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Abstract 

I consider two topics in MHD turbulence. First, I work out the theory of compressible MHD turbu­

lence, including kinetic effects. I use this theory to understand features of interstella r scint illation 

t hat have hitherto been unexplained . Second , I work out the theory of imbalanced weak MHD 

turbulence. 
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Chapter 1 Compressible MHD Turbulence in 

Interstellar Plasmas 

Written with Peter Goldreich ; published in t he Astrophysical Journal, 562 , 279 (2001 ). 

(Introduction has been expanded for thesis.) 

ABSTRACT 

Radio-wave scintillation observations reveal a nearly Kolmogorov spectrum of den­

sity fluctuations in the ionized interstellar medium. Although this density spectrum 

is suggestive of turbulence, no theory relevant to its interpretation exists. We calcu­

late the density spectrum in turbulent magnetized plasmas by extending the theory 

of incompressible magnetohydrodynamic (MHD) turbulence given by Goldreich and 

Sridhar (1995) to include the effects of compressibili ty and particle transport . Our 

most important resul ts are as follows. (1) Density flu ctuations are due to the slow 

mode and t he entropy mode. Both modes are passively mixed by the cascade of 

shear Alfven waves . Since t he shear Alfven waves have a Kolmogorov spectrum , so 

do the density fluctuations. (2) Observed density fluctuation amplitudes constrain 

the nature of MHD turbulence in the interstellar medium. Slow mode density flu c­

tuations are suppressed when the magnetic pressure is less t han the gas pressure. 

Entropy mode density fluctuations are suppressed by cooling when the cascade 

t imescale is longer than the cooling t imescale. These constraints imply either that 

the magnetic and gas pressures are comparable, or that the outer scale of the t ur­

bulence is very small . (3) A high degree of ionization is required for the cascade 

to survive damping by neutrals and thereby to extend to small lengthscales. Re­

gions that are insufficiently ionized produce density fluctuations only on lengths cales 

larger than the neutral damping scale. These regions may account for the excess 

of power that is found on large scales. (4) Provided that the thermal pressure ex­

ceeds the magnetic pressure, both the entropy mode and the slow mode are damped 
on lengthscales below that at which protons can diffuse across an eddy during the 

eddy 's turnover t ime. Consequently, eddies whose extents along the magnetic fi eld 

are smaller t han the proton collisional mean free path do not contribute to t he 

density spectrum . However , in MHD turbulence eddies are highly elongated along 

the magnetic field . From an observational perspective, the relevant lengthscale is 

that transverse to t he magnetic field . Thus t he cutoff lengthscale for density fluc­

tuations is significantly smaller than the proton mean free path . (5) The Alfven 

mode is critically damped at t he transverse lengthscale of the proton gyroradius, 

and thus cascades to smaller lengths cales than either the slow mode or the entropy 
mode. 
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1.1 Introduction 

1.1.1 Compressible MHD Turbulence for Explaining Scintillation 

Diffractive scintillations of small angular-diameter radio sources indicate that the interstellar electron 

density spectrum on lengths cales 108 - 1010 cm is nearly Kolmogorov; i .e., r.m .s. density fluctuations 

across a lengthscale ,\ are nearly proportional t o ,\1 /3. 

Density fluctuations that obey the Kolmogorov scaling occur in homogeneous subsonic hydrody­

namic turbulence. They are due to the entropy mode, a zero-frequency isobaric mode whose density 

fluctuations are offset by temperature fluctuations. Since subsonic turbulence is nearly incompress­

ible , the velocity fluctuations follow Kolmogorov 's scaling. To a good approximation , the entropy 

mode is passively mixed by the velocity field , so it also conforms to the Kolmogorov spectrum 1 

Density fluctuations in Earth 's atmosphere, which cause stars to twinkle, obey t he Kolmogorov 

scaling. They arise from the passive mixing of the entropy mode. 

The electron density spectrum in the interstellar medium cannot be explained by hydrodynamic 

turbulence.2 Because the medium is ionized, magnetic effects must be accounted for. This is evident 

since the lengthscales probed by diffractive scintillations are smaller than the collisional mean free 

paths of both electrons and protons. If t he magnetic field were negligible, freely streaming plasma 

would wipe out density fluctuations at diffractive scales . In the presence of a magnetic field, electrons 

and protons are tied to fieldlines at the scale of their gyroradii. For typical interstellar field strengths, 

these gyroradii are smaller than the diffractive scales. A magnetic field thus impedes the plasma from 

streaming across fieldlines, and allows the turbulent cascade and the associated density fluctuations 

to reach very small scales across the fieldlines before dissipating. Therefore, a theory for compressible 

turbulence in magnetized plasmas is required to explain the observed density spectra. Our objective 

is to develop this theory. 

Until now, t he only description of density fluctuations in interstellar plasmas was by Higdon 

(1984, 1986). These papers, while prescient, preceded a theory for incompressible MHD turbulence, 

and therefore did not account for the full dynamics of the cascade. We compare Higdon's theory 

with ours in §1. 1O. 

Before presenting our theory of compressible MHD turbulence, we give an overview of the obser­

vations. 

1 Density fluctuations due to the Reynolds stress scale as )..2/3 . In addition, the d iss ipat ion of turbu lent kinetic 
energy y ields entropy fluctuations. The ratio of the corresponding density fluctuations to t he mean density is com­
parable to the square of the Mach number at t he lengthscale of interest; hence these density fluctuations a re a lso 
proportional to )..2/3. 

2Charge neutrality is maintained on d iffractive scales, so electron density fluctuations include compensating flu c­
tuations in the density of positive ions . 
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1.1.2 Diffractive Interstellar Scintillation (DISS) 

Rickett (1977, 1990) and Armstrong, Rickett, and Spangler (1995) review the observations of diffrac­

t ive interstellar scint illation (DISS) and their interpretation . They also discuss refr active scintilla­

tions and dispersion measure fluctuations. However, we focus primarily on diffractive measurements 

because they are much more sensitive. 

Radio waves that propagate through ionized gas are affected by plasma dispersion: their phase 

speed depends on the density of free electrons. Since free electrons are distributed in homogeneously 

in the interstellar medium, wavefronts in the ISM are distorted. One consequence is that point-like 

radio sources are observed to be scatter-broadened, i. e., their images have a fin ite angular extent, 

Bscatt. The scattering disks of a few dozen sources have been imaged- primarily extra-galactic radio 

sources, as well as a few Galactic sources such as the Galactic center and Galactic OH-IR stars. A 

much more common method for detecting scattering disks is through t heir effects on pulsars. The 

scattering disk of a pulsar is usually too small and too weak to be directly imaged. However, rays 

that travel through the center of the scattering disk arrive at Earth faster t han those that travel 

through the edges. If the distance between t he Earth and the region where scattering occurs is D , 

then the difference in travel time is Tscatt ::: (D / c)(1 - cos Bscatt) ::: (D / c)(Bscatt )2/2 (assuming that 

the distance from the scattering region to the pulsar is » D). Therefore a pulse that is emitted 

for an infinitesimal time is observed at Earth to be broadened in time by Tscatt. Pulse broadening 

has been observed directly in many pulsars. There are also many pulsars whose pulse-broadenings, 

while not directly observable, can be inferred in frequency-space; i.e. , because of pulse broadening, 

the observed pulsar signal is correlated with itself only over a narrow bandwidth , 6.vscatt "-' I/Tscatt ; 

this is called t he decorrelation bandwidth. 

1.1.3 Basic Theory of DISS and the Scattering Measure 

If a plane wave is incident on a localized region of scattering material, then fronts of constant phase 

are distorted. In this subsection, we calculate the typical angle by which phase fronts are bent. This 

angle is closely related to the observed angular size of a point-like radio source that is located at an 

infinite distance behind the scattering region. We will see that the angular size depends on a single 

combination of parameters within the scattering region: the scattering measure. 

Because of plasma dispersion, a radio wave that travels through ionized plasma has phase speed 

c(1 - (vp /v)2)-1/2, where c is the speed of light, v is the radio-wave frequency and vI' is the plasma 

frequency (e.g., Spitzer 1978). Neglecting factors of order unity throughout , (vp /v)2 "-' nrej,2 , where 

n is the electron number density, re is the classical electron radius, and j, is the radio-wavelength (we 

use a tilde to differentiate radio-wavelength from lengthscale, which we denote by A in this thesis); 

for the observations of interest, nre5.2 « 1. As a result , a wave that travels through a region of 
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plasma for a distance A, has its phase increased by 

(1.1 ) 

relative to the phase it would have had if it had travelled through vacuum. 

Let us consider the scattering of a plane wave by flu ctuations in the scattering region that have 

lengthscale A. 3 We label the r.m.s. electron density fluctuation on th is lengthscale n A . After a 

plane wave p enetrates the scattering region a distance A along the line sight, it becomes distor ted; 

the r.m.s. value of its phase is ~ nA A[re5:.]. As the plane wave penetrates fur ther, the phase change 

along any line of sight due to plasma dispersion changes randomly every step of length A, as in a 

random walk. The r.m.s. phase thus increases as the square root of t he number of steps . If the 

scattering region has an extent Lturb along t he line of sight (where Lt llrb » A), then the r.m .s phase 

of the wavefront after Ltllrb is 

(1.2) 

Therefore a front of constant phase becomes corrugated; t he r.m.s. bending angle is 

(1.3) 

As long as cPA » 1, eA is t he angle by which rays are deflected. 

Let us next consider the scattering when density fluctuations exist on a range of lengthscales. 

We assume a Kolmogorov density spectrum on lengthscales of interest, n A ex A1
/

3
. If we insert 

this n A into equation (1.2), we find cPA ex A5/ 6 ; we then see from equation (1.3) that eA ex A- 1/ 6 . 

Larger values of eA result from smaller lengthscales. The smallest relevant length scale is that at 

which cPA ~ 1. It is called the diffractive lengthscale, A diff . On smaller scales, cPA < 1, so two rays 

separated by A < Adiff at the scattering region can only partially interfere. As a result, the observed 

angular size of the scattering disk is eAdiff" 

Before calculating Adiff and e Adirr , it is convenient to introduce the scattering measure (SM), 

(1.4) 

which is independent of lengthscale. Equation (1.2) becomes 

(1.5) 

3We assume isotropy, so oX refers to lengthscales both transverse and parallel to the line of s ight. A lthou gh MI-ID 
turbu lence is anisotropic on small scales, the angle-averaged spectru m is nearly isot ropic. 
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At the diffractive scale ¢), ~ 1, so 

(1.6) 

Typically ),diff ~ 108 _1010 cm. Inserting ),diff into equation (1.3) , we have for the observed angular 

size of t he scattering disk: 

B B '/ ' SM3/ 5 ,1l /5 6/5 scatt"""" Adiff rv /\ A diff r-...J Are ' (1.7) 

It is set by SM. Since Tscatt ~ l/b.vscatt ~ (D/c)(Bscatt)2, all DISS measurements are characterized 

by SM (in addition to D and the spectral slope). 

1.1.4 Examination of Assumptions 

One of our reasons for repeating the above well-known calculation of Bscatt is to cla rify what as­

sumptions have been made. We do that in this subsection. 

First, we assumed that the amplit ude of t he Kolmogorov density spectrum , n),/ ),1/3, is constant 

along t he line of sight. If it varies, then it is apparent from our derivation t hat SM should simply 

b e defined as the integral of (n),)2 / ),2/3 along the line of sight (instead of eq. [1.4]) ; i.e., SM is an 

extensive quantity. 

Second , we assumed that n), ex ),1/3 in the vicinity of ),c1iff. More generally, if n), ex ),a where 

a < 1/2, t hen instead of equation (1.7) we derive 

B [SM ,2a+3r2]1/(2a+1) 
scatt rv a A e ) (1.8) 

where SMa is the generalized scattering measure, SMa ~ (nV),2a) Lturb.4 The exponent on '\, i.e., 

(2a + 3)/(2a + 1), is observable from the scalings of DISS measurements with radio-wavelength. 

While it is often observed to be near 11 /5 (implying t he Kolmogorov value a = 1/3), there are a 

number of lines of sight where it differs substantially from this value. 

Third , we assumed that the radio source is at infinity. To consider t he more genera l case, we 

first define D1 as the Earth-to-scattering region distance and D2 as t he scattering region-to-radio 

source distance. Then, as long as D1 < D2, the Bscatt given by equation (1.7) is approximately the 

angular size of the scattering spot (viewed from Earth). If the converse is true (D1 > D2)' then the 

Bscatt given by equation (1.7) corresponds to the angular spot size at the scattering screen as viewed 

from the source; from Earth, the observed spot size would be Bobs ~ (Dd DdBscatt < Bscatt. When 

4Cordes et al. (1991) define their SM as fo llows. They assume that the density power spect rum is given by 
Inkl2 = C~k-"' , where nk is the Fourier transform of the density fie ld n(x). They then define SM as the integra l 
of C~ a long the line of s ight . So their C~ is nearly equal to our nV)..2n, aside from an order unity multiplicat ive 
factor that can eas ily be calcul ated by perform ing the Fourier transform; their SM is nearly equal to our SMa; and 
Q = 2a + 3. 
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inferring SM from observations of angular broadening, one often assumes that Dl < D 2 , which 

allows t he distance correction to be ignored. However, this could underestimate SM. 

The corresponding problem exists also for measurements of either temporal broadening or decor­

relation bandwidth, which form the bulk of DISS observations . For arbitrary Dl and D 2 , Tscatt ~ 

(min{Dl, D2}/C)(escatt)2, where escatt is given by equation (l.7), and similarly for .6.vscatt (i .e., 

.6.vscatt ~ l/Tscatt). Typically, the Earth-to-pulsar distance is estimated from the observed disper­

sion measure together with a model of the electron density distribution within the Galaxy. The 

scattering region is assumed to like halfway to the pulsar , so the inferred 8M is typically an under­

estimate. 

1.1.5 Observational Overview 

Within a kiloparsec of the galactic plane, the contributions to C; ~ (n>Y / )..2 / 3 appear to be of 

two kinds. There is a mean background with C; ~ 1O-3.5 m -2o/3, together with localized regions, 

mostly close to the galactic plane, in which C; is considerable larger (Cordes, Weisberg, and Boriakoff 

1985). Along one line of sight through t he HII region complex NGC 6334, e ~ 3" at radio-frequency 

~ l.5 GHz, making this the strongest scattered source yet observed (Moran et al. 1990). Equation 

(l.7) implies that SM~ 2 x 103m -2o/3kpc. The authors assume t hat the thickness of the scattering 

screen is ~ 1 pc , which means that C; ~ 2 x 106m-2o/3. By contrast, in the local bubble of hot gas 

surrounding the sun , C~ ~ 1O- 4.5m-2o/3 (Phillips and Clegg 1992) . 

The background value of C; is contributed by the diffuse, ionized, interstellar medium (DIM). 

The DIM has mean (local) electron density n ~ 0.1 cm -3 , and temperature T ~ 104 K. With a 

fi lling factor of about 0.2 in the galactic plane, which some evidence suggests approaches unity at 

Izl 2: kpc, it probably accounts for most of the electron density deduced from pulsar dispersion 

measures (Reynolds 1991). The DIM appears to be ionized by 0 stars (Mathis 1986) . This requires 

that about 0 .14 of t he ionizing photons from 0 stars manage to escape being absorbed by neutral 

gas near the galactic plane. A detailed model of the ionization structure produced by 0 stars within 

2.5 kpc of t he sun shows good agreement with observational determinations of both electron density 

and emission measure (Miller and Cox 1993). 

A useful diagnostic of turbulence in the Galaxy is the relation of a pulsar's SM to its dispersion 

measure, DM. The dispersion measure is defined as the integral of n along the line of sight. It can 

be used as a surrogate for distance. Cordes et al. (1991) plot the 8M's and DM 's of over a hundred 

pulsars. They find that for nearby pulsars (with small DM), SM increases roughly linearly with DM. 

This is consistent with a constant level of C;, contributed by the DIM. However, 8M ex. DM3 when 

DM2: 100 pc cm- 3 , i. e., for distances greater than a few kpc. 

Scattering measures that increase faster t han distance can arise if scattering occurs in localized 

structures, such as HII regions, supernova shocks, or stellar wind bubbles. To be specific, let us 
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consider HII regions. The denser an HII region , t he more it contributes to SM. The integrated SM 

through the Galaxy will increase faster than distance if high-density HI! regions are sufficiently rare. 

Quantitatively, we denote the number of HII regions per unit volume that have electron densities 

between nand n + dn by N (n) dn. If the distance to the source of radio waves is D , then the "optical 

depth" for t he line of sight to intersect HI! regions with electron density between nand n + dn is 

(N(n)dn) . A(n) . D , where A(n) is the cross-section of t hese HII regions. So the expected value of 

SM is 

(SM) ~ J dnN(n) . A(n) . D . SMreg(n) , (1.9) 

where SMreg(n) is the SM through a single region with density n. To determine the limits of this 

int egral, we assume that most of the contribution to (SM) is from regions with large n, i.e., that 

nN . A . SMreg is an increasing function of n for the n's of interest; otherwise, we would have 

(SM) ex D. For (SM) not to diverge, t he optical depth, nN· A· D , must decrease with increasing n. 

The largest n which contributes to (SM) is that at which the optical depth is unity. Therefore, 

(1.10) 

where n max is given by 

(1.11) 

Thus far we have kept our discussion sufficiently general that it can be applied to other objects, 

such as supernova shocks or extreme density fluctuations in a t urbulent cascade (i .e., Levy flights , 

see Boldyrev and Gwinn 2002); n could represent any property that varies from object to object , 

such as the age of supernova remnants . Let us now compute the distribution funct ion of HI! regions, 

assuming that HI! regions are responsible for the scattering, and that (SM) ex D3. We take the 

distribution function to be given by 

(1.12) 

Our goal is to calculate b. The radius of an HII region (the Stromgren radius) is R s ~ 70( cm- 3 /n)2/3 

p c (e .g., Spitzer 1978) . Its cross-sectional area is A ~ R; ex n - 4
/ 3 . If t he outer scale of the turbulent 

density spectrum is ~ R s , t hen SMreg ~ n 2 R !/3 ex n 16/ 9 (eq. [1.4]). From equation (1.11), with 

nNreg given by equation (1.12), n max ex D 3/( 4-3b). Substituting this into equation (1.10), we have 

(SM) ex D 16/( 12-9b). For this to be proportional to D 3 , we must have b = (4/3) - (16/27) ~ 0.74. 

1.1.6 Two Constraints on the Turbulence 

We consider two general constraints on the turbulence. 
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Constraint From EM/SM 

The first constraint comes from comparing observations of SM with observations of EM , the emission 

measure. This constraint has been considered by other authors, e.g., by Cordes et al. (1991). 

Assuming that the density spectrum is Kolmogorov in the vicinity of the diffraction scale and that 

the scattering material is homogeneous, SM ~ (n>. 2/ ,\2/3) Lturb , where Ltllrb is the path-length 

through the turbulence along the line of sight (eq. 1.4). We define the dimensionless amplitude E, 

(1.13) 

where n is the number density of ionized particles and Lout is the outer scale, i. e., the lengthscale 

a t which the turbulence is stirred ; it satisfies Lout < Lturb. If the Kolmogorov spectrum extends to 

Lalit' then E = nLou,!n. In terms of E, we have 

2 2L 
SM ~ E n turb 

2/3 
Lalit 

(1.14) 

The emission measure is defined as the integral of n 2 along the line of sight. It has been measured 

along m any lines of sight, e.g ., from free-free emission or from Ra. The turbulent gas contributes 

n2Lturb to EM. If a fraction f < 1 of the ionized gas along the line of sight contributes to SM, then 

(1.15) 

We divide equation (1.15) by (1.14), which yields an expression for the outer scale: 

3 3/2 (EM) 3/2 3 3/2 
Lalit ~ f. f SM = E f LE M / SM , (1.16) 

where we define LEM / SM == (EM/SM) 3/2 . Since f < 1 and , typically, f. < 1, the outer scale is smaller 

than LEM / SM ' Lines of sight with large SM tend to have surprisingly small EM; L8M / SM is often 

much sm aller than a parsec. It is a challenge to find a site in the ISM that gives such small outer 

scales. 

One of the main goals of the body of this chapter is to calculate E in a compressible MRD 

cascade. We summarize our result as follows (neglecting neutral damping and assuming that the 

proton damping scale is smaller than the diffraction scale): 

= {M5/2 ( Cs teoOI) 1/2 _1_} 
E max L '(31/2' out 

(1.17) 

where M is the Mach number of the turbulence, teool is the cooling time, and (3 is the ratio of 

thermal to magnetic pressure. In deriving this result , we assume that M Cs t eool < Lalit, M < 1, and 
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f3 > 1, so E < 1. If the magnetic field is amplified by the turbulence, the smallest f3 achievable is 

f3m in ~ M - 2
. 

Constraint From Energetics 

The second constraint on L out is based on energetics. In all of the sources that we shall consider , we 

expect that the kinetic energy that is required to stir the turbulence is less than the thermal energy 

that is r adiated away by the gas. If this were not true, then the turbulence would heat the gas faster 

than it could cool. Furthermore, most astrophysical sources are ineffi cient in converting their energy 

output into kinetic energy- most of the energy is radiated away. To be quantitative, kinetic energy 

must be put into the turbulence at the rate Bkin ~ (mpvVt,\) (nLturbA), where mp is the proton 

mass, v,\ is the velocity of the gas on lengthscale A, h is the cascade time on this scale, and A is 

t he area occupied by the turbulence transverse to the line of sight. In both hydro and strong MHD 

turbulence, t,\ ~ A/V,\. Since t he energy cascade rate must be independent of lengthscale in steady 

state, this cascade time implies that v,\ oc A1 / 3. We denote the Mach number of the t urbulence as 

follows 
_ v,\/ A1/ 3 

M = 1/3 ' 
cs/L out 

(1.18) 

where Cs is the sound speed. In terms of M , we have 

(1.19) 

We wish to compare this with Beoo), the rate at which energy is radiated away by the ionized gas 

along the line of sight (both turbulent and quiescent gas) : 

(1.20) 

where t eoo l is the cooling time. So Bkin/Beool ~ M 3 j(csteoo l / L o ut), and our requirement that 

Bkin < Beool can be rewritten as follows: 

L out> M 3 j Cs teool . (1.21) 

Interstellar gas in photoionization equilibrium typically has a temperature of ~ 1041{ a nd Csteool ~ 

0.2(cm - 3 / n) pc. This Cs t eoo l probably charact erizes much of the interstellar gas that is responsible 

for DISS . If the turbulence is trans-sonic (M ~ 1) and j ~ I , then Lou t should be larger than Csteool. 
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COIllbining the Two Constraints 

Inequality (1.21) can be combined with our other constraint (eq. [1.16]). For given EM/ SM, tcool, 

M , and E, this leads to a lower limit on f and hence a lower limit on Lout ; e.g., if E ~ I/ VTJ < 1 and 

M ~ 1 , 

L > {33 (C s tcoo l )3 
out (LEM / sM )2 (l.22) 

Alternatively, we can address the following question : given EM, what is the largest possible SM? 

From equations (l.14) and (l.15), SM ~ E2 fEM/L~~~. So we should maximize E and f (i .e. , E ~ 1 

and f ~ 1) and minimize Lout . The smallest Lout t hat can be achieved without overheating the 

medium is given by equation (1.21); so the maximum SM is 

1 EM 
SMmax ~ M 2 (t )2/3 

Cs cool 
(1.23) 

For sufficiently small M , SMmax can be made as large as desired. However , we shall see that ma ny 

astrophysical sites are expected to have M ~ 1. 

1.1.7 SM From Turbulence Behind Shocks 

Radio waves that pass through a shock front in the ISM are scattered both by the density discon­

tinuity across the shock and by density fluctuations in the turbulence behind the shock. In this 

subsection, we show that scattering in the turbulence a lways dominates. 

Let us consider the scattering across a single adiabatic shock, where the density jump across the 

shock is ~ n, with n the post-shock density. We assume that the post-shock gas is fu lly ionized. To 

calculate the amount of scattering, we first calculate the difference between the accumulated phases 

along two lines of sight separa ted by A (see §1.1.3). Associated with turbulence behind the shock, 

from equation (1.2) , 

,./,turb ~ n A(L / A)1 /2 [1' 5:] ~ nA5 / 6 L1/ 6 [1' 5:] 'f' A A out e out e , (1.24) 

where we have assumed that the extent of t he turbulence is comparable to the outer scale (Lturb ~ 

Lout) and that n A ~ n(A/Lout )1/3 . Associated with the discontinuity across the front , 

(1.25) 

since the column densities along the two lines of sight differ by ~ nA. Therefore 

(1.26) 

and as long as Lout is larger than the diffractive scale, ¢tsc is negligible. We expect Lout» Ad iff ~ 
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108 - 1010 cm , SO the signature of the shock front is always smothered by t he turbulence behind it. 

If we erroneously neglect t he turbulence, we find from using equation (1.25) tha t 61scatt ex ).2 , 

which is consistent with observations along certain lines of sight. (Recall that the Kolmogorov 

result is 61scatt ex )'11 /5, eq. [1.7].) Therefore it has been frequently claimed in the li terature that 

the ).2 scaling can be explained by shocks (e.g., Lambert and Rickett 2000). However , shocks give 

)'11 /5 because of the turbulence behind them. A more plausible explanation for the ).2 scaling is a 

t urbulent cascade with an inner scale that is larger than the diffractive scale (e.g ., if the cascade is 

cu t off at a relatively large scale by damping caused by neutral atoms, see §1.6.5). 

1.2 Incompressible MHD Turbulence 

Our compressible theory extends the theory of incompressible MHD turbulence given by Goldreich 

and Sridhar (1995) by including a slightly compressible slow mode and a passive ent ropy mode. We 

also consider kinetic effects: on sufficiently short lengthscales, the mean free paths of the particles 

are significant , and the equations of compressible MHD must be modified . This is especially im­

portant for damping. Before considering compressible t urbulence, we discuss incompressible MHD 

turbulence, focusing on issues that are important for the compressible case. 

Goldreich and Sridhar (1995, 1997) propose a picture of the dynamics of incompressible strong 

MHD turbulence and describe the power spectra of Alfven waves, slow waves, and passive scalars. 

We extend their picture to cover additional features such as the parallel cascades of both slow 

waves and passive scalars. Unless explicitly stated otherwise, throughout this chapter "parallel" and 

"transverse" refer to the orientation relative to t he local mean magnetic field , which is the magnetic 

field averaged over the scale of interest. Our discussion of incompressible MHD turbulence, while 

somewhat lengthy, is important for understanding the extension to compressible turbulence t hat 

follows. 

Consider a uniform unperturbed plasma with an embedded magnetic fi eld. Turbulence is excited 

at the MHD outer scale, LMHD , by random and statistically isotropic forcing, with r .m.s. velocity 

fluctuations and r.m.s. magnetic field fluctuations (in velocity units) which are compara ble to the 

Alfven speed , VA. 5 

As t he turbulence cascades from the MHD outer scale to smaller scales, power concentrates in 

modes with increasingly transverse wave vectors. The inertial range velocity spectrum applies to 

lengthscales below LMH D but above the dissipation scale. It is anisotropic and is characterized by 

( 
A.L ) 1/3 

VA --
LMHD ' 

(1.27) 

5The forcing flu ctuations may a lso be less VA, in which case LMHD would be defi ned as the lengt hscale at which 
t he flu ctuations ext rapola te to VA . 
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\ 2/3 L 1/3 
/\ 1- M HD (1.28) 

the inertial range magnetic field spectrum is identical. Here A1- is t he lengthscale transverse to the 

local mean magnetic field, vA.L is the r.m.s. velocity fluctuation across A1-, and A ll is the lengthscale 

parallel to the local mean magnetic field across which the velocity fluctuation is vA.L' We interpret 

A ll as the elongation along the magnetic field of an eddy which has a size A1- tra nsverse to the 

magnetic field; it is not an independent variable, but is a function of A1- . Deep within the inertial 

range, where >- 1- « L MH D, eddies are highly elongated along the magnetic field: A ll » >' 1- . In the 

following subsections, we explain the physics underlying the spectrum , and consider some of t he 

im plications. 

1.2.1 Alfven Wave Spectrum 

Arbitrary disturbances can be decomposed into Alfv E'!11 waves and slow waves. The Appendix summa­

rizes the properties of these waves in t he more general case of compressible MHD . In incompressible 

MHD , Alfven waves and slow waves are usually referred to as shear-Alfven waves and pseudo-Alfven 

waves, but the former designation is more convenient for making the connection with compressible 

MHD. 

Our understanding of the MHD turbulence is based on two facts: (i) MHD wave-packets prop­

agate at the Alfven speed either parallel or ant iparallel to the local mean magnetic field ; and (ii) 

nonlinear interactions are restricted to collisions between oppositely directed wave-packets. These 

facts imply that in encounters between oppositely directed wave-packets, each wave-packet is dis­

torted as it follows fi eld lines perturbed by its collision partner. A wave-packet cascades when the 

fieldlines that it is propagating along have spread by a distance comparable to its transverse size. 

Alfven waves have quasi two-dimensional velocity and magnetic field fluctuations which are 

confined to planes perpendicular to the local mean magnetic field . As their more complete name 

shear-Alfven implies, they dominate the shear of the mapping of planes t ransverse to the local mean 

magnetic field produced by field line wander. Thus, Alfven waves control t he dynamics of MHD 

cascades; slow waves may be ignored when considering the dynamics of Alfven waves. 

In strong MHD t urbulence the cascade time of an Alfven wave-packet is comparable to its travel 

time across the parallel length of a single oppositely directed Alfven wave-packet of similar size . 

Goldreich and Sridhar (1995) refer to t his balance of times cales as critical balance. It relates the 

parallel size of a wave-packet, All , to its transverse size, A1- . Wave-packets of t ransverse size A1-

cascade when the fieldlines they follow wander relative to each other by a transverse distance A1-. 

Critical bala nce implies that this occurs over a parallel distance A ll ' 

The Alfven wave spectrum is given by equations (1.27) and (1.28) , with vA.L referring to the 

velocity fluctuations of the Alfven waves. It is deduced from two scaling arguments: (i) Kolmogorov 's 
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argument that the cascade time tA L ~ ).. l../vAL leads to an energy cascade rate, Vt/tA L ~ v~ L / ).. l.. ' 

which is independent of lengthscale; and (ii) the critical balance assertion that the linear wave p eriod 

which characterizes the Alfven waves in a wave-packet is comparable to the nonlinear cascade time 

of tha t wave-packet, i. e., vAl All ~ l /t AL · 

Before considering slow waves in MHD turbulence, we discuss two topics that are governed by 

the dynamics of Alfven waves only: eddies and passive scalars. 

1.2.2 Eddies 

Because of their transverse polarization, Alfven waves are responsible for the wandering of magnetic 

fieldlines. A snapshot of wandering fieldlines is shown in Figure 1.1. Each of these field lines passes 

through a localized region of size ).. l.. in one plane transverse to the mean magnetic field . Away from 

this plane the bundle of fieldlines diverges due to the differential wandering of the individual lines. At 

a second plane, the bundle's cross sectional area has approximately doubled. Critical balance implies 

that the distance to this second plane is comparable to the parallel wavelength which characterizes 

t he bundle, A ll ' As the bundle spreads, other fieldlines, not depicted , enter from its sides. In general, 

the neighboring fieldlines of any individual field line within a region of transverse size ).. l.. change 

substantially over a parallel distance of order All' It is natural to think of A ll as the parallel size 

of an eddy that has transverse size ).. l... Two eddies with the same transverse lengthscale that are 

separated by a parallel distance greater than their A ll incorporate different fieldlines, and hence are 

statistically independent. Eddies are distinct from wave-packets. The former are rooted in the fluid 

whereas the latter propagate up and down magnetic fieldlines at the Alfven speed . 

Aside from their anisotropy, eddies in MHD turbulence a re similar to those in hydrodynamic 

turbulence. They are spatially localized structures with characteristic velocity flu ctua tions and 

lifetimes. The r.m.s. velocity difference between two points is determined by the smallest eddy that 

contains both. Different eddies of a given size are statistically independent. The three-dimensional 

spectrum for r.m.s. velocity fluctuations across transverse lengthscales ).. l.. and parallel lengthscales 

).. 11 is 

for ).. 11 « A ll 

for ).. 11 » A ll 
(1.29) 

There is negligible addit ional power within an eddy on parallel lengths cales smaller than All, so for 

).. 11 « A ll ()..l..) , VAL,AII = VAL ' For).. 11 » AII( ).. l..), the smallest eddy that contains both ).. l.. and ).. 11 

has a transverse length scale )..~ which satisfies All ()..~) = ).. 11 ' The velocity fluctuation of this eddy 

is obtained by solving this equation for )..~ (eq. [1.28]) , and inserting this )..~ in equation (1.27). 

Contours of the three-dimensional spectrum are plotted in Figure 1.2. Each contour represents 
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Figure 1.1: Wandering of Magnetic Fieldlines 
A fieldline bundle of transverse size ).1- diverges after a parallel distance A ll, where A ll is t he parallel 
size of an eddy (eq. [1.28]) as determined by critical balance. 
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eddies of a characteristic size. 

Maron and Goldreich (2001) give the three-dimensional spectrum in Fourier-space. Since eddies 

that are separated by more than A ll are statistically independent, the power spectrum at a fixed 

transverse wavenumber k 1. is independent of the parallel wavenumber kll in the corresponding region 

of Fourier-space , i.e ., where kill 2: A ll W1:l). 
The turbulent cascade is generally viewed as proceeding from larger eddies to smaller eddies as 

this is the direction of energy transfer. However , smaller eddies cascade many times in the t ime t hat 

a large eddy cascades. This is particularly important in turbulent mixing. Consider the evolution of 

two fluid elements whose init ial separation is larger than the dissipation scale. On cascade timescale 

tAl.' their transverse separation will random walk a distance A1. as the result of the cascade of 

smaller eddies . Therefore, on a timescale comparable to an eddy 's cascade time, the transverse 

locations of its component fluid elements- whose sizes may be considered to be comparable to the 

dissipation scale- are completely randomized . Moreover , since mixing a t the dissipation scale causes 

neighbouring fluid elements to be rapidly homogenized , transverse smoothing of the eddy occurs on 

the timescale t hat it cascades. Rapid transverse mixing in MHD turbulence is similar to the more 

familiar isotropic mixing in hydrodynamic turbulence. 

1.2.3 Passive Scalar Spectrum 

A passive scalar, a , satisfies the continuity equation, (a/at + v . V )a = 0, and does not affect 

the fluid 's evolution. It could represent , for example, the concentra tion of a contaminant. Vve 

consider the spectrum of a passive scalar mixed by the Alfven wave cascade. These considerations 

are important for our subsequent investigation of compressible turbulence. They are also helpful for 

understanding the slow wave spectrum. We discuss the passive scalar spectrum both in the inertial 

range and also below the scale at which the Alfven wave spectrum is cut off. 

Passive Scalar Spectrull1 in the Inertial Range 

As we show in this subsection , the transverse spectrum of the passive scalar in the inertial range is 

(1.30) 

where A1. is the lengthscale transverse to the local mean magnetic field and a Al. is the r.m.s. fluctu­

ation in the passive scalar across A1.. The passive scalar parallel spectrum is the same as the Alfven 

wave parallel spectrum given in equation (1.28) , where All is now to be interpreted as the lengthscale 

parallel to the local mean magnetic field across which the passive scalar fluctuation is aA l. · 

Mixing of the passive scalar is due to Alfven waves. Slow wave mixing is negligible . This is 

because transverse velocity gradients are much larger than parallel ones in MHD turbulence. Thus 
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Alfven waves, whose velocity fluctuations are perpendicular to the magnetic field , are much more 

effective at mixing than slow waves, whose velocity fluctuations are nearly parallel to the magnetic 

field. The transverse cascade arises from the shuffling of fieldlines as Alfven waves propagate through 

the fluid. 

The transverse spectrum (eq. [1.30]) follows from the Kolmogorov-like hypothesis that the cas­

cade rate of the "energy" in the scalar field is independent of lengthscale; i.e., (Tt it),l. is constant , 

where t),l. is the passive scalar cascade t ime, which is assumed to be proportional to the cascade time 

of Alfven waves. Comparing this with the constancy of the kinetic energy cascade rate, vt it),l. , we 

conclude that (T),l. ex v)'l.' which implies equation (1.30). A similar argument holds for the cascade 

of a passive scalar in hydrodynamic turbulence (e.g., Tennekes and Lumley 1972). 

The parallel cascade of a passive scalar is more subtle. It might appear that a passive scalar 

cannot cascade along fieldlines since, neglecting dissipation, both the scalar and the magnetic field 

are frozen to the fluid , and thus the scalar must be frozen to fieldlines. In that case there certainly 

could not be a parallel cascade. If the scalar were injected on large scales, then flu ctuations with 

smaller wavelengths along the magnetic field would not be generated. However, dissipation cannot 

be neglected. It is an essential part of MHD turbulence , as it is of hydrodynamic turbulence. For 

example, the description of turbulent mixing in §1.2.2 depends crucially upon small scale dissipation. 

Perhaps the best way to understand the parallel cascade is to consider mixing on the transverse 

lengthscale A1. within two planes which are perpendicular to the local mean magnetic field , and which 

are separated by a parallel distance larger than All' Velocity fluctuations within the two planes are 

statistically independent. This is evident because a bundle of fieldlines cannot be localized within 

a transverse distance A1. over a parallel separation greater than A ll ' Even a pair of fluid elements, 

one in each plane, t hat are initially on the same fieldline are mixed into two regions with different 

values of passive scalar concentration. It follows that the parallel cascade of the passive scalar also 

o beys equation (1. 28). 

Passive Scalar Spectrum Below Alfven Wave Cutoff 

A passive scalar cascade may extend below the transverse scale at which the MHD cascade is cut 

off. Mixing on these scales is driven by fluid motions at Aclltoff which results in a scale-independent 

mixing time equal to the cascade t ime at Aclltoff. This yields 

(T), l. = constant , A1. < Acutoff . (1.31) 

A similar argument applies in hydrodynamic turbulence. Tennekes and Lumley (1972) call t his 

regime in hydrodynamic turbulence the viscous-convective subrange. 
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1.2.4 Slow Wave Spectrum 

The slow wave spectrum is the same as that of the Alfven waves. It is given by equations (1.27) 

and (1.28), with vA.l referring to the velocity fluctuations of the slow waves. This is a consequence 

of the similar kinematics of slow waves and shear Alfven waves and the fact that both are cascaded 

by shear Alfven waves. 

Slow waves obey the same linear wave equation as Alfven waves, and to lowest nonlinear order 

they travel up and down the local mean magnetic field lines at the Alfven speed just as Alfven waves 

do. However , the dynamics of the MHD cascade is controlled by the Alfven waves (Goldreich and 

Sridhar 1997, Maron and Goldreich 2001) because their velocity and m agnetic field fluctuations are 

perpendicular to the local mean magnetic field , whereas those of the slow waves are nearly parallel 

to it . Since perpendicular gradients are much larger than parallel ones in the MHD cascade, Alfven 

waves are much more effective at mixing than are slow waves. Hence, Alfven waves cascade both 

themselves and slow waves, whereas slow waves cascade neither. 6 

The transverse mixing of t he slow waves by Alfven waves is analogous to t he mixing of a passive 

scalar. As discussed in §1.2.3, a passive scalar assumes the same inertial range spectrum as t hat of 

the velocity field which is responsible for its mixing. Thus, equation (1.27) is also applicable to the 

velocity fluctuations of the slow waves. 

Similarly, the parallel cascade of slow waves is analogous to the parallel cascade of a passive 

scalar. Since Alfven waves cascade in the time they move a distance All, slow waves separated by 

this distance are independently mixed. Thus, equation (1.28) also applies to slow waves . There 

is, however , a conceptual difference between the parallel cascades of t he passive scalar and of the 

slow mode. In the absence of dissipation a passive scalar is frozen to fieldlines, whereas slow mode 

wave-packets travel along them at the Alfven speed . A passive scalar has a parallel cascade because 

Alfvenic fluctuations are statistically independent within two transverse planes frozen in the fluid 

and separat ed by All' The parallel cascade of slow waves occurs because two transverse planes 

sepa rated by All and travelling at the Alfven speed in the same direction experience uncorrelated 

sequences of distortions suffered as a result of interactions with oppositely directed Alfven waves . 

Nevertheless, these two requirements are both satisfied in the MHD cascade when the transverse 

planes are separated by a distance great er than A ll' and so the passive scalar and the slow mode 

have the same parallel spectrum. Whereas passive scalar mixing is due to eddies, slow wave mixing 

m ay be thought of as due to travelling eddies, i.e., eddies which travel up and down the m agnetic 

field at the Alfven speed . 

6We a re assuming t hat Alfven and s low waves have comparable strengt hs at a given lengt hscale . 
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1.2 .5 N umerical Sim ulations 

Numerical simulations offer some support for the above description of incompressible MHD turbu­

lence. Those by Cho and Vishniac (2000b) support both equations (1.27) and (1.28) , and those by 

Muller and Biskamp (2000) support equation (1.27). However , although the simulations of Maron 

and Goldreich (2001) support equation (1.28), they yield vAl. ex A~t instead of equation (1.27) . 

Because the simulations of Maron and Goldreich (2001) are stirred highly anisotropicaliy, whereas 

those of Cho and Vishniac (2000b) and Mulier and Biskamp (2000) are stirred isotropicaliy, it is not 

clear whether these disparate results conflict . Maron and Goldreich (2001 ) speculate that the dis­

crepancy between their spectrum and the scaling prediction of Goldreich and Sridhar (1995) results 

from intermittency. In any case, we expect that the physical picture of a critically balanced cascade, 

which underlies Goldreich and Sridhar's description of MHD turbulence, remains valid. Even if the 

spectrum is proportional to A~4, we expect that the results of this investigation- which assumes a 

spectrum proportional to A ~3 - would not be significant ly altered. 

The simulations of Maron and Goldreich (2001 ) confirm that a passive scalar has the same 

transverse spectrum as that of Alfven waves, although both are proport ional to A ~4 . They a lso 

indicate that the parallel cascade of a passive scalar conforms to equation (1.28). 

Maron and Goldreich (2001) present results from simulations of the interaction between oppo­

sitely directed slow and Alfven waves; the slow waves cascade whereas the Alfven waves do not. 

They also compute the spectrum of slow waves in a simulation of MHD turbulence and find that 

both its transverse and longitudinal behavior matches t hat of the Alfven wave spectrum. 

Kolrnogor ov Constants 

Scaling arguments do not yield values for the Kolmogorov constants, the order-unity multiplicative 

constants of the spectrum. However , they can be obtained from simulations. We define them such 

that equation (1.27) remains valid; i. e., we take L MHO to be the separation at which the r.m.s. 

velocity difference is equal to , or extrapolates to, VA. Two Kolmogorov constants, Mil and M t , are 

needed in t his chapter: 

VA A.L => A _ M-1 A2/3 L 1/3 
- -A II - II .L MHO 
VAl. II 

(1.32) 

vA tA l. 

A ll 
(1.33) 

In these definitions , A.L and All are the inverses of the wavenumbers transverse and parallel to the 

local mean magnetic field, and hl. is the cascade time of waves with transverse wavenumber A 1:1
. 
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From t he numerical simulations of Maron and Goldreich (2001), 

M il ~ 3.4 and Mi ~ 1.4 . (1.34) 

Because these simulations yield a transverse spectrum which is proportional to A ~t instead of A i'3, 
the resulting Kolmogorov constants are not truly constant . 

1.3 Compressible Turbulence: Overview 

Our primary concern is interstellar scintillation, which is affected by electron density fluctuations 

on very small scales, typically 108 - 1010 cm for diffractive scintillation. In the remainder of this 

chapter , we calculate the spectrum of density fluctuations which results from compressible turbulence 

in magnetized plasmas with parameters appropriate to the interstellar medium . Throughout, we 

consider plasmas that have more ions t han neutrals, and t hat have 1 ;S {3 < 00, where {3 is the ratio 

of the thermal pressure to t he mean magnetic pressure: {3 == 87rpl B 2 = 24Iv~. Here, CT == (pi p)1 / 2 

is t he isothermal sound speed, VA is the Alfven speed , p is the thermal pressure, B is the magnetic 

field strength, and p is the mass density.7 The incompressible limit corresponds to {3 = 00. 

On the lengthscales that we consider , compressible MHD is a good approximat ion for the dy­

namics of the ionized interstellar medium. Kinetic effects, where important, may be accounted for 

by simple modifications to the MHD equations. Therefore, we turn our attent ion to turbulence in 

compressible MHD. 

The turbulent velocity spectrum in compressible MHD is approximately the same as the turbulent 

velocity spectrum in incompressible MHD , because the Alfven mode remains incompressible in a 

compressible medium, and the slow mode is only slightly compressible. Thus, the velocity spectrum 

for both of these modes is given by equations (1.27) and (1.28). The Appendix summarizes the 

properties of the relevant modes in compressible MHD. 

There are two additional modes in compressible MHD which are not present in incompressible 

MHD. One of these is the fast mode. However, as long as {3 .2: a few, the fast mode is essentially a 

sound wave. Its phase speed is larger than the phase speed of either the Alfven mode or the slow 

mode, and so the fast mode does not couple to them. Thus, we ignore the fast mode. An analogous 

approxima tion is often made in subsonic hydrodynamic t urbulence, where sound waves have little 

influence on the turbulent cascade. Some support for our neglect of the fast mode is provided 

by numerical simulations. Balsara and Pouquet (1999) show that in simulations of turbulence with 

Mach number of order unity, the compressible component of the velocity is significant ly smaller than 

the solenoidal component; they argue that this is because shocks dissipate much of the irrotationa l 

7We briefly discuss plasmas wit h f3 < 1 in §l.ll. 
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component of the velocity. 

The second mode that is present only in compressible MHD is the entropy mode. When turbulent 

motions are adiabatic, the entropy mode is a zero-frequency mode with unperturbed pressure, and 

with density perturbation offset by temperature perturbation (see Appendix). In hydrodynamics, 

simple scaling arguments show that the entropy mode does not affect t he dynamics of the fluid- i.e., 

the fluid obeys the incompressible equations of motion- provided that fluid motions are subsonic 

and that density fluctuations are smaller than the mean density; these arguments carryover directly 

to MHD (e.g., Higdon 1986, and references therein). Furthermore, since the entropy of any fluid 

element is conserved in the inertial range of adiabatic turbulence, the mixing of the entropy mode 

is identical to the mixing of a passive scalar (see eq. [1.30]) , yielding the t ransverse spectrum 

(1.35) 

where s)..1. is the r.m .s. entropy fluctuation across A.L. The parallel spectrum is given by equation 

(1.28). Analogously, in hydrodynamic turbulence the effect of the entropy mode on turbulent motions 

can often be neglected, and the entropy mode is mixed as a passive scalar (Monin and Yaglom 1971). 

Based on the above discussion , there are two sources of density fluctuations on small scales: the 

slow mode and the entropy mode. Since the slow mode density perturbation is proportional to its 

velocity perturbation, and since the entropy mode density perturbation is proportional to its entropy 

perturbation , both yield a Kolmogorov spectrum of density perturbations: 

(1.36) 

In the remainder of t his chapter, we investigate the density spectrum in more detail. We calculate 

the density spectrum on diffractive lengths cales for given values of the number density, n, and outer 

scale, Lout. Typically, in regions of the interstellar medium which are relevant for scintillation , 

1 cm -3 < n < 100 cm -3. Values of Lout are more uncertain , though it is likely that Lout is typically 

within a few orders of magnitude of 1 pc. It is also plausible that the value of Lout is related to t hat 

of n . In a future paper , we discuss in much more detail the values of these parameters in turbulent 

regions of the ionized interstellar medium, e.g., in supernova shocks, HII regions, and stellar winds. 

A naive guess for the resulting density fluctuation at the lengthscale A.L is n)..1. = n(A.L/Lout)1/ 3, 

which we refer to as the fiducial spectrum. However , there are a number of physical effects which 

suppress the small-scale density spectrum in the interstellar medium relative to the fiducial spectrum. 

When considering scintillation observations, it is the transverse- not parallel- Iengthscale which 

is relevant. Each line of sight crosses regions with different orientations of the local mean magnetic 

field . The observational effect s of the parallellengthscale are washed out if the orientation varies by 

a n angle greater than a tiny ratio: A.L/ A ll at the diffractive scale. Since the variation in a ngle due 
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Table l.1 : Summary of Lengthscales 
Description 
lengthscale transverse to the mean magnetic field ; 
it is comparable to the observed lengthscale. 
lengthscale parallel to the mean magnetic field 
parallel size of an eddy; it is a function of A1- (eq. [l.28]) . 
A1- = Lout a t the outer scale 
A1- = LMHD at the MHD scale 
A1- = LcooJ at the cooling scale 
A1- = LH at the collisionless scale of hydrogen atoms 
A1- = LHe at the collisionless scale of helium atoms 
mean free pa th of protons and of electrons 
All = Led at the electron diffusion scale 
All = Leq a t the electron-proton equilibration scale 
All = Lpd at the proton diffusion scale 

A1- = L~~) at t he proton diffusion scale 
A1- = Lp,gyr at the proton gyro scale 

to eddies on scales larger than the diffrative scale is A1-/ All ex A i'3, it increases wit h scale, so these 

eddies render the parallellengthscale unobservable. As a result , we frequently refer to the t ransverse 

lengthscale as, simply, the length scale. 

Because of the multitude of speciallengthscales involved , we organize the discussion by decreasing 

lengthscale. We b egin at the outer scale, and proceed down to the smallest scales relevant to 

interstellar scintilla tion , while considering the effects of the Alfve n mode, the slow mode, and the 

ent ropy mode simultaneously. Since most of the relevant lengthscales in the interstellar medium 

have a similar dependence on t he background density- t hey decrease with increasing density- t he 

ordering of lengthscales is fairly universal. The lengthscales which we consider are the outer scale, 

the MHD scale, the cooling scale, the collision less scale of the neutrals, the collisionless scale of the 

ions, and the proton gyro scale. We conclude with a summary of the most important effects . Table 

l.3 lists the lengthscales t hat are used in this chapter . 

1.4 The Outer Scale and the MHD Scale 

As a model for the excita tion of the turbulence, we consider plasma which is stirred on an outer scale 

Lout with velocity fluctuations tha t are of order the sound speed: VLo u t ~ Cs . The generalization from 

this case of Mach 1 turbulence to subsonic turbulence with arbitrary Mach number M < 1 is trivia l: 

Lout would be interpreted as an effective outer scale a t which velocity fluctua tions extrap ola te to 

Cs · However , we focus on the Mach 1 case because it is probably the most relevant for interstellar 

scintilla tion . 



23 

If, initially, the strength of t he magnetic field is negligible, then random fieldline stretching 

amplifies the mean field (eho and Vishniac 2000a). It is uncertain both how quickly the magnetic 

field is amplified, and whether its energy density is amplified until it approaches equipartition with 

the turbulent kinetic energy density. If it does reach equipartition within a few outer-scale crossing 

times, then fJ ~ 1 would be appropriate for Mach 1 turbulence. Recall that fJ is the ratio of thermal 

pressure to magnetic pressure, or equivalently, fJ = 2c}/v~. We generally assume that the mean 

magnetic field can approach equipartition with the gas pressure, so we think of fJ as close to but a 

li ttle larger than uni ty, although we leave its exact value unspecified. 

Provided fJ is larger than unity and M ~ 1 on scale Lout, the turbulent kinetic energy dom­

inates the mean m agnetic energy on scales just below Lout. Thus the cascade is hydrodynamic 

on these lengthscales, and the velocity fluctuations are given by Kolmogorov 's isotropic scaling: 

VA.L ~ cs (')' .L/Lout )1/3. 

The kinetic energy density decreases towards smaller scales. At a critical scale, which we denote 

LMHO , the kinetic energy density is sufficiently small that it is comparable to the mean magnetic 

energy density: Vl
MHD 

~ v~, which implies that 

(1.37) 

Below this scale, the turbulent kinetic energy density is smaller than the magnetic energy density, 

and the theory of compressible MHD turbulence is applicable. Note that the effects of large-scale 

velocity fields can be neglected when considering fluctuations on smaller scales, because a large-scale 

velocity field can be eliminated by a Galilean transformation. However , since large-scale magnetic 

fields cannot be transformed away, they affect the dynamics of small-scale eddies. 

Hydrodynamic turbulent motions on scales slightly larger than L MHO have speeds ~ VA. Thus 

they couple to, and efficiently excite, Alfven waves and slow waves whose phase velocities w / k ~ 

vA(kz/k) are of comparable magnitude. Provided fJ > 1 and M ::; 1, fast waves, which have 

w/k ~ Cs > VA, are weakly excited at L MHO . In what follows, we neglect fast waves. 

Alfven waves excited at LMHO cascade to smaller scales, and these cascading Alfven waves in 

turn cascade slow waves. The spectra of both of these cascades are given by equations (1.27) and 

(1.28), so that 

( 
A.L )1/3 

VA.L ~ Cs -L 
out 

for both modes, even on scales smaller than L MHO. 

(1.38) 

We have not yet discussed density fluctuations on the scales which have been considered in this 

section. It is more convenient to do so in the following section. 
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1.5 The Cooling Scale 

On the lengthscales in the interstellar medium that we have considered thus far, the radiative cooling 

time is shorter than the eddy turnover time.8 Consequently, in photoionized regions, turbulence on 

t hese lengthscales is expected to be isothermal (Sridhar 1998; Goldreich 1998; Higdon and Conley 

1998). This has only a marginal effect on the turbulent dynamics described in the previous section , 

because isothermal Alfven waves are identical to adiabatic Alfven waves, and isothermal slow waves 

are only slightly different from adiabatic slow waves. However , the entropy mode is rapidly damped 

in isothermal turbulence. As a consequence, small-scale density fluctuat ions may be significant ly 

suppressed. There are two possible solutions to this "cooling catastrophe": eit her (i) t he outer scale 

is extremely small , small enough that the turbulence at the ou ter scale is nearly adiabatic; or (ii) 

t here are significant density fluctuations associated with the slow mode. However , in the latter 

case, the mean magnetic field must be amplified almost to equipartition with the gas pressure, so 

t hat (3 ~ 1. Either of t hese two solut ions would place stringent constraints on the nature of t he 

t urbulence which is responsible for observed density fluctuations. In the following, we consider the 

cooling scale in more detail. 

There is a critical scale for the turbulence, which we call the cooling scale, Leool ' Above this scale 

the t urbulence is isothermal, and below it the turbulence is adiabatic. We assume that L eool < LMHD 

throughout this chapter , except in §1.5.2 where we consider the case in which this inequality is 

reversed. The cooling scale is where the eddy turnover time, Al. /VAJ. ' is equal to the cooling t ime, 

t eoo l ; i.e., with VAl. ~ Cs ( Al./L ou t )1/3, 

L eool ( Cs teoo l ) 3/2 . 

L out ~ L out 
(1.39) 

As we will discuss in detail in a future paper, most plausible astrophysical sources of interstellar 

scintilla tion have Cs t eoo l ;S L out, and thus L eool ;S L out . In general, the kinetic power per unit mass 

t hat is dissipated in Mach 1 t urbulence is ~ C;/ tLout ~ c~/Lout, where tLout is the eddy turnover 

t ime at t he outer scale. The t hermal power per uni t mass required to keep t he gas hot is ~ c;/teool. 

Hence, only if the energy that goes into turbulent motions is as large as the total energy that goes 

into heating can the outer scale be as small as the cooling scale. Nonetheless, in plasmas that are 

t hermally unstable, and in isothermal shocks (assuming that the outer scale is comparable to the 

scale across which the density doubles), t he two powers are comparable, and the cooling scale is 

comparable to the outer scale. 

As an example, we consider an HII region. Photoionized plasma is thermally stable . Heating is 

primarily due to photoionizing photons, and cooling is primarily due to electron impact excitation 

BFor d efi ni teness, we cons ider plasma t hat is t herma lly stable; deviat ions of the temperature from its eq uilibriu m 
value d ecay in a cooling t ime, tcooJ. 
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of metal line t ransitions (e.g., Spitzer 1978).9 A characteristic temperature for plasma photoionized 

by hot stars is T ~ 8,000K , which implies that the speed of sound is Cs ~ 10 km /sec. The cooling 

t ime is teool ~ 20, OOO ( cm- 3 In) years, where n is the number density of electrons. Therefore, 

(
cm - 3 

) 
Csteool ~ 0.2 -n- p c . (1.40) 

A plausible value for Lout might be the radius an HII region (the St romgren radius), which is 

~ 70 ( cm- 3 / n)2/3 pc (Spitzer 1978). Therefore, with typical values of n in HII regions (1 cm - 3 < 

n < 100 cm - 3 ), Lout is significant ly larger than Cs teool, and so the cooling scale is significant ly 

smaller t han the outer scale. 

The fact tha t the turbulence is isothermal on large scales has important implications. Had 

cooling been ignored , i.e., had it been implicit ly assumed that the cooling t ime is infinite , then one 

would have calculated t he density spectrum as follows: t here should be density fluctuations of order 

unity on t he outer scale, implying excita tion of entropy modes on the outer scale which are passively 

mixed by the Alfvenic t urbulence to small scales . This would yield t he fiducial density spectrum , 

nAl. ::::: n(A.L/Lout)1 /3 . 

However , since the turbulence is isothermal on large scales, the above calculation is incorrect. The 

entropy mode is not passively mixed on these scales, since it is damped by cooling before it can be 

mixed. In t he following, we consider separately two cases: fir st, t he 10w-,8 case (,8 < Loll t / cs teool) , 

and t hen t he high-,8 case (,8 > LOllt/Cs teool)' In each case, we show t hat t he small-scale density 

fluctuations are subst ant ially smaller t han those predicted by the fi ducial spectrum unless a relatively 

stringent condit ion holds: either ,8 ~ 1 or LOllt ~ Cs teool. 

1.5.1 D ensity Fluctuations Below the Cooling Scale: 1 < (3 < L out/Cstcool 

With regards t o interstellar scint illation , the crucial difference between high-,8 and 10w-,8 turbulence 

lies in t he compressibili ty of the slow mode. Since t he sum of thermal pressure and magnetic 

pressure vanishes for t he slow mode, the mode's density per turbation satisfi es nAl. /n ~ PA l. /p ~ 

,8-1BAl./B ~ ,8-1VAl./VA ~ ,8-l/2VAJ./Cs (see Appendix) . So, assuming that the energy in slow 

waves is comparable to that in AlfvEm waves, 

(1.41) 

9In t his case, t here is a nother lengthscale, t he photoioni zat ion scale, which we do not cons ider because its effects a re 
unimportant for scin ti ll at ions. T his is t he scale at which the eddy t urnover t ime is com parable to t he recombinat ion 
time. It is slightly larger t han t he cooling scale because the recom binat ion t ime is approx im a tely five t imes la rger t han 
t he cooling time (Spi tzer 1978). On scales larger t han t he photoionizat ion scale, t he tu rbulence is in photoionization 
equ ili briu m, whereas on scales sma ller t ha n t his, t he ionizat ion fract ion of a flui d element is conserved . Nonet heless, 
t he temperature of t he gas is on ly weakly dependent on ionizat ion fract ion: metal- lin e cooling by free electrons is 
ex pone nt ia lly dependent on temperature, a nd t hus acts as a thermostat whi ch is only s li ght ly a ffected by t he io n or 
neut ra l density. T hus, t he photoion izat ion lengthscaie does not pl ay a n im portant ro le in t he dens ity spectrum. 
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from the slow mode, both above and below the cooling scale. Thus , slow waves can produce density 

fluctuations which are not much smaller than the fiducial spectrum if fJ is not much larger than 

unity. Comparing with equation (1.47) below, the cont ribution of the slow mode to the density 

fluctuations a t L eoo l exceeds the contribution from Reynolds stresses provided fJ < L ou t/Cs t eoo l. 

The compressibility of the slow mode also yields density fluctuations associat ed with the entropy 

mode. The reason is as follows. Entropy fluctuations are associated with isothermal compressible 

waves. Those due to isothermal slow modes are passively mixed by Alfven waves. Mixing due to 

Alfven waves with wavelengths smaller than the cooling scale takes place in less than the cooling time. 

It produces a spectrum of entropy modes for >'1- < L eool that gives rise to a density spectrum similar 

to the one given in equation (1.41). Nonetheless, there is some damping of entropy fluctuations 

when they are mixed from scales larger than the cooling scale t o scales smaller than the cooling 

scale. We expect that the damping is of order unity. Since, as we show in the following section , the 

damping of the slow mode is not very large, we expect that the amplitudes of t he slow and entropy 

modes below the cooling scale are roughly comparable. In this chapter, however , we do not quantify 

the amount of damping of the entropy mode more precisely, because it is a difficult calculation. We 

have attempted to quantify this damping by performing numerical simulations. However , the limited 

dynamical range made the interpretation of the results difficult. Nevert heless, the relative amplitude 

of slow and entropy waves on small scales does not appear to be observationally important; as we 

show in § 1. 7.3 below, both slow and entropy waves damp at the same scale. 

Slow Mode Damping at the Cooling Scale 

Although there is negligible damping of the slow mode on lengthscales tha t are either much larger or 

much sm aller than the cooling scale, there is some damping on lengthscales that are comparable to 

the cooling scale. As we show in this section, the damping of the slow wave cascade is small , because 

the slow mode is not very compressible. In the limit that fJ ~ 00, the slow mode is incompressible, 

and the damping disappears. In t he following, we calculate the damping to first order in l /fJ . 

First , we calculat e the damping rate of a slow wave of a fixed wavenumber. The damping rate is 

obtained by substituting c (given in the Appendix , eq. [1.95]) into the slow mode dispersion relation 

(eq. [1.99]) ; noting that c} == p/ p = fJv~ /2 , this gives, t o lowest order in 1/ fJ, 

(1.42) 

where Wi is the imaginary part of w, and kz from the Appendix is here relabelled k ll ' Only on 

lengthscales where vA k ll teool ~ 1 is this ra tio non-negligible. 

To obtain the total decrement in the amplitude of the slow mode through the cooling scale, we 

solve a kinetic equation obtained by balancing the slow mode k-space energy flux with t he loss-rat e 
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of slow mode k-space energy density due to damping; i.e., 

(1.43) 

where A:L1 == kJ.. is the transverse wavenumber , tA.L is t he cascade time of a slow wave with this 

wavenumber , and VA.L is the velocity perturbation of the slow mode; since kJ.. ::' k, we drop the J.. 

subscript on k . We rewrite the kinetic equation as follows : 

d V~ Wi 
d l k

In _.L_ = 2Wih.L = 2Mt --
k
- , 

n tA.L VA II 
(1.44) 

where M t == vAkll tA.L ::' 1.4 is a Kolmogorov constant (see §1.2.5) . Substituting equation (1.42) 

into equation (1.44) and integrating, using kll <X k 2 / 3 (eq. [1.28]) and tA .L <X k- 2 / 3 , yields the net 

damping through the cooling scale: 

[VA .L / A~3 lIA.L «:L cool 

[VA.L / A ~3lIA.L :»L cool 

( 
37rMt ) 

exp - 10,8 

1-1.3/,8, (1.45) 

to lowest order in 1/,8. Thus for ,8 slightly larger than unity, slow mode damping can be ignored. 

1.5.2 Density Fluctuations Below the Cooling Scale: f3 > Loudcstcool > 1 

In this subsection only, we assume that ,8 > L out / Cstcool , which implies L MHD < L cool . In this case, 

the isothermal hydrodynamic turbulent cascade extends from the outer scale down to the cooling 

scale. Because the entropy mode is rapidly damped under isothermal conditions and hydrodynamic 

turbulence is incompressible to order VA.L/CS, to this order there are no density fluctuations on 

lengthscales larger than L cool ' However, pressure fluctuations due to Reynolds stresses, PA.L ~ pvL, 

create second order density and entropy fluctuations, 

nA.L = PA .L = S' ~ ( VA.L ) 2, L \ L 
A.L cool < 1\.1. < out· 

n P Cs 
(1.46) 

These entropy fluctuations couple to the entropy mode at the cooling scale. On scales below the 

cooling scale, the entropy mode is mixed as a passive scalar yielding 

nA.L ~ vL
2
0 0 I (~) 1/3 ~ (LcOOI) 2/3 (~) 1/3 ~ ( Cs t COOI ) 1/2( AJ.. ) 1/3 

n Cs L cool L out L cool L out L out 
, AJ.. < L cool. (1.47) 
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Hydrodynamic turbulence mixes the entropy mode down to L MHD. At t his scale, t he hydrody­

namic motions turn into Alfven and slow waves, so the entropy mode cont inues to be mixed below 

L MHD, and equation (1.47) remains valid. Comparing with equation (1.41), t he density fluctuations 

associated with the entropy mode exceed those associated with the slow mode when fJ > L ou t / cs t cool. 

The entropy mode's density spectrum (eq. [1.47]) is smaller than the fiducial spectrum by the 

small factor (cs t cooI/Lout) 1/2. As will be seen in a future paper , it yields density fluctuations t hat 

are too small to explain much of the observed interstellar scintillation for most plausible values of 

L out, such as those given by St romgren radii of HII regions. There are two alternatives; either L out 

is not much larger t han Cstcool , or fJ < L out/Cs t cool. 

1.6 The Collisionless Scale of the Neutrals 

In the remainder of this chapter , we consider lengths cales which are comparable to, or smaller than , 

the mean free paths of the various particles; thus, kinetic effects must be considered . 

In t his section , we calculate the damping of the turbulence by neutrals. We assume tha t the 

neutral density is smaller t han t he electron density, i. e., nN ~ n, and that most of t he ions are 

protons. The neutral particles which we consider are hydrogen atoms and helium atoms. T he 

relevant lengthscales are the hydrogen and helium mean free paths for collisions with protons: LH = 

5 x 1013 ( cm- 3 In) cm and LH e = 1.5 x 1015 ( cm - 3 I n) cm (Banks 1966). The hydrogen mean free 

path is significant ly smaller t han the helium mean free path because its collisions with protons are 

due to resonant charge exchange. 

There are two main results for this section . 

• (i) Only if the neutral fraction is sufficiently small (eq. [1.75], below) can t he cascade survive 

on lengthscales smaller than LH . If the neut ral fraction does not satisfy t his condit ion, then 

all three modes- Alfven , slow, and entropy- are damped at the same lengthscale . 

• (ii) Regions where the cascade does not survive cont ribute to an excess of density fluctuations 

on large scales. This might explain observations which detect an excess of power in large-scale 

density fluctuations. 

The organization of t he calculation is as follows : first, the change in wave frequency due to 

neutrals is calculated. Second, we consider the effect of the frequency change on t he cascade. T hird , 

we consider the cases in which the neutrals are hydrogen atoms and in which they are helium atoms. 

Although helium atoms have a larger mean free path , we consider t hem after neut ral hydrogen 

atoms because they are of lesser importance. Finally, we consider regions where neut ral damping 

terminates the cascade. 
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A similar, though less detailed calculation is performed by Goldreich and Sridhar (1995) for t he 

case in which the neutrals are hydrogen atoms . 

1.6.1 Frequency Change 

Consider an incompressible wave, either an Alfven wave or a slow wave in the incompressible limit . 

Although the slow wave is, in fact, slightly compressible, this does not have a large effect on the 

final result. We calculate the frequency change of an incompressible wave with fixed k: kll along the 

mean magnetic field and kJ. transverse to the mean magnetic field, where kll « kJ. ~ k. 

We define v to be t he mean velocity of the protons averaged over the proton distribution function. 

Thus v satisfies the equation of motion for the Alfven wave or for the slow wave derived in the 

Appendix. We then calculate the force that these protons exert on the neutrals . Since this force is 

the same as the force of the neutrals on the protons, inserting it into the equation of motion for the 

protons yields the change in frequency. 

We denote the perturbed distribution function for the neutrals, i. e., perturbed to first-order in 

VN, after being Fourier-transformed in space and time, by IS!N(k ,w, v N), where VN is the velocity 

of the neutrals. The evolution of the neutrals is determined by the Boltzmann equation: 

-iwlS!N + i( k · v N)IS!N = C , (1.48) 

where C is the Fourier-transformed, perturbed, collision integral of t he neutrals with the protons. 

Neutral-neutral collisions are negligible relative to neutral-proton collisions. The collision integral is 

simplified by making the approximation that, on the timescale that a neutral collides with protons, 

IS! N is driven towards a Maxwellian with mean velocity v: 

(1.49) 

where the first term in the square brackets is generated by expanding a Maxwellian distribution 

function with mean velocity v to linear order in v and retaining only the perturbation, and I/N,p is 

the frequency with which a given neutral atom collides with protons. With the above approximation 

to the collision integral, the solution to the Boltzmann equation reads 

IS! = (v · VN) nNexp(-mNvJ./2T) I/N,p 
N TlmN (27rTlmN)3 /2 I/N,p-iw+ik ' VN 

(1.50) 

Next we verify that the perturbed neutral number density vanishes, 
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x [/ dVNIIVNII exp(-mNV~Il/2T)] 

x 

0, 

(1.51) 

(1.52) 

since the first square-bracketed integral vanishes by antisymmetry. For the purpose of evaluating 

the above integrals, we use 1.. and II for the perpendicular and parallel projections of v N relative 

to v , and not relative to the magnetic field as in the rest of this chapter; i.e., v N11 == (v· VN)V/V2 

and v N.J.. == V N - v Nil . We also use the incompressibility relation k . v = 0, which implies that 

k· v NIl = O. 

With the neut ral distribution function given by equation (1.50), the force per unit volume of t he 

protons on the neutrals may be calculated as 

F mN / vN(-iw JfN+ i(k · VN)Jf N)d3v N 

mNnNvvN,p 
(271")3/2(T / mN )5 /2 

x [/ dVNIlV~1l exp(-mNv~II/2T) ] 

x 

x 

(1.53) 

(1.54) 

(1.55) 

(1.56) 

The second equality follows after replacing the overall multiplicative v N (= v Nil + v N.J..) by v Nil, 

because the v N.J.. term vanishes by antisymmetry of the integral over v Nil. In t he second equal­

ity, the first bracketed integral is equal to (271")1/2 (T /mN )3 / 2. The second bracketed integral is a 

double integral; the integral over the component of v N.J.. which is perpendicular to k is equal to 

(271"T /mN )1 /2 . The remaining integral is over the component of v N.J.. which is parallel to k ; we 

label this component s in t he third equality. Finally, the fourth equality follows from the change of 

variables t == (ks - W) /VN,p, and from the following definitions 

_k_( 2T )1 /2 = vAk (31/2 ( mp )1 /2 
VN,p mN VN,p mN 

(1.57) 

w VA k il 
=-- (1.58) 

where mp is the proton mass . The dimensionless parameter II I is the number of wavelengths a 
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neutral crosses before colliding, and the dimensionless parameter Ih is the number of waveperiods 

a neutral travels before colliding. Since k » kll and f3 2:. 1, III » II2 in the inertial range of the 

MHD cascade. 

Performing the integral for the real and imaginary parts of F to lowest order in II2/IIl yields 

(1.59) 

where 

(1.60) 

(1.61) 

Since -F is equal to the force of the neutrals on the protons , we insert -F into the equation of 

momentum conservation for the protons. More precisely, we add -iF/(mpn) to the right-hand 

side of equation (1.90) in the Appendix. We label the resulting change of frequency caused by the 

presence of neutrals as 6.w. Assuming that 6.w « VA kll ' it follows that 

(1.62) 

Discussion of the Frequency Change 

The physical interpretation of this frequency change is straightforward. Recall that k » kll' so that 

the wavelength, 27f/k, is nearly identical to the wavelength transverse to the magnetic field , 27f/k.l. 

It is convenient to define the neutral mean free path, LN, as follows: 

where CT = (p/ p)1 /2 is the isothermal sound speed. 

The imaginary part of 6.w is the negative of the damping rate, and is given by 

for kLN « 1 

for kLN » 1 

(1.63) 

(1.64) 

(1.65) 

The above expression may be explained as follows (Goldreich and Sridhar 1995). The neutrals are 

nearly locked to the protons only if both III < 1 and II2 < 1. These conditions hold for wavelengths 

larger than the neutral mean free path (k LN < 1) . So on these scales damping is due to the viscosity 
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of the neutrals . For wavelengths smaller than the neutral mean free path , the neutral atoms are 

decoupled from the ions, and hence are effectively at rest. The damping rate is thus the ion-neutral 

collision frequency. 

The real part of t he frequency change, .0.wr , is 

for kLN « 1 

for kLN » 1 
(1.66) 

Its physical significance is apparent. For small wavelengths the neutral atoms are effectively freely 

streaming, t he motion of the protons nearly decouples from the motion of the neutrals, and there is 

negligible real frequency change associated with the presence of the neutrals. For large wavelengths 

the neutrals are locked to the protons, so the mass density of the fluid which participates in t he 

waves is larger than that of the protons. Since the Alfven speed, and hence the wave frequency, is 

inversely proportional to t he square root of the mass density, i.e., W ex: VA ex: p- l / 2, this results in 

a decrease of the frequency by a fractional amount which is equal to one-half of the mass ratio of 

neutrals to protons . 

1.6.2 Effect of Neutrals on the Turbulent Cascade 

Effect of Wi on the Cascade 

The turbulent cascade is quenched if the damping rate exceeds the eddy cascade rate or, equivalently, 

if IWi l/vAkll > 1. From equation (1.65) and kll ex: k2 / 3 , it is seen that for small wavenumbers 

IWil/VAkll ex: k4
/ 3 , and for large wavenumbers IWil / vAkll ex: k- 2

/ 3 . Therefore IWi l/VAkll is a maximum 

for transverse wavelengths, k- 1 , comparable to the neutral mean free path , and decreases for both 

larger and smaller wavelengths. The requirement that the cascade survive damping by neutrals 

is then that IWi l/vAk ll < 1 for k- 1 comparable to the neutral mean free path , or equivalently, 

nNvN,p/n ;S VA kil at this scale (eq. [1.65]) . Since nNvN,p/n is the rate at which a given proton 

collides with neutrals, the cascade survives to small scales if the wave frequency, and hence the 

cascade rate , at the scale of the neutral mean free path is faster than the rate at which a proton 

collides with neutrals. 

To obtain t he total decrement in the amplitude of both the Alfven mode and the slow mode 

through the damping scale, we solve the kinetic equation for the cascade.lO As in §1.5.1 , the kinetic 

equation is obtained by balancing t he k-space energy flux with the loss-rate of k-space energy density 

laThe calculation of the amplitude decrement in this sect ion is similar to that given in §1.5 .1 for slow m ode damping 
at t he cooling scale. The principal difference, aside from the fact that the imaginary part of t he frequency is different , 
is that here we must account for t he decrease in the cascade rate, t Al. ' caused by damping. This is not necessary 
when treating slow mode damping at the cooling scale because there the Alfven modes which control t he cascade rate 
are undamped. 
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due to damping: 
d v~ v~ A.L 2 A.L 

dk h.L = wiT' (1.67) 

where A J:l == k.l. :::' k is the transverse wavenumber, and tA.L is the cascade time. The kinetic 

equation can be rewritten as follows: 

(1.68) 

where M t is a Kolmogorov constant (see §1.2.5). Before integrating this equation, we re-express the 

damping frequency in terms of the relevant lengthscales, Lout and LN: 

1 mNnN g(kLN) 
-----VN 

2 mpn ,p vAkil 
(1.69) 

1 mNnN g(kLN) 
------vN 

2MII mpn ,p vA.Lk 
(1. 70) 

__ 1_(mN)1/2nN (Lout)1 /3 g(kLN) 
V2MII mp n LN (kLN )2/3 

(1. 71) 

The first equality above follows from equation (1.64). The second equality follows from the Kol­

mogorov constant Mil = vAklllvAl.k (see §1.2.5). The third equality follows from the velocity 

spectrum, VAl. = cT(kLout)-1/3 (eq. [1.38]) , and from the definition of the neutral mean free path 

(eq. [1.63]). For convenience, we define Lout in this section such that VAl. = CT when k-1 = Lout · 

Integrating the kinetic equation (eq. [1.68]), and using tA l. ~ A.l. lvA.L ' yields the net decrement 

due to damping by collisions with neutrals: 

[VAl. I A ~3lIA.L « LN 

[VA.L I A ~3lIAl. »LN 

(1. 72) 

after substituting from equation (1.71). The numerical prefactor in the second equality, 0.2, follows 

after inserting the values of the Kolmogorov constants (eq. [1.34]) and the value of the integral 

(1. 73) 

which was integrated numerically; see equation (1.60) for the definition of g(x) . 

For the cascade to continue to small scales, the right-hand side of equation (1.72) cannot be very 

small. This can be viewed as an upper limit on the neutral fraction: nN In ;S (LN ILout )1 /3 . Recall 

that the condition for the cascade to reach small scales is that the cascade rate at LN be faster 

than the rate at which a proton collides with neutrals. If the neutral fraction is too large, then so 

is the proton collision rate , and the cascade is quenched. Moreover, for a fixed L N , a large value for 
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Lout implies that the cascade time at LN is large, and hence that the cascade is more susceptible to 

damping by neutrals. 

We postpone consideration of the damping due to hydrogen and helium atoms until after we 

evaluate the effect of 6.wr on the cascade. 

Effect of 6.w r on the Cascade 

We can picture the cascade as proceeding from large scales to small scales. As it crosses the scale 

of the neutral mean free path (eq. [1.66]), the effective Alfven speed, and hence the real part of 

wave frequency, increases by the fraction mNnN /2mpn. Consequently, the cascade time decreases . 
by the same amount. To the extent that the flux of energy in Alfven waves from large scales to 

small scales is constant in the turbulent cascade, vt /tAl. = constant, where tAl. is the cascade time. 

Therefore, a fractional decrease of mNnN /2mpn in the cascade time causes a decrement in the small­

scale Alfvenic velocity perturbation by the fractional amount mNnN /4mpn . This decrement is in 

addition to that due to damping. Moreover, it applies to the slow mode and the entropy mode as 

well as to the Alfven mode. Because nN /n must be small for the cascade to pass through the scale 

of neutral damping, this decrement is also small , and we ignore it from here on. 

1.6.3 Neutral Hydrogen Atoms 

When the neutrals are hydrogen atoms we set nN = nH , VN,p = VH,p , LN = L H , and mN = mp. 

Collisions between hydrogen atoms and protons are due to resonant charge exchange. From equation 

(1.63), with the value of VH,p taken from Banks (1966), 

-3 

LH = 5 X 1013 
( C: ) cm (1.74) 

at 8 x 103 K; the temperature dependence of LH is very weak. 

For the cascade to survive damping by neutral hydrogen atoms, the right-hand side of equation 

(1. 72) cannot be very small. This sets an upper limit on the neutral fraction of 

nH ( LH ) 1/3 (6 x 1015cm ) 1/3 -<5 - ,...., 
n""" Lout (n/cm-3 )Lout · 

(1. 75) 

The real part of w/vAk ll is larger on scales below LH than it is on scales above LH by the fractional 

value nH /2n. 

1.6.4 Neutral Helium Atoms 

Although helium has a lower abundance than hydrogen, it has a higher ionization potential. There­

fore, in some regions helium might comprise the majority of neutrals. When the neutrals are helium 
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atoms we set n N = n He, vN,p = VHe,p, LN = LHe , and mN = 4m p. From equation (1.63), with t he 

value of VHe ,p t aken from Banks (1966), 

-3 

LHe = 1.5 X 1015 ( c: ) cm (1. 76) 

at 8 x 103 K , and LHe ex: T 1/ 2. 

To place an upper bound on damping by helium atoms, we assume that most of the helium is 

neutral , i.e ., n H e ::::: O.l n. Then the decrement is given by the right-hand side of equation (1.72): 

(1. 77) 

Only if L out .2: 2 x 1019 ( cm - 3 /n ) cm could the cascade be terminated at t he scale of t he helium 

mean free path. If there are not many neutral helium atoms, or if the outer scale is not sufficient ly 

large, then damping at LHe may be neglected , and the cascade extends at least to the scale of the 

hydrogen mean free path. 

Collisions of neutral helium atoms with singly ionized helium ions might also be significant . 

Although there are fewer helium atoms than protons, Heo-He+ collisions have a larger cross-section 

than Heo-proton collisions because they are due to resonant charge exchange. Nonetheless, given 

the cosmic abundance of helium, t he mean free pa th of neutral helium due to Heo-He+ collisions 

cannot be significantly smaller than t hat due to Heo-proton collisions regardless of t he ionization 

fraction of helium. 

The real part of w/vA k ll increases by 2n He/n below the scale LH e , or 0.2 if most of the helium is 

neut ral. 

1.6.5 If N eu t r a ls D a mp t h e Cascade 

In subsequent sections, we consider regions in t he interstellar medium where there are too few 

neutrals to damp the cascade. However , t here are almost certainly many regions where t he neutrals 

do damp the cascade. We discuss these regions here. 

Suppose both Alfven waves and slow waves are damped by neutrals. What happens to t he 

entropy waves? If undamped , t hey would be mixed down to smaller scales by Alfven waves at t he 

neut ral damping scale. The resul t ing density spectrum would be n>..1. = constant (see eq . [1. 31]). 

Because it is flatter than n >..1. ex: >.. ~3, regions in which damping by neutrals t runcated the Alfven 

cascade might be important contributors to small scale density fluctuations. However , t he fact t hat 

they would contribute a density spectrum different from that which is observed suggests that t he 

ent ropy wave cascade is not more resistant than the Alfven wave cascade to damping by neutrals. 

Indeed that is the case. Recall that the condition for the truncation of Alfven and slow wave cascades 
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is that each proton collide with at least one neutral atom during one wave period at the neutral 

damping scale. Under this condition, the neutrals would damp the entropy waves by conducting 

heat across them. 

Although regions in which the cascade is damped by neutrals do not contribute small scale density 

fluctuations, they may still be significant . Observational evidence indicates that there is more power 

in density fluctuations on large scales, 1013 _1014 cm, than would be predicted by extrapolating from 

small scales, 108 - 1010 cm, with the Kolmogorov scaling. See, for example, Lambert and Rickett 

(2000) for a review of the observations. Perhaps this excess arises in regions where the cascade is 

damped by neutrals. 

We complete this section by briefly considering and then rejecting the possibility that a turbulent 

cascade truncated at the neutral damping scale might be regenerated on a much smaller scale due to 

stirring by eddies at the damping scale. Although the ratio of the damping rate to the wave frequency 

decreases below the scale of the neutral mean free path, the absolute damping rate approaches a 

constant value. Provided the cascade is truncated by neutral damping, this rate is larger than the 

stirring rate and the cascade cannot be regenerated. 

1.7 The Collisionless Scale of the Ions 

If the cascade survives the neutral collision less scales, then, proceeding to smaller scales, the next 

scale of importance is the ion collisionless scale. This scale is set by the mean fr ee path of protons 

to collide with other protons: 

11 ( cm-
3

) Lmfp = 6 x 10 -n- cm (1.78) 

at a temperature of 8,OOOK (Braginskii 1965). Since the electron and proton gyroradii (see eq. [1.88) 

for protons) are very small compared to the proton mean free path, the electrons and protons are 

tied to magnetic fieldlines. Therefore, when considering the collisionless effects of electrons and 

protons, the relevant lengthscales are those parallel to the magnetic field. Since turbulent eddies 

are highly elongated along the magnetic field, their transverse lengthscales are much smaller than 

their parallel ones (eq. [1.28]). It is the transverse lengthscale which is relevant when considering 

observations of the density spectrum, because each line of sight averages over regions with different 

magnetic field orientations. In this section, we show that both the slow mode and the entropy mode 

are cut off at the lengthscale where the parallel eddy size is comparable to the proton mean free path. 

The lengthscale where the density spectrum is observed to cut off, i.e ., the transverse lengthscale, 

is therefore significantly smaller than the mean free path. 

Before discussing the damping of the slow mode and the entropy mode, we consider two larger 

lengthscales, which are set by the effects of t he electrons. Although the behaviour of the cascade at 

these lengths cales is interesting, it is shown to be unimportant for our purposes. 
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Throughout this section , we neglect numerical factors of order unity, such as the factors which 

are associated with kinetic corrections to the fluid equations (given in Braginskii 1965) and the 

Kolmogorov constants . However , we retain the dependences on (3, which is assumed to satisfy 

(3 > 1, and on the ratio of the proton mass to the electron mass: mp/me = 1840. 

1.7.1 The Electron Diffusion Scale 

The electrons have the same mean free path as the protons, but they are faster than the protons by 

the square root of the mass ratio: 

(
m ) 1/ 2 

Cs,e::::; m: Cs , (1. 79) 

where cs,e is the electron thermal speed and Cs is the sound speed, which is comparable to the proton 

thermal speed . Because of charge neutrality, the electrons have the same density, both perturbed 

and unperturbed , as the protons. Viscous damping caused by the electrons may be neglected : since 

the dynamic viscosity of the electrons is smaller than that of the protons by the square root of their 

mass ratio, electron viscous damping is always subdominant . 

As we now show, electrons are important for conducting heat on parallel lengthscales slightly 

larger than the proton mean free path. Electrons diffuse parallel to the magnetic field across a 

distance All in the time (Lmfp/cs,e)(AII/Lmfp) 2. This is equal to the cascade time of an eddy with 

parallellengthscale All, i.e., it is equal to A ll / VA, at the electron diffusion scale, given by All ~ Led , 

where 
Cs,e 1/2 (mp) 1/2 Led::::; -Lmfp ::::; (3 - Lmfp . 
VA m e 

(1.80) 

In eddies with parallel lengths smaller than this, the electrons diffuse across the parallel lengths of 

the eddies, thereby conducting heat, and the electrons are isothermal; in eddies with parallel lengths 

larger than this , conduction is unimportant. 

We must also consider the effect of electron conduction on the protons. Electrons and proton 

temperatures approach a common value on the timescale that there are mp/me collisions per particle. 

Since electrons are faster , the collision time is set by the electron speed , and the time for electron 

and proton temperatures to equilibrate is 

mp Lmfp 1 1 (mp) 1/2 
Teq ::::; ---::::; - (31/2 - Lmfp' 

m e Cs,e VA m e 
(1.81) 

This time is smaller, by a factor (3, than the cascade time of eddies with parallel size Led. Thus 

in eddies of this parallel size, and in those which are slightly smaller , protons are at t he same 

temperature as the electrons. And, since the electrons are isothermal, so are the protons. 

As a result of the above considerations, when the parallel cascade crosses the electron diffusion 

scale, the cascade becomes isothermal. This is similar to the crossing of the cooling scale, discussed 
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in §1.5.1, t hough backwards , and similar considerations apply. In particular , the AlfvEln mode is 

incompressible, and hence unaffected. The slow mode is nearly incompressible, and is only slightly 

affected: it suffers some damping to first order in 1/13 . The entropy mode, however , is rapidly 

damped under isothermal conditions; as the electron diffusion scale is crossed, entropy waves are 

converted into slow waves, and the density fluctuations which had been associated with entropy 

waves now become associated with slow waves. 

1. 7.2 The Electron-Proton Equilibration Scale 

Continuing to slightly smaller scales, the isothermal cascade reaches the equilibration scale, where 

the cascade time, All/VA, is comparable to the electron-proton equilibration time (eq. [1.81]). At 

this scale, All ~ Leq , where 
1 (m )1/2 

L eq ~ 131 / 2 m: L mfp . (1.82) 

On larger scales , the protons are thermally coupled to the electrons , and hence they are isothermal 

on slightly larger scales; on smaller scales, the protons are thermally independent of the electrons, 

and hence adiabatic. The transition through the equilibration scale is nearly identical to the transi­

tion through the cooling scale (§1.5. 1): the Alfven waves are unaffected , and they mix larger-scale 

isothermal slow waves into smaller-scale adiabatic slow waves and into smaller-scale entropy waves , 

although with some damping. Therefore, below the equilibration scale, the entropy mode reappears. 

The result of the calculations in both this subsection and the previous subsection is that, in 

crossing the electron diffusion scale and the equilibration scale, density fluctuations which were 

associated with the entropy mode on large scales are transferred from the entropy mode to the slow 

mode and then back to the entropy mode. Density fluctuations which were associated with t he slow 

mode on large scales are unaffectedY Therefore, for our purposes, t hese two lengthscales have little 

net effect on the density spectrum. Although there is some damping, the amount of damping is 

comparable to the amount at the cooling scale, and hence is not very significant. 

1. 7.3 The Proton Diffusion Scale: Death of the Slow Mode and Entropy 

Mode 

Entropy waves and slow waves with parallel wavelengths smaller than the proton mean free path 

both damp on the timescale that protons stream across their parallel wavelengths (Barnes 1966). 

However, because we consider 13 > I , there is a scale slightly larger than the proton mean free path 

11 However , if the density fluctuat ions in t he large-scale slow mode were less than t he dens ity flu ctuations in the 
large-scale entropy mode, then, on small scales, the slow mode would be boosted so t hat its density fluctuations 
would be comparable to those of t he entropy mode: the slow mode can steal approximately half of t he ent ropy mode . 
Note that, since the behaviour of the cascade at the electron-proton equ ilibrat ion scale is nearly identical to t he the 
behaviour at the cooling scale, similar uncertainties apply; see discussion in §1.5.1. In part icula r , we are unable to 
quant ify the damping of the entropy fluctuat ions , although we expect t ha t this damping is not so la rge as to render 
the entropy mode negligible relative to the slow mode on small scales. 
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at which these waves damp in the turbulent cascade. This is the proton diffusion scale, which is 

t he scale at which protons can diffuse across an eddy within a cascade time. Below the proton 

diffusion scale, proton viscosity kills the slow waves and proton heat conduction kills the entropy 

waves. Alfven waves are unaffected by either of these effects. The density spectrum therefore cuts 

off below the proton diffusion scale. 

To evaluate t he proton diffusion scale, we equate the time for protons to diffuse across an eddy 

of parallel lengthscale All, i.e., (Lmfp/cs)(AII/Lmfp)2, with the cascade time, All/VA. This gives 

All ,...., Lpd , where 

L Cs L (31/2 L pd ~ - mfp ~ mfp . 
VA 

(1.83) 

However, from an observational point of view, it is the transverse size of a damped eddy, A1., which 

would be observed. This is related to the parallel size through equation (1.28). Alternatively, we use 

the Kolmogorov constant Mil == VAA1. / VA.LAII (see §1.2.5).12 Then, the transverse scale of a damped 

eddy, i.e., an eddy with parallel size All ,...., Lpd, is 

A1. 

(1.84) 

which we solve for the cutoff lengthscale: A1. ,...., L~~) , where 

M 3/2(33/2 L (LmfP)1 /2 
II mfp L 

out 
(1.85) 

(
PC ) 1/2 ( (3 ) 3/2 

2 X 109 
-- 3 
L out n/cm-

cm. (1.86) 

Below this scale, the density spectrum is cut off. For plausible values of (3, Lout, and n, this 

lengthscale is significantly smaller than Lmfp . It is also larger than the proton gyroradius (eq. [1.88], 

below). 

Armstrong, Rickett, and Spangler (1995) summarize the observations of the density spectrum 

cutoff. There is considerable evidence that the cutoff scale is smaller than about 1010 cm along 

many directions. There is weaker evidence, from refractive scintillation, that along some lines of 

sight the cutoff scale is larger than around 109 cm. Our theory might have implications for these 

observations. 

We conclude this section with two remarks. First, we re-emphasize the importance of the fact that 

t he cascade is anisotropic. It is this fact which allows the density spectrum to reach lengthscales 

which are significantly smaller than the proton mean free path. Second, we note an important 

12 Although we drop other factors of order unity, we keep the dependence on t his one because of the importance of 
the proton diffusion scale. 
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consequence of the parallel cascades of the slow mode and of the passive scalar; these parallel 

cascades were explained in great detail when considering incompressible MHD turbulence (§1.2). 

Had there been no parallel cascade, then neither the slow mode nor the entropy mode would damp 

at the proton diffusion scale. The wavelength along the magnetic field would be effectively infinite, 

and so the ions could not diffuse across wavelengths. Rather, the slow mode and the entropy mode 

would be mixed down to the proton gyro scale, where the Alfvenic cascade is cut off. 

1.7.4 Density Spectrum Below the Proton Diffusion Scale 

On scales smaller than L~~), density fluctuations are wiped out. Since on these scales protons 

diffuse across the lengths of many eddies before the eddies cascade, the density within neighbouring 

eddies is homogenized. Homogenization occurs not only in the direction parallel to the local mean 

magnetic field- as might have been expected since protons are tied to fieldlines- but also in the 

transverse direction. This is because eddies that are adjacent in the parallel direction incorporate 

substantially different fieldlines, so proton diffusion also wipes out density differences amongst eddies 

with transverse separations. The result is that the density spectrum on scales smaller than L~~) is 

determined by density fluctuations at L~~); equivalently, 

(.L) 
for A.L < Lpd 

1.8 The End: the Proton Gyroscale 

(1.87) 

The Alfven mode is undamped in a collisionless medium (Barnes 1966). Thus, the Alfven wave 

cascade survives below the proton diffusion scale, without the accompaniment of the slow waves and 

entropy waves. The Alfvenic cascade is damped at the scale of the proton gyroradius: 

m c ( (3 )1/2 
Lp,gyr = .../2CT e~ = 2.5 x 10

7 
n/cm-3 cm . (1.88) 

At this scale, Alfven waves are converted into whistlers. The whistlers cascade to smaller scales, 

where they are damped by the collisionless effects of the electrons (Quataert 1998, viz. the curve in 

his Fig. 1b that corresponds to equal electron and proton temperatures). 

1.9 Summary 

The primary goal of this chapter has been to calculate the small-scale density spectrum in turbulent 

interstellar plasmas. Our theory of compressible MHD turbulence is based upon the incompressible 

theory of Goldreich and Sridhar (1995), for which there is growing support from numerical simula-
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tions. We hypothesize that t he compressible theory is similar to t he incompressible t heory of MHD 

turbulence, but with two main modifications: a compressible slow mode and an ent ropy mode which 

is passively advected. While we believe that this hypothesis is plausible, it can , and should , be 

tested with numerical simulations of compressible MHD. 

Because of the multitude of special lengths cales encountered when discussing t he turbulent cas­

cade in the interstellar medium, a recapitulation might be useful. In t he following, we list the most 

important lengthscales and summarize their significance to t he turbulent cascade. 

The Outer Scale (Lout) : This is t he lengthscale at which t he t urbulent motions are stirred . On 

slight ly smaller scales, there is isothermal hydrodynamic t urbulence for most plausible astrophysical 

sources. 

The MHD Scale (LMHO): At this lengthscale there is a transit ion from hydrodynamic to MHD 

turbulence. Larger-scale hydrodynamic motions couple to smaller-scale Alfven waves and slow waves. 

The Cooling Scale (Leool): At this lengthscale t here is a t ransit ion from isothermal to adiabatic 

turbulence. In high-,B turbulence, where small scale density fluctuations are due to the ent ropy 

mode, entropy- and hence density- fluctuations are suppressed by cooling. In low-,B t urbulence, 

i.e ., 1 .:s ,B < Lout / Cs teool, density fluctuations due to the slow mode are important, and cooling has 

a negligible effect on the small-scale density spectrum. 

The Collisionless Scale of the N eutrals (LH; LHe): Neut rals decouple from ions across these scales . 

If the neutral fr action is not sufficiently small , then all three modes- Alfven , slow, and entropy- are 

damped . 

The Collisionless Scale of the Ions (A ll = Led; A ll = Leq ; All = Lpd ¢:> >' 1- = L~~)): Across t hese 

lengthscales t here is a gradual t ransit ion from fluid behaviour to collisionless plasma behaviour . The 

first two of these lengthscales, t he electron diffusion scale and the equilibration scale, are set by t he 

electrons. These lengthscales have only a small net effect on the cascade. The proton diffusion scale, 

however, is critically important for density fluctuations: both the slow mode and the entropy mode 

are cut off at this scale, and hence there are no density fluctuations below L~~) . 

The Proton Gyro Scale (Lp ,gyr): Alfven waves are cut off at this scale. However , t his scale has lit tle 

importance for the density spectrum, because there are no density fluctuations below the proton 

diffusion scale. 

1.10 Comparison with Higdon's Work 

In his 1984 paper , Higdon attributes small-scale density fluctuations to the passive mixing of t he 

ent ropy mode. In his 1986 paper , Higdon notes that if the entropy mode varies along the magnetic 

field , it is damped in a collision less medium. He then attributes small-scale density fluctuations 

to t he passive mixing of tangent ial pressure balances. Tangent ial pressure balances are structures 
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which are parallel to the mean magnetic field. They are composed of both entropy waves and slow 

waves that have purely transverse wave vectors. 

Considering that Higdon 's papers preceded even a theory of incompressible MHD turbulence, 

they are a remarkable accomplishment. However , Higdon does not account for the parallel cascade. 

Entropy and slow waves with purely transverse wave vectors contain negligible power. They are 

cascaded along the magnetic field by Alfven waves. Consequently, they are damped when protons 

can diffuse across eddies in a cascade time, i.e., below the proton diffusion scale. 

1.11 Compressible Turbulence When (3 < 1 

In this section only, we consider compressible turbulence in plasmas that have fJ < 1, e.g., in strong 

oblique isothermal shocks and in the solar wind. 

Since Alfven waves are unaffected by the value of fJ, and since nearly transverse slow waves are 

only slightly affected (see Appendix) , the dynamics of the cascade is nearly independent of fJ. While 

the dispersion relation of the slow mode is changed from w = vA k z to w = cskz, the slow waves are 

still passively mixed by the Alfven waves. Therefore, the Alfven , slow, and entropy spectra in fJ < 1 

MHD turbulence are the same as when fJ > 1. 

However , the damping of the slow and entropy waves is significantly changed . When fJ > 1, the 

proton thermal speed is faster than the Alfven speed. Therefore protons can stream across small 

eddies before they cascade. Conversely, when fJ < 1, the time for protons to cross an eddy is always 

shorter than the cascade time. Therefore slow and entropy waves cannot be damped by protons 

which cross eddies, and the density spectrum extends to smaller scales. 

We have ignored the effects of the electrons. However , in the following we show that the electrons' 

behaviour may be ignored for our purposes . Our discussion closely parallels that when fJ > 1 in 

§1.7, and uses similar notation. When fJ < 1, the equilibration scale (eq. [1.82]) is larger than the 

electron diffusion scale (eq. [1.80]). Thus the largest scale at which kinetic effects are significant is 

the scale at which the cascade time is comparable to the time for electrons and protons to equilibrate 

their temperatures. Below this scale, electrons and protons are thermally decoupled . Nonetheless, 

this thermal decoupling has no effect on the Alfven , slow, or entropy waves on scales larger than 

the electron diffusion scale. At the electron diffusion scale, the cascade time is comparable to the 

electron diffusion time. Below this scale, the electrons are isothermal. However , since the protons are 

thermally decoupled from the electrons , the slow waves and entropy waves are cascaded to smaller 

scales.13 

Continuing to smaller scales , the next scale of importance is that at which the parallel size of an 

eddy is comparable to the proton mean free path. Below this scale, the cascade is collisionless. The 

13There is a change in t he density spectrum at this scale which is of order unity; it is due to the cha nge in the 
elect rons' equation of state. 
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Alfven waves are undamped by collisionless effects. The entropy waves are undamped since protons 

cannot cross eddies within a cascade time. The slow waves are also undamped within a cascade 

time: although they damp within a waveperiod by Barnes damping, their waveperiod is longer than 

the cascade time. Consequently, the Kolmogorov density spectrum extends down to the proton gyro 

scale. 

1.12 Future Work 

In a future paper, we will examine in detail the density spectrum in the solar wind. In another future 

paper , we will relate the theory of compressible plasma turbulence developed here to observations­

primarily those of diffractive scintillation. We will demonstrate that the observed amplitude of 

small-scale density fluctuations is surprisingly large, especially along certain lines of sight , such as 

the one toward the Galactic Center. Then we will attempt to determine which astrophysical sources 

contribute the bulk of the density fluctuations and why they do so. 
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1.13 Appendix : Waves in Compressible MHD 

In this Appendix we derive the properties of the Alfven mode, the slow mode, and the entropy 

mode. The fast mode is not relevant to interstellar scintillation for reasons discussed in the body 

of the chapter. The Fourier-transformed, linearized equations of ideal MHD, with a/at -+ -iw and 

V -+ i k , read 

wn' (k·v)n , (mass conservation) (l.89) 

wv k[c2~ +bZVA ] -bVA kz , (momentum conservation) (l.90) 

wb zVA(k . v) - v VA kz , (Faraday's law) (l.91 ) 

where n is number density, p is mass density, B is the background magnetic field intensity, and 

VA == B / J 47r P is the Alfven speed. The z-axis is chosen to lie parallel to the background magnetic 

field. Some other variables are the perturbed number density, n'; the fluid velocity, v; and the 

perturbed magnetic intensity, B ' , or in velocity units, b == B ' / J47rp. The sound speed, c, is defined 
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less conventionally here to be the square root of the ratio of perturbed pressure to perturbed mass 

density: c == (p' I p')1 /2. We can express the equations of motion in terms of v as follows: 

(1.92) 

For most of the purposes of this chapter, the energy equation may be left unspecified, and c may 

be assumed constant. However, we use the energy equation when we discuss slow mode damping at 

the cooling scale in §1.5.1. We assume that temperature fluctuations decay in a cooling time, teool; 

more precisely, 
T' 

iwTs' =-­
t eoo l 

(energy conservation) , (1.93) 

where s' is the perturbed entropy per particle, and T is the temperature. Combining this equation 

with the following monatomic ideal gas relations 

p' p' T' 2, 5 p' 
P = P + T = 3s + 3p , (1.94) 

yields 
-2 _ p' 2 2 - i5wteool 
c = - =cr 

p' 2 - i3wteoo l ' 
(1.95) 

where c~ == pi p is the square of the isothermal sound speed. When wteool « I, c is the isothermal 

sound speed; when wteool » I , c is the adiabatic sound speed. 

1.13.1 Alfven Mode 

The Alfven mode is incompressible; k . v = O. Thus the term involving the sound speed in the 

momentum equation vanishes, and the properties of the Alfven mode are independent of the equation 

of energy conservation. We obtain the dispersion relation 

(1.96) 

by forming the cross product of equation (1.92) with k. The eigenfunction satisfies 

n' = k . v = Z . v = 0, b = -sign(kz)v . (1.97) 

Note that both v and b are perpendicular to z: the Alfven wave is polarized transverse to the 

unperturbed magnetic field . 
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1.13.2 Slow Mode 

We summarize the properties of the slow mode to lowest order in kz / k « 1, the limit appropriate 

to the MHD cascade. To obtain the dispersion relation we assume, subject to verification, that the 

perturbation in total pressure- i.e., thermal plus magnetic pressure- vanishes to second order in 

kz / k. Note that the perturbation in total pressure is proportional to the terms in square brackets 

in both equation (1.90) and equation (1.92). From the vanishing of this pressure term in equation 

(1.92), we then have 

V~ [ (kz )2] 
k . v = c2 + v~ 1 + 0 k k zv z · (1.98) 

The z-component of equation (1.92), with k . v given by equation (1.98), then yields the dispersion 

relation: 

(1.99) 

Next, we solve for the eigenfunction to lowest order in kz/k: 

(1.100) 

where the x-axis has been chosen to lie in the plane containing k and z. We now see that our 

assumption of negligible perturbed pressure is self-consistent to lowest order in k z/ k . While we have 

not used the x-component of equation (1.92), both the left-hand side and the right-hand side of this 

equation are of the same order in k z /k . 

The vanishing of the slow mode's perturbed pressure may be understood as follows: the period 

of the slow mode is comparable to the time for a disturbance to cross a parallel wavelength at the 

slower of c and VA. Total pressure balance is set up within the time that the fast mode- which 

travels at the faster of c and VA - crosses a wavelength. This may be seen by solving equation 

(1.92) exactly (treating c as a constant): the slow mode's perturbed pressure is negligible , and our 

approximate solution is valid, when 2(kz /k) cVA /(C2 +v~) « 1, which implies that k z x min{c, VA} « 
k x max { c, V A}. 

Note that both v and b are nearly parallel to z: the slow wave polarization is nearly aligned 

with the unperturbed magnetic field. Moreover , in the limit that c » VA, the slow mode is nearly 

incompressible. 

1.13.3 Entropy Mode 

The linearized MHD equations yield four modes; in addition to the Alfven, slow, and fast modes , 

there is a lesser known mode: the entropy mode. For adiabatic fluid motions, the energy equation 

is ws' = O. The entropy mode has w = 0, and its eigenfunction is given by p' = v = b = 0, 
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T'IT = -n'ln = 2s'/ 5. 

In the following, we calculate the eigenvalue and eigenvector of the entropy mode in the presence 

of cooling, i.e., when the energy equation is given by equation (1.93). We shall see t hat the entropy 

mode decays in a time comparable to t cool ' 

We consider only wavenumbers sufficiently large that t he fast mode's crossing time is much faster 

than the entropy mode's decay time, i.e., k » kfast == [c2 + V~ ] -1/2 t~O~I ' Therefore the total pressure 

perturbation vanishes. Note that k > kfast in the vicinity of the cooling scale (eq. [1.39]) , where the 

present calculation is most relevant . 

The dispersion relation may be obtained from equation (1.92) , after setting the perturbed total 

pressure- the term in square brackets- to zero. The result is equation (1.99), which has three roots: 

two counter-propagating slow modes and the entropy mode. To solve for the entropy mode, it is 

convenient to rewrite equation (1.99) as follows: 

. 4 + 2,8[1 - (vAkzl w)2 ] 
~wtcoo l = 6 + 5,8[1 - (vAkzlw)2] , (1.101) 

where,8 == 24Iv~, and where equation (1.95) has been used for c. Presupposing that w is of order 

t~o~ l' we see that the right-hand side of this equation has two limiting behaviours, depending on the 

value of k z . 

On small scales, where min{vA,cr } x tcoolkz» 1, 

.2 1 
w = -~---

5 t cool 
(1.102) 

In this limit the slow mode crossing time is faster than cooling, so the thermal pressure perturbation 

vanishes, as may be seen directly from equation (1.95). Thus, to lowest order in (kzvA tcool) -l, the 

eigenfunction is t he same as for the adiabatic case, p' = v = b = 0, T'IT = -n'ln = 2s'/5. 

On large scales, where kzVAtcool « 1, equation (1. 101) implies that 

.4 + 2,8 1 
w = -~----- , vA tcoolkz« 1 . 

6 + 5,8 t coo l 
(1.103) 

Substituting this into equation (1.95), and using total pressure balance, yields the eigenfunction , 

n'ln = bzl vA = _(pI Ip)( ,8 12) . The remaining non-zero components of the eigenfunction are T ' IT = 

- (n' In) (1 + 2/,8) and s' = - (n' In )(5/2 + 31,8) . 
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Chapter 2 Imbalanced Weak MHD Turbulence 

Written with Peter Goldreich; to be submitted to the Astrophysical Journal 

ABSTRACT 

MHD turbulence consists of waves that propagate along magnetic fieldlines, in both 
directions. When two oppositely directed waves collide, they distort each other, 

without changing their respective energies. In weak MHD turbulence, a given wave 
suffers many collisions before cascading. Imbalance means that more energy is 

going in one direction than the other. In general, MHD turbulence is imbalanced. 

A number of complications arise for the imbalanced cascade that are unimportant 
for the balanced one. We solve weak MHD turbulence that is imbalanced . Of crucial 

importance is that the energies going in both directions are forced to equalize at 
the dissipation scale. We call this the pinning of the energy spectra. It affects 

the entire inertial range. Weak MHD turbulence is particularly interesting because 
perturbation theory is applicable. Hence it can be described with a simple kinetic 

equation. Galtier et al. derived this kinetic equation . We present a simpler , more 

physical derivation, based on the picture of colliding wavepackets. In the process, we 

explain why Goldreich and Sridhar claimed that perturbation theory is inapplicable, 

and why this claim is wrong. (Our "weak" is equivalent to Goldreich and Sridhar's 

"intermediate." ) We perform numerical simulations of the kinetic equation to verify 
our claims. 

2 .1 Introduction 

MHD turbulence is ubiquitous in astrophysics . For example, it is present in the sun, the solar wind, 

the interstellar medium , molecular clouds, accretion disks, and galaxy clusters. Theoretical under­

standing of incompressible MHD turbulence has grown explosively in the last decade. Nonetheless, 

it remains underdeveloped. 

Iroshnikov (1963) and Kraichnan (1965) developed a theory for MHD turbulence. They realized 

t hat the magnetic field at the largest lengthscale in a cascade directly affects all of t he smaller 

lengthscales . Small-scale fluctuations can be treated as small-amplitude waves in t he presence of 

a large mean magnetic field. By contrast, the large-scale velocity is unimportant for small-scale 

dynamics ; it can be eliminated by a change of variables, since the equations of MHD are invariant 

under Galilean transformations. 

Despite their realization of the importance of the mean magnetic field , Iroshnikov and Kraichnan 

assumed that small-scale fluctuations are isotropic. Numerical simulations later showed t hat this 

assumption is wrong. Even with isotropic excitation at large scales , fluctuations on smaller scales are 

elongated along the mean magnetic field (e .g., Montgomery and Turner 1981 , Shebalin , Matthaeus , 
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and Montgomery 1983). 

In retrospect, it is not very surprising to find elongated fluctuations. Arbitrary disturbances in 

incompressible MHD can be decomposed into shear-Alfven and pseudo-Alfven waves. Each wave 

travels either up or down the mean field at the Alfven speed, VA, which is the magnitude of the 

mean field in velocity units. Consider stirring a magneto-fluid with a spoon that is moving at speed 

V « VA, for a time comparable to the spoon 's width divided by v. (In a turbulent cascade, one would 

expect V « VA on small scales, since V decreases towards small scales, whereas VA is unchanged.) 

Alfven waves are radiated away from the spoon, parallel to the mean field with speed ± VA. After the 

disturbance is finished, there are two wavepackets travelling away from each other. Each wavepacket 

is elongated along the mean field , with parallel-to-transverse aspect ratio ~ VA / V» l. 

The characteristics of MHD turbulence depend critically on the amount of elongation. When 

parallel-to-transverse aspect ratios are smaller than VA/V, waves collide many t imes before cascading. 

Hence the turbulence is weak, and perturbation theory can be used to derive a kinetic equation and a 

spectrum (Sridhar and Goldreich 1994; see Zakharov , L'vov, and Falkovich 1992 for a general review 

of weak turbulence). Goldreich and Sridhar (1997) and Ng and Bhattacharjee (1997) deduced the 

spectrum of the balanced weak cascade from scaling arguments. 1 However , similar scaling arguments 

are inadequate for the imbalanced cascade (see §2.3.2 of the present chapter). Galtier et al. (2000) 

derived the kinetic equation for the weak imbalanced cascade. Their balanced spectrum agreed with 

that of Goldreich and Sridhar (1997) and Ng and Bhattacharjee (1997). They also presented a partial 

solution for the general imbalanced case. In §2.3.2, we explain why their solution is incomplete; in 

§2.4 we give the complete solution. 

Even if aspect ratios are smaller than vA/von large scales, at a small enough scale they become 

comparable to VA/V. Below this scale perturbation theory breaks down , and weak turbulence be­

comes strong. Goldreich and Sridhar (1995) worked out the scalings for the balanced strong cascade. 

They argued that aspect ratios are comparable to vA/vat all scales in the strong regime. Strong 

turbulence is difficult , largely because it is non-perturbative. Although strong and weak turbulence 

differ in a number of ways, they also share many similarities . One of our main motivations for 

studying weak turbulence is to gain insight into strong turbulence. In particular , turbulence in the 

1 We relegate some of the history to a footno te because it can be confus ing. Sridhar and Goldreich (1994) developed 
the first theory of MHD turbulence that accou nted for the anisot ropy of flu ctuat ions . They cla imed that three-wave 
processes vanish in weak MHD turbu lence , and four-wave processes must be considered (i .e., perturbation theory is 
trivial to first order , so second order terms a re important ) . As a result , they used four-wave couplings to derive a 
kinetic equa tion and a spectrum for weak MHD turbulence . Montgomery and Matthaeus (1995) cla imed, and Ng 
and Bhattacharjee (1996) showed , that Sridhar and Goldreich (1994) are wrong, and three-wave processes do not 
vanish. Goldreich and Sridhar (1997) expla ined the contradiction: Sridhar and Goldreich (1994) had unknowingly 
assumed that the fi eld line wander is small ; in th is case, three-wave couplings a re negligible and t he kinet ic equat ion 
based on four-wave couplings is correct. In the more realist ic case t hat fi eldlines wander substantially, three-wave 
processes are important. Goldreich and Sridhar (1997) went on to argue that , in the la tter case, perturbation theory 
is inappropriate, and couplings of a ll order a re of comparable m agnitude; so they called t his intermediate turbulence . 
Galtier et a l. (2000) argued t hat perturbat ion theory is appropriate , even when three-wave processes are important. 
In the Appendix of the present chapter, we use Goldreich and Sridhar's picture of wavepackets following wandering 
fi eldlines to clarify the controversy, and to explain why perturba tion theory works. Because it does work, we call the 
cascade weak instead of intermediate. 



51 

solar wind is observed to be imbalanced ; it cannot be understood without a t heory for imbalanced 

strong MHD turbulence. Yet this theory is unknown. In a future paper, we will work it out by 

extending the results of the present chapter. 

2.2 Basic Equations 

Ideal incompressible MHD2 is described by the following equations of motion: 

-VP+B·VB , 

B · Vv , 

V'v V · B=O. 

(2 .1) 

(2.2) 

(2. 3) 

The density is set to unity; the fluid velocity is v ; the magnetic field in velocity units is B == (magnetic 

field)/(47r)1/2; the total pressure is P == p + B 2/2 , which is the sum of t he thermal and magnetic 

pressures . Viscous and resistive terms are neglected in the above equations; they are important on 

small scales, and will be included where required. 

We decompose the magnetic field into its mean, VA Z , where VA is t he Alfven speed and Z is a 

unit vector , and into its fluctuating part b == B - VA Z . With this decomposition , the equations of 

motion may be written in terms of the Elsasser variables, w t == v - b and w.J.. == v + b, as follows: 

Otwt + VAozWt = -w.J..·Vwt - V P , 

Ot w.J.. - VA OzW.J.. = - w t ·Vw.J.. - VP , 

V·wt =V·w.J..=O. 

(2.4) 

(2.5) 

(2. 6) 

Note that P is not an independent degree of freedom. Taking the divergence of either equation (2.4) 

or (2.5) yields 

(2.7) 

where \7 -2 is the inverse Laplacian. When w.J.. = 0, w t propagates un distorted upwards along the 

mean magnetic field with speed VA. Similarly, when w t = 0, w.J.. propagates downwards at VA­

Nonlinear interactions occur only between oppositely directed wavepackets . It is these interactions 

t hat are responsible for t urbulence. 

There are three conserved quantities in incompressible MHD. Two of these are immediately 

apparent from equations (2.4)-(2 .6) : the energies of the upgoing and of the downgoing waves, i.e., 

(w t )2 and (w.!-)2. (Technically, these are twice t he energy per unit mass. We refer to t hem as 

2In t his chapter , we consider only incompressible MHD turbulence ; com pressibili ty does not a lter the dyna mics 
very much (Li t hwick and Gold reich 2001 ) . 
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simply energies throughout the chapter.) These energies are directly related to t he total (kinetic 

plus magnetic) energy C( (wt)2 + (w.!-)2 and to the cross-helicity C( (wt)2 - (w.!-)2. The focus of this 

chapter is turbulence where the energies in the up and down waves differ, or , equivalently, where the 

cross-helicity is non-zero . The third conserved quantity is magnetic helicity; however , for reasons 

explained below, its conservation does not playa role in this chapter. 

In MHD turbulence, on lengthscales much smaller than the outer scale, there is effectively a 

strong mean magnetic field that is due to fluctuations on the largest lengthscales. Gradients trans­

verse to this mean field are much larger than gradients along it (e.g., Shebalin, Matthaeus, and 

Montgomery 1983, Goldreich and Sridhar 1995, 1997, Ng and Bhattacharjee 1996) . This allows the 

MHD equations to be slightly simplified . The transverse components of equation (2.4), assuming 

that w;8z wt is much smaller than w+·V ..l..wt , are 

(2.8) 

where transverse components are denoted with the symbol ..1 == (x, y) . We assume t hat t he parallel 

component of w+ is either comparable to, or less than, its perpendicular component. We will see 

below that this is typically the case in the inertial range of a turbulent cascade. From equation (2.7), 

P:::::: _V:.L2(V ..l..wt:V ..l..w+) ; therefore 

(2.9) 

Similarly, 

(2. 10) 

(2.11) 

If we change:::::: to =, equations (2.8)-(2 .11) form a closed set . They are called the equations of 

reduced MHD. They apply also in compressible MHD whenever transverse gradients are larger 

than parallel ones (e.g., Biskamp 1993). The main goal of this chapter is to solve these equations. 

Although the complete equations are not much more complicated, it simplifies our discussions to 

neglect parallel gradients relative to perpendicular ones at the outset. There are two conserved 

energies in reduced MHD : (wl)2 and (wiY. The magnetic helicity associated with wI and wi 
vanishes, and is therefore unimportant for their evolution. 3 

We also consider the parallel components of equations (2.4) and (2.5). Neglecting parallel gradi-

3In 3-D MHD , the m agnetic helicity is fA · B d3 x, where A is the magnetic potential (V X A = B ). If the 
m agnet ic field is broken up into its mean vAi, and into flu ctuations b, t hen the only non-vanishing part of the helicity 
is fa· bd3 x, where V X a = b. In reduced MHD , b is t ra nsverse to i and a is nearly parallel to i , so t he he licity 
nearly vanishes. 
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ents relative to transverse ones yields 

(2.12) 

(2.13) 

Clearly, (wI)2 and (w*)2 are conserved quantities. The transverse equations describing reduced 

MHD are unaffected by these parallel equations because the former are independent of wI and w*. 

Nonetheless, the parallel equations have observable consequences. 

It is conventional to decompose the normal modes of linearized incompressible MHD, w t and 

w.j., into shear-Alfv 'en and pseudo-Alfven waves. These correspond to the Alfven and slow waves 

of compressible MHD. When perpendicular gradients are much larger than parallel ones, w 1 and 

wi are nearly equivalent to shear-Alfven waves; wI and w* are nearly equivalent to pseudo-Alfven 

waves. 

Also observationally relevant is the evolution of a passive scalar s, which satisfies 8t s + v, V s = O. 

In terms of Elsasser variables, and after neglecting parallel gradients, t he passive scalar satisfies 

8t s ~ -(1/2)(wl + wi)·V.LS . (2.14) 

To avoid a proliferation of subscripts, in the remainder of this chapter we drop the -L from w 1 
and wi . To denote the parallel components, we use wI and w*. 

2.3 Weak Turbulence: Heuristic Discussion 

2.3.1 Scaling Relation 

MHD turbulence can be understood from the dynamics of w t and w.j. (eqs. [2 .8-2.11] for reduced 

MHD, dropping -L subscripts). To linear order, w t is a wave that propagates up the mean magnetic 

fieldlines at the Alfven speed, VA; w.j. propagates down at VA. Each wave perturbs the mean magnetic 

fieldlines. Nonlinear terms describe the interaction between oppositely directed waves: each wave 

nearly follows the fieldlines perturbed by its collision partner. 4 

Consider an upgoing wavepacket that encounters a train of downgoing wavepackets. As the 

upgoing wave travels up the length of the down going train, it is gradually distorted . It tries to 

follow the perturbed fieldlines in the downgoing train, but these fieldlines wander, i.e., the transverse 

4The equation for a quantity f that travels upwards at speed VA, whi le fo llowing the magnet ic fieldlin es of the 
down-going w.j. is (at + VAaz + w.j.· V jJf = O. Equation (2 .8) for w t differs from this because of the pressure term, 
which is required to keep w t incompressible, while conserving the energy (wV. Thus w t does not exactly follow 
the fieldlines of w.j.. Nonetheless , we show in the Appendix that this deviation does not great ly affect the behaviour 
of the turbulence. Dissipation is a second effect that prevents the fo llowing of field lines. In the present discussion , we 
consider lengthscales that are sufficiently large that dissipat ion can be neglected . 
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sep aration between any two field lines changes. After each downgoing wavepacket, t he amount of 

wander is random; after many wavepackets, the wander tends to increase, as in a random walk. 

When the up-wave has travelled sufficiently far along the down-waves that the typical amount of 

wander is comparable to its own t ransverse size, the up-wave cascades . 

To be quantitative, let each downgoing wave in the train have a typical amplitude wi, a transverse 

size A, and a parallel size A, where "transverse" and "parallel" refer to t he orientation relative to 

the mean magnetic field. The most important collisions are between wavepackets of comparable 

t ransverse size (see §2.3.4). So let t he upgoing wave have t ransverse size A as well. 

Since each downgoing wavepacket has a typical perturbed magnetic field of magni tude ~ wi 

(neglecting the factor of 1/2), it bends the fieldlines by the angle Wi / VA; t he transverse displacement 

of a fieldline through this wavepacket is (Wi / VA )A; and the wander of two typical fieldlines through 

the wavepacket , if they are init ially separated by A, is also (Wi / VA )A. 

In weak turbulence, the wander through a single wavepacket is smaller t han t he wavepacket's 

transverse size, 

(2.15) 

i.e., the parallel-to-t ransverse aspect ratios are smaller t han VA/wi and VA/wI. (When these in­

equalities are not satisfied , strong turbulence is applicable; see §2.3.4.) An upgoing wavepacket must 

travel t hrough many downgoing ones before cascading. After N downgoing wavepackets, fieldlines 

have wandered a distance ~ Nl/2(w±lvA )A , assuming tha t wavepacket s are statistically indepen­

dent. The up going wavepacket is fully distorted- and hence cascaded- when the fieldlines it is 

following wander a distance A, i.e., when N ~ (AVA / Awi? Since each downgoing wavepacket is 

crossed in t he time A/VA, t he cascade t ime of t he upgoing wavepacket is 

(2. 16) 

In this time, the up going wavepacket t ravels a dist ance vAtJas, which is much larger t han A (see 

eq. [2 .15]). Consequently, if t he upgoing wavepacket also has a parallel size A, t hen as its energy is 

cascaded to smaller transverse lengthscales, it does not cascade to smaller parallellengthscales: 

A = scale independent . (2. 17) 

We assume throughout this chapter that the upgoing waves' parallellengthscale is the same as that 

of t he downgoing waves, A; t he extension to t he case when they differ is t rivial (as long as t he 

inequalities (2 .15) are both satisfied , with the appropriate A's) . 

We calculate the steady state energy spectra by using Kolmogorov 's picture of energy flowing 

from large to small lengthscales. The energy in up-waves fl ows from lengthscales larger t han A to 
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those smaller than>. at t he rate 

(2.18) 

We call this the flux. In steady st ate, it must be independent of >. , so 

(2.19) 

2.3.2 Insufficiency of Scaling Arguments for the Imbalanced Cascade 

When the cascade is balanced, the steady state solution is simple: wI = wi ex >.1 / 2 and tOt = to.!. ,...., 

(WI )4A/>.2vA , (Goldreich and Sridhar 1997, Ng and Bhattacharjee 1997). When it is imbalanced , a 

number of complications arise. 

By the symmetry between up- and down-going waves, equation (2.18) is also equal to t he flux of 

down-going waves: 

[
wtw.!. ]2 A 

to'!' ,...., ~- . 
>. VA 

(2 .20) 

Constancy of to.!. is forced by the constancy of tOt, and does not yield new information . One implication 

is t hat scaling arguments are insufficient to determine the flux ra tio tOt / to.!.. Physically, any flux ratio 

should be possible. But without the dimensionless coefficients of equations (2.18) and (2.20) , tOt / to.!. 

cannot be determined. The coefficients depend on t he spectral slope of wI (or equivalent ly of 

wi ex >'/wt, eq. [2.19]) , and cannot be obtained from scaling arguments . Galt ier et al. (2000) 

calculated the coefficients using kinetic equations. (We explain how below.) Therefore t hese authors 

were able to relate the flux ratio to the spectral slopes. 

However , the arguments presented thus far are still insufficiently constraining. Equations (2.18) 

and (2.20) constrain only t he product wI wi. There are seemingly an infinite number of solutions 

with given values of tOt and to'!', since wI can be multiplied by any const ant as long as wi is divided 

by this same constant . Furthermore, we expect on physical grounds that if the values of wI and wi 
at a given lengthscale are fixed (instead of the values of tOt and to'!'), the cascade should be completely 

constrained ; however , in t his case the constancy of equations (2.18) and (2 .20) leaves t he spectral 

slope of wI completely undetermined- even given the coefficients derived by Galtier et al. (2000). 

Do the two spectra cross? Are t hey cut off by dissipation at the same scale? All of t hese problems 

for the imbalanced cascade can be resolved once the dynamics at t he dissipation scale is understood . 

2 .3.3 Dynamics at the Dissipation Scale: Pinned Spectra 

The main result of the present chapter is t hat t he energies of t he up- and down-going waves are forced 

to equalize-they are "pinned"- at the dissipation scale. This completely constrains t he cascade. 
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It is very surprising that the dynamics at the dissipation scale has such an important influence. In 

t his subsection we explain why pinning occurs. In §2.4, we give the result ing solut ion of t he steady 

state cascade. 

From equation (2.16) , the cascade time of the up-going waves is inversely proportional to the 

energy of t he down-going ones: t ras = (A/wi)2 (VA / A), and similarly for t he downgoing waves. We 

consider how the spectra evolve if initially, on lengthscales comparable to t he dissipation scale, 

waves going in one direction are more energetic t han the oppositely directed ones . To facilitate 

the discussion , we refer to Figure 2.2 , which presents t he resul ts from a numerical simulation that 

we discuss in detail below. In the middle panels of Figures 2.2a-d , we plot et(k) ~ (AW1) 2 and 

e.J..(k) ~ (Awi)2 as functions of wavenumber k = I/A. Note t hat wi > wL so t~as > tras ' We 

consider a lengthscale-dependent dissipation time, tdiss, that is t he same for both up- and down­

going waves. 5 On large lengthscales, the dissipation t imescale is much longer than t he cascade t imes. 

Towards smaller lengthscales, tdiss decreases faster than both tras and t~as ' The effects of dissipation 

are felt on lengthscales where tdiss is smaller than , or comparable to, eit her tras or tLs ' Since 

t~as > tras in the vicinity of t he dissipation scale, the largest lengthscale at which dissipation effects 

are felt is where t~as ~ tdiss. In Figure 2.2a, t his is at k ~ 1, 000 . We now let the spectra evolve 

(Figs. 2.2b-c) . Since wi feels t he dissipative effects at k ~ 1, 000 , its spectrum is exponent ially cut 

off at smaller scales . This implies t hat the cascade time of t he up waves, tLs, increases exponent ially 

towards smaller scales. As a result , up-wave energy t hat is being cascaded from large to small scales 

cannot be cascaded fast enough at k 2: 1, 000. Therefore the up-waves' energy flux is backed up , and 

the wI spectrum rises. Furthermore, as wI rises, t~as falls, so t he cascade t ime of t he down waves 

on small scales decreases, and the down-wave spectrum falls. The final resul t is that t he two spectra 

are pinned at the dissipation scale. This pinning occurs very quickly: on t he dissipation t imescale. 

2.3.4 Two Peripheral Issues 

This subsection may be skipped on a first reading, without affecting our main line of argument . 

Locality 

In §2.3.1 , it is assumed that t he dominant interaction is between t hose wavepackets that have 

comparable t ransverse lengthscale, i.e., interactions are local in lengthscale. In this section , we 

justify this assumpt ion. 

We focus on t he cascading of an upgoing wavepacket by downgoing ones. Let the upgoing 

wavepacket have transverse size A, and let the downgoing wavepackets each have t ransverse size 

l , parallel size A, and amplitude wt . The upgoing wavepacket cascades when the fieldlines it is 

5For example, in t he simulation presented in Figure 2.2, t d iss ~ ).. 2 lv, where v is both t he viscosity and t he 
resistivity. 
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following wander a distance comparable to its transverse size, A. 

We consider first the case that l < A. Two field lines that are separated by A at the head of t he 

downgoing wavepackets wander independently of each other. Their transverse separation after N 

downgoing wavepackets increases by 

(2.21) 

Conversely, if l > A, then the magnetic field at two points separated by A differs by ~ wt AI l ; 

consequently, the fieldlines separate by 

(2.22) 

as long as this separation is not much larger that a few A. 

For interactions to be local, i.e., for the amount of fieldline wander seen by an up-wave of 

transverse size A to be maximized by those down-waves that have l ~ A, the following two conditions 

must hold: (i) wt is an increasing function of l (eq. [2 .21]); and (ii) wt Il is a decreasing function of 

l (eq. [2.22]). So the cascade is local if 

(2 .23) 

The same condition clearly holds for wI. In terms of the steady-state scalings, wI ex A{l+a)/2 and 

wi ex A {l-a)/2, the condition 

-1 < Ct < 1 (2.24) 

is required for the cascade to be local; otherwise, nonlocal effects are important. Galt ier et al. (2000) 

derived t he inequalities in (2.24) from the kinetic equation. 

There is a second reason why the condition d In wI/d In A < 1 is necessary for our heuristic 

arguments to be valid. When this condition is violated , the energy in up-waves that have lengthscale 

A, i.e., (w1)2, is smaller than the contribution to the energy at lengthscale A by upgoing waves with 

l > A, i.e., (wi AII) 2. This is a different kind of non-locality than considered previously: energy 

cascades directly from large to small lengthscales, skipping over intermediate lengthscales. 

Transition to Strong Turbulence 

Weak turbulence is applicable when wi AlVA « A and wIAlvA « A (eq. [2.15]). Since A decreases 

faster t han both wi and wI (eq. [2 .23]) , even if these inequalit ies are satisfied at large lengthscales, 

they are violated at small ones. Thus weak turbulence has a limited inertial range. 

Of greater relevance than weak turbulence for describing astrophysical sites such as the solar 



58 

wind is strong turbulence, which is applicable when the above inequalities are violated. In this 

case, the fieldline separation within a single wavepacket is not smaller than the transverse size of 

the wavepacket. This has two implications. First, equation (2 .16) for the cascade t ime is no longer 

valid; and second, the parallel size of wavepackets A decreases towards smaller scales because the 

head and tail of a wavepacket are independently cascaded. The balanced strong cascade is worked 

out by Goldreich and Sridhar (1995); we discuss the imbalanced strong cascade in a future paper. 

Strong turbulence is more difficult than weak turbulence because perturbation theory is not valid. 

Nonetheless, a number of the features of weak turbulence that we develop in the present chapter are 

applicable to strong turbulence. This is our main motivation for studying the weak cascade: to gain 

insight into the strong cascade. 

Since this chapter is concerned with weak turbulence, we choose the dissipation scale to be 

sufficiently large that the inequalities (2.15) are never violated, and the entire cascade is weak. By 

choosing a sufficiently small A, the lengthscale at which weak turbulence transitions to strong can 

be made as small as desired. 

2.4 Steady State Energy Spectra 

The steady state energy spectra are simple to calculate given the scaling wI wi ex A (eq. [2.19]) , and 

the fact that the spectra are pinned at the dissipation scale, Adiss. We denote the value of wI and 

wi at Adiss by Wdiss. We can then express the energy spectra as follows 

( A) (1+,,)/2 
Wdiss -,­

Adiss 

(
A) (1-,,)/2 

Wdiss ~ 
Adiss 

(2.25) 

(2.26) 

These spectra are valid in the inertial range, i.e., on lengthscales larger than the dissipation scale, 

and smaller than the outer scale, at which the turbulence is stirred. There are three parameters 

that must be calculated to constrain the spectra: Wdiss, Adiss, and Ct. 

For definiteness, we assume that dissipation is caused by a diffusive process, with a viscous term 

of the form vV2v in equation (2 .1) and a resistive term of the form vV2 B in equation (2.2). This 

implies that the magnetic Prandtl number is equal to one.6 The dissipative timescale is 

(2.27) 

At the dissipation scale, the cascade time is equal to tdiss, i. e., t cas(Adiss) = tdiss(Adiss ), which implies 

6It is straightforward to consider other forms for the dissipation. We consider hyperviscos ity in §2.8. 
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that 

after using equations (2.16) and (2.27) ; so 

(
V VA )1 /2 

Wdiss:= A 

(2.28) 

(2 .29) 

If the dissipation is caused by a diffusive process, then Wdiss is independent of the energies and the 

fluxes. This is not true for Adiss or a. 

To calculate Adiss and a, we consider two alternative scenarios: first , the energies at the outer 

scale are specified, and second the fluxes are specified . 

2.4.1 Fixed Energy at the Outer Scale 

We assume that the energies are specified at the outer scale, Aout, where wI and wi are denoted by 

w t and w+ . Since w t w+ I A = wdiss 2 I Ad iss , 
A o ut I\o u t 1'\ 1'\ 

Aout VVA 
Adiss = t .j. A ' 

w"\out w>"out 

(2.30) 

after using equation (2 .29). 

Dividing equation (2.25) by equation (2 .26) yields wL"lwL" = (Aoutl Adiss)"', so 

(2.31) 

With wL,,IwL,, fixed , the cascade is balanced (a --+ 0) in the limit that the inertial range is 

infinitely large (Aout I Ad iss --+ (0). 

Inserting equations (2.29) , (2.30), and (2.31) into the spectrum (eqs . [2.25) and [2.26)) gives the 

solution to the steady state imbalanced weak cascade, assuming that wtu, and wLu, are specified. 

2.4.2 Fixed Flux 

Heuristic arguments are insufficient for calculating the ratio of the fluxes, lOt IE.j. (see §2 .3.2) . We 

would like to determine both lOt and E.j. given the spectra of wI and wi. Conversely, we would 

like to determine the spectra when lOt and E.j. are specified . To accomplish this, the dimensionless 

coefficients of equations (2.18) and (2.20) are required. For a given power-law solut ion , wI ex A(1 +<»/2 

and wi ex A(1 -<»/2, these coeffi cients depend on a: 

t .j. 2 A 
f(a) [WAWA ] _, 

A VA 
(2.32) 
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t .\. 2 A 
f(_a)[WAW A] -, 

A VA 
(2 .33) 

where f( a ) is a dimensionless function of a that must be calculated . By the symmetry between up 

and down waves, f t and f.\. are both proportional to the same function f , evaluated at ±a. Since 

heuristic arguments are insufficient to calculate the function f , it is fortunate that weak turbulence 

can be analyzed with perturbation theory. We compute f in the Appendix (eq. [2 .85]) ; Galtier et 

al. (2000) also computed it . 

The ratio of the fluxes is related to a by 

(2.34) 

The limit la l « 1 is particularly interesting. For given outer-scale energies, if the inertial range is 

very large then the steady state cascade is nearly balanced (see the discussion below eq. [2 .31]) , and 

la l « 1. In this limit, we show in the Appendix that f(a) :::: f(O) . (1 + 0.5a) (see eq. [2 .86]). Thus 

(2.35) 

To linear order in a, the product of the fluxes is independent of a : 

(2 .36) 

neglecting the unimportant order-unity multiplicative factor [J(0)F. 

In sum, if ft and f.\. are specified, then the spectra of wI and wi are given by equations (2 .25) 

and (2.26), with Wdiss, a, and Ad iss given by equations (2.29) , (2.35), and (2.36) , in t he limit of small 

la l. Note that, to first order in a, the only relation that depends on the kinetic equation (i.e., on 

the form of f( a)) is equation (2.35). 

2.5 Kinetic Equations in Weak Thrbulence 

We show in the Appendix that perturbation theory can be used to describe weak turbulence. As a 

consequence, the evolution of the energy spectra of the up- and down-waves is described by a closed 

set of two equations; in other words, the two-point correlation functions evolve independently of all 

higher-order correlation functions. This is a great simplification. 

Evolution equations for the energy spectra- the kinetic equations- were obtained in Galtier et al. 

(2000, 2001). We present an alternate, more physical, derivation in the Appendix. Such a derivation 

is useful because it clears up a number of erroneous claims that have been made in the literature- in 

particular, the claim of Goldreich and Sridhar (1997) that perturbation theory is inapplicable. 
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In the following, we summarize the result derived in the Appendix. The kinetic equations are 

given in Fourier-space. We Fourier transform w t (x, y , z, t) and w+(x , y, z, t) in x and y (but not 

z ), and denote the transforms by wl(z, t) and wk(z,t), where k is purely transverse (kz == 0) . We 

define the energy spectra e t and e-l- such that 

(wl( z, t) "Wl,( z, t)) 

(wk(z, t) "Wk'( z , t)) 

et(k, t)J(k + k') 

e-l-(k, t)J(k + k') 

(2.37) 

(2.38) 

where J(k) is a two-dimensional Dirac delta-function, and angled brackets denote both an ensemble 

average and an average over z . (We assume that the turbulence is homogeneous in z .) Both e t and 

e-l- are real. The turbulence is isotropic in the transverse plane, so et and e-l- are functions of the 

magnitude of k. 

Within an order-unity factor, k 2et '" (W!)2 when). = 11k . Recall from §2.3 that wI is the 

typical value of w t on lengthscale ). ; more precisely, it can be defined as the square root of the 

structure function of w t . Therefore the steady-state scaling wI ex: ).(1+0)/2 (eq. [2.25]) corresponds 

to e t ex: k-(3+o); similarly, wi ex: ).(1-0)/2 corresponds to e-l- ex: k-( 3-0). In comparing our results 

with those of Galtier et al. (2000), note that these authors use the one-dimensional spectrum, which 

they denote E± , while we use the two-dimensional spectrum. So, E+ '" ket and E- '" ke-l-, within 

a multiplicative constant. 7 

From equation (2.80) in the Appendix, the kinetic equation for the up-waves is 

(2.39) 

where 

(2.40) 

There must also be a term describing dissipation on smalliengthscaies. If the dissipation is diffusive 

and the viscosity (v) is equal to the resistivity, then -vk2 et is to be added to the right-hand side of 

the above equation. 

Because of the symmetry between up- and down-waves, the equation for e-l- is the same as for 

e t, but with e t and e-l- everywhere switched. The steady-state relation between the energy and the 

flux that we use above (eq. [2.32]) is obtained in the Appendix by setting the right-hand side of 

equation (2.39) zero. 

7The one-dimensional spectrum is defined such that its integral over dk is proportional to the energy. Similarly, 
the integral of the two-dimensional spectrum over d2 k is proportional to the energy. 
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2.6 Numerical Simulations of Kinetic Equations 

In this section we present the results of numerical simulations which verify our previous heuristic 

discussions: in particular , the pinning of spectra and the scaling of the sp ectra in steady state. 

It is much faster to simulate kinetic equations t han the full equations of motion for w t and w"!'. 

There are a number of reasons for this. First , the kinetic equations are only one dimensional , since 

homogeneity has been assumed parallel to the mean magnetic field , and isotropy has been assumed 

in the plane transverse to the mean magnetic field . Second, and more importantly, the averaged 

energies et and e.j. a re much smoother functions of k than w t and w"!'. Thus, a logarithmically­

spaced grid can be used, which logarithmically reduces the number of variables t hat need to be 

evolved. The result is an enormous reduction in computational time. A typical kinetic simulation 

takes a few hours on a PC to reach steady state. A comparable fully three-dimensional MHD 

simulation , would require many months , if not years, on the fastest supercomputers. 

Galtier et al. (2000) also perform numerical simulations of the kinetic equation. However, their 

investigation of the imbalanced cascade is very incomplete. In particular, t hey only plot spectra of 

the product e t e.j.. They do not discuss the pinning of the spectra at the dissipation scale, which is 

crucial to the evolution of the cascade. 

For our numerical simulations of the kinetic equations (eq. [2 .39] and the analogous e.j. equation) , 

we set A / VA = 1. This corresponds to absorbing A/VA into et and e.j. . We evaluate all functions 

of k on a fixed , logarithmically-spaced grid with k = 2i / 8 , i = 1, ... , 100. At t he outer scale, 

kout = 21 / 8 = 1.09 and t he maximum k is km ax = 2100/ 8 = 5793. The double integral in t he kinetic 

equation is performed by summing the values of the integrand evaluated on the k-space grid . T he 

factor that depends on B is averaged in the vicinity of each grid point, i.e. , at each (kt,k.j.) . Since B 

is a function of kt / k and k.j./ k, and since the grid is logarithmic, the averaged angular factor can be 

precomputed and stored in a two-dimensional matrix, each element of which is t he average in the 

vicinity of (kt/k, k.j. / k).8 We integrate in time with second-order Runge-Kutta. 

For the discussions of the simulations that follow, recall that the energies of the waves at a given 

lengthscale >. = l/k are, within unimportant multiplicative constants, 

(2.41 ) 

8In evaluat ing t he integral near kout, it is necessary to use t he values of ei( ki ) and e.!.(k.JJ for ki,k.!. < kout. Since 
t hese values are off of t he grid , some method of ext rapolation must be used. In the runs that we present in this chapter, 
we extrapolate wit h ei,e.!. 0:: k- 2 We have a lso experimented with a fl at spectrum for k < kout : ei = ei(kout) , 
e.!. = e.l.(kout ). While this changes t he behaviour near k ~ kout- in particular, it leads to a sharp drop in ei and e.!. 
between k = kout and k = 21/Bkout by a factor of around 3- the remainder of the spectrum for k > 21/8kout is nearly 
unaffected. With the k- 2 extrapolation t here is a lso a drop at k = kou t, as can be seen in t he top panel of F igure 
2.1d, for example; but t his drop is much less drastic t han with the fl at spectrum extrapolat ion . 
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The cascade times of the up- and down-going waves are, respectively, 

(2.42) 

(see eq. [2.16]). The dissipation time is 

(2.43) 

(see eq. [2.27]). For the simulations in t his section , the viscosity is set to 

v = 3.10-5 ; (2.44) 

this implies that tdiss(kmax ) = 0.001. 

2.6.1 Fixed Energy at the Outer Scale 

For our first simulation, we fix et(kout ) = 1 and e-l-(kou t ) = 0.1 throughout t he simulation. See 

Figure 2.1. For the initial condition, we use the spectra et ex k- 3 and e-l- ex k - 3 (Fig. 2.1a). These 

initial spectra are seemingly valid solutions of the steady-state flux relations (eqs. [2 .32] and [2 .33]) , 

with a = 0 and E t = E-l-. But the spectra are not pinned . When they are evolved in t ime, it seen that 

they become pinned to each other at the dissipation scale. This pinning happens very quickly- at 

the dissipation timescale (Fig 2.1b). The reason for this pinning was discussed in §2.3.3 , and can be 

traced in Figures 2.1a-c. 

The entire e-l- spectrum adjusts to et on the timescale t~as(kout) ~ 1. The et spectrum takes 

longer to adjust, since t!as(kout ) ~ 10. By t = 50, steady state is reached (Fig 2.1d) . We can compare 

t he behaviour in steady state with our calculations in §2.4. From equation (2.30), the dissipation 

wavenumber is 

(2.45) 

which is approximately three times larger than the value seen in Figure 2.1d. The reason for this 

discrepancy can be seen in the bottom panel of this figure: dissipation is important where the cascade 

times are ~ tdiss/3, rather than ~ tdiss as we previously assumed. To account for t his difference, we 

can use an effective viscosity, VerT == 3v, instead of V in our steady state formulae. 

Equation (2 .31) gives 

(2.46) 
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Figure 2.1 : Simulation of Kinetic Equations with Fixed Energies at the Outer Scale 
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so 

dlnet 
---

din k 
3 + a = 3.14 (2.47) 

d ln e-l. 
---

dink 
3 - a = 2.86 , (2.48) 

in good agreement with the top panel of Figure 2.1d . 

From equation (2.36), the product of the steady state fluxes is approximately 

(2.49) 

In the numerical simulation, the values of (0 t and (0-1. in steady state are obtained by outputting 

the instantaneous decay rates of et(kout ) and e-l.(kout ) when the forcing is turned off. We find that 

(d/dt)et(kout ) = -0.136 = -(Ot and (d/dt)e-l.(kout ) = - 0.114 = -(0-1., so (Ot(O-I. = 0.016 , in reasonable 

agreement with the predicted value. 

Recall that heuristic arguments suffice to derive all of the steady-state formulae t hat we have 

used thus far in this section, and the kinetic equation is unnecessary. But the kinetic equation is 

necessary to derive the relative value of the steady state fluxes. From equation (2.35) , we should 

have 

(2.50) 

if we use the value of a from equation (2.46). The actual value is 0.136/0.114 - 1 = 0.19, once again 

in reasonable agreement. 

2.6.2 Fixed Flux 

For our second simulation, we inject energy at a fixed rate at k = kout . We use the same injection 

rate as we found in steady state in the first simulation: 

(Ot = 0.136 , (0-1. = 0.114 (2.51) 

Thus et(koud and e-l. (kout ) are free to evolve. For our initial condition, we use the spectra obtained 

in steady state in the first simulation, but multiplied by a constant; specifically, et(k) ~ et (k)/ lO 

and e-l.(k) ~ e-l.(k) . 10 (see Fig. 2.2a) . With these fluxes and init ial spectra, the flux relations (eqs. 

[2.32] and [2.33]) are satisfied- since they were satisfied before the multiplication and division by 

10. But , once again, this is not a valid steady state solution because the spectra are not pinned 

at the dissipation scale. When the spectra are evolved in time, t he spectra are first pinned (Figs. 

2.2a-c). In this simulation, the spectra are initially pinned where t±as ~ tdiss, which is at k ~ 1, 000. 

Therefore the pinning timescale is ~ tdiss(k = 1, 000) ~ 0.03. 
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As expected , the same steady state is reached as in the first simulation (Fig. 2.2d). In reaching 

steady state, the two spectra must cross. This happens at t ,...., 40, when both spectra are ident ical, 

with slopes equal to -3, and with outer scale energy equal to ,...., 0.3. The time to reach steady state 

is considerably longer in the constant flux simulation than in the constant energy one. Steady state 

is reached at t ,...., 250, as opposed to t ,...., 50 in the previous simulation. This may be attributed to 

the fact that most of the flux that is input at large scales is continuously being lost at small scales. 

Therefore, the constant flux simulation is less efficient at growing the spectra than is the constant 

energy spectra. 

In sum, these two simulations show that the pinning of the spectra occurs very quickly. In 

addition , both the evolution of the spectra towards steady state, and the behaviour in steady state, 

can be understood with simple heuristic arguments . However , there is one exception: the relation 

between the ratio of the fluxes and the spectral slope, Et IE:" - 1 ::::: Ct, the coefficient of which (i.e., 

1) can only be obtained by considering the steady state kinetic equation. 

2.6.3 Decaying Turbulence 

For our third simulation, we allow the spectra to decay without injecting any energy. The initial 

condition is the steady state spectra from the previous simulation, see Figure 2.3 . At the outer scale, 

the cascade time of the down-waves is ,...., l/et (kout ) ,...., 1, so e:"(koud decays on this timescale. More 

precisely, from the values plotted in Figure 2.3, e:" ex exp( -0.5t) at fixed k. 

The cascade time of the up-waves is much longer. Initially, tras ,...., 10 at the outer scale; as e:" 

decays, t ras increases exponentially. So et (kout ) does not evolve. Nonetheless, tras is smaller at small 

scales, and there is some evolution of et at large k. 

The spectra appear to evolve in a self-similar manner, with the spectra remaining pinned at 

their dissipation scale. The end result is that the energy in the down-waves disappears , while 

the energy in the up-waves is nearly unchanged. Decaying weak turbulence is unstable: an initial 

imbalance between up and down waves is magnified exponentially. A similar instability occurs in 

strong turbulence, as suggested by Dobrowolny et al. (1980) in the context of the solar wind, and 

as seen in numerical simulations of strong turbulence (Maron and Goldreich 2001, and Cho et al. 

2002) . 

2.7 A Model of the Kinetic Equations: Coupled Diffusion 

Equations 

It is instructive to consider a very simple model of the kinetic equations. In this section, we develop 

a model in the form of two coupled diffusion equations. Investigation of these model equations 
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Figure 2.3: Decaying Simulation of Kinetic Equations 
Spectra of et (dotted lines) and e.J. (solid lines) at the following times: t = 0,25,50,75, 100, 125 (from 
top to bottom). 
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illustrates that the pinning of spectra is quite general; the only requirement is that the cascade 

time of one type of wave be inversely related to t he energy of the other type. A second reason for 

considering model equations is that they can be simulated much faster and more easily t han t he 

kinetic equations. Finally, by contrasting the kinetic equations with the model equations, we can 

gain insight into the behaviour of the kinetic equations. 

2.7.1 Derivation of Coupled Diffusion Equations 

Our model equation is 

(2.52) 

where €f is the flux . Since the energy of the up-waves is proportional to the integral of et over d2 k , 

ket is proportional to the energy per unit k . For €f, we choose a form that depends on t he following 

quantities evaluated at k: e.!., et , and Bk et . By contrast , the kinetic equation depends on et and 

e.!. evaluated at a range of wavenumbers, so our model equation is much more local in k (in fact, it 

is exactly local). For t he cascade time of the energy in the up waves to have the correct form (eq. 

[2 .16]) , i. e., tJas = ()../W;)2(VA /A ) ~ (k 4 e.!.) - 1(vA /A) , we choose 

(2. 53) 

where /3 is a constant that we specify below. Of course t he above relation for the flux gives the 

correct steady-state scaling: e t e.!. ex: k - 6 . The evolution equations for e.!. are t he same as for e t (eqs. 

[2. 52] and [2.53]) , with t 's and .j..'s interchanged. 

With e t ex: k -(3+a) , e.!. ex: k -(3 - a), we can relate the steady-state fluxes to the energies: 

j(a)[k6et (k) e.!. (k)]~ , 
VA 

(2.54) 

j( -a)[k6et(k)e.!.(k)]~ , 
VA 

(2.55) 

where 

j(a) = 2 + a - /3 . (2 .56) 

These relations are analogous to equations (2 .32) and (2.33). To make the analogy closer , we choose 

/3 so t hat j has the same dependence on a as does f in the limit that t he cascade is nearly balanced 

(i.e., lal « 1). Since €f / f '!' = j(a )/ j( -a) ::: 1 + a /(l - /3 /2) in this limit , we see by comparison 

with equation (2 .35) that we should choose /3 = O. 

Collecting results, our model equations are two coupled diffusion equations: 

(2.57) 
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(2.58) 

These equations, while much simpler than the kinetic equations, share many of the same features. 

Since the cascade time of the up-going waves is inversely proportional to the energy of the down­

going waves (and vice versa), the argument for the pinning of the spectra in weak turbulence (see 

§2.3.3) applies here as well. Moreover, in steady state, these diffusion equations suffer from the same 

degeneracy as does the kinetic equation: the constancy of {t and E-l- is insufficient to determine the 

scaling of e t or e-l- separately. This degeneracy is partially broken by the dependence of the fluxes 

on the slopes (eqs. [2 .54] and [2.55]); we have chosen this dependence so that it is the same as for 

the kinetic equations in the limit that the cascade is nearly balanced (Ial « 1) . In the following 

section, we present numerical simulations of these equations. 

2.7.2 Numerical Simulations of Coupled Diffusion Equations 

We run two simulations of the coupled diffusion equations. As with the kinetic simulations described 

in §2.6, the first simulation has fixed energy at the outer scale, and the second simulation has fixed 

flux. And, as before, A/VA is set to unity, functions of k are evaluated at k = 2i
/ 8 , i = 1, ... , 100, 

and the viscosity is // = 3 . 10-5 . 

Fixed Energy at the Outer Scale 

For our first simulation, we fix et(kout ) = 1 and e-l-(kout ) = 0.1. The evolution is shown in Figure 

2.4. It is very similar to the evolution of the kinetic simulation (Fig. 2.1) . As before, the spectra are 

pinned quickly. And since, by design , the predicted steady state relations for the diffusion equations 

are the same as those for the kinetic equations (eqs. [2.45]- [2 .50]), the steady state behaviour of 

the two simulations are nearly identical; compare Figures 2.4d and 2.1d. Nonetheless, there are 

two differences worthy of note. First, the slopes of e t and e-l- do not have a spike near k = kont · 

The presence of such a spike in the kinetic simulation is due to the extrapolation of the spectra to 

k < kont (see footnote 8). Since the diffusion equations are exactly local in k , such an extrapolation is 

unnecessary, and so the behaviour is much smoother near k = kont . Second, dissipation is important 

where the cascade times are ~ tdiss/15 (see bottom panel of Fig. 2.4d), instead of ~ tdiss/3 as for 

the kinetic simulation. Therefore, we should use an effective viscosity //eff = 15// in the predicted 

steady state relations. In particular, the prediction for a (see eq. [2.46]) becomes a = 0.17 with this 

From the output of the code in steady state, the fluxes are E t = 0.308 and E-l- = 0.260. Thus 

Et /E-l- - 1 = 0.18, while the predicted value is a, i.e. , 0.17. 
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Figure 2.4: Simulation of Diffusion Equations with Fixed Energies at the Outer Scale 
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Figure 2.5 : Simulation of Diffusion Equations with Fixed Fluxes 

Fixed Flux at the Outer Scale 

104 

For the second simulation, we inject energy at k = kout at a fixed rate, equal to that found in steady 

state in the previous simulation; i.e., Et = 0.308 and E.(. = 0.260. For the initial condition, we divide 

the previously found steady state value of et by 10, and we multiply e.(. by 10. The evolution is 

shown in Figure 2.5. It is very similar to that found in the corresponding kinetic simulation (Figure 

2.2) . 
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2.8 The Bottleneck Effect 

The bottleneck effect appears in numerical simulations of both hydrodynamic and MHD turbulence 

(e.g. , Borue and Orszag 1995, Biskamp 2000) . A trick that is commonly used in simulations is 

that the viscous term is modified from the diffusive value vk2 v to vnknv, where n is typically 4 or 

8, and Vn is t he hyperviscosity; the resistivity is modified in a similar manner. This trick makes 

the dissipation lengthscale slightly smaller. Thus a smaller part of the spectrum is subjected to 

dissipation, and more of the true undissipated spectrum can be observed for a given dynamic range. 

Although this trick does work, and the dissipation lengthscale is made smaller , there is a problem: 

the spectrum on scales slightly larger than the dissipation scales is made fl atter. The energy, in 

effect, is backed up. This is the bottleneck effect. It can be particularly problematic in simulations 

of strong MHD turbulence, where the energy backup can affect lengthscales considerably larger 

than the dissipative scales (Biskamp and Muller 2000, Maron and Goldreich 2001 , alt hough Cho 

and Vishniac 2000 show a less extended backup) . 

This motivates us to investigate the bottleneck effect in weak turbulence. If the bottleneck effect 

appears, its interpretation will be simpler t han in strong turbulence. We perform two simulations 

of the kinetic equation, one with hyperviscosity of the form v4k4, and the other with vsk s. In 

each simulation, we fix t he energies at the outer scale, et(kout ) = 1, e.!.(kout ) = 0.1 , and allow the 

spectra to reach steady state. The steady state spectra of k 6et e.!. are shown in Figure 2.6, offset for 

clarity. Also shown is the simulation with ordinary viscosity described in §2.6.1. From this figure it 

is apparent that weak turbulence suffers from the bottleneck effect; t he effect becomes larger with 

increasing hyperviscous exponent . 

The bottleneck effect can be understood as follows. Consider an up-wave on a lengthscale slightly 

larger than dissipative scales. It is cascaded by down-waves that have slightly different lengthscales 

than its own. Hyperviscosity gives a sharper dissipative cutoff to the down-wave spectrum than 

ordinary viscosity. Therefore a hyperviscous simulation has fewer down-waves in the vicinity of t he 

dissipation scale, and the cascade time of t he up-wave is longer. For the up-wave energy flux to be 

independent of lengthscale, a longer cascade time implies a larger energy. As a result , the spectrum 

is flatter on scales slight ly larger than dissipative ones. Falkovich (1994) has a similar explanation 

of the bottleneck effect in hydro turbulence. 

2.9 Discussion 

In this chapter we described imbalanced weak turbulence and solved the steady state cascade. In a 

future paper, we will extend the result to the strong cascade. One of our ultimate goals is to use the 

theory of imbalanced strong turbulence to explain turbulence in the solar wind, where imbalance is 
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Three spectra, offset for clarity; t he top spectrum has viscous and resistive terms vsks, the middle 
has v4k4, and the bot tom has vk2 . 
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observed. 

Although strong turbulence is more generally applicable than weak, the latter is a simple and 

useful model. There are a number of issues in strong turbulence that are not understood. Weak 

turbulence can be used as the first step in explaining them. For example, in this chapter we found 

that the bottleneck effect appears in weak turbulence, where its interpretation is straightforward. 

There are a number of other issues that we intend to investigate in weak turbulence as a prelude to 

understanding them in strong turbulence; for example, turbulence in the presence of a high magnetic 

Prandtl number and reconnection. 

2.10 Appendix: Kinetic Equation In Weak 'IUrbulence 

2.10.1 Preliminaries 

The kinetic equations describing weak turbulence were derived in Galtier et al. (2000) using the 

theory of weak turbulence. In this appendix, we present a more physical derivation. 

We consider the evolution of w t in a plane that is transverse to i and moving with velocity 

vAi, i.e. , with fixed zt == z - VAt. (Recall that i is in the direction of the mean magnetic field.) 

Changing variables from z to zt in equation (2.8) gives 

(2.59) 

In weak turbulence, the parallel length over which disturbances are correlated, A, is small; in par­

ticular, in the time that an up-wave crosses a down-going wavepacket, Ilt ~ A/VA, its distortion is 

less than unity: Ilw1/wI ~ (wi/vA)A/>"« 1 (eq. [2.15]).9 Therefore, w t undergoes small uncor­

related changes each Ilt ~ A/VA, and its evolution is analogous to a random walk, with step-size 

IlwI ~ wI (wi/vA)A/>.. « l. 
If, at fixed z t, w+ is a known function of time, then the evolution equation for w t is linear in 

w t . Nonlinearity arises because w t modifies w+ (through eq. [2 .10]) ; this modification backreacts 

on w t through equation (2.59). Nonetheless, in weak turbulence the backreaction is unimportant 

for the random walk of w t at a fixed zt. Every Ilt ~ A/VA, the backreaction changes wI by 

~ wI [(wi/vA)A/>..][(w1/vA)A/>"], which is smaller than IlwI by the small factor (w1/vA)A/>"« l. 

Furthermore, since this backreaction is uncorrelated on timescales larger than A/VA, it only effects 

a small change in the step-size of the random walk. Therefore, this backreaction can be neglected, 

and it suffices to consider equation (2.59) as though it were linear in w t . 

Our goal in this appendix is to quantify the random walk; the resulting equation is the kinetic 

equation . Before doing so, we solve a simpler problem: a one-dimensional linear oscillator, de-

9We neglect the factor of 2 associated with the fact that the relative velocity of up and down waves is 2VA· 
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scribed by a linear equation with random forcing. The extension to weak turbulence will then be 

straightforward. 

2.10.2 A Toy Problem: the Linear Random Oscillator 

We consider the evolution of a simple random oscillator 'IjJ : 

:t 'IjJ(t) = iA(t)'IjJ(t) , (2.60) 

where 'IjJ is a complex scalar and A is a real random variable; the factor i ensures that the energy 

1'IjJ(t) 12 is conserved. Our goal is to calculate the evolution of ('IjJ(t)) , where angled brackets denote 

an average over an ensemble of A's, not over time.1° We assume that the values of A at two different 

times are statistically independent of each other whenever the two times are separated by more than 

the correlation time, Teorr . (We make this more precise in footnote 11 , below.) For simplicity, we 

take A to have zero mean ((A(t)) = 0); the extension to A with non-zero mean is trivial. Finally, 

we assume that the statistical properties of A- such as Teorr and Arms == ((A2))1 /2- vary only on 

times cales much larger than Teorr . Note that 'IjJ corresponds to wI in equation (2.59); A corresponds 

to wi, or, more specifically, to wi/A; and Teorr corresponds to A/VA . 

There are two limiting regimes for the random oscillator, depending on whether ArmsTeorr is less 

than or greater than unity. The former case corresponds to weak turbulence, the latter to strong 

turbulence. 

We consider ArmsTeorr « 1. The change in 'IjJ within the time Teorr is of order ArmsTeorr'IjJ, which 

is much smaller than 'IjJ. Since A is uncorrelated on timescales larger than Teorr , 'IjJ undergoes small 

un correlated changes each Teorr , and thus its long-time evolution is a random walk. Intuitively, 

we expect that the time evolution of the statistical properties of 'IjJ- in particular, ('IjJ) - can be 

represented by a differential equation. Our goal in this section is to derive the differential equation , 

and to understand the approximations that are made in deriving it. 

The solution of equation (2.60) is simply 

'IjJ( t) = 'IjJ(0) . exp(iAt) , (2 .61) 

where At == f~ A(t')dt' . We expand as follows , 

'IjJ(t) = 'IjJ(0) . (1 + iAt - (AAt)t + ... ) , (2.62) 

t t' 
where (AAt)t == fo A(t') fo A(t")dt"dt'; note that (1/2)(At)2 = (AAt)t is an identity for any A(t). 

lOFor a textbook discussion of the linear random oscillator, see van Kampen (1992). His derivation of the equat ion 
governing ('IjJ) is more rigorous than ours. 



77 

Equation (2.62) may be thought of as an expansion III powers of A; as we discuss below, the 

dimensionless expansion parameter is really the ratio of the correlation t ime to t he cascade t ime. 

We evaluate ('lj; (t)) as follows. Since A(t) is unaffected by 'lj; (0) , A (t) and 'lj; (0) must be uncorre­

lated: 

(2.63) 

Since (A ) = 0, (At) = O. Next, we consider (( A At )t) . The values of A at two different t imes 

"sta tistically overlap" only when the two times are separated by less than the correlation time; 

i.e., (A( t') A (t' + Ilt)) is non-zero only if Ilt < Teorr . Thus (AAt) :::: A;msTeorr when t ~ Teom and 

(( AAt )t ) :::: A;ms Teorrt Y 

Therefore 

(2.64) 

Equivalently, 
d 2 
dt ('lj;( t») = - A rmsTeorr ('lj; (t )) . (2.65) 

This equation is the main result of this section. Its interpretation is as follows: since 'lj; changes by 

Il 'lj; ~ A rms Teorr 'lj; in the time Teorr , then after N steps, each Teorr long, the change in 'lj; is VN Il 'lj;. 

Thus for order unity changes in 'lj;, ('lj; / 1l'lj;)2 steps are required. The result ing time is the cascade 

t ime: 

(2.66) 

as in equation (2.65) , and Teorr/Teas ~ (Arms Teorr ) 2 « 1. Although ('lj;( t )) decays to zero on the 

timescale Teas, the energy 1'lj; 12 remains constant ; the cascade of ('lj; ) is analogous to phase mixing. 

We may now proceed to derive the kinetic equation in weak turbulence. Before doing so, we 

consider the linear random oscillator in more detail. If the reader is satisfied with the above derivation 

of equation (2.65) , the following subsection may be skipped . 

The Validity of Perturbation Theory and Goldreich and Sridhar (1997) 

Goldreich and Sridhar (1997) incorrectly claim that perturbation t heory fails in weak turbulence, 

i.e., in their intermediate turbulence.12 We explain their claim and its resolut ion in t he context of 

the linear random oscillator. In the process, we clarify the validity of the perturbation expansion. 

We consider the terms neglected in equation (2.64). For example, the fourth-order term is 

11 For t he expression ( AAt)t ) ~ Arms2Teorrt to be a pproximately valid , we see how fast A m ust decorrelate: 
(A(t' )A(t' + Ll. t)) must go to zero faste r t ha n 1/ Ll.t for large Ll. t > Teorr ; otherwise, ( AAt)t ) r ises faster t ha n t he first 
power of t, a nd our derivation is invalid . In addit ion , any order uni ty consta nt that mul t ip lies the r ight -hand side of 
t his equat ion can be a bsorbed into t he defi ni t ion of Teorr, so in t he following we set ~ to = . 

12 A note on t erminology : the tu r bulence tha t we and that Galtier et al. (2000) call weak, Goldreich and Sridha r 
(1997) call intermediate . T hey call it intermedi at e precisely because of t heir cla im that perturbation theory is invalid . 
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(-1/;<4)) / ('!f;(O)) = ({A[A(AAt)t]t}t). In this quadruple time integral , A is evaluated at four different 

times. Whenever two of these times are separated by less than Teorr , the values of A at these two 

times "statistically overlap," and hence can give a non-zero contribution to the total integral. When 

two of the times are separated by less than Teorr , and the other two times are also separated by less 

than Teorr , but the first two times are separated from the second two times by more than Teo", then 

this gives a contribution of ('!f;(4)) / ('!f;(O)) ~ (A;msTeorrt)2 = (t/Teas)2. 

Since ('!f;(2)) / ('!/J(O)) = -A;msTeorrt = -t/Teas , the contribution of the fourth-order term is as 

large as the second-order term after the time t = Teas. Similarly, if we consider the contribution to 

('!f;(2n)) / ('!f;(O)) from correlating pairs of A, the result is ~ (t/Teas)n; so all terms are of comparable 

value when t = Teas, and it seems that the lowest order term is inadequate. This , in effect, is the 

claim that Goldreich and Sridhar (1997) make in the context of weak turbulence. 

It is incorrect; although equation (2.64) for ('!f;(t)) is only valid for t « Teas, equation (2.65) for 

(d/dt) ('!f; (t)) is approximately valid for all times , with corrections of order powers of Teorr/Teas « 1. 

Since '!f;(t) undergoes small uncorrelated changes every timestep of length Teorr , we expect on physical 

grounds that the evolution of its statistical properties should be governed by a differential equation 

that is invariant under time translations. 13 Equation (2.65) is the only such equation whose small­

time behaviour is given by equation (2.64). Its right-hand side may be interpreted as the lowest 

term in a perturbative expansion in Teorr/Teas . All of the contributions to ('!f;(t)) that are of order 

(t/Teas)n must be derivable from equation (2.65). For example, if A;msTeorr == I/Teas is constant, then 

equation (2.65) has the solution ('!f;(t )) / ('!f;(O)) = exp( -t/Teas) = 1 - t/Teas + (1/2)(t/Teas)2 + .... 
Terms of order (t/Teas)n in ('!f;) are generated from the lowest order term. 

We can solve the one-dimensional oscillator exactly when A(t) is Gaussian, and thereby illustrate 

the validity of equation (2 .65). If A(t) is a zero-mean Gaussian random variable, then so is At, and 

(exp(iAt)) = exp(- ((At)2) /2) .14 It follows from equation (2.61) that 

(2.67) 

Equivalently, 

(2.68) 

which agrees with equation (2.65) when (AAt) = A;msTeorr. 

Although we are mainly concerned with the limit ArmsTeorr « 1, we conclude this subsection 

by briefly discussing the opposite limit , ArmsTeorr » 1, which is particularly interesting because it 

corresponds to strong turbulence. Perturbation theory is inapplicable because '!f; does not undergo 

small un correlated changes every Teorr . Rather , its cascade time is ~ 1/ Arms, which is much shorter 

13It should be invariant on the timescale Teorr; Arms and Teorr are effectively constants on this timescale. 
14Proof: a zero-mean Gaussian x has probability distribution P(x) = (21rX~ms )-1/2 exp( _ x 2 /2x~ms); so (exp(ix)) = 

J~oo P(x)exp(ix)dx = exp(-x~ms/2). 
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than the correlation time of A. Therefore A is nearly constant in the time that ('l/J) cascades. The 

inapplicability of perturbation theory makes strong turbulence difficult, if not impossible, to solve. 

Nonetheless, we can solve the one-dimensional oscillator in the strong limit. Equations (2.67) and 

(2.68) are still valid , but (AAt) ,...., A~mst, so ('l/J ) ex exp( -A~mst2), and equation (2.68) is not invariant 

under time translations. 

2.10.3 Derivation of Kinetic Equation 

We take the Fourier transform of equation (2.59) by transforming in x and y (but not z). We denote 

the Fourier transform of wt by wk: 

(2 .69) 

where k is purely transverse (kz == 0) ; similarly, wk is the Fourier transform of w.J. . 
Since w k is perpendicular to both k and Z, it only represents a single degree of freedom. Hence 

it is convenient to use a scalar potential 'l/Jk ' defined by wk = i(kxz)'l/Jk' with k == k/k. Similarly, 

wk = i(kxz)'l/Jk' The Fourier transform of equation (2.59) is then 

81 t _/ 2 t at k ,zl 'l/Jk (t) - d p Ak,p(t)'l/Jp(t) , (2.70) 

where 

(2.71) 

We suppress the functional dependences of 'l/J t and 'l/Jt on z t because this equation is evaluated 

at fixed z t; in the following , we replace the partial time derivative by a total derivative, with the 

understanding that z t is fixed. 15 

We use angled brackets to denote an ensemble average, in a plane with fixed z t. We define the 

spectral energy densities e t and et as follows 

(Wk(t)·Wk,(t) ) 
(wk (t).wk , (t) ) 

('l/Jk(t)'l/Jk , (t)) = et(k , t)J(k + k') 

('l/Jk (t) 'l/Jk , (t) ) = et(k, t)J(k + k') , 

(2.72) 

(2.73) 

where J(k) is a two-dimensional Dirac delta-function that is required by homogeneity (i.e., by the 

assumption that (w t (X.L) . W t (X .L + aX.L )) is independent of X.L); note that e t and et are real. 

15Since wt is real, wk = (w~k)*' where * denotes the complex conjugate, and so 'l/Jk = ('I/J~k)'; similarly, 

'l/Jk = ('I/J~ k) ' · Note that Ak,p = A :' k, - p and ak,p = a:,k ,_p ' as required by the reality of w t . The differential 

energy in up-waves within t he k-space area d2 k is proportional to d2 kJw t
kJ2 = d2 kJ'l/Jk

t J2 So Ak = -A* k and ,p p , 
ak ,p = -a;,k' as required by the conservation of up-wave energy. 
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From §2.10.1 , '!j;~ (and hence Ak,p) can be viewed as evolving independently of '!j;t, since the 

backreaction is negligible at fixed z t. Therefore, equation (2.70) is similar to the simple random 

oscillator (eq. [2 .60]) , with A k ,p a random function that has correlation time A/VA. We solve it in 

the same manner , using perturbation theory. Since ('!j;k) = 0, we derive the evolution equation for 

the bilinear quantity ('!j;k'!j;k'); from equation (2.70), 

(2.74) 

where (k f-+ k') represents a second term that is the same as the first, but with k and k' interchanged. 

We expand in A k ,p ; to zeroth order, 

(2.75) 

To first order, 

(2 .76) 

where Atk == J~ A k p (t') dt'. To second order , ,p , 

[ol,t ol,t ](2) -jd2Pd2q{ (A At )t[ol,t ol,t] (O) +(A At )t[ol,t ol,t ](O) } +(k f-+ k' ) 'Pk 'Pk' - k ,p p ,q 'Pk ' 'Pq k ,p k' ,q 'Pp 'Pq . (2.77) 

The sum of these last three equations is directly analogous to equation (2.62) for the simple oscillator. 

Using the same reasoning here as we did for the oscillator in deriving equation (2.65), we take the 

t ime derivative of the expected value of equation (2 .77) ; we get, after setting (AAt) = (A/VA) (AA) 

(with the appropriate subscripts on A) , and after using equation (2.72) and integrating out the delta 

functions on the right-hand side: 

i5(k + k' ) :t et(k, t) = V~ j d
2
p{ (Ak,pAp ,_k') et(k' , t) + (Ak ,p Ak, ,_p) et(p , t) } + (k f-+ k') . 

(2. 78) 

We use equations (2.71) and (2 .73) and et(k , t) = et(- k , t) to re-express t his as 

(2.79) 

Since each upgoing plane with fixed z t interacts with many statistically independent downgoing 

waves before cascading, it is reasonable to assume isotropy in planes transverse to z; after inserting 

equation (2 .71 ) for ak ,p and changing variables, 

(2 .80) 
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where 

(2.81) 

We have redefined A to absorb the factor of 71", i.e., A/71" -+ A. Thus far , we have only considered 

a single plane with fixed zt. If we assume that the turbulence is homogeneous in z, the z-average 

of the above equation is trivial. Similarly, we re-interpret angular brackets to denote z-averages in 

addition to an ensemble average. 

2.10.4 Steady State Fluxes 

In steady state, we set the right-hand side of equation (2.80) to zero. We try power law solutions, 

et(k) ex: k-(3+<>t), e.!.(k) ex: k-(3+<>~), in which case the right-hand becomes 

(2 .82) 

Note that the square-bracketed term is independent of ko. The above expression follows after 

breaking the kt integral into two pieces: one from 0 to k, and the second from k to 00 . Then, the 

change of variables kt -+ k2 / kt is made in the second piece (a Zakharov transformation), so that its 

limits are now from 0 to k . Finally, this second piece is combined with the first. 

In steady state, equation (2 .82) must vanish, so 

(2.83) 

Since wI ~ (k2et ) 1/2 ex: k-(1+<>t)/2, and similarly for wi, equation (2.83) is equivalent to wI wi ex: A 

(eq. [2 .19]). The vanishing of Gte.!. in steady state yields the same relation as equation (2.83), and 

so does not give new information. 

The flux associated with e t is given by integrating the right-hand side of equation (2.80) over 

d2 k from 0 up to any particular k. The steady state flux is thus given by integrating equation (2.82), 

with a.!. = - at. The result of the flux integration is 

(2.84) 

where f (at) is a dimensionless function of at: 

(2.85) 

A technical note: although equation (2.82) vanishes in steady state, its integral over d2 k gives a 
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factor of at + a-/. in the denominator , which also vanishes in steady state. This 010 ambiguity can 

be resolved by considering the limit as at + a-/. -t 0 (L'Hopital's rule). 

Equation (2 .84) and the corresponding equation for €-/., a re equivalent to those used in the 

heuristic discussion (eqs. [2 .32) and [2.33)). 

Galtier et al. (2000) plot the function f( a) after numerically integrating the steady-state flux 

integral.1 6 They show t hat -1 < a < 1, that the steeper spectrum always carries more flux 

(i.e., f(a)1 f( -a) is a monotonically increasing function of a ), and that in the limit that a -t 1, 

€t I €-/. -t 00. (Clearly, this also implies t hat in t he limit a -t -1 , €t I€-/. -t 0.) In §2 .3.4, we explain 

the physical reason why -1 < a < 1. When this condition is violated, the cascade becomes nonlocal. 

Galt ier et al. (2000) find infinite fluxes when these inequalit ies are saturated because they consider 

an infinitely extended spectrum, which leads to unphysical results when the cascade is nonlocal. 

As discussed in §2.4.2, in steady state we are primarily concerned with the case that the up- and 

down-going fluxes are comparable, so lal « 1. In t his limit, we linearize f about a = 0, yielding 

approximately 

f( a) ::: f(O) . (1 + 0.5a) , lal « 1 , (2.86) 

This result is used in §2.4.2 to calculate the energy spectra given t he fluxes €t and €-/.. 

16More precisely, t heir figure 2 is proportional to [J(o)J( _0))-1 /4, and their figure 3 shows J(o) / J( -0). 
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