activity of the neurons of this nucleus are responsible for generating the static 

force signals necessary for maintaining eye position. Integration of the different incoming 

velocity signals to generate horizontal eye position information involves the coordination 

of the nuclei prepositi hypoglossi and the medial vestibular nuclei on both sides of the 
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brain stem as well as the cerebellar flocculus. The interstitial nucleus of Cajal is thought 

to provide the velocity to position integration for vertical eye movements. Neurons of the 

rostral midbrain reticular formation form a center for vergence control. Vergence burst-tonic 

neurons of this area are good candidates for integrators of vergence velocity signals. 

The existence of separate systems controlling vergence and version postulated by Ewald 

Herring, whose outputs are combined during gaze shifts to produce the final binocular mo

tor command[38], are well supported by lesion studies in which deficits to either vergence or 

version can be produced. A population of neurons in the oculomotor nucleus discharge with 

vergence, accommodation, or both. This type of behavior reflects the fact that accommoda

tion and vergence are not independent processes. Vergence is altered when accommodation 

is altered, even in monocular viewing (accommodative-vergence). Likewise, accommodation 

is altered when vergence is altered (vergence-accommodation). But there is a great deal of 

evidence that vergence response generally matches vergence demand closely (i .e., fixation 

disparity is very small), while accommodative response matches accommodative demand 

less so. Hence quantitatively the influence of disparity on vergence and perhaps also on 

accommodation is stronger than that of blur[44]. The oculomotor system undergoes three 

changes as fixation distance decreases, which are collectively known as the near response. 

• Vergence: the two eyes converge on the fixation point to minimize binocular disparity. 

• Accommodation: the lens of the eye accommodates to minimize blur on the retina. 

• Constriction: the pupils transiently constrict causing increase in depth of field. 

The involvement of pupillary constriction in the near response may be due to involvement 

of the pretectal olivary nucleus/nucleus of the optic tract complex. 

The pontine and mesencephalic circuits providing the motor signals for saccades are 

themselves driven by inputs from superior colliculus and a lso receive direct cortical input 

from the Frontal Eye Field. Neurons of the intermediate layer of the most rostral portion 

of the superior colliculus discharge tonically during active visual fixation. These neurons 

project to caudal parts of the colliculus and to the dorsal raphe nucleus where they in

hibit saccade generation. Activity of neurons in the intermediate layer of caudal superior 

colliculus precede eye movements. These neurons are arranged in a map of potential eye 

movements, and focal electrical stimulation within this map evokes saccades into the move

ment fields of the stimulated neurons. Parameters of eye movements appear to be encoded 
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by the activity of populations of neurons within this map. Neurons of intermediate layers 

SlIbstantia nigra 
pars reticulata 

Figure 1.3: Anatomy of Saccadic Eye Movements 
Schematic diagram showing the main pathways governing the cortical control of saccades. 
Taken from Kandel and Schwartz 

of superior colliculus receive direct cortical input from both LIP in parietal cortex and the 

Frontal Eye Fields in frontal cortex. The inputs from LIP are thought to play an important 

role in linking visual attention with saccade behavior. Frontal Eye Fields play an impor

tant role not only in saccades but also in the control of gaze-fixation, via their projection 

onto omnipause neurons in the nucleus raphe interpositus[18]. Visual neurons in FEF re

spond vigorously to stimuli that will be targets of saccades; Movement related neurons of 

the Frontal Eye Field fire only before saccades that are relevant to the monkeys behavior; 

and visuomovement neurons of FEF discharge most before visually guided saccades. FEF 

influences superior colliculus both directly, through projections to intermediate layers, and 

indirectly through projections to caudate nucleus which results in a release of superior col

liculus from inhibition by the substantia nigra. Lesions to superior colliculus produces only 

transient damage to the saccadic system due to the presence of the direct projection from 

FEF to the brain stem. 

Oculomotor cues, such as accommodation and vergence, can be quite effective signals 

for determining distance at close ranges. Psychophysical studies have demonstrated that 

subjects are able to make accurate distance judgments in the absence of pictorial cues for 

distances of less than one meter[36]. At larger distances pictorial cues become increasingly 
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important in the judgment of distance. This may be due in part to the fact that the 

. magnitude of the accomodative power and the vergence angle declines exponentially with 

respect to distance. For example, the difference in lens power for shifting fixation from 

20cm (the approximate near point for an adult human observer) to one meter is 5 diopters. 

On the other hand, shifting fixation from 1 meter to 5 meters results in a change of only 

0.8 diopters as shown graphically in figure 1.4. 

10nr------------------------------, 38 

8 30.4 

<: 
Object 

22 .8 
" ~ 
" " " .. 
" 15.2 'Ii-
~ 

..!l 

7.6 

0 o 2 3 4 

Fixation distance (m) 

Figure 1.4: Accommodative Power and Convergence Angle as a Function of Distance 
Changes in the accommodative state of the ocular lens and the vergence angle between the 
eyes as a function of the fixation distance between the viewer and the object. The curves 
for these two functions are identical. Note that for distances greater than 1 meter there is 
little change in accommodat ion power or vergence angle. T his means that these cues will 
be of little use in determining the distance of objects greater than 1 meter away, and that, 
as proposed by Descartes, the visual system must rely on cues that are strongly dependent 
on learning and experience. Taken from [7, Evolving Brains, Allman]. 

Lesion studies have indicated that visual cortical area V 4 is important in integrating 

distance cues with retinal size information to arrive at accurate judgments of object size. 

Electrophysiological studies in visual cortical area V 4 have shown that distance cues, both 

visual and motor, modulate the size tuning curves of neurons. This is illustrated in figure 

1.5. 
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Figure 1.5: Distance Modulated Cells 
Size tuning curves of V 4 cells showing modulation with respect to distance which persists 
even when pictorial cues are removed. Figure from Representation of Three-Dimensional 
Space in Primate Visual Cortex, Richard M. J eo, Caltech Thesis 1998[43]. 
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1.2.2 Sources of Eye Position Signals in Visual Cortex 

There are two types of extra-retinal eye position signals, categorized according to their 

point of origin: those that originate from receptors in the eye muscles; and those from areas 

commanding the eye position. We will refer to the two as afferent feedback and efference 

copy respectively. Since the pathways carrying each of these types of information consist 

of overlapping recurrent networks of cortical areas and sub cortical nuclei, the question of 

where the eye position signals originate and which of these two types of information is being 

conveyed may be ill-posed. 

While the more restricted anatomical question of which areas provide a direct input 

which could carry this type of information can be addressed (and will be discussed in detail 

in the next section), the data from psychophysical approaches is much less conclusive and 

often produces conflicting results. Psychophysical experiments provide indirect evidence 

that both afferent and efferent inputs contribute to the perception of eye position. Studies 

in which eye muscles are temporarily paralysed, effectivly removing afferent feedback from 

eye muscles while leaving efference copy signals intact, support a role for efference copy 

in determining perceived position[14]. But complementary studies in which the eyes are 

not moved, eliminating efference copy, but eye muscle vibration produces false afferent 

feedback, also provide support for the role for afferent feedback into the visual system[82]. 

There is evidence that proprioceptive feedback indicating head and body orientation are 

also influential on observer's perception of visual direction[68]. 

Efference Copy from the Oculomotor Command System 

The frontal eye fields (FEF) are an important component of the cerebro-ponto-cerebellar 

pathway involved in governing voluntary eye movements, including vergence and ocular 

accommodation[28]. In addition to its connections with the pontine nuclei and its well 

known projections within frontal cortex, the FEF has projections to many posterior visual 

cortical areas, including those studied in this thesis. The FEF is broadly divided into an 

area governing small saccades (sFEF)4 and an area governing large saccades (lFEF), with 

sFEF providing a much heavier projection to posterior visual areas than IFEF. Both areas 

are topographically organized according to saccadic amplitude, and loosely maintain this 

'Small saccades are those less than 100 in amplitude, which are by far the most common, directing gaze 
to conspicuous and informative features of a scene. 
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organization in their projections to visuotopic cortical areas. In general, projections from 

lFEF terminate in areas with large and eccentric receptive fields5, whereas sFEF projections 

terminate in areas with small centrally located receptive fields. Of particular interest in our 

study are the projections from sFEF to areas V2-V 4 of the lunate sulcus and V3-V 4 along 

the medial wall of the infereior occipital sulcus. There is a bilaminar pattern of termination 

of FEF projections to most of the posterior cortical areas, much different from the columnar 

pattern, in which termination is more evenly distributed throughout all cortical layers, found 

in frontal lobe projections. Usually termination is restricted to layers 1 and 5/6 with greater 

density in layer 1 and a looser meshwork in layers 5/6. The columnar pattern was found 

most notably in area 7a/LIP, which is also the recipient of the heaviest of the posterior 

FEF projections. These two different laminar termination patterns may have their origin 

in two different populations of projection neurons within the FEF; the bilaminar pattern 

originating in FEF cells primarily in layer 5/6; the columnar pattern originating in large 

FEF cells of layer 3[77]. 

LIP 

1 
Upper STS 
(TAa.TPO) 

.. "-___ ~ Lower STS 

1 
IT 

Figure 1.6: Connections of Frontal Eye Fields 

Diagram showing anatomical connections between Parietal, Inferotemporal, and Frontal 

cortices, Diagram from [17, Bullier et al.] 

While many cells within FEF exhibit transient responses during eye movements, there 

5Such as at the mouth of the calcarine sulcus at the border of VI and V2 
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is a population of cells that display a tonic firing rate related to vergence angle and accom

modation. Cells have been identified with activity specifically linked to the near-response 

or to the far-response[2S]. Since we are measuring firing rates during a period 500-1000msec 

after the production of a saccade, the cells which exhibit a tonic response may playa role 

in the modulation found in the studies discussed in this thesis. 

While the connections from FEF to posterior visual areas provides a means by which 

commanded eye position signals could influence low level visual processing, there are also 

reciprocal connections from posterior visual areas to FEF which may be important in mod

ulating the formation of eye position commands. In particular, lateral FEF receives a major 

part of its input from the ventral part of prestriate and inferotemporal cortex (V3v, V 4, TEO) 

which probably signals feature attributes to be used for selecting the target for eye move

ments [17]. The connections between frontal , parietal, and inferotemporal cortex appear 

to be organized as a network of interrelated areas emphasizing central vision, small sac

cades, and form recognition. Psychophysical studies dating back to the work of Yarbus 

demonstrate that patterns of fixations depend both on features in the visual scene ("bot

tom up processing") and on the questions one is trying to answer from the information 

contained in the scene ( "top down processing")[S6i 49] . The common finding that eye 

movements are directed to features of faces such as eyes, nose, and mouth is likely to rely 

upon information from ventral regions involved specifically with face processing relayed to 

FEF. Eye-movement theories of optical illusions have established a relationship between 

distortion of perception and distortion of eye movements during perception[66]. Enright 

has found that accommodative vergence varies with the implied depth of the point fixated 

when viewing a painting with strong perspective cues[24]. Electrophysiological stimulation 

studies lend additional support to the notion that activity in ventral visual areas influences 

eye-movements. Stimulation of the transition area between occipital and temporal cortices 

elicits the three components of the near response, accommodation, pupillary constriction, 

and convergence [42]. The stimulation sites from which these responses were elicited corre

spond with areas found to have anatomical connections with FEF[Sl] . PET studies of the 

near response provide further evidence of cortical processes producing increases of activity 

in posterior structures (occipital, cerebellar, and temporal) and with activity decreases in 

frontal and parietal regions preceding the ciliary motor command. These studies suggest a 

dynamic and reciprocal functional connection between the accommodation and the visual 
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search/visual attention systems that share premotor circuitry[65]. 

Physiology of Dorsal Visual Cortical Areas 

Physiological experiments in dorsal cortical areas have examined in great detail the neural 

representation of visuospatial relationships, including distance and angle of gaze. Extensive 

work in parietal areas has shown that gaze angle and object depth modulates the gain of 

responses in parietal areas. The primary mechanism for gaze modulation is reported to be 

linear gain modulation of neural responses (for reviews see [10]). 

Sakata et al. [1980] recorded from area 7a of posterior parietal cortex in macaque 

monkeys that were trained to fixate on a movable screen that varied in distance from the 

monkey. They found that the neurons fired when the monkey fixated on the target and that 

for visually responsive neurons in area 7a, the magnitude of the response was related to 

fixation distance. Sixty-five percent of the depth sensitive neurons preferred closer fixation 

distances and 29% preferred farther distances. 

Representation of Distance in Primary Visual Cortex 

Distance information is represented as early as primary visual cortex and also in parietal 

cortex. Recordings from VI in awake monkeys trained to fixate on a spot on a monitor 

that could be moved to different distances have measured responses to binocular disparity 

at different viewing distances. The stimuli were scaled so that retinal dimensions were kept 

constant. The primary result was that the magnitude of these responses was modulated by , 
viewing distance for about 80% of the neurons studied. Angle of gaze is also represented 

as early as primary visual cortex[43; 84]. Although this study was performed in cats, it is 

likely that direction of gaze is represented in VI of primates. 

1.2.3 Amygdalar Inputs to Visual Cortex 

The nuclei of the amygdala play an important role in the control and modulation of behav

iors associated with emotional and visceral reactions, particularly organization of appro

priate response to threat or attack. Many of the complex series of changes accompanying 

bilateral damage to the amygdalar complex, referred to as Kluver-Bucy Syndrome, can 

most easily be explained on the assumption that the ventral visual processing stream has 
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become disconnected from the system which attaches an appropriate motivational tag to 

percepts. For example, monkeys with amygdalar lesions are insensitive to visual stimuli 

that normally arouse intense fear. Another profound effect of damage to amygdala is to 

make it difficult for reinforcing stimuli, whether positive or negative, to become established 

or recognized [83]. There is growing evidence that the role of amygdala in computing an 

affective motivational tag given a sensory input, and relaying this tag back to the sensory 

areas providing the input, contributes to the association of reward with previously neutral 

stimuli. In humans, the amygdala appears to playa general role in guiding preferences to 

visual stimuli that are normally judged to be aversive or to predict aversive consequences. 

This function may be especially critical in regard to the judgment of social stimuli such 

as faces, as evidenced by the specific deficits in the recognition of affective facial features 

relating fear , and spared recognition of identity[2; 3]. More broadly, Amaral suggests that 

amygdalo-cortical projections might have a role in modulating cortical processing based on 

the motivational or emotional state of the organism[9]. LeDoux has noted that the pro

jections from amygdala to cortex are considerably heavier than from cortex to amygdala. 

Amygdala projects to primary and secondary visual processing areas from which it does not 

receive inputs. Visual inputs to amygdala come primarily from much higher level visual ar

eas in temporal cortex such as TE and TEO. With this architecture, activation of amygdala 

by complex visual stimuli could result in feedback to early visual processing areas, altering 

the processing of subsequent stimuli[50]. 

LeDoux has also pointed out that a potential purpose for a visual input from thalamus 

to amygdala, in addition to the much more highly processed input from temporal cortex, is 

simply to provide a fast acting early warning of potential danger. We would like to add to 

this the idea that an early warning signal activating amygdala might trigger a potentiating 

input from amygdala to early visual cortical areas which would be useful in preparing 

processing in these areas for responding to danger as illustrated in figure 1.7. 
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Brain Pathways of Defense. 

Figure 1.7: Anatomy of Fear Response 

Diagram showing a scenario in which an unexpected danger is encountered, and how amyg

dala organizes a response, including sending a signal to ventral visual cortical areas. Dia

gram modified from LeDoux. 

Evidence of the capacity for signals from amygdala to potentiate or stimulate visual 

system processing comes from electrical stimulation of amygdala6 , which frequently illicit 

complex visual hallucinations. The hallucinations have been interpreted as t he result of 

neocortex attaching a significance signal to random cortical activity[31]. 

1.2.4 Neuromodulatory Inputs to Visual Cortex 

Neuromodulatory inputs to cortex consist of diffusely projecting, widespread afferents which 

use one of several monoamines as neurotransmitter7. The broad spatial domain of these 

projections and the relatively long time course of monoamine actions makes these systems 

ideally suited for a role in regulation of activities that involve large areas of neocortex, such 

6In patients with temporal lobe epilepsy 
7 Acetylcholine will be included. 
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as vigilance, attention, affective state changes, and mood. Each monoamine projection orig

inates from a separate nuclear complex at different levels of the neuraxis. The tangential 

termination patterns of these systems, in which single axons may innervate different func

tional cortical areas, differ fundamentally from the termination patterns of thalamocortical 

and corticocortical afferents. 

• NA innervation arises from the locus coeruleus. Tecto-pulvinar-extrastriate structures 

are more densely innervated than geniculostriate and inferotemporal structures. The 

preferred target of NA innervation is pyramidal cell dentrites of layers III, V, and VI. 

• 5-HT innervation arises from the dorsal and median raphe nuclei. The seroternergic 

neurons innervating primary visual cortex are separate from those that innervate 

prefrontal, motor and somatosensory areas. There are two classes of 5-HT fibers, very 

fine and larger caliber, each having its own regional and laminar preferences. These 

fibers show a strong preference for layer IV in area VI, where the innervation is among 

the densest of all neocortical areas. Relatively small diameter distal dendrites of both 

pyramidal and non-pyramidal neurons are the primary target of serotonergic input. 

• DA innervation arises from the substantia nigra/ventral tegmental area cell groups. 

There is only a very sparse projection to area VI, where it is limited to layer I; 

V2 receives slightly more innervation primarily in layers I and V /VI; a projection of 

intermediate density to temporal visual areas terminates in all layers except IV. 

• ACh innervation arises from the nucleus basalis of Meynert. There is a substantial 

innervation of VI and other primary sensory and motor areas, and a less dense inner

vation of visual association areas. In VI, layer I receives the most dense innervation 

followed by layers II and III. 

It is notable that FEF inputs to the visual areas we are recording from have the same 

laminar pattern of termination (primarily in layers I and V /VI) as the dopaminergic input. 

Amygdalar inputs also terminate primarily in layer I. The dopamenergic and amygdalar 

inputs to these areas are of particular interest in this context since they have been strongly 

implicated in positive and negative reinforcement learning respectively. 

Tonic activity of cortico-cortical inputs could have effects on post synaptic sites which 

last as long as the duration of the tonic activity. Hence this type of input could have 
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potentially long duration effects, as neuromodulatory inputs do, but have the advantage 

of being able to turn on and off rapidly, and have spatially more specific connections.8 

Although the inputs from FEF, amygdala, and DA neurons act primarily on distal dendrites 

in layer I, mechanisms such as distance-dependent scaling of synaptic strength, which are 

found in cortical pyramidal cells, can make the effect of these distal synapses as strong as 

those closer to the soma [52]. 

1.2.5 Other Potential Sources of Inputs to Visual Cortex 

Central thalamic nuclei of primate contain neurons related to vergence and ocular accom

modation that primarily carry signals related to the motor commands for vergence and 

accommodation. These nuclei have projections into visual cortical areas and hence might 

be a potential source of the extra-retinal eye position signals we observed[87]. 

Based on clinical neuropsychological studies, researchers have suggested that the hip

pocampus and medial temporal lobe structures are important for encoding what has been 

variously described as contextual, configural, spati(}-configural, or relational information. 

It has been demonstrated that implicit memory 9 for contextual visuospatial information 

facilitates perceptual processes such as visual search. The lack of such contextual cueing 

effects in amnesic patients' in the presence of intact perceptual/skill learning, suggests that 

medial temporal lobe may function to bind contextual cues in the environment[21] and pro

vide this contextual information to visual cortical areas for use in forming associations. In 

serving such a function, these areas may be important to some forms of priming (sensory 

conditioning) . 

BThe fact that equivalent changes in electrical membrane properties can be produced either by changes 
in the biophysical properties of membrane channels, or by appropriate direct electrical stimulation of the 
membrane, has been exploited in an experimental technique called dynamic clamping[73]. 

9Implicit memory is most succinctly described as memory not accessible to consciousness 



1.3 Experiments 

1.3.1 Methods 

General Methods 
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All surgical, training and neurophysiological recording procedures conformed to the National 

Institutes of Health and USDA guidelines for animal research, and were carried out under a 

protocol approved by the Caltech Institutional Animal Care and Use Committee (IACUC). 

Training and Surgery 

Two adult male macaque monkeys (one Macaca mulatta and one Macaca fascicularis) were 

used in this study. The monkeys were trained to sit in a standard monkey chair and fixate 

a small spot on the computer monitor for a juice or water reward delivered by a device 

capable of dispensing up to four different types of liquid with up to 0.01 ml accuracy (Mike 

Walsh, Caltech Biology Electronics Shop). Prior to training, a stainless steel head post 

was implanted to permit head restraint for fixation training and recording. The head post 

was fixed to the skull using orthopedic straps and bone screws (Synthes, USA) under sterile 

conditions and general anesthesia (xylazine 0.5 mg/kg, ketamine 10 mg/kg). Post operative 

analgesic drugs (buprenorphine, codine, acetaminophen) were administered for several days 

following the surgery. Fixation was monitored with a non-invasive infrared video-based 

eye tracker (ISCAN, RK-716PCI). Following fixation training, a second aseptic surgery was 

performed to implant a recording chamber (Caltech Central Engineering) over a craniotomy 

to allow controlled and sterile insertion of microelectrodes. The placement of the chamber 

was determined by cranial and vascular landmarks, and was designed to give access to 

parafoveal areas of VI, V2, and V4. The correct placement of the chamber and location 

of the lunate sulcus was verified through exploratory receptive field mapping. The location 

of the chamber limited access to those neurons whose receptive fields were predominantly 

located parafoveally in the lower left quadrant of the visual field. 
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Figure 1.8: Illustration of Brain 

Illustration of primate brain with different visual areas color coded. 

The chamber and implant margins were monitored for infection, and were cleaned daily 

with saline and dilute chlorhexidine diacetate (0.05%). The chamber was filled with in

ert sterile oil (either heavy silicon or mineral oil) during and between recording sessions. 

Sterile opthalmic antibiotic ointment (Bactracin-Neomycin-Polymixin, Gentacin or Chlo

ramphenicol) was used as necessary (for 10-14 day periods) , to inhibit bacterial growth in 

the recording chamber. 

Recording 

To record the activity of single neurons, the intact dura was penetrated with sterile glass 

insulated platinum-iridium micro electrodes (1-4 mO), using a stepping motor micro drive 

(Herb Adams, Caltech Central Engineering). The location of the penetration was set in 

polar coordinates using the chamber opening as the frame of reference (radius Omm being 

the center of the opening, and angle 0 degrees being determined by a notch on the right 

lateral side of the opening). The electrode signal was amplified by a preamplifier at the 

head stage (Mike Walsh, Cal tech Biology Electronics Shop) and then band pass filtered 

before being digitized. The analog to digital conversion was performed by a PCI-1200 

National Instruments data acquisition board in a dual processor Intel PHI Windows NT 

based machine. Acquisition software was written with Labview5.1 (National Instruments). 

Single neurons were isolated using a window discriminator with 5 parameters written in 

Labview (Yuxi Fu). Spike times were recorded to 1ms resolution. 
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Visual Stimuli 

Setup and Receptive Field Mapping 

A computer monitor (SGI Graphic Display Monitor) was mounted on a precision computer 

controlled positioning device (Industrial Devices Corp.) 87cm long. Electro-optic sensors 

marked three positions on the positioning device track which were points at which the center 

of the surface of the monitor was at 22.5cm, 45cm, and 80cm from the monkey's eyes. 

Figure 1.9: Experimental Paradigm 

Subjects were required to fixate on a spot that might appear at anyone of 27 different 

positions. The possible positions of the fixation spot consisted of three horizontal positions, 

three vertical positions and three distances. 

The monitor was used in its highest resolution mode (1280x1024 pixels) with a refresh 

rate of 75Hz. Stimuli were generated on an SGI 02 using graphics programs written in 

Python and utilizing native SGI OpenGL. Whenever applicable, antialiasing routines were 

used to reduce pixellation effects. For each subject, an extensive calibration was performed 

to determine the center of the monitor (the intersection between the line passing through 

the point midway between the eyes and perpendicular to the monitor surface). This cali

bration was repeated regularly during the time period over which these experiments were 

conducted. The monkey's chair and the positioning device were aligned so that the mo

tion of the monitor was perpendicular to the plane passing through the monkey's eyes and 

perpendicular to the ground. 
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The subjects viewed the monitor through an aperture constructed from a matte black 

material placed approximately 8cm from the eyes. The aperture masked off all of the visual 

environment except the center of the monitor screen, even at the farthest distance. This 

was verified before the start of an experiment in two ways: using rigid rods to determine the 

line of sight, and by testing the limits of the subjects field of view behaviorally by having 

the monkeys fixate targets at different locations on the screen. 

Stimulus onset and offset events were synchronized to the data collection using a trigger 

spot appearing briefly at the leftmost edge of the monitor during the onset and offset image 

frames. This spot was detected by a small photodiode affixed to the leftmost edge of the 

monitor, and this trigger signal was sent as an analog signal to the data acquisition board. 

The rising edge of this signal was used as the stimulus event onset time. The trigger spot 

was not visible to the subject as it was masked by the aperture. 

When a single neuron was isolated, the optimal receptive field characteristics were esti

mated by hand at one or two viewing positions (usually the central position at 80cm and/or 

45cm) using bar stimuli. The location, size, aspect ratio, orientation, brightness, speed, and 

direction of motion of the bar were adjusted so as to produce the maximal response from 

the isolated neuron. During the experiment, the bar stimulus to the receptive field was 

presented statically (flash on- flash off) so that the temporal characteristics of the neural 

responses could be more easily assessed. 

Experimental Paradigm 

A single successful experimental trial consisted of the following events: fixation spot goes on; 

subject acquires fixation within 50 msec and maintains fixation for 500 msec; bar stimulus 

comes on in the receptive field and stays on for 1500-2000 msec; bar stimulus goes off; 

fixation spot goes off. If, after acquiring fixation, the subject maintains fixation until the 

fixation spot goes off, then he is given a juice or water reward. If, at any point after 

acquiring fixation and before the fixation spot goes off, the subject breaks fixation, then 

the trial is immediately aborted, the screen is blanked, and there is a short pause interval 

before the beginning of the next trial. 
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Fixation Stimulus Presentation 
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500 msec 2 sec 

Figure 1.10: Trial Structure 

Responses during fixation only and during stimulus presentation over the receptive field of 

the neuron were measured each trial, and mean spike rate for both portions of the trial were 

calculated. The monkey was required to maintain fixation throughout the duration of the 

entire trial. 

Before each trial an experimental condition is selected at random from the set of 27 

possible (h , v, d) triplets. Each experimental condition is repeated 10 times (in random 

order), so that there are a total of 270 trials per experiment. The posit ioning device is t hen 

commanded to move t he monitor to the position determined by the value of d selected for 

this trial. Sizes of stimulus elements and distances between stimulus elements are scaled 

with distance using the subject's center of monitor is the origin. This is done so that the 

visual stimulus falling on the retina is constant throughout the experiment, regardless of 

experimental condition. 

1.3.2 D ata A nalysis 

A rea Classifica t ion 

Cells were assigned to a visual cortical area based on receptive field position, size, and prop

erties, and position relative to the lunate sulcus. In the absence of histological classification, 
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we combine VI and V2 for quantitative analysis. 

Tests for modulation 

It is well known in the literature on cortical physiology that there is a linear relationship 

between the mean firing rates and variance in the firing rates among cortical cells, and we 

found that this observation holds true for our data set, both taken as whole or as individual 

cells. This type of correlation between mean firing rate and variance in the firing rates 

violates the equality of variances (or homoscedasticity) assumption of the standard anova 

model [76] which is typically used to determine if the difference in mean firing rates under 

different experimental treatments are statistically significant. 

There are at least two ways to perform statistical significance tests in this situation. 

The standard treatment of data in which means and variances are positively correlated is to 

logarithmically transform the data before performing an ANOVA test. Another possibility, 

is not to assume anything about the distributions and perform a non-parametric test such 

as the Kruskall-Wallis Rank Sum test. Both these analysis techniques were applied and the 

two analyses were in such close agreement that we will only quote the results of the more 

standard log transform anova analysis. Three-way ANOVAs were performed on both the 

log transformed data from the stimulation period and the log transformed data from the 

fixation period to determine if there were significant modulations of the mean firing rate 

with respect to each of the experimental variables H,V, and D or any combination of them. 

In all tests of significance a p-value of 0.01 was used as criterion threshold. 

Fractional Gain 

The magnitude of modulation of the mean response with respect to each of three dimensions 

was quantified by calculating the fractional gain between the highest and the lowest mean 

response values. We will denote the mean firing rate for the 10 repetitions of experimental 

condition (h, v, d) by MCh,v,d) , which is calculated by dividing the spike count by the stimulus 

duration. The mean spike rate was also calculated for the fixation only period. Using this 

notation, we define the maximum and minimum mean firing rates with respect to each of 

the three experimental variables as follows: 



Mmax(v, d) == max(M(h v d») 
h ' , 

Mmax(h, d) == m:x(M(h,v,d») 

Mmax(h, v) == max(M(h v d») 
d ' , 
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Mmin(V, d) == min(M(h v d») 
h ' , 

Mmin(h, d) == min(M(h v d») 
v ' , 

Mmin(h, v) == min(M(h v d») 
d ' , 

The definition of the fractional gain values can now be formulated as follows: 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

Each of these functions for fractional gain gives 9 fractional gain values since there are 

three possible values for each of their two arguments. These 9 values can be summarized 

as a single value, the mean: 

FGh == E [FGh(v,d)] 
(v,d) 

FGv == E [FGv(h, d)] 
(h,d) 

FGd == E [FGd(h,v)] 
(h ,v) 

(1.7) 

(1.8) 

(1.9) 

The lowest possible fractional gain value is 0.0 which indicates that the mean response 

rate was unaffected by a change in the dimension in question. The highest possible value of 

1.0 indicates that responses were absent for at least one value of the dimension in question. 

Modulation Index 

For each of the dimensions H, V, and D cells were classified into three categories . 

• H 

- Leftness: monotonically decreasing with respect to h 



32 

- Non-monotonic: non-monotonic with respect to h 

- Rightness: monotonically increasing with respect to h 

• V 

- Downness: monotonically decreasing with respect to v 

- Non-monotonic: non-monotonic with respect to v 

- Upness: monotonically increasing with respect to v 

• D 

- Nearness: monotonically decreasing with respect to d 

- Non-monotonic: non-monotonic with respect to d 

- Farness: monotonically increasing with respect to d 

A modulation index for each the dimensions H ,V, and D was calculated as follows: 

where 

M odv == FGv x Classv where 

where 

1 if cell is a Rightness cell, 

Classh == 0 if cell is a Non-monotonic cell, 

-1 if cell is a Leftness cell. 

1 

Classv == 0 

if cell is a U pness cell, 

if cell is a Non-monotonic cell, 

-1 if cell is a Downness cell. 

1 if cell is a Farness cell, 

Classd == 0 if cell is a Non-monotonic cell, 

-1 if cell is a Nearness cell. 
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1.4 Results 

These experiments were designed to examine the effect of point of regard on neural re

sponses as measured by mean firing rate of the neuron during both the fixation only period 

(symbolized FO) and the stimulus presentation period (symbolized S). A total of 88 cells 

(41 in VI and 47 in V4) were recorded from in two monkeys, while they performed a fix

ation task. These visual areas belong to early and intermediate stages of visual cortical 

processing along the ventral pathway. We found that 85% of the cells recorded from had 

a statistically significant amount of modulation with respect to at least one of the exper

imental variables H,V, or D. Figure 1.11 and figure 1.14 show examples of the type of 

modulation encountered. 
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Figure 1.12: Raster Representation of Example Cell 
This V 4 cell shows a nearness preference and at the far distance a horizontal preference for 
direction to the right. 
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1.4.1 Demographics of Modulation Effects 

Each cell in our sample population was tested for modulation with respect to H,V,D and all 

possible interactions between these variables using a MAN OVA analysis. The percentage 

of the population having each of these different types of modulation is shown in figure 1.15 

below. The distribution of the different types of modulation varies significantly both with 

respect to visual cortical area (Vl /V4) and with respect to trial period (FO/S). 

In all cases the largest population of cells were those modulated with respect to dis

tance. lO In all cases there were few cells which were modulated with respect to both Hand 

V.11 The distribution of the different types of modulation has a strikingly similar shape 

for the fixation only period and the stimulation period within each area. The similarity 

in the shapes of the distributions during these two trial periods is evidence that similar 

modulatory mechanisms are operating during the fixation only period and during the stim

ulation period, and that part of the modulation found in the stimulation period may be 

accounted for by modulation already present during the fixation only period12 The amount 

of modulation during the stimulation period is larger than that found during the fixation 

period in both VI and V 4. 

There are some notable differences between the distribution for area VI and the dis

tribution for area V4. In VI there is a paucity of modulation with respect to V, a result 

which confirms earlier findings[79J, while in V 4 the amount of modulation with respect to 

V is comparable to the amount of modulation with respect to H13. 

The modulation of each cell can be classified according to whether the mean firing 

rate is monotonically increasing, monotonically decreasing, or neither, with respect to the 

experimental variables. The measures (Classh, Classv, Classd) used for this purpose are 

described formally in the section on data analysis. The distribution of these different classes 

10 An analysis of the values of the fractional gains revealed that, although the average magnitude of modu
lation with respect to D was marginally larger than those with respect to the other dimensions (statistically 
significant), the slightness of this difference leads us to believe that it is the more widespread distribution 
of this type of modulation, rather than its greater strength, which accounts for its greater representation in 
the population. 

11 This may be indicative of an independence of the sources of the signals producing the H and V modula
tions. Likewise the coupling between the Hand D modulations found in Vl may be indicative of a common 
source for the modulation with respect to these two parameters. 

12This will be discussed in greater detail below. 
13This may be an indication that information regarding V is not available to Vl and only enters the visual 

processing stream at the later stage of V 4. This is further evidence of the independence of the sources of 
information regarding Hand V. 
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Figure 1.15: Three Way MAN OVA 
Summary results of three way MAN OVA analysis for fixation only and stimulation periods. 
Percentage of cells that had significant (p < .01) modulation with respect to H,V,D, or 
some combination of these experimental variables. Results for Vl/V2 and V4 are shown 
separately. 
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of modulation with respect to visual cort ical area is shown in figure 1.16 below. 

In VI approximately! of the cells are monotone increasing, ! are monotone decreasing, 

and! are non-monotone14 . In V4, however, there is substantially larger proportion of 

nearness cells and a substantially smaller proportion of farness cells than are found in VI. 

Since each cell is assigned three classifications, one for each experimental variable, these 

measures permit an examination of the size of the intersections of the different classes. The 

most notable observation to come out of this analysis is the very small percentage of cells 

classified as both far and down compared with the other (d, v) categories . The implications 

of this observation are discussed in later sections. 

40% 

!!1 30% Cii 
U 
'0 
CD 
OJ 20% .s 
c 
CD 
~ 
CD 

CL 10% 

0% 

Among cells classified as near/far and up/down 
Percentage belonging to combinations of classes 

near down near up far down far up 

Figure 1.17: Distribution of (d,v) Classes 

Percentage of population devoted to the conj unction of (d, v) classes consisting of near-down, 

near-up, far-down, and far-up. 

1.4.2 Strength of Modulation 

The degree to which a cell is modulated with respect to each of the experimental variables 

can be quantified using the fractional gain measures (M Odh' Modv , M Odd) described in the 

section on Data Analysis. T hese measures tell us on average the maximum amount by which 

14The non-monotone half of the population is divided into :l: concave and t convex, so tha t roughly ~ of 
the populat ion falls into each of the four categories. Since we will not further discuss the concave/convex 
distinction, we have lumped them into a single non-monotone category. 
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the mean firing rate can change with respect to the experimental variable, normalized by 

the excitability of the cell. The graph below shows the distribution of modulation indices 

found in our population, which is roughly normal with a mean of 0.4. 

8% 

0.0 Q1 02 0.3 M 0.5 DB Q7 DB Q9 1~ 

Modulation Index 

(mfr max - mfr min) 
mtcmax 

Figure 1.18: Histogram Showing Distribution of Modulation Indices for All Cells. 

When separated out by modulation with respect to H,v, and D, fixation only modu

lation and stimulation modulation, and cortical area VI and V 4 the distributions were not 

significantly different from each other with the exception that modulation with respect to 

D was very slightly though significantly larger on average. 

The analysis also revealed that there were significant correlations between the mod

ulation indices (M odh, M odv , M Odd) both during the fixation only and the stimulation 

period. The correlation was strongest between (M Odh, M odv , M Odd) during fixation only, 

and weakest between (Modh , Modv,Modd) for fixation only and (Modh, Modv , Modd ) for 

stimulation. 

1.4.3 Modulation in the Absence of Receptive Field Stimulation 

Typically, in parietal visual areas where eye position modulation has been found, fixa

tion activity also varies with gaze and appears primarily to convey information about eye 

position.[70] A similar modulation of fixation activity was found in VI, V2, and V4 [23]. 

In those experiments 47 percent of VI cells and 51 percent of V4 cells showed significant 
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Figure 1.19: Left: scatter plot of modulation indices during stimulation period with cor
relation coefficients; Center: scatter plot of modulation indices during fixation only period 
with correlation coefficients; Right: scatter plot of modulation indices during both fixation 
and stimulation periods. 



80% 

C/) 

Q) 60% 
u 

""0 
Q) 

~ 
:::s 40% 

""0 o 
E 

20% 

0% 

80% 

C/) 

Q) 60% 
u 

""0 
Q) ...... 
ctl 
:::s 40% 

""0 
0 
E 

20% 

0% 

h v d 

h v d 

44 

V1N2 

hv hd vd 

V4 

hv hd vd 

_ FO _s 
c:=:::J S - FO 
_ S/FO 

hvd 

- FO - S 
c:=:::J S - FO - S/FO 

hvd 

Figure 1.20: Three way manova: F ixation Only modulation factored out 
Summary results of three way ANOVA analysis for fixation only period (FO), stimulation 
period (S), stimulation minus fixation (S - FO), and stimulation divided by fixation (SjFO). 
Percentage of cells that had significant (p < .01) modulation with respect to H,V,D, or 
some combination of these experimental variables. Results for Vl j V2 and V4 are shown 
separately. 
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fixation only response modulation with respect to distance. In our experiments 40 percent 

of cells exhibited significant modulation during the fixation only period, corresponding to 

half of those which showed modulation during the stimulation period. Since the modula

tion effects for these two periods were not independent, we analysed the data to test for 

modulation effects remaining after factoring out fixation firing rate. Manova analysis was 

performed on data with fixation firing rate subtracted from stimulation firing rate, and for 

data with fixation firing rate divided out. The results are shown in figure 1.20. When fixa

tion firing rate is factored out, by either subtraction or division, about half of the neurons 

still show significant modulation. This indicates that these results can only be partially 

explained by simple additive or multiplicative models of gain modulation by eye position. 

1.4.4 Summary 

While these experiments do not directly address the question of where the modulatory 

signals originate, the presence of modulation during the fixation only period strongly sug

gests that the modulatory signals are related to eye position. Tracing experiments have 

demonstrated an input to V2 and V 4 from the small saccade part of frontal eye fields 

(sFEF)[77; 17]. The frontal eye fields (FEF) are an important component of the cerebro

pontoccerebellar pathway involved in governing voluntary eye movements, including ver

gence and ocular accommodation[28]. There is a population of cells in FEF that display 

a tonic firing rate related to vergence angle and accommodation[28]. Stimulation of FEF 

and of V4 produce vergence and accommodation [42]. Thus the modulation seen in V2 

and V 4 may arise from efference copies of commands arising in the frontal eye fields. The 

modulation seen in VI may result from indirect relay from from frontal eye fields via V2. 

The lack of cells showing modulation with respect to both H and V may be indicative 

of an independence of the sources of the signals producing the H and V modulations. The 

difference between VI and V 4 in the number of cells showing modulation with respect 

to V may be an indication that information regarding V is not available to VI and only 

enters the visual processing stream at the later stage of V 4. This is further evidence of the 

independence of the sources of information regarding Hand V. In contrast the coupling 

between the Hand D modulations found in VI may be indicative of a common source 

for the modulation with respect to these two parameters. This signal may be of the type 

hypothesized by Hering[38], that there are separate premotor conjugate and vergence eye 
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movement command. 

Our results may contribute to a better understanding of the functional differences be

tween the ventral and dorsal pathways in the visual cortex of primates. A basic distinction 

in these pathways is between the ventral specialization for object identity and the dorsal 

specialization for manipulation of objects in visual space [34; 58]. This distinction probably 

arouse in the evolution of the extra striate visual areas because the more ventral path pro

ceeds from the foveal visual field representation in VI , whereas the dorsal path lies adjacent 

to the lower visual field representation where the hands are located during the manipu

lation of objects [57; 63]. Location in visual space is crucial for the performance of both 

ventral and dorsal functions but in different ways. For example in V 4, a main component of 

the ventral path, object distance probably contributes to the mechanism of size constancy 

[23] , which is crucial in discriminating object identity. The ability to accurately judge the 

size of objects at a distance requires gradual learning of the relationship between retinal 

size, object distance, and object size during early childhood [7; 75; 4]. Lesion experiments 

producing deficits on size constancy tasks indicate that this learning may occur in V 4 and 

its upstream target IT [40; 80]. Such learned associations between eye position signals and 

sensori-motor contexts would have significant adaptive value. 

The presence of a modulatory eye position signals in visual cortex prior to visual stim

ulation makes it possible for them to function as conditioning stimuli. Retinal stimulus 

characteristics (US) produce sensory responses in visual cortical neurons (UR). Learning 

resulting from repeated pairing of eye position signals (CS) with retinal stimulus characteris

tics (US) would tend to result in the eye position signal potentiating those neurons sensitive 

to the stimulus characteristics (CR), prior to stimulus presentation [5] , thus preparing vi

sual processing for the expected stimulus. A functional linkage between point of regard 

(CR) and the responses of visual cortical neurons (UR) learned in this way could result 

in perceptual learning of systematic relationships between point of regard and statistical 

characteristics of the visual environment. While there are circumstances in which strong 

correspondences exist between eye position and stimulus characteristics, and in these cir

cumstances the visual system is capable of adapting to the eye position signal alone [47], 

in natural behavior it is more likely that eye position signals are but one of an array of 

extra-retinal signals that, when taken together , are very informative about the current sen

sory and behavioral demands, and strongly predictive of future sensory inputs. This array 
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probably includes eye position related signals relayed from frontal eye fields, fear related 

signals from amygdala, and reward related dopaminergic signals which serve a critical role 

in learning [39; 3; 9; 5]. All three of these extra-retinal signals converge on layer 1 of V2 

and V 4 and the frontal eye field and dopaminergic inputs also converge on layers 5 and 6 

of V2 and V4. 

Devices for human use as simple as rear view mirrors or bifocals, and as complex as 

a virtual cockpit explicitly based on a " what-you-see-depends-on-where-you-Iook concept," 

create correspondences between ppint of regard and distinctive information sources, and 

may be implicitly exploiting the natural talent humans have at learning such associations. 

1.5 Discussion 

1.5.1 Adaptation to Visual Context Through 

Specialization of Visual Processing 

It has been suggested that specialists live in an effectively simpler world, and that the 

simplification permits faster and more accurate information processing and consequently 

higher behavioral efficiency[12]. There are many different types of context which provide 

hints for animals that they are operating within a simplified environment to which they 

can adapt by specializing. These contexts can be broadly categorized as ecological context, 

motivational context (drives, reward/punishment schedule), and task context (recognition 

vs. discrimination). 

The adaptive value of specialized abilities has been studied for the task of finding and 

selecting foods. In insects, specialists are better and faster decision makers than generalists, 

which translates into higher quality diets and higher offspring survival. In primates it has 

been shown that quality of diet is a good predictor of lifespan and reproductive success. 

Skill in specialized visuomotor behaviors related to foraging, some of which depend heavily 

upon subtle visual discriminations (of color for instance) , would ultimately have a signifi

cant impact on quality of diet. The location of objects in the visual field provides important 

clues about their identity. Object distance together with its retinal subtense reveals the size 

of an animal and whether it is a possible food item or a potential predator. Some threat

ening animals, like raptors, tend to be located in the upper visual field while others, like 

snakes, tend to creep in the lower visual field. The experience with their probable location 
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Figure 1.21: Eye Position Information and Visual Foraging 
Drawing at left from[63, Previc]. Graphs at right showing the value of different food sources. 
Taken from [8, Altmann] 

will facilitate their identification and speed the initiation of life-saving protective responses 

as illustrated in figure 1.22. Similarly, different types of food sources tend to be located in 

different parts of visual space, and this knowledge will facilitate efficient foraging[8]. Dis

tance, in particular, may be a particularly strong cue for distinguishing between important 

classes of visual task and motivational contexts, such as between reaching distance (periper

sonal) and walking distance (extra-personal) arenas. There is clinical evidence of cortical 

specialization along these lines[35]. 

In humans, there are a variety of different low level visual system adaptations specific 

to specialized visual tasks (ex.reading [64; 74; 30], driving a car [49]) which are able to 

coexist in visual cortex. Psychophysical studies of perception during reading reveal low 

level visual system specializations producing higher acuity for information presented to the 

right of the fixation point (in those that read from left to right)[64], contributing to the more 

efficient processing to written information. Other studies indicate that the minimum retinal 

size of legible letters is linked to distance cues such as the vergence angle[74]. Kohler's 

prism experiments also revealed interesting stimulus class specific or task specific types 

of adaptation. In inversion goggle experiments, subjects note that, after an adaptation 

period, "writing appears in the right place in the visual field and at first sight looks like 
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Figure 1.22: Warning Calls of Vervet Monkeys Correlated with Height in the Visual Field 
Vervet monkeys have been shown to have different warning calls in response to danger from 
raptors and for snakes. The calls are illustrated with spectrograms. The protective value of 
these calls for the group comes from evoking joint attention to the danger. The correlation 
between the danger, the call, and the direction in the visual field is very important to this 
behavior. 

normal writing, except that when one attempts to read, it is seen as inverted." [33, p206] 

In left-right reversal goggle experiments, subjects sometimes perceived that "a scene would 

come to look correct except that writing remained 'mirror-writing'." [33, p209] It would 

be interesting to determine if conversely it would be possible to adapt the visual system 

only in the reading task situation, without this adaptation influencing perception in other 

behavioral contexts (double dissociation of adaptation). Some subjects noted other shuffled 

or paradoxical perceptions which might be indicative of other types of specialized visual 

processing, for example "pedestrians were sometimes seen on the correct side of the street, 

when the images were right-left reversed, though their clothes were seen as the wrong way 

round!" [33, p209] The experiments of Ahissar and coworkers have found more generally 

that perceptual learning is specific to the stimuli used for training, and that the degree of 

specificity depends on the difficulty of the training conditions. "As task difficulty increases, 

learning becomes more specific with respect to both orientation and position, matching 
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the fine spatial retinotopy exhibited by lower areas. Consequently, we enjoy the benefits of 

learning generalization when possible, and of fine grain but specific training when necessary." 

[6] 

Among the factors influencing the processing of visual information, the distribution 

of masking and attention over the visual field have been proposed important factors that 

become matched to the nature of perceptual and motor task being performed so as to 

amplify the information relevant to the task. "The events leading to visual awareness 

include a substantial editing process that de-emphasizes irrelevant information and adds 

interpretations and inferences about the meaning of the targeted information ... this editing 

of visual signals begins in relatively early stages of processing in the cerebral cortex. What 

the observer is trying to see and what that observer knows about the visual scene have 

considerable impact on what is represented in the visual cortex. ..the cortex creates an 

edited representation of the visual world that is dynamically modified to suit the immediate 

goals of the viewer." [56] What is relevant to the task emerges from practice, and masking 

patterns develop in parallel with motor skill during the performance of a task [30]. In 

the task of reading, psychophysical evidence suggests that active lateral masking in the 

periphery effectively degrades background information into textural information, making 

it possible to process fine spatial detail at the center of vision without interference. This 

pattern of masking, learned early in life, is an important component of normal reading 

ability. Geiger et al. also suggest changing the distribution of masking over the visual field 

is but one of a lexicon of learned visual strategies, which are discrete (they do not shade 

into each other), and which one can switch between as appropriate for the task at hand. 

1.5.2 Preparation in Sensori-motor Pathways 

Adaptation of the visual systems of organisms to their environment occurs on many dif

ferent time scales. On evolutionary time scales, the visual system of a species is adapted 

to suit the unchanging features of the environment in which they evolved. The spectral 

sensitivity of photoreceptor pigments of the retina and the shape and refractive index of the 

material forming the lens of the eye are good examples of such evolutionary adaptations[51]. 

There are many features of the environment which are not stable enough over time or con

sistent enough over the environment of the species to permit adaptation at the species level, 

but are stable enough over the lifetime of an individual to permit adaptation at the indi-
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vidual level. Correspondingly, many species have the capacity during early development 

to learn general characteristics of their individual visual environment through alteration of 

anatomical connectivity during critical periods, or specific components of their environment 

through imprinting. The information acquired during these formative periods frequently 

remain stable throughout the lifetime of the individual. Years of training and gradual im

provement during development are needed to acquire information about the highly complex 

but consistent correlations in the visual environment needed to perform specialized visual 

skillsl5, such as face recognition and reading at mature performance levels[7; 75; 4). On the 

time scale of months and weeks, prism experiments have demonstrated the flexibility of the 

visual system in adapting to dramatic distortions in the visual world[47). Developmental 

changes, disease, trauma, fatigue, neuromuscular attrition, and environmental factors such 

as refractive correction, require a mechanism for continual recalibration and adaptation 

of the visual system on this time scale 16 [59; 46). The same mechanisms which may have 

evolved for this purpose could be exploited for the development oftask specific visual system 

specializations. Even relatively' brief exposure to distinctive sensory and behavioral contexts 

during practice of novel visual tasks results in psychophysically measurable improvements 

in performance, phenomena termed perceptual learning and priming[6; 45; 21). 

Preparatory activities which exploit the correlation between regularities in the visual 

environment and distinctive behavioral contexts result in faster reaction times, and more 

accurate or appropriate responses. Along the pathway from visual input to motor output 

there are many stages at which preparatory changes can influence visuo-motor behaviors. 

The term preparatory set, originally used to describe the pattern of activity found in pri

mary motor cortex that reflected an animal's preparation to respond to a later stimulus[25)' 

can be usefully applied throughout the sensori-motor pathway. On the sensory end, prim

ing can be considered as an example of preparation in the sensory systems for expected 

incoming inputs. In visual cortical neurons, it is often difficult to separate the sensory 

response of a neuron attributable to the physical properties of the stimulus from memory 

responses resulting from the associative activation of the neuron as a member of an assem-

"By specialized we mean that these skills involve very narrow ensembles of images. Behaviorally they 
typically require discrimination of subtle visual features. 

16 Also relavent in this context is compensation in the nervous system, which entails the reassignment 
of functions in response to a change in the neural input or other signals caused by damage. The work of 
Mersnich, Ramachandran, and others illuminates the phenomena and the mechanisms behind reorganization 
of sensory maps in response to injury or sensory deprivation. 
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bly that encodes, by virtue of prior history, the experience to which the stimulus belongs17 . 

This electrophysiological difficulty may be the source of the inseparability of memory from 

perception using behavioral or psychophysical techniques[27]. Perceptual memory and the 

process of perception are particularly closely tied when the memory recalled consists of 

values of physiological parameters that influence sensory processing, and when the recall of 

these parameters results in a change in physiological processing of information. 

Small alterations in the processing at multiple stages along the sensori-motor path

way could potentially result in a cumulatively large alteration in the overall sensori-motor 

transformation. This would be a particularly useful strategy to use in systems where each 

particular stage has limited capacity to change18 . Psychophysical experiments on perceptual 

learning phenomena suggest that learning most likely does occur at multiple levels of the 

visual system simultaneously, the strength of the learning in different areas being strongly 

dependent on the specific demands of the task. Evidence that alteration of sensori-motor 

transformations involves adaptation in multiple areas along the sensori-motor pathway dates 

as far back as the first inverted prism experiments of Stratton in the late 19th century. Strat

ton noted that he fairly quickly learned to overcome difficulties of performance while at that 

stage continuing to experience the scene as inverted. At a later stage the perception of the 

visual scene was upright. This observation, which has since been verified by many authors, 

highlights both the distinction between motor learning and perceptual adaptation, and the 

fact that both are components of sensori-motor a;Iaptation[67]. 

The sensori-motor pathway is part of feedback loop which is closed through interaction 

with the environment: the motor system produces actions of the organism on its environ

ment; actions on the environment change incoming sensory signals; the new sensory signals 

can lead to alteration of motor activity. Since the motor areas are the parts of the feedback 

loop closest to the sensory areas while still internal to the organism, the activity of areas on 

the motor output side of the sensori-motor pathway may be a particularly good source of 

preparatory cues to the areas closer to the sensory side. Von Holst and Mittelstaedt postu

lated a functional role for efference copy of motor commands such as these, in distinguishing 

17 "Strong recurrent synaptic connections in a neural network tend to produce stereotyped responses be
cause population activity is primarily controlled by recurrent connections that do not depend on the stimulus. 
In such a network, the afferent, stimulus-dependent inputs serve to choose between a number of possible 
stereotyped responses." [71] Modulatory signals, including eye position signals, may also function to switch 
between stereotyped responses. 

l8The capacity of the visual system to adapt does degrade with age. Particularly striking are t he differences 
in the plasticity before and after a cri tical period. 
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exafference (changes in sensory signals due to changes in the environment) from reafference 

(changes in sensory signals due to changes initiated by the organism). This function might 

be accomplished by formulating expectations of upcoming sensory events based on efference 

copy signals, and comparing these expectations directly with actual sensory data. While the 

types of expected sensory events envisioned by Von Holst and Mittelstaedt are those which 

are causally linked to motor commands, this idea can be extended to include expectation of 

sensory events which, while they have no direct causal relationship with the efference copy 

command, are nonetheless be correlated with the efference copy command. 

Perceptual Learning 

The presence of a modulatory eye position signals in visual cortex prior to visual stimula

tion makes them good candidates for conditioned stimuli in classical conditioning. When 

a sensory signal (the US), which produces an unconditional response in a given neuron 

(the UR), is consistently preceded by increased activity of a second neuron (the OS), the 

responses of the two neurons become increasingly correlated (OR). This increase in correla

tion represents the strengthening of the "functional connection" between the two neurons, 

and follows the Hebb-Stent Law[5]. 19 Likewise, we would expect the activation of a neu

ron by eye position signals during the fixation only period (OS), preceding the reception of 

retinal stimulation (US), would result in an increased correlation between this neuron and 

the neurons subsequently stimulated by the retinal input (OR/ UR). After repeated pairing 

of eye position signals and visual stimulus, one would expect the eye position signal alone 

to potentiate the response of neurons sensitive to the expected visual stimulus (UR), prior 

to the presentation of the visual stimulus. 

The idea of sensory conditioning has a long history dating back to the turn of the century. 

"A particular response tendency of a neuron can be referred to as a perceptual hypothesis 

... Such an hypothesis may be set into operation by a need, by the requirements of learning 

a task, or by any internally or externally imposed demands on the organism. If a given 

perceptual hypothesis is rewarded ... it will become fixated; and the experimental literat ure 

... indicates that the fixation of "sensory conditioning" is very resistant to extinction." 

19Modifications were weaker when the stimuli that evoked the response carried no behavioral relevance. 
They concluded that the mechanisms of learning that underlie neuronal plasticity in the cortex of adult 
monkeys obey the essential features of both the Hebb-Stent Law and Thorndike's Law of Effect. 
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[15].20 

Ivo Kohler, in his prism experiments during the 1960's, demonstrated the striking degree 

of flexibility the visual system has in adapting to distortions of the visual world. In the 

phenomena which he called situational aftereffect or conditioned aftereffect," a new 

perception is conditioned to the eye position stimulus. Thus, with prisms on, different retinal 

images ultimately come to signify the same phenomenal impression, depending upon eye 

position."[67, p204] In these experiments, " ... there is a small distance between the eye and 

the prism. As a result the eye can, and frequently does, move with respect to the glasses ... If 

one analyzes the geometry of the rays striking the retina, one finds that the adaptation 

problem is much more severe than if the prism and eye could be held in rigid relationship 

.. . In fact , the distortion changes with every change in the angle that the axis of the eye 

makes in relation to the prism." [47, p433] 

1.5.3 Code Switching 

All of the adaptations referred to above are long lasting, and can be used effectively when 

the appropriate situation arises, even after long periods when they are unused. For example, 

in Kohler's goggle experiments, upon re-testing the subjects eight months later, they found 

that when the lenses were worn, the subject immediately showed the various modifications to 

behavior which had previously developed while wearing the spectacles. "It thus seemed that 

the learning consisted of a series of specific adaptations overlying the original perception, 

rather than a reorganization of the entire perceptual system." [33, p208] 

The intermittent use of specialized adaptations of the visual system in behavioral or sen

sory contexts which arise discontinuously in the environment, requires a simple means by 

which special contexts can be recognized, and a means by which the appropriate specialized 

visual adaptations can be invoked. The learning and maintenance of multiple, specialized 

adaptations also requires a way of preventing catastrophic interference between the adapta

tions to distinct contexts, which otherwise might result in information acquired about one 

context overwriting previously acquired information about a different context[22]. 

There are two sorts of computational advantages of acquiring multiple specialized adap

tations and switching between them as necessary. The first is more efficient use of expensive 

20We will retain this view of a response tendency of a neuron as a perceptual hypothesis in the theoretical 
analysis since the terminology and concept map easily onto the concept of hypothesis in computational 
learning theory. 
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neural real-estate through time-sharing. When there are limitations on representational re

sources available for coding, extending the range and efficiency of representation, through 

the reuse representational elements for different purposes in different contexts, gives context 

sensitive languages great computational power21 . The second advantage is improvement in 

behavioral performance. Dividing large problem domains into simple sub domains, and 

adapting to the different sub domains separately, permits faster convergence to more ef

ficient processing behavior. As long as they are available inexpensively, hints providing 

information about the domain to which incoming information belongs can be exploited to 

increase coding efficiency by better matching coding characteristics to the characteristics of 

the information source. 

The extent to which the visual system would be capable of switching operating modes 

to suit the needs of the current context depends in part on constraints regarding the cost of 

switching modes, the number of different modes that can be accommodated, and constraints 

on learning new contexts, all of which will be discussed in the section on theory. 

A voiding Catastrophic Interference 

One solution to the problem of catastrophic interference is anatomical parcellation22 where 

different types of stimuli are processed in physically separate cortical areas. The clinical 

evidence that damage to a localized visual cortical area can produce specific visual deficits, 

prosopagnosia being the best known example, provides evidence that such a strategy might 

be employed. More recent evidence, however, suggests that face responsive regions of visual 

cortex are used in many different types of tasks requiring visual expertise [37; 29]. The 

anatomical parcellation idea, when taken to the extreme, results in the grandmother cell 

problem. If the cortex needs a different area for the processing of each of the special 

environmental contexts which might arise, then there will be a combinatorial explosion in 

the number of areas needed. Hence anatomical parcellation is a very costly solution in 

terms of the amount of hardware needed, and cortex is metabolically very costly hardware 

indeed. Furthermore, psychophysical and electrophysiological evidence suggests that at 

least some components of context specific perceptual learning occur at very early stages of 

visual processing where the funnel for visual information is spatially narrow, and there is 

21 Since neurons are scarce in comparison with synapses, one way in which the same neurons might perform 
different functions in different contexts is by activating different sets of synapses in different contexts. 

22 Anatomical parcellation might more accurately be called spatial multiplexing. 
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little room for anatomical parcellation. 

An alternative to the anatomical parcellation solution to preventing catastrophic inter

ference is to use physiological parcellation 23. In this strategy the same area or elements 

are used for different purposes at different times. There are many well known examples in 

neuroscience of systems in which neuro-modulatory signals result in switching of behavior 

in multifunctional neural circuits. The changes in both integrative processing of sensory 

signals and of ongoing motor output in response to modulatory signals 24 has been best 

illustrated and understood in lobster stomatogastric ganglion[54] . Such modulation of neu

ral processing in response to signals indicating behavioral context may occur in the visual 

system as well. 

While the goal of dividing the world into behaviorally distinct contexts provides clues 

as to how the world might be partitioned by a given species for use in code switching, 

conversely, the way in which an organism divides up the environment into distinct contexts 

may have an important impact on behavior. Acquiring information about a specific context 

has a cost, and to fully exploit this information behavior must be geared towards using 

existing learned contexts, rather than continually learning a new context for each new 

case[ll]. One way of avoiding catastrophic interference is by restricting behavior so that 

situations always cleanly fall into one of the existing contexts, effectivly behaviorally filtering 

out situations which might fall into grey areas between contexts. 

23More accurately referred to as temporal multiplexing 
24 Both chemical and electrical 
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Chapter 2 Theoretical Considerations 

... the choice of which [representation) to use is important and cannot be taken 

lightly. It determines what information is made explicit and hence what is pushed 

further into the background, and it has a far-reaching effect on the ease and 

difficulty with which operations may subsequently be carried out on the 

information. 
Vision, David Marr 

2.1 Introduction 

This section is an exploration of a theory regarding the functional role eye position sig

nals might be playing in ventral visual cortex. There are as many different roles that 

can be proposed for these signals as there are visual tasks, and many of the roles that 

have been proposed for specific computations are plausible l . Rather than taking a specific 

computational task as our starting point and trying to determine the role of the eye posi

tion signal within that task, we ask "Given that eye position signals are present in visual 

cortex together with associative learning mechanisms, how will these signals come to be 

utilized?" In answering this question we rely upon the evolutionary principal that coding 

in nervous systems must be understood with reference to the environments to which they 

are adapted; and the ecological observation that the environment is divided into physically 

and behaviorally distinct niches to which organisms have evolved specialized adaptations. 

The field of natural image statistics made the leap of applying the evolutionary principal 

to the understanding of neural encoding by interpreting the physiological characteristics of 

neurons in the visual system in terms of the empirically measured statistical structure of 

the environment to which the visual system is adapted[26; 69]. While the basic ecological 

observation has equally important implications for the understanding of visual systems[51], 

the study of the ecology of vision has been focused primarily on early stages of vision, 

1 Since VI cells are known to respond to a very narrow range of disparities, it has been suggested that 
stereopsis requires either many cells tuned to each disparity at each locus, or a mechanism by which disparity 
tuning of individual cells is dynamically adjusted[19]. Extra-ocular eye position signals in visual cortex could 
potentially playa role in such a dynamic disparity adjustment. 
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with relatively little investigation into the implications for the encoding of visual informa

tion at cortical stages of processing. From the standpoint of coding theory this ecological 

observation can be interpreted as evidence that natural environments can be decomposed 

into distinctive sub-environments which are different enough from each other tha t there are 

significant advantages to developing distinct codes for representing each of these distinct 

sub-environments. In this chapter we explore the implications of such a decomposition for 

the encoding of visual information. 

David Marr observed that "The usefulness of a representation depends upon how well 

suited it is to the purpose for which it is used... because vision is used by different an

imals for such a wide variety of purposes, it is inconceivable that all seeing animals use 

the same representations; each can confidently be expected to use one or more represen

tations that are nicely tailored to the owner's purposes" [55]. Some specialist species are 

committed to very restrictive micro-environments and hence may require only one or few 

specialized codes designed to represent the limited variety of circumstances that may arise. 

Most species, however, live in environments containing many of these micro-environments. 

In this situation, a code switching strategy, in which specialized codes can be dynami

cally adopted to suit the current micro-environment, would provide both the flexibility of 

generalists with the performance of specialists. 2 In situations where there are reliable 

environmental cues available indicating a change from one distinct visual environment to 

another, many species have evolved the capacity to change operating modes of their visual 

systems depending on these cues. Switching between photopic and scotopic vision is a sim

ple example of this strategy. A physiological mechanism permitting such changes to occur 

at the level of cortical processing would enable the visual system to adapt to very complex 

and transient partitions of the environment. 

In previous sections we have discussed the survival advantages associated with task or 

context specific learning. From the computational standpoint the advantages of code switch

ing arise primarily from the exploitation of a hint about the structure of the environment, 

2 Adaptive colora tion in animals provides a good illustration of dynamically adopting a specialized adap
tation to suit the current micro-environment. While walking sticks have adopted a morphological adaptation 
which commits them to the tree sub-environment, rabbits commonly have a seasonal coat of fur to match 
the seasonal visual properties of their environment; chameleons can adapt their skin color on a shorter time 
scale and can match a wider variety of visual environments encountered within its habitat; cuttlefish are the 
most dynamic of all , capable of adapting their skin pattern and texture continuously as they mOve around 
within their environment. Such dynamic switching of behavior to suit the current situation is commonplace 
in the animal kingdom. 
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namely that it can be decomposed into distinctive sub-environments. In computational 

learning theory hints are defined as auxiliary information about the target function that 

can be used to guide the learning process, and they help usually by reducing the size of 

hypothesis space which the learning algorithm has to search through[l] . Hints that split the 

global environment into simpler micro-environments effectively splits the learning of a com

plex function into piecewise simple components. Restricting learning problems to simple 

sub environments permits the use of simpler models, and often leads to faster convergence, 

and improved performance. One of the most interesting questions from the theoretical 

perspective is: How large a set of special cases should be maintained? If this collection be

comes large enough, other costs associated with the space taken by this information and the 

difficulty of retrieving information from a large set begin to counterbalance the advantages. 

2.1.1 Background 

The Rice Machine is perhaps the earliest example of an algorithm using a codebook switch

ing strategy. It was developed at the NASA Jet Propulsion Lab to improve the efficiency 

of encoding information from multiple distinct sources[20] and was used for sending image 

data to earth from the Mars Voyager spacecraft. The Rice Machine is a simple two-stage 

code, in which the first stage describes which code will be used3 and the second stage de

scribes the data using the chosen code. The multiple codebook idea has since been used to 

extend the Shannon source coding theorem to nonergodic stationary sources by using an 

ergodic decomposition to interpret a nonergodic source as a composite of ergodic sources4 

[32]. While a universal code is in theory more complicated than an ordinary code, involving 

many code books and a mechanism for switching between them, in practice it can be more 

efficient since separate code books can be used for distinct short term behavior. 

In any two-stage coding scheme, there is a tradeoff between the average lengths of the 

first and second stage descriptions. The longer the first stage description is permitted to be, 

the more subtly differentiated the available code books can be, and the more well matched 

the codebook can be to the statistics of the data to be encoded. On the other hand, the 

30ne of four in the case of voyager, requiring a two-bit prefix to describe it 
'This type of decomposition may be particularly relevant to describing nonergodic natural environments 

which may be most simply described as mixtures of ergodic sub-environments. Breaking the environment 
down into ergodic or approximately ergodic components has the great advantage that within each component 
learning the statistical structure of the component is valid. 
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length of first stage descriptions can easily overwhelm any gains that might be made in 

the second stage of encoding. One of the most important considerations in balancing these 

factors is the frequency with which codebooks will be switched. While the Rice Machine 

employed the simple scheme of re-evaluating which codebook to use at regular, and relatively 

short, intervals, more sophisticated schemes for determining when to switch codebooks have 

been developed. In particular, it is important to avoid a phenomena referred to in control 

theory as chattering, where switching between codebooks occurs too frequently, incurring 

very high overhead costs. 

The mixtures of experts paradigm for supervised network learning is closely related to 

two stage codes. It was developed as a way of overcoming the drawbacks of training a single 

multilayer network to perform different subtasks on different occasions, most notably slow 

convergence rates and poor generalization due to catastrophic interference. "If we know in 

advance that a set of training cases may be naturally divided into subsets that correspond 

to distinct subtasks, interference can be reduced by using a system composed of several 

different expert networks plus a gating network that decides which of the experts should 

be used for each training case." [41) This technique is advantageous when the training set 

can be divided into simpler (homogeneous) subsets, and the learning task in each of these 

subsets is not as difficult as the original one. During training the gating network allocates 

a new example to few experts, and, if the output is incorrect, the corrective weight changes 

are localized to these experts. After training the network computes a value for an input 

by first having the gating input route the input to the appropriate expert and then having 

that expert compute the final output value. This scheme has been modified and extended 

in many ways since it was introduced, and the class of models it gave rise to are referred 

to as ensemble models or committee models. One notable extension of this model is the 

Boosted Mixture of Experts model, which replaces the gating network and the need to know 

in advance the appropriate partition of input space, with an algorithm which initializes a 

split of the training set to different experts and incrementally introduces new classifiers 

which are encouraged to become an expert on patterns on which the previous classifiers 

make errors or disagree[ll]. 

The use of code switching strategies is becoming increasingly common in a wide variety 

of engineering applications. It is used in designing control systems5 that can operate in 

5They are often referred to as Hybrid Systems in the field of Control Theory[62J. 
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multiple environments governed by distinct sets of equations. Transitions between these 

environments can cause the input-output characteristics of the control system to change 

rapidly or even discontinuously. Multiple models are needed in this case both to identify 

different environments and to control them rapidly[61]. Code switching is used for speeding 

CPU performance where detecting and predicting switches of computational context is 

critical to operating performance [53]; in text compression where model based encoding 

schemes arrive at different codes for different document classes[85]; and in the design of 

context aware networking environments where the system trys to detect the current context 

and anticipate the users needs. 

2.2 Code Switching 

Code Switching is most simply illustrated using the following modification of the classic 

Western Union Problem. The objective of Western Union is to maximize its profits by 

minimizing its costs assessed in terms of the number of characters that need to be sent over 

the wire. The typical strategy is to use a Huffman code which assigns small codeword to 

frequently occurring strings, and longer code words to less frequently used strings. The 

frequencies are typically estimated from large collections of messages collected over time. 

But now let us assume that Western Union has access to a simple and inexpensive piece of 

side information: each message is labeled with the name of the closest holiday at the time 

the message was sent, in the set of N holidays {fathers-day, mothers-day, xmas, graduation

time, ... }. This extra information could be used to partition all past messages sent into N sets, 

estimate a separate probability distribution function for each element of the partition and 

construct an optimal codebook based on the different probability distribution functions. 

Now when the sender wants to send a message, he should first send a signal indicating 

which partition (or context) the message is coming from and hence which codebook to use 

to decode, and then use the associated code book to code the message 6 . The likely outcome 

of using this code switching strategy is t hat "xmas" will have a very short encoding around 

Christmas time and a relatively long encoding around graduation time. 

6In the case we are discussing, since both the sender and receiver presumably have access to a calendar 
and the current date, they could both know which codebook to use without any messages about context 
being sent. This is one advantage of making use of globally accessible side information. 
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2.2.1 Costs and Benefits of Code Switching 

If one considers only the cost of the messages sent then clearly code switching saves Western 

Union some money. But one also needs to account for the the costs of computing N times as 

many frequencies, of computing N codebooks, of storing N codebooks, the cost of switching 

between codebooks, and the cost of sending a message indicating which codebook is being 

used. In addition, in order to compute t he N sets of word frequencies, one may need N 

times as much data, which means that Western Union may have to wait a long time before 

they can capitalize on their database of messages. In this illustration, the side information 

was provided for free, but in many circumstances the side information also comes at a 

cost. When all of these costs are factored in, it is unclear whether code switching gives 

an advantage. Given a probability distribution over the environment and a specification 

of those costs mentioned above, we 'would like to determine the optimal partition of the 

environment, keeping in mind that one possible partition is no partition at all. 

A code switching strategy is specified by a partition of the input space or environment 

along with function which classifies inputs into their partition sets; a codebook associated 

with each partition set; and an encoder which uses the correct codebook given the partition 

membership of the input. The costs associated with using code switching can therefore be 

broken down into the cost for obtaining a collection of codes, the cost for maintaining a 

collection of codes, a cost for using a code, and a cost for switching codes. The fact that 

codes and partitions must be learned, and that there are costs associated with learning, 

places constraints on the granularity and complexity of the partitions of the environment 

that can be practiCally used. 

Using code switching requires the extraction two distinct types of information from the 

environment: the statistical regularities of specific contexts that can be exploited to produce 

an efficient codebooks; and the simple features of the context that can be used to identify 

it, to distinguish it from others,and, as a key, to recall the appropriate codebook. 7 8 Both 

7This may provide an interesting way of defining the distinction between procedural and declarative 
memory. Procedural memory has to do with the regularities found in a context. Declarative memory has to 
do with the identifying features of a context[22]' 

BThe distinction between these two types of information is equivalent to the distinction drawn in linguis
tics and communication theory between types of information content referred to as transactional information 
and interactional information. Interactional signaling establishes the communications link and its charac
teristics prior to the sending of transactional information over the channel. In coding theory, a typical 
interactional signal might consist of the sender providing the appropriate codebook to the receiver before 
coded transmission begins. While there are systems that carry these two types of information in separate 
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types of information must be learned from experience and stored in memory for later use. 

Both the identifying features of a context and the contextual regularities may be obtained 

from within the same sensory modality. This is probably the case in many visual processes 

in which preattentive mechanisms provide the contextual cues9 , but the contextual cues 

can also come from a different sensory modality or even from signals internal to the animal 

(e.g., an internal clock). 

The free availability of certain contextual cues may determine how the environment is 

partitioned by an animal using code switching. For this reason, use of the abundant internal 

signals as cues to context are of particular interest. The wiring devoted to connections 

between cortical areas accounts for a large fraction of the volume of the brain in primates. 

These connections have a high degree of macroscopical order, best described as a set of 

discrete bundles joining areas or parts of areas to each other, rather than as a continuum of 

intertwined fibers . There are wide variations in convergence and divergence of connections 

between cortical areas, but there is a tendancy for connections to be reciprocal. Among 

approximatly 30 visual areas in the monkey, there are 300 connections, about ! of all 

possible connections. Among 73 cortical areas in the monkey surveyed, about 15 percent of 

all possible connections exist. Connections between areas are more likely to exist when they 

are geometrically close to each other[13]. As mentioned earlier, a variety of extra-retinal 

signals are conveyed to visual cortex, including eye position signals. The specific set of 

extra-retinal signals present in visual cortex may be an adaptation that has evolved based 

on the value these signals have as side information about the environment. 

2.2.2 Hints and Context: Learning Theory 

We would like to consider when it is helpful for a learning algorithm to split the learning 

of a target function into a collection of learning problems where one is learning the target 

function on only a subset of the input space. It is similar to learning a complex function 

by first splitting it into piecewise simple components. The optimal way to accomplish this 

channels, for example the telephone system, using what is called out of band signaling, many systems carry 
both in the same channel, using what is called in band signaling. 

9These preattentive mechanisms and their role in directing eye movements may serve to direct the fovea 
of the retina to positions in the visual scene centered on distinct visual contexts. For example, if one of the 
contexts is faces , and there is a face in the visual scene, the fovea will be directed to t he center of the face, 
rather than to the boarder between the face and the background or some other random position. Within 
the context of face discrimination, the fovea is directed to be centered on the eyes, nose, or mouth, and not 
other positions on the face (see the classic work of Yarbus [86]). 
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task depends on what functions can be represented simply by the hypothesis space, and 

also depends on what sort of simple functions can be produced by restricting the inputs to 

the target function f. Let us formalize the situation as follows: Let (Xl, ... ,xn ) be random 

variables drawn from sample spaces (Sl, ... , Sn) which are a partition of the sample space 

S for the random variable x. Each is drawn according to the probability distribution 

FSi (x ) = F(xlx E Silo Let (81 , ... , 8 n) be subsets of hypothesis space 8. Now we have 

the following set of n learning problems: (Xi, FSi' 8 i , Select , Per f) where i E 1, ... ,n. Each 

learning problem selects its own hypothesis bi after seeing ki examples. 

One way of solving any such learning problem is to take the k examples provided and 

partition the examples into subsets according to which of the sets (Sl, . .. , Sn) they fall into. 

Let us call these example partition sets, (El, ... , En). Solve the i't h learning problem by 

selecting a hypothesis bi on the basis of Ei. Finally, recombine these different hypotheses 

by defining b, the solution to the whole learning problem, as follows : 

b(x) = bh (:i5)(X) where h(x) = i when X E Si 

The question is: "When does this strategy payoff?" Another way of phrasing the 

question is: " Given a learning problem what is the optimal way to partition S 

and 8 for use with the above described learning scheme?", keeping in mind that 

one possibility is to leave Sand 8 in one piece, which is equivalent to not using this strategy 

at all. Other, more restrictive and perhaps more realistic, versions of this problem might 

include either constraints on how S can be decomposed or on how 8 can be decomposed, 

or both. 

The effect of such a hint is twofold: 

• It restricts search of the hypothesis space to a smaller subspace 8 i C 8 , thereby 

reducing the VC dimension and hence the number of samples needed to make a valid 

generalization . 

• It reduces the number of samples by partitioning the input space. 

This arrangement is only fruitful if there is enough of a reduction in VC dimension so that 

the reduced number of samples is still sufficient for valid generalization. 

Let the VC dimension of 8 be VC13 and the VC dimensions of 8 i be VC13i· The fraction 
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of samples we can expect to get from each piece of the partition is F(Si) = Pi. What we 

need to characterize is an expected generalization error. The hint we are given essentially 

amounts to our getting the function h in the formula for b for free. Characterizing how 

much effort it would have taken us to learn h might give us some insight into how much it 

can help us. 

Another factor which might play an important role in determining the optimal partition 

of the input space is the effect of noise or the signal to noise ratio over the input space. Since 

the number of samples needed to make reliable estimates of statistical parameters increases 

with the magnitude of the noise, while the number of samples available will decrease as the 

partition of input space is made finer, there is probably a lower bound on the fineness to 

the partition determined by the noise in the input data. 

Without placing some restrictions on how Sand B can be decomposed, we might arrive 

at some absurd results. For instance, we can easily imagine a situation where the optimal 

partition of S is into sets on which f is constant, but these sets may have a very complex 

shape (i.e. , the functioll h might have high complexity). Likewise, we can imagine the 

situation where the structure of the sets in the decomposition of B is highly complex. We 

need to be sure either to charge for the complexity of the decompositions, or at least set 

down some reasonable guidelines. Obviously, the nature of the optimal partition of S will 

have an important impact on the optimal partition of B and visa versa. The two extremes 

of the type of guideline that can be set down are the situation where the partition of S is 

fixed and no constraints are put on the partition of B, and the situation where the partition 

of B is fixed and no constraints are put on the partition of S. I believe in most practical 

situations constraints must be placed on both. 

The growth function which defines the VC dimension is defined as 

m(N) = _ m¥ (number of partitions of Xl, . .. ,xN by bE B) 
Xl , ... ,XNES 

Since we are now considering subsets of Sand B, we need to consider the VC dimension of 

a hypothesis set with respect to a particular input space, instead of assuming the full input 

space. The appropriate growth function is as follows: 

ms"B, (N) = _ m¥ (number of partitions of Xl, . .. , XN by bE Bi ) 
Xl, ... ,XNESi 
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In considering the relationship between the partition of Sand B, it is interesting to note 

that, just as hypotheses partition inputs, inputs can be used to partition hypotheses. On 

this basis we can define the dual of the traditional growth function as 

m(N) = max (number of partitions of b1, ... , bN by x E X) 
bl, ... ,bNEB 

and this can be used to define the VC dimension of the input space with respect to a 

hypothesis set. Using the dual growth function, it should be possible to derive results 

analogous to those expressing rates of convergence of learning in terms of the traditional 

growth function. These analogous results would tell us something about the number of 

hypotheses we need in our hypothesis set for valid generalization, rather than the number of 

examples we need for valid generalization. 10 In the typical learning problem, such a result 

would have little use since there are typically weak constraints on the number of hypotheses 

in the hypothesis set, and strong constraints on the number of examples available. But in 

the next section I will be discussing a natural situation where there is a severe constraint 

on the number of hypotheses in the hypothesis set. 

These costs will be related to various observable properties of the code. For instance, we 

will make the reasonable assumption that the cost of maintaining a collection of contexts 

is a monotonically increasing function of the size of the collection. Hence we expect the 

size of the collection of contexts employed in a mode switching coding strategy is inversely 

proportional to the cost of maintaining this collection of contexts. In fact, one might be able 

to calculate the cost of adding a new context to a collection as a function of the complexity of 

the context to be added, and as a function of how similar the new context is to the contexts 

in the current collection. Also, the mean frequency of context shifts should be inversely 

proportional to the cost of switching contexts. It only pays to switch context if one is going 

to be in the new context for a significant period of time, otherwise the advantages gained 

by using a different context are outweighed by the costs of switching contexts. 

The discussion of chapter 1 elaborated on the survival advantages of context specific 

sensori-motor adaptation and the evidence that the data on eye position modulation of 

responses of visual cortical neurons presented in chapter 1 might be interpreted as an 

instance of cortical adaptation of neural codes to the current context. 

IOThese results would require defining a probability distribution on hypothesis space. We will give an 
example below of a natural definition of snch a probability distribution function on a hypothesis space. 
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2.2.3 Natural Image Statistics 

Research on natural image statistics largely neglects the fact that the image ensembles that 

the animal encounters are influenced not only by the visual environment but also by the 

behavior of the animal itself. Internal information about the state of the organism, such 

as eye position, could readily be exploited for hints about the specific context generating 

incoming sensory information or whether the current context has changed. Correlations 

which might exist and be exploitable in particular areas of the environment, are washed 

out in analyses of the ensemble of all images. Much greater advantage would be derived by 

partitioning the environment into simple sub-environments, each with their own distinctive 

and exploitable statistical structure. 

It has been suggested that the receptive field properties of visual neurons are" matched" 

to the statistics of natural scenes. But when these researchers speak of "THE" statistics of 

natural scenes, they are trying to make a generalization about the ensemble of all natural 

images. 11 It would be of interest to analyze the statistics of several different ethologically 

relevant sub-ensembles of natural images and: 

1. see if the statistics for these sub-ensembles are different (we will call them image 

contexts); 

2. see if visual neurons can exploit information about image context and change their 

tuning properties appropriately. 

Alternatively, by experimentally manipulating the reward associations, create arbitrary 

but easily identifiable ensembles of images which become behaviorally relevant. 

In these experiments we postulate that the statistics on the ensemble of natural images 

can be parameterized in such a way that there is a systematic change in the statistics with 

respect to the parameter. It has been noted in the literature on natural image statistics 

that image statistics are invariant with respect to scaling (or change in focal length of the 

camera). Another simple parameterization of natural images is in terms of the focus of the 

camera. For these preliminary experiments we will only be concerned with two different 

focus distances: near, by which we mean within grasping distance; and far, by which we 

mean focus at infinity. 

11 Ironically, their empirical measurements are taken from a very restricted subset of this ensemble. 
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Chapter 3 Appendix: Relating Computational Learning 

Theory, 

Stock Portfolios, and Population Genetics 

3.1 Introduction 

These three seemingly unrelated topics each offers their own insights into the problem 

of optimally partitioning the environment. In computational learning theory, ensemble 

learning models use populations of learners with some variation in their abilities to improve 

performance over single learners. In population genetics, a population of organisms with 

some variation in phenotype has greater survivability than a homogeneous population, due 

to its ability to handle a greater degree of environmental fluctuation. In the branch of 

information theory called stock portfolio selection theory, the goal is to create an optimal 

population of stocks, with enough variability (diversified) so that it will not become extinct. 

There is a natural mapping between the problems encountered in population genetics, those 

in computational learning theory, and portfolio selection problems. We will describe the 

mapping between these three domains, and translate results derived in each of these fields 

into the language of the others. We focus on convergence theorems which are found in 

each of these fields, and how the concept of the VC dimension, which has been introduced 

relatively recently in computational learning theory as an important measure in estimating 

the convergence rate of learning algorithms, can be applied in both population genetics and 

portfolio selection problems. We will begin by describing the mathematical paradigms used 

in the portfolio selection problem, the computational learning problem of learning from 

examples, and the problems of predicting gene frequencies in a genetic population. 

3.1.1 The Stock Portfolio Selection Problem · 

The stock market scenario we will be discussing can be described by the following tuple: 

(x, F,B, Select,PerJ) where 

• x = (Xl' . . . ' Xm) is called the stock market vector. x is a random variable which 
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has probability distribution function F. Each Xi represents the price relative of stock 

i. The price relative is the ratio of the price at the end of the day to the price at the 

beginning of the day for stock i. There are a total of m different stocks. Each day x 
assumes a new value, and so the value of x on day j will be denoted Xj = (Xj,l ... Xj,m). 

A record of N days of the stock market will be denoted xn = (x!, .. . , xn) so that xn 

is an n x m matrix with X~j = Xi,j' 

• B is a set of permissible ways in which one can invest in the stock market. 

B = Simp1exm 

where Simp1exm is defined as 

m 

Simplexm = {b = (b1 , ... , bm) lbi 2: 0, L bi = I} 
i=l 

which is a simplex in m dimensions. 1 Each vector in this set is called a portfolio 

where bi represents the fraction of one's wealth invested in stock i. At the end of 

each day, the investor is free to sell all his stock, and reinvest this money using a new 

portfolio chosen from B, which may be chosen according the performance of portfolios 

on previous days. The portfolio chosen on day j will be denoted bj = (bj,l, . .. , bj,m). 

A record of N days of investment portfolios will be denoted Bn = (b1 , ... , bn ) so that 

B n is an n x m matrix with B~j = bi,j' 

• Perf is a performance measure which one wishes to maximize. Typically, one would 

like to maximize the expected wealth relative or the expected growth rate. The wealth 

relative on day j, denoted by Sj, is the ratio of the wealth at the end of the day to 

the wealth at the beginning of the day which is simply as follows: 

lThe basic model can be extended to account for side information by making the the elements b E B 
functions which map values of the side information vector ii to m-vectors on the simplex. This modification 
makes the set B more similar to a general hypothesis set as found in learning problems. We will expand on 
this later. 
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and the wealth accumulated over n days is: 

n n 

scan, gn) = II S(x;, b;) = II b; . Xi 
i=l i = l 

The exponential growth rate is the logarithmic counterpart to the wealth relative as 

follows: 

and: 

One might want to place some additional constraints on the value to be optimized 

such as the permissible amount of variance in the value. In this way one can control 

the degree of conservatism in the investment strategy. 2 The performance measure 

can be a function of the history of the stock market and the previous investments 

made . 

• Select is an algorithm which chooses a portfolio from B on the basis of previous 

experience and possibly some external information (insider tip?) . 

Once each of these elements is specified, the behavior of the system and its performance 

is completely determined (except for the behavior of the random variable which is not in our 

control). The concerns of research into portfolio theory applied to financial markets centers 

on finding an optimal strategy Select for choosing a portfolio when all other components of 

the tuple are specified. 

3.1.2 COIllputational Learning Theory 

The standard framework for formalizing the problem of learning from examples can be 

described by the same tuple (x, F, B, Select, P er f) where: 

• x = (Xl' . .. ' xm) is called the input vector. x is a random variable which has 

probability distribution function F. Each Xi represents the value of variable i. Each 

iteration of the learning algorithm x assumes a new value, and so the value of x 
2It may also be prudent to take into account transition costs since some good strategies may incur very 

high transaction fees (brokers fees) due to the large number of transitions required by the strategy. 
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on iteration j will be denoted Xj = (Xj ,l ... Xj,m)' A record of N samples from the 

input space will be denoted xn = (Xl"' " Xn) so that xn is an n x m matrix with 

xn , = XiJ'· 
~,J ' 

• B is called the Hypothesis Set. At each iteration one can choose a hypothesis from 

B on the basis of the performance on hypotheses chosen on previous iterations. A 

record of N iterations of hypothesis choices will be denoted jjn = (bl , ... ,bn). 

• Perf is an error measure which one wishes to minimize also commonly referred to as 

the loss function and denoted Q(b, x) . The goal in learning from examples is to find 

a hypothesis in B which is a good approximation for an unknown function f when all 

one is given is the values of f on randomly drawn inputs X. The performance measure 

Per f is a measure of how different the chosen hypothesis b is from the unknown 

function f . A typical example would be mean squared error: 

Per f(b, Xn) = Q(b, xn) = ~ t(f(Xi) - b(Xi))2 
i=l 

Another important quantity is the risk function defined as 

R(b) = £[Q(b, x)] 

where expectation is taken with respect to the distribution on X. The empirical risk 

function is given by 

- - 1 ~ -Remp(b, Xn) = - ~ Q(b, Xi) 
n i=l 

Note that although the target function f is not explicitly included in the tuple de

scribing the learning problem, it is implicitly present in the Performance function. 

While in Portfolio problems the goal is usually to maximize the performance measure 

since this corresponds to maximizing wealth, in learning problems the goal is typically 

to minimize the performance measure since it is a measure of error or loss. 

• Select is a learning algorithm which chooses a hypothesis from B on the basis of 

previous experience and possibly some external information (hints) . 

There are a number of question of interest in this setting: 
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• How well does a particular learning algorithm (such as backprop) work in a particular 

context? 

• Given a particular learning problem, what is the optimal learning algorithm to use? 

3.1.3 Population Genetics 

We can describe the situation in population genetics using the same tuple (x, F, B, Select, Per 1) 

where: 

• x = (Xl, . .. , xm) where Xi represents the fitness relative of genotype i. The fitness 

relative in many cases is defined to be the ratio of the number of individuals of genotype 

i in generation j to the number in generation j - 1 3 but in artificial selection, the 

fitness can be judged by any criterion. There are a total of m different genotypes. 

x is a random variable which has probability distribution function F, which will be 

influenced by many factors including fluctuations in the environment. Each generation 

x assumes a new value, and so the value of x on generation j will be denoted Xj = 

(Xj,l'" ,Xj,m) ' Note that there is much debate about what constitutes fitness, but 

typically one might use number of viable offspring as a measure of fitness in which 

case the fitness relative is a measure of reproductive rate. 

• B = Simplexm is a set of possible gene frequencies in the population. 4 The elements 

of B are referred to as genetic portfolios and can be thought of as the number of 

individuals allocated to a particular genotype. The components bi represent the pro

portion of genotype i in the population. The genetic portfolio generated on generation 

j will be denoted bj = (bj,l, ... , bj,m). 

• Perf is a performance measure. Many evolutionary biologists have proposed different 

3Note that one interesting difference between the stock market and population genetics is that in the stock 
market t he usual way to increase one's wealth is to have the price of individual shares rise . Occasionally, 
there will be situations where stocks split, in which case one gains not by having the price of stocks increase, 
but rather by having stocks "reproduce. n In population genetics, the only way to increase wealth is by 
having shares (individuals) split (reproduce). One could imagine a stock market in which there were no 
prices, but the number of shares changed. The factor by which shares of a stock increased each day would 
be related to the profits of the corresponding company. 

4The assumption, commonly made in population genetics, that purely random mating occurs, places an 
important constraint on the nature of B. Given a population of a particular genetic composition and the· 
assumption of random mating, only a limited class of gene frequencies can be generated. This constraint 
also limits the power of Select. For instance, it is apparent that changes in gene frequencies cannot change 
arbitrarily quickly. 
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performance measures which they hypothesize are being maximized or minimized by 

natural selection. Here I leave P er f as simply an arbitrary function which mayor 

may not be maximized by natural selection. A typical example of such a performance 

measure would be the expected population fitness relative. The fitn ess relative, de

noted by the symbol S, is defined as the ratio of the population fitness in generation 

j the fitness at generation j - 1: 

• Select represents natural selection as an algorithm which chooses a new distribution 

of gene frequencies from B on the basis of previous performance of the population. 

In contrast to the scenario in portfolio theory, the selection or investment strategy 

is fixed by nature (natural selection) 5. In animal and plant breeding programs, we 

have the same situation as in the natural selection case except that S elect is not fixed 

by nature. Breeders are free to choose at each generation the composition of the 

breeding population and the performance measure Perf , just as investors are free to 

reinvest at the end of the day and are free to choose the performance criterion Perf 

on which to base their decision to reinvest. 6 The questions asked by animal and 

plant breeders are the same as those asked by financial investors: What is the optimal 

selection strategy Select to use so as to optimize Perf? They would like to choose 

the composition of the population in such a way as to maximize the wealth relative, 

which is a measure of the increase in performance of the population. 

Most research in population biology centers on two questions: 

• What exactly is the investment strategy embodied in natural selection? This question 

is approached by assuming a particular performance measure P er f is being maxi

mized. For example, 

• What performance measures are being maximized? Or in other words what are the 

consequences of using the particular investment strategy employed in nature. This 

5 Although there will be some discussion lat er about mechanisms that have evolved for the purpose of 
altering this investment strategy by changing B 

6 Artificial selection is not subject to the constraints of random mating. In fact, non-random, or direct ed 
mating, is probably the most important tool available to breeders for designing an investment strategy (that 
is until we can directly engineer t he t raits we desire). 
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question is approached by assuming a concrete implementation of the selection strat

egy embodied by natural selection. For example, the standard theory of stock market 

investment is based on the consideration of first and second moments of S, the objec

tive being to maximize the expected value of S subject to a constraint on the variance. 

A similar objective may be at work in the evolution of organisms. It is desirable to 

maximize the fitness (or expected performance) of the population, but if the variance 

in performance is too great, extinction may result. 

3.1.4 Stock Portfolios and Learning Theory 

Portfolio Selection as a Learning Problem 

Let us view the portfolio selection problem as a problem of learning from examples by sim

ply equating the elements ofthe tuple specifying the portfolio problem (x, F, B, Per j, Select) 

with the corresponding elements of the tuple for the learning problem (x', F', B', Per j', Select'). 

This mapping equates 

• stock market vectors with input vectors. 

• portfolios with hypotheses. 

The only change we will need to make is in the definition of Per j': 

• Per j' will be defined as follows: 

Per / = -log(Per j) = -logS(b, x) 

This makes the loss function for the learning problem map to the negative of the 

exponential growth rate. The following correspondences will then hold: 

Q(b,x) = -W(b,x) 

R(b) = £[Q(b,x)] = -£[W(b, x)] == -W(b) 

- - 1~ - --Remp(b,Xn) = - ~Q(b,Xi) = -W(b,Xn) 
n ;=1 
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When this is done, it can be seen that the portfolio selection problem is equivalent to a 

rather simple learning problem. The hypothesis space for the learning problem consists of 

single node networks illustrated in the following diagram: where the weights of the network 

x, 

x, 

are limited to the simplex B = Simplexm. As mentioned above in the description of learning 

problems, a target function is implicit in the definition of the performance function. If the 

performance function for the portfolio problem is taken to be the expected wealth relative, 

then we may ask 'What target function is implicit in the expected wealth relative?'. It will 

be argued here that this target function could reasonably be considered the Max function 

which returns the maximum value of all its inputs. The hypothesis set we are considering 

here is too weak to be able to approximate the Max function well when there is a uniform 

distribution on the inputs, but for some input distributions it may perform quite well. The 

hypothesis set can be strengthened by using side information. The use of side information 

described by Cover amounts to using a hypothesis set consisting of the following networks: 

The circle nodes in this diagram are the same summation nodes as appear in the single 

" 

node diagram. The output node in this case is a switch which can output anyone of its 

inputs depending on the value of the side information y. Obviously, this type of network 

can be significantly more powerful, depending on how large k is (the number of summation 

nodes), and what constraints are placed on the switching function. If no constraints are 

placed on the switching function, the overall function can be arbitrarily complex. 

Using the tools of learning theory we can try to bound the number of examples (or days) 

needed to converge on a good solution in terms of properties of the hypothesis set, namely 
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the VC dimension. Later we will compute the VC dimensions of both the simple class of 

networks and the more complex class of networks. 

Learning from Examples as a Portfolio Selection Problem 

Let us now explore an alternative mapping between the portfolio problem and the learning 

problem. This mapping equates 

• stocks market vector with hypotheses performance vector 

• portfolios with probability distributions on hypothesis space 

Since this mapping is not as straightforward as the one described above, let us make 

it more explicit. Given a learning problem described by the tuple (x, F, 8, Per f, Select) 

where 8 = {hI"'" hm } and Ixl = k, we will construct a mapping onto a portfolio problem 
• -/ I I , f 

specIfied by tuple (x ,F , 8 ,Perf, Select ) 

../ I I 

• X = (xl"'" xm) where 

I e-Per !(hi ,X) 
Xi = 

Cost(hi) 

e-Q(hi,x) 

Cost(hi) 

represents the performance relative of hypothesis i. The fraction e;~~(~;) is the ratio 

of the dividends from the stock at the end of the day to the cost of the stock. In this 

market one rents stocks at the beginning of the day, and in return receives whatever 

dividends the stock generates during the day. The dividend of the stock is simply the 

performance of the hypothesis on the examples drawn during the current iteration 

of the learning process. At the end of the day the stock is returned7 , and one can 

take the money earned during the day and reinvest as one sees fit the next day. It 

is as if one is renting a piece of machinery (an algorithm) for the day, and whatever 

profit you can derive by using the machine is yours at the end of the day. We will 

initially assume that all stocks are the same price, which is a common situation in 

computational learning theory where each hypothesis in the hypothesis set has the 

same cost8 . 

7This situation is actually not as strange as it sounds. It is realized in actual stock markets by ... 
aBut the cost of a hypothesis can usefully be employed to incorporate the complexity of the hypothesis 

into t he choice of hypothesis. One would charge more for a more complex hypothesis, but would expect 
more dividends or higher performance from a more complex hypothesis. 
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The examples are drawn from the input space according to some unknown probability 

distribution function, the hypotheses are functions of this random variable, and the 

performance measure is a function of the input random variable and the value of the 

hypotheses on the random variable. Hence the vector of performance measures is a 

random variable with probability distribution function p' . 

• B' = Simplexm is a set of permissible ways in which one can invest in the hypotheses. 

Each portfolio in this set represents a probability distribution over the hypothesis 

set. The output of the portfolio selection algorithm will be a probability distribution 

on the hypothesis space rather than a specific hypothesis as is usually the case with 

learning algorithms . 

• Per j', the performance measure, is the same as in the Portfolio selection problem. 

Take it to be the exponential growth rate W, 

This corresponds to the expected performance of the hypothesis set given a particular 

weighting function and a specific set of examples. The expectation is taken over the 

hypothesis set. The performance measure is a function of the input/output pairs 

generated by the hypothesis. Let us consider the special portfolio vectors e; which 

have a 1 in position i and O's elsewhere. The following correspondences hold: 

, , , e- Q(hi'X) 
W(e;, X') = log(ei . X') = log(xi) = log( Cost(hi)) = -Q(hi' X') -log(Cost(hi )) 

If we set Cost(hi) = 1 then we have 

W(ei,i) = -Q(hi,X') 

and 

W(ei) == £[W(e;,X')] = - £[Q(hi,X')] = -R(hi) 
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• Select is a learning algorithm which adjusts the current probability distribution func

tion over the hypothesis set on the basis of past performance. This is equivalent to 

choosing a portfolio from B on the basis of previous experience and possibly some ex

ternal information (hints) . One would like a learning algorithm to find a probability 

density function on the hypothesis space which maximizes the expected performance. 

Before any examples have been generated, a learning algorithm will typically assume 

each hypothesis in the set is an equally good performer, so the initial portfolio will assign 

each hypothesis the same amount of wealth (or uniform probability distribution) . As ex

amples are generated the learning algorithm will modify the probability density function 

on the hypothesis space. If the target function is contained in the hypothesis set, then 

the probability density function should eventually converge to one of the basis vectors it; 

where all the probability is concentrated on those functions in the set which represent the 

target function. Under what circumstances will a probability distribution function over the 

hypothesis space perform better than any single hypothesis in the set? This question will 

be the focus of later sections discussing Context. The answer to this question depends 

somewhat on how the probability distribution is used. There are a number of different ways 

in which this output can be utilized: 

1. one can choose the hypothesis with the highest probability and use this one only. 

2. each time a new input is generated, one can select a hypothesis from B according to 

the probability distribution function, and use the selected hypothesis on this trial. 

3. each time a new input is generated, one can evaluate all hypotheses on this input, and 

produce the weighted average of these outputs (weighted according to the probability 

distribution) as the final output. 

In the last case, the final result produced is not a hypothesis in B, but rather a member of 

the hypothesis set Hull(B) which is defined as follows: 

Hull(B) == {h = ii . bib E Simplexm} 

where 
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is the vector consisting of hypotheses in B. The hypothesis set Hull(B) can be seen as the 

set of networks which look like: Hence if we use the probability distribution in this way, then 

the learning problem we have solved is described by the tuple (iI, F, Hull (B) , Per j, Select) 

where: 

Any learning problem in which the hypothesis set can be decomposed in this way into a 

linear combination of a finite number of hypotheses and where the performance function is 

linear in the performance of the hypotheses can be simply mapped to a portfolio problem on 

a hypothesis set of size m by considering each node in the layer preceding the output node 

to be a hypothesis. To intuitively understand the power of being able to combine multiple 

hypotheses in this way, let us briefly discuss how such an arrangement could potentially be 

exploited. Let's say one is faced with the problem oflearning a function which is too complex 

to be well approximated by any single hypothesis set (in other words our hypothesis set is too 

weak). One could overcome this problem by just using the hypothesis set to approximate 

pieces of the target function (or more accurately approximate the target function when 

restricted to a small part of the input space) . If one is provided with a good partition of 

the input space and side information telling which piece of the partition the input belongs 

to, then one can apply the appropriate hypothesis in the appropriate context and arrive at 

a good approximation of the target function where before there was none. This idea has 

many useful applications to design of learning algorithms, to design of portfolio selection 

algorithms, and to understanding the process of speciation in evolution. 

Interesting questions can also be raised with regard to the reverse mapping, convert

ing portfolio problems to learning problems. As we have seen, the simple way to do this 

is to equate portfolio vectors with hypotheses, but this section proposes an alternative, 

more complicated, but perhaps more interesting, mapping. When stocks are equated with 
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hypotheses through the mapping 

I e-Per j(h"x) 
xi = Cost(hi) 

and one is given a stock portfolio problem, it is sensible to ask the following 

• What do the hypotheses hi correspond to? 

• What does the target function correspond to? 

If we consider the hi's to correspond to companies, and Cost(hi) to be the price of com

pany i's stock at the beginning of the day, then the function e - Perj(h" x) should give the 

price of company i's stock at the end of the day as a function of the company hi and the 

environment x. Such a function is obviously very complex. Included in the variables of the 

environment which affect the value of this function are current events, weather patterns, 

and the psychology of investors. But also included in these variables are factors which 

are more accessible and quantifiable, such as the profits of the company for the day, and 

structural characteristics of the company such as number of employees, number of levels of 

management, amount of feedback in the company organization, and the sophistication of 

their machinery. We might have some hope of characterizing the computational complexity 

of a company in terms of such structural characteristics. 

We might also ask' What is the target function implicit in the definition of Per /? ' 

The optimal company. 

3.2 Theorems on Convergence Rates 

Portfolio theory, computational learning theory, and population genetics each have their own 

theorems regarding the number of days, iterations, or generations needed for a particular 

portfolio selection strategy, learning algorithm, or selection process, to converge to a stable 

and good solution. We will begin by stating a theorem about portfolios, introducing the 

appropriate terminology, and will follow this with theorems from computational learning 

theory, and population genetics, translated into the terminology from portfolio theory. 
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3.2.1 Comparison of Portfolio and Learning Theory Convergence Theo-

rems 

The best performance achievable in the portfolio selection problem described is the maxi

mum wealth relative over all available sequences of investments: 

S*Cxn) == IPaxS(b, xn) 
bEB 

w*(xn) = ~logS*(Xn) 
n 

w*(xn) == IPax £[W(b,x) ] 
bEB 

We will refer to the portfolio vector which acheives this maximum as b*. A theorem of 

Cover and Ordentlich states that there is a portfolio selection algorithm called a f1. weighted 

universal portfolio algorithm for which 

where W is the wealth achieved by this portfolio selection algorithm, n is the number of 

days, and m is the number of stocks. The quantity cg;,-t:.7)-1) is the number of ways of 

selecting a collection of n stocks when choosing from a set of m different stocks. This gives 

a bound on how different the actual wealth generated by the selection algorithm is from the 

maximal wealth that could have been generated, as a function of the number of days and 

characteristics of the set B of portfolios. We can also describe the quantities: 

W' (Xn) = mjlJC W(ei' Xn) 
ei 

w' == mjix£[W(ei'x)] 
ei 

These quantities maximize the wealth with respect to the portfolios at the vertices of the 

simplex. These portfolio strategies correspond to betting all of one's money on one stock. 

Note that W' :s; W* and W' :s; W* . 

Likewise in computational learning problems, the best performance achievable can be 
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characterized by the minima of the risk or loss functions: 

R* == inf R(b) 
bEB 

The theorems of Vapnik and Chevonenkas state that for C ::; Q(b,x) ::; D, then 

- - - n (D - C) 
R(b) - Remp(b, X ) ::; 2 vIE 

holds with probability at least 1 - 'r/, where 

and 

GB (2n) -10g('r//4) 
E = 4 ----'----'----=--'-'-'-----'

n 

R* (xn) - R* < (D - C) V -log 'r/ + (D - C) vIE 
emp - 2n 2 

holds with probability at least 1 - 2'r/. 

If we have a mapping where: 

R(b) = -W(b) 

then 

R:mp(xn) = inf Remp(b,xn) = inf -W(b,xn) = - ~up W(b,xn) = - w*(xn) 
bEB bEB bEB 

R* = inf R(b) = inf E(-W(b, X)] = - supE(W(b, X)] = - I!}axE(W(b, X)] == -W* 
bEB bEB bEB bEB 

The portfolio selection result 

can be restated as follows: 
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The learning theory results: 

W(b,xn) _ W(b) ~ (D; O).jE 

W* - w*(xn) ~ (D _ O)V- ~o;T/ + (D; O).jE 

The mapping between portfolio selection problems and learning problems establishes a 

connection between the convergence rate of a learning algorithm and the doubling rate of a 

portfolio. In some situations (uniform fair odds) we know that a Conservation Theorem 

holds which stats that the sum ofthe doubling rate for the optimal portfolio and the entropy 

of the stock values is constant.9 If the 'entropy of the stock market is high, then convergence 

will be slow. From computational learning theory we also know that the convergence rate 

should also be related to the VC dimension of the hypothesis set. Hence, it seems likely 

that VC dimension of the hypothesis set is folded into the entropy of the stock market. The 

higher the VC dimension, the slower the convergence and hence the smaller the doubling 

rate. 

If we were dealing with a single deterministic hypothesis, the entropy of this function 

applied to the random variable generating inputs to the function would be bounded by 

the data processing inequality. This theorem states that the entropy of a deterministic 

function of a random variable must be less than the entropy of the random variable itself. 

But the population of hypotheses with the pdf defined on it constitutes a randomized 

algorithm. The entropy of a randomized algorithm applied to a random variable need 

not be lower than the entropy of the random variable. An additional entropy factor is 

contributed by the pdf over hypothesis space. Consider the simple situation where each 

hypothesis is a constant function, each outputting a different constant from the others. Since 

these functions disregard their inputs, the entropy of the input random variable makes no 

contribution to the entropy of the output. The entropy of the output in this case is simply 

the entropy of the pdf on the hypotheses. Note that if some of the hypotheses assume the 

same values, then the entropy would be lowered. Now let us consider another simple scenero 

in which there is only one hypothesis in the hypothesis set, and it maps inputs to outputs 

in a one to one fashion. In this case, the entropy of the output is simply the entropy of 

9In less restrict ive settings, an inequality holds, 



84 

the input random variable. Note that if the hypothesis were a many to one map then the 

entropy would be lowered. 

Now let us modify this scenario. Based on the value of the input random variable, the 

previously constant outputs of the hypothesis will be permuted, so that a hypothesis which 

previously outputted value c will now output value d while another hypothesis will now 

output value c. In this situation the entropy can be either raised or lowered depending 

on whether the output distribution is made more or less uniform. A uniform distribution 

on inputs need not produce a uniform distribution on outputs. Conversely, a non-uniform 

distribution on inputs can produce a uniform distribution on outputs. 

One factor which will certainly lower entropy of the output has to do with the charac

teristics of the hypothesis set alone. If the hypotheses are many to one maps and! or there is 

little diversity in the functions (i.e., it frequently happens that the outputs of two different 

functions are the same on the same input), then the entropy will decrease. This is related 

to the VC dimension of the hypothesis set. 

3.2.2 Convergence Theorems in Population Genetics 

In population genetics a specific hypothesis or function in the hypothesis set is described 

by its genetic code or genome. Individual genes are the components of the genome. In 

learning theory a hypothesis is described by a set of parameters, such as a set of weights in a 

neural network, and individual parameters are the individual components of this description. 

The majority of convergence theorems in population genetics are of the following form: 

If a particular value of a genetic parameter (allele) occurs in the population of size N 

with frequency p and it has a selective advantage s over its alleles in a randomly mating 

population, then the number of generations it takes for this value of the genetic parameter 

to become fixed is G(N,p,s). The equivalent sort of theorem in computational learning 

theory would be: If a particular value of parameter value occurs with probability p in the 

hypothesis space, and the performance of functions having this parameter value is increased 

by a factor s, then the number of iterations of the learning procedure until the value of this 

parameter becomes fixed is G(N,p, s). Typically, convergence theorems in learning theory 

regard convergence of all parameters simultaneously, and a probability distribution on the 

hypothesis space is usually not considered except perhaps for a uniform distribution. In 

the computational setting it would be extremely unusual to find a parameter value for 
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which the performance gain was constant and independent of the values of all the other 

parameters. In this respect the theorems of population genetics may not be particularly 

relevant to computational learning theory, but a more careful consideration of a probability 

distribution function on the hypothesis space and its impact on convergence, which is the 

meat of the theorems of population genetics, may well provide benefits in the computational 

setting. On the other hand, this assumption of the independence of the effects on fitness of 

changes in different genetic parameters might not be a good one even in population genetics 

(although it does make things more tractable). The theorems of computational learning 

theory regarding the convergence of all parameters, which do not assume independence, 

might be more applicable to natural populations. 
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3.3 Speciation as a Computational Strategy 

The convergence theorems discussed thus far described the convergence of characteristics 

of the population (or equivalently hypothesis set pdf. or stock portfolio) to an equilibrium 

value. These theorems require some assumptions or ergodicity, or statistical uniformity, of 

the environment. For animal populations it is clear that the environment is not spatially 

uniform and this is why all species reside in a specific limited part of the environment. 

Within a limited domain the environment might be considered statistically uniform. Some 

species have limited their domain, or niche, to incredibly specific environments, while others, 

like humans, have domains which are quite large and diverse. In this section we will be 

concerned with the determinants of a species ' range, and under what circumstances non

uniformity in the environment gives rise to the phenomena of speciation. We will view 

speciation as a computational strategy for dealing with non-uniform environments, and will 

examine how the concepts of hint, VC dimension, and over training, can help us understand 

the biological phenomena of speciation. In order to understand these phenomena, we must 

extend the ideas of convergence of properties of the population to convergence of both 

properties of the population and the domain which the population inhabits. There are in 

fact two sorts of evolution happening in parallel and interacting with each other: there is 

selection of genotypes by the environment; and there is selection of the environment by the 

genotypes. Finally, we will discuss how the computational strategy of speciation might be 

exploited in computational learning problems. 

To illustrate the interaction of the partition of S and of B and how the dual VC dimension 

might be useful, I would like to discuss a natural application of these ideas to the theory of 

evolution. We will use the formalization discussed in section 1. 10 

From the standpoint of evolutionary biology, it is empirically apparent that the envi

ronment S is, in fact , partitioned into contexts, and these are usually referred to as niches. 

Operationally, niches can be defined either in terms of physical characteristics of the envi-

10 A species is a collection of individuals that can interbreed to produce fertile offspring; in other words, the 
hypothesis set is a species if there is a function R which can take any two hypotheses from B and generate 
other hypotheses from them which also belong to the species. For any particular genotype, we can define a 
probability that the genotype will occur in the population, based on the existing population, the function R 
and the probability that two hypotheses will "mate". Two individuals/hypotheses are said to have distinct 
phenotypes if there exists a value of the environment on which the two generate distinct outputs or responses. 
Selection eliminates some individuals from B and applies R to others on the basis of their responses to the 
environment. This process generates a new hypothesis set from the existing hypothesis set . 
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ronment, or in terms of the spatial distribution of species. Frequently these two definitions 

of niche correspond. The most plausible explanation for the existence of this partition of 

the environment, and the partition of organisms into species which occupy these niches, is 

that such partitions are useful in learning or adaptation. By restricting the environment to 

which a species has to adapt, the species is able to more efficiently adapt to the environment. 

There are two well known extremes to degree of niche specialization. Generalist species 

are wide ranging and able to adapt to a wide variety of environmental conditions. Specialist 

species can only survive in a narrow range of environmental conditions and are consequently 

highly localized. I hypothesize that this distinction can be stated simply in terms of VC 

dimension as follows: Generalist species have a high VC dimension while specialist species 

have a low VC dimension. A prediction of this hypothesis is that while generalists have 

the advantage of being able to adapt to a larger variety of environments, they will take 

longer to reach the same level of performance (or adapt to the same degree) than would a 

specialist species. Specialists have sacrificed the range of environments to which they can 

adapt, in favor of fast convergence to very high performance. 

Two key questions in evolutionary biology are as follows: 

• How is the partitioning of the environment into niches determined? 

• Under what circumstances does speciation occur? 

The interrelationship between the partitioning of the environment into niches and the par

titioning of organisms into species illustrates the interdependence of optimal partitioning 

of input space and hypothesis space. From a consideration of this concrete situation, it is 

apparent that the partitioning of the environment found in nature depends not only on the 

characteristics of the environment itself, but also on the characteristics of the organisms 

which are adapting to the environment. 11 

"These questions are also related to issues regarding the causes of extinction and radiations of species. 
One of the proposed causes of extinction are rapid and dramatic changes in the environment. One way of 
protecting a species against extinction due to environmental fluctuations is to have phenotypic variation. 
The environment can be seen as assuming values which are used to evaluate individuals of a species and 
partition them into two groups: adaptive and maladaptive. Those in the adaptive group survive. A species 
will go extinct if the environment assumes a value for which all the individuals are maladaptive. If there 
is enough phenotypic variation, or in other words, if the dual VC dimension of the species is high enough, 
then no matter which value the environment assumes, there will be elements on both sides of the partition. 
As long as a few individuals (hypotheses) fall into the adaptive partition, the species will survive. Another 
way of protecting against the hazards of environmental fluctuations is to restrict the domain of the species 
to a sub environment where these fluctuations are smaller in magnitude or less frequent or both. These two 
strategies represent a tradeoff and a pair of competing forces on animal populations. 
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The former strategy dictates that every species should have a large and diverse pop

ulation. Indeed I believe it might be possible to prove a "Nothing succeeds like success 

theorem" which states that the more populous a species, the more likely they are to survive 

in the future. A species might have a competitive advantage by virtue of its numbers alone. 

This fact would give rise to a pressure for species to expand their numbers. So why aren't 

all species numerous and diverse? The latter strategy dictates that every species should 

restrict its domain to the part of the environment which is most constant. This fact gives 

rise to the pressure for species to split into sub-populations (speciation), each of which is 

adapted to a small piece of the environment. So why aren't all species located in these 

environments? These two pressures, the pressure to grow, and the pressure to split, 

give rise to the partitions of organisms and environments that we observe. 

Obviously the answer to both questions in the preceding paragraph lie in the fact that 

there are severe constraints on population size stemming from limited resources. Placing 

restrictions on the types of environment which are acceptable has the advantage of creating 

stable environments, but has the disadvantage of reducing the size of acceptable environ

ment. The smaller the environment, the smaller the population size it can support, and 

consequently the smaller the amount of phenotypic variation. Given that there is a con

straint on population size, one must decide the optimal way to distribute the population's 

phenotypic variation. The two extreme strategies are wide and sparse; and narrow and 

dense. These probably correspond to the strategies of generalists and specialists respec

tively. The narrow and dense strategy will do a better job approximating a function within 

a narrow domain than the wide and sparse strategy in the same narrow domain, but the 

wide and sparse strategy will permit the approximation of a wider variety of functions. 12 

12 Adaptive radiations, the sporadic bursts of speciation found in natural history, can be understood in 
terms of the occasional discovery of new and very powerful hypothesis sets. A definition of evolutionary 
progress might be based on the idea that a more powerful hypothesis set requires fewer hypotheses for valid 
generalization than a weaker hypothesis set. Progress in evolution can be equated with the evolution of 
more powerful hypothesis sets. 
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